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ABSTRACT

SEMILINEAR STOCHASTIC DIFFERENTIAL EQUATIONS IN HILBERT
SPACES DRIVEN BY NON-GAUSSIAN NOISE AND THEIR ASYMPTOTIC
PROPERTIES
By

Li Wang

A class of stochastic evolution equations with additive noise (compensated Poisson
random measures) in Hilbert spaces is considercd. We first show existence and unique-
ness of a mild solution to the stochastic equation with Lipschitz type coefficients. The
properties (homogeneity, Markov, and Feller) of the solution are studied. We then
study the stability and exponential ultimate boundedness properties of the solution
by using Lyapunov function technique. We also study the conditions for the exis-
tence and uniqueness of an invariant measure associated to the solution. At last, an

example is given to illustrate the theory.



Copyright by
LI WANG
2005



To my parents, my sisters, and Lan

v



ACKNOWLEDGEMENTS

Foremost, I sincerely appreciate my advisor, Dr. V. Mandrekar, without whom
this dissertation would not have been possible. This dissertation comes from numer-
ous discussions in his office, from his keen insight and knowledge, from his guidance
to a fruitful research area, and his perseverance and support. His assistance in all
aspects of academic life was invaluable.

I would like to thank my guidance committee, Dr. Marianne Huebner, Dr. Den-
nis Gilliland, and Dr. Clifford Weil for serving on my guidance committee. Your
help is highly appreciated. My special thanks go to Dr. Connie Page and Dr. Den-
nis Gilliland for training me as a statistical consultant. I would like to thank Dr.
Vincent Melfi, Dr. James Stapleton, Dr. Yimin Xiao, and Dr. Lijian Yang, who
taught me in many wonderful courses in statistics and probability.

Last, but not the least, I want to thank the department for offering me an as-
sistantship for five years. I want to thank all the professors and friends who ever

helped me during my stay at Michigan State University.

Vv



Contents

1 Introduction 1
2 Preliminaries 4
2.1 Fréchet derivative . . . . . . . . ... .o 4
22 Gronwall’sinequality . . . . ... ... ... ... ... 5
2.3 Poisson random measure . . . . . ... ... 5
2.4 Stochastic integral with respect to CPRM . . . . . ... .. ... .. 7
2.4.1 Stochastic integral for simple functions . . . . . ... .. ... 8
2.4.2 Stochastic integral for functionsin Ho . ... ...... ... 9

3 Existence and uniqueness of mild solutions to Semilinear SDE’s and
their properties 11
3.1 Mild and strong solutions of equation (3.1) . . . .. .. ... .. ... 12
3.2 Mild solutions of semilinear SDE’s with Lipschitz non-linearities . . . 13
3.3 Homogeneity, Markov, and Feller properties of the mild solution . . . 20
4 Approximating system 25
4.1 Sufficient conditions for a mild solution to be a strong solution . . . . 25
4.2 Approximation part . . . . . . .. ... e 28
5 Stability properties of the mild solution 33
51 Itoformula . . ... .... ... .. . .. ... ... 33
5.2 Exponential stability inthem.ss. . . . . ... ... ... ... .... 35
5.3 Stability in probability . . . . . ... ... oL 46
5.4 Exponential ultimate boundedness inm.ss. . . ... ... ... ... 47
6 Invariant measures 56
6.1 Introduction . . . . . . . .. . . ... ... 56
6.2 Existence and uniqueness of an invariant measure . . . . . .. .. .. 57
6.3 Anexample . . ... .. ... 68
6.4 Futureresearchplans . . . . . .. . ... . oL 69

BIBLIOGRAPHY 70

Vi



Chapter 1

Introduction

The area of stochastic differential equations (SDE’s) in the infinite dimensional Hilbert
space with Gaussian noise was motivated by the study of stochastic partial differential
equations. Early contributions were made by Pardoux [35], Krylov and Rozovski [23],
Metivier [29], Viot [42], and Kallianpur et al. [19] motivated by Zakai’s [46] equa-
tion arising in filtering problems. These problems are described in Da Prato and
Zabczyk (6], who take the approach through semigroup methods as in Ichikawa [17).
The first study of the non-Gaussian noise case was done by Kallianpur and Xiong [20].
Their approach was to study SDE’s in duals of nuclear spaces where all bounded sets
are compact, but solutions turn out to be “generalized functions”. More general
equations are studied in Gawareski, Mandrekar, and Richard [10] extending the work
of Gikhman and Skorokhod [13].

In this thesis, we take the approach of Da Prato and Zabczyk and Ichikawa to
study the non-Gaussian case. We first show that under the growth and Lipschitz

conditions, the uniqueness of solution in D([0.T]. H). We show that the solution is



homogeneous, Markovian and the transition semigroup is Feller. However, this is a
mild solution. In order to apply the recent It6’s formula ( Ridiger and Ziglio [38] ), we
need to approximate this solution by strong solutions in C(0,T; L¥(Q, F, P)). Here
we adapt Ichikawa’s technique to generalize to our case Ichikawa’s work.

In the second part of the thesis, we study the asymptotic properties of the mild
solutions of these SPDE’s. We then study the Lyapunov function method first intro-
duced by Khasminski and Mandrekar [22] for the stability in the context of strong
solutions as in the works of Pardoux, Krylov and Rozovski. For semilinear equations
with Gaussian noise, this method was extended by Liu and Mandrekar [24]. They
also studied exponential ultimate boundedness of the strong as well as mild solutions
in Gaussian noise case. They showed that the ultimate boundedness can be used
to study the existence of invariant measure for strong solutions. In the second part
of the thesis, we study the extension of their work for non-Gaussian noise. We also
study existence and uniqueness of invariant measures for the case of mild solutions
in case the noise is non-Gaussian.

We begin in the next chapter by giving the definition of the Fréchet derivative and
stating Taylor’s theorem, followed by stochastic integral with respect to compensated
Poisson noise as presented in Riidiger [37]. Riidiger defines these stochastic integrals
for Banach space valued non-anticipative functions under some restriction. These
restrictions are removed in Mandrekar and Riidiger [28] where existence and unique-
ness of solutions of Banach space valued SDE’s with compensated Poisson noise are
studied.

In Chapter 3, we study the existence and uniqueness of a mild solution to the



semilinear SDE’s under the growth and Lipschitz type conditions on the nonlinearities.
We then study the homogeneity, Markov, and Feller properties of the mild solution.
In Chapter 4, we study the approximating system of the semilinear SDE’s. We prove
that there exists a unique strong solution to the approximating system, and the
strong solution converges to the mild solution in C(0,T; L¥(Q, F, P)). In Chapter
5, we study the stability and exponential ultimate boundedness in the m.s.s. of the
mild solution by using the Lyapunov function technique. We use Ito formula and the
approximating systems as tools. We first prove that the existence of the Lyapunov
function is sufficient for the stability and exponential ultimate boundedness in the
m.s.s. of the mild solution. Conversely, we construct the Lyapunov function for the
linear case, and construct the Lyapunov function for the nonlinear case by using the
first order approximation of the coefficients. In Chapter 6, we first give the conditions
for the existence and uniqueness of an invariant measure associated to the solution.

Finally, we give an example to illustrate our theory.



Chapter 2

Preliminaries

In this chapter we recall some definitions and theorems that we will use in our theory.

2.1 Fréchet derivative

The results below are adapted from Schwartz’s work (39].
Let H be a real separable Hilbert space, we use (-,-) and || - |4 to represent the
inner product and norm in H. L(H) denotes the set of bounded linear operators from

H to H. Assume f: H — R is a map and z,y € H.
Definition 2.1.1. We say that f is first order Fréchet differentiable at z, if there
exists an f'(x) € H, such that

S +y) = fo) + (S(0)y) + olllyllm)-
We say that f is second order Fréchet differentiable at x. if there exists an f"(x) €
L(H), such that

J'(e+y) = f(x)+ ["(@)y + o(llyllx)-



Definition 2.1.2. A function f : H — R is said to be in class C? on H, written
f € C*(H), iff f'(x) and f"(r) exists at every point of H and the maps z — f'(r)

and £ — f”(r) are continuous.

Theorem 2.1.1 (Schwartz [39]). Suppose that f € C?(H). Then

flx+y) = f(z)+ (f'(z), y)+/0 (1 =t)(f"(x + ty)y,y) dt.

Corollary 2.1.1 (Schwartz [39]). Suppose that f € C?(H). Then there exists a

bounded bilinear function Ry from H to R such that

Sz +y) = f(@)+{['(z), y) + Ra(y).

2.2 Gronwall’s inequality

Theorem 2.2.1 (Evans [9]). If for to <t < t;,¢(t) > 0 and ¢(t) > 0 are continuous

functions such that the inequality

t
o(t) < K+ L/t Y(s)o(s)ds

holds on ty <t < t,, with K and L positive constants, then on tog <t < t,

o(t) < Kexp (L/L

to

w(s) ds).

2.3 Poisson random measure

Let (Q.F,{F: }i>0, P) be a filtered probability space satisfying the “usual hypothe-

”

ses



1. F; contains all null sets of F, for all t € [0, 00),

2. F, = F;, where F = ﬂ Fu, for all t € [0, 00).
u>t

Definition 2.3.1. Let (X, X) be a measurable space. A map: N : Q@ x X — R is

called a random measure if
1. N(w,-) is a measure on (X, X) for each w € ,
2. N(:, B) is a random variable for each B € X.

Definition 2.3.2. A random measure N is called independently scattered if for any
disjoint By,..., B, € X, the random variables N(-, By),---, N(-, B,) are indepen-

dent.

Let (E.£) be a measurable space (F is a complete separable metric space), and let
the map: N : Q x (£ x B(R,)) — R be a random measure, with X = F x R, and

X = EQB(R,).

Definition 2.3.3. The random measure N is adapted if N(-, B) is F;-measurable for
B C E x [0,t]. N is o-finite if there exists a sequence E, increasing to E such that

E|N(-, E, x [0,t])] < oo for each n € Nand 0 < ¢ < oo.

Definition 2.3.4. The random measure N is called a martingale random measure if
for fixed A € Ty :={A€&: FIN(Ax[0,])] < oo, VO <1< o0}, the stochastic

process N(A x [0,t]) is martingale adapted to { F; }s>o.

Let A denote the collection of all Fi-adapted processes whose sample paths are of

finite variations on any finite intervals.



Definition 2.3.5. A o-finite adapted random measure N is said to be in the class
(QL) if there exists a unique o-finite predictable random measure N such that N :=
N — N is a martingale random measure and for any A € Ty, N (A x[0,t]) € A and

is continuous in ¢. The random measure N is called the compensator of N.

Definition 2.3.6. Let v be a o-finite measure on B(E x R, ). The Poisson random

measure is a random measure N : Q x B(E x R;) — R, such that:

1. It is a independently scattered nonnegative integer-valued adapted random mea-

sure.

2. If for any B € B(E x R,) such that v(B) < oo, N(-, B) is a Poisson random

variable with mean v(B).

Definition 2.3.7. Let § be a o-finite measure on (E,€)( with 3({0}) = 0 and
B3(B) < oo, if B € B(E) and 0 ¢ B, B represents the closure of B). If we suppose

v(A x [0,t]) = B(A)t for any A € £, then § is called the characteristic measure.

It is clear that any Poisson random measure N is in class (QL) with the compen-

sator N(A x [0, t]) = B(A)t for any A € €. And
N(w,Ax[0,t]) = Nw, A x [0,t]) = N(w, A x [0,))

is called compensated Poisson random measure (CPRM, for short).

2.4 Stochastic integral with respect to CPRM

In this chapter, we will introduce the stochastic integral with respect to CPRM fol-

lowing Riidiger [37].



Let F, ;== B((E\{0}) x R;) ® F; be the product o-algebra generated by the semi-
ring B((E\{0}) xR4) x F; of the product sets Bx F, B € B((F\{0})xR}), F € F,.
(A ring is a non-empty class of sets which is closed under the formation of unions
and differences )

As before let H be a real separable Hilbert space, and let (-,-) and || || i represent
the inner product and norm on H separately.

Let T > 0 and let

MT(E/H) :=
{f: (E\{0}) x Ry x Q — H, such that f is Fr/B(H)-measurable

and f(z,t,w) is Fr-adapted Yz € F\{0}, Vi € (0,T)}

2.4.1 Stochastic integral for simple functions

Definition 2.4.1. A function f belongs to the set Y (E/H) of simple functions, if

f € MT(E/H), T >0 and there exist n € N, m € N, such that

2
—

flz,t,w) = zlAkl IFkl )('k»tk+l](t) kit

1 1=1

where Ay, € B(E) (0 ¢ A—k[), i € (O,T], Ik < tiyr, Fry € .7'],‘, axy € I1. For all

x
Il

k=1,...,n—1 fixed, Ak,ll XFk,llnAk,lgXFk,12=¢»i“1?”2'

Definition 2.4.2. For the simple function f € Y (E/H), we define the stochastic

integral with respect to CPRM by

—

n— m

//fxtw (l.t(it)( = zakllrk( )’\(Ak[ﬂA fk,tk+1]n OT]

11=1

x
Il

for all A € B(E\{0}),T > 0.



2.4.2 Stochastic integral for functions in H,

To define the stochastic integral for more general functions than simple functions, we

give some definitions first.

Definition 2.4.3. Let L¥(Q, F, P) be the space of H-valued random variables, such

that E||Y|% = [||Y]% dP < oo. We denote by || - ||z the norm given by [[Y ], =

n—oo ' N

(E||Y|1%)"2. Given (Yy)nen, Y € LE(Q, F, P), we write lim?___ Y, =Y if lim ||Y, -

Y|z =0.

Definition 2.4.4. Let f: (E\{0}) x R4 x Q@ — H be given. A sequence { fy }nen
of Fr/B(H)-measurable functions is L2-approrimating f on A x (0,T] x  w.r.t.

3R Leb® P, if f, is 8 ® Leb % P-a.s. converging to f, when n — oo, and

T
im [ [ Bl tw) - S(at )l Ada) i = 0
n—oo 0 A

i.e., || fa — f|l converges to zero in L2(A x (0,T] x 2, 3® Leb® P), when n — oo.

Next, we define the class of functions on which we will define the stochastic inte-

gral.

H2 =
{f(z,t,w): (E\{0}) x Ry x Q — H, such that f is Fr/B(H)-measurable
and f(x.l,w) is Fy-measurable for Vo € F\{0} and Vi € (0,T), also

T
E/o /EHf(r,t,w)]]";, B(dr)dt < oo}

Remark. Observe that if f € Hj, then for each t € [0,T], 194 f € Hy. When it’s

clear from the context, we write elements of /1, as [(x,().



Let f € H,. Then there exists simple functions { fx } € Ha, such that

t
E/ / fe(z,5,0) — f(@ 5,4 B(dz) ds — 0 as k — oo,
0JE
And the simple functions { fi } satisfy, for each ¢ € [0,T)
t
EllL(ge) - L(p))|% = E / /E iz 8) = £z 9)|1% A(dz) ds
— 0, as k,7 — oo.

(See Rudiger [37])

Now for f € H,, we define the stochastic integral with respect to CPRM as,

L(f) = //f (z,s) N(dz ds) = lim?__ I,(fi).

The following results are known about the stochastic integral with respect to

CPRM.
Theorem 2.4.1 (Rudiger [37)). Let I,(f) be defined as above. Then we have
1. The sample paths of I,(f) = fofE f(z,s) N(dzds) are cddlag,

2. I,(f) is a mean 0 martingale with respect to F,.

10



Chapter 3

Existence and uniqueness of mild
solutions to Semilinear SDE’s and

their properties

In this chapter, we will consider the following semilinear stochastic differential equa-

tion ( SDE, for short ) on [0, T].
dZ(t) = (AZ(t) + F(Z(t))) dt +/ B(v, Z(t)) N(dvdt), Z(0)=p € H.  (3.1)

Here A is the generator of a Cy-semigroup S(t) on H, satisfying ||S(t)|| < €™, € R.
N is a CPRM on E x R,. F and B are, in general, nonlinear mappings, F: H — H,
B:ExH — H.

Remark. Partial differential equation can be written as Hilbert space valued linear
equation.

In this chapter, we will prove the existence and uniqueness of the mild solution to

11



the system under some conditions on the coefficients, and we will also prove that the

solution has homogeneity, Markov and Feller properties.

3.1 Mild and strong solutions of equation (3.1)

Let T = [0, T}, we first introduce two types of solutions.

Definition 3.1.1. A stochastic process Z(t), t € T, is a mild solution of (3.1) if
(1) Z(t) is adapted to F,
(i) Z(t) is measurable and [ E||Z(t)|% dt < oo,

(iii) Z(1) = S()p+ f; S(t = s)F(Z(s)) ds + [, [, S(t — 5) B(v, Z(s)) N(dv ds) for all

teT, wp. 1.
Definition 3.1.2. A stochastic process Z(t), t € T, is a strong solution of (3.1) if
(i) Z(t) is adapted to F,
(ii) Z(t) is cadlag in t, w.p. 1,
(i) Z(t) € D(A) almost everywhere on T x Q, and fOT AZ(D)|| g dt < o0, w.p. 1,

(iv) Z(t) = o + [, AZ(s)ds + [, F(Z(s))ds + [, [ B(v,Z(s)) N(dvds) for all t €

T, wp. 1.

12



3.2 Mild solutions of semilinear SDE’s with Lip-

schitz non-linearities

We impose the following assumptions on the coefficients of equation (3.1)
(A1) F and B are jointly measurable,

(A2) There exists a constant [, such that Vz € H,
1@ + [ 1B, 8(d) < 10+ el
(A3) For all z,y € H, there exists a constant k, such that

IF() - F)ll% + /E 1B(v,2) = B(v.y)|% #(dv) < kllz - gl

We prove the existence and uniqueness of a mild solution to stochastic equation
(3.1) under the above conditions. We follow the ideas from the work of Gikhman and
Skorokhod [13], and adapt them to our case.

Observe that for ¢ € H,, foth S(t — s)é(v. s) N(dv ds) exists because

¢
[ [ 1t = 5160, )1B (s < o
0JE
The following lemma comes from Ichikawa [16].

Lemma 3.2.1. Let N be Poisson random measure and S(t) be a pseudo-contraction

semigroup. Assume ¢ € Hy. If T is a stopping time, then

2

TAT
E sup <up | /E o, )12 3(dv) dt.
H 0

0<t<TAT

/Ot/E S(t - s)é(v,s) N(dvds)

The constant by depends only on T and « as in the bound ||S(1)|| < ™.

13



Proof. Let M, = [ [z é(v.7) (dv dr) and y, = fo (t — s) dM,. From Ichikawa [16],

we know if a < 0, then

E(stgpllytllu (3+ V10)’E(M),

(stgg // (t = s)p(v,s) (dvds)

<3+ m)zE./o /E llp(v, $)|1% B(dv) ds.

Hence

)

If & > 0, we use the results in Ichikawa [16] and get

2
E (sup ||yt||§,) < e20Tw (3 + \/10) E(M),.
t<r

Here

ess sup7 if it exists

Il

T

00 otherwise.

Now if we use T A 7 in place of 7 and notice that (T A 7)o < T and let b =

e2T(3 4+ v/10)2, we get

// (t—s)o(v,s N(dvds)

TAT
)smE /O /E (s, )% B(dv) ds.

O

sup
0<t<TAT

Now for an adapted process £(-) € D([0,T), H), satisfying E supyc <t I£(s)II%

< 00, we let

I(t, ())—/ St —s)F(&(s )ds+// (t = s)B(v,€(s)) N(dv ds).
Remark. The above integral exists under (A1) and (.A2).

14



Lemma 3.2.2. If F(z) and B(v, x) satisfy (A1) and (A2), S(t) is a pseudo-contraction

semigroup, then for a stopping time T,

B (s (s eDIE) <t (04 /O’E sup._[e(ulyas)

0<s<tAT 0<u<sAT

with the constant by depending on o, T and l.

Proof. We note that
2

sup |[(s.&(s))|} <2 sup (

0<s<tAT 0<s<tAT

/ / s —u)B(v, £(u)) N(dv du)

/Ss—u &(u)) du

H

) |

There exists a bound for the expectation of the first term, using ||S(¢)|| < e*, the

Schwartz inequality and (A2),

s 2
E sup / S(s — ) F(€(w)) du
0<s<tAT H
<E sup /]]Ss—u ))||Hdu}
0<s<tAT

gF(/O e ((u,))n,,du)2

<*ME(tAT) /0‘ | F(&(w))]|13; du
<eup [ (14 el du
Sez"‘tl(t +/ E sup |€(u)|% ds).

0<u<sAT

From Lemma 3.2.1 and (A2), for the second term,

I [ st =g (dvdu)
<tp [ v [ 1B s as

15

E sup

0<s<tAT




tAT
<blE /0 (1+ [IE(s)1%) ds

<tu(t+ [ "B sup )l ds).

0<u<sAT
Let b, = 2e24TT] + 2¢22T(3 4+ \/10)2. We complete the proof by combining the

inequalities for both terms. a

Lemma 3.2.3. Let conditions (A1) and (A3) be satisfied and S(t) be a pseudo-

contraction semigroup. Then

B sup 1(5,64(5) = 15, &x(s)lfs < o [ B sup 0) = o)y s

with the constant by depending on o, T and k.

Proof. We begin with the following estimate.

E sup |I(s,&,(s)) = 1(s,&(s))II%

0<s<t
s 2
<26 sup (| [ (s = u)(F61(w)) - F&a(w) da
0<s<t 0 H
S - 2
+ /0‘ /l;b(s —u)[B(v, & (n)) = B(v,&(u))] N(dvdu) H).
As before,
£ sup | [ (s = u)(F(&,(u) = Flesu)
0<s<t 0 H
<E sup ([ 15 = I IF(E(w) = Flealuly du)’

<cup sup [ IF(E(0) = &)1 du
0

0<s<t

<keUE sup /0 161 (0) — &, ()% du

0<s<

t
<kerely / E sup ||&(u) — &(u)|2 ds.
0

0<u<s

16



And,

2
E sup

0<s<t

<BE / /E 1B(v,€,(s)) — B(v, £(s))I% B(dv) ds

/0 3 /E S(s - w)[B(v. £,()) ~ B(v,&(u))] N(dv du)

H

¢
<kb; [ E sup ||€,(u) — &(u)||% ds.
0

0<u<s
Let by = 2¢2°TTk + 2ke?*T(3 + /10)2. We complete the proof by combining the

inequalities for both terms. a

Remark. Lemma 3.2.2 and Lemma 3.2.3 follow from the arguments similar to the
arguments for Brownian motion case by Gawarecki et al. [10].

Now we prove the existence and uniqueness of the mild solution.

Theorem 3.2.1. Let the cocfficients F and B satisfy conditions (A1), (A2) and (A3),
assume that S(t) is a pseudo-contraction semigroup. Then the stochastic equation

(3.1) has a unique mild solution Z(t) satisfying
¢ t -
2(t) = S(t)p + / S(t = s)F(Z(s)) ds + / / S(t - 5)B(v, Z(s)) N (dv ds)
0 0o JE
in the space
Ho := {€(-) € D([0,T), H), such that E sup ||£(s)|% < oo}.
0<s<T

Proof. We follow Picard’s method. Let I be defined as before. By Lemma 3.2.2,
I: Hy, — H,. The solution can be approximated by the sequence Zy(t) = ¢,---,
Znw(t) = I(t, Za(t)), n = 0,1,---. Let Vu(t) = Esuppcec | Zns1(s) — Za(9)|I%-

Then Vo(t) = Esupgc,<; [|1Z1(s) — Zo(s)|I}; < Vo(T) = Vb, and using Lemma 3.2.3, we

17



obtain

Vi(t) = E sup [|Zx(s) = Zu(s)l;

0<s<t

= E sup ||I(s, Z:(s)) — I(s, ZO(S))“%i

0<s<t

t
< by / E sup |12:(u) — Zo(u)|[3 ds < byVit.
0

0<u<s

t n
By induction, V,(t) < b3 / Va-1(s)ds < E(f:;—t). Next, similar to the proof of
0 -
Gikhman and Skorokhod [11], we show that supyc,<7 [|Zn(t) — Z(t)||lx — 0, a.s. for

some Z € H,. If we let €, = (Vo(bsT)"/n!)"/3, then, using Chebyshev’s inequality, we

arrive at
Vo(bsT)™ Vo(bsT)™\2/3
P(sup 1 2001(8) = Za(0lln > ) < (F) [ (Far=) =em (32)

Because ) .7, &n < 00, the series 7 | supocicr | Zn+1(t) — Zn(l)|| converges as.,

showing that Z,(-) converges to some Z(-) a.s.. By (3.2)

Y P(sup [|Zass(t) = Za()ln > €a) < 00,

0<t<T
By Borel-Cantelli lemma, we have supyc,<r || Zn+1(t) — Zn(t)||# < €n a.s.. So we have
|Z(t) = Z.(t)|lg — 0, a.s.. Because Z,(t) has the cddlag property, the sample paths
of Z(t) are cadlag.

Moreover,

E sup || Z(t) — Z.()|%

0<t<T

=F lim sup ”Zn+m(t)—Zn(t)”%1
m—o0 0<t<T
2

n+m-—1
=F lim su Zi(t) — Zi(t
e g vy kzz;l (Zka (1) = Zi(1)) )
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n+m-—1

2

<E lim ( Z sup ”Zk+l(t)_Zk(t)”H)

m—oo \ £~ o<i<T
n+m-1

. 12
= lim B( Y sup [1Zuna(t) = ZuOlln k- 7)
m—00 k=n 0<t<T

<2 B sup 12n () - 201343 gk-e),

and hence the second series converges. The first series is bounded by observing

d 2. Vo (bsT)kk?
E Vk(T)k2§E L(—s}c!)——ao,asn—»oo.
k=n

k=n

To justify that Z(t) is a mild solution to equation (3.1), we note that a.s. F(Z,(s)) —

F(Z(s)) uniformly in s. Therefore

t t
/ S(t —s)F(Zn(s))ds — / S(t—s)F(Z(s))ds as..
0 0
Using the fact proved above, then

E sup [|Z(t) = Za(O)Iy — 0.

0<t<T

Thus we obtain

2

E /0 LS(t —8)[B(v, Z(s)) — B(v, Zn(s))] N(dvds)

H

<b [ [[1B(0,2)) = Blo, Zu(5) Iy o) ds

<bikTE sup ||Z(t) — Z,(t)||} — 0, as n — oo.

0<t<T
This solution is unique. If Z(t), Z’(t) are two solutions to equation (3.1), then we

define V/(t) = E supgc,< |1 Z(s) — Z'(s)||};- By Lemma 3.2.3,

(b;;t)"
n!

— 0,

t
V() <t [ V(ds << B sup [120) - 26l
0

0<s<T

as n — oo, giving V(1) = 0. a
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Remark. We know that there exists for each T < oo an unique mild solution of

(3.1). We can define Z(/) on [0, +00), such that for any T, E supyc,<r | Z(s)[|; < oco.

3.3 Homogeneity, Markov, and Feller properties of

the mild solution

Notation. From now on, we will use Z¥(t) instead of Z(t) to represent the mild

solution of (3.1) to emphasize that the the solution depends on the initial value ¢.

Lemma 3.3.1. The mild solution of (3.1) Z¥(t) is continuous in the initial value ¢

(w.r.t. the strong topology on H ).

Proof. Let ¢, and ¢, € H be the initial values. Suppose that the two mild solutions

are Z¥1(t) and Z*#2(1). Then we have
ZP1(t) = S(t) ¢, + /St—s)F (Z¥1(s ds+// (t — s)B(v, Z¥1(s)) N(dvds),
and
ZP2(1) = S(t) o, + /0 S(t — s)F(Z¥2(s)) ds + /0 /E S(t — s)B(v, Z¥2(s)) N(dv ds).
Thus

ZY\(t) — Z¥2(t)

=Sy — ) + [ S0= PG s

// (t — s)B(v, Z¥1(s)) N(dv ds)

- (/0 S(t — $)F(Z¥P2(5)) ds+// (t — ) B(v, Z¥2(s)) N(dv ds))

20



From Lemma 3.2.3 we have

E sup || Z%1(s) — Z¥2(s)|%

0<s<t

<E sup (2IIS(s)(¢y = @)l +2011(s, Z¥1(s)) = I(s, Z%2(5))II%)

0<s<t

t
<22y = ol + 200 [ B sup 1291(0) = 292(0) [ s
0

0<u<s

By Gronwall’s inequality we have

E sup [[Z%1(s) — 2%2(s)|1% < 262 |[ip, — iop|[%ye203t = 2e(20 +203)t ), _ o2

0<s<t

So the solution is continuous in the initial value. d

Theorem 3.3.1. The mild solution of (3.1) is homogeneous in t and it has the Markov

property.
Proof. Fix s. Let us denote by (Z*¥#(t));>, the solution of

Z52(dt) = (AZ*9(t) + F(Z*%(t))) dt + / B(v, Z*¢(t)) N(dvdt), Z*¢(s) = ¢.
E

Following Theorem 3.2.1, it can be checked that such a solution exists and is unique
up to stochastic equivalence. Let us remark that the compensated Poisson random
measure is translation invariant in time; ie., if k > 0, L(N(v,s + h) = N(v,s)) =

LN(v, h).

It follows that
s+h
Z%%(s+ h) =S(h)¢ + / S(s+h—u)F(Z*>%(u))du
s+h ) -
+ / / S(s+ h —u)B(v, Z%%(u)) N(dvdu)
s E

h
=S(h)¢ + /O S(h — w)F(Z2°%(s + u)) du
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/ / (v, Z°%(s + u)) N(dv du). (3.3)

Here N(v u) = N(v,s +u) — N(v, s).

From Theorem 3.2.1, we have
h
Z%?(h) =S(h)yp + / S(h—u)F(Z%(u)) du
/ / — u)B(v, Z%¢(u)) N (dvdu) (3.4)

As the solution of (3.3) and (3.4) are unique up to stochastic equivalent and N (dvds)
andN (dvds) are equally distributed, it follows that { Z®¥(h) }s>0 and
{Z*%(s + h) }x>0 are stochastic equivalent.

We have proved that { Z%¥(t) };>0 is cadlag. Let T > 0. We denote by Q¥
the distribution induced by { Z%%(t) },cj0,7} on the Skorokhod space D([0,T], H) and
by E, the corresponding expectation. We also remark that the o-algebra FY¥ =
o{Z%(s),s < t} C F, where { F; }1>0 denotes the natural filtration of the com-
pensated Poisson random measure N(dvds) and o{ Z%%(s),s < t} is the o-algebra
generated by { Z°¢(s) }s<:.

Let us consider now the solution { Z(r) } (1) of

Z(r)=Z(t) +[S(r - u)F(Z(u))du+[/E S(r — u)B(v, Z(v)) N(dv du).

From Theorem 3.2.1, it follows that { Z(r) }r¢e,1) is stochastic equivalent to
{Z4%0(r) ey Let H(z,t,r,w) := Z%(r), v € [t, T]. We remark that H(z,t,r,w)
is independent of F,. Let v be a bounded, real valued measurable function on H.

Then we can write
E[V(Z(+0) | F) = B (H(Z(0), 0,0 + h.w)) | F] (3.5)
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and

EI(‘)[7(Z(h))] = E["/(H(l,o, h'v“")) ]z=Z(t) (36)

where E[-].=zq) := E[- | Z(t) = z]. We shall prove that
E[v(H(Z(t),t,t + h,w)) | Fo] = E[v(H(2,t,t + b, w)) |o=z(0)- 3.7)
It then follows from (3.6) and the homogeneous property that

E['Y(H(Z(t)!t?t + h)w)) | f-t] = E[7(H(Z)t’t + h’w))]z=Z(t)
= E[v(H(2,0,h,w)) .=z

= Ez[v(Z(h))].

Then use (3.5), it follows E.[y(Z(t+h)) | F¢] = E.)[v(Z(h))] and, since FEO C F,
this gives E.[v(Z(t + k) | F/U] = By [v(Z(h))).

Proof of (3.7): Put g(z.w) = y(H(2.t.t + h,w)). Clearly g(z,-) is measurable
in w, and z — g(z,w) is continuous by the continuity with respect to the initial
condition. Thus ¢(z,w) is separately measurable, since H is separable. By a theorem
of Mackey [26], we can find a function equal dz ® dP a.e. to g(z,w), which is jointly
measurable. We again call it g(z,w). Clearly g is bounded. We can approximate g

pointwise boundedly by functions of the form Y}, &,(2z)¥y(w).

E(Z().w) | Fil = lim 3 u(Z0)EWi(w) | F)
k=1

= nlll_ﬁnoo E[‘f’k(z)d'k(w) | ft]z:Z(t) = E[g(z,w)]gz(t)-
k=1

where in the first inequality we used that ¢,(Z(t)) is F;-measurable. O
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Definition 3.3.1. For a Markov process £(t), defined on (Q,F, { F; }:50, P) with
state space x let P(n,{,I') = P(§(t) € T' | £(0) = n) (transition probability function).
We say that P(n,t,T") has the Feller property if for any bounded continuous Borel-
measurable function ¢ on x, (P¢)(n) = fx ¢(v) P(n,t,dv) is continuous in (¢,7n) for

t>0,n¢€x.
Theorem 3.3.2. The mild solution of (3.1) has Feller property.

Proof. Let h € Cy(H) (bounded continuous functions on H) and let o, — ¢, ¢, ¢ €
H. Then we know Z¥=(t) — Z¥(t) in probability as n — oo. Then E[h(Z¥n(t))] —
E[h(Z%#(t))] since otherwise there would exist € > 0 and a subsequence, denoted by
n, such that ||[E[h(Z%n(t))] — E[M(Z¥(8)))|ly > € and Z¥n(t) = Z?¥(t), a.s., which

yields a contradiction. a
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Chapter 4

Approximating system

We shall show in this chapter that every mild solution can be approximated by a

strong solution.

4.1 Sufficient conditions for a mild solution to be

a strong solution

We start with a Fubini type theory.

Proposition 4.1.1. Let T = [0,T] and let B: T x Tx ExQ — H be measurable, and
. T T o 2
B(s,t,v) is Fi-measurable for each s, and [; [ [z E||B(s,t,v)||% B(dv)dtds < oo.

Then

/OT/OT/EB(s,t,v)[\?(dvdt)ds=/OT/E/OTB(s,t,v)dsN(dvdr).

Proof. (Sketch) We first prove that for the B given above, there exists simple functions

25



B, having the form

-1 n-1

Bn(s t,z, w = <L ; ].AJ“ ]“ )l(tjk,tjk+1](t)1(5j,3j+l](s)ajkl~ (41)

%
:

[
I

Here A € B(E/{0}) (0 ¢ ), tic € (0, ).ty < tyesns; € (0,T,; < 541, Fp €
.thk,ajk( € H Foralljel,...,p—1and kel,...,n—1 fixed, A]kll X ijllﬂ
Ajklz X ijl2 = ¢, if [} # l,. Also B,, L%-approximating to B w.r.t. ds®v® P. The
proof follows almost exactly from Theorem 4.2 in Riidiger and Ziglio [38]. Now for
simple functions in (4.1), we have

/OT /OT /E B(s,t,v) N(dvdt) ds

p-ln-1m

= ZZ Z(Sj+1 — sj)ajkllF}H(w)f\}((tjk, tjk+1] N (0, T] X Ajkl N E)

j=1 k=1 I=1

=/0T/E/0TB(s,t,v)dsﬁ(dvdt).

Also by the inequality

B(s,t,v)ds N(dv dt)

/ / / (s,t v)ds
<T/ / /E||B (s,t,v)|% ds 3(dv) dt,

we know as n — oo, w.p. 1, we have

/OT/OT/EB(s,t,v)N(dvdt)ds=/0T/E/OTB(s,z,v)dsN(dvdt). a

Proposition 4.1.2. Suppose that:

B(dv) dt

(a) ¢ € D(A), S(t—7)F(y) € D(A), S(t—7)B(v,y) € D(A), foreachy € Hyv € E

and t > 7,
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(0) [IAS(t = r)F()lla < g1t = 7)1 + llylln), g1 € La1(0,T),
(c) [glAS(t —r)B(v,y)li% B(dv) < gat = 7)1 + |lyll%), 92 € Li(0,T).
Then a mild solution Z(t) is also a strong solution.

Proof. By the above conditions, we have
T pt
/ / |AS(t — 7)F(Z(r))||y dr dt < oo, w.p.1,
o Jo
and
T t
/ / / E|AS(t — 7)B(v, Z())||% B(dv) dr dt < co.
o JoJE

Thus by Fubini’s theorem, we have

//ASs—r ))drds
//ASs—r ))dsdr

_ / S(t - r)F(Z(r)) dr — / F(Z(r)) dr.
0 0

By Proposition 4.1.1, we also have

/0 t /0 | /E AS(s — r)B(v, Z(r)) N(dvdr) ds
=/t//tAS(s—r B(v,Z r))dsﬁ(dvdr)
//St—r (v, Z(r)) N(dvdr) — // (v, Z(r)) N(dvdr).

Hence AZ(t) is integrable w.p. 1 and
t
/AZ )ds =S(t)p — <p+/ S(t—r)F(Z (r))dr—/ F(Z(r)) dr

//S(t—r (v, Z(r )N(duh // (v, Z(r)) N(dvdr)
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=Z(t)—-<p—/0 F(Z(r))dr—/o/EB(v,Z(r))N(dvdr).
Thus
Z(t) = o+ /0 AZ(s)ds + /0 F(Z(s))ds + /0 /E B(v, Z(s)) N(dvds).

So Z(t) is a strong solution. O

4.2 Approximation part
We now study the approximating system, which has the form

dZ(t) = AZ(t) dt + R(n)F(Z(t)) dt + /E R(n)B(v, Z(t)) N(dvdt), Z(0) = R(n)y

(4.2)
where n € p(A), the resolvent set of A (p(A) := {A € C: A-A: D(A) — H is bijective}),
R(n) = nR(n, A), and R(n, A) = [°e ™S5(t)dt. We begin with a theorem on the

mild solution of the stochastic equation.
Theorem 4.2.1. The mild solution of (3.1) is in C(0,T; LY (Q, F, P)).
Proof. Let Z(t) be the solution of (3.1). We know that
s+t
Z(s+t) =S(s+t)<p+/ S(s+t—uw)F(Z(u))du
0
s+t -
+/ / S(s +t—u)B(v, Z(u)) N(dvdu),
o JE

Z(s)=S(s)p+ sS(s —u)F(Z(u))du + | S(s — u)B(v, Z(u)) N(dv du).
0 o JE
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So

Z(s+1) = Z(s) =S(s + ) — S(s) o + [H S(s +t — u)F(Z(w)) du
+ [[(S6s+ 1= - S(s - )F(Z() du
/ / (s +t — u)B(v, Z(w)) N(dv du)
/ / s+ t—u) = S(s — W) B(v, Z(w) N(dv du).
We have
E|Z(s+1t) = Z(s)|% < S(EL + Ely + Els + Ely + Els),

where

El =E|S(s + t)p - S(s)¢ % — O,as 1 =0,
2

El, =E /W S(s +t — u)F(Z(w)) du

H

<8 [ 86+t - w) P2 du

s+t
5tM2E/ IF(Z(w)|2 du — 0,as t — 0,

2
El; =F

/OS(S(S +t—u)—S(s—u))F(Z(u))du

H

<5E/3||(Ss+t—u)—S(s—u))F( (u ))]ﬁ,du—»O, ast — 0,

Ely =

/ / (s +t—u)B(v.Z(u)) (dvdu)

s+t
5AI2E/ / | B(v. Z(w)||3 3(dv) du — 0, as t — 0,
s E

2
El; =E

/3/ (S(s+t—u)—S(s—u))B(v, Z(u)) N(dv du)

H

<AE //“ (v, Z(u))||% B(dv) du — 0, as t — 0.
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By the fact that || S(¢)|| < M, for Vt € [0,T], ||S(s + t)x — S(s)z||ly — O as t — 0,

for Vi € H, and Lebesgue dominated convergence theorem. So we have
E|Z(s+t)— Z(s)|3 — 0, ast — 0.

Also by Theorem 3.2.1, we know the mild solution of (3.1) is in (X0, T; L¥(Q, F, P)).

O
The following is the main result of this chapter, which generalizes Ichikawa [17].

Theorem 4.2.2. The stochastic differential equation (4.2) has a unique strong solu-
tion Z(t,n) which lies in C(0,T; L¥(Q, F, P)) for all T and Z(t,n) converges to the
mild solution of the stochastic equation (3.1) in C(0,T; L¥(Q, F, P)) as n — oo for

all T.

Proof. We know AR(n) is a bounded operator and suppose that |AR(n)| < M;.
The first part is an immediate consequence of the existence of a mild solution and

Proposition 4.1.2. Observe, by the growth condition and |S(t)] < e*,
|AS(t = ) R(m)F()lln < e VM VI + |yll),
and similarly,
/ NAS(t = rYR(n)B(v, )| 3(dv) < e2CIN + ||yll%).
E
To prove the second part, we consider
t
Z(t)— Z(t,n) =S(t)[p — R(n)¢] + / St =n7)[F(Z(r)) = R(n)F(Z(r,n))]dr
0
t
+ / / S(t—r)[B(v,Z(r)) = R(n)B(v, Z(r.n))] N(dvdr)
o JE
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- /0 S(t - )R [F(Z(r)) - F(Z(r,n))| dr
+/0/ES(t—r)R(n)[B(v,Z(r))—B(v,Z(r,n))] N(dvdr)
+{ 50l - Rl + [ 5=t = REIF (20 dr+

//St—r[[ R(n)|B(v,Z dvdr)}

We have,

E sup ||Z(s) — Z (s, n)HH < 3E sup [I) + I + I3,

0<s<t 0<s<t
where

2
FE sup I, =F sup

/08 S(s =r)R(n)[F(Z(r)) — F(Z(r,n))]dr

0<s<t 0<s<t H
¢
§4k62"‘t E sup ||Z(r) — Z(r,n)||% ds, ( by Lemma 3.2.3)
0<r<s
2
E sup I, =FE sup //Ss—r)R )[B(v, Z(r)) — B(v, Z(r,n))] N(dvdr)
0<s<t 0<s<t H
<4kby / E sup | Z(r) — Z(r,n)| ds, (by Lemma 3.2.3)
0<r<s
and
E sup I3 =F sup ||S(s)[¢ — R(n y/]‘{"/ S(s —=7)[I = R(n)|F(Z(r)) dr
0<s<t 0<s<t
// s—r)[I = R(n)|B(v, Z(r)) dvdr)
<3E sup (I3 + I3z + I33).
0<s<t
We now estimate each term in /3, because |R(n) — I| — 0, as n — oo,
E sup In = E sup [|S(s)y — R(n )2lllE < [R(n) = I1%e|lollf — 0 as n — oo,

0<s<t
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E sup ]32

0<s<t
2

(by Lemma 3.2.2)
H

=F sup

0<s<t

/Os (s =7)[I = R(n)]F(Z(r))dr

t
<|R(n) - I|2e2‘"’tl(t + /0 ElZ()|% dr) —0asn — oo,

E sup I33

0<s<t

=F sup (by Lemma 3.2.2)

0<s<t

// (t =r)[I = R(n)|B(v, Z(r)) (dvdv)

<|R(n) - I?b,1 (t + / E||Z(r)||,,dr) — 0 asn — oo
0
Thus we get

E sup ||Z(s) = Z(s,n)|} < 64/ E sup ||Z(r) = Z(r,n)|% dr + |R(n) — I|"cs.

0<s<t 0<r<s

Here ¢4 and cs are positive constants.

By Gronwall’s inequality, we have
E sup || Z(s) = Z(s,n)|} < |R(n) — I|cse®t.
0<s<t

So

0< lim sup E|Z(s)— Z(s,n)||% < lim E sup ||Z(s) — Z(s,n)||% = 0.
n—0  0<s<T

n—0 0<s<T
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Chapter 5

Stability properties of the mild

solution

5.1 Ito formula

Let C%(H) denote the space of all real-valued functions ¥ on H with properties:
(i) ¥(x) is twice (Fréchet) differentiable,
(i) ¢'(z): H — H is uniformly continuous on bounded set,

(iii) ¢¥"(z): H — L(H) is uniformly continuous in strong operator topology on

bounded set.
By CZ ""C( H) denote the space of all functions in C4(H) with properties:
(i) There exists my, such that |v'(z)||g < m,||z||y, for V2 € H,

(i) ¥" are independent of z.
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We recall Ito formula from Riidiger and Ziglio [38].

Theorem 5.1.1. If (t,x) is once continuously differentiable in t, ¥(t,") € Ci(H)
for any giwven t, also the second Fréchet derivatives vy, V.., ¥, ezist and are uni-
formly bounded on on [0,t] x B(0, R) (centered ball of radius R), for all R > 0. Let
{Z%(t),t >0} be the strong solution of (3.1), then
t
W(.2°0) =0(0.9) + [ wls 27(s)ds
0
t
+ [(ls, 2260, 427(5) + Fz7(s))
0
t
+ [ [ w6296 + Bw. 22(s))
0 JE
= (s, 2%(s)) — (¥.(s, 2%(s)), B(v, Z“’(S)))] B(dv)ds
t —_~
+ / / [1/)(3, Z%(s=) + B(v, 2%(s))) — (s, Z“’(s—))] N(dv ds).
0JE
Here 9, and v, are Fréchet derivatives with respect to t and z respectively.

We have another form of Ito formula if ¥ is independent of ¢.

Theorem 5.1.2. Suppose ¢ € Ci(H) and { Z#(t).t > 0} is a strong solution of

(8.1). Then
W20 (o) + [ LuEe(9)ds
0
+ [ [z 6m) + B, 22(5) - 0(29(5-)) } Rldvds)
o JE

where

Lé(2) = ((2), Az + F(2)) + / (2 + B0, 2)) = $(2) = (#(), B(v, 2))] B(dv)
is the infinitesimal generator of the Markov process given by the solution of (3.1).
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Since Ito formula is only applicable to the strong solution, we will use approx-
imating method to study the stability properties of the mild solution to stochastic

equation (3.1). We recall the approximating systems here for convenience.

dZ(t) = { AZ(t) + R(n)F(Z(t)) } dt + [ R(n)B(v. Z(t)) N (dv dt) 61

Z(0) = R(n)p
where n € p(A), the resolvent set of A, and R(n) = nR(n,A). The infinitesimal

generator L, corresponding to this equation is

Ln(z) =(¢'(2). Az + R(n)F(2))

+ /1;[1,/»'(: + R(n)B(v,2)) — ¢(2) — (¢'(2), R(n)B(v, 2))] 3(dv).

5.2 Exponential stability in the m.s.s.

Following Khasminski and Mandrekar [22], we define stochastic stability first.

Definition 5.2.1. Let Z¥(t) be the mild solution of (3.1), we say that it is exponen-

tially stable in the m.s.s. if there exist positive constants c, @, such that
E|Z°(O|3 < ce™®|lp|%, for all ¢ € H and t > 0. (5.2)
The following gives a sufficient condition for exponential stability in m.s.s..

Theorem 5.2.1. The mild solution Z¥(t) of (3.1) is exponentially stable in the m.s.s.
if there exists a function v : H — R and ¢ € Cg““(H) satisfying the following
conditions:

allzllf < ¢(@) < asllzllf (5.3)
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LyY(z) < —c¥(x) (5.4)

forVx € H, where ¢y, ¢y, c3 are positive constants.

Proof. Apply Ito formula to eCQtw(x) and Z7(t) and take expectation, where Z?(t)

is the strong solution of (5.1). Then we have

2l Ey(Z2 (1)) — p(Z2(0)) = E /0 €925 (cy + Lo)Y(Z2(5)) ds.

Here
Ln(x) =(¢'(z), Az + R(n)F(z))
+ /E[w(z + R(n)B(v,z)) — ¥(z) — (¥'(z), R(n) B(v, z))] B(dv)
Lo(z) =(#/(2), Az + F(2)
+ [ + Bw.2)) = v(z) - (@), Blo.0)] ld),
E
By (5.4),
cU(x) + Lov(x) < —Ly(z) + Loy (x)

=(¥/(z). (R(n) - I)F(z)) (5.5)

i(x + R(n)B(v, —¥(z) = W'(z), R(n)B(v,x
+/E[[1/( + R(n)B(v.z)) — ¥(z) - (¥'(z). R(n) B(v ))]]ﬂ(dv).

—[1[’(1' + B(‘U,I)) - "Z’(I) - (wl(r)’ B(U,I))]

So we have
e E(Z3(1) - w(Z7(0)) < E/Ot e (1(Z2(5)) + 1:(Z7(5))) ds, (5.6)
where
Ii(h) = ('(h), (R(n) = 1) F(h)),
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Io(h) = / [(h + R(n)B(v, h)) — v(h) — (&' (h), R(n) B(v, h))]
E —[W(h + B(v,h)) — (k) — (' (h), B(v, h))]

Now, we will prove that the right hand side of (5.6) — 0, as n — oo.

| Bav).

First the integral in (5.5) makes sense, because by Theorem 2.1.1, there exists a
bounded bilinear form Rj, |R2| < M’ (a positive constant), such that the integrand

satisfies

[¥(z + R(n)B(v, z)) - $(z) — (¢'(z), R(n) B(v, z))

— [¥(z + B(v, 7)) — ¥(z) = (¥'(z), B(v,7))]]
=|R2(R(n) B(v, 7)) — Ra(B(v, 7))|
<|R2(R(n)B(v,7))| + |Ra( B(v, )|
<M'||R(n)B(v, z)|} + M|l B(v, 2)|;

<M"||B(v, )Il3-

Here M" is a positive constant. So the integration makes sense.

We know that limy, e Sup,cpory EIlZ9(t) — Z£(t)||}; = 0 by Theorem 4.2.2 and
1Z2(0)1% < 2122(0) — Z2(0)]% + 201 Z#()]I%, we have sup,, [T E|Z2(s)[3 ds < oo.
By the Schwartz inequality, we get sup,, foT E||Z2(s)|lnds < 00. So {||Z2(s)|l,n =

1, 2,...} is uniformly integrable on Q x [0, T') with respect to the measure P x Leb.

Now we prove the right hand side of (5.6) — 0, as n — oo.

t
‘E / eC251,(Z%(s)) ds
J0

E/ eC25 (W (Z2(s)), (R(n) — DF(Z2(s))) ds
0

<E / 16925 (¥/(Z2(s)), (R(n) — D)F(ZE(s)))] ds
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SE/Ot e |¢(Z2(s)lul R(n) = TIF(Z(s))llu ds
<IR(r) = 11 [ €20 Z2(6) I + 12560 ) ds
<M;|R(n) — I| (M3 is a positive constant)

—0, as n — oo.

By letting

In(z) = ¢(z + R(n)B(v,z)) — ¥(z) — (¥/'(z), R(n) B(v, 7))

I(r) = ¢(z + B(v.z)) — ¥(z) — (W'(x), B(v,x)),
one has

t
‘E/ e“251,(Z%(s)) ds
0

t C2S “(s)) — “(s))] 3(dv) ds

<E / /E e8| 1,(22(s)) — 1(Z2(s))] A(dv) d

= / / €25 | Ry(R(n) B(v, Z2(5))) — Ra(B(v, Z2(s)))] 3(dv) ds.
0JE

Here R, is a bounded bilinear form by Theorem 2.1.1. By the result in Yosida [45],

there exists bounded linear operator C: H — H, such that
Ry(R(n)B(v, Z7(s))) = (CR(n)B(v, Z7(s)), R(n) B(v, Z3(5))),

and
Ry(B(v. Z3(s))) = (CB(v, Z7(s)), B(v, Z3(s)))-

' “n

For simplicity, let

Qx) = E/Ot/E e“2% (1) A(dv) ds.

38



We have

t
lE / €25 1,(Z%(s)) ds
0

<0 (CR(n)B(v, Z3(s)), R(n) B(v, 23(5)))
—(CB(v, Z¢(s)), B(v, ZZ(s)))

(

| (ctrm - 5. 2269, Ry B, 22060
\| ~(CB(v.Z5(s)). (R(n) = 1)B(v, Z{(5))
(

ICIIR(n) = I1I|B(v, Z%(s))ll | R(n) || B(v, 28 (s)) ]|
<Q

\  HCIWBW, ZE()ulR(m) = B, Z£(5) 1
<t [ [ e maiR(n) - 112080 ZZODI
+ mg|R(n) — 1|| B(v, Z2(s))||3) A(dv) ds
<|R(n) - I|1E /0 /,ﬁ"”eczsllB(v, Z8(s)) 1% B(dv) ds
<|R(n) - I|E / Bmae (14 |22 ds
0
<M,|R(n) - I,

with My a positive constant. Thus we know the right hand side of (5.6) — 0, as

n — 00. By the Lebesgue dominated convergence theorem, we have
e E(2°(1)) < ¥(p).
By condition (5.4), we have
AE[Z2(O1} < eallolfe™ 2.

So

E||Z*°<r)n%,< w —at, O
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The function y(z) € C2*(H) and satisfy the conditions (5.3) and (5.4) in the
above theorem is a Lyapunov function. Now we want to construct a Lyapunov func-
tion if the solution Z¥(t) of (3.1) is exponentially stable in the m.s.s..

First, let us consider the following linear case. Suppose F' = 0 and B = By is

linear. Then equation (3.1) has the form
dZ(t) = AZ(t) dt + [ Bo(v)Z(t) N(dvdt)

(5.7)
Z(0) = .

We assume [ || Bo(v)yll%; B(dv) < d|lyll3; and the solution of this equation is Z§'(t).

The infinitesimal generator £y corresponding to this equation is
Loy(2) = (¥'(2), Az) + /E[¢(z + Bo(v)2) — ¥(2) — (¥/(2), Bo(v)2)] B(dv).

Theorem 5.2.2. If the solution Z§(t) of equation (5.7) is exponentially stable in the
m.s.s., then there erists a function v, € CZ"“(H) satisfying (5.3) and (5.4) with C
replaced by Lo.
Proof. Let

wol) = [ BIZEO) Gy dt + wlelfy, (58)
where w is a constant to be determined later. Since Z§(t) is exponentially stable in the
ms.s., [~ E||Z§(t)||% dt is well defined and there exists a symmetric and nonnegative
operator R € L(H) (Prato and Zabczyk [6]), such that ¢(¢) := [J° E||Z§(t)|3; dt =
(Ry, ¢). Hence

() = (Rp, @) + wlg|F. (5.9)

It is obvious that ¥, € C2'**(H) and wl|¢||} < ¥o(e) < (|R| + w)|l¢ll%. This proves

¥, satisfies (5.3). To prove it also satisfies (5.4) with £ replaced by L£,, we note that
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A is the infinitesimal generator of a Cp-semigroup S(t) satisfying ||S(t)|| < e™. There
exists a constant A (without loss of generality, we assume it is positive) such that

(z,Az) < M||z||% (Ichikawa [17]). Hence we have

Lollz|l% = 2(z, Az) + / | Bo(v)z]% B(dv) < (2X + d)| z|I%. (5.10)
E
Also,
d  Ee(Z8(r)) -
Lod() = (BS(Z5(7)))lr—0 = lim ¢(28(r)) — ¢()
T —0 -
1
=l"%“/ ENZ§(s)II} ds = = llell%-
r— T 0
Therefore

Lovo(z) =Lo(Rz,z) + wlollz|I}
<=zl +w@h+ D))

={ =1+ w@r+d)}||z]3. (5.11)

Therefore, if w is small enough, (5.4) holds with £ replaced by Lo. This proves the

theorem. ]

For the nonlinear equation (3.1), to assume zero is a solution, we need to assume
F(0) = 0 and B(v,0) = 0. If the solution Z¥(t) is exponentially stable in the m.s.s,

we can still construct a Lyapunov function as (5.8),

w0) = [ EIZOl @+ il
v2,loc

But it may not be in C2'*(I). If we assume it is in CZ*°(#1), we claim that it satisfics

(5.3) and (5.4). Now we prove this claim. Since Z%(t) is exponentially stable in the
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m.s.s, we assume it satisfies (5.2). Hence

0 c
| Enzeoia < i

for all ¢ € H. Therefore, w|¢||3 < ¥(p) < (g + w)|l¢ll4. This proves (5.3). To

prove (5.4), let ¢(p) = [;° E[|Z#(t)||% dt. Observe that
Eo(z*() = [ B(12Z" )| 2°0) s
0
But by the Markov property of the solution of (3.1), this equals
| BBz 0 | 7)) as
0
where F? = 0{ Z%(t),t < r}. The uniqueness of the solution implies
L 7®
E(NZ2Z7 )5 | F2) = BUIZ# (s + )5 | 7).

Hence

Eozo(r) = [ ENze(r+ s)5ds = [ ENZ9(s)I ds.
0

r

By the continuity of t — E||Z%(t)||%, we get

E¢(22(r)) — ¢(v)
T

Lo(9) =3 (EH(Z° (7))o = lim

. 1/
—tim = [ BIZ2(6) I ds = Il
r— r Jo
Therefore,
Ly(p) =L(») + wllplly

=~ el + w2l A+ PN + [ 1Bl A

< = Nl + 2wl +w(2(e, F(e)) + /E 1B (v, £)II% A(dv)).
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Since we assume F'(0) = 0, B(v,0) = 0, using the Lipschitz condition, we get Ly(¢) <
~llel + w2+ 2vk + k)lell-
Hence if w is small enough, ¥(y) satisfies(5.4). Therefore we have the following

theorem.

Theorem 5.2.3. If the solution Z#(t) of (3.1) is exponentially stable in the m.s.s.,
F(0) =0, B(v,0) = 0 and ¢(y) = [;° E| Z°(t)||% dt is in C2'*°(H), then the function

Y(p) constructed above satisfies (5.3) and (5.4).

Since we have difficulty showing ¢(yp) € C? o¢( ), we turn to use the first order
approximation to study the exponential stability in the m.s.s. of the solution of the

nonlinear equation (3.1).

Theorem 5.2.4. Suppose the solution Z§(t) of equation (5.7) is ezponentially stable
in the m.s.s., and it satisfies (5.2). Then the solution Z¥(t) of (3.1) is ezponentially

stable in the m.s.s. if

20Nl P+ [ 1B(0,2)=Bo(o)=lull B, )+ Bulw)elln A(d) < Ll (5.3

Proof. Let vy(z) = (Rz,z) + w||z||%} as defined in (5.9). Since Zg(t) satisfies (5.2),
IR|| < g Since yo(z) € C2'*(H) and satisfies (5.3), if we can show that g (z)
satisfies (5.4), then by using Theorem 5.2.1, we are done. Since
Lo(z) — Loyo(2)
= (Vp(2), F(2)) + /E [Vo(z + B(v, 2)) = ¥y(2) — (¥(2). B(v. 2))] B(dv)

- /E[illo(z + By(v)z) — ¥o(2) — (¥p(2). Bo(v)2))] B(dv)
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=2((R+w)z, F(2))

+ /E(((R +w)B(v, 2), B(v, 2)) = ((R + w) Bo(v)2, Bo(v)2)) 3(dv)
<201 Rl + w)llzll a1 F ()l a

+ (IRl + w) /E 1B(v, z) = Bo(v)2|| || B(v, 2) + Bo(v) 2| B(dv)

=(I1R]l + w)(2l| ]|

F(z)|la

+/ 1B(v: 2) = Bo(v)zllu || B(v, 2) + Bo(v)=||n B(dv)). (5.14)
E

by (5.11) and the assumption (5.13), Ly(z) satisfies (5.4) if we choose w small

enough. O

The following example shows that the usual Lyapunov function is not bounded

below.

Example 5.2.1. Consider the SPDE

92,
001

dyu(t,r) = (a ——; + '7u) dt +/ uv f\?(dvdt)
Oz vl<1

with initial condition u(0,z) = p(x) € L*(—oc, +00) N L(—00,+00), N is the com-

pensated Poisson random measure.

0? %
Let H = L*(—00,+00), Au = (128—;2‘ + yu, B(u,v) = wv,|u| = (% u? dz)'/?,

Now we compute E|u?(t)|? explicitly. Taking the Fourier transformation of the SPDE,

we get

d,ii(t, N) =(—a?A20(t, A) + va(t. \)) dt +/ a(t, N N (dv dt)

[v|<1

=(—a®A\? + y)a(t, \) dt + / a(t, v N(dv dt).

J <1
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So we have
¢ t ~
u(t,\) = 2(A) +/ (=A% +7)d(s, A) ds + / / u(t, \)v N(dvds).
0 0 Jivi<t

Now using Ito formula on |i(t, A)|? and taking expectation, we have

E|u(t, \)|?

t t
=16V +2(—a?M? +v) / E|u(s,\)|>ds + / / v? B(dv)Elu(s,\)|* ds
0 0 Jiv|<1

t
=g\ + [2(—a2/\2+7)+ /| v2ﬁ(dv)] /0 E|u(s,\)|* ds.

v|<1
So solving this equation, we get

[vl<1

{—2a®X% + 29 + / v? B(dv) }t
E[a(t. ))[* = [3(\)|%e :

By the Plancheral theorem, with H = L?(~o00, +00).
[1t¢(t’ )|2 = [u’v(tv ')lzs
and hence we have

E|u?(t)]2 =E[i*()]? = E [ a2 da

00 { —202)\% + 2y + / v? B(dv) }
/ BN i<t i

e ]

If we assume 27 + [, v® 8(dv) < 0, then we get

{2~/+/ v? 3(dv) }t
B < JpPe  Just |

Hence the solution of the SPDE is stable. But

0o 0 1
E""t2dt=/ PN A,
/0 [u?(t)] —x|90( )l 20222 _ (27_}_][”[511.2/3((1,’,))(

Thus the usual Lyapunov function [°E [u?()]* di is not bounded below.
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5.3 Stability in probability
Definition 5.3.1. Let Z¥(t) be the mild solution of (3.1). We say that the zero
solution of the equation is stable in probability if
lim P(sup”Z"’(t)HH > e) =0 for each € > 0.
t

llelly —

Theorem 5.3.1. Let Z%(t) be the solution of equation (8.1). If there exists a function

¥(z) € CH°(H) having the properties:
(1) cillzlly < ¥(z) < collz||%, where ciand c, are positive constants,
(1) inf”x“H s  ¥(x) = A >0,

(1i1) Ly(r) <0, forVr € H,

then the zero solution of equation (3.1) is stable in probability.

Proof. We first obtain the inequality

P(sup 1Z2(t)||n > s) < ¢'§‘<p)’ for p € H.
¢

To prove this, let O, = {z € H : ||z||ly < €},T. = inf{t : ||Z°(t)|lw > €}. Now
consider the process Z#(t AT;). Using Ito formula on y(x) and Z?(¢t A T,) and taking
expectation, we have Ey(Z2(t A T;)) — ¥w(Z¢(0) Eft AT Lop(Z2(s AN Te)) ds.

Now using a technique similar to that used in Theorem 5.2.1 and
Lag(Z3(s ATe)) < —Ly(Z5(s AT)) + Loy (Z7(s A TE)),
we can get EyY(Z#(t AN T;)) < ¢(p), so
#(p) 2 EG(ZP(LAT.)) > AP(T. < 1).
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This proves the inequality. Now let ¢ — 0, and we get the assertion. a

The function constructed in Theorem 5.2.2 for the linear equation (5.7) satisfies

the condition of Theorem 5.3.1. Hence we get the following theorem.

Theorem 5.3.2. The solution Z§(t) of the linear equation (5.7) is stable in proba-

bility if it is exponentially stable in the m.s.s..

For the stability in probability of the zero solution of the nonlinear equation (3.1),

we have the following Theorem.

Theorem 5.3.3. If the solution Z§(t) of the linear equation (5.7) is exponentially

stable in the m.s.s. and
QIIIIIHIIF(I)IIH+/}E | B(v, )= Bo(v)z| ||| B(v, )+ Bo(v)z| 1 B(dv) < wiz||}; (5.15)

for some w small enough in a sufficient small neighborhood of x = 0, then the zero

solution of the nonlinear equation (3.1) is stable in probability.

Proof. Since the solution Z§(t) of the linear equation (5.7) is exponentially stable in
the m.s.s, we define ¥;(z) = (Rz,z) + w||z|% as in (5.9). By (5.14) and assumption
(5.15), we get Lyy(r) < 0. Obviously, ¥,(x) satisfies the other condition of Theorem

5.2.4. Therefore our assertion holds. O

5.4 Exponential ultimate boundedness in m.s.s.

In this section, we study exponentially ultimate boundedness properties of the mild

solution of (3.1). We will give a necessary and sufficient condition in terms of a
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Lyapunov function for the linear case and use the first order approximation to study

the nonlinear case.

Definition 5.4.1. The solution Z¥(t) of (3.1) is exponentially ultimately bounded in

the m.s.s. if there exist positive constants ¢, 8, M such that
E|Z#(0)3 < ce ®lloll} + M (5.16)
for Vo € H.

Definition 5.4.2. The solution Z%(t) of (3.1) is ultimately bounded in the m.s.s. if

there exist positive constant K such that
T EIIZ# ()l < K (5.17)
for Vo € H.

Definition 5.4.3. A stochastic process { £(t), t > 0} is said to be bounded in proba-

bility if the random variables |£(¢)| are bounded in probability uniformly in ¢; i.e.,
stlig)P{ ()] >R} — 0, as R — oo.
Remarks.
(1) If M =0, we get that the zero solution is exponentially stable in the m.s.s..

(2) It is clear that exponentially ultimately boundedness implies ultimately bound-

edness.

(3) Ultimately boundedness implies bounded in probability (by using Chebyshev’s

inequality).
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Theorem 5.4.1. The mild solution Z¥(t) of (3.1) is exponentially ultimately bounded
in the m.s.s. if there exists a function ¢ : H — R, also ¢ € Cf'loc(H ) satisfying the
conditions:

allzliy — ki < ¥(2) < csllzlfy — ks (5.18)
Ly(z) < —cou(z) + k2 (5.19)
for ¥z € H, where ¢; > 0,co > 0,¢3 > 0, k1, ko, k3 are constants.

Proof. The proof of this theorem is similar to that of Theorem 5.2.1. Applying Ito

formula to ec2t¢(:c) and Z?(t) and taking expectation, we get
t
HEUEZI0) - ZE0) = B [ 5 eat LINLE) s,
0

where

¥ (x) + Latp(z) < —L3P(x) + k2 + Loy (2).
As before, we get

t
T EU(Z0) - w(ZE0) < [ e hads = Z(er - 1)
0

C2

ie.,

HEUZI0) < vl + [ Phads. (5.20)
So

BallZ2 Ol ki < e~ gl — k) + 2201 - €72
ie.,
BIZ# Ol < [rae™ 2 Il = k™3 4y + 201 - 21
sZ—je_Qtlls&Il?f - Icc—‘;‘e‘@‘ + i—: + %(1 !
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So there exist positive constants ¢, 8 and M, such that
ElZ2(t)|F < ce™™ ol + M, for Yy € H.
So Z%(t) is exponentially ultimate bounded in m.ss.. O
From (5.20), we have the following result.

Corollary 5.4.1. Suppose all the conditions in Theorem (5.4.1) hold except condition

(5.18) is changed to
allzl =k < ¥(z).
Then the the mild solution Z#(t) of (3.1) is ultimately bounded in the m.s.s., so it is

bounded in probability.

Remark. The above corollary is a generalization of Skorokhod’s work ([40], Theorem
25, p.70).
For the converse problem, we first look at the linear equation (5.7) and have the

following result.

Theorem 5.4.2. If the solution Z¥(t) of equation (5.7) is ezponentially ultimately
bounded in the m.s.s., then there exists a function v, € Cf’l“(H) satisfying (5.18)

and (5.19) with L replaced by Ly.

Proof. Suppose the solution Zg (t) of equation (5.7) is exponentially ultimately bounded

in the m.s.s.. We suppose (5.16) holds. Let

T
Yoli) = / E|\Z2 ()| ds + wl¢l, (5.21)
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where T is a positive constant to be determined later. First let’s show 1, € Cf "“(H ).

Let o(z) = [ E|lZ5(1)|% d!. Using (5.16),

T
olz) < / (ce~"|lz|% + M)dt < S|jzl% + MT. (5.22)
0
If ||.£]|3, = 1, then y(z) < §+MT Since Z§ (1) is linear in z, for any positive constant
k, we have Z*(t) = kZZ(t). Hence py(kx) = k%py(x). Therefore, for any z € H,

o) = lelfmn (2= < (54 MT) el
Let ¢ = (5 + MT. Then p,(z) < ||z||%} for Yz € H. Let
T
T(z,y) =/ E(Z§(s), Z¥(s)) ds
0

for Vz,y € H. Then T is a bilinear form on H, and by using the Schwartz inequality,

we get

T
el =| [ B3, 2 ds

T «
< / (EIZ2 ()2 2E N Z2()%0) 2 ds
0

< (/OT E||Z5(s); ds)m (/OT E| 2§ (s)Il% ds)

=¢0(2) 200 (y)'"2 < ¢z ullyll -

1/2

Hence there exists a continuous linear operator C € L(H, H) ( Yosida [45] ), such that

T(z,y) = (Cz,y), and ||C| = sup [{Cz,y)| < . Since po(z) = T(z,z) =

llzllr=1llylla=1
(Cz,z). So @j(x) = 2Cr and @fi(z) = 2C. Hence ¢, € C'*(H) and v,(p) €
CE'IOC(H) By (5.22) and the fact that ¥y(v) > w|l¢|/%, (5.18) is satistied. By the

Z8 (DI, we get

d , o Eeg(Z5(r) — Egyls
Lorale) = (Bao(ZE ()| _, = tim Pl B = Fenle)

r=0 r—0 T




] 1 r o . 1 r+T o 2
=1"% - E|Z§(s)|y ds + = E||Z5 ()3 ds
T T Jo rJr
=— ey + EIIZ§M% < =llellf + ce”llelly + M

<(=1+ e T)lpll% + M.

Therefore using (5.10),

Lovo() =Lopo(w) + 2Lolloll%

<(=1+ce™)lelly +w(2A + d)llellf + M. (5.23)

Therefore, if T > In bc_, then we can choose a small enough such that ¢y (¢) satisfies

(5.19) with £ replaced by Lo. O

For the solution of the nonlinear equation (3.1), if y:(p) = fOT E|z7(s)||% ds +
wl¢||% is in C,f‘loc(H), we can follow the proof of Theorem 5.4.2 and Theorem 5.2.3

and have the following result.

Theorem 5.4.3. If the solution Z¥#(t) of (3.1) is exponentially ultimate bounded in
the m.s.s., and ¢(¢) = fOT E|Z#(t)||3 dt is in CZ““(H) for some T > 0, then there

extsts a Lyapunov function for Z¥(t) which satisfies (5.18) and (5.19) .

Now, we use the first order approximation to study the properties of exponentially
ultimate bounded in the m.s.s. of the solution of the nonlinear equation based on the

same property of the solution of the linear equation.

Theorem 5.4.4. Suppose the solution Zg(t) of (5.7) is exponentially ultimately

bounded in the m.s.s., and it satisfies (5.16) . Then the solution Z%(t) of the equation



(3.1) is exponentially ultimate bounded in the m.s.s. if

20zl ull F () e + /E | B(v, z) = By(v)z|lull B(v, z) + Bo(v)zlly B(dv) < W 2|} + A,y
(5.24)
for any constant M, and
1—ce0s

W< max —m—— (5.25)

C .
s>lng 5+A’!3

Proof. Let 1,(z) be the Lyapunov function as defined in (5.21) with T > lng such
that (5.25) attains its maximum at 7. We just need to show that 1y(x) satisfies (5.19).
Since ¥o(2) = (Cz,2) + w||z||% for some C € L(I1, H) with ||C|| < g + MT and w

very small, following (5.14), we have
Li)o(z) — Lowg(2)
<[ICll + w) (QIIZIIHIIF(Z)IIH + /E 1B(v, z) = Bo(v)z|lul| B(v, z) + Bo(v)=|lu ﬂ(dv))

g(g +MT + w) (wuzu’;’, + Ml).
Using (5.23)

Lvg(z) (=14 ce™)2)1} + w@A + )| 2|5
+ M+ (g +MT + w) (Wiz|%, + My)
_ (_1 =0T (E , 112 12
= +ce” + W 6+I\IT 2l + w@A+ d+ W)zl
C
+ M+ (5 + MT + w) M.

Since W satisfies (5.25), —1 + ce™?" + W(g + MT) < 0, and hence we can choose w

small enough such that (5.19) is satisfied. a
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Corollary 5.4.2. Suppose the solution Z(t) of equation (5.7) is ezponentially ulti-

mate bounded in the m.s.s., if as ||p||ly — oo,

IF ()l =o(llella)

J 1B = Boe)elnll B 0) + Balw)eln Bldn) =ollely).
Then the solution Z¥(t) of (3.1) is exponentially ultimately bounded in the m.s.s..
Proof. Since as [[¢]lg — oo, [|F(#)lla = o([l¢llx) and

/E I1B(v,¢) = Bo(v)¢llull B(v, ) + Bo(v)pllm B(dv) = o(lleolly),

for any fixed W satisfying (5.25), there exists an K > 0, such that

2/l F ()l + /EIIB(v, ¥) = Bo(v)¢llull B(v. ) + Bo(v)plln Bdv) < Wliplly

for all |l¢|ly > K.

But for ||¢]ly < K, by the Lipschitz condition,

20lellallF()la + /E 1B(v,¢) = Bo(v)¢llull B(v, ¢) + Bo(v)ellu B(dv)
<llellfs + 1 F ()l + /E(IIB(U, @)l + 1Bo(v)ella)? Aldv)

<lellf + 1+ 105 + 200+ llellF)

<K?+31(1+ K?).
Therefore
2llellull F(@)lu + /E 1B(v, ) — Bo(v)ellullB(v, ¢) + Bo(v)elln 3(dv)
<Well3 + K2+ 3I1(1 + K?).
The assertion follows from Theorem 5.4.4. O
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Corollary 5.4.3. Consider the following system

du(t) =Au(t) dt + F(u(t))dt + / B(u(t),v) N(dvdt)
E
u(0) =¢.

Suppose F and B satisfy Lipschitz and growth condition defined as before and A is

an infinitesimal generator of a Co-semigroup. Then if the solution { u?(t),t >0} of

du(t) =Au(t)dt

u(0) =¢

is exponentially stable (or even ezxponentially ultimately bounded), as ||¢|ly — oo,

1E() i = ool and
[ 18t ) = ol

Then the solution of the above equation is erponentially ultimately bounded in the

m.s.s..
Proof. This follows exactly from Corollary 5.4.2. d
Example 5.4.1. Let us consider the system,
1 ~
t)=-2A ——d : at
du(t) u(t)dt + T w00 dt + /Rt N(dv dt),
u(0) =¢,

where u(t) s real valued. By the above argument, we know u(t) is exponentially

ultimate bounded in the m.s.s..



Chapter 6

Invariant measures

We will continue to study the properties of the solution in this chapter. The conditions
for the existence and uniqueness of an invariant measure associated to the solution

are given, and finally an example is given to illustrate our theory.

6.1 Introduction

Let H be a real, separable Hilbert space defined before and B(H) be the Borel o-
algebra. Let Z(t) be a Markov process with transition probability P(t,y, B),t >
0,y € H,B € B(H). We define T(t): My(H) — My(H), its semigroup, by

TR = [ H)P(.y. d).h e b,
where M,(H) is the space of bounded measurable functions on H.
Definition 6.1.1. Let Cy(H) (C,(H)) be the space of bounded continuous (weakly

continuous) functions on H. The semigroup T'(t) (or the Markov process Z(t)) is said

to be Feller (w-Feller) if T(1)Cy(H) C Co(H) (T(1)CyW(H) C Cyw(H)) for & > 0.
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Definition 6.1.2. A sequence of probability measures p, on B(H) is said to be weakly

(w-weakly) convergent to a probability measure p if for any h € Cy(H) (Cy(11))

Jin [ ) ms) = [ ) uta)

Definition 6.1.3. The set M of probability measures on B(H) is weakly (w-weakly)
compact, if from any sequence of probability measures in M, a weakly (w-weakly)

convergent subsequence can be extracted.

Definition 6.1.4. Let p be a o-finite measure and let uT;(A) = [, P(t,y, A) u(dy).
Then p is said to be an invariant measure associated to the Markov process if T, = i

for all t > 0.

6.2 Existence and uniqueness of an invariant mea-

sure

We first recall some known results.

Theorem 6.2.1. The set M of probability measures on B(H) is weakly compact iff for

each € > 0, there exists a compact set K C H such that sup{ uy(H\K);p € M } <e.
Remark. This is Y. V. Prokhorov’s theorem ( Billingsley (2] ).

Theorem 6.2.2. The set M of probability measures on B(H) is weakly compact iff

two conditions below hold.

i) For any e > 0, there exists ¢ > 0 such that u{y: |lylly > c} <e forall p € M.
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1) The series Y 1o, |Bf‘ek|2 is uniformly convergent in pu for each ¢ > 0 in some

orthonormal basis { ex }, where |Bpz|* = [ (2,y)* u(dy) for z € H.
Remark. This is a result from Gikhman and Skorokhod’s book ( [11]).

Theorem 6.2.3. The set M of probability measures on B(H) is w-weakly compact if
for each € > 0, there exists a weakly compact set K C H such that sup{ u(H\K);p €

M} <e.

Remark. This is Y. V. Prokhorov’s theorem under the weak topology.
The following lemma is also known (Ichikawa [15]). It will be used often in what

follows. We give the proof here.

Lemma 6.2.1. Let p > 1 and g be a nonnegative locally p-integrable function on

[0, +00). Then for each € > 0 and real d

t P ¢
(/(; ed(t—-r)g(r) dr) < C(c‘,p)/o ep(d+£)(t-—r)gp(r) dr,

1 1
for t large enough, where C(e,p) = (1 + q)?/9 with ? + p =1.

Proof. First, we use Holder’s inequality to get

t t
/0 ed(t—r)g(,,,) dr ___/(; [e(d+e)(t—r)g(,r)][e-e(t-r)] dr
1

1
< [/0’[€(d+5)<¢_r)g(r)]p dr]; [/Ot[e'f“")]" d,,J q

Y4

¢ p t ¢
[/ ed('_r)g(r) dr] < / e”(d”)(‘_')g”(r) dr [/ [e"i(“')]q dr] T,
0 0 0
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Observe that

t t
1
/ [e'e("')]qdr = / e 1 dr = —(1 — e75%),
0 0 €q
So for any given € > 0,9 > 1, we need to prove

1
5(1 —e ) <1+ ¢ge,

or we need to prove that

e " +qe+ ¢’ -12>0.

Because when ¢ = 0,e7% + ¢z + ¢°c2 — 1 = 0, and

1
#(e_e‘" +ge + ¢’ — 1) = —qte™ % + g + 2¢° = q(—te ™" + 1 + 2qe).

1

when ¢ is large enough, we have ¢(—te™“%* + 1+ 2ge) > 0, and so —(1 — e™*%) <
€q

1+ qe. O

The following lemma is from Liu and Mandrekar [25].

Lemma 6.2.2. Suppose Z7#(t) is ultimately bounded. Then for any invariant measure

m of the Markov process Z¥#(t), we have

/ 1l m(dy) < K' < oo,
H

Proof. Put f(x) = ||lz||}; and fu(z) = Ijon(f(z))f(z), where I is a characteristic
function. We note that f,(zr) € L'(H,m). From the assumption of ultimate bound-
edness, there is a constant K such that lim,_o E||Z?(t)||% < K for any ¢ € H. By
the ergodic theorem for Markov process with invariant measure ( Yosida [45]), the
limit

T
lim %/ Pifu(z)dt = [*(z) (m — a.e.)

T—o0 0
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exists and E,, f; = E., fn, where

Ptfn /fn y)PtI dy)

and En fo = [ fu(x) m(dz). From the inequality fu(z) < f(x) and the assumption

of ultimate boundedness, we have

1T — 1 7
fo(z) = Jim = /0 Pufala)de < T = /0 Pf(z) dt
1 (7 )
- Jm 7 [ Blz0l s k.
Also from f,(z) 1 f(z) as n — oo implies that
Enf=lim E,f, = lim E,,f: < K'. O

Now, we examine the uniqueness of invariant measures. Let Bg = {y : |lylly <

R}. The following theorem is from Ichikawa [15].

Theorem 6.2.4. Suppose Z%(t) is ezponentially ullimately bounded and for each

R>0.,6 >0 and € > 0, there exists Ty = To(R, 8,€) > 0 such that
P{||Z¥0(t) — Z¥1(t)||y > 0} < € for any p,,¢, € Br whenever t> Ty.  (6.1)
Then there exists at most one invariant measure.

Proof. Let m;, i = 0,1, be invariant measures. By Lemma 6.2.2, for each ¢ > 0,
there exists an R > 0 such that m,(H\Bg) < z. Let h € C,(H). Then there exists
T = T(g, R, h) such that |[T(t)h])(ge)— [T (1)h](¢1)] < €. for g, ¢, € Br,ift > T. Now
we prove this statement. Let K be a weakly compact set in H. Recall that the weak

topology on K is equivalent to the topology defined by the metric

= 1
o(y, 2 Z—Mw (y—2)ly,2z€K
k=1
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for any fundamental subset { ex } of H; namely, the closure of the linear span of { e }
is H. First we shall show that for each 7 > 0 and € > 0, there exists a T5, such that
t > T, implies
P{IR(ZP0()) = h(Z¥1(t))| <n} 2 1~¢

for all ¢4,¢, € Bgr. By exponential ultimate boundedness, we know there exists Tj
such that t > T; implies P[Z%0(t) € Bg] > 1 - /3 for any ¢, € Bg. Note that h on
Bpr is uniformly continuous with respect to the metric p. Hence there exists a § > 0,
such that y, 2z € Bg and p(y, 2z) < d implies |h(y) — h(z)| < y. Note also that there

exists an integer J such that

I\’JQ'-

Z lk |{ex,y — 2)| < =, for all y, z € Bpg.
k=J+
Now choose T, > T} such that ¢t > T, implies
J
> Plifex, 2%0(t) — ZP1(1))| < 6/2) > 1 - ¢/3
for all ¢, ¢, € Bg. This is possible by (6.1). Then for ¢t > T,, we have
P{|h(Z¥0(t)) - h(Z#1(t))] < n}
>P{Z¥0(t), Z#1(t) € Br,p(Z¥0(1), Z¥1(1)) < 6}

J

ZP{Z"’O(t), Z%1(t) € Bp,y 1

> ellen 2900 - 29101 < 872}

>P{Z¥0(t), Z¥1(t) € Bg, |{ex. Z¥0(t) — Z¥1(t))| < 6/2.k =1, 2,...,J}

Now for any given ¢, choose T such that t > T implies

£

P{|n(Z (t))—h(Z““‘())l<c/2}>1—41\0,
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where Ko = sup |h(y)| < oo. Then

E|W(ZF0(1)) = h(ZP1(1))] < & Z 2K0( €.

i) =

Note that
/ h(y) mi(dy) = / [T(t)h](y) mi(dy) for i =0, 1.
H H

Consider

/mmeW—memmw\

= // [h(y0) — h(y1)] mo(dyo) ml(dyl)l

_ / / (TR ) = (TR0 molcdyo) ma ()|
//l t)h](yo) — t)h](yl)’mo(dyo)ml(dyl)

- /Bn+/H\BR /BR+/H\BR)|{T(t)h](yO [T(OR)(31)| mo (dyn) o (d32)

<e 4+ 2(2Kg)s + 2Koe?, if t > T,

where Ko = sup|h(y)| < oo. Since ¢ is arbitrary, we conclude [, h(y) mo(dy) =

Ji; My) mi(dy), which implies mg = m;. O

The following Proposition (6.2.1) gives a sufficient condition for (6.1) holds.
Remark. The condition (Ay,y) < afly||% for y € D(A) is equivalent to [S(t)| < e, a

is real (Ichikawa [17]).

Proposition 6.2.1. Suppose that (y, Ay) < —collyll}, v € D(A), and ¢y is the mazi-
mum value satisfying the above inequality. Also suppose k is the minimum value sat-
wsfy Lipschitz condition. Then if a = co — 3k > 0, we have E||ZP0(t) — Z¥1(1)]|% <

e 200 — 91 1%, for t large enough.
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Proof. Let Z¥1(t) and Z¥0(t) be two solutions. Then as in Lemma 3.3.1, we have,
Z¥o(t) — Z¥1(¢)
t
=50y = 21) + [ S(t= PP - PP ()] ds

0
+ /0‘/55(t — 5)[B(v, 2%9(s)) — B(v, Z¥1(s))] N(dv ds).

So
|2%0() - 221 (0) I
<3S - el + 3 [ 'S(t = 9F(#0() - Pz ds|
+ 3” /:/I; S(t — s)[B(v, Z¥0(s)) — B(v, Z%¥1(s))) N(dvds)”:.
So

E|Z%0(t) - Z#1(1)|I%
t 2
<3620y [y + 38| [ IS( = )P(Z90(5) = 2]
t
+3 [ [ BIBw. 290(5) - Blo, 205Dy 30 s
0JE
2ot ‘ t 5 2
<3e™ 20l gy — 1|1} + KE( /0 e 00l = 9|1 280(s) - Z91(s) 1w )
t
+ 3/ kE||ZPo(s) — Z¥1(s)||% ds
0
t
<3¢ 200 — oy 3 + k(1 + 2¢) / A=+ )= 8) gl z%0(s) — 291 (s) |1, ds
0
t
+ 3k/ E||Z¥0(s) — Z¥1(s)||% ds (by Lemma 6.2.1, ¢ is small positive)
0

t
<30=200t 0 — 1B, + 3k / E||2%0(s) — 291 (s)|13 ds
0

t
+3k/ E|Z%0(s) — Z%1(s)|, ds.
0

63



Letting ¢ — 0 and e2(=2co +€)(t = 5) < 1, we have
BIZ0() ~ 2900l < 37 gy — e + ok [ BIZA0(s) = 291 (5) ds
So By Gronwall's inequality, we have
E||Z90(t) - Z21 (011} < 3¢ 20 gy — o, I3 SR < 3e(Z200 + B0 02, O
We consider H with weak topology.

Theorem 6.2.5. Suppose T(t) is w-Feller and that

1 t
Z/ E|ZY(r)||4 dr < M(1+ |lyoll%), M >0 and for any t > to > 0. (6.2)
0

Then there exists an invariant measure.

Proof. For integers n > t,, define m,(B) = %fon P(r,yo, B)dr, B € B(H). Then m,,
is a probability measure and [}, |ly[|% ma(dy) < M(1+ |lyoll%). Hence for each £ > 0,
there exists R > 0, such that m,(Bg) >1—¢,Br={y:|lyllu < R}

By Theorem 6.2.3, { m, }, n > to is w-weakly compact and there exists a sub-
sequence, again denoted by m,, which is w-weakly convergent to some probability

measure mg(-). Let h € C,,(H) be arbitrary. Then

/ (T(¢)h](y) mo(dy) =nll_{1°1°/ (T(t)h])(y) ma(dy)( since T(t) is w-Feller)
H H

n—oo

= tim (3) [+ i ar

- () [ronae

= tim (3) [Tl dr Csince T0)h s bounded)
= [ ) mofay),

which implies 1 is an invariant measure of I’(1.y, 13). O

64



Now, we drop the assumption that T(¢) is w-Feller. Assume instead that A is self-
adjoint and has eigenvectors { ¢x }, k =1, 2,..., which form an orthonormal basis for
H and eigenvalues

- | —oo0 as k — oo. (6.3)

Then the semigroup S(t) has the representation,

oo
Ze_’\kt(ek, Yek, y € H.
k=1

We have the following result.

t
Lemma 6.2.3. Assume (6.2) and (6.3) hold. Then m,(-) = %/ P(r,¢q, ) dr is
J0

weakly compact for t > to >0 .

Proof. In view of Theorem 6.2.2, it is sufficient to show %/ ZE[Z(’OO] t)dt is
uniformly convergent in T > ¢, where Z,(fo(t) = (Z%0o(t), ex) and {ek} is the ortho-

normal basis given in (6.3). We have
t
2£0() = Mo + [ M= ey, 2P0 dr
0
t , ~
+ / / e~ Mt =T) (e, B(v, Z#0(r))) N(dvdr),
0o JE
where ;o = (ex. @,). Hence
t . 2
E[Zfo() <3¢~ 2! 2 + 3B / e~ M= 1) ey, F(2%0(r)) |

+3E| / / Mt =) e Bv, Z90(r)) N(dvdr)|.  (6.4)

Now let K be large enough, so that Ax > 0. By using Lemma 6.2.1, for any integer

m > 0 we can show,

K+m T 2

Z 1 —2Xit 2 1/ =2kt ||99o||H
, Lot dt < = K dt < .

= TA € Qf’ko( — T 0 “ 0||H — 2TA



For the second term of the right hand side of the inequality (6.4), one has

Kiin%/T El /te_)‘k(t B r)(ek,F(Z(’oO(r))) dr|2dt
K+m | i
s Z / / ~Mlt )|(€k=F(ZL‘0°(T))>|dT) dt,

which by Lemma 6.2.1, and 0 < § < A is,

K+m

1 2A=d+0)(t—1) Po(r))) 2 dr
3 B+ ) [ 2N ew F(Z90(r)) 2 dr ds
K+m
-2 (5 -T o(r r
skqu—,/o 1+2«s)/ K+ )= 1) (e, P(2%0(r))) P dr dt.

Since Ak 1 0o as k — oo, the second term of (6.4) is
K+m

T
<%/ (1+26)/ 2(— Ak +0)(t—7) EZ (ex, F(ZP0(r)) 2 dr dt

k=K
1+25 // 200k = 0)(t =) p| (20 (r))|2, dr dt,

which, by Fubini theorem, is

L) / / 200 = O)(t =) g F(2%0(r)) % d dr

T
“_2&;-2(;)?/ (11— e 20 =0T =) B F(2%0 (1)) 3 dr

T
sg(%iﬁ—;j,- / E|F(290(r)) % dr.

and by condition (A2) and (6.2),

(1 + 26)
“2(Ak - 0T J
(1+ 26)! 1 /T o
<o (L 7 [ ENZE )
o (1+20)0
=20 = 8)

TEl(l +1Z%0(r)II) dr

(1+ M1+ ooll))-
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For the third term of the right hand side of the inequality (6.4), one has,

K+m 2

/ —Ak Nex, B(v, 290(r))) N(dvar)| dt
k=K
<K m T [/‘/ Ee—2M(t = r)|(e,c B(v, Z¥0(r)))|? B(dv) dr] dt
B k=K E ! ’ /
K+m

sZT[ [ B2, B0, 200 ) ]

<t / | [ [0, 280l o) dr|

and by condition (A2), Fubini theorem, and (6.2),

T ot
1 / / le™ 2k (E=T)(1 4 E|12%0(r)|%) dr dt
T 0 0
T T
s%// le=226(t = 7)1 4 E||2%0(r)|12)) dt dr
0 r

T
s%/ i(l_e-zAK(T—r))(l+E||z%(r)ll%,)dr

<t [ gt BIZR0R)
==+ [ EIZP

)
EX—(l + M(1+ |lgoll)-

Thus,

K+m o
0 2
T/ E[ZP0 (1) dt

”‘Po”u (1+29)l
<
ST 320k = 6)

(14 M+ o) + 3531+ ML+ loly)

—0 as K — oo uniformly in T > t,. O

Theorem 6.2.6. Assume (6.2) and (6.3) hold. Then there exists an invariant mea-

sure for the system.
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Proof. Taking h € Cy(Y') and using Lemma 6.2.3, we can repeat the proof of Theorem

6.2.5. ]

6.3 An example

The following example shows that —A, | —o0o as kK — 0o is not necessary.

Example 6.3.1 (Dam storage problem). We consider the semilinear stochastic dif-

ferential equation
dn(t) = An(t) dt + d&(t), suppose dé(t) = [, u N(du dt)
n(0) =¢ € H.

Here A is an infinitesimal generator of a pseudo-contraction semigroup { S(t) }.

Compared to the general case

dZ(t) = (AZ(t) + F(Z(t))) dt + [ B(v, Z(t)) N(dvdt)
Z(0)=p€H,
we have F' = 0, B(v,z) = v. The growth condition and Lipschitz condition are

satisfied, so there exists an unique mild solution n¥(t), such that

7°(t) = S(t)¢ // (t — s)u N(duds).

For any h € H,

(MP1(t) — n¥2(t), h) = (S(t) () — wa). h) = (py — 2. S™(t)R),

so we have,

%)

(m¥1(t) = n*¥2(1),h) — 0, for any h € I as g, — ¢, weakly.
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By Ickikawa [15], we know that 7#(t) is w-Feller.

Now if [S(1)] < e, (4 > 0), we have

) t ~ 2
E||n*(t)]1% <2e™ M|z |13 + 2 S(t — s)u N(duds)
H H
o0JH H
t
<2e gl +2 [ [ 18( = s)ully B(d) ds
0JH
t
<2e gl +2 [ [ BNl pldu)ds
0JH

t
<2e™ |4l +2 / e dS/ Il ()
0 H

. 1 -
<% 2J'”¥:“%l+ B(l_e 21“)‘/””11”3{ ,B(du)

<2 ||} + M,

where M is a positive constant. So 7¥(t) is exponential ultimate bounded. By
Theorem 6.2.4 and Theorem 6.2.5, there exists an unique invariant measure.
Consider Ae; = —MXe;, Vi with A > 0. This shows that —A\y | —oo as k — o0 is

not necessary.

6.4 Future research plans

First, we will study the SDE’s in Hilbert spaces driven by more general noises, for
example, the Lévy processes. Second, we will study the applications of our theory to

protein folding problem and finance.
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