
 



 

LIBRARY

Michigan State

University

This is to certify that the

dissertation entitled

ON THE USE OF A REGIONAL-SCALE NUMERICAL

CLIMATE MODEL IN WIND ENERGY APPLICATIONS

presented by

KARSTEN ALEXANDER SHEIN

has been accepted towards fulfillment

of the requirements for the

Doctoral Geography

 

 

 

MSU is an Affirmative Action/Equal Opportunity institution

4
4

L
4
4
4
‘
,

U
’



PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE DATE DUE DATE DUE

 



ON THE USE OF A REGIONAL-SCALE NUMERICAL CLIMATE MODEL IN

WIND ENERGY APPLICATIONS

By

Karsten Alexander Shein

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Geography

2005



ABSTRACT

ON THE USE OF A REGIONAL-SCALE NUMERICAL CLIMATE MODEL IN

WIND ENERGY APPLICATIONS

By

Karsten Alexander Shein

This research explores the performance of a regional scale numerical climate model

(MMS) with respect to the estimation of the wind resource over the Great Lakes region of

North America. Three model domain resolutions (36 km, 12 km and 4 km) are evaluated

for accuracy. Additionally, the ability of the model to accurately estimate the wind

resource distribution at specific locations is investigated by employing various spatial

aggregation schemes over the model domain.

The results of this evaluation of the MMS model indicated that a coarser resolution

domain provides the most reliable estimates of the wind resource over the region.

Furthermore, only the nearest grid point appears to be a necessary estimator of the wind

regime at a particular location. Using this information, the MMS model estimates were

compared with estimates produced by three statistical models, a joint probabilistic model,

a measure-correlate—predict model, and a Krige model, all of which have been used with

prior success in wind resource estimation. Of the three statistical models, the joint

probabilistic and measure-correlate—predict models provided the best estimates over the

region and were thus compared with the MM5 estimates.



It was determined that none of the three models significantly outperformed the others,

even at relatively remote locations within the study area. However, it also was noted that

the MMS model contained a much higher systematic proportion of total estimative bias,

and that it might be possible to improve the estimates. A multiple linear regression based

upon Latitude was fit to the estimated Weibull parameters from the MMS model and a

significant improvement was noted. However, the improvement failed to cause the MMS

to significantly outperform the other models. Thus, this research concludes that in its

present state and relative complexity of implementation relative to established statistical

models, MMS would not be a logical choice for estimating the wind resources of the

Great Lakes region.
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Chapter 1. Introduction

The power contained in moving air has been harnessed for work by human beings

for thousands of years. The use of wind power has included sailing ships, grinding grain,

pumping water, and most recently the generation of electricity. A key component of the

efficient use ofwind power is some prior knowledge of the magnitude and consistency of

the resource. Optimal locations for exploiting the wind resource have long been

identified as those having relatively consistent, moderately high wind speeds. Prior to the

introduction ofmeteorological instruments or observations, the identification of such

locations, both on land and over water was generally made through personal experience

and knowledge handed down between generations. Such thought and planning is clearly

evident in the presence of antique wind mills in many ofthese locations, the continued

use of older sailing routes by modern vessels, as well as in the place names ofmany of

locations to reflect the windy conditions (e.g., Vindeby, Denmark; Punta Viento, Puerto

Rico; Venta de Olivos, Spain; Windy Point, Canada; Buenos Aires, Argentina).

However, prior to the development and installation ofmodern wind energy conversion

systems (WECS), or wind turbines for the generation of electricity, there was little need

to quantify the wind resource. The wind was simply utilized when it blew, and locations

without sufficient wind resources were usually abandoned in favor of winder locations.

Although primitive anemometers have been in existence since at least 1000 AD (Pr'itz,

1988), and wind vanes from several millennia earlier (Neumann and Parpola, 1983) the

relatively low power required by wind mills and sailing vessels was generally satisfied by

siting in consistently windy locations (e.g., hillocks, ridges, coastal bluffs) and supported



by the use of alternative energy sources when the wind was unavailable (e.g. , animal or

water driven mills, cars on sailing vessels). Put simply, either it was suitably windy, or it

was not. Any resulting assessment was therefore qualitative rather than quantitative.

The concept of generating electricity by connecting a windmill rotor to a turbine

is a relatively recent one in the history ofwind power. Arguably the first successful wind

turbine was the Brush post mill turbine in Cleveland, Ohio in 1888 (Dodge, 2002, DWIA,

2003). However, the Brush turbine and subsequent attempts at electricity generation

from the wind met with limited success, until the 19203 when the more aerodynamic

design of aircraft propellers and more efficient turbines became available. In the 19203,

many hundreds of small Jacobs Wind-machines were used at rural farms throughout the

US and Canada (Dodge, 2002). Although these turbines were abandoned after the US

govemment’s rural electrical cooperative program brought grid electricity to rural areas

in the early 1930s, the intermittent operation of these turbines as a result of variable

winds clearly highlighted the need for a better understanding and quantification of the

wind resource if wind energy was to become a viable source of grid-based electricity.

The Danes were the first to experiment with the commercial production ofwind

electricity, taking advantage of the naturally moderate and steady winds over the Danish

peninsula (DWIA, 2003). However, low fossil fuel prices rendered the numerous Danish

wind turbines economically obsolete soon after World War I. The United States took

advantage of a suitably windy location, Grandpa's Knob in Rutland, Vermont to establish

a grid-connected 1.25 Megawatt (MW) turbine during fuel shortages ofWW II in 1941.



Experience with this turbine further highlighted the need for a scientific approach to wind

turbine siting when in 1945, after only a few hundred generation hours, high winds broke

ofica blade, ending its operational life (Dodge, 2002). Unfortunately, interest in wind as

an energy source waned with the ample and inexpensive generation of fossil and nuclear

energy in the 19503 and 19603. Thus there was also little interest at the time from the

scientific community in better understanding the wind as a resource.

Unlike a conventional windmill that simply transforms wind power directly into

an end use (grinding or pumping), the quantity of electricity generated by a wind turbine

is not only dependent on the design of the turbine, but is also highly dependent on the

magnitude ofthe wind speed. Following Rohatgi and Nelson (1994), the power density

(P) ofthe wind is a function of the air density (p), the cube of the wind speed (V) and the

swept area (A) which can be written functionally as:

P=1/2pV3A 1.1

Although a wind turbine may sweep a large area, a further consideration is that a

turbine can physically extract only a fraction of the overall wind power flowing through

the turbine’s swept area before the loss of kinetic energy to the turbine becomes too great

to maintain inflow speeds. This limitation is roughly 59% ofthe power potential

calculated by Equation 1.1 and is known as Betz law (Betz, 1926, Rohatgi and Nelson,

1994, Hansen, 2000). Additionally, due to the loss of energy to the internal mechanisms



of the turbine itself (e.g., gears), modern turbines are capable of extracting around 30% of

the overall power contained in the wind. This proportion is the turbine’s efficiency.

Due to the turbine efficiency and engineering factors such as blade aerodynamics,

wind turbines have an operating envelope such that peak power production is only

possible in a range of relatively strong wind speeds (e.g., 15-25 m 3"), called the rated

speeds. Below about 3 m 3", there is insufficient wind power to turn the turbines. Above

that speed, often called the startup speed, the turbine will generate exponentially more

power as wind speeds increase, until peak production is obtained at the rated wind

speeds. Beyond the envelope ofrated wind speeds, the turbine blades are feathered and

the turbine is shut down to prevent potential damage from over speeding. Figure 1.1

represents a turbine power curve from the Bonus 2 Megawatt (MW) wind turbine (data

source: http://www.bonus.dk) and illustrates the relationship between wind speeds and

turbine power production. The Bonus turbine produces no power below 4 m s'1 or above

25 m s", and rated (2 MW) power only when winds are between 16 and 25 m 3". While

the power curve of Figure 1.1 describes the Bonus 2 MW turbine in terms of

aforementioned critical wind speeds, most wind turbines exhibit a similar profile. Thus,

while a wind turbine is similar to a conventional windmill in that it will produce power

under almost any wind, its optimal efficiency is limited to a rather small range of

moderately high wind speeds. To properly site a turbine, a location is sought where wind

speeds fall within the operational range with relatively high frequency.



Furthermore, it is undesirable to have a turbine in a location where winds

experience rapid and/or frequent changes in speed or direction. Such wind variability

results in excessive stress being placed on the turbine orientation gears and on the blade

angle gears. As a wind turbine may cost well over one million US dollars to install and

have a lifespan of 20-30 years (AWEA, 2002), it is advantageous for a turbine operator to

not only identify a location where winds are frequently within the peak operating range of

the turbine in order to maximize the potential power output from the turbine, but also

where fluctuations in wind speed and direction are relatively low to minimize overall

wear and tear on the turbine.
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Figure 1.1 An idealized wind turbine power curve, derived from the Bonus 2 MW wind turbine (data

sources: http://www.middlegrunden.dk and http:/lwww.bonus.dk).



Although the energy crisis of the 19703 renewed interest in wind energy, a

shortcoming to early WECS development was the relative inefficiency and low power

output of early wind turbines. In general, turbines were limited to under 1 MW of rated

power output (i.e., output at rated wind speeds) so a great number of turbines were

required to generate commercially viable quantities of energy (e.g., the massive array at

Tehachapi Pass, CA). Additionally, turbines of the 19703-19903 had relatively high

startup and rated speeds. These limitations necessitated the identification of locations

that met the stringent resource criteria ofcontemporary turbines. As a result there was a

great deal of scientific interest in accurately estimating the wind resource and a number

ofnotable works, such as the United States Wind Atlas (Elliott et al., 1987) were

published (see Figure 1.2). Unfortunately much of the wind resource research at the time

was based on a sparse, irregular and often inhomogeneous network of anemometers (e.g.,

Elliott et al., 1987, Goodin et al., 1979). As a result, many regions deemed as having

insufficient winds to generate consistent power from WECS were dismissed from

consideration. Similarly, subsequent research on estimating wind resources in such

locations was largely overlooked with but a few exceptions (e.g., Wendland, 1982).

Recent advances and improvements in wind energy conversion systems (WECS)

technology have led to wind power becoming a viable commercial form of electricity

production in many parts of the world. Turbine efficiency, blade aerodynamics and tall

tower engineering have all advanced to where it is now possible to produce electricity

from a wind turbine at a cost of less than 5 cents per kilowatt hour (kWh) in optimal

geographic locations. Such a cost is similar, if not less than the costs associated with



producing that power from fossil fuels or radioactive materials, and without many of the

environmental issues associated with the latter generation methods (IEA, 2001 , Thor and

Weis-Taylor, 2002). These technological advances have, in many places, been matched

by a favorable administrative climate that has enacted tax credits, removed zoning

restrictions and offered grants or low-interest development loans in an effort to actively

develop the wind energy potential in those regions (e.g., Germany, Denmark, United

States, Spain, India; AWEA, 2004a).

UNITED STATES ANNUAL AVERAGE WIND POWER

 
Figure 1.2 Wind power potential for the United States, from the Wind Energy Atlas ofthe United States

(Elliott er a]. , 1987). Darker shaded regions have greater potential than lighter regions. See Elliott er al.

(1987) for a quantitative description of each wind power category.



As a result ofnew technologies, governmental support, and a recognized need for

localized energy production (as evidenced by the California energy crisis of 2000), over

8,000 MW ofwind power generation capacity was installed worldwide in 2003 (with

1,687 MW installed in the United States and 5,467 MW in Europe). This brings the total

worldwide wind power conversion capacity to over 40,300 MW as of early 2004, up from

24,000 MW in 2001 (AWEA, 2002, 2004b). This developmental trend shows no signs of

slowing and includes newly industrialized and developing countries which seek to meet

increasing electricity demands and build energy independence. It is estimated that an

installed wind energy capacity ofover 200,000 MW will be in operation by the end of the

decade (EWEA and Greenpeace, 2002). Several German States obtain more than 10% of

their electricity from wind and Denmark produces over 20% of its electricity from wind

(AWEA, 2004a). If current development trends continue, many wind farms will, by

necessity be developed in locations for which wind data are sparse and where past studies

had deemed the wind resource to be insufficient.

In general, the historical collection of wind speed and direction data has

historically, like most meteorological data collection, been limited to discrete locations

comprising a sparse and irregular network of observation stations, and generally limited

to more populated areas. However, the most favorable locations for wind energy

conversion systems are those regions with strong (e.g., mean wind speeds (u) exceeding

around 7 m s") but steady winds. Due to either relatively harsh environmental conditions

or physical limitations on human habitation, these areas generally tend to have low

populations or may be devoid of people altogether (e.g. , offshore) and thus usually



contain few meteorological observation stations (e.g., Willmott et al., 1991, Robeson,

1993, Klink, 1999). It is therefore necessary to somehow estimate the wind resource

over regions where little or no observational data exist.

Although a great deal of early research on wind resources has been devoted to the

estimation of speeds at locations lacking adequate observations, such estimates have

invariably been hindered by the underlying characteristics of the wind field (e.g., serial

correlation, non-stationarity, anisotropy). The successes and limitations of earlier works

will be discussed in more detail in the following chapter. Despite limitations to the

success of estimating the wind resource at poorly instrumented locations, certain regions

have been identified that clearly have wind resources amenable to WECS development.

Offshore (i.e., over open water) and coastal winds in particular have long been

acknowledged as being generally stronger and exhibiting greater persistence than nearby

inland winds due to large fetches of low surface roughness over the water bodies (e.g.,

Eichenlaub, 1979, Pryor and Barthelmie, 2001, Palutikof et al., 2002). Additionally,

offshore locations may not be as limited by many of the societal objections and zoning

issues often associated with land-based WECS development (Still, 2001). Thus it is not

surprising that within the wind energy sector an increasing number ofWECS

development initiatives are focused offshore and along coastal bluffs. Indeed, several

along-shore and offshore (hereafter referred to as the shore zone) wind farms are already

Operating in the UK, Denmark and Germany. Additional shore zone projects are under

consideration for the United States, Brazil, and Ireland (AWEA, 2004a). Because of the



importance of the shore zone wind resource to developing wind energy capacity, there is

a critical need for its accurate estimation of potential wind resource (Troen and Petersen,

1989)

Unfortunately, unless a sufficient series of wind data exists for a considered

location, the identification of an optimal WECS development site can be difficult. Most

wind farm locations are initially selected a priori, from regionalized isotach (wind speed)

and isogon (wind direction) maps in wind atlases (e. g., Elliott et al., 1987, Troen and

Petersen, 1989). Once selected, a developer is advised to erect an anemometer and

collect wind data for a year or more, subsequently employing empirical interpolation

techniques to decide whether the site is optimal or not.

The empirical techniques that are used in estimating the wind resource of a

location have been shown by numerous researchers to work reasonably well for

estimating wind at a candidate location if that location is within a relatively short distance

of the nearest meteorological station and the intervening terrain is relatively

homogeneous (e.g., Justus er al., 1976, Goodin et al., 1979, Haslett and Raftery, 1989).

Because such techniques are empirical, their potential accuracy is limited both spatially

and temporally. Temporally, the accuracy ofwind resource estimation tends to be

limited to the data which are available. No information is available for trends, cycles or

anomalies beyond the period of record. Additionally, such methods are limited by the

degree of spatial coherence present in the wind field and the distance from the location of

interest and the surrounding meteorological stations. In this context, such methods
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cannot address any of the smaller scale influences on wind that may occur between the

candidate location and the meteorological series, instead aggregating the influences of

such local-scale contributions into a set of static coefficients and shunting any departures

from those terms into the error of the model. Although such issues can be investigated

through an assessment of spatial coherence, only a few works have addressed these issues

outside ofcomplex terrain (Robeson and Shein, 1997, Klink, 1999).

As the lack of an adequate observational network has been repeatedly recognized

as a limitation to reliable and accurate wind resource estimation over large regions, the

use ofdynamical atmospheric relationships to produce plausible wind estimates at

uninstrumented locations has been investigated. Over the past few decades, there has

been a growing interest in the use of numerical weather models for forecasting the wind

resource over a region, with a number of such models subjected to testing and validation

over different areas (e.g., Sherman, 1978, McQueen et al., 1995, Frank et al. 2001).

However, again, the performance ofthese models with respect to wind over non-complex

terrain has been largely overlooked and little work has investigated the ability of such

models to adequately reproduce the statistics of the long-term wind resource.

1.1 Statement of Purpose

A review ofthe literature, which follows in the next chapter, reveals that short-

terrn forecasting is the primary reason for interest in using RCMs in the context of wind
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energy. In such context, RCMs have been extensively investigated for producing a wind

forecast out to about 48 hours at specific locations, and individual wind speed estimates

are validated for accuracy. Although a cursory examination of observed versus model

estimated hourly wind speeds is conducted herein, it is not the purpose of this research to

perform such an evaluation. Rather, an RCM can also be used to generate a longer-terrn

distribution of wind speeds for a location or over a region ofhundreds of square

kilometers. While individual estimates may differ substantially from their respective

observations, the overall distribution, if accurate, would permit high confidence a

posteriori selections of optimal WECS locations within the region at locations where

few, if any, observations exist.

Unfortunately, this use of the RCM in wind energy has been largely overlooked

on this point. In fact, the literature appears to be uncharacteristically silent on the use of

an RCM as a method for generating spatially coherent and accurate estimates of the long-

term wind resource over a region. This research seeks to remedy that deficiency in the

science by taking the first step and validating the performance of an RCM for estimating

the climatology of wind speeds over a region. Therefore, it is the goal of this research to

investigate the utility of a regional-scale numerical climate model (or RCM) as a means

to accurately estimate the wind resource over the Great Lakes region ofNorth America

(Figure 1.3), an area that is currently of interest for WECS development.
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Figure 1.3 The study area; the Great Lakes region of North America.

Within the scope of this research, the foci are fourfold. The primary goal of this

research is to determine whether a regional numerical climate model can adequately

estimate the wind climatology over a region. Before a numerical climate model can be

expected to be capable of plausibly estimating the long-term climatology of the wind

field over a region, it must be shown that the model can adequately reproduce the

statistics of the regional wind field as derived from observational data. To that end, the

first focus of this research is to validate the estimative ability of the near-surface wind

output from a widely used RCM, the Pennsylvania State University / National Center for

Atmospheric Research (PSU/NCAR) Mesoscale Model, more commonly known as MM5
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(Haagenson et al., 1994). This validation will serve as the framework under which the

subsequent analysis of this research will be conducted.

Second, execution ofregional-scale numerical climate models tends to be

computationally intensive. One of the most critical factors governing computational

intensity, as well as estimation accuracy is the resolution, both spatial and temporal of the

model simulation. To optimize the performance of an RCM, a balance must be achieved

between computational intensity and estimation bias. The use of finer spatial or temporal

resolution must be justified by appropriate levels of error reduction. If error cannot be

significantly reduced by increasing resolution, the increase in computational intensity

may not be justified. However, decreasing resolution to reduce computational intensity

may mask many local-scale effects (e.g., boundary layer, land cover) and increase error

to unacceptable levels. To address this issue, this research will seek to establish the

optimal spatial and temporal resolution for wind resource estimates over the Great Lakes.

Such Optimization will allow the RCM to be run most efficiently in terms ofCPU

utilization and bias minimization.

Third, because dynamically-driven RCMs such as MM5 tend to be

computationally intensive at any meaningful resolution, and require both meteorological

and computer expertise to install, run and properly interpret output, there must be a

compelling advantage to their use over established stochastic and probabilistic methods

ofwind resource estimation. To that end, this research will assess the performance of
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wind resource estimates of the MM5 RCM against the performance of traditional

estimation methods commonly employed in the wind energy industry.

Finally, the output of the MM5 RCM will be analyzed to determine whether

stochastic corrections can be applied to reduce any systematic bias in the estimates

produced. Several researchers have raised the question of spatio-temporal accuracy in

RCM forecasts ofmeteorological variables (Colle et al., 1999, Tustison et al., 2001,

Mass et al. 2002). While a model may produce accurate estimates of a variable, those

estimates may be systematically shifted in space-time such that it appears the model has

low skill. This research will seek to identify what, if any systematic bias is occurring in

the RCM output and attempt to explain the cause of that bias.

Given that the overall goal of this research is to reduce the uncertainty

surrounding RCM estimates of a regional wind climatology, it is expected that this

research will facilitate the integration of regional-scale dynamical models of the

atmosphere into wind farm siting approaches and allow developers to select sites with

greater confidence in the wind climatology than had previously been available fiom a

priori approaches. Such research is especially relevant to regions where wind

observation networks may be too sparse to achieve a meaningful wind energy

climatology.
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Chapter 2. Literature Review

As was discussed in the previous chapter, the accurate estimation of the wind

resource of a location is of critical importance to the success ofany WECS installed

there. The capital costs of installing a wind turbine or wind farm are currently estimated

to be about $1000 US per kilowatt of energy capacity (IEA, 2001). Thus, simple

economics dictate that if the wind resource at a location is deemed insufficient for the

profitable production of electricity, the site ought not be considered for WECS

development. In addition to the consideration of the overall wind resource at a location,

it has become increasingly necessary to more precisely specify the resource in terms of its

distribution. This is largely due to the fact that turbine manufacturers such as Vestas or

GE now offer a series of wind turbines, each specifically designed for different wind

climatologies such as lighter or more variable wind speeds (Filtenborg, 2004). Also, as

the number ofWECS installations increase worldwide, there is growing interest in

exploiting wind resources in more remote locations; locations that may not have adequate

wind measurements.

To those ends, most research directed toward wind energy climatology has

focused on accurately estimating the statistical properties of the wind at a location or over

a region, providing robust estimations of the distribution of those winds, and the

estimation of wind regimes in locations for which there exist few or no data. Within the

context of this research, a discussion follows of the advances and limitations offered by

prior work in this area.
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2.1 Wind Resource Identification and Analysis

The goal ofwind resource estimation in the context of wind energy conversion is

to reproduce the statistical properties of the long-term wind field at a “candidate”

location, or over a geographical area such that errors between the observed wind

climatology and that which is estimated are minimized. Thus, nearly all wind energy

climatological analysis is concerned with either statistical evaluation or modeling the

resource, or most fi'equently, both. Unfortunately, while the use ofwind as a source of

power is not a recent idea, it was not really until the energy crisis of the 19703 that it

became the focus of substantial scientific investigation. As such, little research on wind

climatology is known prior to that time period.

A number of early works (e.g., Putnam, 1948, Dinkelacker, 1949, Golding, 1955;

Hewson, 1975, Justus et al., 1976, Hennessey, 1977, Widget, 1977) sought to examine

the statistical properties ofwinds at locations where there existed relatively long (10-30

years) records of wind observations. Much of this work assumed that the locations at

which one might wish to consider a wind turbine installation were rural or remote

locations at which the wind record was sparse at best. Thus, from the beginning most

research has sought to evaluate and summarize the wind regime at locations where the

wind data must be estimated prior to undertaking a summary analysis. Whether a

researcher is concerned with evaluating the wind at a specific location or over a wide

area, both methodologies involve interpolative modeling.
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Even the earliest approaches (e.g., as discussed in Putnam, 1948), recognized that

the properties of wind within the boundary-layer were such that the wind at a location

could not simply be assumed equivalent to the wind measured at a nearby anemometer.

The primary reason is the effect of localized variations in surface conditions and

atmospheric modifications operating on spatial scales less than the distance between the

two points, such as thermal and mechanical turbulence. A thorough discussion of the

influence ofmany of these small-scale effects can be found in such boundary-layer

references (e.g., Oke, 1988; Geiger et al., 1995; Stull, 1999; Arya, 2001).

However, it is also well known that the winds at all levels are driven by the

overlying pressure gradient that exists at much larger (synoptic and even global) scales

(Panofsky, 1958; Wallace and Hobbs, 1977). Thus, while not equivalent, the winds at

one location will tend to be somewhat related in space and time to winds at a nearby

location. It is this assumption that has driven most empirical estimation techniques

developed for wind resource estimation.

2.1.1 Properties of the wind field

In order to instigate a model ofwinds at a location or over a region, it first is

necessary to understand the properties and behavior of the wind resource as it pertains to

wind energy conversion. On this point there exist a number of useful references.

18



2.1.1.1 Statistical measures

The properties of the wind field over a location or region have been known for

some time. Putnam (1948), Dinkelacker (1949), and Golding (1955) each address many

of the aspects ofthe wind field that are important to wind energy conversion. Among the

most important in their estimation were the mean and standard deviation of the wind

speed. Although the direction of the wind is important from a climatological standpoint,

it is generally less critical for wind turbine operation in that even the earliest turbines

were mounted on a pivoting gear that allowed for their continual orientation into the wind

(Putnam, 1948). Thus, initially the variability of the wind direction was solely important

as a measure of stress on the pivot gear. Greater directional variability meant the turbine

would be shifting direction more frequently to capture the wind. More recently, with the

implementation of complex models for wind speed estimation, knowledge of the wind

direction has become critical (e. g., Walmsley et al., 2001).

Although a number of notable works, primarily wind energy atlases (e. g., Elliott

et al., 1987 and Troen and Petersen, 1989) have focused on estimating and presenting the

mean and standard deviations of wind speed and power over large regions, they have not

been limited to those variables. The mean and standard deviation ofwind velocity are

now recognized as rather basic reference statistics of somewhat low utility to wind

energy conversion (Justus et al., 1976). Instead, the extractable wind power is largely a

function of not only the wind speed, but also the distributions of those speeds. Rohatgi
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and Neslon (1994) present an excellent overview on the characteristic relationships

between the wind resource and wind power.

In order to derive total potential power of the wind, it is only necessary to have

information on the wind speed and the air density. From Equation 1.1, if area A is set to

1 square meter, the power contained in a square meter of wind will be equivalent to half

the quantity ofthe air density times the cube of the wind speed, with resulting units in

Watts. Because of its exponential relationship with wind speed, this formulation more

heavily weights strong winds. This relationship is well described in Shein (1995).

Unfortunately, this power also is of limited utility, for wind turbines are incapable of

utilizing the entire spectrum ofwind speeds with maximum efficiency. Appropriate

estimation ofwind power requires the calculation of extractable power, not only as a

function ofwind speed, but also as a function of the extraction performance of the turbine

itself. This latter factor relies heavily on the capacity of the turbine and its performance

through the various portions of the wind speed distribution.

2.1.1.2 Wind speed distributions

Justus et al. (1976) properly addressed this issue by examining the distribution of

wind speeds relative to an idealized turbine Operation curve (such as is presented in

Figure 1.1). In such a curve, a turbine does not operate when wind speeds are below its

so-called cut-in threshold (normally about 3 or 4 m s"). Above that threshold, the turbine

will produce only an exponentially incremental proportion of its maximum power until
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wind speeds reach the turbine’s rated speed (normally around 12 m 3"). Between this

speed and an upper threshold, the turbine will produce its rated power. But when wind

speeds exceed the upper rated threshold (often called the cut-out speed; about 25 m s"),

the turbine will cease operation to prevent wind related mechanical damage. Thus, any

wind speeds below the cut-in or above the cut—out speeds are lost to power production,

and thus the actual convertible wind power at those speeds can be set to zero. As an

example, a calculation of potential power over the rated speed range (12-25 m 3") yields

1,037 W In2 to 9,375 W m'z. Assuming a turbine with 1 megawatt (MW) ofrated power

sweeping an area of 5,027 m2 (40 m rotor radius), the potential power of the wind

through the turbine blades ranges from 5.22 MW to 47.13 MW. Even after factoring in

the Betz limit (as discussed in the previous chapter) of 59% extractability, the potential

wind power is 3.08 to 27.8 MW. The turbine, limited to 1 MW output at all rated speeds

converts only from 4% to 32% of the available wind power. The rest of the power is

simply not extractable by the turbine. The same relationship holds true for the range of

speeds between the cut-in and rated speed. Thus is it perhaps more appropriate to

describe the power contained in the wind as a firnction of the actual power produced by a

turbine, or, in the absence of that, to examine the distribution of the wind speeds relative

to an idealized power curve, as described by Justus et al. (1976).

As a result of the importance of variable power output relative to wind speed, the

investigation ofwind speed distributions has rightly occupied a substantial portion of

wind power climatology research. Even prior to the surge of interest in wind energy

applications in the 19703, a number of early works addressed wind speed frequency
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distributions. Dinkelacker (1949), for example determined a Plank distribution to be

appropriate for wind speeds in Germany. Crutcher and Baer (1962) enjoyed some

success fitting a bivariate normal distribution instead. However, Smith (1971) and later

Hennessey (1977) correctly noted that the bivariate normal distribution involves

mathematical complexities that limit its utility for wind energy applications. It should

also be noted that under certain circumstances, the bivariate normal distribution can be

simplified to a Rayleigh distribution (Hennessey, 1977). In 1948, Putnam had suggested

that wind speed distributions could be approximated with a Pearson Type III distribution,

more commonly known as a Gamma distribution. Sherlock (1951) corroborated the

utility of this distribution. Although it took approximately two decades, in the mid-1970s

a number of researchers converged upon a special two—parameter case ofthe Gamma

distribution known as the Weibull distribution (Weibull, 1951) that had been used

extensively in engineering failure analyses.

Because of its two (and occasionally three) parameters, the Weibull distribution

quite often provided more accurate fits to empirical data. The aforementioned Rayleigh

distribution is actually a special case of the Weibull distribution. It appears that the

earliest known application of the Weibull distribution to near surface wind speed was

Davenport (1963), who used the distribution to discuss wind loadings on buildings.

Among the first studies to investigate the use of the Weibull distribution for wind speeds

in the context ofwind energy research was Justus et al. (1976) who compared the

Weibull distribution to a lognorrnal distribution (as had been employed with success by

Luna and Church, 1974) and found it to be superior.
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Since 1976, the Weibull distribution has gained wide acceptance among wind

energy researchers (e.g., Justus et al., 1976, Hennessey, 1977, Corotis et al., 1978, Brown

et al., 1981, Conradsen et al., 1984, Poje and Cividini, 1988; Wieringa, 1989; Beyer and

Nottebaum, 1995). Even though a particular wind speed distribution cannot

automatically be assumed to follow a Weibull distribution, the Weibull probability

density function (elaborated upon in Chapter 3) is versatile enough to accommodate a

great many ofthe unimodal, zero-bounded distributions of wind speed that could

conceivably be found in nature. To that end, even a distribution that approaches

normality (save for the zero bound) can be adequately approximated by a Weibull

distribution by setting the shape parameter equal to 3.7.

2.1.1.3 Data collection

In addition to providing a description of the wind resource in terms of summary

statistics and probability distribution functions, there are the added issues of the

collection and behavior of the resource itself. If the data are of low quality or not

representative of the true winds at a location, any resulting analysis will be suspect.

Because this issue is quite involved, and has been addressed in other notable works (e.g. ,

Peterson et al., 1998a) it will only be cursorily summarized here.

In terms ofwind data, there are three areas in which measurement error can be

introduced. The first is from the instrument itself. Although a number of instruments are
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available to a wind researcher, including pressure plates, pitot tubes, and more recently,

propeller vanes and thermal and ultrasonic anemometers, the three-cup anemometer has

emerged as the most widely used anemometer for wind speed information (Fritschen and

Gay, 1979, Wyngaard, 1981, Beljaars, 1987, Kristensen, 1999). The three-cup

anemometer has been widely utilized since its invention in 1846 and is prized for its

robustness and reliability (Kristensen, 1999). While two notable shortcomings of the cup

anemometer are its threshold speed (the speed below which the momentum ofthe wind is

insufficient to initiate rotation) and a tendency for the anemometer to over-speed in

higher wind speeds (Kaganov and Yaglom, 1976, Wyngaard, 1981, Kristensen, 1999,

2002), it is the nature of the observation (wind power production) that largely negates

these shortcomings in the data collection (Palutikof et al., 1984). Thus, if the

anemometer being utilized is properly maintained and calibrated, instrumental error in

wind resource research using data collected by such instruments can generally be

considered inconsequential.

A second issue related to wind data collection is the representativeness and

homogeneity ofthe data. Although a great deal of research has been done in the area of

wind resource analysis, very little has examined how representative a wind observation is

of the true wind regime over the immediate vicinity. With specific mention to wind,

Wieringa (1980) examined the regional representativeness ofwinds measured by

anemometers at airports and found that, with the exception of locations where the wind

field was modified by local terrain or other obstacles, measurements were indeed

representative of the immediate vicinity. However, Shein (1995) noted that at several
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airport locations in the Midwest United States, anemometers were placed in locations

where the wind field would be at least partially biased by obstacles. It is assumed, based

on the criteria set forth for the new generation of automated surface observing systems by

the US Federal government (OFCM, 1994) and later refined by the Federal Aviation

Administration (FAA, 1999) and the National Oceanic and Atmospheric Administration

(NOAA, 2000) that such unrepresentative siting has been since rectified.

Furthermore, if one examines the station histories of many of the anemometers

used in wind resource studies to date, one will often find a history filled with

discontinuities associated with station relocations and anemometer height adjustments

(Shein, 1995, NCDC, 1994a and b). Thus it is often necessary to adjust the observed data

from one height to another in order to standardize it (Peterson et al., 1998a, Robeson and

Shein, 1997, Klink, 1999). If information on roughness length is available, the log-wind

profile can be used to adjust the wind speeds from one height to another (Tennekes,

1973). Where this information is unavailable, the wind speed power law is utilized

(Touma, 1977, Petersen and Hennessey, 1978). Invariably, either adjustment will

introduce some bias into the observations as both provide estimates ofwind speed at the

adjusted height. Again, OFCM (1994) prescribes a set of anemometer siting standards

that set the height at the World Meteorological Organization standard of 10 m (although

procedures for station relocation are not discussed).

Much of the bias in empirical methods of low-level wind vector estimation can be

attributed to a failure to appropriately account for the boundary-layer dynamics (e.g.,
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stability, turbulence, thermal structure, roughness) that modify the wind vector from one

location to the next and from time t to H]. Furthermore, each of these boundary-layer

conditions acts on the wind at different temporal and spatial scales, resulting in a wind

vector response at certain scales more so than others. Thus, the scale at which the data is

collected, both spatially and temporally is important.

In general, the collection of data on wind speed and direction has, like most

meteorological data collection, been limited to heavily populated areas. However, the

most favorable locations for wind energy conversion systems are those regions with

strong but steady winds. These areas generally tend to have low populations or may be

devoid ofpeople altogether (i. e., offshore) and thus contain sparse and irregular networks

ofmeteorological observation stations (e.g., Willmott et al., 1991; Robeson, 1993; Klink,

1999). As such, the spatial scale ofobservations of wind may be on the order of 100 km.

Any variations in surface roughness, albedo, obstacle height or density, or terrain at

scales below that of the network density will generate smaller scale influences on the

regional wind field that would be invisible to the observation network (Tetzlaff, 1984).

The same consideration is important for the temporal resolution of the network.

Van der Hoven (1957) describes a number of significant signals within the wind speed

spectrum. If the sampling interval is too small, the signal will be dominated by the noise

of localized influences such as thermal and mechanical turbulence and be useless to wind

power estimation. If the sampling interval is too large, a number of regional or synoptic

signals of critical interest to a wind resource modeler (e.g. , the diurnal cycle or a sea
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breeze circulation) would not be resolved by the data. Most wind energy research has

settled on the use of hourly wind observations as a good tradeoff between the reduction

oflocalized “noise” and the capture of the majority of regional signals. However, it is

unclear whether this hourly temporal resolution is selected by choice or simply because a

majority ofwind observing stations collect observations at this resolution.

2.1.1.4 Serial correlation and stationarity

As interest in modeling wind speeds and wind speed distributions has grown,

other statistical properties of the wind have gained importance. These properties, such as

serial correlation and stationarity, are most important in stochastic model construction,

but also are critical in the statistical evaluation of model performance.

As a result ofwind being a continuous field, serial correlation in wind speeds

exists in both space and time. To that end, a wind speed observation at a specific place or

time cannot be truly considered independent of the wind speed that was observed at a

preceding time or an adjacent place. Serial correlation in space is the measure of

covariance between simultaneous observations from adjacent locations, often as a

function of the distance between them (Davis, 1986). Temporally, serial correlation, also

called autocorrelation, is the measure of covariance between sequential observations at

the same location, and is a function of the time between observations (Wilks, 1995).

Terrain complexity plays a large deterministic role in the degree of serial correlation,

both spatial and temporal. Spatially, as local terrain and obstacle influences tend to
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modify near-surface flow rather rapidly (depending on surface complexity), the modified

flow will appear to be less related to the flow measured at an adjacent station as the

distance between the stations increases (Steinitz et al., 1971, Wylie et al., 1985). At

distances more than a few kilometers, most of the synoptic and diurnal thermal signal that

is manifested as serial correlation appears to be lost in localized noise (Wylie et al. , 1985,

Robeson and Shein, 1997, Toriumi et al., 2000). Thus, for most wind resource studies,

where stations typically are tens if not hundreds of kilometers apart, spatial serial

correlation is generally minor and usually ignored. In addition, Robeson and Shein

(1997) also have demonstrated that temporal sampling intervals also play a critical role in

determining spatial coherence (i. e., distance decay of serial correlation).

Temporal autocorrelation of winds also has been explored in the literature (e.g.,

Wylie et al., 1985, Brett and Tuller, 1991) and found to be rather substantial at short lags.

Like with space, serial correlation in time is largely a function of the distance (in this case

the temporal distance between observations) and the relative influence of the local

terrain. A number of works have examined the behavior ofwind speed at various

sampling intervals and have found that shorter sampling intervals tend to capture a

greater amount of the temporal autocorrelation, up to a point (Beljaars, 1987). Beljaars

(1987) confirmed Fiedler and Panofsky’s (1970) assertion that a sampling interval of 10

minutes represents the boundary ofthe spectral gap dividing the synoptic signal and local

turbulence. At higher frequency sampling intervals, temporal autocorrelation drops as

local turbulent influences dominate. Furthermore, Shein (1995) noted that both spatial

and temporal autocorrelation became incoherent at aggregation intervals greater than
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daily. Thus, it appears that the greatest temporal autocorrelation appears in wind

observations where the sampling or averaging interval is between 10 minutes and 1 day.

Additionally, Brett and Tuller (1991) and Shein (1995) have demonstrated that temporal

autocorrelation at the hourly level is often quite high (e.g., around 0.9) at a lag of one

hour, but decreases rapidly with subsequent time intervals. Brett and Tuller (1991) also

indicated that lag 1 temporal autocorrelation also decreases noticeably as the surrounding

terrain becomes less homogeneous, indicating a decrease of synoptic influence.

Unfortunately, most wind studies utilize either hourly or three-hourly observations and

lag 1 temporal autocorrelation values remain high, even in relatively complex terrain.

However, work in autocorrelation modeling and statistical testing (e.g., Bayley and

Hammersley, 1946, Box and Jenkins, 1976, Wilks, 1995) has provided methods for

computing “effective” sample sizes that compensate for the dependence induced by serial

correlation in a data series. Wilks (1995) also describes a variance inflation factor that

can be used to estimate the time interval between “effectively independent samples.”

Often the autocorrelation in the wind speed itself is used as a modeling tool as with

Markov chains (e.g., Dukes and Palutikof, 1995) or with autoregressive models (e.g.,

Brown et al., 1984).

Non-stationarity is another issue in wind speed modeling. It refers to a mean

value that is changing as part of a trend, linear or otherwise, over a given period of time

or a given area of space (Cressie, 1993). Non-stationarity often is referred to as drift or

anisotropy. The difficulty with non-stationarity is that most statistical procedures for

evaluating a series of data in either space or time are invalidated by non-stationary data.
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Put simply, most statistical procedures rely on an unchanging mean (Box and Jenkins,

1976, Davis, 1986). A trend in the mean of the data over space or time represents a

systematic behavior and a level of dependence to an external factor. Thus, any change in

the mean over space or time must either be accounted for, as in a model, or removed prior

to statistical evaluation to ensure stationarity. For example, in the kriging work of Haslett

and Raftery (1989) or the time-series modeling of Brown et al. ( 1984), the spatial and

temporal drift in wind speeds was determined to be significant and had to be accounted

for as part of the resulting models to ensure that the residuals would be independent and

randomly distributed.

2.1.1.5 Resource variability

Lastly, while the standard deviation of the winds about a mean value, and the

wind speed frequency distribution hint at the degree of variability inherent to the data,

these measures do not reveal longer-terrn behavior in the resource. In fact, the idea of a

single statistic such as standard deviation, or a single distribution encompassing all

available data implies an assumption that the data are indeed stationary and unchanging

in time. A number ofworks have clearly demonstrated that this is not the case (e.g. ,

Haslett and Raftery, 1989, Palutikof er al., 1986, 1987, 1993, Shein, 1995, Klink, 1999).

Palutikof et al. (1987) for example, showed that mean wind speeds at a single

station in the UK varied between 5.2 and 7.3 m s'1 over a period of 56 years. Klink

(1999) corroborated work by Shein (1995) that the variability of wind speeds about the
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annual mean also could not be considered constant. All of the aforementioned works also

demonstrated that the interannual variability in winds at a location are not necessarily

consistent over the surrounding region. Klink (1999) noticed that interannual variations

in mean and variability had a strong seasonal component, implying that seasonal changes

in surface roughness, and thus local changes may exert a large influence. Palutikof et al.

(1986, 1993) alternatively suggested that a portion of the non-stationarity in wind records

is likely due to external forcings such as larger-scale climatic change. Spatially, Carlin

and Haslett (1982) looking at wind speed distributions concluded that the variability from

station to station was such that a Weibull distribution fit to one station was not

necessarily transferable to other locations.

However, despite the aforementioned evidence of long-term variations in wind

speed, other researchers claim the degree of variability is statistically insignificant for

resource analysis. Golding (1955) for example, referencing the same observation station

as Palutikof et al., (1987) — Southport (UK) -— indicated that annual means of 37 of the

years of record were within 10% of the long-term mean. Justus et al. (1979) and Corotis

et al. (1977) further corroborate (to a 0.1 confidence level) that annual mean wind speeds

at a location fall within 10% to 18% of the long-term mean. However, neither of these

researchers investigated the presence of trends or long-term cycles in their data, thus

ignoring the possibility that the reported deviations might not be constant in time. For

example, both Shein (1995) and Lun and Lam (2000) demonstrate that certain trends in

Weibull parameters exist over long periods of data.
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Clearly, no model or statistical evaluation of the wind resource at a location or

over a region can ignore any systematic behavior such as longer-term or spatial

variability in the data and be capable of achieving robust or unbiased results.

Additionally, the presence of longer-term or spatial variability raises the question ofhow

much data and how dense a network is necessary to accurately address the wind resource.

Concerning temporal series lengths, Justus et al. (1979), based on their aforementioned

results concluded that longer periods of record do not significantly increase estimation

accuracy, and thus are unwarranted. However, despite this assessment, there remains

some debate in the literature surrounding how much data is needed to assess the long-

terrn wind resource at a location. Estimates range from as low as less than 1 year

(Barros and Estevan, 1983) up to 20 years (Petersen et al., 1998a). General consensus in

the literature is that 1 year is a minimum amount, with 3 to 10 years being the standard,

and if examining longer-term variability (e.g., Palutikof et al., 1987) several decades are

mandated.

Commonly, models have been used to stochastically generate longer, synthetic

series ofdata at locations where the researcher feels the observational record is too short

(e.g., Justus et al., 1979, Haslett and Raftery, 1989, Derrick, 1992, Hannah etal., 1992,

Dukes and Palutikof, 1995, Garcia-Rojo, 2004). In general, it is these models that form

the basis ofmost wind energy resource estimation and thus are discussed in the next

section on wind resource modeling. However, one of the primary shortcomings of these

models is that they attempt to correlate data between stations that may be some distance

from one another.
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Spatially, sparse anemometer networks have always presented a problem.

Although there may well exist a systematic relationship between two stations, it is likely

to be of low signal strength and obscured by irresolvable local noise generated at the sub-

network scale (i. e., at distances less than the distance between stations). The spatial decay

ofthis spatial serial correlation, which ultimately forms the basis for most stochastic

resource models, decays rapidly with distance, even over relatively homogeneous terrain

(Robeson and Shein, 1997). While the local influence on a wind speed record at two

adjacent locations might be empirically deduced, it becomes a much more complex issue

when the model attempts to interpolate at too many locations or continuously over a

larger region (e.g., Nielsen, 1999). To that end, some researchers have sought out more

spatially continuous alternative wind data such as those derived from satellite sampling

(Pryor et al., 2004) or gridded geostrophic wind fields (Palutikof et al., 2002), relegating

anemometer-based observations to model validation. Dynamically-driven, numerical

climate models represent an alternate approach (e.g., Pielke, 1985, Draxler, 1990, Ayotte

et al., 2001, de Rooy and Kok, 2004). Currently however, the majority of research using

numerical models is focused on forecasting wind velocities rather than estimating wind

characteristics over extended periods of time (e.g., Perez et al., 2003). This research

seeks to rectify that deficiency.
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2.2 Statistical Wind Field Modeling

The preceding section discussed the basis for evaluating the wind regime over a

location or an area. These aforementioned considerations subsequently lay the

groundwork for most modeling efforts that have been developed to describe wind

resources. Methods for estimating the wind resource can be divided into three categories

or types, which are not mutually exclusive: stochastic models, probabilistic models, and

dynamical models. Strictly speaking, probabilistic models are also stochastic in that they

are based on empirically-estimated parameters, and many models that are described as

‘stochastic’ function only with the proper specification of an underlying frequency

distribution. Thus, although they are separated for clarity in the subsequent sections,

most models share some underlying theoretical background and are not exclusive to those

categories.

2.2.1 Stochastic models

Much early work on wind resource estimation involved the development and use

of stochastic models. Early attempts to estimate the wind at a candidate location were

largely parametric and usually limited to the identification of a long-term mean wind

Speed (e.g., Hewson, 1975, Baker etal., 1979, Justus et al., 1979). Because the

variability of the wind was largely ignored, it is not surprising that these early models met

with only limited success and utility.
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Among the earliest stochastic methods were so-called method-of-ratios, or

climatological reduction approaches (Putnam, 1948, Conrad and Pollack, 1962). This

approach estimates the long-term mean wind speed at the candidate site from the linear

relationship between short-term records at the candidate site paired to observations at

nearby anemometers having longer observational records. Climatological reduction is

the forerunner of the more recent Measure-Correlate-Predict model that will be discussed

later. The reduction approach was further advanced by Feller (1966), who incorporated

the idea that spatial cross-correlation could be used to identify and give preference to

those neighboring stations that shared the greatest similarity with the short record at the

candidate site. A major shortcoming of the reduction method is that it relies heavily on

the quasi-stationarity of observational anomalies at both the candidate location and the

anemometer location (Justus et al., 1979). As was previously mentioned, in most cases

the behavior of wind speed is heavily influenced by autocorrelation, non-stationarity and

cyclical influences (e.g., diurnal and seasonal signals), the behavior of which may be

non-linear and vary substantially from one location to another, even over small distances

(Justus et al., 1979).

Stochastic models of wind resource estimation have more frequently trended

toward regressive type models that take advantage of the known dependence of either the

observations to previous observations in time (autoregressive models), the relationship

between observations at one location and another (correlation models), or a combination

of the two. Autoregressive models were originally developed to forecast the behavior of

economic indicators (Box and Jenkins, 1976), but their versatility toward any variable
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that demonstrated a temporal dependence tendency, such as wind, was quickly

discovered (Katz and Skaggs, 1981).

Among the first researchers to examine the use of autoregressive (AR) models for

wind speed estimation were Goh and Nathan (1979), but they met with limited success

due in part to their assumption of a stationary Gaussian wind speed distribution. Chou

and Corotis (1981) rectified this issue by employing a non-stationary Weibull function as

the underlying distribution. However, a difficulty with early AR models, such as that

developed by Eidsvik (1981) was the lack of explicit inclusion of a diurnal cycle. As

such, early AR models were clearly not parsimonious at orders of 24 hours and greater

(Eidsvik, 1981). Following early attempts, McWilliams and Sprevak (1982) and Brown

et al. (1984) presented AR model approaches that took both a non-Gaussian distribution

and diurnal cycle into account and constructed second order autoregressive models that

used the autocorrelation function and diurnal signal to transform the data into a stationary

Gaussian distribution that could be more accurately estimated. Haslett and Raftery

(1989) developed an autoregressive-moving average model to estimate long-term wind

power potential at several locations in Ireland, with good success. Similar regression

model approaches have been undertaken by Goh and Eu (1986), Hannah et al. (1992),

Sfetsos (2000), Walmsley et al. (2001), and Milligan et al. (2003). Finzi er al. (1984)

elaborated upon the AR model by including the 500 mb geopotential height (as a measure

of geostrophic flow) and found success in forecasting winds over the Po Valley.

Additionally, Haslett and Raftery (1989) extended their autoregressive modeling into the
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spatial domain, developing a Krige model to estimate long-term resources over the entire

country of Ireland.

Unlike autoregressive models, correlation-based models do not model nor imply

dependence of a wind speed record upon itself. Rather, these models attempt to

statistically assess the systematic covariance between two separate wind speed series. In

doing so, such models seek to develop a relationship that describes and exploits the

similarities of the two series in order to synthetically extend the length ofone to the limits

of the other (Sansom and Tait, 2004). As such, correlation models have found a great

deal of favor and use in wind resource estimation, primarily due to the sparse networks of

anemometer stations normally available to researchers (e.g. , Barres and Estevan, 1983).

Correlation models take several forms and can be both stochastic as well as

probabilistic. Although spatial correlation is discussed in Putnam (1948) and Golding

(1955), it is not until Walmsley and Bagg (1978) that a spatial correlation model for wind

appears in the literature. Walmsley and Bagg used a correlation matrix from a short

record of data and multiplied it by longer series data to develop synthetic data series at

the locations in their study. Gunst (1995) described several methods for spatially

correlating multiple meteorological variables, including optimal spatial-averaging. Gunst

pointed out that the discounting of non-stationarity and autocorrelation limited the utility

ofmost spatial correlation methods.
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In 1992, Derrick developed what he called a Measure-Correlate-Predict (MCP)

model. Since then, this type ofmodel has become a standard tool in wind resource

analysis. Derrick (1992) separated by direction, paired observations ofwind at two

stations. For each direction, a linear regression equation was fit to the data, using the

data from the long-record station as the predictor, and the data from the shorter-record

station as the predictand. From these equations, a long-term synthetic series could then

be generated at the short-record location given the speed and direction at the long-record

station. There are a number of limitations to the implementation ofsuch a scheme,

including the distance between the stations involved, the potential non-linearity of the

relationship, and the potential for the relationship to vary in time. Additionally, Van

Lieshout et al. (2004) note that the MCP did not perform well in complex terrain.

However, since its formal introduction, most spatial correlation techniques have utilized

some variation of an MCP approach (e.g., Gerdes and Strack, 1999, Salmon and

Walmsley, 1999, Toriumi et al., 2000). Related alternatives to MCP are a similar joint-

probabilistic approach or a categorical probabilistic adjustment which are discussed in a

later section.

An area of recent increased interest is in the use of artificial neural networks

(ANN) for the spatial correlation of wind Speeds. A number ofresearchers have

experienced moderate success in their development and application ofANNs to near-

surface wind speeds (e.g., Kariniotakis et al., 1996, Alexiadis et al., 1998, 1999, Pinson

et al., 2003, Kretzschmar et al., 2004). However, while this approach may provide

accurate results, it is used primarily in wind energy forecasting rather than the estimation
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ofa wind resource climatology and thus is of limited relevance to this research.

Additionally, subsequent replication of this method can often be confounded when the

physical underpinning of the so-called hidden layers of the ANN model are not clearly

described.

Often a researcher requires an estimation ofthe properties of the long-term wind

resource over a region rather than at a specific location. As such, a logical extension of

spatial correlation methods is to apply the methods to either a series of regular (grid)

locations over a region in order to develop a continuous surface (e.g., Haslett and Raftery,

1989), or to utilize the information at existing locations to specify a regional value that

abuts other regional values to form a continuous surface (e.g. , Goodin et al., 1979 or

Nielsen, 1999).

However, rather than estimating synthetic series at hundreds or thousands of grid

points over a region, most all spatial fitting techniques used in wind resource estimation

focus on the more economical fitting of the statistical parameters of the wind record, such

as the mean or variance. There exist a number ofmethods for providing this spatial

interpolation. Techniques include inverse-distance weighting (Sherman, 1978, Goodin et

al., 1979, Palomino and Martin, 1995), kriging (Haslett and Raftery, 1989), and optimal

spatial interpolation (Julian and Thiebaux, 1975; Thiebaux, 1975). However, many of

these models are hampered by relatively sparse anemometer networks (Goodin et al.,

1979). If interpolation must take place over large areas and long distances, local inter-

39



station effects on wind speed (and associated errors), although important, will be not be

resolved.

Interest in including terrain effects in spatial interpolation models of wind speed

has led to a number of advances in improving spatial estimations. Developments in this

area include an elevation difference variable incorporated into an inverse-distance

weighting scheme (Palomino and Martin, 1995). Taylor and Lee (1984) present a

comprehensive work regarding the theory and applications of flow over low hills. Flow

over more complex terrain, however, is not as well understood, although significant

advances have been made (e.g., Gunn and Furmage, 1976; Sherman, 1978; Weber, 1990,

Ayotte et al. 2001).

2.2.2 Probabilistic models

Because of the importance of the distribution of wind speeds to wind power

production, it is not surprising that a majority of wind speed models have been of the

probabilistic type. The appeal of probabilistic models is largely a result of their ability to

reduce a broad spectrum of wind speeds to just a few parameters that, in turn can be

utilized to estimate wind power at a location. In their simplest form, these are models

that seek to fit a theoretical probability distribution to observed data at a location. The

transformation from an empirical to a theoretical distribution more readily facilitates a

statistical analysis of the distribution. More complex approaches attempt to develop
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correlations in distributions between stations in order to produce a regional wind

distribution estimation (e.g., Justus et al., 1976, Haslett and Raftery, 1989).

Among the simplest probabilistic techniques used in wind resource analysis are

so-called Monte Carlo simulations such as Markov chains (e.g., Sahin and Sen, 2001).

These methods utilize either the empirical probability density function of the observed

data or the transitional probability ofone observation to the next to generate a synthetic

series with the same underlying distribution as the original data and the same transitional

probabilities between events. Such methods have been used with success by many

researchers. Kaminsky et al. (1991) for example, used a “one-step” Markov chain to

simulate high frequency wind speeds. Unfortunately, such models appear to

underestimate the probability of low frequency events (Dukes and Palutikof, 1995).

Dukes and Palutikof(1995) used a similar approach to generate an hourly-averaged wind

speed series as well as 3-second gust information. Others who have utilized Markov

chain approaches include Sahin and Sen (2001) and Nfaoui et al. (2004), but it appears

from the literature that such approaches are less preferable than modeling empirically-fit

theoretical probability distribution functions to observed series.

As has been mentioned earlier in the chapter, there has been a wealth ofresearch

devoted to accurately specifying the generalized distribution of wind speeds. A number

ofpotential distributions have been investigated, including the Gaussian (or so-called

normal) distribution (Justus et al., 1979, McWilliams and Sprevak, 1982), the inverse
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Gaussian distribution (Bardsley, 1980), a truncated normal distribution (Al-Alawy and

Mohammed, 1985), and a log-normal distribution (Luna and Church, 1974).

However, as has been discussed, the simplicity and versatility of the Weibull variant of

the Gamma distribution eventually was identified as the most versatile option for

continued model development (Corotis et al., 1978) and has been repeatedly proven to

provide an acceptable fit to a wide variety ofwind speed distributions (e.g., Justus et al.,

1976, 1978, Corotis et al., 1978, Hennessey, 1977, Brown et al., 1981, Carlin and

Haslett, 1982, Conradsen et al., 1984, Rainbird et al., 1996, Torres et al., 1999, Quine,

2000, Celik, 2003). As a result, it has received widespread use in estimating the wind

resources of a variety of locations.

If long records of wind speed data are available at a location (or locations), the

fitting of a theoretical probability distribution, like a spatial correlation method, becomes

unnecessary for describing the wind resource. An empirical distribution of the data

record will suffice and summary statistics may be produced. The utility of fitting a

Weibull probability density function to the data occurs when the data at a location are not

of sufficient length, or perhaps non-existent. In these cases, a Weibull probability model

may be estimated from available data at a location or interpolated from the data ofa

nearby location. These techniques generally follow the spatial correlation and

interpolation methods described previously.

Using Weibull probability models, researchers have estimated the wind resource

at locations worldwide. For example, Merzouk (2000) used the Weibull distribution to

42



estimate the wind power potential at 64 locations in Algeria and surrounding countries.

Poje and Cividini (1988) performed a similar Weibull analysis of locations in Croatia.

Perhaps the greatest use of the Weibull function in wind resource analysis work is with

respect to the numerous wind resource atlases that have been produced over the past three

decades (e.g., Elliott et al., 1987, Troen and Petersen, 1989). Weibull modeling has been

used extensively in the case of the European Wind Atlas (Troen and Petersen, 1989).

In the European Wind Atlas, a noteworthy Weibull model was utilized. The

model is known as the Wind Atlas Analysis and Application Program, or WASP

(Petersen et al., 1984, Mortensen et al., 1993). WASP is primarily a probabilistic model

because its basis is a Weibull distribution. However, the versatility ofWASP lies in the

numerical way in which it migrates a distribution calculated at one location to estimate

the wind resource at another location from which no data are available. WASP

accomplishes this by first separating wind speed data from established anemometer

locations into 12 directional bins. These distributions are then upscaled to be regionally

representative (in an area of approximately 100 km radius surrounding the station) by

applying numerical transfer functions that are designed to remove the station observation

bias introduced by local surface roughness, sheltering obstacles and local orography

(Troen and Petersen, 1989). The adjusted observational series is then used to estimate a

regionally representative Weibull distribution. Transference to another location within

that 100 km radius is then accomplished by reversing the model and adding in local

characteristics for the new location. Troen and Petersen (1989) note that the greatest
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confidence in WASP results is obtained in regions of relatively low complexity and high

homogeneity.

2.3 Dynamical Models

The alternative to the aforementioned stochastic, probabilistic and empirical

approaches to wind resource estimation is the use of a numerical model to estimate and

forecast wind vectors. Due primarily to computing limitations, early work in this area

focused on the use ofprimitive equation general circulation models of the atmosphere to

provide low-resolution (e.g., greater than 2° Latitude by Longitude) estimates of the wind

resource at relatively coarse time intervals such as 12- or 24-hours. When the objective

was to simulate higher resolution (both spatially and temporally) wind fields, generally

for forecasting, more compact mesoscale atmospheric models were employed, and their

potential usefulness in wind research has been explored (e.g., Pielke, 1974; Sherman,

1978; Diab and Garstang, 1984; Rohatgi and Nelson, 1994; Frank et al., 2001) though

seldom in the context ofwind climatology.

Regional climate models were deveIOped in response to the climate modeling

community needs for physically-based dynamical models of the atmosphere that were

capable ofrunning on a much finer resolution grid than general circulation models

(Williamson et al., 1995; Henderson-Sellers and McGuffie, 1997). These regional

climate models, or RCMS, are often nested in the grids of coarser scale general
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circulation models (GCM) and cover a region that may span only a few thousand square

kilometers. As a result, the output from RCMS provides estimates of meteorological

variables that potentially are able to resolve some of the small-scale variability inherent

in mesoscale meteorological processes and landscapes (e.g., the influence of

heterogeneous land cover) that are not available directly from GCM output.

A number of regional climate models have been developed over the past two

decades. Most notable are the Regional Atmospheric Modeling System (RAMS) model

deveIOped by the National Centers for Atmospheric Research (NCAR) (Pielke et al. ,

1992), and the 5th Generation Mesoscale Model (MM5), developed by the Pennsylvania

State University and NCAR (Haagenson etal., 1994). These models operate by ingesting

either observed or modeled data as initialization input and then approximating the mass,

energy, and momentum transfer of the atmosphere (on a regular grid) using the so-called

primitive equations (Pielke et al., 1992). The grid is three-dimensional and consists of

several layers arrayed logarithmically in distance from the surface. Such a grid structure

is designed to provide a detailed analysis of the mixed layer near the surface. The

application of the primitive equations produces iterative estimates ofmeteorological

variables at each grid point (time steps are often around 15-30 seconds). Temporal

averaging is used to generate hourly values for these estimates at each of the layers in the

grid. The output of the RCM is a synthetic time series of the variable of interest at each

grid point of interest. To that end, an RCM is capable of producing estimates of the wind

resource over a region at a relatively high resolution. In fact, it is likely that the density

of grid points in an RCM far exceeds the density of the instrumental network in the area.
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However, despite much success in the use ofRCMS for the analysis and prediction of

other meteorological variables (i. e., temperature, precipitation, cloud cover, pressure),

only recently has extensive work been focused on the ability ofan RCM to accurately

estimate wind speeds over a region.

The most concentrated application of numerical weather prediction (NWP)

models to wind energy research has been in the area ofwind speed prediction. Although

a great deal ofwork has been done to forecast wind speeds using stochastic methods

(e.g., Nielsen, 1998; Alexiadis et al., 1999; Nielsen, 1999; Landberg, 1998, 2001;

Sfestos, 2000, 2002), these studies have met with limited success largely due to their

empirical nature. Early work using NWP in wind forecasting was performed by Diab and

Garstang (1984) who predicted coastal wind speeds with the University of Virginia

Mesoscale Model. Draxler (1990) coupled a boundary-layer model to the output from the

US. NOAA Nested Grid Model (NGM) with limited predictive success. Whiteman and

Doran (1993) nested a hydrostatic mesoscale numerical model in a GCM to better predict

valley winds. Petersen et al. (1998b) outlined the use ofNWP models to estimate winds

at specific wind farm locations in Denmark, the UK and Greece by dynamically

downscaling GCM output to the surface via the High Resolution Limited Area Model

(HIRLAM) run by the Danish Meteorological Institute and then accounting for local

topography with WASP.

However, despite the interest in mesoscale numerical models for forecasting

winds over a region, few investigations have explored the use ofRCMS for wind resource
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evaluation. An early investigation into RCM wind climatology estimation was Pielke et

al. (1983), who used a mesoscale numerical model to evaluate pollutant transport over

the Chesapeake Bay region. At that time, they felt the method held promise but would

require improved model specifications ofboundary layer processes. Frank and Landberg

(1997) used the Karlsruhe Atmospheric Mesoscale Model (KAMM) to provide input to

WASP and estimate the wind resource over Ireland. Frank et a1. (2001) covered a larger

portion of Europe using the same method. Both Frank and Landberg (1997) and Frank et

al. (2001) met with moderate success, but agreed that further refinement was necessary to

achieve desired levels of accuracy. Unfortunately, none of these investigations evaluated

the RCM wind speed distribution estimates directly in the context of the overall wind

climatology of the region. It is this point that this research seeks to address by answering

the question ofwhether or not an RCM is directly capable of reproducing the wind

climatology over a region with sufficient accuracy such that the climatological statistics

produced from the model output can be used effectively by wind farm developers for site

selection.

Whereas stochastic and probabilistic models are generally limited in scale to that

which can be resolved by the observation network, dynamic models allow spatial and

temporal resolution to be identified by the modeler. Thus, scale represents a significant

challenge to models attempting to characterize wind vectors for wind energy conversion

systems. Critical temporal scales range from decadal periods with climatological

information to hourly forecasts. In a spatial sense, wind farm developers often use coarse

resolution wind data to identify regions of interest, but then are keen to have a high
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resolution regional wind map from which to identify prime WECS locations within that

region. On the forecast side, point forecasts are desirable for single turbines and wind

farms may desire a spatial resolution of less than 10 km. However, several contradictory

studies raise questions as to whether or not an increase in spatial resolution will result in a

corresponding increase in forecast accuracy (e.g., McQueen et al., 1995, Buckley and

Leslie, 2000, Mass et al., 2002). The identification of optimal spatial resolutions for

RCMS in the context of wind estimation is something that has to date been largely

ignored, even in investigations utilizing RCMS for forecasting wind speeds. The question

of what spatial resolutions are optimal is one that is addressed by this research.

2.4 Model Comparison and Validation

Although thousands ofmodels have been developed for climatological analysis

and ofthose hundreds address the wind resource, only a handful of procedures exist that

provide robust and reliable evaluations of a model’s performance. While some of these

procedures can be quite complex, in most cases only simple measures are truly necessary

to determine the utility of any given model.

Fox (1981) identifies three groups of data that ought to be compiled to facilitate

model evaluation in air quality modeling. Ofthose, two are applicable to a broad

spectrum ofmodels and permit subsequent evaluative measures. These two groups are

paired observed and estimated observations for a particular location at a particular time,
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and the empirical frequency distributions ofboth the observed and estimated data.

Willmott (1981, 1982, 1984) and Willmott et al., (1985) present a suite of statistical

measures by which a robust and confident appraisal of the performance of a model may

be conducted. The measures are the means and standard deviations of the observed and

estimated data, the Pearson product moment correlation coefficient (r), the intercept (b0)

and slope (b,) of a linear regression of the estimated data on the observed, the mean

absolute error (MAE), the root mean squared error (RMSE), the systematic (RMSEs) and

unsystematic (RMSEu) components of the root mean squared error, and an index of

agreement (d2) developed by Willmott (1982). While this set of evaluative statistics is by

no means exhaustive, the majority of comprehensive model evaluations in the literature

include all or at least some of these measures.

In addition, Wilks (1995) and Murphy (1988) discuss the use of skill scores for

the evaluation of forecasting models. Skill scores are used extensively in the evaluation

ofmodel forecasts ofmany and diverse meteorological variables. However, as Murphy

(1988) correctly notes, many of these so-called skill scores are based upon the mean

square error and, when decomposed reveal the correlation coefficient and measures of the

systematic and unsystematic bias in the estimates. Thus, while skill scores can be a

useful measure for forecast model evaluation, they are in essence redundant to the more

readily interpretable statistics presented by Willmott (1981), which can therefore be

considered sufficient for the evaluation of any model concerned with producing estimates

of a wind resource climatology as opposed to individual forecast wind speeds.
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Chapter 3. Study Area, Data and Methods

3.1 Study Area

The Great Lakes region of North America has seen moderate wind energy

development over the past several decades. Commercial wind turbines are operating in

all of the states and provinces surrounding the lakes, and the lakes themselves are

estimated to have a substantial wind resource (Elliott et al., 1987). As noted in the

previous chapter, wind resource potential over much of the land surface portions of the

region was originally categorized as low by the United States Wind Atlas, but a number

of factors including reanalysis of the wind resource, recognition of localized wind speed

enhancements, and advances in turbine technology and siting practices have recently

combined to make wind energy conversion in the Great Lakes region an economically

viable possibility (Schwartz and Elliott, 2002). In particular, the relatively low surface

roughness over the water areas of the region contributes to the generation of stronger

winds along coastal and near-coastal areas of the region than had been estimated earlier.

However, despite the promising nature for wind energy deveIOpment in the

region, a major hurdle remains the relative sparseness ofwind observing stations. The

low number and irregular placement of existing station series limits the quality of any

interpolated estimates of the wind at uninstrumented locations. Established

meteorological observation stations in the region with recorded wind speeds and direction

are, on average, over 100 km apart. Robeson and Shein (1997) showed that in the

Central United States, the decay ofnearest-neighbor wind correlations becomes
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exceedingly high over relatively short distances. A dynamically-based regional

circulation model-based simulation of winds over the region may therefore provide a

substantial improvement in the accuracy ofwind speed estimates.

To that end, the Great Lakes region has been chosen as the study area of this

research (Figure 3.1). The region of interest extends from 76° W to 97° W Longitude

and from 41° N to 50° N Latitude. Within this area lie the majority of the open waters of

the Great Lakes and the adjacent coastal areas that are of potential interest to wind farm

developers. For reference, all maps in this study are displayed using an Albers Equal-

Area Conic projection that was produced using a suite ofmapping algorithms,

collectively called M_map, developed for Matlab by Dr. Rich Pawlowicz at the

University of British Columbia (Pawlowicz, 2004). Matlab itself is a commercially

available numerical analysis, simulation and graphical representation software

(MathWorks, 2005). Matlab version 5.11 is used exclusively in this research due to its

versatility in permitting a user to create unique code, the ability to efficiently handle very

large data sets by virtue ofmatrix-based processing algorithms, and its generally

excellent graphical display properties. All processing, analysis and display routines were

subsequently written by the researcher in Matlab with the exception of M_map. The

Albers Equal-Area Conic projection was chosen because, ofthe projections offered by

M_map, a conic projection is best suited for a region the extent of the study area,

Providing a minimum of geographic distortion.
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Figure 3.1 A map of the study area, which includes the majority of the Great Lakes region of North

America. The dots represent the ASOS/AWOS stations used in this study.

3.2 Observational Data Types and Sources

Accurate observational records ofmeteorological conditions are a critical

component of assessing the performance, accuracy, sensitivity and validity ofany

meteorological model. The assessment of the MM5 model in this research is no

exception. Observational data for this research were obtained from the network of

automated surface observing systems (ASOS) and automated weather observing systems

(AWOS) installed at a number of airports throughout the study region.

The ASOS/AWOS network provides the most abundant available source of

meteorological data within the study region. Because the areas ofprimary interest are the
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coastal regions surrounding the Great Lakes, many of the ASOS stations selected for

inclusion lie in close proximity to one or more of the lakes themselves. The remaining

stations (primarily in the interior of Michigan’s Lower Peninsula) were included to retain

a spatial coherence across the region. This criterion resulted in the identification of 115

ASOS and AWOS stations that would be used to provide the majority of observational

wind data to this study. Ofthe 115, two were subsequently omitted due to data issues (as

described further on). The listing of these stations along with the station type

(ASOS/AWOS) is given in Appendix A and is displayed graphically in Figure 3.2.
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Figure 3.2 ASOS/AWOS stations used in this research. Each number corresponds to the list of stations in

Appendix A. Stations may also be referenced by their geographic coordinates, also in Appendix A.
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The ASOS/AWOS network is an international network of airport-based stations

designed to provide regular, automated, instantaneous meteorological observations in

support of aviation activities (FAA, 1999). In the United States, the Federal Aviation

Administration (FAA), in conjunction with the National Weather Service (NWS), and the

Department of Defense (DOD) sponsor the ASOS/AWOS network. In Canada, the

network is operated by the Meteorological Services (MSC) division of Environment

Canada. In the United States, all ASOS and numerous AWOS stations are installed and

maintained by the Federal government. In addition, a number of the AWOS systems

have also been installed and maintained by non-federal entities such as airport authorities,

state, local or private organizations. Normally, non-federal AWOS systems that are

linked to the NWS reporting network have been installed with the assistance of the

FAA’s Airport Improvement Program (AIP), and as such are subject to federal

meteorological observation standards as well (FAA, 1999).

Of the 113 ASOS/AWOS stations used in this study, 43 were identified as being

maintained by the FAA, 22 by the NWS, 33 by non-federal entities, 2 by the US

Department of Defense, 1 by a private Canadian entity, and 12 by MSC. Appendix A

contains a breakdown of station responsibility as well as references for several sources

from which the aforementioned information was obtained.

All regular and Special ASOS and AWOS reports from the United States are

transmitted to the NWS Systems Monitoring and Coordination Center (SRRS) where

they are then disseminated to non-aviation interests and an archive tape is sent to the
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National Climatic Data Center (NCDC). In addition, data from elsewhere in the world

(including Canada) are retrieved and processed for dissemination by the National

Weather Service.

3.2.1 ASOS/AWOS wind sensors and siting

As wind information is commonly acknowledged to be a critical meteorological

component ofnear surface aviation activities, accurate and timely reporting ofwind

vector information is key to ASOS and AWOS system operations (hereafter referred to

collectively as ASOS). Although a number of configurations for AWOS systems exist

(ofwhich ASOS is the most advanced), all observe wind speed and direction at a 10 m

height with identical performance standards (NOAA, 2001), which are set forth in the

Federal Meteorological Handbook (OFCM, 1995). Furthermore, Federal and non-

Federal AWOS systems installed in the United States, as well as those installed in

Canada have been provided by one of three vendors certified by the FAA and Transport

Canada. These vendors are SMI, Inc., Qualmetrics and Vaisala/Artais. Both SMI and

Qualmetrics are subsidiaries ofAll Weather, Inc. All AWOS sensors manufactured by

these vendors have been certified to meet or exceed the standards of the FAA, Transport

Canada, International Civil Aviation Organization, and the World Meteorological

Organization (All Weather, 2004). In fact, according to All Weather (2004) the wind

sensor resolution (<1 kt, < 1°), accuracy (i 0.5 kt, :1: 2°), and threshold (0.5 kt) for non-

federal and Canadian AWOS systems are considered to be superior to the stated

performance standards of the US Federal ASOS arrays (discussed next; NOAA, 2000)
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and to the resolution of the observations that are disseminated (1 kt and 10°). Although

other AWOS systems may be operational in the study area, observations from uncertified

systems are not available fiom the NWS and are not considered in this study. Based on

the published ASOS/AWOS instrument and network operational specifications, the

researcher judged wind observations to be of sufficient accuracy and quality for use in the

study.

The ASOS wind sensor array (see Figure 3.3) consists of a cross-ann support that

holds a separate anemometer transducer and wind vane transducer (the Bellfort 2000

sensor array). A wind sensor electronics enclosure is housed separately. Wind speed is

measured by a 3-cup anemometer that measures rotation with a photo-interrupt

transducer. Wind direction is measured by a wind vane attached to a precision

potentiometer (NOAA, 1998). The specified accuracy of the wind vane is :l:5° when

wind speeds exceed 5 knots. Anemometer specified accuracy is given as i2 knots or 5%

ofthe wind speed whichever is greater. The resolutions are 10 and 1 knot respectively.

These tolerances fall within US. federal guidelines for meteorological observation

instrumentation (OFCM, 1995).
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Figure 3.3 An ASOS wind sensor array (from NOAA, 2000).

The establishment ofASOS stations is prescribed in the Federal Standards for

Siting Meteorological Sensors at Airports (OFCM, 1994). Typically, stations are located

near the touchdown zone of the primary instrument runway or, if conditions preclude this

siting, the station may be located at center field (NOAA, 1998). In either case, the station

is sited in an area of ample, low roughness fetch. At a typical medium size airport (e.g.,

one capable of supporting commercial air traffic), such a station would generally be at

least a kilometer from the nearest major obstructions (e. g, a terminal or hangar buildings)

57



if wind observations are to be considered to be representative of the surrounding 1-2 km

as outlined in OFCM (1994). Additionally, federal standards direct wind measurements

to be taken at a height of 10 meters above ground level (10 m AGL). However, for

reasons that could not be established by the researcher, winds are typically measured at

either 27 or 33 feet (8.23 m or 10.06 m). Given the relatively low surface roughness, and,

that the incongruity in speeds due to the height difference was assumed not to exceed the

2 knot error tolerance of the instrument, observations from these differing heights were

included in the study without adjustment.

Unfortunately, in many mid-latitude locations, occasional ice accretion may

artificially slow or even stop an anemometer, leading to underreporting ofwind speeds.

While equivalent AWOS wind sensor arrays offered optional heat, the aforementioned

ASOS wind sensor arrays were unheated and as a result suffered operational degradation

when experiencing ice buildup during super-cooled droplet precipitation events (N0AA,

2003). In response, the NWS undertook efforts to replace the wind sensor array with one

that would remain relatively ice free. In 2002 the Vaisala 425NWS Ice Free Wind Sensor

(IFW), a 2-dimentional ultrasonic anemometer, was adopted. ASOS anemometers were

scheduled to be changed over to the IFW sensors at all 313 NWS systems by 01 October,

2002, and all of the 569 FAA-operated ASOS systems during the period 2003-2005.

However, as of 15 May, 2003 (the latest date for which information was available), of the

ASOS stations used in this study, only Hancock, M1 (on 26 November, 2002) had been

changed (NOAA, 2003). Although continuity testing from the old to the new

anemometers was undertaken by the NWS, the tests have not yet been completed and
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results are not available. However, as the majority of the series from Hancock was

observed with the IFW anemometer, series discontinuities due to instrumentation

changeover were eliminated by truncating the start of the series to 26 November, 2002.

The IFW sensor also complies with the observing standards ofOFCM (N0AA, 2003 ).

3.2.2 ASOS/AWOS wind observation and reporting

In order to obtain what the FAA and the NWS consider to be a representative

wind observation for the surrounding area of interest (identified as a radius 1-2 miles

around the station; NOAA, 1998), several post-measurement processing algorithms are

employed operationally in the networks. The ASOS software is programmed to collect

observations from the sensor every second (1 Hz). Every 5 seconds, the previous 5 1-

second observations are averaged and stored. For wind direction, every minute, a 2-

minute moving average of 5-second average wind directions is calculated and reported.

These l-minute averages are rounded to the nearest 10 degree increment. It is this

measurement that becomes the wind direction observation at the time the METAR or

SPECI report is issued. The wind speed determination is similar. Wind speeds are a 2-

minute moving average, updated every 5 seconds, and reported once every minute.

Although wind gusts, peak winds, variable wind directions, wind shifts and even squalls

are reported by ASOS, their only role in this research is as a modifier in extracting the

wind speed and direction observations. This will be discussed further in a subsequent

section on quality control (QC)-
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Although the network provides high quality meteorological observations over a

geographically dispersed array of stations, research activities are not considered to be a

primary data use or application. For this reason, sources for obtaining archived data are

limited in number. The NCDC receives a daily archive tape from the NWS SRRS, but

due to cost recovery efforts by NCDC, the cost of obtaining such a volume of data would

have been prohibitively expensive. Therefore, as soon as the station site series needed for

the study was identified in early January, 2003, an alternate source was sought from

which to retrieve the data. The most expedient source was determined to be the Internet

site ofUS Weather, Inc. (http://www.uswx.com).

Access to all ASOS observational reports (hereafter referred to as METARS) was

provided without charge by US Weather, Inc. via their Internet site. However, the data

displayed by the US Weather, Inc. site was limited to the most recent 1440 observations.

Due to this limitation, the earliest date for which data exist at any of the study stations is

late October, 2002. As data from most of the stations were available as of 01 November,

2002, this date was chosen as the starting date of this research. The ending date was set

to be 30 June, 2004, which was chosen to allow appropriate time for data analysis and the

dissemination of the results.

Although the METAR reports are available fiom US Weather, Inc. in both raw

(i.e., encoded) and decoded formats, the researcher chose to archive and extract the

necessary information from the raw reports rather than relying on the decoded data. The

reason for this choice was to maintain better control over the decoding and processing
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algorithms rather than relying on the quality of the undisclosed decoding algorithms used

by US Weather, Inc.

Current meteorological observations are available instantaneously to pilots via

VHF radio frequencies; however, standard METARS are only issued to non-flying

interests on either an hourly or special issue basis. Standard observations are identified

by the term METAR preceding the report. Ifmeteorological conditions change beyond

the limits of thresholds prescribed in the ASOS software, or if an operational observer

feels conditions warrant mention, a special report is issued. Such irregular reports are

preceded by the ‘SPECI’ report identifier (FAA, 1999). AS such, there is no consistent

number of reports for a specific period of time. However, the majority ofASOS stations

in the research network appeared to report with a frequency such that 1440 observations

comprised at least a two week period. Thus, for each ASOS station used in this study, the

appropriate US Weather URL was accessed every two weeks (see Appendix A for a

complete list of URLs). The resulting Web page displayed the 1440 raw METARs issued

prior to the web page access. The entire Web page was saved as an ASCII text file.

After all ASOS station reports were saved, all extraneous information (e.g., graphics,

HTML, advertisements) was removed, leaving only the observation reports.

61



3.3 Observational Data Quality Control

After retrieving the raw METAR reports, it was necessary to extract the

time stamp and wind vector information from each report. Each METAR or SPECI

report includes a number of schedule-driven elements (i.e., observations for continuous

variables) and, depending on conditions event-driven variables (e.g., precipitation,

lightning). The overall format of a METAR report is outlined in numerous publications

(e.g., NOAA, 1998, FAA, 1999), therefore only report information relevant to this

research will be subsequently discussed.

Each report follows a predetermined format that begins on the left with the type of

report (METAR or SPECI), the station identifier, the time stamp (Day, Hour and Minute)

in Universal Time Coordinated (UTC, also known as Zulu (Z) time), a modifier if

applicable (e.g., corrected or automated reports), wind, visibility, weather phenomena,

sky coverage, temperature and dew point, pressure, and remarks if applicable. Thus, a

typical report may resemble:

METAR KLAN 031152Z AUTO 30013KT SSM —RA OVC025 20/19 A2990 RMK A02

The preceding report is a routine (METAR) report for Lansing, MI (KLAN) issued on the

3rd day ofthe month at 11:52 Z, or UTC, and it was issued without an observer logged

onto the system (AUTO). Winds were from 300° at 13 knots (30013KT), 5 statute miles

visibility (SSM) in light rain (-RA) with an overcast ceiling at 2500 feet (OVC025), a
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temperature of 20° C and a dew point of 19° C (20/19) and a sea level pressure of 29.90”

Hg (A2990). The remarks (RMK) indicate that the station is an automated station with a

precipitation discriminator (A02). To highlight the format of the METAR data files

received from US. Weather, Inc. every two weeks, a sample of the raw data is provided

in Appendix B.

A problem with a standardized extraction procedure arises however, because

ASOS and AWOS networks are designed so that missing meteorological elements are

neither estimated nor listed as missing in the recorded observation. If less than 75% of

the observations that comprise the value of an element at a given reporting time are

missing, that element is simply omitted from the observation. All subsequent elements in

the observation are shifted to the left to eliminate the space left by the missing element.

As the report type element (METAR vs. SPECI) and station identifier element are always

present and always of the same length (RRRRR SSSS), extraction of the time stamp is

straightforward (simply the 12th to 1711. characters in the report, followed by the letter “Z”

to denote Zulu time or UTC). The event-driven inclusion of a report modifier and of

several possible wind modifiers, however, makes it more difficult to extract the wind

element as will be discussed shortly.

In order to identify the appropriate month and year of the report, the date of the

last entry in the record file was compared against the date on which the file was saved. If

they were not the same, it was assumed that the station had not been reporting for an

undetermined period oftime prior to the date of file saving. This station file was then
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flagged and manually checked to identify the month and year of the last valid report. In

two instances it was determined that the ASOS station had ceased reporting during the

study period. The first site was Meigs Field in Chicago, IL USA (KCGX). On 04 April,

2003 the ASOS station ceased operation when the airport was closed without warning by

the Mayor ofChicago. The other station was Caribou Island, Ontario (CWCI), which

ceased reporting on 28 May, 2003. The researcher was not able to determine an

explanation for the failure of this station. For these two stations, the observational series

were substantially shorter than the other series (642 and 3957 observations respectively),

so they were omitted from the study. For stations other than KCGX and CWCI,

observational reports were largely available throughout the study period of 01 November,

2002 to 30 June, 2004.

Once the observation time stamps in each downloaded file were verified for

continuity the time stamp, wind speed and direction of each observation was extracted.

The time stamp was simply the 12th through 17th characters in the report. These data

were parsed into day, hour and minute (Z, or UTC time). After all extraction was

completed, the month and year of the report were added to the time stamp. The

extraction ofwind speed and direction presented more of a challenge.

Before the winds could be extracted, it was necessary to determine if a report

modifier element was included. There are two basic types ofmodifier that may be added

to a METAR report. The first is AUTO to signify that the report was generated without

an observer being logged onto the system. The second is COR to alert that the report is a
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correction to a previously issued report. A number may be added to the COR element

(e.g., COR] , COR2) to signify the sequence of corrections issued to the original report.

If a COR flag was encountered, it was necessary to determine if the subsequent wind

element had been changed. If the wind element in the corrected report differed from that

in the original report, the original value was discarded in favor ofthe corrected value. In

all cases, the presence and length of the modifier element determined the report position

of the wind element for extraction.

In METAR observation reports there are several variations in the way winds are

reported. Winds are reported based on continuous observation in the 5 minutes preceding

the report issuance. This 5-minute observation is described in the previous section and in

NOAA (1998) and FAA (1999). When winds are relatively steady during the 5 minutes

prior to the observation, they are simply reported in the format DDDSSKT, where DDD

represents the compass direction in tens of degrees from true North, SS represents the

wind speed and KT indicates the measurement units of the wind speed. Because

METAR observations are collected and disseminated worldwide and do not need to

adhere to a standard reporting unit for wind speed, the addition of the unit identifier is

necessary. In the US and Canada, nautical miles per hour, or knots is the chosen unit of

wind speed (1 knot = 0.5148 m 3").

If winds during the 5 minutes prior to the observation exhibit a strong fluctuation

in speed, the wind observation will reflect that by adding a gust observation between the

5-minute average wind speed and the unit identifier (e.g, DDDSSGssKT). The addition
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of“G” indicates a gust measurement, followed by a two-digit gust Speed value (ss). This

gust observation is the highest wind speed observed during that S-minute period.

Additionally, should the wind direction vary by more than 60 degrees during the 5

minutes preceding the observation, the wind direction will be identified as variable. If

wind speeds are less than 6 knots, the wind direction is replaced by the code VRB (and

thus no directional wind information is available). If the wind speed exceeds 6 knots and

the wind is variable by the aforementioned definition, an average wind direction is given

in the wind observation, and the entire wind observation is followed by a variability

observation that reports the extremes of the wind direction separated by the letter V (e.g. ,

18OV310).

Although there may be additional information regarding the wind in the remarks

section of the METAR observation, such remarks are generally limited to either the time

ofpeak wind occurrence should the wind report exceed 25 knots sustained or the time of

a Significant wind shift (NOAA, 1998, FAA, 1999). For the purposes of this research,

only the 5-minute average wind speed and direction were extracted. Gust values were

ignored. Where winds were of variable direction and less than 6 knots, the extracted

wind direction value was flagged as missing. For variable direction winds exceeding 6

knots, the average wind direction was extracted from the two wind directions given by

the variability report. Additionally, no wind information was extracted from the remarks

section ofthe reports (1'. e. , peak winds).
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One additional problem that arose during the extraction of time stamps and wind

data from the METAR reports was the occasional occurrence of keystroke errors. While

rare, computer data transfers and operator errors can and do lead to the deletion, addition,

or reformatting of data bits. On occasion, characters were added or omitted on the report

modifier element (e.g., AUTO became AUT, UTO, or AUTOO), in the time stamp (the Z

was occasionally omitted), and even in the wind element (KT became K, G became K,

VRB became VR or RB, etc.). For this reason, careful attention was paid to the error

checking algorithms in the extraction program such that any potential keystroke errors

could be detected, recorded, and flagged for later manual examination. Ultimately, of all

observations at all the station sites considered in the study, only 28 so-called keystroke

errors were encountered.

The result of the extraction process was a series of records with time steps and

corresponding wind direction and speed observations. In many instances, the original

reports had been duplicated anywhere from two to five times in the record files. While it

would have been straightforward to simply eliminate all duplicate report entries from the

series, a number of observations were out of order, and thus it was necessary to identify

which of the duplicate entries, if any, were in the right location in the series. This

involved iteratively processing each of the observation series files to place the

observations in their correct temporal order, then eliminating any duplicate entries from

the series. Each file subsequently contained a series of sequential wind observations with

no duplicate entries. All series files corresponding to a particular ASOS/AWOS station

were then appended to each other, removing any overlapping reports so that one file
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containing all available observations available between 01 November, 2002 and 30 June,

2004 was created for each station.

Lastly, in terms of quality control, all wind observations of zero knots were

flagged. This determination was made because whenever observed 5-minute average

wind speeds were below 2 knots, the wind was reported by ASOS/AWOS as calm, and

the recorded observation given a speed value of 0 and a direction value of 0 degrees

(NOAA, 1998). While the direction is not confused with northerly winds (northerly

winds are recorded as 360°), the flag permits a zero wind speed report to be separated

when comparisons are made with model estimates ofwinds (which do not have a 2 knot

threshold) at those times. Wind directions described as variable were treated as missing

data and not included in the analysis.

Despite the ASOS operating agencies’ collection of quality, standardized wind

data, it must be remembered that these data are intended for instantaneous aviation

operations rather than for research purposes. Therefore, prior to their use, the data had to

be transformed into a series that was more compatible with the goals of this research.

This post-processing involved two steps. First, the observations, which are reported at

various times within an hour, had to be adjusted to generate a series with data either as an

hourly average, or interpolated to the top of the hour of record. This step was necessary

to create series that could be compared to subsequent model output. Secondly, as the

observational series comprise a short period ofrecord relative to the average expected

lifespan of a wind turbine, some assessment ofthe longer-term representativeness of the

observational data had to be made. While assessing the representativeness of the
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observational data is a necessary step in this research, it is outside the realm of the

analysis of evaluating model performance. Rather it is an integral part of the

observational data collection and use. Therefore, these steps are discussed in the

following sections rather than in Chapter 4.

3.3.1 Data homogenization and aggregation

Once the ASOS data had been extracted and quality controlled, it was necessary

to generate series that would pair with wind estimates generated by the MM5 model. The

MM5 used in this research generates estimates of instantaneous wind speed and direction

on an hourly basis at the top of the hour. Therefore, an attempt was made to adjust the

observational data to match the time steps of the MM5 data. In most instances, the ASOS

stations issued hourly automated reports. However, these varied from station to station in

terms of the time of the hour in which they were issued. Unfortunately, several of the

stations did not regularly issue reports within 10 minutes of the top ofthe hour. As a

result, the number of total observations in some ofthese top-of-the-hour adjusted series

was much less than the potential total.

In addition to the routine reports, when an operator was logged on to the ASOS

system, additional observation reports were sometimes issued at 15 or 20 minute

intervals. Therefore, in many cases, several observations were available for a given hour.

Lastly, special (SPECI) reports are issued whenever conditions warrant. During rapidly
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changing weather conditions, SPECI reports may outnumber routine reports and several

may be present during a given hour.

Thus in order to pair observed wind data with modeled estimates, and to ensure

that each station would have a representative series that was not unduly truncated, two

hourly-resolution time series for each station were created and compared. First, the time

stamp of each report was analyzed and if found to be within 10 minutes of the top of a

given hour, was used as the wind observation for that hour. In cases where two or more

observations occurred within 10 minutes ofthe top of the hour, the observation closest to

the top of the hour was used, and where two observations were equally close to the top of

the hour (e.g., 0:55 and 0:05), the average speed and direction of the two was taken. If

there was no observation within 10 minutes of the top of a particular hour, that hour was

assigned a missing value. In this way, an hourly series of more-or-less instantaneous

wind observations was created, referenced to the top of each hour. Due to generally

strong temporal autocorrelation in hourly wind speeds (Brett and Tuller, 1991, Robeson

and Shein, 1997), it is not anticipated that the hourly mean values would differ

substantially from an instantaneous wind speed or direction value within that hour, except

for the occasional instance where a weather event (e.g., frontal passage or thunderstorm)

occurs near the top of the hour. Thus, the second hourly time series was generated by

averaging all observations between 30 minutes prior to and 29 minutes after the top ofan

hour. In cases where all observations for the hour in question were missing, the average

for the hour also was set to missing. This processing resulted in an hourly resolution time

series ofaveraged hourly values.
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The resulting observational time series for each station have a total

potential size of 14,617 hours (00:00Z 01 November, 2002 — 23:00Z 30 June, 2004).

However, when missing values were not counted the series length at each station varied.

The number and percentages of valid hourly values are presented in Table 3.1.

 

 

 

 

  

Non-missimbservations [n(%)]

Mean Median Std. Dev. Max Min

Top ofhour 11,861 12,312 1,832 14,154 642

(81%) (84%) (13%) (97%) (4%)

Hourly Average 12,041 12,298 1,657 13,843 2,298

(82%) (84%) (11%) (95%) (16%)    
 

Table 3.1 Statistics of the counts (and percentages) of non-missing values (out of 14,617 possible

observations) from series constructed with top-of-the-hour observations and with hourly averaged values.

From Table 3.1 it is evident that the differences between the instantaneous and

averaged series are rather small. The biggest difference was associated with sample

reductions from each of several stations that did not consistently report observations

within 10 minutes of the top of the hour. This is evident in the less peaked distribution of

non-missing observations by station in Figure 3.4. If indeed the hourly-average series

would present a larger and more consistent regional data pool, it is preferable to utilize

these data over the less homogeneous instantaneous series. However, in order to rely

solely upon the hourly-average series, it is first necessary to establish that these data are

not significantly different from the instantaneous data.
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Figure 3.4 Histograms of the number of non-missing observations at the stations in the study region. Top-

of-the-hour observations were those taken within 10 minutes of the top of the hour, while hourly averaged

observations included an average of all observations from within 30 minutes of the top of the hour.

To establish the similarity of the two data sets, the two series from each station

were subjected to a Student’s paired two-tailed T-test for difference ofmeans (Rogerson,

2001). In order to ensure that the assumption of independent, randomly distributed data

was not violated by the properties of the wind speed distributions, 1000 random, pair-

wise observations were selected to be used in the T-test. In all 113 instances, the

calculated T score remained below the critical value at an alpha level of 0.05, indicating

that the differences in the means of the instantaneous and averaged series were not

statistically significant. Overall, a comparison between the two series is best done

graphically. Figure 3.5 illustrates, over all stations, the similarity in mean values.
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Figure 3.5 A comparison of observed mean wind speeds when using only the observation closest to the top

of the hour (x) or the average of all observations for that hour (y).

Over the 113 stations, the average correlation between the instantaneous and

averaged series was 0.96 with a standard deviation ofjust 0.04 and a minimum

correlation of 0.8. To that end, it was decided that in the interest ofmaximizing

observations and data homogeneity in this analysis, only the hourly average series would

be carried forward.
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3.3.2 Representativeness of ASOS data

An important issue regarding the observational ASOS data series is whether or

not the data are representative of the long-term wind resource over the region. A number

of previous works (e.g., Corotis, 1977; Justus et al. 1979; Barros and Estevan, 1983;

Barthelmie and Pryor, 2003) have concluded that characteristics of an annual wind series

do not differ substantially from the long-term statistics at a given location, especially in

the US. Midwest. However, it is generally acknowledged that at least a year ofdata, and

preferably more than two or three years, is most desirable when evaluating the long-term

wind resource of a location or region (Hannah et al., 1996). To that end, the

observational data used in this study were subjected to an analysis of representativeness

in order to determine how well they could be expected to reflect the long-term wind

resource over the study area.

In order to establish representativeness, 20 of the study stations were identified

for which quality controlled, long-term data and metadata records were available. These

stations are listed in Table 3.2. ASOS stations represent a relatively low cost investment

in installation and maintenance and have been installed at a number of locations that

previously were not included in the National Weather Service’s pre-ASOS station

network. Only 20 of the stations used in this research existed under the pre-ASOS station

network (Table 3.2).
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Stations having long-term data

ASOS SAMSON

ID Name LaflN) Lon (W) EleflmL u s u 3

AN] Sault Ste Marie, MI 46° 28’ 84° 22’ 218 3.48 2.11 3.93 2.17

APN flena, MI 45° 04’ 83° 34’ 210 3.42 2.20 3.77 2.09

BUF Buffalo, NY 42° 56’ 78° 44’ 211 4.53 2.59 5.01 2.63

CLE Cleveland, OH 41° 25’ 81° 51’ 233 4.38 2.44 4.58 2.30

CMX Hancock, MI 47° 10’ 88° 29’ 326 4.48 2.82 4.08 2.10

DET Detroit, MI 42° 24’ 83° 01’ 190 3.80 2.17 4.64 2.42

DLH Duluth, MN 46° 51’ 92° 12’ 435 4.61 2.44 4.71 2.30

ERI Erie, PA 42° 05’ 80° 11’ 222 4.35 2.48 5.20 2.53

FNT Flint, MI 42° 58’ 83° 45’ 233 4.08 2.36 4.40 2.31

GRB Green Bag, W1 44° 29’ 88° 08’ 208 4.06 2.39 4.32 2.32

GRR Grand lgpids, MI 42° 53’ 85° 31’ 237 4.48 2.52 4.37 2.32

INL International Falls, MN 48° 34’ 93° 24’ 360 3.59 2.15 3.88 2.18

LAN LanflMl 42° 47’ 84° 35’ 264 4.13 2.49 4.46 2.54

MKE Milwaukee, WI 42° 47’ 87° 54’ 206 4.57 2.47 4.99 2.43

MKG Muskegg MI 43° 10’ 86° 14’ 191 4.45 2.62 4.82 2.53

ROC Rochester, NY 43° 07’ 77° 41’ 178 4.21 2.61 4.43 2.46

SBN South Bend, IN 41° 42’ 86° 19’ 237 4.23 2.49 4.49 2.39

SYR Sflcuse, NY 43° 07’ 76° 06’ 127 3.78 2.52 4.18 2.49

TOL Toledo, OH 41° 35’ 83° 48’ 210 3.92 2.66 4.20 2.23

TVC Traverse City, MI 44° 44’ 85° 34’ 190 3.14 2.26 3.95 2.34

 

Table 3.2 20 NWS weather stations that existed in the study area prior to the ASOS transition during the

mid-19903. Each station corresponds to an ASOS station used in this study and is used to compare the

study period data to the long-term (1961-1990) wind climate at the station. Mean wind speeds (u) and

standard deviations (s) are based on wind speeds (including zeros) given in m s".

  
 

In addressing whether pre- and post-ASOS installation data from these stations

would indeed be comparable, stations were examined to determine whether they existed

in the same physical location before and alter the ASOS installation. Initially it appeared

that 19 of the 20 stations had been relocated (although all were on airport grounds and

remain so), however, NCDC (2002) indicated that the stations had not actually been

relocated, but rather that a more precise GPS method of positioning had been used to

determine the position of the station. Pre-GPS geographical positioning had been

obtained by traditional survey methods and the resulting position often was rounded or

truncated. The re-measurement of position resulted in a more precise assessment of
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geographic position and elevation that accounts for the differences between pre- and post-

ASOS installation position measurements for the 20 stations under investigation.

At the 20 stations listed in Table 3.2, hourly wind data were available to the

researcher for the period 1961-1990 as part of the National Renewable Energy

Laboratory (NREL) Solar and Meteorological Surface Observation Network 1961-1990

(hereafter called SAMSON) data set (NREL, 1993). As noted by Shein (1995),

SAMSON data have not been standardized or homogenized for the height of observation.

Therefore, it was first necessary to adjust all ofthe wind speeds to a IO-meter height so as

to permit comparison with the ASOS data series. This adjustment was accomplished

using methods outlined in Shein (1995) and Robeson and Shein (1997). With the

exception ofTraverse City (KTVC) and Houghton (KCMX), anemometer heights were

identified from station histories (NCDC, 1994a and b) and the speeds observed at those

heights adjusted to 10 meters by applying the wind speed power law:

fl
U=Ur — (3.1)

where U is the wind speed at level 2, U, is the wind speed at reference level 2,, and a is an

exponent, which was assumed to be 1/7. Counihan (1975) and others (e.g., Touma, 1977,

Petersen and Hennessey, 1978) have concluded that although empirically derived for

neutral stability conditions, an exponent value of 1/7 provides reasonably accurate

estimates for the profile ofwind speeds up to several hundred meters within the boundary
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layer. Because their anemometer heights could not be identified, KTVC and KCMX data

were left unadjusted.

Once the SAMSON data were adjusted to a standard IO-meter height,

characteristic statistics (i. e., mean, standard deviation, probability distribution) were

calculated for both the SAMSON and ASOS data (Table 3.2). The aforementioned

statistics were calculated for the overall series as well as for each year and by aggregate

season (e.g., all winter observations). These statistics were subsequently evaluated

graphically and statistically for goodness-of-fit and correspondence.

A Student’s T-test for difference ofmeans was conducted to determine whether or

not the two samples (SAMSON and ASOS) came from the same population (Rogerson,

2001). To ensure independence of the sample observations, 1000 observations were

randomly selected (without replacement) from each series. At a significance level of

0.05 (2-tailed) that there was no difference in the means of the two data sets, the null

hypothesis was rejected at all 20 stations. Seasonally, the same analysis was conducted

and again, for all of the 20 stations, there was no statistically significant difference in

their means and it was therefore concluded that regionally, the winds observed between

November, 2002 and June, 2004 likely came from the same population that produced the

winds observed between 1961 and 1990.

Wind speed fi'equency distributions have long been used in providing a measure

of wind power potential for a location, and in particular, the Weibull distribution has been
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found to provide an excellent fit to wind speed data in the middle latitudes (e.g., Justus et

al., 1976, Corotis et al., 1977, Hennessy, 1977, Conradsen et al., 1984, Troen and

Petersen, 1989). As the empirical distribution of wind speeds at the stations used in this

study most widely appear to graphically approximate the shape of a Weibull distribution

(Figure 3.6), its selection as a theoretical distribution for the data was not unreasonable.
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Figure 3.6 A wind speed distribution (with calms removed) from KP59 (Copper Harbor, MI). While the

distribution may vary fi'om one station to another, all stations in the study exhibit a srmrlar distribution

shape, Supporting the use of a Weibull distribution for wind speed description.

Therefore, the Weibull probability distribution function was estimated for the

same subset of stations as before and compared graphically and statistically for goodness

of fit. Analysis ofWeibull distributions took two forms. First, it was necessary to
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determine whether the selection of a Weibull distribution was an appropriate fit to the

data from which it was estimated. Second, the interchangeability between SAMSON

derived and ASOS derived distributions had to be assessed (i. e., could the ASOS data be

drawn from a distribution empirically derived from the SAMSON data) as statistical

testing has suggested.

A Weibull distribution is a variation of the classic gamma distribution. It has two

parameters describing shape and scale. A third parameter, location, may also be included

to shifi the distribution along the abscissa. However, as winds are a zero limited variable,

the location parameter can be set to zero and its inclusion becomes irrelevant to the

distribution. The Weibull probability density function (from Weibull, 1951) takes the

form:

f(U) = 5(9. Jk—le_[%lk (3.2)

where k is the shape parameter, and c is the scale parameter (in units of the variable U).

The Weibull cumulative distribution function is

F(U)=1— [Er
(3.3)
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The parameters of the Weibull distribution (k and c) can be estimated in one of

two ways. The first is via maximum likelihood estimation (MLE), and the second is by

ordinary least squares (OLS) regression. There does not appear to be a preference in the

literature for one method over the other, and previous work (Justus et al., 1976) has

shown that parameters estimated by the OLS technique do not differ greatly from those

estimated by MLE. To be certain, Weibull parameters were estimated using both MLE

and OLS techniques at 20 stations within the study area. Overall, the OLS technique

provided slightly more conservative parameter estimates. Also, the greatest difference in

k was 0.8 and for c, just 0.3 m s". As the OLS technique is much less computationally

intensive, it was chosen here for the remainder of the stations. In the OLS method (see

Justus et al., 1976, Rohatgi and Nelson, 1994, Romeu, 2003a), Equation 3.3 can be

rearranged by taking the double natural log ofboth sides as such

mbhm—Fflflflzkhflfl—klfld (an

Functionally, Equation 3.4 now takes the form of the standard linear regression equation:

y=b0+qx (13

where, for the variable ln(U), k is equal to the slope of the line (b,), and the intercept (b0)

occurs at —k ln(c).
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Based on the OLS estimation procedure, a theoretical Weibull distribution was fit

to each set of the data from the 20 evaluation stations. The shape parameters ranged from

1.67 to 3.29, with a mean of2. 12 and a standard deviation of 0.41. The scale parameter

ranged from 4.04 m s" to 5.86 m s", with a mean of 4.96 m s'l and a standard deviation

of 0.45 m 3". To establish the goodness of fit, each data set was binned and plotted

against both the probability and cumulative Weibull density functions (Figures 3.7 and

3.8). This graphical procedure has been well established (e.g., Nelson, 1982, Rohatgi and

Nelson, 1994, Romeu, 2003a).
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Figure 3.7 Wind speed frequency distribution (r) and cumulative frequency distribution (1) at Rochester,

NY (KROC) for ASOS data. Theoretical Weibull distributions are shown as solid lines.
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Figure 3.8 Wind speed frequency distribution (r) and cumulative frequency distribution (1) at Traverse

City, MI (KTVC) for ASOS data. Theoretical Weibull distributions are shown as solid lines.

As expected, given empirically derived shape and scale parameters, the two-

pararneter Weibull distribution provided a good fit to the majority of wind data from all

series. Figure 3.7 is the distribution ofwind speeds at Rochester, NY, and represents

what appears, graphically, to be the worst Weibull fit of any of the 20 stations.

Conversely, Figure 3.8 is the wind speed distribution at Traverse City, MI, arguably the

best Weibull fit of the 20 stations. It should be noted that most of the 20 stations more

closely resembled the Traverse City fit than the Rochester fit. Even so, the Rochester fit

does not appear to be inappropriate to the data.
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While the ASOS data have already been determined to be representative of the

long-term wind regime over the study area and the Weibull distribution was found to be a

good visual fit for the ASOS data, it was still necessary to determine statistically whether

Weibull is an appropriate choice of distribution, and if so, could the ASOS data be drawn

from the Weibull distributions of the long-term SAMSON data as might be assumed

given the results of the T-test. To that end, the Weibull distribution that had been

empirically fit to the SAMSON series was applied to the ASOS data. One tendency in

ASOS wind data noted by an earlier study is a general reduction of ASOS-observed wind

speed data relative to pre-ASOS observations (Powell, 1993). The ASOS data used in

this study were found to follow the same pattern (see Table 3.2), in most cases, with the

distribution of ASOS wind speeds, while similar to SAMSON counterparts, shifted to a

lower mean wind speed (see Figure 3.9). Again, a graphical approach for the goodness-

of-fit was used to determine whether ASOS data could come from a distribution

empirically specified by the long-term SAMSON data. While graphics showed some

degradation in fit (Figure 3.9), overall, it appeared that the ASOS data could be derived

from the SAMSON Weibull distributions, especially if the systematic shift of the wind

speed distribution were accounted for as instrument discrepancy.

The final step in determining the appropriateness of a Weibull distribution. to the

ASOS data was to statistically test the goodness-of-fit. Although several methods for

testing the goodness-of-fit of a distribution to data exist, the Anderson-Darling test

(Anderson and Darling, 1954) was selected as the most appropriate.
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Figure 3.9 Weibull pdf (r) and cdf (1) (solid lines) at Grand Rapids, MI (KGRR) derived from 30-year

hourly data (1961-1990) applied against the ASOS observed (1 1/2002 - 6/2004) wind speed distribution
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A number of so-called distribution free goodness-of-fit tests exist to evaluate how

well a chosen probability distribution fits to a sample of data. The most common ofthese

tests are the Chi-square and Kolmogorov-Smimov tests. Such tests are referred to as

distribution free, or empirical distribution functions (EDFs) in the sense that their critical

values do not depend upon the specific theoretical distribution function being tested and

the parameters of the distribution may be empirically derived from the data itself

(Bimbaum, 1953). The X2 test is among the most commonly used tests in that it is
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relatively easy to calculate (Davis, 1986, Snedecor and Cochran, 1989). However, the X2

test is of low statistical power and requires relatively large bin counts to ensure the

robustness of results (Snedecor and Cochran, 1989). A slightly more powerful test is the

Kolomogorov-Smirnov, or K—S test (Davis, 1986). One major advantage of the K-S test

over the X2 test is that it is considered an exact test as it does not require the data to first

be binned as with the X2 test, thus increasing its power (Davis, 1986). However, the K-S

test has several important limitations. First, it tends to be less sensitive to data in the tails

than near the center of the distribution. Secondly, and perhaps most importantly, the

distribution being tested must be fully specified. In other words, the distribution cannot

be evaluated against the data from which the distribution parameters were empirically

estimated. In such cases, the critical region is no longer valid and must be estimated by

repeated simulation (Fillibin and Heckert, 2003). Furthermore, both the X2 and K-S tests

suffer from the limitation of requiring continuous, rather than discrete distributions

(Fillibin and Heckert, 2003).

The Anderson-Darling test is a special case of the Kolmogorov-Smirnov test that

is more sensitive in the tails of the distribution (Stephens, 1974, Romeu, 2003b). In

addition, the distribution in question does not need to be fully specified. That is, the

parameters of the distribution can be estimated from the data being evaluated without

invalidating the critical region of the test (Anderson and Darling, 1954, Fillibin and

Heckert, 2003). Strictly speaking, however, the Anderson-Darling test, while an EDF, is

not distribution free. Its critical values are dependent upon the distribution being

evaluated (Lewis, 1961, Stephens, 1976). While the specification of a distribution makes
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the Anderson-Darling (A2) test more powerful and sensitive than the K-S test, it also

means critical values must be calculated for the specific distribution. Fortunately,

because the Weibull distribution is used extensively in engineering, failure and lifetime

studies, critical values of A2 have already been specified (Stephens, 1974, 1976).

The disadvantage of a more powerful statistical test tends to manifest itself in the

complexity of its calculation. The Anderson-Darling test is no exception, and is more

complex than either the X2 or K—S tests. For asymptotic distributions the test statistic, A2

is given by Anderson and Darling (1954) as

n

A2 = —n—lz(2i— l)[an,~ + ln(l —U,,__,-+1)] (3.6)

i=1

where n observations ofx are ordered and U,- is the function Fm). Substituting the

Weibull distribution for the standard normal distribution, the A2 equation becomes

(corrected from Romeu, 2003b)

A2 _—. _n — %[Z(2i — 1){1n(i - exp{— 2,. })— z,,_,-+l ] (3.7)

i=1

where

X' k
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and where k and c are the empirical estimates of the Weibull shape and scale parameters

respectively. For small samples, the test statistic is modified by Equation 3.9.

A” =[1+005'2}42 (3.9)

n . .

However, there are no set guidelines as to what constitutes a small sample and critical

 

values are calculated such that they must be compared with this modified test statistic

(Stephens, 1974, 1976). Because small sample size tends to lead to a more conservative

critical value, this only strengthens the results of the test. Therefore, all test statistics

were calculated for small samples (and subsequently both the notation A2 and All refer to

the small sample statistics interchangeably in this research).

The null hypothesis of the Anderson-Darling test used in this study states that the

data were drawn from the specified Weibull distribution. The alternative hypothesis

therefore is that they were not. Rather than continually refer to calculated tables to assess

the test outcomes, the observed significance level (OSL) of the modified test statistic

(A?) was calculated empirically using

p =1/{g+expl—0.1+1.24inlA2*)+4.4s(A2*)J} (3.10)
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as described by Romeu (2003b). The observed significance level is the probability (p) of

the null hypothesis being true. Unless the OSL is smaller than the critical probability

level (i. e., alpha level), the null hypothesis may not safely be rejected without an undue

risk of committing a Type I statistical error.

Like any statistical hypothesis test, certain assumptions must be met. For the

outcome of the Anderson-Darling test to be considered statistically valid, the data being

evaluated must be independent and come from a Weibull distribution (Romeu, 2003a).

In order to meet the assumption of independence, 100 wind speed observations were

randomly selected without replacement from the ASOS data for each station. Anderson-

Darling has been used with n as small as 6 with robust results (Romeu, 2003a) and thus

an n of 100 is assumed to be sufficiently large. This procedure was repeated 100 times

for each station. Because the Weibull distribution is mathematically unable to

accommodate calm (0 m s") values, only wind speeds above the 2 knot threshold were

included in the random selection. However, the exclusion of these calm wind speeds

does not necessarily invalidate the assumption of independence of the selected wind

Speed observations because the randomization ensures that each sampled speed is

unrelated in time to every other sampled speed in the subset. The A2 test was applied to

each ofthe 100 random series for a given station using the empirically derived Weibull

shape and scale parameters from the 30-year SAMSON record ofwind speed at the same

stations, and the results are presented in Table 3.3.
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Weibull and A2 statistics at selected stations

ASOS SAMSON

ID Name k c A" k c
ANJ Sault Ste Marie, MI 2.01 4.03 2.6142 2.15 5.5

APN Alpena, MI 2.31 4.18 2.1210 1.85 4.29

BUF Buffalo, NY 1.98 5.16 1.9197 2.46 7.00

CLE Cleveland, OH 2.16 5.14 1.7692 2.56 6.53

CMX Hancock, MI 1.77 5.30 2.1641 1.92 6.53

DET Detroit, MI 2.07 4.46 2.3177 1.73 6.66

DLH Duluth, MN 2.03 5.34 2.1491 2.70 6.69

ERI Erie, PA 2.10 5.01 1.7748 2.32 7.93

FNT Flint, MI 1.97 4.82 2.2716 1.83 6.38

GRB Green Bay, WI 3.23 5.86 2.1550 2.46 6.23

GRR Grand Rapids, MI 2.06 5.11 1.6503 2.23 5.91

INL Intemational Falls, MN 3.29 5.53 2.0812 2.59 5.99

LAN LanSM 2.06 4.99 1.9886 2.40 6.52

MKE Milwaukee, WI 2.04 5.32 2.1747 2.25 6.39

MKG Muskegon, MI 2.00 5.28 1.8537 2.59 6.36

ROC Rochester, NY 1.80 4.96 2.4818 2.07 5.83

SBN South Bend, IN 2.12 4.93 1.8412 2.43 7.02

SYR Syracuse, NY 1.67 4.56 3.2709 2.13 5.83

TOL Toledo, OH 1.80 4.89 2.4188 2.37 5.76

TVC Traverse City, MI 1.85 4.04 3.3116 2.58 6.25   
 

Table 3.3 Wind data distribution and goodness-of-fit statistics for 20 ASOS stations in the study area with

long-term (1961-1990) wind records. Weibull shape (k) and scale (c) parameters are given for short

(ASOS) and long-term (SAMSON) speeds. Average Anderson—Darling (A2 ) test statistics based on 100

trials of 100 observations are given for the ASOS data.

At a significance level ofp = 0.01 , the results were mixed and in general

inconclusive. The null hypothesis (that the ASOS data came from the SAMSON-derived

Weibull distribution) was accepted about half the time when averaged across all 20

stations. While the most of the stations were able to accept the null in more than 50% of

the trials, a few stations were unable to accept the null more than a few times. The

overall average was reduced by the results from Traverse City, MI (KTVC) at which the

null was rejected in all cases. Overall, however, for all stations the distribution of test
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statistics was negatively skewed toward more conservative values (Figure 3.10), and it

appears that the average test statistics were by-and-large skewed by a few large outliers.
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Figure 3.10 The distribution of Anderson-Darling (A2) test values from 100 random samples of 100 ASOS

wind speed observations at Muskegon, MI (MKG). The critical value (dashed) of 1.943 is shown, as is the

mean test statistic (solid) and 95% confidence intervals (dotted). This station accepted the population

Weibull distribution 66/ 100 times.

This behavior corresponds with the results of Shein (1995) who demonstrated that

significant variation in empirically-derived Weibull parameters may occur from one year

to the next, but that even though one year’s distribution may vary from another, both are

drawn from the same long-term population, both fit a Weibull distribution, and both are

representative of the long-term wind speeds at a station. Therefore, the results of this

representativeness analysis suggests that while the statistical summary of trial samples
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(ASOS) may not have agreed with the long-term Weibull parameters (SAMSON), the

preponderance of null-acceptance trials coupled with the graphical and statistical

similarity between the two data distributions were enough for the researcher to conclude

that the ASOS data are, in general drawn from a population that is distributed according

to a Weibull function, and that it appears the ASOS data are, in general representative of

the long-term wind speed climatology of the region.

Once the general goodness-of-fit of the Weibull distribution for data within the

region and confidence that the data were not materially different from the long-term wind

regime had been established, OLS was used to estimate the Weibull parameters for the

ASOS data at the remainder of the 113 stations. The shape parameters ranged from 0.96

to 4.89, with a mean of 1.76 and a standard deviation of 0.41. The scale parameter

ranged from 2.19 in s'1 to 7.48 m s", with a mean of4.10 m s‘1 and a standard deviation

of 0.98 m s". This relatively low variation with respect to the parameter means suggests

that wind speed distributions across the region do appear to exhibit some spatial

coherence. Station values of shape and scale are presented in Appendix C.

3.4 Spatial and Temporal Behavior of Observational Data

3.4.1 Non-seasonal assessment

Prior to evaluating the estimative ability of a model, it is necessary to develop an

understanding of the properties and behavior of the variable to be modeled. The Wind
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Energy Atlas of the United States (Elliott et al., 1987) indicated that, with the exception

of the over-water and coastal zones, the Great Lakes region has a relatively low wind

power potential, based in large part on the relatively low observed mean wind speeds

over land in the area (Figure 3.11). Despite the increase in the number of stations in the

study area in recent years relative to when the Atlas was compiled, wind statistics from

the study period suggest that the results of the Atlas were not in great error.

UNITED STATES ANNUAL AVERAGE WIND POWER

 
Figure 3.11 Average wind power map (at SO-m) of the contiguous United States from Elliott er al., (1987).

Darker areas represent greater wind energy potential. Values (as found in Elliott etal., 1987) are based

“P011 Wind speed observations fiom lower heights, and many of the over-water estimates are of low

confidence due to limited data availability. A substantial portion of the over-land parts of the study area are

listed as category 2, or very low wind speed potential.



  

  
Figure 3.12 Annual mean wind speeds (in m s") for the period of record across the study region. Negative

values are invalid byproducts of interpolation and should be ignored.

Over the Great Lakes region the mean wind speeds from the period of record

range from 2.06 to 7.10 m s'1 with a mean regional speed of 3.77 m s". The strongest

speeds appear to be concentrated near Long Point, ON with the weakest in SE Michigan

(Figure 3.12). There appears to be a fair amount ofvariability about the means at a

number of stations. Stationwise standard deviations range fiom 1.60 m s‘l to as much as

3.77 m s", with a mean standard deviation of2.38 m s". Regionally, however, variability

is much less. The standard deviation of station means over the region was just 0.75 m 5",

indicating that there appears to be some degree of homogeneity in the regional wind field,

and that much of the variability is the result of local scale influences. Means and
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standard deviations of all stations are presented in Appendix C. However, it should be

noted that the values in Appendix C are calculated only from non-zero wind speeds.

While this results in slightly higher values, the omission of calm winds is because several

stations suspend observations during the night when the airport is closed. Thus the

means for these stations would be lower than those at 24-hour stations that are more

greatly influenced by nighttime calms, which are common over the study region.

A biharmonic spline interpolation algorithm, developed by Sandwell (1987),

originally for interpolating GOES data was used to generate the contour maps of each

variable over the region. Figures 3.12 and 3.13 both employ this method, as do all

subsequent contour maps. The choice of this interpolation method was based on a

comparison of several available alternative methods such as standard linear interpolation,

cubic interpolation, and nearest neighbor interpolation. Standard linear, cubic, and

nearest neighbor interpolation methods are all based upon Delaunay triangulation. The

linear method contains discontinuities at its first derivative, and the nearest neighbor at its

zeroth derivative. The cubic, while producing a smooth surface, was not equipped to

perform extrapolation over the region.

In addition to the mean wind speeds over the region, the prevailing winds also

were examined (Figure 3.14). When averaged over the study period, a general

southwesterly prevailing wind direction was found at most stations. Such behavior is

expected as the overlying synoptic scale flow at these latitudes is largely westerly, often

with a southerly component when a trough resides over the Great Plains region
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(Eichenlaub et al., 1990). It is interesting to note that several stations do not conform to

this pattern, instead demonstrating southeasterly prevailing winds. It is likely that these

stations are more greatly influenced by high levels of localized flow modification, due

either to mechanical (terrain) or thermal (sea breeze) factors or a combination ofboth.

 
 

  
Figure 3.13 Stande deviations (m 3") about mean annual wind speeds over the study region for the

period of record.

From the wind roses produced for each station, overall annual prevailing wind

directions were identified at each station. The majority ofstations exhibited prevailing

winds from westerly directions. However, although a prevailing direction could be

established for each station, most stations exhibited a multimodal wind rose and the
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prevailing direction was not clearly dominant when non-seasonal (all data) were used

(Figure 3.15; Appendix D).

 

 

 
   w W .

All seasars: Prevailing wind direction

Figure 3.14 Prevailing wind directions (arrows are scaled by mean speed) at the stations used in this study.

Prevailing winds are derived from all available data from all seasons in the period ofrecord.

Furthermore, most stations exhibited a great deal ofdiversity in their wind rose

distributions, both seasonal and overall. This suggests that the region is influenced by

different flow regimes at different times of year, each contributing to the overall behavior

of the wind field at each station. It also suggests that localized influences may play a

larger than expected role in determining the behavior of the wind field at a given station
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site, which may complicate the wind field estimation of a non-local scale physically-

based model.

 
Figure 3.15 Annual wind roses at four stations across the study area [(a) Chapleau, ON, (b) Bellaire, MI,

(c) Sault Ste. Marie, MI, and (d) Buffalo, NY]. Wind regimes over the study region are very diverse over

the period of record (see Appendix D)-
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Temporal Autocorrelation at CYYZ
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Figure 3.16 Temporal autocorrelation of non-seasonal wind speeds at Toronto, ON (CYYZ) over the

period of record. This autocorrelation behavior is typical of wind speeds across the Great Lakes.

It is commonly accepted that wind speeds tend to exhibit a strong degree of

temporal autocorrelation. An autocorrelation function was applied to the data in this

study at each station and the results for the first 26 hour lags are plotted in Figure 3.16.

Distinct autocorrelation was found at all locations, necessitating steps to minimize this

behavior when statistically assessing the data. At a lag of one hour, autocorrelations

ranged from 0.93 to 0.78, with a regional mean of 0.88 and a standard deviation of 0.03.

The majority of strong lag-1 autocorrelations appear to come from stations that extend

into the water regions of the Great Lakes (Figure 3.17). This suggests that the relatively
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low roughness of the lakes limits localized influences on the wind regime and may

facilitate the success of autoregressive type models for wind speed forecasting over the

water. However, given a correlation of 0.36 between the standard deviation ofwind

speeds and the autocorrelation coefficient, it does not appear that an increase in station

speed variability necessarily results in decreased autocorrelation.

In addition to the temporal autocorrelation of the hourly wind speed observations,

it is also noteworthy to describe additional patterns that may be present in the data.

These include the possibility of both diurnal and seasonal (annual) patterns. Neither

signal is inappropriate for the region. Near surface wind speeds tend to reach their zenith

during the afternoon hours, when maximum local insolation has generated the strongest

thermal gradients and turbulence over an area. Nighttime generally brings the slowest

speeds as thermal activity is minimized and the boundary layer may decouple from the

free atmosphere. This behavior also is manifested in an annual signal, but in reverse.

Strongest winds over the Great Lakes tend to be exhibited in winter, at the time of the

greatest hemispherical pressure gradients, and weakest in summer, when the polar front

migrates well north of the region (Eichenlaub, 1979, Eichenlaub et al., 1990).
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Figure 3.17 First order (lag l) autocorrelation coefficients over the study area for the period of record.

Although all stations are strongly autocorrelated, the highest autocorrelations appear to occur at stations

most isolated from major land regions.

The seasonal signal is demonstrably recognizable in a time series of wind speeds

at any station within the study area (Figure 3.18) and can also be visualized in a

comparison between summer and winter wind speeds as will be discussed in the next sub-

section. Several stations were found that did not exhibit a pronounced annual cycle.

These stations tend to be relatively exposed (e.g., Erie, PA) or in complex terrain (e.g.,

Ironwood, MI) and as such may have a seasonal signal that is damped by local effects.
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KBEH Time Series (2411 MA)
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Figure 3.18 A 24-hour moving average time series of wind speeds at Benton Harbor, MI (KBEH) over the

period of record. Lowest wind speeds are found during the summer months, while strongest winds are

experienced in winter. All seasons appear to exhibit substantial variability about the station mean.

The diurnal cycle of wind speeds tends to be more difficult to visualize than the

longer annual cycle. However, by decomposing the time series of hourly wind speed

observations into its component cycles, the dominance of a diurnal cycle quickly

manifests itself at most stations in the study region. The transition of data from the time

domain to the frequency domain was accomplished by employing a Fast Fourier

Transformation on the data at each station. The results of the transformation highlight

the relative importance of the diurnal signal (and thus the effects of local influences) to

the behavior of the wind field at a given location (Figures 3.19 and 3.20). Somewhat
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surprising was the relative strength of the diurnal cycle, which was found to be fairly

constant across the region, indicating that lake breeze circulations along the coasts may

not have as much of an influence on diurnal wind speeds as had been previously thought.
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Figure 3.19 Power spectrum of wind speed at Ludington, MI (a coastal location) from 11/02 to 6/04. The

diurnal cycle near 0.04 cycles/hr is dominant, accounting for 5% of the explained variance in the data.
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Figure 3.20 Power spectrum of wind speed at Lansing, MI (an inland location) from 11/02 to 6/04. The

diurnal cycle near 0.04 cycles/hr is dominant, accounting for 7% of the explained variance in the data.

The annual distribution ofwind speeds at the stations in the study area has already.

been discussed earlier in this chapter. However, while the frequency distributions of

wind speeds over the study region appear to be well approximated by a two-parameter

Weibull distribution, there was some variability in the parameters of the distribution over

the region. The shape parameter (k) appears to be the least spatially variable (Figure

3.21). This is the parameter that controls the peakedness of the distribution (Figure 3.22).

The larger the value of the shape parameter, the lower the variability about the mean, or

stated another way, the greater the probability of experiencing a wind speed observation
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near the mean speed. From the data in Figure 3.21, it appears that the least variable

winds (largest shape values) occur systematically toward the southern areas, centered

about the tip of Lake Michigan. A lack of spatial variability in the Weibull shape

parameter indicates that the variability ofwind speeds about their mean does not vary

appreciably over the region.

  

  
Figure 3.21 Annual Weibull PDF shape parameters over the study area for the period of record. Highest

values indicate highest probabilities of winds near the mean wrnd speed.
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Figure 3.22 The influence on a Weibull PDF when the shape parameter is varied. A shape value of 1 is an

exponential distribution, 2 is a Raleigh distribution, and 3.7 approximates a normal distribution. Below a

shape value of 3.7, the distribution is right skewed, and above it left skewed.

Annually, the Weibull scale parameter (c) appears to be much less systematic in

its behavior (Figure 3.23). However, one must remember, that the scale parameter is

largely a measure of the first and second moments of the distribution (mean and standard

deviation). The scale parameter value represents approximately the 63rd percentile of the

distribution. Thus, as scale increases, the distribution is necessarily stretched toward the

right tail because the distribution is bounded by zero on the left. Conversely, as scale

decreases, the distribution is squeezed toward zero (Figure 3.24). Over the region, the

highest scale parameters tend to occur in locations with high mean wind speeds. This is
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logical as a higher mean moves the distribution away from the lower zero bounds, thus

stretching the distribution toward the right tail.

 
 

  
Figure 3.23 Non-seasonal (all data) Weibull PDF scale (0) parameters over the study area. lt is clear that

as with the shape, the distribution parameters cannot be considered regionally constant.

An alternative way in which to visualize and compare the distribution of wind

speeds over the region is through schematic plots. Because schematic plots utilize more

robust and resistant statistical measures (e.g., median and IQR), such plots are arguably

more robust than graphics that employ moment-based (e.g., mean and standard deviation)

measures (Wilks, 1995; Tukey, 1977). Additionally, more information can ofien be

captured and presented in a schematic plot than in a standard frequency distribution
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histogram. For example, not only is the median presented, but additionally, it

demonstrates the degree of spread ofdata about that median value; whether or not the

data are symmetrically distributed and ifhigh or low values are legitimately part ofthe

main body of the distribution or whether they are outliers.
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Figure 3.24 Variations in the Weibull scale parameter result in a stretching or squeezing of the distribution

and reflect the behavior of the mean and standard deviation of the wind speed distribution.

Schematic plots of the wind speed series at each station were constructed as a

notched box and whiskers plot, whereby the lower and upper bounds of the box are the

lower and upper quartile respectively. The median bisects the box, and the notch
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represents a robust estimate of the uncertainty about the median value for comparison

with other plots. The so-called whiskers that extend from the box ends represent the

outer fences of the data, or 1.5 times the interquartile range (IQR). The whiskers help to

illuminate the extent of the more unusual data within the distribution. Lastly, outliers, or

those values that exist beyond the outer fences are illustrated independently as points on

the plot. Overall, the schematic plots allow a great deal of information regarding the

distribution to be presented and graphically compared to other distributions. Three

example schematic plots are presented in Figure 3.25. Schematic plots for all stations can

be found in Appendix D.

Surprisingly, when the outliers are clearly identified and excluded, it appears that

there is not a great deal of variation between stations. This clearly illustrates the

dependence of the mean wind speed on extreme outlier values. In general, most plots

show a median value of between 4 and 5 m s'l and an IQR of only about 2-3 m s",with

much of the higher winds constrained to the upper outer fence region and but a few

extreme outliers. Unfortunately, it appears that, based upon these distributions, very few

ofthe stations would have wind speeds sufficient to economically support wind energy

conversion as the entire IQR resides below the peak power thresholds (the lower bounds

of rated power output) ofmost turbines (about 9 m s" when adjusted to lO-m height). As

expected, however, it was the distributions at stations extending into the lakes or along

the windward shores in which the peak power threshold occurred within the upper

whisker region of the plot.
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Figure 3.25 Schematic plots of non-seasonal wind speed distributions at 3 stations [(a) Gary, IN, (b)

Niagara Falls, NY, and (c) Muskegon, M1] for the period of record. Most of the variability appears to be

not in the main body (IQR) of the distribution, but rather in the presence of high wind speed outliers. This

information likely skews both the mean and standard deviation of the distributions toward higher values.

See Appendix D for plots for all stations.
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To further examine the wind power potential of the region, a power analysis was

undertaken. This involved examining two factors. First was the amount of time a turbine

would experience winds in the range at which it would produce its maximum (or rated)

power. This amount of time is called TARP, or time at rated power (Shein, 1995) and,

for this study area is largely dependent on the winds in the upper whisker region ofthe

aforementioned schematic plots. The rated power calculations were based upon an

idealized turbine with a rated wind speed range of 12 to 25 m s'1 at a hub height of 50

meters. The results of this analysis are presented in Figure 3.26. It appears that, as

expected, the overall percentage of time that the wind speeds fall within the rated power

portion of the turbine power curve is relatively low; under 20% for the entire region.

 

  
All seascm: Tire a: rated power CA)

Figure 3.26 Percent time at rated power (TARP) over the study area for the period of record. This is a ratio

of the total time a wind turbine might be expected to be producing its rated (maximum) power.

Calculations are based on a 50 m turbine hub height with a rated power range at 50 m of 12 to 25 m s".
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As expected, the greatest TARP percentages were over Lakes Superior and Eric,

as well as Georgian Bay. However, TARP does not include those wind speeds at which

the turbine would be producing power at less than its rated capacity. Thus, an estimation

of total actual power potential was called for. This power estimate was obtained by

adjusting the wind speeds to 50 meters using the wind speed power law (Equation 3.1)

with the 1/7lh exponent, and using the actual power curve of a moderate sized wind

turbine that might reasonably be installed in the study region. The turbine used was a

Vestas 850 kW with a 50—m hub height. By translating 50—m wind speed estimates into

estimated turbine power output, a realistic measure of wind power potential over the

region could be obtained (Figure 3.27).
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Figure 3.27 Power output in kilowatts over the period of record from a Vestas 850 kW wind turbine.
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From Figure 3.27 it is rather clear that coastal regions that can be expected to

have a substantial over water fetch appear also to be the most productive in terms of

power output from a turbine placed at those locations. In particular, Long Point and

Georgian Bay in Ontario as well as the Lake Michigan shoreline and Keweenaw

Peninsula in Michigan would be most appropriate for WECS development. This spatial

pattern of Figure 3.27 appears to share some similarity over the region with the US. wind

power map in Figure 3.1 1 (Elliott et al., 1987).

3.4.2 Seasonal assessment

An examination of the wind field over a region such as the Great Lakes would not

be complete without an assessment of the seasonal variations in that field. As has been

noted in the previous sub-section, the regional winds reach a maximum velocity in the

winter and a minimum in the summer. In addition, the overlying synoptic flow patterns

are markedly different during the various seasons (Whittaker and Horn, 1981, Harman,

1987). In the winter, the polar front generally shifts south of the region, and so, with

frequent troughing over the area, a northwesterly wind might be expected (Eichenlaub,

1979, Eichenlaub et al., 1990). With the migation of the polar front to the northern

reaches of the study area, summertime is expected to bring a shift to a more

southwesterly flow over the region, and, with a decreased pressure gradient over the

region, a weakened velocity structure. While strong summer winds do occur, they tend to

be inconsistent, occurring in coincidence with frontal passage and convective activity
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rather than a strong upper-level flow as is present in the winter. Overall, the year was

divided up into four parts of three months apiece to represent each of the seasons. Winter

was comprised of December, January and February. Spring was March, April and May.

Summer was June, July and August. Fall was September, October and November.

As the variation in mean wind speeds has been discussed in the previous sub-

section it is not necessary to repeat it here. However, an examination of differences in

seasonal variability is in order. Although it was thought that perhaps the transitional

seasons of Spring and Fall would experience the greatest variability of wind speeds about

the mean, this was not found to be the case (Figure 3.28). Rather, winter, with its highest

mean speeds also had the highest standard deviations. Summer, in contrast, with its low

speeds tended to also have the lowest variation in speeds.

In addition to differences in variability of wind speed, it is also expected that there

exists a variation in prevailing wind direction from one season to the next. The

prevailing winds therefore were plotted over the region and examined by season. Figure

3.29 shows the transition from a summer regime to a winter one in terms of shifts in the

prevailing winds.
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Figure 3.28 Standard deviation (in in s") of wind speeds by season (1 1/2002 - 6/2004). While the highest

Wind speeds occur in the winter, so does the greatest variability in wind speeds. As expected, summer,

with the lowest mean speeds also has the smallest variation.
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Figure 3.28 Continued.
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Figure 3.29 Prevailing winds during each season (1 1/2002 - 6/2004) at the stations in the study area. The

dominant direction in all seasons except Spring is southwesterly. Spring is characterized by predominantly

northerly and northwesterly winds. Station wind arrows are scaled by seasonal mean wind speed.
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Figure 3.29 Continued.
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Interestingly, the expected northwesterly flow of a wintertime mid-latitude wind

field did not materialize. Instead, this northerly flow was restricted to the Spring months.

It is possible that a deviation from the regular winter synoptic patterns over the region

during the period of record led to this inconsistency. In addition, winter was the most

consistently southwesterly. In the Fall and Summer, a number of stations had prevailing

wind directions that did not adhere to the general regime of the region, likely the result of

a dominant local flow pattern. Indeed, it is during these months that insolation is

maximized, and as a result the thermal lake breeze is strongest. This is evident in that the

stations having deviant prevailing winds all appear to be located in close proximity to a

coast, and the direction is largely perpendicular to the coastline. Winter shows the least

amount of variability from the prevailing southwesterly flow.

Based on this seasonal variation, seasonal wind roses at the stations were

examined. The seasonal wind roses highlighted two important characteristics of the

regional wind field. First, it was confirmed that the majority of stations exhibited

seasonal wind roses that were consistent with the regional pattern (Figure 3.30).

However, the seasonal wind roses also demonstrated that in most cases there was a great

deal of variability in wind directions, and that the prevailing wind direction was not

dominant. In general, it appeared that Fall, closely followed by Winter exhibited the

greatest variability in wind direction. With a few exceptions, Summer was the least

variable in terms of wind direction. In addition, Summer wind roses at many of the

coastal stations exhibited a fair degree of bimodality, suggesting at least some local

thermal influences.

118



   

 

’_... " -

210“\\_1_/-./”150

180

(b) Summer 

 

 

 
Figure 3.30 Seasonal wind roses at Beaver Island, MI (KSJX) for the period of record. This station is

consistent with the regional prevailing flow regime.

Secondly, at station sites where it could be assumed that local terrain or local

thermal flow regimes might substantially affect the wind field, a corresponding signal

was found in the wind roses (Figure 3.31). As mentioned earlier, a thermally induced

lake breeze circulation appeared to be commonly manifested in Summer wind roses as a

bimodal distribution of low variability. In other instances, such as the sheltered bay
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surrounding Traverse City, M1, the wind flow appears to be dominated by thermal

circulation guided by the orientation of the bay during the Spring and Summer, and

dominated more by the overlying westerlies the remainder of the year.

To better address some of the influences on the local station winds at different

times of year, it is perhaps advantageous to examine the dominant signals in each of the

seasonal wind speed series (Figure 3.32). In particular, three signals are of interest. The

first is the diurnal signal, which may indicate a dominant thermally induced pattern of

winds (diurnal heating/cooling). At coastal locations in the Summer, a half-day signal

might also appear, the result of a lake breeze circulation. Lastly, cycles with periods of 3

to 7 days are of interest. This is approximately the frequency with which mid-latitude

synoptic systems pass over the region (Eichenlaub, 1979, Harman, 1987).

The behavior of the data in the frequency domain is exactly as expected for the

region. There is a diurnal cycle present at all stations. The diurnal signal also varies by

season. The diurnal signal has its most power in the Summer. For example, at Holland,

MI (Figure 3.32), the power of the daily cycle is nearly three times stronger than in either

the Spring or Fall. The daily cycle is at its lowest power during the Winter months.

Secondly, at stations near a coastline, such as Holland, MI, there is a distinctive

half-day cycle that is present in all seasons, but is weakest in the Winter (Figure 3.32).

The half-day cycle is of more-or-less equal power in the Summer and Fall, and only

slightly weaker in the Spring. It is likely that the half-day cycle during winter is more the
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result of aliasing from the diurnal cycle than an actual thermally induced lake breeze

circulation. The cycle’s presence at predominantly coastal locations during months of

heightened insolation appears to confirm the presence of a lake breeze circulation, as

aliasing is unlikely to account for the entire signal to that magnitude.

 

(d) Winter

(c) Fall

Figure 3.31 Seasonal wind roses at Traverse City. M1 for the period of record. In its bay location, lake

breeze circulation and localized flow predominates, especrally in Spring and Summer.
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Figure 3.32 FFT seasonal power spectra at Holland, M1 for the period of record. Upper figures indicate the

power of the signal at any given frequency. Lower figures translate the power into a percentage of

explained variance of each signal relative to its periodicity.
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(c) Fall
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Figure 3.32 Continued.
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Lastly, as expected, all stations exhibited relatively strong signals between 2 and 7

days per cycle, but not equally in all seasons (Figure 3.32). This so-called synoptic signal

is most likely the result of mid-latitude syn0ptic systems traversing the region. As

expected, these signals were strongest in the Winter and weakest in the Summer. More

moderate synoptic signal strength was encountered in the Spring and Fall.

In summary, the wind field in the region is characterized by two dominating

influences. There is a distinct influence by the overlying synoptic circulation of the mid-

latitudes. This is manifested in the predominance of a regionalized prevailing wind

direction and the fundamental similarity in mean wind speeds across the region. It is

likely that a regional scale, numerically driven climate model may capture this influence

with a high degree of confidence. The other influence however, is a local component that

is the result ofboth differential heating from variations in land cover, and of terrain that

may channel the flow. As this is a study primarily of coastal regions of the Great Lakes,

much ofboth influences is due to the land — water transition. From a thermal perspective,

the differences in specific heat between the lakes and the land adjoining them is quite

strong, but also can be variable depending on the land cover along the coast. From a

mechanical perspective, the land —- water transition zone often represents one of the most

acute changes in surface roughness in a region. It is likely that even the most well

specified dynamical models may have difficulty fully parameterizing these localized

effects, and it is likely that here is where much of the model error will occur.
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3.5 FSMM5 Model and Wind Estimates

The major objective of this study is to evaluate the performance of the regional-

scale numerical climate model known as MM5 for use in identifying areas with wind

energy potential, and to identify techniques that may improve the performance of the

model. In order to accomplish this goal, MM5 estimates of the near-surface wind field

were obtained over the region at a number of spatial resolutions. Because the

implementation and oversight ofMM5 requires a substantial investment in both computer

and operator time, the performance ofMM5 was also compared to estimates of the wind

field derived from several other popular stochastic model approaches, such as Measure-

Correlate-Predict (Derrick, 1992). Each of the comparison models represents a technique

that has been used in wind energy research and is less complex than MM5. This chapter

discusses MM5 and the comparison models and outlines the methods for model

evaluation and comparison.

3.5.1 Model implementation and domains

Simulated wind data for the study were obtained from version 3.4 of the non-

hydrostatic 5th Generation Mesoscale Model (MM5), developed at the Pennsylvania State

University and NCAR (Haagenson er al., 1994). This version ofMM5 (hereafter

FSMM5) has been implemented for operational and research use by the US. Forest

Service North Central Research Station in East Lansing, MI (USDA, 2002). FSMM5 has

been run operationally since the summer of 2002 and produces 48-hour hourly forecasts
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of several meteorological indices of importance to forest fire risk and mitigation

(Chamey et al., 2003, Heilman et al., 2003). FSMMS is run at 36 vertical sigma layers

(non-spectral) on a 36-km grid that covers much of eastern North America and a 12 km

domain that extends from 31.9° N, 101.9o W (lower left) to 51..9° N, 63.7° W (upper

right). Within the 12-km domain a 4-km grid is nested to provide greater spatial

resolution (Figure 3.33). The distribution of grid points over the study area is presented

in Figures 3.34 to 3.36. The domain layers are variably distributed according to pressure,

with the lowest at around 2 meters (surface) and the t0p layer at approximately 12 km

(100 mb). Within the vertical domain, near surface layers are more closely spaced

(corresponding to vertical pressure gradients), gradually increasing from about a 10 meter

spacing between the bottom layers to about 1500 meters of spacing between the upper-

most layers (In er al., 2004).

Each of the domains is specified using a Lambert Conformal projection with true

latitudes at 40 and 60 degrees (Charney, 2004 personal comm). The study area (Figure

3.1) is fully enclosed by the 36 and 12 km domains (Figures 3.33, 3.35 and 3.36), and

partially by the 4 km domain (106 of the 113 ASOS stations are situated therein — the

stations outside the domain are omitted from analysis at this resolution) as shown in

Figure 3.34. Based on these grid domains, FSMM5 is capable of producing estimates of

the wind resource over a region at a relatively high resolution.
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Figure 3.33 Spatial coverage of the 3 domains of FSMM5. The coarsest resolution (36 km) covers the

contiguous United States, some of Canada and Mexico. The intermediate (12 km) covers the east-central

portion of North America. The finest resolution (4 km) includes most of the Great Lakes region.
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Figure 3.34 Spatial coverage of the 4-km (West) domain of FSMM5 over the study region (41° - 50° N by

76° ' 97° W). This is the finest resolution domain run by the model and covers much of the Great Lakes.

Each dot represents a domain grid cell comer point.
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Figure 3.35 Spatial coverage of the 12-km FSMM5 domain over the study area (410 - 50° N by 76° - 97°

W). Each dot represents a domain grid cell corner point.

 
Figure 3.36 Spatial coverage of the FSMM5 36-km domain over the study area (41° - 50° N by 76° - 97°

W). Each dot represents a domain grid cell corner point.
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Within FSMM5, a 5-minute (5-9 km grid) digital elevation model (DEM)

obtained from the US. Geological Survey (USGS) characterizes the land surface of a

region. The FSMM5 model runs used in this study were initialized using 40-km

resolution Eta (now known as NAM; North American Meso) model initialization analysis

from the National Centers for Environmental Prediction (NCEP). FSMMS employs the

following atmospheric physics parameterizations: the Kane-Fritsch cumulus scheme for

simulating convection (Kain and Fritsch, 1990), Dudhia’s (1989) cloud radiation model,

the Mellor—Yamada turbulent kinetic energy model for the boundary layer (Mellor and

Yamada, 1974, 1982, Gerrity, 1994) and Reisner ct al’s (1998) mixed phase cloud

microphysics model. These pararneterizations and schemes have been used with success

in a wide variety ofMM5 implementations (Dudhia, 2004).

FSMMS is run operationally on a Linux based Beowulf cluster (Adams and V08,

2002) comprised of 16 individual processor nodes and is capable of producing a 48-hour

12 km simulation in 1 hour and a nested 24-hour 4 km simulation in 4 hours (Charney,

2002 personal comm). Computational schematics ofFSMM5 are discussed in detail by

Heilman et al. (2003).

3.5.2 Model output

FSMM5 estimates the u and v components of wind at each vertical level for each

grid point location. Unlike precipitation and temperature, which are calculated by MM5

at dot points (grid cell center points), wind components are estimated directly at grid
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cross points (the grid cell corners). The four estimation levels that were available for this

study were the surface (2 meters), 30 meters, 50 meters and 80 meters and are the mean

height of the level. As MM5 performs its calculations on spectral levels an interpolation

to physical altitudes was subsequently necessary. The aforementioned wind speed

altitudes were confirmed by Forest Service personnel (Bian, 2004 personal comm.) at the

time ofdata transfer. Wind speeds were estimated by MM5 as u (zonal) and v

(meridional) wind vectors in meters per second (m s") at each grid point (and are not grid

cell averages) within the aforementioned domains. Although the computational time step

for the 36, 12 and 4—km spatial resolution domains is 90, 30, and 20 seconds respectively,

the output wind vectors were estimated as instantaneous values for a given time, rather

than an aggregate over the entire preceding time step (Charney, 2004 personal comm).

Thus, a wind vector estimate for 0000 UTC, for example, was the instantaneous estimate

at that time, rather than an average of prior time-step estimates. Such model behavior

must be noted when any comparison with observed values is attempted as most observed

values are temporally-averaged over some specified period.

The wind vector output available for this study included hourly estimates of the

wind vectors at each grid cross point of each domain for either a 48-hour lead (36 and 12

km), or 24-hour lead (4 km). The FSMM5 model is run twice each day at 0000 and 1200

Z, but only the 0000 Z analyses output was available for this research. Furthermore,

output from several model runs were not available to the researcher, resulting in

approximately one to three missing days of estimates per month. In particular, 10 days of

model output was missing from the month of December, 2002. In order to maintain a
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continuous series that matched the ASOS data, these days’ estimates were indicated with

missing number flags (NaN in the data coding). Ultimately, each model run provided

62,245 grid point estimates in the 4-km West domain, 34,118 estimates in the 12-km

domain, and 13,500 in the 36-km domain for each hour time step. Overall, for the study,

and including all missing or unavailable output, a total of 14,617 hourly estimates were

available at each grid point in each domain during the period of record.

3.5.3 FSMM5 wind estimates

Wind estimates generated from the FSMMS model had to be extracted from the

domain grids in order to create meaningful and coherent time series of estimates for each

station. To generate paired comparison data sets for model evaluation where one data set

is gridded and the other is an irregularly spaced network of points, two approaches are

available. Either the data from the irregular network must be interpolated to nearby grid

points, or the gridded data must be interpolated to the network locations. This research

selected the latter method as the networked data was the observational data. In model

evaluation, it must necessarily be assumed that the observational data being used for the

evaluation are free from error (Willmott, 1981). lnterpolating estimates to observation

locations preserves this status, whereas interpolating the observational data from their

collection locations would unnecessarily introduce bias into the observed data, and the

resulting model evaluation would have been comparing model estimates to observational

estimates, where the bias could not be assumed to reside in the model estimates.
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Figure 3.37 Mean daily (thin line) and mean monthly (thick line) lO-m wind speeds at Tomato, ON

(CYYZ) from the lZ-km run of FSMMS and using an inverse distance weighting of estimates from the

nearest 4 grid cross points.

As a critical issue surrounding the performance of a numerical model is the

possibility that systematic spatial bias may exist, a number of different interpolation

methods were used to generate the series used for model evaluation in order to evaluate

the potential spatial systematic component ofmodel estimative error. First, a series was

created that simply assigned the wind estimates from the grid point nearest a station

location to that station’s file. Given the rapid distance decay of correlations (Robeson

and Shein, 1997), this series represents only a “first guess” estimate ofthe wind around

the station location. The second and third series were derived by taking the 4 grid points

nearest a station location and assigning an unweighted average ofthe wind vector to the

second series, and for the third series calculating an inverse-distance weighted average

(Figure 3.37). In recognition of the possibility ofpotential systematic spatial bias (as

discussed in the preceding chapter), unweighted average series were also generated from

the 16 and 36 grid points nearest to a given station. If a systematic spatial bias exists, it is
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likely that the coarser 16 and 36 point average series will show significantly less of this

bias than the 1 or 4 point series. The degree of difference in performance is also an

indicator of the magnitude of this spatial bias.

Once the aforementioned estimate series were generated for each station, it was

necessary to estimate the winds at the standard observational height of 10 meters for

comparison with the observed series. This was accomplished by fitting an exponential

curve to the 2-, 30-, 50-, and 80-meter estimates in order to generate an exponent that can

be used in the wind speed power law (Equation 3.1). Whereas the SAMSON data used in

the previous chapter provided wind speed information at only one height and an exponent

of II? was assumed (Touma, 1977, Petersen and Hennessey, 1978, Counihan, 1975),

FSMM5 data were given at 4 levels. Thus the wind speed power law (Equation 3.1) was

simply reversed and used to explicitly derive an exponent that fits each hour’s data.

Thus, from the hourly data at the four FSMM5 levels, the empirically derived exponent

facilitated the interpolation of wind estimates at 10 meters for each station location.

Although Holton (1979) felt that Ekman spiraling was not great in the lowest few

meters of the atmosphere and Klink (1999) chose to ignore it in directional height

corrections, there was a noticeable shifl in wind direction from one FSMM5 level to the

next based on 100 random samples of the 4-1evel wind estimates. Thus, as it was not

computationally intensive, wind direction at 10 meters was estimated in this study with a

process utilizing the concept of Ekman spiraling. Resulting lO-meter wind direction was

non-linearly interpolated from 2 meters using the same exponential profile function

133



earlier derived for the wind speed to produce altitude weights that were subsequently

applied to the 2-meter wind directional shifts. This adjustment simply created a

directional shifi in proportion to the level at which the estimates could be compared with

the observations.

One critical issue of note in this analysis is that the data from the FSMMS model

are forecasts ofwind speed and direction, which are based upon a set of initial

meteorological conditions. The model is run twice each day, and for the 12 and 36-km

grid domains, forecasts are generated hourly at lead times up to 48 hours (24 hours for

the 4-km domain) beyond the model initialization time. Thus, although the physical basis

of the equations do not change from one forecast time to a subsequent time, the laws of

entropy dictate that the model error and potential bias in the forecasts will increase with

greater lead times. To that end, model estimates at each hourly time step (e.g., all 002

data, 01 Z data) were interpolated to the location of each station and examined. No

appreciable increase in estimation bias for longer lead times versus short lead times was

found at any of the station locations (Figure 3.38). As a result, all model estimates were

weighted equally in the subsequent analysis ofmodel performance, regardless of their

lead time.
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Figure 3.38 Examination of model estimates of wind speed versus observed wind speeds at Grand Rapids,

MI (KGRR) from the 4 km domain over the period of record. There is little degradation of estimation with

departure from initialization time. Similar results were obtained at all stations and grid resolutions. RMSE

is root mean squared error (m s"), with RMSEs and RMSEu being the systematic and unsystematic

components. MAE is mean absolute error (m 3"), while r is the correlation coefficient and d2 is Willmott’s

(1982) index of agreement.

3.6 Statistical Model Identification and Construction

One of the objectives of this research is to determine whether or not a

numerically-driven regional climate model might out-perform traditional stochastic and

probabilistic methods for wind resource estimation. To that end it is necessary to
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construct and test established wind estimation techniques and compare their performance

to the estimates derived by the MM5 model. The majority of wind resource estimation

techniques are statistical in nature and take advantage of the common geographic

assumption that objects in close proximity are more related to one another than are distant

objects (i.e., Tobler’s First Law ofGeography; Tobler, 1970). Thus, all statistical

models for wind resource estimation at a location rely upon establishing a statistical

relationship with nearby locations having long wind records.

Because of the aforementioned fundamental similarity of statistical wind resource

estimation techniques, three representative statistical estimation methods were selected

for evaluation. These include two stochastic models and one probabilistic model. Of the

two stochastic models, while both are nearest neighbor-type functions, the first involves

point source relationships whereas the second takes advantage of regionalized geographic

behavior. The first of the stochastic models is a Measure-Correlate-Predict function as

described in Chapter 2. The second is a Krige model similar to that described by Haslett

and Raftery (1989). Lastly, the third model is a probabilistic model based on the joint

probability of winds at two locations.

3.6.1 Measure-Correlate-Predict

One of the most straightforward stochastic approaches to wind resource

estimation is the use of nearest neighbor interpolation. As discussed in the previous

chapter, this method involves the spatial interpolation to a location from one or a set of
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neighboring locations for which data exist. Nearest neighbor interpolation can range

from simple (unweighted, linear, low sample size) to highly complex (distance and

roughness weighted, non-linear, high sample size).

The Measure—Correlate-Predict (MCP) model is a variation on nearest neighbor

interpolation that has been used extensively in wind energy resource estimation (Derrick,

1992, Barthelmie et al., 1999). The goal of the MCP scheme is to effectively estimate the

long-term wind speed record at a location by linearly correlating a short record at that

location with a long-term series from a nearby reference location. It is assumed that the

reference anemometer record is representative of winds at both sites as a firnction of the

overlying non-local wind field.

The MCP model is derived by first extracting from the reference record a series of

wind speed and direction observations corresponding to the short record at the location of

interest (hereafter called the short location). These paired observations are subsequently

binned according to the wind direction at the reference location. The number of

directional bins is entirely arbitrary, though a set of 12 or 16 bins is commonly employed

(Derrick, 1992).

Once the short, paired records have been binned according to direction, a simple

linear equation of the form:

Us] =b0 +blUref (3.11)
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is applied to the paired wind speed data for each of the directional bins. In Equation 3.11,

Umfis the wind speed at the reference location, Us; is the corresponding wind speed

observation at the short location, b, is the slope of the equation and by is the intercept.

While this method is identical to that of fitting an ordinary least squares regression to the

reference speed data, the MCP makes no assumptions regarding causality and is therefore

not considered a regression from a statistical standpoint.

A synthetic long-term series at the short location is subsequently generated in two

steps. First, the entire long-term series from the reference location is binned by direction.

Second, the directionally-based linear relationships between the reference speeds and

short location speeds (defined by Equation 3.11) are applied to each directional bin of the

long-term series wind speed data to estimate the long-term wind speed record at the short

location.

While it may seem that the linear relationships assumed by MCP may not be

appropriate, Derrick (1992) and others have shown that for most non-complex terrain,

such an assumption is not unreasonable. Furthermore, if it becomes clear that a linear

relationship is not appropriate for a particular bin (e.g, local influences may exhibit an

exponential influence on increasing wind speeds), the MCP is highly modifiable by

simply fitting an appropriate non-linear function to that particular directional bin, or by

firrther categorizing the bin by wind speed.
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As this research is designed to explore the relative success ofwind resource

estimation techniques over a large region, the decision was made to apply the same MCP

technique, as described above, to all stations in the study area. While the MCP method

has a number of challenges, as discussed in the previous chapter, for the purposes of this

model and this research over this study area, the relationships between nearest neighbor

wind speeds are assumed to be linear, regardless of local surface differences.

Furthermore, the problems of representativeness due to seasonality, runs autocorrelation

and anisotropy in the short location record were overcome by randomly selecting 1500

(approximately two months) pairwise observations from each station and its nearest

neighbor. The random selection process resulted in a theoretically de-seasonalized and

stationary distribution. The random short record from each station and its nearest

neighbor was used to create estimations of the long-term record at the station of interest.

The climatology and biases of the synthetic series were then assessed relative to the

complete observational series at the station of interest and to the results of the other

models. The results are presented in the next chapter.

3.6.2 Krige model

One of the primary limitations of the simple nearest neighbor interpolation model

is that the relationship between the wind speeds at the two locations may vary quite

strongly with wind direction. That is, the relationship exhibited when the wind vector is

parallel with the station-to-station azimuth may be entirely different than when it is

perpendicular. In fact, from certain directions, it is entirely possible that the wind speeds,
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even at stations in close proximity with one another, may exhibit no coherent relationship

at all. Thus another method must be sought; one that accounts for the winds over the

entire region surrounding the location of interest.

While the concept of a regionalized variable is not new, with a few notable

exceptions discussed in the previous chapter, it has not enjoyed wide use in wind

resource estimation with the exception of Haslett and Raftery (1989). However, near

surface wind is a spatially continuous variable that is driven by a coherent overlying

circulation structure and is normally highly correlated over short distances. As such,

wind exhibits a behavior that exists between truly random and entirely deterministic.

Therefore, the near surface wind can quite legitimately be considered a regionalized

variable and lends itself quite well to a spatially driven interpolation scheme (Davis,

1986). The researcher has chosen a universal kriging function as an appropriate wind

resource estimation model.

Kriging is a method by which the value of a regionalized variable can be

estimated at any location within a specified region based on values observed at discrete

locations within the region. While a simple linear interpolation using all observations

within the region regardless of relevance could produce estimates of a regionalized

variable, such a methodology would be highly inefficient and would not easily yield

measures of statistical certainty. Because of the method by which a kriged surface is

obtained, one can be assured that measures of uncertainty are inherent to the model and

that only an optimal set of nearest neighbor stations is used in the construction of the
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model. The optimal set of neighbors, and their corresponding bias-minimizing weights is

derived from a semivariogram. A much more detailed description of kriging can be

found in Davis (1986).

It has already been established that near-surface wind suffers varying degrees of

anisotropy. Therefore, it is necessary to employ a universal, rather than punctual kriging.

Universal kriging not only assumes drifi in the observations, but calculates and removes

it as well. The drift is then returned to the estimates once derived.

For this research, the universal krige model was specified as follows. The first

step in the analysis was to obtain sernivariances for each station. Semivariance is a

measure of spatial dependence between observations separated by a distance (h). It is

computationally identical to finding the sum of squared differences between observations

at two points separated by distance h. The semivariance is given by the equation,

71. = 201—01,0212" (3.12)

where 0,- is the observation at location i, 0w. is the observation at a point h distance

away, and n is the number of points (from Davis, 1986). Using the semivariance for a

location, a distance can be established beyond which further increasing the distance has

little effect on increasing the semivariance value. Graphically this analysis is called a

semivariogram, an example of which is presented in Figure 3.39.
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Figure 3.39 An idealized example of a semivariogram. The solid horizontal line represents the variance of

the data interest, while the dashed line is the semivariance ('11,) at any given distance interval (h). The

nugget represents the minimum achievable semivariance due to localized effects.

Two portions of the semivariogram were of interest in the krige analysis. The

first is the portion of the semivariogram known as the sill. This is the region where

increasing distance from the location of interest no longer has much of an effect on the

value of the semivariance, and theoretically has leveled off at the autocovariance (the

variance of the original data). Stations existing beyond the distance marking the

beginning of the sill are extraneous to the analysis and can be safely omitted (Davis,

1986).

As with the MCP model, in order to reduce the effects of non-stationarity and

seasonality, a set of 1500 random times were selected and extracted from each station as

a subset. This pairwise subset was used to generate the semivariances and ultimately the

krige model. Once the semivariance was calculated for each station relative to all its

neighbors. the semivariogram was analyzed to find the approximate distance to its sill.
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This was accomplished computationally by fitting a second-order polynomial to the

semivariances and establishing when the value of the semivariance first came within 95%

ofthe autocovariance. This distance was then deemed to be the furthest distance from the

station that an observation from a neighbor station could be correlated. Thus, only

neighbor stations falling within the estimated relevant distance were used in subsequent

calculations. Once the sill distance for each station was established, the sill distances

were used to determine how many nearest neighbor stations should be used in the krige

model. To ensure uniformity over the region, this number was then averaged over all

stations. This analysis determined that on average 5 nearest neighbors were sufficient to

account for most ofthe variance in the station. Thus, the five nearest neighbor stations

were used to construct the krige model.

The other region of interest in the krige analysis is the so-called nugget.

Theoretically, the semivariance at a distance of zero should equal zero. However, in real-

world instances where there exist localized influences operating beneath the resolution of

the data points, local noise may be introduced into the semivariance and, according to

Davis (1986) the semivariogram will almost instantaneously track from zero to the

nugget point over a distance shorter than the sampling interval. For wind speed, the

nugget is an important piece of information. It provides revealing evidence of the

magnitude of localized influences (e.g., terrain roughness, obstructions and obstacles to

the flow). As the nugget increases, the ability of any regionalized model to accurately

estimate the wind at that location will decrease proportionally.
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Once the representative number of nearest neighbors had been established, the

problem became one of a more straightforward weighted spatial average. The universal

krige model was applied to determine the optimal weights for each station used in the

subsequent interpolation. By optimal, it is meant that kriging produces a set of weights

for each station that will result in a minimization of the estimation error, or error

variance,

5% = (3.13)

where Yp is the estimate and Y1, is the actual observation. The determination of the

optimal weights for the 5 nearest neighbors was accomplished by solving a set of eight

simultaneous equations (3.14). The first 5 equations are used to determine the actual

weights, while the 6th equation determines the coefficient for the constraint 01.) of weight

unity (e.g., a Lagrange multiplier), and the last two equations solve the coefficients of the

drift of the surface.

”117(hll)+W2}’(h12)+W37(hl3)+W47(hl4)+W57(h15)+1+alel+a2X21 = 7(hlp)

"/170112)+W27(h22)+W3y(h23)+W47(h24)+W57(h25)+’1+a1X12 +a2)(22 = 7(th)

"/170113)+W2y(h23)+”/37(h33)+W4y(h34)+W5y(h35)+l+alX13 +a2X23 : 7(h3p)

VVIKhM)+W27(h24)+W3Y(h34)+W47(h44)+W57(h45)+l+a1X14 +a2X24 = Kill”)

MKhl$)+W27(h25)+W37(h35)+W4y(h45)+W57(h55)+l+a1X15 +a2X25 = Ah )

W1 +W2 +W3 +W, +W5 +0+O+0=1

W1X11 +W2X,2 +W,X,,+W4X,,+W5X15+0+O+0=X1p

W1X21+W2X22 +W3X23 +W4X24 +W5X25 +0+O+O=X2p
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In the set of equations (3.14), Wig) is the semivariance for the distance between two

control points, i andj. X11 is simply the East-West coordinate for the control point, 1',

while X2,- is the North-South coordinate. Both coordinates were given in degrees

(Longitude or Latitude respectively). The coefficients, on and (12 are the coefficients of

the linear drift equation,

Dp =a1X11+a2X21 (3.15)

where Dp is the linear drift at point p. To find the drift and the weights, the simultaneous

equations were solved using matrix algebra, whereby the components of the equations

were rearranged according to the matrix equation 3.16.

it’lhri) 70112) 70113) 70114) 70115) 1 X11 eri ”W17 "rihrplI

70112) 70122) 70123) 70124) 70125) 1 X12 X22 W2 Tlth)

70713) 70123) 70133) 70134) 70135) 1 X13 X23 W3 h3p)

70114) 70124) 70134) 70144) 70145) 1 X14 X24 . W4 : h4p) (3.16)

70115) 70125) 70135) 70145) 7(h55) 1 X15 X25 W5 hSP)

l l l l l 0 0 0 It 1

X11 X12 X13 X14 X15 0 0 0 a, X11,

-er X22 X23 X24 X25 0 0- 10‘21 -XZP-      

Multiplying by the inverse of the semivariance matrix thus solves the weights matrix.

Once the weights and drift for each station were determined, they were applied to the

observational series of each of the 5 nearest neighbor control points to generate a
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synthetic series of wind speeds at the station of interest. Climatological differences

between the observed and estimated series are presented in the next chapter.

3.6.3 Joint probabilistic model

As has been discussed in Chapter 2, probability density functions have long been

used to describe the wind resource at a location. While wind speeds may vary a great

deal over short distances, spatial variations in the overall distributions of wind speeds are

much lower because while the magnitude ofthe wind speed itself may be governed by

boundary layer characteristics (e.g., roughness, zero-plane displacement, eddy

diffusivity), the relative, overall distribution of speeds are governed more by the

overlying synoptic flow. Thus, if the boundary layer modification of surface winds can

be known (i.e., surface roughness), the overlying probability distribution of the wind

resource can be adjusted to properly estimate the wind speed distribution at an

uninstrumented location. This method has been used with great success by the

developers ofWASP, and the resulting Danish and European Wind Atlases (Troen and

Petersen, 1989).

In addition, as with the linear interpolation model and the MCP model, the

probabilistic model seeks to estimate the resource at one location using information

derived from its nearest neighboring station. Such modeling may, at its most simplistic

be accomplished by assuming the wind at the location of interest possesses a probability

density function identical to the wind at its nearest instrumented location. In regions
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where the terrain is relatively homogeneous and not overly complex, and obstacles to the

near-surface flow are few and far between, such a model may indeed produce plausible

However, where terrain is more heterogeneous or frequent obstacles disorganize

or impede the near-surface flow, a more complex variation on the probabilistic model is

suggested. Such a model would be better served if the distribution assumed to exist at the

location of interest was one that was regionally representative. To obtain a more

regionalized distribution function, it would be necessary to construct a synthetic long-

term series derived from all neighboring stations within a given distance of the location

of interest. The distribution of this synthetic series could then be applied to the location

of interest with greater confidence. With the exception ofWASP, the researcher knows

of no studies that have explored regionalized probability density functions in any detail

with respect to near-surface winds.

Garcia-Rojo (2004) suggests an alternative to the aforementioned probability

models. The alternative is a joint-probability model that, like MCP, makes use of a short

wind record at the location of interest paired with a longer series at a nearby reference

station. In addition, like the MCP approach, and unlike more simplistic probability

models, Garcia-Rojo’s (2004) joint-probabilistic approach makes use of the directional

information to refine in greater detail the estimates obtained from the model. In the case

of the joint probability approach, it is the probability ofjoint occurrence of wind speeds

at the reference site and the site of interest that is assessed, rather than the linear

correlation between speeds within the two series (Garcia-Rojo, 2004). It is this joint-
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probabilistic model, named JPWIND by Garcia-Rojo, that will be used in this research to

assess the performance of a probabilistic wind model relative to MM5.

The joint probability mass function, or the probability that two sets of

meteorological events, in this case wind direction and speed at each location, occur

simultaneously is defined by Garcia-Rojo (2004) as:

0 S fldref r Uref ; dsite r Usite)$1 (3°17)

Where dmf and Uref refer to the direction and speed at the reference location, and d511e and

U511. are for the site of interest. The function sums over all of the probability space as:

X 2fldref’ Uref; dsiter Usite ) = 1 (3.18)

{‘1ref svref lidsite aVsite}

Thus, the probability of measuring an event (d311,, Um) at the location of interest

independently of what is measured at the reference location can be determined from the

marginal probability mass of events (Garcia-Rojo, 2004):

P(dsite ’ vsite ) = 2 f(dref ’ Uref idsite ’ Usite) (3-19)

{dref rVref

Similarly, once the marginal probabilities have been determined from the short, paired

records for each event (d511,, U511.) at the site of interest, it is then possible to use these
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probabilities to derive their probability of occurrence given an independent event

occurring at the reference location.

As with the other models, 2000 wind speed and direction observation times were

randomly selected for each station / nearest neighbor pair. Wind speed and direction data

corresponding to those observation times were extracted from both the station and its

nearest neighbor to create a deconvoluted “short” time series of paired observations of

approximately two months in length. These short series were used to obtain the joint

probability function for the station. The function was subsequently applied to the full

record from the nearest neighbor station to generate a synthetic full series for the station

of interest. The results of this analysis are presented in the next chapter and compared

with the results from the other models.

3.7 Model Evaluation

Model evaluation is critical to the acceptance of any model and any comparison

between models. Many of the important issues related to model evaluation are succinctly

advanced by Beck et al. (1993) and as such will be only briefly outlined forthwith. The

evaluation of each of the aforementioned models is accomplished using several standard

evaluative procedures. With respect to this research, the evaluation of model

performance falls into two categories, probabilistic and deterministic.
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3.7.1 Probabilistic evaluative statistics

Probabilistic performance measures seek to evaluate the legitimacy of the

statistical properties of the distribution of estimated data against those of corresponding

observed data. Unlike deterministic methods, probabilistic methods are stochastic in

nature in that they are not concerned with the exact replication of the variable being

modeled, but rather the replication of the distribution of the data, or the internal behavior

ofthe system (Beck etal., 1993). As this research is primarily concerned with the ability

ofFSMMS to provide accurate estimates of the regional wind climatology, rather than the

hour-to-hour accuracy of actual forecast values, probabilistic performance measures are

given the most weight of the evaluative techniques employed herein.

There are a number of techniques available to the researcher seeking to evaluate

the probabilistic performance of a model. Among the most widely used are comparisons

ofmeans and of variances. These two statistics represent the first and second moments

(respectively) of the distribution of the data in question and therefore, provide perhaps the

most powerfirl assessment of the similarity oftwo distributions of data.

(7 = n‘12U1 (3.20)

32 = n’12(U1—l7)2 (3.21)
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where U is the sample mean and s2 is the sample variance. In both Equation 3.20 and

3.21, Roman letters, rather than Greek, are used to symbolize that these statistics are

derived from a sample, rather than from the unknown population. Unfortunately, because

it has been squared, the variance does not have units of the original data. Thus it is more

common to report the square root of the variance, or standard deviation, as the measure of

spread of the data about the mean value.

Comparison of means is often conducted by using the Student’s T test. This

method is adequately described in a number ofreference works (e.g., Davis, 1986, Wilks,

1995, Rogerson, 2001) and thus only a synopsis is presented here. Student’s T-test is a

procedure by which the distributional statistics of a sample may be compared against a

hypothetical population, or more importantly for this research, the statistics of two

samples can be compared to determine whether they are derived from the same

population. The T distribution is a statistical modification of the Gaussian Z distribution,

and the T-test has been made more conservative than the Z-test to account for a lack of

knowledge about the parameters of the population in question. In order to examine the

null hypothesis that the means of the populations, from which both the observed and

estimated data sets were drawn, are identical. The two-sample T statistic is calculated as,

(7 —U

t=-—E——0- (3.22)
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where U5 is the mean of the estimated sample, U0 is the mean of the observed sample,

and s, is the standard error of the mean (after Davis, 1986). Because two samples are

used, 3,. must necessarily be a function of both samples.

Se = Sp (n;1 + n_l) (3.23)

In Equation 3.23, 5,, is the pooled standard deviation as determined by,

0.5

n —lsz+n -—l 2
Sp: (E )E (O )50 (3.24)

nE+n0—2

 

When the t-statistic has been calculated from Equation 3.22, it is compared against a

critical value that has been obtained based on the number of degrees of freedom ofthe

test and the proportional level of rejection of the null hypothesis to determine whether the

populations from which the two samples were drawn do indeed have the same mean.

Additionally, the parameters of empirical distribution functions derived from both

the observational and the model-produced synthetic series may be evaluated for

differences by using simple comparisons and more complex statistical methods such as

the Chi-Square, Kolmogorov-Smirnov or Anderson-Darling test statistics outlined

previously (Anderson and Darling, 1954). These methods illuminate the so-called

goodness-of-fit of a set of data to a distribution function defined by the data from which

the candidate series is suspected to have come. In doing so, they also provide valuable
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information about the similarity of variance between the two sample distributions. In the

case of this research, it is assumed that the observational data were drawn from a

population comprising all possible wind speeds and directions at a given location. Thus,

theoretically, the statistics of these sample observations represent the overall statistical

parameters of the population from which the data were sampled. Furthermore, it is

hypothesized the estimated data have been drawn from the same population. If this is

indeed the case, then the aforementioned goodness-of-fit methods will reflect that both

the observed and estimated data are not derived from different populations, and therefore,

the estimated data can be deemed a surrogate for the observed. Additionally, the degree

of fit, in the form of the magnitude of the test statistic can be used as a simple way to

determine which of the models provides the best general fit to the data.

Graphical methods and the Anderson-Darling goodness—of-fit tests were described

in great detail earlier in the chapter and so are not discussed here. However, the

Kolmogorov-Smirnov and Chi-squared tests were only cursorily mentioned and so

deserve elaboration. While these latter methods are statistically less powerful than the

Anderson-Darling test, they nevertheless contribute a meaningful support for the

confirmation or denial of fit of a particular sample of data to an expected distribution.

The Chi-squared test is the least powerful of the goodness-of—fit statistical tests. It

simply divides a sample into discrete probability bins, and compares the observed

frequencies ofoccurrence to those that would be expected if the sample data were drawn
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from a given distribution. The null hypothesis is that the sample data does indeed come

from the population distribution. The test statistic (X2) is calculated as,

X2 = iloj "Ejiz
(3.25)

Where Q,- is the observed frequency and E,- is the expected frequency for the value range

binj out of2 possible bins (from Davis, 1986). The calculated X2 statistic is compared

against a critical value, again based on the degrees of freedom of the test and a pre-

determined critical probability level for the rejection of the null hypothesis.

The Kolmogorov-Smimov, or K-S test is an alternative, non-parametric

goodness-of-fit method to the Chi-square test. The K-S test statistic is exceedingly

straightforward. It is simply the maximum difference between the cumulative probability

levels of the observed frequency distribution and the expected frequency distribution.

The difference is the test statistic and is compared against a critical level in the same

manner as other hypothesis tests. The null hypothesis is that the discrete distribution of

the data is equal to the distribution to which it is being compared. Normally, the K-S test,

like the Chi—squared test or other goodness-of-fit methods is used to evaluate the

hypothesis that a particular sample distribution is derived from a theoretical parent

distribution function where the parameters are either known (parametric) or not (non-

parametric). That is, these tests evaluate whether or not a sample “fits” a particular

distribution, as was accomplished in the prior chapter. However, in the comparison of
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models, the observed data is, in effect, the population whose distribution forms the basis

for the goodness-of-fit.

To adequately address the probabilistic evaluation of FSMM5 and compare it to

the other models, this research has calculated, reported and interpreted the mean, standard

deviation, and empirical distribution statistics for each of the model estimated data sets as

well as for the observed data (as described in the previous chapter). The veracity ofboth

the estimative probabilistic statistics and the empirical distribution parameters was

determined through the use of a bootstrap resarnpling procedure as outlined by Efron and

Gong (1983). In this case, 10,000 bootstrapped series of 1000 estimated values each

were sampled with replacement from the entire model-estimated series. From these

samples, confidence limits were generated for estimated data statistics.

3.7.2 Deterministic evaluative statistics

Deterministic evaluation methods seek to evaluate the performance of the model

in terms of its ability to replicate reality (i.e., the observed data). Such measures are more

appropriately termed model validation methods as they seek to determine the validity of

the model estimates themselves by examining the properties of the residual differences

between the estimated and observed data (Beck et al., 1993). Methods for the validation

ofmodels are normally used to determine how well a model has been able to replicate the

variables it is estimating, and a model is generally not considered validated unless all

systematic behavior in the residuals had been eliminated and/or accounted for within the
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model proper (i.e., residuals are independent and normally distributed with a mean of

zero). While the goal of this research is not to assess the forecasting abilities ofMM5 or

any of the other models evaluated, a thorough analysis of the residual bias of all models

was conducted. The rationale for performing a deterministic evaluation is that a model’s

ability to accurately approximate actual values and minimize the systematic bias in its

residual values are measures ofhow comprehensively the model has been specified, and

how reliable is its output for generating an overall climatology. While it cannot

necessarily be assumed that a model that performs well is correctly specified (small, non-

systematic residuals could be obtained by random chance), an appropriate model

construction is most likely. Such behavior is preferential to a model that performs poorly

(large, or systematic residuals) and likely has been, in some way, incorrectly specified.

As a variable’s climatology is a function of the individual observations (or estimates of

those observations), a model that produces small, randomly-distributed residuals can be

expected to also produce a plausible climatology of the variable being investigated.

Each model’s residuals were used to determine the validity ofthe specific model,

and are further compared with the residuals behavior of the other models. The measures

that are used in this analysis include MAE, RMSE, Pearson’s r, and the index of

agreement ((1). These measures are detailed in Willmott and Wicks (1980), Willmott

(1982), Willmott et al., (1985), and Wilks (1995) but also are outlined below.

By far the most widely used measure of the performance of a model is Pearson’s

product moment correlation coefficient (r).
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where 0 and P are two series of data of length n. Pearson’s r is thus a measure of the

degree of covariance of the two variables, or how linearly related their behavior appears

to be. From equation 3.26 it is clear that if the series 0 and P vary identically, r will

equal 1.0, or -1 .0 if they vary perfectly inversely. If there is no similarity between the

variances of the two series, the correlation coefficient will equal zero. Theoretically, if a

model is perfectly specified (i. e., observations are perfectly reproduced), the model-

estimated series would be identical to the observational series, and the correlation would

equal 1.0. Practically, however, all models contain some estimation error, supposedly

reducing the value of r. Unfortunately, because Equation 3.26 does not take into account

the magnitude of the differences between the observed and estimated values, it ultimately

fails to capture much of the model’s true ability to reproduce reality, nor does it provide

any measure ofhow much ofthe model’s error is systematic, and is thus correctable.

Figure 3.40 highlights some of the drawbacks ofrelying solely on Pearson’s correlation

coefficient for model evaluation. An alternative, the index of agreement, is presented

further on. Despite the limitations of Pearson’s r, it remains a widely recognized measure

of the correspondence between to variables, and as such will be reported in this research.
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Figure 3.40 Idealized relationships between two variables and their corresponding Pearson’s correlation

coefficients. Of the top row, each of which exhibits a perfect or near-perfect correlation between the two

variables, only the first (a) would represent a truly error-free model, whereas (b) and (c) exhibit systematic

error not taken into account. On the bottom row are three idealized examples of variables that show little

or no correlation. However, like (b) and (c), (d) is a function of systematic bias. Figure (e) shows the

influence of two extreme outliers. Only (0 represents a randomly generated data set where no correlation

is expected.

Because of the limited ability of Pearson’s r to adequately assess the performance

of a particular model, it is more telling perhaps to assess the magnitude and behavior of

the actual differences, or residuals, between observed values and those estimated by the

model.
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0i = H +811 (3'27)

In Equation 3.27, the observation 0 of a variable at a point i in either space or time (or

both) can be replicated precisely from the model estimate P of that variable for the same

point and a resultant error e, also known as model bias, or the residual of the model.

From this point forward, the model estimated variable is defined as P (for predicted; even

though it is not truly a prediction), because the use ofE might needlessly confuse the

estimated variable with the error term e. Because it must be assumed that no error exists

in the observed variable (otherwise it would have been corrected prior to analysis), it

follows that the error e is solely a product of the model (Willmott et al., 1985). It is the

series of model-introduced bias terms that is ultimately evaluated in an effort to discover

the utility of the model.

Because the model bias exists for each observation/estimate pair, the residuals

themselves form a series of values that can be evaluated statistically. Of the statistics that

summarize the behavior of the residuals, the means of the residual series are most

commonly used in the Geo and Atmospheric sciences (Fox, 1981; Willmott, 1982). In

particular, the mean absolute error (MAE) and to a lesser extent the mean squared error

(MSE) and root of the mean squared error (RMSE) are widely used to evaluate the

performance of a model against a set of observations.

MAE = n‘lzm - 01| (3.28)
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MSE = n‘lz (P,- — 0,. )2 (3.29)

RMSE = M5505 (3.30)

Such measures as MAE, MSE and RMSE provide a clear assessment of the overall

performance of a model in that they provide a first moment statistic for the differences

between the observed and estimated variables. Of the three measures, MAE and RMSE

are most used because they report the error in units of the variable. Furthermore, these

measures are more greatly mathematically tractable than is the simple mean error. In

fact, the reporting of the mean of the observed values and the mean of the estimated

values is generally preferred to the simple mean error because the former are more easily

understood, and they provide greater versatility in computing additional statistical

measures than does the mean error (Willmott, 1982).

What is more, the MSE (and therefore also the RMSE) has certain properties that

allow it to be mathematically parsed into measures of the degree of systematic

(correctable) and unsystematic (random) error contained within the overall residual

values. The systematic (MSE,) and unsystematic (MSEu) components of the bias of a

model are given as,

MSE, = 124203,- —0,-)2 (3.31)
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MSE“ = 124203. — 16,-)2 (3.32)

In Equations 3.31 and 3.32, P represents an estimated series derived from the least-

squares regression of the model-predicted variable on the observed variable. The RMSE

versions simply take the square root of equations 3.31 and 3.32, and are preferred as they

retain the units of the original variable. However, in their MSE form, Equations 3.31 and

3.32 are conservative.

MSE = MSES + MSE“ (3.33)

The relationship expressed in Equation 3.33 means that the relative proportions of

systematic and unsystematic bias may also be calculated by dividing MSE, or MSE, by

the MSE. Measures of systematic and unsystematic bias are quite important as measures

of the veracity of the model. As a model’s performance is improved, the systematic

component of its bias must tend toward zero, while the unsystematic, or random

component (RMSEu) is minimized toward the value of the overall RMSE (Willmott,

1982)

In addition to the mean values of the residuals, Willmott (1981) recommends the

calculation, reporting, and interpretation of a set of “summary measures” that will aid in

standardizing the comparison ofperformance between models. These measures include

the mean of the observed variable (0), the mean of the predicted (P ), the standard

161



deviations of both series (so and Sp), and the s10pe and intercept parameters (m and b)

from an ordinary-least squares fit of the observed to the predicted variable (Willmott,

1981). The researcher is in agreement with Willmott (1982), who feels that such

measures are readily recognized and understood by the scientific community, and that

these measures form the basis for many higher-level statistical measures such as skill

scores. As such, these measures are reported along with MAE and RMSE in the next

chapter for each model.

Given the aforementioned limitations surrounding the meaning and interpretation

of Pearson’s product moment correlation coefficient (r), a more statistically meaningful

and descriptive expression is desirable. One such alternative is the so-called Index of

Agreement proposed by Willmott and Wicks (1980).

203' “002
d=1— ,Osdsl (3.34)

Zia-1+ 0: )2

 

  

From Equation 3.34, the Index of Agreement (d) is a function of the MSE and of two

difference series P’ and 0’, where P,'= P, — 5 and 01' = 0,. - 5 . Unlike Pearson’s r,

Willmott and Wicks’ Index of Agreement (d) is not a measure of association. It does not

attempt to explain the degree to which the observed and estimated variables co-vary.

Instead, d is “a measure of the degree to which a model’s predictions are error free”

(Willmott and Wicks, 1980). As it is bounded between 0 and 1, a perfect, error free

model would obtain a value of 1, whereas a purely random model would be expected to

162



have d = 0. Furthermore, because it is bounded, d can be used as a relative measure,

comparing the performance of one model against another. As such, it is a powerful

assessment tool and is reported in the suite of evaluative statistics for each model.

Because this research reports the index of agreement based on the RMSE rather than

MSE, it is noted as d; rather than d to avoid confusion.

Thus, in the next chapter, the results from each model are reported as a suite of

statistical measures as outlined in this section. The use of a standard set of statistics not

only permits a thorough evaluation of the performance of an individual model, but

additionally sets a standard measure that permits the performance ofone model to be

compared against the performance of other, perhaps disparate models.

3.7.3 Spatial analysis of model evaluation

Evaluation ofmodel performance in this study was complicated by the spatial

character of the analysis, with comparative statistics derived at over 100 individual

stations sites. In fact, the primary goal of this analysis is to illuminate the relative ability

ofFSMM5 to estimate wind climatology across the region. One ofthe primary benefits

ofutilizing a numerically-based regional climate model is its perceived ability to generate

representative values of meteorological variables in locations where few data

observations exist, such as in complex terrain or in coastal zones. As such, it is highly

desirable to identify not only differences between observed and estimated wind values at
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individual stations, but also evaluate these differences with respect to their position

within the study region.

3.7.3.1 Trend surface analysis

Geographic analysis provides several methods by which the spatial behavior of

the model residuals may be assessed. Two of these methods were employed in this study,

trend surface analysis and isopach analysis. Trend surface analysis is widely used in the

Earth sciences as a means of apportioning the spatial behavior of a variable into a

regional component of variability and a local component at any given location in space.

In this respect it is similar to the division of the bias of a temporal series into its

conservative systematic and unsystematic components. In trend surface analysis, a

surface is empirically fit to the data occurring over a region. Numerical description of

the fitted surface can range from a simple first-degree linear plane to an n-degree non-

linear surface, with the choice of equation complexity dictated by deference to

parsimony, the spatial scale of the data, and its spatial behavior. Due to their simplicity

of calculation, low degree (e.g., 2nd or 3rd order) polynomials are commonly chosen for

this type of analysis. These levels of complexity offer a balanced alternative to purely

stationary planar surfaces and higher-order non-linear equations, neither of which easily

lend themselves to meaningful interpolation.

Davis (1986) offers an excellent description of the construction and interpretation

of trend surfaces for geographical analysis applications and a discussion on the selection

164



ofparsimonious trend surface equations. As near surface winds are spatially continuous

and partially governed by a relatively coherent overlying geostrophic flow, a second-

order polynomial trend surface was deemed to be most appropriate for the analyses used

in this study, and was subsequently applied to both observed and model estimates. The

equation took the form,

O=b0+b1X+b2Y+b3X2 +b4Y2+b5XY (3.35)

where the regional estimate of the observation 0 is a firnction of the geographic

coordinates, Xand Y (Longitude and Latitude respectively), their squares and their cross

product (Davis, 1986).

Surfaces calculated with this equation provide an estimation of the regional

component of the spatially distributed variable. The difference between the value of the

surface at a location and the measured (or estimated) value of the variable at that same

point can therefore be interpreted as a measure of the proportion of the variable’s value

that is not explained by a regional behavior. Instead, this spatial residual value is

assumed to reflect the degree of localized influences that have shifted the value away

from the regionally influenced surface (Chorley and Haggett, I965).

The analysis of trend surfaces for both the observed and model estimated values

lends insight to the degree the model reproduces the regional wind field, in that it can act

as a low pass filter. That is, when only the trend surfaces are compared, the high
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frequency, or localized behavior has been removed, leaving an estimate of the regional

wind field relative to the observed regional wind field, which has been calculated in the

same manner. Furthermore, if the differences between the two trend surfaces (i.e.

observed and model estimated) are mapped, a spatial behavior of the accuracy of the

model can be obtained. On the other hand, the localized wind, as represented by the

difference of the trend surface and the actual data or estimates (acting as a high pass

filter), can be assessed spatially and used to evaluate a model’s ability to account for local

influences in generating estimates.

3.7.3.2 Isopach analysis

The second geographical method for the spatial analysis of data that has been

employed in this research is known as isopach analysis (Davis, 1986). An isopach is

simply a contour map of differences of a variable over space. The variable being mapped

can be anything, and as such, isopach analysis is ideally suited for the evaluation of

spatially-based model output. As was discussed in the previous paragraph, maps of the

differences in trend surfaces are actually a form of isopach analysis. Many of the model

evaluative statistics that were produced for the observed data and each series of model

estimates were subsequently subjected to isopach analysis to highlight the magnitudes

and spatial distribution of observed-estimated differences across the study region. In

particular, isopach maps often are able to graphically illustrate geographic patterns in

spatial bias. A variety of isopach maps therefore are presented in the next chapter and

used to assist in identifying the spatial variability of overall model performance.
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Chapter 4. Results

The ability of a numerical climate model (FSMMS) to accurately estimate the

wind resource of the Great Lakes region was the primary goal of this study. To that end,

potential near surface winds over the study area were estimated by the FSMM5 model

and evaluated for accuracy. Due to the complexity of numerical models relative to

established statistical techniques, it was necessary to compare the relative performance of

each type ofmodel. This was accomplished by constructing and applying three statistical

models (two stochastic and one probabilistic) to estimate the wind resource at the same

geographical locations as FSMM5-derived output estimates. A comparison of relative

model accuracy is subsequently presented. The final objective of this study was to

evaluate the bias of the FSMM5 model estimates and determine the degree of systematic

error that could potentially be removed from the model estimates in order to increase

accuracy.

4.] FSMM5 Model Performance

The statistics used to evaluate model performance were chosen to quantify

differences and similarities between model-estimated and observed wind fields. The

mean and standard deviation ofboth observational data and model estimates (hereafter

noted as 0, so, e and Se respectively) describe the basic similarity ofboth distributions.

The Pearson product moment correlation coefficient (r) describes the degree of

covariation between the observed and estimated data. The mean absolute error (MAE)
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and root mean squared error (RMSE) are measures of the magnitude of the overall bias

contained in the estimates, and RMSEs and RMSEu are the systematic and unsystematic

components ofthe root mean squared error. Tire percentage of the total bias that was

systematic (hereafter SB%) was included to help lend clarity to the interpretation of the

results. Lastly, Willmott’s Index of Agreement (d2, based on RMSE) is presented as a

measure ofthe non-biased proportion of the estimate. While often useful where the

systematic bias of the model estimation error results in a consistency of under or over

estimation, the mean error (ME) was unfortunately of limited use in this analysis because

the variability of the unsystematic bias resulted in both under and over estimates,

generating mean series errors near zero over much of the study area.

Additionally, two sets of evaluative statistics are presented. The first isan

evaluation of model-derived estimates at individual time steps, hereafter referred to as

forecast accuracy. The second is the evaluation of the estimates of the distributional

parameters of the wind resource, referred to as resource accuracy. While the evaluation

of forecast accuracy is important, it is not as critical to wind resource estimation as is the

resource accuracy. A model can, for example, exhibit low forecasting skill in that it

never precisely estimates the observed wind speed at a given time or place, but that same

model may be of exceedingly high skill in estimating a distribution of wind speeds that

closely approximate the observed distribution at a given location. In this study, relatively

greater emphasis was therefore placed on evaluating resource accuracy to determining the

level ofmodel skill.
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Overall, the performance of FSMMS in describing wind fields over the Great

Lakes was variable, and in many cases, poor. Evaluative statistics of forecast accuracy

from all implementations of the model are given in Table 4.1. Evaluative statistics of the

resource accuracy of the same model implementations are given in Table 4.2. As was

discussed in the previous chapter, wind estimates obtained from FSMM5 were

disseminated into 15 model variations. Wind estimates from each of the three domain

resolution (36-km, 12-km, and 4-km) runs were interpolated from the domain grids to the

station sites using unweighted l, 4, l6, and 36 km nearest neighbor schemes and a 4 point

inverse distance weighted procedure.

 

 

 
 

 

 

 

 

 

 

 

 

       

FSMMS Performance evaluation (forecast accuracy)

Xmi. i sit xmax

o (m s") 2. 05 3. 76 0. 70 7. 05

e(m s?) 3.05 5.26 1.51 8.12

s, (m s") 1.63 2.41 0.30 3.88

s. (m s") 1.52 2.49 0.69 4. 09

r 0.00 (.011) 0.17 0.20 0.72

MAE (m s") 1.57 2.99 0.96 5.19

RMSE g?) 2.01 3. 72 1.12 6.24

RMSEs (m s“) 1.10 2.84 0. 98 5.07

RMSEu (m s") 1.46 2.38 0.64 3. 79

53% (%) 20.95 57.84 8.91 71.38

4, 0.27 0.44 0.1 1 0. 79

 

Table 4.1 Evaluative statistics ofFSMM5 model performance obtained from wind estimates of 15

variations (X1) of the model over the period of record . The 011 value for minimum r is the lowest

negative correlation obtained (0 .00 was the lowest absolute correlation obtained).
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FSMMS Performance evaluation (resource accuracy)

32in f 5x XML

0 (m s") 2. 05 3. 76 0.70 7.05

e (m g) 3.05 5.26 1.51 8.12

Mm s5 1.63 2.41 0.30 3.88

s, (m s} 1.52 2.49 0.69 4.09

k, 1.21 1.94 0.38 4.81

k, 1.07 1.98 0.38 2. 70

c, 2. 70 4.53 0.89 7.52

c, 2. 61 5.55 1.61 9.08

r 0.01 0.78 0.21 0.97

MAE (n) 54.44 (0.48) 228.46 (2.02) 118.19Q06) 535.85 (5.2 7)

RMSE (g) 96.80 (0.81 401.60 (3.55) 159.81 @4) 843. 71 (7. £1)

RMSEggn) 0.13 (0.00) 183.57 M4) 175. 75 (1.57) 661.10Q80)

RMSEu (11) 87.55 (0.73) 335.19 (2.96) 99. 4,610. 89) 588.24 (6.41)

SB% (°/_..) 0.00 21.32 22.15 79.30

11, 0.34 0.86 0.14 0. 98

 

Table 4.2 Evaluative statistics of FSMM5 model performance obtained from wind estimates of 15

variations (X,) of the model over the period of record. The mean error statistics are given in bin counts and

the numbers in parentheses in the mean error rows are the percentage of total n. k and c are Weibull shape

and scale parameters respectively.

It is clear from Table 4.1 and from Figure 4.1 that FSMM5 is of somewhat limited

utility as a model for forecasting hourly wind resources for wind energy production at a

given location, Minimum bias is on the order ofjust over 1 m 8". While this level of

accuracy may be acceptable for other applications, given the sensitivity of turbine power

output to wind speed (see Figure 1.1), even a l m s'1 deviation from actual values could

mean an exponentially larger error in power output, which would in turn become even

larger when multiplied by a number of turbines in a wind farm reliant upon that wind

speed. Unfortunately, errors in the 1 m 5'1 range are limited to just the best ofthe model

variants, and even then only at certain locations within the study area. On average over
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the study area and across all FSMMS variants, MAE and RMSE were on the order of 3 to

4 m s", which is unacceptable accuracy within the realm of wind power forecasting.

Obs vs. MM5 at KFZY : 1w ma
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Figure 4.1 One week moving averages of the ASOS observed (top) and FSMM5 forecast (middle) wind

speeds at Fulton, NY (KFZY) for the period of record. The bottom figure is a l-week moving average

applied to the hourly differences (O—P) between observed and predicted wind speeds. The moving average

was used to more clearly illustrate the degree of variability that exists. All stations exhibit similar

variability.

Furthermore, an assessment of correlation indicates a very low degree of

covariance between model-estimated and observed wind speed values over the study

area. The best correlation obtained was 0.72, with a mean correlation ofjust 0.2 and
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several occurrences of nearly perfect non-correlation (0.00). These low correlations and

relatively large errors (with respect to the mean speeds) are corroborated by the low index

of agreement (d2) scores. A mean 412 of 0.44 indicates that, on average only about 44% of

the model estimate is error free.

Fortunately, it appears that a great deal of the bias residing in the FSMM5

estimates is systematic in nature. Based on the calculation of the systematic component

of the RMSE, anywhere from 21% to 72% ofthe bias in the model estimates can

potentially be accounted for within the model. However, that is beyond the scope of this

research.

Rather, the focus of this study is in the ability of the model to accurately estimate

the overall (not time dependent) distribution of the wind resource over the study region.

In this respect, FSMMS performs notably better (see Table 4.2). To perform this

assessment, observed and estimated wind speed values were sorted into 1 m s‘1 histogram

bins. The bin counts of the observed and estimated wind speed distributions were then

assessed for differences. While mean absolute and root mean squared errors still appear

to be rather large (they are presented in terms ofbin frequencies), they actually represent

a very small proportion of the number of observations from which the histograms were

obtained (on average 11,396 values). Thus, in fact the MAE and RMSE are relatively low

(on average just 2 and 3.5% of total sample size respectively).
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Additionally, the mean correlation (r) jumps from 0.17 for the forecast estimation

to 0.78 for the resource estimation (with similar standard deviation). Despite this

improvement, very low resource estimate correlations were observed at some stations and

model variants, ,while exceptional correlations were observed at others. The overall

good agreement is further reinforced by the noticeably increased index of agreement,

with a mean of 0.86 (or 86°/o error-free estimate).

While the means of the observed and model estimated distributions do not appear

to readily agree, there is still remarkable similarity of the shape (k) and scale (c)

parameters of the Weibull density functions that had been empirically fit to the observed

and estimated data. Furthermore, it appears that while some stations or model variants

exhibit a great degree of systematic bias (a maximum of79% was encountered), the mean

systematic bias was just 21%, indicating that most of the variability between the observed

and model estimated wind speed distributions was not associated with the model.

While an evaluation of the overall performance ofFSMM5 reveals a substantial

amount of systematic bias and a relatively large variability in the error, it does not

address the causes of that bias. To more appropriately evaluate the performance ofthe

FSMM5 variants, a more detailed analysis ofmodel performance is warranted. First, the

relative performance of the three model domain resolutions (i. e., 4 km, 12 km and 36 km)

is compared, followed by the influence of spatial aggregation on model performance.

This evaluation will largely determine which of the model variants exhibits the lowest

resource estimation error.
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4.1.1 Performance based on grid resolution

For each FSMM5 domain, 5 variants were considered (based on aggregation

resolution as discussed in Chapter 3). The statistics presented in this subsection for each

domain were derived from a grouped analysis of those 5 variants. Table 4.3 describes the

relative performance of the model variants within each grid domain. The evaluation

statistics are based upon the observed versus estimated resource distributions and not on

the individual time-step model estimates (i.e., forecasting evaluation).

From Table 4.3 several patterns are evident. In particular, mean differences

between the observed and estimated mean wind speeds tend to decrease with decreasing

spatial resolution. Furthermore, the mean standard deviation of estimated speeds also

decreased appreciably. Despite the general agreement between first and second moments

of the distributions, given the large 11, they were all found to be significantly different (t2,

0,99 - note: statistical tests are identified with the number of tails and significance level as

a subscript). However, the mean of the 36 km domain distribution is significantly lower

than that of the 12 km domain “19.90) This improvement in estimative accuracy is borne

out in the parameters of the theoretical Weibull pdf. While the parameters of all domains

appear to be in good agreement, it is only with the 36 km domain that neither mean

estimated shape nor mean estimated scale are significantly different from those fit with

the observed data 02,099).
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FSMM5 Evaluation Statistics by Domain

4 km 12 km 36 km

1? s, 2? s, 7c s,

o (m s? 3. 76 0. 70 3. 77 0. 70 3. 76 0. 70

e (in?) 5.80 0.95 5. 93 1.88 4. 04 0.37

s,(m s") 2.41 0.30 2.41 0.30 2.40 0.30

s, (m s5 2. 76 0.54 2. 77 0.80 1.94 0.28

k, 1.94 0.38 1.94 0.38 1.94 0.38

k, 1.90 0.29 1.93 0.31 2.12 0.47

c, 4. 53 0. 89 4.54 0.89 4.53 0. 89

c, 6.03 1.04 6.20 2.09 4.41 0.59

r 0. 76 0.17 0. 69 0.27 0.89 0.07

MAE (n) 252.02 102.96 262.92 152.90 170.44 53.49

2.23 % 0.91 % 2.34 % 1.36 % 1.50 % 0.49 %

RMSEM 419.33 147.31 436.77 193.76 348.71 114.48

3. 71 % 1.32 % 3.89 % 1.74 % 3.06 % 1.04 %

228.79 155.94 239.34 220.97 82.58 65.17

RMSE‘ (‘9 2.03 % 1.40 % 2.15 % 1.97 % 0.73 % 0.62 %

RMSE” (n) 336.65 86.92 334.92 100.36 334.01 109.90

2.97% 0.76% 2.98% 0.90% 2.93 % 0.98%

SB% (%) 29.22 19. 91 27.18 27.02 7. 74 8.59

d; 0.85 0.12 0.80 0.19 0. 93 0. 04

 

Table 4.3 Evaluative statistics of FSMMS model performance obtained from the 5 variants (X,) of the

model within each of the 3 model domains over the period of record. The mean error statistics are given in

bin counts and are followed by the percentage of total 11. k and c are Weibull shape and scale parameters

respectively.

The measures of agreement also demonstrate improvement of skill with

decreasing domain resolution. The 36 km domain again was associated with the lowest

overall bias, which is significantly lower than both the 12 and 4 km domain (twigs).

However, interestingly the 12 km domain exhibits higher model bias than the 4 km

domain. Additionally, while there is no statistically significant difference in

unsystematic bias between model domains, there is a significant improvement in

systematic bias with the 36 km domain over both other domains (tings). Furthermore, the
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systematic error becomes a much smaller proportion of the overall error as coarser

domains are selected, as evidenced by the drop in systematic bias percentage (SB%) from

around 30% at 4 km to just 8% at 36 km. Thus, not only do modeled resource estimates

appear to improve significantly at coarser resolutions, but their systematic component

also decreases, indicating that perhaps there is spatial bias inherent in the domain itself.

The behavior of the model over the three domain resolutions can be better

illustrated by graphical methods. Two graphical analyses in particular demonstrate the

behavior of the FSMMS model bias. The first, Figure 4.2, is a representative plot of the

goodness of fit between the observed data and the Weibull pdfobtained from the FSMM5

estimates that were interpolated fi'om each domain to the locations of the ASOS stations

using the nearest 4 grid points and an inverse distance weighting technique (the same

technique is applied to all comparisons in this subsection).

From this figure (especially from the cdf) it is clear that the 36 km domain did the

best job estimating the wind speed distribution. The primary reason for the

overestimation of speeds near the mean is because FSMM5 had not estimated enough

high wind speeds to shift the scale parameter to the right and “stretch” the distribution.

Although Figure 4.2 represents just one station, similar behavior exists at most stations in

the study area. Alternatively, model bias may be viewed with respect to the distribution

ofwind speeds by graphically assessing the variability ofbin frequencies (Figure 4.3).
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Figure 4.2 Comparison of the FSMM5 estimated Weibull pdf (left, line) and cdf (right, line) at Holland,

MI (KBIV) and the observed wind speed distribution (left, bars; right, crosses) for each of the three

domains, (a) 4 km, (b) 12 km and (c) 36 km using the 4 weighted nearest neighbors, over the period of

record.
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Figure 4.3 Wind speed distribution frequency differences (FSMM5 - ASOS) at Holland, MI (KBIV) for

the (a) 4 km, (b) 12 km and (c) 36 km domain using 4 weighted nearest neighbors, over the period of

record.
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Figure 4.3 illustrates several issues regarding the estimation of wind speed

distributions by FSMMS. First and foremost, the model greatly under represents the

frequency ofcalm periods (i.e., < 1 m s"), This under-representation is systematically

present over all domains and decreases only slightly over the 36 km domain. The second

issue appears to be a systematic under and over estimation of wind at certain speeds. At

the coarsest resolution, low wind speeds appear to be over-estimated while higher speeds

are under-reported. Over the 4 and 12 km domains, this relationship appears to be

reversed, where the frequency of low wind speeds is systematically under-estimated

while the frequency of stronger winds is over-estimated. As with the overall distributions

highlighted in Figure 4.2, this systematic behavior is present throughout the study region.

The systematic bias observed in Figure 4.3 is also present when wind directions

are examined. Figure 4.4 presents the observed and estimated wind roses at Holland, MI,

while Figure 4.5 shows the differences in directional frequency observed at that same

station. As with previous figures, statistics from the Holland, MI (KBIV) location are

displayed because the behavior ofmodel estimated winds relative to ASOS observed

winds are representative of the results across the study area. As displayed in Figure 4.4,

there is a fair amount of dissimilarity between observed and model estimated wind

direction distributions. Once again, much of this dissimilarity appears to be systematic

(Figure 4.5). In general, winds from the northeast appear to be consistently over-

estimated whereas the frequency ofwinds out of the southwest (the prevailing direction)

is most often under-estimated.
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 Obs. at KBIV
MM5 at KBIV

Figure 4.4 Wind roses at Holland, MI (KBIV) from the 12 km FSMM5 domain showing the observed wind

direction distribution (left) and the FSMM5 estimated direction distribution (right) from 11/02 - 6/04.
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Figure 4.5 Frequency differences between FSMMS and ASOS observed wind directions at Holland, MI

(KBIV) for the (a) 4 km, (b) 12 km and (c) 36 km domains for the period of record.

Given the apparent systematic bias inherent in the wind regimes estimated by

FSMM5 over the study region, an examination of the spatial variability of the resource

estimates is in order. For example, the spatial variability of the model estimates ofmean

wind speed over the three domains is demonstrated in Figure 4.6. It is clear from Figure

4.6 that substantial differences exist in the model’s calculation ofwind speeds at the

different domain resolutions.
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Figure 4.6 FSMM5-estimated mean wind speeds (in m s") over the study region over the three model

domains using an inverse distance weighting technique on the nearest 4 grid points to a station from 1 1/02

to 6/04. The negative mean speeds in (b) are a function of the spatial interpolation scheme extrapolating

beyond the observation network and should be ignored.
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(c) 36 km

 

 

 

Figure 4.6 Continued.

As expected, the 4 km domain estimates appear to produce the most spatial

variation in mean wind speeds over the region. Much of this variability is likely due to

the boundary layer conditions of the model operating on such a fine resolution.

Coherence ofmean speeds increases at the 12 km domain, however there appears to be a

systematic over estimation ofmean speeds over the Lake Huron and Lake Erie regions.

The 36 km domain (Figure 4.6c) exhibits the most coherent behavior as well as the most

agreement with the observations (Figure 4.7c).
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(a)4km

  

 

 

(b) 12km

 

 

 

Figure 4.7 Mean Absolute Error (in bin counts: 11) of wind speed histogram frequencies between FSMM5

and observed data over the study area on the three model domains from 1 1/02 to 6/04. All estimates were

interpolated to stations using an inverse distance weighting technique on the nearest 4 grid points.

Negative MAE values are the result of the biharmonic spline procedure extrapolating beyond the range of

the stations and should be ignored.
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(c) 36 km

  

 

 

Figure 4.7 Continued.

Model bias in the three domains is demonstrated spatially in Figure 4.7. In

general, it appears that the highest mean absolute errors occur in the 12 km domain in the

same areas over which the mean speeds were most systematically over-estimated (1'. e.,

Lake Huron and Lake Erie regions). There appears to be little difference in the

magnitude of the errors between the 4 and 36 km MAE, but in general, the 36 km domain

appears to exhibit more spatial coherence in bais (i.e., more spatially systematic).

The spatial component of the degree ofbias in the model estimates of the wind

resource can perhaps be best described by variations in the index of agreement (d2) over

the region. This is presented for each model domain in Figure 4.8. As expected, FSMMS

exhibits its most spatially coherent model bias at the coarsest (36 km) domain. The 12
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km and 4 km domains both exhibited consistently lower indexes of agreement over the

study area and are dichotomous in their behavior. The 12 km domain is very spatially

systematic in the distribution of index values, whereas the 4 km domain is not.

Lastly, the spatial behavior of the systematic error of the model estimated wind

resource can be visualized both by plotting the systematic error component ofRMSE over

the region as well as by examining the trend surfaces of the residuals of the mean wind

speed. The systematic RMSE is presented in Figure 4.9, and the trend surface analysis in

Figure 4.10.

The spatial patterns of systematic bias over all domains closely mirror the

behavior of the overall bias presented in the preceding figures. The 36 km domain

exhibits the most spatial consistency in systematic bias whereas the 4 km domain is the

most spatially inconsistent. Again, the greatest systematic bias over the 12 km domain

was coincident with locations where the model substantially over-estimated the mean

speeds.
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(b) 12km

 

 

§".';"4 l 1 ' l J 1 t
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Figure 4.8 Index of agreement (11;) for FSMM5 estimates of the wind resource over the (a) 4 km, (b) 12 km

and (c) 36 km domains from 1 1/02 to 6/04. Values outside the range 0 - l are extrapolation artifacts and

should be ignored.
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(c) 36 km

 

 

 

 

Figure 4.8 Continued.

(a)4km
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Figure 4.9 Systematic component of the Root Mean Squared Error (RMSEs) over the study region from the

(a) 4 km, (b) 12 km and (c) 36 km FSMM5 domains from 11/02 to6/04. Negative values are an

extrapolation artifact and should be ignored.
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(b) 12 km

 

 

 

(c) 36 km

 

  

Figure 4.9 Continued.
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(a) 4 km contour

 

   
(b) 4 km surface
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(c) 12 km contour

  
 

(d) 12 km surface
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Figure 4.10 Continued.
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The use of trend surface analysis was discussed in the preceding chapter as a

means of extracting information regarding the behavior of a variable in space. Trend

surfaces are simply multiple regression equations that utilize Longitude and Longitude as

the regressor variables. Initially a second order trend surface was fit to the data, however,

it was subsequently determined that in all instances, the additional regression coefficients

were not significantly different from zero and were thus extraneous. A more

parsimonious first order linear trend surface was therefore fit to the data and the results

are presented in Figure 4.10.

The presence of a strong trend, both latitudinally and longitudinally reveals the

relative link between geographical location and model bias. Figure 4.10 demonstrates

that the coarsest resolution domain (36 km) appears to exhibit a distinctly latitudinal

trend, but only slightly dependent on longitude. The 12 km domain has less of a

latitudinal trend, but more pronounced dependence on longitude. The 4 km domain

pattern is completely the reverse of the 12 km domain, with increasing residual values

from northeast to southwest across the region. When these trends are compared with the

overall model systematic error over each domain, the 36 km domain appears to be the

most promising for wind resource estimation. In addition to being associated with the

overall lowest model bias, much of that systematic bias might be spatial in nature and

was accounted for by Latitude.
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4.1.2 Performance based on spatial aggregation resolution

The FSMM5 was also evaluated to determine which of the 5 interpolation

schemes yielded the best wind estimates at the site locations. In review, wind estimates

were calculated at each station locations within the study network using interpolated grid

point estimates from each model domain with five different interpolation schemes. In the

first method the location of interest simply assumed the value from the nearest model

grid point. The second estimated each location value as an unweighted average of the

nearest 4 grid points. The third used a linear inverse distance weighting scheme on those

same 4 points. The fourth and fifth methods produced an unweighted average ofthe

nearest 16 and 36 grid points respectively. The increasing number of nearest neighbor

grid points was considered in order to investigate the influence of spatial aggregation, and

perhaps uncover the degree of spatial bias inherent in the different model domains. Some

of the results of the third interpolation method were presented in the preceding chapter.

All five are assessed here and are limited to the 36 km domain which was found to be

superior to the other domain resolutions.

An analysis of the model evaluation statistics is presented in Table 4.4. Based

upon these statistics, there does appear to be a trend in the behavior of the various

interpolation schemes. It was initially suspected that the estimates calculated with the

greatest number of grids (and from the greatest areas) would provide the best results in

that they would be largely devoid ofany localized influences. This was not the case,

however, as the larger sample estimates were found to be associated with the poorest
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performance. This may imply that the localized component of the wind resource at a

location is a substantial portion of the overall wind regime. Larger aggregation intervals

would tend to mask that influence.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

Model evaluative statistics for 5 interpolation schemes on the 36 km domain

Nearest

‘ neighbors I 4 4 (IDW) 16 36

1? s, 1? s, 1? Si 2? 8. if s,

o (m s“) 3. 76 0.70 3. 76 0.70 3. 76 0. 70 3. 76 0.70 3. 76 0.70

ep11 s") 4. 03 0.46 4.02 0.39 4. 03 0.43 4. 04 0.29 4.07 0.26

s, (m s5 2. 40 0.30 2. 40 0.30 2. 40 0. 30 2. 40 0. 30 2. 40 0. 30

s,(m Q) 2.11 0.30 1.99 0.25 2.04 0.27 1.84 0.19 1. 73 0.16

IgL 1.94 0. 38 1.94 0. 38 1.94 0. 38 1.94 0. 38 1.94 0. 38

_k, 2.14 0.17 1.94 0.14 1.52 0.25 2.27 0.30 2. 76 0.26

CL 4. 53 0. 90 4. 53 0. 90 4. 53 0. 90 4. 53 0. 90 4.53 0.90

_c, 4.62 0.51 4.26 0.47 3.81 0.61 4.52 0.41 4.85 0.31

r 0. 91 0.07 0.89 0. 08 0. 90 0.07 0.88 0.07 0.87 0.08

MAE (M 151.17 52. 72 164. 61 53. 70 157.72 52.56 182.39 48.10 196.31 47. 74

1.33% 0.50% 1.45% 0.50% 1.39% 0.50% 1. 60% 0.44% 1.72% 0. 43

RMSE (n) 296.43 106.11 335.75 110.17 314.51 107.68 380.14 103.35 416. 72 102.75

2.61% 1.00% 2.95% 1.03% 2. 77% 1.03% 3.33% 0. 94% 3.64% 0.88%

RMSEs m 71.17 67.49 73. 79 65. 70 71.85 67.30 89.03 57.44 107.03 60.99

0.64% 0. 66% 0.66% 0.64% 0.65% 0.66% 0.79% 0.54% 0.94% 0.53%

RMSE“ (M 282.64 98.25 322.80 104.53 301.18 100.67 365.47 102.07 397.97 103.38

2.48% 0. 90% 2.83% 0. 94% 2.65% 0.61% 4.52% 0.41% 4.85% 0.31%

58% (%) 8.28 10.01 7.31 8.67 7. 77 9.35 7.85 7. 72 9.17 8.02

d, 0.95 0. 04 0.94 0. 04 0.94 0. 04 0. 93 0. 04 0.92 0.04
  
Table 4.4 Evaluative statistics of 5 spatial aggregation schemes applied to the FSMM5 36 km domain wind

speed estimates over the period of record. Percentage values in the error statistic cells are the error (bin

frequency) as a percentage of the overall number of estimates. Bold values are statistically significant

improvements over the next higher model (tLogg).

Initially, even though there appears to be a trend toward better model performance

with smaller spatial aggregation intervals, the differences between aggregation schemes

do not appear to be substantial. Statistical testing confirmed this observation. A one-

tailed t-test with an alpha level of 0.01 was applied to the data to evaluate the statistical

significance of the relationships in the data. Except where indicated, all statistical tests in
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this section are one-tailed t-tests with an alpha of 0.01. With respect to the observed and

estimated means, significant differences were found for all model variants.

Another set of variables examined for statistically significant differences were the

parameters of the observed and estimated Weibull density functions. With a T-test, no

significant differences were found between the observed and estimated shape (k) or scale

(c), with the exception of the scale parameter in the 36 nearest neighbor variant which

was significantly different at the critical level of 99%. Furthermore, there appears to be a

strong correlation between observed and estimated wind speed histograms, as evidenced

by the high, and statistically significant r values (tLogg). However, with the correlation

- coefficients, differences in the model variants begin to appear. Although the differences

between variants are not statistically significant, the highest correlation is exhibited by

the lowest-order aggregation scheme (one nearest neighbor).

It was therefore necessary to evaluate the behavior of the estimation bias. With

the exception of the 4 nearest neighbors variant, the models all tended to exhibit

decreasing error as the level of spatial aggregation was reduced. Most of the

improvements in MAE or RMSE were not, however statistically significant, with the

exception of those indicated in bold in Table 4.4. Notably, the most improved model

variant was the 4-neighbor inverse distance weighting (IDW) scheme, with statistically

significant improvements in all but systematic error. In fact, no aggregation model

significantly improved the systematic bias of the 36 km domain.
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Given the lack of distinctiveness between the 5 aggregation variants over the 36

km domain, it was apparent that while any of these approaches would provide a

reasonable estimate of the wind resource at a location over the region, the one nearest

neighbor variant is the most parsimonious from a Spatial standpoint and as such, there is

no reason to prefer the more complex aggregation approaches.

At 8.28% of overall model error (with a standard deviation of about 10%), the

mean systematic resource bias of the 36 km, 1 nearest neighbor model variant is

relatively low. Furthermore, the reduction of this bias would result in an improvement in

the model estimation of the resource. However, given the low proportion of bias that is

systematic, it is unlikely that any adjustment would be regionally significant. Still, if the

first order trend surface of the residuals is examined, there does appear to be a strong

latitudinal component that might permit a systematic improvement in model accuracy

(Figure 4.1 1).

Based upon the results discussed in this section, it appears that the 36 km domain,

using a one nearest neighbor aggregation scheme provided the best model performance of

the 15 variants evaluated. It is therefore this variant that will be compared with the three

aforementioned statistical models for wind resource estimation.
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4.2 Model Comparison

All three of the statistical models (two stochastic and one probabilistic) have been

either previously developed for or utilized with success in wind energy resource

estimation. It is for this reason that these models were chosen. One of the goals of this

research was to establish whether a highly complex numerical approach to wind resource

estimation represents a significant improvement over established statistical methods.

4.2.1 Statistical model performance

As with the 15 FSMM5 variants in the previous section, the performance of the

three statistical models can be evaluated statistically. Statistics describing the relative

performance of the models are presented in Table 4.5. It is immediately clear from the

statistics that the Krige model does not appear to perform as well as the other two

statistical models. Even so, in an evaluation of difference ofmeans between model

estimates and observed values, none of the models have a statistically significant

difference from the observed mean (t2,o.99). Additionally, all have distribution

correlations that are significant at the same level (p = 0.99).

In assessing the parameters of the Weibull density function fit to the observed

data, again there were no statistically significant differences between any of the

parameters with the exception of the shape (k) parameter ofthe Krige model. This

indicates that in general, at least two ofthe models are providing an excellent estimate of
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the observed wind speed distribution. This is corroborated by the correlation ofthe

distributions. all of which are significantly high. but thejoint probabilistic model appears

to correlate best with the observed data.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Evaluative statistics for three statistical wind estimation models

Model JP MCP Krige

f 5? SL 5 5,,

o (m s") 3. 77 0.69 3. 77 0.69 3. 78 T 0.69

_e (m s'T 3. 79 0.67 3. 74 0.70 3. 71 1.02

S:(m?5 2.40 0.28 2.40 0.29 2.40 0.29

§e (m s") 2.12 0.24 2.02 0.29 2.63 1.19

3,, 1.94 0.39 1.94 0.38 1.94 0.37

kg 1.83 0.42 1.81 0. 62 1.56 0.44

9:, 4.54 0.88 4.54 0.88 4.52 0.88

ca 4.14 1.02 3.81 1.12 4.19 1.92

7 0.92 0. 07 0. 88 0.14 0. 76 0.18

MAE (M 130.14 43.99 114.15 44.80 116.89 81.94

1.17% 0.39% 1.03% 0.42% 1.25% 0.87%

313.18 133.45 270.99 131.02 247.34 161.38

RMSE ('0 2.80% 1.17% 2.42% 1.17% 2. 62% 1.72%

57.61 50.39 52.63 44.13 81.34 92.15

RMSE‘ (n) 0.52% 0.46% 0.48% 0.42% 0.88% 1.00%

305. 75 128. 71 263.45 128.42 226. 09 145.01

RMSE“ (n) 2. 73% 1.13% 2.35% 1.14% 2.39% 1.53%

88% (%) 4.41 5.15 5.81 6.64 12.37 15.11

42 0.94 0. 05 0. 95 0. 04 0. 93 0.11
 

Table 4.5 Evaluative statistics over the period of record for three statistical wind resource models, a joint

probabilistic model (JP), a measure-correlate-predict model (MCP), and a Krige model (Krige). Error

values are in bin count differences (n), and the percentages are relative to overall record length.

Although the Krige model fitted values appear to have the worst agreement with

the observed data. it is helpful to consider the error statistics. Between the mean absolute

error and the root mean squared error there is minor disagreement between error

measures. In terms of absolute frequency. the MCP model has the lowest MAE. but the

Krige model appears to have a lower absolute RMSE. This is. however rectified by
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examining the errors relative to the overall frequency count. When viewed as

percentages of total, the MCP model has the lowest MAE and RMSE. However, it should

be noted that at p = 0.99, a 2-tailed t-test failed to identify any statistically significant

difference in the errors between the MCP model and either of the other models. In fact,

all three models have indexes of agreement over 0.90 indicating that the majority

proportion of their estimates are error free.

Thus, we must turn to the distribution of error among systematic and unsystematic

to determine whether one model outperforms the others. In all instances, the systematic

component ofthe RMSE was less than 1% of the length of record. Of the RMSEs values

however, the MCP model, with the lowest score was significantly lower than the Krige

model 01.0.99)- There was no corresponding significancc with the joint probabilistic

model. In fact, the joint probabilistic model actually has a lower percentage of systematic

bias relative to overall bias than does the MCP model. The bias in the Krige model on

the other hand is around 12%, nearly three times as high as the other models.

Overall, it appears that while the Krige model does perform reasonably well over

the region, its complexity relative to the other models would likely preclude its use.

Therefore, the model has been removed from firrther consideration and comparison with

the selected FSMM5 model variant.
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4.2.2 Comparison of FSMMS to statistical models

The question that must now be asked is whether the best performing variant of the

FSMM5 model can perform better than established statistical wind energy resource

models. To assess this question, Table 4.6 and 4.7 are presented. Table 4.6 contains the

evaluative statistics for the resource estimation and Table 4.7 holds the statistics for the

forecast estimation from each of the models. The three models that are compared are the

joint probabilistic model, the measure—correlate-predict model and the 36 km FSMM5

with one nearest neighbor aggregation.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Evaluative statistics for three wind resource estimation models

Model JP MCP FSMM5

r Sx r s,( r 3,,

o (ms’I) 3. 77 0.69 3.77 0. 69 3.76 0.70

e (m s'i 3. 79 0.67 3. 74 0. 70 4. 03 0.46

30 (m s") 2. 40 0.28 2. 40 0.29 2.40 0.30

Safm s") 2.12 0.24 2.02 0.29 2.11 0.30

. kn 1.94 0.39 1.94 0.38 1.94 0.38

k" 1.83 0.42 1.81 0.62 2.14 0.17

c: 4.54 0. 88 4.54 0.88 4. 53 0.90

cg 4.14 1.02 3.81 1.12 4.62 0.51

r 0.92 0.07 0.88 0.14 0.91 0.07

130.14 43.99 114.15 44.80 15117 52.72

MAE (n) 1.17% 0.39% 1.0 % 0.42% 1.33% 0.50%

313.18 133.45 270.99 131.02 296,43 106),

RMSE 0‘) 2.80% 1.1 7% 2.42% 1.17% 2.61% 1. 00%

57.61 50.39 52.63 44.13 71.17 67.49

RMSE‘ (n) 0.52% 0.46% 0.48% 0.42% 0.64% 0. 66%

305.75 128. 71 263.45 128. 42 282.64 98.25

RMSE“ (n) 2.73% 1.13% 2.35% 1.14% 2.48% 0. 90%

SB% (%) 4.41 5.15 5.81 6. 64 8.28 10.01

4, 0. 94 0. 05 0. 95 0. 04 0. 95 0. 04

 

Table 4.6 Evaluative statistics for the performance of three wind resource estimation models, joint

probabilistic (JP), measure-correlate-predict (MCP), and FSMM5 running on a 36 km domain and utilizing

the one nearest neighbor scheme over the period 1 1/02 to 6/04. Error measures are given in bin count

differences and the percentages are relative to overall record length.
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 Evaluative statistics for three wind forecasting models

 

 

 

 

 

 

 

 

 

 

 

        

Model JP MCP FSMM5

31' si f 8, f 3.

o m1')!— 3. 77 0.69 3. 77 0.69 3. 76 0. 70

e (m s1 3. 79 0.67 3. 74 0. 70 4. 03 0.46

.8an s") 2. 40 0.28 2.40 0.29 2. 40 0.30

s, (m s'lL 2.12 0.24 2.02 0.29 2.11 0.30

r 0. 79 0. 08 0. 76 0.1 7 0.00 0. 05

MAEar‘L 1.19 0.25 1.12 0.25 2. 62 0.26

WSflmfl 1.56 0.33 1.45 0.31 3.32 0. 35

RMSEsmi 0. 78 0.29 0. 79 0.32 2.55 0.31

RMSELLm E) 1.34 0.23 1.19 0.20 2.11 0.30

83% (m 24.36 9.13 29. 79 12.87 59.34 7.28

d, 0. 86 0.06 0. 88 0.06 0.37 0.03

 

Table 4.7 Evaluative statistics for the performance of three wind forecasting models, joint probabilistic

(JP), measure—correlate-predict (MCP), and FSMMS running on a 36 km domain and utilizing the one

nearest neighbor scheme for the period 11/02 to 6/04.

Although not a focus of this study, Table 4.7 demonstrates that as a wind power

forecasting model, it does not appear that on average the FSMM5 variant would be a

good choice. On all counts it appears to lack the performance ofthe statistical models.

From a statistical standpoint (b.0159), all of the FSMM5 model error statistics were

significantly higher than those of either statistical model. However, from a wind resource

estimation standpoint, Table 4.6 demonstrates that perhaps the numerical FSMMS is not

as quite as erroneous, and performs on par with the other models.

In terms of mean wind speeds, the FSMM5 estimates were significantly different

from the observed value 62,099). However, neither the estimated Weibull shape nor scale
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parameters were significantly different from the observed parameters. In terms of the

shape (k) parameter, FSMM5 estimates the true values most closely more ofthe time

versus the other models. Although it appears, too, that the scale parameter was best

approximated by FSMMS, it was not consistent across the region and the statistical

models proved more reliable in this regard. Error statistics proved more difficult to

assess as the differences between the three models were not very great. The only

statistically significant difference that existed was that the MAE for the FSMMS was

significantly larger than either of the statistical models (t1,0.99)- None of the instances

where the FSMM5 exhibited lower error than the statistical models was determined to be

a statistically significant improvement.

One of the goals of this research was also to determine if the FSMM5 model

would have a significant advantage in estimative accuracy for remote locations where no

nearby long-term records exist. Thus, the five stations in the study that were most distant

from their nearest neighbors were selected for more specific model evaluation and

comparison. The analysis for Chapleau Airport, ON (CYLD), the most remote ofthe 5

(its nearest neighbor is Sault Ste. Marie, ON, approximately 180 km distant) is presented

in Table 4.8. The other 4 locations exhibited similar behavior and so are not discussed.

At Chapleau Airport (Table 4.8), both the joint probabilistic and FSMMS models

estimates of the mean speed were significantly different from the observed value (@099).

Although the evaluative statistics indicated that the MCP model demonstrated the best

Weibull fit, a graphical analysis revealed that the joint probabilistic model was the most
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apprOpriate Weibull fit to the data and that the FSMMS Weibull fit was the poorest

(Figure 4.12). However, from Table 4.8 it is the MCP model that exhibits the lowest

correlation between the observed and estimated histograms. The histogram differences

are displayed in Figure 4.13.

 Evaluative statistics for three wind resource estimation models.
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Chapleau Airport, Ontario (CYLD)

Model JP MCP FSMM5 T
0 (m S-I) 307 3.09 3.01

e (m s-T 3.18 3.14 4.50

. sCL (mfi 1.99 2. 00 1. 99

. s ‘(m ,4, 1.48 H5 2-36

kg 1.61 1.64 1.56

,k 2.19 2.09 2.28

en 3. 72 3.69 3.50

68 3. 76 3.29 4-90

r 0. 90 0.17 0. 88

142 150 147
MAE (n)

[.8596
[909/5 [.8296

289 321 245
RMSE (n)

3.76% 4.06% 3.0 %

95 112 115
RMSEs (n) 1.23% 1.42% 1.43%

274 301 217
RMSEu (n) 3.56% 3.81% 2.70%

d; 0. 93 0.92 0. 93    
 

Table 4.8 Evaluative statistics for model estimates of the wind resource at Chapleau Airport, Ontario

(CLYD). The models are joint probabilistic (JP), measure-correlate-predict (MCP), and the 36 km domain,

one nearest neighbor variant of FSMMS (FSMM5) for the period ”/02 to 6/04. Error values are given in

bin count differences and percentages are relative to the length of record.

Based upon the histogram differences, the influence of systematic error becomes

clear. While all three models exhibit some systematic bias, the FSMM5 model appears to

be the most systematic in its under-estimation of the occurrence of low wind speeds and

its over-estimation of the frequency of higher speeds (relative to the mean). Both



statistical models appear to over-estimate winds near the mean speed and under-estimate

all others (Figure 4.13). Furthermore, as hinted at by its low histogram correlation, the

MCP model greatly over-estimates winds near the mean observed speed at CYLD. This

is corroborated by the extreme peakedness of the Weibull distribution estimated from the

MCP model (Figure 4.12e).
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Figure 4.12 Fit of model estimated Weibull distribution (line) to observed wind speed data frequencies

(lefi, bars; right, crosses) at Chapleau Airport, ON (CYLD) for the period 11/02 to 6/04. Left plots are the

probability density function, and right plots are the cumulative density function. The models are: the 36 km

domain, 1 nearest neighbor FSMM5 (a,b), the joint probabilistic model (c,d), and the measure-correlate-

predict model (e,f).
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Figure 4.13 Wind speed frequency histogram differences (Estimated - Observed) for three wind models

[(a) 36km/1 nearest neighbor FSMM5, (b) joint probabilistic, and (c) measure—correlate-predrct] at

Chapleau Airport, Ontario (CYLD) for the period 11/02 to 6/04.

This assessment of systematic bias is further supported by the percentage of

systematic bias reported in Table 4.8. At CYLD, the FSMM5 model bias was

approximately 22% systematic, compared to 11 and 12% for the joint probabilistic and

MCP models respectively. Thus, while all three models appear to perform with similar

accuracy, which in itself is remarkable, especially for the statistical models given the
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great distance between CYLD and its neighbors, a correction of the bias in the FSMMS

model may in fact result in a substantial improvement of the model’s performance.

Additionally, given the lower unsystematic bias ofFSMMS, it could be expected that an

adjusted model would outperform the two statistical models.

4.3 Accounting for spatial bias in FSMMS

A final goal of this research was to establish whether or not any of the resource

estimation bias inherent to the FSMMS model could be reduced. Given the

aforementioned low levels of systematic bias, it is unlikely that a significant

improvement could be made. However, with the small differences in model

performance, it is possible that a reduction in FSMMS’s systematic error could in fact

result in its outperforming the statistical models. To that end, the resource estimates of

the FSMM5 model (the estimated frequency distributions, Weibull shape and scale) were

subjected to a multiple regression that took into account two factors that would appear to

exert some influence on the model’s estimates. The first is geographic location. Trend

surface analyses of the residuals of the model estimates indicated a distinct relationship

with both Longitude and Latitude. The second factor is terrain. Although FSMMS

contains a high resolution digital terrain model as part of its base information, it is

possible that the processes associated with various terrain types have not all been

properly specified. As such, certain types of terrain might be associated with higher

errors than others. To examine this possibility, a terrain complexity index (TC1) was
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created for each station location (Figure 4.14). This index was calculated as the standard

deviation of the elevations at the 16 grid nodes in the FSMM5 12 km domain nearest to a

station location (Figure 4.15).

  
  

Terrain Cambrity (m)

ndex (TCI) obtained for the study area by calculating the standard

. rrain C lexi I
_ . _

Figure 4 14 Te omp ty d points (12-km MM5 domain) surrounding each station location.

deviation of elevation of the 16 gri
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FSMM5.

Figure 4.15 Surface elevation of the area encompassing the study region from the 12 km domain of
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Initial multiple linear regressions took the forms,

14:15O +611€+152¢+b32t+b4TC1 (4.1)

Czbo +b10+02¢+b3l+b4TC1 (4.2)

where k and c are the Weibull parameters estimated from the observed data, k and 6" are

the Weibull parameters estimated from the FSMMS model output, 0 is Latitude in

degrees, A is Longitude in degrees, and TCI is the aforementioned Terrain Complexity

Factor. Based upon the preliminary analysis ofboth equations, neither Longitude nor the

TCI variables were found to be significant (12.0.9) and were removed from the equations.

The resulting multiple linear regression equations became,

k = 4.55— 0.1112— 0.0540 (4.3)

c=11.128+0.1855—0.169¢ (4,4)

As expected, given the rather low systematic bias inherent in the original FSMMS

estimates of the wind speed distributions, much of the error between observed and

estimated Weibull parameters was unsystematic and could not be resolved by the

regression adjustment. This is borne out by the rather low multiple correlation coefficient

values (0.27 and 0.35 respectively), although an F test reveals both regressions to be

significant at the 0.01 level. Thus, Equations 4.3 and 4.4 were applied to the FSMMS

Weibull parameter estimates in an attempt to reduce the error between them and the

observed parameters.
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Indeed, the linear correction based upon Latitude generally improved the Weibull

estimates across the region. For the shape (k) parameter an average 0.23 ms'l MAE

improvement over the original estimates was obtained at over 70% of the stations.

Results were similar for the scale (c) parameter. An average MAE improvement of 0.46

m s'1 at 67% of the stations. In both shape and scale, this represented a statistically

significant overall improvement in estimative accuracy from the original FSMM5

estimates as defined by MAE (11,095). However, it still remained to be seen whether or not

the correction represented a significant improvement in estimates relative to the other two

models.

Prior to the regression correction, there were no significant differences (tugs)

between the MAE ofthe estimated shape parameters of any of the models. After the

regression correction was applied to the FSMM5 estimates, the MAE of the new FSMM5

estimates ofk was significantly lower than the MAE from the MCP estimates. 7

Furthermore, prior to the regression, the MAE associated with the scale estimates from

FSMM5 was significantly higher than that of the joint probabilistic model (11,095) .

However, after the regression, there was no longer any statistically significant difference

in the MAE associated with the scale estimates from any of the models (tugs) . Thus, it

appears that a simple multiple linear regression, as was conducted in this research is able

to substantially improve the estimative accuracy of the FSMM5 model over the Great

Lakes region in terms ofwind resource estimation.
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Chapter 5. Discussion

Since the advent of commercially viable wind energy conversion systems (1‘. e.,

wind turbines), there has been a great interest in the accurate point source or areal

estimation ofwind resources. Early methods utilized climatological reduction

approaches, while later methods tended to be based on probability and correlation

methods. However, while many of these methods have been successfully applied under a

variety of atmospheric and geographical conditions, the degree of their success largely

remains dependent on the network of wind observation stations that may be employed.

Because many ofthe processes that govern the wind at a particular location are local or

quasi-local (e.g., a few meters to a few kilometers), most operational anemometer

networks are of a spatial resolution that is too coarse to resolve such sub-network

characteristics or behavior. As a result, a coarse instrumental network (e.g., on the order

of tens to hundreds of kilometers between stations) may only capture the regional

coherence and behavior of the wind field unless local conditions between stations exhibit

a high level of correspondence.

Over the past several decades, there has therefore been growing interest in the use

ofmethods that are capable of addressing the localized component of near-surface

atmospheric motion. This need has led primarily toward the use ofprocess-based

numerical models. Such models seek to account for local influences by incorporating the

known physical pr0perties ofturbulence and momentum fluxes within the boundary

layer. When applied at a fine spatial scale, it is hoped that behavior at that scale can
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subsequently be resolved and included in estimates of the near—surface wind field. The

incorporation of numerically-based localized boundary layer conditions into wind

resource estimation models is not new. The WAsP system developed in Denmark has

done so for several decades with success (Petersen et al., 1988, Troen and Petersen,

1989)

One area ofprocess-based modeling that has received increased attention is

regional-scale climate models. RCMs occupy a middle scale between boundary layer

models and coarser general circulation models. Such models operate on a scale and

resolution that make them ideally suited to estimating the wind resource over a given area

on the order of a few thousand kilometers at a resolution ofuse to wind farm developers

(e.g., < 10 km). However, until recently, because of their complexity and computational

needs, generating longer-term (e.g., > 1 or 2 years) series of estimates for wind resource

assessment has meant a large time commitment. As a result, RCMS have been used

primarily as a short-term (i. e., < 48-h) point forecasting tool, and substantial research has

been carried out regarding the ability of RCMs to estimate wind speeds at discrete

locations over a span of a few days (e.g., Nielsen, 1998, Alexiadis et al., 1999, Landberg,

2001, Sfestos, 2002). Unfortunately, using RCMS to estimate a region’s wind

climatology has been largely overlooked in favor of less complex stochastic approaches.

It is this gap in the science ofwind field estimation that this research has addressed.

As the resources needed to run RCMS become less expensive and the models are

more easily deployed, it has become apparent that such models may be able to provide
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accurate estimation of the general wind resource over a region, especially those regions

that lack a dense network of observational locations. Such use has substantial

implications for the accurate selection of optimal locations for future wind farm

development. Unfortunately, until now the utilization of an RCM in this manner has

received limited attention despite its potential benefit. Thus, it was not known how

accurately an RCM might reproduce the wind field over a region of diverse geography.

That was the goal of this research.

5.1 Summary of Research

The primary objective in this study was an assessment of the performance of the

MM5 mesoscale numerical model over the Great Lakes region ofNorth America,

implemented and run by the U.S. Forest Service North Central Research Station. In this

study, the gridded wind vector estimates from three model domain resolutions were

utilized (36 km, 12 km and 4 km). These gridded wind estimates were used to estimate

the wind speed and direction at the geographic coordinates of 113 automated wind

sensors throughout the region using five interpolation schemes. The first utilized the grid

value nearest the station as the estimate. The second and third estimated the wind at the

location from the nearest four grid points using an unweighted and inverse distance

weighted average respectively. The fourth used an unweighted average of the nearest 16

grid point estimates, and the fifth obtained the unweighted average ofthe surrounding 36

grid point estimates.
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Based upon these 15 model variants (domain + interpolation scheme), estimates

of the distribution ofwind speeds at each of the anemometer locations were generated

and compared to the distributions of the observed winds at these locations. It was

determined that the 36 km resolution model domain was most adroit at reproducing the

wind distributions at the stations in the study region. Furthermore, ofthe 5 grid-to-point

estimation techniques, the nearest neighboring grid point option proved to be the most

reliable estimator.

Additionally, while the FSMMS model did perform well in reproducing the

general wind resource over the region, it was important to compare its performance with

more established and widely used wind resource estimation models. Three models were

selected for comparative evaluation, two stochastic and one probabilistic. The stochastic

models were a traditional measure-correlate-predict model (Derrick, 1992) and a Krige

model (Haslett and Raftery, 1989, Davis, 1986). A joint probabilistic model (Garcia-

Rojo, 2004) rounded out the three as the probabilistic selection.

Both the measure-correlate-predict (MCP) and the joint probabilistic (JP) models

provided excellent results. From a forecasting standpoint it was determined that either of

these two statistical approaches easily outperformed the FSMM5 model. But, from a

resource estimation standpoint, all three models (FSMM5, MCP, and JP) performed

more-or-less equally well. In one aspect, however, the FSMM5 model held promise. A

substantially greater proportion of its model bias was found to be systematic, allowing for
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a potential improvement of estimated wind resource over the region. To that end, a

multiple linear regression model was applied to the FSMM5 model estimates. Based on

earlier trend surface analysis, it was determined that geographic position could account

for some of the systematic bias. Initially it also was felt that the complexity of terrain

might be a systematic issue, however, that variable proved insignificant in the regressions

and was omitted. With the final version of the multiple linear regression, estimates of the

Weibull distribution parameters were adjusted solely as a function of Latitude.

The regression correction improved a majority of the FSMM5 estimates over the

region to the point that in many instances, they exceeded the accuracy ofthose produced

by the statistical models. However, while the improvements in the FSMMS estimates

were in many cases quite substantial, and represented a statistically significant

improvement over the original estimates, they were not significantly better than the

estimates produced by either of the statistical models.

5.2 Conclusions and Discussion

Several conclusions were reached as the result of this research. The primary

conclusion is that while FSMMS was able to adequately reproduce wind speed frequency

distributions at most stations across the study region, it was not able to significantly

outperform the more readily implemented statistical models, even at locations that were

remote from their nearest neighbors in the anemometer network. While its use might be
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justified in regions where the observational data is considered to be of suspect quality or

the network ofwind sensors is deemed too sparse, if a sufficient network of quality

observations exists in a region, the use of a RCM at this point in time represents perhaps

an unnecessary addition ofmodel complexity and resource utilization.

What this research suggests, however is that a numerical model approach to

regional wind resource estimation does hold some promise, particularly in areas where

few data exist and neighboring stations are distant (e.g., over water). Although most of

the bias encountered in the estimates of the wind distributions was unsystematic in

nature, there was sufficient systematic bias to permit a simple linear model to improve

those estimates. It is likely that the improvement based solely on geographic position is

indicative of a spatial bias that is inherent to the model itself. One possibility is that as

the grid points become longitudinally condensed with increasing latitude, the

parameterizations that utilize the underlying terrain and land cover characteristics may

experience a degradation of spatial accuracy. This issue has a number of associated

aspects. One factor is the possible failure of the model to address the corresponding

decrease in grid area with increasing Latitude relative to its non-atmospheric components.

As a result, the terrain and land cover inputs may be systematically altered in space

relative to the grid and may no longer be fully appropriate to the grid cell being modeled.

Thus, momentum calculations within cells and transfers between grid cells may be

inappropriately specified. Secondly, it is possible that the terrain and land use model

projections differed slightly from that used to specify the model domain. If these data

sets were subject to a projection calculation other than that which was applied to the
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model grid, the geographic coordinates (i.e., Latitude and Longitude) would not match

and substantial spatial bias, increasing with Latitude, would result. Both of the

aforementioned issues are inherent to the model development and implementation itself,

and thus were beyond the scope of this research. While it is possible that these issues

have already been addressed by the model’s developers, they would merit a closer

examination as part of subsequent research.

An additional possibility behind the poor performance of the model at many

locations is that there may be some misspecification in the surface parameterizations of

the model. However, if this is the case, one would expect decreasing performance with

increasing surface complexity in terms of terrain and land cover. Thus, the most accurate

parameterizations should be expected over homogeneous terrain (e.g., open water or flat

grassland). Unfortunately, it did not appear that model estimates at locations of greater

surface homogeneity consistently outperformed those at more heterogeneous sites. This

is borne out by the insignificance of terrain complexity as a factor in the model correction

algorithms. In order to more appropriately address this issue, future research might seek

to classify each of the anemometer sites according to surface characteristics beyond

simple terrain complexity and readdress this issue. Furthermore, as FSMMS utilizes

roughness look-up tables to determine surface roughness, a baseline assessment ofmodel

performance might be conducted using only those estimates produced for grid points over

water where surface roughness is lowest according to the tables. These estimates could

be compared against observed buoy data. If the model performs similarly, it is not likely

that the surface parameterizations are to blame. However, substantial model
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improvement might suggest that more complex terrain may be incorrectly parameterized

in the model. It is interesting to note that a recent independent analysis of FSMMS wind

forecasts over the Great Lakes region, though not focused on the evaluation of near

surface winds per se, achieved bias statistics that were of similar magnitude to those

calculated in this research and presented in Table 4.1 (Zhong et al., 2005). This leads this

researcher to believe that the bias is most likely a firnction of model misspecification,

rather than of the observed data against which the model estimates were evaluated.

A tertiary conclusion concerns the spatial resolution and spatial aggregation of the

FSMM5 model. Over the Great Lakes, the coarsest model domain (36 km) consistently

produced the most accurate estimates of the wind resource. Interestingly, the 12 km

(intermediate) resolution domain consistently produced the worst estimates.

Additionally, the improved performance of the 4 km over the 12 km domain may actually

be an artifact of the nesting of the former in the later and therefore the distribution of the

spatial bias of the 12 km grid into smaller proportions on the 4 km grid. In the locations

where the higher resolution domains did outperform the coarser resolutions, the

differences were not statistically significant. This issue may be related to many of the

same issues already mentioned regarding spatial or surface misspecifications. Thus,

based on these results, an increase in horizontal resolution ofthe FSMM5 model cannot

be justified in the modeling of near-surface wind distributions over the Great Lakes,

especially given the exponential increase in computing resources necessary to produce

estimates at the finer resolution domains.
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Furthermore, the increased accuracy with increasing aggregation parsimony was

of note. The use of a single nearest neighbor grid point proved a far more robust

estimator than using averages from the surrounding n > 1 grid points. This speaks to the

similarity of conditions over short distances throughout the region and that as more

distant grid cells are included in the averaging, that similarity is noticeably degraded. It is

therefore concluded that, at least over the Great Lakes region, the grid point nearest to a

location is the best estimator of the winds at that location.

A fourth conclusion is again related to the primary conclusion in that a substantial

portion of overall FSMMS estimate bias is systematic. Much of this bias was reduced

when a corrective measure was applied. Thus it is also concluded that the model

estimates can be improved by a suitable model output statistics scheme, and that such a

scheme is necessary for the most accurate estimation of the wind resource over a region.

This conclusion is supported by numerous previous works (e.g. , Frank and Landberg,

1997, Petersen et al., 1998b) that did not use RCM estimates ofwind speed directly, but

rather employed them as initial input to some form of stochastic adjustment procedure

(e.g., WASP, MOS, downscaling) in order to produce satisfactory local-area wind

estimates.

Lastly, although it was not a stated purpose of this research, the performance of

either the measure-correlate—predict model or the joint probabilistic model was such that

this research recommends either of these approaches for future estimation of the wind

resources over the Great Lakes region. As has been demonstrated, the region has a
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relatively dense network of automated wind sensors that are collecting data of acceptable

quality. Also, the wind field appears to be such that robust correlations in wind speeds

and their probability distributions can be readily obtained. Thus, at least over this region,

the increased complexity of a numerical climate model is not warranted at this time.

5.3 Future Directions

This research, while extensive, has only begun to address some of the issues of

wind resource estimation accuracy regarding numerical models of the atmosphere. As of

this writing, FSMMS is being phased out in favor of the next generation Weather

Research and Forecasting (WRF) model (Michalakes et al., 2004). This new model

corrects a number of issues that were present in earlier models such as FSMM5 (a

discussion of which can be found in Michalakes et al., 2004). It is possible that WRF has

accounted for much of the systematic bias that existed in the FSMM5 wind fields and

may produce more accurate wind resource estimates (although it should be noted that

WRF uses the same boundary layer look-up tables as MM5). A potential direction of

future research is therefore to evaluate the wind resource estimates ofWRF at various

resolutions relative to the estimates produced by FSMM5. If such research is performed

for the same locations using the same initial conditions to produce wind speed estimates

for the same period of time, the differences between FSMM5 and WRF can be compared.

Changes in boundary-layer flow parameterizations can then be assessed for sensitivity

and robustness as a function of the differences between WRF and FSMM5 estimates.
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Additionally, while wind farm developers in the Great Lakes region are focused

on land-based wind farms, it is likely that offshore developments may be explored in the

future. Such developments are already operational in the offshore waters of Europe and

are being planned for New England coastal waters in the US. Given the relative lack of

wind observations over the Great Lakes themselves, a regional scale numerical model

may produce superior estimates of the wind resource over these water regions relative to

observation-based models such as MCP or JP. While this research has evaluated the

wind resources at wind sensor locations on several islands in the lakes, subsequent

research should evaluate the estimative ability of an RCM over open water through

comparisons with buoy data. In addition to validating the RCM over open water, such

research would be able to address variations in model error as a function of surface

parameterizations.

Lastly, the primary goal of using an RCM for wind resource estimation is to

produce a reliable estimate of the wind resource on a continuous fine-scale surface over a

region such that suitable wind farm locations can be identified. Therefore, it remains to

be seen whether such a surface can successfully be developed and incorporated as an

automated decision-making criterion into a geographic information system (GIS). To

that end, additional research is necessary to better understand the possible inter-grid point

behavior of the wind field at whatever domain resolution is chosen. It is then imperative

to develop a method of assessing model confidence over the region such that the wind

resource estimate can be appropriately weighted in the decision making process.
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In conclusion, this research has accomplished its stated goals in that it has

evaluated the performance of FSMM5 over the study region with respect to the model’s

ability to estimate the regional wind climatology at various spatial resolutions. It

identified that a coarser resolution domain was better able to estimate the wind resource

and concluded that important systematic bias was present at all spatial resolutions, but

that such bias could be accounted for. Finally, the research determined that in its present

implementation, the FSMM5 model did not present a significant performance

improvement for estimates of the wind resource at ASOS locations across the Great

Lakes region compared with established statistical models. However, the FSMM5 model

did perform satisfactorily in some respects over the region and therefore may be useful in

the estimation ofwind resources over more poorly instrumented portions of the Great

Lakes (e.g., offshore). As improvements are made in the parameterizations and

specifications of regional-scale numerical models (e.g., WRF), model resource

estimations are likely to improve, perhaps to the point of outperforming established

stochastic methods. Additionally, it is possible that the use of a sophisticated post-model

corrective procedure (e.g., WASP) could substantially improve the estimates fiom

FSMM5 or other RCMS over the region. Therefore, while the research cannot at present

recommend the use of an RCM as a stand-alone tool for wind resource estimation over

the Great Lakes region, that conclusion could easily change as newer RCMS are

evaluated.
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Appendix A. Automated Reporting Stations Used

Please note, this appendix consists primarily ofinformation in a tabular format, and is

therefore listed as “Appendix A” in the list of tables near the beginning ofthis document.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Station State/ . Latitude Lon 'tude A enc T e

ID* Prov Station Name M N) (d9:?& g“ y 3:

1 KADG MI ADRIAN 41.867 84.083 FAA ASOS

2 KAMN MI ALMA 43.317 84.683 NF AWOS

3 KAPN MI ALPENA 45.067 83.567 NWS ASOS

4 RARE MI ANN ARBOR 42.217 83.733 FAA ASOS

5 KBAX MI BAD AXE 43.783 82.983 NF AWOS

6 KBTL MI BATTLE CREEK 42.317 85.233 FAA ASOS

7 KACB MI BELLAIRE 44.983 85.200 FAA AWOS

8 KSJX MI BEAVER ISLAND 45.700 85.567 NF AWOS

9 KBEH MI BENTON HARBOR 42.133 86.417 FAA ASOS

10 KRQL MI BIG RAPIDS 43.717 85.500 NF AWOS

1 l KCAD MI CADILLAC/WEXFORD 44.267 85.417 NF AWOS

12 KCVX MI CHARLEVOIX 45.300 85.267 NF AWOS

l3 KFPK MI CHARLOTTE 42.567 84.817 NF AWOS

l4 KSLH MI CHEBOYGAN 45.650 84.517 NF AWOS

15 KCIU MI CHIPPEWA INTL 46.250 84.467 FAA AWOS

l6 KOEB MI COLDWATER 41.917 85.033 NF AWOS

17 KP59 MI COPPER HARBOR 47.467 87.883 NWS AWOS

l8 KDET MI DETROIT/CITY AIR 42.400 83.017 FAA ASOS

l9 KYIP MI DETROIT/WILLOW 42.233 83.533 FAA ASOS

20 KDTW MI DETROIT/WAYNE 42.233 83.333 NWS ASOS

21 KONZ MI DETROIT/GROSSE ISLE 42.100 83.150 NF AWOS

22 KESC MI ESCANABA 45.750 87.017 FAA AWOS

23 KFNT M1 FLINT 42.967 83.750 NWS ASOS

24 KGLR MI GAYLORD 45.017 84.683 FAA ASOS

25 KGRR MI GRAND RAPIDS 42.883 85.517 NWS ASOS

26 KGOV MI GRAYLING AFB 44.683 84.733 DOD AWOS

27 KSAW MI GWINN/SAWYER AFB 46.350 87.400 FAA AWOS

28 KCMX MI HANCOCK 47.167 88.483 FAA ASOS

29 KMGN MI HARBOR SPRINGS 45.433 84.917 NF AWOS

30 KJYM MI HILLSDALE 41.917 84.583 NF AWOS

31 KBIV MI HOLLAND 42.750 86.100 FAA ASOS

32 KHTL MI HOUGHTON LAKE 44.350 84.667 NWS ASOS

33 KOZW MI HOWELL 42.617 83.967 NF AWOS

34 KIMT MI IRON MOUNTAIN 45.817 88.1 17 FAA ASOS

35 KIWD MI IRONWOOD 46.517 90. l 17 FAA AWOS

36 KJXN MI JACKSON/REYNOLDS 42.267 84.467 FAA ASOS

37 KAZO MI KALAMAZOO 42.233 85.550 FAA ASOS

38 KDUH MI LAMBERTVILLE 41 .733 83.650 NF AWOS

39 KLAN MI LANSING 42.783 84.583 NWS ASOS

40 KLDM MI LUDINGTON/MASON 43.967 86.400 NF AWOS

41 KMCD MI MACKINAC ISLAND 45.850 84.633 NF AWOS

42 KMBL MI MANISTEE 44.267 86.250 FAA AWOS

43 KISQ MI MANTSTIOLE 45.967 86.167 NF AWOS
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44 KRMY MI MARSHALL 42.233 84.950 NF AWOS

45 KTEW MI MASON 42.567 84.417 NF AWOS

46 KMNM MI MENOMINEE 45.117 87.617 FAA AWOS

47 KTTF MI MONROE 41.933 83.417 NF AWOS

48 KMOP MI MOUNT PLEASANT 43.617 84.733 NF AWOS

49 KMKG Ml MUSKEGON 43.167 86.233 NWS ASOS

50 KERY MI NEWBERRY 46.300 85.450 NF AWOS

51 KOSC Ml OSCODA/WURTSMITH 44.450 83 .400 NF AWOS

52 KPLN MI PELLSTON 45.567 84.800 FAA ASOS

53 KPTK MI PONTIAC 42.667 83.417 FAA ASOS

54 KP58 MI PORT HOPE 44.017 82.800 NWS AWOS

55 KPHN MI PORT HURON 42.917 82.517 NF AWOS

56 KMBS MI SAGINAW 43.533 84.083 FAA ASOS

57 KHYX MI SAGINAW/BROWNE 43.433 83.867 NF AWOS

58 KAN] MI SAULT STE MARIE 46.467 84.367 NWS ASOS

59 KMTC MI SELFRIDGE ANGB 42.617 82.817 DOD AWOS

60 KIRS MI STURGIS/KIRSCH 41.800 85.433 NF AWOS

61 KTVC MI TRAVERSE CITY 44.733 85.567 FAA ASOS

62 KCGX‘ IL CHICAGO/MEIGS 41.867 87.583 FAA ASOS

63 KPWK IL PALWAUKEE 42.1 17 87.900 FAA ASOS

64 KUGN IL WAUKEGAN 42.417 87.867 FAA ASOS

65 KGYY IN GARY REGIONAL 41.617 87.417 FAA AWOS

66 KGSH IN GOSHEN 41.533 85.783 FAA ASOS

67 KSBN IN SOUTH BEND 41.700 86.317 NWS ASOS

68 KDLH MN DULUTH 46.850 92.200 NWS ASOS

69 KEVM MN EVELETH MUNI 47.383 92.500 NF AWOS

70 KGNA MN GRAND MARAIS 47.750 90.350 NWS AWOS

71 KCKC MN GRAND MARAIS 47.833 90.367 NF AWOS

72 KINL MN INTERNTNL FALLS 48.567 93.400 NWS ASOS

73 KMZH MN MOOSE LAKE 46.417 92.800 NF AWOS

74 KTWM MN TWO HARBORS 47.033 91.750 NF AWOS

75 KBUF NY BUFFALO/CHEEKTOW 42.933 78.733 NWS ASOS

76 KDKK NY DUNKIRK 42.500 79.283 FAA ASOS

77 KFZY NY FULTON 43.350 76.383 FAA ASOS

78 KIAG NY NIAGARA FALLS 43.117 78.933 FAA ASOS

79 KROC NY ROCHESTER 43.1 17 77.683 NWS ASOS

80 KSYR NY SYRACUSE 43.1 17 76.100 NWS ASOS

81 KART NY WATERTOWN 43.983 76.033 FAA ASOS

82 KHZY OH ASHTABULA 41.783 80.700 FAA ASOS

83 KBKL OH CLEVELAND 41.533 81.667 FAA ASOS

84 KCLE OH CLEVELAND 41.417 81.850 NWS ASOS

85 KLPR OH LORAIN/ELYRIA 41.350 82.183 FAA ASOS

86 KTDZ OH TOLEDO 41 .567 83.483 FAA A808

87 KTOL OH TOLEDO 41.583 83.800 NWS ASOS

88 KER] PA ERIE 42.083 80.183 NWS ASOS

89 KASX WI ASHLAND 46.550 90.917 FAA ASOS

9O KGRB WI GREEN BAY 44.483 88.133 NWS ASOS

91 KDYT WI DULUTH SKY HARBOR 46.717 92.033 NF ASOS

92 KEGV WI EAGLE RIVER 45.917 89.267 NF AWOS

93 KENW W1 KENOSHA 42.600 87.933 FAA ASOS

94 KMTW WI MANITOWOC MUNI 44.117 87.667 FAA AWOS

95 KMKE WI MILWAUKEE 42.950 87.900 NWS ASOS

96 KRAC WI RACINE 42.767 87.817 FAA ASOS        
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97 KSBM WI SHEBOYGAN 43.783 87.850 FAA ASOS

98 KSUE WI STURGEON BAY 44.850 87.417 FAA AWOS

99 KSUW WI SUPERIOR 46.400 92.050 NF AWOS

100 KETB WI WEST BEND 43.417 88.133 FAA AWOS

101 CWCI" ON CARIBOU ISLAND 47.317 85.817 MSC AWOS

102 CYLD ON CHAPLEAU ARPT 47.817 83.333 MSC CON

103 CWWX ON COVE ISLAND 45.317 81.717 MSC CON

104 CYEL ON ELLIOT LAKE 46.350 82.567 PVT PWS

105 CWGD ON GODERICH 43.767 81.7 1 7 MSC AWOS

106 CYZE ON GORE BAY AIRPORT 45.867 82.567 MSC AWOS

107 CYHM ON HAMILTON AIRPORT 43.167 79.933 MSC CON

108 CYXU ON LONDON AIRPORT 43.017 81.150 MSC AWOS

109 CWPS ON LONG POINT 42.567 80.033 MSC CON

110 CYZR ON SARNIA AIRPORT 43.000 82.317 MSC CON

111 CYAM ON SAULT STE MARIE 46.467 84.517 MSC CON

112 CYQT ON THUNDER BAY 48.367 89.317 MSC AWOS

1 l3 CYYZ ON TORONTO/PEARSON 43.667 79.617 MSC CON

114 CYKF ON WATERLOO WELL 43.467 80.367 MSC AWOS

115 CYQ ON WINDSOR AIRPORT 42.267 82.967 MSC CON    
 

* The two grayed out stations (62 and 101) had insufficient data and although processed, were not used in

this research.

** Agency: The entity, governmental or otherwise, responsible for the maintenance and/or dissemination

of information gathered by the meteorological sensors deployed at the corresponding station.

FAA — Federal Aviation Administration (United States)

NWS — National Weather Service (United States)

DOD - Department of Defense (United States)

NF — Non-Federal entity; state, local or airport authority (United States)

MSC — Meteorological Services Canada (Canada)

PVT — Privately owned and operated (US and Canada)

*** Type: The type of sensor array deployed at the corresponding station.

ASOS — Automated Surface Observing System

AWOS — Automated Weather Observing System. A number of AWOS configurations exist,

however, the wind sensor array in each performs to the same standards. Therefore no

differentiation is made here (US and Canada).

CON - Contracted weather provider, station information unavailable (Canada).

PWS — Private Weather Station, station information unavailable (Canada).

Information on United States stations is derived from the following Internet resources:

Federal Aviation Administration ASOS Web page

(http://www.faa.gov/ASOS)

National Weather Service ASOS Operations and Monitoring Center

(http://www2.aomc.nws.noaa.govl)

Information on Canadian stations is derived from the following Internet Resources:

US National Weather Service Aviation Digital Data Service

(http://adds.aviationweather.gov)
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National Climate Data and Information Archive — Meteorological Services

Canada - Environment Canada

(http://www.climate.weatheroffice.ec.gc.ca)

Observational data (METARs) were collected for each of the stations listed in the table

by accessing the appropriate URL at US Weather, Inc. The URL for any given station

can be obtained by placing the station identifier (e.g., KAPN) at the end of the following

URL string:

http://www.uswx.com/us/stn/?code=c&n=1440&stn=

The preceding URL will retrieve the latest 1440 observations for that station in encoded

format.
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Appendix B. Raw METAR Report File

This appendix contains a sample of encoded METAR data via the US. Weather,

Inc. Internet site. Data are from Lansing, MI (KLAN) covering the period 00552 —

1355Z on 04 February, 2003. Wind data are marked in bold, and some remarks (RMK)

not relevant to this research have been truncated for space.

METAR KLAN 0400552 13007KT 28M -RA BR OVCOO3 03/03 A2925 RMK A02 SLP911 P0004

SPECI KLAN 0401192 VRBOSKT 3/4SM R28UP6000FT -RA BR OVC003 03/03 A2924 RMK

METAR KLAN 0401552 02004KT 1/28M R28L/2600V3500FT RA FG OVCOOS 03/02 A2921

METAR KLAN 0402552 14005KT 1/28M R28UP6000FT -DZ FG OVC003 04/04 A2918 RMK

SPECI KLAN 0403382 16009KT 18M R28L/P6000FT -RA BR BKN003 BKN075 OVC100 06/06

METAR KLAN 0403552 1801OKT 48M BR BKN003 OVCO70 07/07 A2910 RMK A02

SPECI KLAN 0404322 21012KT 108M BKN006 OVC010 08/07 A2910 RMK A02 CIG 004V008

METAR KLAN 0404552 2301SKT 38M vRA BR OVCOO4 07/07 A2911 RMK A02 RAB42 SLP864

SPECI KLAN 0405162 22020626KT 1 3/4SM -RA BR BKN006 OVC010 06/06 A2913 RMK A02

PK WND 2302710504 CIG 003V008 P0000

METAR KLAN 0405552 23021GZ9KT 108M BKN010 OVC016 03/02 A2913 RMK A02 PK WND

25032l0538 RAE25 CIG 008V012 SLP87‘I P0000 60019 T00330017 10078 20028 55015

METAR KLAN 0406552 24019624KT 10SM OVC010 02/00 A2914 RMK A02 PK WND

2403310643 CIG 007V012 SLP875 T00170000

SPECI KLAN 0407192 25024G3ZKT 73M -SN FEW008 BKN015 OVC022 01IM01 A2915 RMK

A02 PK WND 25033I0707 RABO657E1OSNB10 P0000

METAR KLAN 0407552 24016624KT 108M UP BKN013 OVC020 01/M01 A2917 RMK A02 PK

WND 25033I0707 RABO657E10UPBZ1E24BSOSNB1OE21 SLP883 P0000 T00061011

SPECI KLAN 0408132 25024G3OKT 108M OVC015 01/M01 A2918 RMK A02 PK WND

25030I0810 UPEOO P0000

METAR KLAN 0408552 25024632KT 1 OSM BKN017 OVCOZ7 00/M02 A2919 RMK A02 PK

WND 2503210849 SLP893 P0000 60000 T00001022 53020

METAR KLAN 0409552 28020626KT 108M BKN020 OVC027 M01/M04 A2924 RMK A02 PK

WND 27033I0927 SLP910 T10061039

SPECI KLAN 0410182 27026G3ZKT 108M -SN SCT022 BKN030 OVCOGS M02/M05 A2926

RMK A02 PK WND 2803211017 UPB10E17SN809E1OB17 P0000

SPECI KLAN 0410282 27024633KT 7SM ~SN BKN022 BKN030 OVCO47 M02lM06 A2927 RMK

A02 PK WND 2603311024 P0000

METAR KLAN 0410552 2602OG2SKT 1 3/4SM -SN BR BKN017 OVC023 M02/M04 A2928 RMK

A02 PK WND 2603311024 SLP924 P0000 T10221039

SPECI KLAN 0411352 26018KT 33M -SN BKN017 OVC041 M02/M05 A2931 RMK A02 PK

WND 2602711103 P0000

METAR KLAN 0411552 27017GZ3KT 53M -SN BR OVCO17 M02/M04 A2932 RMK A02 PK

WND 2602711 103 SLP938 P0000 60000 70023 T10221044 10033 21028 51044

METAR KLAN 0412552 27018624KT 98M -SN BKN021 OVCOGO M02/M05 A2938 RMK A02

PK WND 2802811226 SLP954 P0000 T10171050

METAR KLAN 0413552 27018627KT 68M -SN BLSN BKN020 OVCO33 M01IM04 A2942 RMK

A02 PK WND 27030“343 SNE1257B17 SLP968 P0000 T10111044
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Appendix C. Selected Statistics from ASOS Stations

Please note, this appendix consists entirely of information in tabular format, and is

therefore listed as “Appendix C” in the list of tables near the beginning of this document.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

. Non-calm Mean Std. Dev. c . 2

5‘23”“ ”if” ("1:") ("1:") 5* “2.8;" ”fig" ”338“
l KADG 11168 4.14 2.03 1.84 3.81 1.319 0.052

2 KAMN 10499 3.75 2.09 1.57 3.24 1.577 0.054

3 KAPN 10736 4.03 1.81 2.03 3.91 1.141 0.071

4 KARB 10732 4.21 2.08 1.77 3.88 1.358 0.045

5 KBAX 10683 4.00 2.26 1.51 3.50 1.474 0.067

6 KBTL 12297 4.52 2.13 2.07 4.45 1.062 0.079

7 KACB 9097 2.88 1.53 1.43 2.38 1.962 0.038

8 KSJX 11407 4.08 2.07 1.75 3.86 1.215 0.082

9 KBEH 11036 4.57 2.21 1.58 4.20 1.467 0.051

10 KRQB 9625 3.47 1.95 1.42 3.02 1.480 0.061

11 KCAD 11132 3.83 2.04 1.74 3.45 1.479 0.065

12 KCVX 12005 4.12 2.33 1.63 3.91 1.059 0.100

13 KFPK 10777 3.56 1.95 1.47 3.10 1.583 0.058

14 KSLH 10857 3.64 2.13 1.41 3.21 1.330 0.072

15 KCIU 10108 4.18 2.28 1.57 3.90 1.215 0.074

16 KOEB 10678 3.76 2.14 1.44 3.34 1.410 0.064

17 KPS9 10973 5.49 2.87 2.00 5.96 0.840 0.123

18 KDET 11309 4.22 1.90 2.16 4.26 1.012 0.092

19 KYIP 11325 4.65 2.27 1.83 4.82 0.921 0.094

20 KDTW 12096 4.53 2.26 1.85 4.76 0.880 0.103

21 KONZ 1 1 183 3.78 2.00 1 .64 3.60 1.154 0.084

22 KESC 11351 4.00 2.01 1.70 3.74 1.270 0.081

23 KFNT 11941 4.48 2.09 1.97 4.54 0.913 0.103

24 KGLR 9629 4.29 2.00 1.80 4.23 1.122 0.079

25 KGRR 12844 4.79 2.31 2.35 5.49 0.858 0.124

26 KGOV 9991 3.43 1.81 1.62 3.12 1.355 0.077

27 KSAW 10987 4.28 2.27 1.65 4.03 1.169 0.086

28 KCMX 11430 4.87 2.59 1.76 4.96 0.907 0.101

29 KMGN 10692 3.26 1.97 1.57 2.89 1.416 0.069

30 KJYM 10761 3.57 1.96 1.49 3.15 1.514 0.053

31 KBIV 12098 4.67 2.43 1.67 4.62 1.006 0.080

32 KHTL 11365 4.13 1.91 1.61 3.48 2.113 0.023

33 KOZW 10938 3.42 1.89 1.55 3.19 1.158 0.092

34 KIMT 10036 3.93 1.91 1.80 3.60 1.375 0.050

35 KIWD 10316 4.09 2.13 1.66 3.75 1.295 0.072

36 KJXN 10608 4.24 1.99 1.80 4.01 1.278 0.056

37 KAZO 11731 4.28 2.02 2.01 4.12 1.164 0.062

38 KDUH 10093 3.27 1.87 1.52 2.99 1.149 0.090

39 KLAN 12239 4.66 2.16 2.19 4.97 0.825 0.124

40 KLDM 11401 3.94 2.20 1.55 3.71 1.109 0.093

41 KMCD 9730 2.89 1.69 0.96 2.19 2.234 0.007

42 KMBL 11483 3.89 2.19 1.54 3.60 1.143 0.088

43 KISQ 11192 3.90 1.95 1.61 3.49 1.517 0.054

44 KRMY 9938 3.41 2.05 1.45 3.15 1.142 0.081

45 KTEW 10703 3.45 1.93 1.55 2.88 1.801 0.047
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46 KMNM 10467 3.68 1.94 1.72 3.34 1.406 0.070

47 KTFF 10470 3.77 2.24 1.48 3.27 1.430 0.072

48 KMOP 10442 3.36 1.89 1.53 3.12 1.185 0.083

49 KMKG 12665 4.90 2.34 2.06 4.71 1.150 0.077

50 KERY 11335 3.68 1.96 1.54 3.24 1.485 0.061

51 KOSC 11074 4.07 2.28 1.53 3.84 1.071 0.095

52 KPLN 9832 4.52 2.24 1.64 4.26 1.215 0.064

53 KPTK 11503 4.41 2.07 1.96 4.71 0.872 0.107

54 KP58 9993 4.58 2.07 2.17 5.12 0.857 0.114

55 KPHN 10079 3.34 1.86 1.41 2.86 1.535 0.057

56 KMBS 12070 4.70 2.30 2.12 5.03 0.882 0.117

57 KHYX 11498 4.13 2.35 1.58 3.95 0.985 0.099

58 KAN] 11306 3.87 1.90 1.91 3.87 1.029 0.079

59 KMTC 9547 3.93 1 .98 1 .78 3.82 1 .092 0.078

60 KIRS 10820 3.79 2.11 1.54 3.36 1.477 0.060

61 KTVC 9194 4.09 1.88 1.95 4.23 0.897 0.106

62 KCGX" 2298 6.41 2.45 3.33 7.45 1.134 0.073

63 KPWK 10806 4.42 1.99 2.18 4.40 1.012 0.095

64 KUGN 11106 4.33 2.05 1.92 4.62 0.894 0.105

65 KGYY 7907 5.12 1.28 4.89 5.92 1.603 0.021

66 KGSH 11399 4.72 2.31 1.71 4.54 1.120 0.078

67 KSBN 11769 4.67 2.21 1.94 4.76 0.941 0.102

68 KDLH 12441 4.84 2.22 2.03 5.34 0.798 0.131

69 KEVM 10156 3.40 1.91 1.39 2.89 1.562 0.063

70 KGNA 8961 4.12 2.23 1.91 4.38 0.921 0.094

71 KCKC 11289 3.76 2.15 1.55 3.30 1.445 0.052

72 KINL 11507 4.06 1.85 2.05 3.85 1.273 0.058

73 KMZH 9920 3.20 1.73 1.47 2.68 1.831 0.051

74 KTWM 10693 3.24 1.99 1.30 2.85 1.261 0.065

75 KBUF 12252 4.79 2.43 1.89 5.11 0.805 0.121

76 KDKK 11171 4.75 2.39 1.77 4.80 0.943 0.103

77 KFZY 9793 4.05 2.13 1.68 3.98 1.026 0.079

78 KIAG 11452 4.97 2.60 1.89 4.97 0.945 0.101

79 KROC 11843 4.59 2.39 1.83 4.78 0.872 0.109

80 KSYR 11317 4.29 2.26 1.73 4.37 0.895 0.095

81 KART 10404 4.21 2.22 1.67 4.15 1.006 0.083

82 KHZY 10130 4.11 2.00 1.66 4.07 1.086 0.065

83 KBKL 1 1990 5.29 2.64 1 .87 5.67 0.853 0.117

84 KCLE 12012 4.76 2.17 2.00 4.90 0.953 0.097

85 KLPR 1 1067 4.58 2.31 1.87 4.45 1.071 0.083

86 KTDZ 11452 4.56 2.31 1.74 4.52 1.010 0.078

87 KTOL 11132 4.58 2.32 1.88 4.46 1.054 0.087

88 KER] 11823 4.74 2.22 2.02 4.94 0.872 0.105

89 KASX 10674 3.99 1.99 1.72 3.63 1.386 0.050

90 KGRB 11787 4.48 2.12 1.86 4.41 0.961 0.085

91 KDYT 10865 4.38 2.77 1 .43 3.91 1.220 0.089

92 KEGV 9643 3.27 1 .79 1 .45 2.76 1.637 0.059

93 KENW 12145 4.73 2.29 1.94 4.68 0.949 0.095

94 KMTW 10640 4.21 2.22 1.62 3.93 1.266 0.068

95 KMKE 12432 4.89 2.20 2.14 4.91 1.008 0.093

96 KRAC 12047 4.60 2.05 2.10 4.67 0.943 0.094

97 KSBM 11222 4.52 2.15 1.85 4.61 0.902 0.099

98 KSUE 11296 4.56 2.25 1.88 4.16 1.427 0.069         
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99 KSUW 10455 3.65 2.16 1.48 3.06 1.656 0.053

100 KETB 9439 3.89 2.10 1.58 3.31 1.809 0.052

101 CWCI* 3953 7.39 3.77 1.85 7.48 0.925 0.109

102 CYLD 7901 3.35 1.82 1.26 2.56 2.391 0.018

103 CWWX 12038 5.60 3.24 1.74 5.81 0.867 0.119

104 CYEL 5660 3.17 1.70 1.38 2.48 2.255 0.024

105 CWGD 12291 4.91 2.71 1.45 5.30 0.878 0.106

106 CYZE 1 1690 4.50 2.46 1.53 3.80 1.702 0.044

107 CYHM 12422 4.39 2.60 1.53 4.04 1.139 ‘ 0.078

108 CYXU 12411 4.22 2.35 1.61 4.37 0.839 0.128

109 CWPS 7627 7.16 3.85 2.00 7.37 0.932 0.104

1 10 CYZR 5974 5.04 2.65 1.75 4.73 1.241 0.080

111 CYAM 11253 3.82 2.02 1.53 3.44 1.314 0.057

112 CflT 12075 3.64 2.22 1.75 3.54 1.050 0.086

113 CYYZ 12627 4.72 2.76 1.79 4.95 0.863 0.123

114 CYKF 11329 4.25 2.61 1.28 3.33 1.840 0.038

115 CYQG 12700 4.72 2.51 1.85 5.11 0.790 0.133      
 

* Although statistics are displayed here, the two grayed out stations (62 and 101) were deemed to have

insufficient data and were not used in this research.

" Non-calm Observations (n) are the number of observations at a station that exhibited a speed above

zero. MeanO is the mean wind speed (in m s—l) for all non-zero wind speed observations. Std. Dev. 0 is

the standard deviation (in m s-l) nor all non-zero wind speed observations. These measures are reported

here instead of measures based upon all valid observations (including calms) because at a number of

stations, the airport is closed overnight and observations are suspended. Because nighttime represents a

period where calm winds are common over the study region, 24-hour locations would experience a greater

influence of calm winds in their average and standard deviation values. Therefore, to facilitate an equitable

comparison of means and standard deviations, only those observations above zero meters per second

(converted from knots) are utilized in these summary statistics.

”‘ Shape (k) and scale (0) parameters of the Weibull distribution were calculated for each station from all

non-zero valid observations for the period of record (1 1/2002 - 6/2004) using the Ordinary Least Squares

technique described by Rohatgi and Nelson (1994).

”” Median A2 is the median value of the Anderson-Darling test statistic for small samples. This value

was obtained from 1000 trials where samples of 100 wind speed values extracted from a station’s full series

with replacement were tested to see if they were obtained from the Weibull distribution specified by k and

c (reported in the previous two columns). The median was used instead of the average, because the

Anderson-Darling statistic has no upper bounds, and outlier values could exert undue influence. The

average Observed Significance Level (Avg. OSL) is the average level of statistical significance from the

1000 trials. Where the OSL is smaller than a critical significance (or alpha) level (often 0.05) the null

hypothesis that the data came from that particular Weibull distribution can be safely rejected (with 100 x

(l-alpha) percent confidence). Unlike the test statistic itself, the OSL is bounded between 0 and 1 and thus

is not likely to be unduly influenced by extreme outlier values. Therefore the average, rather than the

median is shown. Based upon these OSL averages, wind speeds at locations in the study region can

generally be well represented by a Weibull distribution. Of the 115 stations, only 10 rejected the Weibull

distribution at 95% confidence, and only 1 rejected it at 99% confidence.
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Appendix D. ASOS lO—m Wind Observations

The distribution ofASOS observed lO-m wind speeds at each station are

displayed as a schematic (box and whiskers type) plot. As discussed in Chapter 3, the

lower and upper bounds of the box are the lower and upper quartiles respectively. The

median bisects the box, and the notch represents a robust estimate of the uncertainly

about the median value for comparison with the other plots. The so-called whiskers

extending from the box are the outer fences of the data, or 1.5 the interquartile range.

Outliers are shown as points on the plot beyond the outer fences. ASOS observed 10-m

wind directions are displayed as wind rose frequency histograms over the period of

record indicated in Chapter 3.

Please note that the information in this appendix is in graphical tabular format, and is

therefore listed as “Appendix D” in both the list of tables and list of figures near the

beginning of this document.
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