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ABSTRACT 

INCORPORATING MIXED ITEM FORMATS IN CAT: A COMPARISON OF SHADOW 

TEST AND BIN-STRUCTURED APPROACHES 

By 

Xin Luo 

Current operational CATs mainly use dichotomous items.  However, including 

polytomous and set-based items into CAT is attracting growing attention.  Few studies have been 

conducted to investigate how to assemble a mixed-item-format CAT efficiently.  The 

requirements for assembling a CAT are often in conflict with each other; the test assembly 

approach should advance progress toward all objectives.  The shadow test approach (STA) is one 

of the most appealing CAT assembly methods as it can handle complex constraints.  It is very 

flexible and can deal with many constraints simultaneously.  However, STA solves the 

optimization problem uniquely for each examinee, which may result in some problems in 

operational CATs, such as context effects and difficulty in item replacement.  These problems 

can be partially solved by the bin-structured method, which aims to find a single standardized 

solution to divide the item pool and solve the constrained combination optimization problem.  

However, though the bin-structured method is promising in future applications, as a relatively 

new method, research in bin-structured method is still rare, and none uses mixed-item-format 

based CAT.  And no study investigates what factors may influence the quality of results from the 

bin-structured method. 

This study compared the mixed-item-based CAT and dichotomous-item-based CAT to 

see whether the mixed CAT had advantages over the dichotomous-item-based CAT and what 

challenges it brought.  Furthermore, it compared three CAT test assembly approaches, including 

STA, combination of STA and bin-structured method, and bin-structured method in context of 



CAT containing mixed item formats.  The psychometric models used in item pool, item 

parameter distribution, test length and imposed test constraints were manipulated to simulate 

various real test situations. 

The results supported incorporating polytomous items and set-based items into CAT, as 

mixed CAT had higher test accuracy and stability than the binary CAT.  However, the mixed 

CAT had a fairly skewed exposure rate distribution, and further analysis showed that the highly 

exposed items were all polytomous-scoring items.  Another relevant problem for mixed CAT 

was its low item usage efficiency, as a lot of items (mainly dichotomous items) were unused.  

This study also supported the application of bin-structured method in mixed CAT as it can 

produce equal or even better outcomes than the traditional STA.  Meanwhile it can also simplify 

the computation involved in CAT, standardize the look of the test, provide good control over the 

content sequences in advance, and facilitate item replacement and exposure control.   
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Chapter 1: Introduction 

The merits of computerized adaptive testing (CAT) have been widely acknowledged.  

Compared with traditional linear tests, CAT adaptively selects items suitable to improve the 

examinee’s current ability estimate, and can improve the measurement precision and test 

efficiency.  Meanwhile it facilitates instant score reporting and enables the test to adopt items of 

various types (Wainer, 2000; Weiss & Schleisman, 1999).  Over the past decades CAT has been 

successfully applied to several large-scale testing programs, such as GRE, GMAT, and TOEFL.  

Although current operational CATs mainly consist of dichotomous items, including polytomous 

and set-based items into CATs is attracting growing attention.  Compared with dichotomous 

items, polytomous items and set-based items can provide more item information, and are more 

appropriate to measure advanced cognitive activities.  Meanwhile the dichotomous items still 

have significant values because they can elicit more evidences for examinees’ ability within 

limited testing time, and the scoring is more convenient.  The prospects of combining 

dichotomous, polytomous and set-based items in CAT programs are promising (Parshall, Davey, 

& Pashley, 2002; SBAC, 2012), but few studies have been conducted to investigate how to 

assemble a mixed-item-format CAT efficiently.   

Generally there are three requirements for assembling a CAT (Davey, 2005).  The first is 

to measure each student’s ability accurately with as few items as possible.  The main benefit of 

CAT in improving test efficiency derives from the completion of this goal.  The second is to 

guarantee each test can fulfill the pre-determined content specifications.  This is driven by the 

demand for enhancing test validity.  The third is to avoid item over-exposure and ensure test 

security.  Exposure control is important in ensuring the test fairness, and also in reducing the cost 

in item pool development as the item replacement is often costly.  Since an item is usually 
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required to go through a complicated development and review procedure before it is considered 

as qualified to be used (Gu, 2007), how to avoid the over-exposure problem and reduce unused 

items is worthy of research.  These requirements are always in conflict with one another; an 

optimal solution which can best advance progress toward all objectives is desired in test 

assembly.    

Currently different CAT assembly approaches have been developed to find the 

combinations of items which can measure the target trait accurately while satisfying all test 

constraints.  The shadow test approach (STA) is one of the most appealing methods as it can 

handle complex constraints (van der Linden & Reese, 1998).  The goal of STA is to optimize an 

objective function (e.g., test information) under a set of constraints.  In contrast to other 

approaches, the STA uses binary linear integer programming to assemble a full-size test (i.e., the 

shadow test) which can provide accurate measurement while satisfying all the test constraints 

before selecting each item; then the item is selected from this shadow test instead from the entire 

pool. 

As most of the conventional CAT assembly methods, one drawback of the STA is that 

the sequence in which items appear is not predictable and varies across examines, which may 

lead to context effects (Davey, 2005).  Another problem resulted from the unpredictable item 

administration is that the decisions made in early stage may rule out items which are important in 

later stage, and consequently no feasible solution can be obtained.  In addition, changing a 

handful of items may influence the performance of the whole pool (Davey, 2005), which makes 

item replacement and exposure control difficult.  An approach named the “bin-structured method” 

was proposed (Davey, 2005) to attack these problems in CAT assembly.  Instead of building 

totally individualized tests, the bin-structured applies a single solution to partition the item pool 
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to non-overlapping bins.  The items in a given bin are interchangeable in terms of test 

construction rules (e.g., content area).  The test is assembled by selecting one item from each bin, 

and therefore the number of bins is the same as the test length.  Within this general solution of 

partitioning the item pool, a further variety of specific item combinations are provided for item 

selection, which makes the bin-structured method no less adaptive than the STA.   

Considering the recent trend to incorporate polytomous items and set-based items in 

applications of computerized adaptive testing (CAT), and the lack of research into the delivery of 

a CAT consisting of mixed item formats, this study investigated the features of mixed CAT and 

how to assemble a mixed CAT efficiently, and therefore has important practical and theoretical 

implications.  Specifically, the following two research objectives were addressed in this study: 

1. Compare the mixed-item-based CAT and dichotomous-item-based CAT to see whether 

the mixed CAT has advantages over the dichotomous-item-based CAT and what challenges it 

brings (e.g., high exposure rate of the polytomous items).          

2. Compare a highly individualized test assembly design (specifically, STA) to a bin-

structured approach in the context of CAT containing mixed item formats, in a variety of item 

pools with different psychometric models and item parameter distributions.  The test length and 

imposed test constraints were also manipulated to simulate various real test situations to 

investigate how the results vary. 
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Chapter 2: Literature Review 

This chapter consists of three sections.  First, three item formats involved in this study 

(i.e. dichotomous items, polytomous items and testlets) are defined and their advantages and 

disadvantages are compared.  Second, a brief introduction to computerized adaptive testing 

(CAT) is presented, including the history and development, the advantages, and the elements of 

CAT.  The third section provides a review of several current CAT assembly methods, with the 

focus on the methods investigated in this research, i.e., shadow test and bin-structured method.   

2.1 Item Format 

In most of the current educational tests, items can be classified into two general 

categories: discrete items, and set-based items (van der Linden, 2000).  Discrete items are 

independent of each other and can be further classified as dichotomous items or polytomous 

items.  Set-based items refer to a set of items related to a common stimulus; items are often 

related to each other in some way.  Previous research explored the differences between these 

item formats in cognitive abilities and skills they can measure, content coverage, reliability, 

validity, scoring efficiency, etc. (Cao, 2007).  Some major differences are discussed below. 

2.1.1 Dichotomous Item 

Here is a question from NAEP Grade 4 Science test (NAEP, 2015): 

A thermometer shows that the outside air temperature is colder than the temperature at 

which water turns to ice. However, ice on the sidewalk melts. What probably caused this? 

A.  The air heating the sidewalk 

B.  The sidewalk reflecting sunlight into the air 

C.  The wind causing the ice on the sidewalk to melt 

D.  The sunlight making the sidewalk warmer than the air 
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This is a typical dichotomous item, as only option D is regarded as the correct answer 

though four choices are provided.  Dichotomous items refer to items with only two score 

categories, e.g., correct (scored as 1) or incorrect (scored as 0; Lord, 1958).  Dichotomous items 

are widely used in educational testing and psychology assessment.  For example, multiple-choice 

items (MC) with only one correct answer or questions from a personality inventory are often 

scored dichotomously.  Dichotomous items have come to dominate the research and application 

in CAT for several reasons: an examinee can answer many dichotomous items in a short time 

period, which allows the test to cover a broad range of content and to extract a representative 

sample of the examinee’s skills and knowledge (Linn, 1995; Livingston & Rupp, 2004); the 

scoring for dichotomous items is objective, fast, convenient, and inexpensive; and, several item 

selection algorithms have been proved to be effective in dichotomous-item-based CAT (Chang & 

Ying, 1996).  However, some dichotomous items like MC are more likely to be influenced by 

test-wiseness and guessing (Burton, 2001; Oosterhof, 1996), and may result in overestimated 

scores.  For example, examinees could rule out some alternatives without knowing which one is 

the correct answer.  In this case the validity of the test will be compromised.  Furthermore, 

dichotomous items are not optimal for evoking complex cognitive activities.  Although some 

studies indicate that well-designed dichotomous items can also elicit evidence for complex 

cognitive abilities (Haladyna, 1994; Hamilton, Nussbaum, & Snow, 1997), the spectrum of 

abilities that can be reached by dichotomous items is still constrained by their nature (Martinez, 

1999).  Some cognitive activities involving generating creative or divergent production are hard 

to be assessed by dichotomous items (Martinez, 1999).  If a test intending to evaluate complex 

constructs only adopts dichotomous items, the construct might be under-represented, and the 

validity will be questionable (Messick, 1995).  Therefore, to measure higher-order cognitive 
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functioning, more complex item formats like polytomous items or set-based tests are needed 

(Zhou, 2012), as these items can assess a broader range of cognitive ability.   

2.1.2 Polytomous Items 

The item below is from Education Quality and Accountability Office (EQAO) Grade 4 

Writing test (EQAO, 2014): 

Your class has agreed to do some volunteer work in your school this year. Each student 

can work in an area of his or her choosing.  Write a detailed paragraph explaining what you 

choose to do and why. 

In contrast to being scored simply as correct or incorrect, the response to this item is 

evaluated using a 6-point scale, where 0 means the response is almost not readable, and 5 

indicates high writing proficiency.  Items scored in more than two categories are referred to as 

polytomous items (Muraki, 1992).  Constructed-response items, ordered response items, and 

multiple-response items often adopt polytomous scoring.  Over the past few decades, there is an 

increasing demand for incorporating polytomous items into a CAT (van Rijn, Eggen, Hemker, & 

Sanders, 2002), and several item selection strategies developed for polytomous CAT also 

contribute to the growing popularity of polytomous-item-based CAT (Choi & Swartz, 2009).  

Moreover, although the scoring for polytomous item requires detailed rubrics, and is more 

complicated and time-consuming than dichotomous items, the advance in automated scoring 

improves the feasibility of including polytomous item in CAT (Attali & Burstein, 2006).   

Compared to dichotomous items, polytomous items can provide more information about 

the trait level of an examinee (Bock, 1972; Drasgow, Levine, Williams, McLaughlin, & Candell, 

1989; Thissen & Steinberg, 1984).  Furthermore, they can reflect the association among 

knowledge and skills, and measure more complex constructs (Bock, 1972), which may not be 
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easily accomplished by simple dichotomous items such as MC or true/false items.  Another 

advantage of polytomous items over dichotomous items is that they may trace students’ 

cognitive activities by recording their solution processes, and provide diagnostic information and 

facilitate educational instruction (Lukhele, Thissen, & Wainer, 1994; Martinez, 1999).  Besides, 

the developments in computer technology facilitate the delivery of innovative items, and 

innovative item formats often require polytomous scoring, which also makes polytomous items 

more appealing in CAT (van der Linden & Glas, 2000).   

However, though the use of polytomous items shows promise for measuring complex 

ability and obtaining higher measurement precision, developing and using these items may be 

costly and time-consuming.  Hence, how to avoid over-exposure of these items is a main 

objective of CAT assembly and will be discussed in this research.  

2.1.3 Set-based Items 

Set-based items, also known as testlets, refer to items grouped into clusters around a 

common stimulus (Wainer & Kiely, 1987).  For example, in a reading test, it’s common that a 

reading passage is followed by several questions related to this passage.  Questions associated 

with the same reading passage are regarded as a testlet.  The items within a testlet usually share 

some similarities and therefore demonstrate some homogeneity in content or assessed skills, and 

are not independent (Wainer, Bradlow, & Wang, 2007).  Set-based items allow for more 

complicated, interrelated sets of items, and make use of the examinee’s time efficiently, as they 

require less time in reading and understanding materials.  Set-based items also make the task 

more realistic, as many real-world tasks require solving related problems in a stepwise fashion; 

therefore including set-based items could potentially improve construct validity.  And similar to 

polytomous items, set-based items are also appropriate to measure higher-level skills.  For 
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instance, the development of performance-based testing is a great spur to the popularity of set-

based items, as set-based items may help to elucidate more information on complex cognitions 

required in performance tests (van der Linden, 2000).   

Assembling set-based tests is much more complex than building discrete-item-based tests, 

as the specifications for set-based tests are more complicated (van der Linden, 2000).  

Constraints for set-based tests may involve at least four levels: individual items, stimuli, item 

sets, and the entire tests (van der Linden, 2000).  Several studies have investigated how to 

assemble set-based tests, but mainly in linear form (van der Linden, 2000).  Assembly methods 

proposed in previous research include: (1) use separate decision variables to select item and 

stimuli simultaneously (van der Linden, 1992); (2) simultaneously select pivot items; in this 

method, the items which best represent the stimuli are defined as the pivot items and are drawn 

for administration (van der Linden, 2000); (3) power set approach.  The basic idea of this 

approach is that suppose an item set contains n items, and then the set will have at most 2
n
-1 

different subsets.  The test can be assembled using separate decision variables for whether to 

include each subset in the test; (4) two-stage selection, where Stage 1 picks an item set and Stage 

2 selects items from the selected sets; and (5) select all items in a set; in this method, if one 

stimulus is selected, all the items related with it will be included in the test, and no within-set 

selection is performed.  Davey (2005) suggests using the entire set rather than item as the unit for 

item selection, as the latter strategy complicates determining and picking the “best” set.  Other 

issues related with using set-based items are how to develop high quality items, and what should 

be done to deal with the inter-correlation among items within a same set. 

When the violation of local independence is serious, generally two ways can be used to 

model the set-based items: the first is to fit a testlet response model (Wainer et al., 2007), and the 
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second is to treat the testlet as a polytomous item (Cook, Dodd, & Fitzpatrick, 1998).  In this 

study, the testlet will be treated as an intact polytomous-scored unit in item selection and no 

within-testlet adaption is conducted.  However, although adopting polytomous scoring, the set-

based item is still regarded as a unique item format different from the polytomous item when 

developing the blueprint and selecting items in CAT.  It also should be noted that a testlet may 

cover several content areas or cognitive skills simultaneously, which introduces within-testlet 

heterogeneity and distinguishes testlet-based item from polytomous item.  

In summary, one single item format cannot be better than another in all aspects, and a 

mixed-format test may concatenate their strengths while compensating for some weaknesses, and 

achieve broad content coverage, high reliability and validity, efficient scoring, and integrated 

measurement scope of high-level cognitive abilities.  In conclusion, a test with a mixture of 

different item formats may provide more efficient, valid and comprehensive measurement.  This 

trend is more obvious in CAT, where polytomous items and set-based items hold promises for 

future application in CAT as computer provides various options for using innovative items, while 

dichotomous items continue to have value.   

2.2 Introduction to Computerized Adaptive Testing 

Computerized adaptive testing (CAT) has been widely used in educational and 

psychological testing.  CAT assembles individualized tests by administering items suitable for 

measuring the examinee’s ability, and therefore shortens the test length without losing the test 

precision.   

2.2.1 A Brief History of CAT 

Although CAT only has begun to attract attention in educational practice since mid-1990s, 

the idea of adaptive testing is much older. The initial attempt at an adaptive test derives from 
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Binet’s and Simon’s intelligence test.  They tested students with a subset of items targeted at 

their approximate ability instead of using the whole test.  If a student answered these items 

correctly, harder items would then be administered; otherwise easier items would be 

administered (Binet & Simon, 1905).  In this way, adaptive tests are able to eliminate items with 

inappropriate difficulty, thereby increasing test efficiency and measurement accuracy.  Other 

early adaptive testing includes Lord's flexilevel testing (1971) and Weiss' stradaptive test (1973).  

In these methods, each difficulty level has several item sets, and whether an examinee get a 

harder or easier set depends on his or her performance on the previous set.  

Since 1990s, the application of computers facilitates further advancement in adaptive 

testing (Mills & Stocking, 1996).  Currently adaptive testing has been successfully applied to 

many large-scale assessments, such as the Council Licensure Examination for Registered Nurses 

(NCLEX), Armed Services Vocational Aptitude Battery (ASVAB), Graduate Record 

Examination (GRE) and Smarter Balanced Assessment Consortium (SBAC).  The popularity of 

computerized adaptive testing (i.e., CAT) mainly increases due to two factors: one is the 

progress of psychometrics theories, such as Item Response Theory (IRT; Lord, 1980; Weiss, 

1978); and the other is the rapid development of computer technology facilitating instantaneous 

computation (van der Linden & Glas, 2000; He, 2010).   

2.2.2 Advantages of CAT 

The advantages of CAT over linear tests have been well documented (Gu, 2007; Wainer, 

2000; Way, 1998).  First, by giving examinees items with appropriate difficulty, CAT decreases 

test length, increases test efficiency, and reduces examinee fatigue (Chang, 2004).  While linear 

tests usually cannot provide enough information for students at the ends of the ability continuum, 

a CAT can maintain measurement precision across the whole ability continuum (Chang, 2004).  
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Second, the removal of poorly performing items is easier in individualized CAT; and an item 

with undesirable psychometrics characteristics (e.g., with high differential item functioning) will 

only affect some of the examinees.  Even for these examinees, as long as sufficient items are 

administered, the final estimate of their ability will converge to their true ability value (i.e., the 

ability value in theory).  This self-correcting feature of CAT would likely decrease the impact of 

small numbers of poorly developed items and avoid severely biased estimates of student ability 

(Gu, 2007).  Third, different examinees receive different items in CAT; the individualized “test 

form” helps reduce cheating.  Fourth, CAT facilitates calculation of scores without a time lag, 

and therefore allows for immediate score delivery, which is very appealing to test-takers (van der 

Linden, 2010).  Fifth, each examinee can control their testing pace, which reduces test anxiety 

and makes the test more flexible.  Finally, the application of computer has the potential to use a 

variety of novel item formats such as items containing interactive video, and may improve the 

test validity.  These attractive features lead to extensive use of CAT in educational and 

psychological assessments.  To examine how CAT improves test efficiency, the section below 

demonstrates the process of administration a CAT.   

2.2.3 Procedure for Administrating a CAT 

As CATs proceed in an iterative way, the design and administration of a CAT is 

significantly different from a linear test.  Figure 2.1 (He, 2010) provides a good illustration of the 

adaptive nature of CAT.   
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Figure 2.1 Steps for Administrating a CAT (He, 2010) 

Once an examinee’s response to the first item (typically an item of average difficulty) has 

been obtained, the ability is estimated based on a pre-specified scoring rule.  Then a new item 

which optimizes an item selection criterion (e.g., maximizes information at the current ability 

estimate while meeting pre-specified practical requirements such as content balance at the same 

time), is selected and administered.  The examinee’s ability estimate is iteratively updated based 

on all administered items.  This process continues until a pre-specified stopping rule is met.  

Generally, the CAT procedure is defined through its six essential components:  

Item Pool  The items are drawn from a pre-calibrated item pool containing adequate 

numbers of items along the whole ability continuum.  In order to provide precise estimate over a 

Score items  

    Update estimated ability 

Select the first item 

for administration 
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broad range of ability, a large item pool size is suggested (Luecht, 1998; Patsula & Steffan, 

1997).  Meanwhile, though exposure control and content balance are not necessary parts of CAT, 

they are often required since they can improve test security and validity.  The requirements for 

having sufficient items in each content area, avoiding item over-exposure to enhance security, 

and item retirement reinforce the need for large pool size.  Considering the cost and effort to 

develop and maintain an item pool, how to maintain a reasonable level of item exposure and 

facilitate item replacement is important.  The method involved in this study, i.e., the bin-

structured method, may throw some light on this issue. 

Psychometric Model   The psychometric model is typically based on IRT.  IRT 

encompasses a set of models connecting the probability of answering an item correctly with an 

unobservable and hypothesized trait (i.e., a latent trait).  This study is conducted within the 

framework of unidimensional IRT (Lord, 1980) and entails three basic assumptions: (1) the test 

only measures along one latent trait; (2) the item responses on different items are independent 

given the latent trait value; and (3) a monotonically increasing function can be specified to 

represent the interaction between items and the person trait, i.e., the probability of getting an 

item increases as the latent trait increases.   

These three assumptions outline a general class of unidimensional IRT models (Reckase, 

2009).  Based on the number of scored responses, these models can be divided into two families: 

dichotomous model (e.g., one-, two-, and three-parameter logistic model; Lord, 1980), and 

polytomous models (e.g., the nominal response model, Bock, 1972; the partial credit model, 

Maters, 1982; the generalized partial credit model, Muraki, 1992; and the graded response model, 

Samejima, 1969).  In this study, two-parameter logistic model (2PLM) and three-parameter 

model (3PLM) are used for dichotomous items, as the original dichotomous item calibration was 
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conducted with 3PLM  with fixed a- and c-parameter (OSSLT, 2014), and 2PLM is widely used 

in modeling dichotomous items in operational CAT.  The generalized partial credit model 

(GPCM) is used for polytomous items and set-based items since the original data used in this 

study adopted GPCM to calibrate polytomous items.   

The 2PLM is defined as: 

 Pj (θ) = 
         (    )  

           (    ) 
                                                                                 (2.1) 

where θ is the person (ability) parameter, aj is the discrimination of item j, bj is difficulty, D is a 

scaling constant to approximate the normal ogive model, and Pj (θ) is the probability of getting a 

correct response (Lord, 1980).  Figure 2.2 shows the item characteristic curve (ICC) for three 

two-parameter items.  

 
Figure 2.2 ICCs for 2PLM Items 

In 2PLM, an examinee with very low proficiency has little chance to answer a difficult 

item correctly.  However in real tests, especially in multiple-choice based tests, even low 

proficiency examinees still have a notable probability of responding correctly to an item.  In 

response to this phenomenon, the 3PLM includes a lower asymptote parameter c, which is also 

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



P
ro

b
a
b

ili
ty

 o
f 
G

e
tt
in

g
 C

o
rr

e
c
t 
R

e
s
p
o

n
s
e

 

 

a=1 b=-0.5

a=1.2 b=-0.5

a=1.2 b=0.5



15 
 

known as guessing parameter or the pseudo chance parameter, indicating the probability of 

yielding a correct response by an examinee of extremely low ability.  The 3PLM is defined as: 

Pj (θ) =    (    )   
         (    )  

           (    ) 
     (2.2) 

where    is the a lower asymptote parameter for item j, and all the other notations have the same 

meaning as 2PLM.  Figure 2.3 shows an item modeled with 3PLM.  The lower end of the ICC is 

not 0; instead, it’s equal to the lower asymptote parameter. 

 
Figure 2.3 ICC for 3PLM Item 

The GPCM is an extension of the 2PLM to polytomous items (Davis, 2004).  GPCM is 

appropriate to model the item which comprises a series of ordered problem solving steps and 

examinees can get partial credit for completing a step.  For example, solving the math problem 

below needs two steps: 

2+3*4=? 

The first step is to get 3*4=12, and the second step is 2+12=14.  The examinee can get 

partial score if they complete either step, and get full score if they get both steps correct.   

The GPCM is defined as: 
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Pjk (θ) = 
     ∑                 

   

∑    
  
     ∑                 

   

                                               (2.3) 

where Pjk is the probability of getting score k for item j, θ is the person ability,  D is the scaling 

constant fixed at 1.7 to approximate the normal ogive model,    is the discrimination parameter, 

   is the overall item difficulty parameter,   is the highest scoring category for item j, and     is 

category   threshold parameter.  To resolve the indeterminacies in item estimation, for each item 

j,      is set 0 and the sum of threshold parameters is also set as 0 (Muraki, 1992).  Figure 2.4 

illustrates the probability of each score for an item with four score categories (0-3).  

 
Figure 2.4 Item Category Response Probability Curves for a = 0.93, b = -1.28, d = [0, 1.3,  

     1.07, -2.37] 

Item Selection Rule  The CAT process mainly adopts two methods to select the next item 

for administration: the item information method and the Bayesian approach (van der Linden & 

Pashley, 2000; Zhou, 2011).  The item information method selects the item that maximizes 

information at the current ability estimate.  This method includes maximum information (MI; 

Lord, 1980), Kullback-Leibler information (Chang & Ying, 1996; Veldkamp, 2003), and general 
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weighted information method (Veerkamp & Berger, 1997; Choi &Swartz, 2009; van Rijn, Eggen, 

Hemker, & Sanders, 2002).  The Bayesian method incorporates a weight function of a prior 

ability distribution into the information function to form the posterior distribution.  This method 

comprises maximum posterior weighted information (van der Linden, 1998), maximum expected 

information (van der Linden, 1998), and the minimum expected posterior variance method (van 

der Linden, 1998).  Various studies have compared the performance of different item selection 

methods under a number of IRT models, test lengths, and other CAT constraints (Veldkamp, 

2003; van Rijn et al., 2002; Ho, 2010), and found no significant difference between MI and other 

item selection methods in general.  Therefore, MI is used in this study as its computation is 

easier.  

MI selects the item with maximum Fisher information at the current ability estimate.  

Fisher information (also simply named as information) indicates how much information that an 

observable random variable (i.e., the response to an item) has about the unknown parameter θ on 

which the probability of the random variable relies (Pratt, 1976).  For a given dichotomous item j, 

information is: 

Ij (θ) = 
   

      

              
                      (2.4) 

where   
     denotes the derivative of the item response function with respect to θ.   

Specifically, for 2PLM, the item information is: 

Ij (θ) =   
               .                 (2.5) 

Figure 2.5 presents information for 2PLM items.  It can be seen that for fixed b-

parameter, items with higher a-parameters have higher information.  This may cause concerns 

about over-exposure of highly discriminative items, which was studied in this research.  

Furthermore, for each item, information achieves the peak at θ=b. 
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Figure 2.5 Information for 2PLM Items 

For the 3PLM in function 2.2, the information is: 

Ij (θ) =  
    

       

       (    )                
      (2.6) 

where Lj is equal to   (    ) (see Hambleton, Swaminathan, & Rogers, 1991; Lord, 1980). 

For the GPCM, the item information given ability θ is: 

Ij (θ) =     
  ∑     

           ∑         
  

   

 
                                          (2.7) 

where        is defined in function 2.3.  Figure 2.6 shows the information for five polytomous 

items with four score categories (see item parameters in Table 2.1).  It indicates that items with 

high discrimination parameter have more information, and the information function is more 

peaked when the distance between the first and last threshold parameters is shorter (Dodd & 

Koch, 1987).  When the distance between two adjacent threshold parameters is large, the 

information function may not be unimodal (Akkermans & Muraki, 1997; Muraki, 1993).  

Furthermore, if the step parameters are in an ascending order, the information function will be 

more peaked.       
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Table 2.1 Item Parameters for a GPCM Item 

 a b d0 d1 d2 d3 

 0.93 -1.28 0 1.3 1.07 -2.37 

 0.73 -1.28 0 1.3 1.07 2.37 

 0.93 -1.28 0 2 1.07 -3.07 

 0.93 -1.28 0 1.07 2 -3.07 

 0.93 -1.28 0 -2.37 1.07 1.3 

 

Figure 2.6 Item Information for Polytomous Items with GPCM 

The sum of item information across items is the test information, which is equal to the 

reciprocal of variance of estimation, as indicated below: 

     ( ̂| ) =    
  

   
        

        
 

    
        

          = 
 

∑       
   

                                                                                       (2.8) 

where  ̂ is the maximum likelihood estimate (MLE) of true ability  , and l is the likelihood of a 

given response pattern.  As larger information indicates smaller standard error, items with higher 

information are always desired in CAT when adopting the MI item selection method.  However 
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it is not possible that all the items in the pool have high a-parameters, and therefore the MI 

method may threaten the security for informative items as items with large discrimination 

parameters are more vulnerable to over-exposure problems.  It may also result in inefficient use 

of the item pool as items with less information are seldom picked.  Furthermore, the selected 

item maximizes the information at the estimated ability  ̂ rather than true ability θ.  This may 

waste informative items at the early CAT stage as  ̂ is not accurate (Chang &Ying, 1996).  Some 

research proposes dividing the item pool into strata based on the value of the a-parameter, 

selecting items from the stratum with the lowest a-parameter at the beginning, and saving the 

highly discriminative items to later stage (Chang & Ying, 1999).  This strategy facilitates highly 

efficient and more balanced use of the item pool (Gu, 2007), and it was incorporated in this study 

when developing the bins. 

Starting Point  As stated above, CAT aims to select items highly informative at the 

current estimate of examinees’ ability (Green, Bock, Humphreys, Linn, & Reckase, 1984).  

However, at the very beginning of CAT, there is no information available about examinees 

ability.  In this case, CAT adopts a binary sort algorithm (Zhu & Fan, 1999).  Binary sort 

algorithm first compares the target value to the middle value of the sorted sequence; if the target 

value is smaller than the middle value, the search continues on the lower half of the sequence, 

otherwise the search is conducted on the upper half.  In CAT, as a starting point, the initial 

estimate of ability is usually within the middle range of ability continuum; as a consequence, 

CAT usually picks an item with medium difficulty (Green et al., 1984; Hambleton, Zaal, & 

Pieters, 1991; Hulin, Drasgow, & Parsons, 1983; Wainer, 1990).  The estimate of ability is 

updated based on the performance on this initial item, and an item with maximum information at 

this updated ability estimate is selected and administered as the second item.  Although some 
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research claims that the starting point is unimportant as long as CAT has reasonable length, e.g., 

more than 25 items (Lord, 1987; Hulin et al., 1983), Wainer and Kiely (1987) argue that 

inappropriate starting point may increase test anxiety and frustration.  Moreover, too easy or too 

hard items provide little information for estimating the examinee’s ability (Green et al., 1984).  

Hence in this study the starting point was located around the medium ability level, as most CAT 

practice and research do. 

Scoring Rule  In CAT, after administering each item, the examinee’s ability will be re-

estimated.  The two approaches most widely used for updating ability estimate are: (1) maximum 

likelihood estimation, including maximum likelihood estimate (MLE; Lord, 1980; Birnbaum, 

1968), marginal maximum likelihood (MML; Bock & Aitkin, 1981), and weighed likelihood 

estimation (WLE; Warm, 1989) and (2) Bayesian estimation, including expected a posteriori 

(EAP; Bock & Aitkin, 1981) and maximum a posteriori (MAP; Samejima, 1969).  As MLE is 

the basis of all the methods in the first category and was applied in this study, it will be 

introduced first; then a brief description of the Bayesian estimation is provided.  

In MLE, for a given examinee, the responses across test items are assumed to be locally 

independent, so the likelihood is the product of probabilities of getting a correct or incorrect 

response on each item.  In 2PLM or 3PLM, the likelihood is: 

L(u|θ) = ∏   
 
                                                                                            (2.9)        

where u is the response string, pi (         is the probability of getting response ui (ui=0 for 

incorrect response and 1 for correct response) on item i given an examinee’s with true ability θ 

and item parameter   ,  and n is the number of administered items.  The maximum likelihood 

estimate of an examinee’s true ability θ is the value that maximizes L given response pattern u 
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and the collection of item parameters  .  For GPCM, the response    has more than two 

plausible values and the likelihood can be formulized as: 

L(u|θ) = ∏    
 
                                   (2.10) 

where k is the score on item i, and other notations keep the same as Function 2.9.                                                                  

MLE is also the value where the first derivative of L is equal to 0 (Pfanzagl, 1994), as: 

 

   
                                                                                              (2.11) 

As no closed-form expression is available for MLE of  , it’s often calculated through an 

iterative numerical procedure like the Newton-Raphson algorithm (Segall, 2005).  MLE has 

desirable property of asymptotic consistency, i.e., as sample size n goes up, MLE will converge 

in probability to its true value.  In addition, MLE is also asymptotically normal, i.e.,   ̂ has a 

normal distribution with the mean equal to true value θ, and the variance identical to the 

reciprocal of the test information (see Function 2.8).  Due to these theoretical characteristics, 

MLE is widely used in CAT (Samejima, 1969; Hambleton & Swaminathan, 1985).  However, 

when the response string consists of only correct or incorrect responses (or, only highest or 

lowest score category in polytomous-item-based tests), a positive or negative infinite ability 

estimate will result, which causes problems for item selection in next step.  This can be solved by 

setting an arbitrary boundary (e.g., -4 and +4) for estimates from such response patterns, or by 

adopting a Bayesian estimate until the examinee has both correct and incorrect responses.  

Another problem related to MLE is that it is biased.   ̂ is over-estimated for positive θ and 

underestimated for negative θ, and the magnitude of bias is larger at extreme θ values (Lord, 

1980).  This trend is obvious in short tests, while in long tests MLE is asymptotically unbiased.  

An alternative procedure to MLE is a Bayesian method, which has an assumption of a 

prior distribution of ability, i.e., the examinee comes from a population with a normal 
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distribution of ability where mean and variance are known.  After answering each test question, a 

posterior distribution is formed by combining the prior distribution with the response, as: 

         
          

    
        (2.12) 

where        is the posterior distribution,      is the prior distribution, and      is the 

likelihood of a given response string u in the population, which is a constant.  If the mean of this 

posterior distribution is used to update the ability estimate, this approach is named as expected a 

posteriori (EAP); if the mode is used, it’s named as maximum a posteriori (MAP).  When 

administering the same number of items, the Bayesian method yields smaller standard error than 

MLE by absorbing additional information from prior distribution.  And the Bayesian method can 

always produce a finite estimate.  However, though Bayesian method may overcome some 

drawbacks of MLE, one limitation is that for the Bayesian method the selection of prior may 

have significant influence on the final estimate, as the estimates will shrink to the mean of the 

prior.  The estimate can be seriously biased if an inappropriate prior is used (Wang & Vispoel, 

1998; Lord, 1986; Warm, 1989).   

There have been numerous studies comparing ability estimation methods in CAT, in both 

dichotomous and polytomous cases (Chen, Hou, Fitzpatrick, & Dodd, 1997; Chen, Hou, & Dodd, 

1998; Wang & Wang, 2001; Ho, 2010).  Generally, the results suggest comparable effects of 

MLE and other methods (Ho, 2010).  In this study, MLE was used to yield ability estimates.  

Stopping Rule  Two strategies are widely used to determine when to terminate a CAT 

process: fixed length and variable length.  When adopting fixed-length rule, all examinees are 

required to take the same number of items.  For example, all the examinees take a 30-item test.  

In fixed-length tests, different examinees spend similar testing time, which facilitates the test 

administration, and standardizes the testing conditions and related testing-fatigue (Gu, 2007).  
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One disadvantage of fixed-length test is that the measurement precision varies among examinees, 

which causes problems for calculation and reporting reliability across ability levels (Segall, 2005; 

Gu, 2007).  The other method, variable-length rule, pre-specifies a level of precision based on 

ML information or Bayesian posterior variance statistics, and continually administers items until 

the estimate of ability reaches this target precision.  Compared with fixed-length test, variable-

length rule may improve test efficiency and item pool use, as it often minimizes test length while 

remaining high test accuracy (Bergstrom & Lunz, 1999).  The drawback of this procedure is that 

it’s difficult to explain to the examinees why they have to take test of different length.  

Furthermore, in variable-length test, examinees of extremely high or low proficiency are likely to 

receive long tests, especially when the item pool has no highly informative items for these 

extreme examinees, and then different fatigue level may have an effect on the results from the 

CAT (Segall, Moreno, & Hetter, 1997).  Segall (2005) suggests imposing some adjustments to 

moderate some of the operational difficulties, such as implementing an upper-bound for the 

variable-length tests.   

All of these components discussed above influence the design and the effectiveness of the 

CAT procedure (Chang, Qian, & Ying, 2001; Kingsbury & Zara, 1989; Zhou, 2011).  In addition, 

some practical issues regarding test security, validity, security and examinees’ psychological 

experience, should also be taken into consideration when designing a CAT.  For example, in 

CAT item selection, some items are used in most of the administrations, while other items are 

seldom used; how frequently an item appears in a test (i.e., the item exposure rate) depends on its 

psychometric properties, overall examinee ability distribution in the test-taking population, and 

the quality and availability of other items in the pool (Gu, 2007).  Items with high exposure rates 

may cause security problems and impact the test’s validity, and items that are rarely used 
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indicate a waste of resources spent on item developing.  Several exposure control methods have 

been developed to avoid the over-exposure and maintain reasonable item usage (Cheng & Chang, 

2009; Hetter & Sympson, 1997).  Another requirement for CAT is to guarantee each test meets 

the same test specifications and covers all the desired contents (i.e., keep the content balanced).  

The requirements for obtaining higher information, maintaining exposure rate and keeping the 

content balanced have direct influence on the test assembly, which will be further discussed in 

next section.  

2.3 CAT Assembly Approaches 

2.3.1 Goals of CAT Assembly 

Generally there are three requirements for assembling a CAT (Davey, 2005).  First, as 

stated earlier, one of the major targets for CAT is to achieve higher measurement efficiency by 

administering informative items.  By matching item difficulty to the current examinee’s ability 

estimate, CAT can reduce test length without losing measurement precision (Lord, 1980; Weiss, 

1983; Robin, 2005).  The strategies of selecting highly informative items have been stated in 

detail in the previous section.  The second hurdle in CAT development is to balance content.  In 

conventional paper-pencil testing, all the examinees take the same test, and the requirement for 

content coverage can be met easily as long as the single test form fulfills the test specification.  

In contrast, CAT builds individualized tests by adaptively selecting items, and different tests 

should have comparable content coverage specified by the test blueprint.  As a consequence, the 

item selection method should be adjusted to achieve maximized information while ensuring 

content balance (Cordova, 1997; Stocking & Swanson, 1993; van der Linden, 1998; van der 

Linden & Reese, 1998; van der Linden, 2005).  Considering the threats to test validity and 

fairness brought by an unbalanced test, several models such as the weighted penalty model 
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(WPM) and the weighted deviation algorithm (WDA) have been developed to ensure content 

balance.  The third requirement is to avoid item over-exposure and ensure test security.  Item 

exposure rate is the ratio between the number of times a certain item is administered and the total 

number of examinees.  Extremely low exposure rate means the item is rarely used and indicates a 

waste, while high exposure rate threatens test security and validity.  The problem is more severe 

when the item development is time consuming and expensive (e.g., for polytomous items and 

set-based items) and when the test is high-stakes.  As shown earlier, selecting items merely 

according to a statistical criterion (e.g., maximum information) is the main reason for item over-

exposure (van der Linden, 2004).  Several procedures, such as randomization, conditional 

selection procedure, and a-stratified strategy have been applied to control exposure rate.   

In summary, the objective of CAT assembly is to construct efficient tests, and meet all 

the demands for content balance and test security (He, 2010; Davey & Parshall, 1995; Wainer, 

Dorans, Flaugher, Green, Mislevy, Steinberg, & Thissen, 1990; Sands, Waters, & McBride, 1997; 

van der Linden, & Glas, 2000; Mills, Potenza, Fremer, & Ward, 2002).  Actually when a CAT 

moves to operational implementation, besides these three main requirements, sometimes some 

other issues have to be taken into account.  For example, some tests, like NCLEX, have limits on 

total testing time.  Other issues include how to eliminate the item context effect in CAT as the 

existing location of an item may influence the examinee’s performance on the same question, 

how to diminish the examinee nervousness at the beginning of the test, etc.  Some of these issues 

will be addressed in this study.  These requirements are always in conflict with one another and a 

compromise to balance all goals is needed in test assembly (Davey, 2005).    
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2.3.2 Assembly Design in CAT 

A variety of test assembly methods have been proposed and successfully implemented, 

including the constrained CAT method (CCAT; Kingsbury & Zara, 1991), the modified CCAT 

(MCCAT; Leung, Chang, & Hau, 2003), the weighted deviations model (WDM; Stocking & 

Swanson, 1993), the modified multinomial model (MMM; Chen & Ankenmann, 2004), the 

weighted penalty model (WPM; Shin, Chien, Way, & Swanson, 2009), the maximum priority 

index (MPI) method (Cheng & Chang, 2009), the shadow-test approach (STA; van der Linden & 

Reese, 1998), and bin-structured method (Davey, 2005).  Many of studies have compared these 

methods (Chen & Ankenmann, 2004; Cheng & Chang; 2009; van der Linden, 2005).  Among 

these methods, CCAT, MCCAT, MMM and bin-structured method partition the item pool into 

several sub-pools by some key features, such as content area, and the items are drawn from these 

sub-pools in a sequential way.  One limitation of these methods is that they are applicable when 

an item only carries limited attribute, i.e., the ones used to divide the item pool (He, 2010).  In 

contrast, the STA, the WDM, the WPM, and the MPI can handle more constraints and are more 

flexible.  Among these four methods, the STA adopts a mathematical programming method 

while the others are heuristic.  This study involves one method from each of these two categories 

of test assembly approaches:  STA and bin-structured approach.  The reason for choosing the 

STA is that it can deal with complex constraints and does not require judgment-based weights, 

which are not available for test to be used in this study.  On the other hand, though the bin-

structured method holds advantages over conventional methods especially in terms of exposure 

control and standardizing the look of the test, and is promising for future utilization, it hasn’t 

been studied thoroughly, and no research is conducted in mixed-item-format case.  This study 

aims to fill in this void.  A more detailed description of these two methods is provided below.   
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STA  The STA was proposed by van der Linden and Reese (1998) and since then has 

been widely researched in different CAT contexts (He, 2010).  In general, the STA belongs to 

the constrained combination optimization problem (Nemhauser & Wolsey, 1988; Rao, 1985; 

Wagner, 1969), where the goal is to find a solution optimal in terms of one attribute while 

meeting a variety of constraints with respect to other attributes.   As a consequence, two kinds of 

test specifications are defined and distinguished in STA: (1) objective, which requires a test 

attribute function (e.g., test information or posterior variance of estimate) to reach the maximum 

or minimum value, and can be written as a function to be optimized; and (2) constraint, which 

limits an attribute (e.g., number of items in each content area) within a certain range, and can be 

formulated as equations (or inequalities).  The constraints can be further classified into three 

categories: constraints on categorical attributes (e.g., item format), on quantitative properties 

(e.g., expected testing time), and on item dependencies (e.g., item enemy).  Then the test 

assembly issue is an optimal problem with a set of the constraints.  In other words, in STA the 

test information at the current ability estimate can be regarded as the objective function to be 

optimized, and this optimization problem is subject to all other specifications, which are viewed 

as constraints (van der Linden, 1998; van der Linden, Ariel, & Veldkamp, 2006; Veldkamp & 

van der Linden, 2000).  Here is an example for how STA defines the goal of test assembly as a 

constrained combination optimization problem. 

Objective: maximize ∑   
 
   ( ̂)  , i.e., maximize test information at  ̂, where N is the 

item number in the whole item pool and xi is an indicator variable specifying which items are 

included in the test. 

Constraints:          , i=1,2,…N. i.e., if item i is selected when assembling a shadow test,  

   is valued as 1; otherwise    is 0;  
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         ∑         , i.e., less than 5 items of Format 1 (e.g., dichotomous items); 

        ∑         , i.e., more than 8 items of Format 2 (e.g., polytomous items); 

             ∑          , i.e., less than 10 items in Content Area 1; 

            ∑         , i.e., 3 items in Content Area 2; 

             ∑         , i.e., more than 9 items in Content Area 3; 

             ∑   
 
      , i.e., the total test length is 20 items; 

                +    ≤ 1, i.e., Item 33 and Item 54 are exclusive;  

       ∑     
 
        , i.e., the total word count is less than 2000, where wi is the 

number of words in item i.  

The basic idea of STA is to assemble an optimal test using linear programming.  In STA, 

a full-length test satisfying all requirements and with maximum information is assembled before 

selecting an item to be administered, and is named a shadow test, as shown in the example above; 

then the item with maximum information is picked from this shadow test instead of from the 

pool.  In other words, the item administered is the one in the current shadow test that is optimal 

at the current ability estimate and has not already been used.  After administering the new item, 

the shadow test is released to the pool and the ability is re-estimated.  This creation of a shadow 

test and selecting an item to be administered is repeated until the stopping rule is met.  He (2010) 

provides a brief description of a typical STA procedure: 

Step 1: Give an initial estimate of the ability as the starting point. 

Step 2: Assemble the first shadow test that satisfies all requirements (e.g., constraints for 

content area, item format, total testing time, exposure rate, etc.) and optimizes the objective 

function (e.g., maximize the test information). 
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Step 3: From the shadow test assembled in Step 2, select and administer the item that can 

provide maximum information at the current ability estimate, and return all the other items in the 

shadow test into the bank. 

Step 4: Update the ability estimate according to some scoring rule (e.g., MLE). 

Step 5: Assemble a new shadow test which is optimal and meets all constraints while 

containing items already administered. 

Step 6: Repeat Steps 2-5 until a stopping rule (e.g., a pre-specified test length) is reached. 

This description indicates several properties of a shadow test: (1) it’s a full-size linear test 

as no sequential selection is performed within a given shadow test; (2) it includes all items 

already taken by the examinee; (3) it provides maximum information at the current ability 

estimate; and (4) it satisfies all the test specifications required by the CAT.  An example by van 

der Linden and Reese (1998) may be helpful to understand the procedure: assume the goal is to 

assemble a 5-item CAT for a given examinee.  In Table 2.2, each column indicates a shadow test 

assembled at the current  ̂, the bold numbers are the item with maximum information selected to 

be administered, and all the non-bold items will be released into the pool.  The items in the upper 

triangle have been administered to him/her.  It can be seen that the bold numbers enter into the 

next column of the upper triangle, as the items which are administered must be in the new 

assembled shadow-test.  For this examinee, Item 39, 14, 41, 22, and 6 are administered.  
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Table 2.2 An Example for CAT Assembly Using STA (van der Linden & Reese, 1998) 

Shadow Test1 Shadow Test2 Shadow Test3 Shadow Test4 Shadow Test5 

- 39 39 39 39 

13 - 14 14 14 

27 8 - 41 41 

28 14 22 - 22 

39 41 37 22 - 

41 49 41 37 6 

*Note: The columns are the item numbers for those selected for the shadow test and the bold 

item is administered and must exist in the following shadow tests. 

Compared with other CAT assembly approaches, STA can ensure that all the 

administered tests meet test specifications.  Furthermore, it is very flexible and can deal with 

many constraints simultaneously.  However, an exact solution for a shadow test may be 

impossible in realistic times if too many constraints are imposed and the item pool is large (van 

der Linden, 1998).  Furthermore, STA solves the optimization problem uniquely for each 

examinee, and the order in which items appear cannot be predictable and varies across examines, 

which may raise concerns about context effects (Davey, 2005).  Third, sometimes changing even 

only one or two of items of a pool with hundreds items may greatly affect the pool’s 

performance (Robin, 2005; Davey, 2005).  Therefore, item replacement, item repairing and item 

retirement may be difficult in STA, and this is more obvious in large-scale CAT programs where 

items are required to be developed and replaced continuously (Davey, 2005).  These problems 

can be partially solved by the bin-structured method, which will be introduced next.  

Bin-Structured Method   Manfred Steffen proposed a “bin-structured” method to simplify 

CAT assembly (Robin, 2005).  It aims to find a single standardized solution to divide the item 

pool and solve the constrained combination optimization problem, as obtaining a unique routine 

for every examinee may not add too much value (Davey, 2005).  The basic procedure of a bin-

structured CAT assembly is: (1) the test construction rules determine what item properties, such 

as cognitive level, specific subject, content area and format, are specified in the blueprint and 
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will guide the CAT assembly; (2) the item pool is divided into non-overlapping and 

homogeneous clusters according to these identified item properties, and each cluster is regarded 

as a bin; the items in the same bin are interchangeable in terms of these test construction rules, 

and the number of bins is equal to the desired test length; and (3) then test developers determine 

a sequence to arrange these bins.  Such an ordered sequence is called a template and is applied to 

all examinees.  It satisfies all the test specification so it’s impossible to violate the constraints.  

During item administration, each item is selected from one bin, rather than from all the available 

items in the pool.  Each bin only contributes one item.  As the test constraints relevant to test 

construction properties such as content area have been handled in the design of the template, the 

main target for item selection in each step is to select an informative item while controlling 

exposure rate in each bin.  Therefore, the specific solution for any examinee is unique and 

adaptive, while the assembled test is more standardized compared with STA.   

Davey (2005) set an example to illustrate how bin-structured method works: suppose a 

math test covers three content areas (Arithmetic, Algebra and Geometry) and two item formats 

(Problem Solving and Data Sufficiency).  The item pool has 13 items, as Table 2.3 shows: 

Table 2.3 Item Pool (Davey, 2005) 

Item Content Format 

1 Arithmetic Problem Solving 

2 Arithmetic Problem Solving 

3 Arithmetic Problem Solving 

4 Algebra Problem Solving 

5 Algebra Problem Solving 

6 Algebra Problem Solving 

7 Geometry Problem Solving 

8 Arithmetic Data Sufficiency 

9 Arithmetic Data Sufficiency 

10 Arithmetic Data Sufficiency 

11 Arithmetic Data Sufficiency 

12 Algebra Data Sufficiency 

13 Geometry Data Sufficiency 
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Now assume each examinee is required to take a 6-item test, with the following 

constraints:  

Table 2.4 CAT Constraints (Davey, 2005) 

Specification Classification Number of Items 

1 Arithmetic content 3 

2 Algebra content 2 

3 Geometry content 1 

4 Problem Solving format 3 

5 Data Sufficiency format 3 

A variety of solutions can satisfy the requirement in Table 2.4.  Which one should be 

chosen depends on the quality of items of the different types and the goal of the test.  Here is one 

reasonable design satisfying all the constraints. 

Table 2.5 An Example for a Template (Davey, 2005) 

 PS DS Total 

Arithmetic 1 2 3 

Algebra 1 1 2 

Geometry 1 0 1 

Total 3 3 6 

Since the CAT has fixed length of 6 items, the items in the entire pool can be divided into 

6 bins, as shown in Table 2.6. 

Table 2.6 Dividing Items into Bins (Davey, 2005) 

Bin Content / Format Items 

1 Ar / PS 1, 2, 3 

2 Ar / DS 8, 9 

3 Ar / DS 10, 11 

4 Al / PS 4, 5, 6 

5 Al / DS 12 

6 G / PS 7 

The items collected in the same bin have same content and format.  All examinees use 

this template when taking the CAT, but which specific items will be administered is determined 

by the examinees’ ability and the item selection rule.  For example, Examinee 1 may take Item 1, 
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8, 10, 4, 12, 7, while Examinee 2 may take Item 1, 9, 11, 5, 12, and 7.  It should be noted that 

Bin 2 and Bin 3 are identically defined, and during CAT, only one item is drawn from each bin.  

Another observation is the Geometry / Data Sufficiency item is not included in any divided bins, 

as such an item is not needed in the template in Table 2.5.  One implication is that the items used 

in a bin-structured method may only contain a subset of items of the whole pool.  Therefore, as 

emphasized before, it’s important to choose the most appropriate template to improve test 

efficiency.  

Bin-structured method has several practical advantages.  First, compared with assembling 

a CAT independently for each student as STA does, bin-structured method specifies the ordering 

of item delivery explicitly, standardizing the look of the test across examinees, and therefore 

eliminates context effects across examinees (Robin, 2005).  It administers the items in a 

controlled and predictable way rather than chaotically, which may be more acceptable to 

examinees.  The merit of assembling CAT this way is more obvious when the item pool is small 

or only has limited items of a certain type.  For example, in the example above, when adopting 

the other test assembly approach, it’s possible that the first five items are chosen as in Table 2.7. 

Table 2.7 Example of First Five Items Selected (Davey, 2005) 

Position Item Content Format 

1 12 Al DS 

2 1 Ar PS 

3 3 Ar PS 

4 13 G DS 

5 2 Ar  PS 

To satisfy the test requirement, an Algebra / Data Sufficiency is needed as the sixth item.  

However the pool only contains one Al/DS item and it has been used.  Alternatively speaking, 

it’s possible that an early decision can have severe influence on later stage (Davey, 2005), as the 

use of each item cannot be predicted.  This will not happen in bin-structured method.  
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Because in bin-structured method the bins do not interact with each other, exposure 

control can be conducted within bins without influencing the other bins or the entire pool, and 

item replacement is more convenient (Davey, 2005).  Other CAT assembly methods such as 

WDA often require tedious preliminary simulations to control item exposure (Robin, 2005).  

Furthermore, it guarantees that test construction rules are satisfied by developing appropriate 

template in advance, which significantly simplifies item selection and test administration.  Also, 

as for each step the item selection is restricted in one bin, an item only competes with items in 

the same bin and therefore the calculation burden is greatly reduced.  Finally, the control for item 

enemies is easy: the item enemies can be put in one bin; choosing one will exclude its enemies 

because each bin only contributes one item.   

Although bin-structured approach adopts a uniform routine for all the examinees and 

seems less flexible, it’s no less adaptive if the bins can be developed properly (Davey, 2005).  

Furthermore, it can be combined with other test assembly methods.  Robin (2005) incorporates 

bin-structured model into WDA, and finds the bin-structured approach works equally well 

compared with conventional WDA in terms of measurement efficiency, content balance, 

exposure rate, and efficient item use.  However, as a relatively new method, research on the bin-

structured method is still rare, and none uses mixed-item-format based CAT.  And no study 

investigates what factor may influence the effect of bin-structured method.  
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Chapter 3: Methods and Procedures  

The main purposes of this study were (1) to investigate whether the mixed-item-based 

CAT had advantages over the dichotomous-item-based CAT and what challenges it brought; and 

(2) to compare the STA with the bin-structured method in mixed-item CAT assembly, and to 

explore what were some factors that might influence any assembly effect.  A simulation study 

was conducted, as a simulation can set a variety of conditions to evaluate the effects of different 

factors, and also provide the true value as a baseline to assess bias.  This chapter describes the 

methodological framework of the simulation study.  The first section describes the procedure of 

developing the item pools.  Next, the procedure for CAT simulation is described.  Specifically, 

the CAT specifications with respect to content area, item format and required cognitive skills are 

described.  This section also illustrates how the STA and bin-structured methods assemble the 

CAT with different constraint sets.  The final section describes the criteria that are used to assess 

the CAT assembly approaches.  

3.1 Generate Item Pools 

3.1.1 Data Source 

The item pool was based on the Education Quality and Accountability Office (EQAO) 

Grade 10 Ontario Secondary School Literacy Test (OSSLT; http://www.eqao.com/).  EQAO has 

been existed for almost 20 years with the purpose of providing comparable year-to-year 

information on student learning.  EQAO provides several province-wide assessments: the 

Assessments of Reading, Writing and Mathematics, Primary and Junior Divisions; the Grade 9 

Assessment of Mathematics; and the OSSLT.  To simulate the situation where both 

dichotomously and polytomously scored items (including polytomous items and testlets) were 

involved, this study was focused on the OSSLT.  The OSSLT is administered on an annual basis 
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and aims to evaluate Grade 10 students’ literacy skills.  It has cut-scores set through a modified 

Angoff method (OSSLT, 2015).  Students must complete the OSSLT successfully in order to get 

the Ontario Secondary School Diploma (OSSD).  As the OSSLT is a graduation requirement to 

ensure that students who can complete this test have acquired minimum reading and writing 

skills, it is relative easy.  This can be seen from the test information function shown in Figure 3.1. 

 
Figure 3.1 Test Information for OSSLT 2015 (English) 

The content of OSSLT is based on reading and writing curriculum requirements specified 

by The Ontario Curriculum to be acquired before the end of Grade 9.  The reading part assesses 

students’ ability (1) to understand explicit information and ideas in various texts required by the 

curriculum (noted as R1); (2) to understand implicit information and ideas (noted as R2);  and (3) 

to connect what they read with their background knowledge and personal experience (noted as 

R3).  The writing component evaluates students’ skill to “organize ideas and support details 

using correct spelling, grammar and punctuation for communication in written forms required by 
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the curriculum” (OSSLT, 2015).  Specifically, four cognitive skills are measured by the writing 

test: (1) to organize main ideas (noted as W1); (2) to organize relevant information (noted as 

W2); (3) to use conventions (noted as W3); and (4) to develop a topic (noted as W4).   

The data in this study is from the performance of English-speaking student on the 2015 

Operational Test of OSSLT.  The 2015 OSSLT contains 38 multiple-choice, 4 open-response 

questions, 4 short writing and 4 long writing questions.  But the long writing items were not used 

in this study as they were not field-tested, and real CAT seldom adopts such an item format.  

That left 8 polytomous-scoring items consists of six 4-point Likert scale items and two 3-point 

Likert scale items, but the 3-point Likert scale scores were excluded from this study as they 

didn’t perform well in previous OSSLT analyses.  Hence, the entire study was based on 44 items, 

among which 34 are reading items and 10 are writing items (see Table 3.1).   

Table 3.1 OSSLT Test Specification 

 Reading Writing Total 

 R1 R2 R3 W1 W2 W3 W4  

Dichotomous 7 17 6 2 2 4 0 38 

Polytomous 0 2 2 0 0 0 2 6 

 

Test forms are assembled for both English and French versions from March 2014 field-

test materials.  Before administrating the test, all materials and questions are reviewed and 

approved by a content review committee (i.e., Assessment Development Committee) which 

consists of educators from across the province.  Meanwhile, another group of equity experts, 

known as the Sensitivity Committee, review all test items and materials to guarantee they are fair 

and free from bias.  In the field test, approximately 5000 English students and 500 French 

students are randomly selected and answer each multiple-choice item.  The sample used to score 

the polytomous items (including open-response items and short writing items) contain1200 

students in English and 500 students in French.  EQAO requires comparable procedures for both 
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English and French students, but the French sample size is small.  Therefore when calibrating the 

items with 3PLM, OSSLT fix the a-parameter of dichotomous items at 0.588 and the c-

parameter at 0.2.  This modified 3PLM is also known a modified Rasch model.  The slope of the 

GPCM model is also fixed at 0.588.  The IRT parameters, classical test theory (CTT) difficulty, 

and cognitive skills measured are available in OSSLT report (OSSLT, 2014).  Overall, OSSLT 

can provide reliable, objective and high-quality scores (OSSLT, 2005).  The reliability 

coefficient is above 0.85, and the correct classification rate is 0.90 (OSSLT, 2014).   

3.1.2 Generate the Original Item Pool 

As stated before, 44 items were kept as the basis for this study, among which 38 were 

dichotomous, and 6 (including polytomous items and testlets) adopted polytomous scoring with 

four score categories.  The item cloning method (Glas & van der Linden, 2003) was used to 

expand the item pool size.  The procedure for cloning items was: represent the parent item (i.e., 

the items which were used to produce the new items) as p = 1,..., P with item parameter   , and 

items within family p as ip = 1, ..., Ip.  For each item, the item parameter is a vector noted as    . 

For instance, in 3PLM,                  ].      was assumed to have a multivariate normal 

distribution: 

    ~ N (      )         

where    is the mean of item parameters in family p, and    is the covariance matrix.  In this 

study, for the GPCM, overall difficulty and thresholds were generated since the slopes were 

fixed.     was the vector consisting of average overall difficulty and thresholds of the 6 

polytomous items in the original OSSLT tests,    was the covariance matrix.  All the 6 parent 

item parameter values    were drawn from the multivariate normal distribution with a mean of 

   and covariance of   .  Then, given the parent parameter   , item parameters cloned within 
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family p were sampled from a multivariate normal distribution with mean of    and a covariance 

matrix of    with entries equal to half of the entries of   , as the variability within the collection 

of items cloned from the same parent item should be much smaller than the variability between 

families (Enright, Morley, & Sheehan, 2002; Hively, Patterson & Page, 1968; Macready ,1983; 

Macready & Merwin, 1973; Meisner, Luecht & Reckase, 1993).  For the dichotomous items, as 

the a- and c-parameter were fixed in OSSLT, only the b-parameter in 3PLM was generated and 

the above procedure shrank to a univariate case, i.e.,      was the mean of b-parameters of the 

original 38 items, and    was the variance.  The format, content area and cognitive skill of items 

within a same family were kept the same as the parent item.  The final pool contained 950 

dichotomous items and 150 4-point Likert items, i.e., the size of final pool was 25 times of the 

original OSSLT.  The pool information is: 

 
Figure 3.2 Original Pool Information 

 Similar to the original 44-item OSSLT test, Figure 3.2 indicates the entire pool has more 

items informative at lower abilities.  
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This pool was based on the original calibration of OSSLT, i.e., a- and c-parameters in 

3PLM were fixed, and slopes in GPCM were also fixed.  To identify the pool for discussion in 

later sections, it’s named “the original pool”.  

3.1.3 Recalibrated Item Pool   

In real CAT implementations, the modified 3PLM fixing a- and c-parameters adopted by 

OSSLT is seldom used.  To make the conclusions more generalizable, 2PLM and GPCM pool 

without fixing the slopes were generated.  As Figure 3.3 (OSSLT, 2015) shows, in OSSLT, the 

English population has a normal distribution N (0.22, 0.91).  5000 examinees were randomly 

drawn from N (0.22, 0.91), and their responses to 950 dichotomous items and 150 polytomous 

items in the original pool were generated through 3PLM and GPCM with slope equal to 0.588.  

This yielded a 5000*1100 response matrix.  Then this matrix was calibrated with flexMIRT (Cai, 

2012) using 2PLM and GPCM.  This new pool consisted of the calibrated item parameters and 

was named the “recalibrated pool”.  The specification (i.e., format, content area and cognitive 

skill measured) for each item were kept the same as the original pool. 

 
Figure 3.3 Ability Distribution of English Population (OSSLT, 2015) 
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 The recalibrated pool information is in Figure 3.4.  Compared with the original pool, 

there is a tendency for the pool to have more informative items for low ability examinees in the 

recalibrated pool due to the rescaling and error derived from estimation and sampling.  

 
Figure 3.4 Recalibrated Pool Information 

3.1.4 Nested Difficulty 3PLM Pool   

In a test, sometimes some content areas are harder than the others (Leong, 2006; Ahmed, 

Pollitt, Crisp, & Sweiry, 2003), as the concepts, ideas, facts and principles involved in each area 

are different.  In this case, forcing the examinees to take items with inappropriate difficulty to 

keep the content balance may influence the efficiency of CAT.  This study set the “nested 

difficulty pool” to simulate this occasion.  The item parameters were same as the original pool, 

but the easiest 850 items (i.e., the 750 items with lowest b-parameter in 3PLM and 100 items 

with lowest overall difficulty in GPCM) were labeled as the reading items, while the other 250 

items were labeled as the writing items.  Due to the effect of thresholds of GPCM, this 

modification didn’t make the distributions of item parameters for reading and writing completely 

non-overlapping, and therefore made the simulation more realistic.  Within each reading/writing 
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category, the cognitive skill requirement was randomly assigned to each item, while the 

proportion of each skill category remained the same as the original item pool (i.e., the 

distribution of items measuring each skill was the same as Table 3.1).  

3.1.5 Nested Difficulty 2PLM Pool   

The item parameters were the same as the recalibrated pool, but 750 items with lowest b-

parameters in 2PLM and 100 items with lowest overall difficulty in GPCM were regarded as the 

writing items, and the other 250 items were writing items.  

3.1.6 Balanced Item Pool   

As both the original and recalibrated pool provided more information for the low-

proficiency students, a more balanced pool was generated to explore the influence of shape of 

item pool on CAT assembly.  For the dichotomous items, the a-parameters in 2PLM from the 

recalibrated pool were retained, while b-parameters were simulated from a uniform distribution 

within [-3, 3].  For the GPCM, the slopes and threshold parameters from recalibrated items were 

retained, while the overall difficulty parameters were also randomly picked from [-3, 3].  The 

specifications for each item, including the requirements for cognitive skills and content area, 

were same as the recalibrated pool.  Figure 3.5 shows that the information for the balanced item 

pool is not skewed.  
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Figure 3.5 Balanced Pool Information 

3.1.7 Heterogeneous Testlet Pool 

When items within a testlet were homogeneous in content and cognitive skills, for 

example, all individual items within a testlet measured R3, they could be merged into the 

category of polytomous items in item selection.  However in real tests, it’s common that items in 

a testlet measure different skills and abilities.  For instance, in a given reading testlet, the first 

item measures the understanding of the main idea, the second item assesses the vocabulary, and 

the third item requires the examinees to make implicit inference.  To simulate such tests, half of 

the polytomous-scoring items in the balanced pool were randomly assigned two or three 

cognitive skills in a same content area.  For example, in the balanced pool, a testlet which 

consisted of 3 individual items only measured R3 and could be modeled with a 4-point GPCM.  

In the heterogeneous testlet pool, the parameter of the GPCM remained the same, but it was 

supposed to measure both R2 and R3 (e.g., with two individual items measuring R2 and one 

individual item measuring R3).  As stated before, all the items in the selected testlet would be 

administered and no within-testlet adaption was performed; the testlet was regarded as an intact 
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unit when calculating the information, in both the balanced pool and heterogeneous testlet pool.  

However the heterogeneity would influence the content balance control.   

In sum, six pools were generated in this study: 

Original pool       

Nested difficulty 3PLM pool    

Recalibrated pool       

Nested difficulty 2PLM pool 

Balanced pool       

Heterogeneous pool 

Figure 3.6 Summary of Six Pools  

3.2 Simulation of CAT Procedures 

 The goal of this study was to compare dichotomous-item-based CAT and mixed-item-

format based CAT, and to explore which CAT assembly method was more efficient and 

convenient under various conditions.  The variables manipulated included the test length, item 

pool shape, IRT model used, and imposed test constraints.   

3.2.1 Long Tests 

The long test required each examinee to complete 44 items.  To depict a whole picture for 

how the CAT assembly approaches work along the entire ability continuum, the ability level 

ranged from -4 to 4 with changing step size of 0.1.  The whole procedure was replicated 100 

times, which means each level had 100 examinees to get conditional bias and standard error of 

measurement of the ability estimate.  The starting ability estimate was randomly picked from [-

0.5, 0.5], and the ability estimate was updated through MLE.   

Original Pool  Using the original pool, five CATs were implemented: 

Same item parameters and different content labels 

Same item parameters and different content labels

Same item parameters and different content labels 
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(1) All 44 items were drawn from 950 dichotomous items; no constraint was imposed. 

(2) The 44 items were selected from the entire mixed item pool (i.e., 950 items and 150 

polytomous items); no constraint was imposed. 

(3) The 44 items were selected from the entire pool using shadow test with constraints in 

Table 3.1; and the maximum exposure rate for each item was fixed at 0.2.  For a given Examinee 

J, when selecting the Kth item (K=1, 2, …, 44), the specifications for the shadow tests can be 

formulated as: 

Objective: maximize ∑   
 
   ( ̂)  , i.e., maximize information at current ability estimate 

 ̂; N was the item number in the whole item pool, i.e., N = 1100. 

Constraints:          , i=1,2,…N; i.e., if item i was selected when assembling a shadow 

test,     was valued as 1; otherwise    was 0;  

       ∑                , i.e., draw 7 binary R1 items;  

         ∑                 , i.e., draw 17 binary R2 items;  

       ∑                    , i.e., draw 2 polytomous R2 items; 

       ∑                , i.e., draw 6 binary R3 items; 

       ∑                    , i.e., draw 2 polytomous R3 items; 

       ∑                , i.e., draw 2 binary W1 items; 

        ∑                , i.e., draw 2 binary W2 items; 

        ∑                , i.e., draw 4 binary W3 items; 

        ∑                    , i.e., draw 2 polytomous W4 items; 
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       ∑      
 
        for i=1, 2,…N, i.e., the exposure rate for each item should 

be lower than 0.2; J was the number of examinees having taken the tests by far, and m was the 

total number of examinees;  

                                       for k=1, 2, …K-1, where ik was the item administered in kth step.  This 

meant the decision variable for items which have been administered for this examinee must be 

equal to 1; in other words, the items already administered for Examinee J must be in the shadow 

test. 

After assembling the shadow test, the item with maximum information among those 

which had not been administered before was selected and administered; then the ability was re-

estimated.  A new shadow test fulfilling all the test specifications was assembled at the new  ̂.  

This procedure was repeated until the examinee completed the 44-item CAT. 

 (4) The 44 items were selected from the entire pool using a combination of bin-

structured method and shadow test, i.e., the item format (polytomous vs. dichotomous) and 

content areas (reading vs. writing) were controlled by bin constructs, and specifications for 

cognitive skills were fulfilled by the shadow test.  According to the test blueprint in Table 3.1, 

the items in the mixed pool were divided into 30 reading dichotomous bins (each bin included 

items of R1, R2 and R3), 4 reading polytomous bins (each bin included item of R2 and R3), 8 

writing dichotomous bins (each bin covered W1, W2 and W3), and 2 writing polytomous item 

bins (only involved W4).  Each bin had 25 items of the same format and content.  And the 

sequence of ordering the bins was exactly same as the item order in the paper-pencil OSSLT, i.e., 

24 reading binary items---2 reading polytomous items---6 reading binary items---2 reading 

polytomous items---4 writing binary items---2 writing polytomous items---4 writing binary items.  

After determining the order of bins, a shadow test was used to satisfy the requirement for 
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cognitive level, test information and exposure rate, but the shadow test only picked one item 

from each bin in the order specified.  In other words, besides the constraints in (3), one additional 

constraint for shadow test was: 

∑            , k=1, 2…44; i.e., draw one item from each bin.  

(5) The 44 items were selected from the entire pool, but in contrast to (4), here bin 

construct tool over the constraints on content area, item format, and also cognitive levels.  The 

entire mixed item pool was divided into 7 binary R1 bins, 17 binary R2 bins, 2 polytomous R2 

bins, 6 binary R3 bins, 2 polytomous R3 bins, 2 binary W1 bins, 2 binary W2 bins, 4 binary W3 

bins and 2 polytomous W4 bins.  Each bin contained 25 items which were interchangeable with 

respect to content, format and cognitive level.  In other words, the number of bins in (5) was the 

same as (4), but the criteria used to develop bins were different.  And the order of bins was: 7 

binary R1---17 binary R2---2 polytomous R2---6 binary R3---2 polytomous R3---2 binary W1---

2 binary W2---2 polytomous W4---4 binary W3, which was consistent with the OSSLT.  A 

shadow test was used to control exposure rate and achieve high test information; alternatively 

speaking, the specifications for the shadow tests were: 

Objective: maximize ∑   
 
   ( ̂)  , i.e., maximize information at current  ̂; N is the item 

number in the whole item pool. 

Constraints:  ∑            , k=1, 2…44; i.e., draw one item from each bin;  

                                     ∑      
 
        for i=1, 2,…N, i.e., the exposure rate for each item was 

lower than 0.2; J was the number of examinees having taken the tests by far, and m was the total 

number of examinees;  

                                            for k=1, 2, …K. where ik was the item administered in kth step.  The 

items which had already been administered must be in the shadow test. 
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In (4) and (5), when ordering the bins within a same category, e.g., bins of binary R1, the 

early bins had b-parameter closer to 0 as the starting point of   was within (-0.5, 0.5), and later 

bins covered broader range of difficulty.  

Among the five procedures above, the comparison between (1) and (2) revealed whether 

mixed-item-format-based CAT can improve the performance of dichotomous-item-based CAT, 

and what challenges it might bring.  As polytomous items can provide more information, mixed 

CAT was expected to yield higher measurement accuracy.  However the polytomous items may 

have higher exposure rate as they were more informative.  The difference between (2) and (3) (4) 

(5) indicated the influence by imposing test constraints;  (2) was expected to produce more 

accurate ability estimate since the requirements for content balance and exposure rate may 

compromise the test efficiency.  Furthermore, (3) (4) and (5) were compared to explore which 

CAT assembly method performed better.  In sum, five CAT simulations were conducted in the 

original pool, as Figure 3.7 indicates. 

Binary CAT without constraint 

Mixed CAT without constraint 

STA with constraints in Table 3.1 

Combination method with constraints in Table 3.1 

Bin-structured method with constraints in Table 3.1 

Figure 3.7 Five CAT Simulations in the Original Pool 

Nested Difficulty 3PLM Pool  This pool labeled all the easy items in the original pool as 

reading and hard items as writing.  When no test specification constraint was added, like 

simulation (1) and (2) in the above original pool, this nested pool functioned the same way as the 

original pool.  It would be different from the original pool only when content balance was 

Advantages and challenges of 

mixed CAT 

Effects of 

using bin-

structure 

Influence 

of adding 

constraint

s 
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required.  Therefore three CATs were implemented using the nested difficulty 3PLM pool: (1) 

shadow test with constraints in Table 3.1; (2) items were divided into 44 bins according to 

format and content, while shadow test controlled the cognitive levels (as (4) in original pool); 

and (3) items were divided into 44 bins according to format, content and cognitive levels (as (5) 

in the original pool).  For (2) and (3), the procedure of developing bins and the specifications for 

the shadow test were same as the corresponding procedure in the original pool. 

Recalibrated Pool  The five CAT procedures in the original pool were repeated in the 

recalibrated pool to explore the influence of adopting different IRT models.  Each bin contained 

25 items.  In the original pool, the magnitude of b-parameter was used as a criterion to divide the 

bins.  In contrast, the recalibrated pool took a-parameters into consideration.  When developing 

the bins for the recalibrated pool, within a same bin category (e.g., for the binary reading bins), 

the early bins had items with lower a-parameters, and later bins were more discriminative.  This 

strategy borrowed the idea of a-stratification design for CAT (Chang & Ying, 1999), which 

states that in the early stage of CAT, the estimated ability may be far from the true ability, and 

administering highly informative items at the beginning is a waste.   

Nested Difficulty 2PLM Pool  The three CAT procedures in the nested difficulty 3PLM 

pool were repeated in this pool.  Again, when developing the bins, later bins within a given item 

category (e.g., binary R3) had higher a-parameters.   

Balanced Item Pool   The five procedures in original pool were conducted in the balanced 

item pool to investigate the influence of pool shape.  For a given bin category, early bins 

contained items with lower a-parameters, while later bins had high a-parameters.   

Heterogeneous Testlet Pool  In all the pools above, the items within a testlet were 

homogeneous and the testlet can be regarded as a polytomous item.  However, in the 
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heterogeneous testlet pool, the polytomous items and testlet were different.  Although they both 

adopted polytomous scoring and were modeled by GPCM, a testlet involved multiple cognitive 

skills and made the content balance procedure tricky.  In this pool, the test specifications in Table 

3.1 are modified to Table 3.2. 

Table 3.2 Modified Test Specification for Heterogeneous Testlet Pool 

 Reading Writing Total 

 R1 R2 R3 W1 W2 W3 W4  

Dichotomous 7 17 6 2 2 2 0 36 

Polytomous 0 1 1 0 0 0 1 3 

Testlet  3 Reading   2 Writing 5 

The five testlet-based items contained 15 individual items in total, as each testlet had four 

scoring categories (0-3).  For the nine individual items in reading, one additional requirement 

was that each of R1, R2 and R3 should be measured by at least one item.  And for the six 

individual items in writing, each of W1, W2, and W3 was also measured at least by one item.   

Two CATs were assembled in the heterogeneous pool: (1) shadow test with constraints in 

Table 3.2, and maximum exposure rate of 0.2, as the shadow test in the original pool; (2) the 

combination of shadow test and bin-structured method, where bin structure controlled the item 

format and content area, and shadow test took charge of the requirement for test information, 

cognitive level, and exposure rate, as the combination of shadow test and bin-structured method 

in the original pool.  It should be noted the procedure in original pool where the cognitive skill 

was also controlled by bin-structure was not applicable here, since a testlet involved several 

skills and it was hard to build cognitive-skill-interchangeable bins.  

3.2.2 Short Tests 

To investigate whether test length would influence the results, a 22-item CAT was also 

simulated using all the pools above except the heterogeneous pool.  The proportion of each item 
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type is similar to the 44-item CAT, as Table 3.3 show. All the CAT procedures with long tests 

were repeated with constraints in Table 3.3. 

Table 3.3 Test Specification for 22-Item CAT 

 Reading Writing Total 

 R1 R2 R3 W1 W2 W3 W4  

Dichotomous 3 9 3 1 1 2 0 19 

Polytomous 0 1 1 0 0 0 1 3 

In summary, two test lengths (44/22) * six item pools (original 3PLM/nested difficulty 

3PLM/ recalibrated 2PLM/ nested difficulty 2PLM/ balanced/ heterogeneous testlet) * five CAT 

assembly approaches (dichotomous only/ mixed format without constraint/shadow test/ 

combination of shadow test and bin-structured method/ pure bin-structured) were simulated.  The 

MOSEK package in Matlab was used to solve the optimal information problem.  Each simulation 

covered examinees with 81 evenly spaced ability within [-4, 4], and all simulations were 

repeated 100 times.   

3.3 Evaluation Criteria 

Each testing simulation was evaluated by measurement, content, security, and item usage 

efficiency criteria.   

3.3.1 Measurement Criteria  

Evaluation of measurement was based on overall and conditional results (Robin, 2008).  

The overall statistics were obtained from all the 8100 (i.e., 81 ability levels *100 replications) 

examinees.  Conditional statistics were obtained from 100 replications at the given θ ability 

levels.  Both estimated indexes and true indexes were computed.  Estimated standard errors of 

measurement (SEM) were obtained through MLE and test information.  Furthermore, since one 

merit of the simulation study is the true value is known, the bias, mean absolute bias (MAB) and 
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RMSE (root-mean-standard-error) can be calculated based on true estimation error (   ̂).  

Smaller SEM, bias, MAB, and RMSE values indicate more accurate results.     

Conditional Statistics  Given a = 1, 2, ..., 100 replications, for a given   ,the true 

conditional bias (CB) is:  

        
 

   
∑   ̂       

           (3.1) 

The true conditional absolute bias (CAB) is: 

          
 

   
∑    ̂        

         (3.2) 

The conditional standard error of measurement (CSEM) is: 

           √
 

   
∑   ̂   ̅̂     

          (3.3) 

The conditional standard error of measurement can also be obtained from the test 

information as: 

             √
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         (3.4) 

Overall Statistics  The overall statistics pooled over all the j=1, 2, …, 8100 examinees to 

form a unique index evaluating the effect of test assembly.  The true overall bias (Bias) is: 
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          (3.5) 

The mean absolute bias (MAB) is: 
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         (3.6) 

The root mean squared error (RMSE) is: 

      √
∑   ̂     

     
   

    
        (3.7) 

where j refers to Examinee j.  
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3.3.2 Content Balance  

Content balance was evaluated by the proportion of assembled tests which could satisfy 

the specifications in Table 3.1 to Table 3.3.  Under each condition, the rate of deviation from 

specification for content, format, and cognitive skills were calculated separately.  As the shadow 

test and bin-structured methods force the item selection rule to incorporate the test specifications, 

all the tests should meet the requirements.   

3.3.3 Test Security  

CAT commonly uses item exposure rate and average item overlap to evaluate item 

exposure and test security (Way, 1998).  Specifically, the number of items achieving maximum 

exposure rate, distribution of item exposure rate, and distributions of overlap rate were reported 

in this study.   

As defined earlier, item exposure rate is the relative frequency with which an item is 

administered across all CAT administrations: 

          
 

 
          (3.8)  

where t refers to how many times a certain item is administered, and m is the total number of 

examinees.   

Another index used to evaluate test security was the test overlap rate.  For a pair of CATs 

with fixed length, the between-test overlap is the proportion of items appearing on both tests.  

The mean of the between-test overlaps across all possible pairwise tests is the average between-

test overlap (Way, 1998).  In this study, suppose m is the number of examinees (m=8100) and l is 

test length (l=44 or 22).  The overlap rate was calculated through (1) counting the number of 

shared items for each of the m*(m − 1)/2 pairs of examinees, (2) summing across all the m*(m − 
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1)/2 examinee pairs, and (3) dividing the total counts by l*m*(m − 1)/2.  Small overlap rate 

indicated higher security level. 

3.3.4 Item Usage  

The ideal item usage is achieved if all the items are utilized with equal frequency (Chang 

& Ying, 1999).  Therefore the distribution of item exposure rate and the number of never used 

items can also measure the item pool usage efficiency.   
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Chapter 4: Results 

This chapter summarizes the results of the simulation study described in Chapter 3.  The 

results are divided into two sections in response to the two research objectives proposed in 

Chapter 1.   

4.1 Research Question 1 

 To answer the question of whether the mixed CAT had advantages over the dichotomous-

item-based CAT, and what challenges the mixed CAT brought, the mixed CAT and dichotomous 

CAT without any constraint were compared in measurement, test security and item pool usage 

criteria.  No content balance evaluation was conducted since no content constraint was added in 

this case. 

4.1.1 Measurement Criteria 

The measurement criteria evaluated two facets of the CAT ability estimate: accuracy and 

stability.  While the conditional result demonstrates how findings vary across different ability 

levels, the overall result can provide summary information about the effectiveness of each 

method, and facilitates the interpretation (Robin, 2001).  Therefore both overall and conditional 

results are reported.   

Conditional Result   Information about bias and absolute bias indicates the accuracy, 

while conditional standard error of measurement (CSEM) shows the variation of the estimate 

around its mean and small value indicates a stable estimate.  Test-information-based conditional 

standard error of measurement (TCSEM) was also provided, which refers to the standard error of 

measurement calculated through the test information and small value means high stability.  The 

difference between CSEM and TCSEM is: CSEM refers to the variation around the mean of 

estimate, while TCSEM indicates the variation of the estimate around the true value; furthermore, 
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the TCSEM also assumes that the item parameters are true and the model fits the data well.  

There was no obvious difference in conditional bias of ability estimate between the mixed and 

dichotomous CAT, but at all ability levels, the mixed CAT had smaller absolute bias, CSEM, 

TCSEM, and larger test information.  See more details in Figure 4.1 (a)-(k) to Figure 4.5(a)-(k).  

Overall Result  Compared with the dichotomous CAT, the mixed CAT had smaller mean 

bias, mean absolute bias, and RMSE under all simulation conditions.  See more details in Table 

4.1 to 4.3.  

4.1.2 Test Security Criteria 

Item Exposure  The mixed CAT had more skewed item exposure rate distribution than 

the dichotomous CAT.  In the mixed CAT, several items were administered to most of the 

examinees, while almost 90% of the items were never used.  Further analysis showed that in the 

mixed CAT the items with highest exposure rate were all polytomously scored items.  See more 

details in Figure 4.6 to 4.10.   

Overlap Rate  The mixed CAT had higher overall overlap rate.  Also, along the whole 

ability continuum, it had higher conditional overlap rate than the dichotomous CAT.  See more 

details in Figure 4.12(a)-(k) and Table 4.5.  

4.1.3 Item Usage  

Since the more skewed item exposure rate distribution indicates less efficiency, the 

efficiency of item usage was lower in the mixed CAT than in the dichotomous CAT.  

Furthermore, under most circumstances more than 85% of the items in the mixed CAT were 

never used.  See more details in Table 4.6. 

In sum, the mixed CAT can lead to higher measurement accuracy and stability, in terms 

of both overall and conditional index.  However, it had higher overlap rate and more highly 
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exposed items, and less balanced item usage.  Operational CAT assembly should take these 

issues into considerations.  The section below compared three constrained CAT assembly 

methods in their effectiveness of dealing with these problems.  

4.2 Research Question 2 

 As stated before, the second research objective is to compare the STA with bin-structured 

method in mixed-Item CAT assembly and explore what were some factors that might influence 

any assembly effect.  In this section, the results are organized and presented according to the four 

criteria (i.e., measurement, content balance, test security, and item usage) used to evaluate the 

assembly approaches.   

4.2.1 Measurement Criteria 

In all the figures below, the label “Binary” refers to the CAT which only uses 

dichotomous items; “Mix” means the items are picked from the mixed item pool containing 

dichotomously and polytomously scored items and no constraint is imposed; “STA” refers to the 

shadow test with test constraints on item format, content area, cognitive ability and exposure rate; 

“Combination” refers to the CAT using bin structure to satisfy the requirements for item format 

and content area, while using STA to fulfill the demands for cognitive ability and exposure rate; 

and “Bin-Structured” means all the requirements except exposure rate are taken over by the bin 

structure.   

Conditional Result   

(1) Conditional Bias  Figure 4.1(a) to (k) reveal no substantial difference in conditional 

bias of ability estimate among the three constrained CAT assembly methods.  In other words, 

incorporating bin-structure will lead to comparable measurement accuracy to the STA.  In all the 

methods, the ability was overestimated at the lower end of ability continuum, and underestimated 
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at the upper end.  This trend was more obvious in the unbalanced pools.  Furthermore, in 

unbalanced pools the magnitude of bias was larger for the highly proficient examinees than for 

the examinees of extremely low proficiency, as the pool contained fewer informative items 

available for measuring the high ability levels.  Compared with other pools, the balanced pool 

had more flat conditional bias pattern and much smaller bias at the extreme abilities, because the 

balanced pool can provide more information at the ends of the ability continuum (see Figure 3.5).  

The heterogeneous pool had similar pattern as the balanced pool as the item parameters were the 

same in these two pools.  Given the ability level, the short tests had larger bias than the long tests.   

Figure 4.1(a) Conditional Bias for the Original Pool, 44 Items 
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Figure 4.1(b) Conditional Bias for the Nested Difficulty 3PLM Pool, 44 Items 

 
Figure 4.1(c) Conditional Bias for the Recalibrated Pool, 44 Items 
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Figure 4.1(d) Conditional Bias for the Nested Difficulty 2PLM Pool, 44 Items 

 
Figure 4.1(e) Conditional Bias for the Balanced Pool, 44 Items 
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Figure 4.1(f) Conditional Bias for the Heterogeneous Pool, 44 Items 

Figure 4.1(g) Conditional Bias for the Original Pool, 22 Items 
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Figure 4.1(h) Conditional Bias for the Nested Difficulty 3PLM Pool, 22 Items 

 
Figure 4.1(i) Conditional Bias for the Recalibrated Pool, 22 Items 

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



C
o

n
d

it
io

n
a
l 
B

ia
s

 

 

STA

Combination

Bin-Structured

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1



C
o

n
d

it
io

n
a
l 
B

ia
s

 

 

Binary

Mix

STA

Combination

Bin-Structured



64 
 

Figure 4.1(j) Conditional Bias for the Nested Difficulty 2PLM Pool, 22 Items 

Figure 4.1(k) Conditional Bias for the Balanced Pool, 22 Items 

(2) Conditional Absolute Bias (CAB)  Figure 4.2(a) to (k) show that along the entire 

ability continuum, the three constrained CAT assembly approaches had similar absolute bias 
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methods, compared with the unbalanced pools, the pattern of absolute bias in the balanced pool 

was more uniform, and the values at the upper end of the ability was much smaller than in the 

unbalanced pools, as the balanced pool can provide more information for the high ability 

examinees.  When the pool was balanced, all the four approaches involving polytomous items 

had smaller absolute bias than the binary CAT.  When the pool was unbalanced, within the 

relatively low ability range, CAT incorporating polytomous items performed better than the 

unconstrained binary CAT even when constraints were imposed to the mixed CAT, as the mixed 

pool contained many informative items in this spectrum.  Shorter tests had larger absolute bias 

than long tests given the ability level.  

 
Figure 4.2(a) Conditional Absolute Bias for the Original Pool, 44 Items 
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Figure 4.2(b) Conditional Absolute Bias for the Nested Difficulty 3PLM Pool, 44 Items 

Figure 4.2(c) Conditional Absolute Bias for the Recalibrated Pool, 44 Items
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Figure 4.2(d) Conditional Absolute Bias for the Nested Difficulty 2PLM Pool, 44 Items 

Figure 4.2(e) Conditional Absolute Bias for the Balanced Pool, 44 Items 
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Figure 4.2(f) Conditional Absolute Bias for the Heterogeneous Pool, 44 Items 

Figure 4.2(g) Conditional Absolute Bias for the Original Pool, 22 Items 
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Figure 4.2(h) Conditional Absolute Bias for the Nested Difficulty 3PLM Pool, 22 Items 

Figure 4.2(i) Conditional Absolute Bias for the Recalibrated Pool, 22 Items 
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Figure 4.2(j) Conditional Absolute Bias for the Nested Difficulty 2PLM Pool, 22 Items 

Figure 4.2(k) Conditional Absolute Bias for the Balanced Pool, 22 Items 

(3) Conditional Standard Error of Measurement (CSEM)  Figure 4.3(a) to (k) indicate 
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The CSEM in the balanced pool yielded a more uniform shape than in the other pools, as the 

balanced pool can provide informative items to measure examinees along the whole ability 

continuum (see Figure 3.5).  When the pool was balanced, binary CAT had largest SEM at all 

ability levels.  When the pool was unbalanced, within the range where the pool could provide 

more information, i.e., for the relatively low ability levels, the binary CAT still had larger SEM 

than the CAT assembly approaches using polytomous items.  Shorter tests had larger CSEMs.   

Figure 4.3(a) Conditional SEM for the Original Pool, 44 Items 
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Figure 4.3(b) Conditional SEM for the Nested Difficulty 3PLM Pool, 44 Items 

Figure 4.3(c) Conditional SEM for the Recalibrated Pool, 44 Items 
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Figure 4.3(d) Conditional SEM for the Nested Difficulty 2PLM Pool, 44 Items 

Figure 4.3(e) Conditional SEM for the Balanced Pool, 44 Items 
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Figure 4.3(f) Conditional SEM for the Heterogeneous Pool, 44 Items 

Figure 4.3(g) Conditional SEM for the Original Pool, 22 Items 
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Figure 4.3(h) Conditional SEM for the Nested Difficulty 3PLM Pool, 22 Items 

Figure 4.3(i) Conditional SEM for the Recalibrated Pool, 22 Items 
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Figure 4.3(j) Conditional SEM for the Nested Difficulty 2PLM Pool, 22 Items 

 
Figure 4.3(k) Conditional SEM for the Balanced Pool, 22 Items 

(4) Test Information Conditional Standard Error of Measurement (TCSEM)  The findings 
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limited informative items; in other pools these three methods didn’t have obvious differences.  

Under all conditions, the mixed CAT without constraint had smallest values of TCSEM.  In the 

unbalanced pools the TCSEM was higher at high ability levels.  In the balanced pool the binary 

CAT had highest TCSEM along the entire ability continuum, while in unbalanced pools it 

performed worse than STA, combination and bin-structured method only at the ability levels 

where the mixed pool could provide high test information.  Long tests had smaller TCSEM than 

short ones.  Again, the balanced pool yielded much flatter TCSEM plot, as the balanced pool can 

construct equally informative tests along the entire ability continuum.   

These findings were also supported by the conditional test information (CTI; see Figure 

4.5(a) to 4.5(k)).  Among the three constrained mixed-CAT assembly approaches, STA can 

provide slightly higher information for the examinees with extremely high or low proficiency in 

the unbalanced pools, since in these pools the quality of bins was compromised, and the STA had 

more options for item selection than the bin-structured method; in the balanced pool the 

advantage of STA in CTI diminished.  The mixed CAT without constraint always provided 

maximum test information.  When the mixed pool can provide high information, i.e., at all ability 

levels in the balanced pool and relatively low ability levels in the unbalanced pool, including 

polytomous items can enhance the test information.  In addition, it should be noted the CTI in the 

balanced pool had a bimodal distribution, as the pool information provided by the polytomous 

items in this pool was bimodal (see Figure 3.5).  
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Figure 4.4(a) TCSEM for the Original Pool, 44 Items 

Figure 4.4(b) TCSEM for the Nested Difficulty 3PLM Pool, 44 Items 
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Figure 4.4(c) TCSEM for the Recalibrated Pool, 44 Items 

 
Figure 4.4(d) TCSEM for the Nested Difficulty 2PLM Pool, 44 Items 
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Figure 4.4(e) TCSEM for the Balanced Pool, 44 Items 

 
Figure 4.4(f) TCSEM for the Heterogeneous Pool, 44 Items 
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Figure 4.4(g) TCSEM for the Original Pool, 22 Items 

 
Figure 4.4(h) TCSEM for the Nested Difficulty 3PLM Pool, 22 Items 
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Figure 4.4(i) TCSEM for the Recalibrated Pool, 22 Items 

 
Figure 4.4(j) TCSEM for the Nested Difficulty 2PLM Pool, 22 Items 
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Figure 4.4(k) TCSEM for the Balanced Pool, 22 Items 

 
Figure 4.5(a) CTI for the Original Pool, 44 Items 
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Figure 4.5(b) CTI for the Nested Difficulty 3PLM Pool, 44 Items 

 
Figure 4.5(c) CTI for the Recalibrated Pool, 44 Items 
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Figure 4.5(d) CTI for the Nested Difficulty 2PLM Pool, 44 Items 

 
Figure 4.5(e) CTI for the Balanced Pool, 44 Items 

-4 -3 -2 -1 0 1 2 3 4
0

10

20

30

40

50

60

70



C
o

n
d

it
io

n
a
l 
T

e
s
t 
In

fo
rm

a
ti
o
n

 

 

STA

Combination

Bin-Structured

-4 -3 -2 -1 0 1 2 3 4
0

10

20

30

40

50

60

70



C
o

n
d

it
io

n
a
l 
T

e
s
t 
In

fo
rm

a
ti
o
n

 

 

Binary

Mix

STA

Combination

Bin-Structured



86 
 

 
Figure 4.5(f) CTI for the Heterogeneous Pool, 44 Items 

 
Figure 4.5(g) CTI for the Original Pool, 22 Items 
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Figure 4.5(h) CTI for the Nested Difficulty 3PLM Pool, 22 Items 

 
Figure 4.5(i) CTI for the Recalibrated Pool, 22 Items 
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Figure 4.5(j) CTI for the Nested Difficulty 2PLM Pool, 22 Items 

 
Figure 4.5(k) CTI for the Balanced Pool, 22 Items 

Overall Result   

(1) Bias   Table 4.1 indicates that the mixed CAT without constraint always has smaller 
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unbalanced pools the STA has smaller bias than the other two approaches.  Short tests had larger 

bias than the corresponding long tests.  The overall bias in the balanced pool was 0, while other 

pools led to slightly positive bias.   

Table 4.1 Overall Bias of Ability Estimate 

  Binary Mix STA Combination Bin 

Long Original 0.03 0.01 0.02 0.03 0.03 

 Nested 3PLM 0.03 0.01 0.02 0.03 0.03 

 Recalibrated 0.02 0.01 0.02 0.04 0.02 

 Nested 2PLM 0.02 0.01 0.02 0.03 0.03 

 Balanced 0.00 0.00 0.00 0.00 0.00 

 Heterogeneous 0.00 0.00 0.00 0.00 NA 

Short Original 0.04 0.02 0.03 0.05 0.05 

 Nested 3PLM 0.04 0.02 0.04 0.03 0.03 

 Recalibrated 0.03 0.02 0.03 0.03 0.04 

 Nested 2PLM 0.03 0.02 0.03 0.03 0.04 

 Balanced 0.00 0.00 0.00 0.00 0.00 

(2) Mean Absolute Bias (MAB)  Table 4.2 shows that the mixed CAT has smallest overall 

mean absolute bias in all simulation conditions, while binary CAT has the largest MAB; STA 

outperforms the combination and bin-structured method when the pools are unbalanced.  Long 

tests had smaller MAB than the short tests.  

Table 4.2 Overall Mean Absolute Bias (MAB) 

  Binary Mix STA Combination Bin 

Long Original 0.34 0.21 0.31 0.34 0.34 

 Nested 3PLM 0.34 0.21 0.33 0.36 0.35 

 Recalibrated 0.35 0.22 0.31 0.35 0.34 

 Nested 2PLM 0.35 0.22 0.34 0.35 0.34 

 Balanced 0.25 0.12 0.20 0.20 0.20 

 Heterogeneous 0.25 0.12 0.19 0.19 NA 

Short Original 0.47 0.28 0.41 0.46 0.46 

 Nested 3PLM 0.47 0.28 0.46 0.48 0.47 

 Recalibrated 0.46 0.28 0.43 0.45 0.45 

 Nested 2PLM 0.46 0.28 0.46 0.47 0.46 

 Balanced 0.35 0.15 0.30 0.28 0.27 

(3) Root Mean Squared Error (RMSE)   Table 4.3 shows that the smallest value of overall 

RMSE is obtained in mixed CAT without constraint.  STA had more stable estimate than the 
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combination and bin-structured method in unbalanced pools.  The estimate from the short tests 

had larger RMSE than for the long tests.  

Table 4.3 RMSE of Estimate 

  Binary Mix STA Combination Bin 

Long Original 0.44 0.28 0.41 0.47 0.46 

 Nested 3PLM 0.44 0.28 0.44 0.47 0.47 

 Recalibrated 0.46 0.29 0.42 0.47 0.46 

 Nested 2PLM 0.46 0.29 0.46 0.47 0.46 

 Balanced 0.32 0.15 0.25 0.25 0.25 

 Heterogeneous 0.32 0.15 0.24 0.24 NA 

Short Original 0.60 0.37 0.53 0.61 0.60 

 Nested 3PLM 0.60 0.37 0.60 0.63 0.61 

 Recalibrated 0.61 0.38 0.56 0.61 0.60 

 Nested 2PLM 0.61 0.38 0.62 0.62 0.61 

 Balanced 0.45 0.20 0.38 0.36 0.35 

4.2.2 Content Balance 

 As expected, all assembled CAT fulfilled the pre-determined requirements for content 

area, cognitive ability and item format.  This is because STA and bin-structured method combine 

the goal of administrating highly informative items with an algorithm that imposes the test 

constraints on the item selection (van der Linden, 2005; He, 2010). 

4.2.3 Test Security 

Distribution of Item Exposure Rate   

(1) Original Item Pool  Figure 4.6(a) to (b) indicate that among the three CAT procedures 

with constraints, STA has the longest tail in exposure rate distribution, and fewest items 

achieving the maximum exposure rate of 0.2.  In other words, STA had more balanced item 

exposure and higher item usage efficiency than the combination and bin-structured method. 
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Figure 4.6(a) Exposure Rate Distribution for the Original Pool, 44 Items

Figure 4.6(b) Exposure Rate Distribution for the Original Pool, 22 Items 

(2) Nested Difficulty 3PLM Pool   This pool yielded a similar tendency as the original 

pool: compared with the combination method and bin-structure method, the shadow test 

approach had fewer highly exposed items and unused items. 
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Figure 4.7(a) Exposure Rate Distribution for the Nested Difficulty 3PLM Pool, 44 Items 

Figure 4.7(b) Exposure Rate Distribution for the Nested Difficulty 3PLM Pool, 22 Items 

(3) Recalibrated Pool  In contrast with the original pool and the nested difficulty 3PLM 

pool, among the three CATs with constraints, the combination and bin-structured method had 

longer tails for the exposure rate distribution, meanwhile the numbers of items reaching 

maximum exposure rate for these two methods were smaller than the STA.  In addition, the 

combination method performed slightly better than the bin-structured method. 
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Figure 4.8(a) Exposure Rate Distribution for the Recalibrated Pool, 44 Items 

 
Figure 4.8(b) Exposure Rate Distribution for the Recalibrated Pool, 22 Items 

(4) Nested Difficulty 2PLM Pool  The nested difficulty 2PLM pool presented a similar 

pattern as the recalibrated pool.  STA had more items reaching the maximum exposure rate, and 

also more unused items.  The combination method still performed better than the bin-structured 

method.  
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Figure 4.9(a) Exposure Rate Distribution for the Nested Difficulty 2PLM Pool, 44 Items 

Figure 4.9(b) Exposure Rate Distribution for the Nested Difficulty 2PLM Pool, 22 Items 

(5) Balanced Pool  Compared with STA, the combination and pure bin-structured method 

had fewer unused items or highly exposed items, and the difference was more obvious than in 

the unbalanced pools.  The combination method outperformed the bin-structured method. 

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Item Number(Ordered by Exposure Rate)

E
x
p
o

s
u

re
 R

a
te

 

 

Binary

Mixed

STA

Combination

Bin-Structured

0 100 200 300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Item Number(Ordered by Exposure Rate)

E
x
p
o

s
u

re
 R

a
te

 

 

Binary

Mixed

STA

Combination

Bin-Structured



95 
 

Figure 4.10(a) Exposure Rate Distribution for the Balanced Pool, 44 Items 

Figure 4.10(b) Exposure Rate Distribution for the Balanced Pool, 22 Items 

(6) Heterogeneous Pool  The difference between STA and the strategy of incorporating 

the bin-structure was more obvious for the heterogeneous pool.  The combination method had 

more balanced item exposure, i.e., fewer unused items and also fewer highly-exposed items.   
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Figure 4.11 Exposure Rate Distribution for the Heterogeneous Pool, 44 Items 

In sum, for the original pool and nested difficulty 3PLM pool (which was also based on 

the original pool), STA had fewer highly exposed items.  For the recalibrated pool, nested 

difficulty 2PLM pool (also based on the recalibrated pool), balanced pool and heterogeneous 

pool, the combination and bin-structured method performed better than STA in test security, and 

the combination method had the least skewed item exposure rate distribution.  The improvement 

caused by incorporating the bin-structured strategy was more obvious in the balanced pool.  In 

all cases, the most skewed exposure rate distribution existed for the mixed CAT without 

constraint, where polytomous items were vulnerable to over-exposure problem.   

To facilitate the comparison among three constrained CAT assembly approaches, Table 

4.4 shows the number of items achieving the highest exposure rate (i.e., 0.2) in each method.  

The information conveyed by Table 4.4 is same as the above:  for the original pool and nested 

difficulty 3PLM pool, STA had fewer items achieving maximum exposure rate; in all the other 

pools, especially in the balanced pool, the combination and bin-structured method were better 
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rate.  Long tests led to more items at the risk of being highly exposed as more items were 

administered.  

Table 4.4 Number of Items Achieving the Highest Exposure Rate 

 Long Test Short Test 

 STA Combination Bin STA Combination Bin 

Original 110 141 148 46 61 63 

Nested Difficulty 3PLM 110 147 153 50 61 74 

Recalibrated 118 107 117 53 49 53 

Nested Difficulty 2PLM 128 118 116 59 51 54 

Balanced 90 28 35 38 11 22 

Heterogeneous 83 29     

*Note: Each pool contains 1100 items.   

Overlap Rate   

(1) Overall Overlap Rate  Table 4.5 summarizes the overall overlap rate under each 

condition.  The short tests had lower overall overlap rates than the long tests.  When imposing 

the constraints, for the original pool and nested difficulty 3PLM pool, the STA performed best in 

terms of overlap rate; in all the other pools, the combination method and bin-structured method 

led to lower overall overlap rate.  All the constrained CAT had smaller overlap rate than the 

unconstrained CAT.  The difference between combination and bin-structured method was not 

obvious. 

Table 4.5 Overall Overlap Rate 

  Binary Mix STA Combination Bin 

Long Test Original POOL 0.26 0.38 0.14 0.17 0.17 

Nested Difficulty 3PLM Pool 0.26 0.38 0.15 0.17 0.17 

Recalibrated Pool 0.31 0.39 0.17 0.14 0.15 

Nested Difficulty 2PLM Pool 0.31 0.39 0.17 0.15 0.15 

Balanced Pool 0.24 0.32 0.16 0.10 0.12 

Heterogeneous Bin 0.24 0.32 0.15 0.11 NA 

Short Test Original POOL 0.22 0.32 0.12 0.15 0.15 

Nested Difficulty 3PLM Pool 0.22 0.32 0.14 0.16 0.17 

Recalibrated Pool 0.31 0.32 0.16 0.14 0.15 

Nested Difficulty 2PLM Pool 0.31 0.32 0.16 0.14 0.15 

Balanced Pool 0.25 0.22 0.15 0.09 0.12 

*Note: The red indicates the CAT assembly approach of lowest overall overlap rate. 
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(2) Conditional Overlap Rate (COR)  Figure 4.12(a) to (k) show the overlap rate 

conditioning on the ability level.  In all cases, mixed CAT had the highest conditional overlap 

rate along the whole ability continuum, followed by the binary CAT.  For constrained CAT, 

generally STA had higher conditional overlap rate, and the bin-structured method performed 

slightly better than the combination method; the overlap rate for extremely high or low proficient 

examinees was higher than the examinees of medium ability, as the pool contained more 

informative items within the middle range of the ability continuum.  The advantage of the 

combination and bin-structured methods was more obvious at extreme ability levels.  One may 

concern that the early replications might be uncontrolled and therefore more overlapped, while 

the later replications were highly constrained, since the simulation completed one replication 

which covered the whole ability continuum (i.e., -4 to 4), then proceed the next replication.  

However the comparison between the first fifty replications and the last fifty ones indicated no 

difference in conditional overlap rate.  

Figure 4.12(a) COR for the Original Pool, 44 Items 
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Figure 4.12(b) COR for the Nested Difficulty 3PLM Pool, 44 Items 

 
Figure 4.12(c) COR for the Recalibrated Pool, 44 Items 
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Figure 4.12(d) COR for the Nested Difficulty 2PLM Pool, 44 Items 

 
Figure 4.12(e) COR for the Balanced Pool, 44 Items 
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Figure 4.12(f) COR for the Heterogeneous Pool, 44 Items 

Figure 4.12(g) COR for the Original Pool, 22 Items 
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Figure 4.12(h) COR for the Nested Difficulty 3PLM Pool, 22 Items 

 
Figure 4.12(i) COR for the Recalibrated Pool, 22 Items 
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Figure 4.12(j) COR for the Nested Difficulty 2PLM Pool, 22 Items 

 
Figure 4.12(k) COR for the Balanced Pool, 22 Items 

 One observation was that for the medium ability levels, the STA had quite low overlap 

rate for the original pool and nested difficulty 3PLM pool, even lower than the other two 

constrained CAT assembly methods.  A plausible explanation will be included in Chapter 5.   
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4.2.4 Item Usage  

 The previous figures for the item exposure rate distributions also provide information for 

evaluating the item usage: the more skewed distribution indicates less efficiency.  It has been 

shown that when imposing the constraints, in the original pool and nested difficulty 3PLM pool, 

STA had higher efficiency, while in all the other pools the bin-structured and combination 

method were more efficient.   

The number of unused item can also work as an item usage index.  Table 4.6 presents the 

proportion of unused items under each condition.  Mixed CAT always had the most unused items.  

For the original and nested difficulty 3PLM pool, STA had fewer unused items; this is consistent 

with the long tails in exposure rate distribution in Figure 4.6 and 4.7.  While for other pools the 

combination and bin-structured method had fewer wasted items than STA.   

Table 4.6 Proportion of Unused Items 

 Long Test 

 Binary Mix STA Combination 

Original 0.00 0.86 0.08 0.35 

Nested 

Difficulty 

3PLM 

0.00 0.86 0.08 0.44 

Recalibrated 0.76 0.87 0.66 0.34 

Nested 

Difficulty 

2PLM 

0.76 0.87 0.66 0.34 

Balanced 0.72 0.85 0.61 0.21 

Heterogeneous 0.72 0.85 0.72 0.23 

 Short Test 

Original 0.01 0.90 0.11 0.49 

Nested 

Difficulty 

3PLM 

0.01 0.90 0.12 0.62 

Recalibrated 0.87 0.90 0.81 0.61 

Nested 

Difficulty 

2PLM 

0.87 0.90 0.82 0.60 

Balanced 0.84 0.88 0.79 0.50 
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Chapter 5: Summary and Discussion 

This chapter contains a summary and a discussion.  To start with, the research objectives, 

methodology used in this study, and results are summarized.  The second section has the 

discussion of the major findings.  The last part discusses the implications and limitations of this 

study, and also provides suggestions for future research. 

5.1 Summary of This Study 

 The main purposes of this study were (1) to investigate whether the mixed-item-based 

CAT had advantages over the dichotomous-item-based CAT and what challenges it brought; (2) 

to compare the STA with the bin-structured method in mixed-item CAT assembly, and to 

explore what were some factors that might influence the assembly effect.  A simulation study 

was conducted to compare five CAT test assembly approaches (i.e., binary CAT, mixed CAT, 

STA, combination of STA and bin-structured method, and bin-structured method) in a variety of 

testing situations specifying the test objectives and constraints.  The goal of the simulated CAT 

was to construct efficient, content (including content areas, item format and cognitive skills) 

balanced and secure tests.  The effectiveness of assembly was evaluated through four types of 

criteria, including measurement, content balance, test security and item usage.  The shape of item 

pool, test length, and imposed constraints were manipulated to explore how the findings varied.   

5.1.1 Measurement Criteria 

No difference in conditional bias of ability estimate among the five CAT assembly 

methods was found.  The ability was overestimated at the lower end of ability continuum, and 

underestimated at the upper end; the magnitude for underestimation was larger.  This trend was 

more obvious when the unbalanced pool was used, as the pool contained fewer informative items 
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for measuring the high ability levels.  Conditional on ability level, short tests had larger bias than 

the long tests.   

Along the entire ability continuum, the mixed CAT always had smallest absolute bias and 

SEM among the five CAT assembly approaches.  The absolute bias and SEM for high-

proficiency examinees was larger than the examinees at other ability levels.  The three 

constrained CAT assembly approaches had similar results.  When the pool was balanced, all the 

four approaches involving polytomous items had smaller absolute bias and SEM than the binary 

CAT.  When the pool was unbalanced, within the relatively low ability range, CAT incorporating 

polytomous items performed better than the unconstrained binary CAT even when constraints 

were imposed to the mixed CAT, as the pool contained many informative items in this range.  

Shorter tests had larger absolute bias and SEM than long tests given the ability level.  The 

information from TCSEM also reinforced these findings. 

In terms of overall measurement issues, the mixed CAT worked best.  STA had smaller 

bias, MAB and RMSE than the combination and bin-structured method in unbalanced pools.   

5.1.2 Content Balance 

  All the simulations satisfied the content balance requirements.   

5.1.3 Item Exposure Rate Distribution 

In sum, with the original pool and nested difficulty 3PLM pool (also based on the original 

pool), STA had fewer high-exposure items and lower overall overlap rate.  For the recalibrated 

pool, nested difficulty 2PLM pool (also based on the recalibrated pool), balanced pool and 

heterogeneous pool, the combination and pure bin-structured method performed better than STA 

in test security, and the combination method had least skewed item exposure rate distribution.  

The improvement caused by incorporating bin-structured strategy was more obvious in the 
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balanced pool.  In all cases, the most skewed exposure rate distribution and highest overlap rate 

existed in the mixed CAT without constraint, where polytomous items were vulnerable to over-

exposure.   

Conditioning on ability level, generally STA had higher conditional overlap rate, and the 

bin-structured method performed slightly better than the combination method; the overlap rate 

for extremely high or low ability examinees was higher than the examinees of medium ability, as 

the pool contained more informative items within the middle range of the ability continuum.  The 

advantage of the combination and bin-structured method was more obvious at extreme ability 

levels.   

5.1.4 Item Usage 

The efficiency of item usage was lowest in mixed CAT.  When imposing the constraints, 

in the original pool and nested difficulty 3PLM pool, STA had higher efficiency, while in all the 

other pools the bin-structured and combination method were more efficient.   

5.2 Discussion of Major Findings 

5.2.1 Incorporating Polytomous Items into CAT 

As stated before, polytomous items are receiving growing attention in CAT, as it can 

evaluate an examinee's partial knowledge, assess high-level cognitive skills, and improve the test 

validity.  The development of polytomous response models and progress in computer 

computation allow for future flourishing application of polytomous items in CAT, and expanding 

the use of polytomous items in CAT is already on the agenda.  This study confirmed the 

contribution of polytomous items to building an effective CAT, as in all conditions the mixed 

CAT led to smaller bias, absolute bias, and SEM than other CAT assembly methods.  However 

one consequent problem is over-exposure of the polytomous items, as the highly informative 
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items are tend to be more frequently selected.  This problem was also verified in this study: the 

mixed CAT had the most skewed exposure rate distribution, and further analysis showed that the 

highly exposed items were all polytomous items.  Considering the tedious work of developing 

the polytomous items, how to protect them from severe security problems was a critical issue.  

One related problem for mixed CAT was its low item usage efficiency, as a lot of items (mainly 

dichotomous items) were unused. 

When adding constraints to CAT assembly, especially the rules to control the exposure 

rate, the CAT efficiency would be compromised as maximum information was no longer the 

unique criterion for selecting items; this was reflected by the increasing bias and SEM.  This 

influence might be aggravated if the psychometric properties of items were entangled with the 

categorical attribute specified in the blueprint, e.g., content area.  This was why the nested 

difficulty 3PLM pool performed worse than the original pool (i.e., had larger MAB and RMSE), 

and nested difficulty 2PLM pool was worse than the recalibrated pool.  The requirement for 

content balance forced the examinees to take less informative items, and therefore the efficiency 

of CAT was reduced.  However the constraints may balance the item usage: fewer items were 

suffering from high-exposure.  This study only set an upper bound for exposure rate, but a lower 

bound could also be set to reduce the underused items.  Appropriate boundary value should be 

determined to guarantee that the pool has reasonable item usage while the assembled CAT can 

still estimate the ability efficiently.  

5.2.2 Comparing STA and Bin-Structured Method 

Both STA and bin-structured method have the same goal for test construction: optimize a 

test’s measurement efficiency and ensure the test can satisfy all the test specifications.   But they 

proceed in different ways.  The STA finds a unique and optimal solution for every examinee; this 
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can effectively construct highly informative test, but the cost is also high.  Because searching for 

the best solution is conducted in the entire pool, the computation in STA may be formidable.  On 

the other hand, the bin-structured approach partitions the item bank into non-overlapping item 

sets so that each item selection step is completed within a bin, which greatly simplifies the item 

selection procedures. 

Besides reducing the calculation burden, the bin-structured method also has other 

advantages.  By dividing the items into bins in accordance with the pre-specified test length and 

specifications, the bin-structured method automatically produces content valid tests.  This 

template takes care of the feasibility issues that most item selection algorithms have to face to, 

and also can be reviewed in advance to enhance the test validity (Robin, 2005).  Furthermore, as 

the bin-structured method adopts a unique template for all examinees, tests across examinees will 

be more similar to each other; the examinees are less likely to be disturbed by unexpected item 

topic or format sequences (Davey, 2005), and the context effect will be diminished.  By 

eliminating the factors irrelevant to the target trait but influencing the performance, the bin-

structured method makes the tests more comparable across the examinees.   

Bin-structure can also help to improve the item usage.  In this study, the bin-structured 

method had a lower conditional overlap rate than STA, especially for examinees of extremely 

high or low ability; and it also had more balanced item exposure rate distribution in most of the 

pools, with the only exception in the original pool and nested difficulty 3PLM pool.  An 

explanation for this result will be provided later.  In addition, as the item selection was conducted 

in each bin, the item replacement and exposure control would be easier in bin-structured method.   

One intuition is that the bin-structured method may construct less informative tests than 

STA, as the STA selects the next item in the entire pool and is less restricted.  However this 
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study showed this was not necessarily the case: the bin-structure method had comparable 

conditional bias and SEM to STA.  The reason was that when developing the bins, the later bins 

contained more informative items, which improved the effectiveness of bin-structured method.  

This emphasized the importance of producing and organizing bins properly.  An example (see 

Table 5.1) on item usage in bin-structured method would be given later to underline the 

significance of producing proper bins.  

5.2.3 Developing Bins Properly 

Whether the bin-structured method performs well depends on the quality of bins. 

Whether the bins can be divided efficiently is influenced by the characteristics of the item pool.  

For instance, in this study, in most cases, the bin-structured method can assemble equally good 

or even better CATs than STA.  One exception was that in the original and nested difficulty 

3PLM pool, STA had slightly smaller TCSEM than the combination and bin-structured method, 

especially at the extreme ability levels.  This was due to the fact that the item pools had fewer 

informative items for examinees within this ability range and the quality of developed bins 

would be compromised, while the STA had more options as it searched for the optimum item in 

the whole pool.  

An example may help focus in on the influence of item pool on the bin-structured method.  

Table 5.1 compares the combination method in nested difficulty 3PLM pool and balanced pool.  

When dividing the items in nested difficulty 3PLM pool into bins, the distance between b-

parameter and 0 was used as the criterion: items in early bins were closer to 0, and in later bins 

were further from 0.  However as the pool contains more easy items than hard items, the later 

bins may have a large proportion of items with low b-parameter and only a few items appropriate 

for measuring high-proficiency examinees.  Therefore as shown in Table 5.1, in the nested 
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difficulty 3PLM pool, in a given bin, only a limited number of items are selected and they are 

administered to many examinees, while in the balanced pool the item usage distribution is more 

flat.  Therefore when adopting the combination method, the overlap rate in nested difficulty 

3PLM pool (0.1714) was much higher than in the balance pool (0.1027).   

Table 5.1 Comparing Item Usage of Combination Method in Different Pools 

 Bin 10 Bin 20 Bin 30 

Item 

ID 

Nested 

Difficulty 

3PLM  

Balanced 

Pool 

Nested 

Difficulty 

3PLM  

Balanced 

Pool 

Nested 

Difficulty 

3PLM  

Balanced 

Pool 

1 8 1621 1 18 50 396 

2 1621 177 803 55 1 226 

3 0 116 1 64 3 117 

4 0 191 0 147 2 45 

5 1460 5 5 166 10 11 

6 1621 89 0 177 7 716 

7 0 261 1621 197 21 391 

8 0 515 0 234 5 154 

9 0 114 1 255 2 27 

10 0 73 1 493 2 29 

11 0 202 5 500 1 1540 

12 0 11 1621 508 66 234 

13 0 565 550 544 6 226 

14 67 4 92 567 6 522 

15 0 57 3 568 0 1302 

16 1621 1445 0 598 1621 133 

17 0 763 7 666 4 272 

18 0 85 1621 690 19 179 

19 81 265 1 697 16 465 

20 0 131 0 703 1382 217 

21 0 113 64 807 1621 211 

22 0 173 1 825 1621 615 

23 1621 811 1621 861 12 0 

24 0 48 76 896 1 0 

25 0 265 5 947 1621 72 

One relevant observation was that for the ability range [-2, 0], the STA had quite a low 

overlap rate in the original pool and nested difficulty 3PLM pool, even lower than the other two 

constrained CAT assembly methods.  One possible explanation was that: compared with other 



112 
 

pools, the original pool and nested difficulty 3PLM pool had more items informative for this 

ability range, and therefore provided more options for STA.  As a consequence, STA achieved 

lower overlap rates in these two pools.  Figure 5.1 to 5.2 support this explanation.   

 
Figure 5.1 Distribution of Item Information at  =-1 in Recalibrated Pool 

 
Figure 5.2 Distribution of Item Information at  =-1 in Nested Difficulty 3PLM Pool 
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 In sum, the bin structure can improve test security without losing measurement accuracy, 

but only when the item pool is big enough or balanced so that each bin contain items appropriate 

for measuring the whole ability continuum.  The test developers should check how the pool 

functions first and then decide whether bin structure can be used.   

5.3 Implications and Limitations 

The major findings from the this simulation study verified the enhancement of 

measurement accuracy brought by including polytomous items in CAT, however it also 

identified the over-exposure problem of polytomous items.  Therefore in mixed CAT the item 

selection procedure should contend with the issue of how to maintain high measurement 

efficiency while guarantee the test security and content balance.  This study supported the 

application of bin-structured method in mixed CAT as it can produce equal or even better 

outcomes than the traditional STA with respect to the four major criteria.  Meanwhile it can also 

simplify the computation involved in CAT, standardize the look of the test, provide good control 

over the content sequences in advance, and facilitate item replacement and exposure control.  In 

fact the bin-structured method also has other advantages which were not revealed in this study.  

For example, it’s powerful in dealing with the item enemies: the item enemies can be put in the 

same bin; as each bin only contributes one item, selecting one item will rule out its enemies.  

This study also had some limitations.  First, all simulations adopted the fixed length 

stopping rule, and the number of bins was equal to the test length.  Real CATs also widely use 

other stopping rule such as fixed precision; in this case the test length will vary across examinees, 

and how many bins are needed requires further investigation.  One plausible solution is to 

develop as many bins as the maximum test length, and each CAT only picks part of bins for item 
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selection.  But the test developers should organize the sequence of bins carefully so that each 

administration can satisfy the requirement for content balance.   

Second, this study set fixed proportions for each content area.  Further research can set 

upper and lower bounds for content balance requirements, for example, the CAT might require 

that at least 10% of the items are polytomous.  This change will bring difficulty to bin 

development, as the number of bins in each content area is not determined.  Again, one possible 

solution is to make the number of bins of a certain type equal to the upper bound of the 

requirement for this category.   

Third, only one template was used in this study.  Operational CAT can develop multiple 

templates to further reduce overlap rate and improve item usage.  The number of required 

templates depends on the characteristics of the item pool and the tested population.  Future study 

can investigate how to develop parallel templates efficiently.   

Fourth, the number of items in different bins kept the same in this study.  Future research 

can vary the bin size in different CAT stages.  For example, the later bins may contain more 

items than the early bins since the later bins are expected to provide accurate measurement along 

a wider ability range.  Following research can also investigate what the minimum number of item 

in each bin is.  

Fifth, the original OSSLT was designed for a single cut-score and following analysis may 

focus the results around the cut-score, and investigate the influence of the cut-score.  Another 

potential research direction is to use bin-structure in computerized classification testing, where 

the goal is to classify examinees in an adaptive way.   
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At last, the simulation set even-space distribution for the examinee ability, which may 

overweigh the tails of the distribution.  Future research may set normal or empirical distribution, 

or attach different weight to see how the results vary. 

In sum, this study supported the application of polytomous items in CAT, as they can 

enhance test validity, as well as measurement accuracy and stability.  However it also showed 

that the polytomous items were more vulnerable to over-exposure.  Both STA and bin-structured 

method could help to control item exposure rate in mixed-item-based CAT; meanwhile, they 

could satisfy all the test requirements.  When the item pool was not severely skewed and bins can 

be developed properly, the bin-structured method was recommended.  
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