. 5f o..V A -. an“. _._-. ..... m... u .m . u.. (‘1‘ f» «H ‘ “"51 V. 33 ~ if“ 7%‘1: . I" .u"l,_gr-12?& ”gig: . «.‘A is: a o ,0. .l5L. ”'12 j- ". 2 H331 ‘. Ik.‘ ,1 L“: *9 .‘ >911: n ~a‘.‘ o 1 I bib“ .59» H 0.»: . .4: xxx: ’ -. m. . I 7"" '3 L "Mfg: -‘ 1.1.." f’F-pv -.:: 3 * LIBRARY 2096 Mick}: “‘ State University This is to certify that the dissertation entitled TRANSCRIPTION FACTORS THAT CONFIGURE THE LOW TEMPERATURE TRANSCRIPTOME OF ARABIDOPSIS THALIANA presented by Jonathan Thomas Vogel has been accepted towards fulfillment of the requirements for the PhD. degree in Cell and Molecular Biology Wk fiajor Professor’s Signature 5/9/05/ / ’/ Date MSU is an Affirmative Action/Equal Opportunity Institution PLACE IN RETURN BOX to remove this checkout from your record. To AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested. DATE DUE DATE DUE DATE DUE * 2/05 cszC/DmoOtnfiud-nts TRANSCRIPTION FACTORS THAT CONFIGURE THE LOW TEMPERATURE TRANSCRIPTOME OF ARABIDOPSIS THALIANA By Jonathan Thomas Vogel A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Program in Cell and Molecular Biology 2005 ABSTRACT TRANSCRIPTION FACTORS THAT CONFIGURE THE LOW TEMPERATURE TRANSCRIPTOME OF ARABIDOPSIS THALIANA By Jonathan Thomas Vogel Many plants can sense low temperature and respond by altering gene expression. These changes in gene expression can ultimately lead to increased freezing tolerance as part of a dynamic physiological process known as cold acclimation. One well known pathway that contributes to cold acclimation is the CBF/DREB] cold response pathway. This pathway includes the action of the transcriptional activators CBF], 2, and 3 (also known as DREBI b, c, and a, respectively) that are rapidly induced in response to low temperature and activate the expression of a suite of target genes, known as the CBF regulon. The CBF regulon gene products act in concert to increase plant freezing tolerance. Work in this dissertation focused on gaining a better understanding of the changes in gene expression that occur in response to low temperature, the extent to which the CBF pathway contributes to these changes, and whether six other transcription factors that were coordinately regulated with CBF 2 affected cold-responsive genes. In this work, the Affymetrix GeneChip containing probe sets for approximately 24,000 genes was used to define a core set of cold-responsive transcripts. A total of 514 transcripts were found to have altered transcript accumulation, 302 of which were up- regulated and 212 down-regulated, in plants grown in two commonly used growth conditions (soil and solid media). These genes were termed the COS (gold standard) gene set. Hierarchical clustering assigned each transcript to one of seven expression classes and bioinformatic analysis revealed multiple novel potential cis-elements present in the promoters of genes in each expression class. Further bioinforrnatic analysis revealed additional motifs among one of these expression classes, cluster III, but experiments indicated no evidence that any of the novel motifs in clusters H1 or IV were cold-responsive. One element, GTGATCAC, conferred constitutive GUS activity when fused as a tetramer in front of the reporter. A functional analysis of the COS transcripts revealed how the plants might be globally altering their metabolism in order to cope with low temperature, which has generated a number of new hypotheses that can be tested. Plants overexpressing CBF 2 or one of six transcription factors that were coordinately regulated with CBF 2 were also profiled using the GeneChips. The CBF2 regulon was comprised of 85 cold-induced and eight cold-repressed genes. Of the six genes that were induced in parallel with CBF 2 only one, ZA T12, influenced cold- responsive genes when constitutively expressed. The ZAT12 regulon contained nine cold-induced genes and 15 cold-repressed genes. Constitutive expression of ZA T12 resulted in a small, but reproducible increase in freezing tolerance, indicating a role for ZAT12 in cold acclimation. ZAT12 also appeared to have a role in a negative regulatory circuit that dampened expression of the CBF genes. Constitutive expression of ZAT12 dampened CBF transcript accumulation in response to low temperature, while decreased levels of ZA T12 resulted in higher levels of CBF transcript accumulation. The definition of the COS genes provides a framework on which the low temperature regulatory networks of Arabidopsis can be constructed and this dissertation begins this process by defining two regulons, the CBF2 and ZAT12 regulons. Future experiments will expand our knowledge of these and other networks and could eventually lead to novel strategies for engineering plants with increased stress tolerance. ACKNOWLEDGEMENTS In the completion and writing of this dissertation, I would like to first and foremost thank my wife Kelly, to whom I am indebted for endless love and support. Besides making life worth living, her editing skills are superb. I would also like to thank my mentor, Michael Thomashow, whose guidance made this dissertation possible. For their helpful guidance and advice, I thank my committee; John Ohlrogge, Steve Triezenberg, Ken Keegstra, and Tim Zacharewski. Thanks to my family, especially my parents, Thomas and Margery Vogel, whose years of love while raising me allowed me to grow into the person I am today. Thanks also to all the members of the Thomahsow laboratory who provided intellectual stimulation and created a great working environment. I truly enjoyed my time in the lab. Thanks specifically to those members I have worked with, including Keenan Amundsen, Corien Bakermans, Donatella Canella, Marcela Carvallo, Diane Constan, Daniel Cook, Colleen Doherty, Sarah Fowler, Sarah Gilmour, Michael Mikellsen, Susan Myers, Ritu Sharma, Lahong Sheng, Heather Van Buskirk, Ryan Warner, Daniel Zarka, and Xin Zhang. iv TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ......................................................................................................... viii CHAPTER 1 Literature Review Introduction ............................................................................................................ 1 Freezing-Induced Damage ...................................................................................... 2 Mechanisms for Freezing Tolerance ...................................................................... 5 Low Temperature Perception ............................................................................... 10 Low Temperature Signal Transduction ................................................................ 12 Cold-Responsive Gene Expression ...................................................................... 15 CHAPTER 2 Roles of the CBF2 and ZAT12 Transcription Factors in Configuring the Low Temperature Transcriptome of Arabidopsis Summary .............................................................................................................. 20 Introduction .......................................................................................................... 22 Results .................................................................................................................. 25 Discussion ............................................................................................................ 51 Acknowledgements .............................................................................................. 59 Materials and Methods ......................................................................................... 60 CHAPTER 3 A Functional Analysis of the Arabidopsis Cold Transcriptome Summary .............................................................................................................. 69 Introduction .......................................................................................................... 70 Results .................................................................................................................. 73 Conclusion ............................................................................................................ 91 Acknowledgements .............................................................................................. 93 Materials and Methods ......................................................................................... 94 CHAPTER 4 The Identification of Six Novel Motifs in the Promoters of Cold-regulated Genes and the Determination of Their Cold-Responsiveness Summary .............................................................................................................. 95 Introduction .......................................................................................................... 97 Results ................................................................................................................ 100 Discussion .......................................................................................................... 107 Materials and Methods ....................................................................................... 111 CHAPTER 5 A Summary of the Gene Regulons that Contribute to the Arabidopsis Cold Transcriptome ..................................................................................................... 1 l4 APPENDICES Appendix A. Probe sets up-regulated by low temperature in the plate experiment. ............................................................................................................................ 121 Appendix B. Probe sets down- -regulated by low temperature in the plate experiment ........................................................................................................... 142 Appendix C. Probe sets up- regulated by low temperature in the soil experiment... ............................................................................................................................ 161 Appendix D. Probe sets down-regulated by low temperature in the soil experiment ........................................................................................................... 178 Appendix E. Probe sets up-regulated by low temperature in both the plate and soil experiments ......................................................................................................... 190 Appendix F. Probe sets down-regulated by low temperature in both the plate and soil experiments .................................................................................................. 203 Appendix G. Probe sets up—regulated in response to CBF 2 expression ............. 211 Appendix H. Probe sets down-regulated in response to CBF2 expression ........ 218 Appendix 1. Probe sets up-regulated in response to ZAT12 expression ............ 220 Appendix J. Probe sets down-regulated in response to ZAT12 expression ....... 223 Appendix K. The best BLAST hits for ZAT12 in Arabidopsis ......................... 229 Appendix L. Supplementary material for Chapter 4 .......................................... 230 Appendix M. PERL scripts ................................................................................ 232 LITERATURE CITED ................................................................................................... 235 vi LIST OF TABLES Table 2.1. Potential low temperature regulatory elements I ............................................. 30 Table 2.2. Potential low temperature regulatory elements 11 ............................................ 32 Table 2.3. Chi-square analysis of expected and observed changes in gene expression in response to low temperature and transcription factor overexpression .............................. 36 Table 3.1. Overrepresented GO terms among the COS transcripts .................................. 76 Table 3.2. Overrepresented GO terms among COS transcript expression clusters .......... 77 Table 3.3. Overrepresented GO terms in the CBF2 regulon ............................................. 87 Table 3.4. Overrepresented GO terms in the ZAT12 regulon .......................................... 90 Table 4.1. Overrepresented motifs in cluster III ............................................................. 103 Table 4.2. Number of promoters with each pair-wise motif combination ...................... 103 Table 4.3. Overrepresented motifs in cluster IV ............................................................. 105 Table A. 1. Probe sets up-regulated by low temperature in the plate experiment ........... 121 Table B. 1. Probe sets down-regulated by low temperature in the plate experiment ...... 142 Table C. 1. Probe sets up-regulated by low temperature in the soil experiment ............. 161 Table D. 1. Probe sets down-regulated by low temperature in the soil experiment ........ 178 Table E. 1. Probe sets up-regulated by low temperature in both the plate and soil experiments ..................................................................................................................... 190 Table F. 1. Probe sets down-regulated by low temperature in both the plate and soil experiments ..................................................................................................................... 203 Table G. 1. Probe sets up-regulated in response to CBF2 expression ............................. 211 Table H. 1. Probe sets down-regulated in response to CBF2 expression ........................ 218 Table 1.1. Probe sets up-regulated in response to ZAT12 expression ............................ 220 Table J. 1. Probe sets down-regulated in response to ZAT12 expression ....................... 223 Table L. l. The genes which were used to create tetramers of each motif ...................... 230 vii LIST OF FIGURES Figure 2.1. Low temperature responsive probe sets ......................................................... 27 Figure 2.2. Hierarchical cluster and expression profiles of the 514 COS genes .............. 29 Figure 2.3. Expression profiles of the COS genes and those that comprise the CBF2 and ZAT12 regulons ................................................................................................................ 33 Figure 2.4. CBF2 and ZAT12 induce a majority of the most highly cold-induced transcripts .......................................................................................................................... 36 Figure 2.5. Expression of transcription factors that are candidates for configuring the low temperature transcriptome ................................................................................................ 38 Figure 2.6. Potential regulatory sequences common to the promoter regions of CBF 2, ZAT12, ZA T10/STZ, MYB73, CZFI, and CZFZ ................................................................ 39 Figure 2.7. ZA T12 transcript levels in transgenic Arabidopsis plants .............................. 41 Figure 2.8. Regulation of COS genes by CBF2 and ZAT12 ............................................ 42 Figure 2.9. Effect of ZAT12 expression on plant morphology and freezing tolerance ..... 43 Figure 2.10. ZAT12 overexpression dampens cold induction of CBF], 2, and 3 ............ 46 Figure 2.11. T-DNA insertion lines in the ZAT12 locus ................................................... 48 Figure 2.12. RT-PCR analysis of ZAT12 expression in the two T-DNA insertion lines .48 Figure 2.13. Decreased ZAT12 expression enhances cold induction of CBF], 2, and 3 .49 Figure 3.1. Functional categories of the 514 COS transcripts .......................................... 74 Figure 3.2. Functional categories represented in each expression class of the COS transcripts .......................................................................................................................... 79 Figure 3.3. Functional categories of the CBF2 and ZAT12 reuglons ............................... 86 Figure 3.4. Hydropathy plots for novel COR-like peptides in the CBF2 regulon ............ 88 Figure 4.1. Overlap of the two novel motifs and the CRT/DRE element in cluster III promoters ........................................................................................................................ 103 Figure 4.2. WebLogos depicting conserved sequences flanking the CRT/DRE, ABRE, and two novel motifs in cluster 111 genes ........................................................................ 105 viii Figure 4.3. The motif GTGATCAC confers constitutive activity to a GUS reporter ......................................................................................................................................... 106 Figure 5.1. The low temperature regulatory networks of Arabidopsis ........................... 119 Figure K. 1. Amino acid alignment and relationship tree of the best BLAST hits for ZAT12 in the Arabidopsis genome ................................................................................. 229 Figure L. 1. Sequences of the tetramers created from motifs found in clusters III and IV ......................................................................................................................................... 230 ix CHAPTER ONE LITERATURE REVIEW Introduction Photosynthesis, the overall process of using light energy to synthesize organic compounds, allows plants to maintain an autotrophic lifestyle. This autotrophic lifestyle includes remaining rooted in place, which is fine most of the time but prevents plants from evading environmental stress. However, evasion is not the only method of dealing with stress. Plants have evolved a number of effective mechanisms to cope with multiple biotic and abiotic environmental stresses while remaining sessile. One abiotic stress plants must deal with is temperature fluctuation. Cold or freezing temperatures can significantly limit plant growth or result in damage or death. Plants exhibit a wide range in their ability to survive freezing temperatures. Plants from the tropics have essentially no capacity for surviving even a mild freeze and are damaged by chilling temperatures in the range of 0°C to 12°C. Some examples include tomato, maize (Taylor et al., 1974), and rice (Tajima et al., 1983). Other plants, such as the cultivated potato (Solanum tuberosum), exhibit chilling resistance, but are still injured or killed by any ice formation (Sukumaran and Weiser, 1972). There are other plants that are killed by temperatures in the range of -6°C to -1°C. Most Citrus is killed in this range (-6°C to -3°C) (Yelenosky and Guy, 1989). Depending on the species, herbaceous plants from temperate regions (wheat, canola, Arabidopsis) generally survive freezing in the range of -5°C to -30°C (Fowler and Gusta, 1979; Gilmour et al., 1988). The record holders for freezing tolerance include tree species from boreal forests that regularly survive winters with temperatures below -30°C and can even survive immersion in liquid nitrogen when fully cold-acclimated (Sakai and Larcher, 1987). The level of freezing tolerance achieved is not constitutive, but induced in response to low, non-freezing temperatures (below approximately 10°C), in a process known as cold acclimation (Guy, 1990; Thomashow, 1998). Cold acclimation allows plants that would normally be killed by mild freezing conditions (-5°C) to survive at much lower temperatures (-20°C). The study of cold acclimation in plants is important. Not only does understanding conditional freezing tolerance (or lack of it) further science, it has practical applications for agricultural production. Freezing temperatures negatively impact crop productivity and limit the geographical locations where plants are grown (Thomashow, 1998). Understanding the molecular basis of cold acclimation and freezing tolerance could lead to new strategies of improving crop productivity through increased freezing tolerance. Much research has focused on how freezing damages plant cells, what mechanisms exist to protect the plant, and how plants sense and respond to low temperatures in order to activate protective mechanisms. F reezing-Induced Damage Water, while essential to life, forms ice crystals spontaneously (homogeneous nucleation) or when catalyzed by another substance (heterogeneous nucleation) that can kill or damage a cell. At temperatures just below 0°C, homogeneous ice formation is unlikely and nucleation is needed. In the absence of any nucleator, a single cell will freeze only when the temperature falls below -38.5°C, the point of spontaneous nucleation (Franks, 1985). Otherwise, water can remain in a supercooled state. Many substances can act as nucleators including ice nucleation-active bacteria, organic/inorganic debris, and biological molecules (Pearce, 2001). In plants, freezing temperatures generally'first induce ice formation in intercellular spaces because these spaces have a higher freezing point due to a lower solute concentration and contain ice nucleating agents (Brush et al., 1994). Ice formation in intercellular spaces has the potential to physically disrupt cells (Levitt, 1980). However, most damage results from severe cellular dehydration associated with freezing (Levitt, 1980; Steponkus and Webb, 1992). Since the chemical potential of ice at a given temperature is lower than liquid water, extracellular ice formation results in a decrease in water potential outside the cell and a consequent movement of water through the plasma membrane to the extracellular space, leading to the dehydration of the cell. The amount of dehydration is dependent on both the temperature and the initial solute concentration of the cytoplasm. Cellular dehydration also occurs in drought and salinity stress, which suggest that the mechanisms that protect a plant from freezing-induced dehydration should also protect the plant from the dehydration caused by drought or salinity stress. Cellular dehydration during freezing can potentially have numerous deleterious effects, including protein denaturation, the precipitation of molecules, and membrane damage. Since 1912, the plasma membrane has been thought to be a primary site of freeze-induced injury (Levitt, 1980). Studies done with rye protoplasts have shown that freezing-induced dehydration can result in three main membrane lesions (Webb et al., 1994; Uemura et al., 1995). In the range of -2°C to -4°C, expansion-induced lysis can occur, caused by osmotic expansion and contraction cycles (during freeze/thaw cycles). The contraction of the plasma membrane during freezing results in the endocytic vesiculation of the plasma membrane, which decreases plasma membrane surface area. If sufficient membrane is lost, water re-entering the cell during expansion can lyse the membrane. Cold acclimation prevents this type of lesion from occurring, as the plasma membrane is retained in exocytotic extrusions that allow expansion. Between -4°C and -10°C, freezing can induce lamellar-to-hexagonal 11 phase transitions, which involves the fusion of various membranes. In this type of damage, a lamellar membrane, when brought into close apposition with another membrane due to cellular dehydration, can form non-bilayer Hex 11 phase lipids. This results in a loss of membrane integrity. The chloroplast envelope is particularly susceptible to this type of damage (Steponkus et al., 1993). Again, protoplasts isolated from cold-acclimated leaves generally do not suffer this type of damage. Fracture jump lesions can occur at temperatures below -10°C with cold acclimation. This lesion was observed as a localized deviation in the fracture plane of the plasma membrane during cyroelectron microscopy and is likely due to localized fusion of the plasma membrane with other cellular membranes (Webb et al., 1994). This type of lesion has only been observed with cold acclimation and varies greatly between plant species (Webb et al., 1994; Uemura et al., 1995). While little is known about why variation exists, fracture jump lesions appear to be a relative measure of the potential freezing tolerance that can be achieved. In addition to dehydration induced damage, cold temperatures can generate reactive oxygen species (ROS) which can contribute to membrane damage (McKersie and Bowley, 1997). Low temperature causes a decrease in the turnover rate of components of photosystem 11, leading to excess excitation energy and the generation of reactive oxygen species, including hydrogen peroxide (Huner et al., 1998). ROS not only damages membrane lipids, but can also harm carbohydrates, proteins, and nucleic acids (McKersie and Bowley, 1997). Additionally, ROS species generated at low temperature could be activating a programmed cell death response (Wagner et al., 2004), which evidence suggests occurs in plants exposed to low temperature (reviewed in Kratsch and Wise, 2000). Mechanisms for Freezing Tolerance The mechanisms involved in freezing tolerance are not well understood, but numerous studies have identified physiological and biochemical changes that occur during cold acclimation. Some of these changes include reduced growth rates, decreased water content (Levitt, 1980), altered membrane lipid composition (Uemura and Steponkus, 1994), the production of new proteins (including membrane stabilizers, antifreeze proteins, and chaperones) (Smallwood and Bowles, 2002), transient increases in abscisic acid (Chen et al., 1983), increased levels of antioxidants (McKersie and Bowley, 1997), and the accumulation of compatible osmolytes (proline, betaine, polyols, and soluble sugars) (Levitt, 1980; Yancey et al., 1982). Given the many changes that occur during cold acclimation, it is hard to discern those changes that contribute to freezing tolerance from those that simply occur in response to low temperature. Nevertheless, the multitude of changes indicate that cold acclimation is a dynamic event, requiring multiple biochemical, metabolic, and cellular changes to occur in order to achieve freezing tolerance. Given that cell membranes appear to be a primary site of freezing damage, protecting membranes at freezing temperatures seems essential. In fact, alterations in membrane lipid composition and structure are some of the best documented changes that occur during cold acclimation (reviewed in Nishida and Murata, 1996). While not completely understood, ultrastructural changes in the membrane become apparent within 6 h of cold treatment in Arabidopsis (Ristic and Ashworth, 1993). Moreover, the changes in membrane lipid composition that occur during cold acclimation correlate with membrane cryostability (Steponkus, 1984; Uemura et al., 1995). Direct evidence also exists for membrane lipid composition playing a direct role in freezing tolerance. Increased levels of mono- and di-unsaturated species of phosphotidylcholine can prevent membranes from forming endocytotic vesicles during hyperosmotic stress, while disaturated species of phosphotidylcholine can not (Steponkus et al., 1988). These in vitro experiments are complemented by experiments in planta, as alterations in lipid composition have been shown to influence chilling tolerance in Arabidopsis and tobacco. After prolonged exposure to chilling temperatures (2°C to 5°C), Arabidopsis mutants with diminished levels of unsaturated lipids become chlorotic (Wu et al., 1997; Vijayan and Browse, 2002). At low temperature, these mutants, fad5 , fad6, and the fad3-2 fad 7-2 fad8 triple mutant were found to be more susceptible to photoinhibition than wild type Arabidopsis (V ijayan and Browse, 2002). Additionally, experiments in tobacco revealed that some of this plant’s chilling sensitivity can be alleviated if the level of membrane unsaturation is increased (Moon et al., 1995). Plants increase the levels of a number of low molecular weight organic solutes upon cold acclimation, including proline, glycine betaine, and sugars (raffinose, sucrose, and trehalose). These molecules are known as compatible solutes or compatible osmolytes, as they are highly soluble and their accumulation does not interfere with cellular metabolism. While their main role in freezing tolerance is thought to be in maintaining cellular osmotic balance, this is not the only role they play. Some compatible solutes stabilize membranes (Hincha and Crowe, 1998; Hincha et al., 1999), while others serve as enzyme cryoprotectants (reviewed in Sakamoto and Murata, 2001 ). Many compatible solutes accumulate to high levels during cold acclimation, which correlates well with increased freezing tolerance. For example, increased levels of proline (30-fold higher) have been found in the constitutively freezing tolerant mutant eskz'mol (Xin and Browse, 1998). Conversely, a lack of sugar accumulation during cold acclimation in the Arabidopsis sfr4 mutant correlates with its sensitivity to freezing (Warren et al., 1996). Still, the specific role of each osmolyte in freezing tolerance is unclear. Dissection of osmolyte function has been complicated by their metabolic roles, which are generally essential. Freezing tolerant plants can withstand ice formation in their apoplast (Griffith and Yaish, 2004), thought to be due in part to the production of a number of anti-freeze proteins (AFPs) that prevent or alter ice formation in this compartment (Urrutia et al., 1992; Duman, 1994; Hon et al., 1995; Hincha et al., 1997; Worrall et al., 1998; Smallwood et al., 1999; Yeh et al., 2000). Antifreeze proteins interact with ice crystals and inhibit their growth. They do so through two mechanisms. First, they can prevent the accretion of water molecules to the growing face of an ice crystal. Secondly, AF Ps can depress the freezing point of water through binding to the surface of ice crystals, without affecting the melting point of the solution (this is known as thermal hysteresis activity). Most plant AF Ps are homologous to pathogenesis-related proteins and also provide protection against psychrophilic pathogens (Griffith and Yaish, 2004). Given the difficulty of mounting a defense response in sub-zero conditions, accumulating proteins during cold acclimation that serve a dual purpose could be advantageous for the plant. Unfortunately, there is no consensus sequence for identifying an AF P through a database search, so they must be identified experimentally. While in vitro data firmly confirms the thermal hysteresis activity of AF Ps identified in plants, in vivo data for their function is limited (Griffith and Yaish, 2004). Still, their widespread occurrence and expression at low temperature in diverse plant species suggest they play a role in freezing tolerance. Plants produce numerous small, highly hydrophilic polypeptides during cold acclimation. These proteins have a relatively simple amino acid composition, have repeated amino acid motifs, are generally predicted to form amphipathic a-helices, and remain soluble upon boiling in a dilute aqueous buffer (reviewed in Thomashow, 1999). These proteins have been identified by a number of researchers and hence possess multiple designations, including COR (c_old-regulated), LTI (low temperature induced), KIN (gold-inducible), RD (responsive to desiccation), and ERD (early dehydration- inducible). Additionally, some of these proteins are homologs of the LEA (late gmbryogenesis abundant) proteins, which are produced just before seed desiccation during embryogenesis (Dure etal., 1981). The exact function of these proteins is unknown. They are, however, also expressed in response to dehydration and ABA. Given the similarities between freezing and dehydration injuries and the similar biochemical properties of these proteins, one hypothesis is that they function in mitigating dehydration-induced damage. This hypothesis is supported by work on the COR15a protein from Arabidopsis. COR15a is a 15 kDa polypeptide that is targeted to chloroplasts, where it is processed to a mature 9.4 kDa protein (COR15am). Regions of the polypeptide are predicted to form amphipathic 111-helices. In order to determine its role in freezing tolerance, Artus et a1. (1996) created transgenic plants constitutively expressing COR15a. The chloroplasts of nonacclimated transgenic plants were 1°C to 2°C more freezing tolerant than wild type chloroplasts in the range of -4°C to -8°C. Additionally, protoplasts isolated from the leaves of nonacclimated transgenic plants were 1°C more freezing tolerant in the same temperature range (Steponkus et al., 1998). One hypothesis concerning how CORISa brings about increased chloroplast freezing tolerance is that COR15a stabilizes membranes. Steponkus et a1. (1998) showed that in the temperature range of -4.5°C to -7°C, COR15am decreased the incidence of HexII phase lipid formation in regions where the plasma membrane was brought into close apposition with the chloroplast envelope during freezing-induced dehydration. COR15am is thought to decrease the incidence of HexII lipid formation by altering the intrinsic curvature of the inner membrane of the chloroplast envelope, thereby lowering the temperature at which HexII lipids form. In vitro data supports this hypothesis, as COR15am increased the lamellar-to-hexagonal 11 phase transition temperature of dioleoylphosphatidylethanolamine (this is a sensitive test for an effect on monolayer curvature) and promoted formation of the lamellar phase in a lipid mixture composed of the major lipid species of the chloroplast envelope (Steponkus et al., 1998). Given that other COR proteins are predicted to form similar structures (amphipathic a-helices), the possibility exists that these proteins also help stabilize membranes against freezing- induced dehydration injury by altering the intrinsic curvature of membranes. Indeed, work on a LEA 11 protein (CAP85) and a novel COR-like protein (CAP160) from spinach indicate they may also play a role in stabilizing membranes (Kaye et al., 1998), as might the dehydrins (members of the LEA II protein family) RAB 1 8, COR47/RD17, LT129/ERD10, and LTI30/XER02 (Puhakainen et al., 2004). Low Temperature Perception The mechanism by which plants sense low temperature is unknown. While the nature of this “thermometer” is a mystery, low temperature alters a number of physiological processes that could act as the initial transducer of a cold stimulus. Low temperature can alter RNA and DNA secondary structure and the enzymatic activity of proteins. Changes such as these could function as the sensor. The photosynthetic apparatus itself may act as the sensor, detecting changes in temperature through increased energy imbalances and photoinhibition (Huner et al., 1998). One of the earliest and most direct effects of low temperature on a cell is a decrease in membrane fluidity (Levitt, 1980). The idea that changes in membrane fluidity could act as the initial cold sensor is supported by a number of studies. Initial observations in Synechocystis revealed that rigidification of membranes could induce the expression of cold-regulated genes (Vigh etal., 1993). Murata and L05 (1997) hypothesized that the sensor is found in microdomains of the plasma membrane and senses physical alterations in membrane phase transitions, leading to conformational changes or alterations in the phosphorylation state of the sensor. Studies in alfalfa also support the hypothesis that the sensor works through interpreting membrane fluidity (Orvar et al., 2000). Treatment of alfalfa cells at warm temperatures with benzyl alcohol 10 increases membrane fluidity and inhibits the accumulation of the cold-responsive transcript CAS30 in response to low temperature. Conversely, treatment of cells with dimethyl sulfoxide, which reduces membrane fluidity, increased CAS30 levels at warm temperatures. The authors also showed that actin microfilament reorganization and an influx of calcium was required for cold-responsive expression of CAS30. This work provided a model where upon cold treatment membrane fluidity decreases, followed by a downstream reorganization of actin microfilaments, and finally by an influx of calcium. A number of studies have shown a rapid and transient increase in cytosolic calcium upon cold treatment (Knight et al., 1991; Monroy et al., 1993; Knight and Knight, 2000), that comes both from apoplastic and vacuolar stores (Knight et al., 1996). Calcium is required for maximal expression of the cold-responsive transcripts KIN] and CAS30 (Knight et al., 1996; Tahtihatju et al., 1997; Orvar et al., 2000) and the acquisition of freezing tolerance in response to low temperature (Monroy et al., 1993; Monroy and Dhindsa, 1995). Plants that have been cold-acclimated display an altered calcium transient upon subsequent cold treatment (Knight et al., 1996; Plieth et al., 1999; Knight and Knight, 2000). Knight et al. (1996) has shown that the peak levels and duration of the calcium transient becomes diminished in magnitude and prolonged in length upon cold acclimation, indicating that the sensor likely possesses the ability to “remember” the cold. Due to such evidence, the suggestion has been made that the sensor is one or more of the calcium channels located in the plasma membrane. In fact, some membrane bound mechano-sensitive calcium channels are activated by low temperature (Ding and Pickard, 1993). ll The thermometer could also resemble low temperature sensors found in other species. In Synechocystis, evidence points towards the role of two-component regulators as temperature sensors. Mutations in the Hik33 or Hik19 (histidine kinase) genes greatly reduced the expression of a number of low temperature inducible genes (Suzuki et al., 2001; Mikami et al., 2002). Further, microarray analysis on the AHik33 mutant reveal that at least one additional cold sensor exists in Synechocystis (Mikami et al., 2002; Inaba et al., 2003). Two-component systems exist in plants, but these two Hik genes have no plant homologs and, to date, there is no evidence that such a system functions as the temperature sensor in plants. In mammalian systems, two TRP (_transient receptor potential) nonselective cation channels have been identified that are responsive to cold (Peier et al., 2002; Story et al., 2003). One, TRPM8, is a methanol and cold-responsive TRPM-class channel that was discovered in sensory neurons (Peier et al., 2002). The other, ANKTMl, is distantly related to TRP channels and possesses very little amino acid similarity to TRPM8 (Peier et al., 2002). ANKTMl was cold-responsive and also found in sensory neurons, but was not responsive to methanol. Low Temperature Signal Transduction The initial temperature sensing event has to be transmitted to downstream effectors in order for the plant to respond. Cold-responsive signaling cascades are poorly understood in plants. Only recently have studies elucidated some of these signaling events, but most of the players have not been placed into coherent pathways. 12 As stated earlier, low temperature signaling involves transient calcium accumulation. A number of proteins can be involved in detecting and responding to calcium, including calmodulin (CaM), calcium dependent protein kinases (CDPKs), and calcium-regulated phosphatases (Knight and Knight, 2001). Overexpression of a calmodulin gene in Arabidopsis resulted in decreased levels of expression of the cold and ABA responsive COR genes, suggesting that CaM plays a role as a negative regulator (Townley and Knight, 2002). Calmodulin is not the only player to be implicated in calcium mediated cold signaling. In Arabidopsis, there are approximately 40 CDPKs, some of which have been proposed to play a role in ABA, drought, cold, and salinity responses (Sheen, 1996). Serine/threonine phosphatases (PPases) can also interact with calcium and regulate signaling pathways. The activity of protein phosphatase 2A increases in alfalfa in response to cold and this activity depends on calcium influx. Additionally, inhibiting protein kinases with staurosporine inhibits the low temperature induction of the CAS15 gene, while inhibiting protein phosphatase activity with okadaic acid induces CAS15 at 25°C (Monroy et al., 1998). Type-2C PPases include a sub-group of proteins with properties similar to the calcium sensor protein calcineurin B. The expression of one calcineurin B-like (CBLs) calcium sensor, CBLI , is induced by drought, salt, ABA, and cold (Albrecht et al., 2003; Cheong et al., 2003). Studies on CBLl reveal that it plays a role in drought, salt, and cold stress signaling. A calcium sensor-associated protein kinase, CIPK3, was also found to modulate cold and salinity gene expression, but not drought-induced gene expression (Kim et al., 2003). The authors propose that CIPK3 functions as a cross-talk node between ABA and abiotic stress signaling. 13 The levels of phosphatidic acid (PtdOH) and inositol triphosphate(1nsP3) increase in plants upon cold shock, along with activation of phospholipase C and D activity (Ruelland et al., 2002). These events are dependent upon calcium, as chemically blocking calcium influx inhibited PtdOH and Inng formation. These results indicate that cold signaling may involve one or more phosphoinositide signaling pathways. Further support comes from a study where the plasma membrane bound phospholipase D5 (PLDS) was either knocked out or overexpressed in Arabidopsis (Li et al., 2004). Plants with no PLD5 activity displayed sensitivity to freezing at -7°C at the whole plant level, while overexpression of PLD8 resulted in plants that were more freezing tolerant (at - 10°C ) than wild type plants. These two mutant plants did not impact COR proteins, soluble sugar levels, or proline accumulation. This suggests that the alteration in freezing tolerance brought about by altering PLD6 represents a separate signaling pathway from the pathway that activates COR genes, proline, and soluble sugars. MAPK cascades have also been implicated in cold signal transduction. In these cascades, a MAPK kinase kinase (MAPKKK) phosphorylates a MAPK kinase, (MAPK), which in turn phosphorylates a MAPK. These MAPK’s then activate or inactivate a transcription factor through phosphorylation. Introduction of a tobacco MAPKKK (NPKl) into maize enhanced cold tolerance by 2°C (Shou et al., 2004), indicating it may play a role in cold signaling pathways. Cold activated MAP kinases have also been found in alfalfa (Jonak et al., 1996) and Arabidopsis (Mizoguchi et al., 1996). Recently, a more detailed study on the MAPKK MKK2 in Arabidopsis revealed its role in cold and salt stress signaling. Teige et al. (2004) reported that MKK2 is activated by salt and cold stress, which in turn activates MPK2 and MPK4 through 14 phosphorylation. MEKKl (a MAPKKK) was found to regulate MKK2. A null mutation of MKK2 resulted in plants that were hypersensitive to cold shock or germination on media containing salt, while MKK2 overexpression lead to increased tolerance to cold shock and increased germination on media containing salt. RT-PCR analysis revealed altered levels of several cold— and salt-responsive transcripts in the MKK2 constitutive expression lines. The study by Teige et al. (2004) was the first report of an entire MAPK cascade involved in both cold and salt signaling. Cold-Responsive Gene Expression Signal transduction cascades generally result in the activation of transcriptional regulators that influence the expression of multiple genes in response to a given stimulus. During cold acclimation, multiple changes in gene expression occur. The transcripts for COR proteins, antioxidants, enzymes involved in cryoprotectant production, and many other gene products are induced in response to low temperature (Thomashow, 1998). While few transcriptional regulators involved in modifying cold-responsive genes are known, one pathway is now well established. The previously mentioned COR proteins were first identified by their high transcript accumulation in response to cold (Hajela et al., 1990). Studies on the regulation of COR15a transcription resulted in the isolation of a fragment of the COR15a promoter that could drive expression of a reporter gene in response to low temperature (Baker et al., 1994; Yamaguchi-Shinozaki and Shinozaki, 1994). One sequence of interest in this promoter fragment was the C-repeat (TGGCCGAC), also known as the DRE (dehydration responsive element). The core sequence of the C-repeat, CCGAC, 15 was also found in the promoters of other COR genes. Using a yeast one-hybrid approach, Stockinger et al. (1997) isolated a protein that could bind to the C-repeat and activate transcription. This protein was named CBF 1 (Q-repeat binding factor 1). Since overexpression of COR15a led to only a modest improvement in chloroplast freezing tolerance, a question arose as to whether the simultaneous expression of multiple COR genes could alter the freezing tolerance of Arabidopsis. The discovery of CBF 1 provided a tool to answer this question. Arabidopsis overexpressing CBF] were found to accumulate levels of COR transcripts similar to cold-acclimated plants and were constitutively freezing tolerant without a period of cold acclimation (J aglo-Ottosen et al., 1998). This and other studies (Liu et al., 1998; Kasuga et al., 1999; Gilmour et al., 2000; Gilmour et al., 2004) have revealed that CBF expression has a significant impact on plant freezing and chilling tolerance (Gong et al., 2002). The Arabidopsis genome encodes three cold-responsive CBF transcriptional activators CBF], CBF2, and CBF3 (Stockinger et al., 1997; Gilmour et al., 1998; Medina et al., 1999), which are also known as DREBIb, DREBlc, and DREBla (Liu et al., 1998; Kasuga et al., 1999), respectively. The CBF transcription factors are members of the AP2/EREBP family of DNA-binding proteins (Riechmann and Meyerowitz, 1998). The CBF proteins bind to the CRT (C-repeat)/DRE (dehydration responsive element) (Baker etal., 1994; Yamaguchi-Shinozaki and Shinozaki, 1994). In vitro studies on the binding of CBF to the CRT/DRE element defined (A/G)CCGAC as the consensus binding sequence (Sakuma et al., 2002). The CBFI-3 genes are induced within 15 min of plants being exposed to cold temperatures followed at about 2 h by induction of a group of genes that contain the CRT/DRE-regulatory element, known as the “CBF regulon” l6 (Gilmour et al., 1988; Liu et al., 1998). The level of freezing tolerance observed by expression of the CBF regulon is substantial; constitutive expression of the CBF1-3 genes increases the freezing tolerance of nonacclimated plants 3.5-7.5°C (Gilmour et al., 2000; Gilmour et al., 2004). While the exact mechanisms by which the CBF regulon enhances freezing and chilling tolerance are not known, it is clear that multiple mechanisms are involved. This includes the synthesis of low molecular weight cryoprotective molecules such as proline, sucrose, and raffinose (Gilmour et al., 2000; Taji et al., 2002) and the production of proteins with cryoprotective properties such as COR15a (Artus et al., 1996; Steponkus et al., 1998). The CBF cold response pathway is conserved across plant species (Jaglo et al., 2001). Cold-responsive CBF orthologs have been found in freezing tolerant and chilling- sensitive plants, including wheat, rye, barley, oat, Brassica napus, rice, maize, tomato, and others (Jaglo et al., 2001; Choi et al., 2002; Chen et al., 2003; Dubouzet et al., 2003; Shen et al., 2003; Qin et al., 2004; Zhang et al., 2004). The existence of cold-responsive CBFs in chilling-sensitive species leads to fundamental questions on the nature of cold acclimation and chilling-sensitivity. Do these chilling-sensitive plants contain a complete CBF cold response pathway? Are they deficient in an important component(s) of the CBF pathway? Work in chilling-sensitive tomato indicates that tomato has a functional CBF cold response pathway, but the CBF regulon of tomato differs dramatically from Arabidopsis (Zhang et al., 2004). This study suggests that tomato either lacks a co- activator activity required for CBF function that is present in Arabidopsis or lacks functional CRT/DRE elements within the genome. 17 While the CBF cold response pathway is conserved across plant species and increases the freezing tolerance of some plants, it is unknown whether additional cold response pathways exist in Arabidopsis. Studies with Arabidopsis mutants suggest that additional pathways do exist. The eskimol mutant of Arabidopsis is constitutively more freezing tolerant than wild type plants, but COR genes are not constitutively expressed indicating that the mutation activated a freezing tolerance pathway outside the CBF system (Xin and Browse, 1998). Similarly, ada2 mutants of Arabidopsis (ADA2 encodes a transcriptional adaptor protein) are constitutively more freezing tolerant than wild type plants, but COR genes are not constitutively induced suggesting that the ADA2 protein is involved in inhibiting expression of a freezing tolerance pathway that is distinct from the CBF cold response pathway (Vlachonasios et al., 2003). Microarray studies profiling roughly one-third of Arabidopsis genes in response to low temperature also indicate the existence of additional low temperature pathways (Seki et al., 2001; Fowler and Thomashow, 2002; Kreps et al., 2002; Seki et al., 2002). No study has yet defined the low temperature transcriptome for Arabidopsis on a whole genome level, nor the extent to which the CBF transcription factors influence these genes. Also unknown are the identities of additional transcription factors that configure the low temperature transcriptome. To further understand the roles of the CBF proteins in configuring the low temperature transcriptome and to identify additional transcription factors with roles in cold acclimation, work in this dissertation aimed to define a low temperature transcriptome for Arabidopsis, to determine the contribution of the CBF transcription factors to the cold transcriptome, and to determine the regulons of other cold-responsive transcription factors. 18 CHAPTER TWO ROLES OF THE CBF2 AND ZAT12 TRANSCRIPTION FACTORS IN CONFIGURING THE LOW TEMPERATURE TRANSCRIPTOME OF ARABIDOPSIS The majority of work in this chapter was published in the Plant Journal. Vogel, Jonathan T., Zarka, Daniel G., Van Buskirk, Heather A., Fowler, Sarah G., and Thomashow, Michael F. (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41, 195-211. 19 SUMMARY The CBF cold response pathway has a prominent role in cold acclimation. The pathway includes action of three transcription factors, CBFl, 2, and 3 (also known as DREBIb, c, and a, respectively), that are rapidly induced in response to low temperature followed by expression of the CBF-targeted genes (the CBF regulon) that act in concert to increase plant freezing tolerance. Results of transcriptome profiling and mutagenesis experiments, however, indicate that additional cold-response pathways exist and may have important roles in life at low temperature. To further understand the roles that the CBF proteins play in configuring the low temperature transcriptome and to identify additional transcription factors with roles in cold acclimation, the Affymetrix GeneChip® containing probe sets for approximately 24,000 Arabidopsis genes was used to define a core set of cold-responsive genes and to determine which genes were targets of CBF 2 and six other transcription factors that appeared to be coordinately regulated with CBF 2. A total of 514 genes were placed in the core set of cold-responsive genes, 302 of which were up-regulated and 212 down-regulated. Hierarchical clustering and bioinformatic analysis indicated that the 514 cold-responsive transcripts could be assigned to one of seven distinct expression classes and identified multiple potential novel cis-acting cold- regulatory elements. Eighty-five cold-induced genes and eight cold-repressed genes were assigned to the CBF 2 regulon. An additional nine cold-induced genes and 15 cold- repressed genes were assigned to a regulon controlled by ZAT12. Of the 25 core cold- induced genes that were most highly up-regulated (induced over 15-fold), 19 genes (84%) were induced by CBF2 and another two genes (8%) were regulated by both CBF2 and ZAT12. Thus, the large majority (92%) of the most highly induced genes belong to 20 the CBF2 and ZAT12 regulons. Constitutive expression of ZAT12 in Arabidopsis caused a small, but reproducible, increase in freezing tolerance, indicating a role for the ZAT12 regulon in cold acclimation. In addition, ZAT12 was found to down-regulate expression of the CBF genes indicating a role for ZAT12 in a negative regulatory circuit that dampens expression of the CBF cold response pathway. 21 INTRODUCTION Many plants increase in freezing tolerance in response to low nonfreezing temperature, a phenomenon known as “cold acclimation” (Thomashow, 1999; Smallwood and Bowles, 2002). Cold acclimation in Arabidopsis involves action of the CBF cold response pathway (Thomashow, 2001). The pathway includes the CBF] , CBF 2, and CBF 3 genes (Gilmour etal., 1998; Medina et al., 1999; Jaglo et al., 2001), also known as DREBI b, DREBIc, and DREBI a, respectively (Liu et al., 1998), which encode transcriptional activators that bind to the CRT (C-repeat)/DRE (dehydration response element) regulatory element present in the promoters of COR and other cold- responsive genes (Baker et al., 1994; Yamaguchi-Shinozaki and Shinozaki, 1994; Stockinger et al., 1997; Gilmour et al., 1998). Transcripts for CBF], 2, and 3 accumulate rapidly (within 15 min) upon exposing plants to low temperature followed by induction of the CBF-targeted genes known as the CBF regulon. Constitutive expression of the CBF genes results in constitutive expression of the CBF regulon and increased freezing tolerance without a low temperature stimulus (J aglo-Ottosen et al., 1998; Liu et al., 1998; Gilmour et al., 2000; Gilmour et al., 2004). The freezing tolerance conferred by the CBF regulon involves the production of cryoprotective polypeptides such as COR15a (Artus et al., 1996; Steponkus et al., 1998) and the accumulation of compatible solutes such as sucrose, raffinose, and proline (Nanjo et al., 1999; Gilmour et al., 2000; Gilmour et al., 2004) The CBF cold response pathway is currently the best understood genetic system with a role in cold acclimation. However, it does not appear to be the sole pathway with a role in freezing tolerance. The eskimoI mutant of Arabidopsis described by Xin and 22 Browse (1998) is constitutively more freezing tolerant than wild type plants, but the COR genes are not constitutively expressed indicating that the mutation activated a freezing tolerance pathway outside the CBF system. Similarly, ada2 mutants of Arabidopsis (ADA2 encodes a transcriptional adaptor protein) are constitutively more freezing tolerant than wild type plants, but COR genes are not constitutively induced suggesting that the ADA2 protein is involved in inhibiting expression of a freezing tolerance pathway that is distinct from the CBF cold response pathway (Vlachonasios et al., 2003). To more fully understand the role of the CBF cold response pathway in cold acclimation, investigators have examined the changes that occur in the Arabidopsis transcriptome in response to low temperature and overexpression of the CBF transcription factors. Fowler and Thomashow (2002) surveyed the expression of about 8,000 Arabidopsis genes in response to low temperature. The results indicated that extensive changes occur in the transcriptome during cold acclimation. In particular, 306 (~4%) genes were found to be either up- or down-regulated at least 3-fold in response to low temperature. However, only 12% of these genes could be assigned to the CBF regulon (i.e., were both cold- and CBF-responsive); at least 28% of the cold-responsive genes were not affected by expression of the CBF transcription factors, including 15 encoding known or putative transcription factors. Thus, it was concluded that cold acclimation is associated with the activation of multiple low temperature regulatory pathways. Similar conclusions have been reached by others studying the Arabidopsis low temperature transcriptome (Seki et al., 2001; Kreps et al., 2002; Seki et al., 2002). Here, the regulation of the low temperature transcriptome of Arabidopsis was further explored. Using the Affymetrix GeneChip® containing probe sets for 23 approximately 24,000 genes, I defined a core set of cold-responsive genes and determined whether they were targets of CBF 2 or six other transcription factors that appeared to be coordinately regulated with CBF2. I conclude that the majority of genes that are most highly induced in response to low temperature are part of the CBF2 regulon; that the ZAT12 transcription factor participates in the induction and repression of cold-responsive genes; and that the ZAT12 regulon contributes to an increase in freezing tolerance. The results also indicate that certain cold-responsive genes are members of both the ZAT12 and CBF2 regulons and that ZAT12 has a role in a negative regulatory circuit that dampens expression of the CBF cold response pathway. 24 RESULTS Identification of a Core Set of Cold-Responsive Genes The first objective was to identify a core set of cold-responsive genes that could be used to further our understanding of the low temperature regulons and regulatory networks of Arabidopsis. The goal was not to identify all genes that were cold- responsive, but to identify a set of genes that were reproducibly cold-responsive using two common lab conditions, plants grown on soil in pots and plants grown on plates containing solid culture medium. This was accomplished using the Arabidopsis Affymetrix GeneChip® ATHl array, which contains probes for approximately 24,000 genes, to compare the transcriptomes of plants grown in soil and on plates at “warm” temperatures (22°C soil, 24°C plates) with those of plants that had been transferred to low temperature (4°C) for 1 h, 24 h, and 7 d. In the plate experiments both root and shoot tissue was harvested, while in the soil experiments, shoot tissue was harvested. Pooled RNA from multiple samples at each time-point was labeled and hybridized to the arrays. A probe set was designated as being up-regulated if, in both biological samples for a given time-point, the detection algorithm assigned a call of “present” in the cold- treated sample, the change algorithm assigned a call of “increased,” and the signal log ratio was greater than or equal to 1.3. A probe set was designated as being down- regulated if, in both biological samples for a given time-point, the detection algorithm assigned a call of “present” in the warm sample, the change algorithm assigned a call of “decreased,” and the signal log ratio was less than or equal to -1.3. The signal log ratio cutoffs used corresponded to approximately a 2.5-fold change. 25 Using these criteria, 1,295 probe sets were cold-responsive in the plate experiments and 938 probe sets were cold-responsive in the soil experiments (the complete “raw” data sets for these experiments are posted at the TAIR website “www.arabidopsis.org” and the cold-responsive probe sets are listed in Appendices A-D). In the plate experiments, 673 probe sets were up-regulated, 627 were down-regulated and five were both up- and down-regulated at different times in the experiment. In the soil experiments, 557 probe sets were up-regulated, 382 were down-regulated and one was both up- and down-regulated at different times in the experiment. A comparison of the probe sets that were cold-responsive in the plate and soil experiments indicated that 302 were up-regulated in both experiments and that 212 were down—regulated in both experiments (Figure 2.1a; Appendices E and F), with the largest number of changes occurring at 24 h (Figure 2. lb). These changes in gene expression were statistically significant at a p<0.05, with 95% (490/514) statistically significant at a p<0.005 (see Materials and Methods). Many of the probe sets that were categorized as not being responsive in both soil- and plate-grown plants showed a corresponding increase or decrease in both experiments, but did not meet the strict criteria used for designating cold—responsiveness in both experiments. Some probe sets, however, were only responsive in either the soil or plate experiments. The reason for these differences is currently unknown, but is likely to reflect, in part, the differences in the culture conditions and tissues harvested in the experiments. Exploring these differences will be the subject of future study. The goal accomplished here was the identification of 514 probe sets that were cold-responsive in four experiments using two different culture conditions; i.e., an identification of a robust set of cold-responsive genes that could be 26 (a) Up-regulated probe sets Down-regulated probe sets Plates 41 S 3 300 NM OLD CO 150 100 Cold responsive probe sets U1 OO 1 24 168 Time (h) at 4‘C Figure 2.1. Low temperature responsive probe sets. (a) Probe sets differentially regulated (2.5-fold cutoff, p S 0.05) at low temperature in plants grown in soil (soil) and on solid medium (plates). (b) Number of probe sets with altered accumulation at l h, 24 h, and 168 h after transfer to low temperature in both soil and solid medium. used in deciphering the low temperature regulatory network of Arabidopsis. I refer to these genes as a “Qld standar ” (COS) set of cold-responsive genes. Members of the COS Gene Set can be Assigned to One of Seven Expression Clusters The 514 COS genes were subjected to hierarchical clustering based on their relative transcript levels in plants after 1 h, 24 h, and 7 d of cold treatment (Figure 2.2a). Each gene was assigned to one of seven expression clusters (Figure 2.2b). Expression clusters I and II comprised down-regulated transcripts and clusters III to VII comprised up-regulated transcripts. The major difference between clusters I and II was that the 27 transcripts in the former cluster continued to decrease in levels between 24 h and 7 (1 whereas those in cluster 11 showed some recovery over this time interval. A major difference between the up-regulated transcripts in clusters III and IV, as compared to those in clusters V, VI, and VII, was that those in the former two clusters were delayed in response; i.e., there was little increase in the levels of the transcripts in clusters III and IV after 1 h of cold treatment whereas there was an increase for the transcripts in clusters V, VI, and VII. Also, a distinguishing feature of cluster V was that the cold-response for these transcripts was transient in nature; transcript levels increased dramatically by 1 h, but returned to near “nu-stressed” levels by 24 h. The clustering of genes with similar expression patterns raises the possibility of using bioinformatic approaches to identify potential cis-acting regulatory elements involved in coordinate gene regulation (reviewed in Rombauts et al., 2003). In this regard, MotifSampler (Thijs et al., 2002) was used to search for 8 bp sequences that were significantly overrepresented in the promoter regions of the COS genes that comprised the different expression clusters. Those elements that were enriched 5-fold or more (as compared to all genes on the array) are listed in Table 2.1. No potential cold-regulatory elements were identified for the genes in clusters I and II, the cold-repressed genes, but many were identified for the up-regulated genes in clusters III to VII. Most of these potential regulatory sequences were novel. However, an analysis of the genes comprising cluster III lead to the identification of the motif erCGAC which contains the CRT/DRE element, (A/G)CCGAC, the element to which the CBF transcriptional activators bind (Sakuma et al., 2002). The sequence (A/G)CCGAC was present within lkb upstream of 123 (53%) of the 233 genes included in the cluster (as shown below, most of the genes 28 (a) Time (h) at 4°C (b) Expression profiles of clusters 0 1 24 168 10 !Cluster 1, 101 probe sets 1 ‘ .-.. .. 0.1 5 10 ICluster II, 111 probe sets 1 ~- ,4 0.1 i ‘ is? 1000 Cluster III. 233 probe sets ll 100 0 represent hydrophilic regions, while values < O are hydrophobic. The length of the protein (number of amino acids) is indicated along the top of each plot. TargetP (http://www.cbs.dtu.dk/services/TargetP/) was used to deduce potential signal peptides and the predicted cleavage sites are indicated by arrows. COR15a is shown for comparison. sequence analysis using TargetP (Nielsen et al., 1997; Emanuelsson et al., 2000), suggesting they are targeted to cellular organelles. Of these four, COR] 7 was the most highly up-regulated (>375 fold) by CBF2 expression and contained 3 CRT/DRE elements within 500 bp of the 5’ UTR, likely making it a direct target of the CBFs. COR17 contained a group 3 LEA domain (Dure et al., 1989) and the mature peptide was rich in Ser, Val, Thr, Ala, Glu, and Lys (51% of the amino acid residues). COR17 was also the most highly up-regulated transcript at any time (>390-fold at 24 h) in the experiment examining cold-responsive genes in plate grown plants. COR 1 7 lies on chromosome 1 88 next to another gene (Atl gl6840), also predicted to encode a highly hydrophilic peptide possessing a targeting peptide (Atl g16840 was not cold-regulated). This type of chromosomal arrangement is similar to that described for other COR gene pairs (Thomashow et al., 1997). Given the high level of expression and predicted domains in the protein, it seems likely that COR17 plays a protective role during freezing stress, perhaps in a fashion similar to COR15a (Artus et al., 1996). Future experiments will be needed to confirm this hypothesis. The ZAT12 regulon was enriched for transcripts annotated with the biological processes of lipid transport and binding, transport, and cell growth (Figure 3.3b and Table 3.4). Among the down-regulated transcripts, there was no enrichment for any biological processes or molecular function, but further examination showed that six transcripts encoded proteins of unknown function and five encoded proteins potentially involved in metabolism. The other four transcripts were classified as signaling, transport, and stress. ZA T12 overexpression results in altered freezing tolerance, but to a much lesser degree than overexpression of CBF. The mechanism for this change in freezing tolerance is not known, but the putative functions of the proteins encoded by transcripts altered by ZAT12 reveal some possibilities. I previously speculated on the role of two transcripts, L-ascorbate oxidase (At5g21100) and arginine decarboxylase (At4g34710), in protecting the plant from damage during cold stress (Chapter 2). Additional transcripts influenced by ZAT12 have stress-related roles. ZAT12 up-regulated five members of the protease inhibitor/seed storage/ lipid transfer protein family, which may stabilize or remodel membranes, as hypothesized by Wilkosz and Schlappi (2000). Transcripts for potential antifreeze proteins (At2g43620 and At5g06860) were also up-regulated by ZAT12. 89 Table 3.4. Overrepresented GO terms in the ZAT12 regulon Frequency in Frequency Class GO Ontology genome in class E-score GO Term ZAT12 & Cellular 4520/27627 8/9 4.32E-05 endomembrane cold up Component system 6642/27627 8/9 8.66E-04 membrane Biological 104/27627 5/9 2.31 E-09 lipid transport Process 4687/2762? 7/9 2.84E-03 cellular process 3237/27627 6/9 4.26E-03 cell growth and/or maintenance 1987/27627 5/9 5.10E-03 transport 3592/27627 6/9 7.67E-03 cellular physiological Jrocess Molecular 143/27627 5/9 1.12E-08 lipid binding Function 1 15/27627 2/9 1 .58E-02 nutrient reservoir activity ZAT12 & Cellular 6642/27627 10/15 3.96E-03 membrane cold down Component 4520/27627 7/15 4.15E-02 endomembrane system ZAT12 regulon members (Appendices G and H) were classified into gene ontology (GO) categories using the functional categorization tool at TAIR (http://www.arabidopsis.org/tools/bulk/go/). Overrepresented terms among transcripts in the ZAT12 regulon as compared to the rest of the genome (E S 0.05) are shown. Each term is associated with an organizing principle (biological process, cellular component, or molecular function) listed under “GO ontology” in the table. Transcripts for proteins likely involved in protecting the plant from oxidative stress were up-regulated, including a putative anthocyanidin synthase (At4g22870) and a dihydroflavanol 4-reductase (At5g42800), both of which are involved in anthocyanin production, but neither is a COS transcript. The Co-Regulation of Transcripts by Multiple Transcription Factors Indicates Many of the Early Cold-Responsive Transcription Factors May Co-Regulate Cold-Responsive Transcripts 9O The co-regulation of transcripts by CBF2 and ZAT12 (Chapter 2) is of interest, as it reveals the complexity of the networks of gene expression that occur at low temperature. The pEARLI transcripts are a case in point. These proteins of unknown function are members of the protease inhibitor/seed storage/lipid transfer protein family and were first identified as transcripts responding to toxic levels of aluminum (Richards and Gardner, 1995) and, more recently, vernalization (Wilkosz and Schlappi, 2000). Of the five pEARLI-like genes identified as COS genes, four occur in tandem on chromosome 4. Interestingly, all of the cold-regulated transcripts belonging to this family were placed into either the CBF 2 or ZAT12 regulons. In addition to being affected by expression of CBF2 or ZAT12 (Figure 2.8, Chapter 2), the transcription factors STZ/ZA T10 and CZF2 (At5g04340) also altered the expression of one or more of the pEARLIs (J .T. Vogel, unpublished data). Even though STZ/ZA T10 and CZF 2 did not contribute significantly to the cold transcriptome (Chapter 2), it seems unlikely that these cold inducible transcription factors would influence pEARLI expression by chance. A question that arises is why such redundancy would be needed. These proteins could be playing a critical role in freezing tolerance, vernalization, or life at low temperature. Whatever their role, the identification of cold-regulated genes that appear to be influenced by multiple transcription factors reveals the complexity of signaling events at low temperature and may denote factors with critical roles in cold acclimation. CONCLUSION The Arabidopsis cold transcriptome is composed of transcripts encoding myriad functions, as one would expect given the number of physiological changes that occur 91 during cold acclimation. As the work here demonstrates, those transcripts induced quickly in the cold are enriched for signaling molecules and transcription factors, which presumably influence downstream changes in gene expression and, ultimately, freezing tolerance. Examination of the CBF 2 and ZAT12 regulons also supports this model. The CBF cold response pathway regulates genes with altered accumulation at later times in the cold, but that picture has been expanded upon here. The CBF regulon is enriched in stress-related transcripts, the majority of whcih fall into cluster III. The ZAT12 regulon is also composed of transcripts that are highly up-regulated later in the cold response (24 h or 7 d). The co-regulation of a number of transcripts by multiple transcription factors only adds to the apparent complexity of cold signaling pathways. The analysis presented in this work generates new hypotheses that can be tested experimentally. The need exists to continue studying the functions of both the downstream genes in order to assess their roles in cold acclimation and the upstream factors that regulate them. This will include biochemical and physiological studies of gene products such as the COR peptides and molecular genetic studies on the transcription factors and cis-elements responsible for cold-regulated gene expression. This will result in a greater understanding of Arabidopsis low temperature regulatory networks and how plants increase their freezing tolerance during cold acclimation. 92 AKNOWLEDGEMENTS In the completion of the work in this chapter, I would like to thank our collaborator Dr. Seung Yon Rhee at TAIR for helpful suggestions and analyzing the data with the GeneMerge program. Thanks also to Dr. Sarah Fowler for critical reading of this chapter. 93 MATERIALS AND METHODS Functional Classification of Transcripts COS probe sets were assigned AGI locus identities derived from TAIR’s annotation of the ATHl GeneChip using the TIGR v 5.0 annotation of the Arabidopsis genome. COS genes were placed into functional categories manually using annotation available at TAIR (The Arabidopsis Information Resource, www.arabidopsis.org), TIGR (The Institute for Genomic Research, www.tigr.org), and MIPS (Munich Information Center for Protein Sequences, http://mips.gsf.de). The transcripts were then placed into sub-roles based primarily on this annotation and on published literature. A full description of the microarray datasets and tables of the COS genes can be found in Chapter 2 and Appendices E and F. The COS genes were also automatically classified into gene ontology (GO) functional categories using the fimctional categorization tool available at TAIR (http://www.arabidopsis.org/tools/bulk/gol). GeneMerge was then used to find categories of transcripts statistically (E—score S 0.05) overrepresented in a given class compared to the rest of the genome as described by Castillo-Davis and Hart] (2003) 94 CHAPTER FOUR THE IDENTIFICATION OF SIX NOVEL MOTIFS IN THE PROMOTERS OF COLD- REGULATED GENES AND THE DETERMINATION OF THEIR COLD- RESPONSIVENESS SUMMARY The definition of the COS (991d standards) gene set (Chapter 2), transcripts that change in plants grown in either soil or solid media in response to low temperature, provides the framework with which the low temperature regulatory networks of Arabidopsis can be constructed. Understanding Arabidopsis low temperature regulatory networks will lead to a greater understanding of how plants cold acclimate and may ultimately result in genetic methods of increasing the freezing tolerance of agricultural crops. One component of these regulatory networks comprises the cis-elements present in the promoters of cold-responsive genes. Studies on the COS gene set has led to the identification of several motifs in the promoters of genes with similar expression profiles (Chapter 2). These motifs could be binding sites for transcription factors that regulate transcription in a cold dependent manner. The studies presented here aimed to identify additional motifs present in the promoters of the COS genes and to determine their cold- responsiveness. To this end, two new novel motifs were identified in the promoters of COS genes with the highest expression after 24 h at low temperature and that were outside of the CBF regulon. These two novel motifs, along with four motifs previously found to be overrepresented in the promoters of COS genes (Chapter 2), were each fused as a tetramer in front of the GUS reporter gene, transformed into Arabidopsis, and assayed for the activity of the reporter. None of the six motifs were found to confer cold- responsiveness to the reporter. However, fusion of a tetramer of the sequence 95 GTGATCAC in front of the GUS reporter gene resulted in GUS activity in both warm and cold treated plants. 96 INTRODUCTION Cold acclimation is the process by which plants increase their freezing tolerance through exposure to low non-freezing temperatures (Thomashow, 1999; Smallwood and Bowles, 2002). Understanding how plants cold acclimate not only furthers science, but may ultimately lead to novel methods of engineering increased freezing tolerance in crop species. Such an understanding includes deciphering the low temperature transcriptome, those genes whose expression is altered in response to low temperature. In order to more fully understand the gene networks involved in regulating the low temperature transcriptome, it is necessary to identify transcription factors that regulate cold-responsive transcripts and identify the cis-elements they bind. Given that the Arabidopsis genome encodes more than 1,700 transcription factors (Riechmann, 2002), the question becomes which regulate cold-responsive transcripts. One approach is to constitutively express transcription factors whose mRNA levels accumulate in response to low temperature and determine if the expression of any cold-responsive transcripts is altered. This approach led to limited success, as one out of five transcription factors whose mRNA accumulated in response to low temperature was found to influence a significant number of cold-responsive transcripts (Chapter 2). This approach is limited to only those transcription factors whose transcripts increase in the cold and that can function independently of other cold-responsive factors and/or modifications. Alternatively, a mutational approach can be taken. Studies using the RD29a/C OR 78 or CBF 3 promoter fused to luciferase have identified transcription factors such as H059 and ICE 1, whose expression is not altered by low temperatures, which influence cold-responsive genes (Chinnusamy et al., 2003; Zhu et al., 2004). This 97 mutational approach has the drawback of taking longer to isolate, characterize, and clone the mutated gene which may or may not be involved in cold-responsive transcription. Additional approaches are needed in order to define novel cold response pathways in Arabidopsis. A more direct approach to define novel pathways is to first determine the cold- responsive elements present in the promoters of cold-regulated genes and then isolate the factor(s) that bind them. Such an approach was successfully used to identify the CRT/DRE element in the promoters of certain cold-responsive genes (Baker et al., 1994; Yamaguchi-Shinozaki and Shinozaki, 1994) and the CBF/DREBl transcription factors that bind to this element (Stockinger et al., 1997). Constitutive expression of CBF], 2, or 3 in plants leads to activation of genes containing the CRT/DRE element in their promoter and increases freezing tolerance (Jaglo-Ottosen et al., 1998; Gilmour et al., 2004). The success of these experiments may have lain, in part, with the gene used in the promoter-deletion experiments (COR15a), which has a high level of expression in response to low temperature. Current work suggests that had global gene expression data and computational approaches been available when experiments studying the COR15a promoter began, the CRT/DRE element would have quickly been identified as it has recently (Kreps et al., 2003; Vogel et al., 2005). Fusion of the CRT/DRE motif as a tetramer in front of a reporter gene such as GUS or LUC would have resulted in the reporter’s expression after cold treatment. This computational approach would have saved time and effort put into creating multiple promoter-reporter deletion constructs in stably transformed transgenic 98 plants. In fact, this exact type of bioinformatic approach was used to rapidly identify the circadian responsive evening element in Arabidopsis (Harmer et al., 2000). Here, I apply the above approach to the study of cold-regulated gene expression to identify non-CBF cold response pathways. Transcriptome profiling experiments examining transcripts with altered accumulation after 1 h, 24 h, or 7 d at low temperature in two growth conditions (soil or solid media, 2.5-fold cutoff, p<0.05), resulted in the identification of 514 transcripts changing in both culture conditions, defined as COS (c_qld standard) transcripts (Chapter 2). Hierarchical clustering revealed seven expression classes among the COS genes. Additionally, bioinformatics analysis revealed DNA motifs that were overrepresented in the promoters of each cluster of up-regulated genes. Elements identified in the promoters of genes whose transcripts increased the most after 24 h or 7 d of exposure to low temperature should be good candidates for testing the motifs identified, as these motifs might confer a high level of cold-responsiveness to a reporter gene. Among those genes that increased to the highest levels after 24 h at low temperature, clusters III and IV, the CRT/DRE motif was identified in cluster III and four novel motifs were found in cluster IV. In this study, cluster III promoters were found to contain the evening element, ABREs, and two novel motifs. The cold-responsiveness of these novel motifs, along with the motifs previously identified in cluster IV, was tested by fusing a tetramer of each motif in front of the GUS reporter gene and monitoring for cold induction of the reporter. When placed as a tetramer in front of GUS, none of the motifs conferred cold-responsive GUS activity. One element, GTGATCAC, resulted in constitutive activation of the reporter gene. Future work that could reveal the function of these elements is discussed. 99 RESULTS The Circadian Evening Element and the ABRE are Present in the Promoters of the Most Highly Cold-Induced Transcripts Outside of the CBF Regulon In an effort to decipher Arabidopsis low temperature regulatory networks, the promoters of the 25 transcripts with the highest average fold change after 24 h of cold treatment that were not CBF regulon members were examined. Should a cold-responsive element be present in this group of genes, one might expect such an element to be easier to discover if the high expression level is due to multiple copies of that element. The 500 bp upstream regions of these transcripts was searched for overrepresented motifs using MotifSampler (Thijs et al., 2002). MotifSampler is a statistical program based on Gibbs sampling (Thijs et al., 2001; Thijs et al., 2002). Gibbs sampling is a stochastic variant of the expectation-maximization (EM) method (reviewed in Rombauts et al., 2003). Due to the stochastic nature of Gibbs sampling, a detected motif can be replaced by another with a higher score. This results in different outputs from the algorithm each time it is run. However, motifs that are more conserved and overrepresented in a group of sequences will be retrieved more frequently over different runs. Statistically analyzing the output of multiple runs allows one to find the highest scoring motifs. Here, the program was run 100 times and the results were then searched for the highest scoring motifs. Two motifs, CACGTGM and AAATATCT, were identified that were statistically overrepresented and approximately 2-fold enriched in the promoters of these genes compared to the rest of the promoters for genes on the GeneChip. Each is a known cis- element, CACGTGM is an ABRE (abscisic acid response element) (Guiltinan et al., 1990) and AAATATCT is the evening element (Harmer et al., 2000). Both elements 100 have been previously identified in the promoters of cold-regulated genes (Baker et al., 1994; Yamaguchi-Shinozaki and Shinozaki, 1994; Kreps et al., 2002; Kreps et al., 2003), but this is the first report of their occurrence in the promoters of the most highly cold- induced genes not part of the CBF regulon. MotifSampler previously found the CRT/DRE element in the promoters of cold-regulated genes (Chapter 2). The program has now successfully found two other cis-elements present in the promoters of cold- _ responsive genes. This indicates that the program can find overrepresented motifs which can play a role in gene expression. Novel Potential cis-Elements are Revealed in Cluster III Promoters when CBF Regulon Members are Removed In order to find additional overrepresented motifs, another approach was taken to analyze the promoters of cold-responsive genes. Cluster 111 represents a group of good candidate genes for identifying cold-responsive cis-elements, as their expression is high at 24 h and elements found in these promoters might impart high levels of cold- responsiveness to a reporter gene. Since the CRT/DRE element was the only motif identified as 2 S-fold enriched in cluster 111, these genes were further analyzed to determine if the presence of the CRT/DRE could be masking additional motifs that were not as greatly enriched. By removing all the CBF regulon members and genes containing an (A/G)CCGAC within lkb upstream among the 233 cluster III genes, 96 remained. Analysis of these 96 promoters (500 bp upstream) with MotifSampler uncovered one known motif, WNGMCACGTG (ABRE), and one novel element, AGGCCCAWNA, that 101 were both approximately 2-fold enriched in cluster 111 (Table 4.1). Each motif was present in over 20 of the promoters of cluster 111 genes. Since removal of CRT/DRE and CBF regulon member genes from the analysis allowed the identification of a new overrepresented motif, cluster HI promoters that contained WNGMCACGTG or AGGCCCAWNA were removed and the remaining promoters analyzed. Among these promoters, one novel motif, AAAACCCTA, was discovered as overrepresented and 2-fold enriched (Table 4.1). Again, this motif was present in over 20 promoters of cluster 111 genes. A question arose as to whether these novel elements occurred in promoters with CRT/DRE elements, by themselves, or in some combination. To address this question, the promoter region queried was expanded to lkb upstream and cluster III transcripts were examined for promoters with each of the motifs (Table 4.2). Besides examining promoters with at least two motifs, Figure 4.1 depicts the overlap between cluster 111 genes with the CRT/DRE and either of the two novel elements. The results indicate that no cluster III gene promoter possesses all four of the motifs. Promoters with the two novel elements also contain a CRT/DRE element more ofien than each other or WNGMCACGTG. Given the number of promoters containing one or more of these different motifs, multiple transcription factors are likely acting on the promoters of cluster 111 genes. Some of the Base Pairs Flanking the Motifs in Cluster 1]] Appear to be Conserved When MotifSampler searches for motifs among a group of sequences, the length of the motif to be searched for must be pre-set. To determine whether any of the novel 102 Table 4.1. Overrepresented motifs in cluster III 500bp upstream 1000bp upstream Motif PlantCARE Class (%) GeneChip (%) Class (%) GeneChip (%) AGGCCCAWNA novel 21/233(9%) 1159l22746 (5%) 261233 (11%) 1483/22746(6.5%) WNGMCACGTG ABRE 27/233 (11.6%) 88822746 (3.9%) 30I233 (13%) 1245722746 (5.5%) AAAACCCTA novel 21/233 (9%) 10360274644.5%) 28l233 (12%) 1486/22746 (6.5%) Overrepresented motifs discovered in the promoters of cluster III genes that do not have CRT/DRE elements (lkb upstream) and are not CBF regulon members. Each motif was queried to the PlantCARE database to determine if it was a known or novel element. The numbers of promoters in cluster III or for promoters from genes on the ATHl GeneChip that contain the element (in the 500 bp or 1000 bp upstream regions) are shown. ABRE: abscisic acid responsive element. Table 4.2. Number of promoters with each pair-wise motif combination Element CRT/DRE WNGMCACGTG AGGC_——CCAWNA AAAAC_CC_TA —CRT/DRE 124 WNGMCACGTG 18 30 AGGCCCAWNA 12 3 26 AAAACCCTA 8 1 5 28 This table depicts the number of promoters of the 233 cluster III (lkb upstream) genes that contain each motif in any given pair-wise combination. To be identified in the promoter of a gene, the element had to be present exactly as shown. (AlGICCGAC VAV V AAAACCCTA AGGCCCAWNA Figure 4.1. Overlap of the two novel motifs and the CRT/DRE element in cluster III promoters. This figure depicts the number of promoters (lkb upstream sequence) of the 233 cluster 111 genes with the CRT/DRE element and the two novel motifs. To be identified in the promoter of a gene, the element had to be present exactly as shown. 103 motifs identified might be part of a larger consensus, a custom PERL script was written and used to extract the 4 bp flanking sequence around each motif present within 500 bp of the start of transcription for cluster III genes. The conservation at each position in the aligned sequences was visualized using WebLogo (Crooks et al., 2004), which can reveal significant features of an alignment (Figure 4.2). The alignments revealed no conserved base pairs flanking AGGCCCAWNA. The motif WNGMCACGTG had a conserved T/G (indicated by the arrow in Figure 4.2) and AAAACCCTA had three positions outside of the core motif that appear to be conserved. As a comparison, the flanking sequences of CBF regulon members containing (A/G)CCGAC were analyzed in the same fashion, revealing a previously identified conserved T (Maruyama et al., 2004; Vogel et al., 2005). Since flanking base pairs might be important for the binding of a transcription factor, any analysis of these motifs should include flanking sequence. Cluster I V Contains Novel Potential cis-elements, Including Palindromic Sequences Cluster IV represents a second cluster of good candidate genes for discovering and testing promoter elements, as the expression of genes in this class continues to increase the entire time the plants are at low temperature (7 d in this experiment). Work presented in Chapter 2 identified four novel motifs among cluster IV genes, which are 1 listed in Table 4.3. Two of the sequences, TGTATACA and GTGATCAC, are palindromes. 104 bitsN bitsN illliCCGACigii] iiiilllilllilillilfii illilliiiillllilii lilAAAACCCTAiill NO bits 1 NO 1 bits bitsN A bitsN 1 bitsN 1 0 0 , "_sCCGAC.iH_ tutu- .. “Milli- . iAAAACCCTh Figure 4.2. WebLogos depicting conserved sequences flanking the CRT/DRE, ABRE, and two novel motifs in cluster III genes. Each element from all cluster III promoters (500 bp upstream) was extracted, along with 4bp of flanking sequence, and aligned. Weblogo (http://weblogo.berkeley.edu/) was used to visualize these alignments. The left side of the figure depicts each alignment with a uniform logo height, while the right side depicts the conservation of each position by height (the height of the y-axis is the maximum entropy for DNA, log; 4 = 2 bits). Residues that appear to be conserved outside of the core motifs are indicated by arrows. Table 4.3. Overrepresented motifs in cluster IV 500bp upstream 1000bp upstream Motif PlantCARE Class (%) GeneChip (%) Class (%) GeneChip (%) CAATGAGG Novel 3/13(23%) 176/22746(0.8%) 3/13(23%) 379/22746 (1.6%) GTGATCAC Novel 1/13(8%) 96/22746 (0.4%) 1/13(8%) 199/22746 (0.9%) GnATTGAC Novel 5/13 (38%) 937/22746 (4.1%) 5/13 (38%) 1808/22746 (8%) TGTATACA Novel 3/13 (23%) 327/22746 (1.4%) 4/13 (31%) 647/22746 (2.8%) Overrepresented motifs discovered in the promoters of cluster IV genes. Each motif was queried to the PlantCARE database to determine if it was a known or novel element. The numbers of promoters in cluster IV or for promoters from genes on the ATHl GeneChip that contain the element (in the 500 bp or 1000 105 bp upstream regions) are shown. A T etramer of the Novel Motif GT GA TCAC Fused in Front of the GUS Reporter Gene Results in GUS Activity in both Warm and Cold Temperatures In order to determine whether any of the newly identified novel elements from cluster III and those previously found in cluster IV (Table 4.3) were cold-responsive, a tetramer of each motif was fiised in fi'ont of the fl-glucuronidase (GUS) reporter gene, and transformed into Arabidopsis. Each tetramer contained 6 bp of flanking sequence, since some of the motifs in cluster III possessed conserved residues outside of the identified motif. The motifs, along with flanking sequence, were taken from the context of the promoter of the cold-responsive gene in either cluster III or IV with the highest level of cold-regulated expression (Appendix L). T] plants were assayed for expression of GUS in response to low temperature by histochemical staining. After 48 h or 7 d at 4°C, none of the lines stained blue for cold-responsive GUS activity (data not shown, >20 T1 plants screened per condition). However, plants expressing the motif GTGATCAC fused in front of GUS stained blue in both the warm and the cold (Figure 4.3). GUS activity was seen with both plate and soil grown plants. These preliminary results indicate that this motif is likely a cis-acting element involved in transcriptional activation. cold Figure 4.3. The motif GTGATCAC confers activity to a GUS reporter. A tetramer of GTGATCAC confers activity to a GUS reporter in both warm (24°C) grown and cold (7 d at 4°C) treated plants. Approximately 10 plants were screened in the warm and in the cold. Bar = 5mm. Images in this figure are presented in color. 106 DISCUSSION In an effort to identify non-CBF cold response pathways, the objective of this study was to use a bioinformatics approach to discover novel potential cis-elements in the promoters of highly cold-inducible genes. This goal was accomplished, as use of MotifSampler on non—CBF regulon COS genes revealed the presence of two novel motifs among cluster III promoters, those transcripts induced to the highest levels after 24 h at low temperature. In addition to these two novel motifs, two known motifs, the ABRE and the evening element, were found in the promoters of the 25 non-CBF regulon genes with the highest fold-change at 24 h. It was then hypothesized that these two novel elements and those identified previously in cluster IV were cold-responsive elements. To address this question, constructs were created where a tetramer of each motif along with flanking sequence was fused in front of the GUS reporter gene. Plants containing these constructs were tested for cold-inducible reporter activity. While the motif GTGATCAC conferred activity on the GUS reporter gene, none of the other constructs tested displayed any GUS activity in the warm or after 48 h at 4°C. This result could be due to a number of possibilities. One explanation is that none of these elements play a role in cold-responsive gene expression. They may instead respond to other stimuli (hormones, circadian rhythm, light, etc.) or may not be involved at all in transcriptional regulation. Alternatively, these elements may indeed play a role in the cold, but may need to work in combination with additional elements to function properly. As evidence for this hypothesis, each novel element was found in a number of promoters containing CRT/DRE elements. While none of the elements were sufficient for cold-responsiveness, fiirther experiments would be needed to 107 test each of the above possibilities and to determine if any of the elements were necessary for cold-responsiveness. Furthermore, the use of RT-PCR or RNA blot analysis might reveal changes in GUS transcript accumulation which might not be reflected by the intensity of the staining. An additional possibility is that the program used to discover these novel motifs may have not worked optimally, resulting in the identification of motifs that were not the most overrpresented. This seems unlikely since MotifSampler found three motifs known to be present in the promoters of cold-responsive genes, including the CRT/DRE. Since the initial work done here to discover the motifs in clusters HI and IV, a study assessing the ability of 13 motif discovery tools to find statistically overrepresented motifs was published (Tompa et al., 2005). This study revealed a number of interesting findings. No program worked very well on all the datasets or conditions tested and the longer the binding site, the less likely a program was to find it. Based on their results, the authors recommend that researchers pursue the top several motifs, not just the “best” one and to use other data (such as chromatin IP, global expression studies, etc.) or multiple programs when available. MotifSampler, the program used here, was found to perform the best of all 13 programs on a dataset consisting of actual data. While the work presented here used global expression studies and focused on the top several motifs, future motif searches should be performed using a second program, such as Weeder (Pavesi et al., 2004), to confirm the results of the first algorithm. There is only one other published study that identified novel motifs in the promoters of cold-responsive genes (Kreps et al., 2003). The study by Kreps et al. did not use a statistical algorithm, but pattern enumeration. This method takes longer and 108 needs more computing power than statistical methods, but its advantage lies in that it requires no statistical assumptions to be made. Kreps et al. (2003) searched the promoter regions of cold-responsive transcripts identified in experiments using the 8K GeneChip (Kreps et al., 2002) and found the CRT/DRE element and ABRE as the top scoring motifs. As found in this study, their work also identified the evening element as overrepresented among cold-responsive promoters. Kreps et al. (2003) speculate the evening element could possess a dual role, functioning both in circadian rhythms and the cold response. Additionally, Kreps et al. (2003) found numerous novel motifs, none of which were the same as those analyzed in this paper. It will be interesting to see if future experimental evidence points towards a role in cold-responsive gene expression for any of the novel motifs they identified. While the motif GTGATCAC did not confer cold-responsiveness to the GUS reporter gene, fusion of this element in front of GUS resulted in GUS activity in both warm and cold treated plants. The level of staining observed was similar to plants expressing GUS under control of the CMV 35S promoter. This preliminary data indicates that this motif likely constitutively stimulates transcription. These results need to be confirmed in the T2 generation and by testing a mutated version of the element. This element is present within 500 bp of the start of transcription for 1 14/27,186 Arabidopsis genes. Only two of the COS genes have this element in their promoters (500 bp upstream), the up-regulated gene At4g22470 and the down-regulated gene At2g33480. While it may or may not play role in cold-responsive gene expression, this element could be used in a yeast one-hybrid to identify the transcription factor which binds to it and stimulates expression of the reporter gene. 109 While no study has yet identified a new cold-responsive cis-element through bioinformatic means, this event is still a strong possibility. The use of additional computer programs and more extensive global expression datasets could lead to their discovery. Chromatin IP experiments could also be used to reveal promoters that contain acetylated histones, revealing which genes are most likely to be transcriptionally active, which would help to refine any bioinformatic analysis. Additionally, a number of motifs were identified among the cold-responsive genes that have not yet been tested experimentally (Chapter 2, Table 2.1). In the study presented here, one of the elements discovered was constitutively active and this element could play a role in the regulation of genes possessing the motif in its promoter. The computational discovery of motifs among co-regulated genes holds the possibility of greatly reducing the time and effort currently involved in uncovering cis-elements through traditional promoter bashing experiments. ”0 MATERIALS AND METHODS Constructs and Plant Transformation Plasmids were constructed using standard molecular biological techniques (Sambrook and Russell, 2001). Synthetic double stranded tetramers of each motif (along with mutated versions of each motif) were created by annealing single stranded oligos synthesized at the Michigan State University Macromolecular Synthesis Facility (E. Lansing, MI) by heating at 94°C for 5 min and cooling to room temperature. Each double stranded oligo had a 5’ EcoR I overhang, followed by an Xma I site, followed by four copies of the motif taken from the context of a promoter containing that motif with 6 bp of sequence flanking either side, and a 3’ Xma I site that would be destroyed by ligation into an Xma I site. Mutant versions of each motif retained the 6 bp flanking sequence as was found in the context of the actual promoter. Oligos were then ligated into the pBS SK' vector (Clontech, Palo Alto, CA) cut with EcoR I and Xma I. The oligo was then cut from pBS SK‘ using Hind III and Xba I and ligated into the plant binary transformation vector pBIlOl plus (Clontech, Palo Alto, CA) cut with the same enzymes. The genes from which the motifs were taken and the sequence of each tetramer are listed in Appendix L. The DNAs were transferred to Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija-2 (WS-2) via a whole plant dipping method similar to that described by Clough and Bent (1998). Seed germination on medium containing kanamycin (50 mg/L) (Sigma-Aldrich, St. Louis, MO) was used to identify plants containing transferred DNA. Kanamycin resisitant seedlings were grown and T1 plants were used in all experiments. 111 Plant Growth and Experimental Treatments All Arabidopsis plants were grown in controlled environmental chambers at 22°C under constant illumination from cool—white fluorescent lights (100 umol m"2 s'l) in Baccto planting mix (Michigan Peat, Houston). Pots were subirrigated with deionized water. After four days stratification at 4°C, plants were also grown for 10-12 days in Petri plates containing Gamborg’s BS nutrients (Caisson Laboratories, Inc., Rexburg, ID) and 0.8% phytagar (Life Technologies Inc., Gaithersburg, MD) at 22°C under constant illumination from cool-white fluorescent lights (approximately 100 umol m'2 s"). The plates of plants were then transferred to 4°C under constant illumination from cool-white fluorescent lights (approximately 30 umol m'2 s") and harvested at the indicated times. Staining for GUS Activity Staining of plant tissue for GUS activity was performed on plants grown at 22°C and those transferred to 4°C for 24 h, 48 h, or 7 (1. Plants were immersed in a GUS staining solution (Jefferson et al., 1987) and incubated overnight at 37°C. The tissue was then cleared by several rinses of 70% (v/v) ethanol to assist in revealing the staining. Motif Analysis Motif searches were performed using the command line version of MotifSampler v3.0 (http://www.esat.kuleuven.ac.be/~thijs/Work/Motif‘Samplenhtml). Motifs were identified from various sub-groups of the 500 bp locus upstream sequence (TIGR v5.0 annotation of the Arabidopsis genome) downloaded from TAIR 112 (http://www.arabidopsis.org) on February 28, 2004. Arabidopsis intergenic regions were used as a background model with the order set to 3. The motif length was set to 8 or 10bp, with the prior probability of finding 1 motif instance set to 0.3. No limit was set for the number of motif instances that could be found per sequence, the maximum overlap between different motifs was set to l, the number of motifs to be found per run was set to 4, and the total number of runs was set to 100. The highest scoring motifs were then ranked by the command line version of MotifRanking v3.0 (http://www.esat.kuleuven.ac.be/~thijs/Work/MotifSamplerhtml) using Arabidopsis intergenic sequence as a background model and the Kullback-Lieber distance to score the top ten motifs. The Patmatch program at TAIR or a PERL script (Appendix M) was used to identify all promoters in the genome that contained each motif. Those motifs approximately 2-fold enriched compared to all promoters in the genome were chosen for further analysis. Motifs were queried at PlantCARE (Lescot et al., 2002) to determine if they were similar to any known cis-element. The 4 bp flanking either side of the identified motifs was extracted from the 500 bp locus upstream sequence for cluster 111 genes (Appendix E) using a custom PERL script (Appendix M). The alignment of these sequences was then used to identify potentially conserved residues flanking a motif through the creation of WebLogos (http://weblogo.berkeley.edu/). 113 CHAPTER FIVE A SUMMARY OF THE GENE REGULONS THAT CONTRIBUTE TO THE ARABIDOPSIS COLD TRANSCRIPTOME The goal of identifying cold-responsive genes, the cis-elements within their promoters, and the transcription factors that bind to those elements, is to understand the gene networks contributing to cold acclimation in Arabidopsis. Such knowledge not only furthers science, but could provide the genetic means of improving the freezing tolerance of agriculturally important crops. The identification of the COS gene set, as described in this dissertation, should serve as a robust resource to begin to decipher the low temperature regulatory network of Arabidopsis. Indeed, the work described in this dissertation represents the start of this work. Using the COS gene set as a guide, this chapter summarizes what is currently known about the low temperature regulatory networks of Arabidopsis. While transcriptome profiling experiments have led to the definition of the COS gene set, the regulatory networks cannot be properly explained without knowledge of the cis-elements present in the promoters of the COS genes and the transcription factors that bind to those elements. The CBF transcription factors, which bind to the CRT/DRE element, play a major role in configuring the low temperature transcriptome of Arabidopsis. The CBF transcription factors each appear to regulate the same suite of target genes (Gilmour et al., 2004). Of the 514 COS genes, 93 were CBF2 regulon members and of these 93, the large majority, 85 (91%), were cold-induced. The promoters of 68 (80%) of these 85 genes had one or more CRT/DRE elements, (A/G)CCGAC, present within 1 kb upstream of the start of the protein coding sequence. 114 Thus, these genes were likely to be direct targets of CBF2. CBF2-regulated COS genes without CRT/DRE elements in their promoters were presumably regulated by other genes controlled by CBF 2 though this remains to be established. The 85 cold-induced CBF regulon members represented a diverse range of functional roles, including metabolism, transcription, intercellular communication and signaling, transport, energy, protein processing, and cellular biogenesis. The largest group of transcripts (30%) in the CBF2 up-regulated regulon were stress-related transcripts. A further distinguishing characteristic of these genes was that they comprised the majority of genes that were most highly-induced in response to low temperature. Of the 25 COS genes that were up-regulated at least lS-fold at 24 h, 21 (84%) were members of the CBF regulon and nearly half of those up-regulated 5- to lO-fold, 32/66 (49%), were also assigned to the CBF regulon. Conversely, approximately 90% of the COS genes that were induced less than S-fold were not assigned to the CBF regulon. Finally, an additional distinguishing feature of the CBF regulon COS genes was the enrichment for genes that remained up-regulated at 7 (1. Of these 67 “long-term” up- regulated COS genes (22.5-fold increase at 7 d), 37 (55%) were members of the CBF regulon. Taken together, the above results indicate that the CBF transcription factors have a prominent role in regulating the expression of those cold-responsive COS genes that are both highly-induced and long-term up-regulated in response to low temperature. However, it is also clear that additional cold-response pathways participate in configuring the low temperature transcriptome, indicated by the finding that the transcript levels for 112 (22%) of the total 302 up-regulated COS genes showed no detectible change in either 115 of the CBF 2 overexpressing transgenic lines profiled. Thus, it would appear that these cold-regulated genes fall outside of the CBF regulon. While most of these genes are induced less than 5-fold in response to low temperature, 33 were induced more than 5- fold. Identifying the transcription factors that regulate the expression of these genes is required to more completely define the low temperature regulatory network of Arabidopsis. ZAT12, a C2H2 zinc finger transcription factor (Meissner and Michael, 1997), was found to define an additional cold response pathway. ZAT12 is cold-induced in parallel with CBF 2 and shares two additional features with CBF2; it is responsive to mechanical agitation and treatment with cycloheximide. Analysis of the ZAT12 promoter indicates that this regulation may occur at a transcriptional level, as two regions were found to be similar to the ICErl and ICEr2 cold-, mechanical-, and cycloheximide- responsive regions in the CBF2 promoter (Zarka et al., 2003). Constitutive expression of ZA T12 influenced a statistically significant number of COS genes (24) and caused a limited, but reproducible, increase in the freezing tolerance of Arabidopsis. In addition, ZAT12 interacted with the CBF cold response pathway in two significant ways. First, constitutive expression of ZAT12 influenced some of the same genes as CBF2. Secondly, constitutive expression of ZAT12 resulted in lower cold-induced levels of CBF transcripts, while two independent T-DNA insertions in the ZAT12 locus resulted in higher levels of CBF transcripts in response to low temperature. However, constitutive expression of ZAT12 or lower levels of ZAT12 expression did not impact the levels of the COR genes as severely as the CBFs. In summary, ZAT12 represents a new cold response pathway in Arabidopsis that has a negative regulatory role in CBF expression. 116 Another transcription factor has also recently been shown to alter the expression of cold-regulated genes outside of the CBF cold response pathway. The hos9-I mutant displays hyperactivation of an RD29A promoter luciferase fusion in response to low temperature, but not in response to ABA treatment or salinity stress. Additionally, this mutation altered freezing tolerance (Zhu et al., 2004). HOS9 was found to encode a putative homeodomain transcription factor that was constitutively expressed and did not increase in response to low temperature. CBF transcripts were not affected by hos9-I, but since the promoter from the reporter gene construct contained CRT/DRE elements, this gene might be affected by the CBF pathway in some manner. Microarray experiments performed on cold treated hos9-1 plants by Zhu et al. (2004) revealed that a number of cold-responsive genes were affected in their expression, but only one GeneChip experiment was performed, so these results should be viewed as preliminary. In comparing these genes to the COS gene set, 13 COS genes were found to be cold up- regulated and hos9-I up-regulated, one gene was cold down-regulated and hos9-1 up- regulated, and one COS gene was cold down-regulated and hos9-1 down—regulated and none were members of the CBF regulon. Interestingly, all 13 of the up-regulated COS genes influenced by hos9-1 fell into expression class V, those genes up-regulated transiently in the cold. The majority of these 13 transcripts encoded either transcription factors or enzymes for signaling molecules. This indicated that HOS9 may play a role in regulating some of the earliest events during cold acclimation. In addition to ZAT12 and H089, ICE] (a MYC-like basic helix loop helix transcription factor) impacts the expression of cold-regulated genes (Chinnusamy et al., 2003). A dominant mutation of ICEl, ice], results in loss of CBF 3 transcript 117 accumulation in response to low temperature, but does not impact accumulation of CBF] or CBF 2 transcripts. The mutation also alters freezing tolerance and a preliminary microarray experiment performed without replication revealed that the expression of a number of cold-responsive transcripts was altered in response to low temperature. A comparison of these transcripts to the COS genes revealed that none of the down- regulated COS genes were impacted by ice], but 78 of the up—regulated genes displayed lower cold induction in the mutant than in wild type plants (13 were in class V, 5 in class VI, 9 in class VII, and 51 in class III). It is interesting to note that ice] affected some, but not all of the CBF regulon members (51 of the 85 CBF regulon members displayed altered cold-induction in ice] ). This could possibly be due to the fold-change cutoff used by Chinnusamy et al (2003). Alternatively, this could indicate that some genes are more greatly impacted by CBF 3 expression, while others are more responsive to CBF] or 2. Finally, this result could be due to the action of additional transcription factors acting on these CBF regulon members. Regardless of the reason, ICEl seems to play a role in regulating cold-responsive genes. In order to complete the low temperature regulatory network of Arabidopsis (Figure 5.1), approximately 70% of the cold up-regulated COS genes still need to be assigned to a regulon. In this study (Chapter 2) RA VI, MYB 73, SIZ/ZA T10, and CZF 2 were overexpressed in Arabidopsis, but were not found to affect the expression of a statistically significant number of cold-regulated genes. It is possible that these transcription factors may need to act in concert with other factors or be modified posttranslationally in the cold, similar to the mechanism proposed for DREBZ (Liu et al., 1998), in order to function properly. Chromatin immunoprecipitation experiments could 118 Low temperature /I @ \\ / \ @o, 1 1 .._?_ 0 Fee 1 \ ' o \/ x. — DRE/CRT —CBF regulon / ? CBFl , ZIDREBlb,c j \ Freezing Tolerance ,1 \ - a 1' car ” E regulon Figure 5.1. The low temperature regulatory networks of Arabidopsis. Shown above is a summary of the transcriptional regulators currently known to be involved in the configuring the low temperature regulatory networks of Arabidopsis thaliana. HOS] is an E3 ubiquitin conjugating enzyme (Ishitani et al., 1998). The rest of the proteins listed are described in the text. Other TFs stands for other transcription factors. Boxes with lines behind them represent genes with specific cis regulatory elements, while the ovals represent proteins. 119 be used to test whether any of these transcription factors actually bind to the promoters of COS genes. Work on RA V1, MYB 73, STZ/ZA T10, CZF1, CZF2 and other cold-induced transcription factors will be needed to determine if they play a role in cold—responsive gene expression. Other transcription factors that regulate the COS genes could be found by first identifying the cis-elements in the promoters of these genes, either through the use of bioinformatic means or promoter bashing experiments, and then isolating the transcription factors that bind to these elements. Regardless of the methods used, much work still needs to be done in order to define all the regulons that comprise the Arabidopsis low temperature transcriptome. The work presented in this dissertation provides both a set of genes which can be used to characterize these regulons and defines two of these regulons, the CBF2 and ZAT12 regulons. 120 121 888 888.98 x m. 8.. 8 o... N. ...- 88.8.2 818.88 :88... .8858? x .... .... 8 ..m ... ...- 888.2 818.88 35?: 288292308 .888¢8.588.388.8588 8.8.8 x m...” 8 88. ..m ... ...- 838.2 81888 88888588 8558 x x 8.3.. 8.8 QB as... .... m..- 888.2 81588 8.8.8 .8888 8.5888... x x ..m ..m 8 o... n. .... 888.2 81.888 .888 :8885898 8.8.8 x ...- ... m8 8 ... ... 888.2 818888 888 .8858? x 8 .... 8 8 m. ... 288.2 81888 888 88888 x x on o... o... o... o. 8... 888.2 81888 283%. 88.. 888 8588... m8 x ..c 8... ed 8 o. 8... 888.2 81888 3.5585888888 x 8.. o. 8 mm m..- ... 888.2 81888 888 88298 x x o... 8 m... m... ...- 8... 888.2 81888 888885.888 can: 28.88 x 8 ...- .8 ed 8.. 3 888.2 81888 888 88888 .... .... o..- ..N- 3 m... 888.2 81858 2.55 82.. x 8.. 8.. o8 an n. ...- 888.2 818.8 888 88888 x x 8 8 mm 8 ...- ...- 888.2 818.8 .7an2 888 8888.58 8.8.8 x .8 m..- 8 8 m. m. 888.2 81888 888 2.558888%... x 8.. 8 o... o... o. 2...- 888.2 81888 888 888.8 x 8.. on a... ..o ...- o. 888.2 818.88 888 .8858? x ..m m. .8 .8 m. ... 888.2 81588 8.8.8 88.89.80.558 x ad m8 8 8 m. ... 888.2 81818.88 888 8.0.8.98 x x m8. 8 «.8 mm o. ...- 888.2 818.88 88928838 9558 x 8 o... a... m... ... ...- 888.2 818888 5888 8.888.882 8%.. 8888588 x 8 ..u m... o8 m. 8.. 888.2 813.88 $86,630.35 c885-m8i......88.2.88 2.588888? 88>... x n. m. 8 08 ... ...- 8.88.2 818.88 2.28.2888 8.. x x o... 3 8. m... ...- ...- 88.8.2 81888 888885.888 888.85 28.88 x o... a. ..m men n. 3 828.2 8188.8 5.88:5. :8. new ... m < m < m < .0< .8 89a 8.888. 28 ..8. ..8 ... hzwgmmaxm m._.>Oi. >m Omhjnwmmda whww mmOmn. ._..< m._m<._. < x_ozmn_n_< 2.58. 590.5 mc.c.$coo1c.mEou No 8.8.8 3.280. 58.888 895. z_.. 599.. 8.3998 2888...... .58 5888 6.2.... 898 8.85 8... 8.0%.. 888.. ....moo. 5.8?8 9:82. 6.2.898 2.5.8.. 58:59.. £99.. 83998 590.5 commmaxm 5905 88998 n .2838... 3:039 5906 83998 2.90.... 3mm9axm £905 093998 9:22.. 83.929. 9.0.5836 CFKOOV 590.5 umwmmaxm 9.8.3 6.80:9. > 590.5 88998 .NFQwaOn. 2 5.5.3 5905 nommmaxo 2E8. 599.. .09.. NINO. .69... 9.8 590.5 3mm9axw F>> 590.5 5.88.608 Boo 0. ..m__E.m :z<..< 520.5 5.8.589“. .526... 9.8.3 .23.. c888 8:228? 5205 83955 £205 5888 x093 £295 nowméaxm NHwB—C‘N 2.. c888 8588.. mom 9.8.3 £905 wwwwmaxm 33 599.. 8:5th mom 9.: 8.588 059.5 .90an £999... .208. cgatomcm... ....Em. mi... 5205 83998 520.5 83998 590.5 umwmmaxm 520.8. .8255an £905 wwwwmaxm 859.5905 956 SEE X XXXXXXXX X mé 0.9. Né md QN 1F m. P- P... Né 0N QN o.N r. F: o.N Né m6 QN N... F. F: N. F- QN mé m.N N...” QN 0...” m.— P. F: Nd m.N MN m. T m.N mé on P... m.N o...“ vé o.N.. N. ..- v.« 54 m6 mé m... m.—. P. .... 0.9 m.N o... v... N... m.N ...N 0N Om QN ON ON oé v.0 m.N o.N N... ... P- 9N F.N- m. 3 v.9 v.9 m.N m. T Em 9N o6 od m.N m.N 0m m.N mdv mé Wm m.N m.N Em m.N ON 0.» ON «6 NF B. F- 0d Nm QN m. ..- oé QN o... F. P: mé 9N Em Qm méN rd m. 7 ON m. P. NP v... ... P: Em w. T N. T v.9 md o.m OK mé F. ..- m.N F. T F.F md r. ..- m. 7 mm... mé m. ..- o...“ ...P w... QN oé P... N...” F.F P. P- QN ...w P... 0.2 ...P F.F 0% o... ...F QN m._. QN mé o6 Hm m.N F. .... Ne 98 oé oé m.N Q: 0d 0.9 N. F- «.7 We m6 Né NF P. T F. T mé m.N o.m m... N.m N»... F. P- 0N md Pd NF mé Em Er m... QN N. T F. T F. ..- o.m m.N QN ...? ... F- 383:... .8892 9:892 88898 85892 28892 88822 88892 38892 88892 88892 88822 98892 08892 28892 mammmmFgg Omemmng o.~m~m.g« om.m~m.g« 28892 oousmmvga omhsmmvgq covnmmwga oomnwawgg ommmmang 2:892 ommmmegq oowmmmpgq mfimwmmpga ommwmmvsq owmcumpgq opnmmmpgq omwmmmng 8:888 8:888 8:388 8:888 8:8:828 8:828 8:8. .8 8:8. 8 8:888 8:888 8:358 8:888 8:88.88 8:888 8:888 8:858 8:888 8:888 8:888 8:888 8:588 8:388 8:838 8:888 8:588 8:828 8:888 8:888 .m:n~omo~ 8:888 8:588 8:858 .m:mmomo~ 123 590.5 80:05:83 5995 80.5533 >=E9 £295 992 5905 5905020385: 8.8.0:: :95 «3 9:93 5905 ammawhimh $85.92: 825903 5296 8.029, 38556 928936 2 59:59 3259805.: mc_c_9coo.c_>m= 9:93 c9202m:2.:9253053923299382_m 390.5 .9885: om< 2 5:53 5805 389qu 5905 8:589: gcznam $995.8 =E£ 5x805: 5205 mx__-cumE:m£ 652ml; 3 52:60.. 3:33.. 5205 .2265an 5205 05259538850 522a uc_uc_n-c__:uoE_mo £905 .839:an £205 5:60.58 m>=m5a mwma__onawoca0w>_ 9:53 9:83 .Amwflo mmziE 520.6 85662 mmmmmfi 82.2 223 8.2522 92:5.x842200 @2525 .5205 mc_uc_n.__Em“_.o___E:a £20.... .2255an £905 .835an 5205 Con: toamcmb mgamaogo Eoucmam?co§a 9:32. 9... nm...o.o£ 059.3 .20an £989... 2222 acficséim 0222,. 22.93 .22”: 225222,. £205 umwmmaxm $22528 22m 8292.220 9:qu 56$ cozatomcmb EmEou «n? 5295 33¢..qu E905 8.2355 5905 092.9 mwmbm 5295 .2265an 9:83 .5203 0239-538620 Ch: £905 ._. «zoo. maggot SEE .mtoamcmEmcmBEmE 2.52:: 520.5 Emwmhaxm X XX XX XXXX XXX XXXXXXX mé FN m. T _‘.F Wu v.9. NP mé md oé F.F ad ad ad FN ON v._‘ m... QN m6 0N mN Ev mé NP o.N 0N Qm Pd 9... NM Nd 5.9 m._‘ w. w: oé NM 99 w. P: 0N oi Wm 0N NF m6 mN: 0.? NF F. ..- Qm ON «.0 Wm mN gm 9... N4 54 ed FN QN oé No Nd 0N Nd mN mN md 0d v... 0N mé mé o.m QN ON oé Nd 0N 0N mN m6 Em wé 9N QM 9N mN m6 Em 0.... ed F.F mé 0.x o.m 0d 0d Nd mN m.» h. ..- md P. P: m. 7 ad md m. 3 m. P: Nd Nd QN Qm 0.» m6 0.? F.N Em QN mN ed Qm 9m m..m .1 NF 0.9 mé F.F: F.F w... oé F.F Em QT FN 0N Né F.F mé Em Né F.F- F.F: F.F: 0.9 F.F o._. F.F F.F NF Né mé N4 m4: <4- o.m F.F Né Né F.F: Né: Fé v.9 mé o6 wé mé m... oé Né mé mN F.F v.7 ...P FN vé mé F.F: P... .3? F.F Né o._‘ F.F v.7 F.F QN vé o._, 08392 282.2 82292 2.9.292 oommang2 38592 82:92 82292 8222 83.92 3.292 82292 22292 3.22:2 92292 882:2 82:92 omoohmFg2 02892 82892 8.8292 8232 28092 88292 83222 22892 9.2292 82292 8.292. 83222 83292 89292 .mmxnomom “2:2mmumm ,2 cvaou .2:oFFFo~ 2:82am ~2:w~mmm~ “m:~F-o~ 2:228 .2:ooooo~ .m:o¢oom~ .m:~ooom~ .m:o~oom~ .m:¢mnmv~ .2:nmm~o~ 2:333 .2:wmmoo~ .2:~m¢~m~ ~2:mmmom~ 2:238 .m:vmmmm~ .2:wmmoo~ ~2:mvmoo~ .m:~ommm~ .2:~nomm~ “2:2omcmu .2:vo~oo~ ~2:oo~me~ 2:83am .2:.~v¢o~ .m:omroo~ 2:80va .2:me~m~ 125 mmEmu—mcmENmooam 20:305.?ch 9:831 32¢ -mwvmoogv «EEOC; 590.5 5.3.5.08 28 2 5:5? 590.5 88998 tin: P 520.5 nofi.m.-m_wwcmao£ma 590.5 comwmaxm 9:93 630:0; x3 150550 5295 cutbfiozm 9333a 5205 605059;: 52% 235 58:53.2 5205 59:00 .52: 9:53 2:5». mozz E305 Nmoou =E£ £29.... 955950.508 O> 5205 $39.96 3208623 .ocoo_m 9:58 682.2 x3 Iooc_Em-F 0mmh0¥wc0£>m0cE0£ 0u_wou:_m:m-c_u_cm>oo£cm 02:83 25:0.— EQoE .0E00 55:28:... 3323010 3050050608850: 0253 059: *0 >__E£ comoamcmb anEm 9 020.0. 352 5555 85:3 <20 55.2.85 >=E£ Auomv 50.05 5:00.000“. 2 0205000.. 50.90 95.868 - 3mm: EOE 5,5580. <21 506.5 >=E£ .095 0:8 xoné wz<._.mzoo ANQ>0E=anB>8 0090.50. 0:85.08 3.0.5-3233 520.5 0000296 AF0__E£ 50.0.5 “080. 3.95 08:: 50.0.5 025:0 £0.90 mscfiucooémmafl fan: 00303039200 5065 00000.98 Noam 5065 0080.98 505.5 .mo=0£oa>: >__Em¢ F 505.5 Boauchmcamoca 5055 5:80ch 05659.0. 025:0 x XXXXXXXXXX XXXXXXXXXX XXXXXXXXXXX mN 0.0 n. F- m.F QN 0N F.F F.F F.N QN F.F m.m F.N QN N.F mN NF 0N m.F 0N N.F c. F: v.F QN F.N m.F Em 0N mN m.F QF QF m.F mN QN F. F: m.F ad ad N.F m. F: F.F Wm MN m.F 0N F.F NF F. F: 9N QN 0N mN ON m. F: N.F 0N EF QN VF 5F 0m F.F o.F NF m.F VF mN F.NF Qm 0N md m6 QN mN Em mN Na 0.» ed QN m6 mN Nd Wm mi mN Qm: mN Nd m6 Em m6 Em mK m6 o.m NM NM 1F F. F: 9N F.F 03. m... Em o.F Nd N. F: o.v o.F mé F.F QN N. F: md m.F m6 F.F 9N N.F Hm m.F F.NF N. F- QN 9N oé F.F od m.F m.m F.F Wm F. F: o.m F.F: mé n. F: md F. F: 0N: mé od m.F Nd F. F: mé m.F m6 m.F mé m.F mé 1F: 0d F. F: o.m NF mN F.F md 0N Nd F. F: M.F- F.F: F.F o.F NF F.F: VF: o.F F.F N.F v.F m.F v.F.. NF F.F NF: o.F F.F: o.F NF F.F: m6 N.F: o.F F.F: VF F.F F.F N.F: F.F- F.F: F.F m.F: “.8885. 88%«5. o88§< 88%«2 83%? 88%? 28%? 3.8%? 8.885. 85%% 88%? 28%? 88%? 88%? 88%? 88%? 82%? 82%? 82%? 89%? 8 F 882 88%? 88 .82 88 82 8882 88 .82 88:82 8882 883?. .8282 88:82 88:82 88.82 .5:nmmmo~ .5:nm¢sm~ .m:mm~mo~ .5:~oom0~ ~5:mmmmo~ .5:~0mmm~ .5:wnm00~ .5:w~om¢~ 5:888 .5:.o-0~ 05:Nm~oo~ 5:888 5:888 5:888 5:888 5:888 5:888 5:288 .m:o0~mo~ 5:888 5:838 5:888 5:888 5:888 5:888 56888 5:888 5:888 5:888 5:888" 5:888 5:888 5:888 127 0.0.0.0 00000.96 00 50.0.0 _0E0000_. 0.0.00 000 50.0.0 03000.00 50.0.0 00000.98 50.0.0 00000.96 :55... 2:5. 82.... 0.08.. .0850. 8.. 022.. 5588.. 08 8.0.0.5. .25. 8.5.8.5.. 005. 0.02. 50.0.0 00000.98 00000. 50.0.0 05.00.0000. 02.0.00 02.0.00 2000008900 0:40 0003.80.00 0_0N00.E_05E0_>000_.0000000 50.0.0 0.5-5.0000 000 50.0.0 80.00000 000 50.0.0 00000.98 50.0.0 000005-5900 02.0.00 50.0.0 0000.0.00. 00000.0 02.0.00 5.0.0.025. $2.. :55... 50.0.0 00000.98 50.0.0 02.75.0000 2.0.0. 25000000... 503000.00 50.0.0-0 .0090 0055580 0 5.50 :55... 8.8.90.0 9.5.2. 00000. 50.0.0 02.0.00 50.0.0 80000.00? 02.0.00 22.0.0. 0000 00.2000300000308.02000.00F 000x0. 50.0.0 .000000 00050.00. 02.0.00 8... 085... 02.0.8 0000500 <21 .00000000-92 02.0.00 80$. :55... 050.8 0%. 50.0.0 0305.00 2.0.0. 5&3 000000.086 0020000500 50.0.0 .000: 05w 003-1000 02.0.00 X XXXXXXXXXX XXXXXX 0.F 0.0 0.N 0.0 0.0 0.0 F.N 0.0 0.0 F.N N0 F.F 0N 0.N 0.0 0N 0N F.N F.N F.N 0.F 0.0 0.F 0.0 0.F F.N 0.F 0.0 0. FF x 0. F- 0. F- F.N 0. F- F0 0.0 0.0 0.0 0.F 0d 0.0 0.0 0N 00 0.0 0.0 50 0. F- 00 0.F 0.F N0 0.F 0.0 N0 NF 0.0 F.N 0.F 0N 0.F N0 0. F- 0.0 0N 0.0- 0N N0 0.0 0.F F. F- N0 0.F 0.0 0.0 0.F 0.N 5.0 0.0 0.0 0.0 F0 0.0 0.0 0N N0 N0 0N 0.x. 00 00 0.N 0.0 F.F 0.0- 00 0.0 5.0- N.0 0.0 «.0 0.F 0. F- 0.0 \nF 0.0 gm 0.F N0 0.0 N0 0.0 0.0 «.0 0d 0.0 0.N 0.0 0.F N0 0.0 0.0 0.0 0.0 0.N 0. F- 0.N- 0.N F.F 0.0 0.F 0.F NF 0.F 0.0 F. F- 0.F F.F- 0.F F.F- 0.F 0.F 0.F 0.F 0.F- NF F.F- 0.F F.F 0.F 0.F 0.0 0.F 0.F F. F- F.F 0.F 0N 0.0 EF 0.F 0.0 0.F 0.F 0.F 0.F- 0.0 F. F- N.F 0.F- N.F F.F- 0.F F.F F.F- 0N- F.F). F.F- F.F- 0.F F.F- F.F «F- 0.0 0.F- F.F- F.F 0.F NF- F.F 0.N 8.8.82 98805. 88802 88882 2.880. 28882 88082 88805. 8808.... 02.880. 8888.... 88082 80882 80882 08880. 08882 80880.. 80880. 08882 08885. 08882 80882 08880. 08882 88%? 08880. 8.880. 80885. 88%? 88%? 88%.“... 08885. .5:¢0000~ .0:mvm.0~ .0:~08.0~ .5:.00.0~ .5:000.00 00:000000 00:000000 .0:0~o~0~ .0:00000~ .5:00..0~ 5:88.88 .5:~0000~ .5:o.0000 .5:.0000~ .0:.0000~ 05:..0500 .5:00000~ 5:0808 .5:v¢o~00 .0:voo.0~ .m:0¢~00~ .5:..¢00~ .5:.o~.0~ .5:00000~ .0:0..00~ .5:0-00~ 5:088 5:888 5:888 5:888 5:888 5:888 128 0.0.0.0 80000.09... 0.0.0.0 0000.0.00. 00000.0 50.0.0 00.0.0. 000..0 02.0.00 :55... 8.23.220 020 9.55.. 80.0000 00000 0. <00 0.0.0.0 80.0005. 000 02.0.00 0.0.0.0 00.505020 0.0.0.0 00000.98 000000500. 70.00 02.0.00 .030. 050.080.9050 ..00000 220.000. 00.0000.0.0 00« 02.0.00 8.00.0.0 0.2.0.0 .000000000.-5x00 0. .0050 0000... 0.00.0000 02.0.00 .0.00. 05.0.60. 0.00005. 02.0.00 0.0.0.0 00000.98 0.0.0.0 00000.98 2.E0. 0.0.0.0 .0000. 00-n.>> :55... 2:5. .00.... 2.5 .600 0250200 0000.0..0 65.00.00 .200. .050. 8.550%... 85.9.0.9. .F-Emmmnz. 3.0.000. 0000009600000 0.0.90 .8858... .8002. :55... x8002: 0.0.0.0 00000.0xm. 0.0.0.0 00000.98 0000.....00000 02.0.00 80000.00. 0F 2.0.0. 000.20.... 300020 00 Fmoo 003.00 5.00. 00000.5 05.0.0000 02.0.00 9.55.. .055... 00005.. <20 .6... 14.00.0200 8000000.. 000000 2.0.0. «Eh. 02.0.00 0.0.0.0 00000.98 0.0.0.0 .0000. 00-D>> 02.0.00 0.0.0.0 .0000 050 002-1000 02.0.00 XXXX XXXX XXXXXXXXXXXXX XXXX XXXXXXX 0.« 0.« 0.0 0.« 0.« «.F 0.« 0.F 0.« 0.« F.« 0.F F.« 0.« 0.F 0.« «.F NF 0.F 0.« 0.« 0.F 0.F 0.« 0.0 0.« mfimF 0.00F F.00« «.50F 0.0« 0.00 0.00 0.00 5F 0.« 0.F 0.« 0.F 0.F 0.0 0.0 0.F 0.F 0.« 0.F «.0 0.F 0.F 0.« 0.F 0.F 0.F 0.« 0.« 0.F NF 0.0 0.F Em «.0 NF F.« 0. F- «.0 0.0 0.« 0.F 0.F 0.« «.F 0.« «.0 0K «.0 0.0 0.F 0.F F.« 0.0 5.0 0.0 0.0 0.0 0.0 «.0 0.« 0.0 N0 «.0 0.0 0.0 0.F «.0 0.« «.0 5.0 «. F- 0.0 «.0 0.0 0.« 0.« 0.F 0.0 0.0 0.0 «.0 0.F F.F 0.« 0.0 0.0 0.0 0.« 0.0 0.0 N0 0.« 0.0 0.0 0.0 0.« F.0 0.« N0 0.« 0.0 0N 0.F 0.« 0.« 0.0 0.0 0.« 0.« 0.« F.F- 0.F F.F- 0.F ....0 F.F 0.F 0.F F.F 0.F «.F F.F F.F 0.F F.F F.F «.F- F.F 0.F- F.F- «.F F.F- 0.F 0.F F.F- 0.0 0.« 0.F- F.F 0.F 0.F F.F- 0.« EF 0.F F.F- «.F- F.F 0.« F.F- 0. F- 0.F- «.F- 0.F F.F 0.F- 0.F F.F- «.F- «.F- 0.F 0.F «.F- 0.F 0.F «.F- F.F 0.F «.F- 0.«- 0.F 0.F 0.F 0.F 0.F F.F- 0.0 808002 8000002 808002 808002 3.03002 803002 0003002 083002 808002 880002 0080002 805002 083002 8. 3002 88.502 88.82 88.502 8.082 80882 8.882 80882 80882 20382 008.82 88.82 80982 0.8082 88.82 88.82 88.82 83.82 83.82 008.82 88.82 .0:~v.000 .0:00000~ .0:0o.000 .0:..0000 .0:000000 5:00.08 .0:00000~ .0:000000 .0:0..00~ .0:..000~ .0:~0.00~ .0:00000~ .0:00000~ .0:0.000~ .0:...00~ .0:o.000~ .0:v.000~ .0:o~000~ .0:0..00~ 5:0:888 .0:0.000~ .0:000.0~ .0:..0.00 .0:000000 .0:00000~ 5:80.08 5:388 5:888 .0:000000 .0:000000 5:888 .0:~o000~ .0:000000 .0:0.0000 129 2:5: 3:: £205 xoocw Em... 5.5.2:. $823359: c:om&mmmt9c_ 2 ..m__E_m .5205 30.65093 5205 33998 33358589. 9:53 520.5 88998 9:82. 6320398 9:83 58$ 83:35: 27:8 a0... 5295 33998 9:93 .523 go? <20 omva mEoEoo$o 9:93 Amowozv mmmcmgxeu Bo:o.9mo>xoam:w_o.m 520.5 .8:m..:oa>z 529a 33998 wmmu_wocfiaouo::.fiwn 9 5:83 830m .28: 052.3 sotéctmfioscafi £205 gummaxm 5905 9.5959539 Emmy 3:332:5ch 5205 5.8.0:: 9:33 9:33 .339. mEoEEmlnFDv 0359?. Eb 590.5 uowmmaxm mmflfimcflgxnfimchi 9.26.5 9:83 5295 96800.5 > $9. 9203 9:83 $202.2: 529a x8538; 5205 5505.5 mwmflozcontoxm m 9:83 $53: 5203 couscséxam mwmnzb 9:93 A__E£ £205 £2898 38.38888 8.082 02.83 5905 95- 88028.. <00 Sum 5205 02.33 82888 5888 8868 52.8.8 5.20.5 .8288an 832 2 888V 888 9.: E88. 5905 88998 5805 88858 5205 88838 520.6 83858 omfimfiwcwzoEEm Emcamocaimofiatficgflam 2 8:68 5295 .8285an 9:qu .wmc_2m>ooEoc.._-_>w0cmumuw 5205 88996 83m: 5888 8885.89. 288 5805 808898 880:2 (zm 9:52. 200% P 8:288 88828 98 8858 02:33 .ommbmwwcfiimooamdon 2E8”. 5295 80%.. 3.95 868.8 95:28.5 8036.83.84; 9 8:88 5905 88998 5205 83358 288,. 885:8 26:30ng 520.5 88938 82888 .8828; 68 .2on50 9:83 686.99.283.70 mama: 5205 2.52283 8 mmmhflmcmbScEEi 056868582808 3:22;: F www.mbmcmEEHmEi 8588685005803 9333 .mmflmcamofi Emuoaofimoca XXXXXX XXXXXX XXXX X XXXX X fir mN rd: 06. 0.« 5% m. 7 Na P. 5 VP 0N mé N. P- F.NF m... m.— 0d mK mé mN o.m Né mN Em m4 _‘.F m... F.F m.m 96 Nm m6 0N m6 Em m... QM 9N fir m. T N. T mdN mé Em 9N ... T o.m F.F mé 9N o.» mN v. ..- 0.« N. T oN mé mN m... QN w; QN 0N Qm Em m.— w.N m6 o. T 17 gm oé m6 md m6 Nd mN mN v. e: m. T Em oi QN md QN Nd Em Em N.m Wm md 9N Nd m._‘ 9N QN oé 9N ad ad on odw mi m6 Em o.m F.F m. F: Wu ed Em rd 0.« gm mN o.m mN o.m 0d Nm 5. T m. 7 Wm m6 Nd mN QM ...N QN m6 mN mN F.F 0N v.7 v.7 md ON M.F.. v.7 oé mé F.F: N... 9m Nd FN m... F.F mar- 07 ...F 94 F.F: F.F: o... «.7 w.—. Em C.— mé F.F F.F: F.F F.F- v.7 mé Né F.F mé- F.F Né: 0.F F.F: oé ...F: N." F.F: v.7 NF 0.F FN QN 0.« mé Né QN QN F.F: mé: F.F F.F: oé F.F: F.F F.F: 2‘ F.F .8882 8882 88882 88882 883.82 83882 88382 88%82 88882 88882 8 8882 o 8882 8 882 89882 89882 88882 88%82 o8~%m2 88%82 88%82 8882 88882 88882 94882 8882 8882 8882 8882 8882 8 8.82 88882 88.82 88:82 .8:m~v~m~ “8:8.vwmw “8:888888 .8:w~8~m~ .8:888~m~ .8:F88~m~ “8:888888 8me888 “8 m .omomw .8:8mm~m~ 8:888 8:88.88 8:888 .8:F.mmm~ .8:o.mmm~ .8:8~F~m~ “8:8ovwmm ~8:F~mmmm “8:8memm «mlmlmvvwmm 8:888 8:888 8:888 8:888 8:888 8:888 8:888 8:888 8:888 8:888 .8:8rwmm~ 8:288 8:8 888 131 529:. 02:33 20K. 9 5:86. mmmcv. 5905 05.525.05.90 02.82. 520:. 33¢..qu £305 Ewmmaxo _ $9328 ..E& 330.6%. 339.6 532.. 9:82. 529:. 3:52. £295 coréEozu seen 9.25 <95 .EQmE 5.0m. 83889. >__E£ CE; 52:09:. N £55.. 522.. 9:92. >_.E& 520.5 .33 I000. 59.... oc.~ 0 mwmgofiwofi oanmuoUEmocfinamoza 5205 033.98 aim. m .98. 83%. 5.6.29. Scream 2593 among. 392:5 m.m_>xoemo.m.mc__2§-vs_mu ....Em. room cozmmcmucoo oEomoEoEo .o 55:62 520.5 vowwflaxm 590.3 Q... - EN... .25th mmEmEow_ mcocm>mcécoofico 2.58 0320.... ..Emamm £29.. 33998 ....Efl £20.... 5E8 .mtucozoOgE ANA/vi. N mmm>_-m.coEEm 2.5.3.6ch 5295 02.92. 81“.. mmmeoEELm 95:92. .memx. 5.3.8 599.. 02.52. 590.5 9.5359539 .19.. 3.33853ch 86.9-5305 NOn. 32.2%on 5295 $2.82. .Nmmbb N .2339 @2539 X X XXXXX XXXXXX X XXXXXXXXXX x x QN mé QN N.m F. T m... m.N Em Em P. 7 m.m m6 5... ed ad 06 ON mé Em oé Em md 0.F F. ..- ad 5.9. m.N NP m6 NF Wm QN F.N Né m.N m.N QN 0.F «.0 En QN o.v N. .... m. P- Nd 9N F.Nu Em- ON 0m m6 ed 0.« N. F F... ... ..- m6 NF m. 3 Na mé o.N 0.2 0.9. n... m._. m.N m.N h... mé Em m6 Wm: QNN tvw mNN ed 06 06 OK QN m.N QN mé 0N m... mum Em o.m md Qm Em oé QN Nd md m.N mé Hm m.N o.N F.F NM o...“ «N od QN o.m 0.F oé m6 mi QNN Wm .. de OdN «.... m6 QN QN o.N mé m6 0m mum- m. 7 ads- 0.? F.F N.— 0N Em F... m4 ad. 0. T F.F- ...N mé Né- N4 N... oé ...F F.F- ...F QN m6 F... o.» mé m..- F.F- w..- Qm F.F Né- oé w... P... ...... v.9 v.7 Né- m.N 0.F m... m6 F.F- ad 0... N... v.7 ...F- p... vé vé ...P. N..- mé- «MN o.N m..- m6 NF- F.F- p..- _.._. mé 9.7 N..- v.7 F.F- 0.F N... v.— F.F- F.F- 0.F F.F- mé mi 0.« F6 osmmmmmgg 83mg? 88%? oahmamz “.8332. cmfimmnz oeunmomgq Simon? 82mg? ommommmg« ornmmmmga 8532 88mm”... 88mm? gamma? omsmmmmg< 88mm”... 28%? 83%»... opmmmmmgq gunman? oNPmmomgq ooevmmmgq 88mm? 38mm? ommmmmmg< 9.8mm? oeupmmmeq oumommmgq 883m? 833m? ommwvmmg« omumvmmz oo.m¢mmgq .muohvpmm .mlvmv.m~ .mlwmmemm .mIFPmFmN .mummm.m~ .manoFmN .mlnhowmw .wuuoopmw .ml~mo.m~ .mlwuormu .mnnmmmvu .mnnonrmu .munmnrmu .mnwVNPmu .mnwmhpmw .munmnwmm .muosupmu .mumumstmm .mummnpmu .mnoom.m~ .mnnmfipmu .mINNQPmN .miwmmpmm .mlswmrmw .mumeFmN .mnvwmpmw .mu¢mo~m~ .mlnupmmm .mnwopwmm .mnmmwwmm .mumommmw .m:~mm~m~ .mummmumm .mnvnmwmw 132 5.600.056 2.0.0. 0.0.0.0 006020.36 .0502. 0000000033000 00.285020 02000 0v.._ 0.0.0.0 03.000036: 2.00 0.0.0.0 .0E0000.. 0.0.0.0 0v... - 000.0.000.._>£0E>x0.0>0 00.026 0.0.0.0 00000.98 :00... 0.0-. 30.00 0.000 0.0-. :05. . 30.000 0.000 0....-. 3050 0.0.0.0 02.0.00 0.0.0.0 00000.98 8003.... 00050.0 00< 0.0.0.0 02.0.00 0.0.0.0 0....0003E000. 2.0.0. 0.0.0.0 .0000. 0.103 00.0.0. - 00000090300 7.9.2 2.0.0. 0.0.0.0 .0000. 0.19.. 3.0.0. 01902.93 0.0.0.0 02000000. 0030 0.0.0.0 00000.0x0 A FN0.0E0 0.0. 2.0.0. 000.0.0000000 0.0.0.0 00000.90 280.02.. .000. 8.0.00.0: 2.50. 5.02, 0000.00 0.0.0.0.03000. 02.0.00 0.0.0.0 00...- 0.300.056 0.0.0.0 0.....0000.000:6-0.00 02.0.2. 00000000.. 0.06:.0000025056 00000000.. 0m< .002. 0.000 000.0 020. 82.0018. .00.... 8.0 0.0.0.0 02.0.00 0.0.0.0 000.060.0000.. 60.0.0.000 0000-“.w-.000.N 00.000. 02.0.00 X XXXX XX XXXXXXXX XXXXXXX XX F.F 0.F m6 md md m.F m.F Em mdF o.mF F.NF N.F F.F F.F NF 9N Nd QN m... 0.F QF «.0 00 ON F. F- F.N m... Em NF F.F 0.F o.N QN- n. F F- 0.0m- N...” 92- 6.0- m.N- QN QN mN Fd 0.F QN on mNN 0.F m.N m.F m.F 0.F N. F- Nd m.N F.F v... QN N...“ 0.F No N...” o.m F. F- 00 0d ed QF Q: Fd Qm F.F Q: vdF Qm F.F QN m.N m.N F. F- N.F QN 9m F. F- F.F N... N.F 9N m.F m.N QN F. F- wd m.N QN 0.F F.N 0.0 6.0 F. F- m.F m.m Mn N. F- o.N 0.x. F6 m.F M... QN m6 N.F 0.F Em 0.0 N. F- md 0.F N.F QN Nm Nm F6 m.N NF m.N QN F. F- m.F 0.F N.F- QN 0.F od m.N 0.F mN 0K F.N 9N m0 m.m o6. o.F NF QN Qm F.F 0.F m... o...“ m.F m.F o... m.N F.F \nm 6... F6 F. F- m.N m.N F.F 0.F F.F- F.F- o.F 0.F- 0.F- F.F- 0.F 0.F o.F QN 0.F- o.F F.F- NF- NT NF F.F- 0.F o.N N.F- 0N F.F- 0.F 6F- 0.F 0.F F. F- F.F 800.03.. 800.03.... 8.0.03.0 800.002 0000.03... 0000.002 0000.00... 800.03... 800.002 800.002 200.002 00.0.0.2 080.002 80. .92 000. .03.. 00080.2 0.000002 00000002 0339.2 80803.0 80009.2 80009.2 00000002 000.0002 000.0002 80803.. 00000002 3.00002 8.0000... 8000002 880002 00000002 0:09.000 01000000 0400000 01080.0 01. .0000 0:040:00 0:02.000 0:20.00 01000000 01000000 0.0.0000 0:00.000 01000.00 0:00.000 0:00.000 0:00.000 01000000 .01000000 0:000000 0:02.000 01.00000 0:00.000 .0I000000 .0-000000 0:000000 0|0-000000 .0H00..00 .0 000.00 .0HN00.00 .0-00..00 .0 ..0.00 .0IvaFmN 133 0:0. :00... . 9.0025028 2 0.5.5.0 00; 0.0.0.0 00000.0x0 .0902. 0 0.0.0.... 8300.2. .000. 000..0 0.0000000 0 memoaumo 0.0.0.0 00000.0x0 .ONN<>I. 50.0.0 000005-500 0.0.0000 0. .0_.0...0 2.E0. 0.0.0.0 .0...00 0000000020. 000005004. 000006.003 02.0.00 02.0.00 00.00. 0000000000 0.00.00 Nn.< 0.0.0.0 00.00000x0-+I.+0Z 02.0.00 0.0.0.0 00000.0x0 0.0.0.0 00000.0x0 0.0.0.0 0.... - 00000. 050002000000 0.0.0.0 0.... - 00000. 00.000.505.00 02.0.00 .0000... 0.0.0.0 00.000.505.00 0.0.0.0 0270020000000 0.000000000020000 2.00. .00.... 0.0.0.0 .0.000.. 503060.20 000002.500. 0000.0.0 0.... - 0<5 0.0.0.0 00.00005. .0000 :05 0-00.. 0:52 .095. 0.0.0.0 0000.02.00 0. 020000000200 02.0.00 00.00. 000000000... 2.0.0. 00... 0.0.0.0 =0? :00 00005026 0.025.500 0 2:0. 80.00.02.080 50.0.0 02.0.00 0.0.0.0 0.... 00000000 0.0000000-m-_0.002m Gummy; .900. 0500.0 .0050.0 02000000. 00030.0 $003,000.00. 3 2.0.0. 000.90.... 300020 0.0.0.0 0v... 0002.00 <20. 0.0.0.0 00000.0x0 00.00.00 0.0.0.0 0.0.0000.-._00 0.0.0.0 00000.0x0 X X XXXX XXXXXXXXXX XXXXXXXX XX Nd md Nd d.N ad ad Nd QN F.N N.F F.F 0N NF m.N m.N QN Nd 0.F od m.N m.F Nd o.F d.N F.F 0.F QN m...- F.N m.N NF Nd od Nd Nd Nd 0N mN 0N QN N.F m.F N.F m. F- m.N 0.F 0.0 mi 0N Nd ...F m... 0.F m.F 0N QN Nd 0.F 0.F md a. F- Nd QF QF QN F.F od md mfi Nd dd od md Nd QN QN o.N m.F Nd od F.F d.F QN m.N ...F QN Nd o... Nd md m.N 9N mdF F.F mN m0 0.F. F.N Nd Nd dd Em d... dd OK d6 0d ed md m.F F. F- m.N mé N. F F. F- F.F 0N m.N ad ad . mi 0.0 0... od m.N m.vF m.N- dd od 0.0 o.N QN m.N 0.F F.F F.F vdF odF F.F- F.F FNF d.F- Nd WN- N.F- F.F- F.F d.F F.F- 0.F d.F F.F 0.F N.F F.F N.F d.F 0.F 0.F 0d N.F d.F 0.F F.F N.F QN 0.F d. F- F.F o.» dd N.F- F. F- m. FF F. F- QN 0.F- 0.F 0.F QF 0.F d.F F.F F.N F.F- F.F- F.F F.F N.F F.F F.F- 0.F Nd 0.F F.F- N.F F.F d.F- 00000002 00000032 00000032 80000.2 00.00002 00000.2 30000.2 00000.2 0.000002 00000032 00000002 02000.2 00.000002 0.000002 00000002 0.000032 00.00032 00000032 0000002 000000.02 000000.02 00.0.0.2 0000.002 0000 .022 2.00 .02 0000.002 0000.002 0000.002 0000.002 0000.002 0.00.032 0000.032 0000.002 0:03.00 0:08.00 0:08.00 0:08.00 0:08.00 0:02.000 0:03.00 0:08.00 0:00:00 0:00.000 0:000000 0:00.00 0:00.00 0:80.00 0000.00 0:90.00 0:..0000 0:00.00 0:30.00 01000.00 0:03.000 0:80.00 0:20.00 0:00.00 01000.00 0000.00 0:00.000 0:00.000 0:03.000 0:00.00 0:00.000 0:..00000 0:0.0000 134 fimawv mmm_>xon._momu 9:295 Awmcwv 39.2% 9.29.3 3309 599a commmaxo $99385 £92m m>:9:a :buav P.omm_>xon._womu 9m>2>a 9:93 .>Z:. 589 83:85.: 59:0: Nm< 2.89 <<=XD< £905 mzmcoawm..-c_x:m 590.5 33298 5905 ummwwaxm a £025 58$ 839855 2:59 CE; 5905 9:. - 399399359: 2 >__E9 $90.6? ragga 589 8.98:2 >__Efl Em; Amvmoov £995 namwoaxm E905 038..qu 3.8295: 5290. 288an £905 nowmoaxm 352$ 399399359: @5596 2:9 £905 39¢ 100859.: oEN 599a o>:9:a 2.89 £905 639 Ov.n_>> 5905 9:93 5905 9:93 032803.993 9:93 336836.93 33.802998 9:93 590.5 m>:9:a £905 83996 mm99mcm£>m0cEmE mEmoo:_O.m-c_u_cm>oo£cmlmmocEmE no: 5905 8555.50 38695 ONOOZm E905 02:93 £995 839me 590.5 >__E9 ncmciw 9.6598228 2E9 590.5 MED 39320.00 5.905 “5qume XXXXXXXX XXXXX XXXX X XXXX XX ON F.F Oé mé OK m. 3 NO 9... ON ON ON n... m._. Od ON ON Oé ..N 5... PN PN ON Ev ...w N4 ON OA 9». O6 Em F.F- ON Wm ON Em fr Em md 0v ON ON ON ON? O.m Em OK 9.0 O." NO ON mé mN ON ON N.m F.F m6 Oé mN ONO Odo mi O._. OO m. S. O._‘ NF ON QV ON O.m ON NO ON ON NO ON Oé mN mé O.m O.—. md ON ON ON mN ON ON ON Em Nd Em F. F- r. F- he ON ON md Em Oé Em ON 9O m6 ON Em mé Oé O.m ON mN 0.0NP Oé O.mw fir m.m ON ON NO «N O6 O6 O.v ON mN Od Em Nd m. T O.m ON «é 0.F- O.v ON F.F m4. N6 F.F ...—3 m6 F.F N... F.F- F.F- w... m.—. mé Oé ON ON F.F- Né vé Oé F... N.—. F.F m... Oé m. w- mi vé me ...—... F.F- O9. 0.F QT mN m.—. ...w v.7 ON F.F- F.F F.F- mé- O.—. v.7 Nd v.7 MN m... v.7 F.F Né F.F v.7 F.F F.F F.F F... F.F- ON QT. Oé 25392 “V8592 23892 “.9892 Eomm92 oom~m92 3992 8.892 8232 08592 8:592 2: 592 mmmom92 09892 3.892 Q8892 83~92 2,9992 8 .992 83292 89892 08392 29~92 99892 829.2 o~k~92 89992 29992 o~m-92 ”98392 8.0.392 8:892 88~92 .mnnommmu .m:«mmmm~ .mnummmmm “mlnmmmmu .m:o.vnm~ 6:8va .mnnmemmm .mlnmvmmm .mnumvmmu .muwmemmm “muomwmmm “mummmmmu .mnnoommm “munmmmmm .mlmmmmmm :mINNmmmm “mumeommm amnnmmmmm “muwmnmmm amuvmummm .mlnsummm $.9mb .mumwmmmm .mIFEmmN .mnwmmmmm umwemmmmm amnwmmmmm .mumlmSmmN 5:983 5:288 amnnpmmmm 6:989 3:288 135 0.90.3 30:053.... 0v.._-c_903 090.9 00.0.20 :00 0>:93 £0300 O .909 00:05:. 039000.: 0:0?930 0.903 0000998 .909 003.0009. .09.: 00.6. Nnmo 0>:93 0.90.3 Oc_00_0.:93 000.5003 P 0:..09 590.3 00.: .. 009.00 .9093: __00.Oc:99._93 00059.0 90530050940300.0138 0.90.3 00000308 3&0. m 529.. 0525.220 5.35020 0.90.3 0>:93 9&2. 5205 8.9.858 .390. 2.89 0.903 0.00098 0.90.3 $290509... 0.90.3 0>:93 0.903 00000308 2E9 8E 3959.0 85:2. .98. c9985.. 2E9 952 0.90.3 00000.98 0.90.3 9.: 05.035900 5903 9500092 0.90.3 20.00:.02O 0.903 0970:0509: 0.90.3 00000.3x0 0.90.3 09003000: 690 0>:93 .992. .29. 83829 2:5 0:2 .9sz 98:2 > 2.0.9 .000. 00:00:00000 900000.900 .0 .90.:O0. .26. 30902000. 000.060.0000 00.00.50E_>000000-O 9...-0.90.0 .0800000 2.0.9 0.0.0.0 .0000. 06-03 2:09 .0000000: 00:0000O..0 0.90.0 00000.0x0 000000000000 00:00.0:0200 0.90.0 9.00000: 0.0...0 000.0EOE-000.. 9 .0_.E.0 0.0.0.0 e... - 2.0880 2.0.9 0.0.0.0 .0000. 3.03 $000.50 00020000009000. 0000.0>0 0000.000 0.0.0.0 02000000.-z_... .909 08000000.. 0.0.000 Nn.< 2.E9 0.0.0.0 .0000. 06-03 02.0.30 .0000.0>0 90000000002030 0.0.0.0 9...-.6000 0.90.0 O0.00.0-0: .0000. 008.0,. <20 .60 0.000 02.0.00 0002.00 0 .>0oo2O 0.0.0.0 9...-.. 0000..000>x00.00 002-00000 .....On: 000....8.0>0-.O 0.000>0.. 0.0.0.0 0000998 20.00. 0.0.0.0 O0...0.00. 00000.:.00.0O200 X XXXXXXXXXXXXXXXXXX XX XXXX O6 ON 0.0 NO NO ON ON N.O 6N ON 6N ON ON ...N O... O6 0.0 O6 NO N6 N... ON .O6 O... ON NO ON ON O6 ... 6- ON N.O O6 ON 0.0.. ON O6 ..6 0.0 NO 66 O6 66 O6 O6 O6 O6 ON N6 6N 0.0 ON- O6 ON O6 O6 O... ON ON ON ON O6 ON NO 0.0 O6 0.06 6O O6 0.0 ON ON 0.0 O6 ON NO NO 6O ON 0.0 O6 0.0 O6 O6 ON 6N NO NO NO NO N... O6 O6 ON NO O... ON 0.0 0.06 O6 O6 ON ON 0.0 0.0 0.0 ON 0.0 0.0 O6 0.0 O6 O6 0.0 ..6 0.0 ON ON NO NO NO 0.0 66 66 O6 0.0 06 N6 ..6- N6 ..6 ..6 ..6 6... 66 ..6 66 N6 O... 66- N6- O6 66 6... O... ..6- 66 O6- O6- O6 66 66- ..6 6... 66- O6- N6- O6 N6 O6- N...- 6... 66- 6...- O6- 66- N6- 6... 66 O6 O6 66- .....- 66 O6- 66- 66- ..6 O6 66- O6 N6- N6 6... 0000.00... 030.00... 0000.002 0000.002 0000.002 0000.002 0003002 0003002 0003002 0003002 000300... 0000.00... 0000.00... 0000.00... 0000.00... 000. .00... 000. .00.... 9 P F .00... 00.900... 0.000002 0000000.... 9000002 00000002 0.000002 0000000.... 9000002 800000.... 0000000.... 0000000.... 0000000.... 0000000.< 0000000.... 0000000 .0 000000 ...-0900000 ...-00.00 ...-0000.0 ...-000000 ...-000000 000090 ...-00 .000 ...-.0 800 .0-00 .000 .0-000000 ...-000000 ...-000000 ...-000000 ...-000000 .0-0 3000 0600000 0103000 ...-30000 .0-000000 ...-000000 01000000 ...-000000 ...-000000 .0-000000 ...-0000.0 ...-0000.0 ...-20000 ...-000000 ...-000000 04.00000 137 590.5 83998 U08_w._.mmmm_oacontoxo 5295 83996 5205 _8_.m£on>c $8.3 88%; 8 88888 529a 52.3 2:882 9:732: 5205 m:_comE£mE £205 Swmmaxm Emma/b 88.3mm. 8539:0303 5205 9:33 8338 QEEoePEBV 52:85 mwmcmmofifmu 9898.636 520.5 83298 2295 9.: m8: 22% £205 3:89.52 5995 2:3 £905 ox__:mmm_bmommu 0:08.: 5205 83298 .908 cozatowcg >=E$ >v_m>> £205 ox_..mmmo__mc.31 Cwawv _ 3.85ch 3228 5905 9:33 >__E£ 590.5 8883: £58 mi... 59% .388: 520.5 nowufiaxm 5905 9253 £205 9.: - :85 938 on 5:93ch 2.88 238: 555.0% 5205 «5:32... 5905 89208... 82282368 2 .m__E_w 8mm: 83.3 9593 mwSchmbEmooambd n_oco>mme8:_m an: 9 ._m__E_w 2E8» mwm..£w:m§>woo:_m:o:d 2982238036 no: 5203 2.53 32 8mm? X XXXXXXXXXX XXXXXXX X XXXXXX mN md md dd F.F md Nd mN o.N md ON ON m.N wN #4 ON md dd o.N od m... dd 0% N._. m._. QN md dé mN 0N vé Ye oN mN Nd mé 9N mé Né md m... md ON 0.« ON dN 9N Né ...N dN 06 F.N ed mé ad ad V... vé o.N m6 0... md vé m. P: m6 mé F.N Nd dd m.N mN Nd o.N QN Nd rd md 0N dé mé QN dN w. T N. T 0N o.N dN md Nd mN mN N." F.F mN mé Nd 0.«. dd dd F.F Nd oé Nd Nd od o.N mN dN od_. 9N mN rd F... QN m.N d. F: mN: QN m.N Nd mN mN md 0N md F. F. Nd d.¢N ad ad wdw d6: #4. dé- od F.F: F.F: «.7 N._.: F.F: QN F.F: 0.F «.7 OJ v.7 F.F: F.F mé F.N: v.7 fir v.7 Né: Né F.F: dé: F.F: o._‘ Nd Né: Né 0.F: 0.F 88882. 88882 8.882 88882 82%? 88%.? 2 8882 “.8882 28882 2.882 88882 88882 88882 88882 28882 88882 88882 28882 88882 88%? 8.8882 8.882 88882 28282 8882 8882 2882 8882 8282 82.82 82582 8282 8882 fim888 8:288 .m wmmmvw 8:82.88 8:888 .m:m:888 8:888 “88888 8:838 8:338 8:888 Hm:ommmv~ .m:wvmm¢~ .m:opmmv~ .m:mmmmv~ .m:Pcmmv~ am:¢mmm¢~ .m:ommm¢~ .m:wmmmv~ .m:wmmmv~ um:wmoovm .m:m~omv~ .m:o~omv~ um:n~.m¢~ 8:388 um:22mmv~ .m:nmmm¢m .m:aooomm .m:mmoom~ .m:~ooomm .m:wo¢o¢~ 6:288 .m:wovov~ 138 @225: 5203 $02202 £205 832qu 3100 9:93 c208 codatowcwb EmEoo Nm< 5305 9.8922 5:60: 5205 >=E$ dz=2 5:60: 520.5 33058 520.5 830.58 2 $8.25 omo~mx:dv F mmmhmpmcfigkumé (00.538 5888 285 88: 88 x88 wzfiwzoo 5.20.5 .8338? 385036.950?! 7028. 58:60.? Sammy r .563 $820.. ozobmxao 9:75205 .oEmo Sum 5295 vomwmaxm dummy/b d .562 9.625 EmEEm mzwcoawo. 0:238 520.3 $3955 5205 8.80.58 9:858 .39.: £995 chnEmEmcm: 832 228503. >=E£ oddm mEoEooSo £205 83998 520.5 Emmoaxm 858 88.38228 590.6 83838 5205 33858 590.5 cmmmoixo 5205 9:93 5205 80:05an 82:33 .5206 50:: 0:8 cotdIO 9:... £92m 90a .8203: 38:28 08:58. 38:9. 3:20 22 9: .5552 _0< of. mm 522... 3288.. x 3 3 5 3 3 ..m «we .ml8m3~ 2.253. .98 3895.8 390228 <20 x 3 3 an 3 E 3 83082 .mntmtu 382853358. mm ....ee @592; 382.6 x 3 mm 3. 3 .0... 3- 28%? 5:3th 9.6.3 38:9. >O._ >m DwHSDOmm-Z>>OD mhmw mema .P.m w..m<.r m Xazmmna 142 02.200 000000.20 200000006 000.000.. 28:800. 555. 005.50 020.0 000005-0030 02.200 802.002 0 8550.5 08.2.8 o. 5.5.5 2.0.2 0.20.0 .60-“. 00.0.2000 .0000. 00.0v. 00220000000 0020000. 20.000.0E2 02.200 0.20.0 50:00.00? 02.200 .192 00000090300 .0000.0 020.0 00000.98 0.20.0 00000.98 02.200 .. 00220002350E-O maox 0000.220 00.2026 0.20.0 00000.98 0.20.0 03002.0: SEOOV . 0.20.0 000:00..00_0000.002000__>000.0_00 0.20.0 00000.98 0.20.0 00000.98 0555 00505-05 €505.00 __ 85 .00 .0200. 000000000... 2.0.2 m>s_ 0000002018. 7200 2 .0__0._0 5.00 0020000. 2000202230988. 2 .0__E_0 5000000.. 0.00 00.0.0 02.200 0.20.0 00000.98 0.20.0 00000.98 0.20.0 00000.98 0.20.0 00000.98 0020000000 0.00 0.0.00 02.230 02.200 0000090220 20000000002223.0968 0.20.0 00000.98 Y__E£ mmmcam 5.20.5 mmm_o.6>£wmma__ EOE-4w00 22.5 590.5 coEEoo SE3. .mm_ao._o_;o A 72% 520:. .....In 5905 83298 02:33 693089 _0c_mm.__otm_-_o£wm._o£a £905 ummmoaxm 5205 893.98 590.5 nowwmaxm 520.5 832me £205 83998 520.5 83998 520.5 Bmwmaxm $-33 88.. 33: 9:83 5205 BHEoOmmm-‘flocmctoo 520.5 003998 5905 Emmoaxm 520.6 83998 35>2§:Z 590. $223 w >__E£ $30.6? 389.3 5205 89853 2E5 mwmficamocq Eom 993a XXXX XXXX X XXXXXXX XXXXXXXXXX QN- Qw- mN- QN- Qm- Qw- mN- QN- ...N- od- x-d- Emm- Q _.- QN- h. P- F.N- QmV- Q9- v. F- n. v- QN- m. r- md- Qm- Qv- QV- QN- m. P- od.- Qw- mN- v. «- Qv- Em- o.m- Qw- QN- QN- QN- F.N- N.m- Qw- —..N- Qw- o.N- ... ..- QN- QN- o.m- Em- m. _.- m. P- mé- ed- 0. F- F.N- oé N. P- QN- 0N- Qm- F.N- o.m- Qw- o. T Q« QN- Q F- m. P- m. P- QN- m. P- Qw- Emm- Nd- QN- QNN- 9m- n.0- Qw- QN- Qw- od- QN- h. P- m. _‘- F.N- Qw- Q7 Wm- «.m- m. P- Qw- 0.7 Qw- Em- QN- 0.7 Qw- Em- Qw- Qm- v. F- m. P- m. P- m. 7 ad- Qum- QN- Qw- oé- o..v- Qw- Qw- Qw- Qw- Qw- QN- ON- Q P- PN- Qw- QN- Pd- QT v. F- Qw- Qv- o6- Nd- Qw- od- o2- Qw- «.m- 5m- F.F F.F- .mp- F.F- F.F- Qw- «€- F.F .3- N?- QF QT F.F N...- vé 0.F F.F- NF- 0.— F.F- Né- F.F- Q..- F.F- Né- F.F- 0.F mé F.F- me- Q_‘- F.F F...- F.F F.F- 0.« o... o._, paw- Qw- F.F- NP- m...- Q7 ...w o4 F.F 0... NF oé 0.F F.F F.F- F.F- F.F- Q—.- N._.- F.F QT c..- o... F.—. Qw- v.7 F.F _..w F.F v.7 mFPmepgq 8332 89292 8832 2:492 8832 88292 8332 85%:2 03392 Sex-.92 25392 rpmmmmrgq 8:892 38%:2 82%92 8832 omommmpg2 Eowmmz< osprmmFg2 oEomB2 oumommwsq oomommrgq 8:292 ohmmmmvg2 ommmmmrg2 8832 oamuumrgq omphmmrgq oomoumpgq chommmrgq ommowmvsq mhumumFgQ 93392 .m-nenmvm .m-nhemom “m-momvom .m-omnoou .m-vwmpow “m-wmmomm “muomnmow .mmwmmsooou .m m mwhmvw .nHPPVNmN .m uovuom .mlwlmooomw “m-merom “m-Nmmpom “munvuvmm “m-vmmomm um-Nmnmvm .m-mpnmmm .m-wpnmmw “annonmom “m-wawmm .m-Fomrom .m-onnmvm .m-Pmnmmw film-83mm um-mvhmom .m-nmomvm .m-mvvvow 61338 .m-wm~.m~ .m-mumvom .m-oFoFom “mumwomvm .m-Nmmmvm 144 Gums. m 028:0 0580900020505: 5220 5505.5 2005020 Eamon 5220 cot-05.20 9.3 2 8.2.0 5220 0000298 02850 8:000:02 0000000050 F 2.02 000.20.... 300020 02850 .5x0005x200 020050 80050. 20.850200 02230 8020302 22:00.0 Amxazv 000:0. 5220 0202000200052 or 2.22 000.20%. 300020 082:0 80203.8 0.00200 2.22 0000280 0.00 0520 5220 0269.5 2.20,. 002.000.0200 0.0020; 5220 0000298 5220 0000298 020230 .800 5220 020.2 0020202 .8000. 5:50. 0859.0 08.2.8 5220 0000298 5220 0000298 280$ 52995008858 5220 0000298 808502: 2.50 5220 829 :28. 5220 0000298 5220 0000298 5220 80.85093 Aw .0m 50.20 80.85002 02.230 80202.30 0.:0200 02.0.30 00052.0 0.020002080020202 50.20 0000298 $0.3. 50:00.8 02.0.30 . ._0v.3w 3.50. 022.20 98:00:00 0.00 3.0.. 50:05:01.? 50.20 0000298 :88... 2:8. .82 28 .690 0250200 .10.... 0020302 0.05.30.96.02 0002 0.2000 5220 0000298 5220 :0... @5020 .8022. 5.8. 5.288.. 2:8. 022 50.20 2502...: 02.2.30 ...0...000:0.. 23.:0220 02.230 600 5220 00.0.2 0:02.202 02.0.30 .5220 0000.? 052002282... X XXXXX XXXXXX XXXX X XXXXX X Qm: Qw: h. T Q T QN: QN: QN: QVN. QF QN: QN: Qm: QN: QN: QT N.m: QN: QN: QN: QN: Qm: QN: QT QVN- QT Q T QN: Q T Q _. T QT Nd- QT Qm- QT QT QN: QN: QN: h. T QT QNT v. T QN: Qm: Qw: QN: QN: QN: QN: QN: N. T QN: Q T QN: Q T QT Qw: QN: QN- ... T N. T Nd: QN: Nd: Qm: Em: QT Qm: Qmm- 0.x T QN: QN: QQ. QT Qm: N.m: QN: QN: Q T Q T Qm: Qm: Em: Em: QNT Qm: QT QN- QT Em: QN: QN: QT QN- QN: QN: QN: QN: QN: QN- QN: QN: QN: QN- Q r T Qm: h. T Q T N.@: QN: QN: Em- QmT Qm T QN: QN: QN: Em: QT QT QN: QN: QN: QT Em: QN- Q F Q T QT QT QN: QT QP QF QT QT Q.. QT Q.. QT Q.. N... QT QT Qw QT QF QP QT Er Q— QT QT QT Qv QT QT QT QT N.T Q.. QT QT QT QT Q? Q.. Qw QT QF N... Q.. QT Q.. Q« N.T QT QP QT QF Q.. Q.. Q.. QT Né Q? Q.. Q.. 0.F Né QT Q.. QT Q? Q? QT Né N.T 38892 80:92 93892 83:92 80892 8.892 38892 38892 38992 8892 S892 8292 88.92 38892 382.92 38292 23:92 38892 08892 88092 23092 80892 33892 8892 33892 38892 82.092 88892 38892 38892 38392 82.092 38392 .8:00800~ .8:.-oou .0:.m~oo~ .0:wmmoou .8:namoom .8:0¢oomm .8:~¢000~ .8:0m~0¢~ 8:88.88 8:888 .0I0lmmvooN 8:838 8:888 8:38.08 8:288 .8:0o~oow 8:988 84.888 8:838 8:888 8:888 8:888 8:888 8:838 8:388 8:888 8:888 8:88.88 8:888 8:858 8:888 8:388 8:888 146 520.5 889.98 520.5 051806...ng .825 05 532 39.3 58.952 26553-8: F 3% 590.5 83998 5205 ..flmcmb vi: @533 £995 .835an 5905 5505.5 520.5 ummmoixw £205 E5055 £905 cot-msozm 9:83 5205 83998 5205 339me £205 Bmmmaxm www.mwmcfiaogw 299m 2 ..m__E_m 520.5 @5589: 7:095 93qu £205 .839:an 335V .208 88529. 225 £5 ommci £205 Q..-.2309 9:53 :38. oEooaw-EmoEq 9:83 859.34% 5205 x23 BEE BEE-ABE 520.5 x23 BEE ..ch 2 5:63 599a 9.__.m.. 5205 839.98 22:8 5905 xon-u. 9.58:8 “...-.39 no.3. 5205 Bmweaxm 2:93 A Emvsfloaoozm 03.93; _>EmS_m-mEEwm £99m gwmoaxm £905 gammaxo 553933 235 5685.5 520.5 umwmeaxm 9:93 .3865 mm @288: $8039 9.05:8. XXXX XX XXXX XXXX XXXXXXXX XXXXXXXXXX n.0- m. P- QN ocu- 0N- NM- 0.7 md m. ..- Q3- Qw- od- 5. _‘- F. ..- h. P- o.»- F.N- od- 0. F- m6- mi- m6- m. «- od- mi- 0. P- Em- «.m- Wm- n. w- mR- 0N- 0N- Nd- m6- oé N... 9N- WN- m6- mN- Wm 0.F Nd- m. P- 0.«- h. P- m. w- m. ..- mN- n. ..- h. ..- m. P- Qw- WN- Nd- h. ..- m. P- m. T e. «- Qw- Qw- v. _‘- n. w- 0.?- od- o. w- fw- wN- od- mi- Wm- n.0- Qw- Qw- od- Qw- Emp- mN- MN- Em- od- 05- m6- m.- 0.«- o.»- «.m- 0.0- @2- mN- @6- Wm- Pd- 0v- Em- imm- «.m- m4.- 0. 9- Na- od- N. F- m.m- od- ed- mum- 0.«- m. T od- Qw- m.m_,- mN- Em- od- Wm- od- Nd- od- Nd- ed- Qw- mN- c.3- Qw- Qw- n.0- Wm- od- od- od- Qw- Qw- v. F- ON.- ON- v...- oé ...w- m... m._.- m.—.- N.T VF v.7 v.7 N.T F.F- F.F- F.F Né- M.F- m.—.- Né 0.F od- N.T N... F.F 0N v.7 0.F F.F- N.T m._‘- P... F.F- V. F- F.F- 0.F N.T 9.? NF- v.9 M.F- ...F- N4 F.F- F.F- F.F wé F.F- F...- _‘._‘ o._‘ F.F F.F- vé F.F- 0.7 ¢._.- N? 0.F- QN oé mé F.F- oé N.T F.F Né v.7 oé N4 83.82 3239.. oooormmgq oommrmmgg omomFmNg< ouomvmugq 233% oomvwmmgq 8m. 32 canon? 23%? 853mg ommvoo~g< 880mg ommmommgq oPmmoamgq oucmommgq 83%? 088mg 88%.? 82°32 owmommwgq omoommwgg “.3892 QQFQmmng ommwnopgq ommmnmpgq omasnmrg< oommumegq cormnmpgq omoonmpg< owmmfimFg< 03392 883.2 .m-mnomou .m-vmmmmm .m-omommm um-Fmemou .m-wmmmmm um-Nmmmom .m-vrooom .m-Rmmmm am-esmmmm am-Fpmmmm «mlwlwvommw am-¢~omm~ .m-nvmmmm $1538 .m-npumou “m-nohmom .m-wm¢~m~ am-Nuenmm um-nmumou .m-ommomm .m-nmmmom am-Pomvmw um-nmmrom .m-Nmuomw .m-mwommm .m-mlmnmeom um-ommvom ww-vmpmmu .m-mmmam ua-mohrmm um-throw .m-n~o~m~ Hm-nwrpom um-vmvmmm 147 £903 $5053: 5903 00000508 £903 $5053: 5905 :3053: 0>:93 609903: 0:033:20 33:0 0:29.00 P 03300903093 590303093 70090000.. 05:30.: 9 3.33 0090000.. 05:30: 0>:93 0090300.. 05:30.: 0>:93 0090000: 0:0:30: 0>:93 23:9 000:0. £903 5903 30:93:? 009033 030030 0>:93 6005903 0:333 000:0. £903 0>:93 303$ 08.93; 0868 590.3 30:052.? 590.3 30.35093 5903 00000306 590.3 $50530 5903 50:: 83 02.1 0>:93 _ 000030330900 0::00 0>:93 _ 000030330200 0::00 0>:93 _ 000030356900 0::00 0>:93 £903 $5053: 0235: .6303: 0 55.8 8.0995 Kim 5903 $5053: 5903 003309-5050 0293 £903 55053: 5903 00000308 5903 00000308 £053 0.00:0 30: __mEm 0>:93 0>:93 0000.08.03 5903 00000308 XXXXXXX XXXXXXXXXXX X WN- m. ..- m. P- m. ..- Wm- ON- F.N- Em- m. T Qw- Né mN- Qw- 0.5- 0.0- c.0- c.0- Qw- 9.”- ad- Qw- rd- mah- Em- s. P- 0N- Qw- WN- mN- m. P- Qw- P.0- Qw- N. 7 od- Qw- m. w- v. ..- 0.0- m. w- m. P- m. «- _‘. :- MN- v. T o.m- m6- mdm- od- QM- mau- od- 3N- md- 3N- n.0- m. «- Em- F.N- Em- 0.«- 0.«- od- m. w- e. F- ON- c.0- m. «- 9N- Nd- 0N- Qw- fin- mN- 0.0- 0.0- od- n.0- Qw- Qw- h. p- Em- c.0- Nm- 0.?- F.N- Em- m. P- Nd- Em- Qw- ON- Em- mam- MN- n.0- m. P- od- m0- od- m. ..- Nd- F.N- od- 0&- 0.«- NM- mN- n.5- Nd- n.0- m6- @6- mN- Qu- m6- mN- 9N- Em- c.0- n.0- v. F- Qw- Qw- 9N- 0&- NM- Qw- m. :- Qw- h. _‘- 0N- Pd- Em- v. :- Qw- fiv- F.F Né- fir 0.F- v.7 0.F F.F F.F F...- Né _‘.—.- w...- 0.F- F.F 0.F mN- F.F mé 0.F Qw- F.F- m...- o... F.F- N.T m...- F.F- F.F m6 P4- 5.7 0.7 Q:- 0.F m...- Né F... N.T N.T F.F ...F F.F vé N.T F.F- fir F.F- mé v.9 WN- «é mé P...- o._‘ N4 P.9- F.F 0.F- 0.F oé 0.F oé md F.F F.F- mé- F.F- 29332 083033 80883 808332 33%? 83mm? .3982 ome~m~g< 88%? 838mg 383% 883032 OFNwmmugq omvnmmugq ommm~m~g< oesommmgq 803032 oommwmmg: 833% 038033 838033 08333 ommummmgq 89332 809032 89303 oompmmmgq ormpwmmgq 88332 choommmgx 83 ENE ovmmpmmgq ommwrmmgq 2:332 .m-qumou “anonvmmm .m-opmhom .m-wvmhmm “n-omwmom .m-wmmmom :m-wmummm :m-Nnmoom :m-wnmmom .m-ahmmmu am-FmNmmm alwsaom .m-msmmmw .m-mommom :m-npmmmu mum-5083 3.3808 3:293 3:833 gnu-«$003 .m-Nmmnow “mlwmfiom :m-wmmnmm .m-Rmoom 313803 34388 .m-mvmmou .m-Eovmm 3|:me 31:38 .m-mmooom Haw-0858 a-Smomm .mlommeom 148 5053 5505.5 5053 00350030533055 02353 02353 .5053 50:: 05~ cot-3:0 0003.. 02353 .mmm...<\mmm<. 53500.. 005300.. 5053:5003. 5053 30.5503? .010: 5223 5.75.3858 83x0. 2.5:: .5283 5053 00000.35 8.301... 5993 3:25 .3 33925 5053 5505.5 000053 0:50 05.50.5330 5053 055050050800 HU< 2.50. :50. 580.. 5053 550:5: 5.3.3:. 000053 02353 5053 0000035 5053 0000035 2.80.. 0005300: 05503 5053 0000035 505.3 0000035 5053 0000035 9.52. .850 500.. 3.530 SN 5053 0.0555 0:03:5E 0:503. 5530300 .0Nn....<. 02353 6000.553 .0EE00 5053 0.0555 50305.. 5530300 02353 5053 0000035 2.50.. 5053 2242. 50.0.55 30.30 02 5053 0000035 5053 0000035 0005550 0005.50 02353 5053 0000035 0003:3053 000.05? 02353 X X XXXXX XX XXXXXX XXX X XX 5. F- 5.0- o.N- m. P- m. P- F.N- 0. P- F.N- m. P- 0.0- mN- 0.0- w... m. ..- m.m- v. ..- h. F- 0. ..- mN- «.m- oN- w. w- md- 0.0..- 50- 0.5- 50- 0.F- m.N- m. w- N.m- n.0- n. P- m. ..- 0. F- m. ..- o..1 0N- o.N- m. w- m.m- h. F- mN- m...”- o.v- 0.7 0.0- 0.0- v. w- 0.F Nm- Nd- o.N- N0- 0. P- 0N- mN- 0N- 0.0P F- 0.0: v. w- 0. F- o.m- 0N- wdn- Em- mN- 0N- N...”- 5.0- 0.0- 0.0- 0N- ... F- 0.0- mé r- N0- 5. ..- 0.0- m. P- 0.0- 0.0- 0.0- 0.0- 0.0- 0.0- m. w- 0&- ad- n.0- 0. w- 0.0- N.0- 0N- 0.0- Na- 0N- 0.0- Nd- —. «- 0N- n.5- 0N- Nd- 0.0- 0.0- 0.0- 0N- N...”- m. w w- 0.0- 0. F- Em- m. F- 0.0- n.0- Nd- 5.0- 0.0- 0N- 0.F 5......- 0N- Nd- m. P- n.0- n.0- o.N- 0.0- 0N- ...N- 5.0- 5.0- h. F- N.0- 0.0- Né N... F... ...P- 5F N.T m.N ON- o... N.«- 0.0 Né ... T o... m...- ... P- F.« ..... F.F- 0.F- m...- ..... N...- M.F- 0.F- N;- 0.7 N.T F.F- P.— F. F- F. T N. F- m... 0.« N... 0.F- .....- F.F N... 0.« F.F- F.F- F.F QN mé .....- ...?- F.F 0.F N... ...—- m." m...- P... «.7 ...P- N.T 0.F- ...w ...P- 0.F- F.F F.F- 0.F F.F- Né 0.F 380503 film-.903 2.5503 803.33 800502 99503 39 3.39.. 39 .502 28502 2 5502 88502 oooovmmsq 880302 2000302 980303 880303 3500303 8300303 82503 32.5me 395303 omvnmmmgq 8:00.04. 890302 398302 395303 omnommmgq 830303 830303 8083?. 83.0.0303 3500302 8000304 8000303 omF~m3~sq .0-039000 .m-nmm:0~ .m-Nmmmou .mlN:mmm~ .m-nmonmw .m-mmo:o~ .m-Nmmmmu 001303000 001000000 .mnnmmhom 3.30303 .muvwmomm .m-wmmoom .0-339000 .m-woroom .0-000000 .0-Pmomom .0-30.~0~ .m-wnpnou .m-mmmmom .m-Nmmmom .01033000 film-«3.000 “mlwhvmmN “mlx-ommoN .0I00000N 3|.V0nmmN 3Im0nmmN .mmwmvvosmm .0 0 099500 .musmoumu .mmnmmomm .0 330000 149 em >__E£ $293: 3893 520.5 5505.5 56$ 53:85.: >=E£ mt). 39038523 @583 6§>a:.mmm$ omfimooamémn 5205 2505.5 9:93 .5205 mcficfidhw 5205 83298 25.825: .238 mm mwmcmwofiEmu Eom me-mcafi 5ch 85:8: 5295 gummaxm £905 Oommmaxm £905 cmmmoaxw 520.5 33998 AYmn: 83:85 £295 ox__-c_w>m: 9:93 .838 wmz-mE 520.5 858.8. mmmomfi £996 53:08.8 9:33 5295 33298 2229 m 8.65 8.m_:8.-=___m.2£m 2E5: £905 .69.: 05.: «ab-NINO £205 uomwmaxo £205 Emma-.98 2E6: 3203933535.»ch £20.th £905 565:: A29 mmmfi>ccm 2:098 $95. 5295 9:83 2.29.. 2:538: 5295 gammaxm £29m Bummaxm 520.5 $30.58 60m; m mE>Ncm mc:mm:_coo-c:_=c_na .NM 5305 83930 £905 :26ch 9:93 .83 mEoEooSo X X XX XXXXXXXX X XXXX XXXXX WM- 0&- adv- Qw- 9N- 0N- m. P- Wm- F.N- NM- 5. ..- od- F.N- Qw- N. P- «N- 9N- Qa- Qw- m. w- od- m. F- m. P- od- Qw- 0N- F.F Wm- F.N- ON- Em- od- wN- Qw- o8- Qw- F.N- mN- Nd- m. P- n. «- F.N- m. ..- od- ...P 0N- m. P- N.— m. ..- mN- od- 9N- Nd- ...N- h. P- F. «- m6- p. _‘- m.m- m... m. P- m. F- Wu- Nd- od- m. P- Qw- Em- Em..- od- Qw- 0N- mN- Qw- mN- Qw- mN- Em- Nu- m.»- md- Qw- od- rd- F. «- Na- 0.7 gm- Qw- n. :- mN- m. P- od- Nd- Qw- od- Em- m. P- @3- ud- m6- Qw- m6- v. F- 9m- Qw- Em- m6- 0N- od- Hm- ad- ad- od- QT m. P- mi- m. P- m8- «.m- QM- od- _.. P- Em- o. F- WN- Qw- od- od- ogv- v. T N.m- 0.F Né F.F m.—.- N.T F.F- v.7 v.7 N...- m._.- m.—. ON 0.« N.T .1 F...- m._.- F.F- ...F- WN- ...—.- F.F- F.F- F.F- F...- N...- mé Né- F.F- N.T ...?- F.F- N...- P..- mé- F.F F.F F.F- F.F- F.F- F.F oé F.F- :3 ON F.F- v.7 .1. c.9- N.T oé N.T N.T F.F N.T 0.F mé oé M.F.. v..- oé Né v.7 F.F- ...P- M.F- 88.82 28°82 88°82 o888~< 88°82 8:882 23°82 28°82 88°82 8828? 8:882 8883 8.882 8383 28082 8883 28882 88°82 83082. 8883 8882 88882 8283 89082 838?. 8383 8~E82 888% 88.82 888% 888% 888% 5:3.»me 8:858 8:838 6:838 8:888 8:888 8:888 3:288 8:888 8:888 um:wmmwm~ 8:888 8:39.88 um:anwm~ .m:~mmmm~ .m:~.mmm~ .m:mommmm am:w.omm~ .m:n~omm~ am:nm¢mm~ “murmpmmu .m:onmmm~ .m:Fmrmm~ .mIFmmeu .m:nm_mmm .m:nmmmm~ um:mnmmmm .mIFmvmom am:nmmmm~ .m:voooow .m:n~momm um:rpm~om 288% 5:32:28 150 9:93 685:8 29.0383-308-89-9393290 88.0.8me5 .2028 88:9: m:__oco_>u:mcnmoza 9 ..m__E_m 5903 38998 $95. 5993 9:93 58:83 3 $986 9:8E9_m 9:93 5:89 58:50 895. .6339 590.3 38998 5903 38898 590.3 88996 $m.>xo-_9z-m-oco:9m: 9 8:58 888sz 888. 2.53 888 x22, $8528 9 289 88.99: .8096 2.89 889. 98 89059952333212 QNa__E9 £903 .58. 9:62 5:8. 9:93 5993 mass: 385809,: 9:93 .992 5x899 $8983 5888 8.8.5 88882 5.8 5903 889.96 5903 80:9:an 38.29: 9:93 E903 5505.5 5903 808038 5903 88998 9:93 .093 oEoEoo$o 3.209 mmemouomfim-mfin 9:93 A885 C888 898 88 9:93 .5903 98889-05350 5.903 8.8038 £903 8.8998 5903 88938 E903 88938 XXXX X XXXXX XXXXXXXXXXXXXXX X XXXX Qm- QT QN- Qw- Qw- Qm- QT Qw- QN- Em- «.m- QT Qw- QT Q T Qw- QT Qm- Qw- QT h. T No.- QN- Qm- QN- QN- Nd- Em- Em- QT QN- QT Em- QT QT Qw- QN- QT Q T QN- Q— Qw- Na- Na- Qu- Em- N. T Qw- Qm- Qw- Em- Qw- Qm- QT Qw- QT Qm- QN- Qm- Qw- Qw- Em- Qw- QF QT QN- Qw- QT QN- Qu- QT QT QN- Qw- QP QT QN- QN- Qu- QT Qw- v. T Qw- QN- QT Qw- Qw- Em- QN- QT QN- Qm- QN- QNN- QT Qw- Qw- Qm Em- Em- QN- Qu- QN- QT QT QF QT QT QP Q.- QT QT N. T N. T N.T Q—. QT QT QP N.T QT QT QT QF QT QT QT Q.. QP QT Q_‘ N.T QT N.T N.— QT QT QN- Q_. Qw QN- QF QF N..- QT QT Q.. QT QT QF N. T Q« QP QT QT QT QF QT Q_. QP QT QF QF QF Q.. QN- Qv v. T QT QT N.T 888882 8:88:88 28882 88882 onmmmmmga omvmmmmgq osmwmmmgq 88882 28882 onmommmgq 8882 8882 8882 8882 opmormmgq 8882 8882 omvormmgq 88F82 8882 o¢~oF8882 8882 8882 omvowmmgq enummegx 8882 8882 88382 8882 8882 omavpmmsa omNFmegq oowrpmmgq omoFPmmgq oemo.mmg< 8:888 8:888 8:888 8:888 8:888 8:888 “8:888888 .m:m~8~m~ 8682.8 .8:~mmmm~ 8:888 8:888 8:888 8:888 8:888 8:888 :mImINmmmmN .m:wmomm~ .8:vmomm~ .m:nmommu :8:mvomm~ :8:~momm~ “8:888888 .m:o-wm~ 8:888 .8:moomm~ .m:~h~mm~ 98:8vmmmm .m:-~mm~ :8:om~mm~ “8:8vamm .m:n~vmm~ .mswevomm 151 590.0 9:92. 0020.9... 9:900 590... 9:92. 50.0.0 9:92. 590.0 5:80:09 9:92. 32. 50500.0 000c0mo.0>c00..0_900_ 5920 80:05an 000590 000.030 50.0.0 00000.98 Axonfiéomaaommv 0888.258 9.85 289 590... 56:60 c082 8030.020 599.. 3.8.0.2 590.0 08.802 >__E9 omen 090.5090 590.0 0990.832 5058 2.8. 82.2 588 9:92. 6090300. 900.808.9585.: £920 00000.98 .0toamc0: 00.500096 9:930 590.0 00000.98 9:900 .5920 090300. Em: 50.0.0 569.5 590.0 00000.98 290.0 x99 .29.. 9:98. 2.8. 83 08.58% 2.8. 8:. 39886 50.0.0 00000.98 50.0.0 00000.98 9:920 600590 9086205092. .99:omoo 8:99.008: 0205000805350 9:930 590.0 00000.98 590.0 00000.98 50.0.0 00000.98 2:..9 590.0 950 m._.<_>_ X XXXXXXXXXXXXX XX XXXXXXXXXXX X XX Q T Q T QN: Qm: QM: QT Q T QN- Q T Qm: QT Q T QP Qm- Qm: QN: QN. QN- Qm- QN: Q5- Qm- Em: Em: Q T Q T QN: Q T QT QT Q T QmT QN: QN- Q T Q T QN- QN- Q T Q T Q T QT Q T QN- Q T Q T Q T Em: QNm- QN- QN- QM: Nd: N. T QN: QN: w. T QN- QT N. T Q T Q T QN: Qw: Né Q5: QN: Q T QN- Em- QN: Nd: QB: QN: QT Qm: QN: QN: QT QT QmT Qm: EmT QT QN: Qo: Nd: Qm: Em: QT QT Qm. Nd: QT Qm- Qm: QN: Q «N: QN: Em: QN: Nm: QN: Q5: QN- Em: Qm: QN: Em: Em: QN: QN: Qm: Qm: QT Q T QNN: Em: h. T QT Qm: Qm: QN: QN: QT Qw: QmN. Qm- Nd- QN. Q T Em: QN: QN: QN- QN: QT Qw QT QT QT Qw QP QT 0.« Q« Q.. QT QP QT N.T QP QT QN: N.T QT N.T QT QN: QT QP QT QT QT QN- QT QT QT QT QF QT N.T QT QF oommemmg< 08:82 omv~¢0ms2 ommovamgq opsmvmmgq 8882 omrmvmmsq 8882 88882 08882 88882 Q8882 88882 ovumummgq ohwmwmmgq 88882 80882 ommnmmmg2 88882 88882 88882 owmmmmmg2 20882 88882 onwommmg2 ouroummgq 8.882 ommmmmmgq ommmmmmgq oomvwmmgg o0¢¢~mmgq oopvmmmgq 080888832 ommmmmmsq .m:nmm~0~ .m:mmv~m~ 00:.Pewmm .m:.:0~0~ .m:~mm~m~ .m:o~0~0~ .m:~:0~0~ .m:0v-0~ 8:888 .m:0.m~0~ .m:me-m~ 88888 88888 88888 .m:no000~ .m:mm-m~ .m:--0~ .m:nmr~0~ .m:mmn~m~ .m:00~00~ .m:~m0~0~ .m:PPO~0~ .m:090~0~ 0m:o0800~ .w:0~0~0~ 88:88.8 .mmmmommm .m omommm 888888 8:888 8:888 .m:mm-0~ 8:888 8:888 152 £905 9:: 29m 9.6556 5329:. m >__E£ 332?»: amoeba .mtoamcmb mwoxoc 9293 $9.: 5205 9:83 5905 nomwmaxm 590.5 832qu £903 9:759:85 £295 NED 3 520.5 085:5 mcEnEmE mEmmE 520.5 08853 520.5 0253 590.5 0282.6 9.: - 52:85 392325 5929323.!“ 5205 9.283 520.5 ummeaxm 5905 02.8.5 590.5 83998 88823 82;» 2399353859362329 8.29 m 85.8 88925 Exm £905 339me $.28 38258 2898 £205 Bmmflaxm 5205 9:53 owmcmmofifmu 460.38 88.9.3223 368225 5205 3.703.223 mExoao mmmEmoozm m:_cmbm_>£mE.m.__Em¢ ommcmmoficmn 282m: 88.9-5205 NOn. 32.020QO 590.5 839.30 XXXX XXXXXXXXXXXXXX XXXXXXXXXXXX XX 0.? ed- m. P- Nd- Qm- m. ..- N.m- QM- Em- QN- Q ..- QN- QN- v.3 T. Qv. Qw. QN. QN- Qm- ...N- 0.? QN- QN- QN- m. T QN. F.F QN- Qm- QN- Qm- QM- Qm- QN- _.. T QN- QM- QN- QT Q? Q ..- QN. QN- QT Q? Q? Nd- QN- o6- N. w- Em- N.m- Q ..- 5m- Em- QN- Em- Em- Nd- 0Q. oi. m. ..- QN- QN- N. ..- Hm- QN- m. T N.m- QN- P. P- N.m.. QN- va- QN- Qm- ms- Nd- mKN. Qw. od- QN. QN- QT Qm- QN- QN. QN- Na. Na. OK- Pd- m.NN- va. QN- 0.7 «.0. Q P- QN- Qm- Q ..- 0.? Qm- F.N- QM- QN- F... QN- o5- QN- Em- Qm- N. 7 En. QT QN- QN- o.N- QN- QT QT F.N- Em- QT QN- QN- m. T Qm- v. P. w. T. m. P- an- o6. QT m. ..- 9N- ...—W F.F- o... F... N.T o.—. QT F.F- «...- .....- F.F- ...F 1..- m.—.. 0.”- QT Q..- F.F- N.T v.7 F.F- 0.F F.F- N.T F.F- QT Q.. oé QF N.T v.7 F.F- Q? v.7 QT F.F F.F- N... oé ...—.u _.._. P... P.«. QF F.F- F.F- F.F- QN- ON. 0... ...—... N.T. F.F- _.._. v.7 Né 0.F F.F w... QT 0.F F.F- F... F.F- F.F N._. m6 ...T 28°82 88%3< 88082 82%«2 88°82. mmmoomeg« orwuommga 83%? 88%? omooommsq omvommmgq 88%? oomoommgq ommmmmmyg onwammmy< 8888:. 88%? omvvmmmgq 88882 owkmmmmgq ommwmmmgq ooommmmgq 9.» $82 83%? oooPmmmgq oomommmgq 83%? opuommmgq 83.82 omumvmmgq 88382. 83:82 ommmvmmgq 8888:. 8:838 “alsvmmmu “mupommmm «mufipommu amuomommm unuvnommm .muwvwwmm .muvmmFmN amupmmrmm “muwemrmw .mnmmmvmw .mlnov.m~ .mumo¢.m~ 88838 .NINFmFmN .mleoNme “mummNme .mnsmmrmm .mnomwrmm “muvwommm 8:388 8:388 .m:¢omov~ .mnwmommm .mlnmommu .uuvmwmmm “muonwmmm .munwmmmm .mnomummm .muhpmmmu .mum.m~m~ .mloommmm .msummwmm .munmmwmm 153 520.5 2:. .2520 2.2052: 520.5 2.: 88.28.8558 2 2.58 88.225 3888 c888 288 82.2 5.82 5888 e... 526 520.5 50305093 :88... :58 “me 5205 0030508 9:25 68023203802950: 2.52 322282308 5205 0880508 5205 003298 2-88 2 8:58 888 8.8528. 88532200 5205 5030500? $20.5 083058 5205 0030.508 020.5 2.3.25 852-5205 0.0.0008. 00:22.8... 28020 520.5 0225 £205 3:88.90? 3205-.0Emo-302-3020 c888 95-. .828 .888 8858220 9.8.3 0.205 052.5 5205 2.:- F mama: 98022:. 52:00 2 5205 02.25 520.5 3.738%. 0c_:00._z<00t0w 38520.5 05298 02225 .0mmEx055 £593 8:088: 888398 520.5 000205-0503 058005 5205 0080508 5205 83055 58502 5:25.520: 2 8:57. .5303. 200 0mm£x£o=¢020m05 9:25 X XX XXXXXXXXXXX X XX XXXXXX X QMT QN- QT NM- QN- QN- QN- QN- QT Q T N. T DM- 5. T Ev QN- QT Hm- QN- NM- QN- QT QM- Qw- N. T QM- QM- QT QN- QT Q T N.M- QT QN- QT EMT QN- QN- QN- Q T Qw- N. T Q T QN- QT QT QN- Q T v... QN- n. T h. T QM- QN- Q T QT QM- QT QT QM- QNT QN- NM- QT Em- NM- QT QM- QT QT QT QoT QN- QM- QT QN- QN- QT N.M- QN- QN- QN- QM- QN- QN- NM- Qw- QM- QN- QM- QT QT M. w T QN- QM- QM- Nd- N.M- NM- NM- N. T NM- QT NM- QM- QN- QN- QN- QN- QN- QN- NF QT Qu- QN- QM- Qu- QN- QN- QT QM- N.M- QN- Q T QN- QT QNT QN- Qw- QN- QM- N.M- QNT QM- QF QN- N.T Qw QT Qw N.T Q—. Q.. N.T Né QN- Né Q.. N.T QT QT QT QT QT QT QT QT N.T N.T QT QT Qv QT QT QT QT QT QT N.T N.T Q.. QT Qw N.T QT QF Q.. QF N.T Q.. Qw QT QT QT QT QP QT QT QF QT QT QT QF Q_. N.T QT QT Qw QT QF Q— N.T QT Qw QT 88.82 88882 88282 88.82 08882 88.82 88.82 88882 88.82 88.82 88.82 8882 88:82 83.82 88332 88:82 88282 88282 8882 8882 2882 8833.2 82 :82 82 .82 88 .82 83 82 o x: .82 88. 82 8882 88882 8882 88382 88%.2 88%.2 8:888 8:888 8:888 8:888 .8:n.mmvm 8J88~ 8:888 8:888. 8:888 .8:wmmm¢~ .8:ommmvu 8:888 8:888 8:888 8:888 8:888 8:888 8:888 8:888 8:888 8:m:o~88 8:88va 8:888 8:888 8:888 8:818 8:8:888 .8:v.mvm~ 8:8888 08:~owmmm .8:8oomm~ 08:888888 ~8:~ommm~ 08:888888 154 00000968000... 05.9.0 50.05 0.....0005x-...0.0:..0.500.5 .c00:0500:20500.50.>5 50.05 02.055 2.0.0. 5205 .09.... 05w 055407.00 50.05 02.0.5 mmona>o .0 .0550... .035 00.0.5030 5205 0000058 5205 85.05055. 05.25 600.0500. 3.0535505 850$ 58.998.888.398 50.05 0.... - .00.:005 000.22.020.03 05:23.0 00058.05. 2.20.00.205 000... 2200.. 02.0.5 50.05 x20. .0..0E 02.055 2.80. 3.5.. 50.05 0.05.5. 5.0:. 20.4% 0005.. 5205 05:02:55.3 0005x83£0E-05_0.v .920 02.0.5 .58. 88 85258.8 .88.. e... .800 50.05 0000058 5205 500:0 .00.. 50.05 0000058 5205 02.0.5 50.0.5 02.0.5 288. 88.88823 88.702”. 50.05 02.050 50.05 02.25 5205 02.0.5 800.0 mm...wmz-m_b 50.05 00:20.00. 00000.0 5&0. 00220038005505 50.05 0000298 50.05 0000298 50.05 02.0.5 XX XXXX XXXX XXXXXX XXXXXX XXXXXXXX XXXX QT QN: Qm: QN: Qm- QN: Q5: QT QQ. QN: Qw Qm: Q T Em: QT N. T Q T QQ. Qm- Qm- QNT QN: Q T Q T Qom- Q T QN: N. T QN: QN: Q T QT QN: Nd: Em- Q T QN. QT Qm: QT QT QN: QmT Q T QN. QNT QmT QT Q_. QN. QN. Qo. Q T Q T QN: QT Q T QN- QN. Q5: Em: Qm: QT N. T QT QN: QN- QN. QT QN: Q T QT QN- Qmw: Qh: Q0. QNT Em: Qm: Q T QN: Q P T QoT n. T Qm- Q T QN: Né QN- Qm: n. T QN- QN- Q T QN- Nd- Em... QN: N.m- Qm: Em- Nd: QT Nd- Em- Qm T Q T QN. N. T QN: Q T Nd: Qm- Nd- QT Nd: QT Q T QN: Q5- Q0: QT Qm: QN- Qm: QN- QN: QN: N.m- NQ. N.m.. QN- Q T QT Q.. QT QT QT N.T QT QT N.T QT Qw QT QF QT Q? Q? Q. Q.. QT QP QT QT N.T QP QT QT Q. Q. Q. QT N.T QT QT QP Q. Q.. N.T Q.. Q. N.—. N.T QN- QT Qw QT QP QF Q. N.T QF Q—. QN: Qw QT QT Qw QT N.T NF Q. Q. Q—. N.T QF QT gmeoE< 88882 08882 88882 88882 2.882 88882 88882 88882 88882 8.882 88882 8.882 80882 88882 8.882 8.882 2.882 88882 88882 88882 80882 88882 c.8882 88882 88 .82 88.82 88 .82 88 .82 88 .82 88 .82 88 .82 88 .82 .0IF0hmmN .0:0o.mm~ 8:388 8:888 .0:~vmmm~ 8:888 8:888 8:888 8:888 8:888 8:888 8:888 8:8 88 8:828 8:888 8:8888 8:828 8:8:888 8:888 8:888 8:888 8:828 .0I0Imwmva 8:888 8:888 8:88.88 8:808... 8:888 8:888 8:888 8:828 8:08.88 .8:wommvm 155 $996:mb_>0Ncm£_>oEmcc_o>xEPE-z £205 vomwmaxm 9:93 .3333. mumEoomeuEmuOEE 5205 0252. 520.5 9383 2E5 339?? mx__-mmmcooo_mcou 282m: 5205 9:93 5995 83998 5.205 nooauE-Exam 9:33 A 724m: 82009?»ch .0359: $9895.: cmogmon-oucm 959.5 520.5 Bum_m._1wwm.£mcm£baom amoBoma 9583 6325.3 520.5 83998 52% 3.2.83.8 520.5 9:32. :2me 529:. 85683-85035...» 5205 0265a Caoxv 9322a 9:930 5205 9:93 5295 9:53 snag 5.03 83822. END 520.5 32.05an 520.5 9...- mmm..£w:8=>moo:_m 2 ..m__E_m £205 339me £205 nmwwmaxm 590.5 88998 9:93 .ommExqu mcaoficoomflmmfiosue ESEEQOx-osmz 9589:: £205 ova-m 5.3523 9393 6325.8 9.0.5836 A .mmmgggs SE 29.50% £295 meoaxm 520.5 9283 X XXXX XXXXXXXX XX XXXX X X X QN- QN- ...N- QN- Nd- O.»- Na- c.9- QN- m.m- QN- QN- QN- Em- QN- m. P- 0.x.- F.N- Qw- Pd- m. F- od- QN- QN- m. F F- Qw- QN- Wm- QN- QN- od- F.F QN- Em- QN- Qw- rd- 5. F- ...N- mi- QN- ...:- fi. F- m.”- F.N- h. v- QN- m. w- ». P- v. «- QN- F.F Em- QN- od- od- N. P- QN- mR- 0.2- QN- F.N- n. P- m. w- QN- ...? F.N- QN- QN- QN- od- m6- QN- Em- F.F Nd? Em- m. p- Qw- vd F- Wm- od- vd P- «.m- 0.9,- Na- 0. F- Wm- Nd- m. w- m6- F.N- m.m w- mim- Num- Wm- Em- od- 0% QN- Em- 0v- Pd- OK- QN- QN- QN- QN- m... «Km?- 0.«.- h. «- QN- m6- Em- Qw- m6- Qw- md F- Nd- m. r- «MV- 0.? v. F- QN- Wm- md P- m.»- QN- Nd- od- od- Né QN- Qw- Em- F.F- F...- Qw- F.F NF- v.7 fir- v.7 N.T o... m.—.- F.F v.7 .mp- QN- F.F- F...- mé- mé- F.F 0.F O..- o... w..- «.7 n.— F.—.- F.F- fir QN- mé F... F... QN N.T w... WP- mé NP _.._.- NF- 0.F 0.F N..- m.—.- fir o... M.F- fir F.F- o... F.F- mé S. F.F- 0.F Q8582 833m? omomommgq 08382 8833 ommmomms< 8833 383% o£w32< 823% 833% 233% 833.2 8E33< opohmmwgq 883.2 253% 853% 8333" 833% 883% ommvmmegx 333% 333% 883% 08892 883% 833.3 853% 883% 2833" oompmmch mmmommvsu 883% $1383 .3383 61883 51588 an? 5 EN .mlmmofim .3323. .m-Nommmu .m-fimmmm .mlmmmmmm 5:383 5:583 “mlmlmmommm $1383 fi-SEE sun-#83 alpwpmmw “3353 61858 filmucmmmmm .m-wmmmmu .m-wcummm .m-mommmm .m-memmm .m-wommmm .m-Nommmm um-wwwmmm “m-Nmmmmw “m-nkmmmm .m-ermmm “m-omemmw .mnvmmmmm “annemmmm .m-Nmmmmm 156 5203 330.53 5205 9:33 2E5 €823ch gcanaw-Emn 5205-0 5905 9:93 >__E£ mug: new mmflmfiim “cavemamudg SEE. 022V ssoa 88..., 8n 5295 ox__-omm22a 520.5 9:92. P93 26?. 0>:93 .mmmExo mun-.883... 82.9 28$ $298; .888 £205 9.: - 03:: £205 0510889 5205 9505.5 520.5 0>:93 £205 9... - mEEmu 529.8 5.20.5 @2625 AmwmrAEm-Sonv 3 >__E£ $3922 Smoozm 520.5 9:733: BEobmSomE £295 9.:- 553.820 3109 ommcmmegcmu ofiESEm £205 Esocxc: £205 9:33 N“. 568.25 529% EBB-n52 529a 038.98 5995 3568mm 3&3: @509 N 5908 8E8 .8698 :85 £205 9:93 5905 9:83 5905 mmm_o._u>£mmmq__ EOE-Among £065 BEE-5.300: m3£§§§aofi>£u 529a Bmwmaxm 5203 9:93 XXXXXXXXXXXXXXXXXXX X X xxxx 9. —- QN- 9m- w. w- QN- 0.? ON- F. ..- Em- Em- @9- ON- Em- QN- c.9- 0N- Em- QN- mé QN- Nd- QN- Qw- oi- N. w- od- QN- QN- V. F- Nd- ON- m. ..- v. w- m. P- QN- m6- v.3- 0N- mN- mam- od- m... h. w- od- m.»- Nd- QN- N. P- Q?- o. ..- o. F- QN- oé fir QN- «N- Na- mi- m. F- md- Nd- h. F- 0. T Em- mum- F.N- o. ..- F.F od- N... N. P- mN- mN- Nar- QN- m.m- 0.? 9m- c.0- QN- 9v- 0N- F.N—.- mi- v.7 Em- QN- QN- od- QN- od- m. r ..- 0N- F.N- F.N- Nd- 0.07 F.N- F.2- N.m- od- od- od- m. F- F. F- mN- QN- F.N—.- QN- m5- mam- Qw- mR- QN- 0.7 QN- m6- QN- mg.- Qw- 5.»- En- od- Nd- F.N- Wm- oé- 0v- ». «- Nd- Qw- QN- od- Em- 0N- mN- ...—.- m... F.F mé oé Nd ...w- o... F...- F.F- w... F.F- F.F- N.T mé P...- «é F.F- mé F.F- 0.F oé F.F m... F.F m._.- oé v.7 m.—.- oé F.F N.T m.N F.F F.F- N...- Né N.T ...F MN F.F- F.F F.F F...- YP F...- v.7 oé ON 0... ON fir N._. o... F.F v.7 F... *4 mé N... m4- F.F- M.F- F.F v.— N...- o.N m: 08882 85882 omummmmg2 88882 88~82 88882 88%82 88%82 o: 882 8. 382 98882 88~82 oommromgq 88:82 88.82 888828882 88.82 8882 8882 8:882 83882 88.82 8882 8.8282 omoovmmyQ 8882 88.82 8882 88.82 8382 8.382 oONNmeg2 ouovrmmgq ommwommgq .mmwpmmcm “m-thmvm am mmumcm .m-mnmmmmvm “m-mommqu .m-Nommvu .m-wpmmvu .8383. “m-wuomvm .m-Puoo¢~ .m-¢P.o¢~ amnoeroeu .m-nrmmvu .m-Nmmmvm am-nmmmvu ~m:o~mmv~ .muhooomm .m-wooomm .m-ommmvm .m-Nmoomw .m-Npoomm .m-mnoomu 2:888 uwlwle _. womN 21888 am-ovmmcm .m-nomovm 8:88N .m-Nmpomm .m-ompomu .m-Nrmomw .m-wpmomm .m-mommvm Halvmoovm 157 529:. $2.32. 5295 33298 520.5 02.92. 2.0m... v 9:85 mczmmano-Egzufia .Nw 520.5 .9220 3.5.5 8040 3.2%. @8285 5 8.39982: 5205 gum-655 £205 9.._-c..mE:m£ E905 QE- omflflwcm£>om 2.90.5 9... - 98%. £905 520.... 02.32. 599.. mcSnEmEmcw... 9.8.3 U2m_o.-omm.£mcmb_>£m5 £205 mEcfiEOQ-cfiEou N0 9...émmhmficmbocamenu-$333.88...m-z mwmcmmofifmu 9230590880036 5205 9... - 9.8%. 5.205 3.10382 £20.... 9...- owmcc. 32.628 529:. 83998 .3me N 522.. ....Efl Eton-8mg 5205 3.7.2.832. 89m 520.... 9.85.. 5205 $2.92. $20.... 9333 £908. 33¢..me 5995 $2.52. 859-.-”.sz .5228 $8 Cam-Z £205 mmfiofi 9:539 5905 Bamafixm £208. 9..73220328295836 AN. ...”.va mmmcmgxoogc. 05.8.3 3. E09 mmmcmm>xoo:oE 95.8.3 .208 9...-mE9m 520.... 9.8.3 X XXXXX XX XXXX XX XX XXXXX XXXXX XX Nd- QN- QN- QN- F.N- m. '- Em- mRN- m. w- o... o. p.- n.0- 0.x... m. ..- QN- QN- o. F- Wm- QN- mN- QN- F.N- ad- ad- md- n. ..- @8- Na- QN- Qw- méN- on- 0.7 mN- QN- m. ..- QN- mN- F. F- QN- od- Em- QN- Né m. w- QN- 0.7 m. w- od- w. w- od- QN- N.m- Nd- QN- Nd- od- mN- F.N- o.N- od- m6- F. F- 0...? m. P 7 Von- QN- Qwe- m6- m.m- P. P- QN- Qw- QN- Qw- 0N- QN- mN- Em- m. ..- h. '- mN- ON- Em- mi- QN- QN- QN- Em- QN- QC..- fin- Pd- Wm- Qw- F.0- F.0- o. P- on- Em- N... m6- Em- QN- N. ..- od- QN- 0.7 Q...”- Qw- od- QN- Nd- v. F- o... QN- h. P- WV- mgv- QN- Qw- Qw- Qw- Em- c.2- m. P- Qw- Wm- Wm- WM- QN- 0m- 5m- fw- N. F N. F- .1- N...- F.F- 9.7 ...P- h... N.T o... «.7 F._. N.T F.F o... m...- F...- oé V...- F.—.- N.T. wé F.F F...- 9.7 ...w- m._.- F.F- mé- F.F F... F.F- w...- 1F- N.T 0.F- ...F- F.F- mé 0.F F.F 2.? F... F.F F.F- ...—. F.F .1- F...- F...- ...F 0.F QT F.F- N...- ...P- 9.? N.T m...- QN- N...- ...F wé #4 N... ...F- N... mé ..... m...- ommm¢mm=2 ammuemmgq 88.82 88:82 88.82 88:82 oomoqmmgq omoowamgq 88m82 88882 88882 80882 .8882 0888.2 oohommmeq 88m82 88882 2.882 ooehmmmgq 88882 88882 88882 88882 8888882 088888882 88882 88882 08882 83882 83882 8.882 omP¢Nmmgq 8.882 ommmmmmgq .m:-.mv~ 8:2. 88 8:8 88 8:888 8:888 .mummmmvm 8:888 8:888 6:888 8:88.88 8:888 88888 6:888 8:888 .mlmlwmmch .m:vmomvm .m:~ooov~ .m:vmmmv~ .m:wosov~ .mummuoem .mnrmnmew .m:~mmov~ .m:nmmov~ .m:m~omv~ .m:mommv~ .m:.omo¢~ .mmmmwomoew .m m mumm¢~ .m:~¢nme~ .m:~mnmv~ .m:nsnmv~ .m:v-m¢~ .m:mmnmv~ .m:~.mmv~ 158 520:. 9592. £205 nomwmaxm 5205 8505.5 2 5:88 :28. P 858,. 88888. Kim 520.5 58:8. Ba... 5805 88998 520.5 889on 2?“... ES. 588.. >582; 58.95 88898.2 520.5 02.92. mmmeBomfimuflmn 590.6 9:32. £20.... 9505:: 2802. 8:828. 88888.8 mmmcmgxofiNé Swazcwmgcoz 380$ 828.3 5888-5888898 5888 893.3 8&2 29835 592.. 88958 520.5 x0338; 88. 852588. 8253 5205 $2.82. 5205 3.385332% .0398 9:92. 6838.3 :88... 9.889.“. 88$ 88828: 288.. END ....xm. $8283-58 385.com. 3.29339. ctoamaom .9.._-c_m.o.a .0520 0:95:52. 599:. 9:93 3.75295 59:8 .528 828:8 ..meo mm..-wmz-m_b vmnE £205 00:88.8. 3886 £205 $2.92. 288. 88838826 89.532”. 8.32-5205 mafiofi m>z$mmm> XX XXXXXXXX XXX XXXX ... T n. T Nd: Q? 0N: QN: Qm: Q T 0.7 9m: 9m: QN: QN: 0N: QVT o.N: 9N: Qm: F. T w. T Q..”: m6: Qm: 9m- mNN. F.N: Q? P... Em- 0N- QN- QN- QN- P. T v. T 0N: F.N- QN- QN: QN: h. T QN: QT QN: h. T 0N: QN: Q P T 9m: m. T QT c. T m. T QN: QM: Q T 0...”. ed: Qm: ...o: F... Em: QT Nd: QN: QT Em: Nd: o.N.. ... wN: m. T oé: Y T 0N- Q T m.vT QT QN: Nd: Q? v.0: QN: 0d: F.N: Qm: rd: Qv: Q T 0d..- Nd: ... «N- QmN: QN- QN: Em: QN: m. T 041 En. QN- QN- QN: o6. m. T QY m. T QN- F. T Qm: v.0: QM: QN: 0.7 ms: QN: Em: fir ad: QN- Em- 0.F Q r T Qm- o.mT QN- QT QN: m. T QN: w. T QN: QN: QT QT N.T YT 0.F QT N.T QT ...T ...w QT F.F 0.F QT QT w... QT «...: QT ...T QT oé YT v... Né ...P QT QT vé F.F o... QT ...T YT QT QT N.T F.F QT ...—. QT F.F vé QT N... Né fir QN- ...T N.T F.T QT QT QT Q.. V... v... NP QT QT QT N... ...F ...F N.T 9.? 28882 88882 88882 82882 88882 8582 m8$82 2:882 32882 28882 88882 8.882 88882 89.882 .8882 08882 888.82 .8882 88882 S 8882 03582 88882 88882 88882 888.82 2882 88882 8882 .8382 88882 88.82 08882 893.82 .8:n~m~vm .8:Nwm~vu .8:o.mhv~ .8:mom~¢~ .8:vwmn¢~ .8:~mw~¢~ .8:ammhv~ 8882.8 .8:me~v~ .8:¢mmnv~ .8:~nm~v~ .8:omomv~ .8:~momv~ .8:nm.mv~ .8:~m~mv~ .8:~m~m¢~ 8:888 .8:~mmmv~ .8:nmmmv~ .8:.ovmvw .8:wmmmv~ .m:~mmmv~ 8:8:888 .8:oomm¢~ .8:-omv~ .8:Nmomv~ .8:oa~mv~ .8:nm~mv~ .8:nmnmv~ .8:vmmmvm .8:~oomv~ .8:nvom¢~ .8:n~omv~ 159 3 ‘ _ 5. 32.2213. :31 K a. z A . .4321}: s. x .. a ..V .1. . _ .v . a _ o . a: a? 2.0 92. 2 4.. g c J 3. PM. p. ..z ,~ ?. Gigi .- L. . . ._ i ‘;:.1.. n 6. x...) .0 : .. ..t: . —’n ‘I m m .~ 5.0.. . - ... . 1. ’ \. .\ v ‘ ._ , a I ... I‘J {I00 - § I ._m>m_ c_2.m.w m am 022.8me Boo 8.3m. 9:8 .8 Am .9930 33 3.9.8 m5 .9: .mm 805 m5 523 .m 88: 85065 ..x, c< .Esocm m_ .3 39a :08 .6.— c2§0ccm 05 new .3 m5: comm am 28:96 306205 some ..8 mm:_m> mac—Eu 29 05 ...mEEmE _G< m5 m gcanzm ommabq 395. £205 oc_cooExon._mo.P.mcmao._ao_o>oo£Emé 590.5 3.73%.... .203 53:85.: 9:83 63558.82 £305 3323:339- EoEJwDO 5203 9:33 5905 0553 9.: mmmbmpmcmbSom oszEmA. Ecgooécm n..._<< 39:90.5 oc§m>o £205 £383 £905 9.: - mamas. 2m$EE>£ $865 05.3 3.752593 £205 Bmmfiaxw 9:93 .Amwmsgm an.-._oome $223.... 22308:. 36:892ch x XXXXX X XXXXXXX X XX QN- Em- Em- F.N- MN- F. P- 0.7 0.7 m. .... o.N.. N. T mN. m. T m. P- mé m.—. V. T m... F.N. F.N- m.m- o.m- mN- ad- F. F- N. T Wu. QN- m. P. N. —. 0N- F.N- QN- of. 0N- 9N- 0N- 9N- wdm- m6- ...N- m. w- a. T m. 7 Wm. QN- m.” Em- 0N- F.N- mem- QNNN- n. T Wm. 97 QN- Em- Wu. 0.? od- Nd- 0N- 9N- ed- m. w 7 En. Nd- ogvu QNm- md- o. 7 P. PN- 9v. ed. 0.«. m6. 0N- md- N. 7 ON. Em- s. T 0d- ad- Wm- Wm- QN- QN. Wu. 0. T QN. Nd- QN. Nd- 9m. od- 9m- 0...... NM. Em- 0N- QN- mN- OK- F.F- o.— m._... ...—H 0.F Né Né ...F M.F.. 0.F F.F F.F- v.7 YT F.F M.F- N.T fir v._.. m... F.F- 04 :3 QT. o... m._.- 3 8209.2 .mlwlamflmm F.F F.F- _.._.- _.._. F.F F.F o._. N.T F.F- F.F F.F v.7 0.7 N._. F.F F.F- ...? N.T F.F o._. v.7 m.... 0.7 .....- F.F- 23882 8.882 88%? ovpmommg« ommvmmmz 8558?. 23mm? 22%? c8582 ovmvmomz om~mommgx 80882 80882 23082 8.882 83%? Ramona ovflommz om. 582 88.082 0888:. “.3882 8088:. “£882 okmmomé .mumVonvu .mINNONVN .mnnmphem “mimnpnew .mimpuuvw .muomNNVN amu¢m-v~ .mlnsmhvw “muommsvu .mnuwmucw .munvmnwu .muwmmuwu 5:833“ amnmlmmmtm .mlvnmmvm Halomm~¢~ .mlncvuvm .muwmmsvw “unnumNVN “mlxmmnvm amuommhvm “munmunvw .mnnmunvm «unmaskvm 512:?“ 160 ,.‘,.w_ xiv“ . .n v.3 6.3. , _ u : .. . 2835293589070; x 3 8 ma 8 P P- 83.22 5:888 5555 8.0.856 E E 8.. .3 a.” a 283:2 5:888 255 5555 A83 «8959.: 85 x 5 m8 «.5 3 F- E 8832 5:888 $3... x x 3 8 man no 3 3 8832 5:388 5553 8.0.5556 x 3 3 mm 8 3 7 8532 5:888 59933558? x E N 8 8 E 3 2832 5:888 68.09 5555 85856 x x as m.” 8 t 3 3 28:92 5:8888 seen Emmoaxm x h 3 F. v m- E m8292 5:288 5555 85.856 x x 8 mm m u 3 E 23.22 5:88.88 seen 858.95 x 3 8.. 8 ma 7 F- 08292 5:838 5555 .885an x 3 m... 8.5 8 F P 8832 5:888 8555?. 5555.8 5253 x x 8 8 m: a P- .. 8882 5:388 2:93 58556 8.52885 x a 3 m8 8 Z 3 8882 5:588 5555 85.85% 8 m. 8.. E 8 «.5 2.8092 5:888 52% :828585 5253 x 8 3 3. 8 8.. 3 8882 5:888 5555 88285 x 3 a 8 m8 8.. F 8882 5:888 5555 85355.. x 3 8 «.5 N 3 7 8882 5:828 m 2E£8§§2§8€ x 5.. m... 5.8 m P. F. 88892 5:888 5555 85855. x 5 8 n 3 F- 7 88892 5:888 5555 83235 5 m- N. F- 3. 3 8882 5:888 5205 “55855 x 8.. E 8 3 F- P- 8882 56538 C555 :26ch x 8.. 8.. 3 3 F- T 88892 58888 C555 889%» x 3 N 8 0.8 P P- 8882 5:888 >__E£c555Afidrcmuczm 55283955 m5. x m- N. 3. 3 P E 8882 5:888 5555 855556 3 F- 3 3 m8 3 8882 5:888 3585555sz 5258 x 3. 8 3 8 r N. 8882 5:888 $282.22.“ 53 x x 8 mm 8.5 ms 3 3 8382 5:838 58555823835 8823:: 25:55 x x 8 e 8 3 F- 8.. 8382 5:828 5:20:52 2mg new 5 m < m < m < .04. .3 mack. 95:85.9 28 82 cvw 5 ...Zm—émmaxw ...Om wI._. Z_ mmaéwazwh >>O._ >m ow...<.50wmd3 mem mema .70 ”56.... U X52mmn< 161 520.5 38298 3 .665. 959.3 .coEQm mzmcoawo. mam—>56 5205 3889.0 th\o.._.:93 .832 5295 8.8.0:: 5205 882me £205 umwwoixm £205 83¢..qu £205 commoaxm 5203 33298 2E5 xaEm :38 £205 89.3..me 5905 52.55.05 9 5.25m Cum/b r .688 9.659 35:56 96:88.. Eon 06.086 3:93 .5905 cowoamcm: mv.__-an\cw AEmEou mc_o__am 9:653 5905 88298 9:93 .599... 33.6% 66$ 8.6829. :658 8% 36.3 .A>.mz:. £205 Smwmaxm 86995 05.3 mx__-c_m___53m £905 umwwmaxm 9:93 .5205 $2.2 9:qu .59395 36:60:68. 793 5666 8656-65 590.5 mx__.mwm£c>m EU 3.0%: 56266 590.5 ummwmaxm 25-3885 3882, 2 6.6.6 XXXXX XXXXXXXXX XXXXXXX X mé «.0 P ad 7 mé m mé F.F v... 0* 8:692 6:888 8833 6:6:888 88692 6:o8m8 88892 6:888 8869?. 6:6:888 888:4. 6:88.88 2892 6:888 8832 6:6:888 88692 6:68o8 8885 6:298 8885 6:358 888.2 6:868 2832.4 6:838 8285 6:368 8232 6:63.68 838.2 6:928 888% 6:888 8.892 6:888 25.96. 6:388 68688 6:388 888% 6:888 08892 6:858 3892 6:88m8 .8892 6:828 Q8892 6:888 2832 6:288 86892 6:828 88%.: 6:838 88692 6:828 8869?. 6:858 8883 6:888 8883 6:288 98822 6:838 6889? 6:838 163 5290 5.309500 02.230 5290 5505.5 02.230 6202.2. 000:0. 000:0. 5290 00.02.00-502? 0000._0:000:000>. 022230 5290 80.005003 02.230 .A000_0 mmzir... 5290 00:20.02 00000.0 02.230 A0050 mmzéE 5290 00:20.00. 00000.0 00059060.. 02.230 5290 00002008 022:0 .szDmn. ..<_20m0m.m 5290 0000998 5290 00002008 5290 :00. 00005.2. 000000030 E00:0000.:290 020230 00... 3.0202 @5050 ..20990 5290.... 2.90.— 5290 2202. E20008 .0500 0: 5290 00000.96 5290 8.8622: 0223 02.220 00:80:00. 000000 5290 0000998 5290 0000998 5290 020.0. 0000.0 020.0...002000c003509 020230 .5290 020.065.309.00 5290 00009008 252:0 2000.0 wmzirc 5290 00:20.00. 00000.0 5290 .00..0£00>: 02230 800.0 E... 5290 00:20.00. 00000.0 3...:2 .0:000:0..<0:0.5E0E .0525. 5290 0000298 5290 9.86.220 86668802 302200. 0005290 520.8 ..0.0:0> 30059.0 20623.0 2 00.9.0. 00000906059 0552:0055: 5290 0000998 020200 .5290 E00550 0.00:0mobnE0 20. 5290 8000500? XXXXX XX XXXXXXXXXX X XXXXX QN 0.F mé t Em NF 8832 6:888 08822 6:538 8832 6:838 8832 6:838 8832 6:838 883:2 6:888 883:2 6:888 883:2 6:888 08:92 6:838 2:322 6:828 8832 6:288 8882 6:388 8882 6:888 03892 6:888 8882 6:888 .8822 6:388 08822 6:888 03892 6:888 08892 6:888 08322 6:888 083022 6:08:08 8882 68:888. 8882 6:888 8822 6:8088 0880.2 6:888 8882 6:288 8882 6:888 08822 6:888 8882 6:838 0:892 6:888 888:2 6:238 0882 6:328 0882 6:08.08 8892 6:288 164 :66... 266. .68.. 6:6 0.8.0 02250200 80.625.200.08. 0020900. 0:02-06 3.0.0-302000 2.62.... 000.20:02.>00:O .900>.0.>00.0 2.92 520.0 .0000. 00.0.5 2.0mm 520.0 .2.000:02 05.020022 02230 0022802300020 0.0:0090.>:0:0 022230 309... m .0202 052.092.0000 5200 2.20-9va03. 2.3.002. 5290 :0209..000 0.00 2 .0..9.0 8.0000. :66... 808.86 2.92 mn=22 520.0 20000 202. 9.66.. :66... 86:... 220 38:00. :66... 688.96 5290 9505.9. 520.0 0000296 5290 00000.0x0 5290 00000.98 02.230 ..202 520.382. 50900 ~04. 0005090300 .0:00.0 520.0 00000.0x0 520.0 2.92 0:2.-0m 0505092200 520.0 0000298 5290 00000.98 020.2- 520.0 05050 .20990 00090300 9.66.. 5.62:6: .808. 0 $6... 6.26666... __ 266. 02230 ..202 0..002>0 30mm 520.0 00...-5209205 .202 :0.20..00:02 2.92 .39 520.0 00000.0x0 X XXXXXX XXXX XXXXXXXXX XXXXX 0.F QN _..N 0.0 0N 0.0 N4 Em hm 0.F 0N 0N Em m.—. we Né 0.F QN 0... Wm v.0 0.« md 0.« Wu 0.: 0.0 e... 0.0 m.—. 0.: ......N 0N 0.0 0.« 0.« 0... Em mN 0... 5 NF mé Nd _.._. mK md mé mN mN 0.F mN 0.: 0.0 F.N we 0 0.0 «mm 0.« 0.« 0.0 3 En Em mé 0N QN md N...” 0.« mp 0N 0.0 N6 _..0 0.F 0F mN F.F F.F 0.0 Nd 0N ad 0.: 0.0 80882 :2 882 88382 88382 88382 88382 88382 83382 88382 80882 80882 83:82 88:82 88:82 08822 888:2 888:2 883:2 883:2 883:2 883:2 883:2 883:2 883:2 883:2 883:2 883:2 883:2 833:2 883:2 883:2 883:2 883:2 833:2 .6:00.008 6:288 .0:00~.08 .6:200008 6:328 .6:v.000~ .0:80000~ .0:¢0000~ 6:888 .6:0:omom .0:20000~ .6:~:o:08 .6:F:.00~ .6:02200~ .6:80020~ .0:.0000~ .0:omo~0~ .6:000208 .0:~o.:08 .0:02F20~ .6:20.~08 20:08:008 6:888 .0:000208 20:080008 .6:02000~ .6:..0008 .0:..0008 .0:02820~ .6:800808 .6:0...0~ .6:08060~ 8:853 .6:N-oom 165 .8883. 000. 88520.0 280. >082, 50.0.0 00000..an 88$ 0 900.005 08 00020 £0.90 00000.98 c.0090 000305-590... 02.050 50.0.0 c3050: Ecmmoozm 02.050 50.0.0 60005093 5:520 .208 5:980:00 mc_0c_n:._.<:93 €20000. 0:25.050 .000.» 2 .0__E_0v 50.0.0 00000.98 000.903.0000: EoE...m00 9:050 EN”; 5000 08.. 80 82-080 50.0.0 00000.98 31.3 v .200. c050=_c_ 003.0030 02.050 505.0 80305005 3.00.00. 50.0.0 00000.98 50.0.0 00000.98 22:00 5000.0 .0E00 0005509.... 00000500050 0.050005900020505 02650 080:. 00 >__E0. 50000.8: E095 o. 0200. 2:000 any: 508.0 003020000 2 020.5000. XXXXXXX X XXXX X X X X N.” 9N ..F mi 9N Nd m6 N.m Em QN Em Nd mN Em Wm F.F Nm 96 Nm QN «.9 m8 QN v.0 9N m6 mN m.— 0N m6 mé Em Qm 9N m6 F... F.F mé m... N._‘ m._‘ mé m... .mw QN Né F.—. 0.« 5% 5.— ON F.F F.F Pd mN mé ed 8:882 0:888 88082 0:888 88882 0:888 88882 0:888 08882 0:888 88082 0:888 S8882 0:808 88082 0:88.88 8.882 0:888 88882 0:888 08882 0:888 08882 0:82.88 80882 0:888 80882 0:888 88082 0:888 .8882 0:888 88882 0:0:888 08882 0:888 88082 0:888 80882 0:888 88082 0:888 80882 0:888 80882 0:088 08882 0:888 80882 0:888 8:082 0:888 88082 0:888 20882 0:888 8:882 0:888 20882 0:888 80882 0:888 88082 0:888 88802 0:888 80882 0:288 166 $880 9:93 520.5 88955 (0:... £905 mzwcoamm. gum ncm 23285.2 26. 520.5 85889 35me £205 zo:.o£o>_m 35:50:54.”. 783 9:93 839 859582998 .908 cozatomcg xoozm “no... 3:83 520.5 83998 .20an £39m Emncmamucwsxzm 9 5.28 7623328 EumSwoozm 299.99. 580.5 oomwoaxm 2.2.3 5205 $39 2103 5555 225,. 58c 2.5 x38 wzfiwzoo £995 uommmaxo omm£c>m .ogoflmm :59 558 8.5885: 85588 :Emmmmx: .9558... mmcagzuaoa 35$ 55828 258 CE; 840$ 5205 x8893 5205 $39.98 35535095 9332. mm 5.00 on E00 5205 59E 0%.. 83.1000 9:83 5905 gammaxm 520.5 389me 5205 :26ch Am c3938 m .2525 $36.05 05083 0>:93 590.5 .6ch 0:8 33.:000 «>383 £905 889me 5205 9505.5 520.5 83930 5205 8892.8 XXXX X X XXXXXX XXXXXX X mé mé m6 : mé Em Né mé mé v... m._. m6 fir m6 N4 NP mé m... or m_. 5 NF vé m... mé F.N mé QN md m... mé m m Em me e QN _.: QN T Wu F.F Né N. e m.v rd ...F QN P QN P: m.m F: oé m: P w P: C. P: Q? r 9N NF 3 ¢._‘ 3‘ F: Qm T. ON F F.F N Na F.F mN m.m 0N F.F mé mum mN ...P mé m... «é Fl F F.F 2. En F.F mN ad Fé Fl Nd Fl F 5% Fl F N4 mé F.F m... F.N PI PI _. on r Wm P Nm #6 F— F.F F.F 88o82 5:888 88°82 5:888 C8882 5:888 88°82 5:888 88882 5:888 28o82 5:888 o8882 5:888 8882 58888 o8882 58888 88882 5:858 8882 5:58:88 82282 58.88 88:82 5:288 88:82 5:388 8:882 5:888 8:882 5:888 88882 5:288 88582 58:82.88 8882 5:888 88:82 5:888 88.82 5:888 88:82 5:888 9882 5:388 8882 5:888 82882 5:888 o§v82 5:258 8:882 5:888 2282 5:888 08882 5:888 88:82 5:888 8:882 5:888 888.2 5:588 88882 5:888 0:882 5:888 167 5203 83298 520.3 88298 22823 85%. seen 85.9 [2w 33m: 528 888:8: :55 520.3 :88..me 22.2 5203 8.32 oYO>> 9:23 .5203 855882 ommowfi 860% 82-5: 5293 38998 520.3 80:2:an 520.3 38998 mg:23 682.2. x09 Ixoam:m_o.m 520.3 38¢..qu 9:23 .5293 .59.: 0.8 520.3 umwwmaxm 9:23 .5203 ..ch 9:23 .389. m_coEEmln.._.Dv 32:28 3.5 5203 88998 8928523582 05:58 9:23 mNmmmD 5203 83998 >__E2 £203 .832 oYD>> 5.20.3 5505:: $2: 2203 9:23 8202.2: 5305 85.52 X xxxx x xxxx X XXXXX XXXX E_‘ m.N fir Er N.m Em F.N QN m._. N m6 m.v «é mé Né F.N m... w.N mé mé mé m.N ¢._. E_. mé :6 mé Né m.N m mé F.N m.N m.N QN me m.N m.m m.N m.N v... N v._. F.N Né m6 mé m.N m.N EP EF F.N m.N m.N m.N m.m m... P 9N m6 mp Em m.m m._‘ m.N mé Nd m.N QN Em We Em m.N m.N Em m.N N.m m.m m.N Em m.N N... NJ 8882 5:888 82882 5:828 88882 5:228 .8882 5:888 88882 5:288 o8882 5:888 88882 5:5,:8E8 8882 5:888 88282 5:288 8882 5:888 8882 5:388 8:82 5:888 2882 5:888 88 82 5:888 8282 5:888 c.8282 5:888 8:983 8:82me 28 82 5:888 8882 5:828 8882 5:888 8382 5:828 88282 5:888 28282 5:288 88282 5:828 2882 5:888 8882 5:828 88282 5:888 2882 5:888 8282 5:888 88282 5:888 8m282 5:m8m8 88282 5:888 8882 5:288 8882 5:888 168 50.0.0 00000.0x0 520.0 0>:0S0 50.0.0 00... 000:0. 050000.05:00.:<05.00 8.20. N 000>.-0.:0EE0 058.5820 820.6 85.80 .8980 5.8.50 :55... 2.7505... 2000 8.8.2. 8.8000 £822. .28. 88825.. 022 50.0.0 05508020000. $.00. 00:0000082000 :55... 8.558.... 520.0 0>:050 .9.th N .20.:m0. 00:0000. 2.95. 555.0 .58: 02;. 82.380. 58.. 80 .3008. 2.0.2 520.0 :.0:00x0 2.0.0. 50.0.0 00.0.0000000:0000:00 000500000 0:20.: 0>:050 0>:0S0 50.0.0 06.0800 ...Ozémoo 0>:050 .<00. 2:5. 8:. 05282.6 50.0.0 80:00:00.9. 50.0.0 5505.5 522 o. 558. :55... Q... 885. 50.0.0 00000.0x0 520.0 00000.03 520.0 00000.08 50.0.0 0000998 5290 00000.98 50.0.0 00000.0x0 50.0.0 00000.0x0 0>:0S0 5.300.500 2.50. .202 :0:0..00:0.. x0000 :00: 50.0.0 00000.08 50.0.0 m5050.<2m. :0...050>.o X XXXXXX XX X F.F Fl NP 0.: Q? P Em Né ad Fl ad .. m.m Nd m6 _. Fl vN N.—. F VP : Né mé NI Fl F.F m... Fl 5F 0 m0 Fl Fl 88082 5:828 88082 5:828 28082 5:228 88082 5:828 88082 5:888 08882 5:888 .8882 5:888 08882 5:288 8:882 5:888 2.8.82 5:888 8882 5:888 88.82 5:888 8882 5:888 88.82 5:288 08882 5:288 8882 5:888 8882 5:888 883.82 5:288 8.882 5:0:808 :8882 5:898 .8882 5:x:888 :8882 5.8888 88882 5:0:808 80882 5.8888 8:882 5:88 80882 5:888 80882 5:8888 28882 5:888 28082 5:888 08882 5:888“ 80882 5:888 80882 5:888 8882 5:888 88882 5:888 169 52.5.2 - owmcmmofifmn Io__E£ £205 “539. 9103 592a Sawmaxm SEE— mIOV @393 .5305 02283.. Exam 5295 .5285an 520.5 9505.5 3N0__E£ mmmcmgxofi “52303299360on £205 mcmEEmEmcg 9:59:00 ucmziw...maa_N 050:2 $2.33 A Poi 2 ..m__E_wv 35:5. 5205 mscoectmctmm 0>:93 2:52 £905 @525 <20 200.03: $5390.50 5205 commoaxo 035:? $5288th 5295 .3283 27:5“— Emuoa 0553:0959: O> 3:5“. 5905 $9: 1008 59$ 83 520.5 cmmwmaxm aim: m .563 5:552: 5:56:52 03039.3 026:5 335% 855595 95_>x8.8.m.m:__o§a-7555 >=E£ room cozmmcmucoo mEOmoEoEo B 5659: £905 8mm2ax¢ 2E5 35903 3.855 5205 95- 35:2 £205 XXXXX X XXXX XXXXXXX 0N m mé fin Né m.m QN 9N mé QN QN F.N F.N mN Fé N.. mé ..w VP QN mm mN F.N N.m m... h QN v.0 Ev Né QN 0N QN N: m.N 0m F.F m NP QN md 0N NP oé QN m.» Né QN mp mP QN Em m.N v QN mN m.N wN m.N QN m.N N.m : F.F QN F.N hm m.N hm Nd mé N.m mé m.N m6 NF m.N VN m6 mé mN N.m m QN m._. m.m Né m map Pl P... N._‘ 2 eé mé Fl m.N N.m F Fl m6 2. F.F Fl v NI .2— F N9 383% 5:5353 2.3392 56353 853534. 5:533 82.832 5:833 8303?. 5:39.33 23°32 5:333 83°92 5:233 83°92 5:3m3m 9.5 595. 5:333 25892 5:333 8383.4. 5:833 32595. 5:383 83582 5:323 9.3582 5:323 8358:. 5:323 8333 5:323 82585. 5:323 8:585. 5:323 3335? 5:323 8383?. 5:833 38585. 5:333 8833 5:333 8832 5:893 8333. 5:323 3332 5:823 8588? 5:5353 85385. 5:323 .3382 5:823 35385. 5:323 25382 5:5:323 85382 5:823 2333 5:823 83394. 5:823 08332 5:323 170 800820.: um 2:08 0006.02. $0820 000.0E_a0:v 000020.003 0>:93 50.0.0 80005093 860.3. 555. 88885.. 255. >023 506.0 00000.98 50.0.0 02.050 280.. EH: £0.05 8.0.5... 035000.20 000002535 00006.0 £0.90 02.030 3 2E5 000.90%. 300020 50.0.0 0x: - .200“. 2.009.008.“ 0.09.0 .00... 506.0 02.050 02.050 .880. 03000080 280. 00... 50.0.0 :0? :00 22.85020 : 2028,53 v 255. 855582888 c.0005 02.050 £0.05 00.: 00006.00 03500029868020 Gummzv .900. 050:5 20:88 0205000. 0.8350 800328-088 3 £50. 000.90%. 30820 £086 0x: 008:0... <21 c.0008. 00000.98 3.9 :55... 8883885 50.0.0 00000.98 025.50 .0090208230828003 809$ 85558533580 05528888 5258 9.: 5555 0558508: 250 5000.0 00000.98 858 95-. 1228 c555 9:: .828 2 :88 5555 95-2 3128 506.0 00000.98 $0022. 85595 82 20:3 50.0.0 .0000. 00.03 :83 <28 805:. .< B .o. 588 XXXX XXXXXXXXXXXXXX X X Wm F.N N? m.N mé F.F m6 mé F.N mé Em o._. n... F.F Em OF: MUN fir 0.F Né md MN m... N 3 mm mm mé o... mé F._. m F.N MN F.N o6 m.N mé mé mé QN 0.F mN N. P Nd mé NF mé NF m.m Em 0.F md ms 00 m0 m.N mé F.N m m6 m.N Nd 0N m6 QN $0 0.0 Em 0.F NP WV 0N Em 0.0 0N Em Pd NF QN mN m.N Nv mm mé F.F Nd 0N m.N md Em C 0N m.N N... QN m.N NP ON “I m4. Nd. m.N QN Wm 3 9N m6 Wm Nm om mé F.F 9N v mé mé Fl QN N N—. mé F.F F.F ...w F P. ...? N._. PI Fl 08382 38382 88382 20382 80382 83382 33382 o2 382 88282 8882 88282 8882 8882 3882 88282 88282 88282 83282 8882 08882 8882 3882 88282 8882 8882 8.282 80282 8382 83282 3382 8382 82 282 28832 388.2 518.83 518283 5:383 5:883 5:..383 5:88.03 5:38.83 5:883 5:883 5:883 5:883 5:383 5:883 5:883 5:8..va 5:383 5:883 5:0303 5:883 5:383 5:383 5:883 5:883 5:883 5:883 5:383 5:0883 5:3883 5:803 5:883 5:893 5:383 5:383 5:883 171 00000500020 50.0.0 02.050 50.0.0 0200.30 3000. 70005690000 0.05.? 2.0.0. <<_\XD< 50.0.0 029.300.5030 50.0.0 00000.98 50.0.0 02.050 .8 $6.02.. .25. c8885.. 255. >102, 5 2.0.0. 000.802.. $00020 €00.00. 50.0.0 00000.98 50.0.0 00000.98 36020:... 5055 05285.... 50.0.0 00000.98 2520. 000.088.0350.: 0550.0 2.0.8 50.0.0 89¢ 1000. .09.... 05~ 2.0.8 50.0.0 .0000. oYD>> 50.0.0 020050 0005000280000 02.050 50.0.0 00000.98 50.0.0 00000.96 000.009.0589....02. 00.00058855005050000250... an: 50.0.0 00.022.04.00 0000.005 ONoozw 50.0.0 02.050 .300. 2:5. .555 .522. £058... 50.8 8 5000.0 2.0.3 0:02-“.w 0505085200 50.0.0 00000.98 50.0.0 00000.98 8.02. 3 55:5... .8802. .95. 8.0.50 0 Emma. F “.mo 0 meQOmmo 0 memofiumo 50.0.0 00000.98 ENN<>IV 50.0.0 000205-500 0.0.0000 0. .0550 25.00 50.0.0 .0...00 _0..0co...02.E 50.0.0 02.050 X XXXXX X XXX XXXXXXXXX X X mé Em F.N Né m... F.F Ev mN m.N m.m dé d._‘ Ev m.N mé fir mé d.N 0.F F.N m.N NF F.N F.N 0.F Er F.F md FF md NF 9.? hm d.N m.N 0.F m.N 0.F F.N Ed m.N ...N 0.F E_‘ Nd mé md F.N d.m mé mé m.N F.F 0.F d.N md Nd d6 Ed m.N m.N «N v. P d.N d.m d.N m.N Em mé rd dw md Nd dd om dv d.N d.N Er mé om rd Em d.N F.F mNF Né md F.F m.N mé m.N Nd m.N 0.0 Nd 3 Em Nd Nd 3 md 3 Nd md 2‘ m.N mpd 30882 5:383 80882 58383 30882 5:833 83882 5:383 8882 5:383 30882 5:883 88882 5:883 8:582 5:883 08882 5:883 03882 5:883 80882 5:383 88382 5:52.083 08382 5:883 8382 5:383 8.382 5:283 8382 5:283 08382 5:883 80382 5:883 80382 5:883 33082 5:0:383 33082 5:383 83382 5:383 03382 5:883 80382 5:383 03382 5:383 08382 5:893 08382 5:383 88082 5:3a8~ 88382 5:893 38382 5:383 08382 5:323 80382 5:883 30382 5:383 Q3382 5:880 172 0.... (m5 0.0.0.0 .0000000 0.000000>.0E0 0.0. 0.0.0.0 2.0.0. 8000000.. 0m< .000 0m050d0 . 0000.000 0088000530082 0.00020 2.5. 83 2.908% .3022. .95. 080.88.. 2.0.5. 0.9. 0.0.0.0 02.050 0.0.0.0 000005-580 02.050 0.0.0.0 051.000 0.0.0.0 02.75.00.300. 0.0.0.0 8000000.. .0000 02.050 .808. .25. 025.505.. 255. 022 .310. 88.5.. <20 50500.0 N 000.0.000.._>000..000000000.80 3.009 0000.08 0020000 02.050 00.00. 00..0..0000.. 0.00.00 N02. 0.0.0.0 0x..- 000.0.000.._>000:_0 AmNmOO. 50.0.0 00000.98 X XXXX XXXXX X X XXXXXXXX d_. m.N d.N Né 0.F E. m.N Ed fir F.F 0.? m.N m... 0.F 0.. dd 0.0 md mm 0 ...? m6 NP 0% m.N 0.0 0.? dé m.N 5N 0.F ...F Ed 0... 3 m.N ml F.N d.N 0.F Fl dé d... d m.N F.N F.N 0.F d.v NI m.N m.N 0dN 0d mé 0.F m.N m.N m.N Nd dd 0.0 N.0 Em d.N d F.N d.N md d.m m.N m.N 0.v d.v Ed Nd m.N m.N mé m... 0.. N0 md v d.N 0 0.F mé d: N: m.N m.N md v 0.« 0... N- F: m.N Nd m.N md NF 2‘ Nd m.N m.N m.N d m.N m.N m.N t 0 m4 F- Nd m. _. N0 0... F.F w Nd F.F N d._, Fl F m... F.F F.F PI PI d.N w... v Fl F.F m.N PI PI d m.N VF 0.F NI w Ed F.F 0.0 Fl _. Fl 0.? md d4 F.N 03882 80882 83082 03882 88082 83382 30382 23082 33082 30382 30382 08882 03882 30882 80882 83382 08882 8.882 23382 08882 33382 83382 83382 S .882 80882 08882 08882 80382 20382 8.382 80382 2.382 5:8080 .5:00000~ .0:.0300~ 5:3083 05:..3083 5:883 .5:~o.0vm 5:3083 .5:0mo.0~ .5:ooo.0~ .5:vmo.0~ .5:300~03 .5:000~0~ .5:000000 .5:000~0~ .5:~00~00 .5:000~0~ .5:~0m~0~ .0:.00000 .5:80030~ .5:~00300 .5:30~0¢0 .5:oommv~ .5:3o.30~ .5:0~.30~ .5:vo.300 .5:00.300 .5:0.~30~ .5:3.~00~ .5:~00300 .5:¢0~303 05:003303 8.382 5:0:883 88382 5:383 173 3500/: 002.309 ow:00m0...00:ow0 $522.20 553 658 2:585 0870.290 559006.22 0.290 25.582 025.082.2000 A539 _ 025:? 390.6 5290 00.0.2000 c2900 08750530830 22:2 0.25 5290 290000: 5290 0032008 5290 022220 0290 0005598 920.502.208 2 2:96 5290 052:0 5290 9:200 2:92 3222928002802 2000>5me8:_m 00: 5290 022230 22:2 501 0038000000 0980995 80 002.202 F7=x 30922002 083089320 oc_co_£09_>wo:00m.w P 0x__.wz<._.mzoo 0875290 29800... 2.92 5290 2009 3102, 5290 052:0 282 02000222 002000020 5290 0082008 E290 0200029“ 29:: 0090909800»: 2 2:92 5290 00.....0t00mcmb 5290 0220000352. 9:. 5290 0082008 2.92 5290 .0009 3103 082:0 685:8 22082088003 5290 008903 5290 932:0 E290 087392292023 E92m 5290 0082006 205$ 5290 0:35:05 350930520200 XXXX XXXXXX X XX XXXXXXXX XXXXXX XXXX mé m.N Em Nd m.N m.N fir F.N Lv... NF me F.N m.N N NF m nmw mm F.F e Nd m6 m6 m.N mé F.F m w m6 m.N m6 m.N m6 Pd 9 Em v.0 Nd m.N m.N mé mé m.N Em m.N Nd m.N 0N m.N V F.F m.N m.N m.N F.F mé m.N F.F m.N m.m F.F m... F.F Né mé F.F F.F mé N9 mé m.N mé F.F N2, F.N m.N 2.3282 5:332 2282 5:832 82282 54.282 82282 5:282 88282 5:882 02282 5:882 8.282 5:282 2882 5:282 82 .82 5:282 8282 5:882 08:82 5:882 9.2282 5:882 8282 5:282 88 82 5:882 8882 5:282 08282 5:5:882 8882 5:882 8882 5:282 8882 5:282 88 .82 5:882 8882 5:882 8882 5:882 2882 5:882 9.8382 5:852 02282 5:882 8882 5:282 8282 5:882 82:82 5:282 9 F F 82 58882 8882 5:282 8:882 5:882 08382 5:882 08882 5:882 88882 5:282 174 5905 2.83 .09.: oc_~ xon-m wz<._.mzoo Apmmwv _. .209. 83.9 oaobmxam seen 225 5255.2 mx=¢mtoamc§oo 2m_>xo£wo_u-E:_c0m £905 nommmaxo 95-5205 ..oaafi 3632-5900605 Gummy/xv m .903 96:5 3953 96:0an @5353 AN-amwmmv N .903 9.659 EmEm.m $29.88.. 253:6 £305 gummaxm £an 332qu 225. SE «59:85 £905 Bmwmaxm £205 2E5 5:825: 09. $266 $33328-TocmaoaggooEEm-P 529a BmmEaxm 5205 5505.5 5205 832qu £995 gammaxm 520.5 9383 9:53 Amuse mmg-mmz-KE 5205 85539 mmmmmfi mum—:56 30:52 520.5 83955 ANIOC 80305-522 .N 5205 um.m_m._-c__:voE_mo 0359 655:0 +¥ 053302 29550 :8 Ewan £203 @253 520.5 .8353? £205 Bummaxo 2:93 Swan: cm mmsmfimofi 522. 5.205 £3802 £295 GEES-5386.8 5205 9:93 5205 9.: - 5:825: 398: mxz-ommci £205 mc_comEI.<. 2.0.0.0 02.000.002.080 0.0.0020 836.22.. .200. 800.020.. 2.50. >202. 3.75290 02.254000 20.805002 Q..-2.0.0.0 290.000 0n... mm X XXXXXX X XXXXX XXXXX md ..F md NP F.N F.N m.N Nd d6 5... N... w... 0.: Nd dd dé Nd mé m: 0.: F.F Nd m.N mé md o... v.— m.N m.N m.N 0.: 0.0 md m.N Q.. 0.. a... m.N NF Nd Nd Q: d0 m.N 0000000.< 00000002 0.000002. 0.000002 8.00002 00000002 0.000002 000.0002. 000.0002. 000.0002. 0. .0002 0000002 2.00000... 00.0000? 200002 0030002 230002 003.0002 0.000002 2.000002 00000002 0.000002. 00000002 00000002 000.0002 000.000.... 20.000... 00. .0002 00. .0002. 0000000.< 008000... 00000002 8.0000... 0.000002. .0-00..¢0 .0-....¢~ .0-0...0~ .0-00..¢~ .0-0...v~ .0-00..vm .0:.00.¢~ .0u.00.00 .m|.00.0~ .0-000.e~ .0-.00.vm .0-N00.0~ 04.3000 .0-00F0vu .0-00F000 .0-00F000 .0-00.0¢~ .m-NOF0eu .m-N00000 .0-000000 .0-000000 .0-000000 .0-000000 .0-000000 .0-000000 .m-F00000 ...-03000 .0-000000 .0-P00000 .m-N00000 .01000000 .m:..000~ .0|.0000N .0-000000 176 .05. 0.0.0.0 0 .0 02020000. 0.00 00.020. 02.02 .0. .0 .0.0020 000. 020.20 02. .02. .00 020.0 02. 20.23 .0 00:... 00.00.02. ..x. :< 2.5020 0. .00 020.0 2000 .0. 22.0.0220 02. 0:0 ..2. 0.2.. 2000 .0 0.00:0:0 .00.00_0.2 2000 .0. 00:_0> 002020 0.0. 02. 2022200. .02. 02.: 0.0.0.0 02.0.00 x 0.0 0.. 0 0.0 0.. 0.. 000.0002 2105.00 0.0.0.0 .00.... 00.0 002.00.: 00.0 ... .- 0- .- 0.0 ..0 000.0002 2:000000 .900. 0000200000250. 0.5 ... 0.. 0.. 0 0.0 0 000.0002 21.00000 0.0.0.0 088.98 x 0.. 0.. 0.0 0.0 .- .- 00000002 2:03.00 00000. 0.290.505.8258 0.. 0.. .- .- 0.0 0.0 0.000002 21.3.00 0.0.0.0 9...-..20 x ... 0.0 0.0 ..0 ... 0.0 00000002 $000.00 0.0.0.0 02.0.00 x ..0 0 0.0 0.0 ... .- 0200002. 21000.00 0000.60.80 0.0200200.00..0.0 x 0.0 0.0 0.0 0.0 0.. ... 00000002 2:05.00 0.0.0.0 00000.0x0 x 0.. 0 0.0 0.0 ... ... 00000002 01000.00 80.200008. 9.2.5.0 0. ..0 0.0 0.0 0.0 0.. 0.. 00000002 20.0.00 250.000.200.080 0. ... ... 0 0 . ... 00000002 2:80.00 0.0.0.0 00000.98 0. 0 ..0 0.0 0.0 0- 0- 00000002 .0u0.0.00 0 0.0.0.0 00.800.020.00 22.2.5.0 00.0.08 x .- 0.. 0.0 0.0 ... 0.. 0.000002. 21000.00 0.0.0.0 02.0.00 x ..0 ..0 .. 0.0 ... .- 000.0002 2:80.00 0.0.0.0 9.7.0.200 0.2002000000000 0500.08.00 x 0.. 0.. 0.0 0.0 .- .- 0.0.0002. 2000.00 ._.Emto.00.0c.0c.020590 02000009000350 0- . 0- .- 0.0 .. 000.0002 21000.00 0.0.0.0 2:2 0.0 0.0 0.. 0.. ... 0.. 000.0002 .0I000.00 0.0.0.0 02.050 x 0.. 0 ..0 0.0 ..0 0.0 00000002 2000.00 0.20 x 0 0.. 0 0.0 0.0 .. 00000002 20000.00 177 0.0.0.0 00000.0x0 x 0.0- 0.0- 0- 0- .- . 0000.0.2 0:00:00 0.0.0.0 00000.00 x 0..- 0..- 0- 0. .- .- 0000.0.2 001000000 02.0.00 000.000... 0002.00020900 00000 x 0. 0..- 0. 0. .- .- 0000.0.2 0:00.000 .20. 0.0.0.0 0000000. 000.0 x 0..- 0..- 0- 0- .- .- 0000.0.2 0000000 0000000000 0.00 02.00 02.0.00 x x 0.0. 0.0- 0- 0- ... .- 00.0.0.2 .01000000 0.0.0.0 00000.90 0. x .0- 0.- 00- 00. .- .- 0000.0.2 200800 0.0.0.0 $000.00... 0. 00.. 0..- 0- 0- ... 0.. 0.00.0.2 01000000 0000 00.0.0806 02.0.00 x 0- 0..- 0- 0- .- .- 0000.0.2 01000000 0000.00.03.90. x x 0.0- 0.0- 0- 0- . .- 0000.0.2 01000000 000000. 0.0.0.0 00.00.4202 02.0.00 x 0..- 0- 0. 0. .- ... 2.0.0.2 .0n000000 0.0.0.0 00000.06 x. 0- 0.0- .- .- 0- ... 0000.0.2 .0n000000 0.0.0.0 0300.0: x 0..- 0..- 0- 0- .- .- 8.20.2 .0n..0000 0060000. x 0.0- 0.0- 0- 0- . .- 0000.0.2 .0n.00000 .00.00.000.0.000...0 00250.20 x 0.0. 0..- 0- 0. .- .- 000202 0000000 0. 2.0.0. 0000.0... 30820 x ...- 00. .- 0.- . 0- 0000.02 01000000 0.0.0.0 00000.90 0. 0..- 0..- 0- 0- .- 0.. 0.00002 .0|.00000 0.0.0.0 1.2.. x 0..- 0.0- 0- 0- .- .- 00080.2 2.000000 0.0.0.0 00.00... 0000:. 02.0.00 x x 0- 0.0. .0- 0- 0.. .- 80000.2 .0u000000 ...0>0 00.0.0.0 0. . .0. 0- 0- .- .- 00000022. .0|.0..00 0.0.0.00 000.0000. 0000.09. x 0. .- 0.0- 0- 0- .- .- 000.0022 0:08.00 0.0.0.0800080 00..-00.20.000.000000.000:02.0.00 x 0.0- 0. 0- 0- .- .- 000.002 .0...00.00 02.0.00 0.0.0.3000. 00.002 x ...- ...- 0- 0- 0.. 0.. 000.0022 .0u000000 000000.08...20008000002023 x 0.0. 0.0- 0- 0- . . 00080.2 .0|.00000 000000.06...20200000005023 02.0.00 x x ..0- 0.0. 0. 0- .- .- 00000022 .0I000000 .050. 0.0.0.0-00000000200 00..-0.0.000. x x ..0- ..0- 0- 0- .- ... 0.00092 .0u000000 .00.:00.0 .. ..20200 .0.:00 202000. . E0.0>00.020 x N- 0..- m- N- ... .- 00500.3. .0I0...mo~ 2.0.0.206...2002000000 20000002020 0.0_ x 0.0- 0.0- 0.0 ..0 . ... 00000022 0102000 0.0.0.0 0260.0: x 0.0 .0. 0- 0- ... 0.0 00000022 .01000000 0000.000... 000. 000 0 < 0 < 0 < 6.. .00 000.0 02000000. 200 000. 000 0. ...ZMEEMQXM ...Ow NI... 2. wmaéwazm... >>O._ >m OwHSDmvwmungD mew wmomn. ...n. m.._m<-_. D X.Ozmn_m< 178 2.20.0 00000.98 2.20.0 000.202.8000.. .002..on0 02.200 80020020300 6200.0 2.20.0 0000298 2.0202. 0000. 0000: 02.0.00 2.20.0 00000.98 32.22.0250 0.00.0 00220... . 2.2.0. 000.202.. $00020 2.20.0 00000.98 2.2.0. 0020200020 0.00 20.00 2.20.0 23020.2: 20:020. .080. 00_0__00 .0024002 . 00050.0 000.200 0. .0_.E.0 00220020000 0020000. 208200.20. 02.220 2.20.0 8000500.... 02.0.00 2.20.0 02.02.0.200xo.N0 2 .0_.E.0 02.0.00 2.20.0 00220.00. 00000.0 2.20.0 00000.98 02.0.00 0020200020030 0.20902. 022002020290... 00>...0_0:00> 0002... 020.000.00.03 02.0.00 XXXX XXXX XX XXXX XXXXXXXXX X ON. N0”- Em- w. .3 m.N. m.N- Nd- m.N. m.N- m.N- 0.7 mi. Em- m. 7 En. m. 0. Wm- N. 0- Wm- md- m.N- m.N- v. .... r. F- v. 0. N. T m..- ..w. m.N- m. T m.N. Wm- V. 0.. m.N- F.N. o. .. F.N- 0.7 m. _.- m.m- 0.? Wm- o. F. :n m. T m.N- m.N. h. 7 N6. mi. m.N- m. P. 0..... 01.0. o. F- v... m.—. ml mé 00.00022 .0u0u00.000 ..000022 0:50.00 00.00022 20:0...00 00000022 01.00.00 0.000022 .0u0l00.000 00000022 0:00.000 000.0022 01.00000 0.000022 00.0.00 00000022 .0I0.0.00 0.000022 0:02.000 00000022 01.00000 00000022 .0I0I000000 00000022 01000000 00000022 0:0..000 00000022 01000000 00000022 .0u.0.000 00000022 .0n0..000 00000022 01000000 00000022 20.000000 00.00022 .0u.00000 000.0022 .0u..0000 000.0022 010.0000 0.0.0022 .0u000000 0.00.022 0:00.000 00.0.022 0:0.0000 0000.022 010.0000 0000.022 0:0..000 0.00.022 .0n0n000000 000..0..2 01000000 0.0..022 0:00.000 000..022 0:08.00 00.0.022 0100.000 0000.022 0:00.000 179 2.20.0 00000.98 0.0.0.0 2.00. .0000 00.0 0.00.0 022.0200 000222000 2.0.0.0 00000.98 2.0.0.0 20.. 02.020 02200 2.0.0.0 220.000. 2.__0.022.0 800.22. .200. 02000000.. 2.00. 022 2.20.0 00202.00? 3003. m 05.20 02200220022503: 2.20.0 30202.09... Nm 2.2.0. 000.20.... 300020 2.0.0.0 0000298 .9002. 0002.0. 2.20.0 0202002002.... 2.2.0. 00020020200 0.000.02 20:00. .0000. 00050.0 002200 2.20.0 00000.98 2.20.0 00000.98 ..0002. 0.0.90-09000000500 02.200 .0002... 2.0.0.0 .000.>.022 20.0. 0.0.0.0 0.0000. 0200. 0>22a0 2.20.0 _0..200 20.0.20 :00 2.0.0.0 00000.98 2.20.0 00000.08 .N2 2.0.0.0 e. m ._ 50.0..02020 0022020235082 02.E0_0202.00200020 02.200 .0002... 2.20.0 020.22.02.0202 .0000. 202-05000. 2.0.0.0 22,020.20 00220000 2.0.0.0 82.00 300 30.020 02.230 x XXXXXXXXXXX X X XXXXXXXXXX XXXXX XX 3.0 VI m. .- m. .- Nd- N. 0- m.N- m.N- m...- Qw- h. .- m.N- 0.0- m0... m.N- 0.0- m... 00.0 N.- .0. .- F.N- n.0- m. P- o. .- rd- 0. _.- N. .- m. 0- En- n.0- m.N- m.N- 0. P- 0. .- m.N- no. _. h. .- F.N- m.N- P..- w. P- m. .- EHN m.N- N...”- Em- u. 0- F. .- ml 2‘°¥‘¥ 2’°?‘T 1'“r‘?‘?’2"f“9‘¥ 2’“?‘9’2"T‘T W"?‘?‘1’“P‘?‘T 2‘°?‘?‘?'fi'“P mm- 0... N0 _. Fl 0 Fl NI N6 w... 0.. PI PI .... PI PI F.N 0.0 00000022 00.00022 00..0022 000.0022 00000022 00000022 00000022 0.000022 00000022 00000022 00000022 00000022 00000022 00000022 00000022 00000022 00000022 00000022 00000022 00000022 2.00022 00000022 00.00022 00000022 00000022 00.00022 00000022 000.0022 000.0022 000.0022 00000022 00000022 0.000022 00000022 .01000000 01.00000 0100.000 01.00000 .01000000 .01.0.000 01000000 .01..0000 .01..0000 0100.000 .010. .000 .010. .000 .010.0000 .01000000 .01000000 010.0000 .010.0.00 01000000 .01000000 .010..000 .01000000 .01000000 .0100.000 .01000000 .01..0000 .01000000 .01000000 0100.000 01.00.00 .0100.000 01000.00 01000.00 01.00000 .01000000 180 2.0.0.0 00000.98 0000 02.0.0820 02.0.00 .200. 0000000000 0.2.0. 022 2.0.0.0 200.0..0 20:00 502098.202 2.0.0.0 2305.20 02.0.00 20000.8 002.. 0000.08 0.0.?0200...02000.00.0>002.E0-0 2.0.0.0 0.0020 .002 __02.0 02.200 0.0.0.0 00.00.000.200 0.20.00 2.0.0.0 8.020.. 0.0.. 02.200 2.0.0.0 00220.00. 00000.0 02.200 2.0.0.0 00000.98 2.0.0.0 00000.98 002202020200 0.0.0.0 0. .0_.E.0 0020 0. .0_.E.0 2.0.0.0 00....0... 2.0.0.0 00000.98 2.0.0.0 00000.98 0000.0.0 .....0000 02.200 000.0.0>2 32.20.002.200 02.0.00 20200020.. 22.00 .0200. 000.0000. 0.0000.0o..000xo.0. 2.20>00.00_0 02.0.00 .000.0.020.._>2.02..o-_0.0.0.02.20.2.02.-.>002000.w 0.0.0. 00800.20. 02.0.00 2.0.0.0 02.02.9053 2.0.0.0 020.22.02. .2022. 0.0.0.0 00...-..020 2.0.0.0 00000.98 000.0.020.._>2.0E-z 02.2.0.0202.00200020 .0292. 5.2.00. 0000.90 02.200 2000.0 «...... 2.0.0.0 00220.00. 00000.0 2.0.0.0 00000.98 00.0.0.-2.0.0.0 0000052030 :0wa 2.02098 XXXXX XXXXXXX XXXXXXXX XXXXX XXXX F.N- N. 0.. 0.0. h. .... 0. T v. T m.N- ...N. .0. .... o. T m.N. .0. 7 MN. F.N- N. T. :0... MN. 0.0. 0.? MN. Nm. 0... m.N- 0.01 0.01 N. 0. Na. N.m.. o. 0.. m. w- 0.0- h. ..- 0. T 0.0. F.N- m.N. m. T. m. 0. N. T N. P- m.N- 0. P- o. T m.N. ... w- 9... h. .... m.N. 0.7 .. F- m.N- Em- ..m- m.N- 0.0. 0.0- 00.00002 01.00000 000000002 0.000000 000.0002 00.00000 00.00002 01000000 00.00002 01000000 0000.002 0:000000 0.00.002 01000.00 0000.002 00:000000 0000.002 01000000 0000.002 .0u000000 00.00002 .0..0.0000 000000022 .0|.00000 00.00002 01.00000 00000022 0:80.00 00000022 01000.00 00.00022 00.0000 003.022 01000.00 0000.022 0:000000 000..0..2 0:00.000 0000.022 .0..0|0.0000 00.0.022 0:00:00 0000.022 .0|.0..00 0000.022 .0|.0..00 0000.022 0000000 0000.022 0100.000 0.00.022 .0|.00000 0.00.022 0000000 0000.022 0:000000 0000.022 0:00.000 0000.022 .0H0H0.0000 0.00.022 .0 0 000000 0000.022 00000022 .0H.00000 .0 000000 181 61082.22,“ ox__-c__%oe_8 x NF. 8. F.- m- VF m.N 8:182 6:888 5665 66.38. 8:88. 68858.92 6266a x mF.F QF- 8. n. F- F 08382 6:888 aaxmvozfia .5288 x x 8- NF- 8- NF- N- N- 98.82 6:888 5665 86858 x 3. «F. m- N- F- F 2:682 6:888 8.808 5663 86% Q6 .8862". x - 88. N- N- F- F- SEEN? 6:888 8865 8:8 ox__-c_m___68 x m.N. m- N- N- F- F- 88882 6:888 5663 82580-5658 B< x x 8N- N.m- m- «- F.F «F 8888: 6:888 88:28on 626:6 x 3- mF- N- n. F- F 83886. 6:888 5665 8656-8259? 9593 x F: 8.6 N. m- F.F F- 88882 6:888 2862.62 5.86. x 8.8- 8.N- F- F.- F F- 26882 6:888 5665 88286 x x 8- 8- m- n. F F.F 28882 6:888 5666 88986 x N- m.N- m- n. F- F 8:882 6:888 5665 88658 x F.N- F.N- F.- m- F- F.F 0888: 6:888 6253.881 66$ 8.2.8 x F.- 8.N- F- F- F- F- o88mN~< 6:888 EN 5665 285:. 865.55 658.3 5.8626 x x 3.. v. o. n. F- F 8882 6:83.88 6558 c665 2235 66.88: 5.96:8 9.660. x m- m- N- N. F- F- 88882 6:888 5665 86858 x F.N- m.N- N. 8. F- N- 88882 6:888 28386638626 3.5.9». x NF- 5- N- n. F F- 888% 6:888 5665 88658 x x N8- m.N- FF- 8. N- F- 88882 6:888 2E5 2663 Es_ 8Fx>a=8w$ 868828-669 520.5 565.5 520.5 731: $82 2983 F >__E£ mama matmnoomwzoa 22582.9 E598 mm mwmcmmegcou Eom 23.938 59.0 conga-5 9:93 48.8.0 me-mE 5805 85888 ommmmfi 520.5 38898 2:5: £205 .59.: 0:8 mab-NINU 38383804908 EEO-a Emma-68 5805 88058 2E8: mmm83888mmcmmofi>cmu Ego-:05 AFxo._u>c.m.mco.8>mc 8 ._m_.E.m 0.803 80.8532. 60.3823. 88:0. 2.58 865 0.22, 0.80.3 89.8308 2.E8 8mm: cam om8m£c>w 38:38.35 0:02 9:83 0.80.3 90.003 880809.: 9:83 “088.8 0.88:8 $860.80. 868 68.5 08.88. 88 0.80.3 008898 0.803 0265.00 0.803 88898 3.28. 68086669608 9608 89.55. 9:83 6.803 co:8m_o<0.mam._.ommEm0.5mE-m.a 20300.03: ....Em. £90.... .69.: 0:8 33$Im0 .858. 8888.88 8288.. mmona>0 .0 53.5.: .088. 9:02.028 590.... 8805.8 599.. 028.88.359.58... 9.8.2. mum... 8808. 9.8.5.. 590.... x98. BEE 9:33.. ....Ew. 3:2. 592.. 0.9.5:. BEE 20...”: 38:... £20.... mchmEtmctmm £20.... 9... - 08:... £90.... 385:8 50.580055 9.8.2... mmmExo..>£oE-mca.m-v .908 9:33.. $8208 $59: .958 .10 9.8.3.. o. .888 288. 88. 85288;”. 5.20... 9... mmm..£mcm._..>wontocamo..n 2.5.8 590.... 0.005 .8... £20... 38998 520.... 8.8998 .850 1878.28...» 599.. 8:888. ommmw... £20.... 83998 590.... 9:82. 520.... 8895.8 520.... 38930 ... £20... m.N-QI. ..EI £20.... 5&8 m:.0=m_-xonomEo.. £905 9... .0520 058.5508 590.5 880.58 590.... 9... 592.8 :88... 288. 820.2 558: c888 :50. “mo 2-802 8528 588. 8.8.88: 88535.00 590... 80:058.... XX XXXX X XXXXXXXX XXXXXX XXXX XXXXXXXXX m.N: m.N: Em: F.N: m.N: m. .... n. ..- ed: so... Nd- m. ..- n. ..- m.N: m.N: noé m.N: QT 0.7 ... F- m.N: Wm: m.N: 07 v. T m. T Nd: m. P: F.N: mm... ...N: 0.«: cm: m6- m. ..- m. ..- m6: m.N: h. w: m6. m.N: m. ..- N. F: m.N- v. T m. r: 9m- 5. F: m.N: m. 7 Wm: Nd- P. ..- m.N: m.N- Em: N. 7 WV: N.T m.N: V. T “9°39"?8Y88Y8Y8W888888‘878‘1’8‘1‘7 88882 8:888 88882 8:888 8.882 8:588 88882 8:888 88882 8:8 .88 28882 8:888 8:882 8:888 8.882 88888 8.882 8:288 2.8882 8:888 88882 8:888 8.882 8:888“ 8.882 8:888 88882 8:88.888 @8882 8:88va 88882 8:888 c.8882 8:8:888 88882 8:888 .8882 8:898 .8 882 8:898 88.82 8:888 88 .82 8:888 88 .82 8:888 88.82 8:.888 88.82 8:888 88.82 8:88.88 88.82 8:888 8882 8:888 88.82 8:888 88.82 8:888 88 .82 8:8888 88.82 8:888 08382 8:888 88.82 8:888 186 02883 .3836 23.5394 82.9 28,8 88.92; .888 £905 9.: - mEEmm 556:8 $109 ommcmmegcou 32.336 Amomov mafiaEwfi mEmeaam 058380 5205 9393a 5203 0>:93 520.5 83298 888 8885. 285 28 5205 028.0088 38.5: 5905 38.93.3289. EoEonO £295 38.97533: 2.58 520.6 839 not 9:26. 52th 95- 8.85:? Emcamoca-7_o._m0c_.o>E mwflfimcm£>o~cw£SoEmc508365.: £205 >__E£ 9653.85.56 mzmcoamm..mco_>£m 520.5 9:53 5295 38998 2.28”. $393: 3.732308sz 380.2 5205 vommoaxm £995 9.: 58:: £205 amazogéiam “89997389360532“. 6505332305; £29m mx__-c=mE:m£ @2893 $9829: 503628.85 026.2. @2826 .83 mEoEooSo 529a 8.2.858 Some 2 9:88 888.38.538: .8 Cmoxv $8905 $5930 Gummy 685 58828: END 590.5 Ummwmaxm £305 Bmeaxo CcoEmmE 529a mx__-m cramsofio 38890853 8:. 859.58% X XXXX X X XXXX XXXXXX X X XXXXXXX XXXX of: mp- Hm: v. .... h. F- N. F: m.N- m.N- h. T m.N. Q7 no.9 Nd: m. P: n. ..- m.N: m.N- pd: Em: m. ..- m.N- m. 7 P6: Em: m.N- h. 7 Wm- m.N- Qm: h. 7 50% ”I m6: m. T v. ..- h. P- «d: m. ..- m. P- Em: m.N- F.N. m6: m.N. v.7 m.N- Em- QT m.N- m. ..- m. ..- m.N- m. T 0.x- m.N- m.N- Wm- 0.? Wm- 0m: N. e- m. T ‘T fi'cfl‘?’9‘°?‘¥ 8"7‘7 1"7‘?‘¥ §’°?‘?‘9 wwwvwwvwwwvwwww Fl oé 1' F..- ...F F F.F 2: 882 9.8882 8582 8.282 8882 8882 88.82 88.82 8882 88,82 8382 8.382 8882 82:82 88882 88382 88882 88882 88882 85882 88882 08882 88882 88882 88882 8:882 88882 28882 88882 88882 88882 88882 88882 88882 8:388 am:vamv~ .m:nmmmv~ 8:883 .m:o.oom~ 8:888 .m:vmvov~ .8:~8¢8¢~ .m:-mmv~ .m:o¢mov~ .m:om.om~ .m:~_~omm um:-uom~ .8:F~vom~ 8:888N .m:~mmom~ .m:-~om~ .m:8~mom~ .m:8mo.m~ .m:~vvrm~ .8:o.m~mu .m:-m~m~ am:omm~m~ “8:8vmmmm 8:388 “8:85ommm .m:avomm~ .m:nmpov~ “8:.mrmmm .m:nv~mm~ 88:8ommmm “m:~ommm~ .8:~vam~ .8:vmmmm~ 187 $0028 .2820 :o_ 88.38.838.03: 2.98 520.5 @253 £905 Bmwmaxm omen. 9:952? 9332. 2..me 8828.893 5905 $836 .953 EQEEmQ £995 mzamfia 520.5 8.8058 38.0.5 ox__-c_w___5:w 5295 9:83 590.5 88058 £905 9593 2.8232283 8.85:8 58.288 5205 9293a BEEéEEQ $908 m2§mmo> 5205 3.789085838ch _>oEmcc_o>xEu>c-z Eng Ammmuoaum...‘ BEEEmmegcfiv 83038.1. 6:08.835“. :52 88.28:. =. 82882: 520.5 88296 5205 9:83 5205 my... - mmmci 522a .6889 08:823ch 22808888026 520.5 88998 5905 88058 A 85% 5205 098.68 959%? AN. 509 39596695,: 9.0833 3. E09 mmmcmgxogoE 95.88 5205 88058 590.5 08858 520.5 95-: mmmcsamgxonfio 05.8 2E5. 989. new $59398 acoucmamvdsz SE5. 02?: £295 .59.: 88 £295 9:93 XXXXXX XXXXXXXXXXXXXXXX X XX XXXX Wm- m.N- m. T V. P- m7 v.7 m.N- v. F: m. T ... T noé m4- #3 F.N: mvé m6. m.N- 0m- V. ..- m.N: m.N: 0m: Em: ow- NV: m.N- Nd: ... F- m. P- Em: m. ..- m4? m.N: h. T Y..- m.N: m.N- v. F: F. T m. ..- m. T m. P: m. P: F.N- Wm- m. 7 m6: m6- 0.«: En: N. P: h. ..- h. T m.N: mi. 9 ..- m7 m.N: m.N: N. w- h. T Nd: F. ..- 88882 8:888 88882 8:888 8:882 8:888 .8882 8:888 88882 8:888 28882 8:288 8882 8:888 8882 8:888 88882 8:888 88.82 8:888 8882 8:888 8882 8:888 2.83.82 8:888 c.8882 8:888 8882 8:888 8882 8:888 8882 8:888 8882 8:888 Q8882 8:888 8882 8:888 80882 8:888 88882 8:888 88.0.82 8:888 88882 8:888 8:882 8:8:888 8882 8:888 8882 8:838 88882 8:388 88882 8:288 c8882 8:8888 88882 8:888 88882 8:888 88882 8:288 188 .88. 208.8 8 8 88:88. 28 888. 8.8 8F 8 8885 83 888° 85 85 F8 288 85 82; 8 85.. 88085 ..x. :2 .Esocm m_ me Boa comm .68 532058 9.: 8:8 .EV mE: comm 8 28233 806203 comm ..oF mm:_m> @9820 28 m5 .55ch3 _0< mg... c888 32 3o. :8 x «F. 8.8- 8. F- F.- 8- 288 8:8888 888 89. 88 :8. x :- 8. 8- F 8- 8- <88 8:288 88%. 5888 2882888 x 8.8- 8.8- 8- Y F- F 888.82 8:828 8288.. 88888 .888 x 8.8. 8- Y 8- F.F 8.F 2.8882 8:828 3802:8828 888888 x 8F 88F 8- 8. F.F 8.F 28882 8:828 5298 88858 8.8- 8.8- 8- 8- F F- 88882 8:828 8.8229831.88888628888on x mF- 8F- 8- 8- F F- 8882 8:228 888 88888889285...on x 8.8- 8.8 8- 8- F- 8.F 8882 8:828 88856888 x 3- 88- v. @- 8.F 5 93.882 8:828 888 88888 x F.F- o. F- 8- 8- F.F 8.F 88882 8:828 88%. 5298889 .8: 9.88. x 88F 8F- 8- m- F.F F.F 2882 8:828 888 9888 8F- 8.8- 8- 8- F- FF- 88882 8:82.88 9393 .8888 830an 88598 888888 82889388 x 888- 8. 8- 8- F- F- 28882 8:828 8:88.888 8888 888828 x m8- 3.. v. 8. F- F- 88882 8:328 888 88888 x 8.8- 8F- 8- 8- F.F F 88882 8:828 8888 82888 x 3- 0F- 8- m- 8- 8- 8282 8:828 2302:8888:888898 x 3- E. m- 8- F- F- 8882 8:888 888 3:885: x 3. F8- 8- 8- F F- 2882 8:888 888 82888 x 8F- 3. m- 8- F- F- 8882 8:888 189 8.88 F m R m.» F.F- 22. 88$ 888.8 2.288 88882 8:888 859$ 8928922880 32:: F m a.» 3 NF 22. 8:88:89... 2528 85:82 8:888 8-m8.F N 8 F8 98 NF 22_ 820.8388: 88.5500 228.8 888% 8:888 8-83 F 8 ...F F.» od 22. :98: 892892890 8.822288 8832 8:888 8.mF~.F F m m.N 3. 2o. 29838.8 89.8.8 88:89 88882 8:388 8.83 F m a... «.3 3 29238.8 :39 _ 8888 8208 8882‘. 8:888. 8.888 c 8 ca N... 8.. 29238.8 8288.. .8888 288888928 2:82 8:888 8288 o m ow. 8.» 2o. 29838.8 888.8 288897828288 88832 8:888 828.“ F m F.F a." 3 29838.8 t .259 888.23 2808 3:882 8:888 838$ F 8 NF hm S. 29838.8 898583. 88:88.qu 822.828.. 888% 8:8va~ mmfl Em 8288 o m «a 2m 2F 29238.8 -28v 3 2.59 820.23 2828 82:82 8:888 .9525 memfimSEmE €08.33th 8-83 F m m.N to ...o- 29358.8 2 8.8.8 .2228 828583 8582 8:888 8288 F m 3 n.» no- 29238.8 28528 888.8 8:82 8:888 8883393 8.83 o m 2F v.8 F.F 29838.8 288838288 228.8 8889‘ 8:888 828; m m 5.3 3: 2o- 29238.8 8888 82828 2528 88892 8:388 3008282 8.88 o m m.N 3 F.F 28 9.88 8288.88 88258288888 8882 8:888 382 F m QF hm od 28 8:8 2528 89289252.. 2.888 2888? 8:888 among 8288 F m m.N F8 od 28 888 8288.8 883828882893-72.2. 28822. 88:82me 83556 89:83.0 2 8.83 o m E 38 2o. 28 9.88 8:22 8888.88... 88888.28; 288% 8:258 Emfivcmww: 38?? E8533 9: $90 no? 5w 5 0.9.23 5:885 _G< 2mm mack. <>oz< 050293 328992 8.88 22 .23 mhzmgmmaxw ....Om DZ< m._.<:_n. wI:_. I._.Om Z_ mmDHéwnEN... >>O.._ >m Dm....<:.DOM¢-n_D whwm mema ....w m.._m<._. m X_Dzmn_n_< 190 canwnwd ooflmoé heummmd neuwmmfi VQMMN. F moummmd XYmmN. _‘ moflmo. F XYMmfim moflnm. F vommmd moflmfm vo.mmm.v ooh... 3.0 voflmfw moflom. w mauwmm. w mofltmm moflvmfi moflmod monwmmd vo.m=m.m mofimmé O‘- OOOOF‘NO O 0000 O ”GLOW COCO NOOLDNLDC‘OOO €000 COCO mé ad ad ad F.F o.m Nd m.N Hm m.N c. T 0.0 NP m.N No wé m._, m._‘ a.» 0.« m.N F.N 0.F mi m6 a6 v.3. F.N 9? ad ad N6 Q.” No FAWN n." n.» N. w Nd v.” fin Q: n6 mi ed m6 wd ”.m- m.N? m.N a.» od m6 No. m.—. —. 0N- md. ed vi mé md .1 ed mé 0.0 m.o QC- $8596 «2%: 285% __E£ 8E 39:85 2.5a $98mcmb$m82m .o.m Ecco>mfimmoosm n5: 2.58 83... 39:8? mmflmfimcm£>mocEmE 02.8035 .m-:_u_cm>oo£cmlmwocEmE no: aéoss $353 oo< Agav N mmm>_-m_coEEm oc_cm_m_>cmca omva 9:952? 9253 88on mmmcmgxofi Eccflofio>xoamé9m mmEchmE>m82m 20:80.2?sz 9:53 9:33 635:? 05:55:00.: m¢m9£mc~§>m82m $826.95 2 5:86 89:85 N 398282583...“monaoEEm 9:83 .830: mEoEEwlabDV mmmcuim 95 89392 2.3%.2 8535 853—2 SENSE RENEE oSREZ 83.92 8.33% 834.32 oxumvmmz 8233 an??? EmRva 8m? .92 83%? 88.32 33.32 883?. ovumompz 83°92 ofivmmvz 2832 .nmvnmmmw .m ¢mmmm~ amnnpmvmu “anhommcm .mnwvmrou .mlnowemm .mnommoom .mlmssoom “muemmmmw umlmwmwmw :. ..ozmtomcmfi. . «mlgmwvm .mmmpwmvm um nmommm .mnmumnmmmm ammmwmvmm .mnwmmrmw .m emommm .muommnmm .mmwmmmom um Powwow anagram .mnwmmmmm “mumotmm 191 mom—m w .m mo:MMN.N mo:w Fwd mafia—mm vqwmwd moflwmé No:m 34m mom—mud moflofio mo.wmo.m mouwovm moflwofi mo:w Ed moflmmd moflvmé mqmmmN awvwé awn—um gummé Vouwoofi moflm v.0 NOflVNé moflmm. _. mo:m_©N.m O POON OO O OOOPO COOP CO PO COMM” I000 ID MCCONIO ”(0‘00 0') (‘0'!) Wm m.N ad mé mé fie mé m.N 1N Nd oé 0.7 md: 0.0 Q; md m.N ON ON mé QC mé m.N N.— v.» 9.... h.” N.N EN :6 No We 06—. Na v.” 0.9 m6: Wan m. 7 Wm vi m6 m.N v. F- a.» mi 0.0 Tm md hm 0d m. T 06 w.” N.N Vow F.NN P. w 5.3 ad NS m.N 0.« od N. P N. F a.” n6 md md m.» $8593 (2%: 285% __E£ <<__E£ 6E2, >__E£ 5205 39: 100959.: ocfi 2.53 60m cgmmcmncoo oEomoEoEo B 38:62 ANmmbqv N 85:69 3:88.. 5205 2:5 59.: 88 39m mzfimzoo :58 .903 88:85.. 8.29.9.2 830$ 5295 x3832 £905 .09.: 88 83-1000 9:93 68632: .903 cozatomcg 23.8 >¥m>> EN”: £205 .69.: 0:8 cabNINo 590.5 :53 595 28 69m wzfimzoo 8.;me .908 cozatomcmb 2.83 >¥m>> Amman—(v 55.302 8:039:03me 2.3%? 2.53 69. cozmwcoucoo oEomOEEr—o *0 5993mm.— 03282 28382 88592 8338 88mg: com 592 8 2892 83892 2832 88 .92 83.3% 88892 8882 8889‘ 8.382 88.82 88382 88:82 35382 23382 88882 89882 388:6. 5:338 8:338 8:? :88 $6888 .m:m P88 5:838 8:838 5:888 5:838 5:838 6:888 .5888 .mmwommmm .m mvurmu “mmnmnpmm “a enmmmm 6:388 .m:m.noo~ 8:888 6:888 .nmmwonom am mommom ”mlmmnmmN 8:828 192 mauwmm. P mo.wmm.m oo-Mmmd mo.wno.m moflow. F mouwnmd monwwo. P moflm F.F mom. 5N maumkd menwm P .N moflmmd mofiwmd menu 3.6 monwumm mofimfim No..wNm.N mofim F .N XYMONQ mo.Mom.m 0001-0 0 60¢") IDCOC‘OCOC') m.N NN vé ...N vN m._‘ vN m. 7. Nu EN ma. 5. YN m... ad- ad m.Nr m6. m.N o.o 9n fin m.N fin fin N." ad m. 7 TM ...m m5 m.N h. T n6 m.NN v.0- a.— rd. md F. F- od .6. w. 7 ed he od- v. F- ad. ad v.0- Fé mé Om a.» mé cozflmcmb cozmficmb .535ng 5.535.. @5382.“ __E£ 93... 5205 3:589: mx__-c_2o.a _mEomon_._ aim: o .208 Sumac. c8995... 0:99.33 9:33 3.3 v .908 coszc. ozobmxam 9:83 9:93 .9302 520.5 5.88:: 9:33 698:2 .3 150550 6.352. 5.8. 32.3 9:93 6.20.5 .3368 #024480 529.. 3:.»802 6.16 88:2 22m ages m 5.2.5.. 592.. 9.: 38:2 22m 9:93 628:2 x8 I82. _mcoawm._ mcmSEm 8.882 .muosmvm 83.82 a 533“ 8832 6:228 83%.? awomoou 2.892 5:388 2832 318:3 8mm~92 6:29am om~$82 5 283 8.882 .mnmnmommvw c.3332 .mlm.~mmm 0889.2 .muomocmm 88.32 .munmvmvm 83.82 .mnSEma 88%? 5:388 :25ng HE 3889 <2m 80582 .mnmemtm “.8382 .3322 22382 .mmooax.‘ 8.582 a 3.2% ommwvmm2 alsama om~382 .mlmvam 193 hoflooN moflmvé moflmmd mofiomd mauwmwN venwtmN moflon... vaumoo. F vo-wmo.n mcflmmd mo-m 5d neumm—mm moflomé m?me.m momvmé mo.w~v.v moflomd mo-me.m woman: mofimvd F Pv-OOO (OCOCDOOLD 000') ad md m.N o... F.N m.N m... 5... m6 5... c.9- m.N md N.m 5... $6 aflv mi N...” n.— ofi Nd- mé mdr N." $.01 m.N ad m.NN ad. a. r P No. m.N ...o. Ev md o.o ...v m.N 06 m. ..- m6 N.m md- m.N o.N m6 No. m.N N. P o.o m.N r. 3 md ... —. w n. F a...” N. . Ya N. F .8005... 83.0.00 .3005... 05.05000. 5305000.. 05.95.50. co..0.c0.E0. 95.0.5.0 5:030:05 .03.... 5.830000... 85.0 5:02.000... .0090 53030000.. .0cm.0 5:030:05 _0co.0 5:030:00 _0cm.0 5:030:00 _0cm.0 53030000... .0090 5:030:00 _0cm.0 05.0.5.0 8.2.0005... 05.0.5.0 ..0:__000._.5 5.8.0.8.. 5.8.0.8... 2.0.0. 50.0.... .0E00 .0...uco.._0o..E 00.0.0. - 0000096300 1042 >_.E0.. 50.0.0 .0E00 8:000:85... 300$ 700030820000 0.025... 0000009350 .2020 0.0.9.5.. 50.0.0 00020.02 ....Em. 0 0000:2009... 050000 00500505009... :00... 522.. 22-00 8.25.5228 02.23 .80... 8 80.289... 529.. 50.0.0 >_.E0. 000..-“.m 00.050.550.00 50.0.0 000580605... 0550.50 0:0..-n.M..000.N 050:0. 02.0.30 :20 o. .0_.E.0. 0005.. 50.0.0 05.50.505.00 02.0.30 ...-tmmmnzv 5.0.30. 00500900300 50.0.0 5.300.500 02.0.30 02.0.2. 50.0.0 00.50.53.658 05.70005. 50.0.0 0c.co0._...\05._00 00056200020002 02.0.30 820$ 8&2 8.0828480 o. .882 88882 888.2 08882 88082 883.2 88082 8.882 8.882 88882 88882 80882 88082 8.0882 88.0.2 88.5.2 o. .882 8.8.0.2 .8588 $330... .....i 8:838 .mlmmmmmm 8:888 $10.88 8:898 lg .0 080028 .m:0...v~ .muvo.0v~ .mucmnmvm .018.000~ .0:~mv.0~ .muvmv.m~ .0:0:o~.00~ .m:0.ooo~ .0:00.om~ .8888 88808 22.030020... .0: ..0 0:0 00.000.532.500 63:080.... .8000. 00 599.. 0588.. 0.... Q8882 2.00. . .28. 880. 2.9088 88282 .mmmm..v~ .0 me.mv~ 194 mQMde no:wmm.m 3&me mo:wnP.P moflN P .N mo..w Pvd vo:m.mN. P ©0:Mom.w mom—N9 P moflmm. P awwm. P ocuwhoN ooflmvé moflmoé nouwvod moflnNm mo-wNm.m hemmed mouwhod acuwm P. P F NN NNF F P F (00') 00 000000 (0000') C000 N.m m.N QP m.N o.N N. P QP m. P P.m m.N o.N 0m QP m. P m.N N.N N.N Q? o. P P.” m.» mi m.N Nd n6 m.N N.n @. P P N6 m.N P6 nd ed «.5 n.m o.” N...” P md N.N Pd: 0.0 o.m P.P: OP- P.P: Pd: can m6 od Pd: N. P: ad ad 0.0 Pd- No N.P md @5000 000 05.090. 0.020055 000000.000. 0.0.0.0 00.505000. 0.0.0.0 00.50500... 0.0.0.0 0505. 50.05 050.0. 0.0.0.0 000000... 000000.. 000000.. 000000.. 000000.. 000000.. 000000.. 000000.. 000000.. 000000.. 5030 000000.. .0030 000000.. 5030 000000.. 000000 $050.00. 00050.05 0.0.0.6 .0_030> 2.0.0. 0000.0.0 300000 0005000000 50.0.0 02.0.30 0005500030582 00.0.90 02.0.30 02.0.30 .5050 3.88....2. 0.0.0.0 59.0.09. 8050.58.05. 0005050. 000..0.0 _>_0.0-_>0..000 50.0.0 0..: - .0050 0.350 5000000000 50.00.0650 0.0.0.0 5000005 53.050.63.000 0. .0_.E.0 0.0.0.0 5000000.. 05...: 000.00.00.05... 0. .0_.E.0 02.0.30 5000000.. 05035000025055 5000000.. Om< 0.0.0.0 500000 000.0050. 02.0.30 0.0.0.0 5000000.. 05550.5. 02.0.30 0.0.0.0 0.5.5.0000 .0..000._>0..0000000.02.0.30 00.00. 0.08.5 0.000 0.0.0.0 .000. 000000.. 00.500095 500000000055 02.0.30 2.05. .305 00.50 0.0.0.0 5000000.. .0030 02.0.30 0.0.0.0 0..: 00000.50 05000000055020 0.0.0.0 000000.. 5030 02.0.30 0.8092 03.88 83.082 .0 000.8 80882 0:888 88.82 08808 0.5.0.2 003.08 03882 .0 0.008 8.882 0:238 05. 0.5 0.5000005 0.5.00.0 0.0.082 0:82.00 88.82 0:828 88.82 0:538 8.0082 .0H8~.8 80882 0:80.08 88.82 .0 0.88 0.00.0.2 0:0...8 888.2 08.38 0.0.092 0:00.58 80882 .0 00.08 008 .82 00000.8 80000.2 0:888 $0382 .0 00008 2.05. 5000000.. 00.500095 195 moflnm. w nofimmd menwmmd vow 5.0 50:98.0 noflwoé mom. rm; moflwpé XYMNQP neuwmmé uoflo F .m gumwfi moummné mouwmoN moummKé mom de noflmod mouwmfiv moummuvd moms. w menmmoé ath moflmo. F moflomd moumvmé mo-m Fm; moflmfm PVOFC‘OOMF NCOCOOOFNNCOO F v 0') MMMMNNC‘OO’) ”MMMMMMC‘OV VG) 0') ”WV (”OBI-O N.N fin n.» «.9 960 ad FN adv inn m.N N9. fin m. FN 9m v.2 Fin n. F. v.» n.» md m.N n.mN m.Nm Qua ad P —. an ”.0” No m.N ad ad r ad md _. v.” 0d Em n.» Hm ad ad 9N F N.N v6 v. P v 1N? a.» ....n 0.« fm md. ... .3 06.. vi Nn ed pd: *6 m6 Nd m... Né ad ad vN No Cd Nd F.F mé Pd rd md @.F m.— md 0.0 ad mé wd CBOCxCD 5505.5. 535.5 5505.5 mmmbm 950295995 950203993 c8285.. 88885.. 828828 c8285.. 83825.. 82825.. €388qu €388sz 838823 c8285.. 35qu 3:20“. 3:0th mmcflmu $5th 095me mwcmvmn mmcmvfiu mwcmfiu 9.68 520.5 38.9. 398 $233.85 $3502, 5905 538653 28 2 8:58 $5.09 5205 388.58 $9.08 5205 83998 5205 9:758:59: 9.: c888 22885.89. 288 $38: 5888 8885.89. 288 mumoo 82.x 280.89 5905 E89558 flgcooobnEm Sm. 8285 882% $550 3550 25mm: 8388 85mm: 58288 Smog 58288 :2va C888 83 5995 858889 ommmmfi :8.an 5203 95525 885.308.89.98 ommcEcooucm 0>:93 520.5 0835-598: 0>:93 A 8.88% 9593 520.5 £95th Ema 9:33 8.89: 9333 £208. £98.88 E83 9393 520.5 9:7:sz385 9:83 .388 wmz-m_._.v £905 032.8.me mmmmwfi €88 cszamrz 80mm 88892 88892 88.92 28. 32.8 2882.8 88382 88882 28882 88.82 88892 88882 o8888.< 88882 88892 83892 33892 83892 88882 88882 88882 888882 8.8882 88882 88898. 288892 88892 $8382 filmmmvmw 8:888 8:3 88 8:888 8:358 8:888 8:888 8:888 88:38.8 8:838 8:888 8:888 8:888 8:288 8:288 8:888 8:888 8:888 “mmosoom8 .8:mmmoo8 “8 .88888 8:388 .8H8PF888 .8 888888 .8H8888o8 “8:888F88 .8 888888 8.88.8: 8.95 196 ¢o:mmm.m vaflvmd moflncd moflmmd moflmmd voflmvé moflmmé neummm. F No-wNN.v voded mo.m~.m.m Noamme mom—3. F moflomd voflmw. F ooflofiw vaumwm. w mom 5N moflmmd moflmmd mofiwwd molmm F .N V0:m:%.m ecummw€ ooflomfl woflmod menwmwd mom—9N FOOOv-u-o ONNNFNPV-OP FOOOOO .FNO F F MWMMMMNC‘OVC‘O mmmmmv ”CON 0000???? (V) MAL. QN F. P- m.— 1N N.N mé 9m «.9 w. T QM mé mé No vé Em m.N adv N.» W? 0.: _. N6 r «.28 v.3” 1m m.N Md mdN o. w Md N. v 1v ed Wm QN Nd F.Nv :.v 9.0 Q.” r Ni ad ad mé ad 0. a a.» N.N m6 0.” v. ..N Van N6 N6 9m flew m. P: a; md 06 mé E. 0.0 m.N Nd: No 9o: mé #6 0.0.. Nd. Pd: 1N ad 06 we 0.0. v.0. 0.0 F4 .8... 0.0 P. T 06 58.3.6.5 :83 =8 =83 =8 =83 =8 =83 =3 =83 :8 =83 =8 =83 =8 =8; ..8 =83 =8 =83 =8 =83 :8 =83 =8 =83 =8 =8? :8 =83 =00 5505.5 c2655 5.65.5 2265.5. $505.5 9505.5 5505:: :26ch 5.65.5 c2653: c2652.: :26ch “580159.... < $338.. on.._>cao._o_coo.9a mmwfifioéog o. ..m..E_m 3.0... 5295 3.7328023. 783 Agaxw. >_.E£ £205 £9898 382.883.08.03 9:32. : 828:5. v 2.58 omflmwmcmbSmoozm >=E£ mmfimfimcuooa 530.5 8.7082802952 2.59. 2.65 £905 £2898 38>. 2808. 9:32. 38:80:58. 792. 9:82. 636. 882882888 02.52. .5239... 38:83.80. 7.88. m 2.83 omfiofimcg$woobm 385.208.8sz 9585a 8300. 5295 8.88858 .9100. £90.... 83838 8.8.8.5. 5888 059.88.... 2.8“. 65. C888 888.. 29.33.28 83:32.2... 3890.5 :88... Q..: _._m 00.050 5.05050 000.0505 0500_0 000.0505 05003 2.50. 0.0.0.0 .0000. 00:93 2.50. ...0.0.0 .0000. oYD>> 000050 0>..0.:0 50.0.0 20.805020 .0.050.0 5.50.0 ...00:0000...:...x:0 0. .0_.E.0 2.50. 0.0.0.0 .0000. 0.103 0~.05 .0 2.50. 00000000.. 5095 0. 00.0.0. 2.50. 0.0.0.0 .0000. 0.103 9.8.8 588... 8.8... <20 8.00.. m .88.. 83:89.8 __ .....8. :88... 8.8.9.2.. 2.8.8 3.50. 50000005085505 .0505... ...0.0.0 00000.0x0 50.0.0 000.0565 0. .0_.E.0 5.0500 00.2.00 02.050. 0.0.0.0 00000.58 :88... .28. 088508809... :88... 8.88-05 > 520:0 020:0000:.> 80:2. 5000 805850: 2.52 520:0 20000: 00.03 520:0 029.05 -50 80.09: 80020 529.: 9.0.3 520:0 :05 ..00 :0.:.0:.02m 2.52 520:0 00000: oYD>> 2.52 520:0 00000: 0.195 5.50: mIG. 052:0 520:0 020:0000: 5030 520:0 055050020000: 30% 0020000050500 022 9 050. c000 9... 509:. 82092 28.92 83.90 0.0290 8855‘ 855.2 235.2 8855‘ 883.0 80892 02.822 00892 80890 00890 220002 88082 205002 800300 800502 20. 300 808034. 003092 8059.? 8% 5.2 o 3003,: 0339.0 03892 200300 00:0avumm 00:050000 00::Fommu 00:05050N ~0I0lvmo P mm 0:00:03 0:00:00 0:20:00 0:22.00 0:80.00 0:50.00 0:258 0:238 0:2 500 0:00:00 0:835 0:835 0:30.05 0:20.000 0:0 30% 0:00.03 0:55.00 0H0$mm~ 0:59.00 0:00.300 .0 mnwmmm 0:833 ElmomNmN 8000002 00:88.0 199 sonwmoé wanmd moflowd ooflmmd moflmflv vonwmoé monwovd Xwamd moflomfi moflnod vommmé nomad Vonm Fwd venwnm. F mafia...“ moflm F .m vonmnv. F 3m F0. F moflvfim moflow. F mo.mNo.m voflvmd XYMONN haummo€ squamd moflom. F menwmmd Venmwm. F moflwm. F ooflmmfi moummm. F moflwo. F No.mvm. F moflwm. F OFFPOOF‘—COOPNONOOOONOFFOOOFOONOONO mmmmmmmmmmmmmmmmmmhmmmmmmmmmmommmm ON 0..... TN m.N N.F F.F m.F m.N m.F F.N o.F ad a. F- 1m in F.N Nd m.F m.N N.N ad- NF Nd m.N mi m.N m.N N.N h. F- o. F 0.« ad ad ad. 0.« 9N m.n Ni 0. F ad: a.» o.” 9m- a.» a...” N.N N.N- m.N Na 0..” a.” m.N Ni fin ad: ad «.5. h.” a.» a." v...“ 0.0 ad: a.” N6 m.» QT No. ed: od ed: Fd. m.N fin ed n. F mém 0.0- v. F o. F v.» N. F 0. F N.N m6 0. F ed: 0.0 QM m. F N. F F. F N. F md: Nd: Fd: he Fd: Nd- c. F n.m 9n 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 55055: :505.5 5505.5 5505.5 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 0.0000005 00.000005 000000005 000000005 0000.002 0000.002 0.00.0005 0000.0005 0000.00.05 000000005 000000005 00.000005 000000005 000000005 0.0000005 000000005 00.000005 000000005 00.000.05 000000.05 000000.05 000000.05 000000.05 000000.05 000000.05 000000.05 000.00.05 000000.05 000000.05 000000.05 000000.05 000000.05 000000.05 0.000025 00:.00000 .0:000000 00:00.000 00:0.0000 .0:000000 00:.00000 00:000000 00:000000 00:000000 .0:000000 0:000000 00:000000 00:000000 .0:.00000 00:000000 .0:.00000 00:000000 00:000000 0:0. .000 00:00.000 00:000000 00:000000 .0:000000 00:000000 .0:0.0.00 00:00.000 00:00.000 .0:000.00 .0:00..00 00:000000 .0:.00.00 00:000000 00:000000 .0:00.000 200 vo.va. F ooflmmd 20¢va mommuvd ooflvmfi moflomd mqwmo. F XVMQYN mo.m Fm.m moflmmé ooflmmd moflmmd XYmed mom Fwd noflmod mo:m Fnd moflmfi F mofloFd 00¢me 3-wNF. F moflofio V9wom. F neuwmoé 598. F mofimod ooflwo. F auguv vo:m Fwd somNo. F moflmmd voflmmd 20$va mofimmé 90$va OOONOPOFOOC’OFOOOOONOFONPOFC‘OONOFOPOO mmmmmmmmmmmmmmmmvmmmmmmvmnmmmummmm QF N6 ad 0.F m.F 0.0 Nd N.N Nd m.N md m.F 0N QF N.N a..." m.F ad Fd: 1N m.N m.N QF m.F m.F m.F NF 0.F F.N md F.N m.F No md N.N Nd Fd ed oi md 06 0d m6 0d m.N Nd v.0 dd ad ad Nd m. F 0d a..." 0.0 Ni Nd ad 0.« m.N ad ad 0.0 F a...“ 0.0 «.0 —d ad md Nd. md. N.F 0N m.F 0.0 0.0 Ev od md md 06 m6 F. F: m6 md 0.F adv F.N md F. F: F.o: N.F md 06 md F.o: F6. 06 F.F 0.F F.o- 9o 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 5505.5 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 00.005005: 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 50.005005: 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 0000258 520:0 00005002. 520:0 0000258 520:0 0000258 000000005 000000005 000000005 000000005 0.0000005 000000005 000000005 000000005 0000005 05.00.0005 0000.00.05 0000.00.05 000000005 0.0000005 000000005 000000005 00.000005 000000005 000000005 000000005 000000005 000000005 000000005 0.00.0005 05.00.0005 0000.0005 0000.0005 000000005 000000005 0.0000005 000000005 000000005 000000005 0.0000005 00:000000 .0:000000 .0:000000 .0:000000 00:000000 .0:00.000 00:000000 00:000000 .0:0:00.000 00:00.000 0:000000 0:000000 0:000000 0:000000 0:000000 0:000000 0:000000 0:000000 0:000000 00:000000 0:000000 0:000000 0:000000 0:000000 0:0.0000 0:000.00 0:000000 0:000.00 0:000.00 0:000.00 0:000.00 .0:x:000000 .0H000000 .0 00.000 201 .0020 20 .N 0000000 00050.2 000 20.00.05. 000. 0.02000 <>OZ< .02.. 0:_0>.0 00. 000 00.00000... 05 00 30.3800000000:0000..3000600090.0.0000500233300005 E0200: 5: 00000000 05 0. 000020 0.00.008 man: 0.10 00 0000.50 05 ..N 00.0000. 0.02000 0000.020 80.0220... .020 0000000 0000 00 000.0 00.00258 00... 0.0050058 0.00.: 0:00 000 _.00 05 500 0. 02000002060 00.002 003 .00 000.0 05 00.03 00 000... 0.00.00. 200 0. 00:_0> 0000000058 _.00 000 00.00:. 0:00. 0.03 00. 00 0200.320 500 0. 0.0.. 0000 .0 00:_0> 000000 0.00 0:03.00. 00. E00 02030.00 200s 00:_0> 000000 0.00 000.0 000. ..E00605}.0005090500000.00.550005 00:2 .000 .0.505.00030005000izé0005 00: 00.000000590332000... 0.50 .CE00.xEOE>t0.>>3E\H00£ 00.000002 >0 000320 200 E0... 002000 203 0000E09000 22 000 0000000000 20.0.0000. _0< moflwmé o m N.N m.n 0.6. 02.05.00 0.0.0.0 000000500 030mg? .0lmvonvm 202 00.0000 0 0 0..- 0.0. 0.0 00: 000.0.00000..00 0.90.0 0:00.000 000000005 00.000000 000030me 00-0000 0 0 0. .0. 0.00. 0..- 0.00 0.0.90 0.000 .000 0.90000 90050 000000.05 00.000000 00.0000 0 . 0.0. 0.0- 0.0 0.0: 0.0.90 00090300000002.0000 30000.05 01.00.00 00-0000 0 0 0.0. 0.0- 0.0. 0.0.. 2.0505. 0000: 000000.05 00:0.000000 00.0000 0 0 0.- 0.0. 0.0 0.00 00000 02.0.00 000000.05 00.000000 00-0000 0 0 0.0- 0.0- 0..- 050.00 2.020 0000000000005 2:000 000000005 0.00000 0.00000 . . 0.0. 0..- ..0- 0:00.50 000000002020008000090020290 000000.05 00.000000 0000090020 00.0000 0 . 0.0- 0.0. 0..- 0000.50 0000:0000-2900:00on0 02.050 000000.05 00..-000000 0000.. 00-0000 0 0 0... 0.0. 0..- 00009020 0.0.00 08005.000009850003009020 0000.025 00.000000 00.0000 0 0 0..- 0.0. 0.. 90.000098 00050. 002200; 00820 000000005 00.000000 00-0000 0 . 0...- N0. 0.. 20.02028 00.251050000000000 00800 000000005 00.0..000 00.000. 0 0 0.0. «0- 0.0 20.000098 0050. 000200.. 00820 000000005 00.0.0000 00-0.0.0 0 0 0.0. 0.0- 0.0 20.000098 ...0500. 00000200000000 02.000 0000.002 0.00000 00.0000 0 . 0.0- 0.0. 0.0 20.020200 10.00.000.900; 00820 000000.05 0.0.0.00 00.0000 0 0 0..- 0.0. ..0. 0.00 0550 ..000000000090200 20:...0020 00.0.0005 0.000000 0.00. 00.000. 0 . 0.0. 0.0- .. .- 0.00 00.50 000900.. .000-00000020000 0000.0; 000000005 001000.00 00.000. 0 . 0.0. 0..- 0.0 0.00 00.50 0050. 00000020000 0.0020; 000000005 0.00000 0000 00.0000 0 0 ..0. N0. 0.. 0.00 8.50 055.00.000.00. 00000090200 0000.0 000000005 00.0.0000 00-0000 0 . 0.0- 0..- ..0 0.00 000:0 00800000035052 0520.805805on 000000.05 0.000000 00.000.. 0 . 0.0. 0..- 0.0 0.00 00.60 0.000. 008000.200 0.0020; 000000.05 00.000000 00-0000 0 . 0.0. 0..- ..0- 0.00 00.50 0000.20.02.32 00.50000500000000 000000.05 0:000.00 20000000003 0:_0>.Q E00000: 5: 0000 009 00w 5 0_0-..0:m 00.00.0000. .90 .00 000.0 <>OZ< 060000.070. 00.0020xm 000000 0_00..m>< mkzmzmmaxm 30m DZ< m-FSQ wI-F I-_-Om Z_ man-réwnim... >>O-._ >m QwhSDmeigOD whmm mmOmn. .F.n. m._m<-_. .... X_Dzmn_n_< 203 vo-Mmmd mo-va.v vo-wmmfi mo-mwmé mo-MVmN wo-mwNN vo-www. F vo-wmmd mo-w Fm.m vo-www.m mom—mu. F mo-mwNN 0..-Mood mo-Nwoé No-mhwd vo-mmoK mo-wh F .m mo-Mnmfi vo-vad mo-wmo. F no-mvm. F vo-m Fm...” no-wmm. F mo-Mom. F mo-Mmm. F mo-m Fm. F mo-va. F mo-me. F OOOOOO OOO ‘- OOOOO FOOOO OFOONPOF NNNNF’N FN N PFNNN '- NFNNN NNNNFPFF F.N- v.7 m.N- md QN- m.N- N.N- m."- m.N- m. F- o. F- m.m- N.N- c.0- NF- F.N- 1N- m.N- of. v.0- Warw- Env- Emm- fin- n. F- QN- m. F- m.N- o.”- o.”- w.”- «.m- n.”- mi- 0.0.. N.N- n.”- m.N- WY «.m- m.”- m.N- N6- «.0- En- od- m.N- ». F. F- n...- md F- 0.?- N.N- m.N- v.7 ”.7 0.?- md F. F- od- ad ad NF N. F- 9d- N. F- N. F- F.F od- N. F.- c.0- N. F- N.F N. F- N. F- $.0- od- m.F- md- md- F.0- F.0- F.o- F. F- 0.F- 2005000 6020000 b02800 bmncooom b02800 b02800 60.60000 30.60000 23:80.0 b02800 0600:0000 b02800 b02800 60.60000 0.0030000 6005000 b00500... b02800 5000...: 06: 0.0.. 0.0.. 0.0.. 0.0.. 0.0.. 0.0.. 0.0.. 0.0.. 2.0.0. 0009. 0:0 00905506020000.0210. 02.0.2. .mmexo 0.00.0000... 0090.29.30.05: \_>0Em::_0>xo.0>:-Z :00005500-2. 0000. 00.0.0806 mmo0a>o .0 .0080... .0000. 02.0.5030 0.....0. 000.. 059000.00 000000.00. 00.0550 0.06.6.0>:6-0.0Em.:_m>60_>6. 00.06.00026 6.606 m.«-m.>x0.0>:-m-0:0:m>mc 0. 6:66 0.....0. 000.0:00.600:000.0>:00 50.6.6.6 70006200. 06:60.. 0. .0_.E.0 000.0:00. 05:60.. 03.050 0006.25 _>Em.:_m-0EEmm €000.55. 0.....0. 0.0.0.0 0.0000. 6.8. 0.50.5. 50.0.0 26.0. 00063960230630: Fmao 000.0:00. 0.00:0.00.>:00x0-NF 0. .0_.E.0 omva 9.6.50.3 0>_.m.:0 02.050 .000-06:00. 08:60.. 50.0.: 00.060000 0006.6 50.0.: 0006.0»:6000: ...0E-0m00 02.0.00 00005000 00.--.0000. 00059.0 0.0600206 35.600.00.200 AN. Faowv 0020060005.: 0:06:00 AF. Faowv 000:00>x00:0:. 0:06:00 50.0.0 0006.25.38: EOE-.500 0000_x0-_>:.0E-m:0_m-0 6.0.0 02.050 6.05.. 05650300020005 0. .0_.E.0 0000: 02.0.2. 50.0.0 56:9. 06: 02.0.:0 000000005 00. .00005 000000005 000.00005 0.0000005 0.0000005 0000000.< 0.0000005 0000.00.< 000.000.< 0000000.< 0000000.< 000000.05 000000.05 000000..< 0000.0..< 0000.0.05 000000.05 0000.00... 0000000.< 0000000.< 00.0000.< 00.000005 0003000.. 000000005 0000000.< 000000005 0000.002 .01000000 .0-.00000 .0-000000 .01000000 .0-000000 .00-50000 .0H000.00 .0-000000 .0 000000 .01000000 001000000 .0-000000 001000000 .0I00.000 .mlmmmmmw .0-000000 .0-000000 .0-000.00 .0-000000 .0-000000 .0-000000 .0-000000 .0-000000 .0..00.000 .01000000 .0-000000 ...-000000 .01000000 204 mo:m Fwd woflmmd mouwmn. _‘ mo:Mmm.m Nomamd vo:m :# houwm F .N mouwm F .m Venmhod moflmvN noflmmd ooflwwd moflmod moflwm. _. mo:wmm.v moflou. — mafia P N moflmfim moflmwé vaumgd XYMQO mevmd mauwmmd Nomvm. F 0000000? 0 OFOO P‘- CO 00‘- FNNNNFNN N NPFN 6101 PP w. T No: ad. ... .... v.0: m.N: MN: m.”- m.N: v.0. 5.0. 0.0.. QM. QM: 0N- N.N: 9m. ad r. 9m. h. T ad. ad: m.N: v. w: v.0: N. 7 m6. wé v.~: 0.0: wen. m... m.N. md QM: v.0 0.0: ...o: 97 md m.N... No .8: oé 1.... F.F 9m- No: 5.7 md v.7 Nd: c6: N.T fin. 9.0: 06.. m.N: Nd... v.0: v.7 md: m.N. v.7 adv. Pd m6- md 9n: md: v4”: v. F: 95966 mc__mcm_m mc__mca_m 95956 05.9.9.0. 9539.0. mc__mcm_m uémcgm cozoaumcmb .956 3.3805 __E£ 5295. x23 85¢ 5295 3.2.33.8 2.88 $95. 5295 fixas: $95. 5205 EumzuomémmOgE >__E£ omflmcnmoca Bow 292a mmmfizamoca Rom 0.93 9:53 smugmmfiv .2939 3:88.. EmcanooéZ 5205020359.. cotéssgfimctmm 5.5829: 02825 9593 .mmem Bag 9.2.3 “Swag 563 323.0. 8mg 358 53389; EN. >__E£ £905 59.: 9.8 8540me 2.89 < 5:53 883 cozatomcm: 3659.52.00 38:69 3:23:0ng o. .m__E_m 562880 3:25:85: 0228320535» 028:5 56$ agatowcmb $53 952 22:3 520.6 .69.: 2.8 858.80 >__E£ 590.5 22=E£ ml: 8?. 089500er 9:93 3.83829: 3: .6 EB :o.amo.E:EEoo 8323885 88892 8882 £838 8892 6:888 8333 5:888 8:382 3:888 03882 5:558 8832 5:888 o8892 5:588 8522 a 888 22182 6:888 8832 5:528 3832 5:888 88%.2 6:888 :33ng new 5389 «it 8.9332 @888 82892 a 888 38.92 “mummmmeu 898392 a 888 88882 fim8$8 88°82 5:858 08832 5:888 08882 a 258 8582 EH538 88822 5:888 88322 a 838 :ocmtlomlcfih filmmmmvw 205 moflm P. w moflnvfi moflmmd oomwn. r ooflm _. .m moumood mofimmd veflomd mafiafiw No:wNo.m venmvod came; 00¢de hay-wand houmwvé hofimoé mo:m§.m noflmmd 09m Pod moflmvé $0.98.». moflom. P vauwovd moflmm... mouwo P. w neuwwwd V00 0 FOOFOF O ONOOOFO FOOOOO FF F NFFNNF N PFNNPNN FFNI-v-N 0.”: v. P r- m6. mi. n.0- vé m. T. 5.”: m.N: Wm- QT oN- 0.0.. 9.x... m. 7 9m: WT ad. 5. T N6. m.»- ...m- 97 o.”- m.N: 5.9 0.0 0.0.. ed: NY m6: N..."- No: F.N: od- rd. F.F a.”- 06 ed. od- vd. v.0: fin. No 0.7 $6: 0.”. rd: Md. 8o Hm: F.F: 5.7 0.9: r.”- 06 N.N. 0.9: m6. m6: 0N- .mo: ad. 0.0: «6. 0.0: v.5. v.0: ndN. md: QT m6: m.N- o.o 9n. md toamcmb .283 toamcwb 883 toamcmb .283 toawcmb .983 tonmcmb .283 88:8 .8888 88:8. 88:8 toamcmb toawcg 8.888.. 8.888. 8.858828 $855888 $855888 m_8£c>8§._a $8558.05 $855885 m_8£c>885a toamcmb 882m toamcmb 880.8 coamxc c098 8296 c088 :0.me: c098 8:888 Ga 888 2835 mcEnEoE 8.8.3 c.8828 3558 520.5 0.835 .8308: 5.6838 9:83 382v 8:888 8888.8 289$ 8:888 888898 58:: 8:888 8888.8 8:888: 8288096 9:93 >__E£ 520.5 .350 ES). 285 5888 $0“: toamcmb 83889.0 28:88:88.; 0888838 28888888036 2582.9 888 mm 8888828 28 98.8598 5ch 85892 88.8 588th 8.88:8 C888 888 88 £8225 588983 5205 0v. m = E98888 5888 888.88 38925 __ 8a an. 588:8 88:83 __ gcanam 8E8 888.. _ 628888 2.58 5888.5 880:8. 98.89289 8393 2.128 08.628 2:028 C =00 =95 =00 =03 =00 =03 =00 =95 =00 =03 =00 ..000. <20 5.805.680 00:900 00:00.00 00:900 0.020990 0.020990 0.020990 0.020990 05000090 590.0 8.80.995 590.0 050.9 590.0 @559 590.0 @559 590.0 85.85.0000. 800.083.00.00 800m: 02.900 .:.0:00x0 000380080 3ng 50:00x0 0002 90800 $900. 2.0.0. 000580 08.2.00 .5003 :.90.0::900_0do500.0 85002 . 0005.30 08.2.00 o. 8.8.0 0099005800 000:00:_d:m. T900 0. .0_.E.0 0.000.028.0300 0000.08.90 0:.:000_>£0E:m:N:0 d:..0d:_:00::...:0.:: 0020.0? 02.930 3.0.9 02.”: 590.0 80:: 0:.N 590.0 0.00:0 .00: 590.0 0.00:0 .00: :95 02.930 00:0 0. .0_.E.0 590.0 95.0.. 808002 .0H8800 28802 0:08.000 8000002 0:888 888:2 0:888 8.80:2 0:858 8008.2 0:888 888:2 .0 8800 888:2 002000 080092 0:08.00 888.2 0:288 888:2 .0 888 0800:0003 .9280 808002 @0980 888:2 .0 003.00 88 82 0:80.00 20.8002 0:80.00 888:2 0:04.880 “00.90.. 0.00..“ 80009.2 .0H§00~ 88802 0:888 888:2 0:09.000 888:2 .0 :88 80.802 0:00.000 8000002 09.800 20.0002 0:08.000 98802 0:828 888:2 .0 .850 207 oo:Mmm.m ocflwo. P NQMQON moflmwd moflwmd moflmm. w mofl Pod vomwué mo:Mmm.m moflm F.F XYmmmN moflno. _‘ mo:m Exm oomzé mofiov. w mo:m Ed moflmmfi XYMmmé moflmmd menmwn. F mofimmé moflmm. P m?w3.N gummd veammoé momm v .N mom—cad XYMmmN oofion OOOO OOOOOOONOO FOOOOOOOO O v-OOOO NNFFFNI—NFN NNF’NFPFFF P Nv-v-NN v.9 N.T v.0: 3.3... $67 N.T v.7 m.N: ad: N.T ad: ad N.N: 3.”. ed: 0.0. 5m: od Eo- wd. 0.F o...”- md: 0.0 QT men: ad: «.0: En. od QT m.N: md 0.9: 9.2. M.F- F.N- Q”. md fin. QT .....- «.7 Md. N.T ”.7 5m: ed 0.? m4. «.0 ed. QM: 0.0 o.”- v.n. ad ad. mdN: md 5.0: m6. No- v.7 N.N. Nd: ed: 9v. Rd: o.m- n6. md- N.N: N.N: mé QT m.N. 0.0 air- m.N—... vé mi. m.N: o.o N..- Ya- N.T 5.65.5 5.65.5 565:: :265.:: 565:: :26:x:: :26:x:: 565E: :>6:x:: :26:x:: :26:x:: 565:: :265.:: :26:x:: 5.65:: 5.65:: :26:x:: :26:x:: 5.65:: :26:x:: :265.:: 5.65:: :26:x:: @5on83 5:069 65:92:: 65:92:: :85 =8 =85 =8 =85 =8 580:: 83998 589: 889:8 589: 83998 589: 839:8 6852-589: mmfiofi 938mm9 256% 589.: @0806 938099 589: 9... .. mEEmm 556:8 589: 0859-558: 589: 80:65:33: 582: x85 :28: 938:: 529.: 2.63 mz§ 5:8: 589.: 8359-532. 529: 5:55: 82.5. :38: 589: x85 6.6:: 938:: 5:253 089. cc: 3893:? Emu:m:muds_< 582: @5652 3:585: 938:: 589: 0558595550: .56. 25$ :55. 555.. 25882 589: 055:8: .8085 529: 9.5.3596 8359-589: 68:05-5x:m 589.: :03 @596 589: @565: 3:585: 33.52825: :55: w: 22:2 55:55:. =. E39952: 5555 :39 um: 3..me 555283555: 38:35:53 :mo:_mo_>x.ou:m 938:: 39. 880m: 938:: 8:292 5:828 88.92 5:85.58 8832.: 5:888 8:592 5:888 5030.5 550:ch 8o382 5:888 Q8882 58:88.8 85 :52 5:888 8.282 5:288 “.8832 5:888 8:892 5:888 88 .92 5:888 c8882 5:888 8:882 5:888 8.882 5:888 3832 5:888 one: 352 5:m:~8$~ 88582 5:388 5:888 88892 5:858 853.92 5:888 8852 5:838 88592 5:888 8888 5:888 30.: SSOSED 8:892 5:888 tOtQNEmOKO 38230 8833 5:888 88 .92 5:858 8833 5:888 883.52 5:388 o88m3< 5:238 208 30$me moflmmd momnoé moflmm. P mo:wv~..m noflmm. F vo:m EON oofivmd mo:woo.N vo:wm w. e Sum 53 menwwmd mo:mmm.m 99mg. _. vo:m 5.0 awn? F mo.w 5:0. mo:wp F.N mQan. _‘ moflmmd vo:m F33 mofiofiw XYMQN. w oo:va.m vo:who.m women. P woflmm. v moflmfiv moflmmé ooflm F.N oo:m~©m vo:wm©.N moflom. r mofimfim v-OV-OF!-OOOOOFOOOOOOOOONOOOOOOOOFCOO FFFNFNPNNFNNNNNNNNFFNNFNNNNPPNNNFP 3.9 r. ...N: md: m6: N.N: Wm. N.N: od- m.m: ad.- —..u1 1N: m.N. N.N: m.N: «.9. 5o. ad. N.N: m.N. o. F: fin. 1N: m.N. m.N: in. o.”- o.»- m.mo. mum: rd. h. P: Q? 66. 3N: 0.7 m. F: 3.! m. P: m.N. N.N: v.7 F.N: m6. md: Qm: 0.«: ad. 0.3: m.N: 0.0: No. m.N: «.7 Qm: ad. 3N: m.” eéN. rd. N.N: N6. 3.? Wm: m.N- m.N. 3.”- ON: No: «.0: 0.0: ...: ...o: N. F: 06: 3.0: 35 :6: od ...0: rd: m. P: od F. r: v. w: 0.0 0.0.. 3.0 Nd: N. T m. F: 36.. No: 5... ed: N. r: m. T No: N. F: No 0.0 ed: 565:: 565:: 5.65:: 965:: 565:: 565:: 565:: 565:: 565:: 565:: 65:: 565:: 5535:: 5505:: 565:: 5.65:: 565:: 565:: 565:: 565:: 565:: 565:: 565:: 565:: 565:: 565:: 565:: 565:: 5505:: 565:: 5535:: 565:: 565:: 565:: 589: 3033::8 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 8030,3093 589: 303998 589: 303998 589: 3030.68 589: 303998 589: 303998 599: 303998 589: 303998 589: 303998 589: 303998 589: 303998 589: 3039:x0 589: 303998 589: 303998 589: 303998 589: 8030.309: 589: 303998 589: 303998 ::.v~::gq ::::F:::q ::~:_:::2 ::~:.:::2 :::FP::52 :8982 :.:~::::2 ::P~::::2 ::~F::::2 ::v:¢:~:q 9 5:82 :mvnmmmg2 ::¢~::~gq 8:882 88:82 oommmmmgq 8:882 85:82 88:82 ::::::352 ::F:::ng :~:¢~:rgq 9892 8:892 88:92 88:92 :ommmmvg2 8:892 :-~::F:2 88:92 :~::::P:q 88892 :::F~:F:2 :mmpmmrgg 5:888 5:888 5:888 5:888 5:888 593:8 5:888 5:858 5:888 5:888 5:888 5:888 :5:~m:m:~ 5:888 5:5:388 .5:~m:~:~ 5:888 5:888 5:588 5:888 5:988 5:888 5:88:38 :5:~m:mmm .5::P3::w :5::~:m:w 35::anmm .5:m::::~ .5:::F~:~ 5:5:888 5:598 5:858 5:888 5:888 209 :02: 90 AN 880:0 03050.2 3:0 0.0.8.0.). 000. 0.38:0 <>OZ< E9. 020?: 0:. 3:0 ..:_._3:9. 0:. .0 A:0...x03:.\m0o:0:u002390.0890.50:05:08.;325 5098:: 9.. 00:063. 0:. 5 E009: 05050.0 0102.10 .0 .0:E:: 0:. ..N 850:0. 0.0208 05.8020 85:990.: 59. 8:00:05 :000 .0 30.0 :53998 0: .. 8:05.898 0.305 3:00 3:0 ..00 0:. :.o: 5 0230:0938: 30.8.0. 003 .00 0:9: 0:. :55; .0 00.5. 800.35 3.0: 5 00:_0> 8:05.898 ..00 3:0 8.30.: 3:00. 0.0.: 0:. .0 00.05.33 :.0: 5 0.5. :000 .0 00:_0> 00:05: 3.8 86.23:. 0:. :9. 38050.0: 903 00:_0> 00:05: 3.0. :005 0.F ..55.62::258658.5085585 0%,. :5 :55.3.832960933885 00.. 55.60.866.5033885 m2. .¢58.x:.05>tm.333§:..£ x3052? .5 30339: 0.03 E9. 30>:03 903 8:05:930 0.9 3:0 .0:o..0.o::0 905.83. 5.4 8.0.... : . ..n. N.N- 0.: :26ch 522: .5898: :88802 5:888 808.: : N ...N. :.:. .6. .5655 5066 688.96 85802 5:888 8058 : N ...- :.:. m..- E655 529: 8.0.8.96 888:2 5:888 8-08.: : . :.:- :.n. :.: 565:: 522: 688.80 88802 5:888 8.088 : N m.N- an. :.:. 865.5 :56: 8898: 8:802 5:858 8.0N... : N ...: :.:? 5:. .5658 506.: 808.80 8.882 5:888 8.08.0 : . m.N- ..N- :.: c3658 .56.: 88990 8:882 5:288 8.088 : N :..- :.:. :.: E655 506.: 88990 88.82 5:888 8.08... : N «.... m... m..- E658 529: 8:856 :8882 5:888 8-08.: . . m.N- an. :.: 565.5 529: 85856 88:82 5:888 8.08.. . . n... :.:. 0:. E658 529: 30:85.0 8:882 5:888 8.08... : . :.:. «...... N..- :26ch 50.9: 88290 8:882 5:888 8.08.. : N N.N. :.v. :.: 565:: 50.9: 88.96 8:882 5:888 8-08.. : . 0... :9. 0.: 565:: 529.: 8828: 8892 5:888 8.08... : N m.N- 0.0. :.: 86:5: 50.9: 8898: 8:892 5:858 8.088 : . ...... :.:. .6. E658 522: 8.0.8536 88.9.2 5::98N 8-088 : N :.: 0.... :.:- c2658 :56: 525568: 88.92 5:888 8058 : . :.:. ...: :.:. 86:5: 50.9: 6885.8 88.92 5:888 3.08.0 : . 0.? :.: :.: 865:: £06.: 88990 :8882 5:888 8.08.: : . :.:. :.N- 0.: 86:5: 529: 885:6 8.89.2 5:888 3.088 : . 0.0. 0.0. 5:. 865.8 506.6 808.90 9:882 5:88 8.08.: : . ..m. ...N- :.:. 565.8 50.9.: 8898.... 8:882 5:858 «:-0N:.N : . mm. .0. :.:- 565.8 599: 88990 :8882 5:898 8.08.: : . ..n. ...... :.:- :26ch 229: 8828: 88:82 5:888 808.. : N :.:- N0- 5... :26ch 50.9: 8898: 9:882 5:888 210 o m.N ad 5283. FFF8 83 39625 $53 08382 .mumF meN mmEmu—mcflingmE F 3 3: $283 mpmsgvméficgooecm $.93 8mNNmNF< anomNmoN mmEmchmbSmooam o m x m.N m.N 328% 22895388 9:33 883% .muNmmomN 30mg 2% 86.9.85823 F m.N 3, 528mm 3:58 2mm 856 25885.me oNoNFmFZ .muNNVNmN F N x 3 3 $288 mmmeocheim82a $823.5 9 5.53 oNvFomFZ 5:328 359$ F m x N.N 3 ca: omegmcegig 2:28:32a 9553 858% .mnmmmmVN o 3 m.N 29. seen 9.: - $988. ao<.§8§-98 28mm? .mnmnomtmN N m x N.NNN F.F.mN 29. 32935389. 59:...on mafia ommVNmNz 3:358 2355an 3 08593 00$ v mmmfigm N N.N m.N 225a mFNSxoe$Fbcmqeaoa>oosevF oFmNNmNZ 510208 F N.N m.N 29253.8 33% 52% SQNRZ .mumNSFN F m x N.N m.N 282598 cwnmv _ $2.26 $903 H.888? .muommmVN N N. FF m.N 29358.8 $93 .392ng 92323.3222 883m? 51538 F 3 N.N 29.2598 mwemeaoéémsogmmdo: 9:93 833g .mumNEoN o 3 m.N 22qu28 9553 635% 658.8 23$sz 51°3va o m.N on 293598 23$ 593 F $83 52% 82:92 .mnEFNoN m m x o. FNF QNB 29358.8 $22? .8383 9553 938sz .mlF FmvoN o 3 F.F. 293598 225 mmeemcgamosgmm oNFmomFZ .mummmEN FNmomn: F N x on m.N gum 8:5 $922? 9m_>xoemo.m.ms_o§a.F-s_8 28mm? .mumthmN 33596 99556 c m x QmF mdF Eom oEEm 2 .m__E_mv mmmcmm>x00coE mEEScooéSm: onmwmmzxx file 53 Eméonmwmme Emmbma: 9: wme 96:0ng vwm mm. 295.5. 529053 _0< .mw 89a 950293 commend you Nlmuummm 29me”..me— Numo O._. mmZOawwm Z. thfizwmmdz mhmm memn. .vd m.._m<._. 0 502mmm< 211 NO P O‘- FFNO ONOP N F (‘0 (00') X XX méw md mi 0.« Q9 m.N Qm Na Na m.N m4. m.N mKow osm.‘ Em Qm Qm md m.N mé mé m6 Wm o.m mdw on Em 0K Wm Nm m.m_. odw m6 m.N Qm m4. m.N 0m md Em Wm m.m o.m m.m 8.6”: 558885 .20..» 0.00550 =E£ 50.0.5 A003 1009 .0950 SN 635 500556 __E£ 5905 A003 NINOV .mmcc 05~ 0859?. «.sz seen 25$ 585 20 63 0250200 0858» <25: 8.925 .920 8885. case. Nn_< 500550 :93 5205 Emncoomm 9.: - 002080350 6500.0 30.0050 mmemchEimocEmE b00503 00_moo:_m.m-c_0_cm>00£cmlmmocEmE no: 35.8.58 bmucoomw 5063 9.: mmm5Emmcmh 05005 Emucoomw 000.ng 05500.25 5205 0>:93 bmvcoomm omva 0:50:02? 0>:93 8:82 08382 838.3 8.0892 8FmNmz< oFENms< 83%: 88.082 88:82 88.82 88ng 088sz 8.08qu 853E 8.0392 888.82 89082 8N8m3< 08882 88va2 80882 80382 0050300200 E: .6 0:0 zozmofiaEEoo 0043:0825 .NHNmEVN Fm FFquN FaucmoFmN .mumFNmmN .N NNnmmN .mHNN8mN a 89.8 FannmsFmN .mlnNmNmN .wnvammN .mleomVN FmIFNmmmN FmsFanmN lexomeN “muosnomN KIN”. _. mew 000350000: lehnmnvm lenummmm umlmlmhwmmm “mHNvamN .mlmmmFmN .m «mommN 212 P :- v-ON ‘- NNF F For-O (0000') F) XXX Nd m.N N.m m.N m.N m.N Nd o.m m6 Q: 9m Nd o5. m.N m.N od 0m m.N m.N Qm 0.: 0.9 m.N Nam m6 0.0.. 0.« m.m Em N6 N6 Q: mé Em m0 m.N m.N m6 ON m.N m.N m0 m4... 0.0. 0.020205 5000500.: 5205 8.00.50... 5205 050.2 5205 05.05.00.529: 00005.0 00005.0 255.. 000205 3.5000 020:0 25.20.00. 5555. 000205 0520.6 02550 .5050 .0000... 0000 0.8.0 09. .0. 5:003 2.500 .2080. 0050.20 250 :00... 500. 00005.: 00.500020 50050000205 0.000. 5:520 +0. 052000.. 05350 ..00 05:0 5205 00005.0 5:000:02 205: 0:05:5E0c0: 0. .0_.E.0 00005.0 00005.0 00005.0 00005.0 00005.: 5000 000050 5000 00005.0 05.0.00 5000:0502 5000:0002 05.0:90 055:90 5000005.. 5:90 :00000050 5:90 05.0:90 5.250005 5205 .0505 0:05:50: 020200 5205 5:000:00 05.0.8002 025.00 00.90 .500. 0820.. 00.500090 50050000205 02.200 3.023 _ 0002550 0.00 05:5 5205 2... 0000.500 2050050405020 5205 00005.0 5000 020200 85$ 00002 00.082258 300$ 700030805000 202.50 0005090250 .9505 00050. 5205 05:02:55.3 02550 000:0. 50000 025.00 020.2. .6000. 00 00002088 000.0 0 0000:050005 0.5000000500505005 00....00050. 5205 05:00.55550 0030002 0108.00 0.20.005 0105000 0:590. 003000 0000502 0 0.0000 mum.“ btm 500.000.. 530.01 00.00002 0:00:00 0000.002 0.0830 0005000. 0:280 0003002 0H5500 00000002 0:000000 0000.002 0 «00000 050005 000300 00809.4. 0 000000 0000 53¢. I0H00¢0v0 0000002.... 0 0:000.00 0200002 0 0000.0 tommcmt. 00000034. 003000 00:00.0. 0 00050 Namtm 0.8.03.0 0000000 0500002 0:00800 0800002 0:000000 0500002 0 00:00 0200000. 0.100800 213 v P mmFNNmoFPVC’JOMP FOFNNPMF CO OONNCOC’) COCO 000000000000 000') X XXXXX X XXXXXX m.N Wm 0.0 m.» oé o.v Em m6 odw m.m—. wam Em; 9m o6 m6 Em Emm 5mm adv m.NN w. FN F. FN m.N m.NN #6» was gone flaw on Nmm m.N m.N m6 0d m6 mi Nd rd Qm PNF Nd 0m Q: odw m6 Em ... ..N 5mm m.N m.N m.N m.N Wm Em m.N o.m 5.65:: c2655 $505.5 c2655: c2655 2505.5 :25ch mag.» E2533 E3533 E3525... E35523 E25234 E35243 E35523 EquE<3 E35323 E2533 E2533 E23823 toawcmb c2620 mmcmcmu omcmwon owcmhmc 35th mean msmm 95.5w ucm 0.5393 08m $9.09 5555 85855 :zaévmooi 25.83 520.5 5:58:85 28 9 .m__E_m 6.5808 5555 8.0.855. 2.2531005 3&8; 520.5 canmE=oom 200 9 5.3.? £5.09 5205 859%» 3208 c555 859on £295 mx__-cumE:m£ ”Eco 38¢ .22 2°55 E253 @2me E25% 85.00 5:60 35%: E252. 85%: E235“. Smog E233 2E5 529:. $3: Emucanm w_wmcomo>._nEm Sm. $233 5555 8.. 5x820; 0>:93 590.5 85669 359.6 mzamuza 5305 8:823. mmmmwfi 3:92. mmmcEcooucm mzfisa £996 3035-592 9:33 >__E£ £205 vmufloowmm$ocmowmcmm Noam o. 5:86 .3 £295 uofioommméocmommcow Ama>-8m£ $2585 5298 5.265 88585 8.885 283% 82595 82595 88.95 o 3’ 3.5 28592 28585 85385 85985 88585 28585 88:55 853% 88525 8:595 o3o~mz< 85895 23%.? 23°95 88085 85882 883?. 83535 88355 05:82 23095 “mummsmmu .5 Pomsou .mmomvmom .5 omommm .m:mw~mm~ 5:3 82 ~5:~m¢~o~ ~5:¢o—mm~ .m:~mmm¢~ .u:~mmme~ 58:33.5 ~5:~mv~m~ .m:~o«~m~ 5:538 5:833 .m:o.mom~ .m:ovmmm~ .m:o~mmm~ 5:? E8 5:838 5:238 5:838 5:383 .5:mmmoo~ 5:583 5:583 5:353 2935:. .. 3th .m:¢vm~m~ 214 ONNPmeF NO 0001-0! (‘0 0000000000 ('0?me X XXXXX XXXXX Nd ...NF mi mm m.N Nd N.m miw m.N m.N mdh min m.N N.m m.N oi m.N Wm o.m m.N m. 5 mi? mi 9.0 m.N m.N mi Nd m.N m.m o.m mm m.N m.N Em mm oi mi m.N Em m.N Em 0.0m oim m.N 0.9 N...” mi mm 0.9. F.Nw m4 F gocxca ESOCXCD 5.65:: 9505.5. 9505:: 5.65.5 c2653: :30:ch wfimfigm <20 :32 <20 92058. .539»? cgocxca 5.29.3.3 :95 :8 =53 =8 =95 =8 =53 =8 :53 :00 =53 =8 =53 =8 =53 :8 $505.5 5505.5 5505.5 5505:: 5505.5. 590.5 3.5.2.533 £205 mcficfi <20 02253 858 B >=Em¢ cowoamcflu anEw 2 2929 599a notbcfizm 02253 mNN<>I< £295 cutééoa 2 .m__E_w £205 5558 x09: 5205 22:8 922 5:60: 98:5 .523 fig: <20 555 225.. 52.552 6822... 5205 8035-28 068QO 2 .m__E_m 22.2 585.82% 5205 850035 23220.8 803 m 552 32.3288 E5 owfimfimczoca 2 5:86 >__E£ 3928:3092 34¢wa >__E£ £295 Emcqum : 522183 v 22.2 8255525826 5205 mx__.¢wmu_moo:_m.flon 35>. 2903 9:83 639 385836.38 9:93 .mmmcohaomfimzoa $208 5555 2.5855 8.022950 5205 28892:. 5555 9.: 223 v .223 83882 5:888 82182 5:888 88882 5:388 25882 5:3588 8832 5:888 8232 5:858 2832 5:888 8:892 5:888 3242983 8882 5:588 8882 5:858 52% =8 25 E52. 9 <20 08892 5:888 85892 5:888 8582 5:.588 :OtmNEm 0 23330 88582 5:888 88582 5:888 8832 5:388 88:22 5:80.88 $8852 5:888 95882 5:258 $8082 5:858 383:2 5:828 @8583 HEEEU 88592 5:888 8832 5:888 8882 5:~8$~ 8832 5:888 8832 5:288 C555 924 .223 215 NPONPFOOPNOFFNPFNPMNFPNP PO NPFN (000000000 com ”COMM C000 (0000') XXXXX XXXX X X 0.« m.N oi 0.2 Wm Nd Em oi 0.2 No Em m.N 0.0 o.m m.N m.N o.» 0.0.. NM ...0 mi odw m.N m.N o.m 0o. odN mi 0.0 m.N m.N Em m.N oi Nd NM m.N 0.0 o.o oiw Nd oi o.m 5.2 oi oi m.N oi i.e.. m.N mi No oi Nd mo Nm 9.: mdm Em m.N oi oi 0505...: 0505...: 5505...: 5505...: 5505...: 5505...: $505.0: $505.0: 5505...: 0505...: 9505.5 0505...: 9505...: 0505...: 5505...: 5505...: $505.0: 5505...: $505.0: $505.0: 5505...: 5505...: 0505.0: 5505...: 5505...: 0505...: 5505...: 5505...: 5505...: 5505...: 5505...: £0.80 0000858 0.0.0.0 0000858 0.0.0.0 0000858 $0.80 0000858 0.0.80 0000858 0.0.0.0 0000858 0.0.0.0 0000858 0.0.0.0 0000858 2.0.0.0 80.8505... 0.0.0.0 0000858 50.0.0 0000858 $0.80 0000858 50.0.0 0000858 0.0.0.0 0000858 0.0.0.0 0000858 0.0.0.0 0000858 0.0.80 80.85005: 0.0.0.0 0000858 0.0.0.0 0000858 . 0.0.0.0 0000858 0.0.0.0 0000858 $0.80 0000858 50.80 0000858 0.0.0.0 0000858 5055 8.82.... 558.. c555 5.55. 020.2 5.28: 582202. 50.0.0 8.....000:0c.-0.00 0.0.0000 $0.80 0000858 50.0.0 0>.0:0008.t< E 8255 San 80.: 82.8 2m; 955533 0.9 new .wcozfiogm 65552 _0< 0 rd m6 c3052.: _‘ v.0 Em Esocxca F m.N Nd Esocxc: _. F.NF me ESOSE: 529a 3255an commommz 520.6 33930 owommmmz $205 83053 omEmmmZ £99m ummwmaxm omwmmmmz am mamnvm filfitem almouoem “mumcmmvm 217 2:39 mmmbm... o N.N- m.N- E529. 3:822 29% omNNommZ .mnNSSN o F.N? N.NN- :8,“ch 5:829. om< $53 83%? EINVNEN >=E£ 5205 o N x m.N- m.N- rage. Con: tamcgoaamaogo$283865 SFNmEZ 6:388 N an- 3. :SEE 289:8822 2223 8832 6:538 tommtmt. F m.N- N.N- msacgm 82: seen 5382 ooNNNmz< “NISNEN o N x m.N- an. 3.2% 81on 5905 £75385? SSENZ 6:823 towonbmtmh \m: .8 BE 2930335500 HE‘SGEQNS o N.N- 3- 2.3553 ov 59% 9:783. 39:85 8832 EINNEVN o N.N- 3.. $283 8.2% owm>_-m_cossm 82%.?ch oNNvommZ 518$ch o N x m.N- m.N- $288 :mmma>0\v5:93 8332 .mnmNmNmN o m.N- N.N- $283 9:83 .F emeamcsggmeé SSNBZ filmmSoN o N.N- N.N- 2a.. 83: 9:93 ENVNBZ EINNSVN o m.N- N.N- ca: 2E£$2E>m 593822-92 omomNmNZ 5:938 Ew__onflmo 2.309 O N x 3. m.N- __Eaeo_6 2.905 88278.38.833.E8520 283$ .mlmmNmmN o m.N- m.N- 293528 mmmgmossmmémn 2833 6:3th o N.N- to. 99258.8 :09 $5886.93 SVNmEZ .muoEmmN o m.N- N.N- 28 052m ANwzc $2.5m EgmeaaoaogN oNomNmmZ .NINSNVN 3% £92.83 9: mmmB 029.0an wmm mm 92.25 c8825. _0< “mm 39a o>2<\d:5 £3.38: 9: 8533 m5 c_ 2305 3:953 mmoPmo ”E .853: m5 cam Am 5329 mfibmcm mctmuwao .mOESEmE Eot fireman: comm No mmm_o cgmmmaxm 9F .mEmEtoaxm mfimE 9.0m ccm =8 05 Son 5 _m>m_ EofimN m .m ozmcoamm: 28 8.3m. mafia .8 AN 53ch 83 $95 9: 5E “mm 89a 9: 65 85055 5:28 96:38.. E8 9: c. ..x. :< .5505 En Avmm ucm NM: “6an was. 02 m5 5 829 @955 28 .A=5;.xoucEgasseeocfiu.«9,533 was. Em éF£2ENmBntm.3>>2\au£ xEmE>t< 3 8255 Emu Eat um>tmu 9m? macoEcgmmm 22 new .chzSOccm .EmEEmE _0< P 3”- m.N- 565:: 599a Bummaxm 83%? .mlmNSVN o men. 3. 565.5 52% gammaxm ommNNmmZ 5&3qu o N.N- m.N- :26ch 5905 Bmwmaxm 883% 5:338 o N x N.N- 3”- 555:: 529a .8338? 833.3 .mumonVN o 3- N.N- 565:: seem 83056 88%? .mnmummimN o m.N- m.N- 555:: 5203 839%». SE33 .mntmNmN o N.N- «.8. 565.5 59% 83056 2839‘ 6:233 o «.2. N.N- c2655 5205 8890.6 oSNommZ .muoBmmN o m.N- 3. 565.5 5295 832%» 82.3.2 uwnmnommmNN o N.N- 3. c3925 52% Emmeaxm SENSE 5:288 N N.N- N.N- 585:: 529a Runways ESNEZ .NISNBN 589 2305:: o 2‘. N.N- c2655 gins seen 9.25.420 286:: 9:282 .mumsamN o 3. an- :26ch coon: P 8:928 868% new 5958 ENNNmmZ “mlmonmN F 3:. ed. :26ch 2:5 seen :82 25mm. 883% “muooNNmN o 3”. m.N- :26ch 52% cocégga 9:33 Samoa? 6:238 39 $50523 o m.N- 3.. 529.8% 0>:93 .322 seen .883 08392 .mugmmN coumNEm o Kfigmo o N x m.N- of __m;__8 :axmv 5286 82692 .mnmmNmmN . .5 338 o 3.. m.N- :ofiosxeoc 6.59 39982555936 ommNomNZ amuwnmfimoN F N.N- mi- 089% AN.Eon=9___-c_29a.8558 333m? .mnNmSVN $220 0 N x N.N- new. $8qu mmziE 529a 8:928. 38% 9:93 SNBNNE 515$me o o3- 0.». $83.0 9693 .5905 5258353 oNoonNZ auximmmNmN o m.N- N.N- 35% :-mav F 2290. 8.29-233858 233% 51383 219 m.N m... $8558.93 50.9.. 9.59:8 52.8 3.758393... 08.882 3:888 583 m.N m.N 9.2% some. $2.. 529.. 8‘88... 8:838 qm m.N c8825. .95.» 2.55. seen 3:88. 23.29... 8839.. 5:388 N.N 9m 8.6822. .953 $2... 529.. ascoectmécm mesa oonNms< 5&8va couoabmch E: ..m bum. cozmoEaEEoo 63:86.5 m.N N.N 285...? x8= 9.52.. 883:... 6:888 3 N... v.8 2.8 .NooSNmam. omm_>xoem8u 9.3.95 8:33... 5:888 o... m.N 28 2.8 mmmaxonaomu 29:92.. 9.6.3 S883 .deNNmmN g wwflo mzmcoamm. meawéwa 99:35 5:80:94 5.... .0w 39a coammaxm .28 Ntfiummm ZO_wmmmaxw NFHt0.>>3>5dz£ xEOE>t< >0 00030.0 0.00 50.. 002.00 0.03 2005:9000 0.0. 0:0 000320000 0.05200. .O< vvm V’V X m.N md oé ed mum m6 mKN odm on 0.9 Wm m.N o.m m.N m.N m.N m.N o.m mé m.m 9v ad 9v Em Em m... m.N md Q3 0N md v.0 Em Em ON 06 Pd _..0 m.N m.m m.N mé Nd Nd m.N m.N N.Nv ON 9v Em 5505.5. 5505.0: 5505...: 5505.5 0305...: $505.5 $505.5 5505...: ..03 :00 =0.> =00 5505...: 0305...: 5505.5 :26ch 0265.0: c0..00.....x200 00:22. 0000.00 0000.00 0000.00 005.00 000200 0.020205 .5032. ..000:0.. 520.0 5505...: 520.0 8050509... 520.0 00000.58 520.0 80.8509»... 520.0 .c00c:00.0>.0:.0 02.050 02.050 .520... .095 0:8 satiro 520.0 00000.58 520.0 00000.58 520.0 020.0..m5c05. 02.230 2.50. 000.202.5000 :00... 2..-. 3028 :00... Q...-. 3.20.. P 3028 ....Em. Ch... 520... .20c0b 505000.20 0000:0555... 00020.0 :00... 2..-. 3020.. 02.050 000.220.. 2.0.5236 2.1.00. 520... 9.55:5 0000220500200 than: F 520.0 020.0.-0_00c000500 0005550020 02.0.30 :00... 2.30.. A ...Nuon: 02.22. 520.0 500200 2.0.0 02.050 .2535 50%.. 02.050 02.230 .520... 5:002. 88082 8.882 8.882 .0H0memm .0:.0000~ .0 .02000 888.2 0:x:~8~8 89802 8582 888:2 8892 520.. $305.23 0:888 0:828 0:828 .0:-000~ 0.0. $305.23 8.882 0:888 8882 0:888 9005003403500 8882 0:288 8832 0:288 8882 0:888 88082 0:388 888.2 0:08.00 80:82 0:888 88082 0:808~ 9882 0:888 8882 0:888 08882 0:888 8882 0:388 20882 0:888 8882 020.0. 000.5 .mlemmmmw 20.. 0:0 0500000.... 520$ 02.220 ..2000.0002888029220002980000:.m 00309.2. 0.20.6.0 0520... .20000. .c00c0008mcoh omomommud. .0I0INRomN 5.08:0... 0:838 221 .565 m_ AN ..mfimcov m_m>_mcm octmuwao .moEEEmE E0: atomcmb comm ho mmm_o 56.35%. mg .mEmEtmaxm 98E 9.0m ucm :8 m5 Eon c_ 65. Sofimd m am @2283. Boo 8.82 9.63 .2 Am .2930 $3 mtmuto 9: .9: “mm 805 9.: 65 8.86:. 5228 9.8039 28 9: E ..x‘- :< .5505 9m 675a new $93 “5an 3:: 02 m5 5 mm:_m> mmcmfi so“. .A=5:x853Eméaasfimm.8.23:5 was. new .cEE§~m33m_o.a_«§§u§5 mo: .35.gaoosewggég 222 N.N- m.N- ransom... 02.8.... .3326 .8223 388. SNommNZ 61328 N x m.N- ...m- 528% 83. 2.9688 3.9.... 8839.... .mnmmmmfi m.N- N.N- $9.83 8....392... 2298.98 2339... sigma . x N.N- 3. 528% 02.9.... .mmmpxo 22.8%... 8.38.... .mIFNooVN Nd- Wm- Emucoomm £905 9.: magic mEEm .maaoo omwmpmvz .mlwlmmmvmm 9:83.. .3338 0v. m.N- Emccoomm 00$ mmmExo 23.6.3.8.ancmn2aofi>oosEmé 8339‘ filmvmmom m.N- 3. 5.2.83 9.5.... .3988. 29:8... 8.63.2 .mlmaNoN 9N- m.N. $289. :2... 652.25 .Emsse 52°... 8.59....» =8 88.82 .NINNNBN m.N- 3. $9.83 3:... $9322.35... _o.m....8o..m...emm 22692 .mnmNmNoN N x N.N- N.N- $9.83 ....Em. 8E 3262.... oENNms< 6:38va 3. 3.. 89E... v 82...... SNNNRZ .mqummeN m.N- m.N- $8.... 5...... 58.85.... 2.2.56-8: Emma 8833 6:888 N.N- m.N- 2.... .59.. P 82...? 50.3899...” 0895... 20m Em. ON. 892 .muonEN N.N- .....- 2.... ....Em. $3.3m <8-_..omo.9_-m.3 85.92 .muoszN N x 0.2- no. 2.... 89:58.. 529.. ......8 ...om $236 9.5.... 883:... 5:383 . m.N. m.N- 2.... .59.. F 32...... 4.8.3829...” $88... .28 En. 8308:. 5:583 m.N- N.N- 2.... ....Em. $2.5m 4.8.58.9.-98 ommmNmNZ 6:938 m... hm- 2.... 529.. $2935.32... 52.5.80 omomNmz< 61833 N x N.N- m.N- 28238.8 N ....Em. 329.2... 389.... omNNomE< .mutmmmN an- m.N- 99328.8 262.... .ommco.=.om.mm>.8 88.82 .muNzomN m.N- c... 29358.8 529.. m 2.5... 399...... 389.5 05282 .mnogNmN m.N- 3.. 222.598 32......“ 08.25 853m... .mumflNmN no. of 92.358 3.2.... 685...... 6.3m Sagas... 5:323 3. 3. 999.528 02.9.... .. 72d. «858.358 6.2%... 8233... .mnmmmNmN 3- ..N. v.8 2...... Em... 892.8... 2.58.323 3832.. .mnmtmmN 83% mwm_o 96:83. 3.9% 99a 22.95 c3285.. 5.4 “mm 82a 8.39%. ...oo Ntfinwmm ZO_wmmmn_xw NFCQN O._. wszawwm Z_ DMHSDOMKiEOD mem memn. .2. w._m<.r ... x_ozmn_n_< 223 COCO Q..? mé. 0m- m.N- 0.? 9m- 0m- 0.9- m4». Wm- Nd- Yam- m.N- méw- m.N- m.N- m.N- 5mm- m.N- m.N- Q....- We? m.N- Wm- Em- m.N- Em- 0v. m.N- Em- Em- m.N- 0.7 m.N- 0.7 9m- 9m- OK- 0..? mdm- Nm- mum- Wm- m.N- Em- Cd. 0.7 0v. m.NN- m.N- m4... m.N- m4? m.N- 0v. m.m- .5029. «.0025... .535... .5029. toamcmb 0.3558550 530.580.. 5.3.5.50. 3.9.0 mc._mcm.w ac._mcm.m 9.3.5.... 05.0.57, 05.0.66 5.83020... .957. 20303020.. Ram... m.mo.....>m m <21... m.m0......>w 2.sz m.mm...c>m w w <21... $35.56 xon.momu 0.92.8 88282 880.82 8mmN82 8.8.92 8.2.92 288.2 08.8.... 22.89.888.328. 88022 >_.Em.. 03.230585 0v.._-....:0...o_mo 2.8m. mmfimcamoca 0.00 293.. ....Em. 0.6:... 50.0... 0929.03.23.00533 .0..w0c._>0..m..qm0..a-w 50.0.0 >_.Em.. ommc... 50.0... 58. 9.88.8 $9.... 8...... 3......88. mm. 50.0... 53008.00 02.82. 8.832 888.2 888.2 888.2 888...... 9.. . .92 80882 .mlnm..mN .mnmmv.VN .muwmummN .mnsnmNmN .muoo.mmN town—lat. .ml.ommmN .mnnmmeoN .muo.¢mmN .mu..mmmN Namtm .muNmm.VN .muhmomVN .mnmmmoVN .mlommNmN .mIDFVmVN .mIFmVNoN .m|~.ommN 8302. 529.. 88.82.). 50.0... .mm......o...~ 02.82. 50.0... ....Em. 9.9.3.5820 022000905350 ......8. 88... 31.. 2.8m. 50.0... 2262. 0.2.0.5... .0030 0: .309 m 00568520... 9.0:... 5.00.0.0 mmoEmauw : . .95.. .28. 88:88.. .....8. ....s. 80022.. .98. 88.88.. ....8. .022. 28.3. 5%.. 8.8. 88.88.. 50.0... >_.Em.. <<=xs< m>.wcoawm.-c.x:m .90.... 5.3.89.9. 2.0.3 ...»... 2.2.3 omva 00.0.5030 50.0... 2.8m. 3905...... $80:3102385502025: 88802 ....NmNmN2 98382 88032 888.2 23.82 8.882 88802 8.882 883.2 28.92 83832 888.2 00.83038. .0: ..m 0.... 00.30.53.026... 8.2.8.0.... .mnmomBN .mlnnmmoN .mnNmmomN .muvmommN .mnoomomN .mupmonmN .mnvmmNmN .mumo..mN .m:m~m.mN .mnmvnmmN .NIVmoooN '00....mlto.-m.:_ E. ...... 81888 8.4.8.8 224 o.m: 9m- Em: m.N: m.N: 0.7 m6: Qm: m.N: m.N: mdN: Nd: m.N: Em: Nd: F.N? ed: mi: 06 7 m6: «.5 T o.v: 0.7 m.N: md: Nd: m.N: m.N: Pd: m.N: m. F T m6: m6: 9m: m.N: QM: QT mi. m6: m.N- Em: m. e 7 Na: m.N- QT 0.7 Qmm: mi: 0m- mép: adv: N.N? Em: m6: Qm: 0.07 m.N: m.N: m.N: F.N—V m.N: md: =95 =00 =95 =00 =95 =8 =95 =0o =95 =8 =95 =3 =95 =3 =95 =8 5505:: 535055858 5.30:..ng cozmoExouou 5.258535% connoExofiu cozmoExofiu 3:93 3:93 cusp—mu 9.39% 3:93 3:905 3:965 9.55.0295 "55.0205 £96905 3.056905 52505505 5995 toamcmb toamcmb toamcmb toamcmb £29m 5.2.9 $55. 2903 53¢me 939.3 66598 83mg ow5£=5m 30.2.00 9 3.3.3 82wa 5286.58 025.8. 3928.559: 503 6 2.59 935:5..5 30.2.8 2 3.55m SICO 3958056295005 5.5023255. 85.5 3958055295055 :mo:_mo_5x 520.5 5=E9 ozmcoam9989gnon $536.3 9:92. @325th «£593 25:9 5905 538.936 2999 3539.8 359ng 9393 $538.53 9293 a. £09 £2555 592:3 5205 8:993: mammmfi 9:93 9:93 .336 wmz-~=b 5905 8:993. 3535 9:93 .5890 «:.: 5205 8:99me 3536 59999555 “522039322235 0>:93 .5205 5305.6 253 £205 30:55:59.5: @2593 3520.5 mctmm 3:93:33 520.5 55:9 05 333355950 mctom 0>:93 635205 «5950 5995 55:9 orw 352335598 958 39.5. 520.5 33.9 N 5205 25:9 ..mtoa.._mm:w c555 9:39.“. 33582 531833 5=Efl 6:03:95 @933 83092 5:333 85892 5:533 853m? 5:883 o33m$< 5:m :53 25:92 5:323 2.5592 5:333 o 3892 5:333 333% 5:35.33 @525 .5 x3230 5.3832 5:533 at 332 5:933 8:582 5:583 83:32 5:833 o3 39.3 5:333 9.3892 53.9333 So3ms< 5:333 335.82 5:983 8333 5:533 23382 5:533 83392 5:5:333 2559.2 5:333 35332 33333 85332 5:533 b65309 mmth 3.385. 5:8t3 .3332 5:353 33.332 5:333 8333 5:333 8332 5::33 95. = new 3.9.3896 $991 83382 5:53.53 33392 5:25 3 8832 5:383 Awhmzv 8:829. 29:: bEEmfimE 225 .3955 _:lko:.|« cm 226 5.3- 3.5- 555.5 5555 8855.555 5339.2 5:8353 5.5. 5.? 5355.... 5955 5.5.9 5 855 89958.... 555 5.5392 5:35.83 3.55. 5.5.- :25ch 5955 85.9532 2.33552 5:8583 5.5. 5.3- 5355.5 5555 .5: 55555 53839.2 5:353 5.5- 5.3- 555...: .359 59555955555595 555559 833352 5:83.53 5.2- 5.? 5.55.5 5995 8555-555; 55955 3329.2 5:583 5.3- 5.? 5.55.5 592.. 5855-555 2 5.5.5 333532 5:53.53 5.:- 557 $55.5 5555 5.5.9 55.55.55 85392 5:8333 3.. 5.3- 5.55.5 . 80$ 5 8.55:8 558.5 .25 85559. 5333552 5:853 5.5- 5.5- 5555 592.. 85.885.858.528 8392 5:583 5.5- 5.5.- 555.5 5995 .5: 9.555 5555.2 5:583 5.5- 5.3- 525:5: 5 5955 55855-55555 9 55955 559:8 2335552 5:833 5.3- 5.5- 5355...: .559 5955595555555 9....55559 55892 5:883 5.3. 3.5- 5385: 5955 85559-555 85832 5:533 3.5- 5.5- 555.5 55.55 5 $9... 5.5.89.5 ._ 5.5.9 885.2 5:3533 5.3- 5.3- 5.55.5: 535.6. 5955 9.5-5555 855552 5:5:333 5.3- 5.3. 555.5 5.5.9 58525 3335552 5:333 5.3- 5.5- 555.5 5.5.9 855.5 . > 55 58392 5:333 5.5- 5.5. 5555 5555 559 .555. 02.5 555.5158 555.. 553 832-92 5:353 3.5- 5.5. 52555 5955 55955-5555 8882 5:35-83 5.5- 5.3. .5555: 3.59 855.. 5993 5.5.9 5995 555. 55:55. 885552 5:3383 5.... 5.5- $55.5 .559 5955595555555 55-55559 3.5532 5:893 5.3- 5.5- 555.5 5555 559 55.5555 3582 5:383 5.? 5.5. 855.5 5520 o. 5.5.5 85392 5:35.353 «.8. 5.33- 5.55% 5955 55.55555 959.5 5.58532 5:283 90.5 25502th 5.5. 5.5- 55.9.8.5 9592. .559 553.555.855.85 8355.2 5:383 3.5- 5.5- 55.9.8.5 .9593 .559 553.555.88.85 8589.2 5:3583 5.? 5....- 5555955 .5559 5.55 858552 5:833 50:59:55.6 5:53:50 5.3- 5.5- .5; .55 5559 5955 .5: 5555 8535552 5:333 3.55- 5.55. .5; .55 525.2. 58.585.555.558 58:55.? 855552 5:3533 5.5- 5.5- .5; :8 559 8998559. 583552 5:883 m.N- m.N- od- m.N- m.N- m...- ...-N: 00. c.0- m...- m.N- m0: Wm- m.NN: Qw- «.m- «.m- Em- m0: F.N...- Qm- m.N- Wm: m0.- 0m.- m.N- F.N.- m.N- ode: m.N- od- m.N.- Em- m.N- m.N- m...- m0: Nd- m0. 0&- 0.0: On. m6.- QM.- m.N- m0. m.N- Em- Qw- 0.0. m.N- Em- m0: $.07 m.N- m.N- m.N: 9m.- v.0: Em.- odw: m.N- ad: 0...- En- m.N- m0: m.N- 5305...: 0305...: 0305...: ..30......: 0305...: 5305...: 0305...: 0305...: 5305...: .3053: 5305...: 5305...: 0305...: .3053: 5305...: c3053: c3053: c305...: 5305...: 0305...: 5305...: 0305...: 0305...: 0305...: 0305...: .3053: 5305...: 5305...: 0305...: 5305...: 5305...: ..30:....: .3053: 5305...: ...0.0.0 32.0509... 0.0.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 32.05.09... 0.0.0.0 00000.98 ...0.0.0 00000.98 5.0.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 00000.98 50.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 00000.98 50.0.0 00000.98 0.0.0.0 00000.98 5.0.0.0 00000.98 0.0.0.0 00000.98 5.0.0.0 00000.98 50.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 32.05003. 50.0.0 00000.98 ...0.0.0 00000.98 50.0.0 00000.98 5.0.0.0 30:05.09... 0.0.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 00000.98 0.0.0.0 00000.98 55.5555... 5:.3553 5.53.53... 5:55.53 53.5555... 5:555553 5555.9... 5:55553 553353.. 5:3553 5555555... 5:.353 55.5.53... 5:3553 55.3553... 5:55553 5535.55... 5:5..353 53.5.55... 5:..5353 555535.... 5:53.553 5.35555... 5:5.553 5.55555... 5:333 555555.... 5:553553 5555555... 5:55.53 55355.... 5:..5553 535.52.. 5:5533 553553... 5:5:3533 555555.... 5:35333 5.5..55... 5:55553 555335.... 5:35.53 5555355... 5:55.53 53.55.... 5:3553 553.55... 5:5353 5333555... 5:5.5553 555.55.... 5:5.553 5555.5..< 5:33.53 5535555... 5:3553 55.5.55... 5:35.53 53.55.... 5:333 3:555... 5:333 5553.53... 5:55553 5555553... 5:55353 53.5555... 5:55.53 227 .5505 m. AN ..mfimcov m_m>_mcm @5552". 32:99.9: E0: automcmb :08 B wmm_o cgmmoaxm 9:. .mEoEtmaxm 98E 20.0. new :8 05 Son E .05. EQEN m am 02288. 28 8.8m. 9:2. ..8 AN .63ch $3 mtmfio 9: 6E «mm mach ms. 65 «2865 £5.00 029539 98 m5 5 ..x. :< .565 95 379a new ode“: “5an 3:: 92 m5 5 mm:_m> 85% you. .A=5;.533gassesmfimm.323:5 was. .25 .cEfi:%3§99§.§EE=5 mm: 3556985993223: m_<._. .QEoo.xEmE>tm§32<>a=5 xEmE>t< B 325.5 Emu E0: 32.2. 295 mEmEcgmmm 20.. new .mco:m.o:cm .EmEEmE _0< mm- m.N- 5.6ch seen 839me oomowrwéz .mlmmmvom m.N- m.N- 565.5 22% Emmeaxm 8:582 6:833 ET. 3. 565:: 529a Bumoaxm 28$? 5:338 3. mm- :26ch 5295. memaxm 8:32 5:333 m.N- 0.«. :26ch 5205 88055 omvvmmmz .mnmfimvm m.N- 3. $6ch 592. Emmeaxm 88.3% 6:838. ma- 3. :26ch 5290. Emmoaxm 08892 5:888 mm- 3:- :26ch 5205 Emmoaxm Sugar? $1388 228 (a) AT3G46080 AT3G4609O AT3G4607O ATSGS9820 ATBG46080 ATBG4609O AT3G4607O AT5659820 AT3G4608O AT3G46090 ATBG4607O ATSGS9820 (1)) APPENDIX K THE BEST BLAST HITS FOR ZAT12 IN ARABIDOPSIS ‘1‘.*-‘.1..I;.:I‘~..~_:a f.;.\:II.‘ ‘.\. TILL; LU IN.‘:;:" HPCPICGvfiFPMCOALGGHMRRHRNI' "I. PIC IE rpmeQALeGHhaanr * "'”:aa&I firm; I GUI1*H%UU .‘II\I‘ . I RSFL I ETTTV'III Knfisscm 'SFEPE 1 T TVTTLKKSSS‘ J ATSGSQBZO l M36460?!) AT3G46090 —— 313646080 Figure K.1. Amino acid alignment and relationship tree of the best BLAST hits for ZAT12 in the Arabidopsis genome. (a) The ZAT12 (At5g59820) protein sequence was used in a BLAST search against all Arabidopsis proteins. The best BLAST hits are shown in an amino acid alignment created with ClustalW v1.82 (add webpage). The C2H2 zinc fingers are indicated by astericks C“). The EAR-like domain is indicated by colored circles (o), The three best BLAST hits for ZAT12 are located one after the other on chromosome 3 and are the only C2H2 zinc fingers in the Arabidopsis genome with this chromosomal arrangement. (b) A relationship tree that depicts the relative relatedness and distance of each sequence is shown. The tree was generated by ClustalW v1.82. 229 .mIUUUOBflBdBBBOURBBGOOQdUUdefiBdBBBwUBBBUUOOdUUflUdflBdBBBOUBBBQOwwdowdwddedeehwuBBBOUQOdUOdOdUUUQOOEI.m .mI484B¢4¢UO¢¢4000UBUUBUBB¢B¢<4UD<¢¢UUUUBOUEUBB¢B¢¢40©4¢¢UUUUBEDROBBdBfifidUQdfldUUUUBQUBUBGUUUUUUFBfldI~m .(BUUU¢(d¢.uhfififi€A .mIUUD@B¢B9 330:8 £523 “we 2: E 850% £ £88 2; ....mfia omv~63< 8525 599a mx__-:._m__E£ 592. $89 9102, 8852 >M"; 0; while (<>){ chomp; my ($name,@array)=split("\n",$_); my $sequence=join(",@array); print uc">$name\t$sequence\n"; } CRT_counter.pl PERL script #l/usr/bin/perl -w #This script takes as input a fasta sequence file in the form of “>AT1G01010 ATCTGTG. . .”, after it has been run through the unwrap_fasta.pl script. It then counts the number of CRT/DRE elements present in the DNA sequence and returns the AGI number followed by the number of CRT/DRE elements present. use strict; print "AGI (A/G)CCGAC\n"; while (<>){ chomp; my ($acc,$seq) = split "\t"; (Sacc) = Sacc =~ />(AT[\d|\w]\w\d{5})/; my $count=0; while (Sseq =~ /([A|G]CCGAC)|(GTCGG[C|T])/g){ Scount++; } print "Sacc $count\n" } 232 CRT_distance_counter.pl PERL script #l/usr/bin/perl -w #This script finds the distances between CRTs in all promoters that contain one, even overlapping ones, in either orientation. It does not return a value if there is no CRT in that promoter. The sequences used as input must go through unwrap_fasta.pl first. use strict; print "AGI\tdistance_between_CRTs\n"; while (<>){ chomp; my ($agi,$seq) = split "\t"; #This finds all the AGI numbers and makes a list of them. (Sagi) = Sagi =~ />(AT[\d|\w]\w\d{5})/; #This finds all sequences between CRTs in the sequence (in both orientations) and makes an array of them. my (@seq8)=($seq =~ /(?=(?:(?:[AIG]CCGAC)|(?:GTCGG[C|T]))(.+?)(?:(?:[AIG]CCGAC)|(?:GTCGG[C|T])))/g); #This takes each element in the above array and determines its length. I am replacing the sequences in the @seqs array with the length of each sequence. The foreach loop allows me to do this for each element in the array. foreach $_ (@seqs){ $_ = length $_; } #This will print out the AGI followed by the lengths of any sequences between CRTs, seperate by tabs. print "Sagi\t",join("\t",@SeqS); print "\n"; l 233 CRT_to_start_counter.pl PERL script #l/usr/bin/perl -w #This script finds the distance from the hp after the last C in (AIG)CCGAC to the end of the sequence. When using the lkb upstream dataset from TAIR, this corresponds to the beginning to the 5' UTR. Some genes don't have annotated UTRs, in which case the script finds the distance to the ATG. Transcripts without annotated UTRs can be flagged manually. use strict; print "AGI\tdistance_to_start\n"; while (<>){ chomp; my ($agi,$seq) = split "\t"; #This finds all the AGI numbers and makes a list of them. (Sagi) = Sagi =~ />(AT[\d|\w]\w\d{5})/; #This finds all sequences from the end of one CRT (starts after last "C" of (AIG)CCGAC) to the end of the sequence (on either strand) and makes an array of them. my (@seqs)=$seq =~ /(?=(?:[AIG]CCGAC|GTCGG[ClT])(.+))/g; #This takes each element in the above array and determines its length. I am replacing the sequences in the @seqs array with the length of each sequence. The foreach loop allows me to do this for each element in the array. foreach $_ (@seqs){ $_ = length $_; } #This will print out the AGI followed by the lengths of any sequences between CRTs, seperate by tabs. print "$agi\t",join("\t",@seqs); print "\n"; } Motif_extractor.pl PERL script #l/usr/bin/perl -w #This script takes as input a fasta file that has been run through unwrap_fasta.pl. It searches for a given element, CCGAC, and extracts the pr upstream and downstream of the element, if it is there. The script takes the element from either strand of the DNA. use strict; while (<>){ chomp; my (Sagi) = />(AT[\d|\w]\w\d{5})/; my (@watson) = /(\w{0,4} [AlG]CCGAC\w{0,4})/g; my (@crick) = /(\w{0,4}GTCGG[C|T]\w{0,4})/g; my Sreverse = reverse ("@crick"); Sreverse =~ tr/ATGC/TACG/; print "Sagi @watson $reverse\n"; } 234 LITERATURE CITED Albrecht, V., Weinl, S., Blazevic, D., D'Angelo, C., Batistic, 0., Kolukisaoglu, U., Bock, R., Schulz, B., Harter, K., and Kudla, J. (2003). The calcium sensor CBLl integrates plant responses to abiotic stresses. Plant J 36, 457-470. Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, K, Schmidt, 1., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, CC, and Ecker, JR. (2003). Genome- wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657. Artus, N.N., Uemura, M., Steponkus, P.L., Gilmour, S.J., Lin, C., and Thomashow, M.F. (1996). Constitutive expression of the cold-regulated Arabidopsis thaliana C 0R1 5a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci U S A 93, 13404-13409. Baker, S.S., Wilhelm, K.S., and Thomashow, M.F. (1994). The 5'-region of Arabidopsis thaliana CORISa has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24, 701-713. Bouchereau, A., Aziz, A., Larher, F., and Martin-Tanguy, J. (1999). Polyamines and environmental challenges: recent development. Plant Sci 140, 103-125. Brush, R.A., Griffith, M., and Mlynarz, A. (1994). Characterization and quantification of intrinsic ice nucleators in winter rye (Secale cereale) leaves. Plant Physiol 104, 725-735. Bubier, J ., and Schlappi, M. (2004). Cold induction of EARLII, a putative Arabidopsis lipid transfer protein, is light and calcium dependent. Plant Cell Environ 27, 929- 936. Castillo-Davis, CL, and Hartl, D.L. (2003). GeneMerge--post-genomic analysis, data mining, and hypothesis testing. Bioinforrnatics 19, 891-892. Chen, H., Li, P.H., and Brenner, M.L. (1983). Involvement of abscisic acid in potato cold acclimation. Plant Physiol 100, 291-296. Chen, J .Q., Dong, Y., Wang, Y.J., Liu, Q., Zhang, J.S., and Chen, S.Y. (2003). An APZ/EREBP-type transcription-factor gene from rice is cold-inducible and encodes a nuclear-localized protein. Theor Appl Genet 107, 972-979. Chen, W., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, H.S., Eulgem, T., Mauch, E, Luan, S., Zou, G., Whitham, S.A., Budworth, P.R., Tao, Y., Xie, Z., Chen, X., Lam, S., Kreps, J.A., Harper, J.F., Si-Ammour, A., Mauch- 235 Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J.L., Wang, X., and Zhu, T. (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14, 559-574. Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T., and Luan, S. (2002). Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129, 661- 677. Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J., and Luan, S. (2003). CBLl, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15, 1833-1845. Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu, J .K. (2003). ICE]: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17, 1043-1054. Choi, D.W., Rodriguez, E.M., and Close, T.J. (2002). Barley CBF 3 gene identification, expression pattern, and map location. Plant Physiology 129, 1781-1787. Clough, S.J., and Bent, A.F. (1998). Flora] dip: a simplified method for Agrobacterium- mediated transforrnation of Arabidopsis thaliana. Plant J 16, 735-743. Cook, D., Fowler, S., Fiehn, 0., and Thomashow, M.F. (2004). A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101, 15243-15248. Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a sequence logo generator. Genome Res 14, 1188-1190. Delseny, M., Cooke, R., and Penon, P. (1983). Sequence heterogeneity in radish nuclear ribosomal RNA genes. Plant Science Letters 30, 107-119. Demmigadams, B., and Adams, W.W. (1992). Photoprotection and other responses of plants to high light stress. Annu Rev Plant Phys 43, 599-626. Desikan, R., A. H-Mackerness, S., Hancock, J.T., and Neill, SJ. (2001). Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127, 159-172. Ding, J.P., and Pickard, BC. (1993). Modulation of mechanosensitive calcium selective cation channels by temperature. Plant J 3, 713-720. Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki, M., Shinozaki, K., and Yamaguchi—Shinozaki, K. (2003). OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33, 751-763. 236 Duman, J .G. (1994). Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys Acta 1206, 129-135. Dure, L., 3rd, Greenway, S.C., and Galau, G.A. (1981). Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20, 4162-4168. Dure, L., 3rd, Crouch, M., Harada, J., Ho, T.-H., Mundy, J., Quatrano, R., Thomas, T., and Sung, LR. (1989). Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12, 475-486. Emanuelsson, 0., Nielsen, H., Brunak, S., and von Heijne, G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300, 1005-1016. F einberg, A.P., and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132, 6- l3. Fowler, D.B., and Gusta, L.V. (1979). Selection for winterhardiness in wheat. 1. Identification of genotypic variability. Crop Sci 19, 769-772. Fowler, S., and Thomashow, M.F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14, 1675-1690. Franks, F. (1985). Biophysics and biochemistry at low temperature. (Cambridge: Cambridge University Press). Gilmour, S.J., Hajela, RK, and Thomashow, M.F. (1988). Cold acclimation in Arabidopsis thaliana. Plant Physiol 87, 745-750. Gilmour, S.J., Fowler, S.G., and Thomashow, M.F. (2004). Arabidopsis transcriptional activators CBF], CBF 2, and CBF3 have matching functional activities. Plant Mol Biol 54, 767-781. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F. (2000). Overexpression of the Arabidopsis CBF 3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124, 1854-1865. Gilmour, S.J., Zarka, D.G., Stockinger, EJ., Salazar, M.F., Houghton, J .M., and Thomashow, M.F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16, 433-442. 237 Gong, Z., Lee, H., Xiong, L., Jagendorf, A., Stevenenson, B., and Zhu, J.K. (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci U S A 99, 11507-11512. Griffith, M., and Yaish, M.W. (2004). Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9, 399-405. Guiltinan, M.J., Marcotte, W.R., Jr., and Quatrano, RS. (1990). A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250, 267-27]. Guy, CL. (1990). Cold acclimation and freezing stress tolerance: Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 187-223. Hajela, R.K., Horvath, D.P., Gilmour, S.J., and Thomashow, M.F. (1990). Molecular- cloning and expression of COR (gold-regulated) genes in Arabidopsis thaliana. Plant Physiol 93, 1246-1252. Harmer, S.L., Hogenesch, J .B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J .A., and Kay, S.A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113. Hincha, D.K. (2002). Cryoprotectin: a plant lipid-transfer protein homologue that stabilizes membranes during freezing. Philos Trans R Soc Lond B Biol Sci 357, 909-916. Hincha, D.K., and Crowe, J.H. (1998). Trehalose increases freeze-thaw damage in liposomes containing chloroplast glycolipids. Cryobiology 36, 245-249. Hincha, D.K., Meins Jr, P., and Schmitt, J.M. (1997). B-l,3-glucanase is cryoprotective in vitro and is accumulated in leaves during cold acclimation. Plant Physiol 114, 1077-1083. Hincha, D.K., Oliver, A.E., and Crowe, J.H. (1999). Lipid composition determines the effects of arbutin on the stability of membranes. Biophys J 77, 2024-2034. Hincha, D.K., Neukamm, B., Sror, H.A., Sieg, F., Weckwarth, W., Ruckels, M., Lullien-Pellerin, V., Schroder, W., and Schmitt, J.M. (2001). Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family. Plant Physiol 125, 835-846. Hiratsu, K., Ohta, M., Matsui, K., and Ohme-Takagi, M. (2002). The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. F EBS Lett 514, 351-354. Hon, W.C., Griffith, M., Mlynarz, A., Kwok, Y.C., and Yang, BS. (1995). Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol 109, 879-889. 238 Huner, N.P.A., Oqulst, G., and Sarhan, F. (1998). Energy balance and acclimation to light and cold. Trends in Plant Science 3, 224-230. Iida, A., Kazuoka, T., Torikai, S., Kikuchi, H., and Oeda, K. (2000). A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. Plant J 24, 191-203. Inaba, M., Suzuki, 1., Szalontai, B., Kanesaki, Y., Los, D.A., Hayashi, H., and Murata, N. (2003). Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J Biol Chem 278, 12191-12198. Ishitani M., Xiong L., Lee H., Stevenson B., and Zhu J.K. (1998). HOSl, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 7, 1151-61. J aglo—Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, 0., and Thomashow, M.F. (1998). Arabidopsis CBF] overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106. J aglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., and Thomashow, M.F. (2001). Components of the Arabidopsis C- repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127, 910-917. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: B- glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6, 3901-3907. Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S., and Hirt, H. (1996). Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Nat] Acad Sci U S A 93, 11274-11279. Kaplan, F., Kopka, J ., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N., Sung, D.Y., and Guy, CL. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136, 4159-4168. Kasuga, M., Liu, Q., Miura, S., Yamaguchi—Shinozaki, K., and Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287-291. Kaye, C., Neven, L., Hofig, A., Li, Q.B., Haskell, D., and Guy, C. (1998). Characterization of a gene for spinach CAP] 60 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiol 116, 1367-1377. Kim, K.N., Cheong, Y.H., Grant, J.J., Pandey, G.K., and Luan, S. (2003). CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell 15, 411-423. 239 Klok, E.J., Wilson, I.W., Wilson, D., Chapman, S.C., Ewing, R.M., Somerville, S.C., Peacock, W.J., Dolferus, R., and Dennis, ES. (2002). Expression profile analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14, 2481-2494. Knight, H., and Knight, M.R. (2000). Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot 51, 1679-1686. Knight, H., and Knight, M.R. (2001). Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6, 262-267. Knight, H., Trewavas, A.J., and Knight, M.R. (1996). Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8, 489-503. Knight, M.R., Campbell, A.K., Smith, S.M., and Trewavas, A.J. (1991). Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352, 524-526. Koh, S., Wiles, A.M., Sharp, J.S., Naider, F.R., Becker, J.M., and Stacey, G. (2002). An oligopeptide transporter gene family in Arabidopsis. Plant Physiol 128, 21-29. Krapp, A., and Stitt, M. (1995). An evaluation of direct and indirect mechanisms for the sink-regulation of photosynthesis in spinach - changes in gas-exchange, carbohydrates, metabolites, enzyme-activities and steady-state transcript levels after cold-girdling source leaves. Planta 195, 313-323. Kratsch, H.A., and Wise, RR. (2000). The ultrastructure of chilling stress. Plant, Cell and Environment 23, 337-350. Kreps, J ., Budworth, P., Goff, S., and Wang, R.L. (2003). Identification of putative plant cold responsive regulatory elements by gene expression profiling and a pattern enumeration algorithm. Plant Biotechnol J 1, 345-352. Kreps, J .A., Wu, Y., Chang, H.S., Zhu, T., Wang, X., and Harper, J .F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130, 2129-2141. Kyte, J., and Doolittle, RF. (1982). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105-132. Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30, 325-327. 240 Levitt, J. (1980). Responses of Plants to Environmental Stresses. (New York: Academic). Li, W., Li, M., Zhang, W., Welti, R., and Wang, X. (2004). The plasma membrane- bound phospholipase D6 enhances freezing tolerance in Arabidopsis thaliana. Nat Biotechnol 22, 427-433. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi—Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB] and DREBZ, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406. Lynch, D.V., and Steponkus, P.L. (1987). Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L-Cv Puma). Plant Physiol 83, 761-767. Mario, G.R., Yong, L., Nicolai, S., Bernd, R., Koen, D., and Bernd, W. (2003). An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mo] Bio] 53, 247. Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., and Yamaguchi—Shinozaki, K. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB 1A/CBF 3 transcriptional factor using two microarray systems. Plant J 38, 982-993. Maurel, C. (1997). Aquaporins and water permeability of plant membranes. Annu Rev Plant Phys 48, 399-429. McKersie, B.D., and Bowley, S.R. (1997). Active oxygen and fieezing tolerance in transgenic plants. In Plant Cold Hardiness: Molecular Biology, Biochemistry, and Physiology, P.H. Li and T.H.H. Chen, eds (New York: Plenum), pp. 203-214. McNeil, S.D., Nuccio, M.L., Ziemak, M.J., and Hanson, A.D. (2001). Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc Natl Acad Sci U S A 98, 10001-10005. Medina, J ., Bargues, M., Terol, J., Perez-Alonso, M., and Salinas, J. (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain- containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119, 463-470. Meissner, R., and Michael, A.J. (1997). Isolation and characterisation of a diverse family of Arabidopsis two and three-fingered C2H2 zinc finger protein genes and cDNAs. Plant Mol Biol 33, 615-624. 241 Meyer, K., Keil, M., and Naldrett, M.J. (1999). A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Lett 447, 171-178. Mikami, K., Kanesaki, Y., Suzuki, 1., and Murata, N. (2002). The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803. Mol Microbiol 46, 905-915. Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K., Matsumoto, K., and Shinozaki, K. (1996). A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen- activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A 93, 765-769. Monroy, A.F., and Dhindsa, R.S. (1995). Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 7, 321-331. Monroy, A.F., Sarhan, F., and Dhindsa, R.S. (1993). Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression (evidence for a role of calcium). Plant Physiol 102, 1227-1235. Monroy, A.F., Sangwan, V., and Dhindsa, R.S. (1998). Low temperature signal transduction during cold acclimation: protein phosphatase 2A as an early target for cold inactivation. Plant J 13, 653-660. Moon, B.Y., Higashi, S., Gombos, Z., and Murata, N. (1995). Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci U S A 92, 6219-6223. Murata, N., and Los, D.A. (1997). Membrane fluidity and temperature perception. Plant Physiol 115, 875-879. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. F EBS Lett 461, 205- 210. Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997). A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8, 581-599. Nishida, 1., and Murata, N. (1996). Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Bio] 47, 541-568. Noctor, G., and Foyer, CH. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49, 249-279. 242 Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M. (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13, 1959-1968. Okamuro, J .K., Caster, B., Villarroel, R., Van Montagu, M., and Jofuku, K.D. (1997). The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94, 7076-7081. Orvar, B.L., Sangwan, V., Omann, F., and Dhindsa, R.S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23, 785-794. Pavesi, G., Mereghetti, P., Mauri, G., and Pesole, G. (2004). Weeder Web: discovery of transcription factor binding sites in a set of sequences from co-regulated genes. Nucleic Acids Res 32, W199-203. Pearce, R.S. (2001). Plant Freezing and Damage. Annals of Botany 87, 417-424. Peier, A.M., Moqrich, A., Hergarden, A.C., Reeve, A.J., Andersson, D.A., Story, G.M., Earley, T.J., Dragoni, 1., McIntyre, P., Bevan, S., and Patapoutian, A. (2002). A TRP channel that senses cold stimuli and menthol. Cell 108, 705-715. Plieth, C., Hansen, U.P., Knight, H., and Knight, M.R. (1999). Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18, 491-497. Puhakainen, T., Hess, M.W., Makela, P., Svensson, J., Heino, P., and Palva, E.T. (2004). Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mo] Bio] 54, 743-753. Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki, K., and Yamaguchi- Shinozaki, K. (2004). Cloning and functional analysis of a novel DREBI/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol 45, 1042-1052. Richards, K.D., and Gardner, RC. (1995). pEARLI 1: An Arabidopsis Member of a Conserved Gene Family (Accession No. L43080) (PGR 95-099). Plant Physiol 109, 1497. Riechmann, J .L. (2002). Transcriptional regulation: A genomic overview. In The Arabidopsis Book, C.R. Somerville and EM. Meyerowitz, eds (Rockville, MD: American Society of Plant Biologists), pp. doi/10.1 199/tab.0085, http://www.aspb.org/pub1ications/arabidopsisl. Riechmann, J .L., and Meyerowitz, EM. (1998). The AP2/EREBP family of plant transcription factors. Biol. Chem. 379, 633-646. 243 Ristic, Z., and Ashworth, E.N. (1993). Ultrastructural evidence that intracellular ice formation and possibly cavitation are the sources of freezing injury in supercooling wood tissue of Cornusflorida L. Plant Physiol 103, 753-761. Rizhsky, L., Davletova, S., Liang, H., and Mittler, R. (2004). The zinc finger protein ZAT12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279, 11736-11743. Rombauts, S., Florquin, K., Lescot, M., Marchal, K., Rouze, P., and van de Peer, Y. (2003). Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Plant Physiol 132, 1162-1176. Ruelland, E., Cantrel, C., Gawer, M., Kader, J.C., and Zachowski, A. (2002). Activation of phospholipases C and D is an early response to a cold exposure in Arabidopsis suspension cells. Plant Physiol 130, 999-1007. Sakai, A., and Larcher, W. (1987). Frost survival of plants. Responses and adaptation to freezing stress. (Berlin: Springer). Sakamoto, A., and Murata, N. (2001). The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125, 180-188. Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi- Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold- inducible gene expression. Biochem Biophys Res Commun 290, 998-1009. Sambrook, J ., and Russell, D.W. (2001). Molecular Cloning: A Laboratory Manual. (Cold Spring Harbor: Cold Spring Harbor Laboratory Press). Sanmartin, M., Drogoudi, P.A., Lyons, T., Pateraki, 1., Barnes, J., and Kanellis, A.K. (2003). Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216, 918-928. Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi—Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K. (2001). Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full- ]ength cDNA microarray. Plant Cell 13, 61-72. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., and Shinozaki, K. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31, 279-292. 244 Sheen, J. (1996). Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274, 1900-1902. Shen, Y.G., Zhang, W.K., He, S.J., Zhang, J.S., Liu, Q., and Chen, S.Y. (2003). An EREBP/APZ-type protein in T riticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106, 923- 930. Shou, H., Bordallo, P., Fan, J.B., Yeakley, J.M., Bibikova, M., Sheen, J., and Wang, K. (2004). Expression of an active tobacco mitogen-activated protein kinase kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci U S A 101, 3298-3303. Smallwood, M., and Bowles, DJ. (2002). Plants in a cold climate. Philos Trans R Soc Lond B Biol Sci 357, 831-847. Smallwood, M., Worrall, D., Byass, L., Elias, L., Ashford, D., Doucet, C.J., Holt, C., Telford, J., Lillford, P., and Bowles, DJ. (1999). Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochem J 340 (Pt 2), 385-391. Steponkus, P.L. (1984). Role of the plasma membrane in freezing injury and cold acclimation. Annu Rev Plant Phys 35, 543-5 84. Steponkus, P.L., and Webb, M.S. (1992). Freeze-induced dehydration and membrane destabilization in plants. In Water and Life: Comparative analysis of water relationships at the organismic, cellular, and molecular level, G. Somero and B. Osmond, eds (Berlin: Springer-Verlag), pp. 338-362. Steponkus, P.L., Uemura, M., and Webb, M.S. (1993). A contrast of the cryostability of the plasma membrane of winter rye and spring oat—two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In Advances in Low-Temperature Biology, P.L. Steponkus, ed (London: JAI Press), pp. 211—312. Steponkus, P.L., Uemura, M., Balasamo, R.A., Arvinte, T., and V.L.D. (1988). Transformation of the cryobehavior of rye protoplasts by modification of the plasma membrane lipid composition. Proc Natl Acad Sci U S A 85, 9026-9030. Steponkus, P.L., Uemura, M., Joseph, R.A., Gilmour, S.J., and Thomashow, M.F. (1998). Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci U S A 95, 14570-14575. Stitt, M., and Hurry, V. (2002). A plant for all seasons: alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol 5, 199-206. 245 Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana CBF] encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94, 1035-1040. Story, G.M., Peier, A.M., Reeve, A.J., Eid, S.R., Mosbacher, J., Hricik, T.R., Earley, T.J., Hergarden, A.C., Andersson, D.A., Hwang, S.W., McIntyre, P., Jegla, T., Bevan, S., and Patapoutian, A. (2003). ANKTMl, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819-829. Strand, A., Hurry, V., Gustafsson, P., and Gardestrom, P. (1997). Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates. Plant Journal 12, 605-614. Sukumaran, N.P., and Weiser, CJ. (1972). Freezing injury in potato leaves. Plant Physiol 50, 564-567. Suzuki, 1., Kanesaki, Y., Mikami, K., Kanehisa, M., and Murata, N. (200]). Cold- regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol Microbiol 40, 235-244. Tahtiharju, S., Sangwan, V., Monroy, A.F., Dhindsa, R.S., and Borg, M. (1997). The induction of KIN genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta 203, 442-447. Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi- Shinozaki, K., and Shinozaki, K. (2002). Important roles of drought- and cold- inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29, 417-426. Tajima, K., Amemiya, A., and Kabaki, N. (1983). Physiological study of growth inhibition in rice plant as affected by low temperature. II. Physiological mechanisms and varietal difference of chilling injury in rice plant. Bull Natl Inst Agr Sci D34, 69-111. Taylor, A.0., Slack, G.R., and McPherson, H.G. (1974). Plants under climatic stress: Chilling and light effects on photosynthetic enzymes of sorghum and maize. Plant Physi0154, 896-701. Taylor, C.B., Bariola, P.A., delCardayre, S.B., Raines, R.T., and Green, P.J. (1993). RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S- RNases before speciation. Proc Natl Acad Sci USA 90, 5118-5122. 246 Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dang], J.L., and Hirt, H. (2004). The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15, 141-152. Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouze, P., and Moreau, Y. (2001). A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17, 1113-1122. Thijs, G., Marchal, K., Lescot, M., Rombauts, S., De Moor, B., Rouze, P., and Moreau, Y. (2002). A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes. J Comput Biol 9, 447-464. Thomashow, M.F. (1998). Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118, 1-8. Thomashow, M.F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Phys 50, 571-599. Thomashow, M.F. (2001). So what's new in the field of plant cold acclimation? Lots! Plant Physiol 125, 89-93. Thomashow, M.F., Stockinger, E.J., Jaglo-Ottosen, K.R., Gilmour, S.J., and Zarka, D.G. (1997). Function and regulation of Arabidopsis thaliana COR (cold- regulated) genes. Acta Physiol Plant 19, 497-504. Tompa, M., Li, N., Bailey, T.L., Church, G.M., De Moor, B., Eskin, E., Favorov, A.V., Frith, M.C., Fu, Y., Kent, W.J., Makeev, V.J., Mironov, A.A., Noble, W.S., Pavesi, G., Pesole, G., Regnier, M., Simonis, N., Sinha, S., Thijs, G., van Helden, J., Vandenbogaert, M., Weng, Z., Workman, C., Ye, C., and Zhu, Z. (2005). Assessing computational tools for the discovery of transcription factor binding sites. Nat Biotechnol 23, 137-144. Townley, H.E., and Knight, M. (2002). Calmodulin as a potential negative regulator of Arabidopsis COR gene expression. Plant Physiol 128, 1169-1172. Uemura, M., and Steponkus, P.L. (1994). A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104, 479-496. Uemura, M., Joseph, R.A., and Steponkus, P.L. (1995). Cold acclimation of Arabidopsis thaliana (Effect on plasma membrane lipid composition and freeze- induced lesions). Plant Physiol 109, 15-30. Urrutia, M.E., Duman, J.G., and Knight, CA. (1992). Plant thermal hysteresis proteins. Biochim Biophys Acta 1121, 199-206. Vigh, L., Los, D.A., Horvath, I., and Murata, N. (1993). The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane 247 lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci U S A 90, 9090-9094. Vijayan, P., and Browse, J. (2002). Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation. Plant Physiol 129, 876-885. Vlachonasios, K.E., Thomashow, M.F., and Triezenberg, SJ. (2003). Disruption mutations of ADAZb and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15, 626-638. Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., and Thomashow, M.F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41, 195-211. Wagner, D., Przybyla, D., Op den Camp, R., Kim, C., Landgraf, F., Lee, K.P., Wursch, M., Laloi, C., Nater, M., Hideg, E., and Apel, K. (2004). The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science 306,1183-1185. Warren, G., McKown, R., Marin, A.L., and Teutonico, R. (1996). Isolation of mutations affecting the development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Plant Physiol 111, 1011-1019. Webb, M.S., Uemura, M., and Steponkus, P.L. (1994). A comparison of fieezing injury in oat and rye: Two cereals at the extremes of fieezing tolerance. Plant Physiol 104, 467-47 8. Wilkosz, R., and Schlappi, M. (2000). A gene expression screen identifies EARLII as a novel vemalization-responsive gene in Arabidopsis thaliana. Plant Mol Biol 44, 777-787. Wise, R.R., and Naylor, A.W. (1987). Chilling-enhanced photooxidation - evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol 83, 278-282. Worrall, D., Elias, L., Ashford, D., Smallwood, M., Sidebottom, C., Lillford, P., Telford, J., Holt, C., and Bowles, D. (1998). A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science 282, 115-117. Wu, J., Lightner, J., Warwick, N., and Browse, J. (1997). Low-temperature damage and subsequent recovery of fab] mutant Arabidopsis exposed to 2°C. Plant Physiol 113, 347-356. Xin, Z., and Browse, J. (1998). Eskimo] mutants of Arabidopsis are constitutively freezing-tolerant. Proc Natl Acad Sci USA 95, 7799-7804. 248 Yamaguchi—Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264. Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., and Somero, G.N. (1982). Living with water stress: evolution of osmolyte systems. Science 217, 1214-1222. Ye, B., Muller, H.H., Zhang, J., and Gressel, J. (1997). Constitutively elevated levels of putrescine and putrescine-generating enzymes correlated with oxidant stress resistance in Conyza bonariensis and wheat. Plant Physiol 115, 1443-1451. Yeh, S., Moffatt, B.A., Griffith, M., Xiong, F., Yang, D.S., Wiseman, S.B., Sarhan, F., Danyluk, J., Xue, Y.Q., Hew, C.L., Doherty—Kirby, A., and Lajoie, G. (2000). Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol 124, 1251-1264. Yelenosky, G., and Guy, CL. (1989). Freezing tolerance of citrus, spinach, and petunia leaf tissue. Plant Physiol 89, 444-451. Zarka, D.G., Vogel, J.T., Cook, D., and Thomashow, M.F. (2003). Cold induction of Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression) promoter elements and a cold-regulatory circuit that is desensitized by low temperature. Plant Physiol 133, 910-918. Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J., and Thomashow, M.F. (2004). Freezing-sensitive tomato has a fianctional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis. Plant J 39, 905-919. Zhu, J ., Shi, H., Lee, B.H., Damsz, B., Cheng, S., Stirm, V., Zhu, J.K., Hasegawa, P.M., and Bressan, RA. (2004). An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Nat] Acad Sci U S A 101, 9873-9878. 249 1W nljllnljjjjjljju1131]]