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ABSTRACT

THE DYNAMICS OF AGRICULTURAL INSURANCE

AND CONSUMPTION SMOOTHING

By

Gerald Gesicho Omae Nyambane

The majority of previous studies on agricultural risk management use static

models and, for the most part, ignore use of borrowing and lending as an alternative

method ofmanaging risk. This study examines the interaction between credit, insurance,

and liquidity constraints using a simple dynamic model for a risk averse farmer who uses

revenue insurance to manage risk and also borrows and lends subject to a credit

constraint. Theoretical and numerical results are provided to support the hypothesis that

liquidity constraints can have a large impact on optimal insurance decisions.

Three theoretical results are derived with the following implications. First, with

no liquidity constraints, a risk-averse farmer will choose full coverage of actuarially fair

insurance, even if borrowing and lending is allowed. Second, with no liquidity constraint

a positive premium loading reduces optimal coverage level below full coverage. These

two results show that in a dynamic model with no liquidity constraints, insurance choices

are not influenced by the desire to smooth consumption, as long as complete and well-

functioning credit markets exist that permit efficient consumption smoothing to take

place. Third, even if insurance is actuarially fair, a binding liquidity constraint reduces

optimal coverage below the full coverage level. Implying that, a binding liquidity



constraint may cause farmers to purchase insurance less often than would be expected in

the absence of the constraint.

The numerical model was solved for a representative farm from Adair County in

Iowa and provides the following implications. First, with complete and well fimctioning

credit markets: (i) the maximum allowable coverage of actuarially fair insurance will

always be optimal; (ii) at moderate premium loading (e.g. 30%), the maximum of 85%

coverage allowed in practice will still be optimal; and (iii) at relatively high (e.g. 60%)

premium loading the maximum allowed coverage will no longer be optimal except for

highly indebted farmers. Second, a liquidity constraint causes a reduction of coverage

below the maximum allowed level, even for actuarially fair insurance. A binding liquidity

constraint limits (or eliminates) the insurer’s ability to borrow for current expenditures

including consumption and insurance. This causes him/her to not insure out of current

wealth because current consumption is too valuable. Finally, an area-based insurance

scheme exposes insurers to residual uninsurable risk which may preclude them from

purchasing insurance, even if it is actuarially fair and there is no liquidity constraint.

Hence, subsidies may be necessary to encourage the maximum allowable coverage.

This study has two main conclusions: (1) as long as complete credit markets exist

and the farmer can borrow and save freely, consumption smoothing has no effect on

insurance decisions if insurance is moderately priced and there is no residual uninsurable

risk; (2) if residual uninsurable risk and/or a liquidity constraint exist then consumption

smoothing can have a significant impact on the optimal insurance decision and, in some

cases, self-insurance will be preferred over formal insurance.
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CHAPTER ONE

INTRODUCTION

1.1 Problem Statement

Farmers have a wide array of instruments for managing income risk. Futures and

options contracts, forward contracts, and other derivative pricing instruments have been

available for many years. Multiple-peril crop insurance, which triggers payoffs based on

individual-farm yield shortfalls, has long been an option to manage yield risk. More

recently, area-yield insurance which triggers payoffs based on county yield shortfalls has

been made available to many farmers. The latest innovation in risk management is direct

protection against revenue shortfalls through revenue insurance. Revenue insurance is

currently being offered under a variety of designs including individual farm revenue

insurance and area revenue insurance, and alternative methods for valuing yield or

revenue shortfalls.

There is a large literature on the optimal use of risk management instruments.

The bulk of this literature focuses on pricing instruments, such as futures or forward

contracts, and uses static models (e.g. Ederington, 1979; Anderson and Danthine, 1981;

Kahl, 1983; Myers and Thompson, 1989 ). Several authors have recognized the

importance of dynamic hedging and made important contributions in developing dynamic

models for hedging with pricing instruments (e.g. Anderson and Danthine, 1983; Karp,

1987; Martinez and Zering, 1992; Vukina and Anderson, 1993; Myers and Hanson,

1996). A limited number of studies have focused on including multiple instruments in a



farmer’s risk management portfolio. The vast majority of these studies also use static

models (e.g. Coble et al., 2000; Wang et al., 1998; Hennessy et al., 1997; Mahul and

Wright, 2000). Atwood et a1. (1996) is one of the few studies to examine the use of

insurance instruments in a dynamic framework.

In a multi-period setting, a potentially important alternative method to manage

risk is available which has, for the most part, not been explicitly included in studies on

risk management. It is well known that borrowing and lending can be used to smooth

consumption across time (Friedman, 1957; Sargent, 1987). That is, in periods of low

income a farmer may borrow to maintain a desired consumption level and in periods of

high income the farmer can repay the borrowed funds or lend to store wealth for future

consumption. Hence, borrowing and lending can be used to counteract the effects of

income variability across time.

In addition, the majority of existing studies on optimal risk management either

implicitly or explicitly assume that perfect credit markets exist. This assumption implies

that farmers can borrow and lend as much as they want at going interest rates. However,

lenders usually place a limit on the amount farmers can borrow. Whenever such a

borrowing constraint is binding, it imposes a further constraint on the amount of liquid

funds available to the farmer. Consequently, the farmer’s ability to finance consumption,

insurance, and production activities becomes limited. This suggests that in the presence of

a (binding) liquidity constraint, farmer choices of consumption and insurance coverage

levels may differ from those under the assumption of perfect credit markets.



Results from static models of optimal insurance coverage for risk averse individuals with

von Neumann-Morgenstern utility functions are well known. Full insurance coverage will

be demanded if complete insurance is available at an actuarially fair premium (Arrow,

1963). Situations in which this result may not hold have also been studied, especially for

non-farm insurance problems (e.g. Parkin and Wu, 1972; Harris and Raviv, 1978;

Holmstrom, 1979; Shavell, 1979). Agricultural insurance studies that have analyzed

situations in which full actuarially fair insurance may not be the optimal choice have

mainly focused on market failures due to moral hazard and adverse selection, which arise

from asymmetric information between insured farmers and insurance agents (e.g.

Chambers, 1989; Luo et al., 1994; Rothschild and Stiglitz, 1976). As suggested above,

however, the presence of credit markets and a binding liquidity constraint may cause

insurance decisions to deviate from fiill coverage, even at actuarially fair premia. With

the exception Gollier (2003), no other study was found that examined insurance demand

in a dynamic framework with a liquidity constraint.

This study is based on the conjecture that a better understanding of farmers’ risk

management behavior may be reached if: (i) analyses are conducted within a multi-period

setting, because this would represent the way farmers make actual decisions more closely

than single period models; and, (ii) a liquidity constraint is explicitly included in the

analysis to account for imperfections and restrictions in credit markets. Few existing

studies have analyzed farmers’ risk management behavior in this context.

The purpose of this study, therefore, is to explore farmers’ risk management behavior

using a dynamic framework in which credit markets may be imperfect. The results are



expected to be of interest to economists and policy makers who are concerned with the

design and use of risk management instruments.

1.2 Objectives of the Study

This study has two interrelated specific research objectives:

1. To derive optimal revenue insurance choices for a farmer operating in a dynamic

environment who can also borrow and save subject to a liquidity constraint.

2. To examine the sensitivity of the optimal insurance choices for the farmer in (1)

under a variety of alternative insurance instrument designs and features.

These objectives are accomplished using a dynamic, time separable expected utility

model. Dynamic programming (DP) is used to study optimal decision rules for

consumption, insurance coverage, and credit choices for an individual farmer. In addition,

the approach and results are illustrated via a numerical example using data from Adair

County in Southwest Iowa.

The focus is on revenue insurance because this reduces the dimensionality of the

dynamic programming model, and because revenue insurance is an important component

of current US. agricultural insurance offerings. A conceptual dynamic model is

developed in which an individual farmer, whose objective is to smooth lifetime

consumption, uses credit markets and revenue insurance for risk management. Next, the

model is solved to obtain optimal revenue insurance choices: (i) assuming complete credit

markets (no liquidity constraint); and (ii) assuming incomplete credit markets (with a

liquidity constraint). Finally, the model is analyzed under the preceding two assumptions

with a loading on the insurance premium to cover insurer administrative costs or allow

4



for insurance subsidies. Closed form solutions are often unobtainable because of the

complexity ofthe model, especially in the case of a liquidity constraint. Consequently,

numerical methods are used to analyze optimal insurance coverage choices.

The second objective is to take the model developed under objective 1 and

investigate optimal insurance choices under alternative insurance designs. In particular,

optimal insurance choices are examined when indemnification is based on an area

revenue index rather than an individual farm revenue index. This design is consistent

with the way area revenue insurance is sold in practice and allows one to investigate the

impact of basis risk (imperfect correlation between farm and area revenues) on the

optimal insurance choice.

1.3 Organization of Dissertation

The dissertation is organized into six chapters. Chapter two contains a review of

selected literature on consumption smoothing and crop insurance. The basic relationship

between consumption smoothing and insurance is developed, then a discussion of yield

and revenue insurance is provided and the contribution ofthis study to the broader crop

insurance literature is clarified.

A conceptual dynamic revenue insurance model is developed for an individual

crop farmer in Chapter three. Optimal insurance policies are derived analytically which

provide a theoretical foundation for the optimal insurance choices analyzed numerically

using stochastic dynamic programming. The results are then summarized and discussed.

Chapter four provides details of the stochastic dynamic programming model,

description of the data used for calibration, and the solution algorithm. Details of

different experimental designs (alternative insurance instrument designs) are also



presented. Model validation is also discussed and the model is solved under various

underlying assumptions concerning the existence of liquidity constraints. The results are

presented and discussed in Chapter five. Finally, Chapter six concludes by summarizing

the major results. The strengths and limitations of the study are also highlighted, along

with suggestions for future research.



CHAPTER TWO

LITERATURE REVIEW

2.1. Introduction

This chapter reviews the literature on consumption smoothing and crop insurance.

The goal of the review is to enhance understanding of the current literature and to clarify

the contribution this study makes to the existing literature. Section 2.2 begins with a

review of studies from developing countries where credit and insurance markets are

incomplete and imperfect. Various strategies used to smooth consumption in these

countries are discussed. Next, similar studies from developed countries are reviewed,

where it is assumed that credit and insurance markets are more complete. Section 2.3

reviews studies on crop insurance and suggests a possible relationship between

consumption smoothing and insurance decisions. Finally, Section 2.4 provides a synopsis

of the chapter.

2.2. Consumption smoothing and revenue risk management

Agricultural revenue risk depends on price and yield risks. When resources are

allocated at planting time, farmers have to make risky decisions because harvest prices

and yields are uncertain. Price risk exists because of unpredictable shifts in supply and

demand for farm inputs and outputs. Yield risk, is due to weather variability, disease and

pest incidences as well as other natural phenomena such as floods and droughts. The

combined effect of the variability in prices and yields leads to variability in revenue.

Other things being equal, risk averse farmers prefer stable revenue streams to ones that

vary over time, especially, if the downside swings are large. Hence, they may take actions



that will reduce revenue risk.

Agricultural economists have devoted a tremendous amount of effort to studying

and developing various instruments farmers use to manage risk. These include, but are by

no means limited to, enterprise diversification, hedging in futures and options markets,

storage, and crop yield and revenue insurance. Farmers can also mitigate consequences of

unanticipated revenue shocks through credit (borrowing and savings). That is, credit can

be used to finance consumption during periods of low income. Alternatively, savings

accumulated in prior periods can be divested and used to finance current consumption. In

practice, farmers use a combination of several of these strategies at the same time. As a

result, these strategies interact with one another and often act as substitutes in some cases

and complements in others.

The interaction between consumption smoothing and risk management in general

is not a new idea. It is covered extensively in the development literature focusing on

credit and insurance markets in developing countries. In these countries, formal insurance

and credit markets are underdeveloped or not accessible by many rural households. Faced

with revenue risk and a lack of formal markets for managing risk, households in these

countries use a variety of coping mechanisms to smooth consumption.

Some studies have focused on testing how well households in these countries are

able to smooth consumption while others have examined alternative coping strategies

empirically. For example, Paxson (1992) tests for consumption smoothing among

Thailand rice farmers based on the permanent income hypothesis (PIH). The PIH posits

that if credit markets are complete, then transitory income shocks should be smoothed

away through borrowing and saving, and should not affect consumption. Using time

series data, she ran a regression with household savings as the dependent variable and



transitory and permanent incomes as explanatory variables, among other variables.

According to the PIH, the savings function coefficient on transitory income should be

unity and the coefficient on permanent income should be zero. She found that the

coefficient on transitory income was not statistically significantly different from one. The

coefficient on permanent income, however, was positive and statistically significantly

different from zero, contrary to the PIH. However, it was much smaller than the

coefficient on transitory income. This led her to conclude that the PIH is only partially

supported because a higher fraction of transitory income is saved than ofpermanent

income. In other words, she found evidence that Thailand rice farmers smooth

consumption, but not to the extent implied by the PIH.

Townsend (1994) also tests for consumption smoothing among households in

India but uses a different approach from Paxson. He uses a lO-year panel data set from

three villages in southern India and tests for what he terms “full insurance”. He ran a

regression with household grain consumption as the dependent variable and household

income as one ofthe explanatory variables. According to the mu insurance model, a

household’s consumption should be independent of its income. Therefore, the coefficient

on income should be zero. He found this coefficient to be statistically different from zero,

although its magnitude was very small. Consequently, he rejected the full insurance

hypothesis but argued that there was evidence of partial insurance because ofthe low

magnitude of the income effect. The implication of this result is that households smooth

consumption but not to the extent implied by “full insurance”. Other studies which have

tested the hypothesis of full insurance in developing countries (e.g., Grimard, 1997) also

reject full insurance but find evidence of some consumption smoothing.



There are many studies that examine consumption smoothing strategies in

developing countries and these vary in their approaches and focus. Rosenzweig and

Wolpin (1993) examine the role of bullock purchases and sales in smoothing

consumption among rural households in India. They use a structural household model in

which they assume that households have no access to credit and so consumption

smoothing can only be achieved via accumulation and depletion of bullock stocks. The

assumption ofno credit at all seems unrealistic because a number of studies have shown

that even in extreme cases of missing credit markets, informal credit institutions emerge

to provide some form of credit (e.g., Besley, 1995). The authors acknowledge the

restrictive nature of this assumption but argue that, in reality, very few households receive

loans for consumption purposes. Their study shows that bullock stocks play an important

role in consumption smoothing in India.

Lamb (2003) shows that farmers also use off-farm income to smooth

consumption. That is, farmers augment their farm incomes by engaging in off-farm

employment during seasons of low labor demand on their farms. Using a two-period

model he shows that farmers in southern India use more fertilizer (a purchased input) on

their farms as off-farm employment increases. He posits that a positive relationship

between fertilizer use and off-farm labor supply implies that the off-farm labor market

plays a role in consumption smoothing. The logic is as follows. First, increased fertilizer

use can be viewed as an ex-ante risk management strategy, especially if the original

fertilizer application levels were sub-optimal. Second, to the extent that off-farm

employment is available when on-farm labor demand is low, then it is prudent for farmers

to seek this employment in order to smooth unanticipated farm income shocks ex-post. In

a similar dimension, Rosenzweig and Stark (1989) also find that rural households with

10



greater farm income volatility are more likely to have a household member in steady

wage employment.

Another strand of the literature focuses on examining informal risk-sharing

arrangements. Besley (1995) provides a fairly exhaustive summary of the most prevalent

non-market risk sharing and credit provision arrangements addressed in this literature.

These include credit cooperatives, informal credit and insurance arrangements, rotating

savings and credit associations, and extended family networks.

Credit cooperatives typically secure loans from lending institutions on behalf of

their members. Individually, these members would be denied access to credit by the

lending institutions for various reasons, e.g., lack of collateral, high risk of default, and so

on. The cooperatives are usually organized in a way that diminishes problems of adverse

selection and moral hazard. In most countries, cooperatives are formal institutions that are

regulated by government laws and, in some cases, can secure loans from their

governments when commercial banks are unwilling to lend them.

_ Rotating savings and credit associations, on the other hand, are typically informal

institutions formed by groups of individuals with similar interests. Most often, the

members of an association reside in the same locality and know each other well.

Members of the association make regular contributions to a common kitty to raise funds

for credit provision. Members meet periodically to allocate some funds to one member

according to laid down rules. The process goes on until all members have been allocated

funds and the cycle continues. Hence, the terms ‘rotating’ credit or ‘merry-go-round’ are

used to describe these associations.

It is clear that the topic of consumption smoothing and risk management strategies

in countries with imperfect credit and insurance markets has been extensively covered in

11



the existing literature. These studies provide empirical evidence that households in

developing countries use several strategies to smooth consumption, including off-farm

employment, use of risk-decreasing inputs, informal credit and insurance arrangements,

and livestock holdings. Consumption smoothing and risk management have also been

examined in developed countries but with a somewhat different focus.

The studies in developed countries, such as the United States (US), have mainly

focused on testing the validity of the PIH and investigating the conditions under which it

does not hold. As stated earlier, the PIH posits that if agents have rational expectations

and credit markets are perfect, so that agents can borrow and save at going interest rates,

then desired consumption is determined by permanent income and is independent of

current income. These studies use a variety of estimation methods and data sets to test

this hypothesis with a general finding that the PIH is rejected (e.g Flavin, 1981; Hall and

Mishkin, 1982; and Zeldes, 1989).

Flavin uses a time series model of aggregate consumption of nondurable goods to

test the PIH. She found that the observed sensitivity of consumption to current income

was greater than that warranted by the PIH. She termed this ‘excess sensitivity’ of

consumption to current income and this issue became the focus ofmany subsequent

studies. Hall and Mishkin (1982) is one example. They use a seven-year panel data set

fiom the Panel Study of Income Dynamics (PSID) to examine the issue of excess

sensitivity of food consumption to fluctuations in current income among US families.

They found that 80% ofconsumption followed the permanent income hypothesis and, by

inference, about 20% of consumption is excessively sensitive to current income. Their

conclusion was that the strong hypothesis that consumption is determined only by

permanent income could be rejected.

12



Zeldes (1989) builds on the work of Hall and Mishkin, among others, but

addresses a slightly different issue from previous studies. He investigates whether

liquidity constraints can explain the rejection of the PIH. In a very general sense, a

liquidity constrained household is one that is unable to meet desired levels of

consumption due to low liquid net wealth. This situation arises mainly when the

household is unable to borrow the necessary amounts to smooth consumption over time.

A variety of liquidity constraints due to borrowing restrictions are examined in the

literature. Some involve interest rate restrictions while others involve quantity

restrictions. Zeldes investigates the effect of quantity restrictions on borrowing by

restricting the consumer’s net liquid wealth to be nonnegative in all periods. In this

respect, the liquidity constraint investigated by Zeldes is essentially a borrowing

constraint. Therefore, he uses the terms “liquidity constraints” and “borrowing

constraints” interchangeably as do many other authors. These terms are used

interchangeably in this study too.

Zeldes derives testable implications for consumption behavior in the presence of

borrowing constraints and tests them using the PSID data set. He split the observations

into two groups based on the proportion of financial assets held to total income. The

group with the lower assets to income ratio was assumed to be liquidity constrained. He

explored several splits of the observations to investigate the sensitivity of the results to

different liquid assets to income ratios. The most stringent split consisted of one group

(group 1) with a ratio of liquid wealth to income equal to zero while the other group

(group 2) had a ratio of at least 0.5. He designed a test for each group based on the

Lagrange multiplier for the liquidity constraint. Further, he derived an estimate for the

Lagrange multiplier associated with consumption growth above the amount that would,

13



ceteris paribus, be predicted by a model with no constraints. If the liquidity constraint is

binding then the estimate should have a positive mean for group 1 observations. For the

stringent split he found that the estimate for group 1 indicated that the liquidity constraint

caused annual food consumption grth to be 4.3% higher than it would have been

without the constraint. Tests from the other splits were less conclusive. However, he drew

the conclusion that in general liquidity constraints influence consumption decisions.

Several other studies have also examined the effect of liquidity constraints on

consumption smoothing in the US. (e.g., Flavin, 1985; Deaton, 1991; and Chah et al.,

1995). These authors use various approaches to investigate whether the observed excess

sensitivity of consumption to current income is due to the presence of liquidity

constraints. The conclusion by all three authors is that excess sensitivity of consumption

to current income can be attributed to liquidity constraints. Almost all of the other studies

cover similar issues, differing only in emphasis, data, or methods used. Unlike the

development literature, the issue of the interaction between consumption smoothing,

liquidity constraints, and insurance is not explored. The studies by Atwood et al. (1996)

and Gollier (2003), reviewed later on in this chapter, are the only exceptions found.

For crop farmers, transitory income is generated through crop revenues which

often fluctuate due to seasonality as well as shifts in supply and demand. Such

fluctuations are usually transmitted to consumption although they can, in principle, be

smoothed through borrowing and savings. When complete credit markets exist,

consumption credit is, ceteris paribus, demanded and supplied to individuals who are

cash strapped in the face of unanticipated low revenue realizations. Crop insurance can

also be used to protect the farmer’s revenue from unanticipated downside shocks.

l4



Obviously, crop revenue can be low due to low prices, low yields, or both.

Unfortunately, both prices and non-irrigated yields are uncertain at planting time. It is this

source of uncertainty that underlies the demand for insurance. That is, the farmer

purchases insurance at planting time in order to receive an indemnity if harvest time

revenue falls below a given level. Typically, farmers use both credit and insurance to

mitigate consequences of revenue uncertainty. Therefore, one would expect demand for

credit and insurance to be related. Moreover, if borrowing constraints exist, in the sense

that farmers are unable to obtain the amount of credit demanded at the going interest rate,

one would expect this relationship between credit and insurance to be affected. The

majority of previous studies on crop insurance implicitly assume the existence ofperfect

credit markets in which farmers can borrow and save freely at the going interest rate.

However, as seen from the literature reviewed above, borrowing constraints are a reality,

even in the US. where credit markets are often assumed to be perfect and complete. The

question raised in this study is: How might the presence of borrowing constraints affect

optimal crop insurance decisions? This question has not been addressed in the existing

crop insurance literature, which is reviewed below.

2.3 Agricultural insurance

Insurance offers farmers an opportunity to buy protection against potentially large

yield or revenue losses. Crop yield insurance, for instance, guarantees the farmer’s yield

will not fall below a given level by compensating the farmer for any shortfalls, valued at a

set price. That is, at planting time, a yield guarantee (usually set at an estimate of average

yield) is established, and the farmer is offered yield-coverage options specified as

percentages of the yield guarantee. In the case of Multiple Peril Crop Insurance (MPCI),
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the yield coverages range from 50% to 85% in 5% increments. Let Qg, b, and Q, represent

the yield guarantee, coverage level, and the farmer’s actual yield at harvest time,

respectively. Then the farmer’s decision problem is one of selecting the coverage level, b,

for which he pays a premium in exchange for the opportunity to receive an indemnity

payment if his realized yield falls below the insured yield. That is, the farmer receives an

indemnity payment if (ng < Q,) and zero otherwise. In addition to selecting yield

coverage, the farmer also selects a price coverage at which the yield loss will be valued.

Under the MPCI program, the farmer can select a price coverage of up to 100% ofthe

price set by the Risk Management Agency (RMA). The indemnity is thus given as

pgmax{(ng - Q,,), 0)} where pg is the price guarantee. Premium rates are usually set by

RMA based on the expected indemnity for a given coverage, conditional on information

available at planting time.

The concept behind using insurance in risk management is risk pooling. Risk

pooling involves combining the risks faced by many individual farmers facing

uncorrelated loses who contribute to a common fitnd via insurance premiums. Any

individuals in the pool who experience losses are then compensated for their loss using

funds from the common pool. To be successful at risk pooling, insurers must sell policies

to many different farmers with uncorrelated (or less than perfectly correlated) risks

resulting in a portfolio that is less risky than the individual policies. With uncorrelated

risks, the probability of a significant proportion of farmers in the insurance pool having a

claim at the same time is very low. If risks are highly correlated across insureds, the

common fimd will have a significant probability of going bankrupt, perhaps leading to

failure of the insurance market (Duncan and Myers, 2000).
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Crop insurance, especially under the MPCI program, has been widely studied

since the 19805 (Knight and Coble, 1997, provide a detailed survey of this literature).

When the Federal Crop Insurance Act of 1980 was passed, the “goal was to create an

insurance program that would replace disaster relief measures while operating on an

actuarially sound basis with limited government interference” (Goodwin, 1993, p.425).

However, participation in crop insurance programs continued to remain modest over the

years, giving rise to subsequent legislative changes to the original program (see for

example, Goodwin, 1993; Coble et al., 1996; and Knight and Coble, 1997 for details).

Studies have focused on several issues in an attempt to understand and explain the

apparent failure of crop insurance programs to perform as expected. Several authors have

suggested that this failure is primarily due to problems of moral hazard, adverse selection,

and systemic risks. Moral hazard occurs when a farmer buys insurance and then alters

production practices to increase the likelihood of receiving an indemnity. Adverse

selection arises when potential buyers of insurance are better informed about their

potential magnitude of loss and/or probability of loss than the insurer. This leads to

purchase of insurance mainly by high risk farmers who have the greatest chance of

receiving indemnities. In the long run, this may lead to insurance claims exceeding

premium revenue, and hence failure of the insurance market. Finally, systemic risks exist

when many of the insured farmers suffer losses at the same time, leading to failure of risk

pooling. In essence, moral hazard and adverse selection effects are manifestations of

market failure due to asymmetric information, while systemic risk problems tend to be

associated with natural catastrophes, such as drought or floods.

Many studies have addressed asymmetric information problems within crop

insurance. Examples include Skees and Reed (1986) who examined adverse selection
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problems with the Federal Crop Insurance (FCI) program of the mid-nineteen eighties.

Using both theoretical and empirical analysis, they showed that the FCI procedure for

establishing premium rates and yield guarantees under the Actual Production History

(APH) program was vulnerable to adverse selection problems. Further, they showed that

yield discounts were required to provide incentives to farmers with higher expected yields

who would, in turn, pay lower premia in order to avoid crowding out lower-risk farmers

from the insurance market. This finding was consistent with measures already put in

place by the FCI to deal with low participation rates. The theoretical underpinning of their

finding, and their suggested remedy for adverse selection problems, is now well known

following the work of Rothschild and Stiglitz (1976) on the economics of imperfect

information. Rothschild and Stiglitz developed an insurance design that offers alternative

contracts based on the risk types of those purchasing insurance. Risk premia and coverage

would be set such that high-risk farmers and low-risk farmers would voluntarily choose

the contracts designed for them. Rothschild and Stiglitz showed that if the insurance

markets are competitive, then an equilibrium can be reached under this ‘self-selection’

scheme.

Coble et al. (1997) empirically investigate moral hazard effects on MPCI

indemnities using data from wheat farms in Kansas. They found that moral hazard had a

significant effect on expected indemnities, but only in years of poor production. In years

with favorable growing conditions, there was no effect. To mitigate these problems in

crop insurance markets, Miranda (1991) advocated the use of area-yields instead of a

farmer’s individual yield to calculate indemnities and premia.l Under the area yield

 

' As stated by Miranda, the idea of area-yield insurance design was first proposed by

Halcrow (Miranda, 1991 p.234).
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scheme, moral hazard is eliminated because the farmer cannot alter the likelihood of

receiving an indemnity based on area yields. Adverse selection problems are also reduced

because information regarding area yield distributions is more generally available to

insurers than information about individual yield. Miranda developed a theoretical

framework for the proposed area yield insurance design and applied it to a sample of

soybean growers from western Kentucky. He concluded that“... for most producers, area

yield insurance would provide better overall yield risk protection than individual yield

insurance” (p. 242).

Several studies since then have been devoted to finding optimal as well as

operational contract designs for area-yield insurance (e.g. Skees et al., 1997; Mahul,

1999; and Vercammen, 2000). Skees et a1. provide a detailed description of the Group

Risk Plan (GRP) which is an example of an area yield insurance product offered by the

Federal Crop Insurance Corporation (FCIC). They worked in collaboration with FCIC

personnel to develop practical methods of setting premium rates, choosing coverage

areas, forecasting yields, and so on, for the GRP. They emphasized that a key requirement

for the area yield insurance scheme to be successful is the existence of systemic risk.

Systemic risk refers to the portion of individual farm risk that is perfectly correlated with

the area yield, while nonsystemic risk refers to the component that is uncorrelated with

the area yield. It follows then that the higher the systemic risk, the greater the risk

reduction that the farmer can get under the area yield insurance contract (Miranda, 1991,

Proposition 3).

Mahul (1999) derived a closed form optimal area yield insurance contract using an

expected utility model. Further, he applied the model to the sample of soybean farmers

used by Miranda (1991) to obtain an “ideal” contract. His model is similar to that used by
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Miranda except that Miranda used a mean-variance framework. Mahul’s main finding

was that the optimal coverage level equals the ratio of the covariance of the farmer’s yield

and area yield to the variance of the area yield. As pointed out by Mahul, this ratio is the

well known beta in the Capital Asset Pricing Model (CAPM), and measures the

sensitivity of farm yield to movements in area yield. This finding is consistent with the

point made by Skees et al. (1997) concerning the importance of systemic risk when

implementing the area yield insurance scheme.

Vercammen (2000) extends the analysis of Mahul and derives an optimal area

yield insurance contract in which the farmer’s desired area yield trigger level is higher

than the maximum value allowed by the insurer. He finds that the optimal contract is such

that a lump sum payment be made whenever this constraint is binding, i. e. the

indemnification schedule is discontinuous. He recognizes the practical difficulties of

implementing such a contract and proposes a non-linear indemnity schedule that mimics

the lump sum payment feature of the optimal contract. He uses graphical analysis to

illustrate that the proposed non-linear indemnity scheme is more efficient than an

optimized standard contract, such as the one developed by Mahul. The magnitude ofthe

efficiency gains or the feasibility of implementing the proposal for using a non-linear

indemnity schedule are not addressed in the study.

So far the discussion has focused on area yield insurance only in the context of

being a solution to moral hazard and adverse selection problems. In this regard, the

importance of having systemic risk for this kind of insurance scheme to succeed has been

stressed. However, systemic risks pose serious problems for risk pooling and could be a

serious challenge for the insurance market. This is because insurance companies may not

be able to diversify systemic risks if relatively large areas are ‘homogenous’ with respect
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to systemic risk. A good example of such a problem is when there is a natural disaster

such as drought or flood. In such cases, yield losses can be huge and spread over large

areas and indemnities may bankrupt the insurance fund. This type of systemic risk

resulting from natural disasters is sometimes referred to as ‘catastrophic risk’.

Various studies have looked at the problems catastrophic risks pose for insurance

markets (e.g., Miranda and Glauber, 1997; Duncan and Myers, 2000). Miranda and

Glauber define a measure for systemic (catastrophic) risk as a ratio of the coefficient of

variation of total indemnities paid to the coefficient of variation of total indemnities that

would be paid if indemnity payments were independent. Further, they use a simulation

model to estimate these ratios for the largest ten U.S. insurers. They found that US. crop

insurers face portfolio risks that were 22 to 49 times lager than they would be if

indemnity payments were independent. Therefore, they concluded that systemic risks

faced by crop insurance agencies were substantial compared to those faced by other

insurance agencies such as, auto, homeowners, and workers’ compensation, among

others. To deal with the problem of catastrophic risks these authors suggest use of

reinsurance.

Duncan and Myers (2000) develop an insurance market equilibrium model and

use it to show that reinsurance does not, in general, facilitate an equilibrium if the cause

of private insurance market failure is catastrophic risk. However, they show that if an

equilibrium already exists, then reinsurance will enhance both farmer and insurer

participation. Further, they show that a reinsurance subsidy helps facilitate an equilibrium

by expanding the opportunity set of available equilibria. The implication of this result is

that subsidized reinsurance may be necessary to encourage the establishment of a crop

insurance market if it is missing because of catastrophic risks.
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The general consensus across many of the studies that have focused on

catastrophic risk is that failure of (private) crop insurance markets can be due to systemic

risks in addition to asymmetric information problems. Ideally, these problems could be

addressed thrbugh a reinsurance scheme for primary crop insurers. In practice, however,

there has been no substantial development of private crop reinsurance markets. This is

perhaps because reinsurance companies are required to hold relatively large financial

reserves to cover losses whenever they occur. However, as stated by Duncan and Myers

(2000), there are few (tax) incentives for holding such large reserves, and doing so may

expose the concerned companies to risk of hostile takeovers. Indeed, as some authors

have concluded, private reinsurance by itself may be inadequate to encourage primary

crop insurers to cover catastrophic risks (e.g. Skees and Barnett, 1999; and Duncan and

Myers, 2000). Therefore, some level of government support, in the form of subsidization

in the reinsurance market may be necessary. Other strategies have also been proposed

including the use of derivative securities (e.g. catastrophe-linked bonds), options based on

catastrophes, and weather derivatives in conjunction with reinsurance. Work in this area

is still on-going (see for example Mahul, 2001a, 2001b; Miranda and Vedenov, 2001; and

Turvey, 2001).

A recent development in the agricultural insurance market is the availability of a

revenue insurance program known as Income Protection. This program was first

introduced in 1995 in Iowa and Nebraska and has since been made available to other

regions (Hennessy et al., 1997). The generic form of a revenue insurance contract

provides indemnities as the max(0, k - y) where k is a constant guaranteed revenue floor

and y is realized revenue (Gray et al., 1995; Hennessy et al., 1997). Thus, revenue

insurance guarantees a certain level of revenue. All other things being equal, revenue
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insurance can be used for protection from declines in both crop yields and prices. But

couldn’t farmers have protected their income from falling below a given level by using a

portfolio of futures contracts and existing yield insurance instruments? Some authors

have attempted to address this question by analyzing the farmers’ risk management in a

portfolio setting.

Coble et al. (2000) use a combination of analytical and numerical techniques to

evaluate the relationship between alternative insurance designs and hedging. Revenue

insurance is found to lower hedging demand compared to a similar level of yield

insurance. This suggests that revenue insurance may indeed be partially replicated by a

portfolio of yield insurance with futures contracts. Wang et al. (1998) use a two-period

model to explore the impacts of alternative designs ofyield insurance contracts on the

choice of a risk management portfolio for a representative corn farmer using numerical

solution techniques. They found that the performance of individual yield insurance was

relatively more sensitive than area yield insurance when considered in a portfolio setting

with futures and options. However, they did not explore use of revenue insurance in that

study. In a subsequent study, Wang et al. (2000) attempt to answer the question of

whether revenue insurance can substitute for price and yield risk management

instruments. They explore the use of various portfolios under a variety of design

specifications using a combination of numerical simulation and optimization methods to

solve their model. Revenue insurance is found to outperform a combination of futures and

yield insurance only ifreplacement pricing is used in the design. When replacement

pricing is used, the price guarantee is given as pg=max@p,p,,) where pp andph are the pre-

planting and harvest time futures prices, respectively. Hence, the indemnity schedule

under the replacement pricing scheme is given as maxaypphimaxflng - Q»), 0)} where b,
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Q3, and Q, represent coverage level, yield guarantee and the farmer’s actual yield at

harvest time, respectively. This implies that if the farmer has a yield shortfall and the

harvest time futures price exceeds the pre-planting futures price, then replacement pricing

will lead to a higher indemnity payment than would be received without it. Wang et al.

(2000) found that without replacement pricing yield insurance outperforms revenue

insurance regardless of whether futures are used or not.

Clearly, the literature on yield and revenue insurance is limited both in the number

of studies that have considered these instruments within a portfolio setting, and in the

extent to which available studies have addressed this issue. In particular, all the studies

cited above have only looked at the problem within a static framework. Static models

implicitly assume that credit markets are complete and therefore, farmers wishing to

borrow and save at the going interest rate will be able to do so. However, evidence from

the consumption smoothing literature suggests otherwise. Some households face

borrowing constraints which in turn constrain their liquidity with implications for optimal

consumption. In the presence of liquidity constraints, consumption is highly correlated

with current income. Therefore, it is logical to expect that liquidity constraints affect

insurance decisions. This interaction between insurance, consumption, and liquidity

constraints cannot be studied using static models. It can only be studied within a dynamic

framework. However, previous studies have paid little attention to dynamics.

Atwood et al. (1996) is one of the few studies to examine the use of insurance

instruments in a dynamic framework. They analyzed the impact of federal price support

programs and crop insurance on profitability, financial survival rates, and capital structure

for wheat farmers in Montana. Their findings showed that a farmer’s first response to risk

is the restriction ofhow much debt to use. They also showed that availability ofprice
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supports and crop insurance allowed farmers to service higher levels of debt and also that

price supports and insurance were themselves substitute risk management instruments.

Revenue insurance and hedging decisions were not considered in their study.

Although not directly related to crop insurance, there is an important study by

Gollier (2003) which examines insurance demand in a dynamic framework. He develops

a dynamic model and uses it to investigate the impact ofprecautionary savings on

consumption insurance demand. He considers the case of a consumer who receives a

constant flow of income but faces a 10% chance of losing 75% of that income each year.

The consumer can manage the risk of income loss through savings and/or through formal

insurance subject to a positive net wealth constraint (liquidity constraint) each period.

Gollier solves the model numerically to determine the optimal deductible for the

consumer as a function of wealth available at the beginning of the period. He concluded

that accumulation of wealth induces consumers to significantly reduce their demand for

insurance relative to what classical static insurance models suggest. The implication of

this result is that consumers with large wealth may not insure at all.

The current study contributes to this literature by exploring optimal revenue

insurance decisions in a dynamic framework when the farmer can also borrow and lend

subject to a credit constraint. Based on the well known results from dynamic hedging

models, one can surmise that analyzing revenue insurance in a dynamic setting can

potentially shed new insights on farmers’ inter-temporal revenue risk management

behavior. The approach here differs from that of Gollier (2003) in several respects. In this

study the optimal insurance coverage is calculated directly while Gollier (2003) solves for

optimal deductible. In addition, the model here is calibrated to the agricultural insurance

market while Gollier (2003) examines insurance demand only in a stylized fashion. Also,
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the impact of basis risk on insurance demand is examined in this study but not by Gollier

(2003)

2.4. Summary

Revenue risk is by far the most important type of risk faced by crop farmers as

both yields and prices are uncertain at planting time. Risk averse farmers are concerned

with fluctuations in their revenue streams. Faced by the need to smooth their consumption

over time, they usually take actions to mitigate the consequences of the risky decisions

they have to make.

Historically, crop farmers have used various risk management strategies, such as

enterprise diversification, contracting, vertical integration, hedging in futures markets,

futures option contracts, storage, and crop yield insurance. More recently, direct revenue

insurance has become available to many farmers. The existing literature has dealt with

many of the issues related to the use of the traditional instruments in managing price and

yield risk.

This study takes explicit account ofthe joint interaction between farmer insurance

decisions and their borrowing and saving decisions. Hence, the first objective ofthis

review was to examine the relationship between consumption smoothing and insurance.

The interaction between consumption smoothing and risk management has been

extensively covered, especially, in the development literature. Three conclusions emerged

from this literature, which was reviewed in the first part of the chapter. First, there is

empirical evidence that households in developing countries use several strategies to

smooth consumption including off-farm employment, use of risk-decreasing inputs,

informal credit and insurance arrangements, and livestock holdings. Second, because
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credit and insurance markets are missing, imperfect, or simply inaccessible, farmers in

these countries use a variety of non-market risk sharing and credit provision arrangements

such as, informal credit, rotating savings and credit associations, and extended family

networks. Third, the interaction between consumption smoothing and (formal) crop

insurance is not covered in that literature, perhaps because of lack of crop insurance

markets in developing countries.

Next, associated literature was examined in a developed country setting where

complete credit and insurance markets are usually assumed to exist. There are two main

findings. First, there is empirical evidence that in general US. households smooth

consumption through borrowing and savings. Second, and more important, some

households face borrowing constraints which limit their ability to smooth consumption at

desired levels. This evidence points to a possible relationship between borrowing and

insurance decisions. Since borrowing constraints affect consumption decisions they

should also affect crop insurance decisions. This interaction between borrowing

constraints, consumption smoothing, and insurance has not been comprehensively

addressed in the literature. The purpose of this study is to address this gap in the

literature.

The second and final objective of this review was to provide a discussion of yield

and revenue insurance so as to clarify the contribution of this study to the broader crop

insurance literature. Selected studies on yield and revenue insurance were reviewed

covering the conceptual, analytical, and empirical issues of contract design, premium rate

setting, and crop insurance market problems. The relevant finding is that both yield and

revenue insurance have primarily been studied using static models. Analyzing revenue

insurance in a dynamic setting can potentially shed new insights into farmers’ inter-
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temporal risk management behavior. Hence, this study will also contribute to existing

literature by examining the use of revenue insurance within a dynamic framework while

allowing crop farmers to smooth their consumption through savings and borrowing

subject to borrowing constraints.
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CHAPTER THREE

A CONCEPTUAL DYNAMIC MODEL OF AGRICULTURAL

INSURANCE AND CREDIT

3.1 Introduction

In this chapter several needs are addressed. First, a general discussion of the

dynamic programming approach used in this study is provided. Next, a conceptual

dynamic model for analyzing revenue insurance choice for a risk-averse crop farmer is

developed. Specifically, a consumption smoothing model is used to examine the effect of

credit and liquidity constraints on optimal insurance choice. Finally, analytical results on

optimal insurance choice are provided using the model. These results are derived under

varying assumptions concerning the existence of a liquidity constraint and actuarial

fairness of the insurance premium. The model provides some interesting theoretical

insights as well as providing a foundation for the numerical analysis which follows later

in the dissertation. The rest of the chapter is organized as follows. Dynamic programming

is described next in Section 3.2. The conceptual model is laid out in Section 3.3. The

theoretical results on insurance choice with no liquidity constraint are provided in Section

3.4 and insurance choice with a liquidity constraint in Section 3.5. Lastly, a summary of

the chapter is provided in Section 3.6.
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3.2 Dynamic programming

In this section a description of the dynamic programming method using a generic

problem is provided as a preamble to the specific stochastic dynamic model used in this

study. The dynamic programming method was developed by Richard Bellman and others

during the 19505. The main principles can be illustrated as follows. Consider a state of

nature being observed over a given time horizon that has been divided into periods. In

each period, the state of nature is observed and a decision is made. The decision

influences the state to be observed next period and, depending on the current state and

decision made, an immediate reward is gained. The expected sum of rewards from the

current period to the end of the planning horizon given that optimal decisions are made is

represented by a valuefunction. The value function in the current period and the one next

period are related through afunctional equation often known as Bellman’s equation.

Starting from the last period, the functional equation is maximized step-by-step

backwards to the current period to get optimal decision rules that depend on the period

and the current state of nature. In other words, an optimal policy function is obtained for

each period. This method of determining the optimal policy function is based on

Bellman’s principle of optimality which states that “an optimal policy has the property

that whatever the initial state and initial decision are, the remaining decisions must

constitute an optimal policy with regard to the state resulting from the first decision” (p.

83). Thus, as time advances, there is no incentive to depart from the original plan.

A generic dynamic optimization problem can be characterized by Bellman ’s

equation as follows.
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(3.1) V,(s,) = max[f,(s,,x,)+ E,V,+1(S,+1)] ; O s t s T

x:

5"" 51+] = gt(5t»xt’5t+1)

St and VT+I (ST+I) given.

Here, {V} 5:}, is a sequence of valuefunctions representing the optimized values of the

state at time t; s, is a vector of state variables that define the decision environment at time

t but are not under the direct control of the decision maker at that time; x, is a vector of

decision variables chosen at time t under the direct control of the decision maker at that

time; S,+ , = g, (s, x,, 8,, ,), is a vector of transition equations that link the state and

control vectors, and describe the evolution of the state vector through time; j; (S, x) is a

vector of returnfunctions and represent the immediate reward in period t, given the state

vector s, and the control vector x,; and 8,, , is a vector ofrandom shocks which introduce

uncertainty into the future path of state variables because future realizations of the

process are uncertain at time t when the current control variables must be chosen. The

additive form of the functional equation implies that V,(.) is a linear function of a

sequence of return fimctions over the time horizon of the optimization problem.

The probability density function of the state variable is usually represented by a

discrete-time transition probability matrix that maps the stochastic state variables from

one decision period to the next. For illustrative purposes, assume two states of nature {S1:

5;}. The elements in the transition probability matrix, II, mapping the states at t to the

states at H] are given by

31



(3.2) H

II

r
'
fi

3
3

N
~

§
§

;
_
_
I

where 71'”- gives the probability that state i at t will be followed by statej at t+1 and

therefore the row elements in 17 sum to one. As an example, the second element in the

first row is defined as:

(3.3) 7:2, = Prob(s,,, = szl s, = s,).

For finite horizon problems, the optimal policy fimction is found by iterating on

Bellman’s equation starting at the terminal period and moving backwards recursively

through time. In practice, a computer algorithm is often used for this purpose.

However, when the horizon is infinite, i.e., T —. co, one cannot proceed with the

backward iteration algorithm to solve the problem because there is no last period in which

to start. The dynamic programming problem, conditional on the initial conditions, is the

same at each point in time since there is always an infinite number of periods left to go. If

the discount factor for future rewards is less than one and, if the return and transition

equations are time invariant, then the value function will also be time invariant and is

denoted as V(s,) with the time subscript dropped. Solutions to this class of infinite

horizon problems will also be time-invariant policy functions. In practice, a solution

algorithm for the infinite horizon problem is based on one of two basic methods: value

function iteration or policyfunction iteration (Kennedy, 1986; Miranda and Fackler,

2002). Iteration based on these methods entails starting with an initial guess of the value

function (which can be a vector of zeros) or policy function, respectively, and then

iterating on Bellman’s equation repeatedly, using updated value or policy fimctions, until

some convergence criterion is reached.
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For some non-stochastic problems, closed form solutions can be found using

analytical techniques. However, closed form solutions are more difficult to find for many

stochastic dynamic problems. Therefore, numerical dynamic programming (DP)

algorithms have to be used. The main advantage of numerical DP techniques is that they

provide flexibility which permits the resolution of inter-temporal optimization problems

even when the functions embedded in Bellman’s equation are not continuous and

differentiable, or the underlying variables are stochastic. Unfortunately, because the

recursive problem must be solved for all possible values of the state variables, the main

disadvantage of the numerical approach is that the size of the model increases

exponentially as the number of state and decision variables increases. This is what

Bellman termed the curse ofdimensionality and is often cited as the reason for the low

adoption of this apparently appealing stochastic optimization technique.

In the section that follows, focus is on developing the conceptual model used in

this study. In addition, analytical results on optimal insurance choice are provided under a

variety of assumptions, leaving numerical analysis to be the focus of later chapters.

3.3 Conceptual Dynamic Model

The interaction between credit, insurance, and liquidity constraints is explored

using a simple dynamic model. Consider a farmer who lives for an infinite number of

periods (or cares about his/her heirs) and maximizes expected utility of lifetime

consumption assuming a standard, discounted, time additive utility specification:2

(D

E0 2 fltU(ct ) where E, is expectation conditional on information available at the

t= 0
 

2 The assumption of infinite life is made for convenience only. Virtually identical

results can be obtained if a finite lifetime is assumed, either with or without a bequest

motive.

33



beginning of period t; ,B is a discount factor representing the farmer’s rate oftime

preference in consumption; U(.) is a concave, differentiable, and strictly increasing utility

function; and c, is period t consumption.

At the end of each period (harvest time), the farmer receives realized crop

revenue, y,, which, as of the beginning of the period (planting time), is an identically and

independently distributed (iid) random variable with a cumulative distribution function

F(() =Prob[y, 5 4‘] defined over the support [a, b] so that F(a)=0 and F(b)=1 .3 The

farmer can take out insurance at the beginning of each period to insure against revenue

shortfalls which, may occur at the end of the period. To accomplish this, the farmer

chooses a coverage level, k,, and pays a premium, P(k,), at the beginning of the period in

order to receive an indemnity, max(0, k, - y), which is not paid until the end ofthe period,

when crop revenue is realized. The current period’s consumption, c,, is also chosen at the

beginning of the period. Also, at the beginning of the period, the farmer incurs production

costs, x,, which are known with certainty at that time. Next period’s production costs,

however, are uncertain and are assumed to be iid with a cumulative distribution function

Z(O =Prob[x,,, s 4"] defined over the support [c, d] so that Z(c)=0 and Z(d)=1. All

production costs, consumption, and insurance premium expenditures are paid out of

wealth, w,, available at the beginning of the period. Any wealth not used to finance

consumption, production costs, or the insurance premium can be invested at the risk fi'ee

interest rate, r.

 

3 The iid assumption can be generalized to a Markov process without changing the

main results and implications, but this generalization complicates the theoretical

exposition greatly, and also increases the state space making numerical solution more

difficult.
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Intuitively, wealth in the model represents the farmer’s aggregate net worth while

the risk free interest rate is a weighted average return on any wealth invested. Hence, the

model assumes that there is only one store of wealth and that is (implicitly) a risk-free

bond that can be traded long or short (i.e. the farmer can borrow or lend at the risk-free

rate) with no other productive assets. Further, the model considers the farmer’s insurance

problem on a per acre basis and therefore, there is no provision for growth through

purchase of more land. In reality, a farmer can have, say, 500 acres and choose to insure

only a fraction of this acreage. Such flexibility is not provided for in the model. The

model is a simplified representation of the farmer’s problem which can be used to gain

insights on the joint interaction between insurance and borrowing and saving decisions.

Also, it is assumed that the farmer does not buy any other productive assets such as

corporate bonds, or livestock, etc., because these are not necessary for studying the issues

investigated in this study. Finally, it is assumed that there are no other government

programs and that all revenue is insurable with no uninsurable risk.

With these assumptions, the transition equation for wealth is given by:

(3-4) Wt+1 = (1+ r)[Wt - xt ' Ct — P(k,)]+ max(kt,yt)-

To this point no constraint has been imposed on w, so that borrowing (w,<0) as

well as lending (w,> 0) are both allowed. In some cases, a liquidity constraint is imposed:

(3.5) wt —xt—ct—P(kt)2 m

where m is the minimum net wealth position that is allowed at any period, t. Clearly, this

constraint restricts the amount of borrowing that can be undertaken to finance current

consumption, production costs, and insurance premium payments. Deaton (1991) has

argued that such liquidity constraints are a pervasive feature of reality in both developing
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and developed economies, and can go a long way towards explaining observed

correlations between income and consumption, which are much higher than would be

predicted by models without liquidity constraints (Pissarides, 1978; Flavin, 1985; Zeldes,

1989; Jappelli, 1990; Chah et al., 1995). If such liquidity constraints exist because

creditors are unwilling to finance current consumption due to unknown or uncertain

future repayment ability, then a risky activity such as agriculture is likely to face even

higher liquidity constraints than the rest of the economy.

The farmer’s optimal choice of insurance will depend on the nature of the

premium schedule, P(k,). Here, the premium schedule is assumed to be given by:

(3.6) P(k,) = (1+ a)(1 + r)—1Emax(0,kt — y,)

where a is the premium loading factor and E is expectation conditional on information

available at the beginning of the period“. If a=0, then the premium is actuarially fair

because it equals the discounted expected indemnity payment. If a>0, then there is an

additional loading factor to cover insurer costs and provide insurer profit. If a<0, then the

insurance is being subsidized. Changes in the loading factor, a, will be examined to

investigate how this alters the incentive to insure.5

 

4 In some of the crop insurance literature the premium loading factor is referred to

as a ‘wedge’ on the premium.

5 Because the purpose of this study is to examine the role of consumption

smoothing and liquidity constraints on insurance choice, rather than informational

asymmetries per se, no explicit allowances are made for moral hazard and adverse

selection in the insurance premium schedule (3.6). Note, however, that the equilibrium

effects of moral hazard and adverse selection could be included implicitly in the loading

factor, a. That is, it could be argued that the equilibrium effect of moral hazard and

adverse selection might just be to raise a above what it would otherwise be for this

particular farmer.
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The farmer’s problem is to choose a set of contingency plans for consumption and

insurance coverage that satisfy Bellman’sfunctional equation:

(3.7) vrwt) = 3%{Urcu + flEtV(Wt+I)}

as well as the transition equation (3.4), the liquidity constraint (3.5), the insurance

premium schedule (3.6), and the transversality condition,

(3.8) tin: fl’w, = 0 ; which rules out perpetual borrowing.

Sufficient conditions for solving this problem are satisfied immediately by the

concavity ofthe utility firnction, U(.). The first order conditions for solving Bellman’s

equation (3.7) subject to (3 .4) and (3.5) are:

(3-9) U'(Ct)-fl(1+r)EtU'(Ct+1)-4t=0 ;and

(3.10) G(k,)= 0;

where 2,20 is the Lagrange multiplier on the liquidity constraint,

00%) =,-(1 + a)F(kt)[/It(1 + r)_1 + flEtU'(Ct+I)]+ NZ," U'(¢t+1)dF(Yt) , and the

fact that v'(wt ) = U'(ct ) (from the envelope theorem) has been used as well as

P'U‘t) = (1 + a )(1 + rf I F(k, ) [from differentiating the premium function (3.6)].

These first order conditions are the necessary conditions which characterize a solution to

the problem and are used in the proofs below. In general, solutions to such problems take

the form of a set of contingency plans 0, = c(w,) and k, = [c(w,) which, together with an

initial value for wealth wo, the transition equation (3.4), and a set of realizations for the

random crop revenues (y, )3: 0 , and production costs {x, )f‘; 1 , determine the entire future

path of consumption, insurance, and wealth (Sargent, 1987; Deaton, 1991).

Next, the effects of consumption smoothing and liquidity constraints are studied

by examining optimal insurance choice in the dynamic model, both with and without

liquidity constraints.
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3.4 Insurance Choice with No Liquidity Constraint

With no liquidity constraints one might expect the farmer to use the credit market

to smooth consumption and the insurance market to manage revenue risk. This intuition

is confirmed in the following proposition.

Proposition 1: With no liquidity constraint, then a farmer faced with actuarially fair

Proof:

insurance (a=0) will choose full insurance coverage (k, = b).

With no liquidity constraint, then k,=0 V t and with actuarially fair

insurance, a=0. The proposed solution for this case is full insurance, k, =

b. With full insurance, then realized revenue plus indemnities are

guaranteed to sum to b every period, so there is no remaining risk. With

these substitutions, G(k,) in (3.10) becomes:

(3.11) Gar.) = —flF(kt)EtU'(c.+1) + rift U'rct+1)dF(yt).

But because 6,, , is non-stochastic under full insurance, then

E.U’(c,+1)=U’(C,+l) and I}? U'(0t+1)dF(yt) = U’(6t+1)F(kt).

With these substitutions, G(k,)=0 is immediate, which shows that full

insurance is optimal for any strictly concave utility function under the

conditions of the proposition.

This is the familiar result from static insurance theory that risk averse agents

facing actuarially fair premiums will take full insurance coverage (Arrow, 1963;

Hofflander et al., 1971; Doherty, 1975). Here it is shown that this result also holds in a

dynamic model with consumption smoothing, as long as the insured can lend and borrow

freely at the same interest rate.
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If the insurance is not actuarially fair, one might expect increases in the loading

factor, a, to lead to lower coverage levels. This intuition is also confirmed in the

following proposition.

Proposition 2: With no liquidity constraint, an increase in the loading factor, a, above

zero will reduce the optimal insurance coverage level below b, so that full

coverage is no longer optimal.

Proof: With no liquidity constraint, then it,=0 V t and with a positive loading

factor, a>0. Evaluating the derivative function G(k,) in (3.10) under these

conditions and, at the full coverage outcome, k, = b, gives:

(3.12) Gael) = —(1 + a)flF(kt)EiU'(ct+1) + .6151 U'rct+1)dF(yt).

But because c,+ , is non-stochastic at the full coverage outcome, then

E.U'(c..,)=U'(c,.,) and if," U'(Cr+1)dF(yt) = U'(ct+1)F(kt)- Making

these substitutions in (3.12) gives:

(3-13) G(kt)= -aflF(kt)U'(Ct+1)< 0-

Because this derivative is unambiguously negative for all consumption

choices, and the utility function is strictly concave, k, must be reduced

below the full coverage level in order to satisfy the first order conditions

and make the choice of coverage level optimal. Therefore, as the loading

factor, a, is raised above the actuarially fair level, a=0, then the optimal

coverage level falls below full coverage, b.

This is consistent with another standard result from static insurance theory that

optimal coverage decreases with increases in the loading factor (Hofflander et al., 1971;
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Doherty, 1975). Here, it is shown that a similar result holds in a dynamic model with

consumption smoothing and no liquidity constraint.

These results have shown (not surprisingly) that in a dynamic model with no

liquidity constraints, insurance choices are not influenced by the desire to smooth

consumption, as long as complete and well-functioning credit markets exist that permit

efficient consumption smoothing to take place.

3.5 Insurance Choice with a Liquidity Constraint

With a liquidity constraint one might expect the farmer to use insurance to help

smooth consumption, as well as to manage risk. This intuition is confirmed in the

following proposition.

Proposition 3: With a binding liquidity constraint, a farmer faced with actuarially fair

insurance (a=0) will choose less than full insurance coverage (k, < b).

Proof: With a binding liquidity constraint, then l,>0 V t and with actuarially fair

insurance, a=0. Evaluating the derivative G(k) in (3.10) under these

conditions and at the full coverage outcome, k,=b, gives:

(3-14) GHQ) = -F(kz)[lt(1+ ff] + flEtU'(Ct+1)]+ fllg’ U'(Ct+1)dF(yz).

But because c,,, is non-stochastic at the full coverage outcome, then G(k,)

can be written as:

(3.15) G(k,): _F(k,)/I,(1+r)" < 0 .

Because this derivative is unambiguously negative for all consumption

choices, and the utility function is strictly concave, k, must be reduced
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below the full coverage level in order to satisfy the first order conditions

and make the choice of coverage level optimal. Therefore, even with

actuarially fair insurance, the existence of a binding liquidity constraint

will cause farmers to reduce their coverage below the full insurance level.

This is the main analytical result of the study. It shows that if farmers are faced

with a liquidity constraint, then even if insurance is actuarially fair, they may choose

reduced or even zero coverage, depending on the severity of the constraint and their

attitudes towards risk. With a binding liquidity constraint, the opportunity cost of

insurance, measured in terms of current consumption to be forgone, become too high

causing insurance coverage to be reduced.

3.6 Summary

A conceptual dynamic model is developed for studying the revenue insurance

behavior of a crop farmer whose objective is to maximize the expected utility of lifetime

consumption. The effects of consumption smoothing and liquidity constraints are

investigated by examining optimal insurance choice under a variety of assumptions

concerning the insurance premium schedule. Three theoretical results are obtained and

can be summarized as follows. First, with no liquidity constraint, a risk-averse farmer will

choose full coverage of actuarially fair insurance. Second, with no liquidity constraint a

positive loading on the insurance premium reduces the optimal coverage level below full

coverage. Third, even if insurance is actuarially fair, a binding liquidity constraint reduces

the optimal level coverage below full coverage. This is the main analytical finding of this

study and can be, at least, a partial explanation for why there may be weak participation

in crop insurance programs.
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CHAPTER FOUR

STOCHASTIC DYNAMIC PROGRAMMING MODEL

4.1 Introduction

This chapter describes the numerical stochastic dynamic programming model used

in this study. The data used to calibrate the numerical model are described together with

the other parameters of the model. The solution algorithm and model validation

procedures are also discussed. Finally, several experimental designs for model solutions

are discussed. These characterize the diverse environments under which revenue

insurance is offered to farmers as well as the typical constraints they face.

The numerical model provides explicit optimal insurance decision rules under a

variety of assumptions, which could not have been obtained fi'om the theoretical model.

In particular, the impact of a liquidity constraint, different levels ofpremium loading,

basis risk, and the farmer’s initial level of wealth on insurance choice are all examined.

These results are discussed in Chapter 5. In this chapter focus is on specifying the

variables and parameters of the model.

4.2 The Stochastic Dynamic Programming Model

Closed form solutions to stochastic DP models usually cannot be obtained due to

the complex nature of the models. One method of obtaining explicit results to the

farmer’s optimization problem is via discrete time numerical programming techniques
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(Miranda and Fackler, 2002), which are discussed in this chapter. For convenience

Bellman’s functional equation of the optimization problem is re-stated below:

(4.1)

subject to

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

v(w,) = max{U(C¢)+ IBEtWWHU}

cl’kt

W1+1 = (1+ r)[Wt ' xt ' Ct " P(kt)]+ maxfktJt)

wt—xt-ct—P(kt)2m

P(k,)= (1+a)(1+r)"E,max(0,k, - y,)

lim fltw, = 0

t—->oo

3’} ~f(yt|6t)

37H] ~gfxt+1liit+1)

w,, and x,, given.

As defined earlier, the variables w,, x,, c,, and y, represent wealth, production

costs, consumption, and crop revenue, respectively; v(.) is the current value function, P(k,)

is the insurance premium schedule where, k, is the level of insurance coverage

(guaranteed revenue level); a is the premium loading factor; r is the constant interest rate;

m is the minimum net wealth position allowed under a liquidity constraint; U(.) is a

strictly increasing, differentiable and concave utility fimction; ,B is a discount factor; and
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E, is the expectations operator conditional on information available at t. Current period

crop revenue, y,, and next period’s production costs, x,, ,, are random variables at the

beginning ofperiod t with probability density functionsfand g, conditioned on random

shocks 8, and 17,, ,, respectively. Note that y,, which represents realized crop revenue at the

end of the period (harvest time), is a random variable because it is unknown as of the

' beginning of the period (planting time).

To solve the model the Adaptive Stochastic Dynamic Programming (ASDP)

software developed by Lubow (1994,1995,1997,1999) was used. The ASDP algorithm is

coded in C++ and is fully compatible with the Microsoft visual C++ compiler, which was

used. Even though the ASDP algorithm was developed primarily for solving wildlife and

fisheries management problems, it proVides a generalized, flexible, efficient, and user-

friendly means to define and solve a wide range of stochastic dynamic programming

problems. Other dynamic programming algorithms which can be used to solve such

problems include the GPDP (Kennedy, 1996) and the DDPSOLVE (Miranda and Fackler,

2002) algorithms, among others. The latter two algorithms are coded in BASIC and

MATLAB, respectively. The ASDP was preferred over other algorithms for two main

reasons. First, it has undergone extensive debugging and input validation and, as a result,

has become an efficient dynamic programming algorithm with a user-friendly interface.

Second, and more important, it has several built-in features that greatly reduce
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computation time and computer memory requirements.6 Further discussion of the ASDP

algorithm is deferred until Section 4.4. This is done to facilitate a clearer description of

how the algorithm is implemented with the data used in this study. Therefore, the data is

described first before providing details of the ASDP algorithm.

4.3 Model Calibration and Data

Conceptually, all the state and control variables in the model are continuous

except for insurance coverage which is discrete because farmers can only purchase

coverage in pre-deterrnined proportions of insurable revenue. For convenience, however,

in the dynamic programming model used here a discrete approximation ofthe continuous

state and control spaces is used. Discrete approximation is used for two main reasons.

First, the ASDP algorithm is designed to handle problems with only discrete state and

control variables. Second, the algorithms that can handle problems with continuous states

and continuous controls generally require the value function to have well defined first and

second derivatives with respect to all its arguments (Miranda and Fackler, 2002). Due to

the insurance instrument in the model used here, this differentiability requirement may

not be met.

 

6 Using ASDP we were able to solve a problem with a discrete state and control

variable space size of 35,376 x 2,178 using a Pentium III processor with only 13 GB hard

disk space and 128 MB RAM. On the other hand, the maximum problem size that we

could solve in MATLAB using the DDPSOLVE algorithm was 1,050 X 105 and, this was

only possible when we used a Pentium IV processor with 40 GB hard disk space and 640

MB RAM.

45



This study examines two insurance contract designs which are discussed later in

this chapter. The first design is an individual (farm) revenue insurance scheme while the

second is an area-based insurance scheme. In the former scheme, indemnity payments are

triggered by farm revenue whereas in the latter, they are triggered by county-level

revenue. Therefore, both farm-level and county-level revenues as well as production costs

are required as state variables of the model. Each of these variables is discussed below,

beginning with production costs. Further, because the numerical model is based on a

representative corn farmer in Adair County, South West Iowa (SWIA), the data used

pertains to that region.

4.3.1 Production Costs

Per acre production costs data were obtained from the Economic Research Service

(ERS) database on commodity costs and returns for the period 1975 to 2000

(ERS/USDA, 2002). These data are available at the US Corn Belt region level which

covers the state of Iowa. These are reported only in nominal values and therefore, they

needed to be converted to their 2001 dollar equivalents before they could be used for

estimation. To do so, Consumer Price Index (CPI) conversion factors which are available

for each year (Sahr, 2002)7 were used.

 

7 The CPI conversion factors were obtained from Salrr (2002) who derived them

using data from McCusker, J.J . “How Much is That in Real Money?” Proceedings ofthe

American Antiquarian Society, 2001, Table A.l (cited in Sahr, 2002). Sahr’s derivations

were based on a 2001 CPI of 177.1.
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The CPI measures the average change in prices paid by consumers over time for a

‘typical’ consumption basket of goods and services. In the model, the price of the

farmer’s composite consumption good has been normalized to unity in terms of 2001

dollars. Therefore, the net revenue used to finance consumption also needed to be in 2001

dollars to be consistent with the implied price of the consumption good. This means that

gross revenue and production costs also needed to be deflated because these are the two

components that constitute net revenue. To convert dollars of a given year to 2001 dollars

the dollar amount from that year was divided by the respective conversion factor. Table 1

shows the summary statistics for the nominal and real production costs data. These

statistics show that, between 1975 and 2000, real production costs ranged from $158 to

$267 per acre, with an average of $202 and a standard deviation of $36.

Table 1. Summary statistics for nominal and real production costs ($/acre) for corn

farmers in Adair county for the period 1975 - 2000.

 

 

Costs No. of Obs Mean Std. Dev. Min Max

Nominal 26 126.66 24.44 75.84 161.07

Real 26 202.38 35.66 157.61 266.72
 

Time series econometric procedures were used to get an empirical distribution for

production costs. First, the graph of production costs was examined to investigate

possible trends or patterns. As can be seen from the graph in Figure 1, the nominal costs

data series appears to have an upward trend which, reverses to a downward trend when

these costs are converted to 2001 dollars. No other systematic patterns are observed.
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Figure 1. Graphs ofnominal and real production costs ($/acre) for corn farmers in

Adair County, South West Iowa.

Next, the autocorrelation function (ACF) and partial autocorrelation fimction

(PACF) of the real production cost series were examined for evidence of autocorrelation.

The ACF and PACF plots provide insights as to whether production costs contain an

autoregressive structure or not. In general, most time series data tend to have

autoregressive structures because current and past values are often serially autocorrelated.

If the data series is autoregressive then a model that explicitly takes into account the

nature of the autocorrelation is required. In addition, the ACF and PACF plots also
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provide insights on the nature of the autocorrelation present. Furthermore, they can be

used to infer whether the series is stationary or not. If a series is non-stationary (has a unit

root) the ACF is persistent. That is, shocks to the process have permanent effects and,

standard distribution theory breaks down and the usual hypothesis testing inferences can

no longer be made.

A priori the search for an empirical distribution was restricted only to stationary

processes to facilitate use of the numerical algorithm. This implies that the ‘best’

distribution among a class of alternative stationary distributions was chosen. Hence,

distributions with a time trend were not considered. This restriction is justified here

because this study is based on a theoretical model and is not a practical decision tool.

Nonetheless, an explicit attempt is made to mimic, as much as possible, an empirical

setting in order to get a handle on the potential magnitudes of insurance effects.

An examination of the ACF and PACF plots for the production costs showed that

the ACF declined geometrically while the PACF went to zero after the first lag. This

suggests the series is stationary because there is no persistence in the ACF. A formal test

for the presence of a unit root using the Phillips-Perron test also confirmed that there was

no evidence of a unit root in the series. The ACF and PACF plots also suggest a low

order AR process. However, a formal test for autocorrelation is required. The Ljung-Box

Q-statistic test was used for this purpose and evidence of first order autocorrelation was

found ( p-value = 0.000). This suggests that the data generating process (DGP) for real

production costs is a low order AR process. Based on this conclusion, alternative DGPs

were hypothesized and investigated. The following is a summary of the procedure used
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for the selected DGP. The other candidate models were investigated following similar

procedures.

Letting X, represent period t real production costs X, was regressed on X,_, and a

constant. This implies that the hypothesized DGP for production costs is an AR(1)

process with a constant mean. The results of this regression are reported in Table 2

 

 

below.

Table 2. Regression results of real production costs on its lagged value and a

constant for corn farmers in Adair County for the years 1975 - 2000.

No. of dependent constant parameter R2 F Prob>F

obs variable on )1’,_,

25 X, 15.3369 0.9049 0.9056 220.5293 0.0000

(12.6023) (0.0609)

0.2359 0.0000

Note: Figures in parenthesis are standard errors and below them are t-test p-

values

 

These results show that the coeffrcient ofX,_, is statistically significant (p-

value=0.0000) but the constant term is not significantly different from zero (p-

value=0.2359). This would suggest that production costs have a zero long-run mean.

Intuitively, however, one would expect production costs to always be nonnegative so the

constant term is left in the model. However, it remains important to make sure that there

is no residual autocorrelation left in the error term. In other words, one needs to establish

if all the predictable variability in the production cost series is explained by past values of
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the series.

An examination of the correllogram of the residuals showed that the ACF and

PACF cutoff immediately. This suggests that the residuals are now essentially white

noise. That is, there is no serial autocorrelation in the residuals. Further, a formal test of

first-order autocorrelation using the Ljung-Box Q-statistic confirmed that there was no

evidence of serial autocorrelation in the residuals at the 5% level (AC coefficient =

0.315, p-value = 0.095). Therefore, the model presented in Table 2 was selected as a

reasonable DGP for real production costs.

Following the above results, the transition equation for next period’s production

costs was specified as

(4.8) X,,, =15.3369 + 0.9049X, + 17,,1

where 17,” are iid random shocks with mean zero, standard deviation of 10.3988,

minimum value of -20.6641, and maximum value of 21.7230.8

The transition equation (4.8) implies that the stochastic nature of production costs

is characterized by the random shock, 77,,,. Therefore, a discrete space for 77,, , with

corresponding discrete probabilities is required to account for the randomness in

production costs. The residuals from the regression model in Table 2 were used to define

this (discrete) space as follows.

 

8 These figures are the descriptive statistics of the residuals from the regression

model in Table 2.
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First, the residuals were tested for normality using the D’Agostino-Pearson K2 (K-

squared) statistic (D’Agostino et al. 1990). Under the assumption of normality, the

standardized residuals should have zero skewness and kurtosis of 3. The K-squared test

presents one normality test based on skewness and another based on kurtosis and then

combines the two tests into an overall statistic. The computed values for skewness and

kurtosis for the standardized residuals were -0.171 and 2.646, respectively. Using the K-

squared test the null hypotheses that skewness=0 or that kurtosis=3 or that jointly

skewness=0 and kurtosis=3 could not be rejected because the p-values were 0.678, 0.967

and 0.917, respectively, for these tests. This suggests that the residuals may be taken to

be normally distributed. A caveat about tests for normality, in general, is that they have

low power of rejecting the null hypothesis (of normality) in samples with a small number

of observations. In spite of this caveat, this study assumed the residuals to be normally

distributed as suggested by the test results.

Finally, a discrete distribution for the residuals was specified by dividing the

normal density, N(0,10.39882), into 15 intervals with corresponding probabilities for the

mid-point of each interval. Taking each mid-point of an interval to represent a discrete

state in the 77,, 1 space, this (discrete) space was specified as a vector of possible random

shocks ranging from -$ 20.66 to $ 21.34 per acre with $ 3 increments and a corresponding

vector of discrete probabilities (see Appendix Figure A4a).

The discrete distribution, the transition equation (4.8) and the period zero

production costs, X0, would completely characterize the discrete production costs space

and its corresponding stochastic environment. For the starting value of production costs,

52



the expected long run mean implied by the regression results was used , i. e. X, = $160 per

acre. Essentially any other starting value for production costs will give the same results

but it causes the model to take longer to converge. Starting with the long run mean

facilitates faster convergence. Section 4.4 provides details on how the transition equation,

the starting value for production costs, and the discrete random shocks and corresponding

probabilities were programmed in ASDP. This completes the specification of the discrete

production costs space together with its corresponding stochastic environment. The

county-level revenue distribution is described next.

4.3.2 County Revenue Distribution

As stated earlier, both county-level and farm-level revenue distributions are used

in the model. These are discussed in turn, beginning with county-level revenue. Because

data on direct observation of crop revenues is seldom collected, such data are not readily

available. Therefore, the revenue series was estimated as the product of price and crop

yield data.

County-level yields for Adair County were available for the years 1975 to 2000.

These yields were multiplied by the SWIA cash prices to obtain county-level revenue for

each year. The cash price data used were Thursday prices for cash markets in the

Southwestern Crop Reporting District of Iowa.9 These were averaged for the month of

October to obtain a figure that was considered to be the annual cash price at harvest time.

 

9 I am grateful to the Agricultural Extension Service in the Department of

Economics at Iowa State University for providing me with these data.
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Similar to production costs, the revenue for each year was converted to 2001 dollars using

the CPI conversion factors discussed above. Table 3 shows the summary statistics for

county-level real revenue. These statistics show that, between 1975 and 2000, real

revenues ranged from $210 to $686 per acre, with an average of $378 and a standard

deviation of $13 1.

Table 3. Summary statistics for county-level real revenue ($/acre) for corn farmers

in Adair county for the period 1975 - 2000.

 

No. of Obs Mean Std. Dev. Min Max

Real Revenue 26 378.33 130.69 210.23 686.32

 

 

A priori, it is difficult to form reasonable expectations of what the revenue

distribution would look like. Therefore, the identification process began by examining the

revenue graph looking for possible trends or patterns. As can be seen in Figure 2, real

revenue appears to have a downward trend but no other systematic patterns are evident.

This trend can, in part, be attributed to the conversion of the nominal series to 2001

dollars.
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Figure 2. Graph of gross real revenue ($/acre) for corn farmers in Adair county,

South West Iowa.

Next, the sample autocorrelation functions (ACF) and partial autocorrelation

functions (PACF) were examined for evidence of serial autocorrelation in the revenue

series. The ACF fell from approximately 0.4 to 0.3 after the first lag and remained at that

level until lag 5, after which it cutoff. The PACF, on the other hand, out off after the first

lag. This suggests that the revenue series is possibly a low order AR process. A formal test

for first order serial autocorrelation using the Ljung-Box Q-statistic found evidence of first

order serial autocorrelation in the series with an AC coefficient of 0.421 and p-value of

0.023. In addition, the series was also tested for the presence of a unit root using the

Phillips-Perron test. The null hypothesis of a unit root was rejected implying that the series

is stationary and therefore, the preceding inferences are valid. Similar to production costs,
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alternative models for the real revenue data generating process were hypothesized and

investigated. The selected model was investigated as follows.

Letting y, represent period t revenue, y, was regressed on y,_, and a constant. This

implies that the hypothesized DGP is an AR(1) process with a constant mean. The

estimated parameters were found to be statistically significant with p-values of 0.024 and

0.015, respectively. In addition, there was no evidence of first order serial autocorrelation

(AC coefficient = -0.212, p-value = 0.260). This suggests that real revenue follows a first

order autoregressive process. The regression results of this model are reported in Table 4.

Table 4. Regression results for real revenue on its lagged value and a constant for

corn farmers in Adair County for the years 1975 - 2000.

 

 

No. of dependent constant parameter R2 F Prob>F

obs variable on y,,,

25 y, 198.5919 0.4514 0.2027 5.8467 0.0239

(75.6034) (0.1867)

0.01 5 1 0.0239

Note: Figures in parenthesis are standard errors and below them are t-test p-values

 

Based on these results, the transition equation for next period’s (harvest time)

county-level revenue was specified as

(4.9) y, = 198.5919 + O.4514y,_, + e,
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where 8, are iid random shocks with mean zero, standard deviation of 115.6841, minimum

value of —270.3092, and maximum value of 248.1 534.10 The transition equation (4.9)

implies that the stochastic nature of real revenue is characterized by the random shock, 8,

Hence, a discrete space for 8, with corresponding discrete probabilities needs to be

defined. The residuals from the regression model in Table 4 were used to define this space

as described in the following steps.

First, the residuals were tested for normality using the K-squared test. The null

hypotheses that skewness=0 or that kurtosis=3 or that jointly skewness=0 and kurtosis=3

could not be rejected because the p-values for these tests were 0.627, 0.303 and 0.495,

respectively. This suggests that the residuals may be taken to be normally distributed.

Next, a discrete distribution for the residuals was developed by dividing the

continuous normal density, N(0,115.68412), into 15 intervals with corresponding

probabilities for the mid-point of each interval. Taking each mid-point of an interval to

represent a discrete state in the 8, space, this (discrete) space was specified as a vector of

possible random shocks ranging from -$ 270.31 to $ 247.98 per acre, in $ 37 increments

and a corresponding vector of discrete probabilities (see Appendix Figure A4a). This

probability model, the transition equation (4.9) and the period zero gross revenue, y,,,

completely characterizes the discrete revenue space and its corresponding stochastic

environment (see Section 4.4 for programming details in ASDP). The starting value for the

 

‘0 These figures are the descriptive statistics of the residuals from the regression

model in Table 4.
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county-level revenue, yo, was taken to be the expected long run mean of $362 per acre.

Again, using the long run mean as a starting value is only for numerical convenience in

order to facilitate faster convergence. This completes the discrete state space specification

for county-level revenue. The farm revenue distribution is described next.

4. 3.3 Farm Revenue Distribution

Due to limited farm-level yield data, the farm-level revenue distribution was

estimated by adjusting the county-level values to reflect what revenue would be at the

farm-level. The assumption here is that farm-level revenues would generally be related to

county-level revenue because farmers in a given county face similar technology, weather

conditions, and prices. Consequently, the relationship between county-level and farm-level

revenue was specified as:

(4.10) if. = a0 + only? + u...

where t is a time subscript, i is an individual farm subscript, a0 and a, are parameters to be

estimated using the available farm and county data, u,, is the error term and superscriptsf

and c represent farm and county, respectively.

The available farm-level corn yield data consisted of eight years of Actual

Production History (APH) data for farms in Adair county from 1985 to 1992. The farm

yields were multiplied by the SWIA cash prices to obtain individual farm corn revenue for

each of the eight years. These figures were then converted to 2001 dollars using the
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respective CPI conversion factors. These data were available for 93 farms from the county

and therefore, the data set is a panel of annual farm revenues that spans eight years on 93

farms for 744 total observations. To organize the data for estimation, they were first sorted

by farm number and then by year. Therefore, the first eight rows represented data for farm

one for years 1985 through 1992, the next eight rows represented data for farm two, and so

on. Note, of course, that the county revenue for a given year was the same for all farms.

With the data thus organized, equation (4.10) was estimated using pooled OLS and the

results are presented in Table 5.

 

 

Table 5. Pooled OLS results for farm-level revenue on county-level revenue for

Adair County

No. of dependent a0 a, R2 F Prob > F

farms Variable

93 Yit -35.9214 1.0734 0.3911 1189.41 0.000

(10.5598) (0.0311)

Note: Figures in parenthesis are standard errors

 

Next, the residuals from this regression were tested for normality using the K-

squared test and the null hypotheses that jointly skewness=0 and kurtosis=3 was rejected

(p-value = 0.000). The computed skewness and kurtosis were -0.49 and 4, respectively.

This suggests that the residuals are non-normal, implying that the estimated coefficients

are no longer best linear unbiased estimators. When errors are non-normal, the estimators

are no longer efficient and in small samples, the standard errors will be biased.
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Consequently, they cannot be relied upon for hypothesis testing. The estimated

coefficients, however, are still consistent and that is what is most important for the

purposes of this study. That is, they give consistent estimates of the parameters for

adjusting county-level revenue to farm-level revenue.

Based on these results, the transition equation for next period’s (harvest time)

farm-level revenue was specified as

(4.11) y,’ = -35.9214 + 1.0734yf + u, ,-

where y,f is the estimated harvest time farm-level revenue given a realization of county-

level revenue, yf, which is obtained according to equation (4.9) above, and u, are iid

random shocks with mean zero, standard deviation 74.1979, minimum value of -302.2889

and maximum value of 257.3683.‘l The transition equation (4.11) implies that the

stochastic nature of farm-level revenue is characterized by the random shock, u,, in

addition to 8, (which acts through yf, see equation 4.9 above). Therefore, a discrete space

for u, with corresponding discrete probabilities needs to be defined.

Similar to production costs and county revenue, the residuals from the regression

model in Table 5 were used to define this space. As stated above, the K-squared test for

normality suggests that these residuals are non-normal. Therefore, non-parametric

distributions for the residuals were investigated. Specifically, a non-parametric density was

fitted to the residuals and compared to the corresponding normal density (i.e. assuming the

 

” These figures are the descriptive statistics of the residuals from the regression

model in Table 5.
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residuals were normally distributed). In particular, the Epanechnikov kernel was used to

estimate a kernel density for the residuals (e.g. Wand and Jones, 1995). Figure 3 shows the

kernel density with an overlaid normal density for comparison. The kernel density

estimate suggests that the empirical distribution is somewhat similar to the corresponding

normal density although it appears to be narrower and located more to the left than the

normal density. The figure suggests that the normal distribution may in fact be a

reasonable approximation of the residuals’ distribution despite what the K—squared results

suggested.

To help decide which distribution to use, first, the model was estimated assuming

that the residuals are normally distributed to obtain the optimal insurance decision rules

under this assumption. Second, the model was re-estimated assuming that the probability

density function for the residuals is given by the kernel density. Finally, the results

obtained under these alternative assumptions concerning the distribution of the residuals

were compared. The results were found to be identical. This suggests that either

distribution may be used. The results reported in this study are based on the assumption of

normality of the residuals. This decision was based on the fact that both production costs

and county revenue were found to be normally distributed and, therefore, also assuming

farm revenue to be normally distributed maintains consistency on distributional

assumptions made without loss of accuracy.
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Figure 3. Normal and Kernel density estimates for the residuals from the farm

revenue regression.

To obtain the discrete state space, the residuals were first fitted to a normal density,

N(0,74.19792), to obtain a continuous distribution. Next, a discrete distribution was

developed by dividing the continuous normal density into 12 intervals with corresponding

probabilities for the mid-point of each interval. Taking each mid-point of an interval to

represent a discrete state in the u, space, this (discrete) space was specified as a vector of

possible random shocks ranging from -$ 264.98 to $ 257.36 per acre, in $ 37.31

increments with a corresponding vector of discrete probabilities (see Appendix Figure

A4b). This probability model together with the transition equation (4.11), completes the
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discrete state space specification for farm-level revenue. Note, of course, that the discrete

state specification for county-level revenue is part of this (farm-level revenue) state space

via equation 4.11. Note also that the starting value for farm-level revenue does not need to

be explicitly specified once the starting value for county-level revenue has been specified.

That is, farm-level revenue is treated as an endogenous state variable (see Section 4.4 for

programming details in ASDP).

To this point this chapter has described the specific stochastic dynamic model used

in this study. It has also discussed the way in which the discrete state space for three of the

model’s state variables were specified. Furthermore, because these variables are stochastic,

it also described how their respective random environments (random shocks) were

approximated with specific discrete shocks and probabilities. The next two sections focus

on the other variables and parameters of the model as well as the form ofthe utility

fimction assumed in this study.

4. 3.4 Wealth, Consumption, Insurance Coverage and Premium Specification

In the model, wealth is accumulated according to transition equation 4.2. This

means that the amount of wealth the farmer starts with each period depends on the

preceding period’s production costs, consumption, net savings, insurance premium, and

realized crop revenue as well as any insurance payment received. As discussed earlier in

Chapter three, wealth in the model represents the farmer’s aggregate net worth. Further,

there is only one store of wealth and that is (implicitly) a bond that can be traded long or
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short (i.e. the farmer can borrow or lend at the same rate). Furthermore, there is only one

aggregate consumption good. Also, all revenue is insurable and there are no other

government programs. Consequently, the discrete state space for wealth should reflect

reasonable figures of what the farmer can save, per acre, given his crop revenue and

expenses. Under these assumptions, the wealth space was specified as a vector of possible

wealth states ranging from -$ 1,000 to $ 2,000 per acre, in $20 increments. Each wealth

state is taken to be a mid-point of the continuous wealth interval. These figures provide a

very wide range of initial wealth levels that span reasonable per acre wealth levels that

farmers can have. For example, a farmer with 100 acres and an initial wealth of $100 per

acre would have a total of $10,000 of initial wealth. By the same reasoning, the

consumption space was specified as a vector ofpossible consumption choice levels

ranging from $0 to $2000 per acre, in $20 increments. Similarly, each consumption level

is taken as the mid-point of the continuous consumption interval.

The discrete coverage space for individual farm insurance was specified as a vector

of possible insurance coverage levels ranging from 0 to 0.85 in 0.05 increments”. A

coverage level of 0 means that the farmer does not insure while a level of 0.85 means that

the farmer insures 85% ofexpected revenue. Thus, a coverage level of 0.85 is the upper

limit imposed by the revenue insurance design and, therefore it represents the maximum

allowable insurance coverage. The rationale for placing an upper limit on the insurance

 

'2 This specification pertains to the individual revenue insurance design only. Under

the area-based scheme, up to 90% coverage can be taken and the insured acres can be

scaled by a factor of up to 1.5. Further details on the area-based scheme are provided later

in this chapter.
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design is that the deductible implied by the upper limit will act as an instrument to

mitigate problems of moral hazard. Plus this is how the programs actually work in

practice.

The insurance premium discrete state space was specified as follows. First, the

guaranteed revenue level, k,, was computed as the long-run mean of expected farm-level

revenue”. Given a county-level revenue long-run mean of $362 per acre, the transition

equation for farm-level revenue (4.11), and the distribution of u,, discussed above, k, was

computed to be $353 per acre. That is, yf=$362 was substituted in equation 4.11 and 12

possible farm-level realizations were computed, one for each value of u,. Next, each value

was multiplied by the corresponding probability of u, and then these products were

summed to obtain the expected farm-level revenue. Finally, the insurance premium was

computed based on a k, = $353 per acre. To illustrate how this was done, let y,f represent

each ofthe 12 possible farm revenue realizations and p, represent the corresponding

probability for each realization, where i=1,.., 12 is an index of the elements in the

corresponding vector. In addition, let coverage, be an element in the insurance coverage

space, i. e. coverage=(0, 0. 05,..., 0. 85) implying thatj=1,..., 18. The expected payout for a

given coverage level, coverage,, was computed as

12

(4.12)
2

i=1 pi max(09
ktcoverag

ej -—yf)

 

'3 Note that in the theoretical model presented in Chapter 3 the guaranteed revenue

level is the maximum possible revenue state. In practice, however, it is computed as the

expected farm revenue as done here.
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with k, set to $353 per acre. In the estimation algorithm, equation 4.12 was programmed

so that a premium is computed for each possible coverage level before being used in the

premium schedule in equation (4.4).

As for the insurance premium loading factor, a, several values were used. Starting

with a=0 (no loading on the premium) as a base case representing an actuarially fair

premium, or was set to -10%, -20%, 30%, and 60% to represent scenarios in which there is

a 10% and 20% subsidy as well as a 30% and 60% positive loading on the premium,

respectively.

Note that the way the insurance coverage space has been specified above differs

from the way it was specified in the theoretical model presented in Chapter Three. First,

insurance coverage has been restricted to a maximum of 85% of insurable revenue while

in the theoretical model, the farmer could insure up to 100% of the insurable revenue.

Second, the revenue guarantee is the expected revenue while in the theoretical model it is

the maximum revenue that the farmer can get. That is, according to the theoretical model,

the farmer’s revenue is indemnified whenever realized revenue is less than his/her

potential maximum revenue. In the calibration above, however, indemnification only

occurs when the realized revenue is less than some proportion of expected revenue. As

stated earlier, the insurance coverage space was specified this way to mimic, as much as

possible, the way crop insurance is offered in practice.
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4.3.5 Discount Rate and Utility Function

This study assumes that the farmer’s measure of time preference is constant and is

given by 5 = I/(I +6) where 6 is the discount rate. The discount rate reflects the risk free

rate of return, r, plus a risk premium required by the farmer based on the risk from the

stream of cash flows from his/her farm. This study uses a discount rate of 11.25% based

on an annual risk free rate of return of 5.43% on a 30-year T-bill (Federal Reserve Board,

2004) and, a risk premium of 5.82% based on Hanson’s (1999) estimate of the historical

risk premium for Iowa farmland. The assumption of a constant rate is made for

computational convenience. In reality, one would expect the discount rate to fluctuate over

time. Taking account of a time varying risk free rate and risk premium is difficult to

implement in an infinite horizon model as the one used in this study. To gauge the

consequences of the constant discount rate assumption, sensitivity analysis is conducted to

gain insights on how the main results would change when the discount rate takes on

different values.

The farmer’s utility function was specified as U(C,)=C,(I00/71-y) where y is the

constant coefficient of relative risk aversion. This utility function exhibits decreasing

absolute risk aversion (DARA) which is a desirable property because farmers have

generally been found to have DARA preferences (Chavas and Holt, 1990; Saha et al.,

1994). The specification above requires explicit assumptions concerning the value of the

farmer’s coefficient of relative risk aversion. However, in the existing literature there is

limited empirical evidence on what the value is (Meyer and Meyer, forthcoming), even
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though some studies have found it to be typically above one (Love and Buccola, 1991).

This study sets y=2 based on what previous studies have used (c.g. Wang et al., 2002) and

uses sensitivity analysis to investigate the effect of different levels relative risk aversion on

optimal decisions.

This completes the discussion on model calibration and data. The next two sections

are devoted to how the model was actually operationalized using the ASDP algorithm and

then on model validation.

4.4 Model Implementation using the ASDP Algorithm

The objective of this section is to provide a detailed description ofhow the model

was specified and solved using the ASDP algorithm. Here, all the discrete state and control

variables and model parameters discussed in the preceding sections are put together. Also,

an explanation of how the ASDP utilizes them to provide a solution to the optimization

problem is given.

Use ofthe ASDP algorithm requires four files as inputs. A state dynamicsfunction

file that computes next period’s state variables given current state variables, current

controls and an outcome of the random variables; a stage returnfimctionfile which

computes the immediate reward associated with the state and control variables, and

outcomes of the random variables in each period; a terminal valuefunctionfile that

computes the final reward at the end of the period being modeled; and a scenariofile

which specifies the state and control variables, the distributions of the random variables,
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the discrete state and control variable spaces, and options for execution and for producing

output. The state dynamics, stage return and terminal value function files are computer

programs coded in C++ while the scenario file is not a program and is not coded in C++.

Rather, it is written in what the author terms “scenario definition language” that is specific

to ASDP but is easy to follow. The scenario file contains data to be used by the program

files and is linked to these files via an interface that is in-built in the ASDP program.

The terminal valuefunction in this model is very simple due to the form ofthe

transversality condition (equation 4.5). This function (Appendix, Figure A1) assigns a

value zero to the predefined output variable (“result”) and returns this value. That is, the

limit of the discounted value of wealth as the time horizon approaches infinity is

essentially zero.

The goal ofthe state dynamicsfunction is to compute the value of each state

variable next period (nxt_stage[]). This computation involves use of various combinations

ofpredefined input variables which are specified in the scenario file. In this study, the state

dynamics function (Appendix, Figure A2) uses as inputs current period wealth

(cur_state[0]), current period production costs (cur_state[1]), and current period county-

level revenue (cur_state[2]); decisions for insurance coverage (dec[0]) and consumption

(dec[1]); and outcomes of the random shocks for county-level revenue (outcome[0]),

production costs (outcome[IJ), and farm-level revenue (outcome[Zj). In the top part of the

program, the model parameters are declared and, the farm-level revenue (farm) and

insurance premium (prem) variables are initialized because they are not predefined inputs

to the state dynamics function. Next, two vectors are specified. The first vector (gross[])

69



contains possible harvest time farm revenue realizations given a period zero county-level

revenue of $362 per acre. These were computed using equation (4.11) as explained earlier.

The other vector (prob[]) contains the corresponding probabilities of the revenues in

gross[] being realized.

Given an insurance coverage decision (dec[0]), the vectors gross[] and prob[], the

state dynamics function computes an insurance premium that is later used in the equation

for next period’s wealth (nxt_state[Oj). This computation is based on equation (4.12)

discussed earlier. The code for this computation is shown in the middle part of the

program. The bottom part of the program shows the equations used for computing next

period’s wealth (nxt_state[0]), production costs (nxt_state[lj), farm-level revenue (farm),

and county-level revenue (nxt_state[Zj). Note that these equations correspond to the

transition equations for liquid wealth (4.2), production costs (4.8), farm-level revenue

(4.11), and county-level revenue (4.9), respectively. As stated earlier, farm-level revenue is

treated as an endogenous state variable. It is computed within the program and used in the

computation for next period’s wealth but is not returned by this function as one of the

outputs in the nxt_state[] vector. Treating it as an exogenous variable yields exactly the

same results but has the disadvantage of increasing the size of the state space.

The goal of the stage returnfimction (Appendix, Figure A3) is to compute current

period utility of consumption. The first part of this function is similar to the state dynamics

function except for the risk aversion parameter (risk) and the minimum net wealth variable

(m). This variable (m) is used when imposing the liquidity constraint (equation 4.3). The

function uses as inputs, the consumption decision (dec[lj), current period wealth
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(cur_state[Oj), current period production costs (cur_state[1]), and the insurance premium

(prem) which is computed as in the state dynamics function. The bottom part of the

program provides instructions for computing the utility of consumption and assign this

value to the output variable “result”, which is then returned as the output of this function.

Note that whenever consumption is zero or the liquidity constraint is violated, a large

negative number is assigned to the output variable, “result”. In other words, a penalty is

imposed for zero consumption choice and/or for violating the liquidity constraint when it

is imposed, such that choices associated with these outcomes will never be optimal.

A scenariofile contains input data for the program defined by the three functions

described above. The scenario file (Appendix, Figures A4a & A4b) is organized into a

series of statements each starting with a key word and ending with a semicolon. The file

contains a MAX statement which indicates to ASDP that the objective is to maximize the

optirrral value function. The NO_CHANGE value specifies how many successive

iterations must result in the same set of decisions before a stationary strategy is assumed to

have been found while ALPHA is the discount factor (i. 8. 73:0. 8989).

There are three STATE statements which define the state variables for wealth,

production costs, and county-level revenue, respectively. The DECISION statements serve

a similar function. The DISTRIB statements identify particular discrete probability density

functions and names them (“revenue”, “cost”, and “farm”). These names are later used in

the COMBINE statement to reference the density functions (i.e. “revenue” for county-level

revenue, “cost” for production costs, and “farm” for farm-level revenue). Immediately

following each DISTRIB statement is a RV statement that lists the random variables
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defined by this distribution. Following the RV statements are EVENT statements. Each

EVENT statement is followed by the probability of that event occurring and then the value

that the random variable takes on if the event occurs. In this case, the events represent the

discrete random shocks for county revenue, production costs, and farm revenue,

respectively.

The STAGE statement comes next, followed by state variable increment sizes.

This is followed by a COMBINE statement which specifies the ranges of the state and

decision variables that will be evaluated and the probability distributions that will apply to

the specified combination of the state and decision variables. In the COMBINE statement

in this file, initial wealth states range from -$1000 to 2000, while the initial production

costs and county-level revenue can only take the values, $160 and $362, respectively. Note

that these are the starting values for production costs and county-level revenue,

respectively, which will be passed on to the transition equations in the state dynamics

function file. Next, the ranges ofthe decision variables are specified. Insurance coverage

ranges from 0 to 0.85 in 0.05 increments and consumption ranges from $0 to $2000 in $20

increments. Finally, the distributions of the random variables are specified by referencing

the previously defined distributions.

Given the state dynamics, stage return, and the terminal value function files, and

the scenario file, the ASDP algorithm finds a solution to the optimization problem in the

following steps.

Step 1: Optimal value function is initialized.
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Step 2a:

Step 2b:

Step 3:

Step 4:

This step utilizes the terminal value function file (Appendix, Figure A1).

For every combination of state variables, decision variables, and random

variables, a vector of next period’s (t+1) state variables is computed.

This step utilizes the state dynamics function file (Appendix, Figure A2)

and the scenario file (Appendix, Figures A4a & A4b).

For each of the period t+1 variables computed in step 2a, an associated

(joint) probability is assigned.

This step also utilizes the state dynamics function file (Appendix, Figure

A2) and the scenario file (Appendix, Figures A4a & A4b).

The optimal value function is computed.

This step utilizes the stage return function file (Appendix, Figure A3) and

the results from steps land 2. The set of values of the decision variables

that maximize this function are the optimal decisions given the state

variables at t. These values are stored.

The value function in step 1 is replaced with that computed in step 3 and

the process is repeated until the convergence criterion (specified in the

scenario file) is reached.
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4.5 Model Validation

In this section the numerical model discussed above is validated by numerically

solving the theoretical model in Chapter Three and checking results against those

predicted for the theoretical model. The numerical model is taken to be credible if the

results are consistent with the analytical results. For ease of exposition and clarity, the

model presented in Chapter Three is referred to as the theoretical model while the one

presented in this chapter is the numerical model.

As noted earlier, in order to calibrate the theoretical model, some changes to the

calibration outlined above are needed. These changes can be summarized as follows:

1. Production costs and farm revenue are assumed to be iid processes. In the

numerical model these were modeled as AR(1) processes. This implies that the

transition equations for both variables are now given as a constant mean plus a

random shock. The mean for farm revenue was taken to be $328 per acre while that

for production costs was $160 per acre.

2. In the theoretical model the revenue trigger index, k,, is the maximum possible

revenue state that can be realized. This is based on the definition of the farmer’s

realized crop revenue, y,, which was assumed to be an iid random variable with a

cumulative distribution function F(f) =Prob[y, _< 4’], defined over the support [a,

b] so that F(a)=0 and F(b) =1 . In the numerical model, however, the trigger index

was computed as the expected revenue to be consistent with the way it is computed
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in practice. The maximum possible revenue was $585 per acre under the

assumption of an iid process. Hence, k, was set at this figure.

3. The discrete state space for insurance coverage level was specified as a range of

coverage choices ranging from 0 to l in 0.05 increments of the insured revenue. As

discussed earlier, this specification differs from the specification in the numerical

model where the maximum coverage level allowed is 0.85 of the insured revenue

(under the individual revenue insurance design). Again, these differences arise

because the theoretical model is based on a more general insurance problem while

the numerical model attempts to mimic the way crop insurance is offered in

practice.

With these modifications to the calibration, the model was solved assuming that

the farmer is faced with: (l) actuarially fair insurance with complete credit markets; (2)

actuarially unfair insurance with complete credit markets; and (3) actuarially fair insurance

but the farmer faces a liquidity constraint.

The results presented in Figure 4 below show that when faced with actuarially fair

insurance and no liquidity constraints, the farmer chooses to buy full insurance coverage at

all levels of initial wealth. These results also show that when there is loading on the

insurance premium, the farmer will choose to buy less than full coverage of actuarially fair

insurance at all levels of initial wealth. In particular, when there is a 30% loading on the

premium, the farmer chooses a coverage level of 75% of the insurable revenue. These two

results are consistent with the analytical results obtained in Chapter 3 (Propositions I and
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2). Discussion of the implications of these results is deferred until Chapter Five which

contains detailed discussion of the results of this study. The goal of this section is only to

validate the numerical model.
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Figure 4. Optimal Insurance Coverage with Complete Credit Markets

The results presented in Figure 5 show the optimal insurance decision of a farmer

who faces a liquidity constraint. In particular, the farmer’s net wealth is restricted to be

nonnegative in every period. These results show that when faced with a liquidity

constraint, the farmer chooses less than firll coverage of actuarially fair insurance at initial

wealth levels in which the constraint is binding. In some cases, no insurance coverage is

taken. However, if the insurance is subsidized, coverage level increases to full coverage

76



for some of the cases in which the liquidity constraint is binding. The results also show

that the farmer’s insurance decision when the premium is loaded follows a similar pattern.

That is, at initial wealth levels for which the constraint is binding the farmer will choose to

reduce coverage to levels below those that would be expected in the absence of such a

constraint. These results are consistent with the analytical result presented as Proposition 3

in Chapter Three. Hence, these results confirm that the numerical model performs as

expected.

Other validation procedures were also carried out. During execution of the

dynamic programming model, various messages are written to the model log file. If there

are any errors, a message to that effect is written. The log file was examined and no errors

were found. In addition, the log file also provides intermediate steps of the Optimization

process. These were also examined to check if the algorithm was carrying out these steps

correctly. In particular, a two-period model with only two states of nature was calibrated

and estimated using this algorithm and a solution obtained. Next, a solution to this

simplified model was manually computed. Finally, the two solutions and their

corresponding intermediate steps were compared. They were found to be identical.

The conclusion is that the numerical model is being solved correctly. The next section

discusses the experimental designs under which the model was solved to generate the

results reported in Chapter Five.
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Figure 5. Optimal Insurance Coverage with a Liquidity Constraint

4.6 Experimental Design

The numerical model was solved under two alternative insurance designs. First,

optimal insurance choices are examined using an individual farm revenue insurance design

that has no basis risk, and second these optimal choices are investigated to determine how

they change under an area based insurance design where individual farms experience

“basis risk”. Basis risk is said to exist whenever there is a difference between the farmer’s

actual insured loss and the loss that is indemnified. For example, under the RMA/USDA
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facilitated Group Risk Income Protection (GRIP) scheme, indemnity payments are made

only when the average county revenue for the insured crop falls below the revenue chosen

(insured) by the farmer. Payments are not based on the individual farmer’s loss. Therefore,

individual revenue losses may fail to be indemnified if the average county revenue does

not suffer a similar level of loss as the farmer. Conversely, a farmer may receive indemnity

payments even if he/she did not suffer any loss provided that the average county revenue

reflects a loss.

In this study, individual farm revenue and county-level revenues are related by

equation (4.10) which, for convenience, is restated here as:

4.13 yif; = ao+alytc+uit -

As defined earlier, t is a time subscript, i is an individual farm subscript, a0 and a, are

estimated parameters, u,, is the error term and superscriptsfand c represent farm and

county, respectively. Basis is defined as the difference between realized farm revenue and

county-level revenue, i.e. basis = y,-{ — ytc . On the other hand, basis risk is defined as

the variance of the basis, i.e. basis risk = var(y,-J: — yf ). Substituting equation (4.13) in

this expression and using the fact that the correlation between county revenue and the error

term u,, is by design equal to zero yields the following definition for basis risk

f __ C _ 2 c
4.14 Var( y,, y; )— (a1-1) var(y,)+var(u,-t)

Equation (4.14) implies that basis risk depends on 01,, the variance of county-level revenue,

and the variance of the contemporaneous shock to individual farm revenue. The impact of
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alternative levels of basis risk, holding the variance of county-level revenue constant, can

be examined by changing var(u,,) and a,.

For convenience, the individual farm revenue design is referred to as the IR design

while the area revenue insurance design is referred to as the AR design. In the IR design,

the guaranteed revenue level is computed as a product of the expected farm yield and the

expected harvest time cash price while, in the AR design it is computed as a product of the

expected county-level yield and the expected harvest time cash price. The indemnification

index (insurance payout trigger) for the IR design is realized farm revenue. Under the AR

design, the insurance payout is triggered by county-level revenue. Note that there is a large

number of revenue insurance contract designs and it would be impossible to investigate all

of them. The experimental design here is a generic specification which, although it may

not fit all the characteristics of these designs exactly, maintains the key features ofthese

insurance schemes and allows one to investigate interaction between insurance,

consumption smoothing, and liquidity constraints.

Under these two alternative insurance designs, transition equation (4.2) for next

period’s liquid wealth becomes:

(4.15) w,,, = (1 + r)[w, — x, — c, - P’Rrk/R)J+ mark/Raf)

under the IR insurance design and,

(4-16) “7+1 = (1+ r)[Wr - xt - Ct — 9PAR(ktAR)]+ yrf + 9mm(0.ktAR - y?)
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under the AR insurance design, where 6 is a scale factor whilefand c are superscripts used

to identify farm and county-level revenues, respectively. The transition equation in (4.15)

represents a case where there is a one-to-one correspondence between the farmer’s

insurance payout and the actual insured revenue loss. On the other hand, the transition

equation in (4.16) represents the case where a potential mismatch between the insurance

payout and the farmer’s insured loss exists. However, under the AR design the number of

insured acres can be higher than the number of planted acres. That is the number of

insured acres are computed as a product of the number of planted acres and a scaling

factor, 6. In practice is 0 lies between 0.9 and 1.5 of planted acres. Further, while in the IR

design coverage is restricted to 85% of insurable revenue, up to 90% coverage is permitted

under the AR design.

Using these two designs, optimal insurance choices are examined under the

following situations.

1. Insurance choice with no liquidity constraint and no loading on the

insurance premium (k,=0 and a=0);”

2. Insurance choice with no liquidity constraint but with positive loading on

the insurance premium (k,=0 and 01>O) to account for administrative costs

and insurer profits;

 

'4 As defined earlier, I, is the Lagrange multiplier on the liquidity constraint and a is

the loading factor on the insurance premium.
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3. Insurance choice with no liquidity constraint but with negative loading on

the insurance premium (k,=O and 01<0) to account for a subsidy on

insurance;

4. Insurance choice with a liquidity constraint but no loading on the insurance

premium (APO and a=0);

5. Insurance choice with a liquidity constraint and a positive loading on the

insurance premitun (11>0 and a>0); and

6. Insurance choice with a liquidity constraint and a negative loading on the

insurance premium (A,>0 and a<0).

In addition, sensitivity analysis is used to investigate the effect of: (i) different levels of

basis risk; (ii) different levels of loading on the insurance premium; and (iii) different

levels of risk aversion on optimal insurance choice.

Situation 1 represents the base case in which insurance coverage is actuarially fair

and capital markets are complete. Situation 2 represents a case in which the insurance

coverage is actuarially unfair but capital markets are complete. The results from this

situation are compared with the base case results to show the impact of a positive loading

on the optimal insurance choice. In contrast to situation 2, the case represented by situation

3 shows the impact of a subsidy on the optimal insurance choice. Situation 4 represents a

case where the insurance coverage is actuarially fair but capital markets are imperfect in

the sense that a farmer is limited on how much he can borrow at the going interest rate. A

comparison of the results under this situation with the base case shows the impact of a
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liquidity constraint on the optimal insurance choice. In situation 5, insurance coverage is

actuarially unfair and capital markets are imperfect. The results from this situation are

compared with situations 2 and 4 to show the impact of the interaction between actuarially

unfair insurance and imperfect capital markets on optimal insurance choice. Situation 6

represents a case in which insurance is subsidized in a world of imperfect capital markets.

The results for this case are compared to situation 3 to show the impact of a subsidy on

optimal insurance choice when capital markets are imperfect.

4.7 Summary

This chapter discussed the stochastic dynamic programming technique used in this

study. Detailed explanations are provided on how all the discrete state and control variable

spaces were specified as well as the assumptions made concerning these variables. The

empirical data generating processes (DGPs) for production costs, county-level revenue,

and farm-level revenue for a representative farm in Adair County, South West Iowa, are

also discussed. In particular, econometrics procedures are used to find the models which

are then used to define the variable state space.

The solution algorithm (ASDP) was also described. Program and data files are

presented and discussed, providing a flavor for how the algorithm works. In addition, the

credibility of the numerical model is investigated. The numerical model validation results

were compared to, and found to be consistent with, the analytical results of Chapter Three.

Other validation procedures are also discussed. The conclusion from the validation results

was that the numerical model is solving the farmer’s problem correctly.
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Finally, several experimental designs for model solutions are discussed. Revenue

insurance contracts are generally offered under a variety of designs depending upon how

the insurance trigger is calculated. Two alternative designs that were used in this study are

discussed. These are the individual revenue (IR) and the area revenue (AR) insurance

designs. The former is an example of an insurance design without basis risk while the

latter is a design with basis risk. Hence, the use of these two designs facilitates the

investigation of the impact of basis risk on optimal insurance choice. The way basis is

defined in this study is explained and an explicit expression for basis risk is provided.

Finally, six experiments are described that were used to investigate the effect of

liquidity constraints and loading of the insurance premium on the farmer’s optimal

insurance choice. Starting with a base case in which insurance coverage is actuarially fair

and capital markets are perfect, various assumptions are progressively relaxed to provide

alternative experimental designs. The assumption of actuarially fair insurance is relaxed in

order to examine the impact of premitun loading and a subsidy on the optimal choice.

Finally, the assumption of perfect capital markets is relaxed to investigate the impact of a

liquidity constraint.
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CHAPTER FIVE

NUMERICAL RESULTS

5.1. Introduction

This chapter reports the optimal insurance coverage rules for a representative corn

farmer from Adair County, South West Iowa. The stochastic dynamic programming model

is solved for the IR and AR insurance designs discussed in Chapter four. As discussed

earlier, these designs differ on how the insurance payout is triggered, the maximum

coverage levels permitted in practice, and the number of permitted insured acres relative to

planted acres. In the IR insurance design, the insurance payout trigger is realized farm

revenue while, in the AR insurance design it is county-level revenue. Therefore, the AR

insurance design has basis risk while the IR insurance design does not. However, under the

AR design insured acres can be higher than planted acres by as much as 1.5. In addition,

coverage levels of up to 90% of insurable revenue are permitted while under the IR design,

coverage is restricted to a maximum 85% of insurable revenue.

The model is solved under the IR design assuming complete credit markets exist in

order to investigate the optimal insurance choice when: (1) the insurance premium is

actuarially fair; (2) the insurance premium is actuarially unfair with positive loading; and

(3) the insurance is subsidized (negative loading on the premium). Next, the assumption of

complete credit markets is relaxed in order to investigate the impact of a liquidity

constraint on the optimal decision again, under the IR design. Finally, the model is solved
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for the AR design in order to investigate the impact of basis risk on optimal insurance

choice.

The rest of the chapter is organized as follows. Section 5.2 provides the results on

optimal insurance coverage under the IR design assuming complete credit markets. The

optimal insurance decision when insurance is actuarially fair is presented and then

compared with the decision when there is a premium loading. In Section 5.3, the

assumption of complete credit markets is relaxed by introducing a liquidity constraint.

Again, the impact of the liquidity constraint is examined under a variety of assumptions,

concerning the actuarial fairness of the insurance premium. Section 5.4 reports the results

on optimal choice under the AR design under a variety of assumptions while Section 5.5

contains a sensitivity analysis on the parameters of the model. Finally, Section 5.6

provides a summary of the chapter.

5.2. Optimal Insurance Choice under the IR design with no Liquidity Constraint

This section presents results on optimal insurance choice under the individual farm

revenue insurance design (IR design) and no liquidity constraint. It is assumed that the

farmer uses insurance to manage revenue risk and can also borrow and save to further

smooth consumption. A lifetime borrowing constraint requires that the farmer must

eventually pay back all that is borrowed, so that current consumption cannot be financed

indefinitely by borrowing more and more money. In finite horizon models, in the last

period the farmer cannot borrow and must pay back all previous loans. With the same
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reasoning, the farmer does not save in the last period because he cannot derive any value

from such savings. For infinite horizon models, this constraint is imposed as a

transversality condition which requires that the limit of the expected discounted wealth be

zero (see Chapter four, Equation 4. 5).

Figure 6 shows the optimal insurance coverage choice as a function of the farmer’s

liquid wealth available at the beginning of the period (planting time). These results show

that, with no liquidity constraint, the farmer takes the maximum allowable coverage of

actuarially fair insurance at all current net wealth levels. In particular, the farmer chooses

coverage of 0.85 of insurable revenue. This result is consistent with the standard static

solution in which the farmer always takes full coverage of actuarially fair insurance. It is

also consistent with the analytical result derived in Chapter three for a farmer faced with

actuarially fair insurance and facing no liquidity constraint (Proposition 1). This result

implies that with complete credit markets, one would expect farmers to always take the

maximum allowable coverage of actuarially fair insurance as protection for unanticipated

revenue losses.

Figure 6 also shows the optimal insurance coverage choice for a farmer who is

faced with actuarially unfair insurance. Specifically, these results pertain to a 30% and a

60% premium loading above the actuarially fair level. The results show that at moderate

levels of insurance premium loading, such as 30%, the farmer continues to take the

maximum allowable coverage at all initial wealth levels. As one might expect, however,

the optimal coverage level falls as the loading factor rises. In particular, with a 60%

loading the farmer’s optimal level of insurance coverage is reduced from the maximum
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allowable coverage level of 85% to 75% for initial wealth levels that lie between —$260

and $ 40 per acre and, to 70% for initial wealth levels above $40 per acre.
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Figure 6. Optimal Coverage of individual farm revenue Insurance for a Farmer

Facing no Liquidity Constraints.

An explanation for this result is that in the numerical model, maximum allowable

coverage is 85% of the insurable revenue because this is the maximum coverage in

practice. The model was re-estimated under a scenario in which 100% of the insurable

revenue could be covered. Under this scenario any positive premium loading reduces
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coverage below the full coverage level. This includes the case in which the loading factor

is 30% above the actuarially fair level. This finding is consistent with the well known

result from insurance theory that, a positive premium loading leads to lower than full

insurance coverage. It is also consistent with the analytical result in Chapter three

(Proposition 2) in which it was shown that the optimal coverage level falls below the firll

coverage level as the premium loading rises above the actuarially fair level. However, the

results in Figure 6 provide additional insights concerning the farmer’s optimal insurance

choice that could not have been obtained from the analytical results alone or with static

models.

First, the results suggest that with premium loading factors at moderate levels (e.g.

30%), and with no liquidity constraints, one would expect farmers to take the maximum of

85% coverage that is allowed in practice. Therefore, as long as credit markets are complete

a moderate premium loading would not appear to be a good explanation for weak

participation in insurance programs.

Second, only when the premium loading is high (e.g. 60%), would one expect

wealthy farmers to take less than the maximum coverage allowed of 85%. This suggests

that when insurance is (very) expensive, only farmers who are already in debt would be

willing to take more loans to finance insurance. As they accumulate wealth, farmers

substitute savings for expensive insurance in managing revenue risk. The explanation for

this result is based on viewing insurance and savings as substitutes for mitigating the

impact of revenue risk on consumption. In this view, the explanation is that the

opportunity cost (measured in terms of consumption forgone) of not insuring potential
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revenue loss is much higher for farmers already in debt than for those with positive initial

wealth. Hence, they are more likely to choose the maximum allowable coverage even if

the policy is expensive.

These results show that the standard results from static insurance models also hold

within a dynamic framework that explicitly takes into account the farmers’ consumption

smoothing strategies. In particular, these results have shown that as long as complete credit

markets exist and the farmer can freely lend and borrow at the risk free rate, then

consumption smoothing plays no role in his/her insurance decision, except when insurance

is very expensive.

5.3 Optimal Insurance Choice under the IR design with a liquidity constraint

In this section results are presented assuming the farmer faces a liquidity

constraint. In particular, the model is solved assuming that the farmer’s wealth is restricted

to be non-negative. Implying that being a net borrower is prohibited." The results under

this assumption are presented in Figure 7 below.

These results show that a farmer facing a liquidity constraint will take the

maximtun allowable coverage of actuarially fair insurance only at wealth levels in which

the constraint is non-binding. When the liquidity constraint is binding the farmer cannot

borrow to finance production costs, consumption and the purchase of insurance.

 

‘5 It is a straight forward matter to allow for net borrowing. However, the results are

essentially similar to those obtained here when the constraint is set to zero rather than

some negative net wealth level.
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Figure 7. Optimal Coverage of Individual Farm Revenue Insurance for a

Farmer Facing a Liquidity Constraint

Therefore, he chooses not to insure because current consumption is too valuable.

In other words his marginal propensity to consume out of current wealth is equal to one.

This is because the CRRA utility function makes consumption infinitely valuable as

consumption approaches zero. Therefore, the farmer is willing to trade off anything

(including insurance) in order to be able to consume more at low wealth levels because he

cannot borrow to finance consumption. This result is consistent with the analytical result
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presented in Chapter three (Proposition 3) which showed that if farmers are faced with a

liquidity constraint, then even if the insurance is actuarially fair, they may choose

reduced or even zero coverage, depending on the severity of the constraint.

When insurance is actuarially unfair, the results follow a similar pattern as

described above. That is, at levels of initial wealth in which the liquidity constraint is

binding, no insurance coverage is taken. However, in contrast to the results presented in

Figure 6 (with no liquidity constraint), these results show that the liquidity constraint

causes farmers to take the maximum allowable coverage of actuarially unfair insurance at

some positive wealth levels. In particular, with a 60% loading on the premium, maximum

allowable coverage is taken at initial wealth levels between $200 and $780 per acre. As

was seen in Figure 6, with no liquidity constraint less than the maximum allowable

coverage of actuarially unfair insurance was taken at all positive initial wealth levels.

A binding liquidity constraint limits (or eliminates) the farmers ability to diversify

downside risks over time. As shown by Gollier (2001) for the DARA utility function used

in this study, a liquidity constraint induces more risk aversion, ceteris paribus.

Specifically, at low initial wealth levels, Gollier (2001) provides an intuition for the result

as follows: “the liquidity constraint is likely to be binding for poorer people, which makes

them more risk-averse because of their inability to time diversify risk” (p.274). In contrast,

wealthier people are in a better position to smooth shocks to their income over time,

because they are less likely to be liquidity constrained in the near future (Gollier 2001,

2003). More generally, following Epstein’s (1983) study, Gollier (2001) shows that within
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a continuous-time, infinite horizon framework, all value functions exhibit decreasing

absolute risk aversion. This result forms the basis for his intuition that “a larger wealth

better insulates the consumer from the liquidity constraint” (p.277) and, hence, reduces his

aversion to risk. Further, he shows that in the continuous—time framework this effect

dominates even when the consumer exhibits increasing absolute risk aversion.

Overall, these results have two implications. First, they suggest that a liquidity

constraint may cause farmers to reduce coverage below the full insurance level even for

actuarially fair insurance and, depending on the severity of constraint no insurance may be

taken. Second, they suggest that a liquidity constraint induces farmers to behave as if their

degree of absolute risk aversion is much more decreasing with respect to wealth than

would be expected without a liquidity constraint. This inference is especially evident when

insurance is actuarially unfair. In this case, the optimal insurance choice was to take the

maximum allowable coverage at lower (positive) initial wealth levels because the farmer is

much more risk averse in these ranges of wealth.“5 At higher levels of wealth, the solution

reverts to that obtained in the absence of a liquidity constraint because the farmer is less

risk averse in those ranges of wealth, ceteris paribus.

The optimal choice was also investigated when insurance is subsidized. The results

obtained are trivial and are therefore not presented here. In particular, with no liquidity

constraint, the maximum allowable coverage of subsidized insurance is taken. This is

similar to the optimal coverage choice when insurance was actuarially fair. When there is a

 

‘6 With no liquidity constraint, the maximum allowable coverage was not optimal at

all positive wealth levels for insurance with a 60% premium loading (see Figure

6).
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liquidity constraint however, the subsidy enables farmers to take insurance at some lower

wealth levels than was done with actuarially fair insurance. This is equivalent to a slight

shift to the left of the graph in Figure 7 for actuarially fair insurance.17 In other words, the

subsidy somewhat relaxes the severity of the liquidity constraint although, still at the

constraint no insurance will be taken. Next, the impact of basis risk on the optimal

insurance choice is examined.

5.4 Insurance Choice under the AR design with no Liquidity Constraint

This section presents results on optimal insurance choice under the area-based

revenue insurance design (AR design). As discussed earlier, the AR insurance design used

in this study is a design with basis risk which exists because indemnification is based on

county-level revenue and not the farmer’s realized revenue. Therefore, to the extent that an

individual farmer’s revenue is not perfectly (positively) correlated with the county-level

revenue, this insurance may fail to protect that farmer’s revenue losses. In other words, it

is possible to have a situation in which the farmer incurs a loss but this loss is not

indemnified because the county-level revenue does not trigger indemnity payments.

As can be seen in Figure 8, when there is basis risk the farmer fails to take the

maximum allowable insurance coverage at some wealth levels, even if insurance is

actuarially fair and there is no liquidity constraint. Specifically, less than the maximum

allowed coverage of actuarially fair insurance is taken except for farmers heavily in debt.

 

The graph is similar to that in Figure 5 (chapter Four) with a maximum allowable

coverage of 0.85 instead of 1.
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Figure 8. Optimal coverage of actuarially fair insurance under the AR design with no

liquidity constraint when the correlation between farm-level and county-

level revenue is 0.63

It appears that the presence of basis risk discourages farmers with high initial wealth from

purchasing insurance even when it is actuarially fair. There are several possible factors that

may be driving this rather surprising result.

As discussed in Chapter 4 (Section 4.6), basis risk depends on the variance of

county-level revenue, the variance ofthe contemporaneous shock to individual farm

revenue, and the parameter relating county-level revenue to individual farm revenue, a,.
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That is, under the area based insurance scheme, the producer’s risk as measured by the

variance of net revenue depends on the variances of county-level and farm-level revenues.

In an important paper on area-yield crop insurance, Miranda (1991) shows that the amount

of risk reduction under the area-based scheme depends highly on the correlation between a

producer’s yield and the area yield. In particular, he shows that the higher the correlation

between area yield and the producer’s yield, the greater the risk reduction under the area

based scheme. He also shows that if the number of acres covered are not restricted to

farmed acres, then the producer can achieve maximum risk reduction by selecting an

optimal scaling factor. Further, he shows that the optimal scaling factor also depends on

the correlation between farm and area yields.

To summarize, the results in Figure 8 are driven by at least two key factors: the

correlation between county-level and farm revenues and the scale factor of the number of

insured acres to farmed acres. The result shown in Figure 8 pertains to a correlation of

0.63. In addition, scaling factors of 0.9 - 1.5 with increments of 0.1 were allowed for in the

model. Although not presented in the figure, the optimal scale ranged from 0.9 to 1.4 at

various levels of initial wealth and optimal coverage. Similar to optimal coverage levels,

the optimal scale was also found to decrease with initial wealth.

The preceding discussion implies that under the AR design, basis risk exposes

insurers to additional risk which may preclude them from taking the maximum allowable

coverage even if insurance is actuarially fair. An intuition for this result is that the

uncertainty of not receiving indemnity payments when insured losses have been incurred

becomes a disincentive for purchasing this type of insurance for wealthy farmers.
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Within an insurance-consumption smoothing framework the presence of basis risk

and the CRRA utility function can lead to the result above. Compared to the IR design,

basis risk in the AR design is akin to an increase in risk, ceteris paribus. In other words,

the variability of consumption under the AR design is higher than in the IR design. As

shown by Leland (1968) and Sandmo (1970) for an additively separable utility concave

function with a positive third derivative, an increase in uncertainty increases the

precautionary demand for saving. This is because a positive third derivative of a concave

utility function implies that the marginal utility function is convex and hence, the expected

marginal utility increases when the variability of its argument (consumption) increases. In

subsequent studies Rothschild and Stiglitz (1970) provide a more general definition of

increasing risk and show that the result by Leland (1968) and Sandmo (1970) holds

(Rothschild and Stiglitz; 1971). Further, Kimball (1990) confirms this result by applying

the analytical framework of Rothschild and Stiglitz (1971) to the two-period savings

problem under income uncertainty considered by Leland and Sandmo. He shows that if the

marginal utility function is convex, an increase in risk will decrease optimal consumption

and increase optimal saving in the first period.

The CRRA utility function used in this study is also found in Rothschild and

Stiglitz (1971). Its specification as U(C,)=C,("”/(I-y), where y is the constant coefficient

of relative risk aversion, implies that it has a positive third derivative if y>0. For the results

above, y=2. Therefore because u ”’>0, the CRRA function has precautionary demand for

saving and since lim U' = 00 , optimal consumption is bounded away from negative or

c—>0

zero consumption. Also, for this utility function specification, risk aversion and
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precautionary demand for saving are controlled by the same parameter, 7 (Rothschild and

Stiglitz, 1971).

To summarize, under the area based scheme basis risk exposes insurers to a

residual uninsurable risk which may preclude them from purchasing insurance even if it is

actuarially fair and there is no liquidity constraint. Basis risk is similar to an increase in

risk when compared to the IR design. This in turn increases the farmer’s precautionary

demand for accumulating wealth because ofthe CRRA utility function used in this study.

However, the increase in precautionary demand for saving comes at the expense of

insurance. Furthermore, for the type of utility function used here risk aversion and demand

for precautionary saving are controlled by the same parameter, y. For the model in this

study it seems that the effect of the precautionary motive for accumulating wealth

dominates demand for insurance. An intuition for this finding is that when a farmer is

faced with an insurance design with basis risk (residual uninsurable risk), he would like to

accumulate enough wealth in order to self-insure. That may be the reason why he takes out

the maximum allowable coverage at low levels of initial wealth. Once he has accumulated

enough wealth he resorts more to using a self-insurance strategy rather than formal

insurance.

However, because the amount of basis risk depends on the correlation between

farm revenue and county-level revenue, one would expect the optimal insurance decision

to be different for different correlations. Figure 9 shows the optimal insurance choice

under the AR design with a correlation of 0.9 (between farm revenue and county-level

revenue) and a scale factor of 1.5. These results were obtained by re-estimating the model
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using shocks to farm revenue that give rise to a correlation of 0.9, holding the variance of

county revenue and a, constant. As expected, these results show that at a higher

correlation between farm-level and county-level revenues, higher levels of insurance

coverage are taken. In particular, when the insurance coverage is actuarially fair, the

maximum allowable coverage is taken at all initial wealth levels. The reason for this is that

at high correlations basis risk is lower than at low correlations, holding other factors

constant. In other words, there is lower residual uninsurable risk and risk aversion

dominates the precautionary demand for saving causing the maximum allowable coverage

to be taken at all wealth levels.
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Figure 9. Optimal insurance coverage under the AR design with no liquidity

constraint when the correlation between farm-level and county-level

revenue is 0.90

When the insurance is actuarially unfair, these results show that less than the

maximum allowable coverage is taken at higher wealth levels. As can be seen from Figure

9 the combined effect of basis risk and premium loading further reduces the optimal

insurance coverage level when compared to the results presented in Figure 6 (with no basis

risk). For example, when there is a 60% loading on the premium, the optimal coverage

level falls below the maximum allowable coverage level at all wealth levels above -$420

per acre and, to zero above -$160 per acre. This suggests that only when a farmer is highly
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in debt, is he willing to take loans to finance expensive insurance when there is basis risk.

At higher wealth levels, he substitutes savings for expensive insurance in managing

revenue risk. It seems that at lower loading levels (e.g. 30%) the cost of insurance is not

large enough to justify the building of buffer stock savings to self-insure. In other words,

the price elasticity of insurance demand is low but increases with each additional increase

in the loading factor and, at 60% loading it is high enough to induce a switch from formal

insurance to self-insurance. Of course, this argument holds even in the absence of basis

risk. However, it appears that there is more sensitivity to the cost of insurance when there

is basis risk.

Next, the optimal insurance choice when the insurance is subsidized under the AR

design is examined. With a correlation of 0.9 between farm-level and county-level

revenue, the result is trivial because the maximum allowable coverage is taken at all

wealth levels as long as the insurance is actuarially fair. Therefore, similar results are

obtained with a subsidy. However, as shown earlier, less than the maximum allowable

coverage is taken when the correlation is 0.63. Therefore, the impact of a subsidy is

examined for the base case presented in Figure 8 above. These results are presented in

Figure 10 below.
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Figure 10. Optimal coverage of subsidized insurance under the AR design with no

liquidity constraint when the correlation between farm-level and county-

level revenue is 0.63

As can be seen from these results, when there is a 10% subsidy on the insurance

premium the farmer takes the maximum allowable coverage at initial wealth levels of

$900 per acre and below: Above that level of initial wealth, coverage is reduced below full

coverage. As expected the subsidy increases the amount of insurance purchased. In the

absence of a subsidy (Figure 8), less than the maximum allowable coverage of actuarially

fair insurance was taken for initial wealth levels above -$360 per acre. With a 10%

subsidy, the wealth level at which reduced coverage is taken is much higher ($900 per
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acre). However, the results show that, depending on the level of the subsidy, in some cases

it may still be optimal not to take the maximum allowable coverage insurance when there

is basis risk. Nonetheless, these results suggest that subsidies can be effective in mitigating

the reduced participation caused by the presence of basis risk, especially if the correlations

between farm-level and county-level revenues are low. As shown in Figure 10 when the

subsidy is high enough, say at 20%, then the optimal insurance choice is to take the

maximum allowable coverage at all initial wealth levels. Thus, the effect of basis risk is

completely eliminated at this level of subsidy.

The impact of a liquidity constraint on the optimal choice under the area based

scheme (AR design) was also examined assuming a correlation of 0.9 between farm-level

and county-level revenues. Similar to the individual farm revenue insurance design (IR

design) the results showed that when the liquidity constraint is binding, the farmer may

choose not to insure because current consumption is too valuable. Once the liquidity

constraint becomes non-binding the farmer takes the maximum allowable coverage of

actuarially fair insurance. The optimal insurance choice when insurance is actuarially

unfair was found to follow a similar pattern as that seen under the IR design. That is, the

liquidity constraint causes farmers to take the maximrun allowable coverage of actuarially

unfair insurance at some positive wealth levels in which, less than the maximum allowable

coverage would be expected to be taken in the absence of the liquidity constraint. The

intuition for these results has been discussed above.
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5.5 Sensitivity Analysis

In order to learn how these results change with changes in the parameters of the

model, sensitivity analysis were performed . The effect of changes in the premium loading

have already been examined and discussed as they were part of the experimental design.

The effect of basis risk at alternative correlations between farm-level and county-level

revenues was also examined. In this section sensitivity analysis is conducted to determine

the effect of changes in risk aversion and the farmer’s rate of time preference.

For the results reported above, the coefficient of risk aversion was set at y=2. The

effect of an increase in risk aversion was investigated by re-estimating the model when

y=1.2, 1.5, 1.8, 2.2, 2.5, 2.8 and 3, and then the results were compared with the benchmark

results when y=2. For y>3 the results were similar to those for y=3. For investigation, the

model with basis risk was re—estimated assuming a correlation of 0.63 between farm and

county-level revenues and no liquidity constraint. The insurance design with basis risk was

used because the effect was more discernible under this design. Virtually, identical results

were obtained when ysZ.2 and when y=2.5 or 2.8, respectively. The results showed that

insurance coverage was reduced in the latter case relative to the benchmark. When F3 no

insurance was taken.

Within an insurance-consumption smoothing framework one would expect an

increase in risk aversion (the utility function becomes more concave) to have two effects.

First, by Jensen’s inequality and, because of the increase in risk aversion one would expect

the demand for insurance to increase. Second, one would expect an increase in

precautionary demand for savings because of the CRRA utility function. However, the
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increase in precautionary demand for savings comes at the expense of insurance.

Therefore, a priori, the net effect of the increase in risk aversion is ambiguous.

Furthermore, for the type of utility function used here risk aversion and demand for

precautionary savings are controlled by the same parameter, 7. In this case it seems that the

effect of the precautionary motive for accumulating wealth dominates demand for

insurance.

Finally, the effect of changing the farmer’s measure of time preference parameter

from the benchmark value [3=0.8989 to 0.94 and 0.99, respectively was investigated. This

is equivalent to changing the discount rate from 11.25% to 6.4% and 1%, respectively. In

other words, the farmer is relatively more patient in the sensitivity analysis scenarios than

in the base case. One would expect this decrease in the farmer’s rate of impatience to

generate an increase in desire to accumulate wealth (precautionary savings) and as a

consequence, (indirectly) reduce demand for insurance. The results showed this to be

marginally true under the area-based scheme. Otherwise the results were essentially

identical. Under the IR design, the results did not change.

These sensitivity analysis results show that the main results are robust at different

levels of the parameters of the model. However, the results are somewhat sensitive to the

level of risk aversion, especially under the area-based scheme.
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5.5. Summary

The dynamic stochastic model developed in Chapter four was solved numerically

to obtain the optimal insurance coverage choices for a representative corn farmer from

Adair county, South West Iowa. The model was solved both for the case in which perfect

credit markets exist and for the case in which the farmer faces a liquidity constraint. In

addition, the model was solved using both an insurance design without basis risk and an

alternative design with basis risk. Further, the effects of consumption smoothing and

liquidity constraints were investigated under a variety of assumptions concerning the

actuarial fairness of the insurance.

The results obtained show that with complete credit markets and no basis risk the

farmer will take the maximum allowable coverage of actuarially fair insurance as

protection against unanticipated firture revenue shortfalls. However, if insurance is

expensive because of a premium loading the farmer will reduce coverage below the

actuarially fair level for some initial wealth levels. In particular when the insurance cost is

as high as 60% above the actuarially fair level, the farmer will only take the maximum

allowable coverage if his initial wealth is below -$360 per acre. In this case the farmer is

highly in debt and because this debt must eventually be repaid, the farmer seeks to

accumulate wealth to repay his loans and then substitute savings for expensive insurance

to manage revenue risk.

The impact of a liquidity constraint on the farmer’s optimal choice of insurance

coverage was also examined. The findings were that if farmers are faced with a liquidity
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constraint, then even if the insurance is actuarially fair, they may choose reduced or even

zero coverage, depending on the severity of the constraint.

The results also show that even with complete credit markets, basis risk in the

insurance design may cause the farmer to choose less than the maximum allowable

coverage of actuarially fair insurance at some initial wealth levels. Under this design there

is residual risk that is uninsurable. Therefore, the uncertainty of not receiving indemnity

payments when insured losses have been incurred becomes a disincentive for purchasing

this type of insurance for wealthy farmers. Instead, such farmers prefer self-insurance.

Hence, depending on the correlation between the farmer’s revenue and county-level

revenue the resultant basis risk under this design may discourage farmers from purchasing

insurance.

The results also show that the impact of basis risk and/or high insurance costs may

be mitigated by subsidizing insurance. The findings of this study suggest that subsidies in

the range of 20% or so are sufficient to cause farmers to take the maximum allowable

coverage even when basis risk is high (equivalent to a correlation of 0.63).

Finally, sensitivity analysis found that as risk aversion increases it generates an

increase in the farmer’s motive for holding precautionary savings at the expense of

insurance demand, especially under the area-based scheme. This finding is, in part,

dependent on the nature of utility function used. In this study a CRRA utility function is

used in which risk aversion (hence, demand for insurance) and the demand for

precautionary savings are determined by the same parameter. For the specifications of the

model in this study, the demand for precautionary savings seems to dominate demand for
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insurance. Finally, the sensitivity analysis showed that the results of this study were only

marginally sensitive to the farmer’s rate of time preference.

The conclusion from the sensitivity analysis is that results are robust at different

levels of the model parameters although, they are somewhat sensitive to the farmer’s

degree of risk aversion, especially if there is basis risk in the insurance design.
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CHAPTER SIX

SUMMARY AND CONCLUSION

The goal of this study was to determine the effect of credit constraints on optimal

revenue insurance choices for a risk averse farmer who uses insurance to manage risk and

also borrows and saves to further smooth consumption. The main contribution of this

study to existing work on crop insurance, was to examine the farmer’s crop insurance

problem in a dynamic framework with liquidity constraints. To date, only one study

(Atwood et al. 1996) has examined the use of agricultural insurance instruments in a

dynamic framework. However, neither revenue insurance decisions nor the effect of

liquidity constraints were considered in that study.

In this study, the effects of consumption smoothing and liquidity constraints were

investigated by examining optimal insurance choice under a variety of assumptions

concerning the insurance premium schedule. This was accomplished using a dynamic

consumption model in a time separable expected utility framework. Dynamic

programming was used to study optimal decision rules for insurance coverage choices of a

representative corn farmer from Adair County in Southwest Iowa.

Owing to the paucity of studies directly addressing the issues considered in this

study, it was necessary to first provide a basic relationship between consumption

smoothing and insurance. This was accomplished through a review of selected studies

from developing as well as developed countries. This review was presented in chapter
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Two. Three conclusions emerged from the development literature. First, there is empirical

evidence that households in developing countries use various coping strategies to smooth

consumption including off-farm employment, use of risk-decreasing inputs, informal

credit and insurance arrangements, and livestock holdings. Second, because credit and

insurance markets are missing, imperfect, or simply inaccessible, farmers in these

countries use a variety of non-market risk sharing and credit provision arrangements such

as, informal credit and insurance mechanisms, rotating savings and credit associations, and

extended family networks. Third, the interaction between consumption smoothing and

(formal) crop insurance is not covered in that literature, perhaps because of lack of crop

insurance markets in developing countries.

Similarly, from the literature in a developed country setting where complete credit

and insurance markets are often assumed to exist, there were two main findings. First,

there is empirical evidence that in general US. households smooth consumption through

borrowing and saving. Second, and more important, some households face borrowing

constraints which limit their ability to smooth consumption at desired levels. Given this, it

is inferred that a possible relationship exists between borrowing and crop insurance

decisions because borrowing constraints affect consumption decisions and, therefore, they

should also affect crop insurance decisions.

Further, the contribution of this study to the broader crop insurance literature was

clarified. Upon reviewing studies on yield and revenue insurance the (relevant) finding

was that both yield and revenue insurance have primarily been studied using static models.

This study conjectured that analyzing the revenue insurance problem in a dynamic setting
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could potentially shed new insights on farmers’ inter-temporal risk management behavior.

This conjecture was based on inferences drawn from the literature on hedging, where both

static and dynamic models have been extensively studied and used to derive hedging rules.

Chapter Three developed a conceptual dynamic model for studying the revenue

insurance behavior of a crop farmer whose objective is to maximize the expected utility of

lifetime consumption. Further, the assumptions needed for the model to be solved were

specified and the sufficient and necessary conditions which characterize a solution to the

farmer’s dynamic optimization problem derived.

Next, the effects of consumption smoothing and liquidity constraints were

investigated by examining optimal insurance choice under a variety of assumptions

concerning the insurance premium schedule. Three analytical results were obtained which

can be summarized as follows. First, with no liquidity constraints, a risk-averse farmer will

choose full coverage of actuarially fair insurance. This is consistent with the familiar result

from static insurance theory that risk averse agents facing actuarially fair premiums will

take firll insurance coverage.

Second, with no liquidity constraint a positive loading on the insurance premium

reduces the optimal coverage level below full coverage. With this result, this study also

showed that another standard result from static insurance theory, that optimal coverage

decreases with increases in the loading factor, also holds in a dynamic model with

consumption smoothing and no liquidity constraints.
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With these two results, this research showed that in a dynamic model with no

liquidity constraints, insurance choices are not influenced by the desire to smooth

consumption, as long as complete and well-functioning credit markets exist that permit

efficient consumption smoothing to take place.

Third, even if insurance is actuarially fair, a binding liquidity constraint reduces the

Optimal coverage below the full coverage level. This result shows that if farmers are faced

with a liquidity constraint, even if insurance is actuarially fair, they may choose reduced or

even zero coverage, depending on the severity of the constraint. The implication of this

result is that, a binding liquidity constraint may cause farmers to purchase insurance less

often than would be expected in the absence of the constraint.

In chapter Four, the stochastic dynamic programming technique used to

numerically solve the farmer’s optimization problem was described. The solution

algorithm (ASDP), was also described as well as the data used. Noting that revenue

insurance contracts are generally offered under a variety of designs depending upon how

the insurance trigger is calculated, two alternative designs were considered. The individual

revenue (IR) and the area revenue (AR) insurance designs. The former design has no basis

risk while the latter includes basis risk. In addition, six experiments used to investigate the

effect of liquidity constraints and premium loading on the farmer’s optimal insurance

choice were discussed. Starting with a base case in which insurance coverage is actuarially

fair and credit markets are perfect, assumptions were progressively relaxed: first, the

assumption of actuarially fair insurance, and second, the assumption of perfect credit

markets to generate alternative situations faced by farmers.
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Further, details were provided on how all the discrete state and control variable

spaces were specified as well as the assumptions made concerning these variables. In

addition, detailed discussions on the empirical data generating processes for production

costs, county-level revenue, and farm-level revenue were also provided. Production costs

and county-level revenue were modeled as AR(1) processes while farm-level revenue was

generated by sealing county-level revenue. The assumption here was that farm-level

revenues would generally be related to county-level revenue because farmers in a given

county face similar technology, weather conditions, and prices. An overview of the

solution algorithm was also provided. Program and data files were presented and discussed

to provide a flavor for how the algorithm works. Finally, the credibility of the numerical

model was investigated. This was accomplished by comparing the numerical model

validation results to the analytical results obtained in chapter Three and these were found

to be consistent. Consequently, it was concluded that the numerical model was solving

correctly.

In chapter Five, the stochastic dynamic programming model was solved

numerically to obtain optimal insurance coverage choices. Furthermore, the model was

solved both for the case with complete credit markets and for the case in which the farmer

faces a liquidity constraint. Furthermore, the model was solved using both insurance

designs with and without basis risk. Several numerical results were obtained with insights

concerning farmer’s risk management behavior that can be summarized as follows.

As long as there no basis risk, complete credit markets exist, and the farmer can

freely lend and borrow at the risk free rate, then consumption smoothing plays no role in
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his/her insurance decision except when insurance is very expensive. Therefore, the

standard results from static insurance models also hold within a dynamic framework that

explicitly takes into account the farmers’ consumption smoothing strategies. More

specifically, this research shows that with complete and well frmctioning credit markets:

(1) the maximtun allowable coverage of actuarially fair insurance will always be optirrral;

(ii) at moderate premium loading factors (e.g. 30%), the maximum of 85% coverage that is

allowed in practice will still be optimal; and (iii) at relatively high (e.g. 60%) premium

loading factors the maximum allowed coverage will no longer be optimal at most initial

wealth levels. In particular, only when the farmer is highly in debt is the maximum

allowable coverage optimal. At higher levels of initial wealth one would expect farmers to

substitute savings for (expensive) insurance in managing revenue risk. The economic

rationale behind this finding is that, because the lifetime constraint requires that all loans

must be eventually repaid, it causes the farmer to act as if he is more risk averse when

highly in debt than when he has less debt or positive initial wealth and, therefore, he takes

relatively higher insurance coverage. In other words, the opportunity cost (measured in

terms of consumption to be forgone) of not insuring potential revenue loss is much higher

for farmers who are heavily in debt than for those with positive initial wealth. Hence, they

are more likely to choose the maximum allowable coverage even if the policy is

expensive.

This research also shows that even if there is no basis risk, if farmers are faced

with a liquidity constraint, then even if the insurance is actuarially fair they may choose

reduced or even zero coverage, depending on the severity of the constraint. This is because
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the presence of a liquidity constraint affects the farmer’s consumption behavior thereby

affecting his insurance choice as well, and depending on its severity the farmer may

choose not to buy it. That is, a liquidity constraint causes the farmer to reduce coverage

below the full insurance level even for actuarially fair insurance and, depending on the

severity of constraint no insurance may be taken. As it appears the liquidity constraint

induces farmers to behave as if their degree of absolute risk aversion is much more

decreasing with respect to wealth than would be expected without a liquidity constraint.

This inference is especially more evident when insurance is actuarially unfair. In this case,

the optimal insurance choice was to take the maximum allowable coverage at lower initial

wealth levels because the farmer is much more risk averse in these ranges of wealth. At

higher levels of wealth, the solution was similar to the one with no liquidity constraint

because the farmer is less risk averse in those ranges of wealth, ceteris paribus.

This study also found that under the area based scheme, basis risk exposes insurers

to a residual uninsurable risk which may preclude them from purchasing insurance even if

it is actuarially fair and there is no liquidity constraint. Basis risk is similar to an increase

in risk when compared to the IR design. This in turn increases the farmer’s precautionary

demand for accumulating wealth because ofthe CRRA utility firnction used in this study.

However, because the increase in precautionary demand for saving comes at the expense

of insurance, coverage is reduced. Furthermore, for the type of utility function used in this

study risk aversion and demand for precautionary saving are controlled by the same

parameter, 7. For this case it seems that the effect of the precautionary motive for

accrunulating wealth dominates demand for insurance. An intuition for this finding is that
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when a farmer is faced with an insurance design with basis risk (residual uninsurable risk),

he would like to accumulate enough wealth in order to self-insure. That may be the reason

why he takes out the maximum allowable coverage at low levels of initial wealth. Once he

has accumulated enough wealth he resorts more to a self-insurance strategy.

However, because the amount of basis risk depends on the correlation between

farm revenue and county-level revenue, results were presented both for the base case

(correlation=0.63) and a counterfactual case (correlation=0.9). The findings were that the

optimal insurance choice under the AR design with a correlation of 0.9 and a scale factor

of 1.5 (insured to planted acres) was to take the maximum allowable coverage of

actuarially fair insurance. The reason for this is that at high correlations basis risk is lower

than at low correlations, holding other factors constant. In other words, there is lower

residual uninsurable risk and risk aversion dominates the precautionary demand for saving,

causing the maximum allowable coverage to be taken at all wealth levels.

The impact of subsidized insurance on the farmer’s optimal choice was also

investigated. The findings suggested that the maximum allowable coverage can be

achieved at all initial wealth even for the case with relatively high basis risk. For the base

case (correlation=0.63) a 20% subsidy would be sufficient to cause the maximum

allowable coverage to be taken.

In conclusion, this study has shown that many of the standard results from static

insurance models also hold in a dynamic model. It has also been shown that as long as

complete credit markets exist and the farmer can borrow and save freely at going interest

rates, consumption smoothing has no effect on insurance decision if there is no basis risk
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and insurance is moderately priced. Finally, it has also shown that if there is basis risk

and/or a liquidity constraint exists then, consumption smoothing can have an impact on the

optimal insurance decision and, in some cases self-insurance will be preferred over formal

insurance.

The model used in this study is obviously simplistic compared to actual situations

faced by farmers. Therefore, while the findings of this research provide insights to

economists who are concerned with issues of crop insurance, more work is required to

translate these findings into outputs that farmers, lenders and policy makers can use

directly. For example, no productive assets were considered in the model and, therefore,

no capacity to expand operations (investment) exists in the model. Also, there is an

aggregate store of wealth and that is implicitly a bond that can be traded short or long. The

farmer could not buy stocks, or corporate bonds, or livestock, or any kind ofproductive

assets. Furthermore, no government programs were considered and all revenue was

assumed to be insurable. It was also assumed that premium payments were made when the

insurance choice is made and cannot be deferred until harvest. These simplifying

assumptions were necessary in order to keep the analysis of this research tractable for the

present purpose.

Possible extension of this research is to calibrate the model to a more practical

farmer situation which relaxes some of the simplifying assumptions above. In addition an

empirical investigation of the performance of credit markets to determine if farmers are

able to smooth their consumption efficiently, could potentially shed more light to the

question ofwhy there appears to be weak participation in US. crop insurance programs. In
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other words, the is a need to determine if and, to what extent, U.S. farmers face liquidity

constraints. Further, an investigation of the level of basis risk in existing crop insurance

contracts will also provide useful insights. In this study, the source of basis risk considered

was yield basis. A study that also considers price basis risk (together with yield basis risk)

should be an interesting extension.
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ASDP PROGRAM FILES

#include "tv.h"

/**********#***¢*****¥***********t*******##***#****¥****

Revenue Insurance model optimization - terminal value function.

##**************itit!#*******¢********#***#********#***/

 

 

{

/* */

result = O;

/"‘ ‘/

return(result);

}

Figure A1. Terminal value function
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_

#include "sd.h"

/**¥*#*#**¥****##ittlttttt****¥ttitttt***ttttt*tttt*****##*##*##****#****

Insurance model optimization - state dynamics function.

tit.*ittfitttfittiiltttt*¥#ttttttttttttttttittt**#****##***##***#*****t**t/

 

{

/* */

INT k = 353; /"' farm revenue guarantee */

DECIMAL rate = 0.0543, /* interest rate I"/

load = 1, /* insurance loading factor */

farm = 0, /"' initialize farm revenue */

prem = 0, /* initialize insurance premium */

gross [12]={63, 111, 158, 206, 253, 301, 348, 396, 443, 491, 538, 586},

prob [12]={0.0002, 0.0015, 0.0093, 0.0384, 0.1067, 0.1995, 0.2509, 0.2123,

0.1208, 0.0463, 0.0119, 0.0022};

 

/*

compute insurance premium

/* */

prem= prob[0]*(max(0, dec[0]*k-gross[0])) +

prob[ l ]*(max(0, dec[0]*k-gross[ 1])) +

prob[2]*(max(0, dec[0]"‘k—gross[2])) +

prob[3]*(max(0, dec[0]*k-gross[3])) +

prob[4]"(max(0, dec[0]*k-gross[4])) +

prob[5]*(max(0, dec[0]*k-gross[5])) +

prob[6]*(max(0, dec[0]*k-gross[6])) +

prob[7]*(max(0, dec[0]"‘k-gross[7])) +

prob[8]*(max(0, dec[0]*k-gross[8])) +

prob[9]*(max(0, dec[0]*k-gross[9])) +

prob[10]"'(max(0, dec[0]*k-gross[10])) +

prob[l l]*(max(0, dec[0]“'k-gross[l l])) :

 

 

 

,..

Implement state dynamics equations. i.e the transition equations a

nxt_state[2] = 198.5919 + 0.4514*cur_state[2]+outcome[0]; /"'county revenue*/ /

farm = -35.9214 + 1.0734*nxt_state[2]+outcome[2]; /"'farm revenue‘l

nxt_state[l] = 15.3369 + 0.9049*cur_state[l]+outcome[l]; /*production costs“/

nxt_state[0] = (l+rate)*(cur__state[0] - dec[l] - cur_state[l]

- (l/(l+rate))*load*prem) + max(dec[0]*k, farm); /"'wealth*/

/*
:7

 

retum;}

_

Figure A2. State dynamics function
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_

#include "obj.h"

ltitttiii.1*0*ttltttit*ititi*ttltttttltttttt‘ttttl**#****t******#****#

Insurance model optimization - stage return function.

$0i¢$i¥t¥$¥¥tit¥tfitl¥lt***$**¥#*¢¥##¥******************#*#**fiitttt'tfi/

 

 

 

 

 

{

/"‘ */

INT risk = 2, /"' Risk aversion parameter */

k = 353; /"‘ Gross revenue guarantee ‘/

DECIMAL rate = 0.0543, /"‘ interest rate */

load = l, /"' insurance loading factor */

farm = 0, /* initialize farm revenue */

m = -1000, /* min net wealth position ‘/

prem = 0,

gross [12]={ same as in state dynamics function},

prob [12]={ same as in state dynamics function};

prem= (same as in state dynamics function);

/*

Compute current period reward

'/

if (dec[l]= =0)

result = -1000;

else if ((cur_state[0]-cur_state[ 1]-dec[ 1H l /( l +rate))"'load*prem)<m)

result = ~10000;

else

/“' */

result = (l/( 1 -risk))"'pow(dec[ l ],( 1 -risk));

/* ‘/

retum(result);

}

—

Figure A.3. Stage Return Function
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1 Insurance model optimization —Scenario file

!

MAX;

NO_EXTRAP;

ITERATIONS lOISOO;

NO_CHANGE 100;

 

 

ALPHA 0.8989;

STATE "Wealth";

STATE "Costs" ;

STATE "County";

DECISION "Coverage";

DECISION "Consume" ;

DISTRIB "revenue"; RV "revenue";

EVENT 0.0097 -270.3 1 ;

EVENT 0.0121 -233.31 ;

EVENT 0.0230 -l96.31 ;

EVENT 0.0394 -159.31 ;

EVENT 0.0610 -122.31 ;

EVENT 0.0852 -85.31 ;

EVENT 0.1077 —48.31 ;

EVENT 0.1230 -1 1.31 ;

EVENT 0.1268 25.69 ;

EVENT 0.1 182 62.69 ;

EVENT 0.0995 99.69 ;

EVENT 0.0757 136.69 ;

EVENT 0.0521 173.69 ;

EVENT 0.0323 210.69 ;

EVENT 0.0343 247.69 ;

DISTRIB "cost"; RV "cost";

EVENT 0.0235 -20.66 ;

EVENT 0.0213 - l 7.66 ;

EVENT 0.0346 -l4.66 ;

EVENT 0.0518 -1 1.66 ;

EVENT 0.0714 -8.66 ;

EVENT 0.0906 -5 .66 ;

EVENT 0. 1059 -2.66 ;

EVENT 0.1 140 0.34 ;

EVENT 0.1 129 3.34 ;

EVENT 0.1030 6.34 ;

EVENT 0.0865 9.34 ;

EVENT 0.0669 12.34 ;

EVENT 0.0476 15.34 ;

EVENT 0.0312 18.34 ;

EVENT 0.0388 21.34 ;

Figure A.4a. Scenario File, Part 1
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! Insurance model optimization —Scenario file

 

DISTRIB "farm"; RV "farm";

EVENT 0.0002 -264.98 ;

EVENT 0.0015 -217.48 ;

EVENT 0.0093 -169.98 ;

EVENT 0.0384 -122.48 ;

EVENT 0. 1067 -74.98 ;

EVENT 0. 1995 -27.48 ;

EVENT 0.2509 20.02 ;

EVENT 0.2123 67.52 ;

EVENT 0.1208 1 15.02 ;

EVENT 0.0463 162.52 ;

EVENT 0.01 19 210.02 ;

EVENT 0.0022 257.52 ;

1 Discrete state-space grid

I

STAGE 10 0 0; COMBINE -1000|1000 160|l60 362l362, 0.00l0.85|0.05 0|600l5, "revenue" "cost" "farm";

I

Figure A.4b. Scenario File, Part 2
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