. 5f
o..V
A -. an“.
_._-. .....
m...
u
.m
.
u..
(‘1‘
f»
«H
‘ “"51 V.
33
~
if“ 7%‘1:
. I" .u"l,_gr-12?&
”gig: .
«.‘A is:
a o
,0. .l5L.
”'12 j- ".
2 H331
‘. Ik.‘ ,1
L“: *9 .‘
>911:
n
~a‘.‘
o
1 I
bib“
.59» H
0.»: .
.4:
xxx: ’
-. m.
. I
7"" '3 L
"Mfg:
-‘ 1.1.."
f’F-pv
-.::
3 * LIBRARY
2096 Mick}: “‘ State
University
This is to certify that the
dissertation entitled
TRANSCRIPTION FACTORS THAT CONFIGURE THE LOW
TEMPERATURE TRANSCRIPTOME OF ARABIDOPSIS THALIANA
presented by
Jonathan Thomas Vogel
has been accepted towards fulfillment
of the requirements for the
PhD. degree in Cell and Molecular Biology
Wk
fiajor Professor’s Signature
5/9/05/
/ ’/
Date
MSU is an Affirmative Action/Equal Opportunity Institution
PLACE IN RETURN BOX to remove this checkout from your record.
To AVOID FINES return on or before date due.
MAY BE RECALLED with earlier due date if requested.
DATE DUE
DATE DUE
DATE DUE
*
2/05 cszC/DmoOtnfiud-nts
TRANSCRIPTION FACTORS THAT CONFIGURE THE LOW TEMPERATURE
TRANSCRIPTOME OF ARABIDOPSIS THALIANA
By
Jonathan Thomas Vogel
A DISSERTATION
Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of
DOCTOR OF PHILOSOPHY
Program in Cell and Molecular Biology
2005
ABSTRACT
TRANSCRIPTION FACTORS THAT CONFIGURE THE LOW TEMPERATURE
TRANSCRIPTOME OF ARABIDOPSIS THALIANA
By
Jonathan Thomas Vogel
Many plants can sense low temperature and respond by altering gene expression.
These changes in gene expression can ultimately lead to increased freezing tolerance as
part of a dynamic physiological process known as cold acclimation. One well known
pathway that contributes to cold acclimation is the CBF/DREB] cold response pathway.
This pathway includes the action of the transcriptional activators CBF], 2, and 3 (also
known as DREBI b, c, and a, respectively) that are rapidly induced in response to low
temperature and activate the expression of a suite of target genes, known as the CBF
regulon. The CBF regulon gene products act in concert to increase plant freezing
tolerance. Work in this dissertation focused on gaining a better understanding of the
changes in gene expression that occur in response to low temperature, the extent to which
the CBF pathway contributes to these changes, and whether six other transcription factors
that were coordinately regulated with CBF 2 affected cold-responsive genes.
In this work, the Affymetrix GeneChip containing probe sets for approximately
24,000 genes was used to define a core set of cold-responsive transcripts. A total of 514
transcripts were found to have altered transcript accumulation, 302 of which were up-
regulated and 212 down-regulated, in plants grown in two commonly used growth
conditions (soil and solid media). These genes were termed the COS (gold standard)
gene set. Hierarchical clustering assigned each transcript to one of seven expression
classes and bioinformatic analysis revealed multiple novel potential cis-elements present
in the promoters of genes in each expression class. Further bioinforrnatic analysis
revealed additional motifs among one of these expression classes, cluster III, but
experiments indicated no evidence that any of the novel motifs in clusters H1 or IV were
cold-responsive. One element, GTGATCAC, conferred constitutive GUS activity when
fused as a tetramer in front of the reporter. A functional analysis of the COS transcripts
revealed how the plants might be globally altering their metabolism in order to cope with
low temperature, which has generated a number of new hypotheses that can be tested.
Plants overexpressing CBF 2 or one of six transcription factors that were
coordinately regulated with CBF 2 were also profiled using the GeneChips. The CBF2
regulon was comprised of 85 cold-induced and eight cold-repressed genes. Of the six
genes that were induced in parallel with CBF 2 only one, ZA T12, influenced cold-
responsive genes when constitutively expressed. The ZAT12 regulon contained nine
cold-induced genes and 15 cold-repressed genes. Constitutive expression of ZA T12
resulted in a small, but reproducible increase in freezing tolerance, indicating a role for
ZAT12 in cold acclimation. ZAT12 also appeared to have a role in a negative regulatory
circuit that dampened expression of the CBF genes. Constitutive expression of ZAT12
dampened CBF transcript accumulation in response to low temperature, while decreased
levels of ZA T12 resulted in higher levels of CBF transcript accumulation.
The definition of the COS genes provides a framework on which the low
temperature regulatory networks of Arabidopsis can be constructed and this dissertation
begins this process by defining two regulons, the CBF2 and ZAT12 regulons. Future
experiments will expand our knowledge of these and other networks and could eventually
lead to novel strategies for engineering plants with increased stress tolerance.
ACKNOWLEDGEMENTS
In the completion and writing of this dissertation, I would like to first and
foremost thank my wife Kelly, to whom I am indebted for endless love and support.
Besides making life worth living, her editing skills are superb. I would also like to thank
my mentor, Michael Thomashow, whose guidance made this dissertation possible. For
their helpful guidance and advice, I thank my committee; John Ohlrogge, Steve
Triezenberg, Ken Keegstra, and Tim Zacharewski. Thanks to my family, especially my
parents, Thomas and Margery Vogel, whose years of love while raising me allowed me to
grow into the person I am today.
Thanks also to all the members of the Thomahsow laboratory who provided
intellectual stimulation and created a great working environment. I truly enjoyed my
time in the lab. Thanks specifically to those members I have worked with, including
Keenan Amundsen, Corien Bakermans, Donatella Canella, Marcela Carvallo, Diane
Constan, Daniel Cook, Colleen Doherty, Sarah Fowler, Sarah Gilmour, Michael
Mikellsen, Susan Myers, Ritu Sharma, Lahong Sheng, Heather Van Buskirk, Ryan
Warner, Daniel Zarka, and Xin Zhang.
iv
TABLE OF CONTENTS
LIST OF TABLES ............................................................................................................ vii
LIST OF FIGURES ......................................................................................................... viii
CHAPTER 1 Literature Review
Introduction ............................................................................................................ 1
Freezing-Induced Damage ...................................................................................... 2
Mechanisms for Freezing Tolerance ...................................................................... 5
Low Temperature Perception ............................................................................... 10
Low Temperature Signal Transduction ................................................................ 12
Cold-Responsive Gene Expression ...................................................................... 15
CHAPTER 2 Roles of the CBF2 and ZAT12 Transcription Factors in Configuring the
Low Temperature Transcriptome of Arabidopsis
Summary .............................................................................................................. 20
Introduction .......................................................................................................... 22
Results .................................................................................................................. 25
Discussion ............................................................................................................ 51
Acknowledgements .............................................................................................. 59
Materials and Methods ......................................................................................... 60
CHAPTER 3 A Functional Analysis of the Arabidopsis Cold Transcriptome
Summary .............................................................................................................. 69
Introduction .......................................................................................................... 70
Results .................................................................................................................. 73
Conclusion ............................................................................................................ 91
Acknowledgements .............................................................................................. 93
Materials and Methods ......................................................................................... 94
CHAPTER 4 The Identification of Six Novel Motifs in the Promoters of Cold-regulated
Genes and the Determination of Their Cold-Responsiveness
Summary .............................................................................................................. 95
Introduction .......................................................................................................... 97
Results ................................................................................................................ 100
Discussion .......................................................................................................... 107
Materials and Methods ....................................................................................... 111
CHAPTER 5 A Summary of the Gene Regulons that Contribute to the Arabidopsis Cold
Transcriptome ..................................................................................................... 1 l4
APPENDICES
Appendix A. Probe sets up-regulated by low temperature in the plate experiment.
............................................................................................................................ 121
Appendix B. Probe sets down- -regulated by low temperature in the plate
experiment ........................................................................................................... 142
Appendix C. Probe sets up- regulated by low temperature in the soil experiment...
............................................................................................................................ 161
Appendix D. Probe sets down-regulated by low temperature in the soil
experiment ........................................................................................................... 178
Appendix E. Probe sets up-regulated by low temperature in both the plate and soil
experiments ......................................................................................................... 190
Appendix F. Probe sets down-regulated by low temperature in both the plate and
soil experiments .................................................................................................. 203
Appendix G. Probe sets up—regulated in response to CBF 2 expression ............. 211
Appendix H. Probe sets down-regulated in response to CBF2 expression ........ 218
Appendix 1. Probe sets up-regulated in response to ZAT12 expression ............ 220
Appendix J. Probe sets down-regulated in response to ZAT12 expression ....... 223
Appendix K. The best BLAST hits for ZAT12 in Arabidopsis ......................... 229
Appendix L. Supplementary material for Chapter 4 .......................................... 230
Appendix M. PERL scripts ................................................................................ 232
LITERATURE CITED ................................................................................................... 235
vi
LIST OF TABLES
Table 2.1. Potential low temperature regulatory elements I ............................................. 30
Table 2.2. Potential low temperature regulatory elements 11 ............................................ 32
Table 2.3. Chi-square analysis of expected and observed changes in gene expression in
response to low temperature and transcription factor overexpression .............................. 36
Table 3.1. Overrepresented GO terms among the COS transcripts .................................. 76
Table 3.2. Overrepresented GO terms among COS transcript expression clusters .......... 77
Table 3.3. Overrepresented GO terms in the CBF2 regulon ............................................. 87
Table 3.4. Overrepresented GO terms in the ZAT12 regulon .......................................... 90
Table 4.1. Overrepresented motifs in cluster III ............................................................. 103
Table 4.2. Number of promoters with each pair-wise motif combination ...................... 103
Table 4.3. Overrepresented motifs in cluster IV ............................................................. 105
Table A. 1. Probe sets up-regulated by low temperature in the plate experiment ........... 121
Table B. 1. Probe sets down-regulated by low temperature in the plate experiment ...... 142
Table C. 1. Probe sets up-regulated by low temperature in the soil experiment ............. 161
Table D. 1. Probe sets down-regulated by low temperature in the soil experiment ........ 178
Table E. 1. Probe sets up-regulated by low temperature in both the plate and soil
experiments ..................................................................................................................... 190
Table F. 1. Probe sets down-regulated by low temperature in both the plate and soil
experiments ..................................................................................................................... 203
Table G. 1. Probe sets up-regulated in response to CBF2 expression ............................. 211
Table H. 1. Probe sets down-regulated in response to CBF2 expression ........................ 218
Table 1.1. Probe sets up-regulated in response to ZAT12 expression ............................ 220
Table J. 1. Probe sets down-regulated in response to ZAT12 expression ....................... 223
Table L. l. The genes which were used to create tetramers of each motif ...................... 230
vii
LIST OF FIGURES
Figure 2.1. Low temperature responsive probe sets ......................................................... 27
Figure 2.2. Hierarchical cluster and expression profiles of the 514 COS genes .............. 29
Figure 2.3. Expression profiles of the COS genes and those that comprise the CBF2 and
ZAT12 regulons ................................................................................................................ 33
Figure 2.4. CBF2 and ZAT12 induce a majority of the most highly cold-induced
transcripts .......................................................................................................................... 36
Figure 2.5. Expression of transcription factors that are candidates for configuring the low
temperature transcriptome ................................................................................................ 38
Figure 2.6. Potential regulatory sequences common to the promoter regions of CBF 2,
ZAT12, ZA T10/STZ, MYB73, CZFI, and CZFZ ................................................................ 39
Figure 2.7. ZA T12 transcript levels in transgenic Arabidopsis plants .............................. 41
Figure 2.8. Regulation of COS genes by CBF2 and ZAT12 ............................................ 42
Figure 2.9. Effect of ZAT12 expression on plant morphology and freezing tolerance ..... 43
Figure 2.10. ZAT12 overexpression dampens cold induction of CBF], 2, and 3 ............ 46
Figure 2.11. T-DNA insertion lines in the ZAT12 locus ................................................... 48
Figure 2.12. RT-PCR analysis of ZAT12 expression in the two T-DNA insertion lines .48
Figure 2.13. Decreased ZAT12 expression enhances cold induction of CBF], 2, and 3 .49
Figure 3.1. Functional categories of the 514 COS transcripts .......................................... 74
Figure 3.2. Functional categories represented in each expression class of the COS
transcripts .......................................................................................................................... 79
Figure 3.3. Functional categories of the CBF2 and ZAT12 reuglons ............................... 86
Figure 3.4. Hydropathy plots for novel COR-like peptides in the CBF2 regulon ............ 88
Figure 4.1. Overlap of the two novel motifs and the CRT/DRE element in cluster III
promoters ........................................................................................................................ 103
Figure 4.2. WebLogos depicting conserved sequences flanking the CRT/DRE, ABRE,
and two novel motifs in cluster 111 genes ........................................................................ 105
viii
Figure 4.3. The motif GTGATCAC confers constitutive activity to a GUS reporter
......................................................................................................................................... 106
Figure 5.1. The low temperature regulatory networks of Arabidopsis ........................... 119
Figure K. 1. Amino acid alignment and relationship tree of the best BLAST hits for
ZAT12 in the Arabidopsis genome ................................................................................. 229
Figure L. 1. Sequences of the tetramers created from motifs found in clusters III and IV
......................................................................................................................................... 230
ix
CHAPTER ONE
LITERATURE REVIEW
Introduction
Photosynthesis, the overall process of using light energy to synthesize organic
compounds, allows plants to maintain an autotrophic lifestyle. This autotrophic lifestyle
includes remaining rooted in place, which is fine most of the time but prevents plants
from evading environmental stress. However, evasion is not the only method of dealing
with stress. Plants have evolved a number of effective mechanisms to cope with multiple
biotic and abiotic environmental stresses while remaining sessile.
One abiotic stress plants must deal with is temperature fluctuation. Cold or
freezing temperatures can significantly limit plant growth or result in damage or death.
Plants exhibit a wide range in their ability to survive freezing temperatures. Plants from
the tropics have essentially no capacity for surviving even a mild freeze and are damaged
by chilling temperatures in the range of 0°C to 12°C. Some examples include tomato,
maize (Taylor et al., 1974), and rice (Tajima et al., 1983). Other plants, such as the
cultivated potato (Solanum tuberosum), exhibit chilling resistance, but are still injured or
killed by any ice formation (Sukumaran and Weiser, 1972). There are other plants that
are killed by temperatures in the range of -6°C to -1°C. Most Citrus is killed in this range
(-6°C to -3°C) (Yelenosky and Guy, 1989). Depending on the species, herbaceous plants
from temperate regions (wheat, canola, Arabidopsis) generally survive freezing in the
range of -5°C to -30°C (Fowler and Gusta, 1979; Gilmour et al., 1988). The record
holders for freezing tolerance include tree species from boreal forests that regularly
survive winters with temperatures below -30°C and can even survive immersion in liquid
nitrogen when fully cold-acclimated (Sakai and Larcher, 1987). The level of freezing
tolerance achieved is not constitutive, but induced in response to low, non-freezing
temperatures (below approximately 10°C), in a process known as cold acclimation (Guy,
1990; Thomashow, 1998). Cold acclimation allows plants that would normally be killed
by mild freezing conditions (-5°C) to survive at much lower temperatures (-20°C).
The study of cold acclimation in plants is important. Not only does understanding
conditional freezing tolerance (or lack of it) further science, it has practical applications
for agricultural production. Freezing temperatures negatively impact crop productivity
and limit the geographical locations where plants are grown (Thomashow, 1998).
Understanding the molecular basis of cold acclimation and freezing tolerance could lead
to new strategies of improving crop productivity through increased freezing tolerance.
Much research has focused on how freezing damages plant cells, what mechanisms exist
to protect the plant, and how plants sense and respond to low temperatures in order to
activate protective mechanisms.
F reezing-Induced Damage
Water, while essential to life, forms ice crystals spontaneously (homogeneous
nucleation) or when catalyzed by another substance (heterogeneous nucleation) that can
kill or damage a cell. At temperatures just below 0°C, homogeneous ice formation is
unlikely and nucleation is needed. In the absence of any nucleator, a single cell will
freeze only when the temperature falls below -38.5°C, the point of spontaneous
nucleation (Franks, 1985). Otherwise, water can remain in a supercooled state. Many
substances can act as nucleators including ice nucleation-active bacteria,
organic/inorganic debris, and biological molecules (Pearce, 2001). In plants, freezing
temperatures generally'first induce ice formation in intercellular spaces because these
spaces have a higher freezing point due to a lower solute concentration and contain ice
nucleating agents (Brush et al., 1994). Ice formation in intercellular spaces has the
potential to physically disrupt cells (Levitt, 1980). However, most damage results from
severe cellular dehydration associated with freezing (Levitt, 1980; Steponkus and Webb,
1992). Since the chemical potential of ice at a given temperature is lower than liquid
water, extracellular ice formation results in a decrease in water potential outside the cell
and a consequent movement of water through the plasma membrane to the extracellular
space, leading to the dehydration of the cell. The amount of dehydration is dependent on
both the temperature and the initial solute concentration of the cytoplasm. Cellular
dehydration also occurs in drought and salinity stress, which suggest that the mechanisms
that protect a plant from freezing-induced dehydration should also protect the plant from
the dehydration caused by drought or salinity stress.
Cellular dehydration during freezing can potentially have numerous deleterious
effects, including protein denaturation, the precipitation of molecules, and membrane
damage. Since 1912, the plasma membrane has been thought to be a primary site of
freeze-induced injury (Levitt, 1980). Studies done with rye protoplasts have shown that
freezing-induced dehydration can result in three main membrane lesions (Webb et al.,
1994; Uemura et al., 1995). In the range of -2°C to -4°C, expansion-induced lysis can
occur, caused by osmotic expansion and contraction cycles (during freeze/thaw cycles).
The contraction of the plasma membrane during freezing results in the endocytic
vesiculation of the plasma membrane, which decreases plasma membrane surface area. If
sufficient membrane is lost, water re-entering the cell during expansion can lyse the
membrane. Cold acclimation prevents this type of lesion from occurring, as the plasma
membrane is retained in exocytotic extrusions that allow expansion.
Between -4°C and -10°C, freezing can induce lamellar-to-hexagonal 11 phase
transitions, which involves the fusion of various membranes. In this type of damage, a
lamellar membrane, when brought into close apposition with another membrane due to
cellular dehydration, can form non-bilayer Hex 11 phase lipids. This results in a loss of
membrane integrity. The chloroplast envelope is particularly susceptible to this type of
damage (Steponkus et al., 1993). Again, protoplasts isolated from cold-acclimated leaves
generally do not suffer this type of damage.
Fracture jump lesions can occur at temperatures below -10°C with cold
acclimation. This lesion was observed as a localized deviation in the fracture plane of the
plasma membrane during cyroelectron microscopy and is likely due to localized fusion of
the plasma membrane with other cellular membranes (Webb et al., 1994). This type of
lesion has only been observed with cold acclimation and varies greatly between plant
species (Webb et al., 1994; Uemura et al., 1995). While little is known about why
variation exists, fracture jump lesions appear to be a relative measure of the potential
freezing tolerance that can be achieved.
In addition to dehydration induced damage, cold temperatures can generate
reactive oxygen species (ROS) which can contribute to membrane damage (McKersie
and Bowley, 1997). Low temperature causes a decrease in the turnover rate of
components of photosystem 11, leading to excess excitation energy and the generation of
reactive oxygen species, including hydrogen peroxide (Huner et al., 1998). ROS not only
damages membrane lipids, but can also harm carbohydrates, proteins, and nucleic acids
(McKersie and Bowley, 1997). Additionally, ROS species generated at low temperature
could be activating a programmed cell death response (Wagner et al., 2004), which
evidence suggests occurs in plants exposed to low temperature (reviewed in Kratsch and
Wise, 2000).
Mechanisms for Freezing Tolerance
The mechanisms involved in freezing tolerance are not well understood, but
numerous studies have identified physiological and biochemical changes that occur
during cold acclimation. Some of these changes include reduced growth rates, decreased
water content (Levitt, 1980), altered membrane lipid composition (Uemura and
Steponkus, 1994), the production of new proteins (including membrane stabilizers,
antifreeze proteins, and chaperones) (Smallwood and Bowles, 2002), transient increases
in abscisic acid (Chen et al., 1983), increased levels of antioxidants (McKersie and
Bowley, 1997), and the accumulation of compatible osmolytes (proline, betaine, polyols,
and soluble sugars) (Levitt, 1980; Yancey et al., 1982). Given the many changes that
occur during cold acclimation, it is hard to discern those changes that contribute to
freezing tolerance from those that simply occur in response to low temperature.
Nevertheless, the multitude of changes indicate that cold acclimation is a dynamic event,
requiring multiple biochemical, metabolic, and cellular changes to occur in order to
achieve freezing tolerance.
Given that cell membranes appear to be a primary site of freezing damage,
protecting membranes at freezing temperatures seems essential. In fact, alterations in
membrane lipid composition and structure are some of the best documented changes that
occur during cold acclimation (reviewed in Nishida and Murata, 1996). While not
completely understood, ultrastructural changes in the membrane become apparent within
6 h of cold treatment in Arabidopsis (Ristic and Ashworth, 1993). Moreover, the changes
in membrane lipid composition that occur during cold acclimation correlate with
membrane cryostability (Steponkus, 1984; Uemura et al., 1995). Direct evidence also
exists for membrane lipid composition playing a direct role in freezing tolerance.
Increased levels of mono- and di-unsaturated species of phosphotidylcholine can prevent
membranes from forming endocytotic vesicles during hyperosmotic stress, while
disaturated species of phosphotidylcholine can not (Steponkus et al., 1988).
These in vitro experiments are complemented by experiments in planta, as
alterations in lipid composition have been shown to influence chilling tolerance in
Arabidopsis and tobacco. After prolonged exposure to chilling temperatures (2°C to
5°C), Arabidopsis mutants with diminished levels of unsaturated lipids become chlorotic
(Wu et al., 1997; Vijayan and Browse, 2002). At low temperature, these mutants, fad5 ,
fad6, and the fad3-2 fad 7-2 fad8 triple mutant were found to be more susceptible to
photoinhibition than wild type Arabidopsis (V ijayan and Browse, 2002). Additionally,
experiments in tobacco revealed that some of this plant’s chilling sensitivity can be
alleviated if the level of membrane unsaturation is increased (Moon et al., 1995).
Plants increase the levels of a number of low molecular weight organic solutes
upon cold acclimation, including proline, glycine betaine, and sugars (raffinose, sucrose,
and trehalose). These molecules are known as compatible solutes or compatible
osmolytes, as they are highly soluble and their accumulation does not interfere with
cellular metabolism. While their main role in freezing tolerance is thought to be in
maintaining cellular osmotic balance, this is not the only role they play. Some
compatible solutes stabilize membranes (Hincha and Crowe, 1998; Hincha et al., 1999),
while others serve as enzyme cryoprotectants (reviewed in Sakamoto and Murata, 2001 ).
Many compatible solutes accumulate to high levels during cold acclimation, which
correlates well with increased freezing tolerance. For example, increased levels of
proline (30-fold higher) have been found in the constitutively freezing tolerant mutant
eskz'mol (Xin and Browse, 1998). Conversely, a lack of sugar accumulation during cold
acclimation in the Arabidopsis sfr4 mutant correlates with its sensitivity to freezing
(Warren et al., 1996). Still, the specific role of each osmolyte in freezing tolerance is
unclear. Dissection of osmolyte function has been complicated by their metabolic roles,
which are generally essential.
Freezing tolerant plants can withstand ice formation in their apoplast (Griffith and
Yaish, 2004), thought to be due in part to the production of a number of anti-freeze
proteins (AFPs) that prevent or alter ice formation in this compartment (Urrutia et al.,
1992; Duman, 1994; Hon et al., 1995; Hincha et al., 1997; Worrall et al., 1998;
Smallwood et al., 1999; Yeh et al., 2000). Antifreeze proteins interact with ice crystals
and inhibit their growth. They do so through two mechanisms. First, they can prevent
the accretion of water molecules to the growing face of an ice crystal. Secondly, AF Ps
can depress the freezing point of water through binding to the surface of ice crystals,
without affecting the melting point of the solution (this is known as thermal hysteresis
activity). Most plant AF Ps are homologous to pathogenesis-related proteins and also
provide protection against psychrophilic pathogens (Griffith and Yaish, 2004). Given the
difficulty of mounting a defense response in sub-zero conditions, accumulating proteins
during cold acclimation that serve a dual purpose could be advantageous for the plant.
Unfortunately, there is no consensus sequence for identifying an AF P through a database
search, so they must be identified experimentally. While in vitro data firmly confirms the
thermal hysteresis activity of AF Ps identified in plants, in vivo data for their function is
limited (Griffith and Yaish, 2004). Still, their widespread occurrence and expression at
low temperature in diverse plant species suggest they play a role in freezing tolerance.
Plants produce numerous small, highly hydrophilic polypeptides during cold
acclimation. These proteins have a relatively simple amino acid composition, have
repeated amino acid motifs, are generally predicted to form amphipathic a-helices, and
remain soluble upon boiling in a dilute aqueous buffer (reviewed in Thomashow, 1999).
These proteins have been identified by a number of researchers and hence possess
multiple designations, including COR (c_old-regulated), LTI (low temperature induced),
KIN (gold-inducible), RD (responsive to desiccation), and ERD (early dehydration-
inducible). Additionally, some of these proteins are homologs of the LEA (late
gmbryogenesis abundant) proteins, which are produced just before seed desiccation
during embryogenesis (Dure etal., 1981). The exact function of these proteins is
unknown. They are, however, also expressed in response to dehydration and ABA.
Given the similarities between freezing and dehydration injuries and the similar
biochemical properties of these proteins, one hypothesis is that they function in
mitigating dehydration-induced damage. This hypothesis is supported by work on the
COR15a protein from Arabidopsis.
COR15a is a 15 kDa polypeptide that is targeted to chloroplasts, where it is
processed to a mature 9.4 kDa protein (COR15am). Regions of the polypeptide are
predicted to form amphipathic 111-helices. In order to determine its role in freezing
tolerance, Artus et a1. (1996) created transgenic plants constitutively expressing COR15a.
The chloroplasts of nonacclimated transgenic plants were 1°C to 2°C more freezing
tolerant than wild type chloroplasts in the range of -4°C to -8°C. Additionally,
protoplasts isolated from the leaves of nonacclimated transgenic plants were 1°C more
freezing tolerant in the same temperature range (Steponkus et al., 1998).
One hypothesis concerning how CORISa brings about increased chloroplast
freezing tolerance is that COR15a stabilizes membranes. Steponkus et a1. (1998) showed
that in the temperature range of -4.5°C to -7°C, COR15am decreased the incidence of
HexII phase lipid formation in regions where the plasma membrane was brought into
close apposition with the chloroplast envelope during freezing-induced dehydration.
COR15am is thought to decrease the incidence of HexII lipid formation by altering the
intrinsic curvature of the inner membrane of the chloroplast envelope, thereby lowering
the temperature at which HexII lipids form. In vitro data supports this hypothesis, as
COR15am increased the lamellar-to-hexagonal 11 phase transition temperature of
dioleoylphosphatidylethanolamine (this is a sensitive test for an effect on monolayer
curvature) and promoted formation of the lamellar phase in a lipid mixture composed of
the major lipid species of the chloroplast envelope (Steponkus et al., 1998). Given that
other COR proteins are predicted to form similar structures (amphipathic a-helices), the
possibility exists that these proteins also help stabilize membranes against freezing-
induced dehydration injury by altering the intrinsic curvature of membranes. Indeed,
work on a LEA 11 protein (CAP85) and a novel COR-like protein (CAP160) from spinach
indicate they may also play a role in stabilizing membranes (Kaye et al., 1998), as might
the dehydrins (members of the LEA II protein family) RAB 1 8, COR47/RD17,
LT129/ERD10, and LTI30/XER02 (Puhakainen et al., 2004).
Low Temperature Perception
The mechanism by which plants sense low temperature is unknown. While the
nature of this “thermometer” is a mystery, low temperature alters a number of
physiological processes that could act as the initial transducer of a cold stimulus. Low
temperature can alter RNA and DNA secondary structure and the enzymatic activity of
proteins. Changes such as these could function as the sensor. The photosynthetic
apparatus itself may act as the sensor, detecting changes in temperature through increased
energy imbalances and photoinhibition (Huner et al., 1998).
One of the earliest and most direct effects of low temperature on a cell is a
decrease in membrane fluidity (Levitt, 1980). The idea that changes in membrane
fluidity could act as the initial cold sensor is supported by a number of studies. Initial
observations in Synechocystis revealed that rigidification of membranes could induce the
expression of cold-regulated genes (Vigh etal., 1993). Murata and L05 (1997)
hypothesized that the sensor is found in microdomains of the plasma membrane and
senses physical alterations in membrane phase transitions, leading to conformational
changes or alterations in the phosphorylation state of the sensor. Studies in alfalfa also
support the hypothesis that the sensor works through interpreting membrane fluidity
(Orvar et al., 2000). Treatment of alfalfa cells at warm temperatures with benzyl alcohol
10
increases membrane fluidity and inhibits the accumulation of the cold-responsive
transcript CAS30 in response to low temperature. Conversely, treatment of cells with
dimethyl sulfoxide, which reduces membrane fluidity, increased CAS30 levels at warm
temperatures. The authors also showed that actin microfilament reorganization and an
influx of calcium was required for cold-responsive expression of CAS30. This work
provided a model where upon cold treatment membrane fluidity decreases, followed by a
downstream reorganization of actin microfilaments, and finally by an influx of calcium.
A number of studies have shown a rapid and transient increase in cytosolic
calcium upon cold treatment (Knight et al., 1991; Monroy et al., 1993; Knight and
Knight, 2000), that comes both from apoplastic and vacuolar stores (Knight et al., 1996).
Calcium is required for maximal expression of the cold-responsive transcripts KIN] and
CAS30 (Knight et al., 1996; Tahtihatju et al., 1997; Orvar et al., 2000) and the acquisition
of freezing tolerance in response to low temperature (Monroy et al., 1993; Monroy and
Dhindsa, 1995). Plants that have been cold-acclimated display an altered calcium
transient upon subsequent cold treatment (Knight et al., 1996; Plieth et al., 1999; Knight
and Knight, 2000). Knight et al. (1996) has shown that the peak levels and duration of
the calcium transient becomes diminished in magnitude and prolonged in length upon
cold acclimation, indicating that the sensor likely possesses the ability to “remember” the
cold. Due to such evidence, the suggestion has been made that the sensor is one or more
of the calcium channels located in the plasma membrane. In fact, some membrane bound
mechano-sensitive calcium channels are activated by low temperature (Ding and Pickard,
1993).
ll
The thermometer could also resemble low temperature sensors found in other
species. In Synechocystis, evidence points towards the role of two-component regulators
as temperature sensors. Mutations in the Hik33 or Hik19 (histidine kinase) genes greatly
reduced the expression of a number of low temperature inducible genes (Suzuki et al.,
2001; Mikami et al., 2002). Further, microarray analysis on the AHik33 mutant reveal
that at least one additional cold sensor exists in Synechocystis (Mikami et al., 2002; Inaba
et al., 2003). Two-component systems exist in plants, but these two Hik genes have no
plant homologs and, to date, there is no evidence that such a system functions as the
temperature sensor in plants.
In mammalian systems, two TRP (_transient receptor potential) nonselective cation
channels have been identified that are responsive to cold (Peier et al., 2002; Story et al.,
2003). One, TRPM8, is a methanol and cold-responsive TRPM-class channel that was
discovered in sensory neurons (Peier et al., 2002). The other, ANKTMl, is distantly
related to TRP channels and possesses very little amino acid similarity to TRPM8 (Peier
et al., 2002). ANKTMl was cold-responsive and also found in sensory neurons, but was
not responsive to methanol.
Low Temperature Signal Transduction
The initial temperature sensing event has to be transmitted to downstream
effectors in order for the plant to respond. Cold-responsive signaling cascades are poorly
understood in plants. Only recently have studies elucidated some of these signaling
events, but most of the players have not been placed into coherent pathways.
12
As stated earlier, low temperature signaling involves transient calcium
accumulation. A number of proteins can be involved in detecting and responding to
calcium, including calmodulin (CaM), calcium dependent protein kinases (CDPKs), and
calcium-regulated phosphatases (Knight and Knight, 2001). Overexpression of a
calmodulin gene in Arabidopsis resulted in decreased levels of expression of the cold and
ABA responsive COR genes, suggesting that CaM plays a role as a negative regulator
(Townley and Knight, 2002). Calmodulin is not the only player to be implicated in
calcium mediated cold signaling. In Arabidopsis, there are approximately 40 CDPKs,
some of which have been proposed to play a role in ABA, drought, cold, and salinity
responses (Sheen, 1996). Serine/threonine phosphatases (PPases) can also interact with
calcium and regulate signaling pathways. The activity of protein phosphatase 2A
increases in alfalfa in response to cold and this activity depends on calcium influx.
Additionally, inhibiting protein kinases with staurosporine inhibits the low temperature
induction of the CAS15 gene, while inhibiting protein phosphatase activity with okadaic
acid induces CAS15 at 25°C (Monroy et al., 1998). Type-2C PPases include a sub-group
of proteins with properties similar to the calcium sensor protein calcineurin B. The
expression of one calcineurin B-like (CBLs) calcium sensor, CBLI , is induced by
drought, salt, ABA, and cold (Albrecht et al., 2003; Cheong et al., 2003). Studies on
CBLl reveal that it plays a role in drought, salt, and cold stress signaling. A calcium
sensor-associated protein kinase, CIPK3, was also found to modulate cold and salinity
gene expression, but not drought-induced gene expression (Kim et al., 2003). The
authors propose that CIPK3 functions as a cross-talk node between ABA and abiotic
stress signaling.
13
The levels of phosphatidic acid (PtdOH) and inositol triphosphate(1nsP3) increase
in plants upon cold shock, along with activation of phospholipase C and D activity
(Ruelland et al., 2002). These events are dependent upon calcium, as chemically
blocking calcium influx inhibited PtdOH and Inng formation. These results indicate that
cold signaling may involve one or more phosphoinositide signaling pathways. Further
support comes from a study where the plasma membrane bound phospholipase D5
(PLDS) was either knocked out or overexpressed in Arabidopsis (Li et al., 2004). Plants
with no PLD5 activity displayed sensitivity to freezing at -7°C at the whole plant level,
while overexpression of PLD8 resulted in plants that were more freezing tolerant (at -
10°C ) than wild type plants. These two mutant plants did not impact COR proteins,
soluble sugar levels, or proline accumulation. This suggests that the alteration in freezing
tolerance brought about by altering PLD6 represents a separate signaling pathway from
the pathway that activates COR genes, proline, and soluble sugars.
MAPK cascades have also been implicated in cold signal transduction. In these
cascades, a MAPK kinase kinase (MAPKKK) phosphorylates a MAPK kinase,
(MAPK), which in turn phosphorylates a MAPK. These MAPK’s then activate or
inactivate a transcription factor through phosphorylation. Introduction of a tobacco
MAPKKK (NPKl) into maize enhanced cold tolerance by 2°C (Shou et al., 2004),
indicating it may play a role in cold signaling pathways. Cold activated MAP kinases
have also been found in alfalfa (Jonak et al., 1996) and Arabidopsis (Mizoguchi et al.,
1996). Recently, a more detailed study on the MAPKK MKK2 in Arabidopsis revealed
its role in cold and salt stress signaling. Teige et al. (2004) reported that MKK2 is
activated by salt and cold stress, which in turn activates MPK2 and MPK4 through
14
phosphorylation. MEKKl (a MAPKKK) was found to regulate MKK2. A null mutation
of MKK2 resulted in plants that were hypersensitive to cold shock or germination on
media containing salt, while MKK2 overexpression lead to increased tolerance to cold
shock and increased germination on media containing salt. RT-PCR analysis revealed
altered levels of several cold— and salt-responsive transcripts in the MKK2 constitutive
expression lines. The study by Teige et al. (2004) was the first report of an entire MAPK
cascade involved in both cold and salt signaling.
Cold-Responsive Gene Expression
Signal transduction cascades generally result in the activation of transcriptional
regulators that influence the expression of multiple genes in response to a given stimulus.
During cold acclimation, multiple changes in gene expression occur. The transcripts for
COR proteins, antioxidants, enzymes involved in cryoprotectant production, and many
other gene products are induced in response to low temperature (Thomashow, 1998).
While few transcriptional regulators involved in modifying cold-responsive genes are
known, one pathway is now well established.
The previously mentioned COR proteins were first identified by their high
transcript accumulation in response to cold (Hajela et al., 1990). Studies on the
regulation of COR15a transcription resulted in the isolation of a fragment of the COR15a
promoter that could drive expression of a reporter gene in response to low temperature
(Baker et al., 1994; Yamaguchi-Shinozaki and Shinozaki, 1994). One sequence of
interest in this promoter fragment was the C-repeat (TGGCCGAC), also known as the
DRE (dehydration responsive element). The core sequence of the C-repeat, CCGAC,
15
was also found in the promoters of other COR genes. Using a yeast one-hybrid approach,
Stockinger et al. (1997) isolated a protein that could bind to the C-repeat and activate
transcription. This protein was named CBF 1 (Q-repeat binding factor 1). Since
overexpression of COR15a led to only a modest improvement in chloroplast freezing
tolerance, a question arose as to whether the simultaneous expression of multiple COR
genes could alter the freezing tolerance of Arabidopsis. The discovery of CBF 1 provided
a tool to answer this question. Arabidopsis overexpressing CBF] were found to
accumulate levels of COR transcripts similar to cold-acclimated plants and were
constitutively freezing tolerant without a period of cold acclimation (J aglo-Ottosen et al.,
1998). This and other studies (Liu et al., 1998; Kasuga et al., 1999; Gilmour et al., 2000;
Gilmour et al., 2004) have revealed that CBF expression has a significant impact on plant
freezing and chilling tolerance (Gong et al., 2002).
The Arabidopsis genome encodes three cold-responsive CBF transcriptional
activators CBF], CBF2, and CBF3 (Stockinger et al., 1997; Gilmour et al., 1998;
Medina et al., 1999), which are also known as DREBIb, DREBlc, and DREBla (Liu et
al., 1998; Kasuga et al., 1999), respectively. The CBF transcription factors are members
of the AP2/EREBP family of DNA-binding proteins (Riechmann and Meyerowitz, 1998).
The CBF proteins bind to the CRT (C-repeat)/DRE (dehydration responsive element)
(Baker etal., 1994; Yamaguchi-Shinozaki and Shinozaki, 1994). In vitro studies on the
binding of CBF to the CRT/DRE element defined (A/G)CCGAC as the consensus
binding sequence (Sakuma et al., 2002). The CBFI-3 genes are induced within 15 min of
plants being exposed to cold temperatures followed at about 2 h by induction of a group
of genes that contain the CRT/DRE-regulatory element, known as the “CBF regulon”
l6
(Gilmour et al., 1988; Liu et al., 1998). The level of freezing tolerance observed by
expression of the CBF regulon is substantial; constitutive expression of the CBF1-3 genes
increases the freezing tolerance of nonacclimated plants 3.5-7.5°C (Gilmour et al., 2000;
Gilmour et al., 2004). While the exact mechanisms by which the CBF regulon enhances
freezing and chilling tolerance are not known, it is clear that multiple mechanisms are
involved. This includes the synthesis of low molecular weight cryoprotective molecules
such as proline, sucrose, and raffinose (Gilmour et al., 2000; Taji et al., 2002) and the
production of proteins with cryoprotective properties such as COR15a (Artus et al., 1996;
Steponkus et al., 1998).
The CBF cold response pathway is conserved across plant species (Jaglo et al.,
2001). Cold-responsive CBF orthologs have been found in freezing tolerant and chilling-
sensitive plants, including wheat, rye, barley, oat, Brassica napus, rice, maize, tomato,
and others (Jaglo et al., 2001; Choi et al., 2002; Chen et al., 2003; Dubouzet et al., 2003;
Shen et al., 2003; Qin et al., 2004; Zhang et al., 2004). The existence of cold-responsive
CBFs in chilling-sensitive species leads to fundamental questions on the nature of cold
acclimation and chilling-sensitivity. Do these chilling-sensitive plants contain a complete
CBF cold response pathway? Are they deficient in an important component(s) of the CBF
pathway? Work in chilling-sensitive tomato indicates that tomato has a functional CBF
cold response pathway, but the CBF regulon of tomato differs dramatically from
Arabidopsis (Zhang et al., 2004). This study suggests that tomato either lacks a co-
activator activity required for CBF function that is present in Arabidopsis or lacks
functional CRT/DRE elements within the genome.
17
While the CBF cold response pathway is conserved across plant species and
increases the freezing tolerance of some plants, it is unknown whether additional cold
response pathways exist in Arabidopsis. Studies with Arabidopsis mutants suggest that
additional pathways do exist. The eskimol mutant of Arabidopsis is constitutively more
freezing tolerant than wild type plants, but COR genes are not constitutively expressed
indicating that the mutation activated a freezing tolerance pathway outside the CBF
system (Xin and Browse, 1998). Similarly, ada2 mutants of Arabidopsis (ADA2 encodes
a transcriptional adaptor protein) are constitutively more freezing tolerant than wild type
plants, but COR genes are not constitutively induced suggesting that the ADA2 protein is
involved in inhibiting expression of a freezing tolerance pathway that is distinct from the
CBF cold response pathway (Vlachonasios et al., 2003). Microarray studies profiling
roughly one-third of Arabidopsis genes in response to low temperature also indicate the
existence of additional low temperature pathways (Seki et al., 2001; Fowler and
Thomashow, 2002; Kreps et al., 2002; Seki et al., 2002).
No study has yet defined the low temperature transcriptome for Arabidopsis on a
whole genome level, nor the extent to which the CBF transcription factors influence these
genes. Also unknown are the identities of additional transcription factors that configure
the low temperature transcriptome. To further understand the roles of the CBF proteins
in configuring the low temperature transcriptome and to identify additional transcription
factors with roles in cold acclimation, work in this dissertation aimed to define a low
temperature transcriptome for Arabidopsis, to determine the contribution of the CBF
transcription factors to the cold transcriptome, and to determine the regulons of other
cold-responsive transcription factors.
18
CHAPTER TWO
ROLES OF THE CBF2 AND ZAT12 TRANSCRIPTION FACTORS IN
CONFIGURING THE LOW TEMPERATURE TRANSCRIPTOME OF
ARABIDOPSIS
The majority of work in this chapter was published in the Plant Journal.
Vogel, Jonathan T., Zarka, Daniel G., Van Buskirk, Heather A., Fowler, Sarah G.,
and Thomashow, Michael F. (2005) Roles of the CBF2 and ZAT12 transcription factors
in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41, 195-211.
19
SUMMARY
The CBF cold response pathway has a prominent role in cold acclimation. The
pathway includes action of three transcription factors, CBFl, 2, and 3 (also known as
DREBIb, c, and a, respectively), that are rapidly induced in response to low temperature
followed by expression of the CBF-targeted genes (the CBF regulon) that act in concert
to increase plant freezing tolerance. Results of transcriptome profiling and mutagenesis
experiments, however, indicate that additional cold-response pathways exist and may
have important roles in life at low temperature. To further understand the roles that the
CBF proteins play in configuring the low temperature transcriptome and to identify
additional transcription factors with roles in cold acclimation, the Affymetrix GeneChip®
containing probe sets for approximately 24,000 Arabidopsis genes was used to define a
core set of cold-responsive genes and to determine which genes were targets of CBF 2 and
six other transcription factors that appeared to be coordinately regulated with CBF 2. A
total of 514 genes were placed in the core set of cold-responsive genes, 302 of which
were up-regulated and 212 down-regulated. Hierarchical clustering and bioinformatic
analysis indicated that the 514 cold-responsive transcripts could be assigned to one of
seven distinct expression classes and identified multiple potential novel cis-acting cold-
regulatory elements. Eighty-five cold-induced genes and eight cold-repressed genes were
assigned to the CBF 2 regulon. An additional nine cold-induced genes and 15 cold-
repressed genes were assigned to a regulon controlled by ZAT12. Of the 25 core cold-
induced genes that were most highly up-regulated (induced over 15-fold), 19 genes
(84%) were induced by CBF2 and another two genes (8%) were regulated by both CBF2
and ZAT12. Thus, the large majority (92%) of the most highly induced genes belong to
20
the CBF2 and ZAT12 regulons. Constitutive expression of ZAT12 in Arabidopsis caused
a small, but reproducible, increase in freezing tolerance, indicating a role for the ZAT12
regulon in cold acclimation. In addition, ZAT12 was found to down-regulate expression
of the CBF genes indicating a role for ZAT12 in a negative regulatory circuit that
dampens expression of the CBF cold response pathway.
21
INTRODUCTION
Many plants increase in freezing tolerance in response to low nonfreezing
temperature, a phenomenon known as “cold acclimation” (Thomashow, 1999;
Smallwood and Bowles, 2002). Cold acclimation in Arabidopsis involves action of the
CBF cold response pathway (Thomashow, 2001). The pathway includes the CBF] ,
CBF 2, and CBF 3 genes (Gilmour etal., 1998; Medina et al., 1999; Jaglo et al., 2001),
also known as DREBI b, DREBIc, and DREBI a, respectively (Liu et al., 1998), which
encode transcriptional activators that bind to the CRT (C-repeat)/DRE (dehydration
response element) regulatory element present in the promoters of COR and other cold-
responsive genes (Baker et al., 1994; Yamaguchi-Shinozaki and Shinozaki, 1994;
Stockinger et al., 1997; Gilmour et al., 1998). Transcripts for CBF], 2, and 3 accumulate
rapidly (within 15 min) upon exposing plants to low temperature followed by induction
of the CBF-targeted genes known as the CBF regulon. Constitutive expression of the
CBF genes results in constitutive expression of the CBF regulon and increased freezing
tolerance without a low temperature stimulus (J aglo-Ottosen et al., 1998; Liu et al., 1998;
Gilmour et al., 2000; Gilmour et al., 2004). The freezing tolerance conferred by the CBF
regulon involves the production of cryoprotective polypeptides such as COR15a (Artus et
al., 1996; Steponkus et al., 1998) and the accumulation of compatible solutes such as
sucrose, raffinose, and proline (Nanjo et al., 1999; Gilmour et al., 2000; Gilmour et al.,
2004)
The CBF cold response pathway is currently the best understood genetic system
with a role in cold acclimation. However, it does not appear to be the sole pathway with
a role in freezing tolerance. The eskimoI mutant of Arabidopsis described by Xin and
22
Browse (1998) is constitutively more freezing tolerant than wild type plants, but the COR
genes are not constitutively expressed indicating that the mutation activated a freezing
tolerance pathway outside the CBF system. Similarly, ada2 mutants of Arabidopsis
(ADA2 encodes a transcriptional adaptor protein) are constitutively more freezing tolerant
than wild type plants, but COR genes are not constitutively induced suggesting that the
ADA2 protein is involved in inhibiting expression of a freezing tolerance pathway that is
distinct from the CBF cold response pathway (Vlachonasios et al., 2003).
To more fully understand the role of the CBF cold response pathway in cold
acclimation, investigators have examined the changes that occur in the Arabidopsis
transcriptome in response to low temperature and overexpression of the CBF
transcription factors. Fowler and Thomashow (2002) surveyed the expression of about
8,000 Arabidopsis genes in response to low temperature. The results indicated that
extensive changes occur in the transcriptome during cold acclimation. In particular, 306
(~4%) genes were found to be either up- or down-regulated at least 3-fold in response to
low temperature. However, only 12% of these genes could be assigned to the CBF
regulon (i.e., were both cold- and CBF-responsive); at least 28% of the cold-responsive
genes were not affected by expression of the CBF transcription factors, including 15
encoding known or putative transcription factors. Thus, it was concluded that cold
acclimation is associated with the activation of multiple low temperature regulatory
pathways. Similar conclusions have been reached by others studying the Arabidopsis
low temperature transcriptome (Seki et al., 2001; Kreps et al., 2002; Seki et al., 2002).
Here, the regulation of the low temperature transcriptome of Arabidopsis was
further explored. Using the Affymetrix GeneChip® containing probe sets for
23
approximately 24,000 genes, I defined a core set of cold-responsive genes and
determined whether they were targets of CBF 2 or six other transcription factors that
appeared to be coordinately regulated with CBF2. I conclude that the majority of genes
that are most highly induced in response to low temperature are part of the CBF2
regulon; that the ZAT12 transcription factor participates in the induction and repression
of cold-responsive genes; and that the ZAT12 regulon contributes to an increase in
freezing tolerance. The results also indicate that certain cold-responsive genes are
members of both the ZAT12 and CBF2 regulons and that ZAT12 has a role in a negative
regulatory circuit that dampens expression of the CBF cold response pathway.
24
RESULTS
Identification of a Core Set of Cold-Responsive Genes
The first objective was to identify a core set of cold-responsive genes that could
be used to further our understanding of the low temperature regulons and regulatory
networks of Arabidopsis. The goal was not to identify all genes that were cold-
responsive, but to identify a set of genes that were reproducibly cold-responsive using
two common lab conditions, plants grown on soil in pots and plants grown on plates
containing solid culture medium. This was accomplished using the Arabidopsis
Affymetrix GeneChip® ATHl array, which contains probes for approximately 24,000
genes, to compare the transcriptomes of plants grown in soil and on plates at “warm”
temperatures (22°C soil, 24°C plates) with those of plants that had been transferred to
low temperature (4°C) for 1 h, 24 h, and 7 d. In the plate experiments both root and
shoot tissue was harvested, while in the soil experiments, shoot tissue was harvested.
Pooled RNA from multiple samples at each time-point was labeled and hybridized to the
arrays. A probe set was designated as being up-regulated if, in both biological samples
for a given time-point, the detection algorithm assigned a call of “present” in the cold-
treated sample, the change algorithm assigned a call of “increased,” and the signal log
ratio was greater than or equal to 1.3. A probe set was designated as being down-
regulated if, in both biological samples for a given time-point, the detection algorithm
assigned a call of “present” in the warm sample, the change algorithm assigned a call of
“decreased,” and the signal log ratio was less than or equal to -1.3. The signal log ratio
cutoffs used corresponded to approximately a 2.5-fold change.
25
Using these criteria, 1,295 probe sets were cold-responsive in the plate
experiments and 938 probe sets were cold-responsive in the soil experiments (the
complete “raw” data sets for these experiments are posted at the TAIR website
“www.arabidopsis.org” and the cold-responsive probe sets are listed in Appendices A-D).
In the plate experiments, 673 probe sets were up-regulated, 627 were down-regulated and
five were both up- and down-regulated at different times in the experiment. In the soil
experiments, 557 probe sets were up-regulated, 382 were down-regulated and one was
both up- and down-regulated at different times in the experiment. A comparison of the
probe sets that were cold-responsive in the plate and soil experiments indicated that 302
were up-regulated in both experiments and that 212 were down—regulated in both
experiments (Figure 2.1a; Appendices E and F), with the largest number of changes
occurring at 24 h (Figure 2. lb). These changes in gene expression were statistically
significant at a p<0.05, with 95% (490/514) statistically significant at a p<0.005 (see
Materials and Methods). Many of the probe sets that were categorized as not being
responsive in both soil- and plate-grown plants showed a corresponding increase or
decrease in both experiments, but did not meet the strict criteria used for designating
cold—responsiveness in both experiments. Some probe sets, however, were only
responsive in either the soil or plate experiments. The reason for these differences is
currently unknown, but is likely to reflect, in part, the differences in the culture
conditions and tissues harvested in the experiments. Exploring these differences will be
the subject of future study. The goal accomplished here was the identification of 514
probe sets that were cold-responsive in four experiments using two different culture
conditions; i.e., an identification of a robust set of cold-responsive genes that could be
26
(a)
Up-regulated probe sets Down-regulated probe sets
Plates
41 S
3
300
NM
OLD
CO
150
100
Cold responsive
probe sets
U1
OO
1 24 168
Time (h) at 4‘C
Figure 2.1. Low temperature responsive probe sets.
(a) Probe sets differentially regulated (2.5-fold cutoff, p S 0.05) at low temperature in
plants grown in soil (soil) and on solid medium (plates).
(b) Number of probe sets with altered accumulation at l h, 24 h, and 168 h after transfer
to low temperature in both soil and solid medium.
used in deciphering the low temperature regulatory network of Arabidopsis. I refer to
these genes as a “Qld standar ” (COS) set of cold-responsive genes.
Members of the COS Gene Set can be Assigned to One of Seven Expression Clusters
The 514 COS genes were subjected to hierarchical clustering based on their
relative transcript levels in plants after 1 h, 24 h, and 7 d of cold treatment (Figure 2.2a).
Each gene was assigned to one of seven expression clusters (Figure 2.2b). Expression
clusters I and II comprised down-regulated transcripts and clusters III to VII comprised
up-regulated transcripts. The major difference between clusters I and II was that the
27
transcripts in the former cluster continued to decrease in levels between 24 h and 7 (1
whereas those in cluster 11 showed some recovery over this time interval. A major
difference between the up-regulated transcripts in clusters III and IV, as compared to
those in clusters V, VI, and VII, was that those in the former two clusters were delayed in
response; i.e., there was little increase in the levels of the transcripts in clusters III and IV
after 1 h of cold treatment whereas there was an increase for the transcripts in clusters V,
VI, and VII. Also, a distinguishing feature of cluster V was that the cold-response for
these transcripts was transient in nature; transcript levels increased dramatically by 1 h,
but returned to near “nu-stressed” levels by 24 h.
The clustering of genes with similar expression patterns raises the possibility of
using bioinformatic approaches to identify potential cis-acting regulatory elements
involved in coordinate gene regulation (reviewed in Rombauts et al., 2003). In this
regard, MotifSampler (Thijs et al., 2002) was used to search for 8 bp sequences that were
significantly overrepresented in the promoter regions of the COS genes that comprised
the different expression clusters. Those elements that were enriched 5-fold or more (as
compared to all genes on the array) are listed in Table 2.1. No potential cold-regulatory
elements were identified for the genes in clusters I and II, the cold-repressed genes, but
many were identified for the up-regulated genes in clusters III to VII. Most of these
potential regulatory sequences were novel. However, an analysis of the genes comprising
cluster III lead to the identification of the motif erCGAC which contains the CRT/DRE
element, (A/G)CCGAC, the element to which the CBF transcriptional activators bind
(Sakuma et al., 2002). The sequence (A/G)CCGAC was present within lkb upstream of
123 (53%) of the 233 genes included in the cluster (as shown below, most of the genes
28
(a) Time (h) at 4°C (b) Expression profiles of clusters
0 1 24 168
10 !Cluster 1, 101 probe sets
1 ‘ .-.. ..
0.1 5
10 ICluster II, 111 probe sets
1 ~- ,4
0.1 i ‘ is?
1000 Cluster III. 233 probe sets
ll 100
0 represent hydrophilic regions, while values < O are
hydrophobic. The length of the protein (number of amino acids) is indicated along the
top of each plot. TargetP (http://www.cbs.dtu.dk/services/TargetP/) was used to deduce
potential signal peptides and the predicted cleavage sites are indicated by arrows.
COR15a is shown for comparison.
sequence analysis using TargetP (Nielsen et al., 1997; Emanuelsson et al., 2000),
suggesting they are targeted to cellular organelles. Of these four, COR] 7 was the most
highly up-regulated (>375 fold) by CBF2 expression and contained 3 CRT/DRE elements
within 500 bp of the 5’ UTR, likely making it a direct target of the CBFs. COR17
contained a group 3 LEA domain (Dure et al., 1989) and the mature peptide was rich in
Ser, Val, Thr, Ala, Glu, and Lys (51% of the amino acid residues). COR17 was also the
most highly up-regulated transcript at any time (>390-fold at 24 h) in the experiment
examining cold-responsive genes in plate grown plants. COR 1 7 lies on chromosome 1
88
next to another gene (Atl gl6840), also predicted to encode a highly hydrophilic peptide
possessing a targeting peptide (Atl g16840 was not cold-regulated). This type of
chromosomal arrangement is similar to that described for other COR gene pairs
(Thomashow et al., 1997). Given the high level of expression and predicted domains in
the protein, it seems likely that COR17 plays a protective role during freezing stress,
perhaps in a fashion similar to COR15a (Artus et al., 1996). Future experiments will be
needed to confirm this hypothesis.
The ZAT12 regulon was enriched for transcripts annotated with the biological
processes of lipid transport and binding, transport, and cell growth (Figure 3.3b and Table
3.4). Among the down-regulated transcripts, there was no enrichment for any biological
processes or molecular function, but further examination showed that six transcripts
encoded proteins of unknown function and five encoded proteins potentially involved in
metabolism. The other four transcripts were classified as signaling, transport, and stress.
ZA T12 overexpression results in altered freezing tolerance, but to a much lesser
degree than overexpression of CBF. The mechanism for this change in freezing tolerance
is not known, but the putative functions of the proteins encoded by transcripts altered by
ZAT12 reveal some possibilities. I previously speculated on the role of two transcripts,
L-ascorbate oxidase (At5g21100) and arginine decarboxylase (At4g34710), in protecting
the plant from damage during cold stress (Chapter 2). Additional transcripts influenced
by ZAT12 have stress-related roles. ZAT12 up-regulated five members of the protease
inhibitor/seed storage/ lipid transfer protein family, which may stabilize or remodel
membranes, as hypothesized by Wilkosz and Schlappi (2000). Transcripts for potential
antifreeze proteins (At2g43620 and At5g06860) were also up-regulated by ZAT12.
89
Table 3.4. Overrepresented GO terms in the ZAT12 regulon
Frequency in Frequency
Class GO Ontology genome in class E-score GO Term
ZAT12 & Cellular 4520/27627 8/9 4.32E-05 endomembrane
cold up Component system
6642/27627 8/9 8.66E-04 membrane
Biological 104/27627 5/9 2.31 E-09 lipid transport
Process 4687/2762? 7/9 2.84E-03 cellular process
3237/27627 6/9 4.26E-03 cell growth and/or
maintenance
1987/27627 5/9 5.10E-03 transport
3592/27627 6/9 7.67E-03 cellular physiological
Jrocess
Molecular 143/27627 5/9 1.12E-08 lipid binding
Function 1 15/27627 2/9 1 .58E-02 nutrient reservoir
activity
ZAT12 & Cellular 6642/27627 10/15 3.96E-03 membrane
cold down Component 4520/27627 7/15 4.15E-02 endomembrane
system
ZAT12 regulon members (Appendices G and H) were classified into gene ontology (GO)
categories using the functional categorization tool at TAIR
(http://www.arabidopsis.org/tools/bulk/go/). Overrepresented terms among transcripts in
the ZAT12 regulon as compared to the rest of the genome (E S 0.05) are shown. Each
term is associated with an organizing principle (biological process, cellular component,
or molecular function) listed under “GO ontology” in the table.
Transcripts for proteins likely involved in protecting the plant from oxidative stress were
up-regulated, including a putative anthocyanidin synthase (At4g22870) and a
dihydroflavanol 4-reductase (At5g42800), both of which are involved in anthocyanin
production, but neither is a COS transcript.
The Co-Regulation of Transcripts by Multiple Transcription Factors Indicates Many of
the Early Cold-Responsive Transcription Factors May Co-Regulate Cold-Responsive
Transcripts
9O
The co-regulation of transcripts by CBF2 and ZAT12 (Chapter 2) is of interest, as
it reveals the complexity of the networks of gene expression that occur at low
temperature. The pEARLI transcripts are a case in point. These proteins of unknown
function are members of the protease inhibitor/seed storage/lipid transfer protein family
and were first identified as transcripts responding to toxic levels of aluminum (Richards
and Gardner, 1995) and, more recently, vernalization (Wilkosz and Schlappi, 2000). Of
the five pEARLI-like genes identified as COS genes, four occur in tandem on
chromosome 4. Interestingly, all of the cold-regulated transcripts belonging to this
family were placed into either the CBF 2 or ZAT12 regulons. In addition to being
affected by expression of CBF2 or ZAT12 (Figure 2.8, Chapter 2), the transcription
factors STZ/ZA T10 and CZF2 (At5g04340) also altered the expression of one or more of
the pEARLIs (J .T. Vogel, unpublished data). Even though STZ/ZA T10 and CZF 2 did not
contribute significantly to the cold transcriptome (Chapter 2), it seems unlikely that these
cold inducible transcription factors would influence pEARLI expression by chance. A
question that arises is why such redundancy would be needed. These proteins could be
playing a critical role in freezing tolerance, vernalization, or life at low temperature.
Whatever their role, the identification of cold-regulated genes that appear to be
influenced by multiple transcription factors reveals the complexity of signaling events at
low temperature and may denote factors with critical roles in cold acclimation.
CONCLUSION
The Arabidopsis cold transcriptome is composed of transcripts encoding myriad
functions, as one would expect given the number of physiological changes that occur
91
during cold acclimation. As the work here demonstrates, those transcripts induced
quickly in the cold are enriched for signaling molecules and transcription factors, which
presumably influence downstream changes in gene expression and, ultimately, freezing
tolerance. Examination of the CBF 2 and ZAT12 regulons also supports this model. The
CBF cold response pathway regulates genes with altered accumulation at later times in
the cold, but that picture has been expanded upon here. The CBF regulon is enriched in
stress-related transcripts, the majority of whcih fall into cluster III. The ZAT12 regulon
is also composed of transcripts that are highly up-regulated later in the cold response (24
h or 7 d). The co-regulation of a number of transcripts by multiple transcription factors
only adds to the apparent complexity of cold signaling pathways.
The analysis presented in this work generates new hypotheses that can be tested
experimentally. The need exists to continue studying the functions of both the
downstream genes in order to assess their roles in cold acclimation and the upstream
factors that regulate them. This will include biochemical and physiological studies of
gene products such as the COR peptides and molecular genetic studies on the
transcription factors and cis-elements responsible for cold-regulated gene expression.
This will result in a greater understanding of Arabidopsis low temperature regulatory
networks and how plants increase their freezing tolerance during cold acclimation.
92
AKNOWLEDGEMENTS
In the completion of the work in this chapter, I would like to thank our
collaborator Dr. Seung Yon Rhee at TAIR for helpful suggestions and analyzing the data
with the GeneMerge program. Thanks also to Dr. Sarah Fowler for critical reading of
this chapter.
93
MATERIALS AND METHODS
Functional Classification of Transcripts
COS probe sets were assigned AGI locus identities derived from TAIR’s
annotation of the ATHl GeneChip using the TIGR v 5.0 annotation of the Arabidopsis
genome. COS genes were placed into functional categories manually using annotation
available at TAIR (The Arabidopsis Information Resource, www.arabidopsis.org), TIGR
(The Institute for Genomic Research, www.tigr.org), and MIPS (Munich Information
Center for Protein Sequences, http://mips.gsf.de). The transcripts were then placed into
sub-roles based primarily on this annotation and on published literature. A full
description of the microarray datasets and tables of the COS genes can be found in
Chapter 2 and Appendices E and F. The COS genes were also automatically classified
into gene ontology (GO) functional categories using the fimctional categorization tool
available at TAIR (http://www.arabidopsis.org/tools/bulk/gol). GeneMerge was then
used to find categories of transcripts statistically (E—score S 0.05) overrepresented in a
given class compared to the rest of the genome as described by Castillo-Davis and Hart]
(2003)
94
CHAPTER FOUR
THE IDENTIFICATION OF SIX NOVEL MOTIFS IN THE PROMOTERS OF COLD-
REGULATED GENES AND THE DETERMINATION OF THEIR COLD-
RESPONSIVENESS
SUMMARY
The definition of the COS (991d standards) gene set (Chapter 2), transcripts that
change in plants grown in either soil or solid media in response to low temperature,
provides the framework with which the low temperature regulatory networks of
Arabidopsis can be constructed. Understanding Arabidopsis low temperature regulatory
networks will lead to a greater understanding of how plants cold acclimate and may
ultimately result in genetic methods of increasing the freezing tolerance of agricultural
crops. One component of these regulatory networks comprises the cis-elements present
in the promoters of cold-responsive genes. Studies on the COS gene set has led to the
identification of several motifs in the promoters of genes with similar expression profiles
(Chapter 2). These motifs could be binding sites for transcription factors that regulate
transcription in a cold dependent manner. The studies presented here aimed to identify
additional motifs present in the promoters of the COS genes and to determine their cold-
responsiveness. To this end, two new novel motifs were identified in the promoters of
COS genes with the highest expression after 24 h at low temperature and that were
outside of the CBF regulon. These two novel motifs, along with four motifs previously
found to be overrepresented in the promoters of COS genes (Chapter 2), were each fused
as a tetramer in front of the GUS reporter gene, transformed into Arabidopsis, and
assayed for the activity of the reporter. None of the six motifs were found to confer cold-
responsiveness to the reporter. However, fusion of a tetramer of the sequence
95
GTGATCAC in front of the GUS reporter gene resulted in GUS activity in both warm
and cold treated plants.
96
INTRODUCTION
Cold acclimation is the process by which plants increase their freezing tolerance
through exposure to low non-freezing temperatures (Thomashow, 1999; Smallwood and
Bowles, 2002). Understanding how plants cold acclimate not only furthers science, but
may ultimately lead to novel methods of engineering increased freezing tolerance in crop
species. Such an understanding includes deciphering the low temperature transcriptome,
those genes whose expression is altered in response to low temperature.
In order to more fully understand the gene networks involved in regulating the
low temperature transcriptome, it is necessary to identify transcription factors that
regulate cold-responsive transcripts and identify the cis-elements they bind. Given that
the Arabidopsis genome encodes more than 1,700 transcription factors (Riechmann,
2002), the question becomes which regulate cold-responsive transcripts. One approach is
to constitutively express transcription factors whose mRNA levels accumulate in
response to low temperature and determine if the expression of any cold-responsive
transcripts is altered. This approach led to limited success, as one out of five
transcription factors whose mRNA accumulated in response to low temperature was
found to influence a significant number of cold-responsive transcripts (Chapter 2). This
approach is limited to only those transcription factors whose transcripts increase in the
cold and that can function independently of other cold-responsive factors and/or
modifications. Alternatively, a mutational approach can be taken. Studies using the
RD29a/C OR 78 or CBF 3 promoter fused to luciferase have identified transcription factors
such as H059 and ICE 1, whose expression is not altered by low temperatures, which
influence cold-responsive genes (Chinnusamy et al., 2003; Zhu et al., 2004). This
97
mutational approach has the drawback of taking longer to isolate, characterize, and clone
the mutated gene which may or may not be involved in cold-responsive transcription.
Additional approaches are needed in order to define novel cold response pathways in
Arabidopsis.
A more direct approach to define novel pathways is to first determine the cold-
responsive elements present in the promoters of cold-regulated genes and then isolate the
factor(s) that bind them. Such an approach was successfully used to identify the
CRT/DRE element in the promoters of certain cold-responsive genes (Baker et al., 1994;
Yamaguchi-Shinozaki and Shinozaki, 1994) and the CBF/DREBl transcription factors
that bind to this element (Stockinger et al., 1997). Constitutive expression of CBF], 2, or
3 in plants leads to activation of genes containing the CRT/DRE element in their
promoter and increases freezing tolerance (Jaglo-Ottosen et al., 1998; Gilmour et al.,
2004). The success of these experiments may have lain, in part, with the gene used in the
promoter-deletion experiments (COR15a), which has a high level of expression in
response to low temperature.
Current work suggests that had global gene expression data and computational
approaches been available when experiments studying the COR15a promoter began, the
CRT/DRE element would have quickly been identified as it has recently (Kreps et al.,
2003; Vogel et al., 2005). Fusion of the CRT/DRE motif as a tetramer in front of a
reporter gene such as GUS or LUC would have resulted in the reporter’s expression after
cold treatment. This computational approach would have saved time and effort put into
creating multiple promoter-reporter deletion constructs in stably transformed transgenic
98
plants. In fact, this exact type of bioinformatic approach was used to rapidly identify the
circadian responsive evening element in Arabidopsis (Harmer et al., 2000).
Here, I apply the above approach to the study of cold-regulated gene expression to
identify non-CBF cold response pathways. Transcriptome profiling experiments
examining transcripts with altered accumulation after 1 h, 24 h, or 7 d at low temperature
in two growth conditions (soil or solid media, 2.5-fold cutoff, p<0.05), resulted in the
identification of 514 transcripts changing in both culture conditions, defined as COS
(c_qld standard) transcripts (Chapter 2). Hierarchical clustering revealed seven expression
classes among the COS genes. Additionally, bioinformatics analysis revealed DNA
motifs that were overrepresented in the promoters of each cluster of up-regulated genes.
Elements identified in the promoters of genes whose transcripts increased the most after
24 h or 7 d of exposure to low temperature should be good candidates for testing the
motifs identified, as these motifs might confer a high level of cold-responsiveness to a
reporter gene. Among those genes that increased to the highest levels after 24 h at low
temperature, clusters III and IV, the CRT/DRE motif was identified in cluster III and four
novel motifs were found in cluster IV.
In this study, cluster III promoters were found to contain the evening element,
ABREs, and two novel motifs. The cold-responsiveness of these novel motifs, along
with the motifs previously identified in cluster IV, was tested by fusing a tetramer of each
motif in front of the GUS reporter gene and monitoring for cold induction of the reporter.
When placed as a tetramer in front of GUS, none of the motifs conferred cold-responsive
GUS activity. One element, GTGATCAC, resulted in constitutive activation of the
reporter gene. Future work that could reveal the function of these elements is discussed.
99
RESULTS
The Circadian Evening Element and the ABRE are Present in the Promoters of the Most
Highly Cold-Induced Transcripts Outside of the CBF Regulon
In an effort to decipher Arabidopsis low temperature regulatory networks, the
promoters of the 25 transcripts with the highest average fold change after 24 h of cold
treatment that were not CBF regulon members were examined. Should a cold-responsive
element be present in this group of genes, one might expect such an element to be easier
to discover if the high expression level is due to multiple copies of that element. The 500
bp upstream regions of these transcripts was searched for overrepresented motifs using
MotifSampler (Thijs et al., 2002). MotifSampler is a statistical program based on Gibbs
sampling (Thijs et al., 2001; Thijs et al., 2002). Gibbs sampling is a stochastic variant of
the expectation-maximization (EM) method (reviewed in Rombauts et al., 2003). Due to
the stochastic nature of Gibbs sampling, a detected motif can be replaced by another with
a higher score. This results in different outputs from the algorithm each time it is run.
However, motifs that are more conserved and overrepresented in a group of sequences
will be retrieved more frequently over different runs. Statistically analyzing the output of
multiple runs allows one to find the highest scoring motifs. Here, the program was run
100 times and the results were then searched for the highest scoring motifs.
Two motifs, CACGTGM and AAATATCT, were identified that were statistically
overrepresented and approximately 2-fold enriched in the promoters of these genes
compared to the rest of the promoters for genes on the GeneChip. Each is a known cis-
element, CACGTGM is an ABRE (abscisic acid response element) (Guiltinan et al.,
1990) and AAATATCT is the evening element (Harmer et al., 2000). Both elements
100
have been previously identified in the promoters of cold-regulated genes (Baker et al.,
1994; Yamaguchi-Shinozaki and Shinozaki, 1994; Kreps et al., 2002; Kreps et al., 2003),
but this is the first report of their occurrence in the promoters of the most highly cold-
induced genes not part of the CBF regulon. MotifSampler previously found the
CRT/DRE element in the promoters of cold-regulated genes (Chapter 2). The program
has now successfully found two other cis-elements present in the promoters of cold-
_ responsive genes. This indicates that the program can find overrepresented motifs which
can play a role in gene expression.
Novel Potential cis-Elements are Revealed in Cluster III Promoters when CBF Regulon
Members are Removed
In order to find additional overrepresented motifs, another approach was taken to
analyze the promoters of cold-responsive genes. Cluster 111 represents a group of good
candidate genes for identifying cold-responsive cis-elements, as their expression is high
at 24 h and elements found in these promoters might impart high levels of cold-
responsiveness to a reporter gene. Since the CRT/DRE element was the only motif
identified as 2 S-fold enriched in cluster 111, these genes were further analyzed to
determine if the presence of the CRT/DRE could be masking additional motifs that were
not as greatly enriched. By removing all the CBF regulon members and genes containing
an (A/G)CCGAC within lkb upstream among the 233 cluster III genes, 96 remained.
Analysis of these 96 promoters (500 bp upstream) with MotifSampler uncovered one
known motif, WNGMCACGTG (ABRE), and one novel element, AGGCCCAWNA, that
101
were both approximately 2-fold enriched in cluster 111 (Table 4.1). Each motif was
present in over 20 of the promoters of cluster 111 genes.
Since removal of CRT/DRE and CBF regulon member genes from the analysis
allowed the identification of a new overrepresented motif, cluster HI promoters that
contained WNGMCACGTG or AGGCCCAWNA were removed and the remaining
promoters analyzed. Among these promoters, one novel motif, AAAACCCTA, was
discovered as overrepresented and 2-fold enriched (Table 4.1). Again, this motif was
present in over 20 promoters of cluster 111 genes.
A question arose as to whether these novel elements occurred in promoters with
CRT/DRE elements, by themselves, or in some combination. To address this question,
the promoter region queried was expanded to lkb upstream and cluster III transcripts
were examined for promoters with each of the motifs (Table 4.2). Besides examining
promoters with at least two motifs, Figure 4.1 depicts the overlap between cluster 111
genes with the CRT/DRE and either of the two novel elements. The results indicate that
no cluster III gene promoter possesses all four of the motifs. Promoters with the two
novel elements also contain a CRT/DRE element more ofien than each other or
WNGMCACGTG. Given the number of promoters containing one or more of these
different motifs, multiple transcription factors are likely acting on the promoters of
cluster 111 genes.
Some of the Base Pairs Flanking the Motifs in Cluster 1]] Appear to be Conserved
When MotifSampler searches for motifs among a group of sequences, the length
of the motif to be searched for must be pre-set. To determine whether any of the novel
102
Table 4.1. Overrepresented motifs in cluster III
500bp upstream 1000bp upstream
Motif PlantCARE Class (%) GeneChip (%) Class (%) GeneChip (%)
AGGCCCAWNA novel 21/233(9%) 1159l22746 (5%) 261233 (11%) 1483/22746(6.5%)
WNGMCACGTG ABRE 27/233 (11.6%) 88822746 (3.9%) 30I233 (13%) 1245722746 (5.5%)
AAAACCCTA novel 21/233 (9%) 10360274644.5%) 28l233 (12%) 1486/22746 (6.5%)
Overrepresented motifs discovered in the promoters of cluster III genes that do not have
CRT/DRE elements (lkb upstream) and are not CBF regulon members. Each motif was
queried to the PlantCARE database to determine if it was a known or novel element. The
numbers of promoters in cluster III or for promoters from genes on the ATHl GeneChip
that contain the element (in the 500 bp or 1000 bp upstream regions) are shown. ABRE:
abscisic acid responsive element.
Table 4.2. Number of promoters with each pair-wise motif combination
Element CRT/DRE WNGMCACGTG AGGC_——CCAWNA AAAAC_CC_TA
—CRT/DRE 124
WNGMCACGTG 18 30
AGGCCCAWNA 12 3 26
AAAACCCTA 8 1 5 28
This table depicts the number of promoters of the 233 cluster III (lkb upstream) genes
that contain each motif in any given pair-wise combination. To be identified in the
promoter of a gene, the element had to be present exactly as shown.
(AlGICCGAC
VAV
V
AAAACCCTA AGGCCCAWNA
Figure 4.1. Overlap of the two novel motifs and the CRT/DRE element in cluster III
promoters.
This figure depicts the number of promoters (lkb upstream sequence) of the 233 cluster
111 genes with the CRT/DRE element and the two novel motifs. To be identified in the
promoter of a gene, the element had to be present exactly as shown.
103
motifs identified might be part of a larger consensus, a custom PERL script was written
and used to extract the 4 bp flanking sequence around each motif present within 500 bp
of the start of transcription for cluster III genes. The conservation at each position in the
aligned sequences was visualized using WebLogo (Crooks et al., 2004), which can reveal
significant features of an alignment (Figure 4.2). The alignments revealed no conserved
base pairs flanking AGGCCCAWNA. The motif WNGMCACGTG had a conserved T/G
(indicated by the arrow in Figure 4.2) and AAAACCCTA had three positions outside of
the core motif that appear to be conserved. As a comparison, the flanking sequences of
CBF regulon members containing (A/G)CCGAC were analyzed in the same fashion,
revealing a previously identified conserved T (Maruyama et al., 2004; Vogel et al., 2005).
Since flanking base pairs might be important for the binding of a transcription factor, any
analysis of these motifs should include flanking sequence.
Cluster I V Contains Novel Potential cis-elements, Including Palindromic Sequences
Cluster IV represents a second cluster of good candidate genes for discovering
and testing promoter elements, as the expression of genes in this class continues to
increase the entire time the plants are at low temperature (7 d in this experiment). Work
presented in Chapter 2 identified four novel motifs among cluster IV genes, which are 1
listed in Table 4.3. Two of the sequences, TGTATACA and GTGATCAC, are
palindromes.
104
bitsN
bitsN
illliCCGACigii]
iiiilllilllilillilfii
illilliiiillllilii
lilAAAACCCTAiill
NO
bits
1
NO
1
bits
bitsN
A
bitsN
1
bitsN
1
0 0
, "_sCCGAC.iH_
tutu-
.. “Milli-
. iAAAACCCTh
Figure 4.2. WebLogos depicting conserved sequences flanking the CRT/DRE,
ABRE, and two novel motifs in cluster III genes.
Each element from all cluster III promoters (500 bp upstream) was extracted, along with
4bp of flanking sequence, and aligned. Weblogo (http://weblogo.berkeley.edu/) was used
to visualize these alignments. The left side of the figure depicts each alignment with a
uniform logo height, while the right side depicts the conservation of each position by
height (the height of the y-axis is the maximum entropy for DNA, log; 4 = 2 bits).
Residues that appear to be conserved outside of the core motifs are indicated by arrows.
Table 4.3. Overrepresented motifs in cluster IV
500bp upstream 1000bp upstream
Motif PlantCARE Class (%) GeneChip (%) Class (%) GeneChip (%)
CAATGAGG Novel 3/13(23%) 176/22746(0.8%) 3/13(23%) 379/22746 (1.6%)
GTGATCAC Novel 1/13(8%) 96/22746 (0.4%) 1/13(8%) 199/22746 (0.9%)
GnATTGAC Novel 5/13 (38%) 937/22746 (4.1%) 5/13 (38%) 1808/22746 (8%)
TGTATACA Novel 3/13 (23%) 327/22746 (1.4%) 4/13 (31%) 647/22746 (2.8%)
Overrepresented motifs discovered in the promoters of cluster IV genes. Each motif was
queried to the PlantCARE database to determine if it was a known or novel element. The
numbers of promoters in cluster IV or for promoters from genes on the ATHl GeneChip
that contain the element (in the 500 bp or 1000
105
bp upstream regions) are shown.
A T etramer of the Novel Motif GT GA TCAC Fused in Front of the GUS Reporter Gene
Results in GUS Activity in both Warm and Cold Temperatures
In order to determine whether any of the newly identified novel elements from
cluster III and those previously found in cluster IV (Table 4.3) were cold-responsive, a
tetramer of each motif was fiised in fi'ont of the fl-glucuronidase (GUS) reporter gene, and
transformed into Arabidopsis. Each tetramer contained 6 bp of flanking sequence, since
some of the motifs in cluster III possessed conserved residues outside of the identified
motif. The motifs, along with flanking sequence, were taken from the context of the
promoter of the cold-responsive gene in either cluster III or IV with the highest level of
cold-regulated expression (Appendix L). T] plants were assayed for expression of GUS
in response to low temperature by histochemical staining. After 48 h or 7 d at 4°C, none
of the lines stained blue for cold-responsive GUS activity (data not shown, >20 T1 plants
screened per condition). However, plants expressing the motif GTGATCAC fused in
front of GUS stained blue in both the warm and the cold (Figure 4.3). GUS activity was
seen with both plate and soil grown plants. These preliminary results indicate that this
motif is likely a cis-acting element involved in transcriptional activation.
cold
Figure 4.3. The motif GTGATCAC confers activity to a GUS reporter.
A tetramer of GTGATCAC confers activity to a GUS reporter in both warm (24°C)
grown and cold (7 d at 4°C) treated plants. Approximately 10 plants were screened in the
warm and in the cold. Bar = 5mm. Images in this figure are presented in color.
106
DISCUSSION
In an effort to identify non-CBF cold response pathways, the objective of this
study was to use a bioinformatics approach to discover novel potential cis-elements in the
promoters of highly cold-inducible genes. This goal was accomplished, as use of
MotifSampler on non—CBF regulon COS genes revealed the presence of two novel motifs
among cluster III promoters, those transcripts induced to the highest levels after 24 h at
low temperature. In addition to these two novel motifs, two known motifs, the ABRE
and the evening element, were found in the promoters of the 25 non-CBF regulon genes
with the highest fold-change at 24 h.
It was then hypothesized that these two novel elements and those identified
previously in cluster IV were cold-responsive elements. To address this question,
constructs were created where a tetramer of each motif along with flanking sequence was
fused in front of the GUS reporter gene. Plants containing these constructs were tested
for cold-inducible reporter activity. While the motif GTGATCAC conferred activity on
the GUS reporter gene, none of the other constructs tested displayed any GUS activity in
the warm or after 48 h at 4°C. This result could be due to a number of possibilities. One
explanation is that none of these elements play a role in cold-responsive gene expression.
They may instead respond to other stimuli (hormones, circadian rhythm, light, etc.) or
may not be involved at all in transcriptional regulation. Alternatively, these elements
may indeed play a role in the cold, but may need to work in combination with additional
elements to function properly. As evidence for this hypothesis, each novel element was
found in a number of promoters containing CRT/DRE elements. While none of the
elements were sufficient for cold-responsiveness, fiirther experiments would be needed to
107
test each of the above possibilities and to determine if any of the elements were necessary
for cold-responsiveness. Furthermore, the use of RT-PCR or RNA blot analysis might
reveal changes in GUS transcript accumulation which might not be reflected by the
intensity of the staining. An additional possibility is that the program used to discover
these novel motifs may have not worked optimally, resulting in the identification of
motifs that were not the most overrpresented. This seems unlikely since MotifSampler
found three motifs known to be present in the promoters of cold-responsive genes,
including the CRT/DRE.
Since the initial work done here to discover the motifs in clusters HI and IV, a
study assessing the ability of 13 motif discovery tools to find statistically overrepresented
motifs was published (Tompa et al., 2005). This study revealed a number of interesting
findings. No program worked very well on all the datasets or conditions tested and the
longer the binding site, the less likely a program was to find it. Based on their results, the
authors recommend that researchers pursue the top several motifs, not just the “best” one
and to use other data (such as chromatin IP, global expression studies, etc.) or multiple
programs when available. MotifSampler, the program used here, was found to perform
the best of all 13 programs on a dataset consisting of actual data. While the work
presented here used global expression studies and focused on the top several motifs,
future motif searches should be performed using a second program, such as Weeder
(Pavesi et al., 2004), to confirm the results of the first algorithm.
There is only one other published study that identified novel motifs in the
promoters of cold-responsive genes (Kreps et al., 2003). The study by Kreps et al. did
not use a statistical algorithm, but pattern enumeration. This method takes longer and
108
needs more computing power than statistical methods, but its advantage lies in that it
requires no statistical assumptions to be made. Kreps et al. (2003) searched the promoter
regions of cold-responsive transcripts identified in experiments using the 8K GeneChip
(Kreps et al., 2002) and found the CRT/DRE element and ABRE as the top scoring
motifs. As found in this study, their work also identified the evening element as
overrepresented among cold-responsive promoters. Kreps et al. (2003) speculate the
evening element could possess a dual role, functioning both in circadian rhythms and the
cold response. Additionally, Kreps et al. (2003) found numerous novel motifs, none of
which were the same as those analyzed in this paper. It will be interesting to see if future
experimental evidence points towards a role in cold-responsive gene expression for any
of the novel motifs they identified.
While the motif GTGATCAC did not confer cold-responsiveness to the GUS
reporter gene, fusion of this element in front of GUS resulted in GUS activity in both
warm and cold treated plants. The level of staining observed was similar to plants
expressing GUS under control of the CMV 35S promoter. This preliminary data indicates
that this motif likely constitutively stimulates transcription. These results need to be
confirmed in the T2 generation and by testing a mutated version of the element. This
element is present within 500 bp of the start of transcription for 1 14/27,186 Arabidopsis
genes. Only two of the COS genes have this element in their promoters (500 bp
upstream), the up-regulated gene At4g22470 and the down-regulated gene At2g33480.
While it may or may not play role in cold-responsive gene expression, this element could
be used in a yeast one-hybrid to identify the transcription factor which binds to it and
stimulates expression of the reporter gene.
109
While no study has yet identified a new cold-responsive cis-element through
bioinformatic means, this event is still a strong possibility. The use of additional
computer programs and more extensive global expression datasets could lead to their
discovery. Chromatin IP experiments could also be used to reveal promoters that contain
acetylated histones, revealing which genes are most likely to be transcriptionally active,
which would help to refine any bioinformatic analysis. Additionally, a number of motifs
were identified among the cold-responsive genes that have not yet been tested
experimentally (Chapter 2, Table 2.1). In the study presented here, one of the elements
discovered was constitutively active and this element could play a role in the regulation
of genes possessing the motif in its promoter. The computational discovery of motifs
among co-regulated genes holds the possibility of greatly reducing the time and effort
currently involved in uncovering cis-elements through traditional promoter bashing
experiments.
”0
MATERIALS AND METHODS
Constructs and Plant Transformation
Plasmids were constructed using standard molecular biological techniques
(Sambrook and Russell, 2001). Synthetic double stranded tetramers of each motif (along
with mutated versions of each motif) were created by annealing single stranded oligos
synthesized at the Michigan State University Macromolecular Synthesis Facility (E.
Lansing, MI) by heating at 94°C for 5 min and cooling to room temperature. Each
double stranded oligo had a 5’ EcoR I overhang, followed by an Xma I site, followed by
four copies of the motif taken from the context of a promoter containing that motif with 6
bp of sequence flanking either side, and a 3’ Xma I site that would be destroyed by
ligation into an Xma I site. Mutant versions of each motif retained the 6 bp flanking
sequence as was found in the context of the actual promoter. Oligos were then ligated
into the pBS SK' vector (Clontech, Palo Alto, CA) cut with EcoR I and Xma I. The oligo
was then cut from pBS SK‘ using Hind III and Xba I and ligated into the plant binary
transformation vector pBIlOl plus (Clontech, Palo Alto, CA) cut with the same enzymes.
The genes from which the motifs were taken and the sequence of each tetramer are listed
in Appendix L.
The DNAs were transferred to Arabidopsis thaliana (L.) Heynh. ecotype
Wassilewskija-2 (WS-2) via a whole plant dipping method similar to that described by
Clough and Bent (1998). Seed germination on medium containing kanamycin (50 mg/L)
(Sigma-Aldrich, St. Louis, MO) was used to identify plants containing transferred DNA.
Kanamycin resisitant seedlings were grown and T1 plants were used in all experiments.
111
Plant Growth and Experimental Treatments
All Arabidopsis plants were grown in controlled environmental chambers at 22°C
under constant illumination from cool—white fluorescent lights (100 umol m"2 s'l) in
Baccto planting mix (Michigan Peat, Houston). Pots were subirrigated with deionized
water. After four days stratification at 4°C, plants were also grown for 10-12 days in
Petri plates containing Gamborg’s BS nutrients (Caisson Laboratories, Inc., Rexburg, ID)
and 0.8% phytagar (Life Technologies Inc., Gaithersburg, MD) at 22°C under constant
illumination from cool-white fluorescent lights (approximately 100 umol m'2 s"). The
plates of plants were then transferred to 4°C under constant illumination from cool-white
fluorescent lights (approximately 30 umol m'2 s") and harvested at the indicated times.
Staining for GUS Activity
Staining of plant tissue for GUS activity was performed on plants grown at 22°C
and those transferred to 4°C for 24 h, 48 h, or 7 (1. Plants were immersed in a GUS
staining solution (Jefferson et al., 1987) and incubated overnight at 37°C. The tissue was
then cleared by several rinses of 70% (v/v) ethanol to assist in revealing the staining.
Motif Analysis
Motif searches were performed using the command line version of MotifSampler
v3.0 (http://www.esat.kuleuven.ac.be/~thijs/Work/Motif‘Samplenhtml). Motifs were
identified from various sub-groups of the 500 bp locus upstream sequence (TIGR v5.0
annotation of the Arabidopsis genome) downloaded from TAIR
112
(http://www.arabidopsis.org) on February 28, 2004. Arabidopsis intergenic regions were
used as a background model with the order set to 3. The motif length was set to 8 or
10bp, with the prior probability of finding 1 motif instance set to 0.3. No limit was set
for the number of motif instances that could be found per sequence, the maximum
overlap between different motifs was set to l, the number of motifs to be found per run
was set to 4, and the total number of runs was set to 100. The highest scoring motifs
were then ranked by the command line version of MotifRanking v3.0
(http://www.esat.kuleuven.ac.be/~thijs/Work/MotifSamplerhtml) using Arabidopsis
intergenic sequence as a background model and the Kullback-Lieber distance to score the
top ten motifs. The Patmatch program at TAIR or a PERL script (Appendix M) was used
to identify all promoters in the genome that contained each motif. Those motifs
approximately 2-fold enriched compared to all promoters in the genome were chosen for
further analysis. Motifs were queried at PlantCARE (Lescot et al., 2002) to determine if
they were similar to any known cis-element.
The 4 bp flanking either side of the identified motifs was extracted from the 500
bp locus upstream sequence for cluster 111 genes (Appendix E) using a custom PERL
script (Appendix M). The alignment of these sequences was then used to identify
potentially conserved residues flanking a motif through the creation of WebLogos
(http://weblogo.berkeley.edu/).
113
CHAPTER FIVE
A SUMMARY OF THE GENE REGULONS THAT CONTRIBUTE TO THE
ARABIDOPSIS COLD TRANSCRIPTOME
The goal of identifying cold-responsive genes, the cis-elements within their
promoters, and the transcription factors that bind to those elements, is to understand the
gene networks contributing to cold acclimation in Arabidopsis. Such knowledge not only
furthers science, but could provide the genetic means of improving the freezing tolerance
of agriculturally important crops. The identification of the COS gene set, as described in
this dissertation, should serve as a robust resource to begin to decipher the low
temperature regulatory network of Arabidopsis. Indeed, the work described in this
dissertation represents the start of this work. Using the COS gene set as a guide, this
chapter summarizes what is currently known about the low temperature regulatory
networks of Arabidopsis.
While transcriptome profiling experiments have led to the definition of the COS
gene set, the regulatory networks cannot be properly explained without knowledge of the
cis-elements present in the promoters of the COS genes and the transcription factors that
bind to those elements. The CBF transcription factors, which bind to the CRT/DRE
element, play a major role in configuring the low temperature transcriptome of
Arabidopsis. The CBF transcription factors each appear to regulate the same suite of
target genes (Gilmour et al., 2004). Of the 514 COS genes, 93 were CBF2 regulon
members and of these 93, the large majority, 85 (91%), were cold-induced. The
promoters of 68 (80%) of these 85 genes had one or more CRT/DRE elements,
(A/G)CCGAC, present within 1 kb upstream of the start of the protein coding sequence.
114
Thus, these genes were likely to be direct targets of CBF2. CBF2-regulated COS genes
without CRT/DRE elements in their promoters were presumably regulated by other genes
controlled by CBF 2 though this remains to be established.
The 85 cold-induced CBF regulon members represented a diverse range of
functional roles, including metabolism, transcription, intercellular communication and
signaling, transport, energy, protein processing, and cellular biogenesis. The largest
group of transcripts (30%) in the CBF2 up-regulated regulon were stress-related
transcripts. A further distinguishing characteristic of these genes was that they comprised
the majority of genes that were most highly-induced in response to low temperature. Of
the 25 COS genes that were up-regulated at least lS-fold at 24 h, 21 (84%) were
members of the CBF regulon and nearly half of those up-regulated 5- to lO-fold, 32/66
(49%), were also assigned to the CBF regulon. Conversely, approximately 90% of the
COS genes that were induced less than S-fold were not assigned to the CBF regulon.
Finally, an additional distinguishing feature of the CBF regulon COS genes was the
enrichment for genes that remained up-regulated at 7 (1. Of these 67 “long-term” up-
regulated COS genes (22.5-fold increase at 7 d), 37 (55%) were members of the CBF
regulon.
Taken together, the above results indicate that the CBF transcription factors have
a prominent role in regulating the expression of those cold-responsive COS genes that are
both highly-induced and long-term up-regulated in response to low temperature.
However, it is also clear that additional cold-response pathways participate in configuring
the low temperature transcriptome, indicated by the finding that the transcript levels for
112 (22%) of the total 302 up-regulated COS genes showed no detectible change in either
115
of the CBF 2 overexpressing transgenic lines profiled. Thus, it would appear that these
cold-regulated genes fall outside of the CBF regulon. While most of these genes are
induced less than 5-fold in response to low temperature, 33 were induced more than 5-
fold. Identifying the transcription factors that regulate the expression of these genes is
required to more completely define the low temperature regulatory network of
Arabidopsis.
ZAT12, a C2H2 zinc finger transcription factor (Meissner and Michael, 1997),
was found to define an additional cold response pathway. ZAT12 is cold-induced in
parallel with CBF 2 and shares two additional features with CBF2; it is responsive to
mechanical agitation and treatment with cycloheximide. Analysis of the ZAT12 promoter
indicates that this regulation may occur at a transcriptional level, as two regions were
found to be similar to the ICErl and ICEr2 cold-, mechanical-, and cycloheximide-
responsive regions in the CBF2 promoter (Zarka et al., 2003). Constitutive expression of
ZA T12 influenced a statistically significant number of COS genes (24) and caused a
limited, but reproducible, increase in the freezing tolerance of Arabidopsis. In addition,
ZAT12 interacted with the CBF cold response pathway in two significant ways. First,
constitutive expression of ZAT12 influenced some of the same genes as CBF2. Secondly,
constitutive expression of ZAT12 resulted in lower cold-induced levels of CBF
transcripts, while two independent T-DNA insertions in the ZAT12 locus resulted in
higher levels of CBF transcripts in response to low temperature. However, constitutive
expression of ZAT12 or lower levels of ZAT12 expression did not impact the levels of the
COR genes as severely as the CBFs. In summary, ZAT12 represents a new cold response
pathway in Arabidopsis that has a negative regulatory role in CBF expression.
116
Another transcription factor has also recently been shown to alter the expression
of cold-regulated genes outside of the CBF cold response pathway. The hos9-I mutant
displays hyperactivation of an RD29A promoter luciferase fusion in response to low
temperature, but not in response to ABA treatment or salinity stress. Additionally, this
mutation altered freezing tolerance (Zhu et al., 2004). HOS9 was found to encode a
putative homeodomain transcription factor that was constitutively expressed and did not
increase in response to low temperature. CBF transcripts were not affected by hos9-I,
but since the promoter from the reporter gene construct contained CRT/DRE elements,
this gene might be affected by the CBF pathway in some manner. Microarray
experiments performed on cold treated hos9-1 plants by Zhu et al. (2004) revealed that a
number of cold-responsive genes were affected in their expression, but only one
GeneChip experiment was performed, so these results should be viewed as preliminary.
In comparing these genes to the COS gene set, 13 COS genes were found to be cold up-
regulated and hos9-I up-regulated, one gene was cold down-regulated and hos9-1 up-
regulated, and one COS gene was cold down-regulated and hos9-1 down—regulated and
none were members of the CBF regulon. Interestingly, all 13 of the up-regulated COS
genes influenced by hos9-1 fell into expression class V, those genes up-regulated
transiently in the cold. The majority of these 13 transcripts encoded either transcription
factors or enzymes for signaling molecules. This indicated that HOS9 may play a role in
regulating some of the earliest events during cold acclimation.
In addition to ZAT12 and H089, ICE] (a MYC-like basic helix loop helix
transcription factor) impacts the expression of cold-regulated genes (Chinnusamy et al.,
2003). A dominant mutation of ICEl, ice], results in loss of CBF 3 transcript
117
accumulation in response to low temperature, but does not impact accumulation of CBF]
or CBF 2 transcripts. The mutation also alters freezing tolerance and a preliminary
microarray experiment performed without replication revealed that the expression of a
number of cold-responsive transcripts was altered in response to low temperature. A
comparison of these transcripts to the COS genes revealed that none of the down-
regulated COS genes were impacted by ice], but 78 of the up—regulated genes displayed
lower cold induction in the mutant than in wild type plants (13 were in class V, 5 in class
VI, 9 in class VII, and 51 in class III). It is interesting to note that ice] affected some, but
not all of the CBF regulon members (51 of the 85 CBF regulon members displayed
altered cold-induction in ice] ). This could possibly be due to the fold-change cutoff used
by Chinnusamy et al (2003). Alternatively, this could indicate that some genes are more
greatly impacted by CBF 3 expression, while others are more responsive to CBF] or 2.
Finally, this result could be due to the action of additional transcription factors acting on
these CBF regulon members. Regardless of the reason, ICEl seems to play a role in
regulating cold-responsive genes.
In order to complete the low temperature regulatory network of Arabidopsis
(Figure 5.1), approximately 70% of the cold up-regulated COS genes still need to be
assigned to a regulon. In this study (Chapter 2) RA VI, MYB 73, SIZ/ZA T10, and CZF 2
were overexpressed in Arabidopsis, but were not found to affect the expression of a
statistically significant number of cold-regulated genes. It is possible that these
transcription factors may need to act in concert with other factors or be modified
posttranslationally in the cold, similar to the mechanism proposed for DREBZ (Liu et al.,
1998), in order to function properly. Chromatin immunoprecipitation experiments could
118
Low temperature
/I
@ \\
/ \
@o, 1
1 .._?_
0 Fee 1
\ ' o
\/ x.
— DRE/CRT —CBF regulon /
?
CBFl , ZIDREBlb,c
j \
Freezing
Tolerance
,1 \
- a 1' car ” E
regulon
Figure 5.1. The low temperature regulatory networks of Arabidopsis.
Shown above is a summary of the transcriptional regulators currently known to be
involved in the configuring the low temperature regulatory networks of Arabidopsis
thaliana. HOS] is an E3 ubiquitin conjugating enzyme (Ishitani et al., 1998). The rest of
the proteins listed are described in the text. Other TFs stands for other transcription
factors. Boxes with lines behind them represent genes with specific cis regulatory
elements, while the ovals represent proteins.
119
be used to test whether any of these transcription factors actually bind to the promoters of
COS genes. Work on RA V1, MYB 73, STZ/ZA T10, CZF1, CZF2 and other cold-induced
transcription factors will be needed to determine if they play a role in cold—responsive
gene expression. Other transcription factors that regulate the COS genes could be found
by first identifying the cis-elements in the promoters of these genes, either through the
use of bioinformatic means or promoter bashing experiments, and then isolating the
transcription factors that bind to these elements. Regardless of the methods used, much
work still needs to be done in order to define all the regulons that comprise the
Arabidopsis low temperature transcriptome. The work presented in this dissertation
provides both a set of genes which can be used to characterize these regulons and defines
two of these regulons, the CBF2 and ZAT12 regulons.
120
121
888 888.98 x m. 8.. 8 o... N. ...- 88.8.2 818.88
:88... .8858? x .... .... 8 ..m ... ...- 888.2 818.88
35?: 288292308
.888¢8.588.388.8588 8.8.8 x m...” 8 88. ..m ... ...- 838.2 81888
88888588 8558 x x 8.3.. 8.8 QB as... .... m..- 888.2 81588
8.8.8 .8888 8.5888... x x ..m ..m 8 o... n. .... 888.2 81.888
.888 :8885898 8.8.8 x ...- ... m8 8 ... ... 888.2 818888
888 .8858? x 8 .... 8 8 m. ... 288.2 81888
888 88888 x x on o... o... o... o. 8... 888.2 81888
283%. 88.. 888 8588... m8 x ..c 8... ed 8 o. 8... 888.2 81888
3.5585888888 x 8.. o. 8 mm m..- ... 888.2 81888
888 88298 x x o... 8 m... m... ...- 8... 888.2 81888
888885.888 can: 28.88 x 8 ...- .8 ed 8.. 3 888.2 81888
888 88888 .... .... o..- ..N- 3 m... 888.2 81858
2.55 82.. x 8.. 8.. o8 an n. ...- 888.2 818.8
888 88888 x x 8 8 mm 8 ...- ...- 888.2 818.8
.7an2 888 8888.58 8.8.8 x .8 m..- 8 8 m. m. 888.2 81888
888 2.558888%... x 8.. 8 o... o... o. 2...- 888.2 81888
888 888.8 x 8.. on a... ..o ...- o. 888.2 818.88
888 .8858? x ..m m. .8 .8 m. ... 888.2 81588
8.8.8 88.89.80.558 x ad m8 8 8 m. ... 888.2 81818.88
888 8.0.8.98 x x m8. 8 «.8 mm o. ...- 888.2 818.88
88928838 9558 x 8 o... a... m... ... ...- 888.2 818888
5888 8.888.882 8%.. 8888588 x 8 ..u m... o8 m. 8.. 888.2 813.88
$86,630.35
c885-m8i......88.2.88 2.588888? 88>... x n. m. 8 08 ... ...- 8.88.2 818.88
2.28.2888 8.. x x o... 3 8. m... ...- ...- 88.8.2 81888
888885.888 888.85 28.88 x o... a. ..m men n. 3 828.2 8188.8
5.88:5. :8. new ... m < m < m < .0< .8 89a
8.888. 28 ..8. ..8 ...
hzwgmmaxm m._.>Oi. >m Omhjnwmmda whww mmOmn. ._..< m._m<._.
< x_ozmn_n_<
2.58. 590.5 mc.c.$coo1c.mEou No
8.8.8 3.280. 58.888 895.
z_..
599.. 8.3998
2888...... .58 5888 6.2.... 898 8.85 8...
8.0%.. 888..
....moo. 5.8?8
9:82. 6.2.898
2.5.8.. 58:59..
£99.. 83998
590.5 commmaxm
5905 88998
n .2838... 3:039
5906 83998
2.90.... 3mm9axm
£905 093998
9:22.. 83.929. 9.0.5836
CFKOOV 590.5 umwmmaxm
9.8.3 6.80:9. >
590.5 88998
.NFQwaOn. 2 5.5.3 5905 nommmaxo
2E8. 599.. .09.. NINO. .69... 9.8
590.5 3mm9axw
F>> 590.5 5.88.608 Boo 0. ..m__E.m
:z<..< 520.5 5.8.589“. .526...
9.8.3 .23.. c888 8:228?
5205 83955
£205 5888 x093
£295 nowméaxm
NHwB—C‘N
2.. c888 8588.. mom 9.8.3
£905 wwwwmaxm
33 599.. 8:5th mom
9.: 8.588 059.5 .90an £999...
.208. cgatomcm... ....Em. mi...
5205 83998
520.5 83998
590.5 umwmmaxm
520.8. .8255an
£905 wwwwmaxm
859.5905 956 SEE
X
XXXXXXXX
X
mé
0.9.
Né
md
QN
1F
m. P-
P...
Né
0N
QN
o.N
r. F:
o.N
Né
m6
QN
N...
F. F:
N. F-
QN
mé
m.N
N...”
QN
0...”
m.—
P. F:
Nd
m.N
MN
m. T
m.N
mé
on
P...
m.N
o...“
vé
o.N..
N. ..-
v.«
54
m6
mé
m...
m.—.
P. ....
0.9
m.N
o...
v...
N...
m.N
...N
0N
Om
QN
ON
ON
oé
v.0
m.N
o.N
N...
... P-
9N
F.N-
m. 3
v.9
v.9
m.N
m. T
Em
9N
o6
od
m.N
m.N
0m
m.N
mdv
mé
Wm
m.N
m.N
Em
m.N
ON
0.»
ON
«6
NF
B. F-
0d
Nm
QN
m. ..-
oé
QN o... F. P:
mé 9N Em
Qm méN rd
m. 7 ON m. P.
NP v... ... P:
Em w. T N. T
v.9 md o.m
OK mé F. ..-
m.N F. T F.F
md r. ..- m. 7
mm... mé m. ..-
o...“ ...P w...
QN oé P...
N...” F.F P. P-
QN ...w P...
0.2 ...P F.F
0% o... ...F
QN m._. QN
mé o6 Hm
m.N F. .... Ne
98 oé oé
m.N Q: 0d
0.9 N. F- «.7
We m6 Né
NF P. T F. T
mé m.N o.m
m... N.m N»...
F. P- 0N md
Pd NF mé
Em Er m...
QN N. T F. T
F. ..- o.m m.N
QN ...? ... F-
383:...
.8892
9:892
88898
85892
28892
88822
88892
38892
88892
88892
88822
98892
08892
28892
mammmmFgg
Omemmng
o.~m~m.g«
om.m~m.g«
28892
oousmmvga
omhsmmvgq
covnmmwga
oomnwawgg
ommmmang
2:892
ommmmegq
oowmmmpgq
mfimwmmpga
ommwmmvsq
owmcumpgq
opnmmmpgq
omwmmmng
8:888
8:888
8:388
8:888
8:8:828
8:828
8:8. .8
8:8. 8
8:888
8:888
8:358
8:888
8:88.88
8:888
8:888
8:858
8:888
8:888
8:888
8:888
8:588
8:388
8:838
8:888
8:588
8:828
8:888
8:888
.m:n~omo~
8:888
8:588
8:858
.m:mmomo~
123
590.5 80:05:83
5995 80.5533
>=E9 £295 992
5905 5905020385: 8.8.0:: :95 «3 9:93
5905 ammawhimh
$85.92: 825903 5296 8.029,
38556
928936 2 59:59 3259805.: mc_c_9coo.c_>m=
9:93 c9202m:2.:9253053923299382_m
390.5 .9885: om< 2 5:53 5805 389qu
5905 8:589:
gcznam $995.8 =E£ 5x805:
5205 mx__-cumE:m£
652ml; 3 52:60.. 3:33..
5205 .2265an
5205 05259538850
522a uc_uc_n-c__:uoE_mo
£905 .839:an
£205 5:60.58 m>=m5a
mwma__onawoca0w>_ 9:53
9:83 .Amwflo mmziE 520.6 85662 mmmmmfi
82.2 223 8.2522 92:5.x842200
@2525 .5205 mc_uc_n.__Em“_.o___E:a
£20.... .2255an
£905 .835an
5205
Con: toamcmb mgamaogo Eoucmam?co§a 9:32.
9... nm...o.o£ 059.3 .20an £989...
2222 acficséim 0222,.
22.93 .22”: 225222,.
£205 umwmmaxm
$22528 22m 8292.220
9:qu 56$ cozatomcmb EmEou «n?
5295 33¢..qu
E905 8.2355
5905 092.9 mwmbm
5295 .2265an
9:83 .5203 0239-538620
Ch: £905 ._. «zoo. maggot
SEE .mtoamcmEmcmBEmE 2.52:: 520.5 Emwmhaxm
X
XX
XX
XXXX
XXX
XXXXXXX
mé
FN
m. T
_‘.F
Wu
v.9.
NP
mé
md
oé
F.F
ad
ad
ad
FN
ON
v._‘
m...
QN
m6
0N
mN
Ev
mé
NP
o.N
0N
Qm
Pd
9...
NM
Nd
5.9
m._‘
w. w:
oé
NM
99
w. P:
0N
oi
Wm
0N
NF
m6
mN:
0.?
NF
F. ..-
Qm
ON
«.0
Wm
mN
gm
9...
N4
54
ed
FN
QN
oé
No
Nd
0N
Nd
mN
mN
md
0d
v...
0N
mé
mé
o.m
QN
ON
oé
Nd
0N
0N
mN
m6
Em
wé
9N
QM
9N
mN
m6
Em
0....
ed
F.F
mé
0.x
o.m
0d
0d
Nd
mN
m.»
h. ..-
md
P. P:
m. 7
ad
md
m. 3
m. P:
Nd
Nd
QN
Qm
0.»
m6
0.?
F.N
Em
QN
mN
ed
Qm
9m
m..m
.1
NF
0.9
mé
F.F:
F.F
w...
oé
F.F
Em
QT
FN
0N
Né
F.F
mé
Em
Né
F.F-
F.F:
F.F:
0.9
F.F
o._.
F.F
F.F
NF
Né
mé
N4
m4:
<4-
o.m
F.F
Né
Né
F.F:
Né:
Fé
v.9
mé
o6
wé
mé
m...
oé
Né
mé
mN
F.F
v.7
...P
FN
vé
mé
F.F:
P...
.3?
F.F
Né
o._‘
F.F
v.7
F.F
QN
vé
o._,
08392
282.2
82292
2.9.292
oommang2
38592
82:92
82292
8222
83.92
3.292
82292
22292
3.22:2
92292
882:2
82:92
omoohmFg2
02892
82892
8.8292
8232
28092
88292
83222
22892
9.2292
82292
8.292.
83222
83292
89292
.mmxnomom
“2:2mmumm
,2 cvaou
.2:oFFFo~
2:82am
~2:w~mmm~
“m:~F-o~
2:228
.2:ooooo~
.m:o¢oom~
.m:~ooom~
.m:o~oom~
.m:¢mnmv~
.2:nmm~o~
2:333
.2:wmmoo~
.2:~m¢~m~
~2:mmmom~
2:238
.m:vmmmm~
.2:wmmoo~
~2:mvmoo~
.m:~ommm~
.2:~nomm~
“2:2omcmu
.2:vo~oo~
~2:oo~me~
2:83am
.2:.~v¢o~
.m:omroo~
2:80va
.2:me~m~
125
mmEmu—mcmENmooam 20:305.?ch 9:831
32¢
-mwvmoogv «EEOC; 590.5 5.3.5.08 28 2 5:5?
590.5 88998
tin: P 520.5 nofi.m.-m_wwcmao£ma
590.5 comwmaxm
9:93 630:0; x3 150550
5295 cutbfiozm 9333a
5205 605059;:
52% 235 58:53.2
5205 59:00 .52: 9:53
2:5». mozz E305 Nmoou =E£ £29.... 955950.508 O>
5205 $39.96
3208623 .ocoo_m
9:58 682.2 x3 Iooc_Em-F
0mmh0¥wc0£>m0cE0£ 0u_wou:_m:m-c_u_cm>oo£cm 02:83
25:0.— EQoE .0E00 55:28:...
3323010 3050050608850: 0253
059: *0 >__E£ comoamcmb anEm 9 020.0.
352 5555 85:3 <20 55.2.85
>=E£ Auomv 50.05 5:00.000“. 2 0205000..
50.90 95.868 - 3mm: EOE 5,5580. <21
506.5 >=E£ .095 0:8 xoné wz<._.mzoo
ANQ>0E=anB>8 0090.50. 0:85.08 3.0.5-3233
520.5 0000296
AF0__E£ 50.0.5 “080. 3.95
08:: 50.0.5 025:0
£0.90 mscfiucooémmafl fan: 00303039200
5065 00000.98
Noam
5065 0080.98
505.5 .mo=0£oa>:
>__Em¢ F 505.5 Boauchmcamoca
5055 5:80ch 05659.0. 025:0
x
XXXXXXXXXX XXXXXXXXXX
XXXXXXXXXXX
mN
0.0
n. F-
m.F
QN
0N
F.F
F.F
F.N
QN
F.F
m.m
F.N
QN
N.F
mN
NF
0N
m.F
0N
N.F
c. F:
v.F
QN
F.N
m.F
Em
0N
mN
m.F
QF
QF
m.F
mN
QN
F. F:
m.F
ad
ad
N.F
m. F:
F.F
Wm
MN
m.F
0N
F.F
NF
F. F:
9N
QN
0N
mN
ON
m. F:
N.F
0N
EF
QN
VF
5F
0m
F.F
o.F
NF
m.F
VF
mN
F.NF
Qm
0N
md
m6
QN
mN
Em
mN
Na
0.»
ed
QN
m6
mN
Nd
Wm
mi
mN
Qm:
mN
Nd
m6
Em
m6
Em
mK
m6
o.m
NM
NM
1F F. F:
9N F.F
03. m...
Em o.F
Nd N. F:
o.v o.F
mé F.F
QN N. F:
md m.F
m6 F.F
9N N.F
Hm m.F
F.NF N. F-
QN 9N
oé F.F
od m.F
m.m F.F
Wm F. F:
o.m F.F:
mé n. F:
md F. F:
0N: mé
od m.F
Nd F. F:
mé m.F
m6 m.F
mé m.F
mé 1F:
0d F. F:
o.m NF
mN F.F
md 0N
Nd F. F:
M.F-
F.F:
F.F
o.F
NF
F.F:
VF:
o.F
F.F
N.F
v.F
m.F
v.F..
NF
F.F
NF:
o.F
F.F:
o.F
NF
F.F:
m6
N.F:
o.F
F.F:
VF
F.F
F.F
N.F:
F.F-
F.F:
F.F
m.F:
“.8885.
88%«5.
o88§<
88%«2
83%?
88%?
28%?
3.8%?
8.885.
85%%
88%?
28%?
88%?
88%?
88%?
88%?
82%?
82%?
82%?
89%?
8 F 882
88%?
88 .82
88 82
8882
88 .82
88:82
8882
883?.
.8282
88:82
88:82
88.82
.5:nmmmo~
.5:nm¢sm~
.m:mm~mo~
.5:~oom0~
~5:mmmmo~
.5:~0mmm~
.5:wnm00~
.5:w~om¢~
5:888
.5:.o-0~
05:Nm~oo~
5:888
5:888
5:888
5:888
5:888
5:888
5:288
.m:o0~mo~
5:888
5:838
5:888
5:888
5:888
5:888
56888
5:888
5:888
5:888
5:888"
5:888
5:888
5:888
127
0.0.0.0 00000.96
00 50.0.0 _0E0000_. 0.0.00 000
50.0.0 03000.00
50.0.0 00000.98
50.0.0 00000.96
:55... 2:5. 82.... 0.08..
.0850. 8.. 022.. 5588.. 08
8.0.0.5. .25. 8.5.8.5.. 005. 0.02.
50.0.0 00000.98
00000. 50.0.0 05.00.0000. 02.0.00
02.0.00 2000008900
0:40 0003.80.00 0_0N00.E_05E0_>000_.0000000
50.0.0 0.5-5.0000
000 50.0.0 80.00000 000
50.0.0 00000.98
50.0.0 000005-5900 02.0.00
50.0.0 0000.0.00. 00000.0 02.0.00
5.0.0.025. $2.. :55...
50.0.0 00000.98
50.0.0 02.75.0000
2.0.0. 25000000... 503000.00 50.0.0-0
.0090 0055580 0 5.50
:55... 8.8.90.0 9.5.2.
00000. 50.0.0 02.0.00
50.0.0 80000.00?
02.0.00
22.0.0. 0000 00.2000300000308.02000.00F 000x0.
50.0.0 .000000 00050.00. 02.0.00
8... 085... 02.0.8
0000500 <21 .00000000-92 02.0.00
80$. :55... 050.8 0%.
50.0.0 0305.00
2.0.0. 5&3 000000.086 0020000500
50.0.0 .000: 05w 003-1000 02.0.00
X
XXXXXXXXXX
XXXXXX
0.F
0.0
0.N
0.0
0.0
0.0
F.N
0.0
0.0
F.N
N0
F.F
0N
0.N
0.0
0N
0N
F.N
F.N
F.N
0.F
0.0
0.F
0.0
0.F
F.N
0.F
0.0
0. FF
x 0. F-
0. F-
F.N
0. F-
F0
0.0
0.0
0.0
0.F
0d
0.0
0.0
0N
00
0.0
0.0
50
0. F-
00
0.F
0.F
N0
0.F
0.0
N0
NF
0.0
F.N
0.F
0N
0.F
N0
0. F-
0.0
0N
0.0-
0N
N0
0.0
0.F
F. F-
N0
0.F
0.0
0.0
0.F
0.N
5.0
0.0
0.0
0.0
F0
0.0
0.0
0N
N0
N0
0N
0.x.
00
00
0.N
0.0
F.F
0.0-
00
0.0
5.0-
N.0
0.0
«.0
0.F
0. F-
0.0
\nF
0.0
gm
0.F
N0
0.0
N0
0.0
0.0
«.0
0d
0.0
0.N
0.0
0.F
N0
0.0
0.0
0.0
0.0
0.N
0. F-
0.N-
0.N
F.F
0.0
0.F
0.F
NF
0.F
0.0
F. F-
0.F
F.F-
0.F
F.F-
0.F
0.F
0.F
0.F
0.F-
NF
F.F-
0.F
F.F
0.F
0.F
0.0
0.F
0.F
F. F-
F.F
0.F
0N
0.0
EF
0.F
0.0
0.F
0.F
0.F
0.F-
0.0
F. F-
N.F
0.F-
N.F
F.F-
0.F
F.F
F.F-
0N-
F.F).
F.F-
F.F-
0.F
F.F-
F.F
«F-
0.0
0.F-
F.F-
F.F
0.F
NF-
F.F
0.N
8.8.82
98805.
88802
88882
2.880.
28882
88082
88805.
8808....
02.880.
8888....
88082
80882
80882
08880.
08882
80880..
80880.
08882
08885.
08882
80882
08880.
08882
88%?
08880.
8.880.
80885.
88%?
88%?
88%.“...
08885.
.5:¢0000~
.0:mvm.0~
.0:~08.0~
.5:.00.0~
.5:000.00
00:000000
00:000000
.0:0~o~0~
.0:00000~
.5:00..0~
5:88.88
.5:~0000~
.5:o.0000
.5:.0000~
.0:.0000~
05:..0500
.5:00000~
5:0808
.5:v¢o~00
.0:voo.0~
.m:0¢~00~
.5:..¢00~
.5:.o~.0~
.5:00000~
.0:0..00~
.5:0-00~
5:088
5:888
5:888
5:888
5:888
5:888
128
0.0.0.0 80000.09...
0.0.0.0 0000.0.00. 00000.0
50.0.0 00.0.0. 000..0 02.0.00
:55... 8.23.220 020 9.55..
80.0000 00000 0. <00 0.0.0.0 80.0005. 000 02.0.00
0.0.0.0 00.505020
0.0.0.0 00000.98
000000500. 70.00 02.0.00
.030. 050.080.9050
..00000 220.000. 00.0000.0.0 00« 02.0.00
8.00.0.0 0.2.0.0 .000000000.-5x00 0. .0050
0000... 0.00.0000 02.0.00
.0.00. 05.0.60. 0.00005. 02.0.00
0.0.0.0 00000.98
0.0.0.0 00000.98
2.E0. 0.0.0.0 .0000. 00-n.>>
:55... 2:5. .00.... 2.5 .600 0250200
0000.0..0 65.00.00
.200. .050. 8.550%... 85.9.0.9.
.F-Emmmnz. 3.0.000. 0000009600000
0.0.90 .8858...
.8002. :55... x8002:
0.0.0.0 00000.0xm.
0.0.0.0 00000.98
0000.....00000 02.0.00
80000.00. 0F 2.0.0. 000.20.... 300020
00 Fmoo
003.00
5.00. 00000.5 05.0.0000 02.0.00
9.55.. .055... 00005.. <20 .6... 14.00.0200
8000000.. 000000 2.0.0. «Eh. 02.0.00
0.0.0.0 00000.98
0.0.0.0 .0000. 00-D>> 02.0.00
0.0.0.0 .0000 050 002-1000 02.0.00
XXXX
XXXX
XXXXXXXXXXXXX
XXXX
XXXXXXX
0.«
0.«
0.0
0.«
0.«
«.F
0.«
0.F
0.«
0.«
F.«
0.F
F.«
0.«
0.F
0.«
«.F
NF
0.F
0.«
0.«
0.F
0.F
0.«
0.0
0.«
mfimF 0.00F F.00« «.50F
0.0« 0.00 0.00 0.00
5F
0.«
0.F
0.«
0.F
0.F
0.0
0.0
0.F
0.F
0.«
0.F
«.0
0.F
0.F
0.«
0.F
0.F
0.F
0.«
0.«
0.F
NF
0.0
0.F
Em
«.0
NF
F.«
0. F-
«.0
0.0
0.«
0.F
0.F
0.«
«.F
0.«
«.0
0K
«.0
0.0
0.F
0.F
F.«
0.0
5.0
0.0
0.0
0.0
0.0
«.0
0.«
0.0
N0
«.0
0.0
0.0
0.F
«.0
0.«
«.0
5.0
«. F-
0.0
«.0
0.0
0.«
0.«
0.F
0.0
0.0
0.0
«.0
0.F
F.F
0.«
0.0
0.0
0.0
0.«
0.0
0.0
N0
0.«
0.0
0.0
0.0
0.«
F.0
0.«
N0
0.«
0.0
0N
0.F
0.«
0.«
0.0
0.0
0.«
0.«
0.«
F.F-
0.F
F.F-
0.F
....0
F.F
0.F
0.F
F.F
0.F
«.F
F.F
F.F
0.F
F.F
F.F
«.F-
F.F
0.F-
F.F-
«.F
F.F-
0.F
0.F
F.F-
0.0
0.«
0.F-
F.F
0.F
0.F
F.F-
0.«
EF
0.F
F.F-
«.F-
F.F
0.«
F.F-
0. F-
0.F-
«.F-
0.F
F.F
0.F-
0.F
F.F-
«.F-
«.F-
0.F
0.F
«.F-
0.F
0.F
«.F-
F.F
0.F
«.F-
0.«-
0.F
0.F
0.F
0.F
0.F
F.F-
0.0
808002
8000002
808002
808002
3.03002
803002
0003002
083002
808002
880002
0080002
805002
083002
8. 3002
88.502
88.82
88.502
8.082
80882
8.882
80882
80882
20382
008.82
88.82
80982
0.8082
88.82
88.82
88.82
83.82
83.82
008.82
88.82
.0:~v.000
.0:00000~
.0:0o.000
.0:..0000
.0:000000
5:00.08
.0:00000~
.0:000000
.0:0..00~
.0:..000~
.0:~0.00~
.0:00000~
.0:00000~
.0:0.000~
.0:...00~
.0:o.000~
.0:v.000~
.0:o~000~
.0:0..00~
5:0:888
.0:0.000~
.0:000.0~
.0:..0.00
.0:000000
.0:00000~
5:80.08
5:388
5:888
.0:000000
.0:000000
5:888
.0:~o000~
.0:000000
.0:0.0000
129
2:5: 3:: £205 xoocw Em...
5.5.2:. $823359:
c:om&mmmt9c_ 2 ..m__E_m .5205 30.65093
5205 33998
33358589. 9:53
520.5 88998
9:82. 6320398
9:83 58$ 83:35: 27:8 a0...
5295 33998
9:93 .523 go? <20
omva mEoEoo$o 9:93
Amowozv mmmcmgxeu Bo:o.9mo>xoam:w_o.m
520.5 .8:m..:oa>z
529a 33998
wmmu_wocfiaouo::.fiwn 9 5:83
830m .28: 052.3 sotéctmfioscafi
£205 gummaxm
5905 9.5959539 Emmy 3:332:5ch
5205 5.8.0:: 9:33
9:33 .339. mEoEEmlnFDv 0359?. Eb
590.5 uowmmaxm
mmflfimcflgxnfimchi 9.26.5 9:83
5295 96800.5 >
$9. 9203 9:83
$202.2: 529a x8538;
5205 5505.5
mwmflozcontoxm m 9:83
$53: 5203 couscséxam
mwmnzb 9:93
A__E£ £205 £2898
38.38888 8.082 02.83
5905 95- 88028.. <00 Sum
5205 02.33
82888 5888 8868 52.8.8
5.20.5 .8288an
832 2 888V 888 9.: E88.
5905 88998
5805 88858
5205 88838
520.6 83858
omfimfiwcwzoEEm
Emcamocaimofiatficgflam 2 8:68
5295 .8285an
9:qu .wmc_2m>ooEoc.._-_>w0cmumuw
5205 88996
83m: 5888 8885.89. 288
5805 808898
880:2 (zm 9:52.
200% P 8:288 88828 98 8858
02:33 .ommbmwwcfiimooamdon
2E8”. 5295 80%.. 3.95
868.8 95:28.5 8036.83.84; 9 8:88
5905 88998
5205 83358
288,. 885:8 26:30ng
520.5 88938
82888 .8828; 68 .2on50
9:83 686.99.283.70 mama: 5205
2.52283 8 mmmhflmcmbScEEi 056868582808
3:22;: F www.mbmcmEEHmEi 8588685005803
9333 .mmflmcamofi Emuoaofimoca
XXXXXX XXXXXX XXXX X XXXX
X
fir
mN
rd:
06.
0.«
5%
m. 7
Na
P. 5
VP
0N
mé
N. P-
F.NF
m...
m.—
0d
mK
mé
mN
o.m
Né
mN
Em
m4
_‘.F
m...
F.F
m.m
96
Nm
m6
0N
m6
Em
m...
QM
9N
fir
m. T
N. T
mdN
mé
Em
9N
... T
o.m
F.F
mé
9N
o.»
mN
v. ..-
0.«
N. T
oN
mé
mN
m...
QN
w;
QN
0N
Qm
Em
m.—
w.N m6
o. T 17
gm oé
m6 md
m6 Nd
mN mN
v. e: m. T
Em oi
QN md
QN Nd
Em Em
N.m Wm
md 9N
Nd m._‘
9N QN
oé 9N
ad ad
on odw
mi m6
Em o.m
F.F m. F:
Wu ed
Em rd
0.« gm
mN o.m
mN o.m
0d Nm
5. T m. 7
Wm m6
Nd mN
QM ...N
QN m6
mN mN
F.F 0N
v.7 v.7
md ON
M.F.. v.7
oé mé
F.F: N...
9m Nd
FN m...
F.F mar-
07 ...F
94 F.F:
F.F: o...
«.7 w.—.
Em C.—
mé F.F
F.F: F.F
F.F- v.7
mé Né
F.F mé-
F.F Né:
0.F F.F:
oé ...F:
N." F.F:
v.7 NF
0.F FN
QN 0.«
mé Né
QN QN
F.F: mé:
F.F F.F:
oé F.F:
F.F F.F:
2‘ F.F
.8882
8882
88882
88882
883.82
83882
88382
88%82
88882
88882
8 8882
o 8882
8 882
89882
89882
88882
88%82
o8~%m2
88%82
88%82
8882
88882
88882
94882
8882
8882
8882
8882
8882
8 8.82
88882
88.82
88:82
.8:m~v~m~
“8:8.vwmw
“8:888888
.8:w~8~m~
.8:888~m~
.8:F88~m~
“8:888888
8me888
“8 m .omomw
.8:8mm~m~
8:888
8:88.88
8:888
.8:F.mmm~
.8:o.mmm~
.8:8~F~m~
“8:8ovwmm
~8:F~mmmm
“8:8memm
«mlmlmvvwmm
8:888
8:888
8:888
8:888
8:888
8:888
8:888
8:888
8:888
8:888
.8:8rwmm~
8:288
8:8 888
131
529:. 02:33
20K. 9 5:86. mmmcv. 5905 05.525.05.90 02.82.
520:. 33¢..qu
£305 Ewmmaxo
_ $9328 ..E& 330.6%. 339.6
532.. 9:82.
529:. 3:52.
£295 coréEozu
seen 9.25 <95
.EQmE 5.0m. 83889. >__E£ CE;
52:09:. N £55.. 522.. 9:92.
>_.E& 520.5 .33 I000. 59.... oc.~
0 mwmgofiwofi oanmuoUEmocfinamoza
5205 033.98
aim. m .98. 83%. 5.6.29. Scream 2593
among. 392:5 m.m_>xoemo.m.mc__2§-vs_mu
....Em. room cozmmcmucoo oEomoEoEo .o 55:62
520.5 vowwflaxm
590.3 Q... - EN... .25th
mmEmEow_ mcocm>mcécoofico
2.58 0320.... ..Emamm
£29.. 33998
....Efl £20.... 5E8 .mtucozoOgE
ANA/vi. N mmm>_-m.coEEm 2.5.3.6ch
5295 02.92.
81“.. mmmeoEELm 95:92.
.memx. 5.3.8
599.. 02.52.
590.5 9.5359539 .19.. 3.33853ch
86.9-5305 NOn. 32.2%on
5295 $2.82.
.Nmmbb N .2339 @2539
X
X
XXXXX
XXXXXX X
XXXXXXXXXX
x
x
QN mé QN N.m
F. T m... m.N Em
Em P. 7 m.m m6
5... ed ad 06
ON mé Em oé
Em md 0.F F. ..-
ad 5.9. m.N NP
m6 NF Wm QN
F.N Né m.N m.N
QN 0.F «.0 En
QN o.v N. .... m. P-
Nd 9N F.Nu Em-
ON 0m m6 ed
0.« N. F F... ... ..-
m6 NF m. 3 Na
mé o.N 0.2 0.9.
n... m._. m.N m.N
h... mé Em m6
Wm: QNN tvw mNN
ed 06 06 OK
QN m.N QN mé
0N m... mum Em
o.m md Qm Em
oé QN Nd md
m.N mé Hm m.N
o.N F.F NM o...“
«N od QN o.m
0.F oé m6 mi
QNN Wm .. de OdN
«.... m6 QN QN
o.N mé m6 0m
mum- m. 7 ads- 0.?
F.F N.— 0N Em
F... m4 ad. 0. T
F.F-
...N
mé
Né-
N4
N...
oé
...F
F.F-
...F
QN
m6
F...
o.»
mé
m..-
F.F-
w..-
Qm
F.F
Né-
oé
w...
P...
......
v.9
v.7
Né-
m.N
0.F
m...
m6
F.F-
ad
0...
N...
v.7
...F-
p...
vé
vé
...P.
N..-
mé-
«MN
o.N
m..-
m6
NF-
F.F-
p..-
_.._.
mé
9.7
N..-
v.7
F.F-
0.F
N...
v.—
F.F-
F.F-
0.F
F.F-
mé
mi
0.«
F6
osmmmmmgg
83mg?
88%?
oahmamz
“.8332.
cmfimmnz
oeunmomgq
Simon?
82mg?
ommommmg«
ornmmmmga
8532
88mm”...
88mm?
gamma?
omsmmmmg<
88mm”...
28%?
83%»...
opmmmmmgq
gunman?
oNPmmomgq
ooevmmmgq
88mm?
38mm?
ommmmmmg<
9.8mm?
oeupmmmeq
oumommmgq
883m?
833m?
ommwvmmg«
omumvmmz
oo.m¢mmgq
.muohvpmm
.mlvmv.m~
.mlwmmemm
.mIFPmFmN
.mummm.m~
.manoFmN
.mlnhowmw
.wuuoopmw
.ml~mo.m~
.mlwuormu
.mnnmmmvu
.mnnonrmu
.munmnrmu
.mnwVNPmu
.mnwmhpmw
.munmnwmm
.muosupmu
.mumumstmm
.mummnpmu
.mnoom.m~
.mnnmfipmu
.mINNQPmN
.miwmmpmm
.mlswmrmw
.mumeFmN
.mnvwmpmw
.mu¢mo~m~
.mlnupmmm
.mnwopwmm
.mnmmwwmm
.mumommmw
.m:~mm~m~
.mummmumm
.mnvnmwmw
132
5.600.056
2.0.0. 0.0.0.0 006020.36
.0502. 0000000033000 00.285020 02000
0v.._ 0.0.0.0 03.000036: 2.00
0.0.0.0 .0E0000..
0.0.0.0 0v... - 000.0.000.._>£0E>x0.0>0 00.026
0.0.0.0 00000.98
:00... 0.0-. 30.00
0.000 0.0-. :05.
. 30.000
0.000 0....-. 3050
0.0.0.0 02.0.00
0.0.0.0 00000.98
8003.... 00050.0 00<
0.0.0.0 02.0.00
0.0.0.0 0....0003E000.
2.0.0. 0.0.0.0 .0000. 0.103
00.0.0. - 00000090300 7.9.2
2.0.0. 0.0.0.0 .0000. 0.19..
3.0.0. 01902.93 0.0.0.0 02000000. 0030
0.0.0.0 00000.0x0
A FN0.0E0 0.0.
2.0.0. 000.0.0000000
0.0.0.0 00000.90
280.02.. .000. 8.0.00.0: 2.50. 5.02,
0000.00 0.0.0.0.03000. 02.0.00
0.0.0.0 00...- 0.300.056
0.0.0.0 0.....0000.000:6-0.00
02.0.2.
00000000.. 0.06:.0000025056 00000000.. 0m<
.002. 0.000 000.0 020. 82.0018. .00.... 8.0
0.0.0.0 02.0.00
0.0.0.0 000.060.0000..
60.0.0.000 0000-“.w-.000.N 00.000. 02.0.00
X
XXXX
XX
XXXXXXXX
XXXXXXX
XX
F.F
0.F
m6
md
md
m.F
m.F
Em
mdF
o.mF
F.NF
N.F
F.F
F.F
NF
9N
Nd
QN
m...
0.F
QF
«.0
00
ON
F. F-
F.N
m...
Em
NF
F.F
0.F
o.N
QN- n. F F- 0.0m- N...”
92- 6.0- m.N- QN
QN mN Fd 0.F
QN on mNN 0.F
m.N m.F m.F 0.F
N. F- Nd m.N F.F
v... QN N...“ 0.F
No N...” o.m F. F-
00 0d ed QF
Q: Fd Qm F.F
Q: vdF Qm F.F
QN m.N m.N F. F-
N.F QN 9m F. F-
F.F N... N.F 9N
m.F m.N QN F. F-
wd m.N QN 0.F
F.N 0.0 6.0 F. F-
m.F m.m Mn N. F-
o.N 0.x. F6 m.F
M... QN m6 N.F
0.F Em 0.0 N. F-
md 0.F N.F QN
Nm Nm F6 m.N
NF m.N QN F. F-
m.F 0.F N.F- QN
0.F od m.N 0.F
mN 0K F.N 9N
m0 m.m o6. o.F
NF QN Qm F.F
0.F m... o...“ m.F
m.F o... m.N F.F
\nm 6... F6 F. F-
m.N
m.N
F.F
0.F
F.F-
F.F-
o.F
0.F-
0.F-
F.F-
0.F
0.F
o.F
QN
0.F-
o.F
F.F-
NF-
NT
NF
F.F-
0.F
o.N
N.F-
0N
F.F-
0.F
6F-
0.F
0.F
F. F-
F.F
800.03..
800.03....
8.0.03.0
800.002
0000.03...
0000.002
0000.00...
800.03...
800.002
800.002
200.002
00.0.0.2
080.002
80. .92
000. .03..
00080.2
0.000002
00000002
0339.2
80803.0
80009.2
80009.2
00000002
000.0002
000.0002
80803..
00000002
3.00002
8.0000...
8000002
880002
00000002
0:09.000
01000000
0400000
01080.0
01. .0000
0:040:00
0:02.000
0:20.00
01000000
01000000
0.0.0000
0:00.000
01000.00
0:00.000
0:00.000
0:00.000
01000000
.01000000
0:000000
0:02.000
01.00000
0:00.000
.0I000000
.0-000000
0:000000
0|0-000000
.0H00..00
.0 000.00
.0HN00.00
.0-00..00
.0 ..0.00
.0IvaFmN
133
0:0. :00... . 9.0025028 2 0.5.5.0 00;
0.0.0.0 00000.0x0
.0902. 0 0.0.0....
8300.2. .000. 000..0
0.0000000
0 memoaumo
0.0.0.0 00000.0x0
.ONN<>I. 50.0.0 000005-500 0.0.0000 0. .0_.0...0
2.E0. 0.0.0.0 .0...00 0000000020.
000005004. 000006.003 02.0.00
02.0.00 00.00. 0000000000 0.00.00 Nn.<
0.0.0.0 00.00000x0-+I.+0Z 02.0.00
0.0.0.0 00000.0x0
0.0.0.0 00000.0x0
0.0.0.0 0.... - 00000. 050002000000
0.0.0.0 0.... - 00000. 00.000.505.00
02.0.00 .0000... 0.0.0.0 00.000.505.00
0.0.0.0 0270020000000 0.000000000020000
2.00.
.00.... 0.0.0.0 .0.000.. 503060.20 000002.500. 0000.0.0
0.... - 0<5 0.0.0.0 00.00005.
.0000 :05 0-00.. 0:52
.095. 0.0.0.0 0000.02.00 0. 020000000200
02.0.00 00.00. 000000000... 2.0.0. 00...
0.0.0.0 =0? :00 00005026
0.025.500 0 2:0. 80.00.02.080
50.0.0 02.0.00
0.0.0.0 0.... 00000000 0.0000000-m-_0.002m
Gummy; .900. 0500.0 .0050.0 02000000. 00030.0
$003,000.00. 3 2.0.0. 000.90.... 300020
0.0.0.0 0v... 0002.00 <20.
0.0.0.0 00000.0x0
00.00.00 0.0.0.0 0.0.0000.-._00
0.0.0.0 00000.0x0
X
X
XXXX
XXXXXXXXXX
XXXXXXXX
XX
Nd
md
Nd
d.N
ad
ad
Nd
QN
F.N
N.F
F.F
0N
NF
m.N
m.N
QN
Nd
0.F
od
m.N
m.F
Nd
o.F
d.N
F.F
0.F
QN
m...-
F.N
m.N
NF
Nd
od
Nd
Nd
Nd
0N
mN
0N
QN
N.F
m.F
N.F
m. F-
m.N
0.F
0.0
mi
0N
Nd
...F
m...
0.F
m.F
0N
QN
Nd
0.F
0.F
md
a. F-
Nd
QF
QF
QN
F.F
od
md
mfi
Nd
dd
od
md
Nd
QN
QN
o.N
m.F
Nd
od
F.F
d.F
QN
m.N
...F
QN
Nd
o...
Nd
md
m.N
9N
mdF
F.F
mN
m0
0.F.
F.N
Nd
Nd
dd
Em
d...
dd
OK
d6
0d
ed
md
m.F
F. F-
m.N
mé
N. F
F. F-
F.F
0N
m.N
ad
ad
. mi
0.0
0...
od
m.N
m.vF
m.N-
dd
od
0.0
o.N
QN
m.N
0.F
F.F
F.F
vdF
odF
F.F-
F.F
FNF
d.F-
Nd
WN-
N.F-
F.F-
F.F
d.F
F.F-
0.F
d.F
F.F
0.F
N.F
F.F
N.F
d.F
0.F
0.F
0d
N.F
d.F
0.F
F.F
N.F
QN
0.F
d. F-
F.F
o.»
dd
N.F-
F. F-
m. FF
F. F-
QN
0.F-
0.F
0.F
QF
0.F
d.F
F.F
F.N
F.F-
F.F-
F.F
F.F
N.F
F.F
F.F-
0.F
Nd
0.F
F.F-
N.F
F.F
d.F-
00000002
00000032
00000032
80000.2
00.00002
00000.2
30000.2
00000.2
0.000002
00000032
00000002
02000.2
00.000002
0.000002
00000002
0.000032
00.00032
00000032
0000002
000000.02
000000.02
00.0.0.2
0000.002
0000 .022
2.00 .02
0000.002
0000.002
0000.002
0000.002
0000.002
0.00.032
0000.032
0000.002
0:03.00
0:08.00
0:08.00
0:08.00
0:08.00
0:02.000
0:03.00
0:08.00
0:00:00
0:00.000
0:000000
0:00.00
0:00.00
0:80.00
0000.00
0:90.00
0:..0000
0:00.00
0:30.00
01000.00
0:03.000
0:80.00
0:20.00
0:00.00
01000.00
0000.00
0:00.000
0:00.000
0:03.000
0:00.00
0:00.000
0:..00000
0:0.0000
134
fimawv mmm_>xon._momu 9:295
Awmcwv 39.2% 9.29.3
3309 599a commmaxo
$99385 £92m m>:9:a
:buav P.omm_>xon._womu 9m>2>a
9:93 .>Z:. 589 83:85.: 59:0: Nm<
2.89 <<=XD< £905 mzmcoawm..-c_x:m
590.5 33298
5905 ummwwaxm
a £025 58$ 839855 2:59 CE;
5905 9:. - 399399359:
2 >__E9 $90.6? ragga
589 8.98:2 >__Efl Em;
Amvmoov £995 namwoaxm
E905 038..qu
3.8295: 5290. 288an
£905 nowmoaxm
352$ 399399359: @5596
2:9 £905 39¢ 100859.: oEN
599a o>:9:a
2.89 £905 639 Ov.n_>>
5905 9:93
5905 9:93
032803.993 9:93
336836.93 33.802998 9:93
590.5 m>:9:a
£905 83996
mm99mcm£>m0cEmE
mEmoo:_O.m-c_u_cm>oo£cmlmmocEmE no:
5905 8555.50 38695 ONOOZm E905 02:93
£995 839me
590.5 >__E9 ncmciw 9.6598228
2E9 590.5 MED 39320.00
5.905 “5qume
XXXXXXXX
XXXXX XXXX X XXXX
XX
ON
F.F
Oé
mé
OK
m. 3
NO
9...
ON
ON
ON
n...
m._.
Od
ON
ON
Oé
..N
5...
PN
PN
ON
Ev
...w
N4
ON
OA
9».
O6
Em
F.F-
ON
Wm
ON Em
fr Em
md 0v
ON ON
ON ON?
O.m Em
OK 9.0
O." NO
ON mé
mN ON
ON N.m
F.F m6
Oé mN
ONO Odo
mi O._.
OO m. S.
O._‘ NF
ON QV
ON O.m
ON NO
ON ON
NO ON
Oé mN
mé O.m
O.—. md
ON ON
ON mN
ON ON
ON Em
Nd Em
F. F- r. F-
he ON
ON md
Em
Oé
Em
ON
9O
m6
ON
Em
mé
Oé
O.m
ON
mN
0.0NP
Oé
O.mw
fir
m.m
ON
ON
NO
«N
O6
O6
O.v
ON
mN
Od
Em
Nd
m. T
O.m
ON
«é
0.F-
O.v
ON
F.F
m4.
N6
F.F
...—3
m6
F.F
N...
F.F-
F.F-
w...
m.—.
mé
Oé
ON
ON
F.F-
Né
vé
Oé
F...
N.—.
F.F
m...
Oé
m. w-
mi
vé
me
...—...
F.F-
O9.
0.F
QT
mN
m.—.
...w
v.7
ON
F.F-
F.F
F.F-
mé-
O.—.
v.7
Nd
v.7
MN
m...
v.7
F.F
Né
F.F
v.7
F.F
F.F
F.F
F...
F.F-
ON
QT.
Oé
25392
“V8592
23892
“.9892
Eomm92
oom~m92
3992
8.892
8232
08592
8:592
2: 592
mmmom92
09892
3.892
Q8892
83~92
2,9992
8 .992
83292
89892
08392
29~92
99892
829.2
o~k~92
89992
29992
o~m-92
”98392
8.0.392
8:892
88~92
.mnnommmu
.m:«mmmm~
.mnummmmm
“mlnmmmmu
.m:o.vnm~
6:8va
.mnnmemmm
.mlnmvmmm
.mnumvmmu
.muwmemmm
“muomwmmm
“mummmmmu
.mnnoommm
“munmmmmm
.mlmmmmmm
:mINNmmmm
“mumeommm
amnnmmmmm
“muwmnmmm
amuvmummm
.mlnsummm
$.9mb
.mumwmmmm
.mIFEmmN
.mnwmmmmm
umwemmmmm
amnwmmmmm
.mumlmSmmN
5:983
5:288
amnnpmmmm
6:989
3:288
135
0.90.3 30:053....
0v.._-c_903 090.9 00.0.20 :00
0>:93 £0300 O .909 00:05:. 039000.: 0:0?930
0.903 0000998
.909 003.0009. .09.: 00.6. Nnmo 0>:93
0.90.3 Oc_00_0.:93
000.5003 P 0:..09
590.3 00.: .. 009.00 .9093: __00.Oc:99._93
00059.0 90530050940300.0138
0.90.3 00000308
3&0. m 529.. 0525.220 5.35020
0.90.3 0>:93
9&2. 5205 8.9.858
.390. 2.89 0.903 0.00098
0.90.3 $290509...
0.90.3 0>:93
0.903 00000308
2E9 8E 3959.0
85:2. .98. c9985.. 2E9 952
0.90.3 00000.98
0.90.3 9.: 05.035900
5903 9500092
0.90.3 20.00:.02O
0.903 0970:0509:
0.90.3 00000.3x0
0.90.3 09003000: 690 0>:93
.992. .29. 83829 2:5 0:2
.9sz 98:2 >
2.0.9 .000. 00:00:00000 900000.900 .0 .90.:O0.
.26.
30902000. 000.060.0000 00.00.50E_>000000-O
9...-0.90.0 .0800000
2.0.9 0.0.0.0 .0000. 06-03
2:09 .0000000: 00:0000O..0
0.90.0 00000.0x0
000000000000 00:00.0:0200
0.90.0 9.00000: 0.0...0 000.0EOE-000.. 9 .0_.E.0
0.0.0.0 e... - 2.0880
2.0.9 0.0.0.0 .0000. 3.03
$000.50 00020000009000. 0000.0>0 0000.000
0.0.0.0 02000000.-z_... .909 08000000.. 0.0.000 Nn.<
2.E9 0.0.0.0 .0000. 06-03
02.0.30 .0000.0>0 90000000002030
0.0.0.0 9...-.6000 0.90.0 O0.00.0-0:
.0000. 008.0,. <20 .60 0.000
02.0.00 0002.00 0 .>0oo2O
0.0.0.0 9...-.. 0000..000>x00.00 002-00000
.....On: 000....8.0>0-.O 0.000>0..
0.0.0.0 0000998
20.00. 0.0.0.0 O0...0.00. 00000.:.00.0O200
X
XXXXXXXXXXXXXXXXXX
XX
XXXX
O6
ON
0.0
NO
NO
ON
ON
N.O
6N
ON
6N
ON
ON
...N
O...
O6
0.0
O6
NO
N6
N...
ON
.O6
O...
ON
NO
ON
ON
O6
... 6-
ON
N.O
O6
ON
0.0..
ON
O6
..6
0.0
NO
66
O6
66
O6
O6
O6
O6
ON
N6
6N
0.0
ON-
O6
ON
O6
O6
O...
ON
ON
ON
ON
O6
ON
NO
0.0
O6
0.06
6O
O6
0.0
ON
ON
0.0
O6
ON
NO
NO
6O
ON
0.0
O6
0.0
O6
O6
ON
6N
NO
NO
NO
NO
N...
O6
O6
ON
NO
O...
ON
0.0
0.06
O6
O6
ON
ON
0.0
0.0
0.0
ON
0.0
0.0
O6
0.0
O6
O6
0.0
..6
0.0
ON
ON
NO
NO
NO
0.0
66
66
O6
0.0
06
N6
..6-
N6
..6
..6
..6
6...
66
..6
66
N6
O...
66-
N6-
O6
66
6...
O...
..6-
66
O6-
O6-
O6
66
66-
..6
6...
66-
O6-
N6-
O6
N6
O6-
N...-
6...
66-
6...-
O6-
66-
N6-
6...
66
O6
O6
66-
.....-
66
O6-
66-
66-
..6
O6
66-
O6
N6-
N6
6...
0000.00...
030.00...
0000.002
0000.002
0000.002
0000.002
0003002
0003002
0003002
0003002
000300...
0000.00...
0000.00...
0000.00...
0000.00...
000. .00...
000. .00....
9 P F .00...
00.900...
0.000002
0000000....
9000002
00000002
0.000002
0000000....
9000002
800000....
0000000....
0000000....
0000000....
0000000.<
0000000....
0000000
.0 000000
...-0900000
...-00.00
...-0000.0
...-000000
...-000000
000090
...-00 .000
...-.0 800
.0-00 .000
.0-000000
...-000000
...-000000
...-000000
...-000000
.0-0 3000
0600000
0103000
...-30000
.0-000000
...-000000
01000000
...-000000
...-000000
.0-000000
...-0000.0
...-0000.0
...-20000
...-000000
...-000000
04.00000
137
590.5 83998
U08_w._.mmmm_oacontoxo
5295 83996
5205 _8_.m£on>c
$8.3 88%; 8 88888 529a
52.3 2:882
9:732: 5205 m:_comE£mE
£205 Swmmaxm
Emma/b 88.3mm. 8539:0303
5205 9:33
8338
QEEoePEBV 52:85 mwmcmmofifmu 9898.636
520.5 83298
2295 9.: m8: 22%
£205 3:89.52 5995 2:3
£905 ox__:mmm_bmommu 0:08.:
5205 83298
.908 cozatowcg >=E$ >v_m>>
£205 ox_..mmmo__mc.31
Cwawv _ 3.85ch 3228
5905 9:33
>__E£ 590.5 8883:
£58 mi... 59% .388:
520.5 nowufiaxm
5905 9253
£205 9.: - :85 938 on 5:93ch
2.88 238: 555.0%
5205 «5:32...
5905 89208... 82282368 2 .m__E_w
8mm: 83.3 9593
mwSchmbEmooambd n_oco>mme8:_m an: 9 ._m__E_w
2E8» mwm..£w:m§>woo:_m:o:d 2982238036 no:
5203 2.53 32 8mm?
X
XXXXXXXXXX
XXXXXXX X
XXXXXX
mN
md
md
dd
F.F
md
Nd
mN
o.N
md
ON
ON
m.N
wN
#4
ON
md
dd
o.N
od
m...
dd
0%
N._.
m._.
QN
md
dé
mN
0N
vé
Ye
oN
mN
Nd
mé
9N
mé
Né
md
m...
md
ON
0.«
ON
dN
9N
Né
...N
dN
06
F.N
ed
mé
ad
ad
V...
vé
o.N
m6
0...
md
vé
m. P:
m6
mé
F.N
Nd
dd
m.N
mN
Nd
o.N
QN
Nd
rd
md
0N
dé
mé
QN
dN
w. T
N. T
0N
o.N
dN
md
Nd
mN
mN
N."
F.F
mN
mé
Nd
0.«.
dd
dd
F.F
Nd
oé
Nd
Nd
od
o.N
mN
dN
od_.
9N
mN
rd
F...
QN
m.N
d. F:
mN:
QN
m.N
Nd
mN
mN
md
0N
md
F. F.
Nd
d.¢N
ad
ad
wdw
d6:
#4.
dé-
od
F.F:
F.F:
«.7
N._.:
F.F:
QN
F.F:
0.F
«.7
OJ
v.7
F.F:
F.F
mé
F.N:
v.7
fir
v.7
Né:
Né
F.F:
dé:
F.F:
o._‘
Nd
Né:
Né
0.F:
0.F
88882.
88882
8.882
88882
82%?
88%.?
2 8882
“.8882
28882
2.882
88882
88882
88882
88882
28882
88882
88882
28882
88882
88%?
8.8882
8.882
88882
28282
8882
8882
2882
8882
8282
82.82
82582
8282
8882
fim888
8:288
.m wmmmvw
8:82.88
8:888
.m:m:888
8:888
“88888
8:838
8:338
8:888
Hm:ommmv~
.m:wvmm¢~
.m:opmmv~
.m:mmmmv~
.m:Pcmmv~
am:¢mmm¢~
.m:ommm¢~
.m:wmmmv~
.m:wmmmv~
um:wmoovm
.m:m~omv~
.m:o~omv~
um:n~.m¢~
8:388
um:22mmv~
.m:nmmm¢m
.m:aooomm
.m:mmoom~
.m:~ooomm
.m:wo¢o¢~
6:288
.m:wovov~
138
@225: 5203 $02202
£205 832qu
3100
9:93 c208 codatowcwb EmEoo Nm<
5305 9.8922 5:60:
5205 >=E$ dz=2 5:60:
520.5 33058
520.5 830.58
2
$8.25 omo~mx:dv F mmmhmpmcfigkumé (00.538
5888 285 88: 88 x88 wzfiwzoo
5.20.5 .8338?
385036.950?! 7028. 58:60.?
Sammy r .563 $820.. ozobmxao
9:75205 .oEmo Sum
5295 vomwmaxm
dummy/b d .562 9.625 EmEEm mzwcoawo. 0:238
520.3 $3955
5205 8.80.58
9:858
.39.: £995 chnEmEmcm: 832 228503.
>=E£ oddm mEoEooSo
£205 83998
520.5 Emmoaxm
858 88.38228
590.6 83838
5205 33858
590.5 cmmmoixo
5205 9:93
5205 80:05an
82:33 .5206 50:: 0:8 cotdIO
9:... £92m 90a .8203:
38:28 08:58.
38:9. 3:20 22 9: .5552 _0< of.
mm 522... 3288.. x 3 3 5 3 3 ..m «we .ml8m3~
2.253. .98 3895.8 390228 <20 x 3 3 an 3 E 3 83082 .mntmtu
382853358. mm ....ee @592; 382.6 x 3 mm 3. 3 .0... 3- 28%? 5:3th
9.6.3 38:9. >O._ >m DwHSDOmm-Z>>OD mhmw mema .P.m w..m<.r
m Xazmmna
142
02.200 000000.20 200000006 000.000..
28:800. 555. 005.50
020.0 000005-0030 02.200
802.002 0 8550.5 08.2.8 o. 5.5.5
2.0.2 0.20.0 .60-“. 00.0.2000 .0000. 00.0v.
00220000000
0020000. 20.000.0E2 02.200
0.20.0 50:00.00?
02.200 .192 00000090300 .0000.0
020.0 00000.98
0.20.0 00000.98
02.200 .. 00220002350E-O
maox 0000.220 00.2026
0.20.0 00000.98
0.20.0 03002.0:
SEOOV . 0.20.0 000:00..00_0000.002000__>000.0_00
0.20.0 00000.98
0.20.0 00000.98
0555 00505-05 €505.00 __ 85 .00
.0200. 000000000... 2.0.2 m>s_
0000002018. 7200 2 .0__0._0
5.00 0020000. 2000202230988. 2 .0__E_0
5000000.. 0.00 00.0.0 02.200
0.20.0 00000.98
0.20.0 00000.98
0.20.0 00000.98
0.20.0 00000.98
0020000000 0.00 0.0.00 02.230
02.200 0000090220 20000000002223.0968
0.20.0 00000.98
Y__E£ mmmcam
5.20.5 mmm_o.6>£wmma__ EOE-4w00
22.5 590.5 coEEoo SE3. .mm_ao._o_;o
A 72% 520:. .....In
5905 83298
02:33 693089 _0c_mm.__otm_-_o£wm._o£a
£905 ummmoaxm
5205 893.98
590.5 nowwmaxm
520.5 832me
£205 83998
520.5 83998
520.5 Bmwmaxm
$-33 88..
33: 9:83
5205 BHEoOmmm-‘flocmctoo
520.5 003998
5905 Emmoaxm
520.6 83998
35>2§:Z 590. $223
w >__E£ $30.6? 389.3
5205 89853
2E5 mwmficamocq Eom 993a
XXXX
XXXX X XXXXXXX
XXXXXXXXXX
QN- Qw-
mN- QN-
Qm- Qw-
mN- QN-
...N- od-
x-d- Emm-
Q _.- QN-
h. P- F.N-
QmV- Q9-
v. F- n. v-
QN- m. r-
md- Qm-
Qv- QV-
QN- m. P-
od.- Qw-
mN- v. «-
Qv- Em-
o.m- Qw-
QN- QN-
QN- F.N-
N.m- Qw-
—..N- Qw-
o.N- ... ..-
QN- QN-
o.m- Em-
m. _.- m. P-
mé- ed-
0. F- F.N-
oé N. P-
QN- 0N-
Qm- F.N-
o.m- Qw-
o. T Q«
QN- Q F-
m. P-
m. P-
QN-
m. P-
Qw-
Emm-
Nd-
QN-
QNN-
9m-
n.0-
Qw-
QN-
Qw-
od-
QN-
h. P-
m. _‘-
F.N-
Qw-
Q7
Wm-
«.m-
m. P-
Qw-
0.7
Qw-
Em-
QN-
0.7
Qw-
Em-
Qw-
Qm-
v. F-
m. P-
m. P-
m. 7
ad-
Qum-
QN-
Qw-
oé-
o..v-
Qw-
Qw-
Qw-
Qw-
Qw-
QN-
ON-
Q P-
PN-
Qw-
QN-
Pd-
QT
v. F-
Qw-
Qv-
o6-
Nd-
Qw-
od-
o2-
Qw-
«.m-
5m-
F.F
F.F-
.mp-
F.F-
F.F-
Qw-
«€-
F.F
.3-
N?-
QF
QT
F.F
N...-
vé
0.F
F.F-
NF-
0.—
F.F-
Né-
F.F-
Q..-
F.F-
Né-
F.F-
0.F
mé
F.F-
me-
Q_‘-
F.F
F...-
F.F
F.F-
0.«
o...
o._,
paw-
Qw-
F.F-
NP-
m...-
Q7
...w
o4
F.F
0...
NF
oé
0.F
F.F
F.F-
F.F-
F.F-
Q—.-
N._.-
F.F
QT
c..-
o...
F.—.
Qw-
v.7
F.F
_..w
F.F
v.7
mFPmepgq
8332
89292
8832
2:492
8832
88292
8332
85%:2
03392
Sex-.92
25392
rpmmmmrgq
8:892
38%:2
82%92
8832
omommmpg2
Eowmmz<
osprmmFg2
oEomB2
oumommwsq
oomommrgq
8:292
ohmmmmvg2
ommmmmrg2
8832
oamuumrgq
omphmmrgq
oomoumpgq
chommmrgq
ommowmvsq
mhumumFgQ
93392
.m-nenmvm
.m-nhemom
“m-momvom
.m-omnoou
.m-vwmpow
“m-wmmomm
“muomnmow
.mmwmmsooou
.m m mwhmvw
.nHPPVNmN
.m uovuom
.mlwlmooomw
“m-merom
“m-Nmmpom
“munvuvmm
“m-vmmomm
um-Nmnmvm
.m-mpnmmm
.m-wpnmmw
“annonmom
“m-wawmm
.m-Fomrom
.m-onnmvm
.m-Pmnmmw
film-83mm
um-mvhmom
.m-nmomvm
.m-mvvvow
61338
.m-wm~.m~
.m-mumvom
.m-oFoFom
“mumwomvm
.m-Nmmmvm
144
Gums. m 028:0 0580900020505:
5220 5505.5
2005020 Eamon 5220 cot-05.20 9.3 2 8.2.0
5220 0000298
02850 8:000:02 0000000050
F 2.02 000.20.... 300020
02850 .5x0005x200
020050 80050. 20.850200
02230 8020302 22:00.0
Amxazv 000:0. 5220 0202000200052
or 2.22 000.20%. 300020
082:0 80203.8 0.00200
2.22 0000280 0.00 0520
5220 0269.5
2.20,. 002.000.0200 0.0020;
5220 0000298
5220 0000298
020230 .800 5220 020.2 0020202
.8000. 5:50. 0859.0 08.2.8
5220 0000298
5220 0000298
280$ 52995008858
5220 0000298
808502: 2.50 5220 829 :28.
5220 0000298
5220 0000298
5220 80.85093
Aw .0m
50.20 80.85002
02.230 80202.30 0.:0200
02.0.30 00052.0 0.020002080020202
50.20 0000298
$0.3. 50:00.8
02.0.30 . ._0v.3w
3.50. 022.20 98:00:00 0.00 3.0.. 50:05:01.?
50.20 0000298
:88... 2:8. .82 28 .690 0250200
.10.... 0020302 0.05.30.96.02
0002 0.2000
5220 0000298
5220 :0... @5020
.8022. 5.8. 5.288.. 2:8. 022
50.20 2502...:
02.2.30 ...0...000:0.. 23.:0220
02.230 600 5220 00.0.2 0:02.202
02.0.30 .5220 0000.? 052002282...
X
XXXXX
XXXXXX
XXXX X
XXXXX
X
Qm:
Qw:
h. T
Q T
QN:
QN:
QN:
QVN.
QF
QN:
QN:
Qm:
QN:
QN:
QT
N.m:
QN:
QN:
QN:
QN:
Qm:
QN:
QT
QVN-
QT
Q T
QN:
Q T
Q _. T
QT
Nd-
QT
Qm-
QT
QT
QN:
QN:
QN:
h. T
QT
QNT
v. T
QN:
Qm:
Qw:
QN:
QN:
QN:
QN:
QN:
N. T
QN:
Q T
QN:
Q T
QT
Qw:
QN:
QN-
... T
N. T
Nd:
QN:
Nd:
Qm:
Em:
QT Qm:
Qmm- 0.x T
QN: QN:
QQ. QT
Qm: N.m:
QN: QN:
Q T Q T
Qm: Qm:
Em: Em:
QNT Qm:
QT QN-
QT Em:
QN: QN:
QT QN-
QN: QN:
QN: QN:
QN: QN-
QN: QN:
QN: QN-
Q r T Qm:
h. T Q T
N.@: QN:
QN: Em-
QmT Qm T
QN: QN:
QN: Em:
QT QT
QN: QN:
QN: QT
Em: QN-
Q F Q T
QT QT
QN: QT
QP
QF
QT
QT
Q..
QT
Q..
QT
Q..
N...
QT
QT
Qw
QT
QF
QP
QT
Er
Q—
QT
QT
QT
Qv
QT
QT
QT
QT
N.T
Q..
QT
QT
QT
QT
Q?
Q..
Qw
QT
QF
N...
Q..
QT
Q..
Q«
N.T
QT
QP
QT
QF
Q..
Q..
Q..
QT
Né
Q?
Q..
Q..
0.F
Né
QT
Q..
QT
Q?
Q?
QT
Né
N.T
38892
80:92
93892
83:92
80892
8.892
38892
38892
38992
8892
S892
8292
88.92
38892
382.92
38292
23:92
38892
08892
88092
23092
80892
33892
8892
33892
38892
82.092
88892
38892
38892
38392
82.092
38392
.8:00800~
.8:.-oou
.0:.m~oo~
.0:wmmoou
.8:namoom
.8:0¢oomm
.8:~¢000~
.8:0m~0¢~
8:88.88
8:888
.0I0lmmvooN
8:838
8:888
8:38.08
8:288
.8:0o~oow
8:988
84.888
8:838
8:888
8:888
8:888
8:888
8:838
8:388
8:888
8:888
8:88.88
8:888
8:858
8:888
8:388
8:888
146
520.5 889.98
520.5 051806...ng .825 05 532
39.3 58.952 26553-8: F 3%
590.5 83998
5205 ..flmcmb vi: @533
£995 .835an
5905 5505.5
520.5 ummmoixw
£205 E5055
£905 cot-msozm 9:83
5205 83998
5205 339me
£205 Bmmmaxm
www.mwmcfiaogw 299m 2 ..m__E_m
520.5 @5589: 7:095 93qu
£205 .839:an
335V .208 88529. 225 £5
ommci £205 Q..-.2309 9:53
:38. oEooaw-EmoEq 9:83
859.34% 5205 x23 BEE
BEE-ABE 520.5 x23 BEE
..ch 2 5:63 599a 9.__.m..
5205 839.98
22:8 5905 xon-u. 9.58:8 “...-.39 no.3.
5205 Bmweaxm
2:93 A Emvsfloaoozm
03.93; _>EmS_m-mEEwm
£99m gwmoaxm
£905 gammaxo
553933
235 5685.5
520.5 umwmeaxm
9:93 .3865
mm @288: $8039 9.05:8.
XXXX
XX
XXXX XXXX
XXXXXXXX
XXXXXXXXXX
n.0-
m. P-
QN
ocu-
0N-
NM-
0.7
md
m. ..-
Q3-
Qw-
od-
5. _‘-
F. ..-
h. P-
o.»-
F.N-
od-
0. F-
m6-
mi-
m6-
m. «-
od-
mi-
0. P-
Em-
«.m-
Wm-
n. w-
mR-
0N-
0N-
Nd-
m6-
oé
N...
9N-
WN-
m6-
mN-
Wm
0.F
Nd-
m. P-
0.«-
h. P-
m. w-
m. ..-
mN-
n. ..-
h. ..-
m. P-
Qw-
WN-
Nd-
h. ..-
m. P-
m. T
e. «-
Qw-
Qw-
v. _‘-
n. w-
0.?-
od-
o. w-
fw-
wN-
od-
mi-
Wm-
n.0-
Qw-
Qw-
od-
Qw-
Emp-
mN-
MN-
Em-
od-
05-
m6-
m.-
0.«-
o.»-
«.m-
0.0-
@2-
mN-
@6-
Wm-
Pd-
0v-
Em-
imm-
«.m-
m4.-
0. 9-
Na-
od-
N. F-
m.m-
od-
ed-
mum-
0.«-
m. T
od-
Qw-
m.m_,-
mN-
Em-
od-
Wm-
od-
Nd-
od-
Nd-
ed-
Qw-
mN-
c.3-
Qw-
Qw-
n.0-
Wm-
od-
od-
od-
Qw-
Qw-
v. F-
ON.-
ON-
v...-
oé
...w-
m...
m._.-
m.—.-
N.T
VF
v.7
v.7
N.T
F.F-
F.F-
F.F
Né-
M.F-
m.—.-
Né
0.F
od-
N.T
N...
F.F
0N
v.7
0.F
F.F-
N.T
m._‘-
P...
F.F-
V. F-
F.F-
0.F
N.T
9.?
NF-
v.9
M.F-
...F-
N4
F.F-
F.F-
F.F
wé
F.F-
F...-
_‘._‘
o._‘
F.F
F.F-
vé
F.F-
0.7
¢._.-
N?
0.F-
QN
oé
mé
F.F-
oé
N.T
F.F
Né
v.7
oé
N4
83.82
3239..
oooormmgq
oommrmmgg
omomFmNg<
ouomvmugq
233%
oomvwmmgq
8m. 32
canon?
23%?
853mg
ommvoo~g<
880mg
ommmommgq
oPmmoamgq
oucmommgq
83%?
088mg
88%.?
82°32
owmommwgq
omoommwgg
“.3892
QQFQmmng
ommwnopgq
ommmnmpgq
omasnmrg<
oommumegq
cormnmpgq
omoonmpg<
owmmfimFg<
03392
883.2
.m-mnomou
.m-vmmmmm
.m-omommm
um-Fmemou
.m-wmmmmm
um-Nmmmom
.m-vrooom
.m-Rmmmm
am-esmmmm
am-Fpmmmm
«mlwlwvommw
am-¢~omm~
.m-nvmmmm
$1538
.m-npumou
“m-nohmom
.m-wm¢~m~
am-Nuenmm
um-nmumou
.m-ommomm
.m-nmmmom
am-Pomvmw
um-nmmrom
.m-Nmuomw
.m-mwommm
.m-mlmnmeom
um-ommvom
ww-vmpmmu
.m-mmmam
ua-mohrmm
um-throw
.m-n~o~m~
Hm-nwrpom
um-vmvmmm
147
£903 $5053:
5903 00000508
£903 $5053:
5905 :3053:
0>:93 609903: 0:033:20
33:0 0:29.00 P 03300903093 590303093
70090000.. 05:30.: 9 3.33
0090000.. 05:30: 0>:93
0090300.. 05:30.: 0>:93
0090000: 0:0:30: 0>:93
23:9 000:0. £903
5903 30:93:?
009033 030030
0>:93 6005903 0:333
000:0. £903 0>:93
303$ 08.93; 0868
590.3 30:052.?
590.3 30.35093
5903 00000306
590.3 $50530
5903 50:: 83 02.1 0>:93
_ 000030330900 0::00 0>:93
_ 000030330200 0::00 0>:93
_ 000030356900 0::00 0>:93
£903 $5053:
0235: .6303: 0 55.8 8.0995 Kim
5903 $5053:
5903 003309-5050 0293
£903 55053:
5903 00000308
5903 00000308
£053 0.00:0 30: __mEm 0>:93
0>:93 0000.08.03
5903 00000308
XXXXXXX
XXXXXXXXXXX
X
WN-
m. ..-
m. P-
m. ..-
Wm-
ON-
F.N-
Em-
m. T
Qw-
Né
mN-
Qw-
0.5-
0.0-
c.0-
c.0-
Qw-
9.”-
ad-
Qw-
rd-
mah-
Em-
s. P-
0N-
Qw-
WN-
mN-
m. P-
Qw-
P.0-
Qw-
N. 7
od-
Qw-
m. w-
v. ..-
0.0-
m. w-
m. P-
m. «-
_‘. :-
MN-
v. T
o.m-
m6-
mdm-
od-
QM-
mau-
od-
3N-
md-
3N-
n.0-
m. «-
Em-
F.N-
Em-
0.«-
0.«-
od-
m. w-
e. F-
ON-
c.0-
m. «-
9N-
Nd-
0N-
Qw-
fin-
mN-
0.0-
0.0-
od-
n.0-
Qw-
Qw-
h. p-
Em-
c.0-
Nm-
0.?-
F.N-
Em-
m. P-
Nd-
Em-
Qw-
ON-
Em-
mam-
MN-
n.0-
m. P-
od-
m0-
od-
m. ..-
Nd-
F.N-
od-
0&-
0.«-
NM-
mN-
n.5-
Nd-
n.0-
m6-
@6-
mN-
Qu-
m6-
mN-
9N-
Em-
c.0-
n.0-
v. F-
Qw-
Qw-
9N-
0&-
NM-
Qw-
m. :-
Qw-
h. _‘-
0N-
Pd-
Em-
v. :-
Qw-
fiv-
F.F
Né-
fir
0.F-
v.7
0.F
F.F
F.F
F...-
Né
_‘.—.-
w...-
0.F-
F.F
0.F
mN-
F.F
mé
0.F
Qw-
F.F-
m...-
o...
F.F-
N.T
m...-
F.F-
F.F
m6
P4-
5.7
0.7
Q:-
0.F
m...-
Né
F...
N.T
N.T
F.F
...F
F.F
vé
N.T
F.F-
fir
F.F-
mé
v.9
WN-
«é
mé
P...-
o._‘
N4
P.9-
F.F
0.F-
0.F
oé
0.F
oé
md
F.F
F.F-
mé-
F.F-
29332
083033
80883
808332
33%?
83mm?
.3982
ome~m~g<
88%?
838mg
383%
883032
OFNwmmugq
omvnmmugq
ommm~m~g<
oesommmgq
803032
oommwmmg:
833%
038033
838033
08333
ommummmgq
89332
809032
89303
oompmmmgq
ormpwmmgq
88332
choommmgx
83 ENE
ovmmpmmgq
ommwrmmgq
2:332
.m-qumou
“anonvmmm
.m-opmhom
.m-wvmhmm
“n-omwmom
.m-wmmmom
:m-wmummm
:m-Nnmoom
:m-wnmmom
.m-ahmmmu
am-FmNmmm
alwsaom
.m-msmmmw
.m-mommom
:m-npmmmu
mum-5083
3.3808
3:293
3:833
gnu-«$003
.m-Nmmnow
“mlwmfiom
:m-wmmnmm
.m-Rmoom
313803
34388
.m-mvmmou
.m-Eovmm
3|:me
31:38
.m-mmooom
Haw-0858
a-Smomm
.mlommeom
148
5053 5505.5
5053 00350030533055 02353
02353 .5053 50:: 05~ cot-3:0
0003.. 02353
.mmm...<\mmm<. 53500.. 005300.. 5053:5003.
5053 30.5503?
.010: 5223 5.75.3858
83x0. 2.5:: .5283
5053 00000.35
8.301... 5993 3:25 .3 33925
5053 5505.5
000053 0:50 05.50.5330
5053 055050050800 HU<
2.50. :50. 580..
5053 550:5:
5.3.3:. 000053 02353
5053 0000035
5053 0000035
2.80.. 0005300: 05503
5053 0000035
505.3 0000035
5053 0000035
9.52. .850 500.. 3.530
SN 5053 0.0555 0:03:5E 0:503. 5530300
.0Nn....<. 02353 6000.553
.0EE00 5053 0.0555 50305.. 5530300 02353
5053 0000035
2.50.. 5053 2242. 50.0.55 30.30 02
5053 0000035
5053 0000035
0005550 0005.50 02353
5053 0000035
0003:3053
000.05? 02353
X
X
XXXXX
XX
XXXXXX
XXX
X
XX
5. F- 5.0-
o.N- m. P-
m. P- F.N-
0. P- F.N-
m. P- 0.0-
mN- 0.0-
w... m. ..-
m.m- v. ..-
h. F- 0. ..-
mN- «.m-
oN- w. w-
md- 0.0..-
50- 0.5-
50- 0.F-
m.N- m. w-
N.m- n.0-
n. P- m. ..-
0. F- m. ..-
o..1 0N-
o.N- m. w-
m.m- h. F-
mN- m...”-
o.v- 0.7
0.0- 0.0-
v. w- 0.F
Nm- Nd-
o.N- N0-
0. P- 0N-
mN- 0N-
0.0P F- 0.0:
v. w- 0. F-
o.m- 0N-
wdn- Em-
mN- 0N-
N...”-
5.0-
0.0-
0.0-
0N-
... F-
0.0-
mé r-
N0-
5. ..-
0.0-
m. P-
0.0-
0.0-
0.0-
0.0-
0.0-
0.0-
m. w-
0&-
ad-
n.0-
0. w-
0.0-
N.0-
0N-
0.0-
Na-
0N-
0.0-
Nd-
—. «-
0N-
n.5-
0N-
Nd-
0.0-
0.0-
0.0-
0N-
N...”-
m. w w-
0.0-
0. F-
Em-
m. F-
0.0-
n.0-
Nd-
5.0-
0.0-
0N-
0.F
5......-
0N-
Nd-
m. P-
n.0-
n.0-
o.N-
0.0-
0N-
...N-
5.0-
5.0-
h. F-
N.0-
0.0-
Né
N...
F...
...P-
5F
N.T
m.N
ON-
o...
N.«-
0.0
Né
... T
o...
m...-
... P-
F.«
.....
F.F-
0.F-
m...-
.....
N...-
M.F-
0.F-
N;-
0.7
N.T
F.F-
P.—
F. F-
F. T
N. F-
m...
0.«
N...
0.F-
.....-
F.F
N...
0.«
F.F-
F.F-
F.F
QN
mé
.....-
...?-
F.F
0.F
N...
...—-
m."
m...-
P...
«.7
...P-
N.T
0.F-
...w
...P-
0.F-
F.F
F.F-
0.F
F.F-
Né
0.F
380503 film-.903
2.5503
803.33
800502
99503
39 3.39..
39 .502
28502
2 5502
88502
oooovmmsq
880302
2000302
980303
880303
3500303
8300303
82503
32.5me
395303
omvnmmmgq
8:00.04.
890302
398302
395303
omnommmgq
830303
830303
8083?.
83.0.0303
3500302
8000304
8000303
omF~m3~sq
.0-039000
.m-nmm:0~
.m-Nmmmou
.mlN:mmm~
.m-nmonmw
.m-mmo:o~
.m-Nmmmmu
001303000
001000000
.mnnmmhom
3.30303
.muvwmomm
.m-wmmoom
.0-339000
.m-woroom
.0-000000
.0-Pmomom
.0-30.~0~
.m-wnpnou
.m-mmmmom
.m-Nmmmom
.01033000
film-«3.000
“mlwhvmmN
“mlx-ommoN
.0I00000N
3|.V0nmmN
3Im0nmmN
.mmwmvvosmm
.0 0 099500
.musmoumu
.mmnmmomm
.0 330000
149
em >__E£ $293: 3893
520.5 5505.5
56$ 53:85.: >=E£ mt).
39038523 @583
6§>a:.mmm$ omfimooamémn
5205 2505.5
9:93 .5205 mcficfidhw
5205 83298
25.825: .238
mm mwmcmwofiEmu Eom me-mcafi 5ch 85:8:
5295 gummaxm
£905 Oommmaxm
£905 cmmmoaxw
520.5 33998
AYmn: 83:85 £295 ox__-c_w>m:
9:93 .838 wmz-mE 520.5 858.8. mmmomfi
£996 53:08.8 9:33
5295 33298
2229 m 8.65 8.m_:8.-=___m.2£m
2E5: £905 .69.: 05.: «ab-NINO
£205 uomwmaxo
£205 Emma-.98
2E6: 3203933535.»ch £20.th
£905 565::
A29 mmmfi>ccm 2:098
$95. 5295 9:83
2.29.. 2:538:
5295 gammaxm
£29m Bummaxm
520.5 $30.58
60m; m mE>Ncm mc:mm:_coo-c:_=c_na .NM
5305 83930
£905 :26ch
9:93 .83 mEoEooSo
X
X
XX
XXXXXXXX
X XXXX
XXXXX
WM-
0&-
adv-
Qw-
9N-
0N-
m. P-
Wm-
F.N-
NM-
5. ..-
od-
F.N-
Qw-
N. P-
«N-
9N-
Qa-
Qw-
m. w-
od-
m. F-
m. P-
od-
Qw-
0N-
F.F
Wm-
F.N-
ON-
Em-
od-
wN-
Qw-
o8-
Qw-
F.N-
mN-
Nd-
m. P-
n. «-
F.N-
m. ..-
od-
...P
0N-
m. P-
N.—
m. ..-
mN-
od-
9N-
Nd-
...N-
h. P-
F. «-
m6-
p. _‘-
m.m-
m...
m. P-
m. F-
Wu-
Nd-
od-
m. P-
Qw-
Em-
Em..-
od-
Qw-
0N-
mN-
Qw-
mN-
Qw-
mN-
Em-
Nu-
m.»-
md-
Qw-
od-
rd-
F. «-
Na-
0.7
gm-
Qw-
n. :-
mN-
m. P-
od-
Nd-
Qw-
od-
Em-
m. P-
@3-
ud-
m6-
Qw-
m6-
v. F-
9m-
Qw-
Em-
m6-
0N-
od-
Hm-
ad-
ad-
od-
QT
m. P-
mi-
m. P-
m8-
«.m-
QM-
od-
_.. P-
Em-
o. F-
WN-
Qw-
od-
od-
ogv-
v. T
N.m-
0.F
Né
F.F
m.—.-
N.T
F.F-
v.7
v.7
N...-
m._.-
m.—.
ON
0.«
N.T
.1
F...-
m._.-
F.F-
...F-
WN-
...—.-
F.F-
F.F-
F.F-
F...-
N...-
mé
Né-
F.F-
N.T
...?-
F.F-
N...-
P..-
mé-
F.F
F.F
F.F-
F.F-
F.F-
F.F
oé
F.F-
:3
ON
F.F-
v.7
.1.
c.9-
N.T
oé
N.T
N.T
F.F
N.T
0.F
mé
oé
M.F..
v..-
oé
Né
v.7
F.F-
...P-
M.F-
88.82
28°82
88°82
o888~<
88°82
8:882
23°82
28°82
88°82
8828?
8:882
8883
8.882
8383
28082
8883
28882
88°82
83082.
8883
8882
88882
8283
89082
838?.
8383
8~E82
888%
88.82
888%
888%
888%
5:3.»me
8:858
8:838
6:838
8:888
8:888
8:888
3:288
8:888
8:888
um:wmmwm~
8:888
8:39.88
um:anwm~
.m:~mmmm~
.m:~.mmm~
.m:mommmm
am:w.omm~
.m:n~omm~
am:nm¢mm~
“murmpmmu
.m:onmmm~
.m:Fmrmm~
.mIFmmeu
.m:nm_mmm
.m:nmmmm~
um:mnmmmm
.mIFmvmom
am:nmmmm~
.m:voooow
.m:n~momm
um:rpm~om
288% 5:32:28
150
9:93 685:8 29.0383-308-89-9393290
88.0.8me5 .2028
88:9: m:__oco_>u:mcnmoza 9 ..m__E_m
5903 38998
$95. 5993 9:93
58:83 3 $986 9:8E9_m
9:93 5:89 58:50 895. .6339
590.3 38998
5903 38898
590.3 88996
$m.>xo-_9z-m-oco:9m: 9 8:58
888sz 888. 2.53 888 x22,
$8528 9 289 88.99: .8096
2.89 889. 98 89059952333212
QNa__E9 £903 .58. 9:62
5:8. 9:93
5993 mass: 385809,: 9:93
.992 5x899
$8983 5888 8.8.5 88882 5.8
5903 889.96
5903 80:9:an
38.29: 9:93
E903 5505.5
5903 808038
5903 88998
9:93 .093 oEoEoo$o
3.209 mmemouomfim-mfin 9:93
A885 C888 898 88
9:93 .5903 98889-05350
5.903 8.8038
£903 8.8998
5903 88938
E903 88938
XXXX X
XXXXX
XXXXXXXXXXXXXXX X
XXXX
Qm-
QT
QN-
Qw-
Qw-
Qm-
QT
Qw-
QN-
Em-
«.m-
QT
Qw-
QT
Q T
Qw-
QT
Qm-
Qw-
QT
h. T
No.-
QN-
Qm-
QN-
QN-
Nd-
Em-
Em-
QT
QN-
QT
Em-
QT
QT
Qw-
QN-
QT
Q T
QN-
Q—
Qw-
Na-
Na-
Qu-
Em-
N. T
Qw-
Qm-
Qw-
Em-
Qw-
Qm-
QT
Qw-
QT
Qm-
QN-
Qm-
Qw-
Qw-
Em-
Qw-
QF
QT
QN-
Qw-
QT
QN-
Qu-
QT
QT
QN-
Qw-
QP
QT
QN-
QN-
Qu-
QT
Qw-
v. T
Qw-
QN-
QT
Qw-
Qw-
Em-
QN-
QT
QN-
Qm-
QN-
QNN-
QT
Qw-
Qw-
Qm
Em-
Em-
QN-
Qu-
QN-
QT
QT
QF
QT
QT
QP
Q.-
QT
QT
N. T
N. T
N.T
Q—.
QT
QT
QP
N.T
QT
QT
QT
QF
QT
QT
QT
Q..
QP
QT
Q_‘
N.T
QT
N.T
N.—
QT
QT
QN-
Q_.
Qw
QN-
QF
QF
N..-
QT
QT
Q..
QT
QT
QF
N. T
Q«
QP
QT
QT
QT
QF
QT
Q_.
QP
QT
QF
QF
QF
Q..
QN-
Qv
v. T
QT
QT
N.T
888882 8:88:88
28882
88882
onmmmmmga
omvmmmmgq
osmwmmmgq
88882
28882
onmommmgq
8882
8882
8882
8882
opmormmgq
8882
8882
omvormmgq
88F82
8882
o¢~oF8882
8882
8882
omvowmmgq
enummegx
8882
8882
88382
8882
8882
omavpmmsa
omNFmegq
oowrpmmgq
omoFPmmgq
oemo.mmg<
8:888
8:888
8:888
8:888
8:888
8:888
“8:888888
.m:m~8~m~
8682.8
.8:~mmmm~
8:888
8:888
8:888
8:888
8:888
8:888
:mImINmmmmN
.m:wmomm~
.8:vmomm~
.m:nmommu
:8:mvomm~
:8:~momm~
“8:888888
.m:o-wm~
8:888
.8:moomm~
.m:~h~mm~
98:8vmmmm
.m:-~mm~
:8:om~mm~
“8:8vamm
.m:n~vmm~
.mswevomm
151
590.0 9:92.
0020.9... 9:900
590... 9:92.
50.0.0 9:92.
590.0 5:80:09 9:92.
32. 50500.0 000c0mo.0>c00..0_900_
5920 80:05an
000590 000.030
50.0.0 00000.98
Axonfiéomaaommv 0888.258 9.85
289 590... 56:60 c082 8030.020
599.. 3.8.0.2
590.0 08.802
>__E9 omen 090.5090
590.0 0990.832
5058 2.8. 82.2 588
9:92. 6090300. 900.808.9585.:
£920 00000.98
.0toamc0: 00.500096 9:930
590.0 00000.98
9:900 .5920 090300. Em:
50.0.0 569.5
590.0 00000.98
290.0 x99 .29.. 9:98.
2.8. 83 08.58%
2.8. 8:. 39886
50.0.0 00000.98
50.0.0 00000.98
9:920 600590 9086205092.
.99:omoo 8:99.008: 0205000805350 9:930
590.0 00000.98
590.0 00000.98
50.0.0 00000.98
2:..9 590.0 950 m._.<_>_
X
XXXXXXXXXXXXX
XX
XXXXXXXXXXX
X
XX
Q T
Q T
QN:
Qm:
QM:
QT
Q T
QN-
Q T
Qm:
QT
Q T
QP
Qm-
Qm:
QN:
QN.
QN-
Qm-
QN:
Q5-
Qm-
Em:
Em:
Q T
Q T
QN:
Q T
QT
QT
Q T
QmT
QN:
QN-
Q T
Q T
QN-
QN-
Q T
Q T
Q T
QT
Q T
QN-
Q T
Q T
Q T
Em:
QNm-
QN-
QN-
QM:
Nd:
N. T
QN:
QN:
w. T
QN-
QT
N. T
Q T
Q T
QN:
Qw:
Né
Q5:
QN:
Q T
QN-
Em-
QN:
Nd:
QB:
QN:
QT
Qm:
QN:
QN:
QT
QT
QmT
Qm:
EmT
QT
QN:
Qo:
Nd:
Qm:
Em:
QT
QT
Qm.
Nd:
QT
Qm-
Qm:
QN:
Q «N:
QN:
Em:
QN:
Nm:
QN:
Q5:
QN-
Em:
Qm:
QN:
Em:
Em:
QN:
QN:
Qm:
Qm:
QT
Q T
QNN:
Em:
h. T
QT
Qm:
Qm:
QN:
QN:
QT
Qw:
QmN.
Qm-
Nd-
QN.
Q T
Em:
QN:
QN:
QN-
QN:
QT
Qw
QT
QT
QT
Qw
QP
QT
0.«
Q«
Q..
QT
QP
QT
N.T
QP
QT
QN:
N.T
QT
N.T
QT
QN:
QT
QP
QT
QT
QT
QN-
QT
QT
QT
QT
QF
QT
N.T
QT
QF
oommemmg<
08:82
omv~¢0ms2
ommovamgq
opsmvmmgq
8882
omrmvmmsq
8882
88882
08882
88882
Q8882
88882
ovumummgq
ohwmwmmgq
88882
80882
ommnmmmg2
88882
88882
88882
owmmmmmg2
20882
88882
onwommmg2
ouroummgq
8.882
ommmmmmgq
ommmmmmgq
oomvwmmgg
o0¢¢~mmgq
oopvmmmgq
080888832
ommmmmmsq
.m:nmm~0~
.m:mmv~m~
00:.Pewmm
.m:.:0~0~
.m:~mm~m~
.m:o~0~0~
.m:~:0~0~
.m:0v-0~
8:888
.m:0.m~0~
.m:me-m~
88888
88888
88888
.m:no000~
.m:mm-m~
.m:--0~
.m:nmr~0~
.m:mmn~m~
.m:00~00~
.m:~m0~0~
.m:PPO~0~
.m:090~0~
0m:o0800~
.w:0~0~0~
88:88.8
.mmmmommm
.m omommm
888888
8:888
8:888
.m:mm-0~
8:888
8:888
152
£905 9:: 29m 9.6556 5329:.
m >__E£ 332?»: amoeba
.mtoamcmb mwoxoc 9293
$9.: 5205 9:83
5905 nomwmaxm
590.5 832qu
£903 9:759:85 £295 NED
3 520.5 085:5 mcEnEmE mEmmE
520.5 08853
520.5 0253
590.5 0282.6
9.: - 52:85 392325 5929323.!“
5205 9.283
520.5 ummeaxm
5905 02.8.5
590.5 83998
88823 82;» 2399353859362329
8.29 m 85.8 88925 Exm
£905 339me
$.28 38258 2898
£205 Bmmflaxm
5205 9:53
owmcmmofifmu 460.38
88.9.3223 368225
5205 3.703.223 mExoao
mmmEmoozm m:_cmbm_>£mE.m.__Em¢ ommcmmoficmn 282m:
88.9-5205 NOn. 32.020QO
590.5 839.30
XXXX
XXXXXXXXXXXXXX
XXXXXXXXXXXX
XX
0.?
ed-
m. P-
Nd-
Qm-
m. ..-
N.m-
QM-
Em-
QN-
Q ..-
QN-
QN-
v.3 T.
Qv.
Qw.
QN.
QN-
Qm-
...N-
0.?
QN-
QN-
QN-
m. T
QN.
F.F
QN-
Qm-
QN-
Qm-
QM-
Qm-
QN-
_.. T QN- QM-
QN- QT Q?
Q ..- QN. QN-
QT Q? Q?
Nd- QN- o6-
N. w- Em- N.m-
Q ..- 5m- Em-
QN- Em- Em-
Nd- 0Q. oi.
m. ..- QN- QN-
N. ..- Hm- QN-
m. T N.m- QN-
P. P- N.m.. QN-
va- QN- Qm-
ms- Nd- mKN.
Qw. od- QN.
QN- QT Qm-
QN- QN. QN-
Na. Na. OK-
Pd- m.NN- va.
QN- 0.7 «.0.
Q P- QN- Qm-
Q ..- 0.? Qm-
F.N- QM- QN-
F... QN- o5-
QN- Em- Qm-
N. 7 En. QT
QN- QN- o.N-
QN- QT QT
F.N- Em- QT
QN- QN- m. T
Qm- v. P. w. T.
m. P- an- o6.
QT m. ..- 9N-
...—W
F.F-
o...
F...
N.T
o.—.
QT
F.F-
«...-
.....-
F.F-
...F
1..-
m.—..
0.”-
QT
Q..-
F.F-
N.T
v.7
F.F-
0.F
F.F-
N.T
F.F-
QT
Q..
oé
QF
N.T
v.7
F.F-
Q?
v.7
QT
F.F
F.F-
N...
oé
...—.u
_.._.
P...
P.«.
QF
F.F-
F.F-
F.F-
QN-
ON.
0...
...—...
N.T.
F.F-
_.._.
v.7
Né
0.F
F.F
w...
QT
0.F
F.F-
F...
F.F-
F.F
N._.
m6
...T
28°82
88%3<
88082
82%«2
88°82.
mmmoomeg«
orwuommga
83%?
88%?
omooommsq
omvommmgq
88%?
oomoommgq
ommmmmmyg
onwammmy<
8888:.
88%?
omvvmmmgq
88882
owkmmmmgq
ommwmmmgq
ooommmmgq
9.» $82
83%?
oooPmmmgq
oomommmgq
83%?
opuommmgq
83.82
omumvmmgq
88382.
83:82
ommmvmmgq
8888:.
8:838
“alsvmmmu
“mupommmm
«mufipommu
amuomommm
unuvnommm
.muwvwwmm
.muvmmFmN
amupmmrmm
“muwemrmw
.mnmmmvmw
.mlnov.m~
.mumo¢.m~
88838
.NINFmFmN
.mleoNme
“mummNme
.mnsmmrmm
.mnomwrmm
“muvwommm
8:388
8:388
.m:¢omov~
.mnwmommm
.mlnmommu
.uuvmwmmm
“muonwmmm
.munwmmmm
.mnomummm
.muhpmmmu
.mum.m~m~
.mloommmm
.msummwmm
.munmmwmm
153
520.5 2:. .2520 2.2052:
520.5 2.: 88.28.8558
2 2.58 88.225 3888
c888 288 82.2 5.82
5888 e... 526
520.5 50305093
:88... :58 “me
5205 0030508
9:25 68023203802950:
2.52 322282308
5205 0880508
5205 003298
2-88 2 8:58 888 8.8528. 88532200
5205 5030500?
$20.5 083058
5205 0030.508
020.5 2.3.25
852-5205 0.0.0008. 00:22.8... 28020
520.5 0225
£205 3:88.90? 3205-.0Emo-302-3020
c888 95-. .828
.888 8858220 9.8.3
0.205 052.5
5205 2.:- F mama: 98022:. 52:00 2
5205 02.25
520.5 3.738%. 0c_:00._z<00t0w
38520.5 05298
02225 .0mmEx055
£593 8:088: 888398
520.5 000205-0503 058005
5205 0080508
5205 83055
58502 5:25.520: 2 8:57.
.5303. 200 0mm£x£o=¢020m05 9:25
X
XX
XXXXXXXXXXX X
XX
XXXXXX
X
QMT
QN-
QT
NM-
QN-
QN-
QN-
QN-
QT
Q T
N. T
DM-
5. T
Ev
QN-
QT
Hm-
QN-
NM-
QN-
QT
QM-
Qw-
N. T
QM-
QM-
QT
QN-
QT
Q T
N.M-
QT
QN-
QT
EMT
QN-
QN-
QN-
Q T
Qw-
N. T
Q T
QN-
QT
QT
QN-
Q T
v...
QN-
n. T
h. T
QM-
QN-
Q T
QT
QM-
QT
QT
QM-
QNT
QN-
NM-
QT
Em-
NM-
QT
QM-
QT
QT
QT
QoT
QN-
QM-
QT
QN-
QN-
QT
N.M-
QN-
QN-
QN-
QM-
QN-
QN-
NM-
Qw-
QM-
QN-
QM-
QT
QT
M. w T
QN-
QM-
QM-
Nd-
N.M-
NM-
NM-
N. T
NM-
QT
NM-
QM-
QN-
QN-
QN-
QN-
QN-
QN-
NF
QT
Qu-
QN-
QM-
Qu-
QN-
QN-
QT
QM-
N.M-
QN-
Q T
QN-
QT
QNT
QN-
Qw-
QN-
QM-
N.M-
QNT
QM-
QF
QN-
N.T
Qw
QT
Qw
N.T
Q—.
Q..
N.T
Né
QN-
Né
Q..
N.T
QT
QT
QT
QT
QT
QT
QT
QT
N.T
N.T
QT
QT
Qv
QT
QT
QT
QT
QT
QT
N.T
N.T
Q..
QT
Qw
N.T
QT
QF
Q..
QF
N.T
Q..
Qw
QT
QT
QT
QT
QP
QT
QT
QF
QT
QT
QT
QF
Q_.
N.T
QT
QT
Qw
QT
QF
Q—
N.T
QT Qw QT
88.82
88882
88282
88.82
08882
88.82
88.82
88882
88.82
88.82
88.82
8882
88:82
83.82
88332
88:82
88282
88282
8882
8882
2882
8833.2
82 :82
82 .82
88 .82
83 82
o x: .82
88. 82
8882
88882
8882
88382
88%.2
88%.2
8:888
8:888
8:888
8:888
.8:n.mmvm
8J88~
8:888
8:888.
8:888
.8:wmmm¢~
.8:ommmvu
8:888
8:888
8:888
8:888
8:888
8:888
8:888
8:888
8:888
8:m:o~88
8:88va
8:888
8:888
8:888
8:818
8:8:888
.8:v.mvm~
8:8888
08:~owmmm
.8:8oomm~
08:888888
~8:~ommm~
08:888888
154
00000968000... 05.9.0
50.05
0.....0005x-...0.0:..0.500.5 .c00:0500:20500.50.>5
50.05 02.055
2.0.0. 5205 .09.... 05w 055407.00
50.05 02.0.5
mmona>o .0 .0550... .035 00.0.5030
5205 0000058
5205 85.05055.
05.25 600.0500. 3.0535505
850$ 58.998.888.398
50.05 0.... - .00.:005 000.22.020.03 05:23.0
00058.05. 2.20.00.205
000... 2200.. 02.0.5
50.05 x20. .0..0E 02.055
2.80. 3.5.. 50.05 0.05.5. 5.0:.
20.4% 0005.. 5205 05:02:55.3
0005x83£0E-05_0.v .920 02.0.5
.58. 88 85258.8
.88.. e... .800
50.05 0000058
5205 500:0 .00..
50.05 0000058
5205 02.0.5
50.0.5 02.0.5
288. 88.88823 88.702”.
50.05 02.050
50.05 02.25
5205 02.0.5
800.0 mm...wmz-m_b 50.05 00:20.00. 00000.0
5&0. 00220038005505
50.05 0000298
50.05 0000298
50.05 02.0.5
XX
XXXX
XXXX
XXXXXX XXXXXX
XXXXXXXX
XXXX
QT
QN:
Qm:
QN:
Qm-
QN:
Q5:
QT
QQ.
QN:
Qw
Qm:
Q T
Em:
QT
N. T
Q T
QQ.
Qm-
Qm-
QNT
QN:
Q T
Q T
Qom-
Q T
QN:
N. T
QN:
QN:
Q T
QT
QN:
Nd: Em-
Q T QN.
QT Qm:
QT QT
QN: QmT
Q T QN.
QNT QmT
QT Q_.
QN. QN.
Qo. Q T
Q T QN:
QT Q T
QN- QN.
Q5: Em:
Qm: QT
N. T QT
QN: QN-
QN. QT
QN: Q T
QT QN-
Qmw: Qh:
Q0. QNT
Em: Qm:
Q T QN:
Q P T QoT
n. T Qm-
Q T QN:
Né QN-
Qm: n. T
QN- QN-
Q T QN-
Nd- Em...
QN: N.m-
Qm:
Em-
Nd:
QT
Nd-
Em-
Qm T
Q T
QN.
N. T
QN:
Q T
Nd:
Qm-
Nd-
QT
Nd:
QT
Q T
QN:
Q5-
Q0:
QT
Qm:
QN-
Qm:
QN-
QN:
QN:
N.m-
NQ.
N.m..
QN-
Q T
QT
Q..
QT
QT
QT
N.T
QT
QT
N.T
QT
Qw
QT
QF
QT
Q?
Q?
Q.
Q..
QT
QP
QT
QT
N.T
QP
QT
QT
Q.
Q.
Q.
QT
N.T
QT
QT
QP
Q.
Q..
N.T
Q..
Q.
N.—.
N.T
QN-
QT
Qw
QT
QP
QF
Q.
N.T
QF
Q—.
QN:
Qw
QT
QT
Qw
QT
N.T
NF
Q.
Q.
Q—.
N.T
QF
QT
gmeoE<
88882
08882
88882
88882
2.882
88882
88882
88882
88882
8.882
88882
8.882
80882
88882
8.882
8.882
2.882
88882
88882
88882
80882
88882
c.8882
88882
88 .82
88.82
88 .82
88 .82
88 .82
88 .82
88 .82
88 .82
.0IF0hmmN
.0:0o.mm~
8:388
8:888
.0:~vmmm~
8:888
8:888
8:888
8:888
8:888
8:888
8:888
8:8 88
8:828
8:888
8:8888
8:828
8:8:888
8:888
8:888
8:888
8:828
.0I0Imwmva
8:888
8:888
8:88.88
8:808...
8:888
8:888
8:888
8:828
8:08.88
.8:wommvm
155
$996:mb_>0Ncm£_>oEmcc_o>xEPE-z
£205 vomwmaxm
9:93 .3333. mumEoomeuEmuOEE
5205 0252.
520.5 9383
2E5 339?? mx__-mmmcooo_mcou 282m:
5205 9:93
5995 83998
5.205 nooauE-Exam
9:33 A 724m: 82009?»ch .0359:
$9895.: cmogmon-oucm 959.5
520.5 Bum_m._1wwm.£mcm£baom amoBoma
9583 6325.3
520.5 83998
52% 3.2.83.8
520.5 9:32.
:2me 529:. 85683-85035...»
5205 0265a
Caoxv 9322a 9:930
5205 9:93
5295 9:53
snag 5.03 83822. END
520.5 32.05an
520.5 9...- mmm..£w:8=>moo:_m 2 ..m__E_m
£205 339me
£205 nmwwmaxm
590.5 88998
9:93 .ommExqu
mcaoficoomflmmfiosue ESEEQOx-osmz
9589:: £205 ova-m 5.3523
9393 6325.8 9.0.5836
A .mmmgggs SE 29.50%
£295 meoaxm
520.5 9283
X
XXXX
XXXXXXXX XX XXXX
X
X
X
QN-
QN-
...N-
QN-
Nd-
O.»-
Na-
c.9-
QN-
m.m-
QN-
QN-
QN-
Em-
QN-
m. P-
0.x.-
F.N-
Qw-
Pd-
m. F-
od-
QN-
QN-
m. F F-
Qw-
QN-
Wm-
QN-
QN-
od-
F.F
QN-
Em-
QN-
Qw-
rd-
5. F-
...N-
mi-
QN-
...:-
fi. F-
m.”-
F.N-
h. v-
QN-
m. w-
». P-
v. «-
QN-
F.F
Em-
QN-
od-
od-
N. P-
QN-
mR-
0.2-
QN-
F.N-
n. P-
m. w-
QN-
...?
F.N-
QN-
QN-
QN-
od-
m6-
QN-
Em-
F.F
Nd?
Em-
m. p-
Qw-
vd F-
Wm-
od-
vd P-
«.m-
0.9,-
Na-
0. F-
Wm-
Nd-
m. w-
m6-
F.N-
m.m w-
mim-
Num-
Wm-
Em-
od-
0%
QN-
Em-
0v-
Pd-
OK-
QN-
QN-
QN-
QN-
m...
«Km?-
0.«.-
h. «-
QN-
m6-
Em-
Qw-
m6-
Qw-
md F-
Nd-
m. r-
«MV-
0.?
v. F-
QN-
Wm-
md P-
m.»-
QN-
Nd-
od-
od-
Né
QN-
Qw-
Em-
F.F-
F...-
Qw-
F.F
NF-
v.7
fir-
v.7
N.T
o...
m.—.-
F.F
v.7
.mp-
QN-
F.F-
F...-
mé-
mé-
F.F
0.F
O..-
o...
w..-
«.7
n.—
F.—.-
F.F-
fir
QN-
mé
F...
F...
QN
N.T
w...
WP-
mé
NP
_.._.-
NF-
0.F
0.F
N..-
m.—.-
fir
o...
M.F-
fir
F.F-
o...
F.F-
mé
S.
F.F-
0.F
Q8582
833m?
omomommgq
08382
8833
ommmomms<
8833
383%
o£w32<
823%
833%
233%
833.2
8E33<
opohmmwgq
883.2
253%
853%
8333"
833%
883%
ommvmmegx
333%
333%
883%
08892
883%
833.3
853%
883%
2833"
oompmmch
mmmommvsu
883%
$1383
.3383
61883
51588
an? 5 EN
.mlmmofim
.3323.
.m-Nommmu
.m-fimmmm
.mlmmmmmm
5:383
5:583
“mlmlmmommm
$1383
fi-SEE
sun-#83
alpwpmmw
“3353
61858
filmucmmmmm
.m-wmmmmu
.m-wcummm
.m-mommmm
.m-memmm
.m-wommmm
.m-Nommmm
um-wwwmmm
“m-Nmmmmw
“m-nkmmmm
.m-ermmm
“m-omemmw
.mnvmmmmm
“annemmmm
.m-Nmmmmm
156
5203 330.53
5205 9:33
2E5 €823ch gcanaw-Emn 5205-0
5905 9:93
>__E£ mug: new mmflmfiim “cavemamudg
SEE. 022V ssoa 88..., 8n
5295 ox__-omm22a
520.5 9:92.
P93 26?.
0>:93 .mmmExo mun-.883...
82.9 28$ $298; .888
£205 9.: - 03:: £205 0510889
5205 9505.5
520.5 0>:93
£205 9... - mEEmu 529.8
5.20.5 @2625
AmwmrAEm-Sonv 3 >__E£ $3922 Smoozm
520.5 9:733: BEobmSomE
£295 9.:- 553.820
3109 ommcmmegcmu ofiESEm
£205 Esocxc:
£205 9:33
N“. 568.25
529% EBB-n52
529a 038.98
5995 3568mm 3&3:
@509 N 5908 8E8 .8698 :85
£205 9:93
5905 9:83
5905 mmm_o._u>£mmmq__ EOE-Among
£065 BEE-5.300:
m3£§§§aofi>£u
529a Bmwmaxm
5203 9:93
XXXXXXXXXXXXXXXXXXX
X
X
xxxx
9. —-
QN-
9m-
w. w-
QN-
0.?
ON-
F. ..-
Em-
Em-
@9-
ON-
Em-
QN-
c.9-
0N-
Em-
QN-
mé
QN-
Nd-
QN-
Qw-
oi-
N. w-
od-
QN-
QN-
V. F-
Nd-
ON-
m. ..-
v. w-
m. P-
QN-
m6-
v.3-
0N-
mN-
mam-
od-
m...
h. w-
od-
m.»-
Nd-
QN-
N. P-
Q?-
o. ..-
o. F-
QN-
oé
fir
QN-
«N-
Na-
mi-
m. F-
md-
Nd-
h. F-
0. T
Em-
mum-
F.N-
o. ..-
F.F
od-
N...
N. P-
mN-
mN-
Nar-
QN-
m.m-
0.?
9m-
c.0-
QN-
9v-
0N-
F.N—.-
mi-
v.7
Em-
QN-
QN-
od-
QN-
od-
m. r ..-
0N-
F.N-
F.N-
Nd-
0.07
F.N-
F.2-
N.m-
od-
od-
od-
m. F-
F. F-
mN-
QN-
F.N—.-
QN-
m5-
mam-
Qw-
mR-
QN-
0.7
QN-
m6-
QN-
mg.-
Qw-
5.»-
En-
od-
Nd-
F.N-
Wm-
oé-
0v-
». «-
Nd-
Qw-
QN-
od-
Em-
0N-
mN-
...—.-
m...
F.F
mé
oé
Nd
...w-
o...
F...-
F.F-
w...
F.F-
F.F-
N.T
mé
P...-
«é
F.F-
mé
F.F-
0.F
oé
F.F
m...
F.F
m._.-
oé
v.7
m.—.-
oé
F.F
N.T
m.N
F.F
F.F-
N...-
Né
N.T
...F
MN
F.F-
F.F
F.F
F...-
YP
F...-
v.7
oé
ON
0...
ON
fir
N._.
o...
F.F
v.7
F...
*4
mé
N...
m4-
F.F-
M.F-
F.F
v.—
N...-
o.N
m:
08882
85882
omummmmg2
88882
88~82
88882
88%82
88%82
o: 882
8. 382
98882
88~82
oommromgq
88:82
88.82
888828882
88.82
8882
8882
8:882
83882
88.82
8882
8.8282
omoovmmyQ
8882
88.82
8882
88.82
8382
8.382
oONNmeg2
ouovrmmgq
ommwommgq
.mmwpmmcm
“m-thmvm
am mmumcm
.m-mnmmmmvm
“m-mommqu
.m-Nommvu
.m-wpmmvu
.8383.
“m-wuomvm
.m-Puoo¢~
.m-¢P.o¢~
amnoeroeu
.m-nrmmvu
.m-Nmmmvm
am-nmmmvu
~m:o~mmv~
.muhooomm
.m-wooomm
.m-ommmvm
.m-Nmoomw
.m-Npoomm
.m-mnoomu
2:888
uwlwle _. womN
21888
am-ovmmcm
.m-nomovm
8:88N
.m-Nmpomm
.m-ompomu
.m-Nrmomw
.m-wpmomm
.m-mommvm
Halvmoovm
157
529:. $2.32.
5295 33298
520.5 02.92.
2.0m... v 9:85 mczmmano-Egzufia .Nw
520.5 .9220 3.5.5 8040
3.2%. @8285 5 8.39982:
5205 gum-655
£205 9.._-c..mE:m£
E905 QE- omflflwcm£>om
2.90.5 9... - 98%. £905
520.... 02.32.
599.. mcSnEmEmcw... 9.8.3
U2m_o.-omm.£mcmb_>£m5
£205 mEcfiEOQ-cfiEou N0
9...émmhmficmbocamenu-$333.88...m-z
mwmcmmofifmu 9230590880036
5205 9... - 9.8%. 5.205 3.10382
£20.... 9...- owmcc. 32.628
529:. 83998
.3me N 522.. ....Efl Eton-8mg
5205 3.7.2.832. 89m
520.... 9.85..
5205 $2.92.
$20.... 9333
£908. 33¢..me
5995 $2.52.
859-.-”.sz .5228 $8
Cam-Z £205 mmfiofi 9:539
5905 Bamafixm
£208. 9..73220328295836
AN. ...”.va mmmcmgxoogc. 05.8.3
3. E09 mmmcmm>xoo:oE 95.8.3
.208 9...-mE9m
520.... 9.8.3
X
XXXXX
XX
XXXX
XX
XX
XXXXX XXXXX
XX
Nd-
QN-
QN-
QN-
F.N-
m. '-
Em-
mRN-
m. w-
o...
o. p.-
n.0-
0.x...
m. ..-
QN-
QN-
o. F-
Wm-
QN-
mN-
QN-
F.N-
ad-
ad-
md-
n. ..-
@8-
Na-
QN-
Qw-
méN-
on-
0.7
mN-
QN-
m. ..-
QN-
mN-
F. F-
QN-
od-
Em-
QN-
Né
m. w-
QN-
0.7
m. w-
od-
w. w-
od-
QN-
N.m-
Nd-
QN-
Nd-
od-
mN-
F.N-
o.N-
od-
m6-
F. F-
0...?
m. P 7
Von-
QN-
Qwe-
m6-
m.m-
P. P-
QN-
Qw-
QN-
Qw-
0N-
QN-
mN-
Em-
m. ..-
h. '-
mN-
ON-
Em-
mi-
QN-
QN-
QN-
Em-
QN-
QC..-
fin-
Pd-
Wm-
Qw-
F.0-
F.0-
o. P-
on-
Em-
N...
m6-
Em-
QN-
N. ..-
od-
QN-
0.7
Q...”-
Qw-
od-
QN-
Nd-
v. F-
o...
QN-
h. P-
WV-
mgv-
QN-
Qw-
Qw-
Qw-
Em-
c.2-
m. P-
Qw-
Wm-
Wm-
WM-
QN-
0m-
5m-
fw-
N. F
N. F-
.1-
N...-
F.F-
9.7
...P-
h...
N.T
o...
«.7
F._.
N.T
F.F
o...
m...-
F...-
oé
V...-
F.—.-
N.T.
wé
F.F
F...-
9.7
...w-
m._.-
F.F-
mé-
F.F
F...
F.F-
w...-
1F-
N.T
0.F-
...F-
F.F-
mé
0.F
F.F
2.?
F...
F.F
F.F-
...—.
F.F
.1-
F...-
F...-
...F
0.F
QT
F.F-
N...-
...P-
9.?
N.T
m...-
QN-
N...-
...F
wé
#4
N...
...F-
N...
mé
.....
m...-
ommm¢mm=2
ammuemmgq
88.82
88:82
88.82
88:82
oomoqmmgq
omoowamgq
88m82
88882
88882
80882
.8882
0888.2
oohommmeq
88m82
88882
2.882
ooehmmmgq
88882
88882
88882
88882
8888882
088888882
88882
88882
08882
83882
83882
8.882
omP¢Nmmgq
8.882
ommmmmmgq
.m:-.mv~
8:2. 88
8:8 88
8:888
8:888
.mummmmvm
8:888
8:888
6:888
8:88.88
8:888
88888
6:888
8:888
.mlmlwmmch
.m:vmomvm
.m:~ooov~
.m:vmmmv~
.m:wosov~
.mummuoem
.mnrmnmew
.m:~mmov~
.m:nmmov~
.m:m~omv~
.m:mommv~
.m:.omo¢~
.mmmmwomoew
.m m mumm¢~
.m:~¢nme~
.m:~mnmv~
.m:nsnmv~
.m:v-m¢~
.m:mmnmv~
.m:~.mmv~
158
520:. 9592.
£205 nomwmaxm
5205 8505.5 2 5:88
:28. P 858,. 88888. Kim
520.5 58:8. Ba...
5805 88998
520.5 889on
2?“... ES. 588.. >582; 58.95 88898.2
520.5 02.92.
mmmeBomfimuflmn
590.6 9:32.
£20.... 9505::
2802. 8:828. 88888.8
mmmcmgxofiNé Swazcwmgcoz
380$ 828.3 5888-5888898
5888 893.3 8&2 29835
592.. 88958
520.5 x0338;
88. 852588. 8253
5205 $2.82.
5205 3.385332% .0398
9:92. 6838.3
:88... 9.889.“.
88$ 88828: 288.. END
....xm. $8283-58
385.com. 3.29339.
ctoamaom .9.._-c_m.o.a .0520 0:95:52.
599:. 9:93
3.75295 59:8 .528
828:8
..meo mm..-wmz-m_b vmnE £205 00:88.8. 3886
£205 $2.92.
288. 88838826 89.532”.
8.32-5205 mafiofi m>z$mmm>
XX
XXXXXXXX
XXX
XXXX
... T
n. T
Nd:
Q?
0N:
QN:
Qm:
Q T
0.7
9m:
9m:
QN:
QN:
0N:
QVT
o.N:
9N:
Qm:
F. T
w. T
Q..”:
m6:
Qm:
9m-
mNN.
F.N:
Q?
P...
Em-
0N-
QN-
QN-
QN-
P. T
v. T
0N:
F.N-
QN-
QN:
QN:
h. T
QN:
QT
QN:
h. T
0N:
QN:
Q P T
9m:
m. T
QT
c. T
m. T
QN:
QM:
Q T
0...”.
ed:
Qm:
...o:
F...
Em:
QT
Nd:
QN:
QT
Em:
Nd:
o.N..
... wN:
m. T
oé:
Y T
0N-
Q T
m.vT
QT
QN:
Nd:
Q?
v.0:
QN:
0d:
F.N:
Qm:
rd:
Qv:
Q T
0d..-
Nd:
... «N-
QmN:
QN-
QN:
Em:
QN:
m. T
041
En.
QN-
QN-
QN:
o6.
m. T
QY
m. T
QN-
F. T
Qm:
v.0:
QM:
QN:
0.7
ms:
QN:
Em:
fir
ad:
QN-
Em-
0.F
Q r T
Qm-
o.mT
QN-
QT
QN:
m. T
QN:
w. T
QN:
QN:
QT
QT
N.T
YT
0.F
QT
N.T
QT
...T
...w
QT
F.F
0.F
QT
QT
w...
QT
«...:
QT
...T
QT
oé
YT
v...
Né
...P
QT
QT
vé
F.F
o...
QT
...T
YT
QT
QT
N.T
F.F
QT
...—.
QT
F.F
vé
QT
N...
Né
fir
QN-
...T
N.T
F.T
QT
QT
QT
Q..
V...
v...
NP
QT
QT
QT
N...
...F
...F
N.T
9.?
28882
88882
88882
82882
88882
8582
m8$82
2:882
32882
28882
88882
8.882
88882
89.882
.8882
08882
888.82
.8882
88882
S 8882
03582
88882
88882
88882
888.82
2882
88882
8882
.8382
88882
88.82
08882
893.82
.8:n~m~vm
.8:Nwm~vu
.8:o.mhv~
.8:mom~¢~
.8:vwmn¢~
.8:~mw~¢~
.8:ammhv~
8882.8
.8:me~v~
.8:¢mmnv~
.8:~nm~v~
.8:omomv~
.8:~momv~
.8:nm.mv~
.8:~m~mv~
.8:~m~m¢~
8:888
.8:~mmmv~
.8:nmmmv~
.8:.ovmvw
.8:wmmmv~
.m:~mmmv~
8:8:888
.8:oomm¢~
.8:-omv~
.8:Nmomv~
.8:oa~mv~
.8:nm~mv~
.8:nmnmv~
.8:vmmmvm
.8:~oomv~
.8:nvom¢~
.8:n~omv~
159
3
‘
_ 5. 32.2213. :31
K
a. z A . .4321}: s. x
.. a ..V .1. .
_ .v .
a _ o
.
a: a? 2.0 92. 2 4.. g
c J 3. PM. p. ..z ,~ ?. Gigi .-
L. . . ._ i ‘;:.1.. n
6. x...) .0
: .. ..t: .
—’n ‘I
m m .~
5.0.. . -
...
. 1. ’ \. .\ v
‘ ._
, a I ...
I‘J {I00 - § I
._m>m_ c_2.m.w m am 022.8me Boo 8.3m. 9:8 .8 Am .9930 33 3.9.8 m5 .9: .mm 805 m5 523 .m 88: 85065 ..x, c<
.Esocm m_ .3 39a :08 .6.— c2§0ccm 05 new .3 m5: comm am 28:96 306205 some ..8 mm:_m> mac—Eu 29 05 ...mEEmE _G< m5
m gcanzm ommabq
395. £205 oc_cooExon._mo.P.mcmao._ao_o>oo£Emé
590.5 3.73%.... .203 53:85.:
9:83 63558.82
£305 3323:339- EoEJwDO
5203 9:33
5905 0553
9.: mmmbmpmcmbSom oszEmA. Ecgooécm
n..._<< 39:90.5 oc§m>o
£205 £383
£905 9.: - mamas. 2m$EE>£
$865 05.3 3.752593
£205 Bmmfiaxw
9:93 .Amwmsgm
an.-._oome $223.... 22308:. 36:892ch
x
XXXXX X XXXXXXX X
XX
QN- Em-
Em- F.N-
MN- F. P-
0.7 0.7
m. .... o.N..
N. T mN.
m. T m. P-
mé m.—.
V. T m...
F.N. F.N-
m.m- o.m-
mN- ad-
F. F- N. T
Wu. QN-
m. P. N. —.
0N- F.N-
QN- of.
0N- 9N-
0N- 9N-
wdm- m6-
...N- m. w-
a. T m. 7
Wm. QN-
m.” Em-
0N- F.N-
mem- QNNN-
n. T
Wm.
97
QN-
Em-
Wu.
0.?
od-
Nd-
0N-
9N-
ed-
m. w 7
En.
Nd-
ogvu
QNm-
md-
o. 7
P. PN-
9v.
ed.
0.«.
m6.
0N-
md-
N. 7
ON.
Em-
s. T
0d-
ad-
Wm-
Wm-
QN-
QN.
Wu.
0. T
QN.
Nd-
QN.
Nd-
9m.
od-
9m-
0......
NM.
Em-
0N-
QN-
mN-
OK-
F.F-
o.—
m._...
...—H
0.F
Né
Né
...F
M.F..
0.F
F.F
F.F-
v.7
YT
F.F
M.F-
N.T
fir
v._..
m...
F.F-
04
:3
QT.
o...
m._.-
3 8209.2 .mlwlamflmm
F.F
F.F-
_.._.-
_.._.
F.F
F.F
o._.
N.T
F.F-
F.F
F.F
v.7
0.7
N._.
F.F
F.F-
...?
N.T
F.F
o._.
v.7
m....
0.7
.....-
F.F-
23882
8.882
88%?
ovpmommg«
ommvmmmz
8558?.
23mm?
22%?
c8582
ovmvmomz
om~mommgx
80882
80882
23082
8.882
83%?
Ramona
ovflommz
om. 582
88.082
0888:.
“.3882
8088:.
“£882
okmmomé
.mumVonvu
.mINNONVN
.mnnmphem
“mimnpnew
.mimpuuvw
.muomNNVN
amu¢m-v~
.mlnsmhvw
“muommsvu
.mnuwmucw
.munvmnwu
.muwmmuwu
5:833“
amnmlmmmtm
.mlvnmmvm
Halomm~¢~
.mlncvuvm
.muwmmsvw
“unnumNVN
“mlxmmnvm
amuommhvm
“munmunvw
.mnnmunvm
«unmaskvm
512:?“
160
,.‘,.w_ xiv“ .
.n v.3
6.3.
, _
u : .. .
2835293589070; x 3 8 ma 8 P P- 83.22 5:888
5555 8.0.856 E E 8.. .3 a.” a 283:2 5:888
255 5555 A83 «8959.: 85 x 5 m8 «.5 3 F- E 8832 5:888
$3... x x 3 8 man no 3 3 8832 5:388
5553 8.0.5556 x 3 3 mm 8 3 7 8532 5:888
59933558? x E N 8 8 E 3 2832 5:888
68.09 5555 85856 x x as m.” 8 t 3 3 28:92 5:8888
seen Emmoaxm x h 3 F. v m- E m8292 5:288
5555 85.856 x x 8 mm m u 3 E 23.22 5:88.88
seen 858.95 x 3 8.. 8 ma 7 F- 08292 5:838
5555 .885an x 3 m... 8.5 8 F P 8832 5:888
8555?. 5555.8 5253 x x 8 8 m: a P- .. 8882 5:388
2:93 58556 8.52885 x a 3 m8 8 Z 3 8882 5:588
5555 85.85% 8 m. 8.. E 8 «.5 2.8092 5:888
52% :828585 5253 x 8 3 3. 8 8.. 3 8882 5:888
5555 88285 x 3 a 8 m8 8.. F 8882 5:888
5555 85355.. x 3 8 «.5 N 3 7 8882 5:828
m 2E£8§§2§8€ x 5.. m... 5.8 m P. F. 88892 5:888
5555 85855. x 5 8 n 3 F- 7 88892 5:888
5555 83235 5 m- N. F- 3. 3 8882 5:888
5205 “55855 x 8.. E 8 3 F- P- 8882 56538
C555 :26ch x 8.. 8.. 3 3 F- T 88892 58888
C555 889%» x 3 N 8 0.8 P P- 8882 5:888
>__E£c555Afidrcmuczm 55283955 m5. x m- N. 3. 3 P E 8882 5:888
5555 855556 3 F- 3 3 m8 3 8882 5:888
3585555sz 5258 x 3. 8 3 8 r N. 8882 5:888
$282.22.“ 53 x x 8 mm 8.5 ms 3 3 8382 5:838
58555823835 8823:: 25:55 x x 8 e 8 3 F- 8.. 8382 5:828
5:20:52 2mg new 5 m < m < m < .04. .3 mack.
95:85.9 28 82
cvw
5
...Zm—émmaxw ...Om wI._. Z_ mmaéwazwh >>O._ >m ow...<.50wmd3 mem mema .70 ”56....
U X52mmn<
161
520.5 38298
3 .665. 959.3 .coEQm mzmcoawo. mam—>56
5205 3889.0
th\o.._.:93 .832 5295 8.8.0::
5205 882me
£205 umwwoixm
£205 83¢..qu
£205 commoaxm
5203 33298
2E5 xaEm :38
£205 89.3..me
5905 52.55.05 9 5.25m
Cum/b r .688 9.659 35:56 96:88.. Eon 06.086
3:93 .5905 cowoamcm: mv.__-an\cw
AEmEou mc_o__am 9:653 5905 88298
9:93 .599...
33.6% 66$ 8.6829. :658 8%
36.3 .A>.mz:.
£205 Smwmaxm
86995 05.3 mx__-c_m___53m
£905 umwwmaxm
9:93 .5205 $2.2
9:qu .59395 36:60:68. 793
5666 8656-65
590.5 mx__.mwm£c>m EU
3.0%: 56266
590.5 ummwmaxm
25-3885 3882, 2 6.6.6
XXXXX
XXXXXXXXX
XXXXXXX
X
mé
«.0 P
ad 7
mé m
mé F.F
v...
0*
8:692 6:888
8833 6:6:888
88692 6:o8m8
88892 6:888
8869?. 6:6:888
888:4. 6:88.88
2892 6:888
8832 6:6:888
88692 6:68o8
8885 6:298
8885 6:358
888.2 6:868
2832.4 6:838
8285 6:368
8232 6:63.68
838.2 6:928
888% 6:888
8.892 6:888
25.96. 6:388
68688 6:388
888% 6:888
08892 6:858
3892 6:88m8
.8892 6:828
Q8892 6:888
2832 6:288
86892 6:828
88%.: 6:838
88692 6:828
8869?. 6:858
8883 6:888
8883 6:288
98822 6:838
6889? 6:838
163
5290 5.309500 02.230
5290 5505.5
02.230 6202.2. 000:0. 000:0. 5290 00.02.00-502?
0000._0:000:000>. 022230
5290 80.005003
02.230 .A000_0 mmzir... 5290 00:20.02 00000.0
02.230 A0050 mmzéE 5290 00:20.00. 00000.0
00059060.. 02.230
5290 00002008
022:0 .szDmn. ..<_20m0m.m
5290 0000998
5290 00002008
5290 :00. 00005.2. 000000030 E00:0000.:290 020230
00... 3.0202 @5050 ..20990 5290....
2.90.— 5290 2202. E20008 .0500 0:
5290 00000.96
5290 8.8622: 0223
02.220 00:80:00. 000000
5290 0000998
5290 0000998
5290 020.0. 0000.0
020.0...002000c003509
020230 .5290 020.065.309.00
5290 00009008
252:0 2000.0 wmzirc 5290 00:20.00. 00000.0
5290 .00..0£00>:
02230 800.0 E... 5290 00:20.00. 00000.0
3...:2 .0:000:0..<0:0.5E0E .0525. 5290 0000298
5290 9.86.220 86668802
302200. 0005290 520.8 ..0.0:0>
30059.0 20623.0 2 00.9.0. 00000906059 0552:0055:
5290 0000998
020200 .5290 E00550 0.00:0mobnE0 20.
5290 8000500?
XXXXX
XX
XXXXXXXXXX
X
XXXXX
QN
0.F
mé
t
Em
NF
8832 6:888
08822 6:538
8832 6:838
8832 6:838
8832 6:838
883:2 6:888
883:2 6:888
883:2 6:888
08:92 6:838
2:322 6:828
8832 6:288
8882 6:388
8882 6:888
03892 6:888
8882 6:888
.8822 6:388
08822 6:888
03892 6:888
08892 6:888
08322 6:888
083022 6:08:08
8882 68:888.
8882 6:888
8822 6:8088
0880.2 6:888
8882 6:288
8882 6:888
08822 6:888
8882 6:838
0:892 6:888
888:2 6:238
0882 6:328
0882 6:08.08
8892 6:288
164
:66... 266. .68.. 6:6 0.8.0 02250200
80.625.200.08. 0020900. 0:02-06 3.0.0-302000
2.62.... 000.20:02.>00:O .900>.0.>00.0
2.92 520.0 .0000. 00.0.5
2.0mm
520.0 .2.000:02 05.020022 02230
0022802300020 0.0:0090.>:0:0 022230
309... m .0202 052.092.0000 5200
2.20-9va03. 2.3.002. 5290 :0209..000 0.00 2 .0..9.0
8.0000. :66... 808.86
2.92 mn=22 520.0 20000 202.
9.66.. :66... 86:... 220
38:00. :66... 688.96
5290 9505.9.
520.0 0000296
5290 00000.0x0
5290 00000.98
02.230 ..202 520.382. 50900 ~04.
0005090300 .0:00.0
520.0 00000.0x0
520.0 2.92 0:2.-0m 0505092200
520.0 0000298
5290 00000.98
020.2- 520.0 05050 .20990 00090300
9.66.. 5.62:6:
.808. 0 $6... 6.26666... __ 266.
02230 ..202 0..002>0 30mm
520.0 00...-5209205
.202 :0.20..00:02 2.92 .39
520.0 00000.0x0
X XXXXXX XXXX XXXXXXXXX
XXXXX
0.F
QN
_..N
0.0
0N
0.0
N4
Em
hm
0.F
0N
0N
Em
m.—.
we
Né
0.F
QN
0...
Wm
v.0
0.«
md
0.«
Wu
0.:
0.0
e...
0.0
m.—.
0.:
......N
0N
0.0
0.«
0.«
0...
Em
mN
0...
5
NF
mé
Nd
_.._.
mK
md
mé
mN
mN
0.F
mN
0.:
0.0
F.N
we
0
0.0
«mm
0.«
0.«
0.0
3
En
Em
mé
0N
QN
md
N...”
0.«
mp
0N
0.0
N6
_..0
0.F
0F
mN
F.F
F.F
0.0
Nd
0N
ad
0.:
0.0
80882
:2 882
88382
88382
88382
88382
88382
83382
88382
80882
80882
83:82
88:82
88:82
08822
888:2
888:2
883:2
883:2
883:2
883:2
883:2
883:2
883:2
883:2
883:2
883:2
883:2
833:2
883:2
883:2
883:2
883:2
833:2
.6:00.008
6:288
.0:00~.08
.6:200008
6:328
.6:v.000~
.0:80000~
.0:¢0000~
6:888
.6:0:omom
.0:20000~
.6:~:o:08
.6:F:.00~
.6:02200~
.6:80020~
.0:.0000~
.0:omo~0~
.6:000208
.0:~o.:08
.0:02F20~
.6:20.~08
20:08:008
6:888
.0:000208
20:080008
.6:02000~
.6:..0008
.0:..0008
.0:02820~
.6:800808
.6:0...0~
.6:08060~
8:853
.6:N-oom
165
.8883. 000. 88520.0 280. >082,
50.0.0 00000..an
88$ 0 900.005 08 00020
£0.90 00000.98
c.0090 000305-590... 02.050
50.0.0 c3050:
Ecmmoozm 02.050
50.0.0 60005093
5:520 .208 5:980:00 mc_0c_n:._.<:93
€20000. 0:25.050 .000.» 2 .0__E_0v 50.0.0 00000.98
000.903.0000: EoE...m00 9:050
EN”; 5000 08.. 80 82-080
50.0.0 00000.98
31.3 v .200. c050=_c_ 003.0030 02.050
505.0 80305005
3.00.00. 50.0.0 00000.98
50.0.0 00000.98
22:00 5000.0 .0E00 0005509....
00000500050 0.050005900020505 02650
080:. 00 >__E0. 50000.8: E095 o. 0200.
2:000 any: 508.0 003020000 2 020.5000.
XXXXXXX
X XXXX X X
X
X
N.”
9N
..F
mi
9N
Nd
m6
N.m
Em
QN
Em
Nd
mN
Em
Wm
F.F
Nm
96
Nm
QN
«.9
m8
QN
v.0
9N
m6
mN
m.—
0N
m6
mé
Em
Qm
9N
m6
F...
F.F
mé
m...
N._‘
m._‘
mé
m...
.mw
QN
Né
F.—.
0.«
5%
5.—
ON
F.F
F.F
Pd
mN
mé
ed
8:882 0:888
88082 0:888
88882 0:888
88882 0:888
08882 0:888
88082 0:888
S8882 0:808
88082 0:88.88
8.882 0:888
88882 0:888
08882 0:888
08882 0:82.88
80882 0:888
80882 0:888
88082 0:888
.8882 0:888
88882 0:0:888
08882 0:888
88082 0:888
80882 0:888
88082 0:888
80882 0:888
80882 0:088
08882 0:888
80882 0:888
8:082 0:888
88082 0:888
20882 0:888
8:882 0:888
20882 0:888
80882 0:888
88082 0:888
88802 0:888
80882 0:288
166
$880 9:93
520.5 88955
(0:... £905 mzwcoamm. gum ncm 23285.2 26.
520.5 85889 35me
£205 zo:.o£o>_m
35:50:54.”. 783 9:93
839 859582998
.908 cozatomcg xoozm “no... 3:83
520.5 83998
.20an £39m Emncmamucwsxzm 9 5.28
7623328 EumSwoozm 299.99.
580.5 oomwoaxm
2.2.3 5205 $39 2103
5555 225,. 58c 2.5 x38 wzfiwzoo
£995 uommmaxo
omm£c>m .ogoflmm
:59 558 8.5885: 85588
:Emmmmx: .9558... mmcagzuaoa
35$ 55828 258 CE;
840$ 5205 x8893
5205 $39.98
35535095 9332.
mm 5.00
on E00
5205 59E 0%.. 83.1000 9:83
5905 gammaxm
520.5 389me
5205 :26ch
Am c3938 m .2525 $36.05 05083 0>:93
590.5 .6ch 0:8 33.:000 «>383
£905 889me
5205 9505.5
520.5 83930
5205 8892.8
XXXX
X
X
XXXXXX
XXXXXX
X
mé
mé
m6
:
mé
Em
Né
mé
mé
v...
m._.
m6
fir
m6
N4
NP
mé
m...
or
m_.
5
NF
vé
m...
mé
F.N
mé
QN
md
m...
mé
m
m
Em
me e
QN _.:
QN T
Wu F.F
Né N.
e m.v
rd ...F
QN P
QN P:
m.m F:
oé m:
P w P:
C. P:
Q? r
9N NF
3 ¢._‘
3‘ F:
Qm T.
ON F
F.F N
Na F.F
mN m.m
0N F.F
mé mum
mN ...P
mé m...
«é
Fl
F
F.F
2.
En
F.F
mN
ad
Fé
Fl
Nd
Fl
F
5%
Fl
F
N4
mé
F.F
m...
F.N
PI
PI
_.
on
r
Wm
P
Nm
#6
F—
F.F
F.F
88o82 5:888
88°82 5:888
C8882 5:888
88°82 5:888
88882 5:888
28o82 5:888
o8882 5:888
8882 58888
o8882 58888
88882 5:858
8882 5:58:88
82282 58.88
88:82 5:288
88:82 5:388
8:882 5:888
8:882 5:888
88882 5:288
88582 58:82.88
8882 5:888
88:82 5:888
88.82 5:888
88:82 5:888
9882 5:388
8882 5:888
82882 5:888
o§v82 5:258
8:882 5:888
2282 5:888
08882 5:888
88:82 5:888
8:882 5:888
888.2 5:588
88882 5:888
0:882 5:888
167
5203 83298
520.3 88298
22823 85%. seen 85.9 [2w
33m: 528 888:8: :55
520.3 :88..me
22.2 5203 8.32 oYO>>
9:23 .5203 855882 ommowfi 860% 82-5:
5293 38998
520.3 80:2:an
520.3 38998
mg:23 682.2. x09 Ixoam:m_o.m
520.3 38¢..qu
9:23 .5293 .59.: 0.8
520.3 umwwmaxm
9:23 .5203 ..ch
9:23 .389. m_coEEmln.._.Dv 32:28 3.5
5203 88998
8928523582 05:58 9:23
mNmmmD
5203 83998
>__E2 £203 .832 oYD>>
5.20.3 5505::
$2: 2203 9:23
8202.2: 5305 85.52
X
xxxx x xxxx
X
XXXXX
XXXX
E_‘ m.N
fir Er
N.m Em
F.N QN
m._. N
m6 m.v
«é mé
Né F.N
m... w.N
mé mé
mé m.N
¢._. E_.
mé :6
mé Né
m.N m
mé F.N
m.N m.N
QN me
m.N m.m
m.N m.N
v... N
v._. F.N
Né m6
mé m.N
m.N EP
EF F.N
m.N m.N
m.N m.m
m... P
9N
m6
mp
Em
m.m
m._‘
m.N
mé
Nd
m.N
QN
Em
We
Em
m.N
m.N
Em
m.N
N.m
m.m
m.N
Em
m.N
N...
NJ
8882 5:888
82882 5:828
88882 5:228
.8882 5:888
88882 5:288
o8882 5:888
88882 5:5,:8E8
8882 5:888
88282 5:288
8882 5:888
8882 5:388
8:82 5:888
2882 5:888
88 82 5:888
8282 5:888
c.8282 5:888
8:983 8:82me
28 82 5:888
8882 5:828
8882 5:888
8382 5:828
88282 5:888
28282 5:288
88282 5:828
2882 5:888
8882 5:828
88282 5:888
2882 5:888
8282 5:888
88282 5:888
8m282 5:m8m8
88282 5:888
8882 5:288
8882 5:888
168
50.0.0 00000.0x0
520.0 0>:0S0
50.0.0 00... 000:0. 050000.05:00.:<05.00
8.20. N 000>.-0.:0EE0 058.5820
820.6 85.80
.8980 5.8.50
:55... 2.7505... 2000
8.8.2. 8.8000
£822. .28. 88825.. 022
50.0.0 05508020000. $.00. 00:0000082000
:55... 8.558....
520.0 0>:050
.9.th N .20.:m0. 00:0000.
2.95. 555.0 .58: 02;. 82.380. 58.. 80
.3008. 2.0.2 520.0 :.0:00x0
2.0.0. 50.0.0 00.0.0000000:0000:00
000500000 0:20.: 0>:050
0>:0S0 50.0.0 06.0800 ...Ozémoo
0>:050 .<00.
2:5. 8:. 05282.6
50.0.0 80:00:00.9.
50.0.0 5505.5
522 o. 558. :55... Q... 885.
50.0.0 00000.0x0
520.0 00000.03
520.0 00000.08
50.0.0 0000998
5290 00000.98
50.0.0 00000.0x0
50.0.0 00000.0x0
0>:0S0 5.300.500
2.50. .202 :0:0..00:0.. x0000 :00:
50.0.0 00000.08
50.0.0 m5050.<2m. :0...050>.o
X
XXXXXX
XX
X
F.F
Fl
NP
0.:
Q?
P
Em
Né
ad
Fl
ad
..
m.m
Nd
m6
_.
Fl
vN
N.—.
F
VP
:
Né
mé
NI
Fl
F.F
m...
Fl
5F
0
m0
Fl
Fl
88082 5:828
88082 5:828
28082 5:228
88082 5:828
88082 5:888
08882 5:888
.8882 5:888
08882 5:288
8:882 5:888
2.8.82 5:888
8882 5:888
88.82 5:888
8882 5:888
88.82 5:288
08882 5:288
8882 5:888
8882 5:888
883.82 5:288
8.882 5:0:808
:8882 5:898
.8882 5:x:888
:8882 5.8888
88882 5:0:808
80882 5.8888
8:882 5:88
80882 5:888
80882 5:8888
28882 5:888
28082 5:888
08882 5:888“
80882 5:888
80882 5:888
8882 5:888
88882 5:888
169
52.5.2 - owmcmmofifmn Io__E£ £205 “539. 9103
592a Sawmaxm
SEE— mIOV @393 .5305 02283.. Exam
5295 .5285an
520.5 9505.5
3N0__E£ mmmcmgxofi “52303299360on
£205 mcmEEmEmcg 9:59:00 ucmziw...maa_N 050:2 $2.33
A Poi 2 ..m__E_wv 35:5. 5205 mscoectmctmm 0>:93
2:52 £905 @525 <20 200.03: $5390.50
5205 commoaxo
035:? $5288th 5295 .3283
27:5“— Emuoa 0553:0959: O>
3:5“. 5905 $9: 1008 59$ 83
520.5 cmmwmaxm
aim: m .563 5:552: 5:56:52 03039.3 026:5
335% 855595 95_>x8.8.m.m:__o§a-7555
>=E£ room cozmmcmucoo mEOmoEoEo B 5659:
£905 8mm2ax¢
2E5 35903 3.855
5205 95- 35:2 £205
XXXXX
X
XXXX
XXXXXXX
0N m
mé fin
Né m.m
QN 9N
mé QN
QN F.N
F.N mN
Fé N..
mé ..w
VP QN
mm mN
F.N N.m
m... h
QN v.0
Ev Né
QN 0N
QN N:
m.N 0m
F.F m
NP QN
md 0N
NP oé
QN m.»
Né QN
mp mP
QN Em
m.N v
QN mN
m.N
wN
m.N
QN
m.N
N.m
:
F.F
QN
F.N
hm
m.N
hm
Nd
mé
N.m
mé
m.N
m6
NF
m.N
VN
m6
mé
mN
N.m
m
QN
m._.
m.m
Né
m
map
Pl
P...
N._‘
2
eé
mé
Fl
m.N
N.m
F
Fl
m6
2.
F.F
Fl
v
NI
.2—
F
N9
383% 5:5353
2.3392 56353
853534. 5:533
82.832 5:833
8303?. 5:39.33
23°32 5:333
83°92 5:233
83°92 5:3m3m
9.5 595. 5:333
25892 5:333
8383.4. 5:833
32595. 5:383
83582 5:323
9.3582 5:323
8358:. 5:323
8333 5:323
82585. 5:323
8:585. 5:323
3335? 5:323
8383?. 5:833
38585. 5:333
8833 5:333
8832 5:893
8333. 5:323
3332 5:823
8588? 5:5353
85385. 5:323
.3382 5:823
35385. 5:323
25382 5:5:323
85382 5:823
2333 5:823
83394. 5:823
08332 5:323
170
800820.: um 2:08 0006.02. $0820
000.0E_a0:v 000020.003 0>:93
50.0.0 80005093
860.3. 555. 88885.. 255. >023
506.0 00000.98
50.0.0 02.050
280.. EH: £0.05 8.0.5... 035000.20 000002535 00006.0
£0.90 02.030
3 2E5 000.90%. 300020
50.0.0 0x: - .200“. 2.009.008.“ 0.09.0 .00...
506.0 02.050
02.050 .880. 03000080 280. 00...
50.0.0 :0? :00 22.85020
: 2028,53 v 255. 855582888
c.0005 02.050
£0.05 00.: 00006.00 03500029868020
Gummzv .900. 050:5 20:88 0205000. 0.8350
800328-088 3 £50. 000.90%. 30820
£086 0x: 008:0... <21
c.0008. 00000.98
3.9 :55... 8883885
50.0.0 00000.98
025.50 .0090208230828003
809$ 85558533580 05528888 5258
9.: 5555 0558508: 250
5000.0 00000.98
858 95-. 1228
c555 9:: .828
2 :88
5555 95-2 3128
506.0 00000.98
$0022. 85595 82
20:3 50.0.0 .0000. 00.03
:83 <28 805:. .< B .o. 588
XXXX
XXXXXXXXXXXXXX X
X
Wm
F.N
N?
m.N
mé
F.F
m6
mé
F.N
mé
Em
o._.
n...
F.F
Em
OF:
MUN
fir
0.F
Né
md
MN
m...
N
3
mm
mm
mé
o...
mé
F._.
m
F.N
MN
F.N
o6
m.N
mé
mé
mé
QN
0.F
mN
N. P
Nd
mé
NF
mé
NF
m.m
Em
0.F
md
ms
00
m0
m.N
mé
F.N
m
m6
m.N
Nd
0N
m6
QN
$0
0.0
Em
0.F
NP
WV
0N
Em
0.0
0N
Em
Pd
NF
QN
mN
m.N
Nv
mm
mé
F.F
Nd
0N
m.N
md
Em
C
0N
m.N
N...
QN
m.N
NP
ON
“I
m4.
Nd.
m.N
QN
Wm
3
9N
m6
Wm
Nm
om
mé
F.F
9N
v
mé
mé
Fl
QN
N
N—.
mé
F.F
F.F
...w
F
P.
...?
N._.
PI
Fl
08382
38382
88382
20382
80382
83382
33382
o2 382
88282
8882
88282
8882
8882
3882
88282
88282
88282
83282
8882
08882
8882
3882
88282
8882
8882
8.282
80282
8382
83282
3382
8382
82 282
28832
388.2
518.83
518283
5:383
5:883
5:..383
5:88.03
5:38.83
5:883
5:883
5:883
5:883
5:383
5:883
5:883
5:8..va
5:383
5:883
5:0303
5:883
5:383
5:383
5:883
5:883
5:883
5:883
5:383
5:0883
5:3883
5:803
5:883
5:893
5:383
5:383
5:883
171
00000500020 50.0.0 02.050
50.0.0 0200.30
3000. 70005690000 0.05.?
2.0.0. <<_\XD< 50.0.0 029.300.5030
50.0.0 00000.98
50.0.0 02.050
.8 $6.02.. .25. c8885.. 255. >102,
5 2.0.0. 000.802.. $00020
€00.00. 50.0.0 00000.98
50.0.0 00000.98
36020:... 5055 05285....
50.0.0 00000.98
2520. 000.088.0350.: 0550.0
2.0.8 50.0.0 89¢ 1000. .09.... 05~
2.0.8 50.0.0 .0000. oYD>>
50.0.0 020050
0005000280000 02.050
50.0.0 00000.98
50.0.0 00000.96
000.009.0589....02. 00.00058855005050000250... an:
50.0.0 00.022.04.00 0000.005 ONoozw 50.0.0 02.050
.300. 2:5. .555 .522. £058... 50.8 8
5000.0 2.0.3 0:02-“.w 0505085200
50.0.0 00000.98
50.0.0 00000.98
8.02. 3 55:5...
.8802. .95. 8.0.50
0 Emma. F “.mo
0 meQOmmo
0 memofiumo
50.0.0 00000.98
ENN<>IV 50.0.0 000205-500 0.0.0000 0. .0550
25.00 50.0.0 .0...00 _0..0co...02.E
50.0.0 02.050
X
XXXXX X
XXX
XXXXXXXXX
X
X
mé
Em
F.N
Né
m...
F.F
Ev
mN
m.N
m.m
dé
d._‘
Ev
m.N
mé
fir
mé
d.N
0.F
F.N
m.N
NF
F.N
F.N
0.F
Er
F.F
md
FF
md
NF
9.?
hm
d.N
m.N
0.F
m.N
0.F
F.N
Ed
m.N
...N
0.F
E_‘
Nd
mé
md
F.N
d.m
mé
mé
m.N
F.F
0.F
d.N
md
Nd
d6
Ed
m.N
m.N
«N
v. P
d.N
d.m
d.N
m.N
Em
mé
rd
dw
md
Nd
dd
om
dv
d.N
d.N
Er
mé
om
rd
Em
d.N
F.F
mNF
Né
md
F.F
m.N
mé
m.N
Nd
m.N
0.0
Nd
3
Em
Nd
Nd
3
md
3
Nd
md
2‘
m.N
mpd
30882 5:383
80882 58383
30882 5:833
83882 5:383
8882 5:383
30882 5:883
88882 5:883
8:582 5:883
08882 5:883
03882 5:883
80882 5:383
88382 5:52.083
08382 5:883
8382 5:383
8.382 5:283
8382 5:283
08382 5:883
80382 5:883
80382 5:883
33082 5:0:383
33082 5:383
83382 5:383
03382 5:883
80382 5:383
03382 5:383
08382 5:893
08382 5:383
88082 5:3a8~
88382 5:893
38382 5:383
08382 5:323
80382 5:883
30382 5:383
Q3382 5:880
172
0.... (m5 0.0.0.0 .0000000 0.000000>.0E0 0.0.
0.0.0.0 2.0.0. 8000000.. 0m<
.000 0m050d0
. 0000.000 0088000530082 0.00020
2.5. 83 2.908%
.3022. .95. 080.88.. 2.0.5. 0.9.
0.0.0.0 02.050
0.0.0.0 000005-580 02.050
0.0.0.0 051.000
0.0.0.0 02.75.00.300.
0.0.0.0 8000000.. .0000 02.050
.808. .25. 025.505.. 255. 022
.310. 88.5.. <20
50500.0 N 000.0.000.._>000..000000000.80
3.009 0000.08 0020000
02.050 00.00. 00..0..0000.. 0.00.00 N02.
0.0.0.0 0x..- 000.0.000.._>000:_0
AmNmOO. 50.0.0 00000.98
X
XXXX
XXXXX
X X
XXXXXXXX
d_.
m.N
d.N
Né
0.F
E.
m.N
Ed
fir
F.F
0.?
m.N
m...
0.F
0..
dd
0.0
md
mm
0
...?
m6
NP
0%
m.N
0.0
0.?
dé
m.N
5N
0.F
...F
Ed
0...
3
m.N
ml
F.N
d.N
0.F
Fl
dé
d...
d
m.N
F.N
F.N
0.F
d.v
NI
m.N
m.N
0dN 0d
mé 0.F
m.N m.N
m.N Nd
dd 0.0
N.0 Em
d.N d
F.N d.N
md d.m
m.N m.N
0.v d.v
Ed Nd
m.N m.N
mé m...
0.. N0
md v
d.N 0
0.F mé
d: N:
m.N m.N
md v
0.« 0...
N- F:
m.N Nd
m.N md
NF 2‘
Nd m.N
m.N m.N
d m.N
m.N m.N
t 0
m4 F-
Nd m. _.
N0 0...
F.F
w
Nd
F.F
N
d._,
Fl
F
m...
F.F
F.F
PI
PI
d.N
w...
v
Fl
F.F
m.N
PI
PI
d
m.N
VF
0.F
NI
w
Ed
F.F
0.0
Fl
_.
Fl
0.?
md
d4
F.N
03882
80882
83082
03882
88082
83382
30382
23082
33082
30382
30382
08882
03882
30882
80882
83382
08882
8.882
23382
08882
33382
83382
83382
S .882
80882
08882
08882
80382
20382
8.382
80382
2.382
5:8080
.5:00000~
.0:.0300~
5:3083
05:..3083
5:883
.5:~o.0vm
5:3083
.5:0mo.0~
.5:ooo.0~
.5:vmo.0~
.5:300~03
.5:000~0~
.5:000000
.5:000~0~
.5:~00~00
.5:000~0~
.5:~0m~0~
.0:.00000
.5:80030~
.5:~00300
.5:30~0¢0
.5:oommv~
.5:3o.30~
.5:0~.30~
.5:vo.300
.5:00.300
.5:0.~30~
.5:3.~00~
.5:~00300
.5:¢0~303
05:003303
8.382 5:0:883
88382
5:383
173
3500/: 002.309 ow:00m0...00:ow0
$522.20 553 658 2:585
0870.290 559006.22
0.290 25.582 025.082.2000
A539 _ 025:? 390.6
5290 00.0.2000 c2900 08750530830
22:2 0.25 5290 290000:
5290 0032008
5290 022220
0290 0005598 920.502.208 2 2:96
5290 052:0
5290 9:200
2:92 3222928002802 2000>5me8:_m 00:
5290 022230
22:2 501 0038000000 0980995 80 002.202
F7=x
30922002 083089320 oc_co_£09_>wo:00m.w
P 0x__.wz<._.mzoo
0875290 29800...
2.92 5290 2009 3102,
5290 052:0
282 02000222 002000020
5290 0082008
E290 0200029“ 29:: 0090909800»: 2 2:92
5290 00.....0t00mcmb
5290 0220000352. 9:.
5290 0082008
2.92 5290 .0009 3103
082:0 685:8 22082088003
5290 008903
5290 932:0
E290 087392292023 E92m
5290 0082006
205$ 5290 0:35:05 350930520200
XXXX
XXXXXX X
XX
XXXXXXXX
XXXXXX
XXXX
mé m.N
Em Nd
m.N m.N
fir F.N
Lv... NF
me F.N
m.N N
NF m
nmw mm
F.F e
Nd m6
m6
m.N
mé
F.F
m w
m6
m.N
m6
m.N
m6
Pd
9
Em
v.0
Nd
m.N
m.N
mé
mé
m.N
Em
m.N
Nd
m.N
0N
m.N
V
F.F
m.N
m.N
m.N
F.F
mé
m.N
F.F
m.N
m.m
F.F
m...
F.F
Né
mé
F.F
F.F
mé
N9
mé
m.N
mé
F.F
N2,
F.N
m.N
2.3282 5:332
2282 5:832
82282 54.282
82282 5:282
88282 5:882
02282 5:882
8.282 5:282
2882 5:282
82 .82 5:282
8282 5:882
08:82 5:882
9.2282 5:882
8282 5:282
88 82 5:882
8882 5:282
08282 5:5:882
8882 5:882
8882 5:282
8882 5:282
88 .82 5:882
8882 5:882
8882 5:882
2882 5:882
9.8382 5:852
02282 5:882
8882 5:282
8282 5:882
82:82 5:282
9 F F 82 58882
8882 5:282
8:882 5:882
08382 5:882
08882 5:882
88882 5:282
174
5905 2.83 .09.: oc_~ xon-m wz<._.mzoo
Apmmwv _. .209. 83.9 oaobmxam
seen 225 5255.2
mx=¢mtoamc§oo 2m_>xo£wo_u-E:_c0m
£905 nommmaxo
95-5205 ..oaafi 3632-5900605
Gummy/xv m .903 96:5 3953 96:0an @5353
AN-amwmmv N .903 9.659 EmEm.m $29.88.. 253:6
£305 gummaxm
£an 332qu
225. SE «59:85
£905 Bmwmaxm
£205 2E5 5:825: 09.
$266 $33328-TocmaoaggooEEm-P
529a BmmEaxm
5205 5505.5
5205 832qu
£995 gammaxm
520.5 9383
9:53 Amuse mmg-mmz-KE 5205 85539 mmmmmfi
mum—:56 30:52
520.5 83955
ANIOC 80305-522 .N 5205 um.m_m._-c__:voE_mo
0359 655:0 +¥ 053302 29550 :8 Ewan
£203 @253
520.5 .8353?
£205 Bummaxo
2:93 Swan: cm mmsmfimofi 522.
5.205 £3802
£295 GEES-5386.8
5205 9:93
5205 9.: - 5:825: 398:
mxz-ommci £205 mc_comEI.<. 2.0.0.0 02.000.002.080 0.0.0020
836.22.. .200. 800.020.. 2.50. >202.
3.75290 02.254000 20.805002
Q..-2.0.0.0 290.000 0n... mm
X
XXXXXX
X XXXXX
XXXXX
md
..F
md
NP
F.N
F.N
m.N
Nd
d6
5...
N...
w...
0.:
Nd
dd
dé
Nd
mé
m:
0.:
F.F
Nd
m.N
mé
md
o...
v.—
m.N
m.N
m.N
0.:
0.0
md
m.N
Q..
0..
a...
m.N
NF
Nd
Nd
Q:
d0
m.N
0000000.<
00000002
0.000002.
0.000002
8.00002
00000002
0.000002
000.0002.
000.0002.
000.0002.
0. .0002
0000002
2.00000...
00.0000?
200002
0030002
230002
003.0002
0.000002
2.000002
00000002
0.000002.
00000002
00000002
000.0002
000.000....
20.000...
00. .0002
00. .0002.
0000000.<
008000...
00000002
8.0000...
0.000002.
.0-00..¢0
.0-....¢~
.0-0...0~
.0-00..¢~
.0-0...v~
.0-00..vm
.0:.00.¢~
.0u.00.00
.m|.00.0~
.0-000.e~
.0-.00.vm
.0-N00.0~
04.3000
.0-00F0vu
.0-00F000
.0-00F000
.0-00.0¢~
.m-NOF0eu
.m-N00000
.0-000000
.0-000000
.0-000000
.0-000000
.0-000000
.0-000000
.m-F00000
...-03000
.0-000000
.0-P00000
.m-N00000
.01000000
.m:..000~
.0|.0000N
.0-000000
176
.05. 0.0.0.0 0 .0 02020000. 0.00 00.020. 02.02 .0. .0 .0.0020 000. 020.20 02. .02. .00 020.0 02. 20.23 .0 00:... 00.00.02. ..x. :<
2.5020 0. .00 020.0 2000 .0. 22.0.0220 02. 0:0 ..2. 0.2.. 2000 .0 0.00:0:0 .00.00_0.2 2000 .0. 00:_0> 002020 0.0. 02. 2022200. .02. 02.:
0.0.0.0 02.0.00 x 0.0 0.. 0 0.0 0.. 0.. 000.0002 2105.00
0.0.0.0 .00.... 00.0 002.00.: 00.0 ... .- 0- .- 0.0 ..0 000.0002 2:000000
.900. 0000200000250. 0.5 ... 0.. 0.. 0 0.0 0 000.0002 21.00000
0.0.0.0 088.98 x 0.. 0.. 0.0 0.0 .- .- 00000002 2:03.00
00000. 0.290.505.8258 0.. 0.. .- .- 0.0 0.0 0.000002 21.3.00
0.0.0.0 9...-..20 x ... 0.0 0.0 ..0 ... 0.0 00000002 $000.00
0.0.0.0 02.0.00 x ..0 0 0.0 0.0 ... .- 0200002. 21000.00
0000.60.80 0.0200200.00..0.0 x 0.0 0.0 0.0 0.0 0.. ... 00000002 2:05.00
0.0.0.0 00000.0x0 x 0.. 0 0.0 0.0 ... ... 00000002 01000.00
80.200008. 9.2.5.0 0. ..0 0.0 0.0 0.0 0.. 0.. 00000002 20.0.00
250.000.200.080 0. ... ... 0 0 . ... 00000002 2:80.00
0.0.0.0 00000.98 0. 0 ..0 0.0 0.0 0- 0- 00000002 .0u0.0.00
0 0.0.0.0 00.800.020.00 22.2.5.0 00.0.08 x .- 0.. 0.0 0.0 ... 0.. 0.000002. 21000.00
0.0.0.0 02.0.00 x ..0 ..0 .. 0.0 ... .- 000.0002 2:80.00
0.0.0.0 9.7.0.200 0.2002000000000 0500.08.00 x 0.. 0.. 0.0 0.0 .- .- 0.0.0002. 2000.00
._.Emto.00.0c.0c.020590 02000009000350 0- . 0- .- 0.0 .. 000.0002 21000.00
0.0.0.0 2:2 0.0 0.0 0.. 0.. ... 0.. 000.0002 .0I000.00
0.0.0.0 02.050 x 0.. 0 ..0 0.0 ..0 0.0 00000002 2000.00
0.20 x 0 0.. 0 0.0 0.0 .. 00000002 20000.00
177
0.0.0.0 00000.0x0 x 0.0- 0.0- 0- 0- .- . 0000.0.2 0:00:00
0.0.0.0 00000.00 x 0..- 0..- 0- 0. .- .- 0000.0.2 001000000
02.0.00 000.000... 0002.00020900 00000 x 0. 0..- 0. 0. .- .- 0000.0.2 0:00.000
.20. 0.0.0.0 0000000. 000.0 x 0..- 0..- 0- 0- .- .- 0000.0.2 0000000
0000000000 0.00 02.00 02.0.00 x x 0.0. 0.0- 0- 0- ... .- 00.0.0.2 .01000000
0.0.0.0 00000.90 0. x .0- 0.- 00- 00. .- .- 0000.0.2 200800
0.0.0.0 $000.00... 0. 00.. 0..- 0- 0- ... 0.. 0.00.0.2 01000000
0000 00.0.0806 02.0.00 x 0- 0..- 0- 0- .- .- 0000.0.2 01000000
0000.00.03.90. x x 0.0- 0.0- 0- 0- . .- 0000.0.2 01000000
000000. 0.0.0.0 00.00.4202 02.0.00 x 0..- 0- 0. 0. .- ... 2.0.0.2 .0n000000
0.0.0.0 00000.06 x. 0- 0.0- .- .- 0- ... 0000.0.2 .0n000000
0.0.0.0 0300.0: x 0..- 0..- 0- 0- .- .- 8.20.2 .0n..0000
0060000. x 0.0- 0.0- 0- 0- . .- 0000.0.2 .0n.00000
.00.00.000.0.000...0 00250.20 x 0.0. 0..- 0- 0. .- .- 000202 0000000
0. 2.0.0. 0000.0... 30820 x ...- 00. .- 0.- . 0- 0000.02 01000000
0.0.0.0 00000.90 0. 0..- 0..- 0- 0- .- 0.. 0.00002 .0|.00000
0.0.0.0 1.2.. x 0..- 0.0- 0- 0- .- .- 00080.2 2.000000
0.0.0.0 00.00... 0000:. 02.0.00 x x 0- 0.0. .0- 0- 0.. .- 80000.2 .0u000000
...0>0 00.0.0.0 0. . .0. 0- 0- .- .- 00000022. .0|.0..00
0.0.0.00 000.0000. 0000.09. x 0. .- 0.0- 0- 0- .- .- 000.0022 0:08.00
0.0.0.0800080 00..-00.20.000.000000.000:02.0.00 x 0.0- 0. 0- 0- .- .- 000.002 .0...00.00
02.0.00 0.0.0.3000. 00.002 x ...- ...- 0- 0- 0.. 0.. 000.0022 .0u000000
000000.08...20008000002023 x 0.0. 0.0- 0- 0- . . 00080.2 .0|.00000
000000.06...20200000005023 02.0.00 x x ..0- 0.0. 0. 0- .- .- 00000022 .0I000000
.050. 0.0.0.0-00000000200 00..-0.0.000. x x ..0- ..0- 0- 0- .- ... 0.00092 .0u000000
.00.:00.0 .. ..20200 .0.:00 202000. . E0.0>00.020 x N- 0..- m- N- ... .- 00500.3. .0I0...mo~
2.0.0.206...2002000000 20000002020 0.0_ x 0.0- 0.0- 0.0 ..0 . ... 00000022 0102000
0.0.0.0 0260.0: x 0.0 .0. 0- 0- ... 0.0 00000022 .01000000
0000.000... 000. 000 0 < 0 < 0 < 6.. .00 000.0
02000000. 200 000. 000 0.
...ZMEEMQXM ...Ow NI... 2. wmaéwazm... >>O._ >m OwHSDmvwmungD mew wmomn. ...n. m.._m<-_.
D X.Ozmn_m<
178
2.20.0 00000.98
2.20.0 000.202.8000.. .002..on0
02.200 80020020300 6200.0
2.20.0 0000298
2.0202. 0000.
0000: 02.0.00
2.20.0 00000.98
32.22.0250 0.00.0 00220...
. 2.2.0. 000.202.. $00020
2.20.0 00000.98
2.2.0. 0020200020 0.00 20.00
2.20.0 23020.2:
20:020. .080. 00_0__00
.0024002 . 00050.0 000.200 0. .0_.E.0
00220020000
0020000. 208200.20. 02.220
2.20.0 8000500....
02.0.00 2.20.0 02.02.0.200xo.N0 2 .0_.E.0
02.0.00 2.20.0 00220.00. 00000.0
2.20.0 00000.98
02.0.00
0020200020030 0.20902. 022002020290... 00>...0_0:00>
0002... 020.000.00.03 02.0.00
XXXX XXXX
XX
XXXX
XXXXXXXXX
X
ON.
N0”-
Em-
w. .3
m.N.
m.N-
Nd-
m.N.
m.N-
m.N-
0.7
mi.
Em-
m. 7
En.
m. 0.
Wm-
N. 0-
Wm-
md-
m.N-
m.N-
v. ....
r. F-
v. 0.
N. T
m..-
..w.
m.N-
m. T
m.N.
Wm-
V. 0..
m.N-
F.N.
o. ..
F.N-
0.7
m. _.-
m.m-
0.?
Wm-
o. F.
:n
m. T
m.N-
m.N.
h. 7
N6.
mi.
m.N-
m. P.
0.....
01.0.
o. F-
v...
m.—.
ml
mé
00.00022 .0u0u00.000
..000022 0:50.00
00.00022 20:0...00
00000022 01.00.00
0.000022 .0u0l00.000
00000022 0:00.000
000.0022 01.00000
0.000022 00.0.00
00000022 .0I0.0.00
0.000022 0:02.000
00000022 01.00000
00000022 .0I0I000000
00000022 01000000
00000022 0:0..000
00000022 01000000
00000022 .0u.0.000
00000022 .0n0..000
00000022 01000000
00000022 20.000000
00.00022 .0u.00000
000.0022 .0u..0000
000.0022 010.0000
0.0.0022 .0u000000
0.00.022 0:00.000
00.0.022 0:0.0000
0000.022 010.0000
0000.022 0:0..000
0.00.022 .0n0n000000
000..0..2 01000000
0.0..022 0:00.000
000..022 0:08.00
00.0.022 0100.000
0000.022 0:00.000
179
2.20.0 00000.98
0.0.0.0 2.00. .0000 00.0 0.00.0 022.0200
000222000
2.0.0.0 00000.98
2.0.0.0 20.. 02.020
02200 2.0.0.0 220.000. 2.__0.022.0
800.22. .200. 02000000.. 2.00. 022
2.20.0 00202.00?
3003. m 05.20 02200220022503:
2.20.0 30202.09...
Nm 2.2.0. 000.20.... 300020
2.0.0.0 0000298
.9002. 0002.0. 2.20.0 0202002002....
2.2.0. 00020020200 0.000.02
20:00. .0000. 00050.0 002200
2.20.0 00000.98
2.20.0 00000.98
..0002. 0.0.90-09000000500
02.200 .0002... 2.0.0.0
.000.>.022 20.0. 0.0.0.0 0.0000. 0200.
0>22a0 2.20.0 _0..200 20.0.20 :00
2.0.0.0 00000.98
2.20.0 00000.08
.N2
2.0.0.0 e. m ._ 50.0..02020
0022020235082 02.E0_0202.00200020
02.200 .0002... 2.20.0 020.22.02.0202 .0000. 202-05000.
2.0.0.0 22,020.20
00220000 2.0.0.0 82.00 300 30.020 02.230
x
XXXXXXXXXXX
X
X XXXXXXXXXX XXXXX
XX
3.0
VI
m. .-
m. .-
Nd-
N. 0-
m.N-
m.N-
m...-
Qw-
h. .-
m.N-
0.0-
m0...
m.N-
0.0-
m...
00.0
N.-
.0. .-
F.N-
n.0-
m. P-
o. .-
rd-
0. _.-
N. .-
m. 0-
En-
n.0-
m.N-
m.N-
0. P-
0. .-
m.N-
no. _.
h. .-
F.N-
m.N-
P..-
w. P-
m. .-
EHN
m.N-
N...”-
Em-
u. 0-
F. .-
ml
2‘°¥‘¥ 2’°?‘T 1'“r‘?‘?’2"f“9‘¥ 2’“?‘9’2"T‘T W"?‘?‘1’“P‘?‘T 2‘°?‘?‘?'fi'“P
mm-
0...
N0
_.
Fl
0
Fl
NI
N6
w...
0..
PI
PI
....
PI
PI
F.N
0.0
00000022
00.00022
00..0022
000.0022
00000022
00000022
00000022
0.000022
00000022
00000022
00000022
00000022
00000022
00000022
00000022
00000022
00000022
00000022
00000022
00000022
2.00022
00000022
00.00022
00000022
00000022
00.00022
00000022
000.0022
000.0022
000.0022
00000022
00000022
0.000022
00000022
.01000000
01.00000
0100.000
01.00000
.01000000
.01.0.000
01000000
.01..0000
.01..0000
0100.000
.010. .000
.010. .000
.010.0000
.01000000
.01000000
010.0000
.010.0.00
01000000
.01000000
.010..000
.01000000
.01000000
.0100.000
.01000000
.01..0000
.01000000
.01000000
0100.000
01.00.00
.0100.000
01000.00
01000.00
01.00000
.01000000
180
2.0.0.0 00000.98
0000 02.0.0820 02.0.00
.200. 0000000000 0.2.0. 022
2.0.0.0 200.0..0 20:00 502098.202
2.0.0.0 2305.20
02.0.00
20000.8 002.. 0000.08 0.0.?0200...02000.00.0>002.E0-0
2.0.0.0 0.0020 .002 __02.0 02.200
0.0.0.0 00.00.000.200 0.20.00
2.0.0.0 8.020.. 0.0.. 02.200
2.0.0.0 00220.00. 00000.0 02.200
2.0.0.0 00000.98
2.0.0.0 00000.98
002202020200 0.0.0.0 0. .0_.E.0
0020 0. .0_.E.0 2.0.0.0 00....0...
2.0.0.0 00000.98
2.0.0.0 00000.98
0000.0.0 .....0000 02.200
000.0.0>2 32.20.002.200
02.0.00 20200020.. 22.00
.0200. 000.0000. 0.0000.0o..000xo.0.
2.20>00.00_0
02.0.00 .000.0.020.._>2.02..o-_0.0.0.02.20.2.02.-.>002000.w
0.0.0. 00800.20.
02.0.00 2.0.0.0 02.02.9053
2.0.0.0 020.22.02. .2022.
0.0.0.0 00...-..020
2.0.0.0 00000.98
000.0.020.._>2.0E-z 02.2.0.0202.00200020
.0292. 5.2.00. 0000.90
02.200 2000.0 «...... 2.0.0.0 00220.00. 00000.0
2.0.0.0 00000.98
00.0.0.-2.0.0.0 0000052030
:0wa 2.02098
XXXXX XXXXXXX XXXXXXXX XXXXX
XXXX
F.N-
N. 0..
0.0.
h. ....
0. T
v. T
m.N-
...N.
.0. ....
o. T
m.N.
.0. 7
MN.
F.N-
N. T.
:0...
MN.
0.0.
0.?
MN.
Nm.
0...
m.N-
0.01
0.01
N. 0.
Na.
N.m..
o. 0..
m. w-
0.0-
h. ..-
0. T
0.0.
F.N-
m.N.
m. T.
m. 0.
N. T
N. P-
m.N-
0. P-
o. T
m.N.
... w-
9...
h. ....
m.N.
0.7
.. F-
m.N-
Em-
..m-
m.N-
0.0.
0.0-
00.00002 01.00000
000000002 0.000000
000.0002 00.00000
00.00002 01000000
00.00002 01000000
0000.002 0:000000
0.00.002 01000.00
0000.002 00:000000
0000.002 01000000
0000.002 .0u000000
00.00002 .0..0.0000
000000022 .0|.00000
00.00002 01.00000
00000022 0:80.00
00000022 01000.00
00.00022 00.0000
003.022 01000.00
0000.022 0:000000
000..0..2 0:00.000
0000.022 .0..0|0.0000
00.0.022 0:00:00
0000.022 .0|.0..00
0000.022 .0|.0..00
0000.022 0000000
0000.022 0100.000
0.00.022 .0|.00000
0.00.022 0000000
0000.022 0:000000
0000.022 0:00.000
0000.022 .0H0H0.0000
0.00.022 .0 0 000000
0000.022
00000022
.0H.00000
.0 000000
181
61082.22,“ ox__-c__%oe_8 x NF. 8. F.- m- VF m.N 8:182 6:888
5665 66.38. 8:88. 68858.92 6266a x mF.F QF- 8. n. F- F 08382 6:888
aaxmvozfia .5288 x x 8- NF- 8- NF- N- N- 98.82 6:888
5665 86858 x 3. «F. m- N- F- F 2:682 6:888
8.808 5663 86% Q6 .8862". x - 88. N- N- F- F- SEEN? 6:888
8865 8:8 ox__-c_m___68 x m.N. m- N- N- F- F- 88882 6:888
5663 82580-5658 B< x x 8N- N.m- m- «- F.F «F 8888: 6:888
88:28on 626:6 x 3- mF- N- n. F- F 83886. 6:888
5665 8656-8259? 9593 x F: 8.6 N. m- F.F F- 88882 6:888
2862.62 5.86. x 8.8- 8.N- F- F.- F F- 26882 6:888
5665 88286 x x 8- 8- m- n. F F.F 28882 6:888
5666 88986 x N- m.N- m- n. F- F 8:882 6:888
5665 88658 x F.N- F.N- F.- m- F- F.F 0888: 6:888
6253.881 66$ 8.2.8 x F.- 8.N- F- F- F- F- o88mN~< 6:888
EN 5665 285:. 865.55 658.3 5.8626 x x 3.. v. o. n. F- F 8882 6:83.88
6558 c665 2235 66.88: 5.96:8 9.660. x m- m- N- N. F- F- 88882 6:888
5665 86858 x F.N- m.N- N. 8. F- N- 88882 6:888
28386638626 3.5.9». x NF- 5- N- n. F F- 888% 6:888
5665 88658 x x N8- m.N- FF- 8. N- F- 88882 6:888
2E5 2663 Es_
8Fx>a=8w$ 868828-669
520.5 565.5
520.5 731:
$82 2983 F >__E£ mama matmnoomwzoa
22582.9
E598 mm mwmcmmegcou Eom 23.938 59.0 conga-5
9:93 48.8.0 me-mE 5805 85888 ommmmfi
520.5 38898
2:5: £205 .59.: 0:8 mab-NINU
38383804908
EEO-a Emma-68
5805 88058
2E8: mmm83888mmcmmofi>cmu Ego-:05
AFxo._u>c.m.mco.8>mc 8 ._m_.E.m
0.803 80.8532.
60.3823. 88:0. 2.58 865 0.22,
0.80.3 89.8308
2.E8 8mm: cam om8m£c>w 38:38.35
0:02 9:83
0.80.3 90.003 880809.: 9:83
“088.8 0.88:8
$860.80. 868 68.5 08.88. 88
0.80.3 008898
0.803 0265.00
0.803 88898
3.28. 68086669608 9608
89.55. 9:83 6.803 co:8m_o<0.mam._.ommEm0.5mE-m.a 20300.03:
....Em. £90.... .69.: 0:8 33$Im0
.858. 8888.88 8288..
mmona>0 .0 53.5.: .088. 9:02.028
590.... 8805.8
599.. 028.88.359.58... 9.8.2.
mum... 8808. 9.8.5..
590.... x98. BEE 9:33..
....Ew. 3:2. 592.. 0.9.5:. BEE
20...”: 38:... £20.... mchmEtmctmm
£20.... 9... - 08:... £90....
385:8 50.580055 9.8.2...
mmmExo..>£oE-mca.m-v .908 9:33..
$8208 $59: .958 .10 9.8.3.. o. .888
288. 88. 85288;”.
5.20... 9... mmm..£mcm._..>wontocamo..n 2.5.8
590.... 0.005 .8...
£20... 38998
520.... 8.8998
.850 1878.28...» 599.. 8:888. ommmw...
£20.... 83998
590.... 9:82.
520.... 8895.8
520.... 38930
... £20... m.N-QI. ..EI £20.... 5&8 m:.0=m_-xonomEo..
£905 9... .0520 058.5508
590.5 880.58
590.... 9... 592.8
:88... 288. 820.2 558:
c888 :50. “mo
2-802 8528 588. 8.8.88: 88535.00
590... 80:058....
XX
XXXX
X XXXXXXXX XXXXXX XXXX
XXXXXXXXX
m.N:
m.N:
Em:
F.N:
m.N:
m. ....
n. ..-
ed:
so...
Nd-
m. ..-
n. ..-
m.N:
m.N:
noé
m.N:
QT
0.7
... F-
m.N:
Wm:
m.N:
07
v. T
m. T
Nd:
m. P:
F.N:
mm...
...N:
0.«:
cm:
m6-
m. ..-
m. ..-
m6:
m.N:
h. w:
m6.
m.N:
m. ..-
N. F:
m.N-
v. T
m. r:
9m-
5. F:
m.N:
m. 7
Wm:
Nd-
P. ..-
m.N:
m.N-
Em:
N. 7
WV:
N.T
m.N:
V. T
“9°39"?8Y88Y8Y8W888888‘878‘1’8‘1‘7
88882 8:888
88882 8:888
8.882 8:588
88882 8:888
88882 8:8 .88
28882 8:888
8:882 8:888
8.882 88888
8.882 8:288
2.8882 8:888
88882 8:888
8.882 8:888“
8.882 8:888
88882 8:88.888
@8882 8:88va
88882 8:888
c.8882 8:8:888
88882 8:888
.8882 8:898
.8 882 8:898
88.82 8:888
88 .82 8:888
88 .82 8:888
88.82 8:.888
88.82 8:888
88.82 8:88.88
88.82 8:888
8882 8:888
88.82 8:888
88.82 8:888
88 .82 8:8888
88.82 8:888
08382 8:888
88.82 8:888
186
02883 .3836 23.5394
82.9 28,8 88.92; .888
£905 9.: - mEEmm 556:8
$109 ommcmmegcou 32.336
Amomov mafiaEwfi mEmeaam 058380
5205 9393a
5203 0>:93
520.5 83298
888 8885. 285 28
5205 028.0088 38.5:
5905 38.93.3289. EoEonO
£295 38.97533:
2.58 520.6 839 not 9:26.
52th 95- 8.85:? Emcamoca-7_o._m0c_.o>E
mwflfimcm£>o~cw£SoEmc508365.:
£205 >__E£ 9653.85.56 mzmcoamm..mco_>£m
520.5 9:53
5295 38998
2.28”. $393: 3.732308sz 380.2
5205 vommoaxm
£995 9.: 58::
£205 amazogéiam
“89997389360532“. 6505332305;
£29m mx__-c=mE:m£ @2893
$9829: 503628.85 026.2.
@2826 .83 mEoEooSo
529a 8.2.858
Some 2 9:88 888.38.538: .8
Cmoxv $8905 $5930
Gummy 685 58828: END
590.5 Ummwmaxm
£305 Bmeaxo
CcoEmmE 529a mx__-m cramsofio
38890853 8:. 859.58%
X
XXXX X
X
XXXX
XXXXXX
X
X
XXXXXXX
XXXX
of:
mp-
Hm:
v. ....
h. F-
N. F:
m.N-
m.N-
h. T
m.N.
Q7
no.9
Nd:
m. P:
n. ..-
m.N:
m.N-
pd:
Em:
m. ..-
m.N-
m. 7
P6:
Em:
m.N-
h. 7
Wm-
m.N-
Qm:
h. 7
50%
”I
m6:
m. T
v. ..-
h. P-
«d:
m. ..-
m. P-
Em:
m.N-
F.N.
m6:
m.N.
v.7
m.N-
Em-
QT
m.N-
m. ..-
m. ..-
m.N-
m. T
0.x-
m.N-
m.N-
Wm-
0.?
Wm-
0m:
N. e-
m. T
‘T fi'cfl‘?’9‘°?‘¥ 8"7‘7 1"7‘?‘¥ §’°?‘?‘9
wwwvwwvwwwvwwww
Fl
oé
1'
F..-
...F
F
F.F
2: 882
9.8882
8582
8.282
8882
8882
88.82
88.82
8882
88,82
8382
8.382
8882
82:82
88882
88382
88882
88882
88882
85882
88882
08882
88882
88882
88882
8:882
88882
28882
88882
88882
88882
88882
88882
88882
8:388
am:vamv~
.m:nmmmv~
8:883
.m:o.oom~
8:888
.m:vmvov~
.8:~8¢8¢~
.m:-mmv~
.m:o¢mov~
.m:om.om~
.m:~_~omm
um:-uom~
.8:F~vom~
8:888N
.m:~mmom~
.m:-~om~
.m:8~mom~
.m:8mo.m~
.m:~vvrm~
.8:o.m~mu
.m:-m~m~
am:omm~m~
“8:8vmmmm
8:388
“8:85ommm
.m:avomm~
.m:nmpov~
“8:.mrmmm
.m:nv~mm~
88:8ommmm
“m:~ommm~
.8:~vam~
.8:vmmmm~
187
$0028 .2820 :o_ 88.38.838.03: 2.98
520.5 @253
£905 Bmwmaxm
omen. 9:952? 9332.
2..me 8828.893
5905 $836 .953 EQEEmQ
£995 mzamfia
520.5 8.8058
38.0.5 ox__-c_w___5:w
5295 9:83
590.5 88058
£905 9593
2.8232283 8.85:8 58.288
5205 9293a
BEEéEEQ $908 m2§mmo>
5205 3.789085838ch _>oEmcc_o>xEu>c-z
Eng
Ammmuoaum...‘ BEEEmmegcfiv 83038.1. 6:08.835“.
:52 88.28:. =. 82882:
520.5 88296
5205 9:83
5205 my... - mmmci 522a .6889
08:823ch 22808888026
520.5 88998
5905 88058
A 85% 5205 098.68 959%?
AN. 509 39596695,: 9.0833
3. E09 mmmcmgxogoE 95.88
5205 88058
590.5 08858
520.5 95-: mmmcsamgxonfio 05.8
2E5. 989. new $59398 acoucmamvdsz
SE5. 02?: £295 .59.: 88
£295 9:93
XXXXXX
XXXXXXXXXXXXXXXX
X
XX
XXXX
Wm-
m.N-
m. T
V. P-
m7
v.7
m.N-
v. F:
m. T
... T
noé
m4-
#3
F.N:
mvé
m6.
m.N-
0m-
V. ..-
m.N:
m.N:
0m:
Em:
ow-
NV:
m.N-
Nd:
... F-
m. P-
Em:
m. ..-
m4?
m.N:
h. T
Y..-
m.N:
m.N-
v. F:
F. T
m. ..-
m. T
m. P:
m. P:
F.N-
Wm-
m. 7
m6:
m6-
0.«:
En:
N. P:
h. ..-
h. T
m.N:
mi.
9 ..-
m7
m.N:
m.N:
N. w-
h. T
Nd:
F. ..-
88882 8:888
88882 8:888
8:882 8:888
.8882 8:888
88882 8:888
28882 8:288
8882 8:888
8882 8:888
88882 8:888
88.82 8:888
8882 8:888
8882 8:888
2.83.82 8:888
c.8882 8:888
8882 8:888
8882 8:888
8882 8:888
8882 8:888
Q8882 8:888
8882 8:888
80882 8:888
88882 8:888
88.0.82 8:888
88882 8:888
8:882 8:8:888
8882 8:888
8882 8:838
88882 8:388
88882 8:288
c8882 8:8888
88882 8:888
88882 8:888
88882 8:288
188
.88. 208.8 8 8 88:88. 28 888. 8.8 8F 8 8885 83 888° 85 85 F8 288 85 82; 8 85.. 88085 ..x. :2
.Esocm m_ me Boa comm .68 532058 9.: 8:8 .EV mE: comm 8 28233 806203 comm ..oF mm:_m> @9820 28 m5 .55ch3 _0< mg...
c888 32 3o. :8 x «F. 8.8- 8. F- F.- 8- 288 8:8888
888 89. 88 :8. x :- 8. 8- F 8- 8- <88 8:288
88%. 5888 2882888 x 8.8- 8.8- 8- Y F- F 888.82 8:828
8288.. 88888 .888 x 8.8. 8- Y 8- F.F 8.F 2.8882 8:828
3802:8828 888888 x 8F 88F 8- 8. F.F 8.F 28882 8:828
5298 88858 8.8- 8.8- 8- 8- F F- 88882 8:828
8.8229831.88888628888on x mF- 8F- 8- 8- F F- 8882 8:228
888 88888889285...on x 8.8- 8.8 8- 8- F- 8.F 8882 8:828
88856888 x 3- 88- v. @- 8.F 5 93.882 8:828
888 88888 x F.F- o. F- 8- 8- F.F 8.F 88882 8:828
88%. 5298889 .8: 9.88. x 88F 8F- 8- m- F.F F.F 2882 8:828
888 9888 8F- 8.8- 8- 8- F- FF- 88882 8:82.88
9393
.8888 830an 88598 888888 82889388 x 888- 8. 8- 8- F- F- 28882 8:828
8:88.888 8888 888828 x m8- 3.. v. 8. F- F- 88882 8:328
888 88888 x 8.8- 8F- 8- 8- F.F F 88882 8:828
8888 82888 x 3- 0F- 8- m- 8- 8- 8282 8:828
2302:8888:888898 x 3- E. m- 8- F- F- 8882 8:888
888 3:885: x 3. F8- 8- 8- F F- 2882 8:888
888 82888 x 8F- 3. m- 8- F- F- 8882 8:888
189
8.88 F m R m.» F.F- 22. 88$ 888.8 2.288 88882 8:888
859$ 8928922880
32:: F m a.» 3 NF 22. 8:88:89... 2528 85:82 8:888
8-m8.F N 8 F8 98 NF 22_ 820.8388: 88.5500 228.8 888% 8:888
8-83 F 8 ...F F.» od 22. :98: 892892890 8.822288 8832 8:888
8.mF~.F F m m.N 3. 2o. 29838.8 89.8.8 88:89 88882 8:388
8.83 F m a... «.3 3 29238.8 :39 _ 8888 8208 8882‘. 8:888.
8.888 c 8 ca N... 8.. 29238.8 8288.. .8888 288888928 2:82 8:888
8288 o m ow. 8.» 2o. 29838.8 888.8 288897828288 88832 8:888
828.“ F m F.F a." 3 29838.8 t .259 888.23 2808 3:882 8:888
838$ F 8 NF hm S. 29838.8 898583. 88:88.qu 822.828.. 888% 8:8va~
mmfl Em
8288 o m «a 2m 2F 29238.8 -28v 3 2.59 820.23 2828 82:82 8:888
.9525 memfimSEmE €08.33th
8-83 F m m.N to ...o- 29358.8 2 8.8.8 .2228 828583 8582 8:888
8288 F m 3 n.» no- 29238.8 28528 888.8 8:82 8:888
8883393
8.83 o m 2F v.8 F.F 29838.8 288838288 228.8 8889‘ 8:888
828; m m 5.3 3: 2o- 29238.8 8888 82828 2528 88892 8:388
3008282
8.88 o m m.N 3 F.F 28 9.88 8288.88 88258288888 8882 8:888
382 F m QF hm od 28 8:8 2528 89289252.. 2.888 2888? 8:888
among
8288 F m m.N F8 od 28 888 8288.8 883828882893-72.2. 28822. 88:82me
83556 89:83.0 2
8.83 o m E 38 2o. 28 9.88 8:22 8888.88... 88888.28; 288% 8:258
Emfivcmww:
38?? E8533 9: $90 no? 5w 5 0.9.23 5:885 _G< 2mm mack.
<>oz< 050293 328992 8.88 22 .23
mhzmgmmaxw ....Om DZ< m._.<:_n. wI:_. I._.Om Z_ mmDHéwnEN... >>O.._ >m Dm....<:.DOM¢-n_D whwm mema ....w m.._m<._.
m X_Dzmn_n_<
190
canwnwd
ooflmoé
heummmd
neuwmmfi
VQMMN. F
moummmd
XYmmN. _‘
moflmo. F
XYMmfim
moflnm. F
vommmd
moflmfm
vo.mmm.v
ooh... 3.0
voflmfw
moflom. w
mauwmm. w
mofltmm
moflvmfi
moflmod
monwmmd
vo.m=m.m
mofimmé
O‘-
OOOOF‘NO
O 0000
O
”GLOW COCO NOOLDNLDC‘OOO €000
COCO
mé
ad
ad
ad
F.F
o.m
Nd
m.N
Hm
m.N
c. T
0.0
NP
m.N
No
wé
m._,
m._‘
a.»
0.«
m.N
F.N
0.F
mi
m6
a6
v.3.
F.N
9?
ad
ad
N6
Q.”
No
FAWN
n."
n.»
N. w
Nd
v.”
fin
Q:
n6
mi
ed
m6
wd
”.m-
m.N?
m.N
a.»
od
m6
No.
m.—. —.
0N-
md.
ed
vi
mé
md
.1
ed
mé
0.0
m.o
QC-
$8596 «2%:
285% __E£ 8E 39:85
2.5a $98mcmb$m82m
.o.m Ecco>mfimmoosm n5:
2.58 83... 39:8?
mmflmfimcm£>mocEmE 02.8035
.m-:_u_cm>oo£cmlmwocEmE no:
aéoss $353 oo<
Agav N mmm>_-m_coEEm oc_cm_m_>cmca
omva 9:952? 9253
88on
mmmcmgxofi Eccflofio>xoamé9m
mmEchmE>m82m
20:80.2?sz 9:53
9:33 635:? 05:55:00.:
m¢m9£mc~§>m82m
$826.95 2 5:86
89:85
N 398282583...“monaoEEm
9:83
.830: mEoEEwlabDV mmmcuim 95
89392
2.3%.2
8535
853—2
SENSE
RENEE
oSREZ
83.92
8.33%
834.32
oxumvmmz
8233
an???
EmRva
8m? .92
83%?
88.32
33.32
883?.
ovumompz
83°92
ofivmmvz
2832
.nmvnmmmw
.m ¢mmmm~
amnnpmvmu
“anhommcm
.mnwvmrou
.mlnowemm
.mnommoom
.mlmssoom
“muemmmmw
umlmwmwmw
:. ..ozmtomcmfi. .
«mlgmwvm
.mmmpwmvm
um nmommm
.mnmumnmmmm
ammmwmvmm
.mnwmmrmw
.m emommm
.muommnmm
.mmwmmmom
um Powwow
anagram
.mnwmmmmm
“mumotmm
191
mom—m w .m
mo:MMN.N
mo:w Fwd
mafia—mm
vqwmwd
moflwmé
No:m 34m
mom—mud
moflofio
mo.wmo.m
mouwovm
moflwofi
mo:w Ed
moflmmd
moflvmé
mqmmmN
awvwé
awn—um
gummé
Vouwoofi
moflm v.0
NOflVNé
moflmm. _.
mo:m_©N.m
O
POON
OO O OOOPO
COOP CO
PO
COMM” I000 ID MCCONIO ”(0‘00 0')
(‘0'!)
Wm
m.N
ad
mé
mé
fie
mé
m.N
1N
Nd
oé
0.7
md:
0.0
Q;
md
m.N
ON
ON
mé
QC
mé
m.N
N.—
v.»
9....
h.”
N.N
EN
:6
No
We
06—.
Na
v.”
0.9
m6:
Wan
m. 7
Wm
vi
m6
m.N
v. F-
a.»
mi
0.0
Tm
md
hm
0d
m. T
06
w.”
N.N
Vow
F.NN
P. w
5.3
ad
NS
m.N
0.«
od
N. P
N. F
a.”
n6
md
md
m.»
$8593 (2%:
285% __E£ <<__E£ 6E2,
>__E£ 5205 39: 100959.: ocfi
2.53 60m
cgmmcmncoo oEomoEoEo B 38:62
ANmmbqv N 85:69 3:88..
5205
2:5 59.: 88 39m mzfimzoo
:58 .903 88:85.. 8.29.9.2
830$ 5295 x3832
£905 .09.: 88 83-1000 9:93
68632:
.903 cozatomcg 23.8 >¥m>>
EN”: £205 .69.: 0:8 cabNINo
590.5
:53 595 28 69m wzfimzoo
8.;me
.908 cozatomcmb 2.83 >¥m>>
Amman—(v 55.302 8:039:03me 2.3%?
2.53 69.
cozmwcoucoo oEomOEEr—o *0 5993mm.—
03282
28382
88592
8338
88mg:
com 592
8 2892
83892
2832
88 .92
83.3%
88892
8882
8889‘
8.382
88.82
88382
88:82
35382
23382
88882
89882
388:6.
5:338
8:338
8:? :88
$6888
.m:m P88
5:838
8:838
5:888
5:838
5:838
6:888
.5888
.mmwommmm
.m mvurmu
“mmnmnpmm
“a enmmmm
6:388
.m:m.noo~
8:888
6:888
.nmmwonom
am mommom
”mlmmnmmN
8:828
192
mauwmm. P
mo.wmm.m
oo-Mmmd
mo.wno.m
moflow. F
mouwnmd
monwwo. P
moflm F.F
mom. 5N
maumkd
menwm P .N
moflmmd
mofiwmd
menu 3.6
monwumm
mofimfim
No..wNm.N
mofim F .N
XYMONQ
mo.Mom.m
0001-0
0
60¢")
IDCOC‘OCOC')
m.N
NN
vé
...N
vN
m._‘
vN
m. 7.
Nu
EN
ma.
5.
YN
m...
ad-
ad
m.Nr
m6.
m.N
o.o
9n
fin
m.N
fin
fin
N."
ad
m. 7
TM
...m
m5
m.N
h. T
n6
m.NN
v.0-
a.—
rd.
md
F. F-
od
.6.
w. 7
ed
he
od-
v. F-
ad.
ad
v.0-
Fé
mé
Om
a.»
mé
cozflmcmb
cozmficmb
.535ng
5.535..
@5382.“ __E£ 93... 5205 3:589:
mx__-c_2o.a _mEomon_._
aim: o .208
Sumac. c8995... 0:99.33 9:33
3.3
v .908 coszc. ozobmxam 9:83
9:93 .9302 520.5 5.88::
9:33 698:2 .3 150550
6.352. 5.8. 32.3
9:93 6.20.5 .3368 #024480
529.. 3:.»802
6.16 88:2 22m
ages m 5.2.5..
592.. 9.: 38:2 22m
9:93 628:2 x8 I82. _mcoawm._ mcmSEm
8.882 .muosmvm
83.82 a 533“
8832 6:228
83%.? awomoou
2.892 5:388
2832 318:3
8mm~92 6:29am
om~$82 5 283
8.882 .mnmnmommvw
c.3332 .mlm.~mmm
0889.2 .muomocmm
88.32 .munmvmvm
83.82 .mnSEma
88%? 5:388
:25ng HE 3889 <2m
80582 .mnmemtm
“.8382 .3322
22382 .mmooax.‘
8.582 a 3.2%
ommwvmm2 alsama
om~382 .mlmvam
193
hoflooN
moflmvé
moflmmd
mofiomd
mauwmwN
venwtmN
moflon...
vaumoo. F
vo-wmo.n
mcflmmd
mo-m 5d
neumm—mm
moflomé
m?me.m
momvmé
mo.w~v.v
moflomd
mo-me.m
woman:
mofimvd
F
Pv-OOO
(OCOCDOOLD
000')
ad
md
m.N
o...
F.N
m.N
m...
5...
m6
5...
c.9-
m.N
md
N.m
5...
$6
aflv
mi
N...”
n.—
ofi Nd-
mé mdr
N." $.01
m.N ad
m.NN ad.
a. r P No.
m.N ...o.
Ev md
o.o ...v
m.N 06
m. ..- m6
N.m md-
m.N o.N
m6 No.
m.N N. P
o.o m.N
r. 3 md
... —. w n. F
a...” N. .
Ya N. F
.8005... 83.0.00
.3005...
05.05000.
5305000..
05.95.50.
co..0.c0.E0.
95.0.5.0
5:030:05
.03....
5.830000...
85.0
5:02.000...
.0090
53030000..
.0cm.0
5:030:05
_0co.0
5:030:00
_0cm.0
5:030:00
_0cm.0
53030000...
.0090
5:030:00
_0cm.0
05.0.5.0
8.2.0005...
05.0.5.0
..0:__000._.5
5.8.0.8..
5.8.0.8...
2.0.0. 50.0.... .0E00 .0...uco.._0o..E
00.0.0. - 0000096300 1042
>_.E0.. 50.0.0 .0E00 8:000:85...
300$ 700030820000 0.025...
0000009350 .2020
0.0.9.5.. 50.0.0 00020.02
....Em. 0
0000:2009... 050000 00500505009...
:00... 522.. 22-00 8.25.5228
02.23 .80... 8 80.289... 529..
50.0.0 >_.E0. 000..-“.m 00.050.550.00
50.0.0 000580605... 0550.50
0:0..-n.M..000.N 050:0. 02.0.30
:20 o. .0_.E.0.
0005.. 50.0.0 05.50.505.00 02.0.30
...-tmmmnzv 5.0.30. 00500900300
50.0.0 5.300.500 02.0.30
02.0.2. 50.0.0 00.50.53.658
05.70005. 50.0.0 0c.co0._...\05._00
00056200020002 02.0.30
820$ 8&2 8.0828480 o. .882
88882
888.2
08882
88082
883.2
88082
8.882
8.882
88882
88882
80882
88082
8.0882
88.0.2
88.5.2
o. .882
8.8.0.2
.8588
$330... .....i
8:838
.mlmmmmmm
8:888
$10.88
8:898
lg
.0 080028
.m:0...v~
.muvo.0v~
.mucmnmvm
.018.000~
.0:~mv.0~
.muvmv.m~
.0:0:o~.00~
.m:0.ooo~
.0:00.om~
.8888
88808
22.030020... .0: ..0 0:0 00.000.532.500 63:080....
.8000. 00 599.. 0588.. 0.... Q8882
2.00. . .28. 880. 2.9088 88282
.mmmm..v~
.0 me.mv~
194
mQMde
no:wmm.m
3&me
mo:wnP.P
moflN P .N
mo..w Pvd
vo:m.mN. P
©0:Mom.w
mom—N9 P
moflmm. P
awwm. P
ocuwhoN
ooflmvé
moflmoé
nouwvod
moflnNm
mo-wNm.m
hemmed
mouwhod
acuwm P. P
F
NN
NNF
F
P
F
(00')
00
000000
(0000')
C000
N.m
m.N
QP
m.N
o.N
N. P
QP
m. P
P.m
m.N
o.N
0m
QP
m. P
m.N
N.N
N.N
Q?
o. P
P.”
m.»
mi
m.N
Nd
n6
m.N
N.n
@. P P
N6
m.N
P6
nd
ed
«.5
n.m
o.”
N...” P
md
N.N
Pd:
0.0
o.m
P.P:
OP-
P.P:
Pd:
can
m6
od
Pd:
N. P:
ad
ad
0.0
Pd-
No
N.P
md
@5000
000 05.090.
0.020055
000000.000.
0.0.0.0
00.505000.
0.0.0.0
00.50500...
0.0.0.0
0505. 50.05
050.0. 0.0.0.0
000000...
000000..
000000..
000000..
000000..
000000..
000000..
000000..
000000..
000000.. 5030
000000.. .0030
000000.. 5030
000000.. 000000
$050.00. 00050.05 0.0.0.6 .0_030>
2.0.0. 0000.0.0 300000
0005000000 50.0.0 02.0.30
0005500030582 00.0.90 02.0.30
02.0.30 .5050
3.88....2. 0.0.0.0 59.0.09.
8050.58.05.
0005050. 000..0.0 _>_0.0-_>0..000
50.0.0 0..:
- .0050 0.350 5000000000 50.00.0650
0.0.0.0
5000005 53.050.63.000 0. .0_.E.0
0.0.0.0 5000000..
05...: 000.00.00.05... 0. .0_.E.0
02.0.30 5000000..
05035000025055 5000000.. Om<
0.0.0.0 500000 000.0050. 02.0.30
0.0.0.0 5000000.. 05550.5. 02.0.30
0.0.0.0
0.5.5.0000 .0..000._>0..0000000.02.0.30
00.00. 0.08.5 0.000
0.0.0.0 .000. 000000..
00.500095 500000000055 02.0.30
2.05. .305 00.50
0.0.0.0 5000000.. .0030 02.0.30
0.0.0.0
0..: 00000.50 05000000055020
0.0.0.0 000000.. 5030 02.0.30
0.8092 03.88
83.082 .0 000.8
80882 0:888
88.82 08808
0.5.0.2 003.08
03882 .0 0.008
8.882 0:238
05. 0.5 0.5000005 0.5.00.0
0.0.082 0:82.00
88.82 0:828
88.82 0:538
8.0082 .0H8~.8
80882 0:80.08
88.82 .0 0.88
0.00.0.2 0:0...8
888.2 08.38
0.0.092 0:00.58
80882 .0 00.08
008 .82 00000.8
80000.2 0:888
$0382 .0 00008
2.05. 5000000.. 00.500095
195
moflnm. w
nofimmd
menwmmd
vow 5.0
50:98.0
noflwoé
mom. rm;
moflwpé
XYMNQP
neuwmmé
uoflo F .m
gumwfi
moummné
mouwmoN
moummKé
mom de
noflmod
mouwmfiv
moummuvd
moms. w
menmmoé
ath
moflmo. F
moflomd
moumvmé
mo-m Fm;
moflmfm
PVOFC‘OOMF
NCOCOOOFNNCOO
F
v
0')
MMMMNNC‘OO’)
”MMMMMMC‘OV
VG) 0') ”WV
(”OBI-O
N.N fin
n.» «.9
960 ad FN
adv inn
m.N N9.
fin m. FN
9m v.2
Fin n. F.
v.» n.»
md m.N
n.mN m.Nm
Qua ad P —.
an ”.0”
No m.N
ad ad r
ad md _.
v.” 0d
Em n.»
Hm ad
ad 9N F
N.N v6
v. P v 1N?
a.» ....n
0.« fm
md. ... .3
06.. vi
Nn ed
pd:
*6
m6
Nd
m...
Né
ad
ad
vN
No
Cd
Nd
F.F
mé
Pd
rd
md
@.F
m.—
md
0.0
ad
mé
wd
CBOCxCD
5505.5.
535.5
5505.5
mmmbm
950295995
950203993
c8285..
88885..
828828
c8285..
83825..
82825..
€388qu
€388sz
838823
c8285..
35qu
3:20“.
3:0th
mmcflmu
$5th
095me
mwcmvmn
mmcmvfiu
mwcmfiu
9.68
520.5 38.9. 398
$233.85 $3502,
5905 538653 28 2 8:58
$5.09 5205 388.58
$9.08 5205 83998
5205 9:758:59:
9.: c888 22885.89. 288
$38: 5888 8885.89. 288
mumoo
82.x
280.89
5905 E89558 flgcooobnEm Sm.
8285 882%
$550
3550
25mm: 8388
85mm: 58288
Smog 58288
:2va C888 83
5995 858889 ommmmfi
:8.an
5203 95525 885.308.89.98
ommcEcooucm 0>:93
520.5 0835-598: 0>:93
A 8.88%
9593 520.5 £95th Ema 9:33
8.89:
9333 £208. £98.88 E83 9393
520.5 9:7:sz385
9:83 .388
wmz-m_._.v £905 032.8.me mmmmwfi
€88 cszamrz
80mm
88892
88892
88.92
28. 32.8
2882.8
88382
88882
28882
88.82
88892
88882
o8888.<
88882
88892
83892
33892
83892
88882
88882
88882
888882
8.8882
88882
88898.
288892
88892
$8382
filmmmvmw
8:888
8:3 88
8:888
8:358
8:888
8:888
8:888
88:38.8
8:838
8:888
8:888
8:888
8:288
8:288
8:888
8:888
8:888
“mmosoom8
.8:mmmoo8
“8 .88888
8:388
.8H8PF888
.8 888888
.8H8888o8
“8:888F88
.8 888888
8.88.8: 8.95
196
¢o:mmm.m
vaflvmd
moflncd
moflmmd
moflmmd
voflmvé
moflmmé
neummm. F
No-wNN.v
voded
mo.m~.m.m
Noamme
mom—3. F
moflomd
voflmw. F
ooflofiw
vaumwm. w
mom 5N
moflmmd
moflmmd
mofiwwd
molmm F .N
V0:m:%.m
ecummw€
ooflomfl
woflmod
menwmwd
mom—9N
FOOOv-u-o
ONNNFNPV-OP
FOOOOO .FNO
F
F
MWMMMMNC‘OVC‘O mmmmmv
”CON
0000????
(V)
MAL.
QN
F. P-
m.—
1N
N.N
mé
9m
«.9
w. T
QM
mé
mé
No
vé
Em
m.N
adv
N.»
W?
0.: _.
N6 r
«.28
v.3”
1m
m.N
Md
mdN
o. w
Md
N. v
1v
ed
Wm
QN
Nd
F.Nv
:.v
9.0
Q.” r
Ni
ad
ad
mé
ad
0. a
a.»
N.N
m6
0.”
v. ..N
Van
N6
N6
9m
flew
m. P:
a;
md
06
mé
E.
0.0
m.N
Nd:
No
9o:
mé
#6
0.0..
Nd.
Pd:
1N
ad
06
we
0.0.
v.0.
0.0
F4
.8...
0.0
P. T
06
58.3.6.5
:83 =8
=83 =8
=83 =8
=83 =3
=83 :8
=83 =8
=83 =8
=8; ..8
=83 =8
=83 =8
=83 :8
=83 =8
=83 =8
=8? :8
=83 =00
5505.5
c2655
5.65.5
2265.5.
$505.5
9505.5
5505::
:26ch
5.65.5
c2653:
c2652.:
:26ch
“580159....
< $338.. on.._>cao._o_coo.9a
mmwfifioéog o. ..m..E_m
3.0...
5295 3.7328023. 783
Agaxw. >_.E£ £205 £9898
382.883.08.03 9:32.
: 828:5.
v 2.58 omflmwmcmbSmoozm
>=E£ mmfimfimcuooa
530.5 8.7082802952
2.59. 2.65 £905 £2898
38>. 2808. 9:32.
38:80:58. 792. 9:82.
636. 882882888
02.52. .5239... 38:83.80. 7.88.
m 2.83 omfiofimcg$woobm
385.208.8sz 9585a
8300. 5295 8.88858
.9100. £90.... 83838
8.8.8.5. 5888 059.88....
2.8“. 65. C888 888..
29.33.28 83:32.2... 3890.5
:88... Q..: _._m
00.050 5.05050
000.0505
0500_0
000.0505
05003
2.50. 0.0.0.0 .0000. 00:93
2.50. ...0.0.0 .0000. oYD>>
000050 0>..0.:0
50.0.0 20.805020
.0.050.0
5.50.0 ...00:0000...:...x:0 0. .0_.E.0
2.50. 0.0.0.0 .0000. 0.103
0~.05
.0 2.50. 00000000.. 5095 0. 00.0.0.
2.50. 0.0.0.0 .0000. 0.103
9.8.8 588... 8.8... <20
8.00.. m .88.. 83:89.8 __ .....8.
:88... 8.8.9.2.. 2.8.8
3.50. 50000005085505
.0505... ...0.0.0 00000.0x0
50.0.0 000.0565 0. .0_.E.0
5.0500
00.2.00 02.050. 0.0.0.0 00000.58
:88... .28. 088508809...
:88... 8.88-05
>
520:0 020:0000:.>
80:2. 5000 805850:
2.52 520:0 20000: 00.03
520:0 029.05
-50 80.09: 80020 529.: 9.0.3
520:0 :05 ..00 :0.:.0:.02m
2.52 520:0 00000: oYD>>
2.52 520:0 00000: 0.195
5.50:
mIG. 052:0 520:0 020:0000: 5030
520:0
055050020000: 30% 0020000050500
022 9 050. c000 9... 509:.
82092
28.92
83.90
0.0290
8855‘
855.2
235.2
8855‘
883.0
80892
02.822
00892
80890
00890
220002
88082
205002
800300
800502
20. 300
808034.
003092
8059.?
8% 5.2
o 3003,:
0339.0
03892
200300
00:0avumm
00:050000
00::Fommu
00:05050N
~0I0lvmo P mm
0:00:03
0:00:00
0:20:00
0:22.00
0:80.00
0:50.00
0:258
0:238
0:2 500
0:00:00
0:835
0:835
0:30.05
0:20.000
0:0 30%
0:00.03
0:55.00
0H0$mm~
0:59.00
0:00.300
.0 mnwmmm
0:833
ElmomNmN
8000002 00:88.0
199
sonwmoé
wanmd
moflowd
ooflmmd
moflmflv
vonwmoé
monwovd
Xwamd
moflomfi
moflnod
vommmé
nomad
Vonm Fwd
venwnm. F
mafia...“
moflm F .m
vonmnv. F
3m F0. F
moflvfim
moflow. F
mo.mNo.m
voflvmd
XYMONN
haummo€
squamd
moflom. F
menwmmd
Venmwm. F
moflwm. F
ooflmmfi
moummm. F
moflwo. F
No.mvm. F
moflwm. F
OFFPOOF‘—COOPNONOOOONOFFOOOFOONOONO
mmmmmmmmmmmmmmmmmmhmmmmmmmmmmommmm
ON
0.....
TN
m.N
N.F
F.F
m.F
m.N
m.F
F.N
o.F
ad
a. F-
1m
in
F.N
Nd
m.F
m.N
N.N
ad-
NF
Nd
m.N
mi
m.N
m.N
N.N
h. F-
o. F
0.«
ad
ad
ad.
0.«
9N
m.n
Ni
0. F
ad:
a.»
o.”
9m-
a.»
a...”
N.N
N.N-
m.N
Na
0..”
a.”
m.N
Ni
fin
ad:
ad
«.5.
h.”
a.»
a."
v...“
0.0
ad:
a.”
N6
m.»
QT
No.
ed:
od
ed:
Fd.
m.N
fin
ed
n. F
mém
0.0-
v. F
o. F
v.»
N. F
0. F
N.N
m6
0. F
ed:
0.0
QM
m. F
N. F
F. F
N. F
md:
Nd:
Fd:
he
Fd:
Nd-
c. F
n.m
9n
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
55055:
:505.5
5505.5
5505.5
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
0.0000005
00.000005
000000005
000000005
0000.002
0000.002
0.00.0005
0000.0005
0000.00.05
000000005
000000005
00.000005
000000005
000000005
0.0000005
000000005
00.000005
000000005
00.000.05
000000.05
000000.05
000000.05
000000.05
000000.05
000000.05
000000.05
000.00.05
000000.05
000000.05
000000.05
000000.05
000000.05
000000.05
0.000025
00:.00000
.0:000000
00:00.000
00:0.0000
.0:000000
00:.00000
00:000000
00:000000
00:000000
.0:000000
0:000000
00:000000
00:000000
.0:.00000
00:000000
.0:.00000
00:000000
00:000000
0:0. .000
00:00.000
00:000000
00:000000
.0:000000
00:000000
.0:0.0.00
00:00.000
00:00.000
.0:000.00
.0:00..00
00:000000
.0:.00.00
00:000000
00:000000
.0:00.000
200
vo.va. F
ooflmmd
20¢va
mommuvd
ooflvmfi
moflomd
mqwmo. F
XVMQYN
mo.m Fm.m
moflmmé
ooflmmd
moflmmd
XYmed
mom Fwd
noflmod
mo:m Fnd
moflmfi F
mofloFd
00¢me
3-wNF. F
moflofio
V9wom. F
neuwmoé
598. F
mofimod
ooflwo. F
auguv
vo:m Fwd
somNo. F
moflmmd
voflmmd
20$va
mofimmé
90$va
OOONOPOFOOC’OFOOOOONOFONPOFC‘OONOFOPOO
mmmmmmmmmmmmmmmmvmmmmmmvmnmmmummmm
QF
N6
ad
0.F
m.F
0.0
Nd
N.N
Nd
m.N
md
m.F
0N
QF
N.N
a..."
m.F
ad
Fd:
1N
m.N
m.N
QF
m.F
m.F
m.F
NF
0.F
F.N
md
F.N
m.F
No
md
N.N
Nd
Fd
ed
oi
md
06
0d
m6
0d
m.N
Nd
v.0
dd
ad
ad
Nd
m. F
0d
a..."
0.0
Ni
Nd
ad
0.«
m.N
ad
ad
0.0 F
a...“
0.0
«.0
—d
ad
md
Nd.
md.
N.F
0N
m.F
0.0
0.0
Ev
od
md
md
06
m6
F. F:
m6
md
0.F
adv
F.N
md
F. F:
F.o:
N.F
md
06
md
F.o:
F6.
06
F.F
0.F
F.o-
9o
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
5505.5
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 00.005005:
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 50.005005:
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 0000258
520:0 00005002.
520:0 0000258
520:0 0000258
000000005
000000005
000000005
000000005
0.0000005
000000005
000000005
000000005
0000005
05.00.0005
0000.00.05
0000.00.05
000000005
0.0000005
000000005
000000005
00.000005
000000005
000000005
000000005
000000005
000000005
000000005
0.00.0005
05.00.0005
0000.0005
0000.0005
000000005
000000005
0.0000005
000000005
000000005
000000005
0.0000005
00:000000
.0:000000
.0:000000
.0:000000
00:000000
.0:00.000
00:000000
00:000000
.0:0:00.000
00:00.000
0:000000
0:000000
0:000000
0:000000
0:000000
0:000000
0:000000
0:000000
0:000000
00:000000
0:000000
0:000000
0:000000
0:000000
0:0.0000
0:000.00
0:000000
0:000.00
0:000.00
0:000.00
0:000.00
.0:x:000000
.0H000000
.0 00.000
201
.0020 20 .N 0000000 00050.2 000 20.00.05. 000. 0.02000 <>OZ<
.02.. 0:_0>.0 00. 000 00.00000... 05 00 30.3800000000:0000..3000600090.0.0000500233300005 E0200: 5: 00000000 05 0. 000020
0.00.008 man: 0.10 00 0000.50 05 ..N 00.0000. 0.02000 0000.020 80.0220... .020 0000000 0000 00 000.0 00.00258 00... 0.0050058
0.00.: 0:00 000 _.00 05 500 0. 02000002060 00.002 003 .00 000.0 05 00.03 00 000... 0.00.00. 200 0. 00:_0> 0000000058 _.00 000
00.00:. 0:00. 0.03 00. 00 0200.320 500 0. 0.0.. 0000 .0 00:_0> 000000 0.00 0:03.00. 00. E00 02030.00 200s 00:_0> 000000 0.00 000.0 000.
..E00605}.0005090500000.00.550005 00:2 .000 .0.505.00030005000izé0005 00: 00.000000590332000... 0.50
.CE00.xEOE>t0.>>3E\H00£ 00.000002 >0 000320 200 E0... 002000 203 0000E09000 22 000 0000000000 20.0.0000. _0<
moflwmé o m N.N m.n 0.6. 02.05.00 0.0.0.0 000000500 030mg? .0lmvonvm
202
00.0000 0 0 0..- 0.0. 0.0 00: 000.0.00000..00 0.90.0 0:00.000 000000005 00.000000
000030me
00-0000 0 0 0. .0. 0.00. 0..- 0.00 0.0.90 0.000 .000 0.90000 90050 000000.05 00.000000
00.0000 0 . 0.0. 0.0- 0.0 0.0: 0.0.90 00090300000002.0000 30000.05 01.00.00
00-0000 0 0 0.0. 0.0- 0.0. 0.0.. 2.0505. 0000: 000000.05 00:0.000000
00.0000 0 0 0.- 0.0. 0.0 0.00 00000 02.0.00 000000.05 00.000000
00-0000 0 0 0.0- 0.0- 0..- 050.00 2.020 0000000000005 2:000 000000005 0.00000
0.00000 . . 0.0. 0..- ..0- 0:00.50 000000002020008000090020290 000000.05 00.000000
0000090020
00.0000 0 . 0.0- 0.0. 0..- 0000.50 0000:0000-2900:00on0 02.050 000000.05 00..-000000
0000..
00-0000 0 0 0... 0.0. 0..- 00009020 0.0.00 08005.000009850003009020 0000.025 00.000000
00.0000 0 0 0..- 0.0. 0.. 90.000098 00050. 002200; 00820 000000005 00.000000
00-0000 0 . 0...- N0. 0.. 20.02028 00.251050000000000 00800 000000005 00.0..000
00.000. 0 0 0.0. «0- 0.0 20.000098 0050. 000200.. 00820 000000005 00.0.0000
00-0.0.0 0 0 0.0. 0.0- 0.0 20.000098 ...0500. 00000200000000 02.000 0000.002 0.00000
00.0000 0 . 0.0- 0.0. 0.0 20.020200 10.00.000.900; 00820 000000.05 0.0.0.00
00.0000 0 0 0..- 0.0. ..0. 0.00 0550 ..000000000090200 20:...0020 00.0.0005 0.000000
0.00.
00.000. 0 . 0.0. 0.0- .. .- 0.00 00.50 000900.. .000-00000020000 0000.0; 000000005 001000.00
00.000. 0 . 0.0. 0..- 0.0 0.00 00.50 0050. 00000020000 0.0020; 000000005 0.00000
0000
00.0000 0 0 ..0. N0. 0.. 0.00 8.50 055.00.000.00. 00000090200 0000.0 000000005 00.0.0000
00-0000 0 . 0.0- 0..- ..0 0.00 000:0 00800000035052 0520.805805on 000000.05 0.000000
00.000.. 0 . 0.0. 0..- 0.0 0.00 00.60 0.000. 008000.200 0.0020; 000000.05 00.000000
00-0000 0 . 0.0. 0..- ..0- 0.00 00.50 0000.20.02.32 00.50000500000000 000000.05 0:000.00
20000000003
0:_0>.Q E00000: 5: 0000 009 00w 5 0_0-..0:m 00.00.0000. .90 .00 000.0
<>OZ< 060000.070. 00.0020xm 000000 0_00..m><
mkzmzmmaxm 30m DZ< m-FSQ wI-F I-_-Om Z_ man-réwnim... >>O-._ >m QwhSDmeigOD whmm mmOmn. .F.n. m._m<-_.
.... X_Dzmn_n_<
203
vo-Mmmd
mo-va.v
vo-wmmfi
mo-mwmé
mo-MVmN
wo-mwNN
vo-www. F
vo-wmmd
mo-w Fm.m
vo-www.m
mom—mu. F
mo-mwNN
0..-Mood
mo-Nwoé
No-mhwd
vo-mmoK
mo-wh F .m
mo-Mnmfi
vo-vad
mo-wmo. F
no-mvm. F
vo-m Fm...”
no-wmm. F
mo-Mom. F
mo-Mmm. F
mo-m Fm. F
mo-va. F
mo-me. F
OOOOOO
OOO
‘- OOOOO
FOOOO
OFOONPOF
NNNNF’N
FN
N PFNNN '-
NFNNN
NNNNFPFF
F.N-
v.7
m.N-
md
QN-
m.N-
N.N-
m."-
m.N-
m. F-
o. F-
m.m-
N.N-
c.0-
NF-
F.N-
1N-
m.N-
of.
v.0-
Warw-
Env-
Emm-
fin-
n. F-
QN-
m. F-
m.N-
o.”-
o.”-
w.”-
«.m-
n.”-
mi-
0.0..
N.N-
n.”-
m.N-
WY
«.m-
m.”-
m.N-
N6-
«.0-
En-
od-
m.N-
». F. F-
n...-
md F-
0.?-
N.N-
m.N-
v.7
”.7
0.?-
md
F. F-
od-
ad
ad
NF
N. F-
9d-
N. F-
N. F-
F.F
od-
N. F.-
c.0-
N. F-
N.F
N. F-
N. F-
$.0-
od-
m.F-
md-
md-
F.0-
F.0-
F.o-
F. F-
0.F-
2005000
6020000
b02800
bmncooom
b02800
b02800
60.60000
30.60000
23:80.0
b02800
0600:0000
b02800
b02800
60.60000
0.0030000
6005000
b00500...
b02800
5000...:
06:
0.0..
0.0..
0.0..
0.0..
0.0..
0.0..
0.0..
0.0..
2.0.0.
0009. 0:0 00905506020000.0210.
02.0.2. .mmexo 0.00.0000...
0090.29.30.05: \_>0Em::_0>xo.0>:-Z
:00005500-2. 0000. 00.0.0806
mmo0a>o .0 .0080... .0000. 02.0.5030
0.....0. 000.. 059000.00
000000.00.
00.0550 0.06.6.0>:6-0.0Em.:_m>60_>6.
00.06.00026 6.606
m.«-m.>x0.0>:-m-0:0:m>mc 0. 6:66
0.....0.
000.0:00.600:000.0>:00 50.6.6.6
70006200. 06:60.. 0. .0_.E.0
000.0:00. 05:60.. 03.050
0006.25 _>Em.:_m-0EEmm
€000.55. 0.....0. 0.0.0.0 0.0000. 6.8.
0.50.5.
50.0.0 26.0. 00063960230630:
Fmao
000.0:00. 0.00:0.00.>:00x0-NF 0. .0_.E.0
omva 9.6.50.3 0>_.m.:0
02.050 .000-06:00. 08:60..
50.0.: 00.060000 0006.6
50.0.: 0006.0»:6000: ...0E-0m00
02.0.00 00005000 00.--.0000.
00059.0 0.0600206 35.600.00.200
AN. Faowv 0020060005.: 0:06:00
AF. Faowv 000:00>x00:0:. 0:06:00
50.0.0 0006.25.38: EOE-.500
0000_x0-_>:.0E-m:0_m-0 6.0.0 02.050
6.05.. 05650300020005 0. .0_.E.0
0000: 02.0.2.
50.0.0 56:9. 06: 02.0.:0
000000005
00. .00005
000000005
000.00005
0.0000005
0.0000005
0000000.<
0.0000005
0000.00.<
000.000.<
0000000.<
0000000.<
000000.05
000000.05
000000..<
0000.0..<
0000.0.05
000000.05
0000.00...
0000000.<
0000000.<
00.0000.<
00.000005
0003000..
000000005
0000000.<
000000005
0000.002
.01000000
.0-.00000
.0-000000
.01000000
.0-000000
.00-50000
.0H000.00
.0-000000
.0 000000
.01000000
001000000
.0-000000
001000000
.0I00.000
.mlmmmmmw
.0-000000
.0-000000
.0-000.00
.0-000000
.0-000000
.0-000000
.0-000000
.0-000000
.0..00.000
.01000000
.0-000000
...-000000
.01000000
204
mo:m Fwd
woflmmd
mouwmn. _‘
mo:Mmm.m
Nomamd
vo:m :#
houwm F .N
mouwm F .m
Venmhod
moflmvN
noflmmd
ooflwwd
moflmod
moflwm. _.
mo:wmm.v
moflou. —
mafia P N
moflmfim
moflmwé
vaumgd
XYMQO
mevmd
mauwmmd
Nomvm. F
0000000?
0
OFOO P‘- CO
00‘-
FNNNNFNN
N
NPFN 6101
PP
w. T
No:
ad.
... ....
v.0:
m.N:
MN:
m.”-
m.N:
v.0.
5.0.
0.0..
QM.
QM:
0N-
N.N:
9m.
ad r.
9m.
h. T
ad.
ad:
m.N:
v. w:
v.0: N. 7
m6. wé
v.~: 0.0:
wen. m...
m.N. md
QM: v.0
0.0: ...o:
97 md
m.N... No
.8: oé
1.... F.F
9m- No:
5.7 md
v.7 Nd:
c6: N.T
fin. 9.0:
06.. m.N:
Nd... v.0:
v.7 md:
m.N. v.7
adv. Pd
m6- md
9n: md:
v4”: v. F:
95966
mc__mcm_m
mc__mca_m
95956
05.9.9.0.
9539.0.
mc__mcm_m
uémcgm
cozoaumcmb
.956
3.3805 __E£ 5295. x23
85¢ 5295 3.2.33.8
2.88 $95. 5295
fixas: $95. 5205 EumzuomémmOgE
>__E£ omflmcnmoca Bow 292a
mmmfizamoca Rom 0.93 9:53
smugmmfiv
.2939 3:88.. EmcanooéZ
5205020359..
cotéssgfimctmm 5.5829: 02825
9593 .mmem Bag 9.2.3
“Swag 563 323.0.
8mg 358 53389; EN.
>__E£ £905 59.: 9.8 8540me
2.89 <
5:53 883 cozatomcm: 3659.52.00
38:69 3:23:0ng o. .m__E_m
562880 3:25:85:
0228320535» 028:5
56$ agatowcmb $53 952
22:3 520.6 .69.: 2.8 858.80
>__E£ 590.5 22=E£ ml:
8?. 089500er 9:93
3.83829: 3: .6 EB :o.amo.E:EEoo 8323885
88892
8882 £838
8892 6:888
8333 5:888
8:382 3:888
03882 5:558
8832 5:888
o8892 5:588
8522 a 888
22182 6:888
8832 5:528
3832 5:888
88%.2 6:888
:33ng new 5389 «it
8.9332 @888
82892 a 888
38.92 “mummmmeu
898392 a 888
88882 fim8$8
88°82 5:858
08832 5:888
08882 a 258
8582 EH538
88822 5:888
88322 a 838
:ocmtlomlcfih
filmmmmvw
205
moflm P. w
moflnvfi
moflmmd
oomwn. r
ooflm _. .m
moumood
mofimmd
veflomd
mafiafiw
No:wNo.m
venmvod
came;
00¢de
hay-wand
houmwvé
hofimoé
mo:m§.m
noflmmd
09m Pod
moflmvé
$0.98.».
moflom. P
vauwovd
moflmm...
mouwo P. w
neuwwwd
V00
0 FOOFOF
O
ONOOOFO
FOOOOO
FF
F
NFFNNF
N
PFNNPNN
FFNI-v-N
0.”:
v. P r-
m6.
mi.
n.0-
vé
m. T.
5.”:
m.N:
Wm-
QT
oN-
0.0..
9.x...
m. 7
9m:
WT
ad.
5. T
N6.
m.»-
...m-
97
o.”-
m.N:
5.9 0.0
0.0.. ed:
NY m6:
N..."- No:
F.N: od-
rd. F.F
a.”- 06
ed. od-
vd. v.0:
fin. No
0.7 $6:
0.”. rd:
Md. 8o
Hm: F.F:
5.7 0.9:
r.”- 06
N.N. 0.9:
m6. m6:
0N- .mo:
ad. 0.0:
«6. 0.0:
v.5. v.0:
ndN. md:
QT m6:
m.N- o.o
9n. md
toamcmb .283
toamcwb 883
toamcmb .283
toawcmb .983
tonmcmb .283
88:8
.8888
88:8.
88:8
toamcmb
toawcg
8.888..
8.888.
8.858828
$855888
$855888
m_8£c>8§._a
$8558.05
$855885
m_8£c>885a
toamcmb 882m
toamcmb 880.8
coamxc c098
8296 c088
:0.me: c098
8:888
Ga 888
2835 mcEnEoE 8.8.3 c.8828
3558 520.5
0.835 .8308: 5.6838 9:83
382v 8:888 8888.8
289$ 8:888 888898
58:: 8:888 8888.8
8:888: 8288096 9:93
>__E£ 520.5 .350 ES).
285 5888 $0“:
toamcmb 83889.0 28:88:88.;
0888838 28888888036
2582.9 888 mm 8888828
28 98.8598 5ch 85892
88.8 588th
8.88:8 C888 888 88 £8225
588983
5205 0v. m = E98888
5888 888.88 38925 __ 8a an.
588:8
88:83
__ gcanam 8E8 888.. _ 628888
2.58 5888.5
880:8. 98.89289 8393
2.128 08.628 2:028
C =00
=95 =00
=03 =00
=03 =00
=95 =00
=03 =00
..000. <20
5.805.680
00:900
00:00.00
00:900
0.020990
0.020990
0.020990
0.020990
05000090
590.0
8.80.995
590.0
050.9 590.0
@559 590.0
@559 590.0
85.85.0000. 800.083.00.00
800m: 02.900 .:.0:00x0
000380080
3ng 50:00x0
0002 90800
$900. 2.0.0. 000580 08.2.00
.5003 :.90.0::900_0do500.0
85002 . 0005.30 08.2.00 o. 8.8.0
0099005800
000:00:_d:m. T900 0. .0_.E.0
0.000.028.0300
0000.08.90 0:.:000_>£0E:m:N:0 d:..0d:_:00::...:0.::
0020.0? 02.930
3.0.9 02.”: 590.0 80:: 0:.N
590.0 0.00:0 .00:
590.0 0.00:0 .00: :95 02.930
00:0 0. .0_.E.0 590.0 95.0..
808002 .0H8800
28802 0:08.000
8000002 0:888
888:2 0:888
8.80:2 0:858
8008.2 0:888
888:2 .0 8800
888:2 002000
080092 0:08.00
888.2 0:288
888:2 .0 888
0800:0003 .9280
808002 @0980
888:2 .0 003.00
88 82 0:80.00
20.8002 0:80.00
888:2 0:04.880
“00.90.. 0.00..“
80009.2 .0H§00~
88802 0:888
888:2 0:09.000
888:2 .0 :88
80.802 0:00.000
8000002 09.800
20.0002 0:08.000
98802 0:828
888:2 .0 .850
207
oo:Mmm.m
ocflwo. P
NQMQON
moflmwd
moflwmd
moflmm. w
mofl Pod
vomwué
mo:Mmm.m
moflm F.F
XYmmmN
moflno. _‘
mo:m Exm
oomzé
mofiov. w
mo:m Ed
moflmmfi
XYMmmé
moflmmd
menmwn. F
mofimmé
moflmm. P
m?w3.N
gummd
veammoé
momm v .N
mom—cad
XYMmmN
oofion
OOOO
OOOOOOONOO
FOOOOOOOO
O
v-OOOO
NNFFFNI—NFN
NNF’NFPFFF
P
Nv-v-NN
v.9 N.T v.0:
3.3... $67 N.T
v.7 m.N: ad:
N.T ad: ad
N.N: 3.”. ed:
0.0. 5m: od
Eo- wd. 0.F
o...”- md: 0.0
QT men: ad:
«.0: En. od
QT m.N: md
0.9: 9.2. M.F-
F.N- Q”. md
fin. QT .....-
«.7 Md. N.T
”.7 5m: ed
0.? m4. «.0
ed. QM: 0.0
o.”- v.n. ad
ad. mdN: md
5.0: m6. No-
v.7 N.N. Nd:
ed: 9v. Rd:
o.m- n6. md-
N.N: N.N: mé
QT m.N. 0.0
air- m.N—... vé
mi. m.N: o.o
N..- Ya- N.T
5.65.5
5.65.5
565::
:265.::
565::
:26:x::
:26:x::
565E:
:>6:x::
:26:x::
:26:x::
565::
:265.::
:26:x::
5.65::
5.65::
:26:x::
:26:x::
5.65::
:26:x::
:265.::
5.65::
:26:x::
@5on83
5:069
65:92::
65:92::
:85 =8
=85 =8
=85 =8
580:: 83998
589: 889:8
589: 83998
589: 839:8
6852-589: mmfiofi 938mm9
256% 589.: @0806 938099
589: 9... .. mEEmm 556:8
589: 0859-558:
589: 80:65:33:
582: x85 :28: 938::
529.: 2.63 mz§ 5:8:
589.: 8359-532.
529: 5:55: 82.5. :38:
589: x85 6.6:: 938::
5:253
089. cc: 3893:? Emu:m:muds_<
582: @5652 3:585: 938::
589: 0558595550: .56.
25$ :55. 555.. 25882
589: 055:8: .8085
529: 9.5.3596
8359-589: 68:05-5x:m
589.: :03 @596
589: @565: 3:585:
33.52825: :55: w:
22:2 55:55:. =. E39952:
5555 :39 um:
3..me 555283555:
38:35:53 :mo:_mo_>x.ou:m 938::
39. 880m: 938::
8:292 5:828
88.92 5:85.58
8832.: 5:888
8:592 5:888
5030.5 550:ch
8o382 5:888
Q8882 58:88.8
85 :52 5:888
8.282 5:288
“.8832 5:888
8:892 5:888
88 .92 5:888
c8882 5:888
8:882 5:888
8.882 5:888
3832 5:888
one: 352 5:m:~8$~
88582 5:388
5:888
88892 5:858
853.92 5:888
8852 5:838
88592 5:888
8888 5:888
30.: SSOSED
8:892 5:888
tOtQNEmOKO 38230
8833 5:888
88 .92 5:858
8833 5:888
883.52 5:388
o88m3< 5:238
208
30$me
moflmmd
momnoé
moflmm. P
mo:wv~..m
noflmm. F
vo:m EON
oofivmd
mo:woo.N
vo:wm w. e
Sum 53
menwwmd
mo:mmm.m
99mg. _.
vo:m 5.0
awn? F
mo.w 5:0.
mo:wp F.N
mQan. _‘
moflmmd
vo:m F33
mofiofiw
XYMQN. w
oo:va.m
vo:who.m
women. P
woflmm. v
moflmfiv
moflmmé
ooflm F.N
oo:m~©m
vo:wm©.N
moflom. r
mofimfim
v-OV-OF!-OOOOOFOOOOOOOOONOOOOOOOOFCOO
FFFNFNPNNFNNNNNNNNFFNNFNNNNPPNNNFP
3.9 r. ...N:
md: m6:
N.N: Wm.
N.N: od-
m.m: ad.-
—..u1 1N:
m.N. N.N:
m.N: «.9.
5o. ad.
N.N: m.N.
o. F: fin.
1N: m.N.
m.N: in.
o.”- o.»-
m.mo. mum:
rd. h. P:
Q? 66.
3N: 0.7
m. F: 3.!
m. P: m.N.
N.N: v.7
F.N: m6.
md: Qm:
0.«: ad.
0.3: m.N:
0.0: No.
m.N: «.7
Qm: ad.
3N: m.”
eéN. rd.
N.N: N6.
3.? Wm:
m.N- m.N.
3.”- ON:
No:
«.0:
0.0:
...:
...o:
N. F:
06:
3.0:
35
:6:
od
...0:
rd:
m. P:
od
F. r:
v. w:
0.0
0.0..
3.0
Nd:
N. T
m. F:
36..
No:
5...
ed:
N. r:
m. T
No:
N. F:
No
0.0
ed:
565::
565::
5.65::
965::
565::
565::
565::
565::
565::
565::
65::
565::
5535::
5505::
565::
5.65::
565::
565::
565::
565::
565::
565::
565::
565::
565::
565::
565::
565::
5505::
565::
5535::
565::
565::
565::
589: 3033::8
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 8030,3093
589: 303998
589: 303998
589: 3030.68
589: 303998
589: 303998
599: 303998
589: 303998
589: 303998
589: 303998
589: 303998
589: 3039:x0
589: 303998
589: 303998
589: 303998
589: 8030.309:
589: 303998
589: 303998
::.v~::gq
::::F:::q
::~:_:::2
::~:.:::2
:::FP::52
:8982
:.:~::::2
::P~::::2
::~F::::2
::v:¢:~:q
9 5:82
:mvnmmmg2
::¢~::~gq
8:882
88:82
oommmmmgq
8:882
85:82
88:82
::::::352
::F:::ng
:~:¢~:rgq
9892
8:892
88:92
88:92
:ommmmvg2
8:892
:-~::F:2
88:92
:~::::P:q
88892
:::F~:F:2
:mmpmmrgg
5:888
5:888
5:888
5:888
5:888
593:8
5:888
5:858
5:888
5:888
5:888
5:888
:5:~m:m:~
5:888
5:5:388
.5:~m:~:~
5:888
5:888
5:588
5:888
5:988
5:888
5:88:38
:5:~m:mmm
.5::P3::w
:5::~:m:w
35::anmm
.5:m::::~
.5:::F~:~
5:5:888
5:598
5:858
5:888
5:888
209
:02: 90 AN 880:0 03050.2 3:0 0.0.8.0.). 000. 0.38:0 <>OZ<
E9. 020?: 0:. 3:0 ..:_._3:9. 0:. .0 A:0...x03:.\m0o:0:u002390.0890.50:05:08.;325 5098:: 9.. 00:063. 0:. 5 E009:
05050.0 0102.10 .0 .0:E:: 0:. ..N 850:0. 0.0208 05.8020 85:990.: 59. 8:00:05 :000 .0 30.0 :53998 0: .. 8:05.898
0.305 3:00 3:0 ..00 0:. :.o: 5 0230:0938: 30.8.0. 003 .00 0:9: 0:. :55; .0 00.5. 800.35 3.0: 5 00:_0> 8:05.898 ..00 3:0
8.30.: 3:00. 0.0.: 0:. .0 00.05.33 :.0: 5 0.5. :000 .0 00:_0> 00:05: 3.8 86.23:. 0:. :9. 38050.0: 903 00:_0> 00:05: 3.0. :005 0.F
..55.62::258658.5085585 0%,. :5 :55.3.832960933885 00.. 55.60.866.5033885 m2.
.¢58.x:.05>tm.333§:..£ x3052? .5 30339: 0.03 E9. 30>:03 903 8:05:930 0.9 3:0 .0:o..0.o::0 905.83. 5.4
8.0.... : . ..n. N.N- 0.: :26ch 522: .5898: :88802 5:888
808.: : N ...N. :.:. .6. .5655 5066 688.96 85802 5:888
8058 : N ...- :.:. m..- E655 529: 8.0.8.96 888:2 5:888
8-08.: : . :.:- :.n. :.: 565:: 522: 688.80 88802 5:888
8.088 : N m.N- an. :.:. 865.5 :56: 8898: 8:802 5:858
8.0N... : N ...: :.:? 5:. .5658 506.: 808.80 8.882 5:888
8.08.0 : . m.N- ..N- :.: c3658 .56.: 88990 8:882 5:288
8.088 : N :..- :.:. :.: E655 506.: 88990 88.82 5:888
8.08... : N «.... m... m..- E658 529: 8:856 :8882 5:888
8-08.: . . m.N- an. :.: 565.5 529: 85856 88:82 5:888
8.08.. . . n... :.:. 0:. E658 529: 30:85.0 8:882 5:888
8.08... : . :.:. «...... N..- :26ch 50.9: 88290 8:882 5:888
8.08.. : N N.N. :.v. :.: 565:: 50.9: 88.96 8:882 5:888
8-08.. : . 0... :9. 0.: 565:: 529.: 8828: 8892 5:888
8.08... : N m.N- 0.0. :.: 86:5: 50.9: 8898: 8:892 5:858
8.088 : . ...... :.:. .6. E658 522: 8.0.8536 88.9.2 5::98N
8-088 : N :.: 0.... :.:- c2658 :56: 525568: 88.92 5:888
8058 : . :.:. ...: :.:. 86:5: 50.9: 6885.8 88.92 5:888
3.08.0 : . 0.? :.: :.: 865:: £06.: 88990 :8882 5:888
8.08.: : . :.:. :.N- 0.: 86:5: 529: 885:6 8.89.2 5:888
3.088 : . 0.0. 0.0. 5:. 865.8 506.6 808.90 9:882 5:88
8.08.: : . ..m. ...N- :.:. 565.8 50.9.: 8898.... 8:882 5:858
«:-0N:.N : . mm. .0. :.:- 565.8 599: 88990 :8882 5:898
8.08.: : . ..n. ...... :.:- :26ch 229: 8828: 88:82 5:888
808.. : N :.:- N0- 5... :26ch 50.9: 8898: 9:882 5:888
210
o m.N ad 5283. FFF8 83 39625 $53 08382 .mumF meN
mmEmu—mcflingmE
F 3 3: $283 mpmsgvméficgooecm $.93 8mNNmNF< anomNmoN
mmEmchmbSmooam
o m x m.N m.N 328% 22895388 9:33 883% .muNmmomN
30mg 2% 86.9.85823
F m.N 3, 528mm 3:58 2mm 856 25885.me oNoNFmFZ .muNNVNmN
F N x 3 3 $288 mmmeocheim82a $823.5 9 5.53 oNvFomFZ 5:328
359$
F m x N.N 3 ca: omegmcegig 2:28:32a 9553 858% .mnmmmmVN
o 3 m.N 29. seen 9.: - $988. ao<.§8§-98 28mm? .mnmnomtmN
N m x N.NNN F.F.mN 29. 32935389. 59:...on mafia ommVNmNz 3:358
2355an 3 08593 00$ v mmmfigm
N N.N m.N 225a mFNSxoe$Fbcmqeaoa>oosevF oFmNNmNZ 510208
F N.N m.N 29253.8 33% 52% SQNRZ .mumNSFN
F m x N.N m.N 282598 cwnmv _ $2.26 $903 H.888? .muommmVN
N N. FF m.N 29358.8 $93 .392ng 92323.3222 883m? 51538
F 3 N.N 29.2598 mwemeaoéémsogmmdo: 9:93 833g .mumNEoN
o 3 m.N 22qu28 9553 635% 658.8 23$sz 51°3va
o m.N on 293598 23$ 593 F $83 52% 82:92 .mnEFNoN
m m x o. FNF QNB 29358.8 $22? .8383 9553 938sz .mlF FmvoN
o 3 F.F. 293598 225 mmeemcgamosgmm oNFmomFZ .mummmEN
FNmomn:
F N x on m.N gum 8:5 $922? 9m_>xoemo.m.ms_o§a.F-s_8 28mm? .mumthmN
33596 99556
c m x QmF mdF Eom oEEm 2 .m__E_mv mmmcmm>x00coE mEEScooéSm: onmwmmzxx file 53
Eméonmwmme
Emmbma: 9: wme 96:0ng vwm mm. 295.5. 529053 _0< .mw 89a
950293 commend
you
Nlmuummm
29me”..me— Numo O._. mmZOawwm Z. thfizwmmdz mhmm memn. .vd m.._m<._.
0 502mmm<
211
NO
P
O‘-
FFNO
ONOP
N
F
(‘0
(00')
X
XX
méw md
mi 0.«
Q9 m.N
Qm Na
Na m.N
m4. m.N
mKow osm.‘
Em Qm
Qm md
m.N mé
mé m6
Wm o.m
mdw on
Em 0K
Wm Nm
m.m_. odw
m6 m.N
Qm m4.
m.N 0m
md Em
Wm m.m
o.m m.m
8.6”: 558885 .20..»
0.00550 =E£ 50.0.5 A003 1009 .0950 SN
635
500556 __E£ 5905 A003 NINOV .mmcc 05~
0859?. «.sz seen 25$ 585 20 63 0250200
0858» <25: 8.925 .920 8885. case. Nn_<
500550 :93
5205
Emncoomm 9.: - 002080350 6500.0 30.0050
mmemchEimocEmE
b00503 00_moo:_m.m-c_0_cm>00£cmlmmocEmE no:
35.8.58
bmucoomw 5063 9.: mmm5Emmcmh 05005
Emucoomw 000.ng 05500.25 5205 0>:93
bmvcoomm omva 0:50:02? 0>:93
8:82
08382
838.3
8.0892
8FmNmz<
oFENms<
83%:
88.082
88:82
88.82
88ng
088sz
8.08qu
853E
8.0392
888.82
89082
8N8m3<
08882
88va2
80882
80382
0050300200 E: .6 0:0 zozmofiaEEoo 0043:0825
.NHNmEVN
Fm FFquN
FaucmoFmN
.mumFNmmN
.N NNnmmN
.mHNN8mN
a 89.8
FannmsFmN
.mlnNmNmN
.wnvammN
.mleomVN
FmIFNmmmN
FmsFanmN
lexomeN
“muosnomN
KIN”. _. mew
000350000:
lehnmnvm
lenummmm
umlmlmhwmmm
“mHNvamN
.mlmmmFmN
.m «mommN
212
P
:- v-ON ‘- NNF
F
For-O
(0000')
F)
XXX
Nd
m.N
N.m
m.N
m.N
m.N
Nd
o.m
m6
Q:
9m
Nd
o5.
m.N
m.N
od
0m
m.N
m.N
Qm
0.:
0.9
m.N
Nam
m6
0.0..
0.«
m.m
Em
N6
N6
Q:
mé
Em
m0
m.N
m.N
m6
ON
m.N
m.N
m0
m4...
0.0.
0.020205
5000500.:
5205
8.00.50...
5205
050.2 5205
05.05.00.529:
00005.0
00005.0
255.. 000205 3.5000
020:0
25.20.00. 5555. 000205 0520.6
02550 .5050
.0000... 0000 0.8.0 09.
.0. 5:003 2.500 .2080. 0050.20
250 :00... 500.
00005.: 00.500020 50050000205
0.000.
5:520 +0. 052000.. 05350 ..00 05:0
5205
00005.0 5:000:02 205: 0:05:5E0c0: 0. .0_.E.0
00005.0
00005.0
00005.0
00005.0
00005.: 5000
000050 5000
00005.0 05.0.00
5000:0502
5000:0002
05.0:90
055:90
5000005.. 5:90
:00000050 5:90
05.0:90
5.250005
5205 .0505 0:05:50: 020200
5205 5:000:00 05.0.8002 025.00
00.90 .500. 0820..
00.500090 50050000205 02.200
3.023 _ 0002550 0.00 05:5
5205 2... 0000.500 2050050405020
5205 00005.0 5000 020200
85$ 00002 00.082258
300$ 700030805000 202.50
0005090250 .9505
00050. 5205 05:02:55.3 02550
000:0. 50000 025.00
020.2. .6000. 00 00002088 000.0
0 0000:050005 0.5000000500505005
00....00050. 5205 05:00.55550
0030002 0108.00
0.20.005 0105000
0:590. 003000
0000502 0 0.0000
mum.“ btm 500.000.. 530.01
00.00002 0:00:00
0000.002 0.0830
0005000. 0:280
0003002 0H5500
00000002 0:000000
0000.002 0 «00000
050005 000300
00809.4. 0 000000
0000 53¢. I0H00¢0v0
0000002.... 0 0:000.00
0200002 0 0000.0
tommcmt.
00000034. 003000
00:00.0. 0 00050
Namtm
0.8.03.0 0000000
0500002 0:00800
0800002 0:000000
0500002 0 00:00
0200000. 0.100800
213
v
P
mmFNNmoFPVC’JOMP
FOFNNPMF
CO OONNCOC’) COCO
000000000000
000')
X XXXXX X
XXXXXX
m.N Wm
0.0 m.»
oé o.v
Em m6
odw m.m—.
wam Em;
9m o6
m6 Em
Emm 5mm
adv m.NN
w. FN F. FN
m.N m.NN
#6» was
gone flaw
on Nmm
m.N m.N
m6 0d
m6 mi
Nd rd
Qm PNF
Nd 0m
Q: odw
m6 Em
... ..N 5mm
m.N m.N
m.N m.N
Wm Em
m.N o.m
5.65::
c2655
$505.5
c2655:
c2655
2505.5
:25ch
mag.»
E2533
E3533
E3525...
E35523
E25234
E35243
E35523
EquE<3
E35323
E2533
E2533
E23823
toawcmb c2620
mmcmcmu
omcmwon
owcmhmc
35th
mean
msmm
95.5w
ucm 0.5393
08m
$9.09 5555 85855
:zaévmooi 25.83
520.5 5:58:85 28 9 .m__E_m
6.5808 5555 8.0.855.
2.2531005 3&8;
520.5 canmE=oom 200 9 5.3.?
£5.09 5205 859%»
3208 c555 859on
£295 mx__-cumE:m£
”Eco
38¢
.22
2°55 E253
@2me E25%
85.00
5:60
35%: E252.
85%: E235“.
Smog E233
2E5
529:. $3: Emucanm w_wmcomo>._nEm Sm.
$233 5555 8..
5x820; 0>:93
590.5 85669 359.6 mzamuza
5305 8:823. mmmmwfi 3:92.
mmmcEcooucm mzfisa
£996 3035-592 9:33
>__E£ £205 vmufloowmm$ocmowmcmm
Noam
o. 5:86 .3 £295 uofioommméocmommcow
Ama>-8m£ $2585 5298 5.265
88585
8.885
283%
82595
82595
88.95
o 3’ 3.5
28592
28585
85385
85985
88585
28585
88:55
853%
88525
8:595
o3o~mz<
85895
23%.?
23°95
88085
85882
883?.
83535
88355
05:82
23095
“mummsmmu
.5 Pomsou
.mmomvmom
.5 omommm
.m:mw~mm~
5:3 82
~5:~m¢~o~
~5:¢o—mm~
.m:~mmm¢~
.u:~mmme~
58:33.5
~5:~mv~m~
.m:~o«~m~
5:538
5:833
.m:o.mom~
.m:ovmmm~
.m:o~mmm~
5:? E8
5:838
5:238
5:838
5:383
.5:mmmoo~
5:583
5:583
5:353
2935:. .. 3th
.m:¢vm~m~
214
ONNPmeF NO
0001-0!
(‘0
0000000000
('0?me
X
XXXXX
XXXXX
Nd ...NF
mi mm
m.N Nd
N.m miw
m.N m.N
mdh min
m.N N.m
m.N oi
m.N Wm
o.m m.N
m. 5 mi?
mi 9.0
m.N m.N
mi Nd
m.N m.m
o.m mm
m.N m.N
Em mm
oi mi
m.N Em
m.N Em
0.0m oim
m.N 0.9
N...” mi
mm 0.9.
F.Nw m4 F
gocxca
ESOCXCD
5.65::
9505.5.
9505::
5.65.5
c2653:
:30:ch
wfimfigm <20
:32 <20
92058. .539»?
cgocxca
5.29.3.3
:95 :8
=53 =8
=95 =8
=53 =8
:53 :00
=53 =8
=53 =8
=53 :8
$505.5
5505.5
5505.5
5505::
5505.5.
590.5 3.5.2.533
£205 mcficfi <20 02253
858
B >=Em¢ cowoamcflu anEw 2 2929
599a notbcfizm 02253
mNN<>I<
£295 cutééoa 2 .m__E_w
£205 5558 x09:
5205 22:8 922 5:60:
98:5 .523 fig: <20
555 225.. 52.552
6822...
5205 8035-28 068QO 2 .m__E_m
22.2 585.82%
5205 850035 23220.8
803 m 552 32.3288 E5
owfimfimczoca 2 5:86
>__E£ 3928:3092
34¢wa >__E£ £295 Emcqum
: 522183 v 22.2 8255525826
5205 mx__.¢wmu_moo:_m.flon
35>. 2903 9:83
639 385836.38
9:93 .mmmcohaomfimzoa
$208 5555 2.5855
8.022950 5205 28892:.
5555 9.: 223
v .223
83882 5:888
82182 5:888
88882 5:388
25882 5:3588
8832 5:888
8232 5:858
2832 5:888
8:892 5:888
3242983
8882 5:588
8882 5:858
52% =8 25 E52. 9 <20
08892 5:888
85892 5:888
8582 5:.588
:OtmNEm 0 23330
88582 5:888
88582 5:888
8832 5:388
88:22 5:80.88
$8852 5:888
95882 5:258
$8082 5:858
383:2 5:828
@8583 HEEEU
88592 5:888
8832 5:888
8882 5:~8$~
8832 5:888
8832 5:288
C555 924 .223
215
NPONPFOOPNOFFNPFNPMNFPNP
PO
NPFN
(000000000
com
”COMM
C000
(0000')
XXXXX
XXXX
X
X
0.«
m.N
oi
0.2
Wm
Nd
Em
oi
0.2
No
Em
m.N
0.0
o.m
m.N
m.N
o.»
0.0..
NM
...0
mi
odw
m.N
m.N
o.m
0o.
odN
mi
0.0
m.N
m.N
Em
m.N
oi
Nd
NM
m.N
0.0
o.o
oiw
Nd
oi
o.m
5.2
oi
oi
m.N
oi
i.e..
m.N
mi
No
oi
Nd
mo
Nm
9.:
mdm
Em
m.N
oi
oi
0505...:
0505...:
5505...:
5505...:
5505...:
5505...:
$505.0:
$505.0:
5505...:
0505...:
9505.5
0505...:
9505...:
0505...:
5505...:
5505...:
$505.0:
5505...:
$505.0:
$505.0:
5505...:
5505...:
0505.0:
5505...:
5505...:
0505...:
5505...:
5505...:
5505...:
5505...:
5505...:
£0.80 0000858
0.0.0.0 0000858
0.0.0.0 0000858
$0.80 0000858
0.0.80 0000858
0.0.0.0 0000858
0.0.0.0 0000858
0.0.0.0 0000858
2.0.0.0 80.8505...
0.0.0.0 0000858
50.0.0 0000858
$0.80 0000858
50.0.0 0000858
0.0.0.0 0000858
0.0.0.0 0000858
0.0.0.0 0000858
0.0.80 80.85005:
0.0.0.0 0000858
0.0.0.0 0000858
. 0.0.0.0 0000858
0.0.0.0 0000858
$0.80 0000858
50.80 0000858
0.0.0.0 0000858
5055 8.82.... 558..
c555 5.55. 020.2 5.28:
582202.
50.0.0 8.....000:0c.-0.00 0.0.0000
$0.80 0000858
50.0.0 0>.0:0008.t< E 8255 San 80.: 82.8 2m; 955533 0.9 new .wcozfiogm 65552 _0<
0 rd m6 c3052.:
_‘ v.0 Em Esocxca
F m.N Nd Esocxc:
_. F.NF me ESOSE:
529a 3255an commommz
520.6 33930 owommmmz
$205 83053 omEmmmZ
£99m ummwmaxm omwmmmmz
am mamnvm
filfitem
almouoem
“mumcmmvm
217
2:39 mmmbm...
o N.N- m.N- E529. 3:822 29% omNNommZ .mnNSSN
o F.N? N.NN- :8,“ch 5:829. om< $53 83%? EINVNEN
>=E£ 5205
o N x m.N- m.N- rage. Con: tamcgoaamaogo$283865 SFNmEZ 6:388
N an- 3. :SEE 289:8822 2223 8832 6:538
tommtmt.
F m.N- N.N- msacgm 82: seen 5382 ooNNNmz< “NISNEN
o N x m.N- an. 3.2% 81on 5905 £75385? SSENZ 6:823
towonbmtmh \m: .8 BE 2930335500 HE‘SGEQNS
o N.N- 3- 2.3553 ov 59% 9:783. 39:85 8832 EINNEVN
o N.N- 3.. $283 8.2% owm>_-m_cossm 82%.?ch oNNvommZ 518$ch
o N x m.N- m.N- $288 :mmma>0\v5:93 8332 .mnmNmNmN
o m.N- N.N- $283 9:83 .F emeamcsggmeé SSNBZ filmmSoN
o N.N- N.N- 2a.. 83: 9:93 ENVNBZ EINNSVN
o m.N- N.N- ca: 2E£$2E>m 593822-92 omomNmNZ 5:938
Ew__onflmo 2.309
O N x 3. m.N- __Eaeo_6 2.905 88278.38.833.E8520 283$ .mlmmNmmN
o m.N- m.N- 293528 mmmgmossmmémn 2833 6:3th
o N.N- to. 99258.8 :09 $5886.93 SVNmEZ .muoEmmN
o m.N- N.N- 28 052m ANwzc $2.5m EgmeaaoaogN oNomNmmZ .NINSNVN
3%
£92.83 9: mmmB 029.0an wmm mm 92.25 c8825. _0< “mm 39a
o>2<\d:5
£3.38: 9: 8533 m5 c_ 2305 3:953 mmoPmo ”E .853: m5 cam Am 5329 mfibmcm mctmuwao .mOESEmE Eot fireman:
comm No mmm_o cgmmmaxm 9F .mEmEtoaxm mfimE 9.0m ccm =8 05 Son 5 _m>m_ EofimN m .m ozmcoamm: 28 8.3m. mafia .8 AN 53ch
83 $95 9: 5E “mm 89a 9: 65 85055 5:28 96:38.. E8 9: c. ..x. :< .5505 En Avmm ucm NM: “6an was. 02 m5 5 829
@955 28 .A=5;.xoucEgasseeocfiu.«9,533 was. Em éF£2ENmBntm.3>>2\au£ xEmE>t< 3 8255 Emu Eat um>tmu 9m? macoEcgmmm 22 new .chzSOccm .EmEEmE _0<
P 3”- m.N- 565:: 599a Bummaxm 83%? .mlmNSVN
o men. 3. 565.5 52% gammaxm ommNNmmZ 5&3qu
o N.N- m.N- :26ch 5905 Bmwmaxm 883% 5:338
o N x N.N- 3”- 555:: 529a .8338? 833.3 .mumonVN
o 3- N.N- 565:: seem 83056 88%? .mnmummimN
o m.N- m.N- 555:: 5203 839%». SE33 .mntmNmN
o N.N- «.8. 565.5 59% 83056 2839‘ 6:233
o «.2. N.N- c2655 5205 8890.6 oSNommZ .muoBmmN
o m.N- 3. 565.5 5295 832%» 82.3.2 uwnmnommmNN
o N.N- 3. c3925 52% Emmeaxm SENSE 5:288
N N.N- N.N- 585:: 529a Runways ESNEZ .NISNBN
589 2305::
o 2‘. N.N- c2655 gins seen 9.25.420 286:: 9:282 .mumsamN
o 3. an- :26ch coon: P 8:928 868% new 5958 ENNNmmZ “mlmonmN
F 3:. ed. :26ch 2:5 seen :82 25mm. 883% “muooNNmN
o 3”. m.N- :26ch 52% cocégga 9:33 Samoa? 6:238
39 $50523
o m.N- 3.. 529.8% 0>:93 .322 seen .883 08392 .mugmmN
coumNEm o Kfigmo
o N x m.N- of __m;__8 :axmv 5286 82692 .mnmmNmmN
. .5 338
o 3.. m.N- :ofiosxeoc 6.59 39982555936 ommNomNZ amuwnmfimoN
F N.N- mi- 089% AN.Eon=9___-c_29a.8558 333m? .mnNmSVN
$220
0 N x N.N- new. $8qu mmziE 529a 8:928. 38% 9:93 SNBNNE 515$me
o o3- 0.». $83.0 9693 .5905 5258353 oNoonNZ auximmmNmN
o m.N- N.N- 35% :-mav F 2290. 8.29-233858 233% 51383
219
m.N m... $8558.93 50.9.. 9.59:8 52.8 3.758393... 08.882 3:888
583
m.N m.N 9.2% some. $2.. 529.. 8‘88... 8:838
qm m.N c8825. .95.» 2.55. seen 3:88. 23.29... 8839.. 5:388
N.N 9m 8.6822. .953 $2... 529.. ascoectmécm mesa oonNms< 5&8va
couoabmch E: ..m bum. cozmoEaEEoo 63:86.5
m.N N.N 285...? x8= 9.52.. 883:... 6:888
3 N... v.8 2.8 .NooSNmam. omm_>xoem8u 9.3.95 8:33... 5:888
o... m.N 28 2.8 mmmaxonaomu 29:92.. 9.6.3 S883 .deNNmmN
g
wwflo mzmcoamm. meawéwa 99:35 5:80:94 5.... .0w 39a
coammaxm .28 Ntfiummm
ZO_wmmmaxw NFHt0.>>3>5dz£ xEOE>t< >0 00030.0 0.00 50.. 002.00 0.03 2005:9000 0.0. 0:0 000320000 0.05200. .O<
vvm
V’V
X
m.N md
oé ed
mum m6
mKN odm
on 0.9
Wm m.N
o.m m.N
m.N m.N
m.N o.m
mé m.m
9v ad
9v Em
Em m...
m.N md
Q3 0N
md v.0
Em Em
ON 06
Pd _..0
m.N m.m
m.N mé
Nd Nd
m.N m.N
N.Nv ON
9v Em
5505.5.
5505.0:
5505...:
5505.5
0305...:
$505.5
$505.5
5505...:
..03 :00
=0.> =00
5505...:
0305...:
5505.5
:26ch
0265.0:
c0..00.....x200
00:22.
0000.00
0000.00
0000.00
005.00
000200
0.020205
.5032.
..000:0..
520.0 5505...:
520.0 8050509...
520.0 00000.58
520.0 80.8509»...
520.0 .c00c:00.0>.0:.0 02.050
02.050 .520... .095 0:8 satiro
520.0 00000.58
520.0 00000.58
520.0 020.0..m5c05. 02.230
2.50. 000.202.5000
:00... 2..-. 3028
:00... Q...-. 3.20..
P 3028
....Em.
Ch... 520... .20c0b 505000.20 0000:0555... 00020.0
:00... 2..-. 3020..
02.050 000.220.. 2.0.5236
2.1.00. 520... 9.55:5 0000220500200
than: F 520.0 020.0.-0_00c000500
0005550020 02.0.30
:00... 2.30..
A ...Nuon: 02.22. 520.0 500200 2.0.0 02.050
.2535 50%.. 02.050
02.230 .520... 5:002.
88082
8.882
8.882
.0H0memm
.0:.0000~
.0 .02000
888.2 0:x:~8~8
89802
8582
888:2
8892
520..
$305.23
0:888
0:828
0:828
.0:-000~
0.0. $305.23
8.882 0:888
8882 0:888
9005003403500
8882 0:288
8832 0:288
8882 0:888
88082 0:388
888.2 0:08.00
80:82 0:888
88082 0:808~
9882 0:888
8882 0:888
08882 0:888
8882 0:388
20882 0:888
8882
020.0. 000.5
.mlemmmmw
20.. 0:0 0500000.... 520$
02.220 ..2000.0002888029220002980000:.m 00309.2.
0.20.6.0 0520... .20000. .c00c0008mcoh omomommud. .0I0INRomN
5.08:0...
0:838
221
.565 m_ AN ..mfimcov m_m>_mcm octmuwao .moEEEmE E0: atomcmb
comm ho mmm_o 56.35%. mg .mEmEtmaxm 98E 9.0m ucm :8 m5 Eon c_ 65. Sofimd m am @2283. Boo 8.82 9.63 .2 Am .2930 $3
mtmuto 9: .9: “mm 805 9.: 65 8.86:. 5228 9.8039 28 9: E ..x‘- :< .5505 9m 675a new $93 “5an 3:: 02 m5 5 mm:_m>
mmcmfi so“. .A=5:x853Eméaasfimm.8.23:5 was. new .cEE§~m33m_o.a_«§§u§5 mo: .35.gaoosewggég
222
N.N- m.N- ransom... 02.8.... .3326 .8223 388. SNommNZ 61328
N x m.N- ...m- 528% 83. 2.9688 3.9.... 8839.... .mnmmmmfi
m.N- N.N- $9.83 8....392... 2298.98 2339... sigma
. x N.N- 3. 528% 02.9.... .mmmpxo 22.8%... 8.38.... .mIFNooVN
Nd- Wm- Emucoomm £905 9.: magic mEEm .maaoo omwmpmvz .mlwlmmmvmm
9:83.. .3338
0v. m.N- Emccoomm 00$ mmmExo 23.6.3.8.ancmn2aofi>oosEmé 8339‘ filmvmmom
m.N- 3. 5.2.83 9.5.... .3988. 29:8... 8.63.2 .mlmaNoN
9N- m.N. $289. :2... 652.25 .Emsse 52°... 8.59....» =8 88.82 .NINNNBN
m.N- 3. $9.83 3:... $9322.35... _o.m....8o..m...emm 22692 .mnmNmNoN
N x N.N- N.N- $9.83 ....Em. 8E 3262.... oENNms< 6:38va
3. 3.. 89E... v 82...... SNNNRZ .mqummeN
m.N- m.N- $8.... 5...... 58.85.... 2.2.56-8: Emma 8833 6:888
N.N- m.N- 2.... .59.. P 82...? 50.3899...” 0895... 20m Em. ON. 892 .muonEN
N.N- .....- 2.... ....Em. $3.3m <8-_..omo.9_-m.3 85.92 .muoszN
N x 0.2- no. 2.... 89:58.. 529.. ......8 ...om $236 9.5.... 883:... 5:383
. m.N. m.N- 2.... .59.. F 32...... 4.8.3829...” $88... .28 En. 8308:. 5:583
m.N- N.N- 2.... ....Em. $2.5m 4.8.58.9.-98 ommmNmNZ 6:938
m... hm- 2.... 529.. $2935.32... 52.5.80 omomNmz< 61833
N x N.N- m.N- 28238.8 N ....Em. 329.2... 389.... omNNomE< .mutmmmN
an- m.N- 99328.8 262.... .ommco.=.om.mm>.8 88.82 .muNzomN
m.N- c... 29358.8 529.. m 2.5... 399...... 389.5 05282 .mnogNmN
m.N- 3.. 222.598 32......“ 08.25 853m... .mumflNmN
no. of 92.358 3.2.... 685...... 6.3m Sagas... 5:323
3. 3. 999.528 02.9.... .. 72d. «858.358 6.2%... 8233... .mnmmmNmN
3- ..N. v.8 2...... Em... 892.8... 2.58.323 3832.. .mnmtmmN
83%
mwm_o 96:83. 3.9% 99a 22.95 c3285.. 5.4 “mm 82a
8.39%. ...oo Ntfinwmm
ZO_wmmmn_xw NFCQN O._. wszawwm Z_ DMHSDOMKiEOD mem memn. .2. w._m<.r
... x_ozmn_n_<
223
COCO
Q..?
mé.
0m-
m.N-
0.?
9m-
0m-
0.9-
m4».
Wm-
Nd-
Yam-
m.N-
méw-
m.N-
m.N-
m.N-
5mm-
m.N-
m.N-
Q....-
We?
m.N-
Wm-
Em-
m.N-
Em-
0v.
m.N-
Em-
Em-
m.N-
0.7
m.N-
0.7
9m-
9m-
OK-
0..?
mdm-
Nm-
mum-
Wm-
m.N-
Em-
Cd.
0.7
0v.
m.NN-
m.N-
m4...
m.N-
m4?
m.N-
0v.
m.m-
.5029.
«.0025...
.535...
.5029.
toamcmb
0.3558550
530.580..
5.3.5.50.
3.9.0
mc._mcm.w
ac._mcm.m
9.3.5....
05.0.57,
05.0.66
5.83020... .957.
20303020.. Ram...
m.mo.....>m m <21...
m.m0......>w 2.sz
m.mm...c>m w w <21...
$35.56 xon.momu 0.92.8
88282
880.82
8mmN82
8.8.92
8.2.92
288.2
08.8.... 22.89.888.328. 88022
>_.Em.. 03.230585 0v.._-....:0...o_mo
2.8m. mmfimcamoca 0.00 293..
....Em. 0.6:... 50.0...
0929.03.23.00533 .0..w0c._>0..m..qm0..a-w
50.0.0 >_.Em.. ommc... 50.0...
58. 9.88.8 $9.... 8...... 3......88. mm.
50.0... 53008.00 02.82.
8.832
888.2
888.2
888.2
888......
9.. . .92
80882
.mlnm..mN
.mnmmv.VN
.muwmummN
.mnsnmNmN
.muoo.mmN
town—lat.
.ml.ommmN
.mnnmmeoN
.muo.¢mmN
.mu..mmmN
Namtm
.muNmm.VN
.muhmomVN
.mnmmmoVN
.mlommNmN
.mIDFVmVN
.mIFmVNoN
.m|~.ommN
8302. 529.. 88.82.).
50.0... .mm......o...~ 02.82.
50.0... ....Em. 9.9.3.5820 022000905350
......8. 88... 31..
2.8m. 50.0... 2262. 0.2.0.5... .0030 0:
.309 m 00568520... 9.0:... 5.00.0.0 mmoEmauw
: . .95.. .28. 88:88.. .....8. ....s.
80022.. .98. 88.88.. ....8. .022.
28.3. 5%.. 8.8. 88.88..
50.0... >_.Em.. <<=xs< m>.wcoawm.-c.x:m
.90.... 5.3.89.9. 2.0.3 ...»...
2.2.3 omva 00.0.5030
50.0...
2.8m. 3905...... $80:3102385502025:
88802
....NmNmN2
98382
88032
888.2
23.82
8.882
88802
8.882
883.2
28.92
83832
888.2
00.83038. .0: ..m 0.... 00.30.53.026... 8.2.8.0....
.mnmomBN
.mlnnmmoN
.mnNmmomN
.muvmommN
.mnoomomN
.mupmonmN
.mnvmmNmN
.mumo..mN
.m:m~m.mN
.mnmvnmmN
.NIVmoooN
'00....mlto.-m.:_ E. ......
81888
8.4.8.8
224
o.m:
9m-
Em:
m.N:
m.N:
0.7
m6:
Qm:
m.N:
m.N:
mdN:
Nd:
m.N:
Em:
Nd:
F.N?
ed:
mi:
06 7
m6:
«.5 T
o.v:
0.7
m.N:
md:
Nd:
m.N:
m.N:
Pd:
m.N:
m. F T
m6:
m6:
9m:
m.N:
QM:
QT
mi.
m6:
m.N-
Em:
m. e 7
Na:
m.N-
QT
0.7
Qmm:
mi:
0m-
mép:
adv:
N.N?
Em:
m6:
Qm:
0.07
m.N:
m.N:
m.N:
F.N—V
m.N:
md:
=95 =00
=95 =00
=95 =8
=95 =0o
=95 =8
=95 =3
=95 =3
=95 =8
5505::
535055858
5.30:..ng
cozmoExouou
5.258535%
connoExofiu
cozmoExofiu
3:93
3:93
cusp—mu
9.39%
3:93
3:905
3:965
9.55.0295
"55.0205
£96905
3.056905
52505505 5995
toamcmb
toamcmb
toamcmb
toamcmb
£29m 5.2.9 $55. 2903
53¢me 939.3 66598
83mg ow5£=5m 30.2.00 9 3.3.3
82wa 5286.58 025.8.
3928.559: 503
6 2.59 935:5..5 30.2.8 2 3.55m
SICO 3958056295005 5.5023255.
85.5 3958055295055 :mo:_mo_5x
520.5 5=E9 ozmcoam9989gnon
$536.3 9:92.
@325th «£593
25:9 5905 538.936
2999 3539.8
359ng 9393
$538.53 9293
a. £09 £2555 592:3
5205 8:993: mammmfi 9:93
9:93 .336 wmz-~=b 5905 8:993. 3535
9:93 .5890 «:.: 5205 8:99me 3536
59999555 “522039322235
0>:93 .5205 5305.6 253
£205 30:55:59.5: @2593
3520.5 mctmm 3:93:33
520.5 55:9 05 333355950 mctom
0>:93 635205 «5950
5995 55:9 orw 352335598 958
39.5. 520.5
33.9 N 5205 25:9 ..mtoa.._mm:w
c555 9:39.“. 33582 531833
5=Efl 6:03:95 @933
83092 5:333
85892 5:533
853m? 5:883
o33m$< 5:m :53
25:92 5:323
2.5592 5:333
o 3892 5:333
333% 5:35.33
@525 .5 x3230
5.3832 5:533
at 332 5:933
8:582 5:583
83:32 5:833
o3 39.3 5:333
9.3892 53.9333
So3ms< 5:333
335.82 5:983
8333 5:533
23382 5:533
83392 5:5:333
2559.2 5:333
35332 33333
85332 5:533
b65309 mmth
3.385. 5:8t3
.3332 5:353
33.332 5:333
8333 5:333
8332 5::33
95. = new 3.9.3896 $991
83382 5:53.53
33392 5:25 3
8832 5:383
Awhmzv 8:829. 29:: bEEmfimE
225
.3955 _:lko:.|« cm
226
5.3- 3.5- 555.5 5555 8855.555 5339.2 5:8353
5.5. 5.? 5355.... 5955 5.5.9 5 855 89958.... 555 5.5392 5:35.83
3.55. 5.5.- :25ch 5955 85.9532 2.33552 5:8583
5.5. 5.3- 5355.5 5555 .5: 55555 53839.2 5:353
5.5- 5.3- 555...: .359 59555955555595 555559 833352 5:83.53
5.2- 5.? 5.55.5 5995 8555-555; 55955 3329.2 5:583
5.3- 5.? 5.55.5 592.. 5855-555 2 5.5.5 333532 5:53.53
5.:- 557 $55.5 5555 5.5.9 55.55.55 85392 5:8333
3.. 5.3- 5.55.5 . 80$ 5 8.55:8 558.5 .25 85559. 5333552 5:853
5.5- 5.5- 5555 592.. 85.885.858.528 8392 5:583
5.5- 5.5.- 555.5 5995 .5: 9.555 5555.2 5:583
5.5- 5.3- 525:5: 5 5955 55855-55555 9 55955 559:8 2335552 5:833
5.3- 5.5- 5355...: .559 5955595555555 9....55559 55892 5:883
5.3. 3.5- 5385: 5955 85559-555 85832 5:533
3.5- 5.5- 555.5 55.55 5 $9... 5.5.89.5 ._ 5.5.9 885.2 5:3533
5.3- 5.3- 5.55.5: 535.6. 5955 9.5-5555 855552 5:5:333
5.3- 5.3. 555.5 5.5.9 58525 3335552 5:333
5.3- 5.5- 555.5 5.5.9 855.5 . > 55 58392 5:333
5.5- 5.5. 5555 5555 559 .555. 02.5 555.5158 555.. 553 832-92 5:353
3.5- 5.5. 52555 5955 55955-5555 8882 5:35-83
5.5- 5.3. .5555: 3.59 855.. 5993 5.5.9 5995 555. 55:55. 885552 5:3383
5.... 5.5- $55.5 .559 5955595555555 55-55559 3.5532 5:893
5.3- 5.5- 555.5 5555 559 55.5555 3582 5:383
5.? 5.5. 855.5 5520 o. 5.5.5 85392 5:35.353
«.8. 5.33- 5.55% 5955 55.55555 959.5 5.58532 5:283
90.5 25502th
5.5. 5.5- 55.9.8.5 9592. .559 553.555.855.85 8355.2 5:383
3.5- 5.5- 55.9.8.5 .9593 .559 553.555.88.85 8589.2 5:3583
5.? 5....- 5555955 .5559 5.55 858552 5:833
50:59:55.6 5:53:50
5.3- 5.5- .5; .55 5559 5955 .5: 5555 8535552 5:333
3.55- 5.55. .5; .55 525.2. 58.585.555.558 58:55.? 855552 5:3533
5.5- 5.5- .5; :8 559 8998559. 583552 5:883
m.N-
m.N-
od-
m.N-
m.N-
m...-
...-N:
00.
c.0-
m...-
m.N-
m0:
Wm-
m.NN:
Qw-
«.m-
«.m-
Em-
m0:
F.N...-
Qm-
m.N-
Wm:
m0.-
0m.-
m.N-
F.N.-
m.N-
ode:
m.N-
od-
m.N.-
Em-
m.N-
m.N-
m...-
m0:
Nd-
m0.
0&-
0.0:
On.
m6.-
QM.-
m.N-
m0.
m.N-
Em-
Qw-
0.0.
m.N-
Em-
m0:
$.07
m.N-
m.N-
m.N:
9m.-
v.0:
Em.-
odw:
m.N-
ad:
0...-
En-
m.N-
m0:
m.N-
5305...:
0305...:
0305...:
..30......:
0305...:
5305...:
0305...:
0305...:
5305...:
.3053:
5305...:
5305...:
0305...:
.3053:
5305...:
c3053:
c3053:
c305...:
5305...:
0305...:
5305...:
0305...:
0305...:
0305...:
0305...:
.3053:
5305...:
5305...:
0305...:
5305...:
5305...:
..30:....:
.3053:
5305...:
...0.0.0 32.0509...
0.0.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 32.05.09...
0.0.0.0 00000.98
...0.0.0 00000.98
5.0.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 00000.98
50.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 00000.98
50.0.0 00000.98
0.0.0.0 00000.98
5.0.0.0 00000.98
0.0.0.0 00000.98
5.0.0.0 00000.98
50.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 32.05003.
50.0.0 00000.98
...0.0.0 00000.98
50.0.0 00000.98
5.0.0.0 30:05.09...
0.0.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 00000.98
0.0.0.0 00000.98
55.5555... 5:.3553
5.53.53... 5:55.53
53.5555... 5:555553
5555.9... 5:55553
553353.. 5:3553
5555555... 5:.353
55.5.53... 5:3553
55.3553... 5:55553
5535.55... 5:5..353
53.5.55... 5:..5353
555535.... 5:53.553
5.35555... 5:5.553
5.55555... 5:333
555555.... 5:553553
5555555... 5:55.53
55355.... 5:..5553
535.52.. 5:5533
553553... 5:5:3533
555555.... 5:35333
5.5..55... 5:55553
555335.... 5:35.53
5555355... 5:55.53
53.55.... 5:3553
553.55... 5:5353
5333555... 5:5.5553
555.55.... 5:5.553
5555.5..< 5:33.53
5535555... 5:3553
55.5.55... 5:35.53
53.55.... 5:333
3:555... 5:333
5553.53... 5:55553
5555553... 5:55353
53.5555... 5:55.53
227
.5505 m. AN ..mfimcov m_m>_mcm @5552". 32:99.9: E0: automcmb
:08 B wmm_o cgmmoaxm 9:. .mEoEtmaxm 98E 20.0. new :8 05 Son E .05. EQEN m am 02288. 28 8.8m. 9:2. ..8 AN .63ch $3
mtmfio 9: 6E «mm mach ms. 65 «2865 £5.00 029539 98 m5 5 ..x. :< .565 95 379a new ode“: “5an 3:: 92 m5 5 mm:_m>
85% you. .A=5;.533gassesmfimm.323:5 was. .25 .cEfi:%3§99§.§EE=5 mm: 3556985993223:
m_<._. .QEoo.xEmE>tm§32<>a=5 xEmE>t< B 325.5 Emu E0: 32.2. 295 mEmEcgmmm 20.. new .mco:m.o:cm .EmEEmE _0<
mm- m.N- 5.6ch seen 839me oomowrwéz .mlmmmvom
m.N- m.N- 565.5 22% Emmeaxm 8:582 6:833
ET. 3. 565:: 529a Bumoaxm 28$? 5:338
3. mm- :26ch 5295. memaxm 8:32 5:333
m.N- 0.«. :26ch 5205 88055 omvvmmmz .mnmfimvm
m.N- 3. $6ch 592. Emmeaxm 88.3% 6:838.
ma- 3. :26ch 5290. Emmoaxm 08892 5:888
mm- 3:- :26ch 5205 Emmoaxm Sugar? $1388
228
(a)
AT3G46080
AT3G4609O
AT3G4607O
ATSGS9820
ATBG46080
ATBG4609O
AT3G4607O
AT5659820
AT3G4608O
AT3G46090
ATBG4607O
ATSGS9820
(1))
APPENDIX K
THE BEST BLAST HITS FOR ZAT12 IN ARABIDOPSIS
‘1‘.*-‘.1..I;.:I‘~..~_:a f.;.\:II.‘ ‘.\. TILL; LU IN.‘:;:"
HPCPICGvfiFPMCOALGGHMRRHRNI'
"I. PIC IE rpmeQALeGHhaanr
* "'”:aa&I firm; I GUI1*H%UU
.‘II\I‘ .
I RSFL I ETTTV'III Knfisscm
'SFEPE 1 T TVTTLKKSSS‘
J ATSGSQBZO
l M36460?!)
AT3G46090
—— 313646080
Figure K.1. Amino acid alignment and relationship tree of the best BLAST hits for
ZAT12 in the Arabidopsis genome.
(a) The ZAT12 (At5g59820) protein sequence was used in a BLAST search against all
Arabidopsis proteins. The best BLAST hits are shown in an amino acid alignment
created with ClustalW v1.82 (add webpage). The C2H2 zinc fingers are indicated by
astericks C“). The EAR-like domain is indicated by colored circles (o), The three
best BLAST hits for ZAT12 are located one after the other on chromosome 3 and are
the only C2H2 zinc fingers in the Arabidopsis genome with this chromosomal
arrangement.
(b) A relationship tree that depicts the relative relatedness and distance of each sequence
is shown. The tree was generated by ClustalW v1.82.
229
.mIUUUOBflBdBBBOURBBGOOQdUUdefiBdBBBwUBBBUUOOdUUflUdflBdBBBOUBBBQOwwdowdwddedeehwuBBBOUQOdUOdOdUUUQOOEI.m
.mI484B¢4¢UO¢¢4000UBUUBUBB¢B¢<4UD<¢¢UUUUBOUEUBB¢B¢¢40©4¢¢UUUUBEDROBBdBfifidUQdfldUUUUBQUBUBGUUUUUUFBfldI~m
.(BUUU¢(d¢.uhfififi€A
.mIUUD@B¢B9 330:8 £523 “we 2: E 850% £ £88 2;
....mfia omv~63< 8525
599a mx__-:._m__E£ 592. $89 9102, 8852 >M";
0;
while (<>){
chomp;
my ($name,@array)=split("\n",$_);
my $sequence=join(",@array);
print uc">$name\t$sequence\n";
}
CRT_counter.pl PERL script
#l/usr/bin/perl -w
#This script takes as input a fasta sequence file in the form of “>AT1G01010 ATCTGTG. . .”, after it has
been run through the unwrap_fasta.pl script. It then counts the number of CRT/DRE elements present in
the DNA sequence and returns the AGI number followed by the number of CRT/DRE elements present.
use strict;
print "AGI (A/G)CCGAC\n";
while (<>){
chomp;
my ($acc,$seq) = split "\t";
(Sacc) = Sacc =~ />(AT[\d|\w]\w\d{5})/;
my $count=0;
while (Sseq =~ /([A|G]CCGAC)|(GTCGG[C|T])/g){
Scount++;
}
print "Sacc $count\n"
}
232
CRT_distance_counter.pl PERL script
#l/usr/bin/perl -w
#This script finds the distances between CRTs in all promoters that contain one, even overlapping ones, in
either orientation. It does not return a value if there is no CRT in that promoter. The sequences used as
input must go through unwrap_fasta.pl first.
use strict;
print "AGI\tdistance_between_CRTs\n";
while (<>){
chomp;
my ($agi,$seq) = split "\t";
#This finds all the AGI numbers and makes a list of them.
(Sagi) = Sagi =~ />(AT[\d|\w]\w\d{5})/;
#This finds all sequences between CRTs in the sequence (in both orientations) and makes an array of them.
my (@seq8)=($seq =~
/(?=(?:(?:[AIG]CCGAC)|(?:GTCGG[C|T]))(.+?)(?:(?:[AIG]CCGAC)|(?:GTCGG[C|T])))/g);
#This takes each element in the above array and determines its length. I am replacing the sequences in the
@seqs array with the length of each sequence. The foreach loop allows me to do this for each element in
the array.
foreach $_ (@seqs){
$_ = length $_;
}
#This will print out the AGI followed by the lengths of any sequences between CRTs, seperate by tabs.
print "Sagi\t",join("\t",@SeqS);
print "\n";
l
233
CRT_to_start_counter.pl PERL script
#l/usr/bin/perl -w
#This script finds the distance from the hp after the last C in (AIG)CCGAC to the end of the sequence.
When using the lkb upstream dataset from TAIR, this corresponds to the beginning to the 5' UTR. Some
genes don't have annotated UTRs, in which case the script finds the distance to the ATG. Transcripts
without annotated UTRs can be flagged manually.
use strict;
print "AGI\tdistance_to_start\n";
while (<>){
chomp;
my ($agi,$seq) = split "\t";
#This finds all the AGI numbers and makes a list of them.
(Sagi) = Sagi =~ />(AT[\d|\w]\w\d{5})/;
#This finds all sequences from the end of one CRT (starts after last "C" of (AIG)CCGAC) to the end of the
sequence (on either strand) and makes an array of them.
my (@seqs)=$seq =~ /(?=(?:[AIG]CCGAC|GTCGG[ClT])(.+))/g;
#This takes each element in the above array and determines its length. I am replacing the sequences in the
@seqs array with the length of each sequence. The foreach loop allows me to do this for each element in
the array.
foreach $_ (@seqs){
$_ = length $_;
}
#This will print out the AGI followed by the lengths of any sequences between CRTs, seperate by tabs.
print "$agi\t",join("\t",@seqs);
print "\n";
}
Motif_extractor.pl PERL script
#l/usr/bin/perl -w
#This script takes as input a fasta file that has been run through unwrap_fasta.pl. It searches for a given
element, CCGAC, and extracts the pr upstream and downstream of the element, if it is there. The script
takes the element from either strand of the DNA.
use strict;
while (<>){
chomp;
my (Sagi) = />(AT[\d|\w]\w\d{5})/;
my (@watson) = /(\w{0,4} [AlG]CCGAC\w{0,4})/g;
my (@crick) = /(\w{0,4}GTCGG[C|T]\w{0,4})/g;
my Sreverse = reverse ("@crick");
Sreverse =~ tr/ATGC/TACG/;
print "Sagi @watson $reverse\n";
}
234
LITERATURE CITED
Albrecht, V., Weinl, S., Blazevic, D., D'Angelo, C., Batistic, 0., Kolukisaoglu, U.,
Bock, R., Schulz, B., Harter, K., and Kudla, J. (2003). The calcium sensor
CBLl integrates plant responses to abiotic stresses. Plant J 36, 457-470.
Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P.,
Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C.,
Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L.,
Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M.,
Mulholland, C., Ndubaku, K, Schmidt, 1., Guzman, P., Aguilar-Henonin, L.,
Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden,
D., Zeko, A., Crosby, W.L., Berry, CC, and Ecker, JR. (2003). Genome-
wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653-657.
Artus, N.N., Uemura, M., Steponkus, P.L., Gilmour, S.J., Lin, C., and Thomashow,
M.F. (1996). Constitutive expression of the cold-regulated Arabidopsis thaliana
C 0R1 5a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl
Acad Sci U S A 93, 13404-13409.
Baker, S.S., Wilhelm, K.S., and Thomashow, M.F. (1994). The 5'-region of
Arabidopsis thaliana CORISa has cis-acting elements that confer cold-, drought-
and ABA-regulated gene expression. Plant Mol Biol 24, 701-713.
Bouchereau, A., Aziz, A., Larher, F., and Martin-Tanguy, J. (1999). Polyamines and
environmental challenges: recent development. Plant Sci 140, 103-125.
Brush, R.A., Griffith, M., and Mlynarz, A. (1994). Characterization and quantification
of intrinsic ice nucleators in winter rye (Secale cereale) leaves. Plant Physiol 104,
725-735.
Bubier, J ., and Schlappi, M. (2004). Cold induction of EARLII, a putative Arabidopsis
lipid transfer protein, is light and calcium dependent. Plant Cell Environ 27, 929-
936.
Castillo-Davis, CL, and Hartl, D.L. (2003). GeneMerge--post-genomic analysis, data
mining, and hypothesis testing. Bioinforrnatics 19, 891-892.
Chen, H., Li, P.H., and Brenner, M.L. (1983). Involvement of abscisic acid in potato
cold acclimation. Plant Physiol 100, 291-296.
Chen, J .Q., Dong, Y., Wang, Y.J., Liu, Q., Zhang, J.S., and Chen, S.Y. (2003). An
APZ/EREBP-type transcription-factor gene from rice is cold-inducible and
encodes a nuclear-localized protein. Theor Appl Genet 107, 972-979.
Chen, W., Provart, N.J., Glazebrook, J., Katagiri, F., Chang, H.S., Eulgem, T.,
Mauch, E, Luan, S., Zou, G., Whitham, S.A., Budworth, P.R., Tao, Y., Xie,
Z., Chen, X., Lam, S., Kreps, J.A., Harper, J.F., Si-Ammour, A., Mauch-
235
Mani, B., Heinlein, M., Kobayashi, K., Hohn, T., Dangl, J.L., Wang, X., and
Zhu, T. (2002). Expression profile matrix of Arabidopsis transcription factor
genes suggests their putative functions in response to environmental stresses.
Plant Cell 14, 559-574.
Cheong, Y.H., Chang, H.S., Gupta, R., Wang, X., Zhu, T., and Luan, S. (2002).
Transcriptional profiling reveals novel interactions between wounding, pathogen,
abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129, 661-
677.
Cheong, Y.H., Kim, K.N., Pandey, G.K., Gupta, R., Grant, J.J., and Luan, S. (2003).
CBLl, a calcium sensor that differentially regulates salt, drought, and cold
responses in Arabidopsis. Plant Cell 15, 1833-1845.
Chinnusamy, V., Ohta, M., Kanrar, S., Lee, B.H., Hong, X., Agarwal, M., and Zhu,
J .K. (2003). ICE]: a regulator of cold-induced transcriptome and freezing
tolerance in Arabidopsis. Genes Dev 17, 1043-1054.
Choi, D.W., Rodriguez, E.M., and Close, T.J. (2002). Barley CBF 3 gene identification,
expression pattern, and map location. Plant Physiology 129, 1781-1787.
Clough, S.J., and Bent, A.F. (1998). Flora] dip: a simplified method for Agrobacterium-
mediated transforrnation of Arabidopsis thaliana. Plant J 16, 735-743.
Cook, D., Fowler, S., Fiehn, 0., and Thomashow, M.F. (2004). A prominent role for
the CBF cold response pathway in configuring the low-temperature metabolome
of Arabidopsis. Proc Natl Acad Sci U S A 101, 15243-15248.
Crooks, G.E., Hon, G., Chandonia, J.M., and Brenner, S.E. (2004). WebLogo: a
sequence logo generator. Genome Res 14, 1188-1190.
Delseny, M., Cooke, R., and Penon, P. (1983). Sequence heterogeneity in radish nuclear
ribosomal RNA genes. Plant Science Letters 30, 107-119.
Demmigadams, B., and Adams, W.W. (1992). Photoprotection and other responses of
plants to high light stress. Annu Rev Plant Phys 43, 599-626.
Desikan, R., A. H-Mackerness, S., Hancock, J.T., and Neill, SJ. (2001). Regulation of
the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127, 159-172.
Ding, J.P., and Pickard, BC. (1993). Modulation of mechanosensitive calcium
selective cation channels by temperature. Plant J 3, 713-720.
Dubouzet, J.G., Sakuma, Y., Ito, Y., Kasuga, M., Dubouzet, E.G., Miura, S., Seki,
M., Shinozaki, K., and Yamaguchi—Shinozaki, K. (2003). OsDREB genes in
rice, Oryza sativa L., encode transcription activators that function in drought-,
high-salt- and cold-responsive gene expression. Plant J 33, 751-763.
236
Duman, J .G. (1994). Purification and characterization of a thermal hysteresis protein
from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys
Acta 1206, 129-135.
Dure, L., 3rd, Greenway, S.C., and Galau, G.A. (1981). Developmental biochemistry
of cottonseed embryogenesis and germination: changing messenger ribonucleic
acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry
20, 4162-4168.
Dure, L., 3rd, Crouch, M., Harada, J., Ho, T.-H., Mundy, J., Quatrano, R., Thomas,
T., and Sung, LR. (1989). Common amino acid sequence domains among the
LEA proteins of higher plants. Plant Mol Biol 12, 475-486.
Emanuelsson, 0., Nielsen, H., Brunak, S., and von Heijne, G. (2000). Predicting
subcellular localization of proteins based on their N-terminal amino acid
sequence. J Mol Biol 300, 1005-1016.
F einberg, A.P., and Vogelstein, B. (1983). A technique for radiolabeling DNA
restriction endonuclease fragments to high specific activity. Anal Biochem 132, 6-
l3.
Fowler, D.B., and Gusta, L.V. (1979). Selection for winterhardiness in wheat. 1.
Identification of genotypic variability. Crop Sci 19, 769-772.
Fowler, S., and Thomashow, M.F. (2002). Arabidopsis transcriptome profiling indicates
that multiple regulatory pathways are activated during cold acclimation in
addition to the CBF cold response pathway. Plant Cell 14, 1675-1690.
Franks, F. (1985). Biophysics and biochemistry at low temperature. (Cambridge:
Cambridge University Press).
Gilmour, S.J., Hajela, RK, and Thomashow, M.F. (1988). Cold acclimation in
Arabidopsis thaliana. Plant Physiol 87, 745-750.
Gilmour, S.J., Fowler, S.G., and Thomashow, M.F. (2004). Arabidopsis transcriptional
activators CBF], CBF 2, and CBF3 have matching functional activities. Plant Mol
Biol 54, 767-781.
Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F.
(2000). Overexpression of the Arabidopsis CBF 3 transcriptional activator mimics
multiple biochemical changes associated with cold acclimation. Plant Physiol
124, 1854-1865.
Gilmour, S.J., Zarka, D.G., Stockinger, EJ., Salazar, M.F., Houghton, J .M., and
Thomashow, M.F. (1998). Low temperature regulation of the Arabidopsis CBF
family of AP2 transcriptional activators as an early step in cold-induced COR
gene expression. Plant J 16, 433-442.
237
Gong, Z., Lee, H., Xiong, L., Jagendorf, A., Stevenenson, B., and Zhu, J.K. (2002).
RNA helicase-like protein as an early regulator of transcription factors for plant
chilling and freezing tolerance. Proc Natl Acad Sci U S A 99, 11507-11512.
Griffith, M., and Yaish, M.W. (2004). Antifreeze proteins in overwintering plants: a
tale of two activities. Trends Plant Sci 9, 399-405.
Guiltinan, M.J., Marcotte, W.R., Jr., and Quatrano, RS. (1990). A plant leucine
zipper protein that recognizes an abscisic acid response element. Science 250,
267-27].
Guy, CL. (1990). Cold acclimation and freezing stress tolerance: Role of protein
metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 187-223.
Hajela, R.K., Horvath, D.P., Gilmour, S.J., and Thomashow, M.F. (1990). Molecular-
cloning and expression of COR (gold-regulated) genes in Arabidopsis thaliana.
Plant Physiol 93, 1246-1252.
Harmer, S.L., Hogenesch, J .B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang,
X., Kreps, J .A., and Kay, S.A. (2000). Orchestrated transcription of key
pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113.
Hincha, D.K. (2002). Cryoprotectin: a plant lipid-transfer protein homologue that
stabilizes membranes during freezing. Philos Trans R Soc Lond B Biol Sci 357,
909-916.
Hincha, D.K., and Crowe, J.H. (1998). Trehalose increases freeze-thaw damage in
liposomes containing chloroplast glycolipids. Cryobiology 36, 245-249.
Hincha, D.K., Meins Jr, P., and Schmitt, J.M. (1997). B-l,3-glucanase is
cryoprotective in vitro and is accumulated in leaves during cold acclimation. Plant
Physiol 114, 1077-1083.
Hincha, D.K., Oliver, A.E., and Crowe, J.H. (1999). Lipid composition determines the
effects of arbutin on the stability of membranes. Biophys J 77, 2024-2034.
Hincha, D.K., Neukamm, B., Sror, H.A., Sieg, F., Weckwarth, W., Ruckels, M.,
Lullien-Pellerin, V., Schroder, W., and Schmitt, J.M. (2001). Cabbage
cryoprotectin is a member of the nonspecific plant lipid transfer protein gene
family. Plant Physiol 125, 835-846.
Hiratsu, K., Ohta, M., Matsui, K., and Ohme-Takagi, M. (2002). The SUPERMAN
protein is an active repressor whose carboxy-terminal repression domain is
required for the development of normal flowers. F EBS Lett 514, 351-354.
Hon, W.C., Griffith, M., Mlynarz, A., Kwok, Y.C., and Yang, BS. (1995). Antifreeze
proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol
109, 879-889.
238
Huner, N.P.A., Oqulst, G., and Sarhan, F. (1998). Energy balance and acclimation to
light and cold. Trends in Plant Science 3, 224-230.
Iida, A., Kazuoka, T., Torikai, S., Kikuchi, H., and Oeda, K. (2000). A zinc finger
protein RHL41 mediates the light acclimatization response in Arabidopsis. Plant J
24, 191-203.
Inaba, M., Suzuki, 1., Szalontai, B., Kanesaki, Y., Los, D.A., Hayashi, H., and
Murata, N. (2003). Gene-engineered rigidification of membrane lipids enhances
the cold inducibility of gene expression in Synechocystis. J Biol Chem 278,
12191-12198.
Ishitani M., Xiong L., Lee H., Stevenson B., and Zhu J.K. (1998). HOSl, a genetic
locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 7,
1151-61.
J aglo—Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, 0., and
Thomashow, M.F. (1998). Arabidopsis CBF] overexpression induces COR
genes and enhances freezing tolerance. Science 280, 104-106.
J aglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T.,
and Thomashow, M.F. (2001). Components of the Arabidopsis C-
repeat/dehydration-responsive element binding factor cold-response pathway are
conserved in Brassica napus and other plant species. Plant Physiol 127, 910-917.
Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: B-
glucuronidase as a sensitive and versatile gene fusion marker in higher plants.
EMBO J 6, 3901-3907.
Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S., and Hirt, H.
(1996). Stress signaling in plants: a mitogen-activated protein kinase pathway is
activated by cold and drought. Proc Nat] Acad Sci U S A 93, 11274-11279.
Kaplan, F., Kopka, J ., Haskell, D.W., Zhao, W., Schiller, K.C., Gatzke, N., Sung,
D.Y., and Guy, CL. (2004). Exploring the temperature-stress metabolome of
Arabidopsis. Plant Physiol 136, 4159-4168.
Kasuga, M., Liu, Q., Miura, S., Yamaguchi—Shinozaki, K., and Shinozaki, K. (1999).
Improving plant drought, salt, and freezing tolerance by gene transfer of a single
stress-inducible transcription factor. Nat. Biotechnol. 17, 287-291.
Kaye, C., Neven, L., Hofig, A., Li, Q.B., Haskell, D., and Guy, C. (1998).
Characterization of a gene for spinach CAP] 60 and expression of two spinach
cold-acclimation proteins in tobacco. Plant Physiol 116, 1367-1377.
Kim, K.N., Cheong, Y.H., Grant, J.J., Pandey, G.K., and Luan, S. (2003). CIPK3, a
calcium sensor-associated protein kinase that regulates abscisic acid and cold
signal transduction in Arabidopsis. Plant Cell 15, 411-423.
239
Klok, E.J., Wilson, I.W., Wilson, D., Chapman, S.C., Ewing, R.M., Somerville, S.C.,
Peacock, W.J., Dolferus, R., and Dennis, ES. (2002). Expression profile
analysis of the low-oxygen response in Arabidopsis root cultures. Plant Cell 14,
2481-2494.
Knight, H., and Knight, M.R. (2000). Imaging spatial and cellular characteristics of low
temperature calcium signature after cold acclimation in Arabidopsis. J Exp Bot
51, 1679-1686.
Knight, H., and Knight, M.R. (2001). Abiotic stress signalling pathways: specificity
and cross-talk. Trends Plant Sci 6, 262-267.
Knight, H., Trewavas, A.J., and Knight, M.R. (1996). Cold calcium signaling in
Arabidopsis involves two cellular pools and a change in calcium signature after
acclimation. Plant Cell 8, 489-503.
Knight, M.R., Campbell, A.K., Smith, S.M., and Trewavas, A.J. (1991). Transgenic
plant aequorin reports the effects of touch and cold-shock and elicitors on
cytoplasmic calcium. Nature 352, 524-526.
Koh, S., Wiles, A.M., Sharp, J.S., Naider, F.R., Becker, J.M., and Stacey, G. (2002).
An oligopeptide transporter gene family in Arabidopsis. Plant Physiol 128, 21-29.
Krapp, A., and Stitt, M. (1995). An evaluation of direct and indirect mechanisms for the
sink-regulation of photosynthesis in spinach - changes in gas-exchange,
carbohydrates, metabolites, enzyme-activities and steady-state transcript levels
after cold-girdling source leaves. Planta 195, 313-323.
Kratsch, H.A., and Wise, RR. (2000). The ultrastructure of chilling stress. Plant, Cell
and Environment 23, 337-350.
Kreps, J ., Budworth, P., Goff, S., and Wang, R.L. (2003). Identification of putative
plant cold responsive regulatory elements by gene expression profiling and a
pattern enumeration algorithm. Plant Biotechnol J 1, 345-352.
Kreps, J .A., Wu, Y., Chang, H.S., Zhu, T., Wang, X., and Harper, J .F. (2002).
Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold
stress. Plant Physiol 130, 2129-2141.
Kyte, J., and Doolittle, RF. (1982). A simple method for displaying the hydropathic
character of a protein. J Mol Biol 157, 105-132.
Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze,
P., and Rombauts, S. (2002). PlantCARE, a database of plant cis-acting
regulatory elements and a portal to tools for in silico analysis of promoter
sequences. Nucleic Acids Res 30, 325-327.
240
Levitt, J. (1980). Responses of Plants to Environmental Stresses. (New York:
Academic).
Li, W., Li, M., Zhang, W., Welti, R., and Wang, X. (2004). The plasma membrane-
bound phospholipase D6 enhances freezing tolerance in Arabidopsis thaliana. Nat
Biotechnol 22, 427-433.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi—Shinozaki, K., and
Shinozaki, K. (1998). Two transcription factors, DREB] and DREBZ, with an
EREBP/AP2 DNA binding domain separate two cellular signal transduction
pathways in drought- and low-temperature-responsive gene expression,
respectively, in Arabidopsis. Plant Cell 10, 1391-1406.
Lynch, D.V., and Steponkus, P.L. (1987). Plasma membrane lipid alterations associated
with cold acclimation of winter rye seedlings (Secale cereale L-Cv Puma). Plant
Physiol 83, 761-767.
Mario, G.R., Yong, L., Nicolai, S., Bernd, R., Koen, D., and Bernd, W. (2003). An
Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking
sequence tag-based reverse genetics. Plant Mo] Bio] 53, 247.
Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y.,
Yoshida, S., Shinozaki, K., and Yamaguchi—Shinozaki, K. (2004).
Identification of cold-inducible downstream genes of the Arabidopsis
DREB 1A/CBF 3 transcriptional factor using two microarray systems. Plant J 38,
982-993.
Maurel, C. (1997). Aquaporins and water permeability of plant membranes. Annu Rev
Plant Phys 48, 399-429.
McKersie, B.D., and Bowley, S.R. (1997). Active oxygen and fieezing tolerance in
transgenic plants. In Plant Cold Hardiness: Molecular Biology, Biochemistry, and
Physiology, P.H. Li and T.H.H. Chen, eds (New York: Plenum), pp. 203-214.
McNeil, S.D., Nuccio, M.L., Ziemak, M.J., and Hanson, A.D. (2001). Enhanced
synthesis of choline and glycine betaine in transgenic tobacco plants that
overexpress phosphoethanolamine N-methyltransferase. Proc Natl Acad Sci U S
A 98, 10001-10005.
Medina, J ., Bargues, M., Terol, J., Perez-Alonso, M., and Salinas, J. (1999). The
Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-
containing proteins whose expression is regulated by low temperature but not by
abscisic acid or dehydration. Plant Physiol 119, 463-470.
Meissner, R., and Michael, A.J. (1997). Isolation and characterisation of a diverse
family of Arabidopsis two and three-fingered C2H2 zinc finger protein genes and
cDNAs. Plant Mol Biol 33, 615-624.
241
Meyer, K., Keil, M., and Naldrett, M.J. (1999). A leucine-rich repeat protein of carrot
that exhibits antifreeze activity. FEBS Lett 447, 171-178.
Mikami, K., Kanesaki, Y., Suzuki, 1., and Murata, N. (2002). The histidine kinase
Hik33 perceives osmotic stress and cold stress in Synechocystis sp PCC 6803.
Mol Microbiol 46, 905-915.
Mizoguchi, T., Irie, K., Hirayama, T., Hayashida, N., Yamaguchi-Shinozaki, K.,
Matsumoto, K., and Shinozaki, K. (1996). A gene encoding a mitogen-activated
protein kinase kinase kinase is induced simultaneously with genes for a mitogen-
activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and
water stress in Arabidopsis thaliana. Proc Natl Acad Sci U S A 93, 765-769.
Monroy, A.F., and Dhindsa, R.S. (1995). Low-temperature signal transduction:
induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant
Cell 7, 321-331.
Monroy, A.F., Sarhan, F., and Dhindsa, R.S. (1993). Cold-induced changes in freezing
tolerance, protein phosphorylation, and gene expression (evidence for a role of
calcium). Plant Physiol 102, 1227-1235.
Monroy, A.F., Sangwan, V., and Dhindsa, R.S. (1998). Low temperature signal
transduction during cold acclimation: protein phosphatase 2A as an early target
for cold inactivation. Plant J 13, 653-660.
Moon, B.Y., Higashi, S., Gombos, Z., and Murata, N. (1995). Unsaturation of the
membrane lipids of chloroplasts stabilizes the photosynthetic machinery against
low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci
U S A 92, 6219-6223.
Murata, N., and Los, D.A. (1997). Membrane fluidity and temperature perception. Plant
Physiol 115, 875-879.
Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K., and
Shinozaki, K. (1999). Antisense suppression of proline degradation improves
tolerance to freezing and salinity in Arabidopsis thaliana. F EBS Lett 461, 205-
210.
Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997). A neural network
method for identification of prokaryotic and eukaryotic signal peptides and
prediction of their cleavage sites. Int J Neural Syst 8, 581-599.
Nishida, 1., and Murata, N. (1996). Chilling sensitivity in plants and cyanobacteria: The
crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Bio]
47, 541-568.
Noctor, G., and Foyer, CH. (1998). Ascorbate and glutathione: Keeping active oxygen
under control. Annu Rev Plant Physiol Plant Mol Biol 49, 249-279.
242
Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M. (2001).
Repression domains of class II ERF transcriptional repressors share an essential
motif for active repression. Plant Cell 13, 1959-1968.
Okamuro, J .K., Caster, B., Villarroel, R., Van Montagu, M., and Jofuku, K.D.
(1997). The AP2 domain of APETALA2 defines a large new family of DNA
binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94, 7076-7081.
Orvar, B.L., Sangwan, V., Omann, F., and Dhindsa, R.S. (2000). Early steps in cold
sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant
J 23, 785-794.
Pavesi, G., Mereghetti, P., Mauri, G., and Pesole, G. (2004). Weeder Web: discovery
of transcription factor binding sites in a set of sequences from co-regulated genes.
Nucleic Acids Res 32, W199-203.
Pearce, R.S. (2001). Plant Freezing and Damage. Annals of Botany 87, 417-424.
Peier, A.M., Moqrich, A., Hergarden, A.C., Reeve, A.J., Andersson, D.A., Story,
G.M., Earley, T.J., Dragoni, 1., McIntyre, P., Bevan, S., and Patapoutian, A.
(2002). A TRP channel that senses cold stimuli and menthol. Cell 108, 705-715.
Plieth, C., Hansen, U.P., Knight, H., and Knight, M.R. (1999). Temperature sensing
by plants: the primary characteristics of signal perception and calcium response.
Plant J 18, 491-497.
Puhakainen, T., Hess, M.W., Makela, P., Svensson, J., Heino, P., and Palva, E.T.
(2004). Overexpression of multiple dehydrin genes enhances tolerance to freezing
stress in Arabidopsis. Plant Mo] Bio] 54, 743-753.
Qin, F., Sakuma, Y., Li, J., Liu, Q., Li, Y.Q., Shinozaki, K., and Yamaguchi-
Shinozaki, K. (2004). Cloning and functional analysis of a novel DREBI/CBF
transcription factor involved in cold-responsive gene expression in Zea mays L.
Plant Cell Physiol 45, 1042-1052.
Richards, K.D., and Gardner, RC. (1995). pEARLI 1: An Arabidopsis Member of a
Conserved Gene Family (Accession No. L43080) (PGR 95-099). Plant Physiol
109, 1497.
Riechmann, J .L. (2002). Transcriptional regulation: A genomic overview. In The
Arabidopsis Book, C.R. Somerville and EM. Meyerowitz, eds (Rockville, MD:
American Society of Plant Biologists), pp. doi/10.1 199/tab.0085,
http://www.aspb.org/pub1ications/arabidopsisl.
Riechmann, J .L., and Meyerowitz, EM. (1998). The AP2/EREBP family of plant
transcription factors. Biol. Chem. 379, 633-646.
243
Ristic, Z., and Ashworth, E.N. (1993). Ultrastructural evidence that intracellular ice
formation and possibly cavitation are the sources of freezing injury in
supercooling wood tissue of Cornusflorida L. Plant Physiol 103, 753-761.
Rizhsky, L., Davletova, S., Liang, H., and Mittler, R. (2004). The zinc finger protein
ZAT12 is required for cytosolic ascorbate peroxidase 1 expression during
oxidative stress in Arabidopsis. J Biol Chem 279, 11736-11743.
Rombauts, S., Florquin, K., Lescot, M., Marchal, K., Rouze, P., and van de Peer, Y.
(2003). Computational approaches to identify promoters and cis-regulatory
elements in plant genomes. Plant Physiol 132, 1162-1176.
Ruelland, E., Cantrel, C., Gawer, M., Kader, J.C., and Zachowski, A. (2002).
Activation of phospholipases C and D is an early response to a cold exposure in
Arabidopsis suspension cells. Plant Physiol 130, 999-1007.
Sakai, A., and Larcher, W. (1987). Frost survival of plants. Responses and adaptation to
freezing stress. (Berlin: Springer).
Sakamoto, A., and Murata, N. (2001). The use of bacterial choline oxidase, a
glycinebetaine-synthesizing enzyme, to create stress-resistant transgenic plants.
Plant Physiol 125, 180-188.
Sakuma, Y., Liu, Q., Dubouzet, J.G., Abe, H., Shinozaki, K., and Yamaguchi-
Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of
Arabidopsis DREBs, transcription factors involved in dehydration- and cold-
inducible gene expression. Biochem Biophys Res Commun 290, 998-1009.
Sambrook, J ., and Russell, D.W. (2001). Molecular Cloning: A Laboratory Manual.
(Cold Spring Harbor: Cold Spring Harbor Laboratory Press).
Sanmartin, M., Drogoudi, P.A., Lyons, T., Pateraki, 1., Barnes, J., and Kanellis,
A.K. (2003). Over-expression of ascorbate oxidase in the apoplast of transgenic
tobacco results in altered ascorbate and glutathione redox states and increased
sensitivity to ozone. Planta 216, 918-928.
Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi—Shinozaki, K., Carninci,
P., Hayashizaki, Y., and Shinozaki, K. (2001). Monitoring the expression
pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-
]ength cDNA microarray. Plant Cell 13, 61-72.
Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A.,
Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T.,
Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., and
Shinozaki, K. (2002). Monitoring the expression profiles of 7000 Arabidopsis
genes under drought, cold and high-salinity stresses using a full-length cDNA
microarray. Plant J 31, 279-292.
244
Sheen, J. (1996). Ca2+-dependent protein kinases and stress signal transduction in plants.
Science 274, 1900-1902.
Shen, Y.G., Zhang, W.K., He, S.J., Zhang, J.S., Liu, Q., and Chen, S.Y. (2003). An
EREBP/APZ-type protein in T riticum aestivum was a DRE-binding transcription
factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106, 923-
930.
Shou, H., Bordallo, P., Fan, J.B., Yeakley, J.M., Bibikova, M., Sheen, J., and Wang,
K. (2004). Expression of an active tobacco mitogen-activated protein kinase
kinase kinase enhances freezing tolerance in transgenic maize. Proc Natl Acad Sci
U S A 101, 3298-3303.
Smallwood, M., and Bowles, DJ. (2002). Plants in a cold climate. Philos Trans R Soc
Lond B Biol Sci 357, 831-847.
Smallwood, M., Worrall, D., Byass, L., Elias, L., Ashford, D., Doucet, C.J., Holt, C.,
Telford, J., Lillford, P., and Bowles, DJ. (1999). Isolation and characterization
of a novel antifreeze protein from carrot (Daucus carota). Biochem J 340 (Pt 2),
385-391.
Steponkus, P.L. (1984). Role of the plasma membrane in freezing injury and cold
acclimation. Annu Rev Plant Phys 35, 543-5 84.
Steponkus, P.L., and Webb, M.S. (1992). Freeze-induced dehydration and membrane
destabilization in plants. In Water and Life: Comparative analysis of water
relationships at the organismic, cellular, and molecular level, G. Somero and B.
Osmond, eds (Berlin: Springer-Verlag), pp. 338-362.
Steponkus, P.L., Uemura, M., and Webb, M.S. (1993). A contrast of the cryostability
of the plasma membrane of winter rye and spring oat—two species that widely
differ in their freezing tolerance and plasma membrane lipid composition. In
Advances in Low-Temperature Biology, P.L. Steponkus, ed (London: JAI Press),
pp. 211—312.
Steponkus, P.L., Uemura, M., Balasamo, R.A., Arvinte, T., and V.L.D. (1988).
Transformation of the cryobehavior of rye protoplasts by modification of the
plasma membrane lipid composition. Proc Natl Acad Sci U S A 85, 9026-9030.
Steponkus, P.L., Uemura, M., Joseph, R.A., Gilmour, S.J., and Thomashow, M.F.
(1998). Mode of action of the COR15a gene on the freezing tolerance of
Arabidopsis thaliana. Proc Natl Acad Sci U S A 95, 14570-14575.
Stitt, M., and Hurry, V. (2002). A plant for all seasons: alterations in photosynthetic
carbon metabolism during cold acclimation in Arabidopsis. Curr Opin Plant Biol
5, 199-206.
245
Stockinger, E.J., Gilmour, S.J., and Thomashow, M.F. (1997). Arabidopsis thaliana
CBF] encodes an AP2 domain-containing transcriptional activator that binds to
the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates
transcription in response to low temperature and water deficit. Proc Natl Acad Sci
USA 94, 1035-1040.
Story, G.M., Peier, A.M., Reeve, A.J., Eid, S.R., Mosbacher, J., Hricik, T.R., Earley,
T.J., Hergarden, A.C., Andersson, D.A., Hwang, S.W., McIntyre, P., Jegla,
T., Bevan, S., and Patapoutian, A. (2003). ANKTMl, a TRP-like channel
expressed in nociceptive neurons, is activated by cold temperatures. Cell 112,
819-829.
Strand, A., Hurry, V., Gustafsson, P., and Gardestrom, P. (1997). Development of
Arabidopsis thaliana leaves at low temperatures releases the suppression of
photosynthesis and photosynthetic gene expression despite the accumulation of
soluble carbohydrates. Plant Journal 12, 605-614.
Sukumaran, N.P., and Weiser, CJ. (1972). Freezing injury in potato leaves. Plant
Physiol 50, 564-567.
Suzuki, 1., Kanesaki, Y., Mikami, K., Kanehisa, M., and Murata, N. (200]). Cold-
regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol
Microbiol 40, 235-244.
Tahtiharju, S., Sangwan, V., Monroy, A.F., Dhindsa, R.S., and Borg, M. (1997). The
induction of KIN genes in cold-acclimating Arabidopsis thaliana. Evidence of a
role for calcium. Planta 203, 442-447.
Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-
Shinozaki, K., and Shinozaki, K. (2002). Important roles of drought- and cold-
inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana.
Plant J. 29, 417-426.
Tajima, K., Amemiya, A., and Kabaki, N. (1983). Physiological study of growth
inhibition in rice plant as affected by low temperature. II. Physiological
mechanisms and varietal difference of chilling injury in rice plant. Bull Natl Inst
Agr Sci D34, 69-111.
Taylor, A.0., Slack, G.R., and McPherson, H.G. (1974). Plants under climatic stress:
Chilling and light effects on photosynthetic enzymes of sorghum and maize. Plant
Physi0154, 896-701.
Taylor, C.B., Bariola, P.A., delCardayre, S.B., Raines, R.T., and Green, P.J. (1993).
RNS2: a senescence-associated RNase of Arabidopsis that diverged from the S-
RNases before speciation. Proc Natl Acad Sci USA 90, 5118-5122.
246
Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dang],
J.L., and Hirt, H. (2004). The MKK2 pathway mediates cold and salt stress
signaling in Arabidopsis. Mol Cell 15, 141-152.
Thijs, G., Lescot, M., Marchal, K., Rombauts, S., De Moor, B., Rouze, P., and
Moreau, Y. (2001). A higher-order background model improves the detection of
promoter regulatory elements by Gibbs sampling. Bioinformatics 17, 1113-1122.
Thijs, G., Marchal, K., Lescot, M., Rombauts, S., De Moor, B., Rouze, P., and
Moreau, Y. (2002). A Gibbs sampling method to detect overrepresented motifs in
the upstream regions of coexpressed genes. J Comput Biol 9, 447-464.
Thomashow, M.F. (1998). Role of cold-responsive genes in plant freezing tolerance.
Plant Physiol 118, 1-8.
Thomashow, M.F. (1999). Plant cold acclimation: Freezing tolerance genes and
regulatory mechanisms. Annu Rev Plant Phys 50, 571-599.
Thomashow, M.F. (2001). So what's new in the field of plant cold acclimation? Lots!
Plant Physiol 125, 89-93.
Thomashow, M.F., Stockinger, E.J., Jaglo-Ottosen, K.R., Gilmour, S.J., and Zarka,
D.G. (1997). Function and regulation of Arabidopsis thaliana COR (cold-
regulated) genes. Acta Physiol Plant 19, 497-504.
Tompa, M., Li, N., Bailey, T.L., Church, G.M., De Moor, B., Eskin, E., Favorov,
A.V., Frith, M.C., Fu, Y., Kent, W.J., Makeev, V.J., Mironov, A.A., Noble,
W.S., Pavesi, G., Pesole, G., Regnier, M., Simonis, N., Sinha, S., Thijs, G.,
van Helden, J., Vandenbogaert, M., Weng, Z., Workman, C., Ye, C., and
Zhu, Z. (2005). Assessing computational tools for the discovery of transcription
factor binding sites. Nat Biotechnol 23, 137-144.
Townley, H.E., and Knight, M. (2002). Calmodulin as a potential negative regulator of
Arabidopsis COR gene expression. Plant Physiol 128, 1169-1172.
Uemura, M., and Steponkus, P.L. (1994). A contrast of the plasma membrane lipid
composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol
104, 479-496.
Uemura, M., Joseph, R.A., and Steponkus, P.L. (1995). Cold acclimation of
Arabidopsis thaliana (Effect on plasma membrane lipid composition and freeze-
induced lesions). Plant Physiol 109, 15-30.
Urrutia, M.E., Duman, J.G., and Knight, CA. (1992). Plant thermal hysteresis
proteins. Biochim Biophys Acta 1121, 199-206.
Vigh, L., Los, D.A., Horvath, I., and Murata, N. (1993). The primary signal in the
biological perception of temperature: Pd-catalyzed hydrogenation of membrane
247
lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc
Natl Acad Sci U S A 90, 9090-9094.
Vijayan, P., and Browse, J. (2002). Photoinhibition in mutants of Arabidopsis deficient
in thylakoid unsaturation. Plant Physiol 129, 876-885.
Vlachonasios, K.E., Thomashow, M.F., and Triezenberg, SJ. (2003). Disruption
mutations of ADAZb and GCN5 transcriptional adaptor genes dramatically affect
Arabidopsis growth, development, and gene expression. Plant Cell 15, 626-638.
Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., and Thomashow, M.F.
(2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low
temperature transcriptome of Arabidopsis. Plant J 41, 195-211.
Wagner, D., Przybyla, D., Op den Camp, R., Kim, C., Landgraf, F., Lee, K.P.,
Wursch, M., Laloi, C., Nater, M., Hideg, E., and Apel, K. (2004). The genetic
basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science
306,1183-1185.
Warren, G., McKown, R., Marin, A.L., and Teutonico, R. (1996). Isolation of
mutations affecting the development of freezing tolerance in Arabidopsis thaliana
(L.) Heynh. Plant Physiol 111, 1011-1019.
Webb, M.S., Uemura, M., and Steponkus, P.L. (1994). A comparison of fieezing
injury in oat and rye: Two cereals at the extremes of fieezing tolerance. Plant
Physiol 104, 467-47 8.
Wilkosz, R., and Schlappi, M. (2000). A gene expression screen identifies EARLII as a
novel vemalization-responsive gene in Arabidopsis thaliana. Plant Mol Biol 44,
777-787.
Wise, R.R., and Naylor, A.W. (1987). Chilling-enhanced photooxidation - evidence for
the role of singlet oxygen and superoxide in the breakdown of pigments and
endogenous antioxidants. Plant Physiol 83, 278-282.
Worrall, D., Elias, L., Ashford, D., Smallwood, M., Sidebottom, C., Lillford, P.,
Telford, J., Holt, C., and Bowles, D. (1998). A carrot leucine-rich-repeat protein
that inhibits ice recrystallization. Science 282, 115-117.
Wu, J., Lightner, J., Warwick, N., and Browse, J. (1997). Low-temperature damage
and subsequent recovery of fab] mutant Arabidopsis exposed to 2°C. Plant
Physiol 113, 347-356.
Xin, Z., and Browse, J. (1998). Eskimo] mutants of Arabidopsis are constitutively
freezing-tolerant. Proc Natl Acad Sci USA 95, 7799-7804.
248
Yamaguchi—Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an
Arabidopsis gene is involved in responsiveness to drought, low-temperature, or
high-salt stress. Plant Cell 6, 251-264.
Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D., and Somero, G.N. (1982).
Living with water stress: evolution of osmolyte systems. Science 217, 1214-1222.
Ye, B., Muller, H.H., Zhang, J., and Gressel, J. (1997). Constitutively elevated levels
of putrescine and putrescine-generating enzymes correlated with oxidant stress
resistance in Conyza bonariensis and wheat. Plant Physiol 115, 1443-1451.
Yeh, S., Moffatt, B.A., Griffith, M., Xiong, F., Yang, D.S., Wiseman, S.B., Sarhan,
F., Danyluk, J., Xue, Y.Q., Hew, C.L., Doherty—Kirby, A., and Lajoie, G.
(2000). Chitinase genes responsive to cold encode antifreeze proteins in winter
cereals. Plant Physiol 124, 1251-1264.
Yelenosky, G., and Guy, CL. (1989). Freezing tolerance of citrus, spinach, and petunia
leaf tissue. Plant Physiol 89, 444-451.
Zarka, D.G., Vogel, J.T., Cook, D., and Thomashow, M.F. (2003). Cold induction of
Arabidopsis CBF genes involves multiple ICE (inducer of CBF expression)
promoter elements and a cold-regulatory circuit that is desensitized by low
temperature. Plant Physiol 133, 910-918.
Zhang, X., Fowler, S.G., Cheng, H., Lou, Y., Rhee, S.Y., Stockinger, E.J., and
Thomashow, M.F. (2004). Freezing-sensitive tomato has a fianctional CBF cold
response pathway, but a CBF regulon that differs from that of freezing-tolerant
Arabidopsis. Plant J 39, 905-919.
Zhu, J ., Shi, H., Lee, B.H., Damsz, B., Cheng, S., Stirm, V., Zhu, J.K., Hasegawa,
P.M., and Bressan, RA. (2004). An Arabidopsis homeodomain transcription
factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway.
Proc Nat] Acad Sci U S A 101, 9873-9878.
249
1W
nljllnljjjjjljju1131]]
|