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ABSTRACT

PSEUDO-HOLOMORPHIC MAPS IN FOLDED SYMPLECTIC
MANIFOLDS

By

Jens von Bergmann

We define moduli spaces for rational pseudo-holomorphic maps into oriented,
closed folded symplectic 4-manifolds with circle-invariant folds. Its elements are stable
folded holomorphic maps that are discontinuous across the folding hypersurface. The
boundary values on the fold are given by tunneling maps which are punctured gen-
eralized holomorphic maps into the folding hypersurface with prescribed asymptotics
on closed characteristics.

We show that the linearized operator of this boundary value problem is Fredholm

and thus obtain well behaved finite dimensional moduli spaces and give examples.
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1 Introduction

In the last two decades new techniques have been d‘evised to study symplectic man-
ifolds and Hamiltonian dynamics. In particular, M. Gromov showed in [Gro85] that
the tools of complex geometry that exist on Kéhler manifolds can be transferred to
symplectic manifolds. In the last decade that has led to a vibrant new field based on
the study of “pseudo-holomorphic curves” in symplectic manifolds.

Unfortunately, these methods do not apply to all manifolds: many smooth man-
ifolds do not admit symplectic forms. There are different possibilities to extend the
theory of pseudo-holomorphic curves to a broader class of manifolds. One approach,
being pursued by C. Taubes, begins with the observation that every compact oriented
4-manifold with intersection form that is not negative definite admits a closed 2-form
that degenerates along a disjoint union of circles. Taubes has made a detailed study
of the behavior of pseudo-holomorphic curves approaching these circles ([Tau02]).

In [CGWO00] A. Cannas, V. Guillemin and C. Woodward introduced the notion
of folded symplectic structures, which we describe in Section 2.2. Every orientable
4-manifold admits a folded symplectic structure.

In this .thesis I construct finite-dimensional moduli spaces of folded holomorphic
maps into a certain subclass of folded symplectic manifolds (see Theorems 7.3 and
7.11). In physics pseudo-holomorphic maps come up as vacuum solutions of classical
closed strings. Adopting this point of view, the theory of folded holomorphic maps
that I develop describes strings that are scattered at the fold singularity and exit at a
location which is in general different from where they enter. Thus pseudo-holomorphic
maps in folded symplectic manifolds are discontinuous at the fold. This “scattering”

or “tunneling” map, defined in Section 5, is the central object of this thesis.



Let (X,w) be an oriented compact folded symplectic 4-manifold with folding hy-
persurface Z. As in Symplectic Field Theory [BEH*03], we assume that the hyper-
surfaces Z are dynamically stable, i.e. the embedding of Z into X extends to a family
foliating a neighborhood of Z with w inducing the same dynamics on each leaf. In
contrast to the symplectic case, one cannot always find a smooth almost complex
structure on a folded symplectic manifold. Instead we equip folded symplectic man-
ifolds with an almost complex structure J that is discontinuous across the fold in a
controlled manner. We set this up in Section 2.4.

The almost complex structure J can be used to define “folded pseudo-holomorphic
maps” as follows. Domains for folded holomorphic maps are oriented 2-dimensional
surfaces X, separated into two parts called ¥, and X_ by a collection of disjoint
embedded circles o (see Section 4.1). A folded holomorphic map consists of a complex
structure j on ¥ and a pair of pseudo-holomorphic maps uy : ¥4 — X satisfying

the “matching condition”
(ug,u_)|, € A?

where the folded diagonal A? C Map(o, Z) x Map(o, Z) is given by the scattering
map. We give a precise meaning to this in Section 4.3.

The folded diagonal AZ is the crucial component in this definition. Unfortunately,
the obvious choice - requiring that the images of the maps u; match along Z - does
not not work (it does not lead to a Fredholm problem as explained in Sections 3
and E). In fact, in order to obtain a well-behaved finite dimensional moduli space
one needs to allow the maps to tunnel across the fold, exiting at a possibly different
location from where they entered.

The folded diagonal is constructed in Section 5.2 by considering H-holomorphic
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maps called tunneling maps. These are maps v : § — Z from a punctured Riemann

surface with boundary dS = o identified with the domain fold satisfying
Jrpdv = mpdvj; d(vtaoyj)=0.

‘H-holomorphic are essentially equivalent to the generalized holomorphic maps as
introduced by Hofer for domains without boundary, in [ACHO04]; for a discussion of
this see Section D. We deviate from the setup of generalized holomorphic maps in
that use different function spaces, defined in Section 4.2, that lead to a more natural
Fredholm theory for our setup. This is done in Sections C and C.1, where show that,
just as in the familiar case of holomorphic maps into cylinders, the punctures are
asymptotic to closed characteristics.

Tunneling maps v, and v_ start at boundary conditions given by maps u, into
X4 and u_ into X_ and cap these off to closed characteristics. The folded diagonal
is then defined as the boundary values of pairs (v4,v_) of tunneling maps that are
“reflections” of one another through a special kind of tunneling map called “Abbas
solution”. This reflection process is defined in Section 5.2 and explained in a simple
setting in Section 5.3.

The space of folded holomorphic maps breaks up into components labeled by

relative homology classes
[Ui Ug ’Ui] S H‘Z(X'j:’ R; Z),

where R is the space of closed characteristics. As a consequence, the energy of folded
holomorphic maps is constant in families, as explained in Section 7.1.
Deformations of the folded diagonal are studied in Section 6. This leads to the

result that the folded diagonal poses elliptic boundary conditions for the linearized
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operator at a solution (Theorem 7.1). This leads to the main result, which I have
proved for the case that the fold is an S!-bundle over a Riemann surface with the

vertical subspaces coinciding with the characteristic foliation.

Theorem 1.1 (Theorem 7.3 and 7.11). For generic almost complex structure,
the moduli space of folded holomorphic maps is a smooth finite dimensional manifold

whose dimension is the indez (7.42)of the linearized operator.

As examples, I consider folded holomorphic maps into S*. While S* does not
admit either symplectic or almost complex structures, it does have a canonical folded
symplectic structure. In this case, the spaces of relative homology data reduce to the
degree with which the tunneling maps wrap the closed characteristic. In Section 9.2
I give an explicit example of a family of folded holomorphic maps of degree 1 into S*.
As a second example (see Section 9.1) I show how in certain special cases (e.g. if X is
a folded elliptic fibration) folded holomorphic maps on a folded symplectic manifold
can be equated with pseudo-holomorphic maps into a (different) symplectic manifold.

The results presented here are the beginnings of a general program whose ultimate
goal is to construct Gromov-Witten type invariants for non-symplectic 4-manifolds
and develop techniques for computing these invariants. That will involve in particular
compactifying the moduli space constructed in my thesis and generalizing the admis-
sible structures on the fold. First steps in this direction are carried out in Section
8.

While tunneling maps may seem a novel feature of the folded symplectic setting,
they are already implicitly present in the gluing and degeneration arguments of Ionel
and Parker, Hofer and Eliashberg. Tunneling maps give the difference between the

smooth and the degenerate case and keep track of relative homology data.



As an application of this work, I hope to be able to use the theory of folded
holomorphic maps to make progress toward the “recognition problem” for some folded
symplectic manifolds, in particular for S*. The space of rational folded holomorphic
maps of degree 1 has the property that it “sweeps out” S?* in a similar fashion as
lines in P? sweep out P? (see Figures 10 and 11). Arguments of Gromov show how to
use this behavior of lines in P? to recognize the complex projective plane, and these
were generalized by McDuff and Lalonde to ruled surfaces. Similar arguments may

work to recognize certain folded symplectic manifolds.

2 Background and Basic Definitions

2.1 Symplectic Manifolds

Definition 2.1 (Symplectic Manifold). A symplectic manifold is a pair (X,w)

where X is a smooth manifold and w is a closed non-degenerate 2-form on X.

The existence of a symplectic form on a manifold gives us tools to study these
manifolds. For example the study of symplectic submanifolds leads to Donaldson’s
description of symplectic manifolds via braids. The study of J-holomorphic curves
leads to Gromov-Witten invariants for symplectic manifolds. Taubes showed that in
dimension 4 certain invariants constructed in this way are actually independent of
the choice of symplectic form and only depend on the underlying smooth structure.

Not every manifold is symplectic, but we can try to generalize the tools that we
have on symplectic manifolds to a larger class of manifolds. Here we will weaken some
of the assumptions on the symplectic form w and try to extend symplectic results to

this case. There are two different approaches, based on the following observations.
(1) Every four-manifold with intersection form that is not negative definite. there
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exists a closed 2-form w with w? > 0 and (w?)~!'(0) = Z is a disjoint union of
embedded circles. Taubes used this approach to define J-holomorphic curves.

(See [Tau98] and [Tau02].)
(2) Every oriented four-manifold carries a folded symplectic form. This was shown

by Ana Cannas in [Can02).

We follow the second approach.

2.2 Folded Symplectic Manifolds

The content of this section is based on [CGWO00].

Definition 2.2 (Folded Symplectic Structure). Let X be a smooth 2n-dimensional
manifold. A folded symplectic structure w is a closed 2-form such that w™ is trans-
verse to 0 (so Z = (w™)~1(0) is a, possibly empty, smooth codimension 1 hypersurface)

and w"~!|; is non vanishing. Z is called the fold.

The last condition means that the kernel of w, which by transversality is a real
2-plane bundle over Z, is transverse to TZ. This is equivalent to the requirement

that
L:=ker(w)|zCTZ

is a 1-dimensional foliation. L is called the characteristic foliation. Thus intrinsi-
cally, the fold of a folded symplectic manifold is indistinguishable from an orientable
hypersurface in a symplectic manifold.

Here are some examples:

1. (R*,w) where

w=umxdry ANdy, +dra ANdys + ... + dr, AN dy, (2.1)

6



is folded symplectic. To see this, note that w™ = z,(dx, Ady, A ... Adz, Adyy,)
is transverse to zero, with fold defined by Z = {z; = 0}. Also, w|z = dz, A

dys + ...+ dzy, Ady,, so W™tz =dzy Adys A ... Adz, Ady, # 0.

2. §?" has a folded symplectic form defined as follows. View S** C R?**! as
the unit sphere, and let m : S?® — R2" be the restriction of the coordinate
projection R?"*! = R?" x R — R?" to S?". The standard symplectic form wy
on R?" pulls back to a folded symplectic form w = 7' (w) on S?". Indeed, w?
degenerates on Z = S?»NR?" x {0} ~ S?*~! and it intersects zero transversely.

Also w|z # 0.

3. The folded symplectic form in Example (2) is invariant under the antipodal

map, so it descends to a folded symplectic form on the quotient RP?".

4. On a Riemann surface ¥, any 2-form w is closed. It is a folded symplectic
structure provided it is transverse to the zero section. This condition is open

and dense among all 2-forms.

5. On a 4-manifold, the conditions that a closed 2-from w has a square that is
transverse to the zero section is again open and dense in the space of closed
2-forms, while the condition that w|z never vanishes is open but not generic in

the space of closed 2-forms.

As with symplectic structures and contact structures, folded symplectic structures

can locally be put in standard form.

Theorem 2.3 (Darboux). For every folded symplectic form w there exist local co-

ordinates near the fold such that w has the form (2.1).



More generally, in [CGWOO0] it is proved that for any a € Q'(Z) that does not
vanish on L we can extend the inclusion i : Z — X of the fold to an orientation

preserving diffeomorphism

o:(—e,e)xZ-U (2.2)
onto a tubular neighborhood U of the fold such that

P'w = mi'w+d(r’na), (2.3)
where 7 is the coordinate function on (—¢,¢) and 7 is the projection 7 (r, z) — z.

Definition 2.4. A morphism 9 : X = X, of folded symplectic manifolds (X;,w)

and (X,,ws) is a diffeomorphism satisfying
P'wy = wy.
Such morphisms automatically take folds to folds.

2.3 Folded Connect Sums

The most important example of an operation on folded symplectic manifolds is the
connect sum along symplectic submanifolds of arbitrary dimension. This procedure,
described in Theorem 2.5 below generalized the “symplectic connect sum” operation
that joins two symplectic submanifolds along a codimension 2 symplectic submanifold.

In the symplectic category connect sum can only be performed along codimension
2 symplectic submanifolds. The ordinary connect sum is performed by removing
neighborhoods of points on each manifold and then gluing the boundaries. If this
could be performed symplectically, then the manifold obtained by gluing up the two

remaining pieces should also be symplectic. But this manifold is isomorphic to $**



and the only sphere that admits a symplectic form is S?. Thus the connect sum
operation cannot be performed symplectically in dimension > 4.

On the other hand, $?" does admit a folded symplectic form, so there is the
possibility that connect sum can be performed in the folded symplectic category.
Here is Ana Canna’s construction ([CGWO00]) for folded symplectic connect sum:

Let (M;,w;) and (M,,w,) be folded symplectic manifolds and let p; € M; be
points not on the folds. Then we can obtain the manifold (M = Mf,, ;, Mz, w) in
the following way. Near the points p; the forms w; are non-degenerate, so we can pick
symplectic Darboux charts near these points. Then pick annuli 4; ~ S?*~! x [1,2]
around p; contained in such a chart. Let 7 : S?"°! x [1,2] —» S?! and « be the
standard contact 1-form on S?*~!, so w|,, is diffeomorphic to d(r;7*(a)), r; € [1,2].
Choose coordinates t; such that r; = ¢? for t; > ¢. Then we can extend w across the
symplectic sum by defining

ift < —¢
ift>e¢

w=d[(1+t)Ar*a], where t= { t_tl

2
In [CGWO00] it is shown how to generalize this construction to gluing manifolds
along almost contact manifolds with certain compatibility conditions. We modify

this argument to show that we can perform connect sum along arbitrary codimension

symplectic submanifolds to obtain a folded symplectic manifold.

Theorem 2.5 (Folded Connect Sum). Let (M;,w;) and (Ma,w,) be symplectic
manifolds with symplectomorphic symplectic submanifolds V) and V,, respectively,
with symplectomorphic normal bundles.

Then for any boundary Z of a small enough tubular neighborhood of V in M, there
ezists a folded symplectic manifold (M,w) with fold Z, obtained from M, and M, by

taking connect sum along V| and V,, such that there exists tubular neighborhoods U,

9



of Vi, Uy of Vo and U of Z with
(M \ U,w) = (1\/[1 \U],wl) U (A’Ig \ Ug,(.d2).

Proof. By the Symplectic Neighborhood Theorem there exist neighborhoods U, of V;
and U, of V, and a symplectomorphism ¢ : U; — U, extending the given symplecto-
morphism V; — V5. Choose a tubular neighborhood U, of V; properly contained in
U, and set Z = dU;.
Define the manifolds
M, = M\U,
My = My\¢(Dh)
with boundary Z identified via ¢. Since ¢ is a symplectomorphism we have w;|z =
ws|z which we denote by wy.
Let o € Q!(Z) with a > 0 on the characteristic foliation. By the Coisotropic

Embedding Theorem there exist collar neighborhoods Z x [0,e) C U; on which the

symplectic forms w;, pull back to

w; =wgz + d(t,‘a), t; € [0,5); )

I
p—
(3]

Define the annulus A; C U;,
A ={(z,t;) € Zx[0,e)|0< t; <¢}
and the orientation reversing diffeomorphism
o:A = A, o(z,t) = (z,e = t).
Then define the manifold

M = Ny U, M,

10



with open submanifold A the image of A;.

Choose a monotone coordinate function ¢ : (—€,¢) — R such that

2=t if t<—ve/2
t2=t, if t> /2

and define the folded symplectic 2-form w on M by

wz +d(t’e) T=(2t)€A
w(z) =< w z € Mi\{(zt)|t < 3¢}
wa z € My \ {(2,t)]t < 3¢}
Then w is a folded symplectic form on M with fold Z. O

2.4 CR Structures on the Fold

Given a folded symplectic 2n-dimensional manifold (X, w) with fold Z, and an ori-
entation on X, we obtain some additional structure. Since X is oriented, X \ Z is
the disjoint union of the open manifolds X, and X _, the regions where the orienta-
tion agrees or disagrees with the one induced by w, respectively. Therefore Z is also
oriented.

Observe that we have a canonical 2-dimensional subbundle
E =ker(w) C Tz X
and the 1-dimensional subbundle
L = ker(wz) C E.

Both L and E' are oriented.
In [HZ94], Hofer and Zehnder made the definition of a stable hypersurfaces in

a symplectic manifold. As observed earlier, the folds of folded symplectic manifolds

11



look intrinsically like oriented hypersurfaces of symplectic manifolds, so the definition

transfers readily to our setting.

Definition 2.6. The fold Z of a folded symplectic manifold (X,w) is dynamically

stable if there exists an embedding
Y:Z x(—€,6) > U

ertending the inclusion ¢ : Z = Z x 0 — X such that the flow ¢, of O, t € (—¢,¢)
on Z x (—¢,€) preserves the characteristic foliation on each slice Z x t, i.e. if (d,).

induces bundle isomorphisms
(s)e : L = L

where L(z,t) = ker(w|zxt)-

A folded symplectic manifold is called stable if its fold is dynamically stable.

We assume that all of the folded symplectic manifolds we work with are stable.
The importance of this requirement is that dynamically stable folds admit nice CR-
structures; these seem essential for the analysis carried out later. We need a special

1-form on Z.

Definition 2.7. A 1-form o € Q1(Z) on the fold Z of a folded symplectic manifold

is called stable if

ker(w) C ker(da). (2.5)

The existence of a stable a turns out to be equivalent to Z being dynamically

stable as was pointed out to the author by Y. Eliashberg:

12



Lemma 2.8. There ezxists a stable 1-form a on the fold Z of a folded symplectic

manifold if and only if Z is dynamically stable.

Proof. We adopt the notation from Definition 2.6.

For every fold admitting such a 1-form a there exists such an embedding ¢ by
equation (2.3).

Conversely, suppose that there exists such an embedding ). Define the 1-form

1
a = ?La,w

and let R be the unique vector field such that
Lpw = —tdt.

Note that this is well-defined since t5,w vanishes on the fold {(z,t)|t = 0}.

Then a(R) =1and R € L. Also L5, R = f - R € L for some function f since the

flow of 0, preserves L. Also
Lrw = digw + tpdw = d(—tdt) =0

and LR% = 0 since R is tangent to the level surfaces of t.
Recall the formula
Lxoty =tyoLlx+ UX,Y)

operating on forms. Then

1 1 1
LRda = ERG = LR (Zl,a,w) = ? (Latcnw + L[R,a,]w) = —?f/,Rw = fdt

which vanishes on vectors tangent to the slices t = const.
So L = ker(w|z) C ker(da) and «|; is a 1-form with the desired properties. O
It is not clear under exactly what conditions a folded symplectic manifold (X, w)
is stable, but there are important cases in which it is: (X,w) with fold Z is stable if

13



(a) Z is an S! bundle with the vertical subspaces being the characteristic foliation

and a is a connection 1-form,
(b) (Z,a) is contact with contact form a such that da = wz, or

(c) a is exact.

Following the definitions of [BEH*03] we assume that a is chosen to be stable.

Such an o determines a canonical section R of L by the requirement that
tpw = 0, a(R) =1, (2.6)

called the characteristic vector field.
Note that in case (a) the flow generated by R defines a free S' action on Z

preserving w and a. This motivates the following

Definition 2.9. A folded symplectic manifold has an S'-invariant fold if we can
choose a 1-form a on Z that is non-vanishing on L, such that the flow of the associated

characteristic vector field defines a free S' action on Z that preserves w and a.
A stable a defines a symplectic subbundle F' = ker(a) C T'Z over Z such that
T;X =FEa&F. (2.7)

Now choose a background metric ¢’ on X such that the splitting (2.7) is g¢'-
orthogonal. Mimicking the standard procedure to generate a compatible triple on a
symplectic manifold using the background metric g’ we obtain a folded triple (w, g, J)
on X \ Z satisfying the compatibility conditions

J'w = w
g(u,v) = w(u,Jv).
The details are given in Appendix A.

14



Definition 2.10. Let
J(X,w,a)

be the set of almost complez structures J on X \ Z obtained by the above construction

with the splitting (2.7) induced by w and a.

Each J € J(X,w,a) determines a compatible triple (w, J, g;) and allows us to
extend the splitting (2.7) to a neighborhood of the fold such that it is J-invariant and
gs and w orthogonal. Restricting (w, J, g;) to F yields a smooth compatible triple on

F and the restriction to E satisfies

WE = TU
g = |r|h (2.8)

Jg = sign(w?)J

where (u, h, J) is a smooth compatible triple on E. The details are given in Lemma
A2
The complex structure J allows us to define a complement K of L in E by K = JL,

so we can refine the splitting (2.7) over Z to
T;:X=K&®LaF. (2.9)

Fix a non-negative bump function § depending on r and supported in a Darboux
tubular neighborhood of the fold that is equal to 1 on the fold and vanishing outside

this neighborhood of the fold. Then define the non-degenerate metric
g=9g+p3-h (2.10)

By choosing a background metric ¢’ that makes the splitting 7, X = K ® L@ F

orthogonal, we may assume that Z as well as each leaf of the characteristic foliation

15



are totally geodesic with respect to h and therefore also g. Henceforth we assume
that g has these properties.

In the case that we have an S! invariant (w, o) we can arrange (by starting from
an S'-invariant background metric g') for the compatible triple to also be S! invariant
over U. Therefore we will assume that in case of S! invariant folds, the compatible
triple is also chosen to be S! invariant near the fold.

Equations (2.8) show that J is discontinuous across the fold in the E directions.
However, on U we may define two smooth complex structures, denoted by J*, such
that J*|x, = J by choosing J& = +J.

As observed in [BEH*03], (Z, F, J) defines a CR structure on Z.
2.5 Circle Invariant folds

Folded symplectic manifolds with S'-invariant folds are especially easy to work with.
They also occur frequently. The standard folded symplectic structure on the spheres
(described in the next section) is of this type. Connected sums of symplectic 4-
manifolds always have folded symplectic structures of this type. More generally, one
can arrange for the operation of Theorem 2.5, which forms the connect sum along
symplectic submanifolds of any dimension, to produces symplectic structures with
Sl-invariant folds in the case that the submanifolds are of codimension 2. This can
be seen by choosing Z more carefully as for example done in the symplectic connect
sum construction in [MW94] or [IPar].

Sl-invariant folds have a special structure, as described in the following Lemma.

We will use this lemma repeatedly in later sections.

Lemma 2.11. In the case of an S' invariant fold, Z is an S' = R/Z bundle over a

symplectic manifold (V,wy) with projection my- : Z — V such that

16



1. wz =mywy

2. there exists an wy compatible almost complex structure j, on V such that dny|p

is (J, jy) linear.
Moreover a may be chosen such that

da=C- wgz C =c1(2)/vol(V) (2.11)
where ¢, 1s the first Chern class of the circle bundle Z — V and vol(V') is w.r.t. wy.

Proof. Since the S! action on Z is free we can exhibit Z as an S! bundle
24—V

over a closed (2n — 2)-dimensional manifold V. Since w is S! invariant and its kernel
coincides with the vertical subspace there exists a 2-form wy on V' such that w =
mywy. One readily checks that wy is closed.

The complex structure J|r induces an almost complex structure j on the quotient

V in the following way. Because ker(dmy-) is transverse to L,
dﬂvlp(z) P — T"V(Z)S

is an isomorphism for each z € Z. Since the complex structure J on F' is invariant
under the S'-action this map induces a complex structure j on V so that dry|F is
(J,7) linear.

To see equation (2.11) let ap be a connection 1-form on Z, i.e. « is invariant
under the S'-action and satisfies ag(R) = 1. Then tgdag = Lrag = 0, so dag = 7} wy
is the pullback of a 2-from wy on V' which is just the curvature of the connection ag

and therefore represents ¢, (2).
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Since wy is a volume form on V' there exists a constant ¢ € R with

/V(cwv —wp) =0,

so (cwy — w) = df for some 1-form B on V. With the gauge transformation a =

ap + my, 8 we still have a(R) =1, and

da = dag + mydfS = mywy + Ty (cwy — wy) = cTywy = cwyz.

3 Motivating Example

To motivate what follows we will investigate possibilitics to define pseudo-holomorphic
maps into S* with canonical folded symplectic structure as defined in Section 2.2.
One overruling principle is that we want to obtain well-behaved moduli spaces of
such maps. More precisely we are looking for a notion of pseudo-holomorphic maps
in folded symplectic manifolds such that the linearized equations at a solution give
rise to a Fredholm operator and that the solutions are stable under perturbations
(away from the fold) of the structures involved.

Recall that S* does not admit any symplectic form since its second cohomology
is trivial. Moreover, S* does not admit an almost complex structure. To see this
let (M, J) be an almost complex 4-manifold. Recall that its first Pontryagin class is

given by
n(TM) = —c2(TM @ C) = —co(TM & TM)
and the total Chern class of TM & T M satisfies

(TM ®TM) = (1+ (M) + c2(M))(1 = 1 (M) + ¢2(M)) = 1 + 2c2(M) = (e1(M))?
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Therefore p,(TM) = —2c3(M) + (c;(M))?. If M has vanishing second cohomology
like S4, then p;(TM) = —2c,(M).

Since T'S* is stably trivial we conclude that p,(T'S*) = 0 by the Whitney sum
formula. But cy(T'S*) = 2¢(T'S*) = 4, so S* cannot be almost complex.

Therefore the answer to the question how to generalize pseudo-holomorphic maps
to this setting is far from obvious. We let ourselves be guided by the folded symplectic
structure w. Since w is non-degenerate on X \ Z, or S*\ S? in this particular case,
the usual procedure to construct a compatible triple will yield an almost complex
structure J there. Then it is clear what a pseudo-holomorphic map from a Riemann
surface (X, j) into X \ Z is, namely a map with (7, J)-linear differential. Since the fold
Z separates X into X this means that maps from a connected domain into X \ Z
will have image in only one side X, or X_ of the fold. The question then is how to
allow maps to “cross the fold” i.e. have image on both sides of the fold.

One way to do this is to choose an almost complex structure on X \ Z that
degenerates along Z in a way that X, has “cylindrical ends” in the sense of [EGH00].
This then reduces to the fairly standard problem of holomorphic curves relative to
closed characteristics as discussed in [IP03], [EGHO00] and [BEH*03]. In effect this
is treating the two sides X as separate manifolds with boundary and qualitatively
not different from studying holomorphic curves in a symplectic manifold where the
complex structure on the target has been degenerated. In [IPar] it was shown how to
reverse the process of the degeneration of complex structure to recover holomorphic
curves in the symplectic manifold with smooth almost complex structure.

We try and find the analogue of holomorphic curves with non-degenerate almost

complex structure for folded symplectic manifold, while being guided by the hope that
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these will limit to the relative curves discussed above as we degenerate the almost
complex structure. To do this we define an almost complex structure on S* that is
non-degenerate in the sense that its norm w.r.t. a metric on S* stays bounded, but is
(necessarily) discontinuous across the fold. One way to do this is to use a background
metric to construct a compatible triple as in the symplectic case. This process is
described in more detail in Section A.

We describe the folded symplectic structure and a compatible almost complex
structure with nice symmetry properties on S*.

View S* as the unit sphere in R®. Then we have

e the restriction of the coordinate projection R*> ~ R x R* = R* to S*, and
e the stereographic projections o4 : S*\ (£1,0,0,0,0) —» R*.

Let wy and J, be the standard symplectic and complex structures on R*. Then
w = m*wy and J = 7*J, give a folded compatible triple (J,w, g) on S* with g(u,v) =
w(u, Jv). The orientation induced by the folded symplectic form agrees (disagrees)
with the canonical orientation on S* on the upper (lower) hemisphere S (S*), the fold
Z = S% is the intersection of S* with the equatorial plane {(zo, z,, x2, T3, 24)|To = 0}.
The choice of J is compatible with choosing a to be the canonical contact structure

on S3, i.e. a is the restriction of the canonical 1-form

a= % (z1dx9 — Todx) + 23dT4 — T4dT3)

to S3. Therefore do = w;.
The map
T St 8!
(rg.r1,x9,x3,24) — (=20, T, T2, T3, T4)
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34

(RY,w)

Figure 1: Folded Structures on S*
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is a biholomorphic involution on S* exchanging the upper and lower hemisphere and
fixing the fold.

The bundle F' = ker(a) is given by the contact planes of the fold S® and E is
spanned by the characteristic direction given by the vertical subspaces of the Hopf
fibration and the “radial” direction.

There are a couple of straightforward observations about (non-)possibilities of
holomorphic curves. First note that any non-trivial J-holomorphic has to cross the
fold, since each side is biholomorphic to B* C C? which has vanishing homology and
therefore does not admit non-trivial holomorphic curves by their energy minimizing
property.

For the following fix a Riemann surface (¥, j) as domain.

Lemma 3.1. There are no smooth J-holomorphic maps into S*, i.e. there is no

smooth map u: £ — S* such that 9,u =0 on T\ u~!(Z).

Proof. Set 0 = u~'(Z) and £1 = u~'(S}). Recall that the fold S3 is a pseudo-convex
boundary of B* C C? (cf. e.g. [AHar]) so any J-holomorphic map uy : &y — S
with limit on Z = S3 has to be transverse to Z by the strong maximum principle.

Therefore u is transverse to the fold and o is a smooth separating submanifold of ¥.

But for0 #n e T,X

mg duy(jn) = mpdu_(jn) = J_mpduy(n) = —Jympdui(n) = -7 duy(jn)

so mg du = 0 along o, contradicting that u is transverse to the fold. a

The proof shows that a stronger result is true, namely there are no continuous

J-holomorphic maps into S* that have C'-smooth one-sided limits on the fold.
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We see that the reason for the failure of maps to be smooth is essentially due to
the change in orientation of the almost complex structure on the bundle E which is

transverse to the fold. One can remedy this by the following equivalent modifications:

1. Ask that maps are holomorphic at points that have image in Si and anti-

holomorphic at points that have image in S?.

2. Work with domains ¥ with oriented separating submanifold o separating ¥\ o =
L+ UZ_ where the orientation of 0¥, (0X_) agrees (disagrees) with that of o.
Then demand that maps u : ¥ — S* send £, into S} and work with complex
structures 71 on X4 such that there exists a smooth complex structure j on &

with :tj:t = jlgi.

3. Modify the almost complex structure on S* so that it is continuous on the

transverse bundle E and discontinuous on the bundle F C TZ.

4. Choose a new almost complex structure J on S* by replace the almost complex
structure J on S? defined above by —J while leaving the structure on S%

unchanged, i.e.

= v J@) =zeSi
J(a:)—{ -J(z) zeS!

We only discuss the last modification.

Lemma 3.2. If u is a smooth J-holomorphic map into S, then its intersection with

S 1s a collection of closed characteristics.

Proof. S% has still a pseudo-convex boundary, so for the same reasons as in Lemma

3.1 u is necessarily transverse to the fold and ¢ = u~!(Z) is a smooth separating
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submanifold. Let p € 0. Then
e du(p) =0

by a similar argument as in Lemma 3.1. Since u is transverse to the fold, & =
ul, : ¢ = Z is an immersion, and since g @ = 0 it is tangent to the characteristic
foliation. Since o is necessarily closed, each component wraps a closed characteristic

non-trivially. 0O

Examples of such smooth J-holomorphic maps into S* are restrictions of lines in
C? that pass through the origin. In fact it is not difficult to see that any smooth
J-holomorphic map is of that form (or a multiple cover of such a map). But these
solutions are extremely unstable — when one perturbs J at the north or south pole in
a generic way, all of these solutions die.

Expanding on this example, one might see that asking for maps to be smooth is
too restrictive. It seems more natural to consider maps that are smooth up to the
fold but only continuous across the fold. A similar argument as in Lemma 3.1 shows
that there are no such J-holomorphic maps. But there are many such j—holomorphic

maps as the following Lemma shows.

Lemma 3.3. Let (£, j) be a Riemann surface with boundary 0X. Thenu : (X,0X) —

(S4, %) is J-holomorphic if and only if Tou : (£,0%) — (S, S?) is —J-holomorphic.
Proof. T is a biholomorphism for J so it is an anti-holomorphic involution for J. O
Now let (£, ) be the double of (T, ), i.e.

ZZEU(‘)EE

24



with complex structure j on £ and —j on ¥. Then if u : (£,0%) — (S1,5%) is

J-holomorphic the map

{ u(zx) €L

iz) = Tou(zr) ueyx
is a continuous J-holomorphic map.
By the unique continuation theorem for holomorphic maps all continuous J-

holomorphic maps into S* are of this form. Therefore such maps are in bijective

correspondence to holomorphic maps
u: (%,0%) - (B* c C?,8%).

But the space of such maps is infinite dimensional and each map has an infinite dimen-
sional space of holomorphic deformations, even if we quotient out reparametrizations.
To see this note that for well behaved maps we may find a totally real subbundle
W c TZ C T;zS* with u(n) ¢ W for all n € To. Furthermore, by choosing W
appropriately one may arrange for the Maslov index of u with respect to W to be
large enough so that the index of the linearized operator at u operating on sections
with boundary values in W is positive. So for each such choice of W there exists
non-empty finite dimensional space of nearby solutions that also map the boundary
0Y into Z. But there are uncountably many choices of such totally real W, so there
exists uncountably many nearby solutions.

This shows that considering holomorphic curves with “continuous images” cannot
lead to a Fredholm problem. The condition of “continuous images” does not pose an
elliptic boundary value problem for the linearized Cauchy-Riemann operator.

One possible remedy is to impose additional constraints to cut down the solutions
to a finite dimensional space. But there is no evident way of doing that which is

stable under perturbations.
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Another approach is to allow discontinuous images. We think of this as holomor-
phic curves that leave the fold at a location that is different from where they enter,
the relation between these is given by a tunneling map in Z. This way we define a
Fredholm problem for discontinuous pseudo-holomorphic maps into folded symplectic

manifolds. Roughly speaking, a folded holomorphic map consists of
e a domain (X, j) with submanifold separating £ into ¥, and ¥_
e a J-holomorphic map uy : ¥, = X,
e a J-holomorphic map u_ : ¥, — X_

e and a tunneling map connecting u, (9%, ) to closed characteristics and then

continuing on to connect to u_(9¥_).

(X,w,dJ)

Tunneling

Figure 2: The map tunnels through the fold, exiting the fold at a location that is
different from where it entered.

We will make this precise in the following sections. But first we will give a trivial

example of discontinuous folded holomorphic maps.
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Consider the complex elliptic fibration X = E(1) and let T < E(1) be a regular
fiber. There exists a tubular neighborhood X_ of T in E(1) biholomorphic to X_ =
D x T, where D is the closed unit disk in C with the canonical complex structure.
Set X, =FE(1)\ X_.

Consider the following two self-maps of the boundary Z = 80X, = S' x T

z,w) = (z,w)

tr(z,w) = (Z,w).
Then we have the manifolds

EQ) = X,u X_

EF(1) = X,u,.X_

with almost complex structure inherited from each piece.

E(1)
ST - <«

L LF J
-+—>

X _ X _ X
b, . .
S!'xT? — S!' xT?

l pi (z,w) — (Z,w)

>

Figure 3: The manifolds E(1) and E¥(1).
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The construction of Section 2.3 exhibits E¥ (1) as a folded symplectic manifold.
(With a little more care we may define smooth structure on E¥(1).) In particular,

there exists a biholomorphism
v:EQ1)\Z-EF(1)\Z

given by the identity map on each piece, X, and X_.
This setup suggest the following definition for folded holomorphic maps into the

folded symplectic manifolds EF (1):

Definition 3.4. A folded holomorphic map u: £ — EF(1) is a map such that ¥ ou

is (the restriction to the domain of definition of) a holomorphic map in E(1).

It is clear from the definition that this will yield a well-defined moduli space,

although the maps are necessarily discontinuous.

X, | E(1) x. 1E()F
() ¥ a» ¥
| L
// //
] 1
L v ]
L TTH ||| || BT
L1 L1
|+ P ¥
1 X L1 .
D b

Figure 4: Folded holomorphic maps in EF(1).

The intuition behind this definition is that EF(1) is a folded symplectic manifold
that was glued up in the wrong way. In general, there is no global way to cut a
folded symplectic manifold into the pieces X; and X_ and glue them back together
to obtain a symplectic manifold. In the following we will show how to nevertheless
define folded holomorphic maps into more general folded symplectic manifolds that

will reduce to Definition 3.4 in the case of EF(1).
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Note that the pieces u, and u_ of a folded holomorphic map into EF(1) have

boundary values in
AZ = {(iy,d_) € Map(o, S* x T?) x Map(0, S' x T?)|i_ = Vo i, }.

We call AZ the folded diagonal. The above definitions work in the case where the
fold Z has the structure of a trivial S!-bundle with the characteristic foliation being
vertical. To define folded holomorphic maps into more general folded symplectic
manifolds we need to generalize the folded diagonal in a way such that it continues

to give elliptic boundary conditions for the pieces u, and u_.

4 Folded Holomorphic Maps

Here we will define folded holomorphic maps and lay the functional analytic founda-
tion for the later sections. We start by describing the domains of folded holomorphic

maps, then we set up the Sobolev spaces and lastly we set up the PDE.

4.1 Folded Domains

Definition 4.1 (Folded Domain). A folded domain D consists of
(i) two closed Riemann surfaces (o, jo, Pg) € Mgono and (Zy, j1,P1) € My, n,

(ii) functions 7; : £; = R with zeros of at most finite order such that
piCX, where ©f = {z € &,| £ ,(2) >0}, i =1,2
(i) a function g : ©f — R and a diffeomorphism

71/) : (Z(ij()) — (Zi7jl),
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satisfying the conditions
Y1 = Jo, Y = €. (4.12)

We set pf = po N =¥ to be the marked points contained in £y. The marked
points p; are called punctures. The zero sets 0o = 7, ' (0) and o, = 7, '(0) are called

the domain folds. To simplify notation we set
r.=3X¥ S=%;, S=S\p.

Moreover, when no confusion can occur we will drop the subscripts on j; and 7;.

(Elvjlsp)

Figure 5: Folded Domains

The purpose of the functions 7; and 75 is to give possible locations of the domain
fold o, but we are not interested at the specific values of 7; away from there zero set.

The space of functions f : £; — R, acts on a folded domain D by
n = 71 =elln
g — g=g-v'fi.
Then

1 _ _g+-y" * — +-vy* ot * _
Y7 = e’ N Y (ef‘Tl) = Y Jrey f'l/) 7 = €97
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so this is well-defined.
Moreover, (¢, ¢;) € Diff*(Zo) x Diff*(£,) acts on a folded domain D by
ji & $ri =d¢; o jiodd;
Ti V> T;0¢;
pPi — éi(pi)
Y o ¢logogy
g = godo
To see this we check equations (4.12).
i = d o g odyf
= doy'dipodg; odd;! o odd ode;’ odip o dy
= de¢y'dip oy ody odey
= dog'joodey
-
Y*r = 1oy
= To¢ 04 oo
= ToyYod
= (e?70) 0 ¢o
= ero ¢
= &7
This leads us to the following
Definition 4.2. The group
G = Map(Zo, R) x Diff*(X,) x Diff*(T,) (4.13)
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is called the gauge group.

Next we recall (see e.g. [BEH*03]) a natural compactification of a Riemann
surface ¥ (possibly with boundary) with punctures px, k = 1,... K, that we need in

our context.

Definition 4.3 (Radial Compactification). The punctured disk D\ 0 with canon-
ical metric is isometric to the open annulus (0,¢) x S! by the map given in polar
coordinates by (r,e*®) — (372%e), where we equip the annulus with the canonical vol-
ume form dsA\df. After choosing local holomorphic coordinates around each puncture
pr in S, that diffeomorphism defines a compactification of S, that is a manifold with
one boundary component Ty (the circle corresponding to {0} x S! under the diffeo-
morphism) for each puncture.

When we consider metrics on the radial compactification S, we will always assume

that they coincide with the metric induced by the one on the cylinder, so the curves

[y have length one.

The canonical projection 7 : S — S sends each Tk to px and is a diffeomorphism

from S\ U, Tk = S\ U, {pc} = S.

Remark 4.4. 1. The sets p are disjoint unless some of the marked points lie on

ap.

2. Let be S the radial compactification of S as in Definition 4.3. Then we define
the associated 2-dimensional C°-cycles with boundary (4, py) by gluing T, to
S to get £, = 3, or by gluing £_ to —5 to get £_, where the gluing is done

along o.
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Note that i)+ is actually a smooth Riemann surface. for £_ this is only true in

the case that the domain fold ¢ is a manifold.

Definition 4.5 (Stable Folded Domain). A folded domain D as in Definition
4.1 is called stable if for each irreducible component & of £y, Aut(Z, jo, po) is finite
dimensional and each connected component of S contains at least one puncture.

The space of stable folded domains with genera g; of £; and ny marked points on

Yo and n; punctures on £, modulo gauge, is denoted by

MF

90,91,M0,n1 "

(4.14)

Note that this space is infinite dimensional.
4.2 Sobolev Spaces of Maps

To proceed we need to give a precise definition of the Sobolev spaces we plan to use.
Recall the non-degenerate metric § from equation (2.10) and fix a folded domain D
as in Definition 4.1. We follow the definitions from [BBW93] for Sobolev spaces on

manifolds with boundary.

Definition 4.6. Fiz a Riemannian metric in the conformal class of j on £y and
positive integers k,p with kp > 2. Let Uy C ¥, be open subsets properly containing
T. and that is of the same homotopy type as £i. Then let WFP(Zy, X4) be the
smooth Banach manifold consisting of maps f : ¥4 — X4 that are restrictions of

maps f : Ux = X of class W*P that send the domain fold o into Z.

Then standard theory gives that W*?(X,, X,) is a smooth separable Banach
manifolds modeled locally at a maps uy € W*P(Z,, X.) on the space W*P(u, T X).
Next we define the Banach manifolds of maps from punctured surfaces into Z.

Here we differ from the traditional treatment found in [Sch95], [Bou02], [HWZ99] and

33



[Dra04] in the basic definitions as we do not a priory specify the asymptotics at the
punctures but rather allow the maps to converge to arbitrary closed characteristics.
We also avoid using the auxiliary R-factor in the “symplectization” as it does not add
any information.

We believe that this approach gives a more natural setup for the Fredholm theory
needed in our case.

For a closed Riemann surface ¥ with finitely many punctures {px} and £ = £\ {px}
we let VV,':,’C”(E, Z) be the space of maps from ¥ to Z that, in local coordinates, are in
Wil (R, R?).

For a Riemann surface ¥ with boundary and finitely many punctures we assume
that ¥ C ¥’ for some open Riemannian manifold ¥’ of the same homotopy type and
we set W,'f,’c” to be the space of maps from ¥ to Z that are restrictions of maps in
Wil (%', 2).

Let (X, 7, {px}) be a Riemann surface (possibly with boundary) with conformal
structure j and punctures {p;}. Set ¥ = £\ {pi}. For r € R define the half-infinite

cylinder
C, = [r,00) x S*

with coordinates s € [r,00), t € S! = R/Z complex structure j with jd, = 9, and
measure dvol = ds Adt. Set C = Cy. Then at each puncture py we have local
conformal coordinates o : C — ¥..

Fix a constant § > 0. Since we will be only interested in 4 close to zero we assume

throughout that 4 is bounded by some constant M.

Definition 4.7 (Asymptotic Energy). For maps v € whe(c, Z) we define the

loc
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asymptotic energy
E.(v) = / (J0*a(3,)]2 + [d(v*a(B)) 2 + |mr dv[2) € dvol. (4.15)
c.

Definition 4.8. Let W:"’(C, Z) be the space of finite asymptotic energy W,’f,f(C, Z)
maps. Similarly, let Wf’p(i], Z) be the space ofVVk”’(E, Z) maps that are in Wék’p(C, Z)

loc

in some local conformal coordinates at each puncture.
Next we exhibit the Banach manifold structure on WS* (S, Z).

Definition 4.9. For v € W-":"’(C, Z) let Wék"’(C, v*TZ) to be the space of sections

(e W"“’(C, v*TZ) that have finite asymptotic energy, i.e. that satisfy

loc

EQ) = [ ¢ (me(VOF +1a(V.0P + d(a(V6)F) dwol <oo. (410

r

Analogously, for v e WP(2, Z) we define Wf'p(z, v*TZ) to be the space of sections
¢ € WEP(S,v°TZ) that are in Wf”’(C, v*TZ) in local conformal coordinates at each

loc

puncture.

With these definitions we have that Wf”’ (C, Z) is a separable Banach manifold,
locally at a map v € W: ?(C, Z) modeled on a neighborhood of the zero section in

W P(C,v*TZ). This is proved in Lemma C.1.
4.3 Folded Maps and Folded Holomorphic Maps

Definition 4.10 (Space of Folded Maps). Fiz a positive integers k and p € R
with kp > 2, non-negative integers go, g, ng, N, and relative homology classes Ay €

Hy(X+,R;Z). Then a folded map (uy,u_) with respect to Ay consists of

i) a stable folded domain D € MFE and
(1)

90,91,n0,1]
(ii) uy € WEP(S4, X,)
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such that there exist maps vy € WiP(S, Z) with

ujdet(w) = 7 (4.17)
uile = vi|o (4.18)
[’U,i Uy ‘Ui] = Ai. (419)

Figure 6: Folded (Holomorphic) Maps

The key to defining folded holomorphic maps lies in the definition of the “matching

condition”. It is specified by the subspace
A% C Map(o, Z) x Map(o, Z),

called the folded diagonal. Intuitively, we view AZ as a scattering function that
takes boundary conditions of “incoming” holomorphic curves on the “+” side and
transforms them into boundary conditions for “outgoing” holomorphic curves on the
“.” side. To make sense out of this we actually don’t need to define this scattering

function for every element of Map(o, Z) but it suffices to define it on the maps that
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are possible boundary conditions of holomorphic maps. We will make use of this
observation later on.
The definition of the folded diagonal AZ is rather involved and we postpone it

until Section 5.

Definition 4.11 (Folded Holomorphic Maps). A folded map (uy,u_) is called
folded holomorphic if ;us = 0 and (uy,u_)|, € AZ, where the folded diagonal A%

is defined in 5.10

Lemma 4.12. The gauge group G defined in Definition (4.2) acts on the space of
folded holomorphic maps by precomposition of uy by the element in Difft(Z,), on vy

by the element in Diff* () and acts on the folded domain as described above.

Proof. The action preserves solutions to the holomorphic map equation and the con-
dition that 79 = u} det(w), since 7o and u4 are acted on by precomposition with the
same diffeomorphism. Moreover it preserves the identification of the domain folds oy

and o) asforp€ o

uy(p) = uxodo(p)
= v 0 Y o ¢y(p)
= v} 0¢7' 090 dy(p)
= v, o ¢/(p).
So this action preserves the set of folded holomorphic maps as long as it preserves

the folded diagonal. We will postpone this part of the proof until Remark 5.11. O

Ultimately we will be interested in the space of folded holomorphic maps modulo
gauge.

We make an important observation about the orientations of maps along the fold.
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Remark 4.13. Let p € o be a point where 7 vanishes transversely and let n € T, X

be an outward normal vector to o at p, i.e. jn € T,0 and 1(7) < 0. Then
9(dux(n), J+R) > 0

since 7 = u* det(w) and J, R points from X, to X_ so d(det(w))(J+R) < 0. Then
0 < g(dus(n), J+R) = £g(dus(jn), R) = +uia(jn)

so the values of u} o on tangent vectors have opposite sign. In particular, if the map
(uy,u_) is transverse to the fold, i.e. if 7 vanishes transversely so o is a manifold we

have for non-negative real constants ¢, and ¢, that do not both vanish that
(auia —cuta)lrs #0. (4.20)

This turns out to be the crucial observation in showing that the folded diagonal poses

an elliptic boundary condition and that therefore the linearized operator is Fredholm.

5 Tunneling Maps

Throughout this section we assume that X has dimension 4 and that the function 7
vanishes transversely, so the domain fold o is a manifold.

Tunneling maps give the matching conditions for folded maps into X, add ho-
mological data to maps, and ensure that families of folded holomorphic maps have
constant energy. They are central in proving regularity of solutions and they guar-
antee that the linearized operator is Fredholm. In this section we define all relevant

structures and discuss their properties.
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5.1 Definition of Tunneling Maps and the Folded Diagonal

Tunneling maps are maps into the fold Z that connect the images of the folded maps
into X, and X_. Throughout this section we assume that we have fixed a folded
domain D as in Definition 4.1. All tunneling maps will have domains (S, j) of the
form (27 \ {px}, 1) with boundary 3S = o.

Tunneling maps satisfy an equation that depends only on the CR structure (Z, F, J)

on the fold Z and the 1-form «. First we need this

Definition 5.1 (H-Holomorphic Maps). A mapv : S — Z is called H-holomorphic
if

0 = éfvz-lz-(ﬂpdv+J7rpdvj) (5.21)

0 = d(v'aojy). (5.22)

‘H-holomorphic maps are essentially given by families of J-holomorphic maps into

the symplectization parametrized by #,, which we define below. The detailed discus-

sion of this relation can be found in Section D.

Definition 5.2.
Hno(S,7) = {X € Q1(S)|dA =0, d*X =0, and A(jn) = 0Vn € TAS}.

Definition 5.3 (Tunneling Maps). Fiz a positive integer k and real p > 0 such
that kp > 4. A tunneling map is a H-holomorphic map of class I'V;”’(S, Z) such that

mr dv does not vanish identically.
We make a simple, but essential observation about tunneling maps.

Lemma 5.4. Let v be a tunneling map. Then the periods of v*« o j vanish in a

neighborhood of each puncture.
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Proof. Fix local conformal coordinates C = [0,00) X S! at a puncture as in Definition

4.8. We will show that v*a o j vanishes on S} = {r} x S'. Since v*a@oj is closed, the

value of
/ v'aoj :/ v*a(0,)dt
s s}
does not depend on r. Remembering that A, = C,,;; has unit area and using

equation (4.16) we compute

/ v'aoj
s}

< |v*a(ds)| dvol
Ar

1

2
< e70r/2 (/ e‘sslv'a(as)I?dvol)

< e——&r/2 E,-(’U),

showing that the periods of v*« o j are arbitrarily small and therefore vanish. O

Tunneling maps are very well-behaved. They satisfy an elliptic system of PDEs
and are therefore smooth on the interior of S. Moreover, they have nice limits at
the punctures as Theorem C.12 shows, namely they converge to closed characteristic
exponentially fast. Therefore they extend to continuous maps from the radial com-
pactification of the domain. We will blur the distinction between a tunneling map
and its continuous extension to the radial compactification.

In the following we will restrict our discussion to tunneling maps v such that v|,

is the boundary value of a J-holomorphic map u into X, or X_.

Lemma 5.5. Suppose v is a tunneling map such that ¢ = v|, is the boundary value of
a J-holomorphic map v into X, or X_ and suppose that the domain fold o ts smooth.

Then ng di and npdt are smooth and have zeros of at most finite order.
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Proof. Recall from Section 2.4 that there exists a smooth J-invariant extension of F'
to a neighborhood of the fold Z in X, also denoted by F'. u is smooth on the interior
of its domain by elliptic regularity and the same is true for v by Theorem C.12. We
restrict u to a domain such that u*F is well-defined and fix totally real boundary
conditions on the newly acquired boundary component of the domain of u.

Consider the operator D operating on sections of v*F and the corresponding
operator DF operating on sections of u*F obtained by linearizing the operator 87 at
u.

The boundary value problem given by the diagonal in 4*F & 9*F is elliptic and
therefore we may employ Theorem 19.1 and 20.8 of [BBW93] in conjunction with
Corollary C.10 to conclude that 7rdd and mpdv are smooth and either vanish identi-
cally (the possibility of which we excluded in Definition 5.3) or have zeros of at most

finite order. 0

Remark 5.6. The gauge group G from Definition 4.2 acts on the space of tunneling
maps by precomposition. Recall that S C £, so if ¢, : £, = ¥, is a diffeomorphism
with ¢;(px) = p, then this preserves the H-holomorphic map equation.

Also note that the asymptotic energy is invariant under diffeomorphisms of the

domain, so the action of G preserves W}?(S, Z).
Let R be the set of closed characteristics, i.e. the set of embedded circles Y C Z
with TY = L along Y. Each Y € R has a minimal period Ty:
Ty = inf{Tler(y) =y, Vy € Y},
where ¢, is the time-t flow of the characteristic vector field R. Note that the minimal

period is always positive by definition, in the S!-invariant case we have that R =

u{fibers of 7y}, parametrized by p€ V and Ty =1 forall Y € R.

41



5.2 Conjugate Tunneling Maps

Tunneling maps connect boundary values of J-holomorphic maps in X; to closed
characteristics. To get a scattering function of incoming boundary values from a map
u, into X, to outgoing boundary values of a map u_ into X_, we need to define
a relation between tunneling maps v, connecting to u;, and v_ connecting to u_.
Intuitively this relation is given by reflection through a “horizontal tunneling map”.
The definitions in this section become a lot clearer in the S'-invariant case which we
explain in the following section.

Horizontal tunneling maps have the same features as Abbas solutions (cf. [Abb]

and [ACHO4)).

Definition 5.7. Let (L4, j, {px}) be a punctured compact Riemann surface. A hori-

zontal tunneling map ¢s a H-holomorphic Wf"’ map vy : Sn — Z with
1. 7pdvy 1s injective on )flh,
2. all punctures are positive, i.e. the associated asymptotic charges are positive,

3. v converges to the eigenvector corresponding to the lowest eigenvalue of the

asymptotic operator Sy, (see [HWZ96a] and [HWZ96b]), and

4. each closed characteristicY € R either gets wrapped by a puncture or intersects

vp in forward and backward time.

A tunneling map vy : S — Z is called a horizontal covering if it factors as v =

vy ow, where w : S — Xy is holomorphic.

Note that in the S!-invariant case v, is a horizontal tunneling map if and only

if its projection into V' extends over the punctures to an embedding. Thus, in this
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case, horizontal tunneling maps are H-holomorphic sections of the bundle Z on the
complement of some points. Abbas solutions are generalizations of these sections. On
a contact manifold with Giroux contact form they give H-holomorphic parametriza-
tions of a Giroux open book decomposition. The existence of Abbas solution in this
case is shown in [Abb].

Once and for all fix a horizontal tunneling map v, : £, — Z.

For each tunneling map v : S — Z and puncture p; € S we fix local conformal

coordinates oy : C — S at pi and define the map
v 8" Z v*(t) = lim v(s, 1)
§—00
and the vector

Xu"(t) € Sl(Fv"(t))

o n,dv(s,t)(as)
xwlt) = lim o @]

This is well-defined by Theorem C.12 and since zeros of mg dv cannot accumulate at
pr. To see this we work locally at a puncture p,. Take a non-trivial holomorphic

section 1 of T'S that vanishes at p; and consider x = mr dv(n). Then x satisfies
Dy (x) = v'a(n)T*!(R, dv) (5.23)

Using an isometric embedding of Z into RV we trivialize v*TZ and since x decays
exponentially we can use a conformal change of coordinates from the half-infinite
cylinder to the punctured disk D and conclude that x is a smooth function from the
punctured disk with all derivatives bounded (using Theorem C.12) and that x(0) = 0.
Therefore we have that in particular x € W22?(D,R").

Now suppose the zeros of 7 dv accumulate at 0 = p,. Then x has zeros that

accumulate at 0, so it vanishes to infinite order at 0.
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On the other hand note that the coefficients of equation (5.23) are smooth with
all derivatives bounded on D so we may square the equation to conclude that there

exists a constant ¢ > 0 such that

|Ax(2)]| < e(Ix(2)] + 18:x(2)] + [9ix(2)]

for almost all z = = + iy € D. But then x vanishes identically by Aronszajn’s
Unique Continuation Theorem ([Aro57]), implying that ¢ dv vanishes identically,
the possibility of which was excluded in the definition of tunneling maps 5.3.

An alternative argument can be made by suspending v into the complex cylinder

over Z and using the results in [HWZ95].

Definition 5.8 (Conjugate Tunneling Maps). A pair of tunneling maps (v4,v_)

is called vy-conjugate or just conjugate if there exists a horizontal covering vy of vy

such that
Yow = viw=vlw (5.24)
Mre = 0 where A= 'U:_a oj+viaoj—2yyaxoj, (5.25)

with the finite dimensional constraints that at each puncture py, 1 <k < K,

ve(0) = vE(2) + vk () — 206(2) vt e S! (5.26)
Xot (1) = Xt () whenever ve(t) = vk (t) (5.27)
Xot (1) = Xux (2) whenever ve(t) = vk (t) (5.28)

0

and the zero dimensional homological constraint

#((v4).[T], (a)o[Sh]) = = #(()u[T] (w)u[E4])) VT € Hi(S;Z). (5.29)

Note that equations (5.26), (5.27) and (5.28) do not depend on the choice of

parametrization o*.

44



Remark 5.9. We want to comment on the role of the individual equations in the
above definition. Equation (5.24) relates the F-components of the differentials of the
tunneling maps. Remembering that the F-components of tunneling maps are (j, J)-
linear this fixed the F components up to a constant, which is supplied by equations
(5.27) and (5.28).

The 1-form A defined in equation (5.25) is closed since v,, v_ and vy are H-
holomorphic. Under the simplifying assumption that vida = vjda, it is also co-
closed. Equation (5.26) implies that A extends over the punctures, so A € H,(S, j)
and thus ) is determined by its absolute periods. The role of equation (5.29) is to fix
these periods.

Equation (5.26) is a zeroth order constraint that fixed the relation between the
tunneling map along the characteristic foliation.

Moreover note that this data relates the multiplicities my of vy and mg of vy at

a puncture p as
d=my —my=—(m_ —my) (5.30)

so the difference of multiplicities of vy and vy have opposite sign. The integer d is
called the degree of the conjugate pair of tunneling maps at the puncture.

In the case that the tunneling maps are boundary values for holomorphic maps
into X4, we have that the degree must be non-zero at at least one puncture on
each connected component of S. Otherwise we have v, = v_ on that component,
contradicting equation (4.20). If d # 0 at p, we have that the set of ¢ such that
vk (t) = vf(t) is non-empty.

In the Sl-invariant case this definition simplifies considerably as we will explain

shortly.



We are now prepared for the main definition.

Definition 5.10 (Folded Diagonal). Fiz a horizontal section vy, and a folded

. . F
domain in Mgo,gn,ﬂo,m

with domain fold o. The folded diagonal is the subset in
Map(o, Z) x Map(o, Z) defined by

AZ = {(v4lo,v-ls)|(vs,v-) are vy —conjugate} .

This definition might seem somewhat artificial, but this is a natural generalization
of the situation where smooth J-holomorphic maps into a (non-folded) symplectic

manifold intersect a stable hypersurface as we explain in Section E.

Remark 5.11. Note that the folded diagonal is invariant under the action of the
gauge group G. Indeed, if (v,,v_,j) is a conjugate pair of tunneling maps, and
¢ : ) = X is a diffeomorphism, then (¢jv,, djv_, ¢j7) is also a pair of conjugate

tunneling maps with domain ¢;'(S). This concludes the proof of Lemma 4.12.
5.3 The S'-Invariant Case

We will explain Definition 5.8 in the case of S!-invariant folds as defined in 2.9. This

case is inherently simpler due to its symmetries, and the definition simplifies greatly.

Lemma 5.12. Let v: S — Z be a tunneling map. Then myv: S — Z extends to a

smooth holomorphic map my v : S — Z over the puncture.

Proof. By Lemma 2.11 w pulls back from a symplectic form wy on V' and there
exists a complex structure j- on V such that the projection 7y |f is (J, ji)-linear.
Therefore 7y v is holomorphic and has finite wy-energy since v has finite w-energy.
Then the removal of singularity theorem shows that 7y v extends smoothly over the

punctures. a
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Next we prove some properties about special tunneling maps in the S'-invariant
case.
Suppose v; and v, are tunneling maps with myv; = myve. Then define the

“difference” function

9:8 S =R/Z,  w(x)= (2)*ui(2) = gy (11(2))
where ¢, is the time-t characteristic flow, i.e.

d

pr: L > Z, E(’Ot =R
The derivative of ¢, is given by

(00)s : T,Z = Tpy)Z
and it satisfies

(p).R=R and pla=ao(p).=a
since a is stable. Then

dva = (pg).dv; + R - dg
)
v = @ odvy = @ o (p,).dvy + a(R - dg) = (pya) o dvy + dg = aodv, +dg = via + dg.

From this we conclude

Lemma 5.13. Let v, and vy be maps from S into Z such that there ezists a function
g:S — S! with vy = g xvy. Assume v, is a tunneling map. Then vy is a tunneling

map if and only if dg is a harmonic 1-field.
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Proof. Note that
d(dg) = d(v;a — vja)
d*(dg) = — xd(via o j — viaoj).
Thus if vy is a tunneling map, then the first equation vanishes since vy and v; must
have the same projections to the base V', and da pulls back from the base. The second
equation vanishes by the definition of tunneling maps.
Conversely, if dg is a harmonic 1-field both equation vanish, showing that d(v;a o
j) = 0. Noting again that the projections of v, and v, to V agree, so 07 v, = 0Fv; = 0.

Thus v, is a tunneling map. a

Lemma 5.14. Assume the fold is S'-invariant and let v, and v_ be tunneling maps.
Then (v4,v-) are vy-conjugate if and only if there exists a horizontal covering map

vo of vn, and a harmonic function g : S — S' = R/Z with

v = (£g) * vo = P14(v0), (5.31)

where ¢, is the time-t characteristic flow.

Proof. Suppose (v,,v_ are conjugate and let vy be the associated horizontal covering

map. By Lemma 5.12 we obtain holomorphic maps

Vg = Ty oYy
Uy = Tyouy
U = Tmyou_

that extend over the punctures. Using equation (5.24) and the fact that the maps

are holomorphic we conclude that they satisfy the pointwise identity
|dvo| = |dv| = |dv_]|.
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Vo _4-

Figure 7: Conjugate Tunneling Maps

Thus there exists an S'-valued holomorphic functions fi with
d‘l.)i = f id’ljo.

But holomorphic functions with image contained in a 1-dimensional submanifold are
necessarily locally constant by the identity theorem, so f; are locally constant.

By equation 5.26 the images of the punctures of ¢y, v; and v_ agree and by
equations (5.27) and (5.27), d?y = d?, = dv_ at the punctures, so fi =1 since each
connected component of the domain contains at least one puncture. Thus 9y = 7, =

v_.

Then we may define the functions
gr : S-S
vy = g4 *Vp.

Note that g is harmonic by Lemma 5.13. Equation (5.25) guarantees that dg, +dg_ =

0 on j-To so dgy + dg_ is determined by its absolute period integrals by Theorem
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D.2.

In this setting equation (5.29) simplifies to

#((94).(I),0) = =#((g-).(I), 0)

or equivalently that all period integrals of dg, + dg_ vanish, so we conclude that
dg, +dg- = 0. Thus g, + g_ is constant and by equation (5.26) that constant must
be zero and g, = — + g_, recovering equation (5.31).

Conversely it is straightforward to check that in case there exist harmonic func-
tions g+ and horizontal covering v, satisfying equation (5.31), then vy = g4 * vy satisfy

the requirements of Definition 5.8. O

In this case, given a tunneling map v, we can use the S' action to show that there

always exists a conjugate tunneling map v_.

Lemma 5.15. For every tunneling map v, : S — Z there exists a unique conjugate

tunneling map v_ : S — Z.

Proof. Since my vy, is an embedding, there exists a unique map w : § — X, such that
my(vp o w) = Ty vy. Set vg = vy 0w, so My vy = my-vy. Therefore there exists a

function
g:S—- S'=R/Z, Vi = g * Vg = Qg0 Vg

where ¢, is the time-¢ characteristic flow.

By Lemma 5.13 g is harmonic and we define

v_ = (—g) * vo.



6 Properties of the Folded Diagonal

In this section we study the properties of the folded diagonal by looking at its de-
formation space. In short, we find that the deformations of the folded diagonal at a
pair of conjugate tunneling maps restricted to o (0,,?_) is given by the graph of a
function from sections of ¢} 7' Z to sections of 9T Z, which we will describe.

For most of this section we will restrict the discussion to S!'-invariant folds.
6.1 Properties of Tunneling Maps

In this section we study the space of conjugate tunneling maps and the deformations
of the folded diagonal.

We start with a remark about the relation between infinitesimal gauge transforma-
tions that leave the structures on ¥, invariant to deformations of complex structure
on S. To this end, let h be a deformation of complex structure j; on S. Any such
deformation can be achieved by an infinitesimal gauge transformation 7 € I'(T'L;) of
¥, with £,j; = h. This infinitesimal gauge transformation induces an infinitesimal
deformation of 71, ¥ and g as directed by the action of the gauge group, but it does not
change the structure 7y, jo on ¥9. Thus when looking for tunneling maps matching
given uy, we may vary the complex structure on the domain of the tunneling maps
S C X, in arbitrary ways, while uy remain solutions. We will use this infinitesimal
gauge action repeatedly during this sections.

Roughly speaking, the system of equations for tunneling maps are made up of a
1-dimensional equation of second order and a 2-dimensional equation of first order.
Thus we can expect to solve the equations after imposing 2-dimensional boundary

conditions, one dimension for the second order equation and half a dimension for



each dimension of the first order equation. We will show below that we can find
deformations with arbitrary (3-dimensional) boundary conditions. To achieve this,

we need to make use of the gauge action.
Lemma 6.1. The linearizations of equations (5.21) and (5.22) are

1 1 .
D(F;,J)({,h) = VoY (7€) + EJ mrdvh + EWF(V{J)d’U 0j=0¢€Q%(F)(6.32)

DE (6 h) = dld(al€)) o)+ v (igda)oj+ v aoh] =0€ 0X(S)  (6.33)
where and V is the Levi-Civita connection as defined in Section B and
0,1 1 :
vt = §{V+JVO]}.

Proof. Let vy be a family of tunneling maps with complex structures j;, £ = %'z:ovt

and h = j. Then

fi |t=0

d 1
Dfy(&h) = —| S {dv+Jdvji}
’ dt{,_ 2

1 1 1
= 37F {Vidv, + IV (dvy) 0 j},_o + -2—7rp(V(J)dv oj+ §J mrdvh
1
= -iﬂ’p {V§+ JV&OJ} + %WF(ng)d’U Oj + %Jﬂ'pd’vh
1 1
= VO’1(7TF£) + §7TF(V€J)C[’U oj+ §J wr dv h.

For the second equation we compute

d

p d(vjaoj) = (v'Lea)oj+v'aoh =d(a(§))oj+v'(teda)oj+v'aoh.
t=0

O
Note J is integrable in the S'-invariant case by Lemma B.4. In this case the system

of PDEs (6.32) and (6.33) is upper triangular. We will assume for the remainder of

this section that this is the case.



We set
D = DF @ D".

We will refer to D as the linearized operator.

Infinitesimal deformations of tunneling maps with given boundary conditions are
not unique. Even when restricting attention to deformations perpendicular to the
gauge action this may not be the case.

If v is a tunneling map in the Sl-invariant case, then the space of sections of v*F

plays a special role as we explain next.

Theorem 6.2. Given x € I'(v*F) and a function { : 0 — R, there ezists an in-
finitesimal gauge transformation n € T(TX,) such that DF (x,h) = 0, where h = L,j
is uniquely determined on S. Moreover there is and a unique real-valued function (

on S agreeing with ¢ on o such that D*(x + ¢ - R, h) = 0.

Proof. Set & = my v and let {gx} C S be the points where d¢ is not an immersion.
These points are isolated and the zeros are of finite order since v is holomorphic and
by Lemma 5.5.

At each ¢, fix local conformal coordinates z and let 8 be a holomorphic vector
field on S\ {gx} with poles at gi of the same order my as the zeros of d(my v) such that
x—7f dv(B) € O(|z|™) at gx. Then there exists an infinitesimal gauge transformation

n € I'(TL,) with
nrdv(n) = x — 7r dv(B).

Since 3 was chosen holomorphic we have that Lzj = 0, so with the deformation of

complex structure h = £,j induced by n we have 9n+ 1jh=0on S.
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Then
DF(x, k) = D" (xp dv(n + B),h) = 0. (6.34)

To see that h|s is the unique consider deformation of complex structure h’ such
that DF(x,h') = 0. Then equation (6.32) shows that the difference h — A’ of the
deformations of complex structure satisfies 7z dv(h — h') =0 on S, so h = h'.

Now let ¢ be the unique real-valued function on S solving the Poisson equation
with Dirichlet boundary conditions

* A = d(v*(1da) +v'aoh) (6.35)

~

¢

Clo
Then
DY(x+¢-Rh) =d(dCoj)+ v*(tyscrda) + v'aoh
= — x A+ d(v* (1 da) + v*ao h) = 0.

O

To make a statement about the uniqueness of deformations of tunneling maps we

need the following

Definition 6.3. For a tunneling map v, the space
[(v*F,0) = {n € '(v*F)|v, =0}

1s called the space of twisted gauge transformations.

Theorem 6.2 immediately yields that the twisted gauge transformations are iso-

morphic to the kernel of the linearized operator with fixed boundary values.



Corollary 6.4. With the notation of the above lemma, the map
¥ :T(v'F,0) = ker(D(y,j)) N (F(v*TZ,0) x J;(S))
s an isomorphism.

Proof. Theorem 6.2 shows that the map is well-defined and injective. To see that ¥
is onto, suppose that Dy, ;)({,h) = 0. Then set x = mp{ and let h' be the unique
deformation of complex structure and ¢’ the unique function from Theorem 6.2 such

that
Duj(x+¢-Rh) = 0
(x+¢-R)lss = 0.

By the uniqueness part of Theorem 6.2 he conclude that A’ = hand x+(-R=¢ O

In particular this shows that we can always arrange for infinitesimal deformations
to vanish at the punctures in the F-directions. This constraint fixes the closed char-
acteristics that tunneling maps wrap. We will impose this constraint when we fix
relative homology classes that maps represent.

We also conclude that any given deformation of the boundary of a tunneling map

extends to a deformation of the tunneling map.

Corollary 6.5. Let £ be a section of v*TZ over o. Then there ezists an extension £
of € to S and a deformation h of complex structure j such that (€, h) is in the kernel

of the linearization Dy, ;). Moreover, (&, h) is unique on S up to I'(v*F,0).

Proof. The existence follows from Theorem 6.2 and the uniqueness is a direct conse-

quence of Corollary 6.4. O
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Note that (p44). : v1F — vgF gives an isomorphism of v} F' = vjF. Moreover,
since the horizontal section v, is an immersion, we have that for each x € v F there
exists a unique section ¢ € vyL with x + ¢ tangent to the image of v,;. In particular

this shows that  is given by ¢ = vja o (7rdvg) ' (x) and is well-defined.

Lemma 6.6. Let (vy,v_) be conjugate tunneling maps and (£,,€_,h) a conjugate
deformation of conjugate tunneling maps. Then the linearizations of equation 5.31

are

(9g)e(Tr€s) = (p-g)u(nrE) on S (6.36)
() - ¢ = —(a(é-) - Q) (6.37)
where ( : S — R is the unique function such that (pg)sTr &4+ + (- R is tangent to the

image of vp,.

Proof. L is vertical for my, giving (6.36) and equation (6.37) follows from the condition

that vy has to cover vy. O

Twisted gauge transformations don’t only generate deformations of tunneling
maps, but they moreover generate conjugate deformations of conjugate tunneling

maps as we show next.

Lemma 6.7. Let (v;,v_) be a conjugate pair of tunneling maps. Then the twisted
vector fields T'(v§F,0) give conjugate deformations that vanish on o.

Proof. Given x € T'(v3F,0), there exists by Corollary 6.4 unique &4 € I'(viTZ,0)
and deformation h of complex structure that give deformations of the tunneling maps
vy With m7p & = (914).Xx. This immediately gives equation (6.36). Now let ¢ € vjL

be the unique section such that x + ¢ is tangent to the image of v,. Then

aly)=a(f)=a(()=0 onog,

36



so (&4,€&-) also satisfy equation (6.37) and vanish on o. O

In particular this shows that although for a fixed boundary loop v, |, there might
be a family of tunneling maps v! with the boundary conditions v%|, = v4|,, and
therefore a family of conjugate tunneling maps (v, v! ), the conjugate tunneling maps

satisfy vt |, = v'|,.

Figure 8: Conjugate deformations restricted to the boundary are unique.

The next theorem characterizes deformations of the folded diagonal.

Theorem 6.8. Let (vy,v_) be a pair of conjugate tunneling maps. Then for any
section é+ of viTZ|, there ezists a unique section é_ of v*TZ|, such that the pair

(£+,£_) is the restriction of a conjugate deformation of conjugate tunneling maps.

Proof. Let vy be the horizontal tunneling map and g be the harmonic function sat-
isfying v, = g *vy. Set x = (cp_g).7r,~£+ and let ¢ be the unique section such that
X + C is tangent to the image of vy.

Define

€. = (poag)erbs + (20(0) — a(éy)) - R. (6.38)



By Corollary 6.5 there exist extensions £ of fi to all of S that are deformations
of the tunneling maps vy. These are unique up to I'(vjF,0), so we may assume
without loss of generality that (p_g).mr€y = (pg).TFé- so (&4,&-) are conjugate
deformations.

Moreover, mr_ is unique since £_ is unique up to I'(v* F,0) by Corollary 6.5 and
a(£_) is uniquely defined by the conjugation condition (6.37), so £_ is the unique

section with the desired properties. a
6.2 Deformations of the Folded Diagonal

Using the results of the previous section we describe the deformations of the folded

diagonal. We show that these are given by the graph of a bundle map.

Definition 6.9. Given conjugate tunneling maps (vy,v_), let dAZ be the space of

deformations of conjugate tunneling maps, restricted to o and set vy = vy|,. Thus

dAZ = {(€4,€) €T(0,TZ @ i TZ)|3&s € T(viTZ), h € T;J(S) with E4las = &
satisfying equations Dy, ;)(é+,h) =0, (6.36) and (6.37).}

By the Definition 4.10 of folded maps we identify 0 = 0y = o) and therefore, with
the convention that 4, = uy|, we may identify 01TZ with 4}.TZ, when (u4,u_)
is a folded map with tunneling maps (v;,v_). Therefore we may also view space of
deformations of folded diagonal dAZ? as a subset of

FNa\TZeuw.TZ)CT(a,TX ®u’TX).

Note that if (£4,€_) € dAZ, and 7 € TyDiff(£,, 0) is an infinitesimal gauge transfor-
mation that is tangent to the domain fold o, then also (£, + du,(n).&- + du_(n)) €

dAZ. This defines an action

Ti4Diff (T, 0) x dA” — dAZ. (6.39)



It will prove convenient to extend the definition of deformations of folded diagonal
to sections of 417X @ 4*TX in such a way that the action (6.39) extends to all
infinitesimal gauge transformations T}y Diff (¥) of the map domain, including the ones
that move the fold. This will greatly simplify taking the quotient by the gauge action

later. The following definitions and lemmas facilitate this.

Definition 6.10. Let (3, j,0,uy,u_) be a folded holomorphic map. Recall the split-

tingTzX =E®F = K®L®F from equations (2.7) and (2.9). Define the subspaces
Fy, = 43 F cuiTX|,

Ey = 4LEcCuiTX

o4

Let
Ap : F, > F_
A : E, > E_

be the (J,, J-)-linear bundle maps defined by

Ap = (mpdu_)o(mpduy)™!

Ap = (mgdu_)o (mgduy)!
Note that Ap is well-defined even if mp duy is not injective, since the locations and
orders of the zeros of mp dvy and mp dv_ agree and ng duy = 7p dvy on o. Similarly
Ag s well defined since mg duy and g du_ have the same order of vanishing on the

fold, namely the order of vanishing of .

Also define the “correction map”
A ¢ EL®F, - E_
AP @€") = via((rpduy)™(€7) = (meduy)™'(€F)) - R
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To see that A, is well-defined note that npdvgo(rp duy)™! is the unique vector ¢ € vyL

such that x + ¢ is tangent to the image of vy, where x = (mpdvo)(mrdvy)™! in v3F.

-As we will see, A, turns out to have no significant impact on the results of this

section, but merely makes the computations more cumbersome.

Definition 6.11. Let (£,0,u,u_) be a folded map and let (S, j) be a Riemann sur-

face with boundary 0S = 0. Using the splitting (2.7) define the bundle isomorphism
B : 4\TX|,»a'TX|,

BEF @ €f) = Ap(EF) @ Ap(€F) +24.(€F + £F). (6.40)

Lemma 6.12. The deformations of the folded diagonal are given by the graph of the

operator B defined in (6.40), restricted to uTZ:
dAZ = graph(B|y,1z)
Proof. Recall that uy|, = vi|, and both duy and 7 dvy are (j, J1)-linear. Therefore
mrduy = Tp duy over o.
Writing € = ¢F @ €L € v*TZ = v*F @ v* L and setting
ne = (1pduy)”'ER
ne = (meduy)”'El
which are defined almost everywhere, we note that ng € To and therefore

e dus(ng) = uia(neg)R = via(ng)R.
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Then we find

B(§) = Apt" @ Apth +2Ak
= wpdu_(nF) ® mgdu_(ng) + 2vga(nr — ne)R
= wpdv_(nr) ® via(ne)R + 2v5e(nr — ne)R
= mrdv_(nr) ® —via(ne)R + 2vja(ne)R
= mpdv_(nr) ® =€ + 2va(nF)R,
which is defined everywhere and agrees with equation (6.38). O

Using B we extend the definition of the folded diagonal to a subspace I'(i, TX &

@* TX) in the obvious way:
Definition 6.13. The space of extended deformations dAX of the folded diagonal is
dAX = graph(B).

Lemma 6.14. The space of extended deformations dAX of the folded diagonal is
invariant under the full infinitesimal gauge group of £, (not just the subgroup that

preserves o as a set).
Proof. Let 1 be a section of T,X and note that
Ac(duy(n)) =voa(n—m)-R=0 (6.41)
and therefore
B(duy(n) = Ag(mg dui(n) © Ap(np duy(n)) = mpdu_(n) ® 7 du_(n) = du_(n).

O
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7 The Moduli Space of Folded Holomorphic Maps

Now we come to the result that justifies the definitions and lemmas pertaining to
tunneling maps. We show that they give elliptic boundary values.
Let (uy,u_,j) be a folded holomorphic map with domain fold 0 C £. Set H; =

w,TX and Hy = Hy/,.

Theorem 7.1. Assume that the map (uy,u_) is transverse to the fold, so o is a

manifold. Then the map
R : ﬁ+ @ fI_ — ﬁ_

@& — & - B(&y)

poses elliptic boundary conditions for the folded holomorphic map (uy,u_,j), i.e. R
restricted to the range of the principle symbol p of the Calderdn projector P for the

complezified Cauchy-Riemann operator D,, x D,  on HL @ Cx H_.®C
Rlrange(p) = H gC
is an isomorphism.

Proof. Let HS = H; ® C denote the complexification of H; and let H, (H”) denote
the (i, J1)-linear (antilinear) subspace of HS. Recall that o = L, = —9¥_ inherits

the orientation from ¥,. Then
p : HSoH > H, 0H"
1 1
p(v,w) = §(Id —iJy)® E(Id +13J_)

is the projection onto the (i, J, @ —J_) linear subspace.
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Let v € H) then Ag(mgv)+ Ap(mrv) C H” since Ag and Af are (J, J_)-linear.
We write the complexified map
A=Al o Al
where A, and A] are the projections of A, into H. and H” respectively, i.e.
Av) = %{Ac +1iJ_A} (v)
Al) = 5 1A~ il A} ()
In particular
2A%7(v) = {A.—iJ_A} (v)
= {Ac(v) = J-Ac(J4v)}
= vy ((rpduy)  (rpdv) — (rpduy)” (1pdv)) - R
—vpa ((1p duy) ™! (Jympdv) = (7g duy) ™ (Jympdv)) - O,
= vja ((mpduy) ™ (rpdv) — (mpduy)” (mpdv)) - R
—vga 0 j ((7rp du+)‘1(7rpdv) — (g du+)”1(7rpdv)) - O,.

Now let w € H' and suppose that w — B(v) = 0. Then

w — 24, (v) 0

Ap(mpv) + Ap(mev) + 2A7(v) = 0.
Since A, has image in £ and Ap is an isomorphism we conclude that mpv = 0.
Then with n = (rgduy) 'mrgvand n=mn + jn, ma € To

Ag(mgv) + 24 (mgv) = wpdu_(n) — vja(n)R + via(jn)o;

= ura(n)R+u a(n)d, —vja(n)R + via(jn)o,

= ((uta(n) - va(n) R~ (ua(jn) - vsalin) &
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which vanishes if and only if n =0 or
ula —vya = 0.

But for 0 # u € To

walp) = vialn) = ula(k) - 5(uhals) +ula(n)
= Sluta( - wialu)

which is nonzero since the map is transverse to the fold by assumption and by equation

(4.20). i
This shows that 7 = 0 and therefore 7gdv = 0. Thus v = 0 and consequently also 4

-
g

w = 0, so we showed that

Rvedw)=w® —B(v)
is an isomorphism from H', ® H' to HE. O

Remark 7.2. Note that since B is a vector bundle map, the condition that graph(B)

gives elliptic boundary conditions is equivalent to asking that graph(B) is totally real
in
(H @ H_,J,®-J_).
We have to use the complex structure —J_ on H_ since o is oriented as the boundary
of ¥, so its orientation is opposite from that of 9X_.
Now standard theory shows that the linearized operator is Fredholm. For this

next theorem we fix the complex structure on the domain ¥ = ¥,.

Theorem 7.3. For any s > 3, the operator
Dy : (H'(S,, Hy)x H'(S_,H.)) -
H7N (S, AYTS,) x HY(E_ A TS ) x H 2 (0. H_)
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given by
(E-H{—) — (Du+€+a Du-f—s R(p+(€+)a p- (6—)))

is Fredholm with real Fredholm indez (in the case that 7 du|, # 0)

index(Dg) = p(uy, Ki) + p(u—, K_) + 2x(X) (7.42)

where py : H*(X4,Hy) — H*"%(0, Hy) the restriction map and Ky = JL®duy (To)

and u s the relative Maslov indez.

Moreover the kernel of D} is independent of choice of s > % and consists only of
smooth solutions.

Proof. First note that the linearized Cauchy-Riemann operator D,, on H, is a gen-

eralized Dirac operator. Then it follows directly from Theorem 19.1 and 20.8 of
[BBW93] and Theorem 7.1 above that the operator Dj is Fredholm with kernel in-

dependent of s > 1 consisting only of smooth solutions.

To see the index formula, we first homotope B = By to the (J4, J_)-linear bundle
isomorphism B, via
B/(§) = Ap(mp€) ® Ap(rpg) +tA(E).

We need to check that graph(B;) gives elliptic boundary values so that we obtain a
corresponding family of Fredholm operators which then will all have the same index.

This comes down to repeating the arguments in the proof of Theorem 7.1 and we

need to show that the quantity

uta — tya




does not vanish. But for 0 # p € T,

wa() -~ tojals) = uwta(u) - 7 (ualp) +uta(w)

21t , t
= —5ule(p) - suialu)

which again does not vanish by equation (4.20) if the map (u,,u_) is transverse to

the fold.

Now
Bi(duy(T'o)) = Bo(dus(T'0)) = du_(To)
since A, vanishes on the push-forward of vector fields on the domain as we saw in

equation (6.41). Also for ¢ € JL we have that

B,(¢) = Ae(¢) C JL.

The last step is to connect the boundary condition graph(B;) to K, K_) so that

the associated operators remain Fredholm. Note that if C : C — C is complex linear,
then

Ar={(u+ 1 -2)iv,C[(1 -t —it)((1 — t)u+ w)])|u,v € R}
is a homotopy of elliptic boundary conditions, or equivalently totally real subspaces,

in C with

Ao graph(C)
Now choose an appropriate basis of F, and T, = duy(7T,X) and apply the above

homotopy on E; and T,.

66




Putting these homotopies together we connected the Fredholm operator with
boundary values graph(B) with the Fredholm operator with boundary values (K, K_),

proving the statement about the index. a

Note that the above argument shows that the totally real subbundles K of Hy
may be replaced by (K, K_) = (K4, Bi(K-)) where K, is a totally real subbundle
of H, and B, is any member of the above family of bundle homomorphisms.

To visualize the construction and the results up to here consider the following.
As seen in Section 3, the diagonal in Map(o, Z) x Map(o, Z) does not yield elliptic

boundary conditions. In the language of [Nic97] we may say that given holomorphic

maps (uy,u-) (with uy|, = u_|,), the subspace
((€nrE.) € L2(0,u, TX) x L2(0,u" TX)[3€x € ker(D,.,), Exlo = £)

is not a Fredholm pair. But the folded diagonal gives elliptic boundary conditions,

or given a folded holomorphic map (u,,u_) the subspace

{(B(£+),£—) € LQ(Ga U:TX) X LQ(Uv U:T‘\’)szt € ker(Dui)’ gila = éi}

is a Fredholm pair.

L*(o,ut Tz X)

kerD,,

B: L20.u,TzX) — L2(0,u’ Tz X)

Figure 9: The map B induces a Fredholm pair.
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Remark 7.4. We can generalize Theorem 7.3 by incorporating variations of the
folded domain. Here are some brief comments on how this can be done.

The first step is allowing variations in j, and 79, modulo Dif f*(X,). Note that
7o is determined by the map by equation 4.17. Since the folded diagonal is invariant
under the gauge action of Difft(X;), Theorem 7.3 holds in this case with the index
raised by the dimension of Teichmiiller space —3x ().

Next consider variations in 7y, j;, ¥ and g, modulo the action of the remaining
factors of the gauge group Difft(Z,;) x Map(X;, R). First note that for fixed domain
location of the domain fold oy, the space of holomorphic diffeomorphisms ¢:~! : £ —
¥} sending gy to o, (with jo fixed and j; varying), has dimension 2x(XZ}) + (1 —
3)x(Z¥) = 0. Thus variations in 9 and j; on £ do not change the dimension count.

Finally, note that g is determined by choice of 7, and 3 by equation (4.12), and
that the deformations of complex structure j; on S are fixed by the tunneling map
as explained in Theorem 6.2. Thus the freedom left in choosing 7y, j;, ¥, g is exactly
given by the remaining part Difft(Z;) x Map(Z,, R) of the gauge group G. In con-
clusion, when varying the folded domain and taking the quotient by the gauge group,

the index is
p(uy, Ki) + p(u-, K2) + (2 = 3)x(2). (7.43)
7.1 Homological Data

A folded map (u,, u_) together with a pair of conjugate tunneling maps (v4, v_) gives

rise to two relative homology classes

At € Hg(‘\’i, R; Z)

Ay = (ui’vi)*[ii]‘
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Since the map gluing the tunneling domain S to £, (E_) is orientation preserving

(reversing), and the w-energies of the tunneling maps agree by Definition (5.8), we

obtain the energy identities

E,(uy)+E,(vy) = w-A, = const
E,(u_)—-E,(v.) = w-A_ =const

E,(uy)+ E, (u-) = w-(Ay + A_) = const.

Therefore the space of folded holomorphic maps breaks up into components labeled

by the relative homology classes A., and the sum of the w-energies of the maps u,

and u_ is constant in families.

Remark 7.5. In case of S!-invariant structures we have a natural isomorphism

H,(X:,R;Z) = Hy(X4,Z) x V, where X, is the symplectic cut of X4.

7.2 Transversality

Here we show that the cokernel of the linearized operator at a simple map (uy,u_,j)

vanishes for a generic J € J(X,w, ). To see this we recall standard definitions (see

e.g. [MS04]) that have straightforward generalizations to our case.
Definition 7.6. A folded holomorphic map (u,,u_) with folded domain
(207 j07 70, El’jl: Tl)

is called multiply covered if there erist a folded holomorphic map (u',,u’ ) with folded

domain

[ B 1 '
(2011077-0v211.71’7-1)
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and holomorphic branched coverings
v oo (Zn5) - (B i=1,2
Yi(r) = 7
with
(ug,u_) = (u, 0%, u_ 0 9y) deg(yp) > 1.
A map (uy,u_) is called simple if it is not multiply covered.

Definition 7.7. Given a folded symplectic manifold (X,w) with stable 1-form a on

Z, relative homology classes Ay € Hy(X4,R;Z) and an almost complex structure

Je TJ(X,w,a), let
M!]nglvnovﬂl ((X7 w, a)a A+, A—, 2, J)

be the moduli space of simple folded J-holomorphic maps with domain in MF

90,91,n0,n1

so that uy U, vy represent Ay and that are transverse to the fold, modulo gauge G.

Denote the subset of simple maps by
M ((X,w,a), Ay, A_,E, J).

Definition 7.8. Let (uy,u_,j) be a folded holomorphic map. A point p € ¥ is called

an injective point if
du(p) #0 v (u(p)) = {p}-
Let
NI(us,i-) = {p € Tldu(p) = 0 or u~' (u(p)) \ {p} # 0}
be the complement of the set of injective points.
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Lemma 7.9. Let (uy,u_,j) be a simple map, and assume that uy|, are embeddings.
Then the set NI(u4,u_) of non-injective points is at most countable and can only

accumulate at the critical points of (uy,u_).

Proof. This proof follows exactly the lines of the proof of the corresponding result in

the standard theory (see e.g. Proposition 2.5.1 from [MS04]. O

Lemma 7.10. There ezists a set Jreo(X,w,a) C J(X,w, ) of second category such
that if (uy,u_,j) is a simple folded holomorphic map then the cokernel of the lin-

earized operator Dg vanishes.

Proof. First note that if (uy,u_, j) is simple there exist an neighborhood U of Z such
that T = u~!(X \ U) is an open non-empty subset of £. By Lemma 7.9 there exits
an open non-empty subset T” of T consisting only of non-injective points.

Now standard results (see e.g. Theorem 3.1.5 of [MS04]) show that it is enough
to vary the almost complex structure in the immediate vicinity of u(p) for some
(arbitrary) p € T’ to achieve transversality of Dg. Since u(p) € U by construction,
we may vary J in such a way that it remains unchanged in U, so the resulting almost

complex structure is still in Jpeq(X,w, a). a

We immediately obtain the following
Theorem 7.11. If J € J,¢4(X,w, a) then the space
M (X ,w,a), Ay, A, J)

s a smooth manifold of the expected dimension.



8 Compactness — First Considerations

We want to show that the moduli space of folded holomorphic maps modulo diffeo-
morphisms is compact. The key issue is to understand the compactness properties of

tunneling maps.

8.1 Energy Estimates

We have seen that the total w-energy of a folded holomorphic map (us,u_,j) is a
topological invariant. But the folded symplectic form w degenerates along the fold,
so the w energy density e(uy) = %u*iw cannot be used to estimate the area with
respect to a non-degenerate metric near the fold. But we can still use the w-energy
to estimate how much area can accumulate near the fold.

First we state the standard monotonicity lemma for pseudo-holomorphic curves

in symplectic manifolds. Proofs are given in [PW93] or [Tau98].

Lemma 8.1 (Monotonicity). Let X be a smooth {-manifold with symplectic form
w and almost complez structure J and compatible Riemannian metric g. Let E be a
positive number and K C X a compact set. Then there ezists a constant ¢ = ¢(E, K)
with the following significance. Let u be a finite energy pseudo-holomorphic map with
image C = image(u) and [.w < E. Suppose that z € KN C and for r > 0 let

B(z,r) C X denote the g-ball of radius r with center x. Then
clirt < / w< er? (8.44)
CNB(r,z)
ifr <cl.

We cannot apply this result in a neighborhood of the fold, but a similar result still

holds true for folded holomorphic curves near the fold of a folded symplectic manifold.

72



By equation (2.3)
w = wz + d(r’a)

in a neighborhood U = [—¢,¢] x Z of the fold Z in X. Here wz is a (non-degenerate)
symplectic form on an extension of F' to U. Therefore the w-energy of the map u
can be used to estimate the F-components of du. But this is not the case in the F
components of du, since w degenerates there. We focus on estimating the energy on
the “+” side of the fold, the “—” side is completely analogous.

Let ¥ be a Riemann surface with boundary 0¥ and let u, : ¥ — X, be a
holomorphic map sending 9% into Z and denote its image by C = u(X). Let 3 :
[0,00) — [0,1] be a cutoff function with 8(z) =1ifz <1, B(z) =0if z > 2 and

0 < —f' < 2. Then define
E(s) = / B(r/s)d(r*a) and
c
Aw) = [ B/da)

Then E(s) gives a bound on the symplectic E-energy in a neighborhood of size s of

the fold and A(s) bounds the E-area. These two are easily related by
A©) < [ Z8r/)d(ra)
c S
= l/ B(r/s)d(r*a) — 1/ B(r/s)rdr A a)
S C S C

(8.45)
<5 [ ae/s)dute)
Yes)

since dr A a is positive on the image of a holomorphic map near Z.
The following Lemma employs standard energy estimates (see e.g. [Tau98]) to

bound the area that can accumulate near the fold.

73



Lemma 8.2. Let C be the image of a finite w-energy folded holomorphic map. Then
the function E(s) is differentiable on (0,7¢/2) there exists a constant ¢ independent

of C and s such that

E(s) < cs® (8.46)

A(s) < ecs. (8.47)

Proof. Set n =1 — . Then for s fixed, the function

Est) = [ n(r/08(/5)dr%)
is decreasing in t with
lim E(s,6) = E(s) = o B(r/s)d(r%)

The limit is uniform in s since for given ¢ > 0 there exists t, such that for all ¢;,t, < ¢,

and for all s we have
|E(s,t1) — E(s,t2)| <,

since C has finite w-energy. Furthermore E(s,t) is continuous in s and therefore E(s)
is also continuous (as it is the uniform limit of E(s, t)).

Similarly we have that E(s) is continuously differentiable with

E(s) = L / T (=B(r/s))d(ra)

SJc $

Here the right hand side is bounded by 2/sE(2s).



We can now derive a differential inequality for E(s, t) as follows.
Eet) = [ n(r/08(/9d%)
= — [ ntesastess) nvia= [ p/shantes ara
< [Zepe/rdrna= [ 86/93=A0/m)rdrna
= 3E6) =3 [ 28 0/da = [ s/ 75 /0pdrna.

2 2
< 3E6) = [ /L= (/i na

where we used that (=3') > 0 and da > 0 on C since u was holomorphic. Also, as

t — 0 the last term vanishes, since

3 [AC/3s/mrarna < 5

C

(=B/(r/t)w < / B(r/2t)(1 - B(2r Jt)w.
C
Therefore
E(s) < %E’(s).

Integrating this gives (8.46) with ¢ = FE(sq)/s3, so = ro/2 independent of s and C.

Now (8.47) follows from equations (8.46) and (8.45). a

9 Examples of Folded Holomorphic Maps

We give examples of folded holomorphic maps in two special cases.

9.1 Folded Holomorphic Maps into Folded E(1)

We come back to the example of E(1) from Section 3 and show that Definitions 4.11

and 3.4 coincide in this case.



As horizontal section we choose
vp:T—>Z=8"xT w— (1, w).

Then equation 5.31 gives that incoming boundary conditions are scattered to outgoing

boundary conditions by the map

U:S'xT -5 S'xT (z,w) — ((2),w),

in the case that there exists a tunneling map capping off that boundary condition.
This reproduces Definition 3.4 and we just need to show that tunneling maps exist.
Given a folded holomorphic map u : £ + E¥(1) in the sense of Definition 3.4 fix
the folded domain ¥y = ¥, = ¥ and set S = £_. Let S’ denote the components of S
that are mapped entirely into 0 x T =T and set $ =S\ v (0 x T).
Let 7 : D x T — S x T be the radial projection.

Define

ve:S'USHH Z=S"xR

by
mou_(z) z€S
v-(e) = {zoxu_(x) reS
vi(z) = You

Then (v,,v_) are conjugate tunneling maps with the desired boundary conditions.
The different choices of horizontal tunneling maps correspond to choosing a dif-

ferent gluing map ¢ by composing with a rotation of the S!.
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9.2 Folded Holomorphic Rational Curves in S*

We give examples of folded holomorphic curves by utilizing the symmetries of the
folded symplectic and complex structure on S* defined in Section 3. Essentially these
curves come from pseudo-holomorphic curves in P2.

As shown in [HWZ03], the pseudo-holomorphic cylinder over S* with its standard

R-invariant structure is biholomorphic to C2? \ {0} via
®:RxS*—C?\ {0}, (t,2) — ez

For the rest of this section we fix homogeneous coordinates [r : y : z] on P? and a
corresponding embedding C? C P?, (z,w) + [r : w : 1], whose complement is denoted
by P._. Using this we can view finite energy pseudo-holomorphic maps in R x S as
maps in P2. Conversely, pseudo-holomorphic maps in P? that have no components
that lie entirely in P! U {0} can be viewed as (punctured) pseudo-holomorphic maps
into R x S3 by restriction. A straightforward calculation reveals that punctured finite
energy (as defined in [HWZ03]) pseudo-holomorphic maps into R x S3 extend over
the punctures to pseudo-holomorphic maps into P2, and that conversely maps into
R x 53 that are restrictions of pseudo-holomorphic maps into P? have finite energy. By
finite energy pseudo-holomorphic maps into C? we mean a map with no components
mapping entirely to {0} and whose restriction to the preimage of C?\ {0} is a finite
energy map into the cylinder over S3.

First we need to fix a horizontal tunneling map. Any horizontal tunneling map
projected into the base S? has to be an embedding, extending over the punctures.
Therefore the domain of the horizontal tunneling map has to be S? and the com-
position with the projection has degree 1. Since H'(S!,R) is trivial, the horizontal

tunneling map is the projection of a holomorphic map into the symplectization, so
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it has to be the restriction of a degree 1 map into P?2. Thus the map has only one
puncture wrapping a closed characteristic with multiplicity 1 and the only freedom
in choosing the horizontal tunneling map is the choice of closed characteristic and
slice of the S'-action. Since two of such choices can be mapped onto one another
by a diffeomorphism of S3 preserving the CR structure and a, all these choices are
equivalent.

We choose the horizontal tunneling map

v, : C—o1Z

= ——1———(2,1).

W) = AT

Now we choose homology classes for our maps. Note that
Hy(B',R;Z) = S*’x1Z

where the isomorphism is given by specifying the closed characteristic and the mul-
tiplicity. We fix the as closed characteristic the one that the tunneling map wraps.
Then the only homological information is the multiplicity with which we wrap the

characteristic. Equation (5.30) relates the difference of multiplicities
d=my; —mg=—(m_ —my)

of the maps v, v_ and vy. So given the choices we have made so far, the only choice
we have left is that of the integer d, which we call the degree of our map into S*.
We look for degree 1 maps with domain £, = £, = S? and domain fold an
embedded circle.
For the examples we construct it suffices to consider £, =D = {z € C||z| < 1}
and S = £_ = D° = {z € C||z| > 1}, with the puncture of S at oo € C. As

parameter space for our family we take D = {z € C|0 < |z| < 1}.

78



Fix a € D and set ¢ = (1 — |a]?)"2, so |a]? + 1/|c|?> = 1. We define the maps

uy Ei-%Si
ui(s) = o3l(az?, 2/o)

1

— -l -

u-(z) = o0Z(a,—)

and the tunneling maps

vy : S—Z
_ 1 2 %
R e E A
v_(z) = Lo
T Vel ez e

The corresponding horizontal covering is given by
Vg S -7

vo(2) = —————=(acz,1) = vp(acz).

Vv 1+ |acz|?

To see that this data defines folded holomorphic maps note that if |z| = 1,

= ——1 az?, 2 = 2 z/c) = <
’U+(Z) - \/|71T2—+1—/C2( ’ /C) (az 72/) u+( )
1 1 1

v-(2) = W(aa o) =) =u(2)

Note that ln(l—;’—l) is purely imaginary, so with g(z) = S (ln('—i—')),
‘ 1) (az?, z/c)
I S e (R ot N
9(z) * vo(2) o(2) 1zl /1T + Jacz]2 V/]z/c]? + |az?]? +(2)
. 1 , 1
—9(2) *vp(2) = e19(2) . vo(2) = I_Z_I (acz,1) (a cz)

= =v_(z2).
z /14 acz]? /|cz|7%2 + |a|? (=)

We give another way to visualize the family.
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Figure 10: Several members of the above family of maps into S*. The map (u®,u%)
corresponds to the extreme case a = 0. Then the maps u! loose energy as they
disappear into the fold whereas the maps u', gain energy. Then tunneling maps go

back to the closed characteristic. They sweep out the image of a holomorphic map
in Z.
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N
(2]

Figure 11: Here we visualize the family as maps into C2. We also suspend the
tunneling map to (generalized) holomorphic maps into C2. The maps us have image
in the unit ball, whereas v, has image outside the unit ball. v_ coincides with u_.
When projected into S, v_(0) lies on the closed characteristic. As the family of maps
approaches (u%,u?), the tunneling maps become longer and longer and in the limit
bubble off to form an H-holomorphic map from S? into the fold.
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Note that all of these maps send 0 € C = S2 to the north pole N in S*. Moreover

the derivative of u, at 0 always has image in 1 2-dimensional subbundle, as
d(oy ouy(0)) = (0,1/c)dz, (9.48)

so the maps in this family satisfy a 4-dimensional constraint.

Observe that for the above family the sum of the w-energies of u, and u_ remains
constant.

All the above maps extend to the case when |a| = 1 and thus 1 = 0 as well as
a = 0 and ¢ = 1. These are boundary points in the moduli space we defined, as
mr dvy vanishes identically in these cases.

If a = 0, the maps u, and u_ intersect the fold in a closed characteristic and the
tunneling maps vy formed a bubble in the fold, i.e. they have a closed punctured
Riemann surface as domain (5? with two punctures in this case) and are non-trivial
‘H-holomorphic maps into the fold.

In the case that |a| = 1 the map u_ and the tunneling maps are point maps and
u4 carries the entire energy.

This family as the property that it sweeps out S! in a way reminiscent of how
lines sweep out P2. To see this we mark three points, one in SfA p1 = 0 in the

above parametrization), one on the domain fold o (p; = (1 — |a[?)"2 in the above

parametrization) and one in S2. These points are characterized by the property that
p1 be mapped to the north pole and the map satisfies the tangency condition (9.48)

at that point, and that p, be the unique point with u, (p2) = u_(p2).
Lemma 9.1. Marking a third point p € S2 = D¢ C C we obtain an isomorphism
v : DxD'—»S!
Y(a,p) = wualp).
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Proof. To see injectivity, suppose ¥(a,p) = ¥(b,q). Then if p,g € D

(a, V1 —lal*/p) = (b, V1 = |b]*/q)

soa=bandp=gq.
To see surjectivity, let o_(z,w) € S*. Then set
1

a=z -=w/y/1-|a|
p

1—lal*/p) = 0_(z,w).
O

Next we compute the index of the linearized operator at one of the maps in
th e above family. Note that we can homotope the boundary conditions (Fy, F_) to
7ty (v, TAD) x my(v.TAD) where m, and 7, are the projections on the first and second
factor of C2 = C x C, respectively. To do this note that R and mR are transverse
to both v,79D and 7,(v,TAD), so we may homotope the boundary conditions to
7T1 IR x 7,(v,TAD) and the to the desired boundary conditions. Then it follows that

the Maslov indices py for the maps uy are given by u_ = 2 and p; = 6 and therefore

WwWe have
index = 8 + 2x(S?) = 12.

Cutting down by the 6-dimensional group of automorphisms and the 4-dimensional

COnstrained mentioned above we are left with the 2-dimensional family exhibited

above,
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A Folded Compatible Triples

IR ecall the following result from linear algebra.

L.emma A.l. Let V be a 2n-dimensional real vector space and g an inner product on
Y7, z.e. a positive definite symmetric bilinear form. Let A be a skew-adjoint endomor-
p/Feism. Then A has purely imaginary eigenvalues that appear in compler conjugate

paaz7rsand the eigenspaces to eigenvalues with different modulus are orthogonal.

In the following let (X, w) be an oriented folded symplectic manifold of real dimen-
si1o 1 2n with compact folding hypersurface Z with defining function ¢. Furthermore
defineo: X\ Z - {1}, by o(z) = 1 if £ € X*. Also denote by E; the real

22— p>1ane bundle over Z defined by E; = ker(w).

L.ermma A.2. Given a background Riemannian metric g there erists a canonical

S7r200th folded compatible triple (w, J, g;) defined on X \ Z, where
(Z) J*=-Id,
(2z2) w(u,v) = gs(Ju,v).

E et hermore there ezists a neighborhood U of Z and a splitting TU = E & F such
thhazg

(a) along Z E = ker(w) = ker(g)
(&)  E and F are J-invariant and perpendicular with respect to both g; and w

(c) Jor any defining function t of Z there exist a symplectic form p and a positive

definite symmetric bilincar form h on E; with

(1) gle =t - h
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(1) wlg=t-p
(&) the almost complez structures on J* onTU defined by J* = Jr®oJg are smooth.

P7roof. Let g be a Riemannian metric on X and define the skew-endomorphism A
of TX by w(u,v) = g(Au,v). This exists and is unique since g is positive definite.
IDefine £} = Eé’ and observe that A|g, = 0, and A| g4 1s non-degenerate. Since Z is

coxmpact there exists a € R* with |[A| > a for all eigenvalues of A|gy. Therefore there
e>cists a neighborhood U of Z such that |\;| < /2 < |)|, over U, where )\, is the
sxxa allest eigenvalue of A and A is the second smallest eigenvalue of A (after A; and
2 1 ) - Define E to be the 2-plane bundle over U given by the eigenspace to the smallest
eigenvalue of A and set F = Et9. Thenforu € F and v € F we have Au =4 € E

and
w(u,v) = g(Au,v) = g(a,v) =0.

"Therefore w splits as wg @ wp. Furthermore, by Lemma A.1 the other eigenspaces of
<A aAre contained in F, so A also splits as A = Ag @ Afp. Since Af is non-degenerate,
the ysual polarization procedure produces a canonical compatible triple there.
Since w is folded symplectic, wg = t - u for some non-degenerate 2-form p. There-
fore Ag =t- Ag, where Ap = gg'u is a non-degenerate skew-endomorphism of E.
By polarization of Ag we obtain a smooth compatible triple (1, J, h) on E, and using
“Ax instead we get a compatible triple (wg, Jg,gsg)on E \ Ez which relates to the

ab owve one by

w o= t-p,

Jp = “i=ol,
||

gJE = |t|h



The proof of the lemma motivates the following

I efinition A.3. A local folded hermitian trivialization of T X |y w.r.t. a folded com-
patible triple (w, J,g) (and defining function t of Z) near a point p € Z is given by
a7t w and g orthogonal splitting TU = E & F and local sections u, vy, ... u,, v, such

z/raat uy, vy, ..., Uy, U, 1S a hermitian basis of F' and uy,v; s a basis of E with
() g(ur,w1) = g(vi,w) = [t],
Czz) w(u,v) =t
(Z2Z) oJu; =v, and oJv; = —u,.

Corxollary A.4. Given a folded compatible triple on a folded symplectic manifold,

72 ere erist local folded hermitian trivializations of the tangent bundle.

R emmark A.5. If w and the background metric g are invariant under a smooth group
AcCtion G on U, then the resulting splitting TU = E & F and the triple (w, g;, J) will
Aalso be invariant under this action. To see this, note that the skew-endomorphism A

ab owve will be invariant under the action, so the eigenspaces and eigenvalues of A will
be

‘We conclude that the resulting J and therefore also g; will be invariant under

the action.

D e finition A.6. Ina folded symplectic manifold (X?",w), a component Z of the fold

is O f contact type, if there exists a 1-form « on Z such that
Z. aAw" ' #0 and
2. da = UJIZ.
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The component is called completely integrable if there ezists a 1-form a on Z such

z/hat
1. aAw™ 1 #0 and
2. da=0.

X.emmma A.7. Suppose a component Z of the fold in a folded symplectic manifold
Zs  of contact type or completely integrable. Then, in (global) Darbouz coordinates
= < U =|[-¢,¢] x Z near the component Z of the fold associated to the given 1-form
<x .  Then we may arrange for the bundles E and F and the complex structures J*
Zo  be invariant under translation along the normal direction in a (possible smaller)

72 ez ghborhood of the fold.

£27roof Over Z define E = ker(w) and F = ker(a) and use the canonical parallel
txransport in Darboux coordinates to extend this splitting to a neighborhood of the
fold.

Choose a background metric ¢’ making this splitting orthogonal and note that in
D a xrboux coordinates

w = d(r’a) +wz
= 2rdr ANa+ awg (A.49)
Where ais a positive function. Choose the background metric

g=dr@dréa®ada-gp

With some metric gr on F that is independent of r.
Since the splitting TU = E®F is orthogonal with respect to both ¢’ and w we may

€arry out the construction of the associated skew-endomorphism A4 and the compatible
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triple separately on each summand, immediately yielding that the given translation
invariant splitting is also J-invariant. Moreover a short computation shows that the

resulting J is also translation invariant. a

Remark A.8. The essential part in the above proof was that the translates of F
has symplectic complements that were translates of one another. This will happen
precisely when w can be written as in equation (A.49). But this happens only if there
exists a 1-form a on Z with da a multiple of w which is equivalent to the condition

Lra = 0, in which case the above lemma still holds true. (See also Lemma 2.8.)

B Properties of the Levi-Civita Connection

Recall that the non-degenerate metric g on Z is given by

where gf is the inner product on F induced by J and w. Then the splitting TZ =
L @ F is g-orthogonal.
First we want to state some properties of the Levi-Civita connection V associated

with g.
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Lemma B.1. Let X be a vector field on Z and Y a section of F. Then

VxR C F (B.50)
VeY C F (B.51)
VrRR = 0 (B.52)
Vea = 0 (B.53)
Ve(JY) = JVgY (B.54)
Vew = 0 (B.55)
Vgeda = 0. (B.56)

Proof. For the first equation note that

0=Vxg(R,R)=23(VxR,R). (B.57)
Next note that [R,Y] € F since « is stable and therefore

a([R,Y]) =da(R,Y)—R-a(Y)+Y -a(R) =0.

Now equation (B.51) follows from VgY = VyR+[R,Y] C F where we used equation

(B.50) and that V is torsion free. Then using this result we get

which, when combined with equation (B.50), yields equation (B.52).

For equation (B.53) use again that « is stable to compute
(VROI)X = VR(Q(X)) - a(VRX) = Q(LRX) - a(VxR + [R, )(]) = —a(VxR)

which vanishes by equation (B.50).
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For equation (B.54) note that Vg(JY) € F by equation (B.51). Then
9(Y,Vr(JY)) = —g(VRrY,JY)=g(Y,JVRY)
GUY,ValJY)) = TVag(JY,JY) = 3Vag(Y,Y) = oY, V4Y) = g(JY, JVY)
and we conclude that Vg(JY) = JVRY for all non-zero sections Y of F. Since

Vr(JY) — JVRY is tensorial in Y it holds for all sections Y.

Now for sections X and Y of TZ s
(Vrw)(X,Y) = Vew(X,)Y)—w(VeX,Y)—w(X,VgY) s

= Vepg(X,JY) —g(VrX,JY) — g(X,JVRY)

= Veg(X,JY) - g(VrX,JY) - g(X,JVRgY) j
= g(VepX,JY)+ g(X,VgJY) — g(VrX,JY) — g(X,JVRY)
= g(X,VgrJY) — g(X,JVRY)
=0
where we used equation (B.54) in the last step, proving equation (B.55).

For equation (B.56) recall that « is stable, so there exists a function f: Z = R

such that da = fw. Then R- f = 0 since Lgda = Lrw = 0. Thus

Veda = Viefw = (R-f)w+fVRw=0.

Next we compute some components of VJ.
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Lemma B.2. Letp€ Z and X,Y € F,. Then

a((VJ)R) = 0 (B.58)
a((VxJ)Y) = —w(VxR,Y) (B.59)
mpo(V)omp = 0 (B.60)
(VxJ)Y = (VyJ)X (B.61)
mpo(VJ) = —J(VR)®a (B.62)

Proof. For equation (B.58)
a((VJ)R) = a(V(JR) - JVR) = 0.
For equation (B.59)
a((VxJ)Y) = a(Vx(JY))
= g(R,Vx(JY))
= —g(VxR,JY)
= -w(VxR,Y).

For equation (B.60) let W be any section of TZ and let x be a local unit section

of F. We compute the components of VyJ in the trivialization given by x and Jy.

906 (Vw)x) = g0 Vw(JIx)) = 9(x, JVwx)
= —g9(Vuwx,Jx) +9(Jx,Vwx) =0
9(JIx, (Vwd)x) = 9(Ix,Vw(Ix)) —9(Ix, JVwx)

1 1
= -2-Vw g(JIx, Jx) — §Vw g(x,x) = 0.

The vanishing of the remaining components follows after replacing x by Jx in the

above argument.
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For equation (B.61) we only have to show that a((VxJ)Y = (VyJ)X) in view of
equation B.60). Using equation (B.59) we compute
a((VxJ)Y = (VyJ)X) = —w(VxR,Y)+w(VyR,X)

= —w(VxR,Y) - w(X,VyR)

I

—w(VeX,Y) + w(LrX,Y) — w(X,VRY) +w(X, LrY)
= -R-w(X,Y)+ R -w(X,Y)
= 0,
where we used that Lrw = 0 and that Vgw = 0. by equation (B.55).
For equation (B.62) let V" and W be sections of TZ. Then, using equation (B.60),
o (VwJ)V = 7po(VwJ)(V —npV)
= 7wrpo(VwJ)R-a(V)

= 7o V(IR a(V)) = 1r 0 J(Vi(R- (1))

I

—J(VHR)(Y(‘)

We can summarize the findings of the above lemma as follows. We may view
VI:(R®F)Q(R®F) > ROF
in block form, where the only non-zero components are the “cross-terms”

Vilrer @ FOF L

Vilpgr = (—tvrw)- R,
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which is symmetric in its arguments and

VJlrer : F®L—F

VJlrgr = —-J(VR)®a.
We can prove some results about VR.
Lemma B.3. For X in F,,

9(X,VxR) = —g(JX,V,xR) (B.63)
9(X,VyxR) = —¢g(JX,VxR) — g(X,(LrJ)X. (B.64)
P7roof. In a neighborhood of p, extend X to a section of F of constant length. Then
9(JX,VyxR) = g¢(JX,Vr(JX) - Lr(JX))
= g(JX,JVeX)-g(JX, Lr(JX))
= 9(X,VrX) - w(Lr(JX), X)
= w(JX, LgX)
= —g(X,VrX)+ g(X, LrX)
= —9(X,VxR)
and
9(X,VIXR) = g¢g(X,Vg(JX) - Lr(JX))
= g(X,JVRrX — (LrJ)X — JLRX)
= 9(X,J(VxR) - (LrJ)X)

= —g(‘]}(’ vz\R) - .‘](‘\’s (£RJ)‘\,)

93



Lemma B.4. . In the S'-invariant case we have

VR = 0 (B.65)
VJ =0 (B.66)
Va = 0. (B.67)

Proof. Since in this case the metric g is invariant under the characteristic flow, so
is V and parallel transport along characteristics is given by pushing vectors forward
using the characteristic flow.

Since J is also invariant under the characteristic flow we have

VrJ =0.

Let X € F at p and extend X to a vector field on a slice transverse to L near p.
Set Y = JX and transport this frame to a neighborhood of p using the characteristic

flow . Thus Vg X = VRY =0, and
VxR=VrX - LrX =0.

We conclude that VR = 0.
Thus (VJ)mg = 0 and 7g(VJ) = 0, and we conclude in conjunction with equation
B.62 that VJ = 0.

Lastly, by choosing normal coordinates with X,Y € F at p,
(Vxa)Y =a(VxY)=0.

Together with Lemma B.1 and that (Vxa)R = 0 we conclude Va = 0. a
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C Properties of the Sobolev Spaces of Maps

The purpose of this section is to prove some of the properties of the Sobolev spaces
used. These results are needed to show that tunneling maps have a well-defined
Fredholm theory. The issue here is the behavior of the maps near the punctures.

Define the half-infinite cylinder
C, = [r,00) x S*
and set C = C,.

First we show that W}*(C,v*TZ) is a Banach manifold.

Lemma C.1. W:”’(C, Z) is a separable Banach manifold, locally at @ map v €

W EP(C, Z) modeled on a neighborhood of the zero section in WP (C,v*TZ).

Proof. Embed Z isometrically into RV for some N. Let v € WfP(C,Z) and ¢ €
Wk.p(C,v*TZ). Set & = exp,(¢) where we parallel transport using the Levi-Civita

conmnection V. Then
1 d 1
div = dv + / —dexp,(7¢)dT = dv + / V(. dr =dv+ V(
o dr 0
where we use the canonical parallel transport in R”.
E() = / & (|mpdil? + [5°a(d,)” + d(5a(8))P) dvol
c
< / e® (Irpdv|® + |v*a(05)]* + d(v*a(8;))]?) dvol
c

+ /C & (InpVCP + (V) + d(a(ViQ))?) dvol

= E(v) + E(()



So ¥ has finite asymptotic energy if ( does. Conversely

EQ) = [ & (meVel + la(V.0P +d(a(VO)P) dl

< E(%)+ E®)

so ( has finite asymptotic energy if v does.

a

The following theorem motivates the definition of asymptotic energy. For r > 0

set C, = [r,00) x S'.

T heorem C.2. Let v € W:"’(C, Z) with § > 0, kp > 2. Then there ezists a constant

7" € R called the asymptotic charge of v and a constant C, independent of r and 9,

swch that

N p—or
/ €% |dv — T(R ® dt)|* dvol < C E,(v) (1 4 Er(v)e ) ‘

r

P7roof. For any non-negative function f : C — R

f dvol = fe¥e % dvol < e fe* dvol
C: Cr ol

SO

/ (Jv*@(8,)|* + [d(v*@(8,))|? + |mrdv|?) dvol < E,(v)e™®
Recalling that a is stable and that |da| < M on Z we have

|v*da| < |dal|rFdv]? < M|rE dvl?,

and hence for0 < r <’

/v"a—/ v
s s,

(C.68)

(C.69)

< / [v*da|dvol < M | |7pdv|?dvol < ME,(v)e T.70)
C,. o C,

where we used equation (C.69) in the last step. So we may define the asymptotic

charge T € R

T = lim via.
r—oo f g1
1
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Define the function u: C - R
u=v'a(0)-T
In view of equation (C.70) u satisfies
/ udt
s}
Then du = d(v*a(3d;)) so by equation (C.69)

/ e%|du|? < E,(v).

T

< cE,(v)e %,

For r > 0, define the cylinder of unit volume
A, ={(s,t) eClr <s<r+1}.
and set @, = [, udvol, so

r+1
|, | S/ / udt
r S

Since A4, has area 1,

r+1
ds < c/ e E,(v)ds < ce”E,(v).

/ (u — @,) dvol = 0.

T

SO by the Poincaré Inequality (Theorem 3.6.5 of [Mor66]) there exists a constant ¢ > 0
such that
|u — @, |? dvol < c/ |d(u — @,)|* dvol = c/ |du|? dvol.
A Ar A
Therefore

/ |u|? dvol < / 2 (@ + |u — @,)?) dvol < 2a? + c/ |du|? dvol (C.71)
r A,

r

Combining this with the pointwise bound

|dv — T(R® dt)|* < |npdv]? + |v*a — Tdt|)? < |rpde]? + |ul? + [v*a(85)]%,
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we have

/ |dv — T(R ® dt)|* dvol < 24’ + / (|mpdvf® + c|du|? + |v*a(8s)|?) dvol.
Al’

Summing this we obtain

/ e%|dv — T(R® dt)|? dvol =
Cr

IN

IN

IN

IA

IN

r

> / e%*|dv — T(R ® dt)|* dvol

neN

Z edrtn+l) / |dv — T(R® dzf)|2 dvol

REN Ar+n
2 § :66(r+"+1)ﬁ3
neN

+ Z Slrin+l) / (|mpdul® + cldul? + |[v*a(8,)[?) dvol

neN Ar+n

666 Z 66(r+n)E3(U)e—26(r+n)
neN

+ce‘5/ e” (Imrpdv)® + |d(v*a(8,))? + |v*e(8;)|?) dvol
c.

CE.(v) (1 + E (v)e™® Z e"s")

neN

Er(v)e"") _

1-¢

C E,(v) (1 +

‘We immediately obtain the following

Corollary C.3. Let v € W"f’p():, Z) with 6 > 0, kp > 2. Then for each puncture p,

there erists a constant T; € R called the asymptotic charge of p; and local conformal

coordinates g, : C — ¥ at each puncture p; such that v and a constant C, independent

of r and 6, such that

/ e*|dv oo, — T(R® dt)|?dvol < C E,(voo) (1 +
C,
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In the following we will make repeated use of the properties of V as stated in

Lemma B.1. The proofs of the results below follow largely the same pattern as the
proof of Theorem C.2.
Lemma C4. IfC € Wf”’(C, v*TZ) then there ezists a constant C > 0, independent

of 6 <M and r such that

/ e%|V¢|? dvol < CE,(v).

T

Proof. The proof follows similar lines as the previous one. First note that

/s} Vi)t = /s,l Vila(Q))dt = /s da(e) =0

T herefore

/ a(Vi¢)dvol =0

A

and we conclude by Poincaré Inequality that there exists a constant C independent

of 7 and 6 such that

/ |&(VC)[? dvol < C / 1d(a(V.0))P dvol.
A, A,
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With this and equation (4.16) we integrate
/ e|V¢[2dvol < E,(¢)+ / €% |a(V,()|? dvol
c.
= c)+2/ % |a(V¢)|? dvol

neN * Arn
< E(Q)+) ettt / |(V4C)|? dvol

nGN Ar+n
< E(Q)+ ) elUtiic |da(V¢)|? dvol

YIGN A r+4n r‘
< E(Q)+)_€C / e®|da(V() | dvol

neN
< O+C / e"‘“lda(Vt()Pdvol

C, '
< CE(Q) L)
yielding equation (C.72). a

Lemma C.5. If( € W'f”’(C, v*TZ), then there exists a constant C independent of r

and § < M such that

|C[?dvol < C(1+671) (C.73)
Ar

Proof. First note that
<(s. 1) < IC(O,t)+c / v, cds
0

< 16(0,8)] + ¢ / e~ (H2|VC]) ds
0

< C+ec (/ e“ssds) i (/ 665|VC|2dS) ’
0 0

1

oo 2
< C+ceb? (/ 863|VC|2d8>
0
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where ¢ = sup,c g1 [((0,¢)|. Therefore

/ |¢|2dvol < / (2Cz+2026‘1/ ea“‘IV(|2ds) dvol
Ar , 0
r+1
2C? +2c26'1/ (/ % | V¢ dvol) ds
r (&

< 2C?+cE(¢)6!

IA

IN

C(1+67").

We can strengthen this result.

Lemma C.6. There exists constants S € R and C > 0 independent of  and r such
that for ¢ € W:"’(C, v*TZ)

-1

1—¢€°

le(¢) — S| dvol < C (1 + ) E.(¢)e". (C.74)

Cr

Proof. First note that

J

a(¢)dt - /S a(Q)dt

< /C | IVi(a(¢)dvel

1
r !

< |a (V)| dvol
c

< §2e7N? (/ 66’|a(VC)|2dV01>2
c.
< C§3/E (Qe*"?

s0 § = lim, 0 [, a(¢)dt exists and u = a(() — S satisfies

/ udt] < Cé‘%\/E,(()e"J’/Q.
s}

Set u, = fAr u dvol, so

lu,| = l/ u dvol
A,

< C§1E (e

101



Also | Ar(u — u,) dvol = 0 so applying the Poincaré Inequality to u — u, yields
/ ludvol <2 [ |u— u,|?dvol + 2u? < c/ |du|? dvol + 2u?.
Ar Ar A'
By summing we obtain

la(¢) = S|*dvol = |u|? dvol

Cr
= Z/ |u[2d\'01
A

neN r+n

Z (c/ |du|? dvol + 2u3)
Ar+n

neN

C,

IA

IN

2 (C/ [V (a(C))[? dvol + Cé“En+,(()e—6(n+r)>
Artn

neN

C </a la(V¢)[2dvol + 67 E,(¢)e™%" z e"’")

neN

IN

IN

C(l + )E,(g)e-“'

1—¢f

O

Now assume that we are in the S'-invariant case. Then note that (¢;), : TZ — TZ
1S giwven by parallel transport along characteristics. This is clearly true vectors in L
SO wwe concentrate on showing this for Xy € T,F. Extend X, to a vector field X along
the characteristic through p using the derivative of the characteristic flow. We need
to show that Vg X = 0. Note that VxR = 0 since R is parallel by Lemma B.4 and

[R, X =Lx(X)=0. Then
VrX =VxR+ [R,X] =0.

In the S'-invariant case 1 is an eigenvalue of the Poincaré return map (or).|r at

a closed characteristic, so there exists a parallel non-vanishing section X = Xoo(t) of

’u(‘) )
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Now parallel transport x(t) along the lines s — (s,t) to obtain a section .

T hen

Vsx = 0
Vi) = O [ lulslds) = OWVETT )

We write *F=C x C
(z =1z +1y,(s,t)) = zx(s,t) + y Ix(s, 1)

Lexxama C.7. In the S'-invariant case, there erists a constant Q € C and a constant

C = O independent of & and r such that for € W:"’(C, v*'TZ)

—or
/ e’ |1 (¢) — Qx| dvol < C(1 + ﬂ(—c—))E}(C). (C.75)

1—¢f
:

Proof. Write mg( = gx,

/gdt—/ gdt
S5} sl

Q = lim gdt

r—00 S,l.

< / |0sg| dvol = / |V,(gx)|dvol < C E,(¢)e %"
Cr,rl Cf

!

SO

exists and u = g — Q satisfies

/ udt‘ <CE,(Ce.
s}

Set 7., = fA, udvol, so

/ u dvol

|ur| =

< CE.(Qe .
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Also [ A, (u — u,) dvol = 0 so we may apply the Poincaré Inequality to v — u, and
ludvol < 2 [ |u~—u|*dvol + 2u?
A A

< ¢ [ |du|?dvol + 2u?
A

s c (/ ldgx + gVx|*dvol + [ |gVx|? dvol + Ez(c)e—ZJr)
A,

Ar

< c( |V (7£¢)[ dvol +/ lgV x |2 dvol + Ef(()e‘z"’) '
Ar A

By summing we obtain
/ e |mp¢ — Qx|?dvol = / %% |u|? dvol
c.

Cr
Zeé(r+n+l)/ Iul2 dvol

neN Ar+n

< Zeé(r+n+l)c(/ |V(7TFC)l2dVOl
A

neN

+ [ |gVx[?dvol + Ef(g)e-”’)
A

IA

a

Corxollary C.8. In the S'-invariant case, for { € W’:"’(C, v*TZ) there erist constants

S € IR and Q € C and constant C = C(d) such that with (.xc =S - R+ Qx

[ (196 = Gl + Ic — 6eP) dvol < €. (C.76)
C

Observe that if v € W} ?(C, Z) is H-holomorphic, then the linearized operator D,
(for fixed complex structure j) is asymptotically translation invariant in the sense of
[LMOSS] by Theorem C.12. To see this note that the terms that are not translation
Invariant in equations (6.32) and (6.33) are linear in mpdv.

Let A: WFP(C,v*TZ) — W*~27(S}, H) be an elliptic boundary condition for D,.
Set W 12(C,v*TZ) to be the space of sections ¢ of class 1151 that additionally

loc
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satisfy

E() = /C e — Co? dvol < 0o

for some (; =S - R+ Qx.

Then we use Theorem 6.3 of [LMO85] to conclude the following
Corollary C.9. The operator
Dy : WEP(C v TZ) - WE'P(C,v"TZ) x Wk 27(S}, H)
s Fredholm for almost all 6 € R.
Similarly we obtain for arbitrary domains
Corollary C.10. The operator
Dy: WEP(S,0'TZ) —» WEVP(S,0*TZ) x WE~2P(8S, H)
is Fredholm for almost all § € R.

C.1 Elliptic Estimates

In this chapter we will sharpen and expand on the estimates from Theorem C.2 for

de”’ maps in the case that they are also H-holomorphic. We show that such maps

limit to close characteristics and investigate the asymptotics of solutions near the

puncture. For these issues it suffices to consider tunneling maps with domain the

half-infinite cylinder C, = [r,00) x S'.

Note that the equations for H-holomorphic maps define a system of PDE’s, the

first equation being of first order, the second one of second order. Therefore it is

easier to study not the map itself, but its suspension as defined in Definition D.5.

Note that H-holomorphic M: P(C, Z) maps v have the property that the periods of

105



v*a o j vanish by Lemma 5.4. Moreover, generalized holomorphic maps with domain
the punctured disk C reduce to ordinary holomorphic maps since H#,(D) = {0}.

Our goal is to show that maps limit to a closed characteristic.
Definition C.11. A parametrization of a closed characteristic is a smooth map
v:S' > Z
with image tangent to L and vja = const - d6.

Theorem C.12. Let v € W}P(C,Z) be a H-holomorphic map. Then either the
puncture is removable or v is asymptotic to a closed characteristic. More specifi-
cally, either v extends to a map smooth across the puncture or there erists a closed

characteristic parametrized by vy and constants ¢, > 0 such that

lirr(l)v(s,t) = (s, t) (C.77)
|V™(dv — duo)(s,t)] < cn VEs(v)e 572 VneN. (C.78)

Proof. For H-holomorphic v: C — Z let & = (a,v) : C — R x Z be a suspension of
v.

Define the v*T(R x Z)-valued 1-form
B=dv-T(ds® 0, +dt ® R)
Then 8 € QM (3*T(R x Z)) as
foj=dvoj—(-dt®d, +ds®R)=Jdv—JT(ds® 0, +dt®R) = Joj.
Moreover note that,

/ €% |32 dvol < C E,(v) (C.79)
Cr
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by Theorem C.2 and
da —Tds =v*'aoj—Tds = (v'a—Tdt)oj.

We follow [PW93] to establish the regularity estimates we need.

We work with the almost complex metric connection
VX =VX - %J(VJ)X.

on R x Z. Recall that the complexified tangent spaces of C and R x Z split as
TcC=TYCoT"C and T¢(R x Z) = T'°(R x Z) ® T*'(R x Z) into the sum of
the holomorphic and anti-holomorphic tangent bundles. For a mapv:C - R x Z

the connection induces an operator
d¥: QF('T(R x Z)) — Q' (*T(R x 2)).

If v is J-holomorphic then the complexification of dv preserves the type (holomorphic
or anti-holomorphic) of the tangent vectors. Therefore we may split the complexifica-
tion of dv as dv = (dv)'?® (dv)®! and (dv)®!(7}) = (dv)"0(y), so (dv)®! is determined
by (dv)!°.

Set
H=v'T"YRx Z).

The operator d¥ extends to the complexification Q&(H) and denote the composition
with the projection onto the holomorphic and anti-holomorphic tangent spaces by v

(1~ iJ)d¥ and 8¥ = 1(1 +iJ)d".

and 9V, respectively. so 9V = %

If v is J-holomorphic these operators fit in the Dolbeault complex

02 qvo(ry 2 Loy 2 020(H) = 0
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with Hermitian L? adjoint (66)‘ = —x 3V, where * is the Hodge-star operator. This
is well-defined since J-holomorphic maps preserve the Dolbeault splitting.

The operator
D=8 (8%) : QY(H) - Q2°(H)® Q°(H)
is elliptic. For ¢ € Q%!(H) we have
V¢ = 0
BY)'¢ = =+ x(=i%0YC=1i+d ¢ =i(d()(d,,0).

Then

@@ = i
e

(1= i) (V.sdv(@) ~ Fodo(3,) ~ du((0,,01)

dVl(l —iJ)dv ) (85,8,
1 )

t\DIv—-

= 1

—1iJ dvdv) (0s, O
1

3 (%
= ii(1— iJ)o"T (D, B))

M

= w'T"(6,,8,).
With
v = (ds®0, +dt®R)

we have that Vv = 0 since R and 8, are parallel. Using that Tong = Tonp = 0 we
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compute
|0%)(@)®| = IT**(dv(@,), du(2,))
< (1T (e dv(9s), du(8,))] + [T (7 dv(dy), dv(8)))])
= (IT"(rp dv(0,).dv(0)))| + |T (g dv(0s), mr dv(D)))])
< 2|T||dv] |7 F dvl
< c|mrdv|
|@%) )| = o
where we used that |T| and |dv| are bounded on Z. Therefore
|DB| < c|mpdvl. (C.80)

Since D is elliptic we have the standard elliptic estimate

[1Bll12 < c([|DBllo,2 + [|18]]0.2),

so in particular
/ |VB|?dvol < c E,(v)e™®
A,

by equations (C.79) and (C.80)
By elliptic bootstrapping arguments we conclude that there are constants c¢,, such

that

/ |V™ 8|2 dvol < ¢, E,(v)e .
A,

By the Sobolev embedding theorems we conclude that 3 together with all its

—4s/2

derivatives vanishes faster than e at oo, i.e. there are constants ¢, such that

V8| < ea VE,(v)e™%/2.

pointwise, proving equation (C.78).
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Therefore

vo(t) = lim v(s,t)

§—00
exists and is smooth with %vo(t) =T-R. If T =0 then vy maps to some point p € Z

and for d > 0

/ |dv|? dvol = [ |32 dvol < cE,(v)e™®"
C. [0
by Theorem (C.2). So the area of the image of C, under o goes to zero uniformly as
r — oo. Using the biholomorphism of Cy with the punctured unit disk in C we may
employ the usual Removal of Singularity Theorem (c¢f. [PW93]) to conclude that ¢,
and therefore also v, extend to a smooth map over the disk.

If T # 0, then dvja = T'dt - R, so vp is an immersion with image a closed charac-
teristic, parametrized by a constant multiple of the characteristic vector field. Then

equation (C.77) follows from this and equation (C.78). a

D H-Holomorphic Maps vs. Generalized Holo-
morphic Maps

We explain the close relation between H-holomorphic maps and generalized holomor-
phic maps.

In [ACHO04], generalized holomorphic maps were defined for domains that are
closed Riemann surfaces ¥ with punctures. They are families of J-holomorphic maps
into the symplectization with parameter space H'(X,R). This generalized readily
to our setting when the domains in question have boundary. We will give a precise

definition of these maps describe how they relate to our setting.
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Recall from equation (2.9) that the tangent bundle of X over Z splits as
T; X=K®&L®F

and L@ F = TZ. This suggest the following model for an infinitesimal neighborhood
of the fold.

Definition D.1. The cylinder over Z s the manifold R x Z. We eztend the CR
structure to the cylinder by translation. Moreover we identify K withTR C T(Rx Z).

The subbundle E = K @ L C T(R x Z) wnherits two different complex structures,
Jy and J_, depending whether we take the almost complez structure limiting from X
or X_. Together with the almost complexr structure J on F we obtain two different

almost complex structures, also denoted by J, and J_ on the cylinder over Z.

In the case that the 1-form « is a contact form, the cylinder over Z is sometimes
also called the “symplectization” of Z. But this terminology is misleading in our case,
since we make no use of the induced symplectic form on R x Z. There is a (J, J_)-
linear involution on R x Z, given by (r,z) — (-r, z), so without loss of generality
we may consider only J = J,-holomorphic maps. The subbundle E C T(R x Z) is
canonically trivial and isomorphic to C.

This allows us to talk about J-holomorphic maps into the cylinder over Z. As
mentioned above, generalized holomorphic maps are parametrized by H!(Z, R).

We need the following theorem from [DS52]:

Theorem D.2. Let (S, ) be a Riemann surface with boundary. There exists a unique
harmonic 1-field on S with a given admissible normal boundary value and given pe-

riods on by (S) linearly independent absolute 1-cycles in H(S;R).
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Recall that a harmonic 1-field on S is a 1-form )\ € Q!(S) satisfying
dA=0 and d'X=0.

Note that if S has boundary this is not equivalent to A being a harmonic 1-form,
i.e. A satisfying AX = 0. Also not that the boundary value that A vanishes on
vectors normal to the boundary is admissible in the sense of Theorem D.2. This
motivates the definition of #,(S, j) from Definition 5.2 and we conclude by Theorem
D.2 that H,(S,j) = (H:1(S,Z))*, where the isomorphism is given by the absolute
period integrals.

We need a complexified version of this space. Set
1
Ho'(S,5) = {5(6+i607)l6 € Ha(S,4)} C Ql(S,C).
With the help of this definition we obtain the following characterization of gen-

eralized holomorphic maps in the sense of [ACHO04], generalized to domains with
boundary.
Definition D.3. A map ©: S — R x Z is called generalized holomorphic if
8y = %{d{; +Jdij} e HY' @0 € (Ed F).

There is an obvious R-action on the space of generalized holomorphic maps given
by translation along the R-factor on each connected component of the domain S.

We explain how to obtain a H-holomorphic map from a generalized holomorphic
map.
Lemma D.4. Let o : S — R x Z be a generalized holomorphic map. Then its

projection v = mz v into Z is H-holomorphic and the periods of v*a o j vanish on a

tubular neighborhood U of the punctures, i.e.

/ v'aoj = 0. (D.81)
aU
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Proof. Note that the map v defined above satisfies equation (5.21). Also
v'aoj=10'aoj=da+

where a = mr? is the projection onto the R-factor and § € #(S),. Therefore v also

satisfies equation (5.22) and is therefore H-holomorphic. To see equation (D.81) note

/v‘aoj:/(da+5)=0
au aU

U is contractible so ¢y is exact. a

that

~ o .q..v;rT

Now if v satisfies equations (5.22) and (D.81), we can suspend v to a map o : S —

73
X

R x Z in the following way.

E‘.

Definition D.5. Let v : S — Z be a H-holomorphic map with vanishing periods
at the punctures. Let 6 € H,(S,j) be uniquely defined by having the same periods

integrals as v*a o j. Then their difference is exact and we choose a function
a : SHR
da = v'aoj—J.
Then the map
7:S > RxZ, 9(z) = (a(z),v(2))
is called a suspension of v in R x Z.

Suspension are unique up to an overall constant on each connected component of

S.

Lemma D.6. Let v: S — Z be H-holomorphic and assume that the periods of v*aoj
vanishing at the punctures. Then every suspension o : S — RXx Z of v is a generalized

holomorphic map.
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Proof. We compute

5,5 = %{(da,v*a)+J(da,v‘a)°J’}

= 1 {(da,v*a) + (—v*a o j,daocj)}

2
1

= 5((1(1 —v'aoj,daoj+vta)
1

= 5(—5, —doj)eH.

a

Also note that the suspension composed with the projection into Z is the identity

map.

To establish equivalence of H-holomorphic maps and generalized holomorphic

maps we need to take the respective function spaces into account. Tunneling maps

are required to be of class de P (S', Z), whereas generalized holomorphic maps are

required to have finite energy in the following sense (see [HWZ96a], [BEH*03] and

[ACHO4)).

Definition D.7 (Energy). The energy of a generalized holomorphic map v : S5 Z

18 the sum
E(v) = E (v) + E4(v)

of the w-energy

and the a-energy

E.(v) = sup/(cboa)da/\v‘a

oA JS
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where a denotes the R-component of v and the supremum is taken over all positive

functions ¢ in the space

A= {6 € C®(R,[0,00))| / 6=1).

Lemma D.8. The suspension of an H-holomorphic l’l/'f‘p(S, Z) map has finite energy

in the sense of Definition D.7.

Proof. It suffices to show this for S = C.

Note that with M = sup, |w]

E,(v) = / v'w < A{(/ |TF dv)? < oo
c c
by equation (4.16).
Let a be an integral of v*a o j with mingca = 0. By Theorem C.12 we know that

|da| = |v*al is bounded on C. Using that [, ¢dvol <1 for ¢ € A we obtain

/ poadaNvia < / @(s)|da||da| |v*a| dvol < oco.
c c
Thus

Ea(v):sup/¢oada/\v'a<oo.
¢€AJC

a

For the converse of this theorem we need a result by Hofer (see e.g. [BEH*03]).
This applies to generalized holomorphic maps since the proof is done locally in a
neighborhood of each puncture. So we may assume that the domain is the punctured
disk (half-infinite cylinder), but there are no non-zero harmonic 1-fields on the disk
that vanish on vectors normal to the boundary. So generalized holomorphic maps

from the punctured disk are just J-holomorphic maps.
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Theorem D.9. Given a generalized holomorphic map v, puncture p and local confor-
snal coordinates z = e**?"® at p. Then either v extends smoothly over the puncture

2 or v is asymptotic to a closed characteristic Y € R in the sense that there exists

7 € Z and y € Y such that

lim v (es+21ri0)

§— —00

= omrye)(y)  in C(S), (D.82)

awhere p, is the time-t characteristic flow. The integer m s called the multiplicity of

the puncture. If the puncture is removable we say that the multiplicity is 0.

This as the following immediate

Corollary D.10. Let 5 : S — R x Z be a finite energy generalized holomorphic map.

T hen its projection v = 10 into Z is of class Wi (S, Z).
In summary we have shown

T heorem D.11. Finite energy generalized holomorphic maps v : S = R x Z modulo
IR action on each connected component of S are in bijective correspondence to H-

holomorphic maps v: S — Z of class W:”’(S, Z) viav =7z0.

E  Tunneling Maps in Symplectic Manifolds

Here we want to briefly explain how tunneling maps come up in the usual symplectic
setting. From this point of view, tunneling maps appear as tools for studying J-
holomorphic curves relative to a codimension 1 hypersurface in a symplectic manifold.
We transfer our definitions to this case:

Let (X,w) be a symplectic manifold and f : X — R a smooth function with

transverse zeros. Then Z = f~! is a smooth hvpersurface, separating X into two
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parts labeled X, and X_ by the sign of f on them. Assume Z is dynamically
stable. Choose a stable 1-form a on Z and a compatible almost complex structure
J e J(X,w,a).

Fix a folded domain as in Definition 4.1 and let uy : ¥4 — X be J-holomorphic
with 7 = u*f. Assume 7 vanishes transversely and o = 771(0) # 0, so ¢ is a smooth
non-empty compact submanifold of ¥, separating ¥.

Now, just like in the folded symplectic case we may look for tunneling maps in Z
that connect the image of u|, to closed characteristics, i.e. an H-holomorphic map
v:8 = Z with v|, = ul,.

As opposed to the folded symplectic case, the complex structures J; induced on
TzX coming from X, and X_ agree in the symplectic setting. Thus the argument in
the discussion of the sign of u*a in Remark 4.13 has to be modified and the equivalent

of equation (4.20) reads in this case
(cqula+ cula)|re #0.

Therefore the folded diagonal AZ does not pose Fredholm boundary conditions in the
symplectic case.

To understand this better we will take another look at tunneling maps in the
folded symplectic setting. Let (v, v_) be conjugate tunneling maps and consider the
suspension v of tunneling maps vy into R x Z, where v is a generalized holomorphic
map w.r.t. Ji. Also let 7 be generalized J.-holomorphic suspensions of the associ-
ated horizontal covering. Assume for simplicity that the resulting maps are actually
Ji-holomorphic and that each connected component of S has only one boundary
component. Then the equation (5.25) of the definition of conjugate tunneling maps

can be rewritten in terms of the R-components a,, a_ and af of the corresponding
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tunneling maps. Then
viaoj+itaoj—20jac = day —da- —dad + dag

= (day — daf) — (da_ — dag)

and using the fact that the R-component is only determined up to a constant, equation
(5.25) says

ay —af =a_—a;  ono.

Written in this way the equation carries over verbatim to the (non-folded) symplectic
setting.
If J, = J_ we observe that aj = a;, so the horizontal covering map drops out

the equation simplifies to
ay =a_ on o

We can follow the above transformations backward and obtain the replacement of

equation (5.25) for the symplectic setting:
viaoj=viaojonTo

for H-holomorphic maps v..
But this, together with the remaining equations in Definition 5.8 implies that
vy = v_. Thus in the symplectic case, the analogue of the folded diagonal is the

actual diagonal
A= {(0,0)|0: 0 - Z} C Map(o,Z) x Map(a, Z).

Viewing this the other way, the folded diagonal AZ in the folded symplectic setting

is analogue of the actual diagonal A in the symplectic setting.
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