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ABSTRACT

PSEUDO-HOLOMORPHIC MAPS IN FOLDED SYMPLECTIC

MANIFOLDS

By

Jens von Bergmann

We define moduli spaces for rational pseudo-holomorphic maps into oriented,

closed folded symplectic 4-manifolds with circle-invariant folds. Its elements are stable

folded holomorphic maps that are discontinuous across the folding hypersurface. The

boundary values on the fold are given by tunneling maps which are punctured gen-

eralized holomorphic maps into the folding hypersurface with prescribed asymptotics

on closed characteristics.

We Show that the linearized operator of this boundary value problem is Fredholm

and thus obtain well behaved finite dimensional moduli spaces and give examples.
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1 Introduction

In the last two decades new techniques have been devised to study symplectic man—

ifolds and Hamiltonian dynamics. In particular, M. Gromov showed in [Gro85] that

the tools of complex geometry that exist on Ka'hler manifolds can be transferred to

symplectic manifolds. In the last decade that has led to a vibrant new field based on

the study of “pseudo-holomorphic curves” in symplectic manifolds.

Unfortunately, these methods do not apply to all manifolds: many smooth man-

ifolds do not admit symplectic forms. There are different possibilities to extend the

theory of pseudo—holomorphic curves to a broader class of manifolds. One approach,

being pursued by C. Taubes, begins with the observation that every compact oriented

4-manifold with intersection form that is not negative definite admits a closed 2-form

that degenerates along a disjoint union of circles. Taubes has made a detailed study

of the behavior of pseudo-holomorphic curves approaching these circles ([Tau02]).

In [CGWOO] A. Cannas, V. Guillemin and C. Woodward introduced the notion

of folded symplectic structures, which we describe in Section 2.2. Every orientable

4-manifold admits a folded symplectic structure.

In this thesis I construct finite-dimensional moduli spaces of folded holomorphic

maps into a certain subclass of folded symplectic manifolds (see Theorems 7.3 and

7.11). In physics pseudo—holomorphic maps come up as vacuum solutions of classical

closed strings. AdOpting this point of view, the theory of folded holomorphic maps

that I develop describes strings that are scattered at the fold singularity and exit at a

location which is in general different from where they enter. Thus pseudo-holomorphic

maps in folded symplectic manifolds are discontinuous at the fold. This “scattering”

or “tunneling” map, defined in Section 5, is the central object of this thesis.



Let (X,w) be an oriented compact folded symplectic 4-manifold with folding hy-

persurface Z. As in Symplectic Field Theory [BEH+03], we assume that the hyper-

surfaces Z are dynamically stable, i.e. the embedding of Z into X extends to a family

foliating a neighborhood of Z with w inducing the same dynamics on each leaf. In

contrast to the symplectic case, one cannot always find a smooth almost complex

structure on a folded symplectic manifold. Instead we equip folded symplectic man-

ifolds with an almost complex structure J that is discontinuous across the fold in a

controlled manner. We set this up in Section 2.4.

The almost complex structure J can be used to define “folded pseudo-holomorphic

maps” as follows. Domains for folded holomorphic maps are oriented 2-dimensional

surfaces 2, separated into two parts called 2+ and Z- by a collection of disjoint

embedded circles 0‘ (see Section 4.1). A folded holomorphic map consists of a complex

structure j on E and a pair of pseudo-holomorphic maps ui : 2i —-> Xi satisfying

the “matching condition”

(”+7u-ll0 6 AZ

where the folded diagonal AZ C Map(a, Z) x Map(0, Z) is given by the scattering

map. We give a precise meaning to this in Section 4.3.

The folded diagonal AZ is the crucial component in this definition. Unfortunately,

the obvious choice —— requiring that the images of the maps ui match along Z —— does

not not work (it does not lead to a Fredholm problem as explained in Sections 3

and E). In fact, in order to obtain a well-behaved finite dimensional moduli space

one needs to allow the maps to tunnel across the fold, exiting at a possibly different.

location from where they entered.

The folded diagonal is constructed in Section 5.2 by considering ’H-holomorphic
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maps called tunneling maps. These are maps v : S —) Z from a punctured Riemann

surface with boundary BS 2 0 identified with the domain fold satisfying

andvzrrpdvj; d(v*aoj) =0.

’H-holomorphic are essentially equivalent to the generalized holomorphic maps as

introduced by Hofer for domains without boundary, in [ACH04]; for a discussion of

this see Section D. We deviate from the setup of generalized holomorphic maps in

that use different function spaces, defined in Section 4.2, that lead to a more natural

Fredholm theory for our setup. This is done in Sections C and C1, where show that,

just as in the familiar case of holomorphic maps into cylinders, the punctures are

asymptotic to closed characteristics.

Tunneling maps v+ and 21. start at boundary conditions given by maps u+ into

X+ and u- into X- and cap these off to closed characteristics. The folded diagonal

is then defined as the boundary values of pairs (22+, 1).) of tunneling maps that are

“reflections” of one another through a special kind of tunneling map called “Abbas

solution”. This reflection process is defined in Section 5.2 and explained in a simple

setting in Section 5.3.

The space of folded holomorphic maps breaks up into components labeled by

relative homology classes

[Ui Lla ’Ui] E H2()(i, R; Z),

where ”R is the space of closed characteristics. As a consequence, the energy of folded

holomorphic maps is constant in families, as explained in Section 7.1.

Deformations of the folded diagonal are. studied in Section 6. This leads to the

result that the folded diagonal poses elliptic boundary conditions for the linearized
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operator at a solution (Theorem 7.1). This leads to the main result, which I have

proved for the case that the fold is an S1-bundle over a Riemann surface with the

vertical subspaces coinciding with the characteristic foliation.

Theorem 1.1 (Theorem 7.3 and 7.11). For generic almost complex structure,

the moduli space offolded holomorphic maps is a smooth finite dimensional manifold

whose dimension is the index (7.42)of the linearized operator.

As examples, I consider folded holomorphic maps into 5". While S4 does not

admit either symplectic or almost complex structures, it does have a canonical folded

symplectic structure. In this case, the spaces of relative homology data reduce to the

degree with which the tunneling maps wrap the closed characteristic. In Section 9.2

I give an explicit example of a family of folded holomorphic maps of degree 1 into 5“.

As a second example (see Section 9.1) I show how in certain special cases (e.g. if X is

a folded elliptic fibration) folded holomorphic maps on a folded symplectic manifold

can be equated with pseudo-holomorphic maps into a (different) symplectic manifold.

The results presented here are the beginnings of a general program whose ultimate

goal is to construct Gromov-Witten type invariants for non-symplectic 4-manifolds

and develop techniques for computing these invariants. That will involve in particular

compactifying the moduli space constructed in my thesis and generalizing the admis-

sible structures on the fold. First steps in this direction are carried out in Section

8.

While tunneling maps may seem a novel feature of the folded symplectic setting,

they are already implicitly present in the gluing and degeneration arguments of Ionel

and Parker, Hofer and Eliashberg. Tunneling maps give the difference between the

smooth and the degenerate case and keep track of relative homology data.



As an application of this work, I hope to be able to use the theory of folded

holomorphic maps to make progress toward the “recognition problem” for some folded

symplectic manifolds, in particular for S4. The space of rational folded holomorphic

maps of degree 1 has the property that it “sweeps out” Si in a similar fashion as

lines in P2 sweep out 1P2 (see Figures 10 and 11). Arguments of Gromov show how to

use this behavior of lines in P2 to recognize the complex projective plane, and these

were generalized by McDuff and Lalonde to ruled surfaces. Similar arguments may

work to recognize certain folded symplectic manifolds.

2 Background and Basic Definitions

2.1 Symplectic Manifolds

Definition 2.1 (Symplectic Manifold). A symplectic manifold is a pair (X,w)

where X is a smooth manifold and w is a closed non-degenerate 2-form on X.

The existence of a symplectic form on a manifold gives us tools to study these

manifolds. For example the study of symplectic submanifolds leads to Donaldson’s

description of symplectic manifolds via braids. The study of J—holomorphic curves

leads to Gromov-Witten invariants for symplectic manifolds. Taubes showed that in

dimension 4 certain invariants constructed in this way are actually independent of

the choice of symplectic form and only depend on the underlying smooth structure.

Not every manifold is symplectic, but we can try to generalize the tools that we

have on symplectic manifolds to a larger class of manifolds. Here we will weaken some

of the assumptions on the symplectic form at and try to extend symplectic results to

this case. There are two different approaches, based on the following observations.

(1) Every four-manifold with intersection form that is not negative definite. there

5



exists a closed 2-form or with (.02 Z 0 and (w2)‘1(0) = Z is a disjoint union of

embedded circles. Taubes used this approach to define J—holomorphic curves.

(See [Tau98] and [Tau02].)

(2) Every oriented four-manifold carries a folded symplectic form. This was shown

by Ana Cannas in [Can02].

We follow the second approach.

2.2 Folded Symplectic Manifolds

The content of this section is based on [CGWOO].

Definition 2.2 (Folded Symplectic Structure). Let X be a smooth 2rz-dirrz.ensional

manifold. A folded symplectic structure to is a closed 2-form such that w" is trans—

verse to 0 (so Z = (w")‘1(0) is a, possibly empty, smooth codimension 1 hypersurface)

and wn‘llz is non vanishing. Z is called the fold.

The last condition means that the kernel of or, which by transversality is a real

2-plane bundle over Z, is transverse to TZ. This is equivalent to the requirement

that

L :2 ker(w)lZ C TZ

is a 1-dimensional foliation. L is called the characteristic foliation. Thus intrinsi-

cally, the fold of a folded symplectic manifold is indistinguishable from an orientable

hypersurface in a symplectic manifold.

Here are some examples:

1. UR”, w) where

w = arlrlrl /\ dyl + (1.172 /\ (ng + . . . + (l.r,, /\ dyn (2.1)

6



is folded symplectic. To see this, note that w" = x1(dx1 /\ dyl /\ . . . /\ dxn A rig”)

is transverse to zero, with fold defined by Z = {x1 = 0}. Also, wlz = dx-z /\

dy2+...+dxn/\dyn,sown‘llz=dx2Ady2A.../\dxn/\dyn#0.

2. S2" has a folded symplectic form defined as follows. View S2" C R2"+1 as

the unit sphere, and let it : 5'2" —> R2" be the restriction of the coordinate

projection Rm“ 2 R2" x R ——> R2" to S2". The standard symplectic form wo

on IR?" pulls back to a folded symplectic form to = 7r“1(w0) on S2". Indeed, (.02

degenerates on Z = 32" 0 W" x {0} a: 52"“ and it intersects zero transversely.

Also wlz 76 0.

3. The folded symplectic form in Example (2) is invariant under the antipodal

map, so it descends to a folded symplectic form on the quotient RIP”.

4. On a Riemann surface )3, any 2-form w is closed. It is a folded symplectic

structure provided it is transverse to the zero section. This condition is open

and dense among all 2-forms.

5. On a 4-manifold, the conditions that a closed 2-from w has a square that is

transverse to the zero section is again open and dense in the space of closed

2-forms, while the condition that wlz never vanishes is open but not generic in

the space of closed 2-forms.

As with symplectic structures and contact structures, folded symplectic structures

can locally be put in standard form.

Theorem 2.3 (Darboux). For every folded symplectic form to there exist local co-

ordinates near the fold such that at has the form (2.1).



More generally, in [CGWOO] it is proved that for any a E 01(Z) that does not

vanish on L we can extend the inclusion i : Z '——> X of the fold to an orientation

preserving diffeomorphism

(i): (—e,e) x Z —> U (2.2)

onto a tubular neighborhood U of the fold such that

gb’w = n‘i‘w + d(r27r“a), (2.3)

where r is the coordinate function on (—e, e) and 7r is the projection 7r(r, z) —> 2:.

Definition 2.4. A morphism if) : X1 —) X2 of folded symplectic manifolds (X1,w1)

and (X2,w2) is a diffeomorphism satisfying

’t/wag = (.01.

Such morphisms automatically take folds to folds.

2.3 Folded Connect Sums

The most important example of an operation on folded symplectic manifolds is the

connect sum along symplectic submanifolds of arbitrary dimension. This procedure,

described in Theorem 2.5 below generalized the “symplectic connect sum” Operation

that joins two symplectic submanifolds along a codimension 2 symplectic submanifold.

In the symplectic category connect sum can only be performed along codimension

2 symplectic submanifolds. The ordinary connect sum is performed by removing

neighborhoods of points on each manifold and then gluing the boundaries. If this

could be performed symplectically, then the manifold obtained by gluing up the two

remaining pieces should also be symplectic. But this manifold is isomorphic to 82"



and the only sphere that admits a symplectic form is S2. Thus the connect sum

operation cannot be performed symplectically in dimension 2 4.

On the other hand, S2" does admit a folded symplectic form, so there is the

possibility that connect sum can be performed in the folded symplectic category.

Here is Ana Canna’s construction ([CGW00]) for folded symplectic connect sum:

Let (M1,w1) and (M2,w-2) be folded symplectic manifolds and let p,- E M,- be

points not on the folds. Then we can obtain the manifold (M = hflllpl,p2M—2,w) in

the following way. Near the points pi the forms w, are non-degenerate, so we can pick

symplectic Darboux charts near these points. Then pick annuli A,- 2 52’1‘1 x [1, 2]

around p, contained in such a chart. Let it : 52""1 x [1,2] —> 82"“1 and a be the

standard contact 1-form on 52”“1, so wlA, is diffeomorphic to d(r,-7r*(a)), r,- E [1, 2].

Choose coordinates t, such that r, = t? for t,- > 5. Then we can extend w across the

symplectic sum by defining

ift<—e

ift>e
w = dl(1+t2)/\ it"a], Where t = { 1:“

2

In [CGWOO] it is shown how to generalize this construction to gluing manifolds

along almost contact manifolds with certain compatibility conditions. We modify

this argument to show that we can perform connect sum along arbitrary codimension

symplectic submanifolds to obtain a folded symplectic manifold.

Theorem 2.5 (Folded Connect Sum). Let (Ml,w1) and (Mg,w2) be symplectic

manifolds with symplectomorphic symplectic submanifolds V1 and V2, respectively,

with symplectomorphic normal bundles.

Then for any boundary Z of a small enough tubular neighborhood of V1 in MI there

exists a folded symplectic manifold (ALLU) with fold Z, obtained from All and A]: by

taking connect sum along V1 and IQ, such that there exists tubular neighborhoods U1

9



of V1, ’2 of V2 and U on with

(1M \ U,(.d) = (All \U1,w1) U (A12 \ U2,(4J2).

Proof. By the Symplectic Neighborhood Theorem there exist neighborhoods U1 of V1

and U2 of V2 and a symplectomorphism (t : U1 —> U2 extending the given symplecto-

morphism V1 i—+ V2. Choose a tubular neighborhood U1 of V1 properly contained in

U1 and set Z = 8U1.

Define the manifolds

.171, = M1 \i]1

M? = Mg\¢(Ul)

with boundary Z identified via gfi. Since (1') is a symplectomorphism we have wllz '2

0.2le which we denote by tag.

Let a E 91(Z) with a > O on the characteristic foliation. By the Coisotropic

Embedding Theorem there exist collar neighborhoods Z x [0,5) C U,- on which the

symplectic forms wi, pull back to

w,- 2 tag + d(t,-oz), t,- 6 [0,5); i = 1,2

Define the annulus A,- C Ui,

A,- = {(z,t,-) E Z x [O,e)|0 < t,- < e}

and the orientation reversing diffeomorphism

ozAl—iAg o(z,t)=(z,e—t).

Then define the manifold

M = M, u. if;

10



with open submanifold A the image of A,.

Choose a monotone coordinate function t : (—e, e) —> R such that

t2=t1 if t<—\/e/2

t2=t2 If t>\/€/2

and define the folded symplectic 2-form w on M by

(.02 + d(t2a) x = (z, t) E A

w(x) = w] x 6 M1 \ {(z,t)|t S %e}

002 x6 M2\{(z,t)|t_<_ Ell-e}

Then w is a folded symplectic form on M with fold Z. CI

2.4 CR Structures on the Fold

Given a folded symplectic 2n-dimensional manifold (X,w) with fold Z, and an ori-

entation on X, we obtain some additional structure. Since X is oriented, X \ Z is

the disjoint union of the open manifolds X+ and X_, the regions where the orienta—

tion agrees or disagrees with the one induced by w, respectively. Therefore Z is also

oriented.

Observe that we have a canonical 2-dimensional subbundle

E = ker(w) C sz

and the 1-dimensional subbundle

L = ker(wz) C E.

Both L and E are oriented.

In [HZ94], Hofer and Zehnder made the definition of a stable hypersurfaces in

a symplectic manifold. As observer] earlier, the folds of folded symplectic manifolds

11



look intrinsically like oriented hypersurfaces of symplectic manifolds, so the definition

transfers readily to our setting.

Definition 2.6. The fold Z of a folded symplectic manifold (X,w) is dynamically

stable if there exists an embedding

w:Zx(—e,e)—>U

extending the inclusion L : Z = Z x O H X such that the flow Q53 of at, t E (—e,e)

on Z x (—e,e) preserves the characteristic foliation on each slice Z x t, i.e. if (9b,)...

induces bundle isomorphisms

(435),. : L —-> L

where L(z, t) = ker(w|th).

A folded symplectic manifold is called stable if its fold is dynamically stable.

We assume that all of the folded symplectic manifolds we work with are stable.

The importance of this requirement is that dynamically stable folds admit nice CR-

structures; these seem essential for the analysis carried out later. We need a special

l-form on Z.

Definition 2.7. A 1-form a E (21(Z) on the fold Z of a folded symplectic manifold

is called stable if

ker(w) C ker(da). (2.5)

The existence of a stable (1 turns out to be equivalent to Z being dynamically

stable as was pointed out to the author by Y. Eliashberg:

12



Lemma 2.8. There exists a stable I-form a on the fold Z of a folded symplectic

manifold if and only if Z is dynamically stable.

Proof. We adopt the notation from Definition 2.6.

For every fold admitting such a l-form a there exists such an embedding 7,!) by

equation (2.3).

Conversely, suppose that there exists such an embedding w. Define the 1-form

1

a = Etatw

and let R be the unique vector field such that

ma) 2 —t dt.

Note that this is well-defined since 1,3,w vanishes on the fold {(z, t)|t = 0}.

Then a(R) = 1 and R 6 L. Also L9,}? = f - R E L for some function f since the

flow of a. preserves L. Also

like) 2 diRw + LRdw = d(—tdt) = 0

and 512% = 0 since R is tangent to the level surfaces of t.

Recall the formula

EX O by = by O LX + t[X,y]

operating on forms. Then

1 1 1

LRdCl = £30 2 LR (216,60) = t (ia,£Rw + mew) = —?fiRw = fdt

which vanishes on vectors tangent to the slices t = const.

So L _—_ ker(w|z) C ker(da) and (YIZ is a l-form with the desired prOperties. C]

It is not clear under exactly what conditions a folded symplectic manifold (X,w)

is stable, but there are important cases in which it is: (X,w) with fold Z is stable if

13



a Z is an S1 bundle with the vertical subspaces bein the characteristic foliationg

and a is a connection 1-form,

(b) (Z, o) is contact with contact form a such that do 2 Log, or

(c) a is exact.

Following the definitions of [BEH+03] we assume that a is chosen to be stable.

Such an a determines a canonical section R of L by the requirement that

ma) 2 0, a(R) = 1, (2.6)

called the characteristic vector field.

Note that in case (a) the flow generated by R defines a free S1 action on Z

preserving w and a. This motivates the following

Definition 2.9. A folded symplectic manifold has an Sl-invariant fold if we can

choose a 1-form a on Z that is non-vanishing on L, such that the flow of the associated

characteristic vector field defines a free S1 action on Z that preserves w and a.

A stable 0 defines a symplectic subbundle F = ker(a) C TZ over Z such that

TZX :2 E 619 F. (2.7)

Now choose a background metric g' on X such that the splitting (2.7) is g’-

orthogonal. Mimicking the standard procedure to generate a compatible triple on a

symplectic manifold using the background metric 9’ we obtain a folded triple (w, 9, J)

on X \ Z satisfying the compatibility conditions

J’w = w

9(u, v) = w(’u, 1v)-

The details are given in Appendix A.

14



Definition 2.10. Let

J(X, w, a)

be the set of almost complex structures J on X \ Z obtained by the above construction

with the splitting (2.7) induced by w and a.

Each J E .7(X,w,a) determines a compatible triple (w, J, 91) and allows us to

extend the splitting (2.7) to a neighborhood of the fold such that it is J-invariant and

gJ and w orthogonal. Restricting (w, J, g) to F yields a smooth compatible triple on

F and the restriction to E satisfies

(.03 = Tft

9E = M}! (2.8)

~

J3 = sign(w2)J

where (u, h, J) is a smooth compatible triple on E. The details are given in Lemma

A2.

The complex structure J allows us to define a complement K of L in E by K = JL,

so we can refine the splitting (2.7) over Z to

TZX=KEBL€BF (2.9)

Fix a non-negative bump function fl depending on r and supported in a Darboux

tubular neighborhood of the fold that is equal to 1 on the fold and vanishing outside

this neighborhood of the fold. Then define the non-degenerate metric

g=g+fi-h. (2.10)

’7

4'By choosing a background metric 9' that makes the Splittin TZ X = K {B L EB Fg

orthogonal, we may assume that Z as well as each leaf of the characteristic foliation

l5



are totally geodesic with respect to h and therefore also g. Henceforth we assume

that g has these properties.

In the case that we have an S1 invariant (w, a) we can arrange (by starting from

an Sl-invariant background metric g’) for the compatible triple to also be S1 invariant

over U. Therefore we will assume that in case of S1 invariant folds, the compatible

triple is also chosen to be S1 invariant near the fold.

Equations (2.8) show that J is discontinuous across the fold in the E directions.

However, on U we may define two smooth complex structures, denoted by J*, such

that Jilxi = J by choosing Ji 2 iJ.

As observed in [BEH+03], (Z, F, J) defines a CR structure on Z.

2.5 Circle Invariant folds

Folded symplectic manifolds with S1-invariant folds are especially easy to work with.

They also occur frequently. The standard folded symplectic structure on the Spheres

(described in the next section) is of this type. Connected sums of symplectic 4-

manifolds always have folded symplectic structures of this type. More generally, one

can arrange for the operation of Theorem 2.5, which forms the connect sum along

symplectic submanifolds of any dimension, to produces symplectic structures with

S1-invariant folds in the case that the submanifolds are of codimension 2. This can

be seen by choosing Z more carefully as for example done in the symplectic connect

sum construction in [MW94] or [IPar].

S1-invariant folds have a special structure, as described in the following Lemma.

We will use this lemma repeatedly in later sections.

Lemma 2.11. In the case of an S1 invariant fold, Z is an .S'1 : R/Z bundle over a

symplectic manifold (l'/,wv) with projection 7n- : Z —> V such that
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1. (dz = 7f;r(.dv

2. there exists an wv compatible almost complex structure jv on V such that d’fl'vlp

is (J, 3'.) linear.

Moreover a may be chosen such that

do 2 C - wz C = c1(Z)/vol(V) (2.11)

where Cl is the first Chern class of the circle bundle Z —+ V and vol(V) is w. r.t. wv.

Proof. Since the 5'1 action on Z is free we can exhibit Z as an S1 bundle

7w : Z -—> V

over a closed (2n — 2)-dimensional manifold V. Since at is S'1 invariant and its kernel

coincides with the vertical subspace there exists a 2-form wv on V such that w =

TLC/LUV. One readily checks that Luv is closed.

The complex structure J | p induces an almost complex structure j on the quotient

V in the following way. Because ker(d7rv) is transverse to L,

d7i'vIF(Z) I F -) Tflv(z)S

is an isomorphism for each z E Z. Since the complex structure J on F is invariant

under the Sl-action this map induces a complex structure j on V so that drrvlp is

(J,j) linear.

To see equation (2.11) let an be a connection 1-form on Z, i.e. (to is invariant

under the 5'1-action and satisfies a0(R) : 1. Then iRdao 2 £300 2 0, so dog 2 7&sz

is the pullback of a 2-from wo on V which is just the curvature of the connection 00

and therefore represents 01(Z).

17



Since wv is a volume form on V there exists a constant c E R with

/V(cwv — we) = 0,

so (cwv — (2')) 2 d5 for some l-form ,8 on V. With the gauge transformation a =

(10 + «(35 we still have a(R) = 1, and

do = dag + rrf/dfi = iriwo + nf/(cwv — too) = crrfiwy = cwz.

3 Motivating Example

To motivate what follows we will investigate possibilities to define pseudo-holomorphic

maps into S4 with canonical folded symplectic structure as defined in Section 2.2.

One overruling principle is that we want to obtain well-behaved moduli spaces of

such maps. More precisely we are looking for a notion of pseudo-holomorphic maps

in folded symplectic manifolds such that the linearized equations at a solution give

rise to a Fredholm operator and that the solutions are stable under perturbations

(away from the fold) of the structures involved.

Recall that S4 does not admit any symplectic form since its second cohomology

is trivial. Moreover, S4 does not admit an almost complex structure. To see this

let (M, J) be an almost complex 4-manifold. Recall that its first Pontryagin class is

given by

p1(T]lT) = —C2(TAI @1113, C) = —C2(Tfi'{ 63W)

and the total Chern class of TM 63 T_A7 satisfies

c(TM e W) = (1+ c1(M) + c2(M))(1— c1(M) + (emu) = 1+ 2c2(M) —— ((‘1(A[))2
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Therefore p1 (TM) = -2c2(M) + (c1(M))2. If M has vanishing second cohomology

like 34, then p1(TM) : —2c2(M).

Since T54 is stably trivial we conclude that p1(TS4) = 0 by the Whitney sum

formula. But 02(TS4) = 2e(TS4) = 4, so 5'4 cannot be almost complex.

Therefore the answer to the question how to generalize pseudo-holomorphic maps

to this setting is far from obvious. We let ourselves be guided by the folded symplectic

structure w. Since at is non-degenerate on X \ Z, or S4 \ S3 in this particular case,

the usual procedure to construct a compatible triple will yield an almost complex

structure J there. Then it is clear what a pseudo-holomorphic map from a Riemann

surface (2, j ) into X\Z is, namely a map with (j, J)-linear differential. Since the fold

Z separates X into Xi this means that maps from a connected domain into X \ Z

will have image in only one side X+ or X- of the fold. The question then is how to

allow maps to “cross the fold” i.e. have image on both sides of the fold.

One way to do this is to choose an almost complex structure on X \ Z that

degenerates along Z in a way that Xi has “cylindrical ends” in the sense of [EGHOO].

This then reduces to the fairly standard problem of holomorphic curves relative to

closed characteristics as discussed in [IP03], [EGHOO] and [BEH+03]. In effect this

is treating the two sides Xi as separate manifolds with boundary and qualitatively

not different from studying holomorphic curves in a symplectic manifold where the

complex structure on the target has been degenerated. In [IPar] it was shown how to

reverse the process of the degeneration of complex structure to recover holomorphic

curves in the symplectic manifold with smooth almost complex structure.

We try and find the analogue of holomorphic curves with non-degenerate almost

complex structure for folded symplectic manifold, while being guided by the hope that
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these will limit to the relative curves discussed above as we degenerate the almost

complex structure. To do this we define an almost complex structure on S4 that is

non-degenerate in the sense that its norm w.r.t. a metric on S4 stays bounded, but is

(necessarily) discontinuous across the fold. One way to do this is to use a background

metric to construct a compatible triple as in the symplectic case. This process is

described in more detail in Section A.

We describe the folded symplectic structure and a compatible almost complex

structure with nice symmetry properties on 5".

View 5'4 as the unit sphere in R5. Then we have

0 the restriction of the coordinate projection R5 2: IR. x R4 —> R4 to S4, and

o the stereographic projections oi : 54 \ (i1, 0,0, 0, 0) —> R4.

Let too and .10 be the standard symplectic and complex structures on R4. Then

at 2 «mo and J : n‘Jo give a folded compatible triple (J,w,g) on S“ with g(u, v) =

w(u, Jv). The orientation induced by the folded symplectic form agrees (disagrees)

with the canonical orientation on S4 on the upper (lower) hemisphere Si (Si), the fold

Z = S3 is the intersection of S4 with the equatorial plane {(x0, x1, x2, x3, x4)[x0 = 0}.

The choice of J is compatible with choosing a to be the canonical contact structure

on 33, i.e. a is the restriction of the canonical 1-form

a = 5 (5131(1le — 132(1171 + $3dl‘4 — 17401173)

to 33. Therefore do 2 Log.

The map

7 : S'1 —+ S'1

(i130-i1‘1a-T23173a-Txilt—i(‘17oi4171a51/‘23T3JU
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Figure 1: Folded Structures on S4
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is a biholomorphic involution on S4 exchanging the upper and lower hemisphere and

fixing the fold.

The bundle F = ker(a) is given by the contact planes of the fold S3 and E is

spanned by the characteristic direction given by the vertical subspaces of the Hopf

fibration and the “radial” direction.

There are a couple of straightforward observations about (non-)possibilities of

holomorphic curves. First note that any non-trivial J—holomorphic has to cross the

fold, since each side is biholomorphic to B4 C C2 which has vanishing homology and

therefore does not admit non-trivial holomorphic curves by their energy minimizing

preperty.

For the following fix a Riemann surface (E,j) as domain.

Lemma 3.1. There are no smooth J-holomorphic maps into 34, i.e. there is no

smooth map u : Z —> S4 such that 31a 2 0 on E \ u“(Z).

Proof. Set 0 = u"‘(Z) and Xi = u“(Si). Recall that the fold S3 is a pseudo-convex

boundary of B4 C C2 (cf. e.g. [AHar]) so any J-holomorphic map at : 2i —> S:

with limit on Z = 5'3 has to be transverse to Z by the strong maximum principle.

Therefore u is transverse to the fold and o is a smooth separating submanifold of 2.

But for07énETaE

77E du+(jn) = 7TB dU—(in) = J~7TE du+(n) I —J+7TE du+(77) : ‘7IE (“MU”)

so 7n; du = 0 along 0, contradicting that u is transverse to the fold. C]

The proof shows that a stronger result is true, namely there are no continuous

J-holomorphic maps into .S'4 that have Cl-smooth one-sided limits on the fold.
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We see that the reason for the failure of maps to be smooth is essentially due to

the change in orientation of the almost complex structure on the bundle E which is

transverse to the fold. One can remedy this by the following equivalent modifications:

1. Ask that maps are holomorphic at points that have image in Si and anti-

holomorphic at points that have image in Si.

2. Work with domains 2 with oriented separating submanifold o separating X\o 2

2+ U E- where the orientation of 82+ (82-) agrees (disagrees) with that of 0.

Then demand that maps u : E —> S4 send 2i into S: and work with complex

structures ji on 2i such that there exists a smooth complex structure j on 2

With iji = jlgi.

3. Modify the almost complex structure on S4 so that it is continuous on the

transverse bundle E and discontinuous on the bundle F C TZ .

4. Choose a new almost complex structure J on S4 by replace the almost complex

structure J on Si defined above by —J while leaving the structure on Si

unchanged, i.e.

~ _ J(x) x681

J(x)—{ —J(x) x654.

We only discuss the last modification.

Lemma 3.2. Ifu is a smooth J-holomorphic map into S4, then its intersection with

S is a collection of closed characteristics.

Proof. S: has still a pseudo-convex boundary, so for the same reasons as in Lemma

3.1 u is necessarily transverse to the fold and o = u-1(Z) is a smooth separating
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submanifold. Let p E 0. Then

up du(p) = 0

by a similar argument as in Lemma 3.1. Since u is transverse to the fold, a =

ula : o —+ Z is an immersion, and since 7rp a = 0 it is tangent to the characteristic

foliation. Since a is necessarily closed, each component wraps a closed characteristic

non-trivially. [3

Examples of such smooth J—holomorphic maps into S4 are restrictions of lines in

C2 that pass through the origin. In fact it is not difficult to see that any smooth

J—holomorphic map is of that form (or a multiple cover of such a map). But these

solutions are extremely unstable — when one perturbs J at the north or south pole in

a generic way, all of these solutions die.

Expanding on this example, one might see that asking for maps to be smooth is

too restrictive. It seems more natural to consider maps that are smooth up to the

fold but only continuous across the fold. A similar argument as in Lemma 3.1 shows

that there are no such J-holomorphic maps. But there are many such J—holomorphic

maps as the following Lemma shows.

Lemma 3.3. Let (2,3) be a Riemann surface with boundary 82. Then u : (E, 82) —+

(Si, S3) is J-holomorphic if and only ifrou : (E, (92) —-—) (S1, S3) is -J-holomorphic.

Proof. 7 is a biholomorphism for J so it is an anti-holomorphic involution for J. Cl

Now let (if) be the double of (2,3), i.e.

EZEUOZE
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with complex structure j on 2 and —j on 2. Then if u : (2,82) —> (Si,S3) is

J-holomorphic the map

(x):{u(x) x62

u r o u(x) u E 2

is a continuous J-holomorphic map.

By the unique continuation theorem for holomorphic maps all continuous J-

holomorphic maps into S4 are of this form. Therefore such maps are in bijective

correspondence to holomorphic maps

u: (2,82) —> (B4 C (32,53).

But the space of such maps is infinite dimensional and each map has an infinite dimen-

sional space of holomorphic deformations, even if we quotient out reparametrizations.

To see this note that for well behaved maps we may find a totally real subbundle

W C TZ C TZS4 with u(n) C W for all n E T0. Furthermore, by choosing W

appropriately one may arrange for the Maslov index of u with respect to W to be

large enough so that the index of the linearized operator at u operating on sections

with boundary values in W is positive. So for each such choice of W there exists

non-empty finite dimensional space of nearby solutions that also map the boundary

82 into Z. But there are uncountably many choices of such totally real TV, so there

exists uncountably many nearby solutions.

This shows that considering holomorphic curves with “continuous images” cannot

lead to a Fredholm problem. The condition of “continuous images” does not pose an

elliptic boundary value problem for the linearized Cauchy-Riemann operator.

One possible remedy is to impose additional constraints to cut down the solutions

to a finite dimensional space. But there is no evident way of doing that which is

stable under perturbations.
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Another approach is to allow discontinuous images. We think of this as holomor-

phic curves that leave the fold at a location that is different from where they enter,

the relation between these is given by a tunneling map in Z. This way we define a

Fredholm problem for discontinuous pseudo-holomorphic maps into folded symplectic

manifolds. Roughly speaking, a folded holomorphic map consists of

o a domain (2,3) with submanifold separating 2 into 2+ and 2-

o a J-holomorphic map u+ : 2+ —> X+

o a J-holomorphic map u- : 2+ -—> X-

o and a tunneling map connecting u+(62+) to closed characteristics and then

continuing on to connect to u-(62-).

 

(X,w,J)

 

Tunneling

   
Figure 2: The map tunnels through the fold, exiting the fold at a location that is

different from where it entered.

We will make this precise in the following sections. But first we will give a trivial

example of discontinuous folded holomorphic maps.
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Consider the complex elliptic fibration X = E(1) and let T ‘—-> E (1) be a regular

fiber. There exists a tubular neighborhood X- of T in E(1) biholomorphic to X- =

D x T, where D is the closed unit disk in C with the canonical complex structure.

Set X+ = E(1) \ X-.

Consider the following two self-maps of the boundary Z = BXi = S1 x T

L(Z, w) = (z,w)

l’F(z? w) = (3,10)

Then we have the manifolds

E(1) : 1Y+ Lit 1Y—

EF(1) = X+ uflr‘.

with almost complex structure inherited from each piece.

E(1)

Q X+ O Q

 

 

                  
 

P]

M

V

Figure 3: The manifolds E(1) and EF(1).
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The construction of Section 2.3 exhibits EF(1) as a folded symplectic manifold.

(With a little more care we may define smooth structure on EF(1).) In particular,

there exists a biholomorphism

\II:E(1)\Z—+EF(1)\Z

given by the identity map on each piece, X+ and X-.

This setup suggest the following definition for folded holomorphic maps into the

folded symplectic manifolds EF ( 1):

Definition 3.4. A folded holomorphic map it : 2 —> EF(1) is a map such that \I! o u

is (the restriction to the domain of definition of) a holomorphic map in E(1).

It is clear from the definition that this will yield a well-defined moduli space,

although the maps are necessarily discontinuous.

 
 

                    

X E(1) X E(1)F

Q + O +

/ /

// q: \ /

// 4—-—————> / \

/ /

/ X_, / X-

0 O     
 

Figure 4: Folded holomorphic maps in EF(1).

The intuition behind this definition is that EF(1) is a folded symplectic manifold

that was glued up in the wrong way. In general, there is no global way to cut a

folded symplectic manifold into the pieces X+ and X- and glue them back together

to obtain a symplectic manifold. In the following we will show how to nevertheless

define folded holomorphic maps into more general folded symplectic manifolds that

will reduce to Definition 3.4 in the case of EF(1).
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Note that the pieces u+ and u- of a folded holomorphic map into EF(1) have

boundary values in

AZ = {(a+,a_) E Map(o,S1 x T2) x Map(o,Sl x T2)|ii- = \II 0 21+}.

We call AZ the folded diagonal. The above definitions work in the case where the

fold Z has the structure of a trivial S1-bundle with the characteristic foliation being

vertical. To define folded holomorphic maps into more general folded symplectic

manifolds we need to generalize the folded diagonal in a way such that it continues

to give elliptic boundary conditions for the pieces u+ and u-.

4 Folded Holomorphic Maps

Here we will define folded holomorphic maps and lay the functional analytic founda-

tion for the later sections. We start by describing the domains of folded holomorphic

maps, then we set up the Sobolev spaces and lastly we set up the PDE.

4.1 Folded Domains

Definition 4.1 (Folded Domain). A folded domain D consists of

(i) two closed Riemann surfaces (20,j0,p0) E A490,"0 and (21,j1,p1) E Mgm,

(ii) functions 7, : 2,- —9 IR with zeros of at most finite order such that

p1 C 21", where 2? = {x E 2,] :t 73(1) 2 0}, i = 1,2

(iii) a function g : 2; -—) R and a diffeomorphism

If) I (2;,j0) "2 (Sf-3.9.1):
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satisfying the conditions

Wji = Jb, W71 = 697'0- (4.12)

We set p3 2 po 0 23 to be the marked points contained in 23:. The marked

points p1 are called punctures. The zero sets 00 = r0" 1(0) and 01 = rf1(0) are called

the domain folds. To simplify notation we set

2i :23, S: 2;, S=S\p1.

Moreover, when no confusion can occur we will drop the subscripts on j,- and 73-.

      
(Ellajllapi)

(Elainp)

Figure 5: Folded Domains

The purpose of the functions TI and T2 is to give possible locations of the domain

fold 0, but we are not interested at the specific values of Ti away from there zero set.

The space of functions f : 21 ——> IR, acts on a folded domain D by

7'1 i—> T] 2 6f‘ r1

9 H d=g—v7t

Then

* ’_ , +-'i’° 1.‘,* 1 _ +—IJI‘f1 '4’" 1 * -
wrl—eg 1,], (efrl)—e9 e fwrl—egro
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so this is well-defined.

Moreover, (do, 451) E Diff+(20) x Diff+(21) acts on a folded domain D by

Jr H (15:71: dd)? 0j10d¢i

r,- H nod,-

pi »—> ¢i(Pi)

ll) H ¢f10¢0¢o

g H goeo.

To see this we check equations (4.12).

in: -I

'11) 11

will T;

(hf/‘1 0 j; o (tr/2'

d¢51dlll 0 (14510 d¢f1°j10 (10510 (1451—1 0 dill 0 d¢0

d¢61d¢ o jl o dy’) o 61950

d¢61j0 0 dflio

-I

JO

7'] o w'

710¢10¢f10¢0¢0

T1 0 1A 0 (250

(3970) O 450

6“(W70 0 (250

9’ I
e To.

This leads us to the following

Definition 4.2. The group

Q = Map(20,IR) x Diff+(20) x Diff+(2])
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is called the gauge group.

Next we recall (see e.g. [BEH+03]) a natural compactification of a Riemann

surface 2 (possibly with boundary) with punctures pk, k = 1, . . .K, that we need in

our context.

Definition 4.3 (Radial Compactification). The punctured disk ID\O with canon-

ical metric is isometric to the open annulus (0,6) x S1 by the map given in polar

coordinates by (r, em) i—i (%r2em), where we equip the annulus with the canonical vol-

ume form dsAdd. After choosing local holomorphic coordinates around each puncture

pk in S, that diffeomorphism defines a compactification of S, that is a manifold with

one boundary component Pk (the circle corresponding to {0} x S1 under the difieo—

morphism) for each puncture.

When we consider metrics on the radial compactification S, we will always assume

that they coincide with the metric induced by the one on the cylinder, so the curves

I} have length one.

The canonical projection 7r : S —+ S sends each F), to pk and is a diffeomorphism

from S\U,c I‘k ——> S\Uk{pk} = S.

Remark 4.4. 1. The sets pat are disjoint unless some of the marked points lie on

00.

2. Let be S the radial compactification of S as in Definition 4.3. Then we define

the associated 2-dimensional CO-cycles with boundary (2i, p1) by gluing 2+ to

S to get 2+ = 21 or by gluing 2- to —S to get 2_, where the gluing is done

along 0.
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Note that 2+ is actually a smooth Riemann surface. for 2- this is only true in

the case that the domain fold a is a manifold.

Definition 4.5 (Stable Folded Domain). A folded domain D as in Definition

4.1 is called stable if for each irreducible component 2 of 20, Aut(2, jg, p0) is finite

dimensional and each connected component of S contains at least one puncture.

The space of stable folded domains with genera g,- of 2,- and no marked points on

20 and n1 punctures on 21, modulo gauge, is denoted by

ME

90291 )n0,n1 '

(4.14)

Note that this space is infinite dimensional.

4.2 Sobolev Spaces of Maps

To proceed we need to give a precise definition of the Sobolev spaces we plan to use.

Recall the non-degenerate metric g from equation (2.10) and fix a folded domain D

as in Definition 4.1. We follow the definitions from [BBW93] for Sobolev spaces on

manifolds with boundary.

Definition 4.6. Fix a Riemannian metric in the conformal class of j on 20 and

positive integers k,p with hp > 2. Let Ui C 20 be open subsets properly containing

2:1: and that is of the same homotopy type as 23:. Then let Wk’p(2i,Xi) be the

smooth Banach manifold consisting of maps f : 2,]: —> Xi that are restrictions of

maps f: Ui ——> X of class Wk’p that send the domain fold a into Z.

Then standard theory gives that Wk’P(2i,Xi) is a smooth separable Banach

manifolds modeled locally at a maps ui E Wk'p(2i, Xi) on the space ll/”°'P(u*iT.\’).

Next we define the Banach manifolds of maps from punctured surfaces into Z.

Here we differ from the traditional treatment found in [Sch95], [B01102], [HVVZ99] and
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[Dra04] in the basic definitions as we do not a priory specify the asymptotics at the

punctures but rather allow the maps to converge to arbitrary closed characteristics.

We also avoid using the auxiliary IR-factor in the “symplectization” as it does not add

any information.

We believe that this approach gives a more natural setup for the Fredholm theory

needed in our case.

For a closed Riemann surface 2 with finitely many punctures {pk} and 2 _-_-. 2\{pk}

we let l/Vlig’(2, Z) be the space of maps from 2 to Z that, in local coordinates, are in

winks 1R3).

For a Riemann surface 2 with boundary and finitely many punctures we assume

that 2 C 2’ for some open Riemannian manifold 2’ of the same homotopy type and

we set W,:;,” to be the space of maps from 2 to Z that are restrictions of maps in

”attain 2).

Let (2, j, {pk}) be a Riemann surface (possibly with boundary) with conformal

structure j and punctures {pk}. Set 2 = 2 \ {pk}. For r 6 IR define the half-infinite

cylinder

C, = [r, 00) x S1

with coordinates s E [r,oo), t E S1 = lR/Z complex structure j with go, 2 (9t and

measure dvol 2 ds A dt. Set C = C0. Then at each puncture pk we have local

conformal coordinates 0k : C —> 2.

Fix a constant 6 > 0. Since we will be only interested in 6 close to zero we assume

throughout that 6 is bounded by some constant M.

Definition 4.7 (Asymptotic Energy). For maps v E I'Vk‘p(C, Z) we define the
loc
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asymptotic energy

E..(v) =/ (|v"‘a((9s)|2 + |d(v’"a(c'9t))|2 + Irrp dvl2) e53 dvol. (4.15)

Cr

Definition 4.8. Let Wf’p(C, Z) be the space of finite asymptotic energy l/Vk’p(C, Z)
loc

maps. Similarly, let Wf’p(2, Z) be the space ofl’Vk’p(2, Z) maps that are in Wf’p(C, Z)
loc

in some local conformal coordinates at each puncture.

Next we exhibit the Banach manifold structure on W:'p (S, Z)

Definition 4.9. For v E ll"6k’p(C, Z) let Vl":’p(C,v*TZ) to be the space of sections

C E Wk’p(C,v*TZ) that have finite asymptotic energy, i.e. that satisfy
loc

E.(<>=/C e“(l7rp(VC)l2+la(V.<)|2+ld(a(Vi<))l2)dv01<oo- (4.16)
l

Analogously, for v E I/Vf’p(2, Z) we define Wf‘p(2, v‘TZ) to be the space of sections

C E Wk’p(2,v*TZ) that are in ll""6k’p(C, v‘TZ) in local conformal coordinates at each
loc

puncture.

With these definitions we have that W;”’(C, Z) is a separable Banach manifold,

locally at a map v E Wf’p (C, Z) modeled on a neighborhood of the zero section in

Wék’p(C, v‘TZ). This is proved in Lemma C.1.

4.3 Folded Maps and Folded Holomorphic Maps

Definition 4.10 (Space of Folded Maps). Fix a positive integers k and p E IR

with hp > 2, non—negative integers go, gl, n0, n1 and relative homology classes At 6

H2(Xi,7Z;Z). Then a folded map (u+, u_) with respect to Ai consists of

(i) a stable folded domain D E MF and
9099137101711

(if) “i E I’l"k’p(zii Xi)
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such that there exist maps vi 6 Wf’p(S, Z) with

u; det(w) = r (4.17)

uila = vile (4.18)

[ui Ll,I vi] = Ai. (4.19)

 

    
Figure 6: Folded (Holomorphic) Maps

The key to defining folded holomorphic maps lies in the definition of the “matching

condition”. It is specified by the subspace

AZ C Map(o, Z) x Map(o, Z),

called the folded diagonal. Intuitively, we view AZ as a scattering function that

takes boundary conditions of “incoming” holomorphic curves on the “+” side and

transforms them into boundary conditions for “outgoing” holomorphic curves on the

“-” side. To make sense out of this we actually don’t need to define this scattering

function for every element of Map(o, Z) but it suffices to define it on the maps that
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are possible boundary conditions of holomorphic maps. We will make use of this

observation later on.

The definition of the folded diagonal AZ is rather involved and we postpone it

until Section 5.

Definition 4.11 (Folded Holomorphic Maps). A folded map (u+,u-) is called

folded holomorphic if any 2 0 and (u+,u_)|a 6 AZ, where the folded diagonal AZ

is defined in 5.10

Lemma 4.12. The gauge group g defined in Definition (4.2) acts on the space of

folded holomorphic maps by precomposition of ui by the element in Diff+(20), on vi

by the element in Diff+(21) and acts on the folded domain as described above.

Proof. The action preserves solutions to the holomorphic map equation and the con-

dition that To = u; det(w), since 7'0 and at are acted on by precomposition with the

same diffeomorphism. Moreover it preserves the identification of the domain folds oo

andolasforpEU

will?) 2 Ui°¢0lPl

2 Us: 0 ill 0 450(1))

= v; 0 (157‘ 0 ii) 0 (250(1))

= v; o i/)'(p).

So this action preserves the set of folded holomorphic maps as long as it preserves

the folded diagonal. We will postpone this part of the proof until Remark 5.11. C]

Ultimately we will be interested in the space of folded holomorphic maps modulo

gauge.

We make an important observation about the orientations of maps along the fold.
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Remark 4.13. Let p E o be a point where r vanishes transversely and let 77 6 Tp2

be an outward normal vector to 0 at p, i.e. jr) 6 Tpo and 77(7') < 0. Then

§(dui(77)a J+R) > 0

since 7' = u“ det(w) and J+R points from X+ to X- so d(det(w))(J+R) < 0. Then

0 < §(dui(n), J+R) = i§(dui(jn), R) = iUIOIUn)

so the values of aid on tangent vectors have opposite sign. In particular, if the map

(u+, u-) is transverse to the fold, i.e. if r vanishes transversely so a is a manifold we

have for non-negative real constants c1 and c2 that do not both vanish that

(c1u1cr - c2 uia)|TU 75 0. (4.20)

This turns out to be the crucial observation in showing that the folded diagonal poses

an elliptic boundary condition and that therefore the linearized operator is Fredholm.

5 Tunneling Maps

Throughout this section we assume that X has dimension 4 and that the function r

vanishes transversely, so the domain fold a is a manifold.

Tunneling maps give the matching conditions for folded maps into X, add ho-

mological data to maps, and ensure that families of folded holomorphic maps have

constant energy. They are central in proving regularity of solutions and they guar-

antee that the linearized Operator is Fredholm. In this section we define all relevant

structures and discuss their properties.
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5.1 Definition of Tunneling Maps and the Folded Diagonal

Tunneling maps are maps into the fold Z that connect the images of the folded maps

into X+ and X-. Throughout this section we assume that we have fixed a folded

domain D as in Definition 4.1. All tunneling maps will have domains (S, j) of the

form (21’ \ {pk},j1) with boundary BS 2 o.

Tunneling maps satisfy an equation that depends only on the CR structure (Z, F, J)

on the fold Z and the 1-form or. First we need this

Definition 5.1 (’H-Holomorphic Maps). A map v : S —> Z is called H-holomorphic

2'f

0 = 35v=%(7rpdv+J7rpdvj) (5.21)

0 = d(v"‘a 0]). (5.22)

H-holomorphic maps are essentially given by families of J-holomorphic maps into

the symplectization parametrized by ”H" which we define below. The detailed discus-

sion of this relation can be found in Section D.

Definition 5.2.

'Hn(S,j) = {A E 91(S)|d)\ = 0, d*/\ = 0, and A017): 0V7] 6 TBS}.

Definition 5.3 (Tunneling Maps). Fix a positive integer k and real p > 0 such

that kp > 4. A tunneling map is a ’H-holomorphic map of class l/i";’p(S, Z) such that

71'de does not vanish identically.

We make a simple, but essential observation about tunneling maps.

Lemma 5.4. Let v be a tunneling map. Then the periods of v‘o oj vanish in a

neighborhood of each puncture.
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Proof. Fix local conformal coordinates C = [0, 00) x S1 at a puncture as in Definition

4.8. We will show that v‘a oj vanishes on S} = {r} x SI. Since v‘a oj is closed, the

value of

I.
does not depend on r. Remembering that A, 2 CW.“ has unit area and using

v‘aoj 2/ v*a(83)dt

sl 1

r 1'

equation (4.16) we compute

/ v’aoj

5}

_<_ / |v*oz(83)] dvol

r  

l

g (Jr/2 (/ e53|v*a(o,)|2 dvol)

S e—6r/2 Er(U),

showing that the periods of v*a 0 j are arbitrarily small and therefore vanish. CI

Tunneling maps are very well-behaved. They satisfy an elliptic system of PDEs

and are therefore smooth on the interior of S. Moreover, they have nice limits at

the punctures as Theorem C.12 shows, namely they converge to closed characteristic

exponentially fast. Therefore they extend to continuous maps from the radial com-

pactification of the domain. We will blur the distinction between a tunneling map

and its continuous extension to the radial compactification.

In the following we will restrict our discussion to tunneling maps v such that v],,

is the boundary value of a J-holomorphic map u into X+ or X-.

Lemma 5.5. Suppose v is a tunneling map such that e = v],, is the boundary value of

a Jholomorphic map it into X+ or X- and suppose that the domain fold a is smooth.

Then up (iii and npdv are smooth and have zeros of at most finite order.
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Proof. Recall from Section 2.4 that there exists a smooth J-invariant extension of F

to a neighborhood of the fold Z in X, also denoted by F. u is smooth on the interior

of its domain by elliptic regularity and the same is true for v by Theorem C.12. We

restrict u to a domain such that u‘F is well-defined and fix totally real boundary

conditions on the newly acquired boundary component of the domain of u.

Consider the operator D: operating on sections of v‘F and the corresponding

operator D5 operating on sections of u‘F obtained by linearizing the operator ii” at

u.

The boundary value problem given by the diagonal in w 69 W is elliptic and

therefore we may employ Theorem 19.1 and 20.8 of [BBW93] in conjunction with

Corollary C.10 to conclude that we and npdv are smooth and either vanish identi-

cally (the possibility of which we excluded in Definition 5.3) or have zeros of at most

finite order. E]

Remark 5.6. The gauge group g from Definition 4.2 acts on the space of tunneling

maps by precomposition. Recall that S C 21, so if d1 : 21 —+ 21 is a diffeomorphism

with ¢1(pk) = pk, then this preserves the H-holomorphic map equation.

Also note that the asymptotic energy is invariant under diffeomorphisms of the

domain, so the action of g preserves Wék’p (S, Z).

Let ’R be the set of closed characteristics, i.e. the set of embedded circles Y C Z

with TY = L along 1". Each Y E R has a minimal period Ty:

Ty =7i,1;[,{T|w(y) = y. W 6 Y}.

where apt is the time-t flow of the characteristic vector field R. Note that the minimal

period is always positive by definition, in the S1-invariant case we have that ’R =

l-I{fibers of 7w}, parametrized by p E V and Ty = 1 for all Y E ’R.
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5.2 Conjugate Tunneling Maps

Tunneling maps connect boundary values of J-holomorphic maps in Xi to closed

characteristics. To get a scattering function of incoming boundary values from a map

u+ into X+ to outgoing boundary values of a map u- into X-, we need to define

a relation between tunneling maps v+ connecting to u+ and v- connecting to u-.

Intuitively this relation is given by reflection through a “horizontal tunneling map”.

The definitions in this section become a lot clearer in the Sl-invariant case which we

explain in the following section.

Horizontal tunneling maps have the same features as Abbas solutions (cf. [Abb]

and [ACH04]).

Definition 5.7. Let (2h, j, {pk}) be a punctured compact Riemann surface. A hori-

zontal tunneling map is a ”it-holomorphic Vl’ak’p map uh : 2;, —> Z with

1. 7T}? dvh is injective on 2],,

2. all punctures are positive, i.e. the associated asymptotic charges are positive,

3. v converges to the eigenvector corresponding to the lowest eigenvalue of the

asymptotic operator S00 (see [HWZQtia] and [HWZ96b]), and

4. each closed characteristic Y E R either gets wrapped by a puncture or intersects

vh in forward and backward time.

A tunneling map v0 : S —> Z is called a horizontal coverng if it factors as v :-

vh o w, where w : S —9 2;, is holomorphic.

Note that in the S1-invariant case vh is a horizontal tunneling map if and only

if its projection into V extends over the punctures to an embedding. Thus, in this
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case, horizontal tunneling maps are ”It-holomorphic sections of the bundle Z on the

complement of some points. Abbas solutions are generalizations of these sections. On

a contact manifold with Giroux contact form they give ’H-holomorphic parametriza-

tions of a Giroux open book decomposition. The existence of Abbas solution in this

case is shown in [Abb].

Once and for all fix a horizontal tunneling map vh : 2,, —> Z.

For each tunneling map v : S ——> Z and puncture pk E S we fix local conformal

coordinates of, : C -—> S at pk and define the map

v’c : S1 —> Z vk(t) = lim v(s,t)
S—kOO

and the vector

Xv"(t) E 51(ka(0)

_ im 7rfdv(s,t)(3s)

Xvk(t) - 31—)00 [Wpdv(3at)(88)l

 

This is well-defined by Theorem C12 and since zeros of up dv cannot accumulate at

pk. To see this we work locally at a puncture pk. Take a non-trivial holomorphic

section 77 of TS that vanishes at pk and consider X : 7T1? du(n). Then X satisfies

Diet) = v*a(v)T°"(R, dv) (5.23)

Using an isometric embedding of Z into R” we trivialize v‘TZ and since X decays

exponentially we can use a conformal change of coordinates from the half-infinite

cylinder to the punctured disk D and conclude that X is a smooth function from the

punctured disk with all derivatives bounded (using Theorem C.12) and that X(0) = 0.

Therefore we have that in particular X E l/V2’2(D, IRN).

Now suppose the zeros of 7deU accumulate at 0 = pk. Then X has zeros that

accumulate at 0, so it vanishes to infinite order at 0.
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On the other hand note that the coefficients of equation (5.23) are smooth with

all derivatives bounded on D so we may square the equation to conclude that there

exists a constant c > 0 such that

IAX(Z)| S C(|X(2)| + IBIX(Z)| + latX(Z)l

for almost all z = x + iy E ID. But then X vanishes identically by Aronszajn’s

Unique Continuation Theorem ([Aro57]), implying that 71'de vanishes identically,

the possibility of which was excluded in the definition of tunneling maps 5.3.

An alternative argument can be made by suspending v into the complex cylinder

over Z and using the results in [HWZ95].

Definition 5.8 (Conjugate 'Iimneling Maps). A pair of tunneling maps (v+, u_)

is called vh-conjugate or just conjugate if there exists a horizontal covering v0 of vh

such that

vgw = vlw = viw (5.24)

/\|Ta = 0 where A 2 via oj + via oj — 2vaa 0 j, (5.25)

with the finite dimensional constraints that at each puncture pk, 1 S k s K,

vg(0) = v:(t) + vf(t) — 2v§(t) Vt E S1 (5.26)

ng(t) = Xvi“) whenever v§(t) = v'fr(t) (5.27)

X05 (t) = Xvi: (t) whenever v§(t) = v’:(t) (5.28)

and the zero dimensional homological constraint

#((U+I*IFI, (’Uhlslihl) = - #(W—HFI: (tiriltlihll VP 6 H1(3;Z)- (529)

Note that equations (5.26), (5.27) and (5.28) do not depend on the choice of

parametrization o".
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Remark 5.9. We want to comment on the role of the individual equations in the

above definition. Equation (5.24) relates the F-components of the differentials of the

tunneling maps. Remembering that the F-components of tunneling maps are (j, J)-

linear this fixed the F components up to a constant, which is supplied by equations

(5.27) and (5.28).

The 1-form A defined in equation (5.25) is closed since v+, v_ and v0 are H-

holomorphic. Under the simplifying assumption that vftda = vgda, it is also co-

closed. Equation (5.26) implies that A extends over the punctures, so A E HAS, j )

and thus A is determined by its absolute periods. The role of equation (5.29) is to fix

these periods.

Equation (5.26) is a zeroth order constraint that fixed the relation between the

tunneling map along the characteristic foliation.

Moreover note that this data relates the multiplicities mi of vi and mo of v0 at

a puncture p as

d 2: m+ — mo 2 —(m- — mg) (5.30)

so the difference of multiplicities of vi and v0 have opposite sign. The integer d is

called the degree of the conjugate pair of tunneling maps at the puncture.

In the case that the tunneling maps are boundary values for holomorphic maps

into Xi, we have that the degree must be non-zero at at least one puncture on

each connected component of S. Otherwise we have v+ = v- on that component,

contradicting equation (4.20). If d 76 0 at pk we have that the set of t such that

v:(t) = vg(t) is non-empty.

In the S1-invariant case this definition simplifies considerably as we will explain

shortly.



We are now prepared for the main definition.

Definition 5.10 (Folded Diagonal). Fix a horizontal section vh and a folded

. . F

domain in M90,9,mm

Map(o, Z) x Map(o, Z) defined by

with domain fold a. The folded diagonal is the subset in

Ag 2 {(v+|a,v-Ia)](v+,v-) are vh—conjugate}.

This definition might seem somewhat artificial, but this is a natural generalization

of the situation where smooth J-holomorphic maps into a (non-folded) symplectic

manifold intersect a stable hypersurface as we explain in Section E.

Remark 5.11. Note that the folded diagonal is invariant under the action of the

gauge group 9. Indeed, if (v+,v-, j) is a conjugate pair of tunneling maps, and

(151 : 21 —> 21 is a diffeomorphism, then (o'fvir, (b'i'v-, 45‘]j) is also a pair of conjugate

tunneling maps with domain 461.1(3). This concludes the proof of Lemma 4.12.

5.3 The S1-Invariant Case

We will explain Definition 5.8 in the case of S 1-invariant folds as defined in 2.9. This

case is inherently simpler due to its symmetries, and the definition simplifies greatly.

Lemma 5.12. Let v : S —> Z be a tunneling map. Then 7rv v : S ——+ Z extends to a

smooth holomorphic map 7rv v : S —> Z over the puncture.

Proof. By Lemma 2.11 w pulls back from a symplectic form wv on V and there

exists a complex structure jv on V such that the projection Wylp is (J, jv)-linear.

Therefore 7rv v is holomorphic and has finite ivy-energy since v has finite w-energy.

Then the removal of singularity theorem shows that 7w v extends smoothly over the

punctures. C]
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Next we prove some properties about special tunneling maps in the S1-invariant

case.

Suppose v1 and v2 are tunneling maps with 7w v1 = 7rvv2. Then define the

“difference” function

9 = 3 -> 51 = R/Z, v2(Z) = (Z) * ”01(2) = ¢g(z)(v1(2))

where apt is the time-t characteristic flow, i.e.

d

cptzZ—iZ, d—tcptzR.

The derivative of (pt is given by

(got)... : TzZ —) Twi(z)Z

and it satisfies

(got)...R = R and 90:0: 2 a o (99,), = 0

since or is stable. Then

dvz = (floglzrdvl + R ' all]

so

v30: 2 a o d’U2 = a o(<,og),..dv1+ u(R - dg) 2 (yoga) o dv1+ dg = 01 o dv1+ dg = vfoz + dg.

From this we conclude

Lemma 5.13. Let v1 and v2 be maps from S into Z such that there exists a function

g : S —> S1 with v2 = g * v1. Assume v1 is a tunneling map. Then v2 is a tunneling

map if and only if dg is a harmonic I-field.
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Proof. Note that

d(dg) = d(vga — vfa)

d*(dg) = — * d(vga oj — vfaoj).

Thus if v0 is a tunneling map, then the first equation vanishes since v0 and v1 must

have the same projections to the base V, and da pulls back from the base. The second

equation vanishes by the definition of tunneling maps.

Conversely, if dg is a harmonic l-field both equation vanish, showing that d(vga 0

j) = 0. Noting again that the projections of v1 and v2 to V agree, so 5Fv2 = 5Fv1 = 0.

Thus v2 is a tunneling map. [j

Lemma 5.14. Assume the fold is S1-invariant and let v+ and v- be tunneling maps.

Then (v+,v-) are vh-conjugate if and only if there exists a horizontal covering map

v0 of vh, and a harmonic function g : S —> S1 = lR/Z with

vi = (i9) * vo = e.g.). (531)

where (pt is the time-t characteristic flow.

Proof. Suppose (v+, v- are conjugate and let v0 be the associated horizontal covering

map. By Lemma 5.12 we obtain holomorphic maps

”()0 = 7i'v O ’00

17+ : 7fv O 'U+

v- = 7rv o v-

that extend over the punctures. Using equation (5.24) and the fact that the maps

are holomorphic we conclude that they satisfy the pointwise identity

|dvo| = [dial] 2 [dv-I.
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Figure 7: Conjugate Tunneling Maps

Thus there exists an Sl—valued holomorphic functions fi with

dDi = fid’Uo.

But holomorphic functions with image contained in a 1-dimensional submanifold are

necessarily locally constant by the identity theorem, so fi are locally constant.

By equation 5.26 the images of the punctures of 230, 5+ and i}- agree and by

equations (5.27) and (5.27), dvo : dv+ = dv- at the punctures, so fi = 1 since each

connected component of the domain contains at least one puncture. Thus '50 2 27+ 2:

A!

’U_.

Then we may define the functions

gzt I S -—) S1

vi = gi * v0.

Note that g is harmonic by Lemma 5.13. Equation (5.25) guarantees that dg+ +dg_ =

0 on j - To so dg+ + dg- is determined by its absolute period integrals by Theorem
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D.2.

In this setting equation (5.29) simplifies to

#((9+).(F),0) = -#((g—):(1"),0)

or equivalently that all period integrals of dg+ + dg- vanish, so we conclude that

dg+ + dg- = 0. Thus g+ + g- is constant and by equation (5.26) that constant must

be zero and 9+ = — + g-, recovering equation (5.31).

Conversely it is straightforward to check that in case there exist harmonic func-

tions gi and horizontal covering v0 satisfying equation (5.31), then vi = 93: *v0 satisfy

the requirements of Definition 5.8. E]

In this case, given a tunneling map v+ we can use the S 1 action to show that there

always exists a conjugate tunneling map v-.

Lemma 5.15. For every tunneling map v+ : S --) Z there exists a unique conjugate

tunneling map v- : S —> Z.

Proof. Since 7w v), is an embedding, there exists a unique map w : S —> 2,, such that

7rv(v,, o w) = 7rv v+. Set v0 = vh o w, so 7n» v+ 2 WV vo. Therefore there exists a

function

g:S—>S1=lR/Z, v+=g*vo=cpgov0

where wt is the time-t characteristic flow.

By Lemma 5.13 g is harmonic and we define

v- = (—g) * v0.



6 Properties of the Folded Diagonal

In this section we study the properties of the folded diagonal by looking at its de-

formation space. In short, we find that the deformations of the folded diagonal at a

pair of conjugate tunneling maps restricted to 0 (6+, 23-) is given by the graph of a

function from sections of v;TZ to sections of viTZ, which we will describe.

For most of this section we will restrict the discussion to Sl-invariant folds.

6.1 Properties of Tunneling Maps

In this section we study the space of conjugate tunneling maps and the deformations

of the folded diagonal.

We start with a remark about the relation between infinitesimal gauge transforma-

tions that leave the structures on 20 invariant to deformations of complex structure

on S. To this end, let h be a deformation of complex structure jl on S. Any such

deformation can be achieved by an infinitesimal gauge transformation 77 E F(T21) of

21 with Lnjl = h. This infinitesimal gauge transformation induces an infinitesimal

deformation of n, w and g as directed by the action of the gauge group, but it does not

change the structure To, jg on 20. Thus when looking for tunneling maps matching

given at, we may vary the complex structure on the domain of the tunneling maps

S C 21 in arbitrary ways, while ui remain solutions. We will use this infinitesimal

gauge action repeatedly during this sections.

Roughly Speaking, the system of equations for tunneling maps are made up of a

1-dimensional equation of second order and a 2-dimensional equation of first order.

Thus we can expect to solve the equations after imposing 2—dimensional boundary

conditions, one dimension for the second order equation and half a dimension for



each dimension of the first order equation. We will show below that we can find

deformations with arbitrary (3—dimensional) boundary conditions. To achieve this,

we need to make use of the gauge action.

Lemma 6.1. The linearizations of equations (5.21) and (5.22) are

1 1 .

Dag-)(é, h) = V0’1(7rp€) + 5J7”: dvh + Erp(V5J)dv o] = 0 E QO’I(F)(6.32)

ny,,(g, h) = d [d(a(g)) 0 j + v*(i§da) 0 j + v‘oz o h] = 0 6 522(5) (6.33)

where and V is the Levi-Civita connection as defined in Section B and

01 1 -
V’ = -2-{V+JV0j}.

Proof. Let u; be a family of tunneling maps with complex structures jt, 5 = filbovt

and h = Edilt=oj' Then

(1 1

D61)“, h) = — 'WF {(11}; + Jdvtjt}

. dt ,Z0 2

I l 1

= in): {thvt + JVt(dvt) o j},=0 + §np(V§J)dv Oj + 5J7”? dv h

I I 1

: g7”: {VE-l- JVSOj} + 57TF(V€J)dUOj + '2‘J7Tpd’Uh

I 1

= V0’1(7TF€) + 57TF(VEJ)dU Oj + EJWF d?) h.

For the second equation we compute

% d(ozo o i.) = (Mia) oi + o*o o h = d<o<o) oi + outdo) oi + o'o o h.
t=0

CI

Note J is integrable in the S1-invariant case by Lemma B4. In this case the system

of PDEs (6.32) and (6.33) is upper triangular. We will assume for the remainder of

this section that this is the case.



We set

D = DF EB DL.

We will refer to D as the linearized operator.

Infinitesimal deformations of tunneling maps with given boundary conditions are

not unique. Even when restricting attention to deformations perpendicular to the

gauge action this may not be the case.

If v is a tunneling map in the S1-invariant case, then the space of sections of v‘F

plays a special role as we explain next.

Theorem 6.2. Given X E F(v*F) and a function C : o —> IR, there exists an in-

finitesimal gauge transformation 77 E F(T21) such that DF(X, h) : 0, where h 2 £11j

is uniquely determined on S. Moreover there is and a unique real-valued function C

on S agreeing with C on 0 such that DL(X + C - R, h) = 0.

Proof. Set 23 = 7n» v and let {qk} C S be the points where dv is not an immersion.

These points are isolated and the zeros are of finite order since it is holomorphic and

by Lemma 5.5.

At each qk fix local conformal coordinates z and let 5 be a holomorphic vector

field on S \ {qk} with poles at qk of the same order m)c as the zeros of d(7rv v) such that

X—7rp du(fi) E 0(lzlmk) at qk. Then there exists an infinitesimal gauge transformation

77 e I“(TZ)1) with

77F 6171(0) = X — 7TF (10(5)-

Since E was chosen holomorphic we have that ng == 0, so with the deformation of

complex structure h = £,,j induced by r) we have 571+ %j h = 0 on S.
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Then

DF(X. h) -- DFerF doe + is). h) = 0. (6.34)

To see that his is the unique consider deformation of complex structure h’ such

that DF(X,h’) = 0. Then equation (6.32) shows that the difference h — h’ of the

deformations of complex structure satisfies 7r): du(h — h’) = 0 on S, so h = h’.

Now let C be the unique real-valued function on S solving the Poisson equation

with Dirichlet boundary conditions

* AC 2 d(v*(ixda) + via 0 h) (6.35)

A

C.Clo

Then

1?le + c - R. h) = d(dc oi) + mama) +M o h

z _ . AC + d(wuxdo) + o*o o h) = 0.

El

To make a statement about the uniqueness of deformations of tunneling maps we

need the following

Definition 6.3. For a tunneling map v, the space

F(v*F,0) = {n E F(v*F)|va = 0}

is called the space of twisted gauge. transformations.

Theorem 6.2 immediately yields that the twisted gauge transformations are iso-

morphic to the kernel of the linearized operator with fixed boundary values.



Corollary 6.4. With the notation of the above lemma, the map

\II : I‘(v*F,0) —> ker(D(,,,J-)) fl (F(v*TZ,0) x JJ—(S))

is an isomorphism.

Proof. Theorem 6.2 shows that the map is well-defined and injective. To see that \P

is onto, suppose that D(,,,,-)(€, h) = 0. Then set X 2 MC and let h’ be the unique

deformation of complex structure and C’ the unique function from Theorem 6.2 such

that

D(v,J-)(X + C - R, h) = 0

(X + C ' Rllos = 0-

By the uniqueness part of Theorem 6.2 he conclude that h’ = h and x-l-C - R = C. E]

In particular this shows that we can always arrange for infinitesimal deformations

to vanish at the punctures in the F-directions. This constraint fixes the closed char-

acteristics that tunneling maps wrap. We will impose this constraint when we fix

relative homology classes that maps represent.

We also conclude that any given deformation of the boundary of a tunneling map

extends to a deformation of the tunneling map.

Corollary 6.5 Leté be a section of v*TZ over 0. Then there exists an extension C

off to S and a deformation h of complex structurej such that (C, h) is in the kernel

of the linearization ij). Moreover, (C, h) is unique on S up to F(v*F,O).

Proof. The existence follows from Theorem 6.2 and the uniqueness is a direct conse-

quence of Corollary 6.4. C]

C
H

C
I
!



Note that (wig)... : v;F —-> vaF gives an isomorphism of v‘iF = ng. Moreover,

since the horizontal section v), is an immersion, we have that for each X E ng there

exists a unique section C E ng with X + C tangent to the image of vh. In particular

this shows that C is given by C :2 v50 0 (7r): dvo)“1(X) and is well-defined.

Lemma 6.6. Let (v+,v_) be conjugate tunneling maps and (C+,C_,h) a conjugate

deformation of conjugate tunneling maps. Then the linearizations of equation 5.31

a7'8

(999)*(7IF 5+) = (99—g)*(7rF {—l on S (636)

0(6+) -C = —(0(€—) - C), (6-37)

where C : S —) IR is the unique function such that (999)an C+ + C - R is tangent to the

image of vh.

Proof. L is vertical for 7w, giving (6.36) and equation (6.37) follows from the condition

that v0 has to cover vh. Cl

Twisted gauge transformations don’t only generate deformations of tunneling

maps, but they moreover generate conjugate deformations of conjugate tunneling

maps as we Show next.

Lemma 6.7. Let (v+,v-) be a conjugate pair of tunneling maps. Then the twisted

vector fields F(v5F, 0) give conjugate deformations that vanish on a.

Proof. Given X E I‘(v5F,0), there exists by Corollary 6.4 unique 5: E F(v;TZ,0)

and deformation h of complex structure that give deformations of the tunneling maps

vi with up 54 = (Wighx. This immediately gives equation (6.36). Now let C E ng

be the unique section such that X + C is tangent to the image of v,,. Then

046+) = 005—) = 01K) = 0 0n 0,



so (5+,C-) also satisfy equation (6.37) and vanish on a. Cl

In particular this shows that although for a fixed boundary loop v+|0 there might

be a family of tunneling maps vi with the boundary conditions vi], = v+|a, and

therefore a family of conjugate tunneling maps (vi, v‘_), the conjugate tunneling maps

satisfy v’_|a = v’fla.

  
Figure 8: Conjugate deformations restricted to the boundary are unique.

The next theorem characterizes deformations of the folded diagonal.

Theorem 6.8. Let (v+,v-) be a pair of conjugate tunneling maps. Then for any

section Q of v;TZ[a there exists a unique section C- of viTZIU such that the pair

(C+,C_) is the restriction of a conjugate deformation of conjugate tunneling maps.

Proof. Let 220 be the horizontal tunneling map and g be the harmonic function sat-

isfying v+ = g * v0. Set X = (go-g),7rFC+ and let C be the unique section such that

X +C is tangent to the image of vh.

Define

5. = (W—zgloWF5+ + (2o(é) — ole» .12. (6.38)

o
r

\
J



By Corollary 6.5 there exist extensions Ci of Ci to all of S that are deformations

of the tunneling maps vi. These are unique up to I‘(v5F,0), so we may assume

without loss of generality that (w-g),an+ = (pg).npf- so (C+,C_) are conjugate

deformations.

Moreover, nFC- is unique since C- is unique up to F(v:F, 0) by Corollary 6.5 and

u(C-) is uniquely defined by the conjugation condition (6.37), so C: is the unique

section with the desired properties. [3

6.2 Deformations of the Folded Diagonal

Using the results of the previous section we describe the deformations of the folded

diagonal. We show that these are given by the graph of a bundle map.

Definition 6.9. Given conjugate tunneling maps (v+,v-), let dAZ be the space of

deformations of conjugate tunneling maps, restricted to o and set a, = vila. Thus

dAZ = «or)e mmwaso:TZ)Mae 6 I‘(v:.TZ) h e T-SJ()with at. = a

satisfying equations D(,,i,j)(Ci, h) = 0, (6.36) and (6137).}

By the Definition 4.10 of folded maps we identify 0 = 00 = 01 and therefore, with

the convention that ’lli = uila we may identify {QTZ with ulTZ, when (u+,u-)

is a folded map with tunneling maps (v+,v-). Therefore we may also view space of

deformations of folded diagonal dAZ as a subset of

E(121TZ EB uiTZ) C F(u;TX EB uZTX).

Note that if (C4,, £1) E dAz, and n E Tdiiff(21,o) is an infinitesimal gauge transfor-

mation that is tangent to the domain fold a, then also (C+ + du+(n), C- + du-(n)) E

dAZ. This defines an action

TldDiff(2,a) x (1.32 —> (133. (6.39)



It will prove convenient to extend the definition of deformations of folded diagonal

to sections of u1TX EB uiTX in such a way that the action (6.39) extends to all

infinitesimal gauge transformations TIdDiff(2) of the map domain, including the ones

that move the fold. This will greatly simplify taking the quotient by the gauge action

later. The following definitions and lemmas facilitate this.

Definition 6.10. Let (2,j, o, u+, u-) be a folded holomorphic map. Recall the split-

ting TZX = EQBF = KEELEBF from equations (2.7) and (2.9). Define the subspaces

Fi = {1ch ugTXla

 0'

Let

AF : F+ —') F_

AB 1 E+ —) E-

be the (J+, J-)-linear bundle maps defined by

AF = (”qu—lolflquU—l

AB = (”Eda—)°(WEdu+)—l

Note that AF is well-defined even if it): du+ is not injective, since the locations and

orders of the zeros of Tl'F dv+ and 7Tp dv_ agree and 7f}? dui = 7r): dvi on 0. Similarly

AB is well defined since it); du+ and TIE du- have the same order of vanishing on the

fold, namely the order of vanishing of r.

Also define the “correction map”

AC I E+ EB F+ —) E_

AC({E 695’?) = 1150((7rpdu+)‘1(CF) — (nEdu+)—1(CE)) -R
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To see that AC is well-defined note that nLdeo(7rp du+)‘~1 is the unique vector C E ng

such that X + C is tangent to the image of vh, where X = (7rpdv0)(7rpdv+)‘1 in ng.

-As we will see, Ac turns out to have no significant impact on the results of this

section, but merely makes the computations more cumbersome.

Definition 6.11. Let (2,0, u+, u_) be a folded map and let (S,j) be a Riemann sur-

face with boundary BS 2 0. Using the splitting (2.7) define the bundle isomorphism

B : iiiTXIcI —-> uiTXlo

BaFesE) = AutheAEkE)+2A.(€E+£F). (6.40)

Lemma 6.12. The deformations of the folded diagonal are given by the graph of the

operator B defined in (6.40), restricted to u1TZ:

dAZ = graph(B]u;TZ)

Proof. Recall that uila = vile. and both dui and 7f]? dvi are (j, Ji)-linear. Therefore

1r): dui 2 up dvi over 0.

Writing C 2 CF EB CL E v’TZ = v‘F EB v*L and setting

”F = (”F du+)—I€F

775 = (”E (WU—16L,

which are defined almost everywhere, we note that 771.; E To and therefore

WE (Willie) = UIOIUE)R = v;a(77E)R~
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Then we find

3(5) = AF€F EB ABEL + 2Ac€

= 7fF (ill—(77F) 69 7TB Chi-(77E) + 2950(77F - 77E)R

= up dv—(np) €19 via(ve)R + 2v30(np - TielR

= 7rF (iv—(7719)EB —vla("iE)R + 2050(77FIR

= irp dv-(np) 63 —CL + 2vf,‘a(np)R,

which is defined everywhere and agrees with equation (6.38). CI

Using B we extend the definition of the folded diagonal to a subspace F(u;TX EB

iiiTX) in the obvious way:

Definition 6.13. The space of extended deformations dAX of the folded diagonal is

dAX = graph(B).

Lemma 6.14. The space of extended deformations dAX of the folded diagonal is

invariant under the full infinitesimal gauge group of 21 (not just the subgroup that

preserves o as a set).

Proof. Let 77 be a section of T(,2 and note that

Add-144.00) = v3007 - n) - R = 0 (6.41)

and therefore

B(du+(r))) = AEIWE du+(n)) 63 AF(7TF d'lt+(77)) “:- 7TE Chi—(77) 39 M“ dU—(li) = dU—(UI-

Cl
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7 The Moduli Space of Folded Holomorphic Maps

Now we come to the result that justifies the definitions and lemmas pertaining to

tunneling maps. We show that they give elliptic boundary values.

Let (u+,u_, j) be a folded holomorphic map with domain fold o C 2. Set Hi 2

UlTX and Hi» = Hila-

Theorem 7.1. Assume that the map (u+,u-) is transverse to the fold, so a is a

manifold. Then the map

R : PI+ EB ff- ——) B-

§+€B€— H {—‘B(€+)

poses elliptic boundary conditions for the folded holomorphic map (u+, u-,j), i.e. R

restricted to the range of the principle symbol p of the Caldero’n projector P for the

complexified Cauchy-Riemann operator Du+ x Du_ on 11+ (8) C x H- <81 C

erange(p) -‘) H— ® C

is an isomorphism.

Proof. Let RC 2 Bi (8) C denote the complexification of Bi and let H’i (H1) denote

the (i, Ji)-linear (antilinear) subspace of RE. Recall that o 2 82+ 2 —6‘2_ inherits

the orientation from 2+. Then

p : HEEBBSEHQEBBZ

1 1

p(v, w) = §(Id — iJ+) {D §(Id + iJ-)

is the projection onto the (i, J+ 69 —J-) linear subspace.
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Let v E H; then AE(7rE v) +Ap(7rp v) C HZ since AE and AF are (J+, J-)-linear.

We write the complexified map

A0 = A; 39 AZ

where A’c and A]: are the projections of AC into H’_ and HK respectively, i.e.

A'.(o) = gm. 4.2-1-4.} (o)

43(6) = %{A, — n-4,} (v).

In particular

2A’C’(v) =2 {AC — iJ-AC} (v)

= {ACI’UI — J—Ac(J+”U)}

= ”59 ((WF (WU—100761”) — (WE dud—«@610» '3

““501 ((WF du+)—1(J+77de) — (WE d'U-+)_1(J+7TFd’UI) 'ar

2: vgoi ((7rp du+)"1(7rpdv) — (nE du+)—l(7rEdv)) -R

‘95“ of (We du+)—1(7TFdU) — (7TB dU+)_1(7Tde)) '3r-

Now let w E H’_ and suppose that w — B(v) = 0. Then

w — 2A’c(v) = 0

AF(7TF v) + AE(7rE v) + 2A’C'(v) = 0.

Since Ac has image in E- and AF is an isomorphism we conclude that it): v = 0.

Then with n _—_ (7rE du+)‘17rEv and 77 = 771+j'172, 711,2 E To

AE(7rE v) + 2A:.’(7rE v) = 7rE du-(n) — 1.130(n)R + vgoi(jn)0r

= uia(n)R + 1410008. - 1160(U)R + v6€¥(in)<9r

1‘ ((U:a(n) —- 1250(0)) R — (11:0(jn) — 160017)) 8,.
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which vanishes if and only if n = 0 or

u‘_a — vaa = 0.

Butfor09éuETo

coo) — oaoa) = coo) — $6.46 + cow)

1 . .

= 5(u_a(u)-u+a(u))

which is nonzero since the map is transverse to the fold by assumption and by equation

(4.20).

This shows that 7) = 0 and therefore ngdv = 0. Thus v = 0 and consequently also

w = 0, so we showed that

R(v C w) = w C —B(v)

is an isomorphism from B; C B: to RS Cl

Remark 7.2. Note that since B is a vector bundle map, the condition that graph(B)

gives elliptic boundary conditions is equivalent to asking that graph(B) is totally real

in

(19,. ea BL, J+ ea —J_).

We have to use the complex structure —J- on B- since 0 is oriented as the boundary

of 2+, so its orientation is opposite from that of 82-.

Now standard theory shows that the linearized operator is Fredholm. For this

next theorem we fix the complex structure on the domain 2 = 20.

Theorem 7.3. For any 3 > %, the Operator

DSB : (H"(2+,H+) x H‘(2-,H-)) ——>

H3“‘(2+,A°"T*2+) x Hs-l(>:_,.s\°vlr*>:_) x Hs‘i(o.PI-)
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given by

(Sing-l H (Du+€+aDu_€—1R(p+(€+)1p—(€-)))

is Fredholm with real Fredholm index (in the case that 7fF duIU 7f 0)

index(DsB) = u(u+, K+) + u(u-, K-) + 2X(2) (7.42)

where pi : H3(2i, Hi) —) Hs‘i(o, Hi) the restriction map and Ki 2 JLCdui(To)

and u is the relative Maslov index.

Moreover the kernel of D33 is independent of choice ofs > % and consists only of

smooth solutions.

Proof. First note that the linearized Cauchy-Riemann operator Dui on Hi is a gen-

eralized Dirac operator. Then it follows directly from Theorem 19.1 and 20.8 of

[BBW93] and Theorem 7.1 above that the operator DfB is Fredholm with kernel in-

dependent of s > % consisting only of smooth solutions.

To see the index formula, we first homotope B 2 BO to the (J+, J-)-Iinear bundle

isomorphism B1 via

Bt(€) = 141307136) 63 AFIWFE) + tAc(€)-

We need to check that graph(B)) gives elliptic boundary values so that we obtain a

corresponding family of Fredholm operators which then will all have the same index.

This comes down to repeating the arguments in the proof of Theorem 7.1 and we

need to show that the quantity

uia — tvga

 

  



does not vanish. But for O 74 n E To

uia(u)-tv60(u) = u:a<u)—§(u:a<m+u:a(u))

2 - t ,, t ,
 

which again does not vanish by equation (4.20) if the map (u+, u_) is transverse to

the fold.

Now

Bl(du+(TU)) = Bo(du+(T0)) Z du-(To)

since Ac vanishes on the push-forward of vector fields on the domain as we saw in

equation (6.41). Also for C E JL we have that

31(0 = AB“) C JL'

The last step is to connect the boundary condition graph(Bl) to K+, K_) so that

the associated operators remain Fredholm. Note that if C : C -—> (C is complex linear,

then

At = {(u + (1 — t)iv,C[(1 — t —— it)((1 —— t)u + iv)])|u,v 6 IR}

is a homotopy of elliptic boundary conditions, or equivalently totally real subspaces,

in C with

A0 = graph(C)

A1 = (R,C(R)).

Now choose an appropriate basis of E+ and T+ : du+(TaE) and apply the above

homotopy on E, and T+.
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Putting these homotopies together we connected the Fredholm operator with

boundary values graph(B) with the Fredholm operator with boundary values (K+, K-),

proving the statement about the index. [:1

Note that the above argument shows that the totally real subbundles Ki of Hi

may be replaced by (K+, K-) = (K+, B¢(K-)) where K+ is a totally real subbundle

of 117+ and B, is any member of the above family of bundle homomorphisms.

To visualize the construction and the results up to here consider the following.

As seen in Section 3, the diagonal in Map(o, Z) x Map(o, Z) does not yield elliptic

boundary conditions. In the language of [Nic97] we may say that given holomorphic

maps (u+,u-) (with “us-Ia : u-lo), the subspace

{(é+,é_) e L2(a,u;TX) x L2(o,u‘_TX)|3€i e ker(Dui), g], :51}

is not a Fredholm pair. But the folded diagonal gives elliptic boundary conditions,

or given a folded holomorphic map (11+, u_) the subspace

{(B(é+),é_) <-: L2(o,u:TX) >< ma, amen e keno...» at = .5.}

is a Fredholm pair.

L’~’(a.u;TZX)

  

      
 

 

B: L2(o, (link?) —. 1.2(a,-u:TZX)

Figure 9: The map B induces a Fredholm pair.
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Remark 7.4. We can generalize Theorem 7.3 by incorporating variations of the

folded domain. Here are some brief comments on how this can be done.

The first step is allowing variations in jo and To, modulo Diff+(X30). Note that

To is determined by the map by equation 4.17. Since the folded diagonal is invariant

under the gauge action of Diff+(20), Theorem 7.3 holds in this case with the index

raised by the dimension of Teichmiiller space —3x(20).

Next consider variations in T1, jl, 21) and g, modulo the action of the remaining

factors of the gauge group Diff+(21) x Map(21, R). First note that for fixed domain

location of the domain fold 01, the space of holomorphic diffeomorphisms v9“ : E; —>

21+ sending 00 to 01 (with jo fixed and jl varying), has dimension 2M2?) + (1 —

3)x(2f) = 0. Thus variations in i1} and jl on 23f“ do not change the dimension count.

Finally, note that g is determined by choice of T1 and v by equation (4.12), and

that the deformations of complex structure jl on S are fixed by the tunneling map

as explained in Theorem 6.2. Thus the freedom left in choosing r1, 3'1, 10, g is exactly

given by the remaining part Diff+(21) x Map(21, R) of the gauge group 9. In con-

clusion, when varying the folded domain and taking the quotient by the gauge group,

the index is

”(74+) K+l + #(u—a K—) + (2 _ 3)x(2). (7-43)

7.1 Homological Data

A folded map (11+, u_) together with a pair of conjugate tunneling maps (v+, v-) gives

rise to two relative homology classes

Ai e H2(Xi,72;Z)

Ad: 2 (Ui, vi)*[:il'
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Since the map gluing the tunneling domain S to 2+ (23-) is orientation preserving

(reversing), and the w-energies of the tunneling maps agree by Definition (5.8), we

obtain the energy identities

Ew(u+) + Ew(v+) = w - A+ = const

Ew(u_) — Ew(v-) = w - A- = const

Ew(u+) + Ew(u_) = w - (A+ + A-) = const.

Therefore the space of folded holomorphic maps breaks up into components labeled

by the relative homology classes Ai, and the sum of the w-energies of the maps u+

and u_ is constant in families.

Remark 7.5. In case of Sl-invariant structures we have a natural isomorphism

H2(Xi, R; Z) = mm, Z) x V, where xi is the symplectic cut of Xi.

7.2 Transversality

Here we show that the cokernel of the linearized operator at a simple map (21+, u_, j)

vanishes for a generic J E .7(X, w, a). To see this we recall standard definitions (see

e.g. [MSO4]) that have straightforward generalizations to our case.

Definition 7.6. A folded holomorphic map (u+, u_) with folded domain

(ZoijoiToa 21,11,71)

is called multiply covered if there exist a folded holomorphic map (u'w u’_) with folded

domain

I ,-I I I *I I

(209.107 TO, 2313.717 7.1)
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and holomorphic branched coverings

1/1i 3 (Suit) "‘t (Eiaji) 2.21,?

WW) = Ti

with

(U+, u—) = (vi. 0 we, U— 0 we) deem) > 1-

A map (u+,u-) is called simple if it is not multiply covered.

Definition 7.7. Given a folded symplectic manifold (X,w) with stable 1-form a on

Z, relative homology classes Ai E H2(Xi,’R;Z) and an almost complex structure

J E J(X,w,a), let

Mgo,91,no.n1((Xa w: (I), A-i-a A—a 27 J)

be the moduli space of simple folded J-holomorphic maps with domain in Maghnom

so that ui L1,, vi represent Ai and that are transverse to the fold, modulo gauge 9.

Denote the subset of simple maps by

M*((X,w,a),A+,A_,E, .1).

Definition 7.8. Let (u+, u-,j) be a folded holomorphic map. A point p E Z is called

an injective point if

dun?) 79 0 u“(ur(p)) = {19}-

Let

N1<u+, 2'-) = {p e Sump) = 0 or u~‘(u<p)> \ {p} s 0}

be the complement of the set of injective points.
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Lemma 7.9. Let (u+, u_,j) be a simple map, and assume that uila are embeddings.

Then the set NI(u+,u-) of non-injective points is at most countable and can only

accumulate at the critical points of (u+, u_).

Proof. This proof follows exactly the lines of the proof of the corresponding result in

the standard theory (see e.g. Proposition 2.5.1 from [MSO4]. CI

Lemma 7.10. There exists a set Jreg(X,w, a) C J(X,w, a) of second category such

that if (u+,u-,j) is a simple folded holomorphic map then the cokernel of the lin-

earized operator DB vanishes.

Proof. First note that if (u+, u_, j) is simple there exist an neighborhood U of Z such

that T = u‘1(X \U) is an open non-empty subset of 23. By Lemma 7.9 there exits

an open non-empty subset T’ of T consisting only of non-injective points.

Now standard results (see e.g. Theorem 3.1.5 of [MSO4]) show that it is enough

to vary the almost complex structure in the immediate vicinity of u(p) for some

(arbitrary) p E T' to achieve transversality of DB. Since u(p) 9! U by construction,

we may vary J in such a way that it remains unchanged in U, so the resulting almost

complex structure is still in $69(X, w, a). C]

We immediately obtain the following

Theorem 7.11. If J e .7...,(X.w, a) then the space

M*((X,w,a),A+,A_, E, J)

is a smooth manifold of the expected dimension.



8 Compactness — First Considerations

We want to show that the moduli space of folded holomorphic maps modulo diffeo-

morphisms is compact. The key issue is to understand the compactness properties of

tunneling maps.

8.1 Energy Estimates

We have seen that the total w-energy of a folded holomorphic map (u+, u_, j) is a

topological invariant. But the folded symplectic form to degenerates along the fold,

so the w energy density e(ui) 2 gain) cannot be used to estimate the area with

respect to a non-degenerate metric near the fold. But we can still use the w-energy

to estimate how much area can accumulate near the fold.

First we state the standard monotonicity lemma for pseudo-holomorphic curves

in symplectic manifolds. Proofs are given in [PW93] or [Tau98].

Lemma 8.1 (Monotonicity). Let X be a smooth 4-manifold with symplectic form

w and almost complex structure J and compatible Riemannian metric 9. Let E be a

positive number and K C X a compact set. Then there exists a constant c = C(E, K)

with the following significance. Let u be a finite energy pseudo-holomorphic map with

image C = image(u) and wa g E. Suppose that x E K H C and for r > 0 let

B(x, r) C X denote the g-ball of radius r with center x. Then

c‘lr2 S / w 3 cr2 (8.44)

CflB(r,x)

if r g c”.

We cannot apply this result in a neighborhood of the fold, but a similar result still

holds true for folded holomorphic curves near the fold of a folded symplectic manifold.
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By equation (2.3)

w 2 Log + d(r2a)

in a neighborhood U = {—5, e] x Z of the fold Z in X. Here big is a (non-degenerate)

symplectic form on an extension of F to U. Therefore the w-energy of the map u

can be used to estimate the F-components of du. But this is not the case in the E

components of du, since to degenerates there. We focus on estimating the energy on

the “+” side of the fold, the “—” side is completely analogous.

Let )3 be a Riemann surface with boundary BE and let u+ : Z —> X+ be a

holomorphic map sending 82 into Z and denote its image by C = u(Z). Let ,8 :

[0,00) ——> [0, 1] be a cutoff function with 5(x) = 1 if x g 1, [3(1) 2 0 if x 2 2 and

0 S —B' < 2. Then define

E(s) = /C)3(r/s)d(r2(1) and

A(s) = Lfl(r/.s)d(ra).

Then E(3) gives a bound on the symplectic E-energy in a neighborhood of size 3 of

the fold and A(s) bounds the E—area. These two are easily related by

A(s) s fee/smear)
C 3

:— i/CMr/s)d(rza) — ifi,8(r/s)rdr/\a)

(8.45)
1 20

s g [C rev/ewe >

lE(s)

since dr /\ a is positive on the image of a holomorphic map near Z.

The following Lemma employs standard energy estimates (see e.g. [Tau98]) to

bound the area that can accumulate near the fold.
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Lemma 8.2. Let C be the image of a finite w-energy folded holomorphic map. Then

the function E(s) is differentiable on (O,r0/2) there exists a constant c independent

ofC and s such that

E(s) _<_ cs2 (8.46)

A(s) 3 cs. (8.47)

Proof. Set 77 = 1 — 6. Then for 3 fixed, the function

E(et) = Lemme/3pm)

is decreasing in t with

{11356, t) = E(s) = L; ee/ewcrze)

The limit is uniform in 3 since for given 5 > 0 there exists t5 such that for all t1, t2 3 t£5

and for all s we have

|E(8,t1) - E(8,t2)| < 8,

since C has finite w-energy. Furthermore E(s, t) is continuous in s and therefore E(s)

is also continuous (as it is the uniform limit of E(s, t)).

Similarly we have that E(s) is continuously differentiable with

E'(e) = 1/0 Eerie/sneeze)
S 8

Here the right hand side is bounded by 2/sE(2s).



We can now derive a differential inequality for E (s, t) as follows.

E(et) = Ln<r/t)e<r/e)d<r2e>

= —/ n(r/t)d,B(r/s) /\r2a — [C fi(r/s)dn(r/t) /\ r20

0

S L:(—fl')(r/s))rdrAa— /C)3(r/s): '—(r/t))rdr/\)3 a

: §E'(s—-) 1/:(—()3'(r/s))r2da—j(60/3);(—,l3'(r/t))rdrAa.

8

5E'(s) —/Cfi(r/s): —8’((r/t))rdr/\oz|
/
\

where we used that (—,,3’) Z 0 and do > 0 on C since u was holomorphic. Also, as

t —> 0 the last term vanishes, since

1 r , 1 ,

5/fi(r/s)—(—,B(r/t))rdr/\a g -/(—B(r/t))w g [B(r/2t)(1—B(2r/t)w.

C t 2 C C

Therefore

3 I

Integrating this gives (8.46) with c = E(so) / sf), so = r0/2 independent of s and C.

Now (8.47) follows from equations (8.46) and (8.45). E]

9 Examples of Folded Holomorphic Maps

We give examples of folded holomorphic maps in two special cases.

9.1 Folded Holomorphic Maps into Folded E(1)

We come back to the example of E(1) from Section 3 and show that Definitions 4.11

and 3.4 coincide in this case.



 

As horizontal section we choose

vhzT—>Z=SIXT wi—>(1,w).

Then equation 5.31 gives that incoming boundary conditions are scattered to outgoing

boundary conditions by the map

\PlexTaSle (z,w)i—>((z),w),

in the case that there exists a tunneling map capping off that boundary condition.

This reproduces Definition 3.4 and we just need to show that tunneling maps exist.

Given a folded holomorphic map u : Z3 i——> EF (1) in the sense of Definition 3.4 fix

the folded domain 20 = >31 = E and set S = X_. Let S’ denote the components of S

that are mapped entirely into 0 x T = T and set S = S \ u“1(0 x T).

Let 7r : D x T +—+ S1 x T be the radial projection.

Define

vizS’USHZlexR

F
A

H
v

I

{flOu-(IL‘) xES

zo x u_(x) x E S'

v+(x) : w o 1)-

Then (v+, v-) are conjugate tunneling maps with the desired boundary conditions.

The different choices of horizontal tunneling maps correspond to choosing a dif-

ferent gluing map LF by composing with a rotation of the S 1.
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9.2 Folded Holomorphic Rational Curves in S4

We give examples of folded holomorphic curves by utilizing the symmetries of the

folded symplectic and complex structure on S4 defined in Section 3. Essentially these

curves come from pseudo-holomorphic curves in P2.

As shown in [HWZOB], the pseudo-holomorphic cylinder over S3 with its standard

lR-invariant structure is biholomorphic to (C2 \ {0} via

(I) : IR x S3 —-) C2 \ {0}, (t, z) +—> egtz.

For the rest of this section we fix homogeneous coordinates [x : y : 2] on P2 and a

corresponding embedding (C2 C ll”, (2, u) »—+ [x : w : 1], whose complement is denoted

by P330. Using this we can view finite energy pseudo-holomorphic maps in R x S3 as

maps in 11”. Conversely, pseudo-holomorphic maps in P2 that have no components

that lie entirely in P330 U {0} can be viewed as (punctured) pseudo-holomorphic maps

into IR X S3 by restriction. A straightforward calculation reveals that punctured finite

energy (as defined in [HWZOBD pseudo-holomorphic maps into IR x S3 extend over

the punctures to pseudo-holomorphic maps into P2, and that conversely maps into

le S3 that are restrictions of pseudo-holomorphic maps into II"2 have finite energy. By

finite energy pseudo-holomorphic maps into C2 we mean a map with no components

mapping entirely to {O} and whose restriction to the preimage of C2 \ {0} is a finite

energy map into the cylinder over S3.

First we need to fix a horizontal tunneling map. Any horizontal tunneling map

projected into the base S2 has to be an embedding, extending over the punctures.

Therefore the domain of the horizontal tunneling map has to be S2 and the com-

position with the projection has degree 1. Since H1(S1,IR) is trivial, the horizontal

tunneling map is the projection of a holomorphic map into the symplectization, so
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it has to be the restriction of a degree 1 map into 11”. Thus the map has only one

puncture wrapping a closed characteristic with multiplicity 1 and the only freedom

in choosing the horizontal tunneling map is the choice of closed characteristic and

slice of the S1-action. Since two of such choices can be mapped onto one another

by a diffeomorphism of S3 preserving the CR structure and a, all these choices are

equivalent.

We choose the horizontal tunneling map

”Uh I C—iZ

1

'Uh(Z) : Wb’ 1)

Now we choose homology classes for our maps. Note that

H2(B4,’R;Z) = S2 x Z

where the isomorphism is given by specifying the closed characteristic and the mul-

tiplicity. We fix the as closed characteristic the one that the tunneling map wraps.

Then the only homological information is the multiplicity with which we wrap the

characteristic. Equation (5.30) relates the difference of multiplicities

d: m+ — m0 = —(m- — m0)

of the maps v+, v- and v0. So given the choices we have made so far, the only choice

we have left is that of the integer d, which we call the degree of our map into 5".

We look for degree 1 maps with domain 20 = 21 = S2 and domain fold an

embedded circle.

For the examples we construct it suffices to consider 2+ = D = {z 6 Cl [2| 3 l}

and S = )3- : ID)“ = {z E C||z| 2 1}, with the puncture of S at 00 E C. As

parameter space for our family we take III) 2 {z 6 CI () < Izl < 1}.
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Fix a E III) and set c = (1 — |a|2)‘i, so |a|2 +1/|c|2 =1. We define the maps

Hi I 2:}: —-) S:

use) = e;l(ee2,e/c)

1
._ —1 _

u-(z) _ 0— (a7 CZ)

and the tunneling maps

 
 

 
 

’Ui I S ‘9 Z

1 2 2

v z = az ,—

+( ) \/Iez‘2e + lee/e” c)
1 1

Me) = (a.—>.
\'/|a|2 + |cz|"2 CZ

The corresponding horizontal covering is given by

U0 2 S—)Z

(acz, 1) = vh(acz). 

1

v z =

O( ) (/1+ lacz|2

To see that this data defines folded holomorphic maps note that if |z| = 1,

1 2 Z C = 022 Z C 2 U4, Z
U-i-(Z) Whiz a / ) ( a / ) ( )

u_(z) 1 1 1

lee + lcl‘2(a )2 (a

Note that ln(—"‘-) is purely imaginary, so with g(z) = S (ln(-|-:J)),
Izl

 

)2 u_(z). 
9_ 7—

CZ CZ

  
 

z * v0 2: : e,g(,)v0 z = i (acz, 1) : (az2,z/C) : v 2:

g( l ( ) ( ) IZI /——1+|0.CZ|2 \/|Z/C|2 + |a22|2 +( )

|z| (acz, 1) (a, 31;)

— 2*vz —— e‘igm-vz— = =v-z.
g( ) O( ) 0( ) ZW \/|CZ|‘2+|(1|2 ( )

We give another way to visualize the family.
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Figure 10: Several members of the above family of maps into 5“. The map (21.9, u‘i)

corresponds to the extreme case a = 0. Then the maps u‘_ loose energy as they

disappear into the fold whereas the maps uf, gain energy. Then tunneling maps go

back to the closed characteristic. They sweep out the image of a holomorphic map

in Z.
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Figure 11: Here we visualize the family as maps into C2. We also suspend the

tunneling map to (generalized) holomorphic maps into C2. The maps ui have image

in the unit ball, whereas v+ has image outside the unit ball. v- coincides with u-.

When projected into S3, u_(O) lies on the closed characteristic. As the family of maps

approaches (ufi, u‘l), the tunneling maps become longer and longer and in the limit

bubble off to form an ”ll-holomorphic map from S2 into the fold.
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Note that all of these maps send 0 E C = 52 to the north pole N in 3". Moreover

the derivative of u+ at 0 always has image in 1 2-dimensional subbundle, as

d(o+ o u+(0)) = (0,1/c)dz, (9.48)

so the maps in this family satisfy a 4-dimensional constraint.

Observe that for the above family the sum of the w-energies of u+ and u- remains

constant.

All the above maps extend to the case when |a| = 1 and thus % = 0 as well as

a = O and c = 1. These are boundary points in the moduli space we defined, as

me dvi vanishes identically in these cases.

If a = 0, the maps u+ and u- intersect the fold in a closed characteristic and the

tunneling maps vi formed a bubble in the fold, i.e. they have a closed punctured

Riemann surface as domain (S2 with two punctures in this case) and are non-trivial

’H-holomorphic maps into the fold.

In the case that |a| = 1 the map u- and the tunneling maps are point maps and

u+ carries the entire energy.

This family as the property that it sweeps out S: in a way reminiscent of how

lines sweep out It”. To see this we mark three points, one in S34 p1 = O in the

above parametrization), one on the domain fold 0 (p2 = (1 — |a|2) i in the above

parametrization) and one in SE. These points are characterized by the property that

p1 be mapped to the north pole and the map satisfies the tangency condition (9.48)

at that point, and that p2 be the unique point with u+(p2) = U-(I)2).

Lemma 9.1. Marking a third point p E SE = DC C C we obtain an isomorphism

‘Il : H) X DC —+ S:

‘I’(a,p) = MP)-
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Proof. To see injectivity, suppose \Il(a,p) : \I'(b, q). Then if p,q 6 ID

(CM/1-|a|2/p)=(b,\/1-|b|2/Q)

so a=bandp=q.

To see surjectivity, let o-(z, w) 6 Si. Then set

1 w/ 1 |a|?a = z — = — .

P

Then

ua(p) = 0—(a, \/1 - lalg/p) = 042,10)-

Cl

Next we compute the index of the linearized operator at one of the maps in

the above family. Note that we can homotope the boundary conditions (F+, F-) to

7T1 (v..T8D) x 7T2(U*T6D) where in and m are the projections on the first and second

faCtor of C2 = C x C, respectively. To do this note that IR and 7rllR are transverse

to both v,T8D and n1(v.TCD), so we may homotope the boundary conditions to

71-1 R x 7rg(v,.T3D) and the to the desired boundary conditions. Then it follows that

the Maslov indices [ii for the maps at are given by u- = 2 and u+ = 6 and therefore

We have

index = 8 + 2x(S2) = 12.

Cutting down by the 6-dimensional group of automorphisms and the 4—dimensional

Constrained mentioned above we are left with the 2-dimensional family exhibited

abOve.
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A Folded Compatible Triples

Recall the following result from linear algebra.

Lemma A.1. Let V be a 2n-dimensional real vector space and g an inner product on

V, i.e. a positive definite symmetric bilinear form. Let A be a skew-adjoint endomor-

phism. Then A has purely imaginary eigenvalues that appear in complex conjugate

pairs and the eigenspaces to eigenvalues with different modulus are orthogonal.

In the following let (X, id) be an oriented folded symplectic manifold of real dimen-

sion 2n with compact folding hypersurface Z with defining function t. Furthermore

define a : X \ Z —> {3:1}, by 0(x) = i1 if x E Xi. Also denote by E2 the real

2—plane bundle over Z defined by EZ = ker(w).

Lemma A.2. Given a background Riemannian metric 9 there exists a canonical

377100 th folded compatible triple (w, J, gj) defined on X \ Z, where

(i) J2 = -—Id,

(ii) w(u,v) :: gJ(Ju,v).

Furthermore there exists a neighborhood U of Z and a splitting TU = E EB F such

that

(0.) along Z E = ker(w) = ker(g)

(b) E and F are J-invariant and perpendicular with respect to both g] and w

(C) for any defining function t of Z there exist a symplectic form ,u and a positive

definite symmetric bilinear form h on E2 with

(i) all; = ltl ' h

84



(ii) We = t ' u

(d) the almost complex structures on Ji on TU defined by Ji 2 JFEBoJE are smooth.

Proof. Let g be a Riemannian metric on X and define the skew-endomorphism A

of TX by w(u,v) = g(Au, v). This exists and is unique since 9 is positive definite.

Define E‘ZL = E'ZL" and observe that AlEz = 0, and Ale; is non-degenerate. Since Z is

compact there exists a E IR+ with |A| > a for all eigenvalues of AI 13%. Therefore there

exists a neighborhood U of Z such that |A1| < a/2 < IAI, over U, where A1 is the

smallest eigenvalue of A and A is the second smallest eigenvalue of A (after /\1 and

S 1 ) - Define E to be the 2-plane bundle over U given by the eigenspace to the smallest

eigenvalue of A and set F = Eig. Then for u E E and v E F we have Au 2 a E E

and

w(u,v) = g(Au,v) = g(u, v) = 0. .

Therefore to splits as to); 619 top. Furthermore, by Lemma A.1 the other eigenspaces of

A are contained in F, so A also splits as A = AE {9 AF. Since AF is non-degenerate,

the usual polarization procedure produces a canonical compatible triple there.

Since w is folded symplectic, to); = t-u for some non-degenerate 2-form u. There-

fol‘e A3 = t - AE, where AB = gglu is a non-degenerate skew-endomorphism of E.

By polarization of AE we obtain a smooth compatible triple (u, j, h) on E, and using

AE instead we get a compatible triple (wE, JE, gJ E)on E \ EZ which relates to the

abOve one by

w = t-u.

JE = -t—j=(7j,

ltl

gJE Z lflh.



The proof of the lemma motivates the following

Definition A.3. A local folded hermitian trivialization of TX lU w. r.t. a folded com-

patible triple (w, J, g) (and defining function t of Z) near a point p E Z is given by

an to and g orthogonal splitting TU = E 69 F and local sections u1,v1, ..u,,, vn such

that u2,v2, . . .,u,,,v,, is a hermitian basis ofF and u1,v1 is a basis ofE with

(i) g(umn) = 9021.121) = ltl,

(ii) LL)(U1,U1)=t,

(iii) 0Ju1= v1 and ko1= —u1.

Corollary AA. Given a folded compatible triple on a folded symplectic manifold,

there exist local folded hermitian trivializations of the tangent bundle.

Remark A.5. If w and the background metric g are invariant under a smooth group

action G on U, then the resulting splitting TU = E 65 F and the triple (w, 91, J) will

also be invariant under this action. To see this, note that the skew-endomorphism A

abOve will be invariant under the action, so the eigenSpaces and eigenvalues of A will

be We conclude that the resulting J and therefore also gJ will be invariant under

the action.

Definition A.6. In a folded symplectic manifold (X2", (.0), a component Z of the fold

is Of contact type, if there exists a 1-form a on Z such that

1- aAwn‘l 729 0 and

2. d0 ‘—-_— (Ulz.
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The component is called completely integrable if there exists a I-form or on Z such

that

.1.a/\w"‘19é 0 and

Lemma A.7. Suppose a component Z of the fold in a folded symplectic manifold

is of contact type or completely integrable. Then, in (global) Darboux coordinates

Z (I U = [—€,e] x Z near the component Z of the fold associated to the given 1-form

a - Then we may arrange for the bundles E and F and the complex structures J35

to be invariant under translation along the normal direction in a (possible smaller)

72 eighborhood of the fold.

Proof. Over Z define E = ker(w) and F = ker(a) and use the canonical parallel

transport in Darboux coordinates to extend this splitting to a neighborhood of the

fold.

Choose a background metric g’ making this splitting orthogonal and note that in

DaI‘boux coordinates

to = d(rza) + wz

= 2rdr /\ a + awz (A.49)

Where a is a positive function. Choose the background metric

g'=dr®dr€Ba®a€Ba-g'F

“’ith some metric g’F on F that is independent of 7'.

Since the splitting TU = EEBF is orthogonal with respect to both 9’ and an we may

Carry out the construction of the associated skew-endomorphism A and the compatible
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triple separately on each summand, immediately yielding that the given translation

invariant splitting is also J-invariant. Moreover a short computation shows that the

resulting J is also translation invariant. D

Remark A.8. The essential part in the above proof was that the translates of E

has symplectic complements that were translates of one another. This will happen

precisely when w can be written as in equation (A.49). But this happens only if there

exists a 1-form a on Z with do: a multiple of w which is equivalent to the condition l

£301 2 0, in which case the above lemma still holds true. (See also Lemma 2.8.)

 
B Properties of the Levi-Civita Connection

Recall that the non-degenerate metric g on Z is given by

9 = 02 63 9F

where gp is the inner product on F induced by J and w. Then the splitting TZ =

L EB F is g-orthogonal.

First we want to state some properties of the Levi-Civita connection V associated

with g.
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Lemma 3.1. Let X be a vector field on Z and Y a section of F. Then

VXR C F (8.50)

VRY C F (B51)

VRR = 0 (B52)

V301 = 0 (B53)

VR(JY) = JVRY (B54)

View = 0 (B55)

VRda = 0. (B56)

Proof. For the first equation note that

0 = VX g(R, R) = 2g(VXR, R). (3.57)

Next note that [R, Y] E F since a is stable and therefore

a([R, Y]) = da(R, Y) — R - d(Y) + Y - (1(R) 2: 0.

Now equation (B51) follows from VRY = VyR+ [R, Y] C F where we used equation

(B50) and that V is torsion free. Then using this result we get

0 = VRg(R, Y) = g(VRR, Y) + g(R, VRY) = g(VRR, Y)

which, when combined with equation (B50), yields equation (B52).

For equation (B53) use again that a is stable to compute

(VRa)X = VR(a(X)) —— d(VRX) = CY(£RX) — d(VXR + [R,X]) = —a(VXR)

which vanishes by equation (B50).
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For equation (B54) note that VR(JY) E F by equation (B51). Then

g(Y,VR(JY)) = —g(VRY, JY) ‘—"‘ g(Y, JVRY)

1 1

g(JY,VR(JY)) = §VRg(JY, JY) = §VRQ(Y, Y) = g(Y, VRY) = g(JY, JVRY)

and we conclude that VR(JY) = JVRY for all non-zero sections Y of F. Since

Vg(JY) — JVRY is tensorial in Y it holds for all sections Y.

Now for sections X and Y of TZ P:-

(VRW)(X,Y) = V12 “AX, Y) — W(VRX, Y) — 01(X3VRY) F

= VR g(X, JY) — g(VRX, JY) — g(X, JVRY)

 —_—. VRg(X, JY) — g(VRX, JY) — g(X, ngv) a,

= g(VRX, JY) + g(X, VRJY) — g(VRX, JY) — g(X, JVRY)

= g(X, VRJY) — g(X, JVRY)

= 0

where we used equation (B54) in the last step, proving equation (B55).

For equation (B56) recall that oz is stable, so there exists a function f : Z -—> R

such that do = fw. Then R - f = 0 since £Rda = LRw = 0. Thus

VRda=Vwa=(R-f)w+fvgw=0.

Next we compute some components of VJ.
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Lemma 3.2. Let p E Z and X, Y E Fp. Then

a((VJ)R) = o (8.58)

d((VxJ)Y) = —w(VXR,Y) (8.59)

npo(VJ)o7rp = 0 (8.60)

(VXJ)Y : (VyJ)X (8.61)

npo(VJ) = —J(VR)®a (862)

Proof. For equation (B58)

a((VJ)R) = a(V(JR) — JVR) = 0.

For equation (B59)

0((VxJ)Y) = 01(Vx(JY))

= g(R,Vx(JY))

= -9(VxR, JY)

= —w(VXR,Y).

For equation (8.60) let W be any section of TZ and let X be a local unit section

of F. We compute the components of VWJ in the trivialization given by X and Jx.

g(x,(VwJ)x) = g(x,Vw(Jx))—g(x,Jwa)

= -9(VWX, JX) +9(JX,VWX) = 0

g(Jx.(VwJ)X) = g(Jx,Vw(Jx))-9(JX,Jwa)

1 1

= §ng(Jx, Jx) - §Vw9(x, X) = 0.

The vanishing of the remaining components follows after replacing X by JX in the

ab()ve argument.
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For equation (B.61) we only have to show that a((VXJ)Y = (VyJ)X) in view of

equation B.60). Using equation (B59) we compute

0((VXJ)Y —- (VyJ)X) = —w(VxR, Y) + w(VyR, X)

= —w(VXR, Y) — w(X, VyR)

= —w(VRX, Y) + w(£RX, Y) - w(X, VRY) + w(X, CRY)

= —R - w(X, Y) + R - w(X, Y)

: O,

\vhere we used that CRw = 0 and that ng = 0. by equation (B55).

For equation (8.62) let V and W be sections of TZ. Then, using equation (B60),

7T)? 0 (VWJ)V = 7r; 0 (VWJ)(V — nFV)

= 7r): 0 (VwJ)R - d(V)

= 7TF 0 VW(JR ' 00/» “ 7rF 0 J(VW(R ' “(I/ll)

—J(v,.,n)e(v).

We can summarize the findings of the above lemma as follows. We may view

VJ: (REEF)®(REBF) —+R€BF

in block form, where the only non-zero components are the “cross-terms”

VJ|F®F I F®F—>L

VJIFeaF = (—Lvnw)'R,
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Lemma B.4. . In the Sl-invariant case we have

VR = 0 (8.65)

VJ = 0 (8.66)

Va 2 0. (B57)

Proof. Since in this case the metric g is invariant under the characteristic flow, so

is V and parallel transport along characteristics is given by pushing vectors forward

using the characteristic flow.

Since J is also invariant under the characteristic flow we have

VRJ 2 0.

Let X E F at p and extend X to a vector field on a slice transverse to L near p.

Set. Y = JX and transport this frame to a neighborhood of p using the characteristic

flow. Thus VRX 2: VRY = 0, and

VXR = VRX — LRX = 0.

We conclude that VR 2 0.

Thus (VJ)TI’E = 0 and nE(VJ) = 0, and we conclude in conjunction with equation

3.62 that VJ = 0.

Lastly, by choosing normal coordinates with X, Y E F at p,

(VXa)Y = 0(ny) = 0.

Together with Lemma 8.1 and that (VXa)R = 0 we conclude Va 2 0. C]
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C Properties of the Sobolev Spaces of Maps

The purpose of this section is to prove some of the properties of the Sobolev spaces

used. These results are needed to show that tunneling maps have a well-defined

Fredholm theory. The issue here is the behavior of the maps near the punctures.

Define the half-infinite cylinder

C, = [r, 00) X S l

and set C = C0.

First we show that l/l’ék‘p(C, v‘TZ) is a Banach manifold.

Lemma C.1. de’p(C, Z) is a separable Banach manifold, locally at a map 2} E

Wéfc’p(C, Z) modeled on a neighborhood of the zero section in W'f’XC, v*TZ).

Proof. Embed Z isometrically into IRN for some N. Let u E l’l’f’p (C, Z) and C E

H/’°”"(C,v"TZ). Set 17 = expv(C) where we parallel transport using the Levi-Civita

Connection V. Then

1 d 1

di} = dv +/ —dexpv(r()dr 2 do +/ VCTdr : dv + VC

0 d7 0

Where we use the canonical parallel transport in IR".

E(ii) = feds (I’ll’pd’Dl2 + |i7"‘cy(8,)|2 + d(ii‘oz(6t))|2) dvol

C

g [668 (Inpdvl2 + |v"a(8,,)|2 + d(v‘a(8t))|2) dvol

C

+ f e... (lirFVCI2 + new)? + amazon?) dvol
C

= E(v)+E(C)



So i) has finite asymptotic energy if C does. Conversely

me = [C e... (lvrpVCI2 + |a(V.C)|2 + demon?) dvol

S E(ii) + E(v)

so C has finite asymptotic energy if i) does. E]

The following theorem motivates the definition of asymptotic energy. For 7' 2 0

set C, = [r,oo) x Sl.

Theorem C.2. Let U E W"6k’p(C, Z) with (5 > 0, hp > 2. Then there exists a constant

T 6 IR called the asymptotic charge ofv and a constant C, independent of r and 6,

such that

Er , I—dr

/ e‘ssldv — T(R <8) dt)|2 dvol S CEr(v) (1+ —1(1—__):6—) .

Proof. For any non-negative function f : C —+ IR

f dvol = fease—‘53 dvol < e7” fe63 dvol

C. C. C.

so

/ (|v"'oz(3,)|2 + |d(v"a(0t))l2 + |7rpdv|2) dvol < E,(v)e‘6'

c.

Recalling that a is stable and that |da| < M on Z we have

Iv'dal < Ida] |7rp dvl2 < Mlnp dvlz,

and hence for 0 _<_ r g r’

[fa—f v’a

s: 5;,   

(C68)

(C69)

g / |v*da|dvolgM lirpdv|2dvolgME,(v)e(C.7O)
Cr’rl C,-

Where we used equation (C69) in the last step. So we may define the asymptotic

charge T 6 IR

T 2: lim v’a.

r—km ‘5‘]
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Define the function u : C —-) IR

u = v‘a(8¢) — T

In view of equation (C.70) u satisfies

/ udt

5}

Then du = d(v‘a(8t)) so by equation ((3.69)

/ e5s|du|2 g E,(e).

1'

g cEr(v)e"6'.

  

For r 2 0, define the cylinder of unit volume

A, = {(s,t) E Clr g s _<_ r+1}.

and set it, 2 L1, udvol, so

r+1

(1143/ / udt
r 31

Since A, has area 1,

  

r+1

ds 3 c/ e763Es(v)ds S ce'érEr(v).

/ (u — 17,-)dVOl = 0.

T

30 by the Poincaré Inequality (Theorem 3.65 of [Mor66]) there exists a constant c > 0

Shell that

|u — firl2 dvol S c/ |d(u — '27.,.)|2 dvol = c/ |du|2 dvol.

A. A.A.

Therefore

|u|2 dvol g/ 2 (it? + In — 1142) dvol g 2273 + c |du|2 dvol (C71)

Ar Ar Ar

Combining this with the pointwise bound

Idv — T(R <8) dt)|2 S Inpdvl2 + Iv’a — Tdt|2 g Irrpdvl2 + |u|2 + |v"a(0,)|2a
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we have

A.

Summing this we obtain

/ easldv - T(R ® dt)|2 dvol =

r

|
/
\

l
/
\

l
/
\

|
/
\

|
/
\

|dv — T(R <8) dt)|2 dvol g 2173 +/ (lirpdvl2 + cldul2 + |v*a(8,)|2) dvol.

,-

Z/ e63|dv — T(R ® dt)|2 dvol

nEN

Ze5<r+n+1>f |dv — T(R a dt)|2 dvol

nEN A'+"

T

nEN

+ Z (26(r+"+1)/ (linedul2 + cla'ul2 + |v'a(0,)|2) dvol

HEN Ar+n

(366 Z 66(r+n)E'2(,U)e—26(r+n)

nEN

+ce6/ e65 (lirpdvl2 + |d(v‘a(3¢))l2 + |v*a(a,)|2) dvol

C.

C E,(v) (1+ E,(v)e_6' 2 e76")

nEN

We immediately obtain the following

Corollary C.3. Let v E 14"'6k’p(2, Z) with 6 > 0, hp > 2. Then for each puncture p,

1there exists a constant T) 6 IR called the asymptotic charge of p) and local conformal

Coordinates o, : C —-) 2 at each puncture p, such that v and a constant C, independent

Ofr and 6, such that

/ easldv o o) — T(R ® dt)|2dvol S CEr(v o 0) (1+

C.
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In the following we will make repeated use of the properties of V as stated in

Lemma B.1. The proofs of the results below follow largely the same pattern as the

proof of Theorem C.2.

Lemma C.4. IfC E Wf’p(C, v‘TZ) then there exists a constant C > 0, independent

of 6 < M and r such that

/ e‘SSIVCI2 dvol g CEr(v).

0,

Proof. The proof follows similar lines as the previous one. First note that

Law‘Odt:A
VJMCDdf-t

/ d(a(C)) =0.

53

Therefore

/ a(VtC) dvol = 0

1'

and we conclude by Poincare Inequality that there exists a constant C independent

Of T and 6 such that

Ia<vtol2dvol s c / Id<a<vto>l2dvoi
ArAr
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With this and equation (4.16) we integrate

/ e‘s"|VC|2 dvol S Er(C) +/C easla(VC)|2 dvol

_—: E(()+:/ emu(VC))Izdvol

 

nEN AN“

3 E 0+Ze<r+n+l> / |a(VtC)|2dvol

nEN Ar+n

g E 0+Ze5<r+n+l>c |da(VtC)|2dvol

nEN AH“ F7

g E C)+Ze6C e6“|da(VtC)|2dvol

nEN Ar+n

g E <)+C/ eésldawtofidvol g

C, _ ,

: CEAC) bl

yielding equation (072). C]

Lemma C.5. IfC E ”fag, u’TZ), then there exists a constant C independent ofr

and 6 < M such that

|C|2dvol < C(1+ 6“) (0.73)

Ar

Proof. First note that

|C(s,t)l s |C(O,t) +c/ Vscds

0

S IC(O?t)I +C/ 8—63/2 (663/2IVCI) ds

0

C + c (/ e‘asds) 2 (/ eaSIVC|2ds)

o 0

S C+c6“% (/ e‘SSIVCI2ds)

.0

 

|
/
\
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where c = suptE 51 |C(0, t)|. Therefore

/ |<|2dvol s / (202+2c26‘1 / easlVC|2ds) dvol

A, r 0

r+1

2C2 +2c26”1/ (/ e‘SSIVCI2 dvol) ds

1' C

3 2C2 + cE(C)6“l

|
/
\

|
/
\

C(1+6‘1).

We can strengthen this result.

Lemma C.6. There erists constants S 6 IR and C > 0 independent of6 and r such

that for( E Wak’p(C,u*TZ)

6‘1

1— e5

 |a(C) —— SI2 dvol < C (1 + ) E,(C)e_6". (C74)

0,

Proof. First note that

[S: we — f1 a<<>dt
r!  

s [C IVs(a(<))|dv0l
r,r’

S |a(VC)| dvol

or

S 6_%e"6'/2 (/ €63Ia(VC)I2 dvol)

Cr

3 CH \/E,.(C)e"6r/2

so S = limH00 f8] a(()dt exists and u : d(C) — S satisfies

/ udt SC6'%\/E,(C)e‘6r/2.

3%

Set u, = fA udvol, so

/ u dvol

Ar

 

 

s 66% «aw—"”2.lurl :
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Also fA,(" — ur) dvol = 0 so applying the Poincare Inequality to u — u, yields

|u|2 dvol g 2 |u — u,.|2 dvol + 2u,2. 3 cf |du|2 dvol + QuE.

A? Ar A,-

By summing we obtain

|a(() — SI? dvol : |u|2dvol

0, c,

= 2] [ul2 dvol

nEN AH‘"

3 Z (c/ |du|2 dvol + QuE)

nEN AH”

s X (of IV(a(<))I‘2dvol+Cé*‘En+.(<)e‘5‘"+”)

nEN Ar‘l'"

S C ( |a(VC)|2dvol + 6-1Er(C)e’6'Ze’5")

0' nEN

|
/
\  C (1+ 5-1 )E,(C)e“5"

1—&

C]

Now assume that we are in the S1-invariant case. Then note that (99,). : TZ u_) TZ

iS given by parallel transport along characteristics. This is clearly true vectors in L

SO We concentrate on showing this for X0 E TPF. Extend X0 to a vector field X along

the characteristic through p using the derivative of the characteristic flow. We need

to Show that VRX = 0. Note that VXR = 0 since R is parallel by Lemma B4 and

[R, X] = £R(X) = 0. Then

VRX = VXR + [12, X] = 0.

In the S1-invariant case 1 is an eigenvalue of the Poincaré return map (pT).|p at

a Closed characteristic, so there exists a parallel non-vanishing section X30 2 xoo(t) of

’06 F.
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Now parallel transport xm(t) along the lines 5 +——> (s, t) to obtain a section X-

Then

2 0

o (f00 [133(3, t) Ids)

VVe write v*F = C x C

‘7Ex

VtX(T7 t)
0( Er('z_:)e’6r/2).

(z = :1: + iy, (s, t)) +—> :cx(s, t) + y Jx(s, t).

Lemma (3.7. In the Sl-inuariant case, there exists a constant Q E (C and a constant

C > 0 independent of6 and r such that for C E I’Iv"6k‘p(C,u*TZ)

/ e63|7rp(() — Qxl dvol < C(l +

Proof. Write NFC = gx,

[gdt—/ gdt

s; s},

Q: lim

r-)oo

  

SO

9 dt

5}

exists and u = g — Q satisfies

[5;

SQt u, = fAr udvol, so

/ u dvol

 

u dtl S C E,(C)e_6r.

lurl : S CET(<)8_6T'
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r 1 — e5

s / Iasgldvol =
Cr'rl

)EL(C)- (C175)

/ IVs(gx)l dvol s CE.(<)e“”
C”:



Also [Ar(u — ur) dvol = 0 so we may apply the Poincaré Inequality to u — ur and

|u|2 dvol S 2 |u — ur|2 dvol + 2n?

A, A.

S c |du|2 dvol + 2u,2.

A,

_<_ c (/ ldgx + gV)(|2 dvol + Ingl2 dvol + E3(()e_26’)

Ar A,

S c( |V(7TFC)|2dvol+/ Ingl2 dvol+ E3(C)e—26r) .

A, A,

By summing we obtain

/ 6‘53]an — Qxl2 dvol = / edslul2dvol

Cr

286(r+n+l)/ I‘uIQ dVOl

nEN A'*’"

s Ze6<r+n+l>c(/ |V(7rFC)I2dvol
A.

nEN

+ Ingl2 dvol + E3(C)e_26')

A.

|
/
\

Corollary C.8. In the Sl-inuariant case, forC E Vlt"6k’p(C, v*TZ) there exist constants

S 6 IR and Q E C and constant C 2 C(6) such that with (00 = S - R + QX

/ e" (IV(< — 400)? + IC «0012) dvol < 0. (0.76)
C

Observe that if v E W;”’ (C, Z) is H-holomorphic, then the linearized operator DU

(for fixed complex structure j) is asymptotically translation invariant in the sense of

[LMO85] by Theorem C.12. To see this note that the terms that are not translation

invariant in equations (6.32) and (6.33) are linear in npdu.

Let A : VVf’p(C, u‘TZ) +—> Wk‘i’NSé, H) be an elliptic boundary condition for D1,.

Set 15’6qu(C, v"'TZ ) to be the space of sections C of class II—‘fif’p that additionally
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satisfy

E(() = / 668K — (0|2 dvol < 00

C

for some (0 = S ' R+ Qx.

Then we use Theorem 6.3 of [LMO85] to conclude the following

Corollary C.9. The operator

DA : WMC, u*TZ) —> tiff—WC, u*TZ) x Wk-Msg, H)

is Fredholm for almost all (5 6 IR.

Similarly we obtain for arbitrary domains

Corollary C.10. The operator

DA : Mas, v*TZ) —+ Wf'ltp(s‘,v*:r2) x whines, H)

is Fredholm for almost all 6 6 IR.

C.1 Elliptic Estimates

In this chapter we will sharpen and expand on the estimates from Theorem C2 for

W?” maps in the case that they are also ”ll-holomorphic. We show that such maps

limit to close characteristics and investigate the asymptotics of solutions near the

puncture. For these issues it suffices to consider tunneling maps with domain the

half-infinite cylinder C, = [r, 00) x S 1.

Note that the equations for ’H-holomorphic maps define a system of PDE’s, the

first equation being of first order, the second one of second order. Therefore it is

easier to study not the map itself, but its suspension as defined in Definition D.5.

Note that ”ll-holomorphic l/lf’p (C, Z) maps 2) have the property that the periods of
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v‘a 0 j vanish by Lemma 5.4. Moreover, generalized holomorphic maps with domain

the punctured disk C reduce to ordinary holomorphic maps since ’H,(D) = {0}.

Our goal is to show that maps limit to a closed characteristic.

Definition 0.1]. A parametrization of a closed characteristic is a smooth map

v0 : S1 —> Z

with image tangent to L and uga = const - d6.

Theorem C.12. Let u E I‘lv’ék‘p(C, Z) be a ”ll—holomorphic map. Then either the

puncture is removable or u is asymptotic to a closed characteristic. More specifi-

cally, either u extends to a map smooth across the puncture or there exists a closed

characteristic parametrized by uo and constants cn > 0 such that

lirr(1)U(s,t) = v0(s,t) (C77)

|V"(dv—du0)(s,t)| 3 c1, E3(v)e"‘55/2 V—nEN. (C78)

Proof. For ’H-holomorphic u : C —> Z let i7 = (a, u) : C —+ 1R x Z be a suspension of

U.

Define the u‘T(IR x Z)-valued 1-form

fi=du—T(ds®3r+dt®R)

Then B E Ql'°(u*T(IR x 2)) as

50.7 =dvoj— (—dt®8r+ds®R) = Jdv—JT(ds®ar+dt®R) = .106.

Moreover note that,

/ eds

Cr

[3 2dvol _<_ C Er(‘v) (C79)
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by Theorem C2 and

da—Tdszv’aoj—Tdsz (u‘oi—Tdt)oj.

We follow [PW93] to establish the regularity estimates we need.

We work with the almost complex metric connection

~ 1

VX = VX — §J(VJ)X.

on IR x Z. Recall that the complexified tangent spaces of C and IR x Z split as

TCC = TI’OC EB TO’IC and leR x Z) = T1’°(IR x Z) 69 T(“(IR x Z) into the sum of

the holomorphic and anti-holomorphic tangent bundles. For a map v : C —+ IR x Z

the connection induces an operator

(1‘7 : outrun x 2)) ——+ ok+1(v*r(n x 2)).

If u is J-holomorphic then the complexification of do preserves the type (holomorphic

or anti-holomorphic) of the tangent vectors. Therefore we may split the complexifica-

tion of do as do = (dv)“0€B (du)0’1 and (dv)°’1(17) =W, so (du)°’1 is determined

by (dv)1’°.

Set

H = v’T1’0(IR x Z).

The operator d6 extends to the complexification QflH) and denote the composition

with the projection onto the holomorphic and anti-holomorphic tangent spaces by a?

and 36, respectively. so 6‘.7 = (1 — iJ)d6 and 3‘7 = 1(1 + iJ)d€7.l

2 2

If v is J—holomorphic these operators fit in the Dolbeault complex

0 ‘13 (20,001) ‘17) mom) 6—‘3 (210(11): 0
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with Hermitian L2 adjoint (air = — * 36*, where * is the Hodge-star operator. This

is well-defined since J-holomorphic maps preserve the Dolbeault splitting.

The operator

D = 6‘” ea (oer : elem) —> (22,001) ea o°(H)

is elliptic. For C E QO'1(H) we have

 

8% = 0

(afar = _ i as i q = 2: * 3% = 2t * di’c = Momma).

Then

(svrwvr’o = i(dV-;-(1— MW) (03,80

= (é(1—iJ)dVdu)(6,,6t)

= 2%(1— w) (Vsdet) —v.dv(a.) —dv([a,,a]))

= :(1—iJ)uT(s,,a)

= ih*:r1’°(a.,a).

With

V = (ds®6r+dt®R)

we have that VI/ = 0 since R and B, are parallel. Using that T 0 7n; = To up = 0 we

108



compute

[(a‘i>*(dv>"°| = IT"°(dv(Bs),dv(8i))l

g (|T1’0(7rp du(as), du(Bt))| + IT1’0(7IE (“(33), dvlatlll)

= (mom (11(5),), du(anl + |T1‘°(7rE du(as), vrp dv(6i))l)

: 2|T||dvll7rpdvl

g clrrpdvl

[WWI/r" = 0
 

where we used that |T| and |dv] are bounded on Z. Therefore

 IDBI S Cl7l'p dul. (C.80)

Since D is elliptic we have the standard elliptic estimate

lI/3Il1,2 _<. C(IlDfilloa + II.‘3Il0,2)a

so in particular

/ [Vfilzdvol g CET(’U)6_6T

A,

by equations (C79) and (080)

By elliptic bootstrapping arguments we conclude that there are constants cn such

that

/ IVnfiIdeol 3 CT, Er(u)e—6r.

r

By the Sobolev embedding theorems we conclude that [1‘ together with all its

—6s/2
derivatives vanishes faster than e at 00, i.e. there are constants c,, such that

Iva/3| S (3,, Er('v)e‘65
/2_

pointwise, proving equation (C78).
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Therefore

u0(t) -.: lim v(s, t)
S—km

exists and is smooth with %u0(t) = T - R. If T = 0 then no maps to some point p E Z

and for 6 > 0

/ Idul2 dvol 2/ |/3’|2 dvol S cEr(v)e'6r

C,- Cr

by Theorem (C2). So the area of the image of C, under 17 goes to zero uniformly as

r —> 00. Using the biholomorphism of CO with the punctured unit disk in C we may

employ the usual Removal of Singularity Theorem (cf. [PVV93]) to conclude that ii,

and therefore also u, extend to a smooth map over the disk.

If T 76 0, then dvga = Tdt - R, so no is an immersion with image a closed charac-

teristic, parametrized by a constant multiple of the characteristic vector field. Then

equation (C77) follows from this and equation (C78). [3

D ’H-Holomorphic Maps vs. Generalized Holo-

morphic Maps

We explain the close relation between ’H-holomorphic maps and generalized holomor-

phic maps.

In [ACHO4], generalized holomorphic maps were defined for domains that are

closed Riemann surfaces 2 with punctures. They are families of J-holomorphic maps

into the symplectization with parameter space Hl(DIR). This generalized readily

to our setting when the domains in question have boundary. We will give a precise

definition of these maps describe how they relate to our setting.
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Recall from equation (2.9) that the tangent bundle of X over Z splits as

TzX = K EB L 69 F

and LED F = TZ. This suggest the following model for an infinitesimal neighborhood

of the fold.

Definition DJ. The cylinder over Z is the manifold IR x Z. We extend the CR

structure to the cylinder by translation. Moreover we identify K with TIR C T(IR x Z).

The subbundle E = K 619 L C T(IR x Z) inherits two different complex structures,

J+ and J_, depending whether we take the almost complex structure limiting from X+

or X_. Together with the almost complex structure J on F we obtain two different

almost complex structures, also denoted by J+ and J- on the cylinder over Z.

In the case that the 1-form a is a contact form, the cylinder over Z is sometimes

also called the “symplectization” of Z. But this terminology is misleading in our case,

since we make no use of the induced symplectic form on IR x Z. There is a (J+, J-)-

linear involution on IR x Z, given by (r, z) +—> (—r, 2), so without loss of generality

we may consider only J = J+-holomorphic maps. The subbundle E C T(IR x Z) is

canonically trivial and isomorphic to C.

This allows us to talk about J—holomorphic maps into the cylinder over Z. As

mentioned above, generalized holomorphic maps are parametrized by H1(2, IR).

We need the following theorem from [D852]:

Theorem D.2. Let (S, j) be a Riemann surface with boundary. There exists a unique

harmonic I-field on S with a given admissible normal boundary value and given pe-

riods on b1(S) linearly independent absolute I-cycles in H1(S; IR).
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Recall that a harmonic l-field on S is a l-form /\ 6 01(8) satisfying

d)\ = 0 and d*)\ = 0.

Note that if S has boundary this is not equivalent to A being a harmonic 1-form,

i.e. /\ satisfying AA = 0. Also not that the boundary value that A vanishes on

vectors normal to the boundary is admissible in the sense of Theorem D.2. This

motivates the definition of ”HAS, j) from Definition 5.2 and we conclude by Theorem

D.2 that 71,,(8, j) z (H1(S,Z))*, where the isomorphism is given by the absolute

period integrals.

We need a complexified version of this space. Set

1

H3’1(S,j) = {5(6 + 2'6 MW e was} c 916.0.

With the help of this definition we obtain the following characterization of gen-

eralized holomorphic maps in the sense of [ACHO4], generalized to domains with

boundary.

Definition D.3. A map 17 : S —+ IR x Z is called generalized holomorphic if

an = éwh + Jdvj} e ”2.16, 0 e MEG; F).

There is an obvious IR-action on the space of generalized holomorphic maps given

by translation along the IR-factor on each connected component of the domain S.

We explain how to obtain a ’H-holomorphic map from a generalized holomorphic

map.

Lemma D.4. Let a : S -—) IR x Z be a generalized holomorphic map. Then its

projection v 2 fig 23 into Z is ’H-holomorphic and the periods of v‘a oj vanish on a

tubular neighborhood U of the punctures, i.e.

/ v'a-oj = 0. (D81)

6U
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Proof. Note that the map v defined above satisfies equation (5.21). Also

v‘aoj=v*aoj=da+6

where a : «R27 is the projection onto the IR-factor and 6 E ’H(S)n. Therefore v also

satisfies equation (5.22) and is therefore ’H-holomorphic. To see equation (D.81) note

fv’aojzf (da+6)=0

3U 8U

U is contractible so (Sly is exact. CI

that

Now if v satisfies equations (5.22) and (D81), we can suspend v to a map a : S —>

IR x Z in the following way.

 

Definition D.5. Let v : S —> Z be a ’H-holomorphic map with vanishing periods

at the punctures. Let 5 E HAS, 3) be uniquely defined by having the same periods

integrals as v‘a 0 j. Then their difference is exact and we choose a function

a : S —<) IR

da 2 v'a oj — (5.

Then the map

17 : S —~> IR x Z, v(z) = (a(z),v(z))

is called a suspension of v in IR x Z.

Suspension are unique up to an overall constant on each connected component of

S.

Lemma D.6. Let v : S ——> Z be ’H—holomorphic and assume that the periods of v‘aoj

vanishing at the punctures. Then every suspension 23 : S —) IR x Z of v is a generalized

holomorphic map.
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Proof. We compute

0117 2 %{(da, v‘oz) + J(da, via) 0 j}

= -1- (da,v*a) + (—v‘a oj,da 03)}

2

1

= 2M“ — v“(r oj,da oj + v‘n)

l

[I

Also note that the suspension composed with the projection into Z is the identity

map.

 

To establish equivalence of H-holomorphic maps and generalized holomorphic

maps we need to take the respective function spaces into account. Tunneling maps

are required to be of class W;’p (S, Z), whereas generalized holomorphic maps are

required to have finite energy in the following sense (see [HWZQGa], [BEH+03] and

[ACHO4]).

Definition D.7 (Energy). The energy of a generalized holomorphic map v : S —> Z

is the sum

and the (ii-energy

E0(v) = sup/(gt o a)da /\ v‘a

s¢EA

ll-l



where a denotes the IR-component of v and the supremum is taken over all positive

functions 45 in the space

A = {45 e C°°(R. [0mm [if =1}.

Lemma D.8. The suspension of an ’H-holomorphic de’p (S, Z) map has finite energy

in the sense of Definition D. 7.

Proof. It suffices to show this for S = C.

Note that with M : supZ lwl

Ew(v) = / v’w S lI/I/ |7rp dvl2 < 00

C C

by equation (4.16).

Let a be an integral of v‘a 0 j with mine a = 0. By Theorem C.12 we know that

|da| = Iv‘al is bounded on C. Using that fC gbdvol S 1 for C E A we obtain

[ct o a da /\ v‘a S / ¢(3)|da| |da| |v‘al dvol < 00.

C C

Thus

E0(v)=sup/¢oada/\v*oz<oo.

¢€A C

E]

For the converse of this theorem we need a result by Hofer (see e.g. [BEH+03]).

This applies to generalized holomorphic maps since the proof is done locally in a

neighborhood of each puncture. So we may assume that the domain is the punctured

disk (half-infinite cylinder), but there are no non-zero harmonic l-fields on the disk

that vanish on vectors normal to the boundary. So generalized holomorphic maps

from the punctured disk are just J-holomorphic maps.
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Theorem D.9. Given a generalized holomorphic map v, puncture p and local confor-

mal coordinates z = 68”""9, at p. Then either v extends smoothly over the puncture

p or v is asymptotic to a closed characteristic Y E R in the sense that there exists

m E Z andy E Y such that

lim ’U (83+21ri0)

S—r—OO

= 99(mTy0)(3/) in C°°(51), (D82)

where (pt is the time-t characteristic flow. The integer m is called the multiplicity of

the puncture. If the puncture is removable we say that the multiplicity is 0.

This as the following immediate

Corollary D.10. Let b : S —> IR x Z be a finite energy generalized holomorphic map.

Then its projection v = n21? into Z is of class lVak’p(S, Z).

In summary we have shown

Theorem D.11. Finite energy generalized holomorphic maps 13 : S —> IR X Z modulo

R action on each connected component of S are in bijective correspondence to ”H-

holomorphic maps v : S —> Z of class W-"6k’p(S, Z) via v 2 fig 27.

E Tunneling Maps in Symplectic Manifolds

Here we want to briefly explain how tunneling maps come up in the usual symplectic

setting. From this point of view, tunneling maps appear as tools for studying J-

holomorphic curves relative to a codimension 1 hypersurface in a symplectic manifold.

We transfer our definitions to this case:

Let (X,w) be a symplectic manifold and f : X —> IR a smooth function with

tra«Ilsverse zeros. Then Z = f'1 is a smooth hypersurface, separating X into two
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parts labeled X+ and X- by the sign of f on them. Assume Z is dynamically

stable. Choose a stable 1-form a on Z and a compatible almost complex structure

J E J(X, w, 0).

Fix a folded domain as in Definition 4.1 and let ui : 2i —> Xi be J—holomorphic

with r = u* f. Assume r vanishes transversely and o = r”1(0) 75 (b, so a is a smooth

non-empty compact submanifold of Z, separating 23.

Now, just like in the folded symplectic case we may look for tunneling maps in Z

that connect the image of u|0 to closed characteristics, i.e. an H-holomorphic map

v : S —> Z with vlo = u|0.

As opposed to the folded symplectic case, the complex structures Ji induced on

TZX coming from X+ and X_ agree in the symplectic setting. Thus the argument in

the discussion of the sign of u‘a in Remark 4.13 has to be modified and the equivalent

of equation (4.20) reads in this case

(clula + cguia)|7~a 75 0.

Therefore the folded diagonal AZ does not pose Fredholm boundary conditions in the

symplectic case.

To understand this better we will take another look at tunneling maps in the

folded symplectic setting. Let (v+, v_) be conjugate tunneling maps and consider the

suspension iii of tunneling maps vi into IR X Z, where vi is a generalized holomorphic

map w.r.t. Ji. Also let 270* be generalized Ji-holomorphic suspensions of the associ-

ated horizontal covering. Assume for simplicity that the resulting maps are actually

Ji-holomorphic and that each connected component of S has only one boundary

component. Then the equation (5.25) of the definition of conjugate tunneling maps

can be rewritten in terms of the IR-components a+, a_ and of): of the corresponding
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tunneling maps. Then

fiaoj + iiiaoj — 217300 2 da+ - da- — dag" + dag

= (da+ — dag) — (da- — dag)

and using the fact that the IR-component is only determined up to a constant, equation

(5.25) says

a+—a;=a_—a0‘ ono.

Written in this way the equation carries over verbatim to the (non-folded) symplectic

setting.

If J+ = J. we observe that a; = a; , so the horizontal covering map drops out

the equation simplifies to

a+ : a- on a

We can follow the above transformations backward and obtain the replacement of

equation (5.25) for the symplectic setting:

v:aoj =v:aoj on To

for ’H-holomorphic maps vi.

But this, together with the remaining equations in Definition 5.8 implies that

v+ = v_. Thus in the symplectic case, the analogue of the folded diagonal is the

actual diagonal

A = {(e,e)|rs : o —> Z} C Map(o, Z) x Map(o, Z).

Viewing this the other way, the folded diagonal AZ in the folded symplectic setting

is analogue of the actual diagonal A in the symplectic setting.
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