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ABSTRACT

DESIGN, MANAGEMENT, AND QUALITY CONTROL OF TOXICOGENOMIC
EXPERIMENTS

By

Lyle David Burgoon
High throughput “omic” technologies, such as the cDNA microarray, have the potential
of increasing mechanistic understanding of the biological underpinnings related to a
biological outcome, enhancing safety assessments during the development of a new
chemical entities, identification of new druggable targets, selection of patient candidates
for therapeutic treatment, and for monitoring exposures to hazardous chemicals through
biomarkers. However, for these potentials to be realized, investigators must ensure their
experiments are properly designed with respect to their intended purpose, the data is
appropriately managed to decrease human error, and prevent loss of data, and that the
data are of sufficient quality to ensure the results are appropriate. To address these needs,
the dbZach System, a database and associated computational applications, has been
developed to manage data derived from toxicogenomic and pharmacogenomics
experiments. Using historical data within the laboratory, a quality control protocol was
developed, consisting of three different divisions. The first division uses a trained
support vector machine (SVM), a statistical learning theory method, for identifying high
and low quality arrays based on global intensity characteristics. The second division uses
a semiparametric normalization method for identifying misaligned subgrids on the
microarray, to ensure proper feature alignment and quantification. The third division
utilizes boxplots to identify arrays with incongruent distributions, and line plots to

identify trends with regards to the number of identified and saturated features. Using



data within dbZach, three temporal experimental designs were compared: the
independent reference, loop, and modified loop designs. By comparing the results from
these experiments based on the amount of experimental error, identifying temporal
confounds, and analyzing differences in the temporal clustering relationships, the
modified loop design was judged the most appropriate design. However, when economic
considerations are made, the loop design may be preferred when used with a larger

number of biological replicates.
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CHAPTER ONE: INTRODUCTION



Efforts to understand the biological effects of chemical exposures, both
therapeutic and toxic, singularly and in mixtures, are beginning to take a global, or
systems level scope, ushering in the disciplines of systems biology and systems
toxicology. The systems approach attempts to identify critical nodes in biological
information networks (e.g., a ligand binds to a receptor, eliciting changes in gene
expression, and perturbations in protein expression and activation) by comparing
information flows between normal and chemically exposed or diseased samples (Hood
and Perlmutter, 2004). Systems toxicology is a toxicology specific rendering of the
systems biology idea; integrating data from toxicogenomic studies with more traditional
toxicology measures (e.g., clinical chemistry and histopathology) (Waters and Fostel,
2004). Toxicogenomics is the combined study of the genomic, the proteomic (i.e., all of
the proteins expressed within a system) (Wetmore and Merrick, 2004), and the
metabolomic (i.e., the full complement of metabolites within a system) (Nicholson and
Wilson, 2003) response to chemical exposures and environmental stressors (Nuwaysir, et
al., 1999, Waters and Fostel, 2004; Waters, et al., 2003b).

“Omic” technologies are believed to be necessary to engender systems toxicology
as they are global technologies — measuring the expression of thousands to near complete
sets of biological molecules of interest. By measuring large segments, if not the entire
complement, of molecules within a class (genome, proteome, metabonome), it may be
possible to study many of the interconnected biological networks, and the flow of
information/data from source to outcome; the essence of the systems biology (Ideker, et

al., 2001) and systems toxicology (Waters and Fostel, 2004) frameworks.



Potential of Genomics in Pharmacology & Toxicology

Microarrays provide the ability to simultaneously monitor the expression of
thousands of genes during disease progression or onset and in response to chemical or
therapeutic exposures. These abilities have fostered the growth and maturation of the
fields of pharmacogenomics (Weinshilboum and Wang, 2004) and toxicogenomics, and

may serve to revitalize the pharmaceutical industry (Lindsay, 2003).

Pharmacogenomics

Although pharmacogenomics is typically defined in the translational sense, as a
broadening of pharmacogenetics, where patient populations are screened to identify
sensitive and resistant groups that may not respond predictably to a therapeutic treatment,
based on global gene expression (Weinshilboum and Wang, 2004), pharmacogenomics
can also be thought of as a means to identify novel drug targets (Lindsay, 2003; Ross, ef
al., 2004).

For example, gene expression studies have been used to classify cancer biopsies
and tumor samples (Glas, et al., 2005; Golub, et al., 1999; Kristensen, et al., 2005;
Mischel, et al., 2004; Selvanayagam, et al., 2004; Yeang, et al., 2001) to improve clinical
outcomes by identifying the correct tumor class and treatment regimen. The ultimate
goal of these investigations is to create new diagnostic tests for the assessment of tumors,
and tailor treatment programs specific to the patient (i.e., personalized medicine) to
reduce toxicity and increase the therapeutic potential (Ross, et al., 2004). However,
molecular profiles from these same experiments can be used to identify new drug targets

specific to the particular class of cancer under investigation. The idea is that since the



tumor samples can be differentiated from normal tissues based on gene expression
profiles, there must be drug targets embedded within these profiles that can be exploited

(Lindsay, 2003).

Computational Toxicology

Computational toxicology is the application of computer science, mathematics,
statistics and information technology to the field of toxicology. Computational
toxicology encompasses physiologically based pharmacokinetic modeling, dose-response
modeling, and analysis of data from toxicogenomic studies.

Toxicology data can be thought of as existing within a source-to-outcome, or
source-to-disease, continuum (Kavlock, et al., 2003; Waters and Fostel, 2004). Several
forces act upon this continuum to modulate the net outcome, including the
pharmacokinetics and efficacy of the compound, the cellular and systems response to the
exposure, and interactions between these levels. For example, injury may commence at
an early time point, parallel to the expression of genes that encode drug efflux and
metabolism proteins. The activation of these compensatory mechanisms may lead to
increased excretion of the chemical.

By combining the source-to-outcome toxicology data together, in a database
system, a new kind of data mining activity can emerge: toxicological intelligence
gathering. Similar to business intelligence, where businesses integrate data from across
the business spectrum, combining customer information with product flows and other
business indicators, to generate patterns predictive of the business process; toxicologic
intelligence gathering integrates data from across the toxicology spectrum, combining

different types of data from chemical exposures, to identify patterns in gene, protein and



metabolite expression, pathology, and gross observations to be predictive of a
toxicological process and mechanism of action.

Toxicologic intelligence itself provides the infrastructure to perform further
computational toxicology experiments. These other computational toxicology efforts
include development of algorithms for data normalization and analysis, pattern
recognition, and correlation across experiments and experimental types (e.g., correlation

of gene expression and metabolite expression data).

Engendering the Toxicogenomics Paradigm

Toxicogenomic studies generate a wealth of disparate data. Consider a complete
toxicogenomic investigation for a new chemical entity will include data from genomic,
proteomic, and metabonomic experiments, histopathological analysis, clinical chemistry,
and gross observations. Although each set of data individually may be useful for
understanding the biological effects following exposure, their integration would be more
useful for the development of mechanistic understanding and systems toxicology models.
For example, phenotypic anchoring of uterine gene expression changes to histological
changes yield a better mechanistic understanding than any of these pieces of data alone
(Moggs, et al., 2004; Paules, 2003).

Toxicogenomics offers a wealth of potential with respect to safety assessment and
mechanistic investigations, such as making drug development more efficient by
identifying toxic drugs earlier in the development process (Ulrich and Friend, 2002), and
facilitating mechanistic research (Boverhof, et al., 2004; Luyendyk, et al., 2004;
Nuwaysir, et al., 1999; Waters and Fostel, 2004). However, to fully realize its potential,

several key ingredients must be present: 1) a data management solution, 2) appropriate



experimental designs, 3) high quality data, and 4) multivariate data analysis methods.

Each of these will be reviewed in more detail below.

Toxicogenomics Data Management
Two methods for toxicogenomics data management currently exist: 1) use of flat files

(i.e., spreadsheets, tab-delimited text files, etc), and 2) use of databases. Whereas a series
of flat files may work for smaller projects, they discourage comparisons across studies,
and become error-prone when performing complex data filtering tasks. Databases,
however, are conceptually a series of flat files which facilitate cross-study comparisons.
By serving as a central storage point, databases also support software development,
preventing changes to the software to accommodate different flat file formats.

Databases are conceptually made up of two parts (from lowest to highest level):
tables and subsystems (an example is shown in Figure 1-1). Tables are collections of
records, or rows, where the data reside. All tables must contain a unique identifier for
each record in the table called the primary key. For example, a table managing animal
data would contain the age, sex, species, and strain, in addition to the database assigned
unique primary key. In order to prevent tables from becoming too large, and to prevent
data redundancy, more tables can be created. Tables can be related to one-another
through a series of primary key-foreign key relationships, where a foreign key is a
primary key entry from a foreign table that exists as part of a record within a table. For
example, in Figure 1-1 a CAGE_ID foreign key (a primary key from the CAGE table)
would exist within the ANIMAL table as part of a record for an individual animal so that
there is knowledge of what cage was used for that animal. This allows cage-specific data

to be contained in the cage table, separately from the animal. If all of the cage-specific



Database _Subsystem

| —-Table

Chromosomal
Location

Figure 1-1: Anatomy of a Database. A database consists of two conceptual
parts: the tables and the subsystems. Tables contain records, which can be
thought of as rows. A series of related tables are grouped together into
subsystems. A group of subsystems make up a database.

da§a were also contained within the animal table there would be the possibility for data
redundancy, where the same data were entered repeatedly to describe the same cage
conditions, increasing the likelihood of data entry errors.

A collection of tables that describe the same larger concept are placed within the
same subsystem. For example, all of the data describing pathology data would be
contained within the Pathology Subsystem. When subsystems are associated with
particular technologies they serve to keep the database modular, ensuring the database

remains scalable (i.e., can continue to grow as new technologies are developed).

Quality Assurance

Quality assurance methods are practices that ensure the high quality of some data

or process. The simplest quality assurance mechanism utilized within most laboratories



is the use of standard operating procedures (SOPs) which ensures that the experiment,
and hopefully the data, are reproducible. Generally, if data are reproducible, it is
considered to be of high quality (Grant, ef al., 2003). However, reproducibility alone
does not determine quality, since it is possible to have a highly reproducible low quality
result. For instance, consistently extracting degraded total RNA from a sample is not a
high quality result, regardless of how reproducible it is. Thus, use of variance prima
facie for quality determination necessitates the presupposition that the process is of high
quality, a generally inappropriate assumption.

Quality control tests are methods for monitoring data quality by using a quality
assurance plan. Many quality control methods exist, such as control charts, and statistical
testing methods. These methods identify samples that are beyond some variance-based
threshold; identifying samples that lie outside the distribution of high quality samples

with some given confidence (NIST/SEMATECH e-Handbook of Statistical Methods,

http://www.itl.nist.gov/div898/handbook/, 4-5-04). Examples of these techniques include
the Shewhart plot and the Student’s t-test.

The Shewhart plot graphically depicts trends in a process across time, coupled
with variance-based quality thresholds. Once the process exits high quality, and breaks
the variance-based threshold, it is said to be “out of control.” The Student’s t-test is used
to determine whether samples come from the same distribution. For example, the one-
sample t-test would compare measurements made from products generated by a process
(i.e., microarrays) against a high quality standard, and determine, with some confidence,

if they come from the same distribution.



The advent of multivariate classification methods based on supervised pattern
recognition techniques have also been applied to the quality control problem. These
methods require the use of a high, and occasionally low, quality dataset to either train a
mathematical model, or to facilitate investigator comparison while visualizing the data.
These methods include the use of Principal Components Analysis (PCA), k-means
clustering, and Support Vector Machines (SVM).

PCA seeks to reduce the dimensionality of the data, from » dimensions to at most
n-1 dimensions. The dimensions (or principal components) from PCA are generated such
that the first dimension contains the largest proportion of the variance from the dataset,
while the subsequent dimensions each represent the largest portion of the residual
variance while remaining orthogonal to the previous dimension. Thus, the first three
dimensions from the PCA represent the three dimensions that best explain the most
variance. By visualizing the first two or three principal components within a coordinate
plane or a three dimensional (3-D) space, it is possible to identify similar samples. In the
case of quality control, if the test samples are analyzed concurrently with the high quality
data, it is possible to perform quality control analysis by defining the high quality region
or sphere based on the Hotelling’s T-squared distance (Model, et al., 2002); a
multivariate t-test. Thus, any samples that exist beyond the Hotelling’s T-squared quality
threshold are demonstrated to be of low quality.

Supervised pattern recognition methods identify an investigator specified number
of clusters from a dataset. For example, in assessing high quality and low quality within
a data set, two clusters would be specified. Support Vector Machines and k-means

clustering are both supervised methods, but work quite differently. Whereas the SVM
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Figure 1-2: Support Vector Machine. The SVM algorithm projects the training
data in a high dimensional space to better expand the differences between the
classes (e.g., tumor vs normal, high vs low quality), and generate more optimal
natural clusters. The algorithm then projects an optimal hyperplane through the
data space that best discriminates the two classes. The mathematical model used
to classify data following this training step represents this hyperplane in the high
dimensional space.

creates a mathematical model trained on a defined historical dataset, the k-means
clustering algorithm generates a cluster center based on clustering of the high and low
quality historical datasets to determine the optimal pattern that best describe the high and
low quality datasets.

The k-means algorithm requires that the cluster centers be specified along with
the number of clusters. The cluster centers are used by the algorithm as “ground truth”,

meaning the cluster centers represent the ideal sample for that cluster. The algorithm
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uses the cluster center as a point of comparison, where the sample is clustered with the
center it is least far from, meaning the center that has the pattern most closely resembling
the sample’s pattern. In a typical quality control implementation of the k-means
algorithm, the historical datasets will be clustered first, specifying that two clusters
should be identified from this dataset. Once the clusters are defined, the cluster centers
are extracted from the method. These centers will be supplied in the future when
performing the k-means algorithm to cluster the samples.

The SVM method generates a mathematical model based on training data to
classify data. The SVM is a binary classifier, but is capable of being extended to provide
multi-class classification. Whereas the goal of the PCA is to reduce the dimensionality of
the data, the SVM actually increases the dimensionality of the data (Duda, et al., 2001).
By increasing the dimensionality, natural clusters will form with larger interclass
differences, making the classification problem easier (Figure 1-2). A hyperplane is
projected within space, that separates the populations, and this represents the
mathematical model. Classification of samples occurs by identifying their location with
respect to the hyperplane (i.e., they will either exist on the high quality or the low quality
side of the hyperplane). For quality assessment, samples from the high and low quality

historical datasets are used to train the model.

Experimental Design

The experimental design utilized for an experiment holds immense gravity over
the results and subsequent interpretation. Different designs yield varying degrees of

precision and power for statistical inference, with varying degrees of cost (Fisher, 1962).

11



Although this provides the impetus for comparison of experimental designs, the choice of
design is still at the discretion of the investigator.

When designing experiments, several factors must be considered and balanced
including 1) the goal of the experimental manipulation, 2) the sources of variance and
their interrelationships, and 3) the economics, both monetary and time, of the study. In
some cases, it is possible that failure to balance these factors may result in less than
optimal results, and in extreme cases the design may compromise the results to the point
where they are inappropriate.

Tables 1-1 and 1-2 provide examples of two different experimental designs that
could be employed for examining the effects of a chemical (Treatment = 1) in
comparison to its vehicle control (Treatment = 0). Due to the logistics of the experiment,
it must be performed across four days (Day = 1-4). A total of eight animals are used in
these studies, four in the treated and four in the control groups. The only difference
between these two designs is the arrangement of treatments with respect to the day.

One of the primary goals of an appropriate experimental design is to limit the
number of confounding variables that may either complicate or negate the ability of the
investigator to perform comparisons. A confounding variable is an explanatory variable
that may interact with another variable. For example, in Table 1-1 there are a total of
eight animals that will receive one of two treatments (0 = vehicle; 1 = treated) on two
separate days. The null hypothesis being tested is that the treatment will have no effect,
Ho: po = p, where ; is the effect due to treatment (i = 0, 1). If it were expected that
there were a significant and additive effect due to the day, d; (j = 1, 2, 3, 4), then the

experimental design used in Table 1-1 would exhibit a confound with respect to day (i.e.,
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Table 1-1: Non-blocked Experimental Design with Day Confound

Animal Day Treatment Expected

Response*
1 1 0 po +di
2 1 0 o +di
3 2 0 + dz
4 2 0 W + d>
5 3 1 W +ds
6 3 1 w +ds
7 4 1 i + d4
8 4 1 u + ds

day is a confounding variable on the treatment effect). To calculate the treatment effect,
0 = po - n1, between days 1 and 3:

(Mo +dp) — (1 +d3) = (o - 1) + (d; - ds).

This calculation becomes more complicated when treatments are considered across the
entire design. It also demonstrates that the treatment variance cannot be distinguished
from the variance due to the day.

The experimental design in Table 1-1 results in an n = 2 for each treatment. This
is due to the fact that each animal within a day receives the same treatment. Thus, the
experimental unit (i.e., the base treatment unit) is really the day, and not the animal. This
is due to the confound within the experimental design, where the variance due to
treatment and day are inseparable.

A more appropriate design for this experiment is listed in Table 1-2. Here, there
are a total of four observations per treatment, instead of the two observations per
treatment in Table 1-1. Day is no longer a confound within this design as each treatment
variety (or treatment level) is represented within each day. This allows for the separation
of the variance due to day and treatment. Furthermore, to calculate the treatment effect, 6

= Wo - K1, within a day:
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Table 1-2: Complete Block Experimental Design

Animal Day Treatment Expected Response*
1 1 0 po +d
2 1 1 w +d
3 2 0 Ko t+ dz
4 2 1 W+ d
S5 3 0 Mo + ds
6 3 1 pt+ds
7 4 0 Wo t+ d
8 4 1 Bt dy

(Mo +d1) — (11 + d1) = (o— 1) — (d1 - d) = (Ho— 1)

Similar mathematics would be used to calculate the treatment effect across the entire
experiment. Thus, it is clear that by having each treatment variety present within each
day, the variance due to the day variable can be factored out of the treatment effect.
Also, as this design results in a larger n for the same number of animals, the statistical
power will increase, meaning smaller changes due to treatment may be found significant
at the same false positive rate.

In this example, the outcome being tested (i.e., the effect of treatment vs vehicle)
and the economics of the experiment are the same. Both experiments require the same
number of animals, the same number of days to complete the experiment, and the same
amount of the treatment compound and vehicle. They only differ in the assignment of
animals to treatments and days. However, the impact of the differences between the
designs is great, with one experiment yielding results where the treatment is confounded
by the day of treatment, whereas the other more accurately reflects the treatment effect.
When a microarray experiment is considered, the number of possible confounding factors

increases beyond those examined here.
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Microarray Experimental Designs

Recently, the identification of appropriate microarray experimental designs has
become a subject of great interest (Churchill, 2002; Dobbin, et al., 2003; Dobbin and
Simon, 2002; Simon, et al., 2002; Tempelman, 2005; Townsend, 2003; Vinciotti, ef al.,
2004). The experimental design used in a microarray experiment must include
considerations of whether or not biological samples should be pooled, the number and
types of technical replication, the arrangement of samples on the microarrays, and the
analysis method. The choice of experimental design will impact the active list of genes,
the hypotheses formulated from these lists, and ultimately the concept of the risk versus
benefit from exposure to a chemical.

Table 1-3 lists many of the possible sources of variance in a microarray
experiment. These sources can be categorized as either biological (i.e., inherent within
the biological model) or technical. Generally speaking, it is best to block the sources of
variance, such as in Table 1-2, such that each level of the treatment variable exists within
every level of the confounding variables. For example, a cage-level confound that exists
at the time of treatment, will persist through the entire experiment. Another common
example of a confound is the assignment of different investigators to extract total RNA
from tissue samples based on the treatment group. These are examples of confounds that
could have been easily controlled through planning prior to the experiment. However,
other confounds may exist which are difficult or impossible to overcome. For example,
biological variance (variance due to the animal and the treatment) tends to be confounded
with the microarray since it is rarely feasible to place a sample from every level of the

treatment on every microarray. Thus, a complete block design (i.e., where every level of
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Table 1-3: Sources of Variance

Type Name

Microarray

Feature

Array-wise Technical Dye

Variance Microarray Print
Subgrid

Investigator

Growth Conditions
Non-array technical (cage/flask, husbandry,
variance medium)

Circadian

Day

Treatment formulation
Dissection

Biological Animal/Cell culture

treatment effect exists on every level of the confounding variables, such as in Table 1-2)
fora micrda.rray experiment is rarely feasible.

Although some of the sources of variance within a microarray study [such as the
growth conditions, husbandry conditions, and the time of day at the time of sacrifice
(e.g., circadian effects)] are relatively obvious, other sources include 1) array-wise
technical variation, 2) non-array technical variation, and 3) biological variation (Shih, e?
al.,2004). Array-wise technical variation includes all sources that are specific to the
microarray process, from fluorescently labeling the sample, hybridization, and scanning.
Sources of non-array technical variation include growth and husbandry conditions for the
animals and cell cultures used in the experiments, or the local environment in the case of
tumor samples and biopsies, circadian differences when the harvesting occurs at different
times of day or different times within the light/dark cycle, differences in the treatment

formulation (e.g., non-uniform suspension), and technical differences during dissection.
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Figure 1-3: Reference Design. Each arrow represents a microarray,
where the head denotes the Cy5 labeled sample, and the tail denotes the
Cy3 labeled sample. Trn represents a treated sample at the nth time-point;
Vn represents a vehicle sample at the nth time-point.

Due to the complexity of the microarray experiment, many of these sources of
variance are compounded with each other in ways that are difficult to control
experimentally. For example, a dye-bias has been demonstrated to exist within two-
channel cDNA microarray data (Cox, et al., 2004; Dobbin, et al., 2003; Dombkowski, et
al., 2004; Eckel, et al., 2005; Fare, et al., 2003; Workman, et al., 2002). There are
several potential causes for bias including steric hinderence inhibiting dye incorporation,
dye-dye interactions leading to the quenching of fluorescent signal (Cox, et al., 2004),
fluorophore exposure to ozone (Fare, et al., 2003), and the sensitivity of the laser detector
on the microarray scanner. This dye-bias may interact with subgrid effects on the
microarray resulting in unreliable, inaccurate measurements if not controlled.

Initially, the most commonly used experimental design for two-channel array data
was the reference design (RD) (Churchill, 2002; Kerr and Churchill, 2001a; Kerr and

Churchill, 2001b; Vinciotti, et al., 2004). The design consists of a pooled reference
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sample that is labeled with the same dye, and hybridized to each microarray. The
experimental samples are labeled with the same dye (other than that used to label the
pooled reference) and hybridized to their respective arrays (Figure 1-3). The pooled
reference sample, which has no biological significance, consists of an aliquot from each
biological sample of interest. The purpose of the reference sample is to prevent division
by zero errors when calculating fold change ratios. This design exhibits a confound
between the biological treatments and the dye (i.e., the variance due to the dye is
inseparable from the treatment variance) (Churchill, 2002; Yang and Speed, 2002),
increasing the variance within the biological treatment, ultimately affecting the list of
significant or active genes. By performing a dye swap, where replicate microarrays are
performed with the dyes are reversed, the confound between the biological treatment and
dye is alleviated. This is equivalent to the blocking procedure used in the example (Table
1-2) from the previous section. One of the primary concerns with the RD is the over
collection of data concerning the relatively uninformative pooled reference compared to
the treatment groups of interest (Kerr and Churchill, 2001a; Kerr and Churchill, 2001b;
Yang and Speed, 2002). Another concern with the RD is that the amount of pooled

reference required increases with each additional treatment group.

18



T4 T8 T12 T18 T24 T72

A A A A A

> J
—

Y Y Y Y VY VY v

V2 V4 V8 V12 V18 V24 V72

Independent Reference Design
14 microarrays

Figure 1-4: Independent Reference Design. This design encompasses two
microarrays per time-point, with dye swap. A time-point is confounded
within the same arrays using this design, although the dye is not
confounded with treatment. Tn represents a treated sample at the nth time-
point; Vn represents a vehicle sample at the nth time-point. Double headed
arrows represent the dye swap, where each sample is labeled with both Cy3
and CyS.

The independent reference design (IRD) was developed as an alternative to the
reference design (Fielden, et al., 2002b), and represents a direct design (Yang and Speed,
2002) where the comparisons of interest exist within the same microarray (Figure 1-4).
In this case, comparisons are made within each time-point, between treated and vehicle
samples. Thus, the variability due to the microarray is confounded with each time-point,
however, no confound is exhibited between the treatment and dye. Although the IRD is
more efficient than the RD from the standpoint that it does not collect data from an
uninformative reference group, it exhibits a temporal confound (i.e., the time-point term
is completely confounded with the microarray term) that contributes negatively towards

its general utility.
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Figure 1-5: Loop Design. The Loop Design represents a balanced block
design with respect to the dyes. Treatment and vehicle samples from the
same time-point occur on the same microarray, as well as on the arrays
with neighboring treatment groups. Each arrow represents a microarray
where the head represents the Cy5 sample, and the tail represents the Cy3
sample. Tn represents a treated sample at the nth time-point; Va represents
a vehicle sample at the nth time-point.

Another alternative to the RD, that does not exhibit this temporal confound, is the
loop design (LD; Figure 1-5) (Kerr and Churchill, 2001a; Kerr and Churchill, 2001b).
The LD represents a hybrid direct and indirect design, where the comparisons of greatest
interest occur on the same microarray, with the capability to make comparisons across the
entire loop. As the size of the loop increases, the confidence with which one makes
comparisons between distant nodes across the loop decreases (Kerr and Churchill,
2001a). Thus, with a large number of treatment varieties [e.g., where a treatment variety
may be considered the treatment levels and the time levels; for a 2 treatment (treatment
vs vehicle), 7 time-point experiment, there would be 7 x 2 = 14 treatment varieties] it is

possible that comparisons within a treatment class (e.g., comparisons across time, but
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Figure 1-6: Modified Loop Design. Consisting of the loop design
combined with two inner loops for each of the major classes of treatments,
the modified loop design augments with the ability to perform comparisons
across time, but within treated and vehicle groups. Each arrow represents a
microarray where the head represents the CyS sample, and the tail
represents the Cy3 sample. Tn represents a treated sample at the »th time-
point; Vn represents a vehicle sample at the nth time-point.

within the treated or vehicle group) becomes less than optimal; the variance begins to
increase as a function of the increased distance.

The modified loop design (MLD; Figure 1-6) (Boverhof, et al., 2004) combats the
size optimality problem of the LD by including two “inner” loops — one for each
treatment group (e.g., treated and vehicle). These inner loops facilitate comparisons
across time and within treatment class (e.g., treated or vehicle). The major drawback to
the modified loop design is the number of microarrays required compared to the LD and
IRD.

Another significant consideration when designing microarray experiments is the
goal of the experiments. Typically, the goal in pharmaco- and toxicogenomics is the

assessment of a biological response within a population. With this goal in mind, the
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investigator must be mindful of the need to have a suitable number of randomized
biological replicates, or else the estimated response will be inaccurate. This need for
biological replication must also be balanced with the need for technical replicates (i.e.,
replication of a sample’s measurement) to counteract large variances due to the

microarray.

Genomics

Currently, genomics is dominated by the use of cDNA microarrays (Schena, et
al., 1995). The cDNA microarray is a glass slide with thousands of expressed sequence
tags (ESTs) affixed to it. A microarray can be thought of as a distinct geographical
entity, consisting of several islands arranged in a particular topography, typically a grid
on a Cartesian plane (Figure 1-7). Each island, or subgrid, consists of hundreds of spots,
or features, also arranged within a particular topography, again, typically a Cartesian
plane. In the case of spotted arrays, every feature printed within a subgrid was spotted by
the same print-tip, a needle used to transfer the cDNA. As a result, the features from the

same print-tip typically illustrate some degree of covariance (Yang, et al., 2002b).
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Figure 1-7: Schematic of a spotted microarray. The microarray consists of
spots, or features, that are arranged within blocks, or subgrids. Each feature
within a subgrid is printed by the same print-tip.

For gene expression experiments, total RNA is extracted from the samples of
interest and labeled with a fluorescent dye (e.g., Cy3 or Cy5). These labeled samples, or
labeled extracts, are mixed together according to the experimental design, and hybridized
to the microarray. The microarray is scanned with a confocal microscope with detectors
for the dyes, resulting in a Tagged Image File Format (TIFF) image representing the
fluorescent intensities at each feature. The TIFF images for an experiment are quantified

using software such as GenePix, resulting in a tabular representation of the data, where
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Figure 1-8: Pixel map of a microarray feature. Images are made up of pixels,
small rectangles which contain only one color. This zoomed in diagram of a
feature shows the pixels as rectangles. The circle drawn within the feature is the
best circle that can be fitted by the software. The feature measurements are taken
from within this circle as the weighted mean and medians of the pixel intensities
(the weight is the percentage of the pixel within the circle).

each row represents a distinct feature, and col the i ity in the

P

fluorescent channels.

Due to a limitation within the TIFF standard, fluorescence values exist within the
chromatic scale x € {0..65,535} , where 0 represents a pixel of no signal, and 65,535
represents a pixel with the highest, saturated signal. Each feature on a microarray
consists of several pixels, and due to their near circular morphology (imposed by the
software; features may actually exist as other shapes), they fail to represent a whole
number of pixels, complicating the quantification process (Figure 1-8). Software, such as
GenePix, is employed to overcome these difficulties. These software packages report

signal intensity per feature as distributions, where the median, mean, and standard

the mean, median, and standard deviation

deviations are d. They also
of the background intensity for each feature. As it has been shown previously that

background subtractions obfuscate further data analysis (Qin and Kerr, 2004; Tran, ef al.,
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2002), our analysis protocols use background as a method to identify whether or not a
feature is present (i.e., if the median feature signal intensity < median background feature

intensity, then the feature is absent).

Microarray Data Analysis

One important feature of microarray data analysis is the activity of normalizing
the quantified data from the raw microarray images, and identifying genes with
treatment-influenced expression changes. Generally, the act of quantifying the
microarray data is automated through various software processes. These quantified data
are exported to files, and generally uploaded to a database for data management and
association with sample annotation information (e.g., treatment, animal, age, sex,
physiological status). Captured quantified data are then normalized to reduce technical
variation across the samples, while maintaining treatment effects (Cheadle, et al., 2003;
Eckel, et al., 2004b; Quackenbush, 2002). Following normalization the data are analyzed
using any one of a myriad of statistical techniques to identify treatment-influenced gene

expression changes (i.e., active genes).

Microarray Image Quantification

Following image acquisition, investigators quantify the data from the microarray
image using special software that detects each feature and reports the median and mean
feature signal intensity, as well as the median and mean background intensity. For all
microarray experiments reported within this body, median feature signal intensity values

are used for analysis as they are robust to outlier pixels within a feature. Qutlier pixels

25



typically result from the software package not being capable of accepting any feature
morphology other than circular.

Following image quantification, data are submitted to a database and associated
with their sample annotation information. MIAME supportive databases typically require
submission of the TIFF images (a.k.a. raw data) in addition to the quantified data.
Submission of the TIFF images is desirable as there is generally a lack of consensus on
how to properly quantify microarray data, and re-quantification by others may be

desirable when a more general consensus on data analysis is formed.

Microarray Data Normalization

Over the years several different microarray data normalization techniques have
been developed, all with the goal of decreasing the technical variance within the assay,
while not disturbing the treatment variance. Each normalization technique that has been
developed focused on a different and seemingly important technical variant. These
techniques can be grouped as the 1) local normalizations, 2) global normalizations, and 3)
the hybrid techniques, encompassing the strengths of the first two groups.

The local normalization techniques operate on the assumption that a great deal of
the variance within a microarray is due to some local subset of the data, most commonly
the print-tip (Quackenbush, 2002). Examples of these methods include the lowess
regression based on print-tip groups scaling for dye biases (Yang, et al., 2002a; Yang, et
al., 2002b); and ratio-based normalization where the same cDNA is spotted in each print-
tip group, and a spike-in control is used to calculate a local correction factor based on a
ratio of 1 for each print-tip group (Lashkari, et al., 1997); and mean or median centering

of data across an array. These methods work to normalize the data within the local level
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Figure 1-9: Distribution of median signal intensities. This figure illustrates a
relatively common, although undesirable, phenomeon where the distribution of data
within microarrays varies greatly. The y-axis represents the median signal feature
intensity, while the x-axis represents the microarray. The boxes represent
interquartile range; that distance from the 25" to the 75™ percentile. The cross is the
mean of the distribution, while the horizontal line within the box represents the
median (50" percentile). The whiskers represent the remainder of the distribution,
with the uppermost whisker representing the largest data point, and the lower
whisker representing the smallest data point.
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(e.g., subgrid or microarray) such that data across an array approximate the same
distribution.

The underlying assumption of local normalization techniques is that similar
distributions are approximated by all of the microarrays in the study prior to
normalization. Thus, the purpose of the local normalization is to internally shift the data,
or to make fine adjustments, without altering the overall distribution. These
normalization methods would thus fail if used in the experiment illustrated in Figure 1-9,
where the distributions across the microarrays differ substantially.

The global normalization procedures perform normalizations across the entire

experiment. One example of this is the Z-score centering of data, forcing all of the data
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within the experiment to conform to the same distribution (Fielden, et al., 2002a).
Another example is the General Linear Mixed Model (GLMM) approach, where the
normalized data values are the residuals from the model (Wolfinger, et al., 2001). The
GLMM approach regresses the data to fit a specified linear model. The residual
represents the difference between the predicted value from the model and the sample data
from the microarray. The global model is more capable of normalizing the data across
the microarrays than the local model, however, they typically perform less well in
normalizing the local effects (e.g., subgrid) (Quackenbush, 2002; Yang, et al., 2002a).
More recent normalization techniques attempt to build upon the strengths of the
local and global types of normalization. One example of this hybrid technique is the
semiparametric normalization (Eckel, et al., 2004b). Here, the lowess regression, a local
technique, is combined with a global approach — the lowess regression model is built on a
subgrid and treatment basis, thus it normalizes data both within a subgrid and across
microarrays. Thus, the response within subgrid and across the same treatment is modeled
within the regression to normalize the data across the microarrays; decreasing the
technical variation within the treatment groups, without sacrificing the biological
variation. When this normalization technique is coupled with a design that incorporates
dye-swaps, where each sample is labeled with both dyes, the normalization will also

account for dye-biases.

Microarray Data Filtering

Datasets from cDNA microarrays yield a large amount of data, and these data
must be trimmed to make it more reasonable for investigators to follow-up on the results.

Generally, investigators are concerned with identifying genes that are the most changed
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due to treatment. Numerous methods exist for doing this, including the common use of
arbitrary fold change cut-offs, the t-test (Fielden, et al., 2002b), Wilcoxon rank sum test
(a nonparametric analogue of the t-test) (Efron and Tibshirani, 2002), the SAM method
(Tusher, et al., 2001), and empirical Bayes methods (Eckel, et al., 2004a; Efron and
Tibshirani, 2002).

Fold change cut-offs were the original method for determining active genes.
Generally, a two-fold change was considered significant, and those genes would be used
for further follow-up. However, fold change cut-offs tend to meet with significant
resistance in the absence of more rigorous statistical methods, especially since there is no
biological significance attributed to the fold change cut-off. For example, no doctrine
dictates that 2-fold changes are more important than 1.5-fold or 2.5-fold changes.
Furthermore, it is generally accepted that ratios track with fluorescence intensity (Yang,
et al., 2002a), and that fluorescence intensity is related to the number of copies of a
message within the tissue. However, ratios yield less insight to the number of copies
present than absolute intensity. For example, consider four cell populations, population
A has 2 copies of a message, population B has 4 copies, population C has 12,000 copies,
and population D has 24,000 copies. The ratio of B:A = D:C (i.e., the ratio in both cases
=2). The absolute difference in the number of copies is drastically different (2 vs
12,000), however the ratio is the same. Thus, it is difficult to make comparisons across
or within experiments using the ratio alone.

The t-test and Wilcoxon rank sum tests provide the ability to make comparisons
between treatment groups. The t-test makes the assumption that the data are independent,

and identically distributed, and follow a normal distribution. The Wilcoxon test does not
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assume a particular distribution, however it does require the shape of the two population
distributions to be the same. The general idea of both tests is to identify whether or not
the treated and comparator (typically vehicle) groups exist within different data
distributions. These tests are performed on a per-gene basis, thus necessitating follow-up
with an additional test to control the false positive rate.

Generally, investigators tend to term the genes that survive filtering “significant”,
implying some degree of statistical rigor has been satisfied with regard to the gene’s
expression compared to some other population (e.g., vehicle gene expression). However,
in this body the term “active” is used, as opposed to “significant”, as ranking statistics
(typically the same statistics that others use for significance, without the use of a p-value)
are used exclusively for ranking and prioritization of genes for further investigation and
inclusion. Thus, the likelihood of these “active” genes having been treatment altered is
greater than those who are further down the list. By defining these genes as active, there
is no mention or interpretation as to the distribution that these genes come from; in other
words, there is no statement that active genes must necessarily exist within a distribution
other than that for vehicle treated genes. Thus, active genes are not statistically or
biologically significant ipso facto. The only stipulation for a gene to be active is that
there is a higher likelihood that the gene’s change in expression is due to treatment;
inclusion in the list only necessarily dictates that more rigorous follow-up experiments be
pursued at a later time [e.g., quantitative real-time polymerase chain reaction (QRT-
PCR)].

The SAM method is similar to the t-test except it performs an additional

adjustment with respect to the standard error (Tusher, ef al., 2001). Microarray data tend
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to illustrate variable standard errors, where the standard error for low intensity genes is
much less than the standard error for high intensity genes. As the standard error acts as a
penalty in the calculation of the t-statistic (i.e., the t-statistic is inversely proportional to
the standard error), low intensity genes would tend to have larger t-statistics. The SAM
method adjusts the standard error by a user-defined factor to adjust the standard error,
and reduce this bias. The primary concern with the SAM method is that the factor may
itself be chosen inappropriately, thus further biasing the t-statistic, and penalizing
otherwise active genes.

The empirical Bayes methods (a.k.a. hierarchical Bayes methods) are an
application of Bayes’ theory to the problem of identifying active genes. Bayes’ theory
holds that the likelihood an event will occur is dependent upon the prior probability of
that event happening (Gelman, et al., 2004). The prior probability can be thought of as a
historical probability, that is, it is the known probability that an event will occur based on
past trials. For example, to determine the probability that a person has a disease using a
diagnostic kit, it is necessary to know the historical probabilities of correct and incorrect
diagnoses, especially with respect to the patient either actually having the disease or not.
These historical probabilities are the prior probabilities. Generally, the prior probability
must be implicitly stated; however there are mathematical means of deriving suitable and
appropriate prior probabilities when they are unknown. For example, the empirical
Bayes models do not require specification of the prior probabilities as they can be
inferred mathematically from relationships within the existing dataset (Eckel, et al.,
2004a; Efron and Tibshirani, 2002; Gelman, et al., 2004). The key difference between

these methods and the previously mentioned ones is that the empirical Bayes methods
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require familiarity with statistical model building and are not generally accessible to a

larger biological audience without the assistance of trained investigators.

Data Interpretation

Once a microarray dataset has been distilled down to a list of the most active
genes, it must be further analyzed to facilitate data interpretation. Biological
interpretation of the data is a daunting task, and requires the integration of data from
several sources, including up-to-date gene annotation. Investigators will need as much
information as possible to accurately interpret the data, including gene names,
abbreviations, and aliases for literature searches; cellular and extracellular locations;
functional annotation; disease processes the gene participates in; and biological
interaction data (e.g., protein-protein interactions). This information is oftentimes
available in biological databases devoted to a particular purpose or data domain.

Biological databases are grouped by the type of data they manage into several
categories. Figure 1-10 depicts a subset of the more common databases and groups them
as they relate to genomic data integration; excluded from the figure are the metabonomics
related domains which are currently in development. All of the databases exist in an
extremely complex data exchange continuum, where some databases rely entirely upon
others for their information, others are nearly independent of the rest, and the remaining
host a smorgasbord of data integrated from several different levels. Generally speaking,
however, genome sequences, from databases such as Ensembl (Clamp, et al., 2003;
Hubbard, et al., 2005), Entrez Genomes (Wheeler, et al., 2004), and the UCSC Genome
Browser (Karolchik, et al., 2003), can be thought of as the root of the universe. From

these genomic templates, expressed sequence tags and cDNAs in GenBank (Wheeler, et
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al., 2004) can be clustered together and associated with genes (i.e., UniGene (Wheeler, et
al., 2004)), and exemplary, representative sequences can be identified and mapped back
to genes in the genome (i.e., RefSeq (Wheeler, et al., 2004)). These elements are then
annotated in databases such as Entrez Gene (Maglott, et al., 2005), where functional
information (Gene Ontology (Harris, et al., 2004)), and genetic disease information
(Online Mendelian Inheritance in Man; OMIM (Wheeler, et al., 2004)) are integrated to
give a more full picture of the gene’s function.

The same elements from the sequence level databases are also represented on
microarrays. This provides the relationship that facilitates functional annotation of active
genes from microarray experiments. Microarray data are captured locally, for a
laboratory or consortium, within laboratory information management systems (LIMS),
and disseminated to the public through repository systems such as the Chemical Effects
in Biological Systems Knowledgebase (CEBS) (Waters, et al., 2003a), ArrayExpress
(Brazma, et al., 2003; Rocca-Serra, et al., 2003), and the Gene Expression Omnibus
(GEO) (Edgar, et al., 2002).

Tie-in of data between the genomic and proteomic level is also capable through
sequence relationships, from the mRNA to the protein translation. This facilitates further
functional predictions, by analyzing the protein domains that might exist. Interaction
data, from databases such as BIND (Biomolecular Interaction Network Database) (Bader
and Hogue, 2000) and DIP (the Database of Interacting Proteins) (Xenarios, et al., 2000),
can also be gleaned from these proteomic databases to build new networks, facilitating

the development of communication models and novel modes of action.
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Figure 1-10: The Biological Database Universe. The biological database universe is
ever growing, and this figure depicts six of those levels as they pertain to genomic
data analysis and interpretation. The Genome Level Databases catalog data with
respect to the full genome. The Sequence Level Databases catalog sequence reads
from cells, including genomic sequence and expressed sequence tags (ESTs).
Annotation Databases provide functional information about genes and their products.
Protein Level Databases provide information on protein sequences, families, and
domain structures. The Protein Interaction Databases provide interaction data
concerning proteins, genes, chemicals, and small molecules. The Microarray
Databases include local laboratory information management systems (LIMS) and data
repositories. Arrows in the figure depict communication between the different
domains, where information from one level may exist in another level to allow for
cross-domain integration.
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Genome Level Databases

Genome level databases manage, at the very least, genomic data. However, they
differ in their integration of other types of data and often in their assignment of
computationally defined genes. The three primary genome level databases are the
Ensembl database (Clamp, et al., 2003; Hubbard, et al., 2005), the Entrez Genomes
database (Wheeler, et al., 2004), and the University of California Santa Cruz Genome
Browser (Karolchik, et al., 2003). All three databases use different techniques for
predicting genes and gene structures (e.g., untranslated regions (UTR), regulatory
regions, introns, and exons).

The Ensembl database utilizes several different methods for the prediction of
genes and gene structures (Curwen, et al., 2004). The method is biased towards the
alignment of species-specific proteins and cDNAs, and using orthologous protein and
cDNA alignments when necessary. The use of the protein and cDNA alignments against
the genome sequence facilitates the identification of exonic and intronic sequences and
UTRs (Figure 1-11). A putative transcription start site (TSS) can be obtained from this,

defining the end of the upstream region.
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Figure 1-11: Ensembl Genome Annotation. This simplified view of the Ensembl
genome annotation system illustrates their method for identifying gene structures,
such as the untranslated region (UTR), exons, and introns by combining genome,
mRNA, and protein alignments.

The National Center for Biotechnology Information (NCBI) Entrez Genomes
database annotates genes based on the RefSeq database of reference, exemplary
sequences. RefSeq sequences are aligned to the genomic sequence using the
MegaBLAST algorithm; additional mRNA and ESTs are aligned to find more genes

(http://www.ncbi.nlm.nih.gov/genome/guide/build.html#contig; accessed April 5, 2005).

The UCSC Genome Browser uses the NCBI genome builds for its annotation,
however, previously the Genome Browser used similar annotation sources as the Entrez
Genome. Today there are no differences between the human and mouse genome builds.
However, the mouse genome reported at UCSC is the C67/BI6 strain. Previously, the
primary difference between the two methods was in their genome assemblies, where
Entrez Genome used sequence entries from the GenBank database to drive assemblies,
while the UCSC Genome Browser uses BAC clones, mRNA sequences, and a greedy

algorithm (greedy algorithms divide a problem into parts, and identify the locally
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optimized solution to each part independently, and combines those to form a larger
solution, which will hopefully be the globally optimum solution) to furnish the assembly;
resulting in differences in the genome assemblies (Rouchka, et al., 2002). Without
knowing the true assembly of the genome, it is difficult to ascertain which assembly was
more or less correct than the others. This had vast implications with regards to SNP,
promoter, and other data mining applications with regards to these differences (Rouchka,
etal.,2002). Today, NCBI and UCSC agree in their annotation as UCSC uses build from

the NCBI or genome authorities (see http:/genome.ucsc.edw/FAQ/FAQreleases for

further details).

Sequence Level Databases

Sequence level databases manage data with respect to a particular sequence read
of an EST or cDNA. These databases may deal with those sequences directly, as is the
case for GenBank and RefSeq, or they may manage them on a larger scale, where
multiple sequences are grouped together, as in UniGene. Generally, these databases
provide the first level of annotation for microarray studies, as the sequences are directly
represented on the microarrays.

GenBank Accession numbers are generally the most commonly used identifier for
probes attached to microarrays. The GenBank Accession matches the probe to one
sequence within the GenBank database (Wheeler, et al., 2004); a database of submitted
biological sequences (ESTs, cDNAs, etc). The UniGene database creates non-redundant
gene clusters based on GenBank sequences (Wheeler, ef al., 2004). Clusters are built by
sequence alignment, and annotated based on overall sequence alignment to genes in the

Entrez Gene database.
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The RefSeq database provides exemplary transcript and protein sequences based
either on hand curation or based on information from a genome authority (e.g., the

Jackson Labs) (Pruitt and Maglott, 2001; Wheeler, et al., 2004). There are currently

Table 1-4 RefSeq Categories

RefSeq Record Category Source of annotation

Genome annotation Records are aligned to the annotated
genome

Inferred Predicted to exist based on genome

annotation, but no record in GenBank
exists to qualify the prediction

Model Predicted based on bioinformatics
prediction methods; a known transcript
may or may not exist

Predicted Sequences from genes with unknown
functions
Provisional Sequences associated with genes of

known function that have not been
reviewed by NCBI personnel

Validated Sequences associated with genes of
known function that have undergone an
initial review

Reviewed Sequences representing genes of known
function that have been completely
reviewed by NCBI personnel

seven categories of RefSeq records (Table 1-4): 1) genome annotation, 2) inferred, 3)
model, 4) predicted, 5) provisional, 6) validated, and 7) reviewed

(http://www.ncbi.nlm.nih.gov/RefSeq/key.html#status; accessed April 7, 2005). The first

category, genome annotation, includes mRNA and protein records that are aligned to the
annotated genome. Inferred records are those that are predicted based on the genome
analysis, but there is no mRNA/EST that exists within GenBank to qualify the prediction.
Records labeled as “model” are predicted based on gene prediction methods, and may or
may not have a known transcript associated with it. Predicted, represents protein and

transcript sequences from genes with unknown functions. Provisional records represent
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genes with known functions, but which have not been verified by NCBI personnel.
Validated records have undergone an initial review, and are awaiting further review by
NCBI personnel. The reviewed status is reserved for those RefSeq records representing
genes of known function that have been reviewed by the NCBI personnel. For further,
and updated information on the status codes used by RefSeq see:

http://www.ncbi.nlm.nih.gov/RefSeg/key.html#status.

RefSeq accession numbers follow a PREFIX_NUMBER format (e.g.,
NM_123456, or NM_123456789). All curated RefSeq transcript accessions are prefixed
by an NM, while XM prefixes represent accessions which have been generated by
automated methods. Some of the NM transcript accessions have also been generated by
automated methods, but all NM transcripts are relatively mature

(http://www.ncbi.nlm.nih.gov/RefSeq/key.html#status; accessed April 7, 2005).

Annotation Databases

Annotation databases provide functional information for genes, and may also
catalogue the gene’s structure. These databases serve as a launching point for
mechanistic understanding and hypothesis generation from microarray data. Several
domain specific annotation databases exist, including those that focus on particular
species, such as the Mouse Genome Database (Eppig, et al., 2005).

The Entrez Gene database is a part of NCBI’s Entrez suite of bioinformatics tools.
Entrez Gene is a source for information on annotated genes in several different genomes,
including human, mouse, rat, and dog (Maglott, et al., 2005). Annotated genes are

defined as those that have a RefSeq identifier associated with them, or those that have
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Table 1-5: Entrez Gene Annotation Categories and Sources (adapted from Maglott,
et al., 2005)

Annotation Categories Source

Gene names and Publications and genome authorities

abbreviations/symbols

RefSeq Sequence RefSeq database

Genome position and Genome databases

| gene structures

Gene Function Gene Ontology (GO) database, Gene References into
Function (GeneRIF)

Expression Data Gene Expression Omnibus (GEO), EST tissue
expression from GenBank

been annotated by an annotation authority (e.g., Jackson Labs for mice). As such, entries
within Entrez Gene may or may not have a RefSeq associated with them, and those
entries with associated RefSeq accessions may have either the NM (mature) or the XM
(non-reviewed) series. Thus, an Entrez Gene record may not have an exemplary RefSeq
sequence associated with it.

Entrez Gene serves as a focal point for gene annotation, integrating data from
many sources, including databases outside NCBI. Some of this data integration is
achieved through hyperlinks to the appropriate database entries, while others are
catalogued on the detail page for that gene. Table 1-5 (adapted from Maglott, et al.,
2005) lists several of the annotation categories, and their sources. The most basic form of
gene annotation is the gene name and the abbreviation. These are necessary to begin
functional annotation of the gene through the literature. The Entrez Gene database also
integrates data from the RefSeq, Gene Ontology (GO), Gene Expression Omnibus
(GEO), Gene References into Function (GeneRIF), and GenBank databases. The RefSeq
sequences, both mRNA and protein, facilitate sequence based searching, such as

identifying other genes that may be homologous, or identifying gene function based on

40



protein domains. The GO database catalogues genes by their molecular function, cellular
location, and biological process. Information about the expression of genes can be
obtained from the GenBank database, where the tissue localization for an EST is
recorded, as well as the GEO — NCBI’s gene expression repository (Wheeler, et al.,
2004). GeneRIFs provide curated functional data and literature references. GeneRIFs
serve as a useful starting point, however, they typically do not provide the most up-to-
date functional annotation from the literature. Investigators can facilitate GeneRIF
updates by submitting suggestions directly to the NCBI through their update form:
http://www.ncbi.nlm.nih.gov/RefSeq/update.cgi.

For human studies, the Online Mendelian Inheritance in Man (OMIM) database,
the online version of the Mendelian Inheritance in Man (McKusick, 1998), provides
linkages between human génes and diseases (Hamosh, et al., 2002; Wheeler, et al.,
2004). The OMIM database is searchable through the NCBI Entrez system. Links to the
OMIM database are provided within query output pages from the Entrez Gene database.
For many of the diseases within OMIM, a synopsis of the clinical presentation is
provided in addition to links to the genes associated with the disease. PubMed citations
are also made available through the OMIM database, with hyperlinks to the PubMed
database entries. Also, the OMIM contains information on known allelic variants and
some polymorphisms (Hamosh, et al., 2002).

The Gene Ontology (GO) (Harris, et al., 2004) database is another source of gene
functional annotative information. The database consists of an ontology (i.e., a
catalogue of existents/ideas/concepts and their interrelationships (Cox, 1999)) where

terms exist within a directed acyclic graph (DAG; Figure 1-12). DAGs are graphical
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structures that cannot exist as loops, thus, a child node (i.e., an object or concept) may not
also serve as its own predecessor (i.e., parent, grandparent, great-grandparent, etc...).
Any child node within a DAG may have any number of parents, and any number of paths
to get to the child. For example, Figure 1-12 shows two paths leading to the same child,
GO:0045814: negative regulation of gene expression, epigenetic. Here it is evident that
this epigenetic negative regulation of gene expression is both a regulation process and
critical in development. GO entries that exist at the same level relative to the root, or
starting node, do not necessarily reflect the same level of specificity. The level of
specificity afforded must be taken on a per DAG basis, and not relative to the other
DAGs. Thus, a 4™ order node (a node that is 4 levels below the root node) in one DAG
has no specificity relationship with regards to a 6™ order node in a different DAG. At
each mode within the GO there may exist a list of genes. As the annotation for a gene
improves, it may change node associations. For example, if gene X were previously
GO0:0040029 (regulation of gene expression, epigenetic), and new experimental data
suggested gene X was a negative regulator of gene expression through an epigenetic
mechanism, it would be reassigned to GO:0045814 (negative regulation of gene

expression, epigenetic).
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Figure 1-12: Example GO DAG. This DAG shows two paths to reach the same GO
entry, GO:0045814. It is important to note that the DAG travels from the most general

case, and becomes more specific with entries that are farther down the DAG.

Protein Level Databases

In the course of interpreting gene expression results, it is useful to consult protein
databases to identify the proteins that may be encoded by the genes of interest. Some of
the gene annotation databases mentioned above provide links to this information, such as
Entrez Gene and the Ensembl databases. However, as the gene sequence level databases
provided sequence anchoring for the higher level databases, so do the protein level
databases, with respect to protein sequence.

Recently, several protein level databases were merged into one primary protein
resource, the Universal Protein Resource (UniProt). UniProt combines the Swiss-Prot,
TrEBML, and PIR-PSD databases into one resource, consisting of three related
databases. The UniProt Archive (UniParc) is a database of non-redundant protein
sequences obtained from 1) translation of sequences within the gene sequence level
databases (e.g., GenBank), 2) RefSeq, 3) FlyBase, 4) WormBase, 5) Ensembl, 6) the
International Protein Index, 7) patent applications, and 8) the Protein Data Bank
(Bairoch, et al., 2005). The UniProt Knowledgebase (UniProt) provides functional

annotation of the sequences within the UniParc. Examples of the annotation include the
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protein name, listing of protein domains and families from the InterPro database (Mulder,
et al., 2003), Enzyme Commission identifier, and Gene Ontology identifiers. Proteins
represented within the UniParc and UniProt Knowledgebase are then gathered
automatically to create the UniProt reference database,(UniRef) a database of reference,
exemplar sequences based on sequence identity. Three different versions of the UniRef
database exist, the UniRef100, UniRef90, and UniRef50, where the number denotes the
percent identity required for sequences to be merged, from across all species represented
in the parent databases, together into a single reference protein sequence. Thus, the
UniRef50 requires only 50% identity for proteins to be merged together. The UniRef50
and 90 databases provide faster sequence searches for identifying probable protein
domains and functions by decreasing the size of the search space.

The RefSeq database also contains reference protein sequences, similar in concept
to the reference mRNA sequences. These are available through the Entrez Gene system,
when querying for a gene. For more information on RefSeq, see the section on Sequence

level databases.

Protein Interaction Databases

Protein interaction databases capture data on the interaction of proteins with other
proteins, genes, and small molecules. The two protein interaction databases discussed
here include the Biomolecular Interaction Network Data (BIND) and the Database of
Interacting Proteins (DIP), however others include the Molecular Interaction database
(MINT), and the IntAct database. Tools are also available to view the networks, such as

Osprey (Breitkreutz, et al., 2003) and Cytoscape (Shannon, et al., 2003). By visualizing
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the interaction data, with some notion of the gene expression data, investigators can begin
to construct hypotheses to test mechanistic understandings.

Both the BIND (Alfarano, et al., 2005) and DIP (Xenarios, et al., 2000) databases
manage data from protein interaction experiments, including yeast-two-hybrid and co-
immunopreciptation experiments. Much of this data is submitted to the databases either
directly or through database curators scouring the literature. The databases make their
data available through interaction files which are typically available in the Protein
Standards Initiative (PSI) Molecular Interaction (PSI-MI) XML format.

Visualization of these datasets is made possible through tools such as Osprey and
Cytoscape. Both of these tools produce protein interaction networks based on input data,
which may be from either of these databases, or from other sources. Cytoscape has the
additional functionality of allowing users to input their gene expression data for overlay
on the protein interaction map, through plug-ins (Shannon, et al., 2003). Through these
visualization tools, investigators may begin to identify pathways of interest that are
putatively altered following treatment, facilitating the generation of new hypotheses, or

identification of new drug targets.

Microarray Databases

Microarray databases typically come in two forms: 1) laboratory information
management systems (LIMS), and 2) data repositories. The LIMS solutions are used on
the local level to manage data within a laboratory or a consortium. The primary purposes
of the LIMS are to ensure data are being properly managed, facilitate analysis, and

archive data for long-term use. Data repositories serve to facilitate comparisons between
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datasets from across laboratories, facilitate reanalysis of data, and complement
interpretation from studies in non-genomic laboratories.

A general discussion of microarray LIMS is difficult as they are designed by
groups to meet their individual needs. Typically they are developed based on the
Minimum Information About a Microarray Experiment (MIAME) standard (Brazma, et
al., 2001). This standard discusses the need for genomics investigators to include with
their data enough information for other scientists to replicate the experimental protocols.

Data repositories typically follow the same basic philosophy: collect data
submitted by investigators, process it to make it usable by others, and provide some
means for comparison to the rest of the repository. Several journals require microarray
submissions to adhere to the MIAME standard, while the MGED Society is pushing for
journals to require microarray datasets be submitted to repositories as a condition of
publication, similar to requirements that novel sequences be submitted to GenBank prior
to publication (Ball, et al., 2004a; Ball, et al., 2004b). Two of the most common data
repositories are the NCBI Gene Expression Omnibus (GEO) (Edgar, et al., 2002) and the
ArrayExpress (Brazma, et al., 2003; Rocca-Serra, et al., 2003) at the European
Bioinformatics Institute (EBI). These serve as general repositories, capable of handling
most gene expression data. Recently, specialized repository efforts have been
undertaken, such as the Chemical Effects in Biological Systems (CEBS) Knowledgebase
(Waters, et al., 2003a; Waters, et al., 2003b), which will serve to catalogue gene
expression data from chemical exposures with the associated pathology data.

With the emergence of more pharmacology and toxicology domain specific LIMS

for genomics, the International Life Sciences Institute (ILSI) Health and Environmental
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Sciences Institute (HESI) Technical Committee on the Application of Genomics to
Mechanism-Based Risk Assessment, in cooperation with the MGED Society, began work
on a toxicology-specific MIAME standard (MIAME/Tox) (Mattes, et al., 2004). This
MIAME/Tox document is expected to further specify the minimum information that
needs to be communicated to replicate a toxicogenomics experiment. It is expected that
this document will facilitate data sharing among the toxicogenomics community (e.g.,

transmission of data from a toxicology LIMS for inclusion in CEBS).

Conclusion

It is evident that pharmacology and toxicology benefit from large scale omic
technologies. Experimentally perturbing a system, and identifying changes in gene
expression, may result in the generation of novel mechanistic hypotheses (Nuwaysir, et
al., 1999). However, to effectively harness genomic technologies it is also necessary to
develop data management technologies to manage the massive amounts of data as they
are generated. Through these efforts, improved quality assurance protocols and
experimental designs may develop. These improvements, coupled with the maturation
data annotation landscape, will ultimately lead to more informative mechanistic

hypotheses.
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Abstract

The comprehensive elucidation of mechanisms of toxicity that will support
mechanistically-based quantitative risk assessment requires the development of
innovative computational infrastructure and approaches including enterprise data
management systems in order to facilitate data integration and reduce uncertainties in the
source-to-outcome continuum. dbZach (http://dbzach.fst.msu.edu) is a modular relational
database with associated data insertion, retrevial and mining tools that manages
toxicogenomic and traditional toxicology data, and facilitates data integration, analysis,
and sharing between collaborating investigators or with public repositories. It consists of
four Core Subsystems (i.e. Clones, Genes, Sample Annotation and Protocols), four
Experimental Subsystems (i.e. Microarray, Affymetrix, Real-Time PCR (RTPCR), and
Toxicology), and three Computational Subsystems (i.e. Gene Regulation, Pathways,
Orthology) that are supportive of the Minimum Information About a Microarray
Experiment (MIAME) standard. Its modular structure allows data management to be
extended to other emerging technologies and model systems including ecologically
relevant species. dbZach provides daily ongoing support for a number of in vivo and in
vitro toxicogenomic microarray studies and is currently populated with human, mouse
and rat data. The source code will be made available for examination and
implementation to interested parties under license. The terms of the license are currently

being developed. All distribution and licensing information will be made available on the

dbZach website (http://dbzach.fst.msu.edu).
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Introduction

In order to improve the quantitative risk assessment of chronic and subchronic
exposure to synthetic and natural chemicals and their complex mixtures, uncertainties
within the source-to-outcome continuum must be minimized. Emerging technologies and
computational toxicology approaches will provide informative mechanistic data needed
to further improve quantitative predictive models. However, disparate data including
chemical, exposure, adsorption, distribution, metabolism, excretion, toxicologic and omic
data, must be integrated in order to develop comprehensive computational models that
consider all of the available data. The development of enterprise data management
systems is an integral step to support emerging computational toxicology methods and to
facilitate revision of mechanistically-based quantitative risk assessment.

Relational databases and knowledgebases capable of supporting toxicology and
quantitative risk assessment efforts are emerging (Bushel, et al., 2001; Mattes, et al.,
2004; Tong, et al., 2003; Waters, et al., 2003). In addition to ensuring proper data
management and storage, relational databases facilitate data quality assurance, analysis,
sharing and deposition into public repositories. Furthermore, they provide a platform for
complex queries across disparate data and support the development and use of data
mining applications. For example, properly designed relational databases may prove to
be indispensable in the reevaluation of historical data in light of new results, identify
relationships across several different data domains (e.g., gene expression, metabolite,
gross observations, histopathology) to identify predictive agglomerative biomarkers with
greater predictive accuracy, and identify orthologous response genes between model and

ecologically relevant species to reveal conserved mechanisms of toxicity.
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Here, we discuss the dbZach System, a database and associated software suite that was
developed to support data management of ongoing traditional toxicology (e.g.,
histopathology, clinical chemistry/pathology, gross observations) and toxicogenomic
(i.e., genomics, proteomics, and metabonomics) studies (Figure 1). It is supportive of the
Minimum Information About a Microarray Experiment (MIAME) standard (Brazma, et
al., 2001), and the Microarray and Gene Expression (Spellman, et al., 2002) Markup
Language (MAGE-ML) which facilitates the electronic sharing of stored data with other
databases. dbZach is not a public data repository, but rather an intralaboratory
framework for the storage, management, integration, analysis, and mining of data
including toxicology, histopathology, clinical chemistry and microarray data. Data
integration facilitated by dbZach provides infrastructure for building computational
toxicology tools to reduce the uncertainties in the source-to-outcome continuum
associated with quantitative risk assessment. Although developed to support our research
efforts, the schemas used in the design and implementation of the database and its
associated applications are applicable to other toxicology and biomedical research

programs requiring data management.

Database Design

dbZach is designed to be modular and to accurately reflect biological concepts
and relationships. Modularity ensures new subsystems for nascent technologies can be
incorporated without requiring changes to the preexisting backend. Each separate
module of the database is termed a subsystem, and each subsystem manages data for a

technology (e.g., quantitative Real-Time PCR, spotted microarray, Affymetrix), a
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biological concept/discipline (e.g., cDNA clones, genes, toxicology, pathway, gene
regulation), or MIAME required ancillary annotation (e.g., protocols, sample annotation).
Relationships between tables representing definitive biological concepts (e.g.,
animals and organs) are structured to capture their biological relationships (Figure 2).
For example, the animal table records only that data which is specific to the animal itself,
such as its arrival date, age at arrival, sex, and the cage identifier. A separate table
records information about harvested organs, such as the organ name, wet/dry weights,
etc. The two tables are connected through a one-to-many relationship, where one animal

may have data from one or more organs associated with it.
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Figure 2-2: Rel P Animal Husbandry, Tr t, and
Histopathology. Animal husbandry and data are defined in different sets
of tables. As cages may hold more than one animal, a one-to-many relationship
exists between the CAGE and ANIMAL tables. This separation allows data specific
to the cage (e.g., bedding, feed type, water type) to be separated from the animal.
Similar logic follows for treatments, and histopathology data. Relationships
between tables are depicted using the crow’s feet symbols (the line symbols between
tables) , where the parent table (e.g., CAGE) is represented with either a double line
symbol (required relationship), or a circle with a cross symbol (not required
relationship), and the child table (e.g., ANIMAL) is represented with a crow’s foot
(a circle with prongs leading from it). In the one-to-many relationship, there is one
parent that may contain many children (e.g., one cage may contain many animals).
In practice, the one-to-many (i.e., parent-to-child) relationship is realized through a
primary key (i.e., unique identifier from the parent table) to foreign key relationship
(e.g., the CAGE_ID in the CAGE table is the primary key, while the CAGE_ID in
the ANIMAL table is a foreign key).

Another le of the persi of biological relationships within the database is the

of histopathology data. Animals may consist of many organs within the

database. Organs may exist as an agglomeration of sections. Each section may be scored
by a pathologist, and a lesion may be identified on a per section basis. Pathologist scores
and remarks concerning each lesion are related back to the animal annotation through the

s /

section and organs. Thus, posure ion is not
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Table 2-1: Description of dbZach Subsystems

Database
Subpart

Subsystem

Description

Status*

Core

Clones

Tables that manage cDNA clones, their
sequences, GenBank accessions, 384- and
96-well plate locations, and species
represented

Populated

Genes

Tracks genes of interest for the laboratory.
Includes connections to the Clones and
Real-Time PCR subsystems. Tracks gene
annotation data (name,
abbreviation/symbol, Entrez Gene ID,
RefSeq mRNA Accession, Gene Ontology
data, chromosomal location, UniGene
Cluster) as well

Populated

Protocols

Manages all protocols, and their versions,
in use by the laboratory.

Populated

Sample
Annotation

Manages all sample annotation data
including animal husbandry, cell culture
conditions, organs, biological fluids, and
biological sample type.

Populated

Experimental

Real-Time
PCR

Manages primers, primer sets, PCR plates,
and data from quantitative real-time PCR
reactions.

Populated

Microarray

Manages labeled extracts, microarrays,
clones and feature locations, quality data,
raw image files, quantified data,
normalized and statistical data.

Populated

Toxicology

Manages toxicology and pathology data.

Testing

Protein

Manages protein annotation and proteomic
data

Development

Metabonomic

Manages metabolite annotation and
metabonomic data

Development

Affyemtrix

Manages all Affymetrix data generated
from an experiment

Populated

Computational

Gene
Regulatory

Manages sequences upstream of gene start
sites, gene regulatory sequences, and their
annotation

Populated

Orthology

Manages orthologous gene relationships
between species

Populated

Pathways

Manages known and newly discovered
pathways by modeling the relationships
between endogenous and exogenous
chemicals, proteins, and genes

Testing

* Populated: subsystems ready for querying. Testing: subsystem tables have been put
in place, and are being tested to ensure all appropriate relationships are captured.
Development: the database subsystem is currently being developed.

provided at the histopathology level, but rather the animal. This allows any data
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associated with the animal to also be associated with experimental manipulations
performed on the animal (e.g., treatment, surgeries, husbandry), and optimizes database
design and performance by reducing redundancy where this same information would be
associated with each experimental level (e.g., histopathology, clinical chemistry, gross
observations, etc) individually.

Currently the database consists of 13 subsystems divided in four Core Subsystems
(i.e. Clones, Genes, Sample Annotation and Protocols), six Experimental Subsystems (i.e.
Microarray, Affymetrix, Real-Time PCR (RTPCR), Toxicology, Metabonomics, and
Proteomics), and three Computational Subsystems (i.e. Gene Regulation, Pathway,
Orthology). A brief description of each subsystem and its current status is summarized in

Table 2-1. More detailed descriptions of each subsystem are provided below.

Core Subsystems

The Core Subsystems include the Clones, Genes, Protocols and Sample
Annotation Subsystems. These subsystems satisfy MIAME requirements and are needed
for the functionality of the Experimental and Computational Subsystems.

The Clones Subsystem consists of tables that manage the cDNA clones
represented on microarrays. Each clone is associated with a GenBank accession number.
The mapping of a clone to a GenBank record is a one-to-many relationship to account for
multiple high probability BLAST matches (Figure 2-3). The subsystem also relates a

clone to its location within 96- and/or 384-well storage plates.
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BLAST

Figure 2-3: cDNA Clones to Gene Annotation. BLAST analysis of sequenced ESTs
represented on the microarrays may match multiple, high probability GenBank
Accession numbers. GenBank Accession numbers are mapped to genes using the
UniGene and Entrez Gene databases. Each GenBank Accession is mapped to only
one UniGene record, however, not all of these accessions map to the same gene.

The Genes Subsystem manages gene annotation data for genes associated with
cDNA clones, real-time PCR primers, and pathways. Annotation data include
chromosomal locations, Gene Ontology data, NCBI Entrez Gene and RefSeq i&entiﬁers,
and NCBI UniGene Cluster numbers. GenBank accessions are associated with gene
records through the UniGene database. As a clone may be represented by more than one
GenBank accession, it is also possible for a clone to map to many genes (Figure 2-3).
dbZach updates clone-gene relationships following each UniGene build based on
GenBank Accession relationships with GenBank and cross-references to the Entrez Gene
database.

In compliance with the MIAME standards, all protocols and standard operating
procedures used within the laboratory are managed by the Protocols Subsystem. Changes
to existing protocols are maintained as separate versions. Protocol versions are
associated with data from all of the various subsystems, and may be used in analyses as
appropriate to investigate differences in methods, and to examine the effect of protocol

variations on data.
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Figure 2-4: In Vivo and In Vitro Sample Annotation Tracks. The management of
in vivo and in vitro sample annotation data is tracked separately. This minimizes table
sizes which improves efficiency, and allows for more complete annotations to be
tracked. For example, animals are not grown within a medium, nor are surgeries
performed upon a cell culture sample. Yet, both categories of information are
necessary for complete sample annotation, and not appropriately captured using one
large table for both in vivo and in vitro data.

The Sample Annotation subsystem manages all biological sources of data, such as

animals and cell culture samples. Unlike other database efforts that ascribe to the

MIAME standards, dbZach manages in vitro and in vivo information about biological

sources in different tracks, allowing more detailed information to be managed while

decreasing the number of columns per table, thus enhancing technical efficiency and

simplifying the annotation used for describing study designs and experimental conditions

(Figure 2-4).

Experimental Subsystems

The Microarray Subsystem can manage n-channel (i.e., there is no limit on the

number of concurrent dyes per microarray set by the database) microarray data including
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cDNA and oligonucleotide platforms utilizing any number of fluorescent dyes.
Currently, the subsystem manages the raw TIFF microarray images from the array
scanner, quality control data, quantified data from the image, normalized data, and the
statistical analysis output used in the identification of significant/active genes. This
subsystem leverages relationships with other tables within the Sample Annotation,
Clones, and Protocols subsystems to provide additional annotation.

The Real-Time PCR Subsystem manages critical data for performance of
quantitative real-time PCR (QRT-PCR) assays. These include the sequence of forward
and reverse primers, including the central probe for TaqMan assays, the layout of assay
plates, raw data files from the assay equipment, and expression data. The primers are
associated with the template used for their design, and also with the Genes Subsystem, to
provide up-to-date gene annotation data. This also facilitates in silico comparisons to
determine the correlation between the microarray and QRT-PCR gene expression data
(Boverhof, et al., 2005; Fong, et al., 2005).

The Toxicology Subsystem is responsible for the management of all traditional
toxicology data, including histopathology, in vitro assays, clinical chemistry, and cell
morphology. The Toxicology Subsystem currently uses the National Toxicology
Program Pathology Code as the controlled vocabulary for pathology data. Toxicology
data are associated with the source organisms in the Sample Annotation subsystem
allowing toxicology parameters to be tracked back to specific animals and/or treatment

conditions.
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Computational Subsystems

The Computational subsystems include the Orthology, Gene Regulatory and
Pathway Subsystems. These subsystems manage data that facilitate mechanistic
interpretation, cross-species comparison, network elucidation, and quantitative risk
assessment. Tables within these subsystems are populated with data that have been
generated using computational means.

The Orthology Subsystem facilitates species comparisons. Currently, the
subsystem catalogues orthologous genes across human, mouse, and rat species. The
architecture allows other species, such as ecologically relevant models, to be incorporated
as necessary. Orthology data are currently obtained from the Ensembl database,
however, the architecture also enables data from other sources to be used, including the
Comparative Toxicogenomic Database (http://www.niehs.nih.gov/oc/factsheets/ctd.htm).
This facilitates comparisons among databases, as well as maximizing the identification of
orthologous genes in an effort to identify conserved responses and mechanisms of
toxicity between species thus minimizing uncertainties associated with extrapolations.

To facilitate the generation of new hypotheses concerning gene regulation with
respect to the gene expression data, genomic sequence for likely regulatory regions
(proximal and distal promoters, 5’untranslated, 3’ untranslated) for all RefSeq identified
genes from the UCSC Genome Browser have been included in the Gene Regulatory
Subsystem. When leveraged with position weight matrices and probabilistic short
sequence motif identification, this data allows novel hypotheses concerning gene
regulation to be computationally examined for regulatory motifs (Sun, et al., 2004) and

subsequently verfied using chromatin immunoprecipitation (ChIP) and ChIP-on-chip
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technologies (Buck and Lieb, 2004) that facilitates the development of comprehensive
gene expression regulatory networks (Luscombe, et al., 2004).

The Pathways Subsystem catalogs all protein-protein, protein-DNA, chemical-
protein, chemical-DNA, and metabolism pathways. The current schema will handle data
from other databases, and those pathways that are internally defined. For example, two-
hybrid data from data repositories such as BIND (Bader and Hogue, 2000) and DIP
(Xenarios, et al., 2000) can be included in the database, as can data from the literature
utilizing text mining algorithms, or pathways determined internally through

pharmacological experiments.

Implementation

Platform Independent

The dbZach system was not designed for any particular RDBMS or operating
system. The database and tools have been tested under the Oracle 9i and IBM DB2
database engines, and the Java2 v 1.5.0 runtime environment (JRE). The database
schema may be implemented on any platform; however, the tools require a database that
is compatible with the Java Database Connectivity (JDBC) package. Some of the input
tools require users to populate template Microsoft (MS) Excel files which may be
accomplished using either MS Excel or the open source office/productivity software,
OpenOffice (http://www.openoffice.org) which runs on most major operating systems,

including Linux, Windows, and Mac OS X.
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Figure 2-5: Bulk Data Insertion. Bulk data insertions are accomplished using a
template spreadsheet (MS Excel format). Submi fill out the spreadsheet with all
of the necessary information, and select it using the Select Input File graphxcal user
interface (GUI). This mechanism is used for uploading Sample A

Microarray, and Toxicology data. Shown here are examples from the Sample
Annotation Interface.

Bulk Data Insertions

Data are inserted into dbZach using template spreadsheet files written in MS
Excel (Figure 2-5). Spreadsheets were chosen over more cumbersome graphical user
interfaces to facilitate bulk uploads, and build upon user familiarity with spreadsheets.
Furthermore, users can populate template spreadsheets by simply cutting-and-pasting
data from one sheet to another.

An additional advantage of spreadsheets is that they simplify the numerous one-
to-many relationships present within the data. For example, it is far easier to visualize
and enter data from one-to-many relationships in a single spreadsheet than in most
graphical user interfaces. Users can easily copy data from cell-to-cell in a spreadsheet,
decreasing user-based errors, such as typographical errors, for GUI input fields, or

mouse-click errors in the case of GUI combo boxes. Moreover, the use of spreadsheets
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Table 2-2: Applications for Data Mining, Upload, and Interaction with dbZach

dbZach Tool / Description Status*
Application

Clones Interface Provides internal query of data within clones Complete
subsystem

Genes Interface Provides internal query of data within the genes Complete
subsystem

Gene Annotation Queries dbZach using cDNA clones to obtain related | Complete

Tool (GAT) gene mappings and gene annotation. Useful for
annotating active gene lists from microarray studies

Real-Time PCR Provides import and querying of data in the Real- Complete

Interface Time PCR subsystem.

Protocols Interface | Provides import of protocol information to the Complete
Protocols subsystem

dbZach Online Provides query abilities concerning the Clones, Genes, | Complete
primers, and protocols in dbZach

Microarray Interface | Provides microarray data import capabilities Complete

Pathology Interface | Provides pathology data import capabilities Complete

Query Control Tool that provides query capabilities for all data Complete /

Center within the database Development

Visualization Tool that provides multiple biological data Complete /

Control Center visualization capabilities in 2-D and 3-D, including Developement
pattern recognition

Toxicogenomics Provides visualization capability for ontological pair | Development

Correlation Tool (i.e., pairwise combination of genes, proteins,

(TCT) metabolites) expression and significance levels

MAGE-ML Tool that exports data within dbZach in MAGE-ML Development

Exporter format for submission to data repositories

Audit and Report Family of tools that generate audit and report tools for | Complete /

Tool (ART) data submitted to dbZach Development

* Complete: tools and applications that are complete and have met the quality
standards of the laboratory. Complete / Development: plug-in capable applications

with partial functionality available to the laboratory with new plug-ins in

development. Development: tools and applications that are currently in development

or testing.

also decreases the amount of time users spend interacting with the database, and away
from the bench since data entered into spreadsheets can be uploaded without monitoring
and continuous interaction.

Although efforts were made to minimize the complexity of data uploads, human
error is always possible. To ensure data are entered into dbZach appropriately, a series of

audit and report tools have been developed for investigators to double check their
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uploaded data. This serves to minimize curatorial errors by individuals who are not

familiar with the data, and has prevented the loss of time in analyzing incorrect data.

Database Querying

Users can interact with dbZach through the web, using dbZach applications and
tools, or by using Structured Query Language (SQL) queries. Limited data are available
through the web, which is accessed primarily by collaborators. These data include
information regarding the current complement of genes represented on our cDNA
microarrays, and primers available for real-time PCR analysis.

Most database queries performed by investigators within the lab occur through
special interfaces and applications referred to as dbZach Tools. All of the tools have
been written in Java2 and employ the use of the Swing library of classes for GUI
development. Table 2-2 lists and summarizes the availability of current dbZach Tools

and their primary functions.

Data Mining Applications
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Figure 2-6: dbZach Facilitates Computational Toxicology Analysis of Source-To-
Outcome Data. Data from the source-to-outcome continuum are managed within
dbZach and subjected to quality assessment prior to analysis. Analyzed data is
subsequently integrated using computational toxicology tools and predictive models to
facilitate data interpretation and quantitative risk assessment. Comprehnsive analysis
using computational tools support the development of predictive models reducing
uncertainties within the source-to-outcome continuum, facilitating the development of
more accurate quantitative risk and safety assessments.

In addition to the standard data query tools, a series of dbZach Data Mining
Applications have been developed. Data mining involves identifying relationships and
correlations within datasets. It is the first step towards data interpretation, where
preexisting information is applied to data mining outcomes in order to generate new
knowledge. Methods for identifying these relationships vary, and span everything from
statistical analysis to data visualization. Current and future data mining applications are
listed in Tables 2-1 and 2-2. All of these applications have been written in Java2, and

may use the statistical language R.
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Database Applications in Toxicogenomics

Database systems engender the goals of quantitative risk assessment through
integration of data from the source-to-outcome continuum, and by facilitating the
development of computational tools (Figure 2-6). Ultimately, these methods will reduce
uncertainties associated with linkages in the source-to-outcome continuum, and facilitate
the development of more accurate quantitative risk and safety assessments.

The dbZach system has been used within our laboratory to facilitate comparative
experiments across species and toxicants, the generation of new visualization tools to
facilitate data interpretation, the exploration of data sharing methodologies with
collaborators and public repositories such as the Chemical Effects in Biological Systems
(Waters, et al., 2003) and Array Express (Brazma, et al., 2003; Rocca-Serra, et al., 2003),
and the development of novel quality assurance methods to ensure consistent high quality
data within and across studies. Each of these is briefly discussed below, and provide the

foundation for further developments in computational and predictive toxicology.

Comparative Toxicogenomics

Comparative toxicogenomics is the comparison of toxicogenomic data between
domains, such as chemicals, chemical classes, and species. Examples include comparing
toxicogenomic responses within a chemical class to define a signature of response, and
identifying conserved mechanistic responses across species, as well as identifying those
genes that exhibit differential regulation between treatments and/or species that may

provide information regarding differences in susceptibility to toxicity.
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Figure 2-7: Orthologous Gene Expression and Activity Profiles. Active gene lists
for mouse and rat uterine gene expression following the same treatment (i.e. 100 ug/kg
ethynyl estradiol, oral gavage) were interrogated for orthologous gene pairs that
exhibit comparable expression and temporal activity profiles. Pearson correlation
coefficients were calculated for gene expression and temporal activity data for every
pair of orthologous mouse and rat genes. The x-axis represents the correlation
coefficients for gene expression, a measure of how well the temporal patterns parallel
each other. The y-axis represents the correlation coefficients for activity, a measure of
pl(t) similarity for each orthologous gene in the pair. Orthologous pairs that correlate
well in both variables are rep d in the first quadrant (upper right quadrant)
while pairs that are inversely correlated, in both variables are represented in the third

quad (lower left quadrant). Pairs that are poorly correlated in both variables will
appear close to the origin of the graph.

The Orthology Subsystem catalogues orthologues between species, such as mouse

and rat. This subsystem is connected to the Microarray Subsystem through relationships
with the Genes Subsystems, and from there the Clones Subsystem. Thus, as microarray
data are catalogued by clone identifiers within dbZach, gene expression data are easily

compared across species. By calculating the correlation coefficient of gene expression
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across the orthologous gene pairs, it is possible to identify genes with similar and
divergent expression patterns and responses across species.

However, from gene expression data, the activity profile of a gene across dose or
time can also be calculated. Error based statistics, such as the empirical Bayes posterior
probability, are used to rank and prioritize genes for the creation of active gene lists;
those genes that exhibit expression that is most different from vehicle. As activity is
determined on a per time or dose basis, an activity profile is generated as a binary
signature across the dose/time. Alternatively, the signature can also be represented as the
probability values across dose/time. By correlating the activity response between the
species for each orthologous gene pair it is possible to determine the gene expression
similarity of orthologous genes.

Expression and activity correlations are useful tools that may be fused for further
benefit. The “activity index” (Al) is a measure of correlation between expression
profiles, while the “significance index” (SI) is a measure of the correlation between the
significance/active levels, for the ontological pair (i.e., any pair wise combination of
genes, proteins, metabolites). The Toxicogenomics Correlation Tool (Figure 2-7)
visualizes the Al (x-axis) vs SI (y-axis) in a 2-D coordinate plane. As the values exist
within the set {-1...1}, the Cartesian plane can be broken up into four quadrants where
the quadrant-coordinate pair [denoted: (Al, SI)] mappings are: Quadrant 1 (1Q) is (+Al,
+SI); Quadrant 2 (2Q) is (-Al, +SI); Quadrant 3 (3Q) is (-Al, -SI); Quadrant 4 (4Q) is
(+Al, -SI).

The Al is determined primarily by the shape of the expression profile, where

similar profiles yield more positive indices, and opposite profiles yield more negative
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Figure 2-8: Visualization Control Center. The Visualization Control Center (VCC)
provides the ability to visualize data in different dimensions. The VCC is a plug-in
capable tool written in Java2. The visualization capabilities of the VCC are
independent of the data types, thus, any appropriate data may be visualized in 3-D
using this tool. In this example, a rotated 3-D cone-plot of posterior probabilities (x-
axis; due to image rotation it appears as the mirror of the x-axis), short sequence
motifs (z-axis), and their frequency of occurrence (y-axis) within an active gene set
relative to an inactive random set of genes is shown. Large cones to the far right
identify the frequent occurrence of short sequence motifs in the regulatory region of
responsive genes that may be involved in gene regulation when compared to a subset
of non-responsive genes. Mousing over the cone identifies the motif the occurs
frequently in the responsive gene set. Additional functionality that is under
development include pattern recognition techniques.

indices. The SI is determined primarily by the degree to which treated and vehicle
samples are different, and the variance within the groups. Thus, pairs within 1Q illustrate
similar expression profiles and significant changes under the same conditions, while 3Q
pairs exhibit opposite expression profiles, and significant changes under the “opposite”
conditions. For example, gene pairs where gene 1 is significantly altered at early time

points, and gene 2 is significantly altered at late time points will have a negative SI. Pairs
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within 2Q and 4Q are more difficult to interpret. 2Q pairs illustrate opposite expression
patterns, however their significance follows similar dynamics. This may be due to the
influence of variance upon mean estimation for calculation of the expression pattern. 4Q
pairs illustrate similar expression patterns, however the significance patterns are opposite.
This may occur as a result of variability effecting the significance patterns. When
dealing with orthology data, 2Q and 3Q pairs may also suggest the pairs do not represent

true orthologues.

Data Visualization

Visualization techniques project and transform data to facilitate the identification
of relationships. Commonly used visualization methods include agglomerative
hierarchical clustering, k-means clustering, and 2-D and 3-D scatterplots.

For example, Figure 2-8 is a 3-D scatterplot produced by the Visualization
Control Center (VCC). The VCC, coupled with the Query Control Center (QCC), a
universal data querying tool for dbZach, projects data into three dimensions to facilitate
the identification of trends. This serves as an initial, exploratory data mining activity,
however, pattern recognition algorithms can also be added to extend the functionality of

this tool.

Data Sharing

dbZach facilitates the sharing of data at the intra- and interlaboratory levels.
Biomedical researcher-friendly graphical user interfaces (GUIs) allow investigators
within the laboratory to query for any data within the database (Figure 2-9).

Interlaboratory sharing is facilitated by export of data using the emerging Microarray and
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Figure 2-9: Intralaboratory Data Access GUIs. Investigators within the
laboratory have access to all of the data within dbZach. Users may access data
either through direct query using SQL, a domain-specific GUI tool such as the Gene
Annotation Tool (GAT) and the Sample Annotation Interface, or the generic Query
Control Center (QCC). The Sample Annotation Interface GUI (shown here) and the
QCC are menu-driven bulk query systems (i.e., users filter their queries down using
guided menu items), whereas the GAT is not primarily menu-driven, rather, it takes
spreadsheets as input to perform queries on specific terms, such as clone identifiers.

Gene Expression (MAGE) Markup Language (MAGE-ML) (Spellman, et al., 2002) that
facilitates the electronic transfer of data between databases including public repositories.
The dbZach System encompasses several intralaboratory GUI-based applications
developed in Java that ensures data sharing tools may be used across different platforms
(e.g., Windows, Mac OS X, Linux). Several domain-specific GUI applications have been

developed in the past, such as the Clones Interface, Genes Interface, and the Gene
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Annotation Tool (GAT). These interfaces facilitate bulk query of the database, and are
useful for obtaining general information about the clones represented on microarrays
within the database, the annotation available for genes within the database, and the
functional annotation of microarray data, respectively.

Data sharing at the consortium level can occur through the mechanisms outlined
above, or by leveraging database replication technology. Database replication allows the
contents of remote databases to be replicated within the central system, and the contents
of the central system to be replicated at the remote systems. Database replication
typically provides faster query return times and less stress on the central database server.

The dbZach MAGE Exporter facilitates interlaboratory data sharing by leveraging
the MAGE file format. This same application also facilitates the deposition of
microarray data to repositories, such as ArrayExpress (Brazma, et al., 2003; Rocca-Serra,
etal.,2003), the Chemical Effects in Biological Systems (CEBS) Knowledgebase

(Waters, et al., 2003), and the Gene Expression Omnibus (GEO) (Edgar, et al., 2002).

Quality Assurance

Quality assurance takes two forms with respect to data within the database, 1)
audits, and 2) traditional quality assurance. The goal of the audit is to ensure data within
the database faithfully represent what was supposed to be entered. The goal of traditional
quality assurance is to ensure data conform to the quality standards of the organization
and the scientific community.

Data audits are performed within dbZach prior to analysis. Audit and Report Tool
(ART) applications are designed for particular data domains, such as the Microarray

Audit and Report Tool (MART). These tools produce detailed multilevel audit reports
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for data producers and submitters to verify uploaded data are correct and appropriately
related with other data. Prior to analysis, data analysts will also invoke the appropriate
ARTs (e.g., Sample Annotation, Toxicology and Pathology) to further verify the validity
of the data they are about to analyze.

Databases also serve as a rich source of information for generating quality
assurance protocols. As the volume of information within the database increases, a large
pool of training data becomes available for the generation of models for quality assurance

and process control which provide non-biased quality assessments.

dbZach Status

Tables 2-3 through 2-6 provide brief summaries of the data within dbZach, as of
March 2, 2005. Similar up-to-the-minute status reports are also available at
http://dbzach.fst.msu.edu:8050/dbZachCurrentStats/Statistics. Table 2-3 lists the current
number of cell culture entries, broken down by cell line name and species. Table 2-4
presents the number of animals represented within dbZach by species, and a sampling of
the tissues collected from these species, along with their counts. Table 2-5 provides an
overview of the number of clones represented on the current in-house microarrays for
mouse, rat, and human. Also, the number of genes represented on these arrays, and the
number of genes represented by more than 2 clones is provided to indicate the level of
redundancy present on the microarrays. Table 2-6 provides details regarding the number
of microarrays and the number features from these arrays, from in vitro and in vivo
experiments by species. In total, dbZach currently manages 31.4 million features from

approximately 2500 microarrays.
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Table 2-3: Number of Cell Culture Entries

[Cell Type Name [Species [Cell Culture Entries
[HL1-1* human 25
[HepG2 human 56
905K-1" human 15
lhepalclc? cl mouse 3
thepalclc? c4 mouse 3
(hepalclc? wt mouse 472
(hepalclc? c12 mouse 3
[H4IIE rat 48 .
* Human liver stem cell line

1 Human kidney stem cell line

Discussion

T Y aa

Laboratories engaged in toxicogenomics can benefit from databases by not only
facilitating the management and sharing of large, multivariate, disparate datasets but also
in the generation of novel hypothesis. Furthermore, databases reduce data redundancy
while providing a modular data integration solution. This modularity serves to increase
the return on investment as subsystems may be seamlessly added or “plugged-in” without
further redevelopment of the backend in order to support management and integration of
data from nascent technologies.

Relational databases also support the generation of quality assurance protocols to
ensure high quality conclusions are derived from the data. For example, historical
datasets may be defined within the database and used for training s_tatistical learning
theory models (e.g., Support Vector Machines) to identify high and low quality
microarrays. However, to support these efforts database developers must incorporate
data auditing methods, such as multi-level reporting (e.g., where frequency data are
reported on a per experiment basis, and 2-way tables illustrating cross-tabulated

frequencies) to identify problems with data submissions.
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Table 2-4: Animal and Organ Entries

ls Eumber of I;iver IK. IM |U

pecies rganisms [Sections idney [Mammary terus
Mouse 685 1,518 854 1,135 633
[Rat 396 316 256 256 396
Table 2-5: Clone and Gene Information

ISpecies [Clones |Genes [Genes Rep'd by >2 clones
[Human 10,068 6,025 214

[Mouse 13,362 7,952 568

[Rat 8,567 3,022 35

The greatest utility of databases is the ability to effectively mine, or uncover,
relationships across large, complex data domains and experiments, that are not intuitively
obvious. For example, a single database query can identify all genes that are active
following the same treatment in several different tissues, building a hypothesis for a
putative biomarker of exposure to a specific chemical class. Using similar logic, queries
on histopathology data may identify chemicals that yield similar and conserved
histological events across tissues and/or species. This would provide evidence of
functional consequences resulting from conserved mechanisms of action and would
support cross species extrapolations in quantitative risk assessment by reducing
uncertainties inherent in the source-to-outcome continuum.

Data integration facilitates querying across data domains and engenders systems
toxicology, the iterative development of computational models that are predictive of
outcome based on expssure data, or can predict dose based on response. For example,
data integration methods are used for phenotypic anchoring of “omic” observations. By
further integrating with orthology data, it is possible to identify conserved responses to

chemical exposures across species. Through integration of multi-technology responses
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Table 2-6: Count of Microarrays and Features

In Vitro In Vivo
Human Mouse Rat Human | Mouse Rat
Microarray 170 786 0 N/A 1,156 358
Features 1,833,141 | 10,836,346 0 N/A 15,635,954 | 3,081,216

(e.g., genomics, proteomics, metabolomics), with species, histopathology, and other
toxicologic response data, novel multidimensional data analysis (e.g., data fusion) and
visualization methods may be used to develop computational models that can predict
exposure levels, response outcomes and identify mechanistically-based biomarkers of
exposure and thicity.

The growing interest in data sharing (Ball, et al., 2004b; Brazma, et al., 2001) and
calls for increased use of data repositories (Ball, et al., 2004a), require investigators to
consider effective methods for data exchange. Databases, such as dbZach, which are
capable of exporting MIAME-compliant data in MAGE-ML, not only provide effective
sharing mechanism that maintain the integrity of the data, but also provide significant
time savings when submitting data to public repositories and other interested
investiagtors. These methods are less error prone than web-interaction based submissions

as data within the database are written directly to a file without human intervention.

Conclusion

Databases support the integration of disparate data to facilitate analysis and foster
the development of new analysis techniques. The dbZach System currently provides
integration of toxicology, gene expression (microarray and real-time PCR), gene
functional annotation, orthology, and gene regulation data. These capabilities are

currently being extended to include metabonomic data, with proteomic and biological
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pathway data slated as the need arises. By combining data integration and quality
assurance capabilities, and leveraging new analysis and visualization technologies, such
as data fusion (Joint Directors of Laboratories, 1991) and other advanced statistical and
machine learning approaches, uncertainties within the source-to-outcome continuum will

be reduced, ultimately engendering mechanistically-based quantitative risk assessment.
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Abstract

Microarrays represent a powerful technology that provides the ability to simultaneously
measure the expression of thousands of genes. However, it is a multi-step process with
numerous potential sources of variation that can compromise data analysis and
interpretation if left uncontrolled, necessitating the development of quality control
protocols to ensure assay consistency and high data quality. In response to emerging
standards, such as the Minimum Information About a Microarray Experiment (MIAME)
standard, tools are required to ascertain the quality and reproducibility of results within
and across studies. To this end, an intralaboratory quality control protocol for spotted
microarrays was developed using cDNA microarrays from in vivo and in vitro dose-
response and time-course studies. The protocol combines: 1) diagnostic plots monitoring
the degree of feature saturation, global feature and background intensities, and feature
misalignments with 2) plots monitoring the intensity distributions within arrays with 3) a
support vector machine (SVM) model. The protocol is applicable to any laboratory with

sufficient data sets to establish historical high and low quality data.
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Introduction

Microarray technology provides the ability to simultaneously measure the
expression of thousands of genes in a cell, tissue or model of interest. However,
numerous potential sources of experimental variation (Hessner, et al., 2004; Jarvinen, et
al., 2004) have raised concerns regarding assay consistency, and data quality which
confounds the ability to compare data sets between independent investigators and
undermines the utility of intralaboratory (i.e., local), interlaboratory (i.e., collaborative
center), or global scale (i.e., public repository) data sharing and exchange efforts (Miles,
2001; Ulrich, et al., 2004). Consequently, quality assurance and control protocols that
assess the reproducibility of data by identifying deviations or abnormal trends in assay
performance and data quality are required.

Although several quality assurance and control methods have been proposed,
criteria for differentiating high- from low-quality microarrays is lacking, leaving
assessment open to interpretation. Many methods attempt to address this impediment
through a variance-based statistical method, however they suffer from a lack of training,
as the method solely tests the hypothesis of deviation from the rest of the population, and
fail to judge data based on prior knowledge. Therefore, arrays that are technically of low
quality (i.e., high background, low feature signal intensity, misaligned features, or
inappropriately distributed feature intensity values) can still be labeled as high-quality, if
they belong to a larger population of low-quality arrays.

In lieu of these more complicated quality assurance and control methods, data
quality has been reported in terms of sample clustering by assessing whether biological

replicates cluster together (Grant, et al., 2003). Although this methodology determines
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whether or not biological replicates exhibit similar behavior, it provides minimal insight
into the technical quality of the assay (i.e., are these microarrays of high-quality). For
example, similarly treated biological replicates may cluster together, or yield similar
patterns, in light of poor technical quality (e.g., high background, narrow dynamic range).
Moreover, this method may yield false-negative results in a background of extensive
biological variation.

In addition, quality assessments can be stratified to the feature (Hautaniemi, et al.,
2003; Wang, et al., 2001), subgrid or block (Gollub, et al., 2003), or microarray (Model,
et al., 2002; Petri, et al., 2004) level. Although examination of each stratum is crucial, a
comprehensive analysis strategy based on all strata would be advantageous. Thus, the
most robust, comprehensive quality assurance and control protocol would incorporate
aspects of training by using historical datasets (HDS) of known quality, provide analysis
at all microarray quality strata, and diagnose possible sources of poor quality data that
could be corrected and addressed to minimize future problems (i.e., quality assurance).

In this report, a three step intralaboratory quality-control protocol is proposed to
assess spotted microarray data quality as a first step towards ensuring publicly accessible
data is of high quality. Global feature and background signal intensities as well as signal-
to-noise ratios are first assessed to identify problems with raw microarray data quality.
The feature identification process, commonly referred to as gridding, is then
computationally examined to identify potentially misaligned features, which can be
corrected to minimize potential downstream errors in normalization and functional
assignment. Finally, a more in-depth assessment of raw and normalized data

distributions is utilized to ensure that a sufficient dynamic range has been achieved for
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subsequent analyses. 388 time course and dose response two color cDNA microarray
data sets are used to establish high- and low-quality historical data sets and to

demonstrate the utility of the protocol.
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Materials and Methods

Creation of the Historical Datasets, Test, and Validation Sets

388 datasets, derived from in vivo and in vitro dose-response and time-course
experiments using sequence verified cDNA microarrays were used to create both high-
and low-quality historical datasets. Further details on microarray assay procedures are
available at http://dbzach.fst.msu.eduw/. All animal husbandry and sample collection
procedures were approved by the Michigan State University All University Committee
on Animal Use and Care. Microarrays were scanned using an Affymetrix 428 scanner,
and images were quantified using GenePix v5.0 or v5.1.

Global statistics are calculated as:
X, = l Z": X i
n“
where d represents the dye (Cy3 or CyS5), n represents the number of features on the array,
and x4 represents the median feature intensity (either feature signal or background from
the image analysis software) for the & dye and the i" feature.

The historical dataset consists of 155 microarrays that were further classified as
high (n = 87) or low (n = 68) quality based on corroboration by quantitative real-time
PCR (p < 0.05 for the correlation of the gene expression pattern of selected genes), low
feature background intensity, congruent distributions of data points, and detection of
comparable numbers of features. The background feature intensity does not have a
threshold per se, rather it is based on visual inspection for high overall signal and

anomalies such as smears, waves and excessive dust, the ratio of signal to background

being greater than 20, the number of identified features, where at least 95% of the
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Table 3-1: Comparison of the predictive accuracy of support vector machine

(SVM) models for microarray quality predictions.
Positive lﬁ- :(g’:ct'vﬁ:e
Sensitivity | Specificity | Predictive Value Value
P

All Predictor 0.96 0.98 0.99 0.89
Variables*

Regression Predictive 0.99 0.95 0.98 0.97
Variablest

* All Predictor Variables includes six variables: Cy3 and Cy5 mean global feature
intensities; Cy3 and CyS mean global background intensities, Cy3 and CyS5 signal-to-
noise ratios (ratio of the two above listed values).

t Regressed variables are the predictive variables identified using a step forward
logistic regression of the above six variables. These are: Cy3 global mean feature
intensity, Cy3 global mean background intensity, Cy5 global mean background
intensity, CyS5 signal-to-noise ratio.

features are detectable, and the distribution of intensity values must be comparable across
the experiment. Examples of high and low quality images for each criteria are provided
as supplementary data to further assist in defining the thresholds we initially used to
establish our historical training set (HDS). Arrays not found to have the desired
characteristics were categorized as low quality. Quality assignments are not a weighted
vote approach, but rather an all or nothing voting scheme, where high quality arrays must
meet all of the qualifications listed, and are specific to our HDS. The training set was
derived from a random sampling of both high and low quality datasets to form a high (n =
44) and low (n = 40) quality training sets.

The validation dataset consisted of the 233 arrays not included in the historical
dataset. The quality of these arrays was assessed the same as the historical dataset,

resulting in 174 high- and 59 low-quality arrays (Figure 3-1).
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Division 1 Analysis

Predictive variables include any parameter that is of interest to the investigator
that may be indicative of quality. For example, these variables may include 1) the mean
feature intensity across the array for each dye, 2) the mean background intensity across
the array for each dye, 3) the mean ratio of the feature and background intensities, 4)
atmospheric ozone concentration, and 5) laser intensity.

A step-forward logistic regression procedure was used to identify the most
predictive variables for training the support vector machine (SVM). The dependent
variable for the logistic model is a binary variable that reflects whether the microarray is
of high- or low-quality, while the independent variables are the predictor variables from
the historical dataset. The step-forward logistic regression enters predictor variables into
the model one-at-a-time so long as it meets the significance threshold from the chi-square
test. The HDS used for training the SVM is adjusted to reflect only the logistic
regression predictive variables (p < 0.05).

The SVM is then trained using step-forward logistic regression predictive
variables from the combined high quality (HQ-) and low quality (LQ-HDS). As
microarray data become available (i.e., scanned and quantified) the resultant SVM model
was used to classify microarrays as either high- or low-quality. High-quality microarrays
continue through the protocol, while low-quality microarrays were flagged for repeat
experiments. All data were stored for future inclusion into the HDS.

The logistic regression was performed using the LOGISTIC procedure in SAS

v8.2, while the SVM training and analysis were performed using the e1071 package in R
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v1.8.1 using a radial basis kernel. Details of SVM and PROC LOGISTIC

implementation are given in their respective documentation.

Division 2 Analysis

Feature alignment was assessed using a loess nonparametric regression procedure
that was developed as a normalization method to estimate bias on a per-array, print-tip or
subgrid, and channel basis, and is visualized by MA-plots. Feature alignment is analyzed
using a variant of the standard MA-plot (Yang, et al., 2002), referred to as a modified
MA-plot (Eckel, et al., 2004). With respect to the modified MA-plot the true signal
intensity for the i™ feature is either estimated as the average signal intensity across all

arrays, dyes, and treatments ( 4, ) or as the signal intensity across all arrays and dyes for
each of the j treatment groups separately ( 4, ) for a particular experiment. The choice
between using 4, versus i, is discussed in detail in (Eckel, et al., 2004). Thus, the

estimated true signal intensity is a substitute for the A-term in the modified MA-plot.

The M-term estimates the bias associated with using £, or 4, to estimate the true signal

intensity such that M is equal to the difference between each signal intensity with its
corresponding estimated true signal intensity. After computing the estimated true signal
intensity and the bias, a modified MA-plot is constructed separately for every array and a
nonparametric regression smoother is fit to each print-tip on the corresponding array
individually. If the nonparametric regression smoother for a particular print-tip, or for a
subset of print-tips, is an obvious outlier, feature alignment is investigated. All

procedures were performed in SAS v8.2.
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Division 3 Analysis

Intensity distribution was assessed using box-and-whisker plots on a per-array
basis. Line plots demonstrating trends in global mean feature intensity, global mean
background intensity, and the count of saturated features were created depicting upper
control limits (UCL) and lower control limits (LCL) for each metric. Acceptable
numbers of saturated features have been historically established in this laboratory to be 1-
2% of the total number of features. To assist in quality analysis it is generally useful to
group microarrays performed on the same date together when plotting to identify

temporal trends. All procedures were performed in SAS v8.2.

Results

Figure 3-2 provides an overview of the microarray data quality-control protocol
which is divided into General Quality Metrics (Division 1), Feature Alignment (Division
2), and Distributional Alignment (Division 3). Two additional divisions are included to

place the protocol into context within the overall data management scheme.

Establishment of High- and Low-Quality Historical Datasets

High- and low-quality historical datasets were created to anchor quality
assessments to arrays of known quality to prevent inappropriate assessment of arrays as
high-quality due simply to low variance within the study. High quality was defined
empirically based on corroboration by a complementary technology (e.g., quantitative

real-time PCR (QRTPCR)), low feature background intensity, congruent distribution of
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data points, and detection of a comparable number of identified features. For example,
among high quality arrays, QRTPCR corroborates greater than 80% of the gene
expression trends exhibited by arrays (Boverhof, et al., 2005; Boverhof, et al., 2004a;
Boverhof, et al., 2004b; Burt, et al., 2005; Fong, et al., 2005a; Fong, et al., 2005b;
Kwekel, et al., 2005; Sun, et al., 2004). Arrays not found to have the desired
characteristics in all of the above categories were labeled as low quality.

The HQ-HDS is based on a random sampling of the high-quality microarrays from all
investigators within our laboratory (HQ-HDS: n = 87), and a LQ-HDS similar to the HQ-
HDS, but representing a random sampling of the low-quality microarrays (LQ-HDS: n =
68) from an overall total of 388 time-course and dose-response two-color cDNA
microarrays. Each HDS consists of the Cy3 and Cy5 global mean feature signal intensity
(where global refers to the entire microarray), Cy3 and CyS global mean background
signal intensity, and the Cy3 and Cy5 global signal-to-noise ratio (SNR; ratio of the
global mean feature signal intensity to the global mean background signal intensity) for

each array in the dataset.
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Table 3-2: Logistic regression odds ratio for significant predictor variables

Predictor Variable Odds Ratio (95% Confidence
Interval)
Cy3 Global Mean Signal Intensity 1.003 (1.001, 1.004)

Cy3 Global Mean Background Intensity 0.979 (0.950, 1.009)
CyS5 Global Mean Background Intensity 0.980 (0.969, 0.992)
CyS5 Signal-to-Noise Ratio 1.601 (1.113, 2.305)

Division 1: Support Vector Machines Predict Microarray Quality

Division 1 analysis utilizes the HQ- and LQ-HDSs to develop and train a SVM
model that best discriminates quality classes utilizing all six classification variables. The
SVM model accurately classified (100%) a random sampling of low- (n=40) and high-
quality (n=44) data sets from the HDS, here after referred to as the training set. Since
this is a binary system the term positive is used to denote high-quality microarrays, while
negative is used to denote low-quality microarrays. The positive predictive value (PPV)
is the proportion of predicted high-quality arrays relative to the number of true high-
quality arrays. The negative predictive value (NPV) is similar to the positive predictive
value except it is calculated with respect to low-quality arrays. The SVM model
accurately predicts high-quality microarrays when using a validation set (a randomly
selected subset of the HDS, not including arrays from the training set) of 59 low-quality
and 174 high-quality data sets, with a PPV of 99%, but performed less effectively when
predicting low-quality microarrays, with a NPV of 89% (Table 3-1). In other words,
99% of the true high-quality arrays were accurately predicted to be of high-quality, while

only 89% of the true low-quality arrays were accurately predicted to be of low quality.
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Figure 3-3: CyS signal-to-noise ratio is the most powerful predictor of high and
low quality microarrays. High- and low-quality microarray data exist as two
separable populations. The two lines represent a loess fit to the two different
populations, and highlight the difference between the populations. High-quality
microarrays tend to exhibit a larger CyS5 signal-to-noise ratio than their low-quality

counterparts. The microarray number on the x-axis represents an identification
number.

Logistic Regression Improves Predictive Accuracy of the SVM

Step-forward logistic regression identified Cy3 and Cy5 global (whole array)
mean background intensity, Cy3 global mean feature intensity (mean of the feature
median signal intensity), and the CyS5 global signal-to-noise ratio (ratio of global mean

feature intensity and global mean background intensity for CyS5) as the most predictive
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variables from the HDS, and were used to train a more discriminating SVM model. Cy3
and CyS5 global backgrounds were negative predictors of high-quality, as would be
expected, while Cy3 global mean feature intensity and the global signal-to-noise ratio for
CyS5 were positive predictors of high-quality microarrays. The most discriminate variable
is the global CyS5 signal-to-noise ratio (odds ratio, OR = 1.60) (Table 3-2 and Figure 3-3).
The loess fit lines illustrate the degree of difference between the two data populations

(LQ- and HQ-HDS).
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Figure 3-4: Loess analysis of microarray data identifies microarrays with
misaligned grids. (A) Loess analysis of the raw intensity values from each
array identified one misaligned subgrid on this microarray as evidenced by the
lines with large, sharp slopes (arrow). Each subgrid is represented by two
lines, one for each dye. (B) Subgrids 17-24 were identified as possibly
problematic in A, and plotted in B for better resolution, identifying subgrid
#24 as the putatively misaligned subgrid. The investigator verified the
misalignment using the quantification software and corrected it prior to further
analysis.

By training the SVM using just the predictive variables identified using the step-forward
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logistic regression model, the PPV remained relatively stable at 98%, while the NPV
improved from 89% to 97% (Table 3-1). These results suggest that assessment using all
available variables to train the SVM model contributes to noise that compromise array

quality predictions made on the validation set.

Division 2: Nonparametric Regression Methods Detect Grid

Misalignments

A nonparametric regression procedure is utilized for detecting grid misalignments.
MA-plots have been used to visualize microarray normalization implemented on the
print-tip level (Dudoit, et al., 2002; Eckel, et al., 2004). In addition to aiding in
normalization, MA-plots assist with the identification of misaligned grids.
Nonparametric regression methods, initially introduced to estimate bias, are also capable
of identifying misaligned microarray quantification grids on a per-array basis provided
that most of the microarrays under study are correctly aligned, and that misalignment is
an infrequent, aberrant event (Eckel, et al., 2004). Whereas most of the microarray grid
blocks (a geographical region on the microarray where all features are printed by the
same print-tip) have a slight nonlinear relationship, misaligned blocks will exhibit a
significantly greater slope than correctly aligned blocks such that they appear as obvious
outliers in the MA-plot (Figure 3-4A and B).

Arrays demonstrating misaligned features are identified for follow-up and
realignment. The realignment of the block will result in the alteration of the global
intensity values for that array and as a result are resubmitted for Division 1 analysis.
During the realignment process, it may be possible to diagnose possible causes of the

misalignment, such as high background, dust contamination, or robotic printing error,
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Figure 3-5: Illustration of the box-and-whisker plot to examine the
distribution of feature intensities. Boxes represent the interquartile range, with
the 75" percentile at the top and the 25" percentile at the bottom. The boxplot of
the HQ-HDS population of median Cy3 signals (array_code = 0), illustrating a
broad range of values, from eight randomly selected HQ-HDS arrays. Ideally
the 75" percentile would be in the range of 7,000-13,000 units, with an
interquartile range of approximately 5,000-9,500 units. The arrays under study
(array_code > 0) exhibit some compression (Cy3 channel shown here), as
indicated by compressed interquartile ranges (i.e. boxes), with microarrays 19-24
exhibiting the greatest compression issues. The line in the middle of the box
represents the 50™ percentile, or median, while the plus represents the mean.

The pluses for arrays 20-24 lie on the 75™ percentile line of the box. Whiskers
represent the rest of the distribution, with their terminations representing the
lowest and highest feature intensity values. The x-axis represents the individual
microarray, while the y-axis represents the feature intensity values.

facilitating corrective action to minimize future occurrences thus improving assay

performance and consistency

Division 3: Identifying Compressed and Similar Data Distributions in

Microarray Data

Division 3 identifies microarrays with compressed or non-uniform dynamic range.

Box-and-whisker plots were used to analyze feature intensity distributions on a per-
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Figure 3-6: Interquartile range increases as a function of the number of
saturated spots. The interquartile range is a measure of data spread, calculated as
the difference between the 75™ and 25" percentiles. The interquartile range
increases with increasing number of saturated features, suggesting lower numbers
of saturated features contribute to compressed ranges. By increasing the number
of saturated spots compression is minimized. The lines on the plot represent the
loess best fit line and the 95% confidence intervals.

microarray basis (Figure 3-5). Based on empirical observations, optimal distributions
have the following characteristics: 1) a 25™ percentile of approximately 700-2,000, 2) a
75" percentile of approximately 7,000-10,000 (i.e., interquartile range spanning
intensities of 5,000-9,300 units), 3) a median of approximately 3,000-6,000, and 4) a
mean within the interquartile range defined by the boxed region in Figure 3-5. The
distribution of mean Cy3 median feature intensity values for the HQ-HDS is shown in
Figure 3-5 (array_code = 0). Based on these criteria, microarrays 19-24 fail to show

appropriate distributions because the 75" percentile is lower than the recommended range
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of 7,000 to 10,000 (array_codes: 19-24). Microarrays 13-18 approach appropriate
distributions, since the 75 percentile of the feature intensity distribution is closer to the
recommended 75" percentile (i.e. 7,000-10,000) which is more consistent with the
empirically defined recommendations based on the HQ-HDS (Figure 3-5). The
distributions for all of these arrays are not optimal, as illustrated by the compressed

feature intensity dynamic range as reflected in the constricted boxes (Figure 3-5).
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Table 3-3: Applied Assumptions for Intralaboratory Quality Control and Assurance
Protocol®

1. Test and training data sets were obtaining using the same, pre-agreed
standard operating procedure (SOP)

2. Test and training data sets used the same microarray platform

3. Microarray scanning is performed using the same equipment

4. Image analysis (including segmentation and background calculation
methods) used the same approach for test and training data sets

5. Same normalization methods were used for test and training data sets
(Division 3 analyses)

a. The data sets available for this manuscript were insufficient to test the necessity
of each assumption, and therefore, the necessity of each one was not tested.

As the interquartile range and number of saturated features are positively
correlated (Figure 3-6), the number of saturated features serves as a useful surrogate
marker to ensure comparable data distributions are achieved during array scanning.
Figure 3-7 shows the number of saturated features per array for the microarrays shown in
Figure 3-5 (array_codes > 0). Typically this plot includes the upper- and lower-control
limits (empirically defined to be 2 and 1%, respectively). However, on this plot all of the
microarrays (15-24) are well below the LCL (in the range of 0.1 — 0.5% of the features).
Consequently, microarrays 19-24 have severely compressed dynamic range, as reflected

by the low number of saturated features.

Implementation

The protocol is an initial step to provide investigators a non-biased data quality
assessment tool that would facilitate the sharing of high quality data, albeit on a lab—to-
lab basis. It is meant to be implemented locally, with a focus on intralaboratory or
collaborative project quality assessments as opposed to broad quality assessments of data

sets within public repositories. It is assumed that investigators have, at the very least,
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practiced some form of feature quality control, such as that found in image quantification
software (e.g., GenePix (Axon Instruments), AnalyzerDG (Molecularware)) or which can
be implemented separately (Hautaniemi, ef al., 2003; Wang, et al., 2001), prior to
implementation of these methods. A more detailed listing of assumptions is provided in
Table 3-3. The primary goal is to ensure arrays are of comparable quality, and to
minimize unnecessary technical variation that may skew future results. As such, these
techniques are platform independent, but do not support cross-platform quality
comparisons within a study or across a public repository.

To implement the full protocol, an internally established historical dataset of high
and low quality microarrays must be available in order to assess quality metrics of
interest for Division 1 analysis. The predictive variables presented in this study are
specific to our HDS; implementations of the general method by other groups may
identify additional variables, although significant overlaps are likely. The logistic
regression procedure is used to pare down the list of putative predictor variables, and the
support vector machine is used to create a model to classify arrays as either high or low
quality based on identified predictive variables. It should be noted that the logistic
regression is used as a guide to determine which variables are predictive in the SVM.
The logistic regression, a linear procedure, may not adequately model a non-linear
prediction surface without the use of higher order terms (e.g., quadratic, cubic), thus the
SVM is superior for non-linear estimates. Ultimately, the investigator must decide which
variables are most predictive when used in the SVM. Investigators may also be required

to use an alternative kernel in the SVM procedure to ensure optimal discrimination.
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Division 2 and 3 analyses may be implemented without the use of the HDS, and
may be implemented independent of Division 1, and each other. Division 2 and 3
analyses may be implemented using any statistical software that supports LOESS and

boxplot creation, such as R or SAS.

Discussion

Quality control measures are performed to ensure that extreme or unusual
variation and other technical issues do not overshadow biological and treatment variance.
Although the goal of normalization is to minimize technical variation across samples,
most normalization techniques will be more successful if less technical variation is
present prior to normalization. Therefore, quality control techniques are used to identify
technical variation arising from assignable causes due to the process. If the variability
exceeds a chosen threshold, low-quality data sets can be identified and eliminated or
corrected prior to further analysis while addressing sources of undesirable variation in
future studies, thus improving assay performance and consistency. Normalization on the
other hand corrects for variability that arises from assignable causes.

By controlling the quality of the data, assurances can be made that the results
from these studies are due more to biological variation, and less to technical variation.
Furthermore, by decreasing the technical variation, more accurate estimates of gene
expression may be made, while making more power available for gene filtering and
prioritization using statistical methods. This has direct impacts on knowledge that is
exchanged through data sharing via scientific publications and public data repositories.

A streamlined and standardized process of microarray quality control has been

developed that encompasses several complementary techniques. The protocol combines
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a trained SVM model and nonparametric regression model with more classical techniques
such as box-and-whisker and line plots. Although, it is possible to approach the line plot
using a Shewhart plot, where control limits are defined based on the variance
(NIST/SEMATECH e-Handbook of Statistical Methods,

http://www.itl.nist.gov/div898/handbook/, 4-5-04), for our purposes empirically defined

control limits are preferred. Several different variables, including the feature signal and
background intensity levels, signal-to-noise ratios, grid alignment, data distribution and
dynamic range, and the number of saturated and undetected features are used to assess
data quality on a per array basis, thus providing a streamlined, high-throughput analysis
method to identify quality assurance issues that require intervention.

Specificity of the SVM model increased when using the logistic regression
predictive variables, with negligible effects on sensitivity. These measures are properties
of the test, but fail to address questions regarding the predictive nature of the model based
on a population of microarrays. The PPV and NPV take into account the occurrence of
high- and low-quality microarrays within the population in addition to the sensitivity and
specificity. However, quality assignments by the SVM improved when only the most
predictive variables, as determined by the step-forward logistic regression model, were
used (Table 3-1). Collinearity between the CyS5 signal-to-noise ratio and the Cy5
background was not exhibited. The PPV remained stable while the NPV improved by
8% when using the parameters identified by the logistic regression model. By using the
most predictive variables, noise within the system decreased, allowing for greater

discrimination between high- and low-quality groups. With respect to the protocol,
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microarrays that are of high-quality progress to Division 2 analysis while the samples
from the low-quality microarrays are flagged to repeat the hybridization.

In our laboratory the step-forward logistic regression model identified four
predictive variables (Table 3-2). However, these variables may differ among labs, and
are expected to be technology/platform and protocol dependent. In this study, the global
CyS5 signal-to-noise ratio was the most discriminating predictive variable (odds ratio (OR)
= 1.60), providing the highest degree of stratification between the high- and low-quality
microarrays (Figure 3-4). This degree of stratification is not entirely surprising as CyS5 is
reported to be more susceptible to environmental factors, such as ambient ozone levels,
than Cy3 (Fare, et al., 2003). Thus, it is not surprising that the SVM continues to identify
low quality arrays with questionable CyS backgrounds that are not apparent visibly.

Division 2 analyses focus on grid alignment using MA plots, and plotting the data
on a per-block or subgrid basis to identify block misalignments. This streamlines the
process of realignment which can be reassessed in Divisions 1 and 2, and minimizes the
need to conduct costly, time consuming, and potentially unnecessary repeat
hybridizations.

Division 3 analyses are concerned with data distributions, and ensuring a proper
dynamic range. Appropriately and similarly distributed data are considered to be of high-
technical quality and are forwarded for further analysis. Data distributions are assessed
using box-and-whisker plots, where the highest intensity value should be at saturation
(65,535 units). Data exhibiting appropriate distributions have yielded comparable results
to those verified by quantitative real-time PCR (Boverhof, et al., 2004a). Most problems

with compressed interquartile range and distributions are linked to inappropriate
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photomultiplier tube (PMT) gain settings. The PMT gain should be set to obtain a
comparable number of saturated features (our experience is that 1-2% is appropriate) in
order to achieve similarly shaped data distributions across all arrays (i.e., 75™ percentile
of approximately 7,000-10,000 units, and 25" percentile of approximately 700-2,000
units, with a mean within the interquartile range).

The most reliable indicator of obtaining appropriate dynamic ranges during the
scanning process is the number of saturated features, and not the PMT value. We
advocate shifting the PMT value in order to obtain a proper data distribution, and
sacrificing the overall background intensity. Ideally, the background signal intensity will
be low enough so that shifts in PMT will not adversely affect the number of identifiable
features. Thus, it is not advisable to standardize the PMT gain value for an entire
microarray experiment, as it is expected that optimal PMT gain values will vary by
microarray. Following scanning, diagnostic plots can be used to determine if the number
of saturated features meet the criteria (1% and 2% as the lower control limit (LCL) and
upper control limit (UCL), respectively, are typically used). Abbreviated and compressed
data distributions can manifest problems in downstream analysis and normalization, and

may compromise subsequent statistical analysis of gene expression changes.
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Figure 3-8: Background should be sacrificed for more saturated features.
The microarrays depicted are the same shown in the box-and-whisker plot in
Figure 5. The arrays with the largest Cy3 background are arrays 21-24. The
reference line represents the mean Cy3 background for the HQ-HDS. In this
case, the investigator was more concerned with obtaining a low Cy3 background
than an optimal number of saturated features. Cy3 background should be
sacrificed to increase the number of saturated features as the mean background
for those arrays is below the mean for the HQ-HDS.

For example, arrays 19-24 exhibit the greatest degree of data compression (Figure
3-5) and highlight the correlation between the number of saturated features and the
compressed distribution (Figure 3-7). The low background levels for these microarrays
(Figure 3-8) is a likely contributing factor since the PMT gain was purposefully set low
to minimize background intensity, resulting in the constricted interquartile range. Instead,
PMT levels should have been increased to achieve 1-2% feature saturation to increase the
probability of obtaining an appropriate and uniform distribution (dynamic range) across
all microarrays within the study.

Following these quality control methods, only high-quality data should proceed to
normalization and higher-order analyses. However, all microarray data should be stored

in an appropriate database, including low-quality microarray data, for future refinement
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of the HDSs. This ensures the quality of work being generated within a laboratory to be
of their highest quality. However, it does not facilitate comparisons to the general body
of publicly available data. By ensuring data being produced at the laboratory level is of
the best local quality, investigators ensure the reproducibility of their results. However,
the burden of quality assessment by the public user and peer reviewers still remains a

challenge that is beyond the scope of these methods.

Conclusions

This protocol serves as an initial step to assess intralaboratory or collaborative group data
quality for studies conducted using the same spotted microarray platform. Quality
control ensures data integrity and is essential to facilitate subsequent analysis and
meaningful interpretation that support conclusions, future hypotheses and knowledge-
based decision making. It provides complementary QA/QC methods that include
automated, high-throughput quality assessment using SVMs. Combining this protocol
with other methods such as biological replicate clustering (Grant, ef al., 2003), and spot
quality control assessments provides a more complete quality-control protocol that
ensures the integrity of cDNA and oligonucleotide microarray data. The adoption of such
measures is necessary to instill confidence in data uploaded to public repositories, an
emerging requirement for a growing number of prestigious journals. However, the
development of an enterprise solution that assesses data quality across platforms and
between independent groups available within public repositories is needed in order to

realize comprehensive knowledge extraction from publicly available complex data sets.
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Abstract

Motivation:

To effectively utilize microarrays, studies must be appropriately designed to ensure that
the biological question of interest is properly addressed. Little guidance exists
concerning experimental designs to identify active genes in a single dose, temporal
experiment involving time-matched vehicle controls. To this end, two-color microarray
assays were conducted to generate separate and independent temporal datasets from one
in vivo, and two in vitro studies that incorporate the independent reference, loop, and

modified loop designs.

Results:

All three designs resulted in different active gene lists, with varying degrees of overlap.
The modified loop design included the most technical replicates, and consistently
exhibited the largest active gene list. As the choice of experimental design significantly
affected the overall biological interpretation of the data, the modified loop design is
preferred when using the same number of biological replicates due to the larger number

of technical replicates and to facilitate temporal treatment comparisons.
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Introduction

Experimental design holds immense gravity with respect to the analysis methods,
results, and interpretation of a study. Inappropriate designs and analysis methods may
confound interpretation and lead to inappropriate hypotheses. For example, the use of an
incongruous experimental design may lead to the generation of an inaccurate expression
signature for toxicity in drug candidate screening or a hazard identification program.

Several experimental designs have emerged for the analysis of temporal gene
expression effects including the reference design (Yang and Speed, 2002), independent
reference design (Fielden, et al., 2002), loop design (Kerr and Churchill, 2001a; Kerr and
Churchill, 2001b; Yang and Speed, 2002), and modified loop design (Boverhof, et al.,
2004) (Figure 4-1).

The reference and independent reference designs (RD and IRD, respectively) are
the most intuitive of the experimental designs. The key feature of the reference design is
that all microarrays receive the same reference sample such that it is consistently
represented with the same dye on each array. This implies that both treated and vehicle
samples (i.e., the primary samples of interest) are cohybridized with the same reference
sample on each array. Oftentimes, investigators will perform dye-swaps, where each
sample is labeled with both dyes an even number of times to avoid possible dye biases
(Cox, et al., 2004; Irwin, et al., 2004).

With regard to a temporal experiment, the IRD (Figure 4-1B) differs from a RD in
that each time point has a matched vehicle-control. To model the effect due to the dyes, a
dye-swap design is encouraged where each sample is balanced with respect to dyes (i.e.,

Cy3 and Cy5). Although the IRD requires half the number of microarrays, and therefore
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Figure 4-1: Microarray Study Designs. The composite design (A) is a
combination of the independent reference (B), loop (C), and modified loop designs
(D). The composite design is a non-redundant merger making it an economical
method for study design comparisons. Each arrow represents a microarray, with
the heads and tails each representing a different dye (e.g., Cy3 or Cy5). The
independent reference design is the simplest design where comparisons are made
between treated and vehicle samples where each time-point is treated
independently. The loop design is an interconnected, balanced design where each
treatment/vehicle sample is labeled with each dye equally. The modifications in
the modified loop design are two additional loops, one for each treatment variety
(i.e., treatment or vehicle). These additional loops serve to increase the technical
replication and enhance the ability to make temporal comparisons within a
treatment variety. T represents treated and V represents vehicle varieties while the
numbers indicate the time-point.

less starting material than the reference design, temporal confounds exist that may
compromise analyses across time (i.e., testing hypotheses that there are no changes in
treatment effect across time).

The loop design (LD; Figure 4-1C) was developed as an alternative to the

reference design that provides balanced measurements across the design (i.e., the same
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Figure 4-2: A-optimal Study Design. The A-optimal design for the 28 variety
(i.e., 2 treatment varieties x 7 time-points) experiment represents the design
exhibiting the lowest average error for arrays and varieties. This design does not
make comparisons among adjacent time-points within variety, unlike the modified
loop design.

number of measurements are made per treatment group). This alleviates the need to
generate massive quantities of the reference sample as required with the reference design,
and minimizes acquisition of large amounts of data from the generally uninformative
reference sample (Kerr and Churchill, 2001a). The loop design is also more
economically feasible than the independent reference design, requiring half the number of
microarrays while accounting for dye effects.

The modified loop design (MLD; Figure 4-1D) consists of the standard loop

design, augmented by two “inner” loops, one for each class of treatment variety (i.e.,
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treatment and vehicle). For time-course experiments with treatment and vehicle
comparisons, each treatment-by-time combination is referred to as a variety. In other
words, for a 2 x 4 factorial case (2 treatments x 4 time points), there are eight varieties.
For time-course experiments the loop design is A-optimal (i.e., the design that exhibits
the smallest average variance for comparisons of interest) for four or fewer time points
(Kerr and Churchill, 2001a). However the A-optimal design for a 14-variety experiment
(2 treatments x 7 time points; Figure 4-2; adapted from output from the Experimental

Design Tool: http://exgen.ma.umist.ac.uk/) may not be the most appropriate design for a

time-course study. Under this design, temporally adjacent varieties (i.e., treated at time n
and n+1) are not connected. Connectedness of varieties is preferred (i.e., varieties to be
compared are assayed on the same microarray) to decrease technical variation within the
comparison. Note that the A-optimal design only minimizes the average variance across
all possible comparisons, not necessarily the ones of interest. Thus, if investigators are
interested in comparing treated and vehicle samples from the same time point as well as
adjacent time-points within a treatment class then the modified loop design is more
appropriate with regard to decreasing the variability associated with each comparison.
Others have investigated the differences between the RD and LD (Dobbin and
Simon, 2002; Simon, et al., 2002; Vinciotti, et al., 2004). It has been shown that the RD
outperforms the LD when sample size is limited and class discovery is the primary goal
(Dobbin and Simon, 2002; Simeon, ef al., 2002). However, the LD provides greater
precision, and may be more appropriate when identifying differentially expressed genes
(Vinciotti, et al., 2004). Thus, the RD was not included in these studies since chemical

classification, analogous to the sample classification problems, may be more
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appropriately probed using RD, and that the LD is optimal for the identification of
differentially expressed genes. Here we present an empirical comparison of the
independent reference, loop, and modified loop designs, with respect to three temporal

experiments engaged in identifying treatment responsive genes.

Materials and Methods

Microarray Study Design

A composite design (CD; Figure 4-1A) was employed that combined the IRD,
LD, and MLD into a single, nonredundant representation of each dye-sample
combination. This novel design limits data redundancy, reduces errors due to technical
variation and minimizes confounding factors with run order that may arise if each design
had been completed separately.

The CD was used to generate three datasets from three independent experiments.
Experiment 1 (Exp-1) is an in vitro time course investigating gene expression changes
following treatment with DMSO, a common vehicle typically used for in vitro
experiments that is generally considered to be innocuous, compared to time-matched
untreated (niave) controls. Experiment 2 (Exp-2) is a 17-B estradiol elicited in vitro gene
expression time course study that includes time-matched vehicle (DMSO) treated cells.
Experiment 3 (Exp-3), an in vivo experiment, that compares the temporal effects of 17-a
ethynyl estradiol to a time-matched vehicle (sesame oil) control in murine liver tissue.
All experiments are 7 time x 2 treatment (14 variety) experiments with three biological

replicates.
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Further details on microarray assay procedures are available at
http://dbzach.fst.msu.edu. All animal husbandry and sample collection procedures were
approved by the Michigan State University All University Committee on Animal Use and

Care.

Data Normalization and Active Genes Filtering

Microarrays were scanned using an Affymetrix 428 scanner, and images were
quantified using GenePix v5.0 or v5.1. Microarray data were normalized using a
semiparametric normalization method that accounts for intensity-dependent effects
(Eckel, et al., 2004b) and active genes were identified using an empirical Bayes method
(Eckel, et al., 2004a). Active genes are defined as those with a posterior probability of
being differentially expressed larger than 0.95. Normalization was performed in SAS

v8.02; the empirical Bayes method was performed in SAS v8.02 and R v1.9.1.

Design Comparison Methods

Active gene lists were compared by creating tables of the active genes in SAS,
and performing inner joins across the tables to identify overlapping active cDNAs.

Box-and-whisker plots were used to compare the standard error estimates from
the model-based t-statistic of the General Linear Mixed Model (GLMM) across the three
experimental designs and within each experiment. The GLMM is a linear effects model
where the response variable, or normalized expression value, is modeled as a linear
function of both fixed and random effects (e.g., microarray, treatment, date of
hybridization, etc). The model-based t-statistic is the estimate, theta, from the GLMM

divided by the standard error of theta. For the purposes of this analysis, only treatment
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Figure 4-3: Comparison of Active Gene Lists. Active gene lists were generated
and compared for each design within each experiment. The MLD consistently
yields the largest active gene list. The degree of overlap between the lists is
dependent upon the experiment, not the design. Comparisons are shown for the
Exp-1 (A), Exp-2 (B), and Exp-3 (C) experiments.

and time-matched control comparisons are being made. The box represents the
interquartile range (IQR), where the lower bound is the 25™ percentile and the upper
bound is the 75™ percentile. The whiskers represent the fence, where the upper bound is
the 75" percentile plus 1.5 times the IQR; the lower bound is the 25" percentile minus

1.5 times the IQR. Values outside of the fence are represented by asterisks in the plot.

Mean estimates were d as the arithmetic mean of the normalized feature

intensity within a treatment variety per cONA. Mean estimates were compared using 1)

distributions of temporal correlations, 2)

'y plots, and 3) 45-degree rotated
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scatterplots, similar to the M vs A plot (Yang, et al., 2002), where the abscissa represents
the geometric mean of the mean estimates, and the ordinate axis represents the difference
of the mean estimates between designs. These rotated scatterplots illustrate intensity
relative biases between designs as deviations from ordinate values of zero. The
normalized intensity values exist within log; space and thus the difference (on the
ordinate axis) reflects the log; ratio of the mean estimates.

The temporal correlation (p) is defined per gene i as

o—xiy,. — g[(le - yxi )(yi, - #y, )]

Gxi O-Yi o-xi a)’i

where O, , represents the covariance for gene i; O, and O, represent the variances

across time for designs x and y, respectively; M, and M y, represent the arithmetic

mean of the normalized gene expression value for the vectors x; and y;; x,-, and

Yy i, represent the mean estimates at time £. The é[Q] notation represents the arithmetic

mean of the vector quantity Q. Histograms representing the distribution of correlations
were generated for each pair of design comparisons (IRD vs LD, IRD vs MLD, LD vs
MLD) for each of the three experiments.

Mean estimates (as calculated above) were also compared using trajectory plots.
Principal components analysis (PCA) was performed on the treated and vehicle mean

estimates together, per each design and experiment. Trajectory plots are three
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dimensional scatterplots of eigenvalues from the first three principal components (PCs)

of the PCA. Points within a treatment-variety are connected by line segments in temporal

Table 4-1: Percent Overlap Between Active Gene Lists For Each Design and the
Modified Loop Design
EXP-1
IREF: % overlap with
Modloop 86.2%
LOOP: % overlap with
Modloop 31.8%

Exp-2

IREF: % overlap with

Modloop 38.3%
LOOP: % overlap with

Modloop 54.5%

EXP-3

IREF: % overlap with

Modloop 68.6%
LOOP: % overlap with

Modloop 75.6%

order, creating a treatment-variety surface (i.e., treatment or vehicle surfaces).

Visualizations and Statistical Analyses

All statistical analyses and scatterplots were performed/generated in SAS v8.02,
unless otherwise noted within the referenced material. All other data visualizations were

performed/generated in R v1.9.1.

Results

IRD, LD, and MLD Yield Different Active Gene Lists

Differences in variance and mean estimates of gene expression in each design can

be attributed to differences in the active gene lists (Figure 4-3). The MLD consistently
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Table 4-2: 99 Percentile of the Standard Error Distributions

Exp-1 (99‘ll percentile) | Exp-2 (99“‘ percentile) | Exp-3 (99“I percentile)
IRD 0.345 1.056 0.216
LD 0.321 0.464 0.242
MLD 0.270 0.439 0.198

exhibits the largest active gene lists, with no clear pattern exhibited by the IRD and LD.
The LD and the MLD exhibited the largest concordance in the Exp-2 and Exp-3
experiments, while the IRD and MLD exhibited the largest concordance in the Exp-1

experiment (Table 4-1).

Comparison of Standard Error Estimates

The standard error is used in the estimation of the model-based t-statistic, which
is used to calculate a posterior probability for determination of the active gene list. A
small standard error will inflate the t-statistic while a large standard error will deflate the
t-statistic. In the Exp-1 and Exp-2 datasets, the MLD exhibits less variance than the IRD
and LD (Figure 4-4A, B). However, in the Exp-3 dataset, the MLD and IRD exhibited
similar degrees of variance, while the LD exhibited more variance based on comparisons
of the interquartile ranges (Figure 4-4C). These relationships hold when comparing the
99" percentiles from the standard error value distributions (Table 4-2), with the exception
that the MLD has less error than the IRD in Exp-3. The extreme values are not used in
these comparisons as they are not representative of the majority of the data points. Thus,
the MLD exhibits less variance than the LD, which is expected, as the two designs are
directly related, with the exception that MLD harbors more technical replicates than the
LD. The temporal confound exhibited by the IRD makes interpretation of the standard

error differences difficult between the IRD, MLD, and LD.
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Comparison of Mean Estimates

Mean estimates are used both in the calculation of the model-based t-statistic as
well as calculating the treatment related fold change with respect to time-matched vehicle
controls. The LD and MLD tend to yield more similar mean estimates based on their
temporal correlation (Figure 4-5) in all three experiments. This is evidenced by the
leftward skewed distributions, with correlation coefficients more skewed towards +1.
Thus, the overall patterns, or trends, obtained from the data tend to be similar between the
LD and MLD, but correlation says little about the absolute concordance of these
estimates.

To examine the concordance of the estimates a 45 degree rotated scatterplot,
similar to the M vs A plot is used (Figure 4-6). The x-axis represents the geometric mean
of the mean estimates, while the y-axis represents the difference of the mean estimates
from the two designs being compared. Differences were exhibited by all designs in all
three experiments; however, the greatest differences occurred between the MLD and the
IRD and LD in the Exp-3 experiment, with the largest difference exhibited between MLD
and the IRD, where the average difference was approximately 2-fold (a difference of 1) at
the lower mean estimates, which tapers back to an average of zero difference at the high
mean estimates.

To further compare the means and the temporal relationships, a specialized PCA
plot (aka trajectory plot), similar to those developed for metabonomics (Keun, ez al.,
2004), was used. Trajectory analysis projects temporal microarray data into three

dimensions, each representing a principal component from the PCA. Line segments are
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used to connect each time-point within a treatment group, such that each join point is a
treatment and time-point combination. For example, Figure 4-7C has the vertices
labeled. The starting and end-points of the trajectories are of less interest compared to
the overall shapes that are conveyed by the trajectories. The amount of variance
explained by each principal component (PC), and the total amount of variance explained
by the first three principal components is given in Table 4-3.

The trajectories in the IRD suggest the design is confounded with respect to time,
as the treated and vehicle points tend to cluster closely based on time with congruent, or
similarly shaped, surfaces (Figure 4-7A-i, B-i, C-i). Surfaces do not need to overlap or
be superimposed on one another to be congruent, they simply need to convey similar
shapes. The temporal congruency is lost in the MLD of all three of the experiments
(Figure 4-7A-iii, B-iii, C-iii). The LD exhibits less temporal clustering than the IRD, and
resembles an amalgamation of the IRD and MLD (Figure 4-7A-ii, B-ii, C-ii).
Furthermore, the trajectory analysis further supports the notion that mean estimates from

the designs differ greatly.
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Discussion

The choice of experimental design holds significant gravity over the results and
their interpretation. Application of different designs results in different experimental
interpretations, such as the identification of different biomarkers of exposure.

Three different designs were evaluated to identify their appropriateness for
studying temporal changes in gene expression following exposure to a chemical or an
appropriate control (i.e., time-matched vehicle). To compare the independent reference
(IRD), loop, and modified loop designs (MLD), investigators used a unique design that
combines all three (i.e., the composite design), ensuring that as many arrays as possible
were shared between the designs, thus limiting the influence of technical (e.g., labeling

reaction, microarray) and biological error (e.g., biological sample) on the comparison.
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Each design was examined using three independent composite datasets. Exp-1 and Exp-2
were performed in the murine Hepalclc7 cell line. Exp-2 featured a vehicle control at
each time point, while the Exp-1 time course used untreated (niave) cells as the control.
Exp-3 is an in vivo time course experiment examining the effects of ethynyl estradiol in
the mouse liver.

The designs were compared by examining the temporal trajectories of the gene
expression profiles and the active gene. Differences were examined further by identiying
the amount and sources of variance and comparing estimated means across the designs.

The trajectory analysis confirmed that the IRD exhibited a temporal confound that
compromised the detection of treatment effects. The overlap of treatment-variety
surfaces (i.e., treatment and vehicle surfaces) indicated no difference was observed
between the mean estimates. Treatment-variety surfaces that do not exhibit
superposition, but are temporospatially congruent have treatment varieties that are
confounded by time; that is, the temporal variance cannot be distinguished from the
treatment variance. Although the mean estimates between treatment varieties may be
different, the temporal confound renders time-point comparisons impossible due to the
inability to separate temporal and treatment variances. Thus, hypotheses concerning
treatment comparisons between times are not testable. This prohibits IRD as an
appropriate design for probing temporal relationships of treatments, such as those
required for kinetic modeling of a response. However, the IRD can be used to compare
treatment and vehicle exposures that are independently considered at each time point.

Further insight is gained when interpreting the trajectory results from studies

examining the temporal gene expression effects of DMSO, a common vehicle used in in
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vitro studies. Trajectory analysis from the IRD suggests there is little difference in gene
expression patterns across time between DMSO and untreated cells in culture, and that
there is a great deal of temporal variance in both DMSO-treated and untreated cells. In
contrast, MLD data suggests few temporal effects are exhibited in untreated cells, as
depicted by the points being in relatively close-proximity to each other, while the effects
due to DMSO-treatment are much greater, on the relative scale, with the cells returning to
the “untreated state” by 48hrs. Given the temporal confound exhibited by the IRD, it is
likely that the temporal interpretation from the MLD is more accurate, where untreated
cells show significantly fewer temporal changes across time, and the DMSO treatment by
itself generates a much different change in gene expression, with many of these effects
being absent within 48hrs of treatment.

Large differences in the number and composition of active genes were observed
between the three designs when the same P(1)t-value is chosen. The MLD yields the
greatest number of active genes for all three experiments, which is not surprising given it
includes more technical replication, and will generally exhibit less variance. However,
the degree of overlap of active genes also differs greatly between experiments.

The three designs tend to yield differences in the mean estimates for active genes.
Although these differences exist, the MLD and LD tend to yield estimates that are more
closely correlated than the MLD and IRD. However, large degrees of scatter are still
seen in the scatterplots, representing differences in the estimates. This difference in mean
estimates also appears as differences in the temporal clustering between designs as

evidenced by the distinctly different patterns in the trajectory analysis. For example, the
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relative distance between time-points in the Exp-3 MLD and LD trajectories for the

treated groups are quite different, with 12hr and 18hr relatively close in the MLD, and far
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Figure 4-7: Trajectory Plots of Temporal Expression Changes. Eigenvalues were
calculated from normalized mean estimates of gene expression across time to create
3D scatterplots, where the axes represent the three principal components that best
represent the variance within the dataset. Design were compared within each
experiment (i.e., Exp-1 (A), Exp-2 (B), and Exp-3 (C); IRD (i), LD (ii), MLD (iii)). A
temporal confound is exhibited in the IRD across all of the experiments, exhibited as
close proximity of treated and vehicle nodes for the same time-point, and similar
shape patterns. The MLD illustrates greater treatment effects, relative to vehicle, as
evidenced by the larger spatial distance compared to the IRD and LD. The labels in
(C) rep the variety and time-point, where T is treated and V is vehicle,
and the number is the time-point in hours.

apart in the LD. This difference in the distances alone would skew the biological
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interpretation with either relatively little treatment differences from 12-18hrs in MLD or
larger differences in LD.

The primary difference between the MLD and LD is the number of technical
replicates, where the MLD contains twice as many technical replicates. The MLD
includes technical replicates of biological sample and dye interactions which decrease the
amount of global variance in the MLD as compared to the LD. Increased technical
replication also tends to increase the accuracy of mean estimates as illustrated by the
different trajectory for each design. The MLD shows complete segregation of the
treatment and vehicle spaces, while the LD still shows some similarities (i.e., close
spatial proximity). The increased number of active genes at the same false positive rate is
seen as a side effect of the decreased variance and increased accuracy. Thus,
investigators gain the advantage of smaller false positive rates when limiting their active
gene lists to a particular smaller size when using the P1(t)-value based cutoff method in
the MLD as opposed to the LD.

However the MLD comes at a significant expense, both in terms of the number of
microarrays required and the total amount of biological sample. Although advantageous
compared to the LD and IRD, there are issues of practicality that may limit the use of the
MLD. Technical replication allows an investigator to have more confidence in the
expression level of a transcript within a particular sample, but biological, not technical,
replication models the biological population’é response to the treatment of interest.
Therefore, it is best to sacrifice the technical replication for the sake of biological
replication when sample or supply are limiting (Yang and Speed, 2002). To test this

notion of the importance of biological vs technical replicates, an experiment comparing
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Table 4-3: Percentage of Variance Explained By Each Principal Component
Exp-1 Exp-2 Exp-3
IRD LD MLD |IRD LD MLD |IRD LD
PC1 98.40% 98.80% 99.20% | 96.50% 31.60% 33.00% | 39.20% 52.60%
PC2 0.60% 0.30% 0.20% | 1.90% 17.50% 16.70% | 26.40% 14.20"/1

PC3 0.30% 0.20% 0.20% | 0.50% 11.20% 10.70% | 8.50% 7.50%
Total | 99.20% 99.30% 99.60% | 99.00% 60.30% 60.50% | 74.00% 74.20%

the LD with an additional biological replicate to the MLD where the total number of

microarrays is equivalent would be useful.

Conclusions
This analysis using three independent composite datasets illustrates that biological

interpretation can be significantly influenced by experimental design. The design
affected the estimated mean expression value, temporal clustering, and active gene lists
which may lead to incorrect hypotheses regarding the temporal onset/occurrence of
treatment-related effects. The MLD is the most appropriate design for temporal gene
expression studies involving two treatment varieties, such as treatment and vehicle as it
lacks the temporal confound exhibited by the IRD, and encompasses more technical
replicates than the LD, ensuring more accurate normalized mean estimates. However,
these advantages come at the cost of consumables and biological samples. Thus, the LD
may be more appropriate when cost or the amount of biological sample is limiting.
Advantages of the MLD are also overshadowed by the importance of biological
replicates. Nevertheless, it is clear that technical replication does matter, both for
estimation of standard error and the mean. Thus, experimental design considerations

must include thoughtful analysis of the costs, sample requirements, and the underlying
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biological questions to ensure data quality as ultimately, the experimental design choice

may influence the biological interpretation of the data.
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CHAPTER FIVE

Summary and Conclusions
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Sequencing of the human genome has ushered in the use of new large-scale
technologies for the study of chemical effects in biological tissues and systems in the
emerging field of toxicogenomics. A major hurdle in the adoption of these technologies
is the implementation of cost effective data management schemes to manage the hordes
data. However, to realize the full benefit of the technology, investigators must ensure the
high quality of the data and that appropriate experimental designs are used.

The dbZach System, a combined database and analysis system, provides
toxicogenomic data management capabilities for small laboratories, departments, and
consortia. The relational database backend has been designed to faithfully and
appropriately model biological relationships in a modular fashion. This decreases the
time it takes a new biological investigator to become familiar with the system, and
facilitates the incorporation of new technologies as they develop. The software
capabilities of the system include upload, visualization, and mining of data.

The database is divided into several interconnected subsystems, or collections of
tables. Each self-contained subsystem models a distinct biological concept or
technology, such as cDNA clones, genes, microarrays, real-time PCR, etc, providing a
modular database structure. As new technology develops, new modular subsystems can
be integrated into dbZach without disruption of the current data management landscape.
These new database back-end developments appear completely invisible to the user,
allowing for seamless integration of nascent data types across time.

The development of the dbZach System has allowed for large-scale, multivariate
analysis of trends within microarray data across experiments. Observations from these

analyses lead to the development of high and low quality historical datasets, which were
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instrumental in the development of novel quality assurance and control (QA/QC)
protocols. These protocols have lead to improvements in investigator performance, and
coupled with investigator experience, improved the results generated within the
laboratory.

The current QA/QC protocol consists of three divisions, based on empirical
observations from datasets of varying quality within dbZach. The Support Vector
Machine (SVM)), a statistical learning method for multivariate data classification, was
used to generate a nonlinear mathematical model for identifying high from low quality
microarrays. The method was improved by using a logistic regression to identify the
most predictive variables prior to training the SVM. The most predictive variables
included the Cy5 global feature to background intensity ratio, Cy3 and CyS5 global
background intensity, and Cy3 global feature intensity. The CyS5 global feature to
background intensity ratio was the most predictive variable, which is not surprising as
CyS5 has been reported to be more sensitive than Cy3 to ozone (Fare, et al., 2003).

The second division of the QA/QC protocol leverages a semiparametric
normalization procedure (Eckel, et al., 2005) to identify microarray subgrids which are
misaligned during the automated feature identification. Misaligned subgrids are those
where the software misannotates a region of the region, such as aligning an entire subgrid
row one row off. Misaligned subgrids appear as diagonal lines in the modified MA plots
generated as a result of the normalization procedure. This step is of the utmost
importance as feature identification and microarray quantification software often fail to
properly align microarrays, especially in the presence of high local background, and

misaligned grids are often overlooked by the user.
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The third division of the protocol analyzes the distribution of median feature
intensities on a per array basis. The distribution of median feature intensities may
influence the downstream statistics, including gene activity and the estimate of the mean
expression. For these reasons, the distribution of feature intensities is controlled such
that all experiments within the laboratory must follow the same distribution. This
distributional standardization also facilitates comparisons across tissues and chemicals.

As the microarray technology has continued to mature so has the field of
microarray experimental design; however, little guidance existed as to the most
appropriate design under different circumstances. This prompted the comparison of three
temporal experimental designs: the independent reference, loop, and modified loop
designs with regards to time-course toxicology studies. These designs were compared
using three independent experiments investigating the temporal response of 1) cells in
culture to DMSO, a vehicle commonly used in in vitro experiments, to untreated cells, 2)
cells in culture to 17p-estradiol compared to DMSO treated vehicle controls, and 3) mice
to 17a-ethynylestradiol compared to sesame oil vehicle controls.

The experimental designs yielded different active gene lists, with varying degrees
of overlap within each experiment. The modified loop design consistently exhibited the
largest active gene list, likely due to the increased number technical replicates. The
independent reference design exhibited a temporal confound, while the modified loop
design exhibited a complete mixing of the samples. The loop design appeared as a mix
of the independent reference and modified loop designs, with considerably less of a

temporal confound.
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Based on these results, investigators should consider using the loop and modified
loop designs in lieu of the independent reference design. If only interested in comparing
responses within time, and there is no interest in comparing the results across time, then
the independent reference design would be appropriate, as the confounding of
microarray, temporal, and treatment variances does not hinder the analysis. As the
modified loop uses significantly more microarrays than the loop design, the potential
benefits of the modified loop must be weighed against the economics of the loop design.

Generally, if the cost savings between the modified loop and loop designs are
such that an additional biological replicate can be performed, then it would be advised to
use the loop design. However, if the resources are available to perform the modified
loop, and the cost difference is not enough to allow for an additional biological replicate,

the increased accuracy afforded by the modified loop design may be justified.

Future Directions
The dbZach System is currently in a relative state of stability. The back-end

database is well developed, and has proven capable of managing several microarray
experiments. However, the present functionality of the system primarily resides within
data upload of RT-PCR, microarray, and histopathology data, and minimal data
interaction interfaces for unskilled users. Currently, it is being augmented by new
microarray data mining tools, such as the Visualization Control Center (VCC).

The VCC provides data mining capabilities, such as plotting data in 2- and 3-D
for visualization of data trends. It is being outfitted with pattern recognition algorithms,
such as the k-means and agglomerative hierarchical clustering algorithms. These

improvements will enhance investigator-centered data mining activities.
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Future dbZach development will concentrate on the accommodation of new
technologies, such as proteomics and metabolomics. New subsystems and upload
interfaces will need to be created to manage these data. As these new data domains are
captured, new cross domain data mining capabilities will also need to be developed for
data mining of biological knowledge from combinations of genomic, proteomic and
metabolomic data resident within the database.

The current state of the QA/QC protocol facilitates the identification of
microarrays of questionable quality. However, future work should also focus on
monitoring investigator performance which may include the use of Shewhart plots that
illustrate the relationship between a weighted average, daily quality metric across time.
The primary challenge will be the development of the quality metric; however, one
example being the net number of high quality arrays produced per day. Investigator-
based performance monitoring should lead to a net increase in laboratory data quality, as
trends in investigator performance may be identified, and facilitate intervention,
introspection, and further assay optimization when necessary.

A much larger goal is the formation of global quality metrics (Shi, et al., 2004).
The establishment of global quality metrics is important for performing comparisons of
data from different laboratories using data within repositories. In the case of regulatory
agencies, it is important as a basis of comparison of data from sponsors, and when
performing risk assessments. For example, if a generic drug producer were to use
microarray data to illustrate bioequivalence, the Office of Generic Drugs at the FDA may
compare the signatures seen in the microarray results from the sponsor to results obtained

from the initial patent holding sponsor, an independent third party, or from within FDA,
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in an attempt to verify the bioequivalence and to identify putative signatures of toxicity.
In these cases, the FDA would need to ensure all of the data used in the comparison were
of high quality, or else the results and interpretation may become skewed.

The results from the comparisons of the experimental designs illustrate that
although comparisons of interest should be tested on the same arrays, as asserted by
others (Kerr and Churchill, 2001; Yang and Speed, 2002), this arrangement must be
considered carefully to avoid confounding of the temporal effect. Thus, these results
suggest the use of the loop and modified loop designs is superior to the independent
reference design when the intention is to make comparisons of chemical effect across
time. However, the next step is to further define the appropriate use of the loop and
modified loop designs based on sample sizes and analysis of statistical power. Using the
current datasets as examples, the statistical power with regards to the empirical Bayes
method could be calculated using methods similar to those reported for other microarray
datasets and tests (Tempelman, 2005; Tsai, et al., 2005; Wei, et al., 2004).

Furthermore, with the deluge of statistical mechanisms for normalization and
identifying active genes, the loop and modified loop designs from these datasets could be
used to perform comparisons of the methods. By anchoring these comparisons with the
results from real-time PCR experiments, it may be possible to assess methods using
different designs, and conditions which will provides further guidance regarding the

appropriate analysis methods to use when confronted with a particular design.

Conclusions

In 1999 the BISTI report (Biomedical Information Science and Technology

Initiative; http://www.nih.gov/about/director/060399.htm) recommended more concerted
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integration of computational approaches into biological sciences, and the development of
better software for data analysis and infrastructure for data management, with the fruits of
to be shared with the greater community. These recommendations are especially true for
the omic technologies, where massive datasets are generated and require novel data
management, quality assurance, and experimental design considerations. Providing the
toxicogenomics community with a modular data management product ensures its utility
can continue to evolve as new technologies are developed. Besides the obvious benefit
of having the data properly managed, databases also provide a mechanism for developing
novel quality assurance methodologies, a framework for experimental design
comparisons, and facilitate data sharing with repositories. Thus, these software and
hardware development efforts, when combined with conventional toxicology, facilitates

more comprehensive and predictive safety assessments.

156



Literature Cited

Eckel, J. E., Gennings, C., Therneau, T. M., Burgoon, L. D., Boverhof, D. R. and
Zacharewski, T. R. (2005) Normalization of two-channel microarray experiments:
a semiparametric approach. Bioinformatics, 21, 1078-83.

Fare, T. L., Coffey, E. M., Dai, H., He, Y. D., Kessler, D. A., Kilian, K. A., Koch, J. E.,
LeProust, E., Marton, M. J., Meyer, M. R,, Stoughton, R. B., Tokiwa, G. Y. and
Wang, Y. (2003) Effects of atmospheric ozone on microarray data quality. Anal
Chem, 75, 4672-5.

Kerr, M. K. and Churchill, G. A. (2001) Experimental Design for Gene Expression
Microarrays. Biostatistics, 2, 183-201.

Shi, L., Tong, W., Goodsaid, F., Frueh, F. W., Fang, H., Han, T., Fuscoe, J. C. and
Casciano, D. A. (2004) QA/QC: challenges and pitfalls facing the microarray
community and regulatory agencies. Expert Rev Mol Diagn, 4, 761-77.

Tempelman, R. J. (2005) Assessing statistical precision, power, and robustness of
alternative experimental designs for two color microarray platforms based on
mixed effects models. Vet Immunol Immunopathol, 105, 175-86.

Tsai, C. A., Wang, S. J., Chen, D. T. and Chen, J. J. (2005) Sample size for gene
expression microarray experiments. Bioinformatics, 21, 1502-8.

Wei, C., Li, J. and Bumgarner, R. E. (2004) Sample size for detecting differentially
expressed genes in microarray experiments. BMC Genomics, §, 87.

Yang, Y. H. and Speed, T. (2002) Design issues for cDNA microarray experiments. Nat
Rev Genet, 3, 579-88.

157




LITERATURE CITED

158



LITERATURE CITED

Alfarano, C., Andrade, C. E., Anthony, K., Bahroos, N., Bajec, M., Bantoft, K., Betel, D.,
Bobechko, B., Boutilier, K., Burgess, E., Buzadzija, K., Cavero, R., D'Abreo, C.,
Donaldson, 1., Dorairajoo, D., Dumontier, M. J., Dumontier, M. R., Earles, V.,
Farrall, R., Feldman, H., Garderman, E., Gong, Y., Gonzaga, R., Grytsan, V.,
Gryz, E., Gu, V., Haldorsen, E., Halupa, A., Haw, R., Hrvojic, A., Hurrell, L.,
Isserlin, R., Jack, F., Juma, F., Khan, A., Kon, T., Konopinsky, S., Le, V., Lee, E.,
Ling, S., Magidin, M., Moniakis, J., Montojo, J., Moore, S., Muskat, B., Ng, I,
Paraiso, J. P., Parker, B., Pintilie, G., Pirone, R., Salama, J. J., Sgro, S., Shan, T.,
Shu, Y., Siew, J., Skinner, D., Snyder, K., Stasiuk, R., Strumpf, D., Tuekam, B.,
Tao, S., Wang, Z., White, M., Willis, R., Wolting, C., Wong, S., Wrong, A., Xin,
C,, Yao, R,, Yates, B., Zhang, S., Zheng, K., Pawson, T., Ouellette, B. F. and
Hogue, C. W. (2005) The Biomolecular Interaction Network Database and related
tools 2005 update. Nucleic Acids Res, 33 Database Issue, D418-24.

Bader, G. D. and Hogue, C. W. (2000) BIND--a data specification for storing and
describing biomolecular interactions, molecular complexes and pathways.
Bioinformatics, 16, 465-77.

Bairoch, A., Apweiler, R., Wy, C. H., Barker, W. C., Boeckmann, B., Ferro, S.,
Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M. J., Natale, D. A.,
O'Donovan, C., Redaschi, N. and Yeh, L. S. (2005) The Universal Protein
Resource (UniProt). Nucleic Acids Res, 33 Database Issue, D154-9.

Ball, C. A., Brazma, A., Causton, H., Chervitz, S., Edgar, R., Hingamp, P., Matese, J. C.,
Parkinson, H., Quackenbush, J., Ringwald, M., Sansone, S. A., Sherlock, G.,
Spellman, P., Stoeckert, C., Tateno, Y., Taylor, R., White, J. and Winegarden, N.
(2004a) Submission of microarray data to public repositories. PLoS Biol, 2, E317.

Ball, C. A., Sherlock, G. and Brazma, A. (2004b) Funding high-throughput data sharing.
Nat Biotechnol, 22, 1179-83.

Boverhof, D. R., Burgoon, L. D., Tashiro, C., Chittim, B., Harkema, J. R., Jump, D. B.
and Zacharewski, T. R. (2005) Temporal and dose-dependent hepatic gene
expression patterns in mice provide new insights into TCDD-mediated
hepatotoxicity. Toxicol Sci.

Boverhof, D. R., Fertuck, K. C., Burgoon, L. D., Eckel, J. E., Gennings, C. and
Zacharewski, T. R. (2004) Temporal and dose-dependent hepatic gene expression
changes in immature ovariectomized mice following exposure to ethynyl
estradiol. Carcinogenesis, 25, 1277-91.

Boverhof, D. R., Tam, E., Harney, A. S., Crawford, R. B., Kaminski, N. E. and
Zacharewski, T. R. (2004b) 2,3,7,8-Tetrachlorodibenzo-p-dioxin induces

159




suppressor of cytokine signaling 2 in murine B cells. Mol Pharmacol, 66, 1662-
70.

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C.,
Aach, J., Ansorge, W., Ball, C. A., Causton, H. C., Gaasterland, T., Glenisson, P.,
Holstege, F. C., Kim, I. F., Markowitz, V., Matese, J. C., Parkinson, H.,
Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J.
and Vingron, M. (2001) Minimum information about a microarray experiment
(MIAME)-toward standards for microarray data. Nat Genet, 29, 365-71.

Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Vilo, J., Abeygunawardena, N.,
Holloway, E., Kapushesky, M., Kemmeren, P., Lara, G. G., Oezcimen, A., Rocca-
Serra, P. and Sansone, S. A. (2003) ArrayExpress--a public repository for
microarray gene expression data at the EBI. Nucleic Acids Res, 31, 68-71.

Breitkreutz, B. J., Stark, C. and Tyers, M. (2003) Osprey: a network visualization system.
Genome Biol, 4, R22.

Buck, M. J. and Lieb, J. D. (2004) ChIP-chip: considerations for the design, analysis, and
application of genome-wide chromatin immunoprecipitation experiments.
Genomics, 83, 349-60.

Burt, J. W., Burgoon, L. D., Humes, D., Kwekel, J. C., Harney, A. S. and Zacharewski,
T. R. (2005) Effects of estrogen on immature, ovariectomized mice: A multi-
approach, tissue-by-tissue comparison. In preparation.

Bushel, P. R., Hamadeh, H., Bennett, L., Sieber, S., Martin, K., Nuwaysir, E. F., Johnson,
K., Reynolds, K., Paules, R. S. and Afshari, C. A. (2001) MAPS: a microarray
project system for gene expression experiment information and data validation.
Bioinformatics, 17, 564-5.

Cheadle, C., Vawter, M. P., Freed, W. J. and Becker, K. G. (2003) Analysis of
microarray data using Z score transformation. J Mol Diagn, §, 73-81.

Churchill, G. A. (2002) Fundamentals of experimental design for cDNA microarrays. Nat
Genet, 32 Suppl, 490-5.

160



Clamp, M., Andrews, D., Barker, D., Bevan, P., Cameron, G., Chen, Y., Clark, L., Cox,
T., Cuff, J., Curwen, V., Down, T., Durbin, R., Eyras, E., Gilbert, J., Hammond,
M., Hubbard, T., Kasprzyk, A., Keefe, D., Lehvaslaiho, H., Iyer, V., Melsopp, C.,
Mongin, E., Pettett, R., Potter, S., Rust, A., Schmidt, E., Searle, S., Slater, G.,
Smith, J., Spooner, W., Stabenau, A., Stalker, J., Stupka, E., Ureta-Vidal, A.,
Vastrik, I. and Bimey, E. (2003) Ensembl 2002: accommodating comparative
genomics. Nucleic Acids Res, 31, 38-42.

Cox, W. G., Beaudet, M. P., Agnew, J. Y. and Ruth, J. L. (2004) Possible sources of dye-
related signal correlation bias in two-color DNA microarray assays. Anal
Biochem, 331, 243-54.

Cox, C. (1999) Nietzsche: Naturalism and Interpretation, University of California Press,
Berkeley, California.

Curwen, V., Eyras, E., Andrews, T. D., Clarke, L., Mongin, E., Searle, S. M. and Clamp,
M. (2004) The Ensembl automatic gene annotation system. Genome Res, 14, 942-
50.

Dobbin, K., Shih, J. H. and Simon, R. (2003) Statistical design of reverse dye
microarrays. Bioinformatics, 19, 803-10.

Dobbin, K. and Simon, R. (2002) Comparison of microarray designs for class comparison
and class discovery. Bioinformatics, 18, 1438-45.

Dombkowski, A. A., Thibodeau, B. J., Starcevic, S. L. and Novak, R. F. (2004) Gene-
specific dye bias in microarray reference designs. FEBS Lett, 560, 120-4.

Duda, R. O., Hart, P. E. and Stork, D. G. (2001) Pattern Classification.

Dudoit, S., Yang, H. Y., Callow, M. J. and Speed, T. (2002) Statistical methods for
identifying differntially expressed genes in replicated cDNA microarray
experiments. Statistica Sinica, 12, 111-139.

Eckel, J. E., Gennings, C., Chinchilli, V. M., Burgoon, L. D. and Zacharewski, T. R.
(2004a) Empirical bayes gene screening tool for time-course or dose-response
microarray data. J Biopharm Stat, 14, 647-70.

Eckel, J. E., Gennings, C., Therneau, T. M., Burgoon, L. D., Boverhof, D. R. and
Zacharewski, T. R. (2005) Normalization of two-channel microarray experiments:
a semiparametric approach. Bioinformatics, 21, 1078-83.

Edgar, R., Domrachev, M. and Lash, A. E. (2002) Gene Expression Omnibus: NCBI

gene expression and hybridization array data repository. Nucleic Acids Res, 30,
207-10.

161




Efron, B. and Tibshirani, R. (2002) Empirical bayes methods and false discovery rates for
microarrays. Genet Epidemiol, 23, 70-86.

Eppig, J. T., Bult, C. J., Kadin, J. A., Richardson, J. E., Blake, J. A., Anagnostopoulos,
A., Baldarelli, R. M., Baya, M,, Beal, J. S., Bello, S. M., Boddy, W. J., Bradt, D.
W., Burkart, D. L., Butler, N. E., Campbell, J., Cassell, M. A., Corbani, L. E.,
Cousins, S. L., Dahmen, D. J., Dene, H., Diehl, A. D., Drabkin, H. J., Frazer, K.
S., Frost, P., Glass, L. H., Goldsmith, C. W., Grant, P. L., Lennon-Pierce, M.,
Lewis, J., Lu, 1., Maltais, L. J., McAndrews-Hill, M., McClellan, L., Miers, D. B.,
Miller, L. A., Ni, L., Ormsby, J. E., Qi, D., Reddy, T. B., Reed, D. J., Richards-
Smith, B., Shaw, D. R, Sinclair, R., Smith, C. L., Szauter, P., Walker, M. B.,
Walton, D. O., Washburn, L. L., Witham, I. T. and Zhu, Y. (2005) The Mouse
Genome Database (MGD): from genes to mice--a community resource for mouse
biology. Nucleic Acids Res, 33, D471-5.

Fare, T. L., Coffey, E. M., Dai, H., He, Y. D., Kessler, D. A., Kilian, K. A., Koch, J. E.,
LeProust, E., Marton, M. J., Meyer, M. R., Stoughton, R. B., Tokiwa, G. Y. and
Wang, Y. (2003) Effects of atmospheric ozone on microarray data quality. Anal
Chem, 75, 4672-5.

Fielden, M. R., Halgren, R. G., Dere, E. and Zacharewski, T. R. (2002a) GP3: GenePix
post-processing program for automated analysis of raw microarray data.
Bioinformatics, 18, 771-3.

Fielden, M. R., Halgren, R. G., Fong, C. J., Staub, C., Johnson, L., Chou, K. and
Zacharewski, T. R. (2002) Gestational and lactational exposure of male mice to
diethylstilbestrol causes long-term effects on the testis, sperm fertilizing ability in
vitro, and testicular gene expression. Endocrinology, 143, 3044-59.

Fisher, R. A. (1962) The place of the design of experiments in the logic of scientific
inference. Colloq. Int. Cent. Nat. Recherche Scientifique, 110, 13-19.

Fong, C. J., Burgoon, L. D., Gupta, G., Humes, D. G. and Zacharewski, T. R. (2005a)
Temporal Gene Expression Analysis of Mouse Hepa-1clc7 Cells Treated with
17beta-Estradiol by cDNA Microarray. In preparation.

Fong, C. J., Burgoon, L. D. and Zacharewski, T. R. (2005) Comparative Microarray
Analysis of Basal Gene Expression in Mouse Hepa 1c1c7 Wild-type and Mutant
Cell Lines. Toxicol Sci, in submission.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2004) Bayesian Data Analysis,
2nd Edition. Chapman & Hall/CRC, Boca Raton, FL.

Glas, A. M,, Kersten, M. J., Delahaye, L. J., Witteveen, A. T., Kibbelaar, R. E., Velds,

A., Wessels, L. F., Joosten, P., Kerkhoven, R. M., Bernards, R., van Krieken, J.
H., Kluin, P. M., van't Veer, L. J. and de Jong, D. (2005) Gene expression

162



profiling in follicular lymphoma to assess clinical aggressiveness and to guide the
choice of treatment. Blood, 105, 301-7.

Gollub, J., Ball, C. A., Binkley, G., Demeter, J., Finkelstein, D. B., Hebert, J. M.,
Hernandez-Boussard, T., Jin, H., Kaloper, M., Matese, J. C., Schroeder, M.,
Brown, P. O., Botstein, D. and Sherlock, G. (2003) The Stanford Microarray
Database: data access and quality assessment tools. Nucleic Acids Res, 31, 94-6.

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P,
Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D. and
Lander, E. S. (1999) Molecular classification of cancer: class discovery and class
prediction by gene expression monitoring. Science, 286, 531-7.

Grant, G. R., Manduchi, E., Pizarro, A. and Stoeckert, C. J., Jr. (2003) Maintaining data
integrity in microarray data management. Biotechnol Bioeng, 84, 795-800.

Hamosh, A., Scott, A. F., Amberger, J., Bocchini, C., Valle, D. and McKusick, V. A.
(2002) Online Mendelian Inheritance in Man (OMIM), a knowledgebase of
human genes and genetic disorders. Nucleic Acids Res, 30, 52-5.

Harris, M. A., Clark, J., Ireland, A., Lomax, J., Ashburner, M., Foulger, R., Eilbeck, K.,
Lewis, S., Marshall, B., Mungall, C., Richter, J., Rubin, G. M., Blake, J. A., Bult,
C., Dolan, M., Drabkin, H., Eppig, J. T., Hill, D. P., Ni, L., Ringwald, M.,
Balakrishnan, R., Cherry, J. M., Christie, K. R., Costanzo, M. C., Dwight, S. S,
Engel, S., Fisk, D. G., Hirschman, J. E., Hong, E. L., Nash, R. S., Sethuraman, A.,
Theesfeld, C. L., Botstein, D., Dolinski, K., Feierbach, B., Berardini, T.,
Mundodi, S., Rhee, S. Y., Apweiler, R., Barrell, D., Camon, E., Dimmer, E., Lee,
V., Chisholm, R., Gaudet, P., Kibbe, W., Kishore, R., Schwarz, E. M., Sternberg,
P., Gwinn, M., Hannick, L., Wortman, J., Berriman, M., Wood, V., de la Cruz, N.,
Tonellato, P., Jaiswal, P., Seigfried, T. and White, R. (2004) The Gene Ontology
(GO) database and informatics resource. Nucleic Acids Res, 32, D258-61.

Hautaniemi, S., Edgren, H., Vesanen, P., Wolf, M., Jarvinen, A. K., Yli-Harja, O.,
Astola, J., Kallioniemi, O. and Monni, O. (2003) A novel strategy for microarray
quality control using Bayesian networks. Bioinformatics, 19, 2031-8.

Hessner, M. J., Meyer, L., Tackes, J., Muheisen, S. and Wang, X. (2004) Immobilized
probe and glass surface chemistry as variables in microarray fabrication. BMC
Genomics, §, 53.

Hood, L. and Perlmutter, R. M. (2004) The impact of systems approaches on biological
problems in drug discovery. Nat Biotechnol, 22, 1215-7.

Hubbard, T., Andrews, D., Caccamo, M., Cameron, G., Chen, Y., Clamp, M., Clarke, L.,

Coates, G., Cox, T., Cunningham, F., Curwen, V., Cutts, T., Down, T., Durbin,
R., Fernandez-Suarez, X. M., Gilbert, J., Hammond, M., Herrero, J., Hotz, H.,

163



Howe, K., Iyer, V., Jekosch, K., Kahari, A., Kasprzyk, A., Keefe, D., Keenan, S.,
Kokocinsci, F., London, D., Longden, 1., McVicker, G., Melsopp, C., Meidl, P.,
Potter, S., Proctor, G., Rae, M., Rios, D., Schuster, M., Searle, S., Severin, J.,
Slater, G., Smedley, D., Smith, J., Spooner, W., Stabenau, A., Stalker, J., Storey,
R., Trevanion, S., Ureta-Vidal, A., Vogel, J., White, S., Woodwark, C. and
Bimney, E. (2005) Ensembl 2005. Nucleic Acids Res, 33 Database Issue, D447-
53.

Ideker, T., Galitski, T. and Hood, L. (2001) A new approach to decoding life: systems
biology. Annu Rev Genomics Hum Genet, 2, 343-72.

Irwin, R. D., Boorman, G. A., Cunningham, M. L., Heinloth, A. N., Malarkey, D. E. and
Paules, R. S. (2004) Application of Toxicogenomics to Toxicology: Basic
Concepts in the Analysis of Microarray Data. Toxicol Pathol, 32, 72-83.

Jarvinen, A. K., Hautaniemi, S., Edgren, H., Auvinen, P., Saarela, J., Kallioniemi, O. P.
and Monni, O. (2004) Are data from different gene expression microarray
platforms comparable? Genomics, 83, 1164-8.

Joint Directors of Laboratories. (1991) Data Fusion Lexicon.

Karolchik, D., Baertsch, R., Diekhans, M., Furey, T. S., Hinrichs, A., Lu, Y. T., Roskin,
K. M,, Schwartz, M., Sugnet, C. W., Thomas, D. J., Weber, R. J., Haussler, D.
and Kent, W. J. (2003) The UCSC Genome Browser Database. Nucleic Acids
Res, 31, 51-4.

Kerr, M. K. and Churchill, G. A. (2001a) Experimental Design for Gene Expression
Microarrays. Biostatistics, 2, 183-201.

Kerr, M. K. and Churchill, G. A. (2001b) Statistical design and the analysis of gene
expression microarray data. Genet Res, 77, 123-8.

Keun, H. C., Ebbels, T. M., Bollard, M. E., Beckonert, O., Antti, H., Holmes, E., Lindon,
J. C. and Nicholson, J. K. (2004) Geometric trajectory analysis of metabolic

responses to toxicity can define treatment specific profiles. Chem Res Toxicol,
17, 579-87.

Kristensen, V. N., Sorlie, T., Geisler, J., Langerod, A., Yoshimura, N., Karesen, R.,
Harada, N., Lonning, P. E. and Borresen-Dale, A. L. (2005) Gene expression
profiling of breast cancer in relation to estrogen receptor status and estrogen-
metabolizing enzymes: clinical implications. Clin Cancer Res, 11, 878s-83s.

Kwekel, J. C., Dalgleish, H. A., Burgoon, L. D., Harkema, J. R. and Zacharewski, T. R.
(2005) Analysis of gene expression during uterine Induction and regression in
immature, ovariectomized rats following treatment with ethynyl estradiol. In
preparation,

164



Lashkari, D. A., DeRisi, J. L., McCusker, J. H., Namath, A. F., Gentile, C., Hwang, S. Y.,
Brown, P. O. and Davis, R. W. (1997) Yeast microarrays for genome wide
parallel genetic and gene expression analysis. Proc Natl Acad Sci U S A, 94,
13057-62.

Lindsay, M. A. (2003) Target discovery. Nat Rev Drug Discov, 2, 831-8.

Luscombe, N. M., Babu, M. M., Yu, H., Snyder, M., Teichmann, S. A. and Gerstein, M.
(2004) Genomic analysis of regulatory network dynamics reveals large
topological changes. Nature, 431, 308-12.

Luyendyk, J. P., Mattes, W. B., Burgoon, L. D., Zacharewski, T. R., Maddox, J. F.,
Cosma, G. N., Ganey, P. E. and Roth, R. A. (2004) Gene expression analysis
points to hemostasis in livers of rats cotreated with lipopolysaccharide and
ranitidine. Toxicol Sci, 80, 203-13.

Maglott, D., Ostell, J., Pruitt, K. D. and Tatusova, T. (2005) Entrez Gene: gene-centered
information at NCBI. Nucleic Acids Res, 33 Database Issue, D54-8.

Mattes, W. B., Pettit, S. D., Sansone, S. A., Bushel, P. R. and Waters, M. D. (2004)
Database development in toxicogenomics: issues and efforts. Environ Health
Perspect, 112, 495-505.

McKusick, V. A. (1998) Mendelian Inheritance in Man. A Catalog of Human Genes and
Genetic Disorders, 12th edition. Johns Hopkins University Press, Baltimore, MD.

Miles, M. F. (2001) Microarrays: lost in a storm of data? Nat Rev Neurosci, 2, 441-3.

Mischel, P. S., Cloughesy, T. F. and Nelson, S. F. (2004) DNA-microarray analysis of
brain cancer: molecular classification for therapy. Nat Rev Neurosci, 5, 782-92.

Model, F., Konig, T., Piepenbrock, C. and Adorjan, P. (2002) Statistical process control
for large scale microarray experiments. Bioinformatics, 18 Suppl 1, S155-63.

Moggs, J. G., Tinwell, H., Spurway, T., Chang, H. S., Pate, 1., Lim, F. L., Moore, D. J.,
Soames, A., Stuckey, R., Currie, R., Zhu, T., Kimber, 1., Ashby, J. and
Orphanides, G. (2004) Phenotypic anchoring of gene expression changes during
estrogen-induced uterine growth. Environ Health Perspect, 112, 1589-606.

Mulder, N. J., Apweiler, R., Attwood, T. K., Bairoch, A., Barrell, D., Bateman, A.,
Binns, D., Biswas, M., Bradley, P., Bork, P., Bucher, P., Copley, R. R., Courcelle,
E., Das, U., Durbin, R., Falquet, L., Fleischmann, W., Griffiths-Jones, S., Haft,
D., Harte, N., Hulo, N., Kahn, D., Kanapin, A., Krestyaninova, M., Lopez, R.,
Letunic, I., Lonsdale, D., Silventoinen, V., Orchard, S. E., Pagni, M., Peyruc, D.,
Ponting, C. P., Selengut, J. D., Servant, F., Sigrist, C. J., Vaughan, R. and

165



Zdobnov, E. M. (2003) The InterPro Database, 2003 brings increased coverage
and new features. Nucleic Acids Res, 31, 315-8.

Nicholson, J. K. and Wilson, I. D. (2003) Opinion: understanding 'global' systems
biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov,
2, 668-76.

Nuwaysir, E. F., Bittner, M., Trent, J., Barrett, J. C. and Afshari, C. A. (1999)
Microarrays and toxicology: the advent of toxicogenomics. Mol Carcinog, 24,
153-9.

Petri, A., Fleckner, J. and Matthiessen, M. W. (2004) Array-A-Lizer: A serial DNA
microarray quality analyzer. BMC Bioinformatics, §, 12.

Pruitt, K. D. and Maglott, D. R. (2001) RefSeq and LocusLink: NCBI gene-centered
resources. Nucleic Acids Res, 29, 137-40.

Qin, L. X. and Kerr, K. F. (2004) Empirical evaluation of data transformations and
ranking statistics for microarray analysis. Nucleic Acids Res, 32, 5471-9.

Quackenbush, J. (2002) Microarray data normalization and transformation. Nat Genet, 32
Suppl, 496-501.

Rocca-Serra, P., Brazma, A., Parkinson, H., Sarkans, U., Shojatalab, M., Contrino, S.,
Vilo, J., Abeygunawardena, N., Mukherjee, G., Holloway, E., Kapushesky, M.,
Kemmeren, P., Lara, G. G., Oezcimen, A. and Sansone, S. A. (2003)
ArrayExpress: a public database of gene expression data at EBI. C R Biol, 326,
1075-8.

Ross, J. S., Schenkein, D. P., Pietrusko, R., Rolfe, M., Linette, G. P., Stec, J., Stagliano,
N. E., Ginsburg, G. S., Symmans, W. F., Pusztai, L. and Hortobagyi, G. N. (2004)
Targeted therapies for cancer 2004. Am J Clin Pathol, 122, 598-609.

Rouchka, E. C., Gish, W. and States, D. J. (2002) Comparison of whole genome
assemblies of the human genome. Nucleic Acids Res, 30, 5004-14.

Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative monitoring
of gene expression patterns with a complementary DNA microarray. Science,
270, 467-70.

Selvanayagam, Z. E., Cheung, T. H., Wei, N., Vittal, R., Lo, K. W., Yeo, W, Kita, T.,
Ravatn, R., Chung, T. K., Wong, Y. F. and Chin, K. V. (2004) Prediction of
chemotherapeutic response in ovarian cancer with DNA microarray expression
profiling. Cancer Genet Cytogenet, 154, 63-6.

166



Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N.,
Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res, 13, 2498-
504.

Shi, L., Tong, W., Goodsaid, F., Frueh, F. W, Fang, H., Han, T., Fuscoe, J. C. and
Casciano, D. A. (2004) QA/QC: challenges and pitfalls facing the microarray
community and regulatory agencies. Expert Rev Mol Diagn, 4, 761-77.

Shih, J. H., Michalowska, A. M., Dobbin, K., Ye, Y., Qiu, T. H. and Green, J. E. (2004)
Effects of pooling mRNA in microarray class comparisons. Bioinformatics, 20,
3318-25.

Simon, R., Radmacher, M. D. and Dobbin, K. (2002) Design of studies using DNA
microarrays. Genet Epidemiol, 23, 21-36.

Spellman, P. T., Miller, M., Stewart, J., Troup, C., Sarkans, U., Chervitz, S., Bernhart, D.,
Sherlock, G., Ball, C., Lepage, M., Swiatek, M., Marks, W. L., Goncalves, J.,
Markel, S., Iordan, D., Shojatalab, M., Pizarro, A., White, J., Hubley, R., Deutsch,
E., Senger, M., Aronow, B. J., Robinson, A., Bassett, D., Stoeckert, C. J., Jr. and
Brazma, A. (2002) Design and implementation of microarray gene expression
markup language (MAGE-ML). Genome Biol, 3, RESEARCH0046.

Sun, Y. V., Boverhof, D. R., Burgoon, L. D., Fielden, M. R. and Zacharewski, T. R.
(2004) Comparative analysis of dioxin response elements in human, mouse and
rat genomic sequences. Nucleic Acids Res, 32, 4512-23.

Tempelman, R. J. (2005) Assessing statistical precision, power, and robustness of
alternative experimental designs for two color microarray platforms based on
mixed effects models. Vet Inmunol Immunopathol, 105, 175-86.

Tong, W., Cao, X., Harris, S., Sun, H., Fang, H., Fuscoe, J., Harris, A., Hong, H., Xie, Q.,
Perkins, R., Shi, L. and Casciano, D. (2003) ArrayTrack--supporting
toxicogenomic research at the U.S. Food and Drug Administration National
Center for Toxicological Research. Environ Health Perspect, 111, 1819-26.

Townsend, J. P. (2003) Multifactorial experimental design and the transitivity of ratios
with spotted DNA microarrays. BMC Genomics, 4, 41.

Tran, P. H., Peiffer, D. A., Shin, Y., Meek, L. M., Brody, J. P. and Cho, K. W. (2002)
Microarray optimizations: increasing spot accuracy and automated identification
of true microarray signals. Nucleic Acids Res, 30, e54.

Tsai, C. A., Wang, S. J., Chen, D. T. and Chen, J. J. (2005) Sample size for gene
expression microarray experiments. Bioinformatics, 21, 1502-8.

167



Tusher, V. G., Tibshirani, R. and Chu, G. (2001) Significance analysis of microarrays
applied to the ionizing radiation response. Proc Natl Acad Sci U S A, 98, 5116-
21.

Ulrich, R. and Friend, S. H. (2002) Toxicogenomics and drug discovery: will new
technologies help us produce better drugs? Nat Rev Drug Discov, 1, 84-8.

Ulrich, R. G., Rockett, J. C., Gibson, G. G. and Pettit, S. D. (2004) Overview of an
interlaboratory collaboration on evaluating the effects of model hepatotoxicants
on hepatic gene expression. Environ Health Perspect, 112, 423-7.

Vinciotti, V., Khanin, R., D'Alimonte, D., Liu, X., Cattini, N., Hotchkiss, G., Bucca, G.,
De Jesus, O., Rasaiyaah, J., Smith, C. P., Kellam, P. and Wit, E. (2004) An
experimental evaluation of a loop versus a reference design for two-channel
microarrays. Bioinformatics,

Wang, X., Ghosh, S. and Guo, S. W. (2001) Quantitative quality control in microarray
image processing and data acquisition. Nucleic Acids Res, 29, E75-5.

Waters, M., Boorman, G., Bushel, P., Cunningham, M., Irwin, R., Merrick, A., Olden, K.,
Paules, R., Selkirk, J., Stasiewicz, S., Weis, B., Van Houten, B., Walker, N. and
Tennant, R. (2003) Systems toxicology and the Chemical Effects in Biological
Systems (CEBS) knowledge base. EHP Toxicogenomics, 111, 15-28.

Waters, M. D. and Fostel, J. M. (2004) Toxicogenomics and systems toxicology: aims
and prospects. Nat Rev Genet, 5, 936-48.

Waters, M. D., Olden, K. and Tennant, R. W. (2003b) Toxicogenomic approach for
assessing toxicant-related disease. Mutat Res, 544, 415-24.

Wei, C., Li, J. and Bumgarner, R. E. (2004) Sample size for detecting differentially
expressed genes in microarray experiments. BMC Genomics, 5, 87.

Weinshilboum, R. and Wang, L. (2004) Pharmacogenomics: bench to bedside. Nat Rev
Drug Discov, 3, 739-48.

Wetmore, B. A. and Merrick, B. A. (2004) Toxicoproteomics: proteomics applied to
toxicology and pathology. Toxicol Pathol, 32, 619-42.

Wheeler, D. L., Church, D. M., Edgar, R., Federhen, S., Helmberg, W., Madden, T. L.,
Pontius, J. U., Schuler, G. D., Schriml, L. M., Sequeira, E., Suzek, T. O.,
Tatusova, T. A. and Wagner, L. (2004) Database resources of the National Center
for Biotechnology Information: update. Nucleic Acids Res, 32, D35-40.

168



Wolfinger, R. D., Gibson, G., Wolfinger, E. D., Bennett, L., Hamadeh, H., Bushel, P.,
Afshari, C. and Paules, R. S. (2001) Assessing gene significance from cDNA
microarray expression data via mixed models. J Comput Biol, 8, 625-37.

Workman, C., Jensen, L. J., Jarmer, H., Berka, R., Gautier, L., Nielser, H. B., Saxild, H.
H., Nielsen, C., Brunak, S. and Knudsen, S. (2002) A new non-linear
normalization method for reducing variability in DNA microarray experiments.
Genome Biol, 3, research0048.

Xenarios, I., Rice, D. W., Salwinski, L., Baron, M. K., Marcotte, E. M. and Eisenberg, D.
(2000) DIP: the database of interacting proteins. Nucleic Acids Res, 28, 289-91.

Yang, I. V., Chen, E., Hasseman, J. P., Liang, W, Frank, B. C., Wang, S., Sharov, V.,
Saeed, A. 1., White, J., Li, J., Lee, N. H., Yeatman, T. J. and Quackenbush, J.
(2002a) Within the fold: assessing differential expression measures and
reproducibility in microarray assays. Genome Biol, 3, research0062.

Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J. and Speed, T. P. (2002)
Normalization for cDNA microarray data: a robust composite method addressing
single and multiple slide systematic variation. Nucleic Acids Res, 30, el5.

Yang, Y. H. and Speed, T. (2002) Design issues for cDNA microarray experiments. Nat
Rev Genet, 3, 579-88.

Yeang, C. H., Ramaswamy, S., Tamayo, P., Mukherjee, S., Rifkin, R. M., Angelo, M.,

Reich, M., Lander, E., Mesirov, J. and Golub, T. (2001) Molecular classification
of multiple tumor types. Bioinformatics, 17 Suppl 1, S316-22.

169




I



