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ABSTRACT

DESIGN, MANAGEMENT, AND QUALITY CONTROL OF TOXICOGENOMIC

EXPERIMENTS

By

Lyle David Burgoon

High throughput “omic” technologies, such as the cDNA microarray, have the potential

of increasing mechanistic understanding of the biological underpinnings related to a

biological outcome, enhancing safety assessments during the development of a new

chemical entities, identification ofnew druggable targets, selection of patient candidates

for therapeutic treatment, and for monitoring exposures to hazardous chemicals through

biomarkers. However, for these potentials to be realized, investigators must ensure their

experiments are properly designed with respect to their intended purpose, the data is

appropriately managed to decrease human error, and prevent loss of data, and that the

data are of sufficient quality to ensure the results are appropriate. To address these needs,

the deach System, a database and associated computational applications, has been

developed to manage data derived from toxicogenomic and pharmacogenomics

experiments. Using historical data within the laboratory, a quality control protocol was

developed, consisting of three different divisions. The first division uses a trained

support vector machine (SVM), a statistical learning theory method, for identifying high

and low quality arrays based on global intensity characteristics. The second division uses

a semiparametric normalization method for identifying misaligned subgrids on the

microarray, to ensure proper feature alignment and quantification. The third division

utilizes boxplots to identify arrays with incongruent distributions, and line plots to

identify trends with regards to the number of identified and saturated features. Using



data within deach, three temporal experimental designs were compared: the

independent reference, loop, and modified loop designs. By comparing the results from

these experiments based on the amount of experimental error, identifying temporal

confounds, and analyzing differences in the temporal clustering relationships, the

modified loop design was judged the most appropriate design. However, when economic

considerations are made, the loop design may be preferred when used with a larger

number of biological replicates.
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CHAPTER ONE: INTRODUCTION



Efforts to understand the biological effects of chemical exposures, both

therapeutic and toxic, singularly and in mixtures, are beginning to take a global, or

systems level scope, ushering in the disciplines of systems biology and systems

toxicology. The systems approach attempts to identify critical nodes in biological

information networks (e.g., a ligand binds to a receptor, eliciting changes in gene

expression, and perturbations in protein expression and activation) by comparing

information flows between normal and chemically exposed or diseased samples (Hood

and Perlmutter, 2004). Systems toxicology is a toxicology specific rendering of the

systems biology idea; integrating data from toxicogenomic studies with more traditional

toxicology measures (e.g., clinical chemistry and histopathology) (Waters and Fostel,

2004). Toxicogenomics is the combined study of the genomic, the proteomic (i.e., all of

the proteins expressed within a system) (Wetmore and Merrick, 2004), and the

metabolomic (i.e., the full complement of metabolites within a system) (Nicholson and

Wilson, 2003) response to chemical exposures and environmental stressors (Nuwaysir, et

al., 1999; Waters and Fostel, 2004; Waters, et al., 2003b).

“Omic” technologies are believed to be necessary to engender systems toxicology

as they are global technologies — measuring the expression of thousands to near complete

sets of biological molecules of interest. By measuring large segments, if not the entire

complement, of molecules within a class (genome, proteome, metabonome), it may be

possible to study many of the interconnected biological networks, and the flow of

information/data from source to outcome; the essence of the systems biology (Ideker, et

al. , 2001) and systems toxicology (Waters and Fostel, 2004) fiarneworks.



Potential of Genomics in Pharmacology & Toxicology

Microarrays provide the ability to simultaneously monitor the expression of

thousands of genes during disease progression or onset and in response to chemical or

therapeutic exposures. These abilities have fostered the growth and maturation of the

fields ofpharmacogenomics (Weinshilboum and Wang, 2004) and toxicogenomics, and

may serve to revitalize the pharmaceutical industry (Lindsay, 2003).

Pharmacogenomics

Although pharmacogenomics is typically defined in the translational sense, as a

broadening of pharmacogenetics, where patient populations are screened to identify

sensitive and resistant groups that may not respond predictably to a therapeutic treatment,

based on global gene expression (Weinshilboum and Wang, 2004), pharmacogenomics

can also be thought of as a means to identify novel drug targets (Lindsay, 2003; Ross, et

aL,2004)

For example, gene expression studies have been used to classify cancer biopsies

and tumor samples (Glas, et al., 2005; Golub, er al., 1999; Kristensen, er al., 2005;

Mischel, et al., 2004; Selvanayagam, er al., 2004; Yeang. et al., 2001) to improve clinical

outcomes by identifying the correct tumor class and treatment regimen. The ultimate

goal of these investigations is to create new diagnostic tests for the assessment oftumors,

and tailor treatment programs specific to the patient (i.e., personalized medicine) to

reduce toxicity and increase the therapeutic potential (Ross, etal., 2004). However,

molecular profiles from these same experiments can be used to identify new drug targets

specific to the particular class of cancer under investigation. The idea is that since the



tumor samples can be differentiated fiom normal tissues based on gene expression

profiles, there must be drug targets embedded within these profiles that can be exploited

(Lindsay, 2003).

Computational Toxicology

Computational toxicology is the application of computer science, mathematics,

statistics and information technology to the field of toxicology. Computational

toxicology encompasses physiologically based pharmacokinetic modeling, dose-response

modeling, and analysis of data from toxicogenomic studies.

Toxicology data can be thought of as existing within a source-to-outcome, or

source-to-disease, continuum (Kavlock, et al. , 2003; Waters and Fostel, 2004). Several

forces act upon this continuum to modulate the net outcome, including the

pharmacokinetics and efficacy of the compound, the cellular and systems response to the

exposure, and interactions between these levels. For example, injury may commence at

an early time point, parallel to the expression of genes that encode drug efflux and

metabolism proteins. The activation of these compensatory mechanisms may lead to

increased excretion of the chemical.

By combining the source-to-outcome toxicology data together, in a database

system, a new kind of data mining activity can emerge: toxicological intelligence

gathering. Similar to business intelligence, where businesses integrate data from across

the business spectrum, combining customer information with product flows and other

business indicators, to generate patterns predictive of the business process; toxicologic

intelligence gathering integrates data from across the toxicology spectrum, combining

different types of data from chemical exposures, to identify patterns in gene, protein and



metabolite expression, pathology, and gross observations to be predictive of a

toxicological process and mechanism of action.

Toxicologic intelligence itself provides the infrastructure to perform further

computational toxicology experiments. These other computational toxicology efforts

include development of algorithms for data normalization and analysis, pattern

recognition, and correlation across experiments and experimental types (e.g., correlation

of gene expression and metabolite expression data).

Engendering the Toxicogenomics Paradigm

Toxicogenomic studies generate a wealth of disparate data. Consider a complete

toxicogenomic investigation for a new chemical entity will include data from genomic,

proteomic, and metabonomic experiments, histopathological analysis, clinical chemistry,

and gross observations. Although each set of data individually may be useful for

understanding the biological effects following exposure, their integration would be more

useful for the development of mechanistic understanding and systems toxicology models.

For example, phenotypic anchoring of uterine gene expression changes to histological

changes yield a better mechanistic understanding than any of these pieces of data alone

(Moggs, et al., 2004; Paules, 2003).

Toxicogenomics offers a wealth of potential with respect to safety assessment and

mechanistic investigations, such as making drug development more efficient by

identifying toxic drugs earlier in the development process (Ulrich and Friend, 2002), and

facilitating mechanistic research (Boverhof, et al., 2004; Luyendyk, et al., 2004;

Nuwaysir, et al. , 1999; Waters and Fostel, 2004). However, to fully realize its potential,

several key ingredients must be present: 1) a data management solution, 2) appropriate



experimental designs, 3) high quality data, and 4) multivariate data analysis methods.

Each ofthese will be reviewed in more detail below.

Toxicogenomics Data Management

Two methods for toxicogenorrrics data management currently exist: 1) use of flat files

(i.e., spreadsheets, tab-delimited text files, etc), and 2) use of databases. Whereas a series

of flat files may work for smaller projects, they discourage comparisons across studies,

and become error-prone when performing complex data filtering tasks. Databases,

however, are conceptually a series of flat files which facilitate cross-study comparisons.

By serving as a central storage point, databases also support software development,

preventing changes to the software to accommodate different flat file formats.

Databases are conceptually made up oftwo parts (from lowest to highest level):

tables and subsystems (an example is shown in Figure 1-1). Tables are collections of

records, or rows, where the data reside. All tables must contain a unique identifier for

each record in the table called the primary key. For example, a table managing animal

data would contain the age, sex, species, and strain, in addition to the database assigned

unique primary key. In order to prevent tables from becoming too large, and to prevent

data redundancy, more tables can be created. Tables can be related to one-another

through a series of primary key-foreign key relationships, where a foreign key is a

primary key entry from a foreign table that exists as part of a record within a table. For

example, in Figure 1-1 a CAGE_ID foreign key (a primary key from the CAGE table)

would exist within the ANIMAL table as part of a record for an individual animal so that

there is knowledge of what cage was used for that animal. This allows cage-specific data

to be contained in the cage table, separately from the animal. If all of the cage-specific
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Figure 1-1: Anatomy of a Database. A database consists oftwo conceptual

parts: the tables and the subsystems. Tables contain records, which can be

thought of as rows. A series of related tables are grouped together into

subsystems. A group of subsystems make up a database.

data were also contained within the animal table there would be the possibility for data

 

 
  
 

 

  

 

   

redundancy, where the same data were entered repeatedly to describe the same cage

conditions, increasing the likelihood of data entry errors.

A collection of tables that describe the same larger concept are placed within the

same subsystem. For example, all of the data describing pathology data would be

contained within the Pathology Subsystem. When subsystems are associated with

particular technologies they serve to keep the database modular, ensuring the database

remains scalable (i.e., can continue to grow as new technologies are developed).

Quality Assurance

Quality assurance methods are practices that ensure the high quality of some data

or process. The simplest quality assurance mechanism utilized within most laboratories



is the use of standard operating procedures (SOPs) which ensures that the experiment,

and hopefully the data, are reproducible. Generally, if data are reproducible, it is

considered to be of high quality (Grant, er al., 2003). However, reproducibility alone

does not determine quality, since it is possible to have a highly reproducible low quality

result. For instance, consistently extracting degraded total RNA from a sample is not a

high quality result, regardless ofhow reproducible it is. Thus, use of variance prima

facie for quality determination necessitates the presupposition that the process is of high

quality, a generally inappropriate assumption.

Quality control tests are methods for monitoring data quality by using a quality

assurance plan. Many quality control methods exist, such as control charts, and statistical

testing methods. These methods identify samples that are beyond some variance-based

threshold; identifying samples that lie outside the distribution of high quality samples

with some given confidence (NIST/SEMATECH e-Handbook ofStatistical Methods,

lflpz/lwwwitl.nist.gov/div898/handbcfl, 4-5-04). Examples ofthese techniques include

the Shewhart plot and the Student’s t-test.

The Shewhart plot graphically depicts trends in a process across time, coupled

with variance-based quality thresholds. Once the process exits high quality, and breaks

the variance-based threshold, it is said to be “out of control.” The Student’s t-test is used

to determine whether samples come from the same distribution. For example, the one-

sample t-test would compare measurements made from products generated by a process

(i.e., microarrays) against a high quality standard, and determine, with some confidence,

if they come from the same distribution.



The advent of multivariate classification methods based on supervised pattern

recognition techniques have also been applied to the quality control problem. These

methods require the use of a high, and occasionally low, quality dataset to either train a

mathematical model, or to facilitate investigator comparison while visualizing the data.

These methods include the use of Principal Components Analysis (PCA), k-means

clustering, and Support Vector Machines (SVM).

PCA seeks to reduce the dimensionality of the data, from n dimensions to at most

n-l dimensions. The dimensions (or principal components) from PCA are generated such

that the first dimension contains the largest proportion of the variance from the dataset,

while the subsequent dimensions each represent the largest portion of the residual

variance while remaining orthogonal to the previous dimension. Thus, the first three

dimensions from the PCA represent the three dimensions that best explain the most

variance. By visualizing the first two or three principal components within a coordinate

plane or a three dimensional (3-D) space, it is possible to identify similar samples. In the

case of quality control, if the test samples are analyzed concurrently with the high quality

data, it is possible to perform quality control analysis by defining the high quality region

or sphere based on the Hotelling’s T-squared distance (Model, et al. , 2002); a

multivariate t-test. Thus, any samples that exist beyond the Hotelling’s T-squared quality

threshold are demonstrated to be of low quality.

Supervised pattern recognition methods identify an investigator specified number

of clusters from a dataset. For example, in assessing high quality and low quality within

a data set, two clusters would be specified. Support Vector Machines and k-means

clustering are both supervised methods, but work quite differently. Whereas the SVM
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Figure 1-2: Support Vector Machine. The SVM algorithm projects the training

data in a high dimensional space to better expand the differences between the

classes (e.g., tumor vs normal, high vs low quality), and generate more optimal

natural clusters. The algorithm then projects an optimal hyperplane through the

data space that best discriminates the two classes. The mathematical model used

to classify data following this training step represents this hyperplane in the high

dimensional space.

creates a mathematical model trained on a defined historical dataset, the k-means

clustering algorithm generates a cluster center based on clustering ofthe high and low

quality historical datasets to determine the optimal pattern that best describe the high and

low quality datasets.

The k-means algorithm requires that the cluster centers be specified along with

the number of clusters. The cluster centers are used by the algorithm as “ground tru ”,

meaning the cluster centers represent the ideal sample for that cluster. The algorithm

10



uses the cluster center as a point of comparison, where the sample is clustered with the

center it is least far from, meaning the center that has the pattern most closely resembling

the sample’s pattern. In a typical quality control implementation of the k-means

algorithm, the historical datasets will be clustered first, specifying that two clusters

should be identified from this dataset. Once the clusters are defined, the cluster centers

are extracted from the method. These centers will be supplied in the future when

performing the k-means algorithm to cluster the samples.

The SVM method generates a mathematical model based on training data to

classify data. The SVM is a binary classifier, but is capable of being extended to provide

multi-class classification. Whereas the goal of the PCA is to reduce the dimensionality of

the data, the SVM actually increases the dimensionality of the data (Duda, er al. , 2001).

By increasing the dimensionality, natural clusters will form with larger interclass

differences, making the classification problem easier (Figure 1-2). A hyperplane is

projected within space, that separates the populations, and this represents the

mathematical model. Classification of samples occurs by identifying their location with

respect to the hyperplane (i.e., they will either exist on the high quality or the low quality

side of the hyperplane). For quality assessment, samples from the high and low quality

historical datasets are used to train the model.

Experimental Design

The experimental design utilized for an experiment holds immense gravity over

the results and subsequent interpretation. Different designs yield varying degrees of

precision and power for statistical inference, with varying degrees of cost (Fisher, 1962).

11



Although this provides the impetus for comparison of experimental designs, the choice of

design is still at the discretion of the investigator.

When designing experiments, several factors must be considered and balanced

including 1) the goal of the experimental manipulation, 2) the sources of variance and

their interrelationships, and 3) the economics, both monetary and time, of the study. In

some cases, it is possible that failure to balance these factors may result in less than

optimal results, and in extreme cases the design may compromise the results to the point

where they are inappropriate.

Tables 1-1 and 1-2 provide examples oftwo different experimental designs that

could be employed for examining the effects of a chemical (Treatment = 1) in

comparison to its vehicle control (Treatment = 0). Due to the logistics of the experiment,

it must be performed across four days (Day = 1-4). A total of eight animals are used in

these studies, four in the treated and four in the control groups. The only difference

between these two designs is the arrangement oftreatments with respect to the day.

One ofthe primary goals of an appropriate experimental design is to limit the

number of confounding variables that may either complicate or negate the ability of the

investigator to perform comparisons. A confounding variable is an explanatory variable

that may interact with another variable. For example, in Table 1-1 there are a total of

eight animals that will receive one oftwo treatments (0 = vehicle; 1 = treated) on two

separate days. The null hypothesis being tested is that the treatment will have no effect,

Ho: Ho = u], where u,- is the effect due to treatment (i = 0, 1). If it were expected that

there were a significant and additive effect due to the day, ab- (1' = 1, 2, 3, 4), then the

experimental design used in Table 1-1 would exhibit a confound with respect to day (i.e.,

12



Table 1-1: Non-blocked with Confound

Animal Day Treatment Expected

    

+d

+d

+

r
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—
a
r
—
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O
O
O1 l

2 1

3 2

4 2

5 3

6 3

7 4

8 4

day is a confounding variable on the treatment effect). To calculate the treatment effect,

0 = 110 - 1.11, between days 1 and 3:

(#0 + d1) - (in + d3) = (llo - in) + (£11 - d3).

This calculation becomes more complicated when treatments are considered across the

entire design. It also demonstrates that the treatment variance cannot be distinguished

from the variance due to the day.

The experimental design in Table 1-1 results in an n = 2 for each treatment. This

is due to the fact that each animal within a day receives the same treatment. Thus, the

experimental unit (i.e., the base treatment unit) is really the day, and not the animal. This

is due to the confound within the experimental design, where the variance due to

treatment and day are inseparable.

A more appropriate design for this experiment is listed in Table 1-2. Here, there

are a total of four observations per treatment, instead of the two observations per

treatment in Table 1-1. Day is no longer a confound within this design as each treatment

variety (or treatment level) is represented within each day. This allows for the separation

of the variance due to day and treatment. Furthermore, to calculate the treatment effect, 0

= P0 - u], within a day:
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Table 1-2: ete Block

Animal Treatment
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(#0 + 611) — (111 + d1) = (No- l11)—(dr- d1) = (H0- H1)-

Sirnilar mathematics would be used to calculate the treatment effect across the entire

experiment. Thus, it is clear that by having each treatment variety present within each

day, the variance due to the day variable can be factored out of the treatment effect.

Also, as this design results in a larger n for the same number of animals, the statistical

power will increase, meaning smaller changes due to treatment may be found significant

at the same false positive rate.

In this example, the outcome being tested (i.e., the effect of treatment vs vehicle)

and the economics of the experiment are the same. Both experiments require the same

number of animals, the same number of days to complete the experiment, and the same

amount of the treatment compound and vehicle. They only differ in the assignment of

animals to treatments and days. However, the impact of the differences between the

designs is great, with one experiment yielding results where the treatment is confounded

by the day of treatment, whereas the other more accurately reflects the treatment effect.

When a microarray experiment is considered, the number of possible confounding factors

increases beyond those examined here.
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Microarray Experimental Designs

Recently, the identification of appropriate microarray experimental designs has

become a subject of great interest (Churchill, 2002; Dobbin, et al. , 2003; Dobbin and

Simon, 2002; Simon, et al., 2002; Tempelman, 2005; Townsend, 2003; Vinciotti, et al.,

2004). The experimental design used in a microarray experiment must include

considerations of whether or not biological samples should be pooled, the number and

types of technical replication, the arrangement of samples on the microarrays, and the

analysis method. The choice of experimental design will impact the active list of genes,

the hypotheses formulated from these lists, and ultimately the concept of the risk versus

benefit fiom exposure to a chemical.

Table 1-3 lists many ofthe possible sources of variance in a microarray

experiment. These sources can be categorized as either biological (i.e., inherent within

the biological model) or technical. Generally speaking, it is best to block the sources of

variance, such as in Table 1-2, such that each level of the treatment variable exists within

every level of the confounding variables. For example, a cage-level confound that exists

at the time of treatment, will persist through the entire experiment. Another common

example of a confound is the assignment of different investigators to extract total RNA

from tissue samples based on the treatment group. These are examples of confounds that

could have been easily controlled through planning prior to the experiment. However,

other confounds may exist which are difficult or impossible to overcome. For example,

biological variance (variance due to the animal and the treatment) tends to be confounded

with the microarray since it is rarely feasible to place a sample from every level of the

treatment on every microarray. Thus, a complete block design (i.e., where every level of
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Table 1-3: Sources of Variance

Type Name

Microarray

Feature

Array-wise Technical Dye

Variance Microarray Print

Subgrid

Investigator

Growth Conditions

Non-array technical (cage/flask, husbandry,

variance medium)

Circadian

Day

Treatment formulation

Dissection

Biological Animal/Cell culture

 

 

 

 

 

 

 

 

 

 

 

 

     
treatment effect exists on every level of the confounding variables, such as in Table 1-2)

for a microarray experiment is rarely feasible.

Although some of the sources of variance within a microarray study [such as the

growth conditions, husbandry conditions, and the time of day at the time of sacrifice

(e.g., circadian effects)] are relatively obvious, other sources include 1) array-wise

technical variation, 2) non-array technical variation, and 3) biological variation (Shilr, et

al., 2004). Array-wise technical variation includes all sources that are specific to the

microarray process, from fluorescently labeling the sample, hybridization, and scanning.

Sources of non-array technical variation include growth and husbandry conditions for the

animals and cell cultures used in the experiments, or the local environment in the case of

tumor samples and biopsies, circadian differences when the harvesting occurs at different

times of day or different times within the light/dark cycle, differences in the treatment

formulation (e.g., non-uniform suspension), and technical differences during dissection.
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Figure 1-3: Reference Design. Each arrow represents a microarray,

where the head denotes the Cy5 labeled sample, and the tail denotes the

Cy3 labeled sample. Tn represents a treated sample at the nth tirne-point;

Vn represents a vehicle sample at the nth time-point.

Due to the complexity of the microarray experiment, many of these sources of

variance are compounded with each other in ways that are difficult to control

experimentally. For example, a dye-bias has been demonstrated to exist within two-

channel cDNA microarray data (Cox, et al. , 2004; Dobbin, et al. , 2003; Dombkowski, er

al., 2004; Eckel, et al., 2005; Fare, et al., 2003; Workman, et al., 2002). There are

several potential causes for bias including steric hinderence inhibiting dye incorporation,

dye-dye interactions leading to the quenching of fluorescent signal (Cox, et al. , 2004),

fluorophore exposure to ozone (Fare, et al. , 2003), and the sensitivity of the laser detector

on the microarray scanner. This dye-bias may interact with subgrid effects on the

microarray resulting in unreliable, inaccurate measurements if not controlled.

Initially, the most commonly used experimental design for two-channel array data

was the reference design (RD) (Churchill, 2002; Kerr and Churchill, 2001a; Kerr and

Churchill, 2001b; Vinciotti, er al. , 2004). The design consists of a pooled reference
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sample that is labeled with the same dye, and hybridized to each microarray. The

experimental samples are labeled with the same dye (other than that used to label the

pooled reference) and hybridized to their respective arrays (Figure 1-3). The pooled

reference sample, which has no biological significance, consists of an aliquot from each

biological sample of interest. The purpose of the reference sample is to prevent division

by zero errors when calculating fold change ratios. This design exhibits a confound

between the biological treatments and the dye (i.e., the variance due to the dye is

inseparable from the treatment variance) (Churchill, 2002; Yang and Speed, 2002),

increasing the variance within the biological treatment, ultimately affecting the list of

significant or active genes. By performing a dye swap, where replicate microarrays are

performed with the dyes are reversed, the confound between the biological treatment and

dye is alleviated. This is equivalent to the blocking procedure used in the example (Table

1-2) from the previous section. One of the primary concerns with the RD is the over

collection of data concerning the relatively uninforrnative pooled reference compared to

the treatment groups of interest (Kerr and Churchill, 2001a; Kerr and Churchill, 2001b;

Yang and Speed, 2002). Another concern with the RD is that the amount of pooled

reference required increases with each additional treatment group.
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Figure 1-4: Independent Reference Design. This design encompasses two

microarrays per time-point, with dye swap. A time-point is confounded

within the same arrays using this design, although the dye is not

confounded with treatment. Tn represents a treated sample at the nth time-

point; Vn represents a vehicle sample at the nth time-point. Double headed

arrows represent the dye swap, where each sample is labeled with both Cy3

and CyS.

The independent reference design (IRD) was developed as an alternative to the

reference design (Fielden, et al., 2002b), and represents a direct design (Yang and Speed,

2002) where the comparisons of interest exist within the same microarray (Figure 1-4).

In this case, comparisons are made within each time-point, between treated and vehicle

samples. Thus, the variability due to the microarray is confounded with each time-point,

however, no confound is exhibited between the treatment and dye. Although the IRD is

more efficient than the RD from the standpoint that it does not collect data from an

uninformative reference group, it exhibits a temporal confound (i.e., the time-point term

is completely confounded with the microarray term) that contributes negatively towards

its general utility.
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Figure 1-5: Loop Design. The Loop Design represents a balanced block

design with respect to the dyes. Treatment and vehicle samples from the

same time-point occur on the same microarray, as well as on the arrays

with neighboring treatment groups. Each arrow represents a microarray

where the head represents the Cy5 sample, and the tail represents the Cy3

sample. Tn represents a treated sample at the nth time-point; Vn represents

a vehicle sample at the nth time-point.

Another alternative to the RD, that does not exhibit this temporal confound, is the

loop design (LD; Figure 1-5) (Kerr and Churchill, 2001a; Kerr and Churchill, 2001b).

The LD represents a hybrid direct and indirect design, where the comparisons of greatest

interest occur on the same microarray, with the capability to make comparisons across the

entire loop. As the size of the loop increases, the confidence with which one makes

comparisons between distant nodes across the loop decreases (Kerr and Churchill,

2001a). Thus, with a large number of treatment varieties [e.g., where a treatment variety

may be considered the treatment levels and the time levels; for a 2 treatment (treatment

vs vehicle), 7 time-point experiment, there would be 7 x 2 = 14 treatment varieties] it is

possible that comparisons within a treatment class (e.g., comparisons across time, but
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Figure 1-6: Modified Loop Design. Consisting of the loop design

combined with two inner loops for each ofthe major classes of treatments,

the modified loop design augments with the ability to perform comparisons

across time, but within treated and vehicle groups. Each arrow represents a

microarray where the head represents the Cy5 sample, and the tail

represents the Cy3 sample. Tn represents a treated sample at the nth time-

point; Vn represents a vehicle sample at the nth time-point.

within the treated or vehicle group) becomes less than optimal; the variance begins to

increase as a function of the increased distance.

The modified loop design (MLD; Figure 1-6) (Boverhof, etal., 2004) combats the

size optimality problem ofthe LD by including two “inner” loops — one for each

treatment group (e.g., treated and vehicle). These inner loops facilitate comparisons

across time and within treatment class (e.g., treated or vehicle). The major drawback to

the modified loop design is the number of microarrays required compared to the LD and

IRD.

Another significant consideration when designing microarray experiments is the

goal of the experiments. Typically, the goal in pharrnaco- and toxicogenomics is the

assessment of a biological response within a population. With this goal in mind, the
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investigator must be mindful of the need to have a suitable number ofrandomized

biological replicates, or else the estimated response will be inaccurate. This need for

biological replication must also be balanced with the need for technical replicates (i.e.,

replication of a sample’s measurement) to counteract large variances due to the

microarray.

Genomics

Currently, genomics is dominated by the use ofcDNA microarrays (Schena, et

al. , 1995). The cDNA microarray is a glass slide with thousands of expressed sequence

tags (ESTs) affixed to it. A microarray can be thought of as a distinct geographical

entity, consisting of several islands arranged in a particular topography, typically a grid

on a Cartesian plane (Figure 1-7). Each island, or subgrid, consists of hundreds of spots,

or features, also arranged within a particular topography, again, typically a Cartesian

plane. In the case of spotted arrays, every feature printed within a subgrid was spotted by

the same print-tip, a needle used to transfer the cDNA. As a result, the features from the

same print-tip typically illustrate some degree of covariance (Yang. et al. , 2002b).
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Microarray    
Figure 1-7: Schematic of a spotted microarray. The rrricroarray consists of

spots, or features, that are arranged within blocks, or subgrids. Each feature

within a subgrid is printed by the same print-tip.

For gene expression experiments, total RNA is extracted from the samples of

interest and labeled with a fluorescent dye (e.g., Cy3 or Cy5). These labeled samples, or

labeled extracts, are mixed together according to the experimental design, and hybridized

to the microarray. The microarray is scanned with a confocal microscope with detectors

for the dyes, resulting in a Tagged Image File Format (TIFF) image representing the

fluorescent intensities at each feature. The TIFF images for an experiment are quantified

using software such as GenePix, resulting in a tabular representation of the data, where
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Figure 1-8: Pixel map of a microarray feature. Images are made up ofpixels,

small rectangles which contain only one color. This zoomed in diagram of a

feature shows the pixels as rectangles. The circle drawn within the feature is the

best circle that can be fitted by the software. The feature measurements are taken

from within this circle as the weighted mean and medians of the pixel intensities

(the weight is the percentage of the pixel within the circle).

each row represents a distinct feature, and columns represent the intensity in the

fluorescent channels.

Due to a limitation within the TIFF standard, fluorescence values exist within the

chromatic scalex 6 {065,535} , where 0 represents a pixel of no signal, and 65,535

represents a pixel with the highest, saturated signal. Each feature on a microarray

consists of several pixels, and due to their near circular morphology (imposed by the

software; features may actually exist as other shapes), they fail to represent a whole

number of pixels, complicating the quantification process (Figure 1-8). Software, such as

GenePix, is employed to overcome these difficulties. These sofiware packages report

signal intensity per feature as distributions, where the median, mean, and standard

deviations are calculated. They also calculate the mean, median, and standard deviation

of the background intensity for each feature. As it has been shown previously that

background subtractions obfuscate further data analysis (Qin and Kerr, 2004; Tran, eta1.,
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2002), our analysis protocols use background as a method to identify whether or not a

feature is present (i.e., if the median feature signal intensity S median background feature

intensity, then the feature is absent).

Microarray Data Analysis

One important feature of microarray data analysis is the activity of normalizing

the quantified data from the raw rrricroarray images, and identifying genes with

treatment-influenced expression changes. Generally, the act of quantifying the

microarray data is automated through various software processes. These quantified data

are exported to files, and generally uploaded to a database for data management and

association with sample annotation information (e.g., treatment, animal, age, sex,

physiological status). Captured quantified data are then normalized to reduce technical

variation across the samples, while maintaining treatment effects (Cheadle, et al., 2003;

Eckel, et al. , 2004b; Quackenbush, 2002). Following normalization the data are analyzed

using any one of a myriad of statistical techniques to identify treatment-influenced gene

expression changes (i.e., active genes).

Microarray Image Quantification

Following image acquisition, investigators quantify the data from the nricroarray

image using special software that detects each feature and reports the median and mean

feature signal intensity, as well as the median and mean background intensity. For all

microarray experiments reported within this body, median feature signal intensity values

are used for analysis as they are robust to outlier pixels within a feature. Outlier pixels
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typically result from the software package not being capable of accepting any feature

morphology other than circular.

Following image quantification, data are submitted to a database and associated

with their sample annotation information. MIAME supportive databases typically require

submission of the TIFF images (a.k.a. raw data) in addition to the quantified data.

Submission ofthe TIFF images is desirable as there is generally a lack of consensus on

how to properly quantify microarray data, and re-quantification by others may be

desirable when a more general consensus on data analysis is formed.

Microarray Data Normalization

Over the years several different microarray data normalization techniques have

been developed, all with the goal of decreasing the technical variance within the assay,

while not disturbing the treatment variance. Each normalization technique that has been

developed focused on a different and seemingly important technical variant. These

techniques can be grouped as the 1) local norrnalizations, 2) global normalizations, and 3)

the hybrid techniques, encompassing the strengths of the first two groups.

The local normalization techniques operate on the assumption that a great deal of

the variance within a microarray is due to some local subset of the data, most commonly

the print-tip (Quackenbush, 2002). Examples of these methods include the lowess

regression based on print-tip groups scaling for dye biases (Yang, et al., 2002a; Yang, et

al. , 2002b); and ratio-based normalization where the same cDNA is spotted in each print-

tip group, and a spike-in control is used to calculate a local correction factor based on a

ratio of 1 for each print-tip group (Lashkari, et al. , 1997); and mean or median centering

of data across an array. These methods work to normalize the data within the local level
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Figure 1-9: Distribution of median signal intensities. This figure illustrates a

relatively common, although undesirable, phenomeon where the distribution of data

within microarrays varies greatly. The y-axis represents the median signal feature

intensity, while the x-axis represents the microarray. The boxes represent

interquartile range; that distance fiom the 25th to the 75th percentile. The cross is the

mean of the distribution, while the horizontal line within the box represents the

median (50th percentile). The whiskers represent the remainder of the distribution,

with the uppermost whisker representing the largest data point, and the lower

whisker representing the smallest data point.
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(e.g., subgrid or microarray) such that data across an array approximate the same

distribution.

The underlying assumption of local normalization techniques is that similar

distributions are approximated by all of the microarrays in the study prior to

normalization. Thus, the purpose ofthe local normalization is to internally shift the data,

or to make fine adjustments, without altering the overall distribution. These

normalization methods would thus fail if used in the experiment illustrated in Figure 1-9,

where the distributions across the microarrays differ substantially.

The global normalization procedures perform normalizations across the entire

experiment. One example of this is the Z-score centering of data, forcing all of the data
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within the experiment to conform to the same distribution (Fielderr, er al. , 2002a).

Another example is the General Linear Mixed Model (GLMM) approach, where the

normalized data values are the residuals from the model (Wolfrnger, er al. , 2001). The

GLMM approach regresses the data to fit a specified linear model. The residual

represents the difference between the predicted value from the model and the sample data

from the microarray. The global model is more capable of normalizing the data across

the microarrays than the local model, however, they typically perform less well in

normalizing the local effects (e.g., subgrid) (Quackenbush, 2002; Yang. et al., 2002a).

More recent normalization techniques attempt to build upon the strengths of the

local and global types of normalization. One example of this hybrid technique is the

serrripararnetric normalization (Eckel, et al., 2004b). Here, the lowess regression, a local

technique, is combined with a global approach — the lowess regression model is built on a

subgrid and treatment basis, thus it normalizes data both within a subgrid and across

microarrays. Thus, the response within subgrid and across the same treatment is modeled

within the regression to normalize the data across the microarrays; decreasing the

technical variation within the treatment groups, without sacrificing the biological

variation. When this normalization technique is coupled with a design that incorporates

dye-swaps, where each sample is labeled with both dyes, the normalization will also

account for dye-biases.

Microarray Data Filtering

Datasets from cDNA microarrays yield a large amount of data, and these data

must be trimmed to make it more reasonable for investigators to follow-up on the results.

Generally, investigators are concerned with identifying genes that are the most changed
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due to treatment. Numerous methods exist for doing this, including the common use of

arbitrary fold change cut-offs, the t-test (Fielden, et al. , 2002b), Wilcoxon rank sum test

(a nonparametric analogue ofthe t-test) (Efron and Tibshirani, 2002), the SAM method

(Tusher, et al., 2001), and empirical Bayes methods (Eckel, et a1. , 2004a; Efron and

Tibshirani, 2002).

Fold change cut-offs were the original method for determining active genes.

Generally, a two-fold change was considered significant, and those genes would be used

for further follow-up. However, fold change cut-offs tend to meet with significant

resistance in the absence ofmore rigorous statistical methods, especially since there is no

biological significance attributed to the fold change cut-off. For example, no doctrine

dictates that 2-fold changes are more important than 1.5-fold or 25-fold changes.

Furthermore, it is generally accepted that ratios track with fluorescence intensity (Yang.

et al., 2002a), and that fluorescence intensity is related to the number of copies of a

message within the tissue. However, ratios yield less insight to the number of copies

present than absolute intensity. For example, consider four cell populations, population

A has 2 copies of a message, population B has 4 copies, population C has 12,000 copies,

and population D has 24,000 copies. The ratio of B:A = D:C (i.e., the ratio in both cases

= 2). The absolute difference in the number of copies is drastically different (2 vs

12,000), however the ratio is the same. Thus, it is difficult to make comparisons across

or within experiments using the ratio alone.

The t-test and Wilcoxon rank sum tests provide the ability to make comparisons

between treatment groups. The t-test makes the assumption that the data are independent,

and identically distributed, and follow a normal distribution. The Wilcoxon test does not
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assume a particular distribution, however it does require the shape of the two population

distributions to be the same. The general idea of both tests is to identify whether or not

the treated and comparator (typically vehicle) groups exist within different data

distributions. These tests are performed on a per-gene basis, thus necessitating follow-up

with an additional test to control the false positive rate.

Generally, investigators tend to term the genes that survive filtering “significant”,

implying some degree of statistical rigor has been satisfied with regard to the gene’s

expression compared to some other population (e.g., vehicle gene expression). However,

in this body the term “active” is used, as opposed to “significant”, as ranking statistics

(typically the same statistics that others use for significance, without the use of a p-value)

are used exclusively for ranking and prioritization of genes for further investigation and

inclusion. Thus, the likelihood of these “active” genes having been treatment altered is

greater than those who are firrther down the list. By defining these genes as active, there

is no mention or interpretation as to the distribution that these genes come from; in other

words, there is no statement that active genes must necessarily exist within a distribution

other than that for vehicle treated genes. Thus, active genes are not statistically or

biologically significant ipsofacto. The only stipulation for a gene to be active is that

there is a higher likelihood that the gene’s change in expression is due to treatment;

inclusion in the list only necessarily dictates that more rigorous follow-up experiments be

pursued at a later time [e.g., quantitative real-time polymerase chain reaction (QRT-

PCR)].

The SAM method is similar to the t-test except it performs an additional

adjustment with respect to the standard error (Tusher, et al. , 2001). Microarray data tend
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to illustrate variable standard errors, where the standard error for low intensity genes is

much less than the standard error for high intensity genes. As the standard error acts as a

penalty in the calculation of the t-statistic (i.e., the t-statistic is inversely proportional to

the standard error), low intensity genes would tend to have larger t-statistics. The SAM

method adjusts the standard error by a user-defined factor to adjust the standard error,

and reduce this bias. The primary concern with the SAM method is that the factor may

itself be chosen inappropriately, thus further biasing the t-statistic, and penalizing

otherwise active genes.

The empirical Bayes methods (a.k.a. hierarchical Bayes methods) are an

application of Bayes’ theory to the problem of identifying active genes. Bayes’ theory

holds that the likelihood an event will occur is dependent upon the prior probability of

that event happening (Gelman, et al., 2004). The prior probability can be thought of as a

historical probability, that is, it is the known probability that an event will occur based on

past trials. For example, to determine the probability that a person has a disease using a

diagnostic kit, it is necessary to know the historical probabilities of correct and incorrect

diagnoses, especially with respect to the patient either actually having the disease or not.

These historical probabilities are the prior probabilities. Generally, the prior probability

must be implicitly stated; however there are mathematical means of deriving suitable and

appropriate prior probabilities when they are unknown. For example, the empirical

Bayes models do not require specification of the prior probabilities as they can be

inferred mathematically from relationships within the existing dataset (Eckel, et al.,

2004a; Efi'on and Tibshirani, 2002; Gelman, er a1. , 2004). The key difference between

these methods and the previously mentioned ones is that the empirical Bayes methods
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require familiarity with statistical model building and are not generally accessible to a

larger biological audience without the assistance of trained investigators.

Data Interpretation

Once a microarray dataset has been distilled down to a list of the most active

genes, it must be further analyzed to facilitate data interpretation. Biological

interpretation ofthe data is a daunting task, and requires the integration of data from

several sources, including up-to-date gene annotation. Investigators will need as much

information as possible to accurately interpret the data, including gene names,

abbreviations, and aliases for literature searches; cellular and extracellular locations;

functional annotation; disease processes the gene participates in; and biological

interaction data (e. g., protein-protein interactions). This information is oftentimes

available in biological databases devoted to a particular purpose or data domain.

Biological databases are grouped by the type of data they manage into several

categories. Figure 1-10 depicts a subset of the more common databases and groups them

as they relate to genomic data integration; excluded from the figure are the metabonomics

related domains which are currently in development. All ofthe databases exist in an

extremely complex data exchange continuum, where some databases rely entirely upon

others for their information, others are nearly independent ofthe rest, and the remaining

host a smorgasbord of data integrated from several different levels. Generally speaking,

however, genome sequences, from databases such as Ensembl (Clamp, et al., 2003;

Hubbard, et al., 2005), Entrez Genomes (Wheeler, et al., 2004), and the UCSC Genome

Browser (Karolchik, et al. , 2003), can be thought of as the root of the universe. From

these genomic templates, expressed sequence tags and cDNAs in GenBank (Wheeler, et
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al., 2004) can be clustered together and associated with genes (i.e., UniGene (Wheeler, et

al. , 2004)), and exemplary, representative sequences can be identified and mapped back

to genes in the genome (i.e., RefSeq (Wheeler, et al. , 2004)). These elements are then

annotated in databases such as Entrez Gene (Maglott, et al. , 2005), where functional

information (Gene Ontology (Harris, et al., 2004)), and genetic disease information

(Online Mendelian Inheritance in Man; OMIM (Wheeler, er al., 2004)) are integrated to

give a more firll picture of the gene’s function.

The same elements from the sequence level databases are also represented on

microarrays. This provides the relationship that facilitates firnctional annotation of active

genes from microarray experiments. Microarray data are captured locally, for a

laboratory or consortium, within laboratory information management systems (LIMS),

and disseminated to the public through repository systems such as the Chemical Effects

in Biological Systems Knowledgebase (CEBS) (Waters, et al., 2003a), ArrayExpress

(Brazma, et al., 2003; Rocca-Serra, et al., 2003), and the Gene Expression Omnibus

(GEO) (Edgar, et al., 2002).

Tie-in of data between the genomic and proteomic level is also capable through

sequence relationships, from the mRNA to the protein translation. This facilitates further

fimctional predictions, by analyzing the protein domains that might exist. Interaction

data, from databases such as BIND (Biomolecular Interaction Network Database) (Bader

and Hogue, 2000) and DIP (the Database of Interacting Proteins) (Xenarios, er al., 2000),

can also be gleaned from these proteomic databases to build new networks, facilitating

the development of communication models and novel modes of action.
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Figure 1-10: The Biological Database Universe. The biological database universe is

ever growing, and this figure depicts six of those levels as they pertain to genomic

data analysis and interpretation. The Genome Level Databases catalog data with

respect to the full genome. The Sequence Level Databases catalog sequence reads

from cells, including genomic sequence and expressed sequence tags (ESTs).

Annotation Databases provide functional information about genes and their products.

Protein Level Databases provide information on protein sequences, families, and

domain structures. The Protein Interaction Databases provide interaction data

concerning proteins, genes, chemicals, and small molecules. The Microarray

Databases include local laboratory information management systems (LIMS) and data

repositories. Arrows in the figure depict communication between the different

domains, where information from one level may exist in another level to allow for

cross-domain integration.
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Genome Level Databases

Genome level databases manage, at the very least, genomic data. However, they

differ in their integration of other types of data and ofien in their assignment of

computationally defined genes. The three primary genome level databases are the

Ensembl database (Clamp, et al. , 2003; Hubbard, et al., 2005), the Entrez Genomes

database (Wheeler, et al. , 2004), and the University of California Santa Cruz Genome

Browser (Karolchik, et al. , 2003). All three databases use different techniques for

predicting genes and gene structures (e.g., untranslated regions (UTR), regulatory

regions, introns, and exons).

The Ensembl database utilizes several different methods for the prediction of

genes and gene structures (Curwen, et al. , 2004). The method is biased towards the

alignment of species-specific proteins and cDNAs, and using orthologous protein and

cDNA alignments when necessary. The use of the protein and cDNA alignments against

the genome sequence facilitates the identification of exonic and intronic sequences and

UTRs (Figure 1-11). A putative transcription start site (TSS) can be obtained from this,

defining the end of the upstream region.
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Figure 1-1 1: Ensembl Genome Annotation. This simplified view ofthe Ensembl

genome annotation system illustrates their method for identifying gene structures,

such as the untranslated region (UTR), exons, and introns by combining genome,

mRNA, and protein alignments.

The National Center for Biotechnology Information (NCBI) Entrez Genomes

database annotates genes based on the RefSeq database of reference, exemplary

sequences. RefSeq sequences are aligned to the genomic sequence using the

MegaBLAST algorithm; additional mRNA and ESTs are aligned to find more genes

(http://www.ncbi.nlm.nih.gov/genome/guide/build.html#contig; accessed April 5, 2005).

The UCSC Genome Browser uses the NCBI genome builds for its annotation,

however, previously the Genome Browser used similar annotation sources as the Entrez

Genome. Today there are no differences between the human and mouse genome builds.

However, the mouse genome reported at UCSC is the C67/B16 strain. Previously, the

primary difference between the two methods was in their genome assemblies, where

Entrez Genome used sequence entries from the GenBank database to drive assemblies,

while the UCSC Genome Browser uses BAC clones, mRNA sequences, and a greedy

algorithm (greedy algorithms divide a problem into parts, and identify the locally
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optimized solution to each part independently, and combines those to form a larger

solution, which will hopefully be the globally optimum solution) to furnish the assembly;

resulting in differences in the genome assemblies (Rouchka, et al., 2002). Without

knowing the true assembly of the genome, it is difficult to ascertain which assembly was

more or less correct than the others. This had vast implications with regards to SNP,

promoter, and other data mining applications with regards to these differences (Rouchka,

et al., 2002). Today, NCBI and UCSC agree in their annotation as UCSC uses build from

the NCBI or genome authorities (see http://genomeucsc.edu/FAO/FAOreleafl for

further details).

Sequence Level Databases

Sequence level databases manage data with respect to a particular sequence read

of an EST or cDNA. These databases may deal with those sequences directly, as is the

case for GenBank and RefSeq, or they may manage them on a larger scale, where

multiple sequences are grouped together, as in UniGene. Generally, these databases

provide the first level of annotation for microarray studies, as the sequences are directly

represented on the microarrays.

GenBank Accession numbers are generally the most commonly used identifier for

probes attached to microarrays. The GenBank Accession matches the probe to one

sequence within the GenBank database (Wheeler, et al., 2004); a database of submitted

biological sequences (ESTs, cDNAs, etc). The UniGene database creates non-redundant

gene clusters based on GenBank sequences (Wheeler, et al. , 2004). Clusters are built by

sequence alignment, and annotated based on overall sequence alignment to genes in the

Entrez Gene database.
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The RefSeq database provides exemplary transcript and protein sequences based

either on hand curation or based on information from a genome authority (e.g., the

Jackson Labs) (Pruitt and Maglott, 2001; Wheeler, et al., 2004). There are currently

Table 1-4 RefSeq Categories
 

 

 

RefSeq Record Category Source of annotation

Genome annotation Records are aligned to the annotated

genome

Inferred Predicted to exist based on genome

annotation, but no record in GenBank

exists to qualify the prediction

Model Predicted based on bioinforrnatics

prediction methods; a known transcript

may or may not exist

 

 

 

Predicted Sequences from genes with unknown

functions

Provisional Sequences associated with genes of

known function that have not been

reviewed by NCBI personnel

Validated Sequences associated with genes of

known function that have undergone an

initial review

Reviewed Sequences representing genes of known

function that have been completely

reviewed by NCBI personnel

 

 

    
seven categories of RefSeq records (Table 1-4): 1) genome annotation, 2) inferred, 3)

model, 4) predicted, 5) provisional, 6) validated, and 7) reviewed

(http://www.ncbi.nlm.nih.gov/RefSechey.html#status; accessed April 7, 2005). The first

category, genome annotation, includes mRNA and protein records that are aligned to the

annotated genome. Inferred records are those that are predicted based on the genome

analysis, but there is no mRNA/EST that exists within GenBank to qualify the prediction.

Records labeled as “model” are predicted based on gene prediction methods, and may or

may not have a known transcript associated with it. Predicted, represents protein and

transcript sequences from genes with unknown functions. Provisional records represent
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genes with known functions, but which have not been verified by NCBI personnel.

Validated records have undergone an initial review, and are awaiting firrther review by

NCBI personnel. The reviewed status is reserved for those RefSeq records representing

genes of known function that have been reviewed by the NCBI personnel. For further,

and updated information on the status codes used by RefSeq see:

http://www.ncbi.nlm.nih.gov/RefSeq/kev.html#status.

RefSeq accession numbers follow a PREFD(_NUMBER format (e.g.,

NM_123456, or NM_123456789). All curated RefSeq transcript accessions are prefixed

by an NM, while XM prefixes represent accessions which have been generated by

automated methods. Some of the NM transcript accessions have also been generated by

automated methods, but all NM transcripts are relatively mature

(http://www.ncbi.nlm.nih.gov/RefSeq/kev.html#status; accessed April 7, 2005).

Annotation Databases

Annotation databases provide firnctional information for genes, and may also

catalogue the gene’s structure. These databases serve as a launching point for

mechanistic understanding and hypothesis generation from microarray data. Several

domain specific annotation databases exist, including those that focus on particular

species, such as the Mouse Genome Database (Eppig et al. , 2005).

The Entrez Gene database is a part ofNCBI’s Entrez suite of bioinforrnatics tools.

Entrez Gene is a source for information on annotated genes in several different genomes,

including human, mouse, rat, and dog (Maglott, er al. , 2005). Annotated genes are

defined as those that have a RefSeq identifier associated with them, or those that have
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Table 1-5: Entrez Gene Annotation Categories and Sources (adapted from Maglott,

etaL,2005)

 

 

 

 

 

 

   

Annotation Categories Source

Gene names and Publications and genome authorities

abbreviations/symbols

RefSeq Sequence RefSeqdatabase

Genome position and Genome databases

gene structures

Gene Function Gene Ontology (GO) database, Gene References into

Function (GeneRIF)

Expression Data Gene Expression Omnibus (GEO), EST tissue

expression from GenBank
 

been annotated by an annotation authority (e.g., Jackson Labs for mice). As such, entries

within Entrez Gene may or may not have a RefSeq associated with them, and those

entries with associated RefSeq accessions may have either the NM (mature) or the XM

(non-reviewed) series. Thus, an Entrez Gene record may not have an exemplary RefSeq

sequence associated with it.

Entrez Gene serves as a focal point for gene annotation, integrating data from

many sources, including databases outside NCBI. Some of this data integration is

achieved through hyperlinks to the appropriate database entries, while others are

catalogued on the detail page for that gene. Table 1-5 (adapted from Maglott, et al.,

2005) lists several of the annotation categories, and their sources. The most basic form of

gene annotation is the gene name and the abbreviation. These are necessary to begin

functional annotation of the gene through the literature. The Entrez Gene database also

integrates data from the RefSeq, Gene Ontology (GO), Gene Expression Omnibus

(GEO), Gene References into Function (GeneRIF), and GenBank databases. The RefSeq

sequences, both mRNA and protein, facilitate sequence based searching, such as

identifying other genes that may be homologous, or identifying gene function based on
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protein domains. The G0 database catalogues genes by their molecular function, cellular

location, and biological process. Information about the expression of genes can be

obtained from the GenBank database, where the tissue localization for an EST is

recorded, as well as the GEO — NCBI’s gene expression repository (Wheeler, et al.,

2004). GeneRIFs provide curated functional data and literature references. GeneRIFs

serve as a useful starting point, however, they typically do not provide the most up-to-

date functional annotation from the literature. Investigators can facilitate GeneRIF

updates by submitting suggestions directly to the NCBI through their update form:

http://wwwncbi.nlm.nih.gov/RefSeg/updatecgi.

For human studies, the Online Mendelian Inheritance in Man (OMIM) database,

the online version of the Mendelian Inheritance in Man (McKusick, 1998), provides

linkages between human genes and diseases (Hamosh, er al. , 2002; Wheeler, er al.,

2004). The OMIM database is searchable through the NCBI Entrez system. Links to the

OMIM database are provided within query output pages from the Entrez Gene database.

For many of the diseases within OMIM, a synopsis of the clinical presentation is

provided in addition to links to the genes associated with the disease. PubMed citations

are also made available through the OMIM database, with hyperlinks to the PubMed

database entries. Also, the OMIM contains information on known allelic variants and

some polymorphisms (Hamosh, et al., 2002).

The Gene Ontology (GO) (Harris, et al., 2004) database is another source of gene

functional annotative information. The database consists of an ontology (i.e., a

catalogue of existents/ideas/concepts and their interrelationships (Cox, 1999)) where

terms exist within a directed acyclic graph (DAG; Figure 1-12). DAGs are graphical
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structures that cannot exist as loops, thus, a child node (i.e., an object or concept) may not

also serve as its own predecessor (i.e., parent, grandparent, great-grandparent, etc. . .).

Any child node within a DAG may have any number of parents, and any number ofpaths

to get to the child. For example, Figure 1-12 shows two paths leading to the same child,

GO:0045814: negative regulation of gene expression, epigenetic. Here it is evident that

this epigenetic negative regulation of gene expression is both a regulation process and

critical in development. GO entries that exist at the same level relative to the root, or

starting node, do not necessarily reflect the same level of specificity. The level of

specificity afforded must be taken on a per DAG basis, and not relative to the other

DAGs. Thus, a 4th order node (a node that is 4 levels below the root node) in one DAG

has no specificity relationship with regards to a 6th order node in a different DAG. At

each mode within the GO there may exist a list of genes. As the annotation for a gene

improves, it may change node associations. For example, if gene X were previously

GO:0040029 (regulation of gene expression, epigenetic), and new experimental data

suggested gene X was a negative regulator of gene expression through an epigenetic

mechanism, it would be reassigned to GO:0045814 (negative regulation of gene

expression, epigenetic).
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60:0050789

regulation of biological

/ ”mess \ GO:0040029

GO: 0008150 regulation of gene expression,

blologlcal_proces\ epigenetic

GO:0007275/

development

GO:0045814

negative regulation of gene expression,

epigenetic

Figure 1-12: Example GO DAG. This DAG shows two paths to reach the same GO

entry, GO:0045814. It is important to note that the DAG travels from the most general

case, and becomes more specific with entries that are farther down the DAG.

Protein Level Databases

In the course of interpreting gene expression results, it is useful to consult protein

databases to identify the proteins that may be encoded by the genes of interest. Some of

the gene annotation databases mentioned above provide links to this information, such as

Entrez Gene and the Ensembl databases. However, as the gene sequence level databases

provided sequence anchoring for the higher level databases, so do the protein level

databases, with respect to protein sequence.

Recently, several protein level databases were merged into one primary protein

resource, the Universal Protein Resource (UniProt). UniProt combines the Swiss-Prot,

TrEBML, and PIR-PSD databases into one resource, consisting of three related

databases. The UniProt Archive (UniParc) is a database of non-redundant protein

sequences obtained from 1) translation of sequences within the gene sequence level

databases (e.g., GenBank), 2) RefSeq, 3) FlyBase, 4) WormBase, 5) Ensembl, 6) the

International Protein Index, 7) patent applications, and 8) the Protein Data Bank

(Bairoclr, et al. , 2005). The UniProt Knowledgebase (UniProt) provides functional

annotation of the sequences within the UniParc. Examples of the annotation include the
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protein name, listing of protein domains and families from the Inteer database (Mulder,

et al. , 2003), Enzyme Commission identifier, and Gene Ontology identifiers. Proteins

represented within the UniParc and UniProt Knowledgebase are then gathered

automatically to create the UniProt reference database,(UniRef) a database of reference,

exemplar sequences based on sequence identity. Three different versions of the UniRef

database exist, the UniRefl 00, UniRef90, and UniRef50, where the number denotes the

percent identity required for sequences to be merged, from across all species represented

in the parent databases, together into a single reference protein sequence. Thus, the

UniRef50 requires only 50% identity for proteins to be merged together. The UniRef50

and 90 databases provide faster sequence searches for identifying probable protein

domains and functions by decreasing the size of the search space.

The RefSeq database also contains reference protein sequences, similar in concept

to the reference mRNA sequences. These are available through the Entrez Gene system,

when querying for a gene. For more information on RefSeq, see the section on Sequence

level databases.

Protein Interaction Databases

Protein interaction databases capture data on the interaction of proteins with other

proteins, genes, and small molecules. The two protein interaction databases discussed

here include the Biomolecular Interaction Network Data (BIND) and the Database of

Interacting Proteins (DIP), however others include the Molecular Interaction database

(MINT), and the IntAct database. Tools are also available to view the networks, such as

Osprey (Breitkreutz, et al. , 2003) and Cytoscape (Shannon, et al., 2003). By visualizing
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the interaction data, with some notion of the gene expression data, investigators can begin

to construct hypotheses to test mechanistic understandings.

Both the BIND (Alfarano, et al., 2005) and DIP (Xenarios, et al., 2000) databases

manage data from protein interaction experiments, including yeast-two-hybrid and co-

irnmunopreciptation experiments. Much ofthis data is submitted to the databases either

directly or through database curators scouring the literature. The databases make their

data available through interaction files which are typically available in the Protein

Standards Initiative (PSI) Molecular Interaction (PSI-MI) XML format.

Visualization of these datasets is made possible through tools such as Osprey and

Cytoscape. Both of these tools produce protein interaction networks based on input data,

which may be from either ofthese databases, or from other sources. Cytoscape has the

additional functionality of allowing users to input their gene expression data for overlay

on the protein interaction map, through plug-ins (Shannon, et al. , 2003). Through these

visualization tools, investigators may begin to identify pathways of interest that are

putatively altered following treatment, facilitating the generation ofnew hypotheses, or

identification of new drug targets.

Microarray Databases

Microarray databases typically come in two forms: 1) laboratory information

management systems (LIMS), and 2) data repositories. The LIMS solutions are used on

the local level to manage data within a laboratory or a consortium. The primary purposes

of the LIMS are to ensure data are being properly managed, facilitate analysis, and

archive data for long-terrn use. Data repositories serve to facilitate comparisons between
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datasets from across laboratories, facilitate reanalysis of data, and complement

interpretation from studies in non-genomic laboratories.

A general discussion of microarray LIMS is diffith as they are designed by

groups to meet their individual needs. Typically they are developed based on the

Minimum Information About a Microarray Experiment (MIAME) standard (Brazma, et

al., 2001). This standard discusses the need for genomics investigators to include with

their data enough information for other scientists to replicate the experimental protocols.

Data repositories typically follow the same basic philosophy: collect data

submitted by investigators, process it to make it usable by others, and provide some

means for comparison to the rest of the repository. Several journals require microarray

submissions to adhere to the MIAME standard, while the MGED Society is pushing for

journals to require microarray datasets be submitted to repositories as a condition of

publication, similar to requirements that novel sequences be submitted to GenBank prior

to publication (Ball, et al., 2004a; Ball, et al., 2004b). Two of the most common data

repositories are the NCBI Gene Expression Omnibus (GEO) (Edgar, et al., 2002) and the

ArrayExpress (Brazma, et al., 2003; Rocca—Serra, et al., 2003) at the European

Bioinforrnatics Institute (EBI). These serve as general repositories, capable ofhandling

most gene expression data. Recently, specialized repository efforts have been

undertaken, such as the Chemical Effects in Biological Systems (CEBS) Knowledgebase

(Waters, et al., 2003a; Waters, er al., 2003b), which will serve to catalogue gene

expression data from chemical exposures with the associated pathology data.

With the emergence of more pharmacology and toxicology domain specific LIMS

for genomics, the International Life Sciences Institute (ILSI) Health and Environmental
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Sciences Institute (HESI) Technical Committee on the Application of Genomics to

Mechanism-Based Risk Assessment, in cooperation with the MGED Society, began work

on a toxicology-specific MIAME standard (MIAME/Tox) (Mattes, et al., 2004). This

MIAME/Tox document is expected to further specify the minimum information that

needs to be communicated to replicate a toxicogenomics experiment. It is expected that

this document will facilitate data sharing among the toxicogenomics community (e.g.,

transmission of data from a toxicology LIMS for inclusion in CEBS).

Conclusion

It is evident that pharmacology and toxicology benefit from large scale omic

technologies. Experimentally perturbing a system, and identifying changes in gene

expression, may result in the generation of novel mechanistic hypotheses (Nuwaysir, et

al., 1999). However, to effectively harness genomic technologies it is also necessary to

develop data management technologies to manage the massive amounts of data as they

are generated. Through these efforts, improved quality assurance protocols and

experimental designs may develop. These improvements, coupled with the maturation

data annotation landscape, will ultimately lead to more informative mechanistic

hypotheses.
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Abstract

The comprehensive elucidation of mechanisms of toxicity that will support

mechanistically-based quantitative risk assessment requires the development of

innovative computational infrastructure and approaches including enterprise data

management systems in order to facilitate data integration and reduce uncertainties in the

source-to-outcome continuum. deach (http://dbzach.fst.msu.edu) is a modular relational

database with associated data insertion, retrevial and mining tools that manages

toxicogenomic and traditional toxicology data, and facilitates data integration, analysis,

and sharing between collaborating investigators or with public repositories. It consists of

four Core Subsystems (i.e. Clones, Genes, Sample Annotation and Protocols), four

Experimental Subsystems (i.e. Microarray, Affymetrix, Real-Time PCR (RTPCR), and

Toxicology), and three Computational Subsystems (i.e. Gene Regulation, Pathways,

Orthology) that are supportive of the Minimum Information About a Microarray

Experiment (MIAME) standard. Its modular structure allows data management to be

extended to other emerging technologies and model systems including ecologically

relevant species. deach provides daily ongoing support for a number of in vivo and in

vitro toxicogenomic microarray studies and is currently populated with human, mouse

and rat data. The source code will be made available for examination and

implementation to interested parties under license. The terms of the license are currently

being developed. All distribution and licensing information will be made available on the

deach website (http://dbzach.fst.msu.edu).
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Introduction

In order to improve the quantitative risk assessment of chronic and subchronic

exposure to synthetic and natural chemicals and their complex mixtures, uncertainties

within the source-to-outcome continuum must be minimized. Emerging technologies and

computational toxicology approaches will provide informative mechanistic data needed

to further improve quantitative predictive models. However, disparate data including

chemical, exposure, adsorption, distribution, metabolism, excretion, toxicologic and omic

data, must be integrated in order to develop comprehensive computational models that

consider all of the available data. The development of enterprise data management

systems is an integral step to support emerging computational toxicology methods and to

facilitate revision of mechanistically-based quantitative risk assessment.

Relational databases and knowledgebases capable of supporting toxicology and

quantitative risk assessment efforts are emerging (Bushel, er al. , 2001; Mattes, et a1. ,

2004; Tong. et a1. , 2003; Waters, et a1. , 2003). In addition to ensuring proper data

management and storage, relational databases facilitate data quality assurance, analysis,

sharing and deposition into public repositories. Furthermore, they provide a platform for

complex queries across disparate data and support the deve10pment and use of data

mining applications. For example, properly designed relational databases may prove to

be indispensable in the reevaluation of historical data in light ofnew results, identify

relationships across several different data domains (e.g., gene expression, metabolite,

gross observations, histopathology) to identify predictive agglomerative biomarkers with

greater predictive accuracy, and identify orthologous response genes between model and

ecologically relevant species to reveal conserved mechanisms of toxicity.
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Here, we discuss the deach System, a database and associated software suite that was

developed to support data management of ongoing traditional toxicology (e.g.,

histopathology, clinical chemistry/pathology, gross observations) and toxicogenomic

(i.e., genomics, proteomics, and metabonorrrics) studies (Figure 1). It is supportive of the

Minimum Information About a Microarray Experiment (MIAME) standard (Brazma, et

al., 2001), and the Microarray and Gene Expression (Spellman, et al., 2002) Markup

Language (MAGE-ML) which facilitates the electronic sharing of stored data with other

databases. deach is not a public data repository, but rather an intralaboratory

framework for the storage, management, integration, analysis, and mining of data

including toxicology, histopathology, clinical chemistry and microarray data. Data

integration facilitated by deach provides infrastructure for building computational

toxicology tools to reduce the uncertainties in the source-to-outcome continuum

associated with quantitative risk assessment. Although developed to support our research

efforts, the schemas used in the design and implementation of the database and its

associated applications are applicable to other toxicology and biomedical research

programs requiring data management.

Database Design

deach is designed to be modular and to accurately reflect biological concepts

and relationships. Modularity ensures new subsystems for nascent technologies can be

incorporated without requiring changes to the preexisting backend. Each separate

module of the database is termed a subsystem, and each subsystem manages data for a

technology (e. g., quantitative Real-Time PCR, spotted microarray, Affymetrix), a
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biological concept/discipline (e.g., cDNA clones, genes, toxicology, pathway, gene

regulation), or MIAME required ancillary annotation (e.g., protocols, sample annotation).

Relationships between tables representing definitive biological concepts (e.g.,

animals and organs) are structured to capture their biological relationships (Figure 2).

For example, the animal table records only that data which is specific to the animal itself,

such as its arrival date, age at arrival, sex, and the cage identifier. A separate table

records information about harvested organs, such as the organ name, wet/dry weights,

etc. The two tables are connected through a one-to-many relationship, where one animal

may have data from one or more organs associated with it.
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Figure 2-2: Relationships Between Animal Husbandry, Treatment, and

Histopathology. Animal husbandry and treatment data are defined in different sets

of tables. As cages may hold more than one animal, a one-to-many relationship

exists between the CAGE and ANIMAL tables. This separation allows data specific

to the cage (e.g., bedding, feed type, water type) to be separated from the animal.

Similar logic follows for treatments, and histopathology data. Relationships

between tables are depicted using the crow’s feet symbols (the line symbols between

tables) , where the parent table (e.g., CAGE) is represented with either a double line

symbol (required relationship), or a circle with a cross symbol (not required

relationship), and the child table (e.g., ANIMAL) is represented with a crow’s foot

(a circle with prongs leading from it). In the one-to-many relationship, there is one

parent that may contain many children (e.g., one cage may contain many animals).

In practice, the one-to-many (i.e., parent-to-child) relationship is realized through a

primary key (i.e., unique identifier from the parent table) to foreign key relationship

(e.g., the CAGE_ID in the CAGE table is the primary key, while the CAGE_ID in

the ANIMAL table is a foreign key).

Another example of the persistence of biological relationships within the database is the

management of histopathology data. Animals may consist ofmany organs within the

database. Organs may exist as an agglomeration of sections. Each section may be scored

by a pathologist, and a lesion may be identified on a per section basis. Pathologist scores

and remarks concerning each lesion are related back to the animal annotation through the

section and organs. Thus, chemical treatment/exposure annotation is not
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Table 2-1: Description of deach Subsystems
 

Database

Subpart

Subsystem Description Status*

 

Core

Clones Tables that manage cDNA clones, their

sequences, GenBank accessions, 384- and

96-well plate locations, and species

represented

Populated

 

Genes Tracks genes of interest for the laboratory.

Includes connections to the Clones and

Real-Time PCR subsystems. Tracks gene

annotation data (name,

abbreviation/symbol, Entrez Gene ID,

RefSeq mRNA Accession, Gene Ontology

data, chromosomal location, UniGene

Cluster) as well

Populated

 

Protocols Manages all protocols, and their versions,

in use by the laboratory.

Populated

 

Sample

Annotation

Manages all sample annotation data

including animal husbandry, cell culture

conditions, organs, biological fluids, and

biological sample type.

Populated

 

 

Experimental

Real-Time

PCR

Manages primers, primer sets, PCR plates,

and data from quantitative real-time PCR

reactions.

Populated

 

Microarray Manages labeled extracts, microarrays,

clones and feature locations, quality data,

raw image files, quantified data,

normalized and statistical data.

Populated

 

Toxicology Manages toxicology and pathology data. Testing_
 

Protein Manages protein annotation and proteomic

data

Development

 

Metabonomic Manages metabolite annotation and

metabonomic data

Development

 

Affyemtrix Manages all Affymetrix data generated

from an experiment

Populated

 

 

Computational

Gene

Regulatory

Manages sequences upstream of gene start

sites, gene regulatory sequences, and their

annotation

Populated

 

Orthology Manages orthologous gene relationships

between species

Populated

  Pathways  Manages known and newly discovered

pathways by modeling the relationships

between endogenous and exogenous

chemicals, proteins, and genes  Testing

  "' Populated: subsystems ready for querying. Testing: subsystem tables have been put

in place, and are being tested to ensure all appropriate relationships are captured.

Development: the database subsystem is currently being developed.   
provided at the histopathology level, but rather the animal. This allows any data
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associated with the animal to also be associated with experimental manipulations

performed on the animal (e.g., treatment, surgeries, husbandry), and optimizes database

design and performance by reducing redundancy where this same information would be

associated with each experimental level (e.g., histopathology, clinical chemistry, gross

observations, etc) individually.

Currently the database consists of 13 subsystems divided in four Core Subsystems

(i.e. Clones, Genes, Sample Annotation and Protocols), six Experimental Subsystems (i.e.

Microarray, Affymetrix, Real-Time PCR (RTPCR), Toxicology, Metabonomics, and

Proteomics), and three Computational Subsystems (i.e. Gene Regulation, Pathway,

Orthology). A brief description of each subsystem and its current status is summarized in

Table 2-1. More detailed descriptions of each subsystem are provided below.

Core Subsystems

The Core Subsystems include the Clones, Genes, Protocols and Sample

Annotation Subsystems. These subsystems satisfy MIAME requirements and are needed

for the functionality of the Experimental and Computational Subsystems.

The Clones Subsystem consists of tables that manage the cDNA clones

represented on microarrays. Each clone is associated with a GenBank accession number.

The mapping of a clone to a GenBank record is a one-to-many relationship to account for

multiple high probability BLAST matches (Figure 2-3). The subsystem also relates a

clone to its location within 96- and/or 384-well storage plates.
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Figure 2-3: cDNA Clones to Gene Annotation. BLAST analysis of sequenced ESTs

represented on the microarrays may match multiple, high probability GenBank

Accession numbers. GenBank Accession numbers are mapped to genes using the

UniGene and Entrez Gene databases. Each GenBank Accession is mapped to only

one UniGene record, however, not all of these accessions map to the same gene.

The Genes Subsystem manages gene annotation data for genes associated with

cDNA clones, real-time PCR primers, and pathways. Annotation data include

chromosomal locations, Gene Ontology data, NCBI Entrez Gene and RefSeq identifiers,

and NCBI UniGene Cluster numbers. GenBank accessions are associated with gene

records through the UniGene database. As a clone may be represented by more than one

GenBank accession, it is also possible for a clone to map to many genes (Figure 2-3).

deach updates clone-gene relationships following each UniGene build based on

GenBank Accession relationships with GenBank and cross-references to the Entrez Gene

database.

In compliance with the MIAME standards, all protocols and standard operating

procedures used within the laboratory are managed by the Protocols Subsystem. Changes

to existing protocols are maintained as separate versions. Protocol versions are

associated with data from all of the various subsystems, and may be used in analyses as

appropriate to investigate differences in methods, and to examine the effect ofprotocol

variations on data.
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Figure 2-4: In Vivo and In Vitro Sample Annotation Tracks. The management of

in vivo and in vitro sample annotation data is tracked separately. This minimizes table

sizes which improves efficiency, and allows for more complete annotations to be

tracked. For example, animals are not grown within a medium, nor are surgeries

performed upon a cell culture sample. Yet, both categories of information are

necessary for complete sample annotation, and not appropriately captured using one

large table for both in vivo and in vitro data.

   

The Sample Annotation subsystem manages all biological sources of data, such as

animals and cell culture samples. Unlike other database efforts that ascribe to the

MIAME standards, deach manages in vitro and in vivo information about biological

sources in different tracks, allowing more detailed information to be managed while

decreasing the number of columns per table, thus enhancing technical efficiency and

simplifying the annotation used for describing study designs and experimental conditions

(Figure 2-4).

Experimental Subsystems

The Microarray Subsystem can manage n-channel (i.e., there is no limit on the

number of concurrent dyes per microarray set by the database) microarray data including
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cDNA and oligonucleotide platforms utilizing any number of fluorescent dyes.

Currently, the subsystem manages the raw TIFF microarray images from the array

scanner, quality control data, quantified data from the image, normalized data, and the

statistical analysis output used in the identification of significant/active genes. This

subsystem leverages relationships with other tables within the Sample Annotation,

Clones, and Protocols subsystems to provide additional annotation.

The Real-Time PCR Subsystem manages critical data for performance of

quantitative real-time PCR (QRT-PCR) assays. These include the sequence of forward

and reverse primers, including the central probe for TaqMan assays, the layout of assay

plates, raw data files from the assay equipment, and expression data. The primers are

associated with the template used for their design, and also with the Genes Subsystem, to

provide up-to-date gene annotation data. This also facilitates in silico comparisons to

determine the correlation between the microarray and QRT-PCR gene expression data

(Boverhof et al., 2005; Fong, et al., 2005).

The Toxicology Subsystem is responsible for the management of all traditional

toxicology data, including histopathology, in vitro assays, clinical chemistry, and cell

morphology. The Toxicology Subsystem currently uses the National Toxicology

Program Pathology Code as the controlled vocabulary for pathology data. Toxicology

data are associated with the source organisms in the Sample Annotation subsystem

allowing toxicology parameters to be tracked back to specific animals and/or treatment

conditions.
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Computational Subsystems

The Computational subsystems include the Orthology, Gene Regulatory and

Pathway Subsystems. These subsystems manage data that facilitate mechanistic

interpretation, cross-species comparison, network elucidation, and quantitative risk

assessment. Tables within these subsystems are populated with data that have been

generated using computational means.

The Orthology Subsystem facilitates species comparisons. Currently, the

subsystem catalogues orthologous genes across human, mouse, and rat species. The

architecture allows other species, such as ecologically relevant models, to be incorporated

as necessary. Orthology data are currently obtained from the Ensembl database,

however, the architecture also enables data from other sources to be used, including the

Comparative Toxicogenomic Database (http://www.niehs.nih.gov/oc/factsheets/ctd.htm).

This facilitates comparisons among databases, as well as maximizing the identification of

orthologous genes in an effort to identify conserved responses and mechanisms of

toxicity between species thus minimizing uncertainties associated with extrapolations.

To facilitate the generation ofnew hypotheses concerning gene regulation with

respect to the gene expression data, genomic sequence for likely regulatory regions

(proximal and distal promoters, S’untranslated, 3’ untranslated) for all RefSeq identified

genes from the UCSC Genome Browser have been included in the Gene Regulatory

Subsystem. When leveraged with position weight matrices and probabilistic short

sequence motif identification, this data allows novel hypotheses concerning gene

regulation to be computationally examined for regulatory motifs (Sun, et al. , 2004) and

subsequently verfied using chromatin irnmunoprecipitation (ChIP) and ChIP-on-chip
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technologies (Buck and Lieb, 2004) that facilitates the development of comprehensive

gene expression regulatory networks (Luscombe, et al., 2004).

The Pathways Subsystem catalogs all protein-protein, protein-DNA, chemical-

protein, chemical-DNA, and metabolism pathways. The current schema will handle data

from other databases, and those pathways that are internally defined. For example, two-

hybrid data from data repositories such as BIND (Bader and Hogue, 2000) and DIP

(Xenarios, et al., 2000) can be included in the database, as can data from the literature

utilizing text mining algorithms, or pathways determined internally through

pharmacological experiments.

Implementation

Platform Independent

The deach system was not designed for any particular RDBMS or operating

system. The database and tools have been tested under the Oracle 9i and IBM DB2

database engines, and the Java2 v 1.5.0 runtime environment (JRE). The database

schema may be implemented on any platform; however, the tools require a database that

is compatible with the Java Database Connectivity (JDBC) package. Some ofthe input

tools require users to populate template Microsoft (MS) Excel files which may be

accomplished using either MS Excel or the open source office/productivity software,

OpenOffice (http://www.openoffice.org) which runs on most major operating systems,

including Linux, Windows, and Mac OS X.
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Figure 2-5: Bulk Data Insertion. Bulk data insertions are accomplished using a

template spreadsheet (MS Excel format). Submitters fill out the spreadsheet with all

of the necessary information, and select it using the Select Input File graphical user

interface (GUI). This mechanism is used for uploading Sample Annotation,

Microarray, and Toxicology data. Shown here are examples from the Sample

Annotation Interface.

Bulk Data Insertions

Data are inserted into deach using template spreadsheet files written in MS

Excel (Figure 2-5). Spreadsheets were chosen over more cumbersome graphical user

interfaces to facilitate bulk uploads, and build upon user familiarity with spreadsheets.

Furthermore, users can populate template spreadsheets by simply cutting-and-pasting

data from one sheet to another.

An additional advantage of spreadsheets is that they simplify the numerous one-

to-many relationships present within the data. For example, it is far easier to visualize

and enter data from one-to-many relationships in a single spreadsheet than in most

graphical user interfaces. Users can easily copy data from cell-to-cell in a spreadsheet,

decreasing user-based errors, such as typographical errors, for GUI input fields, or

mouse-click errors in the case of GUI combo boxes. Moreover, the use of spreadsheets
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Table 2-2: Applications for Data Mining, Upload, and Interaction with deach
 

 

 

 

 

 

 

 

 

 

 

 

 

   

deach Tool/ Description Status"

Application

Clones Interface Provides internal query of data within clones Complete

subsystem

Genes Interface Provides internal query of data within the genes Complete

subsystem

Gene Annotation Queries deach using cDNA clones to obtain related Complete

Tool (GAT) gene mappings and gene annotation. Usefirl for

annotating active gene lists from microarray studies

Real-Time PCR Provides import and querying of data in the Real- Complete

Interface Time PCR subsystem.

Protocols Interface Provides import of protocol information to the Complete

Protocols subsystem

deach Online Provides query abilities concerning the Clones, Genes, Complete

primers, and protocols in deach

Microarray Interface Provides microarray data import capabilities Complete

Pathology Interface Provides pathology data import capabilities Complete

Query Control Tool that provides query capabilities for all data Complete /

Center within the database Development

Visualization Tool that provides multiple biological data Complete /

Control Center visualization capabilities in 2-D and 3-D, including Developement

pattern recgnition

Toxicogenomics Provides visualization capability for ontological pair Development

Correlation Tool (i.e., pairwise combination of genes, proteins,

(TCT) metabolites) expression and significance levels

MAGE-ML Tool that exports data within deach in MAGE-ML Development

Exporter format for submission to data repositories

Audit and Report Family of tools that generate audit and report tools for Complete /

Tool (ART) data submitted to deach Development
 

 
* Complete: tools and applications that are complete and have met the quality

standards of the laboratory. Complete / Development: plug-in capable applications

with partial functionality available to the laboratory with new plug-ins in

development. Development: tools and applications that are currently in development

or testing.

 

also decreases the amount of time users spend interacting with the database, and away

from the bench since data entered into spreadsheets can be uploaded without monitoring

and continuous interaction.

Although efforts were made to minimize the complexity of data uploads, human

error is always possible. To ensure data are entered into deach appropriately, a series of

audit and report tools have been developed for investigators to double check their
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uploaded data. This serves to minimize curatorial errors by individuals who are not

familiar with the data, and has prevented the loss of time in analyzing incorrect data.

Database Querying

Users can interact with deach through the web, using deach applications and

tools, or by using Structured Query Language (SQL) queries. Limited data are available

through the web, which is accessed primarily by collaborators. These data include

information regarding the current complement of genes represented on our cDNA

microarrays, and primers available for real-time PCR analysis.

Most database queries performed by investigators within the lab occur through

special interfaces and applications referred to as deach Tools. All of the tools have

been written in Java2 and employ the use ofthe Swing library of classes for GUI

development. Table 2-2 lists and summarizes the availability of current deach Tools

and their primary functions.

Data Mining Applications
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Figure 2-6: deach Facilitates Computational Toxicology Analysis of Source-To-

Outcome Data. Data from the source-to-outcome continuum are managed within

deach and subjected to quality assessment prior to analysis. Analyzed data is

subsequently integrated using computational toxicology tools and predictive models to

facilitate data interpretation and quantitative risk assessment. Comprehnsive analysis

using computational tools support the development of predictive models reducing

uncertainties within the source-to-outcome continuum, facilitating the development of

more accurate quantitative risk and safety assessments.

In addition to the standard data query tools, a series of deach Data Mining

Applications have been developed. Data mining involves identifying relationships and

correlations within datasets. It is the first step towards data interpretation, where

preexisting information is applied to data mining outcomes in order to generate new

knowledge. Methods for identifying these relationships vary, and span everything from

statistical analysis to data visualization. Current and future data mining applications are

listed in Tables 2-1 and 2-2. All of these applications have been written in Java2, and

may use the statistical language R.
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Database Applications in Toxicogenomics

Database systems engender the goals of quantitative risk assessment through

integration of data from the source-to-outcome continuum, and by facilitating the

development of computational tools (Figure 2-6). Ultimately, these methods will reduce

uncertainties associated with linkages in the source-to-outcome continuum, and facilitate

the development ofmore accurate quantitative risk and safety assessments.

The deach system has been used within our laboratory to facilitate comparative

experiments across species and toxicants, the generation ofnew visualization tools to

facilitate data interpretation, the exploration of data sharing methodologies with

collaborators and public repositories such as the Chemical Effects in Biological Systems

(Waters, et al., 2003) and Array Express (Brazma, er al., 2003; Rocca-Serra, et al., 2003),

and the development of novel quality assurance methods to ensure consistent high quality

data within and across studies. Each of these is briefly discussed below, and provide the

foundation for further developments in computational and predictive toxicology.

Comparative Toxicogenomics

Comparative toxicogenomics is the comparison oftoxicogenomic data between

domains, such as chemicals, chemical classes, and species. Examples include comparing

toxicogenomic responses within a chemical class to define a signature of response, and

identifying conserved mechanistic responses across species, as well as identifying those

genes that exhibit differential regulation between treatments and/or species that may

provide information regarding differences in susceptibility to toxicity.
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Figure 2-7: Orthologous Gene Expression and Activity Profiles. Active gene lists

for mouse and rat uterine gene expression following the same treatment (i.e. 100 ug/kg

ethynyl estradiol, oral gavage) were interrogated for orthologous gene pairs that

exhibit comparable expression and temporal activity profiles. Pearson correlation

coefficients were calculated for gene expression and temporal activity data for every

pair of orthologous mouse and rat genes. The x-axis represents the correlation

coefficients for gene expression, a measure of how well the temporal patterns parallel

each other. The y-axis represents the correlation coefficients for activity, a measure of

p1(t) similarity for each orthologous gene in the pair. Orthologous pairs that correlate

well in both variables are represented in the first quadrant (upper right quadrant),

while pairs that are inversely correlated, in both variables are represented in the third

quadrant (lower left quadrant). Pairs that are poorly correlated in both variables will

appear close to the origin of the graph.

The Orthology Subsystem catalogues orthologues between species, such as mouse

and rat. This subsystem is connected to the Microarray Subsystem through relationships

with the Genes Subsystems, and from there the Clones Subsystem. Thus, as rrricroarray

data are catalogued by clone identifiers within deach, gene expression data are easily

compared across species. By calculating the correlation coefficient of gene expression
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across the orthologous gene pairs, it is possible to identify genes with similar and

divergent expression patterns and responses across species.

However, from gene expression data, the activity profile of a gene across dose or

time can also be calculated. Error based statistics, such as the empirical Bayes posterior

probability, are used to rank and prioritize genes for the creation of active gene lists;

those genes that exhibit expression that is most different from vehicle. As activity is

determined on a per time or dose basis, an activity profile is generated as a binary

signature across the dose/time. Alternatively, the signature can also be represented as the

probability values across dose/time. By correlating the activity response between the

species for each orthologous gene pair it is possible to determine the gene expression

similarity of orthologous genes.

Expression and activity correlations are useful tools that may be fused for further

benefit. The “activity index” (Al) is a measure of correlation between expression

profiles, while the “significance index” (81) is a measure of the correlation between the

significance/active levels, for the ontological pair (i.e., any pair wise combination of

genes, proteins, metabolites). The Toxicogenomics Correlation Tool (Figure 2-7)

visualizes the AI (x-axis) vs SI (y-axis) in a 2-D coordinate plane. As the values exist

within the set {-1 l }, the Cartesian plane can be broken up into four quadrants where

the quadrant-coordinate pair [denoted: (AI, 81)] mappings are: Quadrant 1 (IQ) is (+AI,

+SI); Quadrant 2 (2Q) is (-Al, +SI); Quadrant 3 (3Q) is (-Al, -SI); Quadrant 4 (4Q) is

(+AI, -SI).

The AI is determined primarily by the shape of the expression profile, where

similar profiles yield more positive indices, and opposite profiles yield more negative
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Figure 2-8: Visualization Control Center. The Visualization Control Center (VCC)

provides the ability to visualize data in different dimensions. The VCC is a plug-in

capable tool written in Java2. The visualization capabilities of the VCC are

independent of the data types, thus, any appropriate data may be visualized in 3-D

using this tool. In this example, a rotated 3-D cone-plot of posterior probabilities (x-

axis; due to image rotation it appears as the mirror of the x-axis), short sequence

motifs (z-axis), and their frequency of occurrence (y-axis) within an active gene set

relative to an inactive random set of genes is shown. Large cones to the far right

identify the frequent occurrence of short sequence motifs in the regulatory region of

responsive genes that may be involved in gene regulation when compared to a subset

of non-responsive genes. Mousing over the cone identifies the motif the occurs

frequently in the responsive gene set. Additional functionality that is under

development include pattern recognition techniques.

indices. The SI is determined primarily by the degree to which treated and vehicle

samples are different, and the variance within the groups. Thus, pairs within lQ illustrate

similar expression profiles and significant changes under the same conditions, while 3Q

pairs exhibit opposite expression profiles, and significant changes under the “opposite”

conditions. For example, gene pairs where gene 1 is significantly altered at early time

points, and gene 2 is significantly altered at late time points will have a negative SI. Pairs
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within 2Q and 4Q are more difficult to interpret. 2Q pairs illustrate opposite expression

patterns, however their significance follows similar dynamics. This may be due to the

influence of variance upon mean estimation for calculation of the expression pattern. 4Q

pairs illustrate similar expression patterns, however the significance patterns are opposite.

This may occur as a result of variability effecting the significance patterns. When

dealing with orthology data, 2Q and 3Q pairs may also suggest the pairs do not represent

true orthologues.

Data Visualization

Visualization techniques project and transform data to facilitate the identification

of relationships. Commonly used visualization methods include agglomerative

hierarchical clustering, k-means clustering, and 2-D and 3-D scatterplots.

For example, Figure 2-8 is a 3-D scatterplot produced by the Visualization

Control Center (VCC). The VCC, coupled with the Query Control Center (QCC), a

universal data querying tool for deach, projects data into three dimensions to facilitate

the identification of trends. This serves as an initial, exploratory data mining activity,

however, pattern recognition algorithms can also be added to extend the functionality of

this tool.

Data Sharing

deach facilitates the sharing of data at the intra- and interlaboratory levels.

Biomedical researcher-fiiendly graphical user interfaces (GUIs) allow investigators

within the laboratory to query for any data within the database (Figure 2-9).

Interlaboratory sharing is facilitated by export of data using the emerging Microarray and
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Figure 2-9: Intralaboratory Data Access GUIs. Investigators within the

laboratory have access to all of the data within deach. Users may access data

either through direct query using SQL, a domain-specific GUI tool such as the Gene

Annotation Tool (GAT) and the Sample Annotation Interface, or the generic Query

Control Center (QCC). The Sample Annotation Interface GUI (shown here) and the

QCC are menu-driven bulk query systems (i.e., users filter their queries down using

guided menu items), whereas the GAT is not primarily menu-driven, rather, it takes

spreadsheets as input to perform queries on specific terms, such as clone identifiers.

Gene Expression (MAGE) Markup Language (MAGE-ML) (Spellman, et al., 2002) that

facilitates the electronic transfer of data between databases including public repositories.

The deach System encompasses several intralaboratory GUI-based applications

developed in Java that ensures data sharing tools may be used across different platforms

(e.g., Windows, Mac OS X, Linux). Several domain-specific GUI applications have been

developed in the past, such as the Clones Interface, Genes Interface, and the Gene
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Annotation Tool (GAT). These interfaces facilitate bulk query of the database, and are

useful for obtaining general information about the clones represented on microarrays

within the database, the annotation available for genes within the database, and the

functional annotation of microarray data, respectively.

Data sharing at the consortium level can occur through the mechanisms outlined

above, or by leveraging database replication technology. Database replication allows the

contents of remote databases to be replicated within the central system, and the contents

of the central system to be replicated at the remote systems. Database replication

typically provides faster query return times and less stress on the central database server.

The deach MAGE Exporter facilitates interlaboratory data sharing by leveraging

the MAGE file format. This same application also facilitates the deposition of

microarray data to repositories, such as ArrayExpress (Brazma, et al. , 2003; Rocca-Serra,

et al., 2003), the Chemical Effects in Biological Systems (CEBS) Knowledgebase

(Waters, et al., 2003), and the Gene Expression Omnibus (GEO) (Edgar, et al. , 2002).

Quality Assurance

Quality assurance takes two forms with respect to data within the database, 1)

audits, and 2) traditional quality assurance. The goal of the audit is to ensure data within

the database faithfully represent what was supposed to be entered. The goal of traditional

quality assurance is to ensure data conform to the quality standards of the organization

and the scientific community.

Data audits are performed within deach prior to analysis. Audit and Report Tool

(ART) applications are designed for particular data domains, such as the Microarray

Audit and Report Tool (MART). These tools produce detailed multilevel audit reports
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for data producers and submitters to verify uploaded data are correct and appropriately

related with other data. Prior to analysis, data analysts will also invoke the appropriate

ARTs (e.g., Sample Annotation, Toxicology and Pathology) to further verify the validity

ofthe data they are about to analyze.

Databases also serve as a rich source of information for generating quality

assurance protocols. As the volume of information within the database increases, a large

pool oftraining data becomes available for the generation of models for quality assurance

and process control which provide non-biased quality assessments.

deach Status

Tables 2-3 through 2-6 provide brief summaries of the data within deach, as of

March 2, 2005. Similar up-to-the-minute status reports are also available at

http://dbzach.fst.msu.edu:8050/degchCurrentStgts/Statistics. Table 2-3 lists the current

number of cell culture entries, broken down by cell line name and species. Table 2-4

presents the number of animals represented within deach by species, and a sampling of

the tissues collected from these species, along with their counts. Table 2-5 provides an

overview of the number of clones represented on the current in-house microarrays for

mouse, rat, and human. Also, the number of genes represented on these arrays, and the

number of genes represented by more than 2 clones is provided to indicate the level of

redundancy present on the microarrays. Table 2-6 provides details regarding the number

ofmicroarrays and the number features from these arrays, from in vitro and in vivo

CXperiments by species. In total, deach currently manages 31.4 million features from

approximately 2500 microarrays.
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Table 2-3: Number of Cell Culture Entries

T Name Culture Entries

l-1* human 25

human 56

-1 human 15

lclc7 cl mouse 3

lclc7 c4 mouse 3

lclc7 wt mouse

c1c7 c12 mouse

411E rat

* Human liver stem cell line

1' Human kidney stem cell line

 
  
 

Discussion

Laboratories engaged in toxicogenomics can benefit from databases by not only

facilitating the management and sharing of large, multivariate, disparate datasets but also

in the generation of novel hypothesis. Furthermore, databases reduce data redundancy

while providing a modular data integration solution. This modularity serves to increase

the return on investment as subsystems may be seamlessly added or “plugged-in” without

further redevelopment of the backend in order to support management and integration of

data fiom nascent technologies.

Relational databases also support the generation of quality assurance protocols to

ensure high quality conclusions are derived from the data. For example, historical

datasets may be defined within the database and used for training statistical leaming

theory models (e.g., Support Vector Machines) to identify high and low quality

microarrays. However, to support these efforts database developers must incorporate

data auditing methods, such as multi-level reporting (e.g., where frequency data are

reported on a per experiment basis, and 2-way tables illustrating cross-tabulated

frequencies) to identify problems with data submissions.
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Table 2-4: Animal and Organ Entries

ls Bumber of giver [Ki iM l0

pecies rggnisms ections dney ammary terns

[Mouse | 685 | 1,518 354 1, 135 | 633

[Rat | 396 | 316 | 256 | 256 | 396  
  
 

 

Table 2-5: Clone and Gene Information

'd >2 clones

uman 10 068 6 025 214

ouse 13 62 7952 568

8 7 3022 35

 

  
 

The greatest utility of databases is the ability to effectively mine, or uncover,

relationships across large, complex data domains and experiments, that are not intuitively

obvious. For example, a single database query can identify all genes that are active

following the same treatment in several different tissues, building a hypothesis for a

putative biomarker of exposure to a specific chemical class. Using similar logic, queries

on histopathology data may identify chemicals that yield similar and conserved

histological events across tissues and/or species. This would provide evidence of

functional consequences resulting from conserved mechanisms of action and would

support cross species extrapolations in quantitative risk assessment by reducing

uncertainties inherent in the source-to-outcome continuum.

Data integration facilitates querying across data domains and engenders systems

toxicology, the iterative development of computational models that are predictive of

outcome based on expssure data, or can predict dose based on response. For example,

data integration methods are used for phenotypic anchoring of “omic” observations. By

further integrating with orthology data, it is possible to identify conserved responses to

chemical exposures across species. Through integration of multi-technology responses
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Table 2-6: Count of Microarrays and Features
 

 

 

 

In Vitra In Viva

Category Human Mouse Rat Human Mouse Rat

Microarray 170 786 0 N/A 1 ,156 358

Features 1,833,141 10,836,346 0 N/A 15,635,954 3,081,216      
 

  
 

(e.g., genomics, proteomics, metabolomics), with species, histopathology, and other

toxicologic response data, novel multidimensional data analysis (e.g., data fusion) and

visualization methods may be used to develop computational models that can predict

exposure levels, response outcomes and identify mechanistically-based biomarkers of

exposure and toxicity.

The growing interest in data sharing (Ball, at al., 2004b; Brazma, et al., 2001) and

calls for increased use of data repositories (Ball, et al. , 2004a), require investigators to

consider effective methods for data exchange. Databases, such as deach, which are

capable of exporting MIAME-compliant data in MAGE-ML, not only provide effective

sharing mechanism that maintain the integrity of the data, but also provide significant

time savings when submitting data to public repositories and other interested

investiagtors. These methods are less error prone than web-interaction based submissions

as data within the database are written directly to a file without human intervention.

Conclusion

Databases support the integration of disparate data to facilitate analysis and foster

the development ofnew analysis techniques. The deach System currently provides

integration of toxicology, gene expression (microarray and real-time PCR), gene

functional annotation, orthology, and gene regulation data. These capabilities are

currently being extended to include metabonomic data, with proteomic and biological
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pathway data slated as the need arises. By combining data integration and quality

assurance capabilities, and leveraging new analysis and visualization technologies, such

as data fusion (Joint Directors of Laboratories, 1991) and other advanced statistical and

machine learning approaches, uncertainties within the source-to-outcome continuum will

be reduced, ultimately engendering mechanistically-based quantitative risk assessment.
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Abstract

Microarrays represent a powerfirl technology that provides the ability to simultaneously

measure the expression of thousands of genes. However, it is a multi-step process with

numerous potential sources of variation that can compromise data analysis and

interpretation if left uncontrolled, necessitating the development of quality control

protocols to ensure assay consistency and high data quality. In response to emerging

standards, such as the Minimum Information About a Microarray Experiment (MIAME)

standard, tools are required to ascertain the quality and reproducibility of results within

and across studies. To this end, an intralaboratory quality control protocol for spotted

microarrays was developed using cDNA microarrays from in vivo and in vitro dose-

response and time-course studies. The protocol combines: 1) diagnostic plots monitoring

the degree of feature saturation, global feature and background intensities, and feature

misalignments with 2) plots monitoring the intensity distributions within arrays with 3) a

support vector machine (SVM) model. The protocol is applicable to any laboratory with

sufficient data sets to establish historical high and low quality data.
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Introduction

Microarray technology provides the ability to simultaneously measure the

expression of thousands of genes in a cell, tissue or model of interest. However,

numerous potential sources of experimental variation (Hessner, et al., 2004; Jarvinen, et

al., 2004) have raised concerns regarding assay consistency, and data quality which

confounds the ability to compare data sets between independent investigators and

undermines the utility of intralaboratory (i.e., local), interlaboratory (i.e., collaborative

center), or global scale (i.e., public repository) data sharing and exchange efforts (Miles,

2001; Ulrich, et al., 2004). Consequently, quality assurance and control protocols that

assess the reproducibility of data by identifying deviations or abnormal trends in assay

performance and data quality are required.

Although several quality assurance and control methods have been proposed,

criteria for differentiating high- from low-quality microarrays is lacking, leaving

assessment open to interpretation. Many methods attempt to address this impediment

through a variance-based statistical method, however they suffer from a lack of training,

as the method solely tests the hypothesis of deviation fi'om the rest of the population, and

fail to judge data based on prior knowledge. Therefore, arrays that are technically oflow

quality (i.e., high background, low feature signal intensity, misaligned features, or

inappropriately distributed feature intensity values) can still be labeled as high-quality, if

they belong to a larger population of low-quality arrays.

In lieu of these more complicated quality assurance and control methods, data

quality has been reported in terms of sample clustering by assessing whether biological

replicates cluster together (Grant, et al. , 2003). Although this methodology determines
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whether or not biological replicates exhibit similar behavior, it provides minimal insight

into the technical quality of the assay (i.e., are these microarrays of high-quality). For

example, similarly treated biological replicates may cluster together, or yield similar

patterns, in light of poor technical quality (e.g., high background, narrow dynamic range).

Moreover, this method may yield false-negative results in a background of extensive

biological variation.

In addition, quality assessments can be stratified to the feature (Hautaniemi, et al. ,

2003; Wang. et al., 2001), subgrid or block (Gollub, et al., 2003), or microarray (Model,

et al., 2002; Petri, et al. , 2004) level. Although examination of each stratum is crucial, a

comprehensive analysis strategy based on all strata would be advantageous. Thus, the

most robust, comprehensive quality assurance and control protocol would incorporate

aspects of training by using historical datasets (HDS) ofknown quality, provide analysis

at all microarray quality strata, and diagnose possible sources of poor quality data that

could be corrected and addressed to minimize future problems (i.e., quality assurance).

In this report, a three step intralaboratory quality-control protocol is proposed to

assess spotted microarray data quality as a first step towards ensuring publicly accessible

data is of high quality. Global feature and background signal intensities as well as signal-

to-noise ratios are first assessed to identify problems with raw nricroarray data quality.

The feature identification process, commonly referred to as gridding, is then

computationally examined to identify potentially misaligned features, which can be

corrected to minimize potential downstream errors in normalization and functional

assignment. Finally, a more in-depth assessment ofraw and normalized data

distributions is utilized to ensure that a sufficient dynamic range has been achieved for
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subsequent analyses. 388 time course and dose response two color cDNA microarray

data sets are used to establish high- and low-quality historical data sets and to

demonstrate the utility of the protocol.
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Materials and Methods

Creation of the Historical Datasets, Test, and Validation Sets

388 datasets, derived from in vivo and in vitro dose-response and time-course

experiments using sequence verified cDNA microarrays were used to create both high-

and low-quality historical datasets. Further details on microarray assay procedures are

available at http://dbzach.fst.msu.edu/. All animal husbandry and sample collection

procedures were approved by the Michigan State University All University Committee

on Animal Use and Care. Microarrays were scanned using an Affymetrix 428 scanner,

and images were quantified using GenePix v5.0 or v5.1.

Global statistics are calculated as:

id = 1 Z": xd,

n i=1

where d represents the dye (Cy3 or Cy5), n represents the number of features on the array,

and xd, representsthe median feature intensity (either feature signal or background from

the image analysis software) for the of” dye and the ith feature.

The historical dataset consists of 155 microarrays that were further classified as

high (n = 87) or low (n = 68) quality based on corroboration by quantitative real-time

PCR (p < 0.05 for the correlation of the gene expression pattern of selected genes), low

feature background intensity, congruent distributions of data points, and detection of

comparable numbers of features. The background feature intensity does not have a

threshold per se, rather it is based on visual inspection for high overall signal and

anomalies such as smears, waves and excessive dust, the ratio of signal to background

being greater than 20, the number of identified features, where at least 95% ofthe
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Table 3-1: Comparison of the predictive accuracy of support vector machine

 

 

 

(SVM) models for microarrajgualitv predictions.

Positive 332:2];

Sensitivity Specificity Predictive Value Value

P

All Predictor 0.96 0.98 0.99 0.89

Variables"

Regression Predictive 0.99 0.95 0.98 0.97

Variables?      
* All Predictor Variables includes six variables: Cy3 and Cy5 mean global feature

intensities; Cy3 and Cy5 mean global background intensities, Cy3 and Cy5 signal-to-

noise ratios (ratio of the two above listed values).

1' Regressed variables are the predictive variables identified using a step forward

logistic regression of the above six variables. These are: Cy3 global mean feature

intensity, Cy3 global mean background intensity, Cy5 global mean background

intensity, Cy5 signal-to-noise ratio.  
 

features are detectable, and the distribution of intensity values must be comparable across

the experiment. Examples of high and low quality images for each criteria are provided

as supplementary data to further assist in defining the thresholds we initially used to

establish our historical training set (HDS). Arrays not found to have the desired

characteristics were categorized as low quality. Quality assignments are not a weighted

vote approach, but rather an all or nothing voting scheme, where high quality arrays must

meet all of the qualifications listed, and are specific to our HDS. The training set was

derived from a random sampling of both high and low quality datasets to form a high (n =

44) and low (n = 40) quality training sets.

The validation dataset consisted of the 233 arrays not included in the historical

dataset. The quality of these arrays was assessed the same as the historical dataset,

resulting in 174 high- and 59 low-quality arrays (Figure 3-1).
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Division 1 Analysis

Predictive variables include any parameter that is of interest to the investigator

that may be indicative of quality. For example, these variables may include 1) the mean

feature intensity across the array for each dye, 2) the mean background intensity across

the array for each dye, 3) the mean ratio of the feature and background intensities, 4)

atmospheric ozone concentration, and 5) laser intensity.

A step-forward logistic regression procedure was used to identify the most

predictive variables for training the support vector machine (SVM). The dependent

variable for the logistic model is a binary variable that reflects whether the microarray is

of high- or low-quality, while the independent variables are the predictor variables from

the historical dataset. The step-forward logistic regression enters predictor variables into

the model one-at-a-time so long as it meets the significance threshold from the chi-square

test. The HDS used for training the SVM is adjusted to reflect only the logistic

regression predictive variables (p < 0.05).

The SVM is then trained using step-forward logistic regression predictive

variables from the combined high quality (HQ-) and low quality (LQ-HDS). As

microarray data become available (i.e., scanned and quantified) the resultant SVM model

was used to classify microarrays as either high- or low-quality. High-quality microarrays

continue through the protocol, while low-quality microarrays were flagged for repeat

experiments. All data were stored for future inclusion into the HDS.

The logistic regression was performed using the LOGISTIC procedure in SAS

v8.2, while the SVM training and analysis were performed using the e1071 package in R
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v1.8.1 using a radial basis kernel. Details of SVM and PROC LOGISTIC

implementation are given in their respective documentation.

Division 2 Analysis

Feature alignment was assessed using a loess nonparametric regression procedure

that was developed as a normalization method to estimate bias on a per-array, print-tip or

subgrid, and channel basis, and is visualized by MA-plots. Feature alignment is analyzed

using a variant of the standard MA-plot (Yang. et al. , 2002), referred to as a modified

MA-plot (Eckel, et al. , 2004). With respect to the modified MA-plot the true signal

intensity for the ith feature is either estimated as the average signal intensity across all

arrays, dyes, and treatments ([1,) or as the signal intensity across all arrays and dyes for

each of thej treatment groups separately ([2,!) for a particular experiment. The choice

between using [1,. versus [1,}. is discussed in detail in (Eckel, et a1. , 2004). Thus, the

estimated true signal intensity is a substitute for the A-terrn in the modified MA-plot.

The M-terrn estimates the bias associated with using it, or [1,]. to estimate the true signal

intensity such that M is equal to the difference between each signal intensity with its

corresponding estimated true signal intensity. After computing the estimated true signal

intensity and the bias, a modified MA-plot is constructed separately for every array and a

nonparametric regression smoother is fit to each print-tip on the corresponding array

individually. If the nonparametric regression smoother for a particular print-tip, or for a

subset of print-tips, is an obvious outlier, feature alignment is investigated. All

procedures were performed in SAS v8.2.
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Division 3 Analysis

Intensity distribution was assessed using box-and-whisker plots on a per-array

basis. Line plots demonstrating trends in global mean feature intensity, global mean

background intensity, and the count of saturated features were created depicting upper

control limits (UCL) and lower control limits (LCL) for each metric. Acceptable

numbers of saturated features have been historically established in this laboratory to be 1-

2% ofthe total number of features. To assist in quality analysis it is generally useful to

group microarrays performed on the same date together when plotting to identify

temporal trends. All procedures were performed in SAS v8.2.

Results

Figure 3-2 provides an overview ofthe microarray data quality-control protocol

which is divided into General Quality Metrics (Division 1), Feature Alignment (Division

2), and Distributional Alignment (Division 3). Two additional divisions are included to

place the protocol into context within the overall data management scheme.

Establishment of High- and Low-Quality Historical Datasets

High- and low-quality historical datasets were created to anchor quality

assessments to arrays of known quality to prevent inappropriate assessment of arrays as

high-quality due simply to low variance within the study. High quality was defined

empirically based on corroboration by a complementary technology (e.g., quantitative

real-time PCR (QRTPCR)), low feature background intensity, congruent distribution of
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data points, and detection of a comparable number of identified features. For example,

among high quality arrays, QRTPCR corroborates greater than 80% of the gene

expression trends exhibited by arrays (Boverhof et al., 2005; Boverhof et al., 2004a;

Boverhof, et al., 2004b; Burt, er al., 2005; Fang et al., 2005a; Fang, et al., 2005b;

Kwekel, et al. , 2005; Sun, et al. , 2004). Arrays not found to have the desired

characteristics in all of the above categories were labeled as low quality.

The HQ-HDS is based on a random sampling of the high-quality microarrays from all

investigators within our laboratory (HQ-HDS: n = 87), and a LQ-HDS similar to the HQ-

HDS, but representing a random sampling ofthe low-quality microarrays (LQ-HDS: n =

68) from an overall total of 388 time-course and dose-response two-color cDNA

microarrays. Each HDS consists of the Cy3 and Cy5 global mean feature signal intensity

(where global refers to the entire microarray), Cy3 and Cy5 global mean background

signal intensity, and the Cy3 and Cy5 global signal-to-noise ratio (SNR; ratio of the

global mean feature signal intensity to the global mean background signal intensity) for

each array in the dataset.
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Table 3-2: Logistic regression odds ratio for significant predictor variables

 

 

Predictor Variable Odds Ratio (95% Confidence

Interval)

Cy3 Global Mean Signal Intensity 1.003 (1.001, 1.004)
 

Cy3 Global Mean Background Intensity 0.979 (0.950, 1.009)

Cy5 Global Mean Background Intensity 0.980 (0.969, 0.992)

Cy5 Signal-to-Noise Ratio 1.601 (1.113, 2.305)

 

 

     
 

Division 1: Support Vector Machines Predict Microarray Quality

Division 1 analysis utilizes the HQ- and LQ-HDSs to develop and train a SVM

model that best discriminates quality classes utilizing all six classification variables. The

SVM model accurately classified (100%) a random sampling of low- (n=40) and high-

quality (n=44) data sets from the HDS, here after referred to as the training set. Since

this is a binary system the term positive is used to denote high-quality microarrays, while

negative is used to denote low-quality microarrays. The positive predictive value (PPV)

is the proportion of predicted high-quality arrays relative to the number of true high-

quality arrays. The negative predictive value (NPV) is similar to the positive predictive

value except it is calculated with respect to low-quality arrays. The SVM model

accurately predicts high-quality microarrays when using a validation set (a randomly

selected subset of the HDS, not including arrays from the training set) of 59 low-quality

and 174 high-quality data sets, with a PPV of 99%, but performed less effectively when

predicting low-quality microarrays, with a NPV of 89% (Table 3-1). In other words,

99% of the true high-quality arrays were accurately predicted to be of high-quality, while

only 89% of the true low-quality arrays were accurately predicted to be of low quality.
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Figure 3-3: Cy5 signal-to-noise ratio is the most powerful predictor of high and

low quality microarrays. High- and low-quality microarray data exist as two

separable populations. The two lines represent a loess fit to the two different

populations, and highlight the difference between the populations. High-quality

microarrays tend to exhibit a larger Cy5 signal-to-noise ratio than their low-quality

counterparts. The microarray number on the x-axis represents an identification

number.

Logistic Regression Improves Predictive Accuracy of the SVM

Step-forward logistic regression identified Cy3 and Cy5 global (whole array)

mean background intensity, Cy3 global mean feature intensity (mean ofthe feature

median signal intensity), and the Cy5 global signal-to-noise ratio (ratio of global mean

feature intensity and global mean background intensity for Cy5) as the most predictive
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variables from the HDS, and were used to train a more discriminating SVM model. Cy3

and Cy5 global backgrounds were negative predictors of high-quality, as would be

expected, while Cy3 global mean feature intensity and the global signal-to-noise ratio for

Cy5 were positive predictors of high-quality microarrays. The most discriminate variable

is the global Cy5 signal-to-noise ratio (odds ratio, OR = 1.60) (Table 3-2 and Figure 3-3).

The loess fit lines illustrate the degree of difference between the two data populations

(LQ- and HQ-HDS).
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Figure 3-4: Loess analysis of microarray data identifies microarrays with

misaligned grids. (A) Loess analysis of the raw intensity values from each

array identified one misaligned subgrid on this microarray as evidenced by the

lines with large, sharp slopes (arrow). Each subgrid is represented by two

lines, one for each dye. (B) Subgrids 17-24 were identified as possibly

problematic in A, and plotted in B for better resolution, identifying subgrid

#24 as the putatively misaligned subgrid. The investigator verified the

misalignment using the quantification software and corrected it prior to further

analysis.

By training the SVM using just the predictive variables identified using the step-forward
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logistic regression model, the PPV remained relatively stable at 98%, while the NPV

improved from 89% to 97% (Table 3-1). These results suggest that assessment using all

available variables to train the SVM model contributes to noise that compromise array

quality predictions made on the validation set.

Division 2: Nonparametric Regression Methods Detect Grid

Misalignments

A nonparametric regression procedure is utilized for detecting grid misalignments.

MA-plots have been used to visualize microarray normalization implemented on the

print-tip level (Dudoit, et al. , 2002; Eckel, et al. , 2004). In addition to aiding in

normalization, MA-plots assist with the identification of misaligned grids.

Nonparametric regression methods, initially introduced to estimate bias, are also capable

of identifying misaligned microarray quantification grids on a per-array basis provided

that most of the microarrays under study are correctly aligned, and that misalignment is

an infiequent, aberrant event (Eckel, et al. , 2004). Whereas most ofthe microarray grid

blocks (a geographical region on the microarray where all features are printed by the

same print-tip) have a slight nonlinear relationship, misaligned blocks will exhibit a

significantly greater slope than correctly aligned blocks such that they appear as obvious

outliers in the MA-plot (Figure 3-4A and B).

Arrays demonstrating misaligned features are identified for follow-up and

realignment. The realignment of the block will result in the alteration of the global

intensity values for that array and as a result are resubmitted for Division 1 analysis.

During the realignment process, it may be possible to diagnose possible causes of the

misalignment, such as high background, dust contamination, or robotic printing error,
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Figure 3-5: Illustration of the box-and-whisker plot to examine the

distribution of feature intensities. Boxes represent the interquartile range, with

the 75th percentile at the top and the 25‘h percentile at the bottom. The boxplot of

the HQ-HDS population ofmedian Cy3 signals (array_code = 0), illustrating a

broad range of values, from eight randomly selected HQ-HDS arrays. Ideally

the 75th percentile would be in the range of 7,000-13,000 units, with an

interquartile range of approximately 5,000-9,500 units. The arrays under study

(array_code > 0) exhibit some compression (Cy3 channel shown here), as

indicated by compressed interquartile ranges (i.e. boxes), with microarrays 19-24

exhibiting the greatest compression issues. The line in the middle of the box

represents the 50th percentile, or median, while the plus represents the mean.

The pluses for arrays 20-24 lie on the 75th percentile line ofthe box. Whiskers

represent the rest of the distribution, with their terminations representing the

lowest and highest feature intensity values. The x-axis represents the individual

microarray, while the y-axis represents the feature intensity values.

facilitating corrective action to minimize future occurrences thus improving assay

performance and consistency

Division 3: Identifying Compressed and Similar Data Distributions in

Microarray Data

Division 3 identifies microarrays with compressed or non-uniform dynamic range.

Box-and-whisker plots were used to analyze feature intensity distributions on a per-
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Figure 3-6: Interquartile range increases as a function of the number of

saturated spots. The interquartile range is a measure of data spread, calculated as

the difference between the 75th and 25 percentiles. The interquartile range

increases with increasing number of saturated features, suggesting lower numbers

of saturated features contribute to compressed ranges. By increasing the number

of saturated spots compression is minimized. The lines on the plot represent the

loess best fit Iine and the 95% confidence intervals.

microarray basis (Figure 3-5). Based on empirical observations, optimal distributions

have the following characteristics: 1) a 25th percentile of approximately 700-2,000, 2) a

75th percentile of approximately 7,000-10,000 (i.e., interquartile range spanning

intensities of 5,000-9,300 units), 3) a median of approximately 3,000-6,000’, and 4) a

mean within the interquartile range defined by the boxed region in Figure 3-5. The

distribution of mean Cy3 median feature intensity values for the HQ-HDS is shown in

Figure 3-5 (array_code = 0). Based on these criteria, microarrays 19-24 fail to show

appropriate distributions because the 75th percentile is lower than the recommended range
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of 7,000 to 10,000 (array_codes: 19-24). Microarrays 13-18 approach appropriate

distributions, since the 75"I percentile ofthe feature intensity distribution is closer to the

recommended 75th percentile (i.e. 7,000-10,000) which is more consistent with the

empirically defined recommendations based on the HQ-HDS (Figure 3-5). The

distributions for all of these arrays are not optimal, as illustrated by the compressed

feature intensity dynamic range as reflected in the constricted boxes (Figure 3-5).

109



110

 

O

('3

O

sernreer petermas ;o runoo

 

'V V'

O

  
 

I
'
T
I
T
I
T
T
T
T
I
V
‘
I
'
1
r
I
U
'
I
Y
T
T
T
I
T
T
V
I
‘
I
'
I
U
T
I
T
I
T
'
I
T
V
V
I

1
5

1
7

1
9

2
1

2
3

a
r
r
a
y
_
r
e
p

F
i
g
u
r
e
3
-
7
:
S
a
t
u
r
a
t
e
d
f
e
a
t
u
r
e
s
c
o
r
r
e
l
a
t
e
w
i
t
h
c
o
m
p
r
e
s
s
e
d
d
i
s
t
r
i
b
u
t
i
o
n
s
.
T
h
e

r
r
r
i
c
r
o
a
r
r
a
y
s
d
e
p
i
c
t
e
d
a
r
e
t
h
e
s
a
m
e

s
h
o
w
n

i
n
t
h
e
b
o
x
-
a
n
d
-
w
h
i
s
k
e
r
p
l
o
t
i
n
F
i
g
u
r
e

5
.
T
h
e

l
a
r
g
e
s
t
d
e
g
r
e
e
o
f
d
i
s
t
r
i
b
u
t
i
o
n
a
l
c
o
m
p
r
e
s
s
i
o
n
i
n
F
i
g
u
r
e
5

c
o
r
r
e
s
p
o
n
d
s
t
o
m
i
c
r
o
a
r
r
a
y
s
1
9
-
2
4
,
t
h
e
o
n
e
s
w
i
t
h
t
h
e
l
o
w
e
s
t
n
u
m
b
e
r
o
f
s
a
t
u
r
a
t
e
d
f
e
a
t
u
r
e
s
.



 

Table 3-3: Applied Assumptions for Intralaboratory Quality Control and Assurance

Protocolll
 

 

 

 

 

1. Test and training data sets were obtaining using the same, pre-agreed

standard operating procedure (SOP)

2. Test and training data sets used the same microarrayplatform

3. Microarray scanning is performed using the same equipment

4. Image analysis (including segmentation and background calculation

methods) used the same approach for test and training data sets

5. Same normalization methods were used for test and training data sets

(Division 3 analyses)
 

 
a. The data sets available for this manuscript were insufficient to test the necessity

of each assumption, and therefore, the necessity of each one was not tested.  
 

As the interquartile range and number of saturated features are positively

correlated (Figure 3-6), the number of saturated features serves as a useful surrogate

marker to ensure comparable data distributions are achieved during array scanning.

Figure 3-7 shows the number of saturated features per array for the microarrays shown in

Figure 3-5 (array_codes > 0). Typically this plot includes the upper- and lower-control

limits (empirically defined to be 2 and 1%, respectively). However, on this plot all of the

microarrays (15-24) are well below the LCL (in the range of 0.1 — 0.5% of the features).

Consequently, microarrays 19-24 have severely compressed dynamic range, as reflected

by the low number of saturated features.

Implementation

The protocol is an initial step to provide investigators a non-biased data quality

assessment tool that would facilitate the sharing of high quality data, albeit on a lab—to-

lab basis. It is meant to be implemented locally, with a focus on intralaboratory or

collaborative project quality assessments as opposed to broad quality assessments of data

sets within public repositories. It is assumed that investigators have, at the very least,
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practiced some form of feature quality control, such as that found in image quantification

software (e.g., GenePix (Axon Instruments), AnalyzerDG (Molecularware)) or which can

be implemented separately (Hautaniemi, et al., 2003; Wang. et al., 2001), prior to

implementation ofthese methods. A more detailed listing of assumptions is provided in

Table 3-3. The primary goal is to ensure arrays are of comparable quality, and to

minimize unnecessary technical variation that may skew future results. As such, these

techniques are platform independent, but do not support cross-platforrn quality

comparisons within a study or across a public repository.

To implement the firll protocol, an internally established historical dataset of high

and low quality microarrays must be available in order to assess quality metrics of

interest for Division 1 analysis. The predictive variables presented in this study are

specific to our HDS; implementations ofthe general method by other groups may

identify additional variables, although significant overlaps are likely. The logistic

regression procedure is used to pare down the list of putative predictor variables, and the

support vector machine is used to create a model to classify arrays as either high or low

quality based on identified predictive variables. It should be noted that the logistic

regression is used as a guide to determine which variables are predictive in the SVM.

The logistic regression, a linear procedure, may not adequately model a non-linear

prediction surface without the use of higher order terms (e.g., quadratic, cubic), thus the

SVM is superior for non-linear estimates. Ultimately, the investigator must decide which

variables are most predictive when used in the SVM. Investigators may also be required

to use an alternative kernel in the SVM procedure to ensure optimal discrimination.
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Division 2 and 3 analyses may be implemented without the use ofthe HDS, and

may be implemented independent of Division 1, and each other. Division 2 and 3

analyses may be implemented using any statistical software that supports LOESS and

boxplot creation, such as R or SAS.

Discussion

Quality control measures are performed to ensure that extreme or unusual

variation and other technical issues do not overshadow biological and treatment variance.

Although the goal of normalization is to minimize technical variation across samples,

most normalization techniques will be more successful if less technical variation is

present prior to normalization. Therefore, quality control techniques are used to identify

technical variation arising from assignable causes due to the process. If the variability

exceeds a chosen threshold, low-quality data sets can be identified and eliminated or

corrected prior to further analysis while addressing sources of undesirable variation in

future studies, thus improving assay performance and consistency. Normalization on the

other hand corrects for variability that arises from assignable causes.

By controlling the quality of the data, assurances can be made that the results

from these studies are due more to biological variation, and less to technical variation.

Furthermore, by decreasing the technical variation, more accurate estimates of gene

expression may be made, while making more power available for gene filtering and

prioritization using statistical methods. This has direct impacts on knowledge that is

exchanged through data sharing via scientific publications and public data repositories.

A streamlined and standardized process of microarray quality control has been

developed that encompasses several complementary techniques. The protocol combines
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a trained SVM model and nonparametric regression model with more classical techniques

such as box-and-whisker and line plots. Although, it is possible to approach the line plot

using a Shewhart plot, where control limits are defined based on the variance

(NIST/SEMATECHe-Handboak ofStatistical Methods,

http://www.itl.nistggov/div898/handbook/J 4-5-04), for our purposes empirically defined

control limits are preferred. Several different variables, including the feature signal and

background intensity levels, signal-to-noise ratios, grid alignment, data distribution and

dynamic range, and the number of saturated and undetected features are used to assess

data quality on a per array basis, thus providing a streamlined, high-throughput analysis

method to identify quality assurance issues that require intervention.

Specificity of the SVM model increased when using the logistic regression

predictive variables, with negligible effects on sensitivity. These measures are properties

of the test, but fail to address questions regarding the predictive nature of the model based

on a population of microarrays. The PPV and NPV take into account the occurrence of

high- and low-quality microarrays within the population in addition to the sensitivity and

specificity. However, quality assignments by the SVM improved when only the most

predictive variables, as determined by the step-forward logistic regression model, were

used (Table 3-1). Collinearity between the Cy5 signal-to-noise ratio and the Cy5

background was not exhibited. The PPV remained stable while the NPV improved by

8% when using the parameters identified by the logistic regression model. By using the

most predictive variables, noise within the system decreased, allowing for greater

discrimination between high- and low-quality groups. With respect to the protocol,
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microarrays that are of high-quality progress to Division 2 analysis while the samples

from the low-quality rrricroarrays are flagged to repeat the hybridization.

In our laboratory the step-forward logistic regression model identified four

predictive variables (Table 3-2). However, these variables may differ among labs, and

are expected to be technology/platform and protocol dependent. In this study, the global

Cy5 signal-to-noise ratio was the most discriminating predictive variable (odds ratio (OR)

= 1.60), providing the highest degree of stratification between the high- and low-quality

microarrays (Figure 3-4). This degree of stratification is not entirely surprising as Cy5 is

reported to be more susceptible to environmental factors, such as ambient ozone levels,

than Cy3 (Fare, et al. , 2003). Thus, it is not surprising that the SVM continues to identify

low quality arrays with questionable Cy5 backgrounds that are not apparent visibly.

Division 2 analyses focus on grid alignment using MA plots, and plotting the data

on a per-block or subgrid basis to identify block misalignments. This streamlines the

process of realignment which can be reassessed in Divisions 1 and 2, and minimizes the

need to conduct costly, time consuming, and potentially unnecessary repeat

hybridizations.

Division 3 analyses are concerned with data distributions, and ensuring a proper

dynamic range. Appropriately and similarly distributed data are considered to be ofhigh-

technical quality and are forwarded for further analysis. Data distributions are assessed

using box-and-whisker plots, where the highest intensity value should be at saturation

(65,535 units). Data exhibiting appropriate distributions have yielded comparable results

to those verified by quantitative real-time PCR (Boverhof et al. , 2004a). Most problems

with compressed interquartile range and distributions are linked to inappropriate
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photomultiplier tube (PMT) gain settings. The PMT gain should be set to obtain a

comparable number of saturated features (our experience is that 1-2% is appropriate) in

order to achieve similarly shaped data distributions across all arrays (i.e., 75th percentile

of approximately 7,000-10,000 units, and 25th percentile of approximately 700-2,000

units, with a mean within the interquartile range).

The most reliable indicator of obtaining appropriate dynamic ranges during the

scanning process is the number of saturated features, and not the PMT value. We

advocate shifting the PMT value in order to obtain a proper data distribution, and

sacrificing the overall background intensity. Ideally, the background signal intensity will

be low enough so that shifts in PMT will not adversely affect the number of identifiable

features. Thus, it is not advisable to standardize the PMT gain value for an entire

microarray experiment, as it is expected that optimal PMT gain values will vary by

microarray. Following scanning, diagnostic plots can be used to determine if the number

of saturated features meet the criteria (1% and 2% as the lower control limit (LCL) and

upper control limit (UCL), respectively, are typically used). Abbreviated and compressed

data distributions can manifest problems in downstream analysis and normalization, and

may compromise subsequent statistical analysis of gene expression changes.
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Figure 3-8: Background should be sacrificed for more saturated features.

The microarrays depicted are the same shown in the box-and-whisker plot in

Figure 5. The arrays with the largest Cy3 background are arrays 21-24. The

reference line represents the mean Cy3 background for the HQ-HDS. In this

case, the investigator was more concerned with obtaining a low Cy3 background

than an optimal number of saturated features. Cy3 background should be

sacrificed to increase the number of saturated features as the mean background

for those arrays is below the mean for the HQ-HDS.

For example, arrays 19-24 exhibit the greatest degree of data compression (Figure

3-5) and highlight the correlation between the number of saturated features and the

compressed distribution (Figure 3-7). The low background levels for these microarrays

(Figure 3-8) is a likely contributing factor since the PMT gain was purposefully set low

to minimize background intensity, resulting in the constricted interquartile range. Instead,

PMT levels should have been increased to achieve 1-2% feature saturation to increase the

probability of obtaining an appropriate and uniform distribution (dynamic range) across

all microarrays within the study.

Following these quality control methods, only high-quality data should proceed to

normalization and higher-order analyses. However, all microarray data should be stored

in an appropriate database, including low-quality microarray data, for future refinement
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of the HDSs. This ensures the quality ofwork being generated within a laboratory to be

of their highest quality. However, it does not facilitate comparisons to the general body

of publicly available data. By ensuring data being produced at the laboratory level is of

the best local quality, investigators ensure the reproducibility of their results. However,

the burden of quality assessment by the public user and peer reviewers still remains a

challenge that is beyond the scope of these methods.

Conclusions

This protocol serves as an initial step to assess intralaboratory or collaborative group data

quality for studies conducted using the same spotted microarray platform. Quality

control ensures data integrity and is essential to facilitate subsequent analysis and

meaningful interpretation that support conclusions, future hypotheses and knowledge-

based decision making. It provides complementary QA/QC methods that include

automated, high-throughput quality assessment using SVMs. Combining this protocol

with other methods such as biological replicate clustering (Grant, et al., 2003), and spot

quality control assessments provides a more complete quality-control protocol that

ensures the integrity of cDNA and oligonucleotide microarray data. The adoption of such

measures is necessary to instill confidence in data uploaded to public repositories, an

emerging requirement for a growing number ofprestigious journals. However, the

development of an enterprise solution that assesses data quality across platforms and

between independent groups available within public repositories is needed in order to

realize comprehensive knowledge extraction from publicly available complex data sets.
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Abstract

Motivation:

To effectively utilize microarrays, studies must be appropriately designed to ensure that

the biological question of interest is properly addressed. Little guidance exists

concerning experimental designs to identify active genes in a single dose, temporal

experiment involving time-matched vehicle controls. To this end, two-color microarray

assays were conducted to generate separate and independent temporal datasets from one

in vivo, and two in vitro studies that incorporate the independent reference, loop, and

modified loop designs.

Results:

All three designs resulted in different active gene lists, with varying degrees of overlap.

The modified loop design included the most technical replicates, and consistently

exhibited the largest active gene list. As the choice of experimental design significantly

affected the overall biological interpretation of the data, the modified loop design is

preferred when using the same number of biological replicates due to the larger number

of technical replicates and to facilitate temporal treatment comparisons.
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Introduction

Experimental design holds immense gravity with respect to the analysis methods,

results, and interpretation of a study. Inappropriate designs and analysis methods may

confound interpretation and lead to inappropriate hypotheses. For example, the use of an

incongruous experimental design may lead to the generation of an inaccurate expression

signature for toxicity in drug candidate screening or a hazard identification program.

Several experimental designs have emerged for the analysis oftemporal gene

expression effects including the reference design (Yang and Speed, 2002), independent

reference design (Fielden, et al., 2002), loop design (Kerr and Churchill, 2001a; Kerr and

Churchill, 2001b; Yang and Speed, 2002), and modified loop design (Boverhof et al.,

2004) (Figure 4-1).

The reference and independent reference designs (RD and IRD, respectively) are

the most intuitive of the experimental designs. The key feature of the reference design is

that all microarrays receive the same reference sample such that it is consistently

represented with the same dye on each array. This implies that both treated and vehicle

samples (i.e., the primary samples of interest) are cohybridized with the same reference

sample on each array. Oftentimes, investigators will perform dye-swaps, where each

sample is labeled with both dyes an even number oftimes to avoid possible dye biases

(Cox, et al., 2004; Irwin, etal., 2004).

With regard to a temporal experiment, the IRD (Figure 4-1B) differs from a RD in

that each time point has a matched vehicle-control. To model the effect due to the dyes, a

dye-swap design is encouraged where each sample is balanced with respect to dyes (i.e.,

Cy3 and Cy5). Although the IRD requires half the number of microarrays, and therefore
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Figure 4-1: Microarray Study Designs. The composite design (A) is a

combination ofthe independent reference (B), loop (C), and modified loop designs

(D). The composite design is a non-redundant merger making it an economical

method for study design comparisons. Each arrow represents a microarray, with

the heads and tails each representing a different dye (e.g., Cy3 or Cy5). The

independent reference design is the simplest design where comparisons are made

between treated and vehicle samples where each time-point is treated

independently. The loop design is an interconnected, balanced design where each

treatment/vehicle sample is labeled with each dye equally. The modifications in

the modified loop design are two additional loops, one for each treatment variety

(i.e., treatment or vehicle). These additional loops serve to increase the technical

replication and enhance the ability to make temporal comparisons within a

treatment variety. T represents treated and V represents vehicle varieties while the

ntunbers indicate the time-point.

less starting material than the reference design, temporal confounds exist that may

compromise analyses across time (i.e., testing hypotheses that there are no changes in

treatment effect across time).

The loop design (LD; Figure 4-1C) was developed as an alternative to the

reference design that provides balanced measurements across the design (i.e., the same
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Figure 4-2: A-optimal Study Design. The A-optimal design for the 28 variety

(i.e., 2 treatment varieties x 7 tirne-points) experiment represents the design

exhibiting the lowest average error for arrays and varieties. This design does not

make comparisons among adjacent time-points within variety, unlike the modified

loop design.

number ofmeasurements are made per treatment group). This alleviates the need to

generate massive quantities ofthe reference sample as required with the reference design,

and minimizes acquisition of large amounts of data from the generally uninformative

reference sample (Kerr and Churchill, 2001a). The loop design is also more

economically feasible than the independent reference design, requiring half the number of

microarrays while accounting for dye effects.

 

The modified loop design (MLD; Figure 4-1D) consists of the standard loop

design, augmented by two “inner” loops, one for each class oftreatment variety (i.e.,
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treatment and vehicle). For time-course experiments with treatment and vehicle

comparisons, each treatrnent-by-time combination is referred to as a variety. In other

words, for a 2 X 4 factorial case (2 treatments X 4 time points), there are eight varieties.

For time-course experiments the loop design is A-optimal (i.e., the design that exhibits

the smallest average variance for comparisons of interest) for four or fewer time points

(Kerr and Churchill, 2001a). However the A-optimal design for a 14-variety experiment

(2 treatments X 7 time points; Figure 4-2; adapted from output from the Experimental

Design Tool: Imp://exgen.ma.umist.ac.uk/) may not be the most appropriate design for a

time-course study. Under this design, temporally adjacent varieties (i.e., treated at time n

and n+1) are not connected. Connectedness of varieties is preferred (i.e., varieties to be

compared are assayed on the same microarray) to decrease technical variation within the

comparison. Note that the A-optimal design only minimizes the average variance across

all possible comparisons, not necessarily the ones of interest. Thus, if investigators are

interested in comparing treated and vehicle samples from the same time point as well as

adjacent time-points within a treatment class then the modified loop design is more

appropriate with regard to decreasing the variability associated with each comparison.

Others have investigated the differences between the RD and LD (Dobbin and

Simon, 2002; Simon, et al., 2002; Vinciotti, er al., 2004). It has been shown that the RD

outperforms the LD when sample size is limited and class discovery is the primary goal

(Dobbin and Simon, 2002; Simon, et al., 2002). However, the LD provides greater

precision, and may be more appropriate when identifying differentially expressed genes

(Vinciotti, et al. , 2004). Thus, the RD was not included in these studies since chemical

classification, analogous to the sample classification problems, may be more
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appropriately probed using RD, and that the LD is optimal for the identification of

differentially expressed genes. Here we present an empirical comparison of the

independent reference, loop, and modified loop designs, with respect to three temporal

experiments engaged in identifying treatment responsive genes.

Materials and Methods

Microarray Study Design

A composite design (CD; Figure 4-1A) was employed that combined the IRD,

LD, and MLD into a single, nonredundant representation of each dye-sample

combination. This novel design limits data redundancy, reduces errors due to technical

variation and minimizes confounding factors with run order that may arise if each design

had been completed separately.

The CD was used to generate three datasets from three independent experiments.

Experiment 1 (Exp-l) is an in vitro time course investigating gene expression changes

following treatment with DMSO, a common vehicle typically used for in vitro

experiments that is generally considered to be innocuous, compared to time-matched

untreated (niave) controls. Experiment 2 (Exp-2) is a 17-B estradiol elicited in vitro gene

expression time course study that includes time-matched vehicle (DMSO) treated cells.

Experiment 3 (Exp-3), an in viva experiment, that compares the temporal effects of 17-a

ethynyl estradiol to a time-matched vehicle (sesame oil) control in murine liver tissue.

All experiments are 7 time x 2 treatment (14 variety) experiments with three biological

replicates.
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Further details on microarray assay procedures are available at

http://dbzach.fst.msu.edu. All animal husbandry and sample collection procedures were

approved by the Michigan State University All University Committee on Animal Use and

Care.

Data Normalization and Active Genes Filtering

Microarrays were scanned using an Affymetrix 428 scanner, and images were

quantified using GenePix v5.0 or v5.1. Microarray data were normalized using a

semiparametric normalization method that accounts for intensity-dependent effects

(Eckel, et al. , 2004b) and active genes were identified using an empirical Bayes method

(Eckel, et al. , 2004a). Active genes are defined as those with a posterior probability of

being differentially expressed larger than 0.95. Normalization was performed in SAS

v8.02; the empirical Bayes method was performed in SAS v8.02 and R v1.9.1.

Design Comparison Methods

Active gene lists were compared by creating tables of the active genes in SAS,

and performing inner joins across the tables to identify overlapping active cDNAs.

Box-and-whisker plots were used to compare the standard error estimates from

the model-based t-statistic of the General Linear Mixed Model (GLMM) across the three

experimental designs and within each experiment. The GLMM is a linear effects model

where the response variable, or normalized expression value, is modeled as a linear

function of both fixed and random effects (e.g., microarray, treatment, date of

hybridization, etc). The model-based t-statistic is the estimate, theta, from the GLMM

divided by the standard error of theta. For the purposes of this analysis, only treatment
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Figure 4-3: Comparison of Active Gene Lists. Active gene lists were generated

and compared for each design within each experiment. The MLD consistently

yields the largest active gene list. The degree of overlap between the lists is

dependent upon the experiment, not the design. Comparisons are shown for the

Exp-1 (A), Exp-2 (B), and Exp-3 (C) experiments.

and time-matched control comparisons are being made. The box represents the

interquartile range (IQR), where the lower bound is the 25th percentile and the upper

bound is the 75th percentile. The whiskers represent the fence, where the upper bound is

the 75th percentile plus 1.5 times the IQR; the lower bound is the 25th percentile minus

1.5 times the IQR. Values outside of the fence are represented by asterisks in the plot.

Mean estimates were calculated as the arithmetic mean of the normalized feature

intensity within a treatment variety per cDNA. Mean estimates were compared using 1)

distributions of temporal correlations, 2) trajectory plots, and 3) 45-degree rotated
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scatterplots, similar to the M vs A plot (Yang, et a1. , 2002), where the abscissa represents

the geometric mean of the mean estimates, and the ordinate axis represents the difference

of the mean estimates between designs. These rotated scatterplots illustrate intensity

relative biases between designs as deviations from ordinate values of zero. The

normalized intensity values exist within log; space and thus the difference (on the

ordinate axis) reflects the log; ratio of the mean estimates.

The temporal correlation (p) is defined per gene 1' as

0.. ___ are. —mo. — p, )1

U '0- ' axiayr’

 

where 0}in represents the covariance for gene 1'; 0}, and 0y]. represent the variances

across time for designs x and y, respectively; [in and #yl. represent the arithmetic

mean of the normalized gene expression value for the vectors x,- and y,; xi, and

yr, represent the mean estimates at time t. The s[Q] notation represents the arithmetic

mean of the vector quantity Q. Histograms representing the distribution of correlations

were generated for each pair of design comparisons (IRD vs LD, IRD vs MLD, LD vs

MLD) for each of the three experiments.

Mean estimates (as calculated above) were also compared using trajectory plots.

Principal components analysis (PCA) was performed on the treated and vehicle mean

estimates together, per each design and experiment. Trajectory plots are three
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dimensional scatterplots of eigenvalues from the first three principal components (PCs)

of the PCA. Points within a treatment-variety are connected by line segments in temporal

 

Table 4-1: Percent Overlap Between Active Gene Lists For Each Design and the

Modified Loop Design

EXP-1

IREF: % overlap with

Modloop 86.2%

LOOP: % overlap with

Modloop 31.8%

 

 

 

Exp-2

IREF: % overlap with

Modloop 38.3%

LOOP: % overlap with

Modloop 54.5%
 

 

EXP-3

IREF: % overlap with

Modloop 68.6%

LOOP: % overlap with

Modloop 75.6%   
   
 

order, creating a treatment-variety surface (i.e., treatment or vehicle surfaces).

Visualizations and Statistical Analyses

All statistical analyses and scatterplots were performed/generated in SAS v8.02,

unless otherwise noted within the referenced material. All other data visualizations were

perforrned/generated in R v1.9.1.

Results

IRD, LD, and MLD Yield Different Active Gene Lists

Differences in variance and mean estimates of gene expression in each design can

be attributed to differences in the active gene lists (Figure 4-3). The MLD consistently
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Table 4-2: 99‘” Percentile of the Standard Error Distributions
 

 

 

 

Exp-I (99fII percentile) Exp-2 (9915 percentile) Exp-3 (99th percentile)

IRD 0.345 1.056 0.216

I LD 0.321 0.464 0.242

MLD 0.270 0.439 0.198   
 

  
 

exhibits the largest active gene lists, with no clear pattern exhibited by the IRD and LD.

The LD and the MLD exhibited the largest concordance in the Exp-2 and Exp-3

experiments, while the IRD and MLD exhibited the largest concordance in the Exp-1

experiment (Table 4-1).

Comparison of Standard Error Estimates

The standard error is used in the estimation of the model-based t-statistic, which

is used to calculate a posterior probability for determination of the active gene list. A

small standard error will inflate the t-statistic while a large standard error will deflate the

t-statistic. In the Exp-1 and Exp-2 datasets, the MLD exhibits less variance than the IRD

and LD (Figure 4-4A, B). However, in the Exp-3 dataset, the MLD and IRD exhibited

similar degrees of variance, while the LD exhibited more variance based on comparisons

of the interquartile ranges (Figure 4-4C). These relationships hold when comparing the

99th percentiles from the standard error value distributions (Table 4-2), with the exception

that the MLD has less error than the IRD in Exp-3. The extreme values are not used in

these comparisons as they are not representative of the majority ofthe data points. Thus,

the MLD exhibits less variance than the LD, which is expected, as the two designs are

directly related, with the exception that MLD harbors more technical replicates than the

LD. The temporal confound exhibited by the IRD makes interpretation of the standard

error differences difficult between the IRD, MLD, and LD.
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Comparison of Mean Estimates

Mean estimates are used both in the calculation of the model-based t-statistic as

well as calculating the treatment related fold change with respect to time-matched vehicle

controls. The LD and MLD tend to yield more similar mean estimates based on their

temporal correlation (Figure 4-5) in all three experiments. This is evidenced by the

leftward skewed distributions, with correlation coefficients more skewed towards +1.

Thus, the overall patterns, or trends, obtained from the data tend to be similar between the

LD and MLD, but correlation says little about the absolute concordance of these

estimates.

To examine the concordance of the estimates a 45 degree rotated scatterplot,

similar to the M vs A plot is used (Figure 4-6). The x-axis represents the geometric mean

of the mean estimates, while the y-axis represents the difference ofthe mean estimates

from the two designs being compared. Differences were exhibited by all designs in all

three experiments; however, the greatest differences occurred between the MLD and the

IRD and LD in the Exp-3 experiment, with the largest difference exhibited between MLD

and the IRD, where the average difference was approximately 2-fold (a difference of 1) at

the lower mean estimates, which tapers back to an average of zero difference at the high

mean estimates.

To further compare the means and the temporal relationships, a specialized PCA

plot (aka trajectory plot), similar to those developed for metabonomics (Kenn, et al. ,

2004), was used. Trajectory analysis projects temporal microarray data into three

dimensions, each representing a principal component from the PCA. Line segments are
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used to connect each time-point within a treatment group, such that each join point is a

treatment and time-point combination. For example, Figure 4-7C has the vertices

labeled. The starting and end-points of the trajectories are of less interest compared to

the overall shapes that are conveyed by the trajectories. The amount of variance

explained by each principal component (PC), and the total amount of variance explained

by the first three principal components is given in Table 4-3.

The trajectories in the IRD suggest the design is confounded with respect to time,

as the treated and vehicle points tend to cluster closely based on time with congruent, or

similarly shaped, surfaces (Figure 4-7A—i, B-i, C-i). Surfaces do not need to overlap or

be superimposed on one another to be congruent, they simply need to convey similar

shapes. The temporal congruency is lost in the MLD of all three of the experiments

(Figure 4-7A-iii, B-iii, C-iii). The LD exhibits less temporal clustering than the IRD, and

resembles an amalgamation of the IRD and MLD (Figure 4-7A-ii, B-ii, C-ii).

Furthermore, the trajectory analysis further supports the notion that mean estimates from

the designs differ greatly.
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Discussion

The choice of experimental design holds significant gravity over the results and

their interpretation. Application of different designs results in different experimental

interpretations, such as the identification of different biomarkers of exposure.

Three different designs were evaluated to identify their appropriateness for

studying temporal changes in gene expression following exposure to a chemical or an

appropriate control (i.e., time-matched vehicle). To compare the independent reference

(IRD), loop, and modified loop designs (MLD), investigators used a unique design that

combines all three (i.e., the composite design), ensuring that as many arrays as possible

were shared between the designs, thus limiting the influence of technical (e.g., labeling

reaction, microarray) and biological error (e.g., biological sample) on the comparison.
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Each design was examined using three independent composite datasets. Exp-1 and Exp-2

were performed in the murine Hepal clc7 cell line. Exp-2 featured a vehicle control at

each time point, while the Exp-1 time course used untreated (niave) cells as the control.

Exp-3 is an in vivo time course experiment examining the effects of ethynyl estradiol in

the mouse liver.

The designs were compared by examining the temporal trajectories of the gene

expression profiles and the active gene. Differences were examined further by identiying

the amount and sources of variance and comparing estimated means across the designs.

The trajectory analysis confirmed that the IRD exhibited a temporal confound that

compromised the detection of treatment effects. The overlap oftreatment-variety

surfaces (i.e., treatment and vehicle surfaces) indicated no difference was observed

between the mean estimates. Treatment-variety surfaces that do not exhibit

superposition, but are temporospatially congruent have treatment varieties that are

confounded by time; that is, the temporal variance cannot be distinguished from the

treatment variance. Although the mean estimates between treatment varieties may be

different, the temporal confound renders time-point comparisons impossible due to the

inability to separate temporal and treatment variances. Thus, hypotheses concerning

treatment comparisons between times are not testable. This prohibits IRD as an

appropriate design for probing temporal relationships of treatments, such as those

required for kinetic modeling of a response. However, the IRD can be used to compare

treatment and vehicle exposures that are independently considered at each time point.

Further insight is gained when interpreting the trajectory results from studies

examining the temporal gene expression effects ofDMSO, a common vehicle used in in
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vitro studies. Trajectory analysis from the IRD suggests there is little difference in gene

expression patterns across time between DMSO and untreated cells in culture, and that

there is a great deal oftemporal variance in both DMSO-treated and untreated cells. In

contrast, MLD data suggests few temporal effects are exhibited in untreated cells, as

depicted by the points being in relatively close-proximity to each other, while the effects

due to DMSO-treatment are much greater, on the relative scale, with the cells returning to

the “untreated state” by 48hrs. Given the temporal confound exhibited by the IRD, it is

likely that the temporal interpretation from the MLD is more accurate, where untreated

cells show significantly fewer temporal changes across time, and the DMSO treatment by

itself generates a much different change in gene expression, with many ofthese effects

being absent within 48hrs of treatment.

Large differences in the number and composition of active genes were observed

between the three designs when the same P(1)t-value is chosen. The MLD yields the

greatest number of active genes for all three experiments, which is not surprising given it

includes more technical replication, and will generally exhibit less variance. However,

the degree of overlap of active genes also differs greatly between experiments.

The three designs tend to yield differences in the mean estimates for active genes.

Although these differences exist, the MLD and LD tend to yield estimates that are more

closely correlated than the MLD and IRD. However, large degrees of scatter are still

seen in the scatterplots, representing differences in the estimates. This difference in mean

estimates also appears as differences in the temporal clustering between designs as

evidenced by the distinctly different patterns in the trajectory analysis. For example, the
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relative distance between time-points in the Exp-3 MLD and LD trajectories for the

treated groups are quite different, with 12hr and 18hr relatively close in the MLD, and far
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Figure 4-7: Trajectory Plots of Temporal Expression Changes. Eigenvalues were

calculated from normalized mean estimates of gene expression across time to create

3D scatterplots, where the axes represent the three principal components that best

represent the variance within the dataset. Design were compared within each

experiment (i.e., Exp-l (A), Exp-2 (B), and Exp-3 (C); IRD (i), LD (ii), MLD (iii)). A

temporal confound is exhibited in the IRD across all of the experiments, exhibited as

close proximity of treated and vehicle nodes for the same time-point, and similar

shape patterns. The MLD illustrates greater treatment effects, relative to vehicle, as

evidenced by the larger spatial distance compared to the IRD and LD. The labels in

(C) represent the treatment variety and time-point, where T is treated and V is vehicle,

and the number is the time-point in hours.

apart in the LD. This difference in the distances alone would skew the biological
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interpretation with either relatively little treatment differences from 12-18hrs in MLD or

larger differences in LD.

The primary difference between the MLD and LD is the number of technical

replicates, where the MLD contains twice as many technical replicates. The MLD

includes technical replicates of biological sample and dye interactions which decrease the

amount of global variance in the MLD as compared to the LD. Increased technical

replication also tends to increase the accuracy of mean estimates as illustrated by the

different trajectory for each design. The MLD shows complete segregation of the

treatment and vehicle spaces, while the LD still shows some similarities (i.e., close

spatial proximity). The increased number of active genes at the same false positive rate is

seen as a side effect of the decreased variance and increased accuracy. Thus,

investigators gain the advantage of smaller false positive rates when limiting their active

gene lists to a particular smaller size when using the P1(t)-value based cutoff method in

the MLD as opposed to the LD.

However the MLD comes at a significant expense, both in terms ofthe number of

microarrays required and the total amount of biological sample. Although advantageous

compared to the LD and IRD, there are issues of practicality that may limit the use of the

MLD. Technical replication allows an investigator to have more confidence in the

expression level of a transcript within a particular sample, but biological, not technical,

replication models the biological population’s response to the treatment of interest.

Therefore, it is best to sacrifice the technical replication for the sake of biological

replication when sample or supply are limiting (Yang and Speed, 2002). To test this

notion of the importance of biological vs technical replicates, an experiment comparing
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Table 4-3: Percentage of Variance Ex lained By Each Principal Component

Exp-I Exp-2 Exp-3

IRD LD MLD IRD LD MLD IRD LD

PCl 98.40% 98.80% 99.20% 96.50% 31.60% 33.00% 39.20% 52.60%

PC2 0.60% 0.30% 0.20% 1.90% 17.50% 16.70% 26.40% 14.20°/

PC3 0.30% 0.20% 0.20% 0.50% l 1.20% 10.70% 8.50% 7.50‘V1

Total 99.20% 99.30% 99.60% 99.00% 60.30% 60.50% 74.00% 74.20%    
   
 

the LD with an additional biological replicate to the MLD where the total number of

microarrays is equivalent would be useful.

Conclusions

This analysis using three independent composite datasets illustrates that biological

interpretation can be significantly influenced by experimental design. The design

affected the estimated mean expression value, temporal clustering, and active gene lists

which may lead to incorrect hypotheses regarding the temporal onset/occurrence of

treatment-related effects. The MLD is the most appropriate design for temporal gene

expression studies involving two treatment varieties, such as treatment and vehicle as it

lacks the temporal confound exhibited by the IRD, and encompasses more technical

replicates than the LD, ensuring more accurate normalized mean estimates. However,

these advantages come at the cost of consumables and biological samples. Thus, the LD

may be more appropriate when cost or the amount of biological sample is limiting.

Advantages of the MLD are also overshadowed by the importance ofbiological

replicates. Nevertheless, it is clear that technical replication does matter, both for

estimation of standard error and the mean. Thus, experimental design considerations

must include thoughtful analysis of the costs, sample requirements, and the underlying
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biological questions to ensure data quality as ultimately, the experimental design choice

may influence the biological interpretation ofthe data.

Acknowledgements

This work was supported by NIEHS grants ES 04911-12, ES 011271, and ES 011777.

TRZ is partially supported by the Michigan Agriculture Experiment Station.

146



References

Boverhof, D. R., Fertuck, K. C., Burgoon, L. D., Eckel, J. E., Gennings, C. and

Zacharewski, T. R. (2004) Temporal and dose-dependent hepatic gene expression

changes in immature ovariectomized mice following exposure to ethynyl

estradiol. Carcinogenesis, 25, 1277-91.

Cox, W. G., Beaudet, M. P., Agnew, J. Y. and Ruth, J. L. (2004) Possible sources of dye-

related signal correlation bias in two-color DNA microarray assays. Anal

Biochem, 331, 243-54.

Dobbin, K. and Simon, R. (2002) Comparison of microarray designs for class comparison

and class discovery. Bioinformatics, 18, 1438-45.

Eckel, J. E., Gennings, C., Chinchilli, V. M., Burgoon, L. D. and Zacharewski, T. R.

(2004a) Empirical bayes gene screening tool for time-course or dose-response

microarray data. J Biopharm Stat, 14, 647-70.

Eckel, J. E., Gennings, C., Themeau, T. M., Boverhof, D. R., Burgoon, L. D. and

Zacharewski, T. R. (2004b) Normalization of two-channel microarray

experiments: a semiparametric approach. Bioinformatics, in press.

Fielden, M. R., Halgren, R. G., Fong, C. J., Staub, C., Johnson, L., Chou, K. and

Zacharewski, T. R. (2002) Gestational and lactational exposure of male mice to

diethylstilbestrol causes long-term effects on the testis, sperm fertilizing ability in

vitro, and testicular gene expression. Endocrinology, 143, 3044-59.

Irwin, R. D., Boorman, G. A., Cunningham, M. L., Heinloth, A. N., Malarkey, D. E. and

Paules, R. S. (2004) Application of Toxicogenomics to Toxicology: Basic

Concepts in the Analysis of Microarray Data. Toxicol Pathol, 32, 72-83.

Kerr, M. K. and Churchill, G. A. (2001a) Experimental Design for Gene Expression

Microarrays. Biostatistics, 2, 183-201.

Kerr, M. K. and Churchill, G. A. (2001b) Statistical design and the analysis of gene

expression microarray data. Genet Res, 77, 123-8.

Keun, H. C., Ebbels, T. M., Bollard, M. E., Beckonert, 0., Antti, H., Holmes, E., Lindon,

J. C. and Nicholson, J. K. (2004) Geometric trajectory analysis of metabolic

responses to toxicity can define treatment specific profiles. Chem Res Toxicol,

17, 579-87.

Simon, R., Radmacher, M. D. and Dobbin, K. (2002) Design of studies using DNA

microarrays. Genet Epidemiol, 23, 21-36.

147



Vinciotti, V., Khanin, R., D'Alimonte, D., Liu, X., Cattini, N., Hotchkiss, G., Bucca, G.,

De Jesus, 0., Rasaiyaah, J., Smith, C. P., Kellam, P. and Wit, E. (2004) An

experimental evaluation of a loop versus a reference design for two-channel

microarrays. Bioinformatics,

Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J. and Speed, T. P. (2002)

Normalization for cDNA microarray data: a robust composite method addressing

single and multiple slide systematic variation. Nucleic Acids Res, 30, e15.

Yang, Y. H. and Speed, T. (2002) Design issues for cDNA microarray experiments. Nat

Rev Genet, 3, 579-88.

148



CHAPTER FIVE

Summary and Conclusions
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Sequencing of the human genome has ushered in the use of new large-scale

technologies for the study of chemical effects in biological tissues and systems in the

emerging field of toxicogenorrrics. A major hurdle in the adoption of these technologies

is the implementation of cost effective data management schemes to manage the hordes

data. However, to realize the full benefit of the technology, investigators must ensure the

high quality of the data and that appropriate experimental designs are used.

The deach System, a combined database and analysis system, provides

toxicogenomic data management capabilities for small laboratories, departments, and

consortia. The relational database backend has been designed to faithfully and

appropriately model biological relationships in a modular fashion. This decreases the

time it takes a new biological investigator to become familiar with the system, and

facilitates the incorporation of new technologies as they develop. The software

capabilities of the system include upload, visualization, and mining of data.

The database is divided into several interconnected subsystems, or collections of

tables. Each self-contained subsystem models a distinct biological concept or

technology, such as cDNA clones, genes, microarrays, real-time PCR, etc, providing a

modular database structure. As new technology develops, new modular subsystems can

be integrated into deach without disruption ofthe current data management landscape.

These new database back-end developments appear completely invisible to the user,

allowing for seamless integration of nascent data types across time.

The development of the deach System has allowed for large-scale, multivariate

analysis of trends within microarray data across experiments. Observations fiom these

analyses lead to the development of high and low quality historical datasets, which were
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instrumental in the development ofnovel quality assurance and control (QA/QC)

protocols. These protocols have lead to improvements in investigator performance, and

coupled with investigator experience, improved the results generated within the

laboratory.

The current QA/QC protocol consists of three divisions, based on empirical

observations from datasets of varying quality within deach. The Support Vector

Machine (SVM), a statistical learning method for multivariate data classification, was

used to generate a nonlinear mathematical model for identifying high from low quality

microarrays. The method was improved by using a logistic regression to identify the

most predictive variables prior to training the SVM. The most predictive variables

included the Cy5 global feature to background intensity ratio, Cy3 and Cy5 global

background intensity, and Cy3 global feature intensity. The Cy5 global feature to

background intensity ratio was the most predictive variable, which is not surprising as

Cy5 has been reported to be more sensitive than Cy3 to ozone (Fare, et al., 2003).

The second division of the QA/QC protocol leverages a semiparametric

normalization procedure (Eckel, et al. , 2005) to identify microarray subgrids which are

misaligned during the automated feature identification. Misaligned subgrids are those

where the software misannotates a region of the region, such as aligning an entire subgrid

row one row off. Misaligned subgrids appear as diagonal lines in the modified MA plots

generated as a result of the normalization procedure. This step is of the utmost

importance as feature identification and rrricroarray quantification software often fail to

properly align microarrays, especially in the presence of high local background, and

misaligned grids are often overlooked by the user.
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The third division ofthe protocol analyzes the distribution ofmedian feature

intensities on a per array basis. The distribution ofmedian feature intensities may

influence the downstream statistics, including gene activity and the estimate of the mean

expression. For these reasons, the distribution of feature intensities is controlled such

that all experiments within the laboratory must follow the same distribution. This

distributional standardization also facilitates comparisons across tissues and chemicals.

As the microarray technology has continued to mature so has the field of

microarray experimental design; however, little guidance existed as to the most

appropriate design under different circumstances. This prompted the comparison ofthree

temporal experimental designs: the independent reference, loop, and modified loop

designs with regards to time-course toxicology studies. These designs were compared

using three independent experiments investigating the temporal response of 1) cells in

culture to DMSO, a vehicle commonly used in in vitro experiments, to untreated cells, 2)

cells in culture to 17B-estradiol compared to DMSO treated vehicle controls, and 3) mice

to 170r-ethynylestradiol compared to sesame oil vehicle controls.

The experimental designs yielded different active gene lists, with varying degrees

of overlap within each experiment. The modified loop design consistently exhibited the

largest active gene list, likely due to the increased number technical replicates. The

independent reference design exhibited a temporal confound, while the modified loop

design exhibited a complete mixing of the samples. The loop design appeared as a mix

of the independent reference and modified loop designs, with considerably less of a

temporal confound.
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Based on these results, investigators should consider using the loop and modified

loop designs in lieu of the independent reference design. If only interested in comparing

responses within time, and there is no interest in comparing the results across time, then

the independent reference design would be appropriate, as the confounding of

microarray, temporal, and treatment variances does not hinder the analysis. As the

modified loop uses significantly more microarrays than the loop design, the potential

benefits of the modified loop must be weighed against the economics of the loop design.

Generally, if the cost savings between the modified loop and loop designs are

such that an additional biological replicate can be performed, then it would be advised to

use the loop design. However, if the resources are available to perform the modified

loop, and the cost difference is not enough to allow for an additional biological replicate,

the increased accuracy afforded by the modified loop design may be justified.

Future Directions

The deach System is currently in a relative state of stability. The back-end

database is well developed, and has proven capable ofmanaging several microarray

experiments. However, the present functionality ofthe system primarily resides within

data upload of RT-PCR, microarray, and histopathology data, and minimal data

interaction interfaces for unskilled users. Currently, it is being augmented by new

microarray data mining tools, such as the Visualization Control Center (VCC).

The VCC provides data mining capabilities, such as plotting data in 2- and 3-D

for visualization of data trends. It is being outfitted with pattern recognition algorithms,

such as the k-means and agglomerative hierarchical clustering algorithms. These

improvements will enhance investigator-centered data mining activities.
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Future deach development will concentrate on the accommodation ofnew

technologies, such as proteomics and metabolomics. New subsystems and upload

interfaces will need to be created to manage these data. As these new data domains are

captured, new cross domain data mining capabilities will also need to be developed for

data mining of biological knowledge from combinations of genomic, proteomic and

metabolomic data resident within the database.

The current state of the QA/QC protocol facilitates the identification of

microarrays of questionable quality. However, future work should also focus on

monitoring investigator performance which may include the use of Shewhart plots that

illustrate the relationship between a weighted average, daily quality metric across time.

The primary challenge will be the development of the quality metric; however, one

example being the net number of high quality arrays produced per day. Investigator-

based performance monitoring should lead to a net increase in laboratory data quality, as

trends in investigator performance may be identified, and facilitate intervention,

introspection, and further assay optimization when necessary.

A much larger goal is the formation of global quality metrics (Shi, et al., 2004).

The establishment of global quality metrics is important for performing comparisons of

data from different laboratories using data within repositories. In the case of regulatory

agencies, it is important as a basis of comparison of data from sponsors, and when

performing risk assessments. For example, if a generic drug producer were to use

microarray data to illustrate bioequivalence, the Office of Generic Drugs at the FDA may

compare the signatures seen in the microarray results from the sponsor to results obtained

from the initial patent holding sponsor, an independent third party, or from within FDA,
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in an attempt to verify the bioequivalence and to identify putative signatures oftoxicity.

In these cases, the FDA would need to ensure all ofthe data used in the comparison were

of high quality, or else the results and interpretation may become skewed.

The results from the comparisons ofthe experimental designs illustrate that

although comparisons of interest should be tested on the same arrays, as asserted by

others (Kerr and Churchill, 2001; Yang and Speed, 2002), this arrangement must be

considered carefully to avoid confounding ofthe temporal effect. Thus, these results

suggest the use of the loop and modified loop designs is superior to the independent

reference design when the intention is to make comparisons of chemical effect across

time. However, the next step is to further define the appropriate use of the loop and

modified loop designs based on sample sizes and analysis of statistical power. Using the

current datasets as examples, the statistical power with regards to the empirical Bayes

method could be calculated using methods similar to those reported for other microarray

datasets and tests (Tempelman, 2005; Tsai, et al., 2005; Wei, et al., 2004).

Furthermore, with the deluge of statistical mechanisms for normalization and

identifying active genes, the loop and modified loop designs from these datasets could be

used to perform comparisons of the methods. By anchoring these comparisons with the

results from real-time PCR experiments, it may be possible to assess methods using

different designs, and conditions which will provides further guidance regarding the

appropriate analysis methods to use when confronted with a particular design.

Conclusions

In 1999 the BISTI report (Biomedical Information Science and Technology

Initiative; http://www.nih.gov/about/director/060399.htm) recommended more concerted
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integration of computational approaches into biological sciences, and the development of

better software for data analysis and infrastructure for data management, with the fi'uits of

to be shared with the greater community. These recommendations are especially true for

the omic technologies, where massive datasets are generated and require novel data

management, quality assurance, and experimental design considerations. Providing the

toxicogenomics commrmity with a modular data management product ensures its utility

can continue to evolve as new technologies are developed. Besides the obvious benefit

of having the data properly managed, databases also provide a mechanism for developing

novel quality assurance methodologies, a framework for experimental design

comparisons, and facilitate data sharing with repositories. Thus, these software and

hardware development efforts, when combined with conventional toxicology, facilitates

more comprehensive and predictive safety assessments.
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