

LIBRARY Michigan State University

This is to certify that the dissertation entitled

HEALTH-BENEFICIAL COMPOUNDS IN CORNUS FRUITS

presented by

SHAIJU KAKKANADAN VAREED

has been accepted towards fulfillment of the requirements for the

PhD	_ degree in	HORTICULTURE
	Mun	Mhole
	Major Pro	fessor's Signature
	0	8/22/2005
		Date

MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record. TO AVOID FINES return on or before date due. MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

2/05 c:/CIRC/DateDue.indd-p.15

HEALTH-BENEFICIAL COMPOUNDS IN CORNUS FRUITS

Ву

Shaiju Kakkanadan Vareed

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Horticulture

2005

ABSTRACT

HEALTH-BENEFICIAL COMPOUNDS IN CORNUS FRUITS

Ву

Shaiju Kakkanadan Vareed

The genus Cornus, commonly known as dogwood, is widely distributed in eastern Asia, and eastern and western parts of North America. Anecdotal reports indicate that several plants in Cornus species are effective for the treatment of various illnesses. Although, Cornus plants are well known for its medicinal properties, very little work has been done on the isolation and identification of bioactive compounds. A bioassaydirected investigation of Cornus kousa, Cornus mas, Cornus controversa and Cornus alternifolia fruits resulted in the isolation and characterization antioxidant, antiinflammatory, anti-cancer and anti-diabetic anthocyanins, delphinidin 3-O-glucoside (1), delphinidin 3-O-rutinoside (2), delphinidin 3-O-galactoside (3), cyanidin 3-O-galactoside (4), pelargonidin 3-O-galactoside (5) and cyanidin 3-O-glucoside (6). Acid hydrolysis of the anthocyanin- enriched fruit extracts resulted in the isolation of anthocyanidins, delphinidin (7), cyanidin (8), pelargonidin (9), petunidin (10) and malvidin (11). The anthocyanins in *Cornus* fruits extracts were quantified by HPLC. The amount of anthocyanins 1, 2 and 6 in C. alternifolia, C. controversa and C. mas were determined to be 8-10 times higher than other common fruit sources of anthocyanins.

An investigation of the non-pigmented fraction of C. kousa ripened and unripened fruits resulted in the isolation of ursolic acid (12), β -sitosterol (13), cornin (14), kaempherol 3-O-rhamnoside (15), myricetin 3-O-rhamnoside (16), and kaempherol 3-O-glucoside (17), and stenophyllin (18). Both ursolic acid (12) and β -sitosterol (13)

were also isolated from the ripened fruits of C. kousa, C. controversa and identified in C. alternifolia.

Anthocyanins and anthocyanidins were tested for lipid peroxidation, cyclooxygenase (COX-1 and-2) enzymes and tumor cell proliferation inhibitory activities. Anthocyanins 1 and 2 inhibited lipid peroxidation by 71 and 68%, respectively, at 50 μ g/ml. Similarly, they inhibited COX-1 enzymes by 39 and 49% and COX-2 enzyme by 54 and 48%, respectively, at 100 μ g/mL. In addition, anthocyanins 1 and 2 displayed 50% growth inhibition (IC₅₀) at 21 and 38, 25 and 30, 50 and 76, 60 and 100, and 75 and 100 μ g/mL, against HCT-116 (colon), MCF-7 (breast), NCI-H460 (lung), SF-268 (Central Nervous System, CNS), and AGS (stomach), human tumor cell lines, respectively. The most active anthocyanidin malvidin (11) inhibited colon, breast, lung, central nervous system and stomach cell growth by 76, 75, 68, 41, and 69%, respectively, at 200 μ g/mL. Anthocyanins and anthocyanidins were also studied for their ability to induce insulin secretion by rodent pancreatic β -cells in vitro. The results indicated that anthocyanins 1 and 6 were the most effective insulin secretagogues among the anthocyanins and anthocyanidins tested.

The bioassay guided investigation on *Cornus* fruits indicated that these plants could be cultivated as alternate crop to tart cherries to yield fruits for health beneficial anthocyanins. Ornamental plants in the United States are an untapped and valuable resource for phytochemicals and functional foods. Our results on the health benefits of *Cornus* fruits suggest that *Cornus* plants should be an ideal candidate for the diversification of agricultural crops.

To my parents

ACKNOWLEDGEMENTS

It is a great pleasure and privilege to express my deep sense of gratitude and profound indebtedness towards my advisor Dr. Muraleedharan G Nair for his valuable guidance, direction, constructive criticism and inspiring encouragement to me, without which it would have been impossible to complete the present work.

I express my sincere and heartfelt thanks to the members of my advisory committee, Dr. Robert E. Schutzki, Dr. Gale M. Strasburg and Dr. Venugopal Gangur for their valuable suggestions and encouragement. I also acknowledge all past and current members of the Bioactive Natural Products and Phytoceuticals Laboratory, especially Dr. Jayaprakasam Bolleddula, for their support and assistance. I would like to thank Dr. Daniel Holmes and Piera Y. Giroux for their invaluable help with magnetic resonance and gas chromatographic analyses.

Partial funding of this project was provided by the United States Department of Agriculture (USDA, NRICGP) grant #2003-35504-13618.

Finally I would like to thank my family-my parents and sisters, a true blessing and inspiration in my life-for their love, support and continual encouragement. I could not have done this without you all.

TABLE OF CONTENTS

LIST OF TABLES	viii
LIST OF FIGURES AND SCHEMES	ix
KEY TO ABBREVIATIONS	xi
INTRODUCTION	1
CHAPTER ONE	
LITERATURE REVIEW	4
Introduction	
Botany of Cornus Species	
Chemistry of Cornus Species	
Biological Activity of Cornus Species	35
CHAPTER TWO	
ANTHOCYANINS IN THE FRUITS OF CORNUS ALTERNIFOLIA.	
CORNUS CONTROVERSA, CORNUS FLORIDA. CORNUS KOUSA,	
CORNUS MAS AND CORNUS OFFICINALIS	40
Abstract.	
Introduction	
Methods and Materials	
Extraction of <i>Cornus</i> fruits for anthocyanin quantification	
Quantification of anthocyanins	
Isolation and characterization of anthocyanins	
Results	
Discussion	
CHAPTER THREE	
ANTHOCYANINS AND ANTHOCYANIDINS IN CORNUS ALTERNIFOLIA.	
CORNUS CONTROVERSA, CORNUS KOUSA, CORNUS FLORIDA, CORNUS	
MAS AND CORNUS OFFICINALIS FRUITS WITH HEALTH BENEFITS	54
Abstract	
Introduction	
Methods and Materials	
Preparation of Anthocyanins	
Preparation of Anthocyanidins	
HPLC analysis	
Lipid Peroxidation Inhibitory Assay	
Cyclooxygenase Inhibitory Assay	
Tumor Cell Proliferation Assay	
Insulin Secretion Studies	
Radio Immuno Assay (RIA)	
1 MANUAL ALIMANIA A MANUAL A M	

Results	
Discussion	68
CHAPTER FOUR	
FRUIT MATURITY, FLAVONOID AND ANTHOCYANIN PRODUCT	ION
IN CORNUS FRUITS	
Abstract	
Introduction	
Methods and Materials	
Plant Material	
Extraction and Bioassay Guided Isolation of Compounds	
Results	
Discussion.	
CHAPTER FIVE	
SUMMARY AND CONCLUSIONS	98
REFERENCES	103

LIST OF TABLES

Table 1.1 Classification of Cornus plant	6
Table 1.2. Chemical Constituents found Cornus Species	11
Table 1.3. Common tannins in Cornus species	25
Table 1.4. Anthocyanins reported from Cornus species	33
Table 2.1. Concentration of anthocyanins 1-6 in Cornus fruits	50

LIST OF FIGURES AND SCHEMES

Figure 1.1. Terpenes found in Cornus species	9
Figure 1.2. Saponins found in <i>Cornus</i> species	0
Figure 1.3. Iridoids found in <i>Cornus</i> species	1
Figure 1.4. Sterols found in <i>Cornus</i> species	3
Figure 1.5. Flavanoids found in Cornus species	7
Figure 1.6. Furan derivatives found in C. officinalis	8
Figure 1.7. Volatile compounds found in Cornus species	8
Figure 1.8. Aliphatic esters found in Cornus species	9
Figure 1.9. Cytotoxic compounds found in Cornus species	9
Figure 1.10. Aliphatic compounds found in <i>Cornus</i> species	0
Figure 1.11. Fatty acids found in <i>Cornus</i> species	1
Figure 1.12. Anthocyanins found in <i>Cornus</i> species	2
Figure 2.1. Anthocyanins characterized from fruits of various Cornus spp	1
Figure 2.2. HPLC profiles of various Cornus spp. fruits	3
Figure 3.1. Structures of anthocyanidins 1-6 and anthocyanidins 7-117	2
Figure 3.2. Lipid peroxidation inhibitory activities of anthocyanins 1 and 27	3
Figure 3.3. COX-1 and COX-2 inhibitory activities of anthocyanins 1 and 274	4
Figure 3.4. In vitro cell proliferation inhibitory results of anthocyanins 1-575-7	7
Figure 3.5. In vitro cell proliferation inhibitory results of anthocyanidins 7-1178-8	0
Figure 3.6. Insulin secretion activity of compounds 1, 6, 7 and 8	1
Figure 3.7. Insulin secretion activity of compounds 4 and 9-11	2

Scheme 4.1.	Diagrammatic representation of flavonoid biosynthesis pathway	5
Figure 4.1.	Structures of compounds 12-18 isolated from C. kousa fruits) 6
Scheme 4.2.	Schematic representation of the compounds from C. kousa fruits	€7

KEY TO ABBREVIATIONS

BHA Butylated hydroxylanisole

BHT Butylated hydroxytoluene

BuOH Butanol

CHCl₃ Chloroform

CH₂Cl₂ Dichloromethane

CH₃CN Acetonitrile

cv Cultivar

DMSO Dimethyl sulfoxide

D₂O Deuterium oxide

EIMS Electron impact ionization mass spectrometry

EtOH Ethanol

EtOAc Ethyl acetate

Gal Galactose

Glc Glucose

HCl Hydrochloric acid

HCOOH Formic acid

HOAc Acetic acid

HPLC High performance liquid chromatography

H₂O Water

H₂SO₄ Sulphuric acid

MeOH Methanol

MPLC Medium pressure liquid chromatography

MS Mass spectrometry

NMR Nuclear magnetic resonance

ODS Octadecyl silica

PTLC Preparative thin layer chromatography

Si Silica

spp. Species

TBHQ tert-Butylhydroquinone

TFA Trifluroacetic acid

TLC Thin layer chromatography

UV Ultraviolet

INTRODUCTION

The genus *Cornus* (dogwood) belongs to the family Cornaceae that contains about 58 species (Fan and Xiang, 2001). These plants grow mainly in the northern temperate regions of the world. The name "Cornus" is the Latin name for Cornelian cherry. The word 'cornu' is for horn (cornu), and refers to the hardiness of its wood (http://plants.usda.gov). Cornus mas, Cornus officinalis and Cornus kousa bear edible fruits that are consumed in many parts of Europe and Asia (Seeram et al., 2002, Du et al., 1974). All Cornus plants produce colorful and attractive flowers and fruits. They are relatively resistant to pest infection compared to many other garden plants and hence are widely grown as ornamental trees in many landscapes.

Although *Cornus* plants are used only for decorative purposes in the United States of America, these plants are used in traditional medicines around the world. Many of the *Cornus* species were reported to have medicinal use and some were used as an ingredient in preservatives and sweets (Bailey, 1977). For example, the extracts of *C. mas* fruits were used for food and cosmetic preparations in Europe (Polinicencu et al., 1980). A decoction from the pulp of *C. mas* fruits was used for the treatment of arthritis, fever and a wide range of other ailments (Millspaugh, 1974). The fruits of *C. officinalis* were used for more than 2000 years in Chinese herbal medicine. *C. officinalis* was used mainly to reduce menstrual bleeding and unusually active secretions including sweating, excessive urine, spermatorrheoa, premature ejaculation and various illnesses associated with liver and kidney (Kim and Kwak., 1998). The fruits of *C. officinalis* were also

reported to possess antibacterial, antifungal, hypotensive, antitumor, astringent and diuretic activities (Kim and Kwak., 1998).

Anthocyanins are the most significant biologically active compounds reported from *Cornus* species fruits. The brilliant red colors of berries, cherries, vegetables and fruits are due to anthocyanins. Recent in vitro and in vivo studies indicated that these compounds possess antioxidant, anti-cancer and anti-inflammatory activities (Seeram et al., 2002, Kang, et al., 2003, Kamei, et al., 1998). Therefore, the consumption of anthocyanin-containing foods as dietary ingredient is considered to be highly beneficial to maintaining health and feeling of wellness.

A detailed literature review of the phytochemicals in *Cornus* spp. revealed that most of the research has been on the isolation of compounds from *C. officinalis*. Very little is known about the chemistry of other *Cornus* plants and the biological activities of the compounds present in them. Moreover, most of the health claims associated with various *Cornus* plants are anecdotal. Based on the previous research on *C. mas* in Dr. Nair's laboratory at Michigan State University, it is my hypothesis that fruits from native *Cornus* species have the potential to yield compounds with anti-carcinogenic, anti-diabetic, anti-inflammatory, and antioxidant activities. In order to test my hypothesis, I have conducted bioassay-directed isolation and characterization of compounds in *Cornus* fruits by using cylooxygenase enzymes, lipid peroxidation and cell proliferation inhibitory and insulin secretion assays. Therefore, the objectives of my research were to conduct bioassay- directed isolation and identification of compounds in *Cornus* fruits using chromatographic and spectral methods, and determine the anticarcinogenic, anti-diabetic, anti-inflammatory, and antioxidant efficacies of purified compounds. By taking

into account of the biological activities associated with *Cornus* plants, my proposed research may lead to planting of *Cornus* trees as an alternate crop for fruit production with bioactive compounds in addition to its current application as an ornamental tree. Also, it is expected that the present work should add to the existing knowledge on the bioactive constituents in *Cornus* fruits.

This dissertation is comprised of a series of chapters detailing the results of this research. Chapter 1 is a literature review in which the botany, chemical constituents, traditional use, and pharmacological importance of Cornus plants are outlined. In Chapter 2, the results of characterization and quantification of anthocyanins from C. kousa, C. florida, C. controversa and C. alternifolia fruits are presented. Detailed investigation of insulin secretion, lipid peroxidation, cyclooxygenase, and cell proliferation inhibitory activities of anthocyanins and anthocyanidins in Cornus spp. fruits are presented in Chapter 3. All non-pigmented compounds isolated from the unripened and ripened fruits of C. kousa are presented in Chapter 4. The data in Chapter 2 has been accepted for publication in Life Sciences. The data in Chapter 3 were published in Journal of Agricultural and Food Chemistry and Life Sciences. Chapters 2, 3 and 4 are presented as manuscripts, each with an introduction, material and methods, results and discussion sections. Finally, the conclusions derived from my research on Cornus fruits are summarized in Chapter 5.

CHAPTER ONE

LITERATURE REVIEW

Introduction

Humankind has benefited from the inherent qualities of over 5000 plants used for drugs, foods, fibers and dyes, which include more than 14 Cornus species and their varieties. The genus Cornus (dogwood) contains about 58 species, mostly hermaphroditic shrubs or small trees, and is widely grown in North America, Asia, Europe, South America and Africa (Fan and Xiang, 2001). Many Cornus spp. with medicinal values are used as one of the components in the preparation of preservatives and sweets (Bailey, 1977). The tree bark of Cornus alternifolia and Cornus florida has been chewed by many to release analysesic compounds to treat headaches, toothaches, and other pains (Moerman, 1998). The bunchberry dogwoods, Cornus canadensis, possess anti-convulsive, anti-fever and analgesic properties in addition to a number of other medicinal uses. Other species such as Cornus rugosa, Cornus racemosa, Cornus foemina and Cornus amomum have been used for the treatment of various illnesses associated with kidney, stomach, throat, and lungs, respectively (Moerman, 1998). Many ethnobotanical uses of dogwood species in China have also been reported (www4.ncsu.edu). For example, Cornus officinalis, "Zhu Yu" or "Zao Pi" in Chinese medicine, was used as an astringent tonic for impotence, and to treat spermatorrhea, lumbago, vertigo, and night sweats. Fruits of Cornus oblonga have been used as a substitute for 'Zao Pi.' Seed oil of several dogwood species including C. oblonga,

Cornus alba, Cornus hemsleyi, Cornus walteri, and Cornus wilsoniana have used commercially in various parts of China. The bark from C. oblonga and Cornus capitata were also used as folk medicines to treat arthritis and injuries. In Japan, several species of Cornus including Cornus controversa were used to treat the swelling in the body (www4.ncsu.edu). The fruits of several subspecies of Cornus hongkongensis are edible and used for wine brewing.

Dogwoods carry attractive flowers and fruits. They are popular ornamental plants in a variety of landscapes (Powell, 1997). The dogwood plants beautifully display a wide range of color in their bracts, foliage and twigs during various seasons of the year. Generally, dogwood plants grow up to a height of 20 - 30 feet and require little maintenance.

The flowering dogwood, *Cornus florida*, is the most popular dogwood in the United States (http://www.ces.ncsu.edu/fletcher/staff/rbir/cornus.html). It is native to the eastern and central United States. *C. florida* flower represents the state flower of North Carolina. Dogwood industry in Tennessee yields more than \$30 million annually to the state income from the sale of *C. florida* cultivars (www4.ncsu.edu).

The botany, chemical constituents, and biological activities of *Cornus* plants are outlined in this chapter.

Botany of Cornus plants

The Cornus species are deciduous shrubs and occasionally grow as trees. All Cornus species have opposite leaf system except Cornus alternifolia, which have an

alternate leaf system. The fruits of all *Cornus* species are berry-like with white, blue, red or black drupe with one or two seeds.

Dogwood is a member of the genus *Cornus* and it belongs to the family Cornaceae. The family Cornaceae has three genera: *Cornus*, *Aucuba* and *Helwingia*.

Table 1.1 Classification of Cornus plant

Kingdom	Plantae
Phylum	Embryophyta
Subkingdom	Tacheobionta
Superdivision	Spermatophyte
Division	Magnoliophyta
Class	Magnoliopsida
Subclass	Rosidae
Order	Corneals
Family	Cornaceae
Genus	Cornus. L

Bir et al., classified dogwoods according to the season in which they are most attractive. For example, *C. alba* (Tartarian dogwood) and *C. sericea* (Redosier dogwood) are considered winter dogwoods, which are generally grown for their colorful stems (http://www.ces.ncsu.edu/fletcher/staff/rbir/cornus.html). Stem color of *C. alba* and *C.*

sericea change from creamy yellow, orange and shades of red to deep red during winter. The spring dogwood, C. florida and C. kousa (Oriental dogwood) display attractive and colorful bracts and foliage depending on the cultivar during the spring season.

Among dogwoods, C. florida, C. kousa, and C. nuttallii (Pacific dogwood) are the three most widely cultivated species in the United States. More than 100 cultivars of C. florida have been cultivated in United States (www4.ncsu.edu). Another dogwood, C. kousa, native to eastern Asia, is a smaller tree with white or pink bracts and dark green foliage late in the spring season. Popular cultivars of C. kousa include 'Greensleeves,' 'Milky Way,' 'Blue Shadow', 'Rosabellla,' 'Rubra,' and 'Rosea'. The fruits of C. kousa are red and compound, in contrast to those of C. florida and C. nuttallii, which are clusters. The fruits from C. kousa are edible and sweet, and used in wine making in several Asian countries (Du et al., 1974). C. nuttallii, grows mainly in western regions of North America. The numbers of C. nuttallii cultivars are much fewer than that of either C. florida or C. kousa. However, it is still valued as an ornamental dogwood due to its large, colorful bracts. Hybrid varieties of Cornus species are common in many parts of United States especially in Michigan (www4.ncsu.edu). The natural hybrids of C. amomum x C. racemosa (C. x arnoldiana Rehder) and C. rugosa x C. stolonifera (C. x slavinii) are frequently found in Michigan and neighboring states. Wagner reported another hybrid between C. racemosa (gray dogwood) and C. rugosa (round-leaved dogwood) from Michigan (Wagner, 1990). A number of arboreta or botanical gardens have several examples of natural hybrids of other Cornus species.

Chemical Constituents of Cornus Species

A detailed phytochemical investigation of plants belonging to *Cornus* spp. has resulted in a diverse group of secondary metabolites. Compounds reported from *Cornus* spp. to date are summarized in Table 1.2. The secondary metabolites reported from *Cornus* are divided in to six groups based on structural similarities. These groups include terpenes, steroids, saponins, iridoids, tannins, flavanoids and related compounds.

Terpenes

Terpenes are important group of plant secondary metabolites and ubiquitous in several plants. Many of these terpenoids such as menthol, pinene, limonene and camphor impart characteristic odors and flavors unique to a given plant. The building block of a terpenoid is isoprene (CH₂=C-(CH₃)-CH=CH₂). Monoterpene, sesquiterpene, diterpene, triterpene, and tetraterpene are some of the classifications depending on the number of isoprene units in its molecule. The terpenes reported from *Cornus* species are represented in Table 1.2.

Most of the reported terpenes in *Cornus* were isolated from its stems. Yan et al., developed an HPLC method for the determination of ursolic acid, an important constituent of Chinese herb, *C. officinalis*, using Hypersil ODS- column with acetic acid-water-glacial acetic acid mobile system (Yan et al., 2003). This analytical method showed high accuracy and reproducibility and is employed for the quality control of various herbal medicines in China. Another terpenoid compound, betulinic acid, was isolated from the dry roots and bark of *C. macrophylla* (Venketesh and Merchant, 1984). Betulinic acid and ursolic acid were also isolated from the ether fraction of dry roots of

C. excelsa (Dominguez et al., 1981). A pentacyclic trihydroxy triterpenic acid, arjunolic acid, was isolated from the stem of C. capitata and exhibited potent insecticidal activity (Bhakuni et al., 2002). This terpenoid was isolated from the hexane extract using silica column and characterized by NMR and mass spectroscopic methods. A detailed phytochemical investigation of the stems of C. capitata afforded the terpenoid, 3 β -acetoxy-23-oxo-lup-20 (29)-ene or 3 β -acetoxy-24-oxo-lup-20 (29)-ene, in addition to oleanolic and acetyl oleanolic acids (Bhakuni et al., 1988).

Figure 1.1 Terpenes found in Cornus species

3 β Acetoxy-21, 23-Epoxytirucalla-7, 24-diene 21, 23-Epoxytirucalla-7, 24-diene-3-one

R=OH, 3 β Hydroxy-23-oxo-lup-20 (29)-ene (Lupeol)

R=OAc, 3 β Acetoxy-23-oxo-lup-20 (29)-ene

Figure 1.1. (cont'd). Terpenes found in Cornus species

Table 1.2 Chemical constituents reported from Cornus species

Compound	Source	Plant parts	References
TERPENES			
ursolic acid	C. officinalis	fruits	Yan et al., 2003
	C. excelsa	roots	Dominguez et al., 1981
	C. florida	flower, bracts	Sando et al., 1936
	C. mas	ariel parts	Zorina et al., 1966
olenolic acid	C. capitata	stem	Bhakuni et al., 1988
acetyl oleanolic acid	C. capitata	stem	Bhakuni et al., 1988
betulin	C. officinalis	fruits	Endo and Taguchi, 1973
	C. capitata	stem	Yamahara et al., 1981
betulinic acid	C. capitata	stem	Yamahara et al., 198127
	C. excelsa	roots	Dominguez et al, 1981
epibetulinic acid	C. florida	bark	Sando et al., 1936
	C. capitata	stem	Yamahara et al., 1981

Table 1.2 (cont'd)

Compound	Source	Plant parts	References
arjunolic acid	C. capitata	stem	Bhukani et al., 2002
maslinic acid	C. capitata	stem	Yamahara et al., 1981
friedelin	C. capitata	stem	Yamahara et al., 1981
3 β acetoxy-21, 23- epoxytirucalla-7, 24-diene	C. capitata	stem, bark	Bhukani et al., 1987
3β acetoxy-23-oxo-lup-20 (29)-ene	C. capitata	stem	Bhukani et al., 1988
3β acetoxy-23-oxo-lup-20 (29)-ene	C. capitata	stem	Bhukani et al., 1988
comusol	C. controversa	flowers	Kurihara et al., 1978
smilagenin	C. capitata	stem	Yamahara et al., 1981
lupeol	C. capitata	stem	Yamahara et al., 1981
SAPONINS			
filferin	C. excelsa	roots	Dominguez et al., 1981
arjunglucoside	C. controversa	stem	Jang et al., 1998

Table 1.2 (cont'd)

Compounds	Source	Plant parts	References
sarsapogenin O-\(\beta\)-glucosyl-O-\(\beta\)- galactoside	C. florida	bark	Hostettmann et al., 1978
sarsapogenin O - β -D-xylosyl- O - β -D-galactoside	C. florida	bark	Hostettmann et al., 1978
RDODS			
morroniside	C. officinalis	fruits	Zhao and Xue, 1992
loganin	C. officinalis	fruits	Li et al., 1999
cornin	C. nuttalli	leaves	Jenson et al., 1973
	C. florida	flowers	Jenson et al., 1973
	C. capitata	leaves	Tanaka et al., 2001
	C. kousa	leaves	Jenson et al., 1973
dihydrocornin	C. nuttalli	leaves	Jenson et al., 1973
hastatoside	C. florida	flowers	Sando et al., 1936
6α -dihydrocomic acid.	C. nuttalli	leaves	Stermitz and Krull., 1998
	C. capitata	roots	Tanaka et al., 2001

Table 1.2 (cont'd)

Compound	Source	Plant Parts	References
6β-dihydrocomic acid.	C. capitata	roots	Tanaka et al., 2001
monotropein	C. candensis	fruits	Stermitz et al., 1998
scandoside	C. candensis	fruits	Stermitz et al., 1998
scandoside methyl ester	C. candensis	fruits	Stermitz et al., 1998
galioside	C. candensis	fruits	Stermitz et al., 1998
sweroside	C. officinalis	fruits	Xu et al., 1995
7-dehydrologanin	C. officinalis	fruits	Li, 1999
comuside	C. officinalis	fruits	Hatano., 1989
STEROLS			
β-sitosterol (C. officinalis	fruits	Zhao et al., 1992
	C. capitata	stem	Bhakuni et al., 1986
)	C. sanguniea	fruits	Viano and Gaydou., 1984
	C. florida	seed Ro	Robertson and Soliman., 1939

Table 1.2 (cont'd)

Compound	Source	Plant Parts	References
stigmastanone	C. capitata	stem	Bhakuni et al., 1986
TANNINS			
β-glucogallin	C. kousa	root culture	Ishimuaru et al., 1993
isoterchibin	C. officinalis	fruits	Hatano et al., 1990
tellimagrandin II	C. officinalis	fruits	Hatano et al., 1989
gemin D	C. officinalis	fruits	Hatano et al., 1989
	C. controversa	leaf	Lee at al., 1995
tellimagrandin I	C. officinalis	fruits	Hatano et al., 1989
1, 2, 6, tri-O-galloyl -β-D-glucose	C. officinalis	fruits	Hatano et al., 1989
	C. controversa	leaf	Nakaoki and Morita., 1958
1, 2, 4, 6- Tetra-O-galloyl -β-D-glucose	C. officinalis	fruits	Hatano et al., 1989
1-O-galloyl-β-D-glucose	C. officinalis	fruits	Hatano et al., 1989
	C. controversa	leaf	Nakaoki and Morita., 1958

Table 1.2 (cont'd)

Compound	Source	Plant parts	References
1, 2, 3 tri-O-galloyl-β-D-glucose	C. officinalis	fruits	Hatano et al., 1989
	C. controversa	leaf	Nakaoki and Morita., 1958
1, 6-Di-O-galloyl-β-D-glucose	C. officinalis	fruits	Hatano et al., 1989
	C. controversa	leaf	Nakaoki and Morita., 1958
	C. capitata	callus	Tanaka et al., 1997
1, 2, 4, 6- penta- O -galloyl - β -D-glucose	C. capitata	callus and	Tanaka, 1997
		root culture	
FLAVANOIDS			
querceun	C. controversa	stem, leaf	Nakaoki and Morita., 1958
	C. walterli	bark	Choi et al., 1998
	C. florida	stem, flowers,	Mudry and Schilling., 1983
		bracts	Sando et al., 1936

Table 1.2 (cont'd)

Compound	Source	Plant parts	References
isoquercetin	C. controversa	stem, leaf	Nakaoki and Morita., 1958
	C. walterli	bark	Choi et al., 1998
	C. mas	stem	Egger and Keil., 1969
quercetin glucoside	C. canadensis	flowers	Bain and Denford., 1979
quercetin galactoside	C. florida	leaves	Mudry and Schilling., 1983
	C. canadensis	flowers	Bain and Denford., 1979
	C. mas	flowers	Egger and Keil., 1969
quercetin sophoroside	C. canadensis	flowers	Bain and Denford., 1979
quercetin gentiobioside	C. canadensis	flowers	Bain and Denford., 1979
querceturone	C. mas	flowers	Egger and keil., 1969
quercetin 3-O- glucosyl rhamnoside	C. mas	flowers	Egger and keil., 1969
kaempferol	C. florida	flowers, bracts	Mudry and Schilling., 1983
kaempferol glucoside	C. canadensis	flowers	Bain and Denford., 1979

Table 1.2 (cont'd)

Compounds	Source	Plant parts	References
kaempferol galactoside	C. florida	leaves	Mudry and Schilling., 1983
kaempferol arabinoside	C. canadensis	leaves	Bain and Denford., 1979
kaempferol glucosyl rhamnoside	C. mas	flowers	Egger and Keil., 1969
hyperoside	C. controversa	leaf	Lee et al., 1995
	C. walterli	stem	Choi et al., 1998
rutin	C. controversa	stem, leaf	Nakaoki and Morita., 1958
	C. walterli	stem	Choi et al., 1998
	C. mas	flower	Egger and Keil., 1969
	C. sanguniea	flower	Delaveau and Paris 1961
(+)-catechin	C. walterli	stem	Choi et al., 1998
	C. kousa	root cultures	Ishimuaru et al., 1993
procyanidin-3	C. kousa	root culture	Ishimuaru et al., 1993

Saponins

Saponins are glycosides of sapogenins. The sapogenin can be a steroid (C-29) or a triterpene (C-30) and the sugar can be glucose, galactose, pentose, or methylpentose. They are considered as natural surfactants, or detergents. Some saponins are known to reduce the feed intake and growth rate of nonruminant animals while others are not very harmful. For example, the saponins found in oats and spinach are implicated to accelerate the body's ability to absorb calcium and silicon, thus assisting in digestion. On the other hand, certain pasture weeds contain substantial quantities of dangerous saponins that are toxic to several animal species. Saponins bind with cholesterol so it cannot be reabsorbed into the system and is excreted from the body. Saponins are being widely researched for cancer prevention and cholesterol control. The saponins reported from *Cornus* species are represented in Table 1.2.

Hostettmann, et al., reported two molluscicidal saponins from C. florida (Hostettmann, 1978). These compounds were isolated from the methanol extract of the bark of the plant and characterized as sarsapogenin O- β -D-xylopyranosyl- $(1\rightarrow 2)$ - β -D-galactopyranoside and sarsapogenin O- β -D-glucopyranosyl- $(1\rightarrow 2)$ - β -D-galactopyranoside by spectroscopic and chemical methods. Another saponin, arjunglucoside was isolated from C. controversa (Jang et al., 1998). Sequential extraction of dry roots of C. excelsa with ether and methanol afforded a serious of phytochemicals including sarsaponin-O-galactosylxyloside (filiferin) (Domoinguez, 1981). Saponins from various Cornus spp. are represented in Fig. 1.2

sarsaponin-O-galactosylxyloside (filiferin)

arjunglucoside

Figure 1.2 Saponins found in Cornus species

Iridoids and Iridoid glycosides

Iridoids are cyclopetanoid monoterpene secondary metabolites of plants. Based on chemical structures they are classified into iridoid glycoside, nonglycosidic (aglycones) iridoids, secoiridoids, and bisoridoids. A detailed literature search revealed that plants in the genus *Cornus* are also potential sources of iridoids and its glucosides.

Many iridoids reported from *Cornus* spp. are specifically from *C. capitata*. The iridoids detected in *Cornus* spp. are shown in Table 1.2.

Jenson et al., characterized two glycosides, cornin and phlorin, from the leaves and twigs of *C. capitata* (Jenson et al., 1973). Cornin was reported from *C. kousa* as well (Jenson at al., 1973). The chemical structures of these iridoids were determined by NMR and mass spectroscopic methods. The iridoid glycoside, dehydromorroniaglycone, along with several other iridoids, loganin, 7-dehydrologanin, 7-O-methylmorronisde, was reported from *C. officinalis* (Li et al., 1999). Zhang et al, developed an HPLC method by using Kromasil column with 0.05 M NaH₂PO₄:acetonitrile (6.4:1) isocratic mobile system, for the simultaneous determination of morroniside and loganin in *C. officinalis* (Zhang et al., 1999). The iridoids found in *Cornus* spp. are represented in Fig 1.3.

Figure 1.3 Iridoids found in Cornus species

Figure 1.3 (cont'd). Iridoids found in Cornus species

Sterols

Phytosterols produce a wide spectrum of biological activities in plants and animals. In the natural state, they are bound to the fibers of the plant and for this reason, they are difficult to desorb from the fibers. Seeds are the richest source of the sterols and sterolins. Many animal and human studies showed that phytosterols reduce serum or plasma cholesterol and low density lipoprotein (LDL) cholesterol levels (Ling and Jones, 1995). The major sterols reported from *Cornus* spp. are shown in Table 1.2.

β-sitosterol and stigmasterol are the two major sterols reported from *Cornus* spp. Among these sterols, β-sitosterol is very common and present in many *Cornus* spp., including *C. officinalis*, *C. capitata*, *C. sanguniea* and *C. florida* (Xu et al., 1995, Robertson et al., 1939, Yamahara et al., 1981).

Figure 1.4 Sterols found in Cornus species

Tannins

Tannins are naturally occurring plant polyphenols. They are classified into hydrolysable and condensed tannins (proanthocyanidins). In hydrolyzable tannins, gallic acid or ellagic acid is bonded directly to sugar units and is susceptible to hydrolysis. On the other hand, condensed tannins are oligomers or polymers of flavonoid units and are

not susceptible to hydrolysis. Condensed tannins are more widely distributed than hydrolysable tannins. The tannins found in various *Cornus* plants are represented in Table 1.2.

Many condensed tannins have been isolated from *Cornus* spp. *C. capitata*, an ornamental plant, decorating the mountainsides of Himalayas, is considered as a source of tannins (Bhakuni et al., 2002). Another species, *C. controversa, is* reported to be a good source of gallotannins (Lee et al., 1995, Nakaoki and Morita, 1958). A series of substituted gallotannins including gallic acid, 1-*O*-galloyl-β-D-glucose, 1,6-di-*O*-galloyl-β-D-glucose, 1,2,3-tri-*O*-galloyl-β-D-glucose, 1,2,6-tri-*O*-galloyl-β-D-glucose, 3,4,6-tri-*O*-galloyl-β-D-glucose, eugeniin, and gemin D were isolated from the aqueous extract of the leaves of *C. controversa*. The tannins found in *C. controversa* are represented in Table 1.3

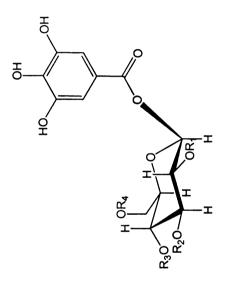


Table 1.3. Common tannins in Cornus species

Tannin	etaglucogallin	1, 6-di- O -galloyl- β -D-glucose	1, 2, 3 tri- O -galloyl- eta -D-glucose	1, 4, 6 tri- O -galloyl- eta -D-glucose	1, 2, 6 tri- O -galloyl- eta -D-glucose	1, 2, 4, 6 tri- O -galloyl- β -D-glucose
R4	Н	gallic acid	Н	gallic acid	gallic acid	gallic acid
R ₃	Н	Н	Н	gallic acid	Н	gallic acid
R ₂	Н	Н	gallic acid	Н	Н	Н
R_1	Н	Н	gallic acid	Н	gallic acid	gallic acid

Flavonoids

Flavonoids are polyphenolic compounds that are ubiquitous in plants. They are grouped into flavonols, flavones, flavanones, isoflavones, catechins, anthocyanins and chalcones. More than 4,000 flavonoids have been identified, many of which occur in fruits, vegetables, tea, coffee, and also contain in beverages such as beer, wine and fruit drinks. The flavonoids have aroused considerable interest recently because of their beneficial effects to human health. They are known to possess antiviral, anti-allergic, anti-platelet, anti-inflammatory, anti-tumor and antioxidant activities (Harbone and Williams, 2001, Conklin, 2000, Kim et al., 2004)

The flavonoids, kaempferol 3-O-galactoside and quercetin 3-O-galactoside, have been reported from the bracts and leaves of C. florida (Mudry and Schilling, 1983). It is known that bracts have higher amount of flavonoids compared to leaves, which indicated that the role of flavonoids in these plants as pollinator attractants. Quercetin 3-O-galactoside was reported from the bark of red-osier dogwood, C. stolonifera (Stermitz and Krull, 1998). Grigorescu et al., identified quercetin 3-O-rhamnosyl glucoside and kaempferol 3-O- rhamnosyl glucoside from the flowers of C. mas from Rumania (Grigorescu, 1972). Common flavonoids isolated from Cornus species represented in Fig.1.5

$R_1=H$	$R_2=gal$	Kaempferol 3-O- galactoside
$R_1=H$	R ₂ =glu	Kaempferol 3-O- glucoside
$R_1=H$	R_2 = ara	Kaempferol 3-O- arabinoside
$R_1=H$	R₂=glu→rha	Kaempferol 3-O- glucosyl rhamnoside
$R_1=H$	R ₂ =H	Kaempferol
$R_1=OH$	R ₂ =gal	Quercetin 3-O-galactoside
$R_1=OH$	R ₂ =glu	Quercetin 3-O-glucoside
$R_1=OH$	R_2 = ara	Quercetin 3-O-arabinoside
$R_1=OH$	R₂=glu→rha	Quercetin 3-O- glucosyl rhamnoside
$R_1=OH$	R ₂ =glu	Quercetin

Figure 1.5 Flavanoids found in Cornus species

Kim et al., reported a new furan derivative, Di-methyl-tetrahydrofuran-2, 5 dicarboxylate along with a known compound, 5-hydroxy methyl furfural from the fruits

of C. officinalis (Kim and Kwak, 1998). Furan derivatives isolated from C. officinalis are given below (Fig 1.6).

Figure 1.6 Furan derivatives found in C. officinalis

Several volatile flavor compounds have been isolated from the fruits of *C. officinalis* by gas chromatographic method (Mayazawa and Kameoka, 1989). The major volatile compounds reported from *C. officinalis* were benzyl cinnamate, isobutyl alcohol, isoamyl alcohol, furfural, phenethyl alcohol, methyl eugenol, isoasarone and elemicin.

Figure 1.7 Representative Volatile compounds found in Cornus species

Two lipid-soluble compounds, ethyl octadecanoate and ethyl heptadecanoate were reported from *Cornus cervi* (Long et al., 1991) (Fig. 1.8). These compounds were isolated from *C. cervi* by chromatographic methods and characterized by GC-MS, IR, and NMR spectroscopic methods.

Figure 1.8 Aliphatic esters found in Cornus species

Dominguez, et al., reported the isolation of 7-hydroxycadelene from *C. excelsa* roots (Dominguez et al., 1981). It was isolated from the methanolic extract by using normal phase chromatography and characterized by NMR spectroscopy.

Scopoletin and a cytotoxic constituent halleridone were isolated from the Korean and Japanese dogwood, *C. controversa* (Nishino et al., 1988) (Fig 1.9). These compounds were isolated from the methanolic extract of leaves, purified by silica gel column chromatography, and characterized by NMR and mass spectroscopic methods.

Figure 1.9 Cytotoxic compounds found in Cornus species

An anti-inflammatory agent, n-hentriacontane, a plant growth promoter, triacontanol, triacontanoic acid, tetracosanoic acid, pholoroglucinol and gallic acid were isolated from the stem of *C. capitata* and characterized by chemical, NMR and mass spectroscopic methods (Yamahara et al., 1981 and Bhakuni et al., 2002).

CH3

(CH2)
$$r$$
 R

R=CH3, $r = 29$ n -Hentriacontane

R=OH, $r = 29$ n -Triacontanol

R=COOH, $r = 28$ n -Triacontanoic acid

R=COOH, $r = 22$ n -Tetraconsanoic acid

Figure 1.10 Aliphatic compounds found in Cornus species

Gas chromatography has been used to analyze various long chain fatty acids, alcohols, aldehydes and alkenes from flowers and bracts of *C. florida* and *C. sanguinea* (Delaveau and Paris, 1961). Most of these compounds were unbranched lipophilic constituents such as lauric, palmitic, stearic, oleic, linoleic and linolenic acids.

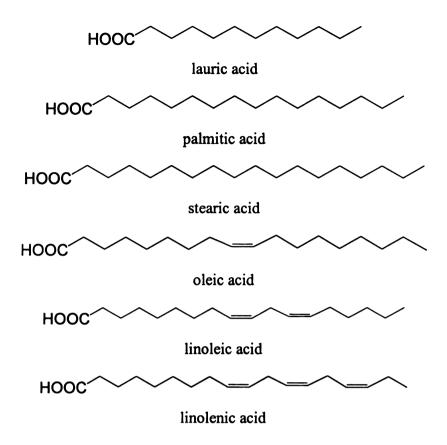


Figure 1.11 Fatty acids found in Cornus species

Inositol and scyllitol were reported from the alcoholic extracts of flowers and bracts of *C. florida* (Sando, 1926). Inositol is involved in the glucuronic acid and pentose phosphate pathways that are responsible for the production of various compounds including glucose and glucuronolactone.

Anthocyanins

Anthocyanins constitute one of the important groups of biologically active natural pigments. They are water soluble compounds responsible for the colors of many fruits and vegetables. Even though they are common in fruits and flowers, they may also

occur in roots, stems, leaves and bracts. Aglycons of anthocyanins are known as anthocyanidins. Delphinidin, cyanidin, pelargonidin, petunidin, peonidin and malvidin are the common anthocyanidins which occur in nature. The sugars that are present include glucose, galactose, rhamnose, and arabinose (Mazza and Miniati, 2000). The sugars provide additional sites for modification as they may be acylated with acids such as *p*-coumaric, caffeic, ferulic, sinapic, acetic, malonic or *p*-hydroxybenzoic acid. Because of the diversity of glycosylation and acylation, there are at least 300 naturally occurring anthocyanins. The color and stability of anthocyanins in solution depends on pH. Anthocyanins found in *Cornus* spp. are represented in Table 1.4.

	\mathbb{R}^1	R^2
Delphinidin	ОН	ОН
Cyanidin	ОН	Н
Pelargonidin	Н	Н
Malvidin	OCH_3	OCH ₃
Peonidin	OCH_3	ОН

Figure 1.12 Anthocyanins found in *Cornus* species.

Table 1.4 Anthocyanins reported from Cornus species

Anthocyanins	Cornus Plant	References
Delphinidin 3-O-galactoside	C. mas, C. officinalis, C. florida, C. alba	Secram et al., 2002, Du et al., 1974,
		Du et al., 1974
Delphinidin 3-O- glucoside	C. controversa, C. alternifolia, C. kousa,	Du et al., 1975, Du et al., 1974,
	C. florida,	Du et al., 1973
Delphinidin 3-O- rutinoside	C. alternifolia	Du et al., 1975
	C. mas, C. officinalis, C. controversa, C.	Seeram et al., 2002,
Cyanidin 3-0-galactoside	alternifolia, C. florida, C. canadensis, C.	Du et al., 1975
	suecica, C. alba	Du et al., 1974
Cyanidin 3-0-glucoside	C. kousa, C. florida,	Du et al., 1974
Cyanidin 3-0-arabinoside	C. canadensis, C. suecica	Du et al., 1975
Cyanidin 3-0-rutinoside	C. florida, C. alba	Du et al., 1974, Du et al., 1975
Cyanidin 3-0- robinobioside	C. candensis	Du et al., 1974
	C. mas, C. canadensis	Du et al., 1973, Du et al., 1974

Table 1.4 (cont'd)

Cyanidin3-0-glucosyl rhamnoside		
	С. таѕ	Du et al., 1973
Pelargonidin 3-0-galactoside	C. mas, C. officinalis,	Seeram et al., 2002
C. con	C. controversa, C. canadensis	Du et al., 1974
Pelargonidin 3-0- glucoside	C. canadensis, C. kousa	Du et al., 1974
Pelargonidin 3-O-robionobioside C. 1	C. mas, C. canadensis	Du et al., 1973, Du et al., 1974
Pelargonidin 3-O-rutinoside	C. canadensis	Du et al., 1974
Pelargonidin 3-O-sophoroside	C. canadensis	Du et al., 1974
Pelargonidin 3-O-galactosyl rhamnoside	C. mas	Du et al., 1973
Petunidin 3-O-galactoside	C. florida	Du et al., 1974
Petunidin 3-O-rutinoside	C. alternifolia	Du et al., 1975
Peonidin 3-O-glucoside	C. florida	Du et al., 1974
Malvidin 3-0- galactoside	C. florida	Du et al., 1974

Biological activities of *Cornus* species

The genus Cornus is a rich source of biologically active compounds. Several species in this genus have been used in traditional medicines in many Asian countries. For example, C. officinalis and C. controversa have been used in Chinese and Korean traditional medicines. Numerous bioactive anthocyanins, flavanoids, terpenes, saponins, iridoids and tannins have been isolated from several of Cornus species. The fermented C. mas fruits have been used as a beverage in Turkey (Millspaugh, 1974) and the extracts of C. mas fruits are used in European cosmetics. The pulp of C. mas was processed for the treatment of arthritis, fever and a wide range of other ailments. Also, it was used for the treatment of senility, lumbago, diabetes, cystitis and tinnitus. Limonene and kaurene were the important odorants found in C. mas (Seeram et al. 2002). An important Chinese herb, C. officinalis, was used to reduce active secretions including copious sweating, excessive urine, spermatorrheoa and premature ejaculation, etc. It was also used for the treatment of various illness associated with kidney and liver. The fruits were reported to possess antibacterial, antifungal, hypotensive, antitumor, astringent and diuretic activities (Post et al., 1995).

Anthocyanins are one of the major biologically active compounds found in all Cornus species. As in the case of cherries and berries, fruits of Cornus species contain substantial quantities of anthocyanins. Anthocyanins have several beneficial roles in plants and animals. They protect the plants from the harmful effect of UV radiation (Burger and Edward., 1996). They enhances fertilization and seed dispersal through birds and other organisms. Anthocyanins were reported to possess a wide range of biological activities including antioxidant, anti-inflammatory, anti-cancer and anti-

diabetic activities (Wang et al., 1998; Kamei et al., 1995). Therefore, the use of anthocyanin containing foods as part of diet may be beneficial to human health. This has resulted in the phytoceutical and botanical supplement industries investigating fruits that have a high content of anthocyanin for purposes of formulating new commercial products. Anthocyanins are important ingredients in several herbal folk medicines which have been used in 12th century to induce menstruation (Nahaishi, 2000).

Antioxidant Activity

Galloylglucosides from the roots of C. capitata were analyzed for antioxidant and radical scavenging activities (Tanaka et al., 2000). The antioxidant activity of galloylglucosides was higher than that of tannic acid, used as a common medicine. Among various extracts used for study, the methanolic extract of C. capitata root showed highest anti-oxidant activity. These results suggested the existence of polyphenols or secondary metabolites with strong antioxidant activity in the extracts of Cornus species. The radical scavenging activity of the root extract of C. capitata was found to increase with the polyphenols concentration. This revealed that polyphenols including galloylglucose was responsible for the radical scavenging activity in C. capitata. The phytochemical investigation of polyphenol content of eight Cornus species indicated that mono-galloylglucose, β -glucogallin, was the major polyphenol. Similarly C. capitata leaves contained large amounts (1.46% as dry weight) of hydrolysable tannin 1, 2, 3, 4, 6penta-O-galloyl- β -D-glucose. The level of this tannin was 2-10 times higher in C. capitata than in other Cornus species (Tanaka et al., 1998). The methanolic extracts of 100 medicinal plants were screened for antioxidant activity using Fenton's reagent/ethyl

linoleate system as well as for free radical scavenging activity using the 1,1,-diphenyl-2-picryl hydrazyl (DPPH) free radical generating system and showed that *C. officinalis* fruits extract has highest activity (Kim et al, 1997). The methanolic extracts of the peel and seeds of *C. officinalis* were also analyzed by oven test methods in soybean oil and lard, for antioxidant properties. Antioxidant activities of both of these extracts were comparable to common synthetic antioxidants, BHA, BHT and TBHQ. Further studies of the methanol extract indicated that gallic acid and methyl gallate were responsible for the antioxidant activity (Sahng et al., 1990).

Antimicrobial Activity

The methanolic extracts of C. officinalis fruits inhibited the growth of Bacillus dysentriae, Staphalococci aureus and Escherichia coli (Mau et al., 2001). An extract mixture, prepared by mixing equal volumes of methanolic extracts of three Chinese herbs, C. officinalis, Cinnamommum cassia and Chinese chive, showed good antimicrobial activity against common food borne microorganisms. It inhibited the growth of E. coli and showed excellent stability to heat, pH and storage conditions (Mau et al., 2001). Among 21 methanolic extracts of Korean medicinal plants studied for antimicrobial activity, the extract from C. officinalis was the most effective. The compound from the active fraction identified was ursolic acid (Kim et al., 1996). The extracts from the fruits of C. drummondii also showed good antimicrobial activity when tested on E. coli, S. aureus and B. psychrophilus (Post et al., 1995).

Antidiabetic Activity

C. officinalis is an important medicinal plant used for the antidiabetic preparations in China. Twelve Chinese herbal drugs used for the treatment of type II diabetics contained the extracts of C. officinalis (Li et al., 1999). Also, the methanolic extract enhanced the proliferations of islets and increased post prandial secretions of insulin (Quian et al., 2001). The ether extract of C. officinalis also showed antidiabetic activity against experimental rats with type-1 diabetes induced by streptozotocin. Fractionation of the ether extract revealed that the activity was due to ursolic acid (Kim and Oh, 1999).

Anticancer activity

Anthocyanins in fruits and vegetables exhibited a wide spectrum of anticancer activity. Tart cherry anthocyanins inhibited the growth of human colon cancer cell lines HT-29 in vitro (Kang, et al., 2003). The anthocyanin fraction from red wine have been reported to suppress the growth of HCT-115 cells, which were derived from human colon cancer or AGS cells from human gastric cancer (Kamei, et al., 1998).

Many *Cornus* seeds have substantial amount of oil and are used commercially in China. *Cornus* oil could be a good vegetable oil for patients with coronary heart diseases. It attenuated aortic atherosclerotic lesions in rabbits and reduced cholesterol accumulations in the intima of aorta (Huangfu et al., 1984). The triterpene, arjunolic acid, isolated from the stem of *C. capitata* was tested for insect growth and as antifeedant by using 4 th instar larvae of *Spliarctia oblique*. The effective concentration (EC₅₀)

observed to inhibit 50% feeding and growth inhibition was 618 and 667 ppm, respectively (Bhakuni et al., 2002).

is at substitution seems of 1975 of the White Wager East Substitute East of the William Commission of a White William States Commission of the Commission of

Even though several compounds and their biological activities were reported, many more is hidden among various Cornus spp., especially C. kousa, C. controversa, and C. alternifolia. It is my objective to investigate the therapeutic potential of the compounds from Michigan grown Cornus fruits. I am also looking for the potentials of Cornus plants as an alternative crop in Michigan so that it could generate additional income to Cornus growers and improve the economy of the State of Michigan. My studies will be focused on the phytochemicals in ripened and unripened Cornus fruits for bioactive compounds. Therefore, the present study deals with the isolation, structure elucidation and biological activities of phytochemicals in C. kousa, C. controversa and C. alternifolia fruits.

CHAPTER TWO

ANTHOCYANINS IN CORNUS ALTERNIFOLIA, CORNUS CONTROVERSA, CORNUS KOUSA AND CORNUS FLORIDA FRUITS*

Abstract

The anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida were quantified by HPLC and characterized by spectroscopic methods. The analyses of C. alternifolia and C. controversa revealed that both contained delphinidin 3-O-glucoside (1), delphinidin 3-O-rutinoside (2) and cyanidin 3-O-glucoside (6), respectively. Similarly, C. kousa and C. florida showed identical anthocyanin profiles with major anthocyanins as cyanidin 3-O-galactoside (4) and cyanidin 3-O-glucoside (6), respectively. The amount of anthocyanins 1, 2 and 6 in C. alternifolia and C. controversa were 8.21, 8.44 and 0.02 mg; and 7.74, 5.92, and 0.02 mg/g of fresh fruits, respectively. The anthocyanins 4 and 6 in C. kousa and C. florida were 0.02 and 0.16 mg; and 0.62 and 0.03 mg/g fresh fruits, respectively. This is the first report of the quantification of anthocyanins in C. alternifolia, C. kousa and C. florida in addition to the anthocyanins not previously quantified in C. controversa.

^{*} This chapter has been accepted for publication in Life Sciences, 2005 (Shaiju K Vareed, Muntha K Reddy, Robert E. Schutzki, Muraleedharan G Nair. Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa, and Cornus florida fruits with health benefits)

Introduction

The genus Cornus (dogwood) belongs to the family Cornaceae, which consists of about 58 species (Fan and Xiang, 2001). The Cornus spp. is widely distributed in the northern hemisphere, eastern Asia, eastern and northern part of the United States. The dogwood plants in general are characterized by brilliant, colorful and attractive flowers and fruits and hence are widely grown as ornamental plants throughout the United States. There are several reports of its use in traditional medicine and as a food preservative (Jianrong and Daozong, 2003; Hwang and Yeon, 2002). For example, C. officinalis, a widely grown Cornus spp, has been used in Chinese herbal medicine and known for its tonic, analgesic and diuretic activities (Kean and Hwan, 1998). Fruits from several Cornus spp. have used for improved liver and kidney functions (Yongwen et al., 1999). It is also reported to have anti-bacterial, antihistamine, anti-allergic, anti-microbial and anti-malarial activities (Zanyin et al., 1949; Mau et al., 2001). In Europe, C. mas or Cornelian cherry fruits were reported to have food and cosmetic applications (Seeram et al., 2002). Similarly, fruits from C. controversa have been used as an astringent and as a tonic in Korea and China (Jang et al., 1998).

The only *Cornus* spp. with alternate leaves is *C. alternifolia* and it is native to eastern United States. It produces attractive, dark-blue and berry-like fruits. Another common landscape tree, *C. kousa*, is a small deciduous tree also found in China, Japan and Korea. It bears sweet and edible fruits and is used for the production of wine in many parts of China and Korea (Du et al., 1974). The plant *C. kousa* is highly resistant to diseases and pests and hence it is widely used as a landscape plant. However, *C. florida*, commonly known as flowering dogwood, is the most popular dogwood in the United

States. It is recognized as the state flower of North Carolina and Virginia, the state tree of Missouri and Virginia and the state memorial tree in New Jersey.

The chemical investigation C. controversa has resulted in the isolation of several compounds including flavonoids, terpenoids and tannins (Dongho et al., 2000; Nakaoki and Morita, 1958). Fruits from several Cornus spp. have been studied for anthocyanin content. The anthocyanins impart bright colors to several fruits and vegetables and possess antioxidant, anti-inflammatory, anticancer and anti-diabetic activities (Wang et al., 1999; Kamei et al., 1995; Jayaprakasam et al., 2005; Chandra et al., 1992). Therefore, the food industry is interested in fruits and vegetables with high content of bioactive anthocyanins to manufacture supplements with preventative and therapeutic uses. Although C. officinalis and C. mas were studied by us in the past for their anthocyanin content, very little is known about the phytochemicals in the fruits of other Cornus spp (Seeram et al., 2002). In this manuscript, we have characterized and quantified the anthocyanins in native C. alternifolia, C. controversa, C. florida and C. kousa fruits. In addition to the anthocyanins not previously quantified in C. controversa, this is the first report of the quantification of anthocyanins in the fruits of C. alternifolia, C. florida and C. kousa species.

Material and Methods

All solvents were of ACS reagent grade. ¹H- and ¹³C NMR spectra were recorded on Varian 500 and 125 MHz spectrometers using CD₃OD/DCl solution. Chemical shifts are given in parts per million relative to CD₃OD at 3.31ppm for ¹H NMR.

Plant Material. Fruits of C. mas, C. officinalis, C. controversa, C. alternifolia, C. kousa, and C. florida were collected from Michigan State University campus in August-September, 2004. The locations of the trees are recorded in the Michigan State University Herbarium Plant Database. The fruits were collected and analyzed on the same day to prevent the degradation of anthocyanins due to storage.

Extraction of Cornus fruits for anthocyanin quantification. Fresh fruits of C. mas, C. officinalis, and C. florida (25 g each), C. alternifolia and C. controversa, (10 g each) and C. kousa (100 g) were weighed and homogenized separately with methanol (1% HCl, 20 mL) for 3 min using a Kinematica CH-6010 (Roxdale, ON, Canada) homogenizer and centrifuged (model RC5C, Sorvall Instruments, Hoffman Estates, IL) at 10000g for 20 min at 4°C. The residue was further extracted with acidic methanol (3 x 15 mL) and the extracts were collected by centrifugation. The combined supernatants were made up to 100 mL (C. kousa 200 mL) with acidic methanol.

Quantification of anthocyanins. The fruits from *Cornus* spp. were extracted immediately after the collection. The anthocyanins were quantified by using Waters 2010 HPLC system (Waters Corp.) equipped with Empower Software, Shodex Degasser, Autosampler (Waters 717), Photodiode Array Detector (Waters 996), according to the method published from our laboratory (Yunjun et al., 2005). The separation was performed on a Capcell Pak (Dichrome, Santa Clara, CA) C18 column (150 x 4.6mm i.d.; 5 µm particle size) maintained at 25°C. The mobile phase used under gradient conditions consisted of 0.1% trifluroacetic acid /water (v/v; A); 50.4% water/48.5% acetonitile/1.0% acetic acid/0.1% trifluroacetic acid (v/v/v/v; B). The conditions were 20% of A to 60% B in 26 min and then to 20 % B in 4 min and maintained for another 10

min to a total of 40 min run time. The flow rate was 1 ml/min. The injection volume for all samples was 50 μ L and detection of anthocyanins was performed at 520 nm.

Pure anthocyanins 1, 2, 3, 4, 5, and 6 were weighed (2 mg each) and dissolved in acidic methanol (1% HCl, 2 mL) separately. The stock solutions were diluted with acidic methanol (1% HCl) to yield 0.50, 0.25, 0.13, 0.063, 0.031, 0.016, 0.0078, 0.0039, and 0.00095 mg/mL concentrations, respectively. The standard solutions of each anthocyanin were analyzed in triplicate. Calibration curves were obtained by plotting the mean peak areas of triplicate injections of each standard against concentrations. The *Cornus* fruit extracts were also analyzed in triplicate at two different concentrations and mean peak areas were used for the quantification of anthocyanins 1-6 in these extracts.

Isolation and characterization of anthocyanins 1-6: The anthocyanins 1-6 were isolated according to the method previously published from our laboratory (Seeram et al, 2002). In summary, the fruits from *C. controversa* plants (1.45 kg) were blended with acidic methanol (1% HCl, 2 x 500 mL) for 2 min at room temperature and centrifuged (model RC5C, Sorvall Instruments, Hoffman Estates, IL) at 10000g for 20 min at 4°C. The residue was extracted further with acidic methanol (2 x 600 mL). The combined supernatants were evaporated to dryness at reduced pressure (35 °C) to yield a reddish gummy extract (111 g). A portion of this extract (43 g) was dissolved in water (250 mL) and fractionated by an XAD-2 column (500g, amberlite resin, mesh size 20-50; Sigma Chemical Co., St. Louis, MO). The resin with adsorbed anthocyanins was then washed with water (6 x 10 L). The water fraction was discarded. The adsorbed anthocyanin was eluted with methanol (2 x 2 L) and concentrated. The resulting aqueous concentrate was lyophilized to yield an amorphous red powder (10.3 g). This anthocyanin powder (1 g)

was dissolved in water:methanol (1:1, 1% HCl, 3 mL) and purified further by C-18 MPLC column (350 x 40 mm) using water:methanol (1% HCl) as the mobile phase under gradient conditions, starting with 77.5% of water. Fractions I (125 mL), II (150 mL), III (150 mL) and 1V (200 mL) were collected when water:methanol gradient was at 72:28 (v/v). The HPLC analysis of each fraction revealed that fractions I and II contained pure anthocyanins 1 (20 mg) and 2 (30 mg), respectively.

Anthocyanin 1: 1 H NMR (CD₃OD/DCl) δ 3.46 (1H, t, J = 9.3 Hz, H-4"), 3.55 (2H, m, H-3" and H-5"), 3.70 (1H, dd, J = 9.2, 7.8 Hz, H-2"), 3.73 (1H, dd, J = 12.1, 5.7 Hz, H-6'B), 3.91 (1H, dd, J = 12.1, 2.2 Hz, H-6"A), 5.30 (1H, d, J = 7.5 Hz, H-1"), 6.66 (1H, d, J = 2.0, H-6), 6.89 (1H, br s, H-8), 7.75 (2H, s, H-2' and H-6), 8.94 (1H, s, H-4). This 1 H NMR spectral data was identical to the spectral data of delphinidin 3-O-glucoside (Mas et al., 2000).

Anthocyanin 2

¹H NMR (CD₃OD/DCl) δ 1.14 d (1H, d, J = 6.0, H-6"), 3.32 (1H, t, J = 9.5, H-4"), 3.43 (1H, t, J = 9.5, H-4"), 3.54 (1H, m, H-5"), 3.56 (1H, t, J = 9.5, H-3"), 3.59 (1H, dd, J = 1.5, 11.5, H-6"), 3.64 (1H, dd, J = 3.3, 9.5, H-3"), 3.68 (1H, t, J = 9.5, H-2"), 3.72 (1H, m, H-5'), 3.80 (1H, m, H-2"'), 4.06 (1H, dd, J = 1.5, 11.3, H-6"), 4.64 (1H, d, J = 1.5, H-1"'), 5.32 (1H, d, J = 7.8, H-1"), 6.71 (1H, d, J = 2.0, H-6), 6.91 (1H, d, J = 1.5, H-8), 7.76 (2H, br s, H-2' and H-6'), 8.85 (1H, br s, H-4). This ¹H NMR spectral data was identical to the spectral data of delphinidin 3-*O*- rutinoside (Norbek and Kondo, 1998).

Anthocyanins 3-5 and 6 were isolated from *C. mas* and *C. kousa*, respectively, by the same protocol as mentioned above. The identities of these anthocyanins were confirmed by co-injection with authentic samples (Seeram et al, 2002).

Results

The Cornus plants, known as dogwood, bear attractive flowers and fruits. It produces flowers during May-June and fruits during August-September. The fruits of C. mas and C. officinalis are morphologically similar. The average weight of ten fruits from C. mas and C. officinalis were 2.03 and 2.06 g, respectively. The smallest fruits among Cornus spp. is from C. controversa whereas the largest fruit is from C. kousa. The average weight of C. controversa, C. alternifolia, C. kousa and C. florida per fruit was 0.07, 0.30, 15.56, and 0.54 g, respectively.

The fruits of *C. alternifolia* and *C. controversa* showed similar anthocyanin profiles (Fig. 2C, 2D). The major anthocyanins identified from them were delphinidin 3-*O*-glucoside (1), delphinidin 3-*O*-rutinoside (2) and cyanidin 3-*O*-glucoside (6), respectively. The relative amounts of anthocyanins in *C. alternifolia* were delphinidin 3-*O*-rutinoside > delphinidin 3-*O*-glucoside > cyanidin 3-*O*-glucoside. Both *C. alternifolia* and *C. controversa* contained negligible amount of anthocyanin 6 when compared to anthocyanins 1 and 2 present in them. The fruits of *C. controversa* gave higher amount of delphinidin 3-*O*-glucoside than delphinidin 3-*O*-rutinoside when compared to the fruits from *C. alternifolia*. The relative amounts of anthocyanins 1 and 2 in *C. controversa* were delphinidin 3-*O*-glucoside > delphinidin 3-*O*-rutinoside > cyanidin 3-*O*-glucoside. However, fruits from both of these *Cornus* spp. are rich sources of anthocyanins 1 and 2.

The anthocyanin profiles of *C. kousa* and *C. florida* were also similar (Fig. 2E, 2F). The anthocyanins identified from these species were delphinidin 3-O-glucoside (1) cyanidin 3-O-glucoside (6) and cyanidin 3-O-galactoside (4), respectively. The

quantities of delphinidin 3-O-glucoside in C. kousa and C. florida were very small compared to cyanidin 3-O-glucoside and cyanidin 3-O-galactoside. Also, cyanidin 3-O-glucoside (6) was very high compared to cyanidin 3-O-galactoside (4) in C.kousa. In C. florida, on the other hand, cyanidin 3-O-galactoside was very high compared to cyanidin 3-O-glucoside. The major anthocyanins in C. mas and C. officinalis were delphinidin 3-O-galactoside (3), cyanidin 3-O-galactoside (4) and pelargonidin 3-O-galactoside (5), respectively (Fig. 2A, 2B). The concentration of anthocyanins was in the order of cyanidin 3-O-galactoside > pelargonidin 3-O-galactoside > delphinidin 3-O-galactoside.

The standard solutions of each anthocyanin were analyzed by HPLC in triplicate. The retention values of anthocyanins 1-6 were 13.50, 14.45, 12.56, 14.79, 16.57, and 15.61 min, respectively. A calibration curve was obtained after plotting the mean peak area of each anthocyanin against respective concentrations. Calibration curves for anthocyanins 1-6 were linear with corresponding correlation coefficients of 0.99, 1.0, 0.99, and 0.99, respectively. The concentration of anthocyanins in each *Cornus* fruits were then determined from their corresponding calibration curves resulting from the mean peak area of triplicate injections of each *Cornus* fruit extracts.

The contents of anthocyanins 1, 2 and 6 in *C. alternifolia* and *C. controversa* were 8.21, 8.44 and 0.02 mg; and 7.75, 5.92, and 0.02 mg, respectively, per g of fresh fruits (Table 1). Similarly, the concentration of anthocyanins 4 and 6 in *C. kousa* and *C. florida* fruits were 0.02 and 0.16; and 0.62 and 0.03, mg/g, respectively (Table 1). The amount of anthocyanins 3-5 in *C. mas* and *C. officinalis* were 0.47, 1.66 and 1.62; and 0.15, 0.21, and 0.78 mg/g of fruits, respectively (Table 1).

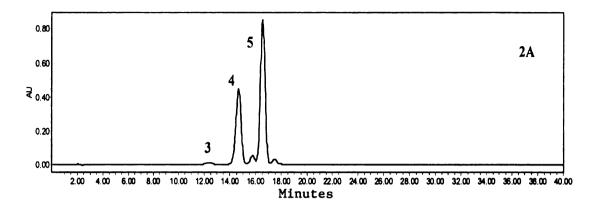
Discussion

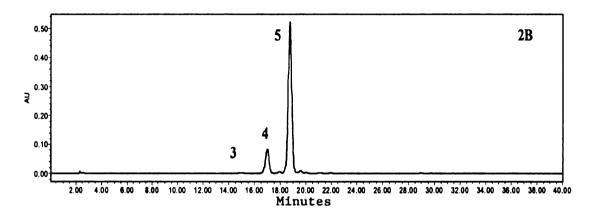
The isolation of anthocyanins 1-6 from *C. controversa*, *C. mas* and *C. kousa* was according to the previously published method (Seeram et al., 2002). Based on the quantification studies, *C. alternifolia* fruits showed highest and *C. kousa* fruits showed lowest amount of anthocyanins among the *Cornus* fruits studied so far. Anthocyanins 1 and 2 were not reported previously from *Cornus* spp. Therefore, only these anthocyanins, isolated from *C. controversa*, were further characterized by ¹H-NMR in this study. As indicated earlier, the anthocyanin profiles of both *C. controversa* and *C. alternifolia* were identical. The ¹H-NMR data of anthocyanins 1 and 2 were in agreement with the literature data of delphinidin 3-*O*-glucoside and delphinidin 3-*O*-rutinoside, respectively (Mas et al., 2000; Norbek and Kondo, 1998).

This is the first report of the quantification of anthocyanins in the fruits of C. alternifolia, C. kousa and C. florida. Both C. alternifolia and C. controversa fruits are excellent sources of bioactive anthocyanins based on the unusually high concentration of anthocyanins (total anthocyanins in C. alternifolia and C. controversa were 16.67, and 13.68, g/kg of fresh fruits, respectively), detected in them. Also, the higher levels of delphinidin 3-O-glucoside and delphinidin 3-O-rutinoside could be used as taxonomical markers for the identification C. alternifolia and C. controversa fruits. The anthocyanin content in these fruits was several times higher than other commonly consumed fruits and vegetables. For example, total anthocyanins present in 'Montmorency', which is the major commercial tart cherry cultivated in the United States, and 'Balaton®' tart cherries are 0.24, and 0.08, g/kg of fresh fruits, respectively (Wang et al., 1997). Because anthocyanins are well known for its beneficial activities and non-toxic in nature, it is

possible that these plants could be cultivated as alternate crops to yield fruits for health beneficial anthocyanins.

Table 2.1. The concentration of delphinidin 3-O-glucoside (1), delphinidin 3-O-rutinoside (2), delphinidin 3-O-galactoside (3), cyanidin 3-O- galactoside (4), pelargonidin 3-O-galactoside (5) and cyanidin 3-O-glucoside (6) in the fruits of *Cornus* spp.


Cornus fruits	I	Anthocyanins (mg/g of fresh fruits)					
	1	2	3	4	5	6	
C. alternifolia	8.21	8.44	ND	ND	ND	0.02	
C. controversa	7.75	5.92	ND	ND	ND	0.02	
C. kousa	ND	ND	ND	0.02	ND	0.16	
C. florida	ND	ND	ND	0.62	ND	0.03	
C. mas	ND	ND	0.47	1.66	1.62	ND	
C. officinalis	ND	ND	0.15	0.21	0.78	ND	


ND = Not detected

Anthocyanin	R'	R''	R'''
1	OH	OH	Н
2	ОН	ОН	Rha
6	ОН	Н	Н

111	R"	R''	R'	Anthocyanin
	H	OH	OH	3
H	Н	Н	ОН	4
H	Н	Н	Н	5
				4 5

Figure 2.1. Anthocyanins characterized from fruits of various Cornus spp.

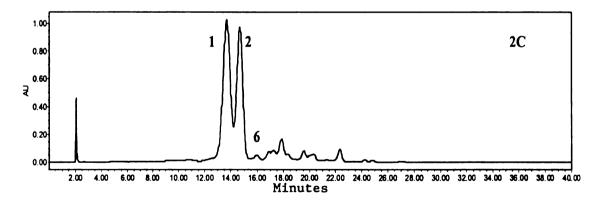
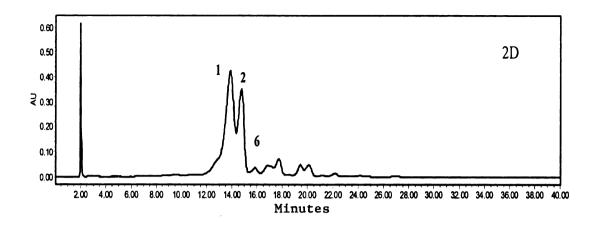
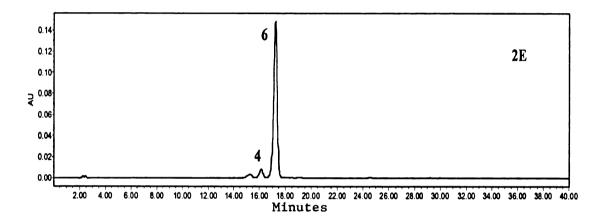




Figure 2.2 HPLC profiles of *Cornus* spp. fruits. (2A) *C. mas*; (2B) *C. officinalis*; (2C) *C. alternifolia*: Anthocyanins 1. delphinidin 3-*O*-glucoside, 2. delphinidin 3-*O*-rutinoside, 3. delphinidin 3-*O*-galactoside, 4. cyanidin 3-*O*- galactoside, 5. pelargonidin 3-*O*-galactoside, 6. cyanidin 3-*O*-glucoside.

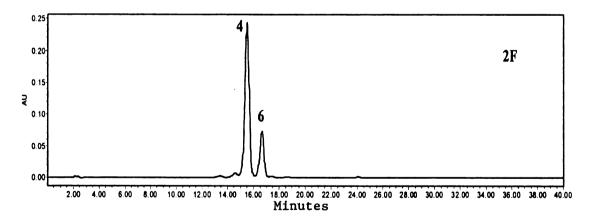


Figure 2.2 (Cont'd). HPLC profiles of *Cornus* spp. fruits. *C. alternifolia*; (2D) *C. controversa*; (2E) *C. kousa*, and (2F) *C. florida*: Anthocyanins 1. delphinidin 3-*O*-glucoside, 2. delphinidin 3-*O*-rutinoside, 3. delphinidin 3-*O*-galactoside, 4. cyanidin 3-*O*-galactoside, 5. pelargonidin 3-*O*-galactoside, 6. cyanidin 3-*O*-glucoside

CHAPTER THREE

ANTHOCYANINS AND ANTHOCYANIDINS IN CORNUS ALTERNIFOLIA,

CORNUS CONTROVERSA, CORNUS KOUSA, CORNUS FLORIDA, CORNUS MAS

AND CORNUS OFFICINALIS FRUITS WITH HEALTH BENEFITS*

Abstract

Anthocyanins are natural pigments widely distributed in plant kingdom. They are responsible for a variety of colors in fruits, flowers and vegetables. Anthocyanidins are aglycones of anthocyanins. Both anthocyanins and anthocyanidins are reported as powerful antioxidant and anti-inflammatory agents. Delphinidin 3-O- glucoside (1) and Delphinidin 3-O- rutinoside (2) were not studied earlier for their inhibition of lipid peroxidation and cyclooxygenase enzymes (COX-1 and COX-2) activities. At 50 μ g/mL, anthocyanins 1 and 2 inhibited lipid peroxidation by 71 and 68%, respectively. Similarly, they inhibited COX-1 enzymes by 39 and 49% and COX-2 enzyme by 54 and 48%, respectively, at 100 μ g/mL. Anthocyanins and anthocyanidins were tested for cell proliferation inhibitory activity against human cancer cell lines, AGS (stomach), HCT-

^{*} Results in this Chapter have been

^{1.} Accepted for publication in *Life Sciences* 2005 (Shaiju K Vareed, Muntha K Reddy, Robert E Schtzki, Muraleedharan G Nair. Anthocyanins in *Cornus alternifolia*, *Cornus controversa*, *Cornus kousa* and *Cornus florida* fruits with health benefits).

^{1.} Published in *Journal of Agriculture and Food Chemistry* (Jayaprakasam Bolleddula, Shaiju K Vareed, Lawrence K Olson, Muraleedharan G Nair. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. 2005, 53, 28-31).

^{2.} Published in *Life Sciences* (Zhang Yunjun, Shaiju K Vareed, Muraleedharan G Nair. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. 2005, 76, 1465-72).

116 (colon), MCF-7 (breast), NCI-H460 (lung), and SF-268 (Central Nervous System, CNS) at 12.5 - 200 µg/mL concentrations. Anthocyanin 1 displayed 50% growth inhibition (IC₅₀) at 21, 25, 50, 60, and 75 μ g/mL, against colon, breast, lung, central nervous system, and stomach, human tumor cell lines, respectively. Similarly, IC₅₀ values for anthocyanin 2 were 38, 30, 76, 100, and 100 µg/mL against colon, breast, lung, central nervous system, and stomach, respectively. Anthocyanins, delphinidin 3-Ogalactoside (3), cyanidin 3-O- galactoside (4), pelargonidin 3-O-galactoside (5) and cyanidin 3-O-glucoside (6) did not show activity at a concentration lower than 200 μg/mL. The anthocyanidin malvidin (11) inhibited stomach, colon, lung, breast, and central nervous system cell growth by 69, 75.7, 67.7, 74.7 and 40.5%, respectively, at 200 µg/mL. Similarly, pelargonidin (9) inhibited stomach, colon, lung, breast, and central nervous system cell growth by 64, 63, 62, 63 and 34%, respectively, at 200 At 200 µg/mL, cyanidin (8), delphinidin (7) and petunidin (10) inhibited the breast cancer cell growth by 47, 66 and 53%, respectively. Anthocyanins 1, 4-6 and anthocyanidins 7-11 were studied for their insulin secretion ability by rodent pancreatic beta cells (INS-1 813/32) in vitro. For insulin secretion studies, the compounds were tested in the presence of 4 and 10 mM glucose concentrations. Our results indicated that cyanidin-3-glucoside (6) and delphindin-3-glucoside (1) were the most effective insulin secretagogues among the anthocyanins and anthocyanidins tested at 4 and 10 mM glucose concentrations. Pelargonidin-3-galactoside (5) is one of the major anthocyanins and its aglycone, pelargonidin, caused a 1.4-fold increase in insulin secretion at 4 mM glucose concentration. Rest of the anthocyanins and anthocyanidins tested in our assay had only marginal effects on insulin at 4 and 10 mM glucose concentrations.

Introduction

Anthocyanins belong to an important class of plant compounds, known as flavanoids, that impart colors to flowers, fruits and vegetables (Mazza and Miniati, 1993). Anthocyanins occur in almost all parts of plants but are more common in fruits and flowers. They are water soluble pigments derived from the flavylium cation (2-phenylbenzopyrylium). The number and position of hydroxyl and methoxyl groups, sugar moieties with or without aliphatic or aromatic acids bonded to the sugar moiety make anthocyanins different from one another (Mazza and Miniati, 1993). Anthocyanins with major aglycons in plants are delphinidin, cyanidin, pelargonidin, peonidin, petunidin and malvidin. The common sugar moieties bonded to anthocyanidins are glucose, galactose, rhamnose and arabinose. In plants anthocyanin content depends on various factors including light intensity, temperature, nutrient stress and pathogen attack (Beckwith et al., 2004). Intense light and low temperature are the most favorable conditions for anthocyanin production (Beckwith et al., 2004).

Anthocyanins are reported to have wide range of biological activities including antioxidant, anti-inflammatory, anti-cancer and anti-diabetic activities (Kim, et al., 2004, Harbone and Williams.,2000, Conklin, 2000). A recent in vitro study indicated the absorption of anthocyanins in the small intestine of rats (Talavera et al., 2004). The health benefits of anthocyanins, for example, prevention of chronic diseases such as cancer, heart diseases, and aging, may be closely associated with their antioxidant properties (Omenn, 1995). Today, food industries prefer to use these natural colorants over synthetic colors may be due to its health benefits and lower risk of side effects (Chandra et al., 2001).

Heart diseases, cancer and stroke cause numerous deaths in the United States. In 2002, 58% of the total mortality in US was due to these diseases (www.cdc.gov.). Even though good treatments are available now for these deadly diseases, the incidence and the mortality rate are still quite high. Epidemiological studies suggested that incorporation of fruits and vegetables in diet reduces the incidence of cancer. It is also reported that low intake of fruits and vegetables may increase the chance of degenerative diseases by two times. This suggests that phytochemicals in fruits and vegetables have beneficial effects in preventing many of the diseases. Recent studies show that protective action of fruit and vegetables against the chronic and degenerative diseases may be due to the antioxidant activity of compounds present in them (Kenneth, 2000). Many plant phenolics, tocopherols, carotenoids and ascorbic acid were reported to act as good antioxidants (Frankel, 1998). Most of these antioxidants exhibit anticarcinogenic and antimutagenic activities. Oxidative stress in body is strongly associated to the coronary heart diseases. Reactive oxygen species such as superoxide radical (O₂), hydrogen peroxide (H₂O₂), singlet oxygen (¹O₂), peroxyl radical (ROO), alkoxyl radical (OR) and the hydroxyl radical (-OH) are responsible for the oxygen toxicity in our body. These reactive species are produced from molecular oxygen due to the action of pollutants, drugs, activated leucocytes and normal cellular respiration. Various studies suggest that oxidation has a major role in heart diseases, cancer, diabetes, and Alzheimer's disease (Frankel. 1998).

Cyclooxygenase enzymes, COX-1 and COX-2, are mediators of inflammatory reactions. These enzymes catalyze the conversion of arachidonic acid to PGH₂, the precursor of all prostaglandins and thromboxanes (Smith et al., 1996). COX enzymes

mediate two distinct reactions. Firstly, it converts AA to PGG₂ through cyclooxygenase activity. Secondly it reduces PGG₂ to PGH₂ via the peroxidase activity. PGH₂ is further converted into various prostaglandins (Trifan et al., 1999). COX-1 and COX-2 are similar in catalytic properties but are different in biological activities. COX-1 is expressed constitutively in cells and is regarded as housekeeping enzyme where as COX-2, is induced in response to various growth factors and inflammatory stimuli. Inhibition of COX-1 may cause several side effects including gastric ulceration. Several studies using animal model for colon cancers indicate that expression of COX-2 is responsible for the transformation of colon epithelial cells (Srikant et al., 2003). Recent studies also showed that selective COX-2 inhibitors possess anticancer activities (Shone et al., 2003).

Diabetes mellitus is a metabolic disorder characterized by high levels of glucose in the blood resulting from the defects in insulin production, insulin action, or both (www.cdc.gov.). The major function of insulin is to counter the concerted action of a number of hyperglycemia-generating hormones and to maintain normal blood glucose levels. Diabetic patients have a shortage of insulin or decreased ability to use insulin, which leads to the accumulation of glucose in the blood. Heart disease is the leading cause of diabetes-related deaths. Diabetes can also cause a number of other diseases including stroke, blindness, kidney failure, pregnancy complications, lower-extremity amputations, and deaths related to flu and pneumonia. There are two types of diabetes, type-1 or insulin-dependent diabetes (IDDM) and type-2 or non-insulin-dependent diabetes (NIDDM). Type 1 diabetes results from the destruction of pancreatic β-cells of the body's immune system. Type-1 diabetes may account for 5 to 10% of all diagnosed diabetes and common among children and young adults. Type-2 diabetes is linked to

obesity and physical inactivity and accounts for 90-95% of diabetic cases. Type-2 diabetes is prevalent among people older than 40 (www.cdc.gov.).

One of the significant health benefits implicated to the consumption of anthocyanins is the low risk of coronary heart diseases. Several studies have shown that tart cherry anthocyanins, cyanidin-3-glycosides, exhibited in vitro antioxidant and anti-inflammatory activities (Wang, et al., 1999, Seeram, et al., 2001). The antioxidant property of anthocyanins and anthocyanidins suggested that they played an important role in the prevention of mutagenesis and carcinogenesis (Omenn, 1995). The anthocyanins in purple colored sweet potato and red cabbage suppressed colon carcinogenesis induced by 1, 2-dimethylhydrazine (DMH) and 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine in rats (Hagiwara et al., 2002).

Although anthocyanins present in fruits and vegetables are known for their health benefits, the cell proliferation inhibitory activity and insulin secretion activity of pure anthocyanin and anthocyanidins are not reported. This chapter deals with lipid peroxidation, cyclooxygenase, tumor cell proliferation inhibitory and insulin secretion activities of anthocyanins in *Cornus* species and their corresponding anthocyanidins.

Materials and Methods

All solvents were of ACS reagent grade. *tert*-Butylhydroquinone (TBHQ), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), aspirin, ibuprofen, naproxen, and 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) were purchased from Sigma-Aldrich Chemical Company Co (St.Louis, MO). Celebrex and Vioxx® were provided by Dr. Subash Gupta, Sparrow Hospital, MI. The COX-1

enzyme was prepared from ram seminal vesicles purchased from Oxford Biomedical research, Inc. (Oxford, MI). The COX-2 enzyme was prepared from prostaglandin endoperoxide H synthase-2 (PGHS-2) -cloned insect lysate. Fetal bovine serum (FBS) and Roswell Park Memorial Institute 1640 (RPMI-1640) medium were purchased from Gibco BRL (Grand Island, NY). HEPES, penicillin- streptomycin, glutamine, sodium pyruvate, 2-mercaptoethanol, trypsin-EDTA, BSA (Bovine, Albumin; RIA Grade), Folin-Ciolatues reagent and chemicals used for the preparation of buffers were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO). Human tumor cell lines SF-268 (Central Nervous System, CNS), NCI H460 (lung), and MCF-7 (breast) were purchased from the National Cancer Institute (NCI, Bethesda, MD). AGS (stomach) and HCT-116 (colon) were purchased from American Type Culture Collection (ATCC, Rockville, MD). INS-1 832/13 cells were obtained from Dr. Christopher Newgard, Duke University, NC. All cell lines were maintained in a humidified chamber at 37 °C with 5% CO₂ in RPMI-1640 medium supplemented with 10% fetal bovine serum, penicillin (1 unit/100 mL), and streptomycin (1 μ g/100 mL) in the Bioactive Natural Products and Phytoceuticals Laboratory (BNPP) at Michigan State University.

Preparation of Anthocyanins 1-6. Described in Chapter 2

Preparation of Anthocyanidins 7-11. Anthocyanidins were prepared by the acid hydrolysis of respective anthocyanins under nitrogen atmosphere. During our insulin secretagogues studies with grape skin, we have found that one of the red grapes, cabernet sauvignon, contained substantial quantities of delphinidin, cyanidin, petunidin and malvidin glycosides (Zhang et al., 2004). Therefore, pure delphinidin (7), cyanidin (8), petunidin (10) and malvidin (11) aglycones were prepared by the acid hydrolysis of

purified grape skin anthocyanins. The purified anthocyanins from grape skin (1.0 g) were hydrolyzed with HCl (3 M, 3h at 95 °C). The solution containing anthocyanidins thus obtained was cooled at room temperature and evaporated under reduced pressure (40°C). The residue from the hydrolysis (0.74 g) was then dissolved in MeOH:H₂O (1:1, 2 mL), and purified by medium pressure liquid chromatography (MPLC) using a C₁₈ column (350 x 40 mm). The solvent system used was acidic MeOH:H₂O (pH = 3.0) under gradient conditions starting from 45% to 55% MeOH. The fractions collected from MPLC were analyzed by high performance liquid chromatography (HPLC) to ensure purity. Similarly, pure pelargonidin (9) aglycone was prepared from the acid hydrolysis of *C. mas* fruit anthocyanins.

HPLC analysis. The purity of anthocyanidins 7-11 was determined by HPLC. (The HPLC method is described in Chapter 2).

Lipid Peroxidation Inhibitory Assay. The anthocyanins 1 and 2 were tested in vitro for their ability to inhibit the oxidation of large unilamellar vesicles (LUVs) (Arora et al., 1998). The assay was conducted in a buffer consisted of HEPES (100 μL), NaCl (200 μL), N₂- sparged water (1.64 mL), test sample (20 μL) in water and LUV (20 μL) suspension. The peroxidation was initiated by the addition of FeCl₂ (20 μL, 0.5 mM) solution and was monitored by observing the fluorescence at 0, 1, 3, 6, 9, 12, 15, 18, and 21 min using a Turner model 450 digital fluorometer (Barnstead Thermolyne, Dubuque, IA) at 384 nm. The decrease of relative fluorescence intensity with time indicated the rate of lipid peroxidation. All compounds were tested at 50 μg/mL. The antioxidant standards BHA, BHT and TBHQ were tested at 1.66, 2.2 and 1.8 μg/mL, respectively. Inhibition of lipid peroxidation by anthocyanins 3-6 and anthocyanidins 7-11 were

reported earlier from our laboratory and hence was not studied at this time (Seeram et al., 2002).

Cyclooxygenase Inhibitory Assay. COX activities of anthocyanins 1 and 2 were assessed by monitoring the initial rate of O₂ uptake using a micro oxygen chamber and electrode (Instech Laboratories, Plymouth Meetings, PA) attached to a YSI model 5300 biological oxygen monitor (Yellow springs Instrument, Inc., Yellow Springs, OH) at 37 °C. The assay was conducted according to the previously reported procedure (Wang et al., 1999). The test samples and controls were dissolved in water. Each assay mixture contained Tris buffer (0.6 mL, 0.1 M, pH 7), phenol (1 mM), hemoglobin (85 µg), and water or test samples (10 µL). COX-1 or COX-2 enzyme (10 µL) was added to the chamber and incubated for 3 min. The reaction was initiated by the addition of arachidonic acid (10 µL of a 1 mg/mL solution). Duplicate analysis was performed for each sample and the standard deviation was calculated for n=2. The data were recorded using QuickLog for windows data acquisition and control software (Strawberry Tree, Inc., Sunnyvale, CA). Commercial anti-inflammatory drugs aspirin, ibuprofen, naproxen, and vioxx were tested at 180, 2.52, 2.06, and 1.67 μg/mL, respectively. COX-1 and -2 inhibitory activities of anthocyanins 3-6 anthocyanidins 7-11 were reported earlier from our laboratory and hence were not studied again (Seeram et al., 2002).

Tumor Cell Proliferation Assay (MTT). The assay was performed according to the previously published method (Denizot and Lang, 1986). MCF-7 (beast), SF-268 (CNS), NCI H460 (lung), HCT-116 (colon) and AGS (gastric) human tumor cells were cultured in RPMI-1640 medium containing penicillin-streptomycin (10 units/mL for penicillin and $10 \mu g/mL$ for streptomycin) and 10% fetal bovine serum (FBS). The cells were grown in

a humidified incubator (37 °C, 5% CO₂), counted using hemacytometer, and transferred in to 96-well microtiter plates and incubated for 24 h. The samples were dissolved in water/DMSO and further diluted with RPMI medium. After 24 h of incubation, test samples (100 μ L) in appropriate dilution were added to each well containing the appropriate tumor cells and further incubated 48 h. After incubation, an aliquot (25 μ L) of MTT solution (5 mg MTT dissolved in 1 mL of phosphate-buffered saline solution) was added and the plates were further incubated for 3 h at 37 °C after wrapping it with aluminum foil. The medium was removed from each well and cells treated with DMSO (200 μ L). The plates were then shaken and optical density was measured using a microplate reader at 570 nm. Adriamycin, dissolved in 0.1% DMSO and 0.1% DMSO or Water in RPMI 1640 media were used as positive control and solvent control, respectively. The sample was assayed in triplicate, and three independent experiments were carried out to calculate IC₅₀ values.

The assay was conducted in triplicate for each sample concentration, positive and solvent controls. Three parallel experiments were performed. The cell viability of samples at each concentration was calculated with respect to solvent control. The cell viability at each concentration was calculated by dividing the optical density of samples with the optical density of solvent control.

Insulin Secretion Studies. INS-1 832/13 cells were maintained in the Bioactive Natural Products and Phytoceutical Laboratory at Michigan State University in 5% CO₂/air at 37 °C. The cells were cultured in RPMI-1640 medium containing 11.1 mM glucose and supplemented with 10% FBS (Fetal Bovine Serum), 10 mM HEPES, 100 U/ml penicillin, 100 μg/ml streptomycin, 4 mM glutamine, 1 mM sodium pyruvate, and 50 μM 2-

mercaptoethanol. Cells were passed weekly after trypsin-EDTA detachment. The cells were counted using a hemacytometer and transferred into 24-well plates at a density of 0.64 x 10⁶ cells per well and incubated for 24 h. The cells were then cultured for an additional 24 h in RPMI-1640 containing 4 mM glucose and the supplements described above. Cells were then incubated twice for 30 min in Krebs-Ringer Bicarbonate buffer (KRBB) containing 4 mM glucose and 0.1% BSA. Cells were rapidly washed with KRBB and incubated for 60 min KRBB containing 4 or 10 mM glucose with or without the indicated anthocyanins or anthocyanidins. The medium was then removed for determination of insulin release. The cells were washed twice with PBS and dissolved in 1 M NaOH. Cellular protein concentration was then determined by Lowry assay. Anthocyanins and anthocyanidins were dissolved in DMSO to obtain desired concentrations. Final concentration of DMSO was maintained at 0.1%. The insulin secreted into the medium by the cells was determined by radioimmunoassay and normalized to total cellular protein.

Radioimmuno Assay (RIA). The RIA Kit was purchased from LINCO Research Inc. (St Charles, MO), and the assay was conducted according to the manufacturer's directions. Briefly, insulin standards were prepared in the 0.1-10 ng range and added (100 μl) to 12 x 75 mm test tubes. An aliquot of samples (25 μl) from the insulin secretion studies, assay buffer (75 μl) and ¹²⁵I labeled insulin (100 μl) was then added to each test tube. An aliquot of anti-rat insulin antibody (100 μL) was added and the tubes were incubated at 4°C for 24 h. To the solutions, 1 ml aliquot of the precipitating reagent was added and the tubes were further incubated for 20 min at 4°C to precipitate the

insulin bound to the antibody. The tubes were then centrifuged and the radioactivity was measured using a gamma counter.

Lowry protein Assay. The amount of protein in the assay wells was determined by Lowry method (19). The Lowry assay solution was prepared by mixing the Lowry solution, CuSO₄.5H₂O (1%), and sodium tartarate (1%). The protein sample (100 μl) and Lowry assay solution (1 mL) were mixed in a test tube (12 x 75). An aliquot of Folin-Ciolatues reagent (100 μl) was added to these tubes and incubated for 30 min at room temperature. The optical density of resulting solutions was recorded using UV spectrophotometer at 700 nm.

Results

The methanol extracts of *C. alternifolia* (A) and *C. controversa* (B) inhibited lipid peroxidation by 56 and 53%, respectively, at 250 μ g/mL. Inhibition of lipid peroxidation by anthocyanins 1 and 2 were 71 and 68%, respectively, at 50 μ g/mL (Fig. 3.2). Commercial antioxidants BHA, BHT and TBHQ were used as positive controls in the lipid peroxidation assay at 1.8, 2.2 and 1.66 μ g/mL, respectively, to yield about 80-90% inhibition and inhibited the lipid peroxidation by 81, 85 and 84%, respectively.

The anthocyanins 1 and 2 inhibited COX-1 enzyme by 39 and 49%, respectively, at 100 μ g/mL. Similarly, they inhibited COX-2 enzyme by 54 and 48%, respectively, at 100 μ g/mL (Fig. 3.3). The positive controls aspirin (180 μ g/mL), ibuprofen (2.52 μ g/mL), naproxen (2.06 μ g/mL) and Vioxx® (1.67 μ g/mL) inhibited COX-1 and COX-2 enzymes by 61 and 24, 53 and 59, 80 and 96, and 0 and 76%, respectively. The varying concentrations of positive controls were used to obtain the inhibitions between 50-100 %.

Anthocyanins 1-6 and anthocyanidins 7-11 were assayed for their ability to inhibit the proliferation of colon, breast, lung, central nervous system, and stomach human tumor cell lines. These compounds were assayed at 200, 100, 50, 25 and 12.5 μ g/mL to obtain their 50% growth inhibitory (IC₅₀) values. The anthocyanin, 1, exhibited 50% growth inhibition (IC₅₀) at 21, 25, 50, 60 and 75 μ g/mL, against colon, breast, lung, central nervous system and stomach, respectively (Fig. 3.4A). The IC₅₀ values observed for anthocyanin 2 were 38, 30, 76, 100 and 100 µg/mL against colon, breast, lung, central nervous system and stomach, respectively (Fig. 3.4B). Anthocyanins 3-5 showed good inhibition of tumor cell proliferation at 200 µg/mL. However, inhibitory activities of anthocyanins 3-5 were marginal below 100 µg/mL. Anthocyanin 3 inhibited the growth of breast and lung tumor cell lines by 34 and 22%, respectively, at 200 µg/mL (Fig. 3.4C). Anthocyanin 4 displayed 50% inhibition towards breast cancer cell line at 200 $\mu g/mL$ (Fig. 3.4D). It did not show inhibition to the proliferation of any other cancer cell line. Anthocyanin 5 inhibited breast, central nervous system, lung, and colon cell growth by 40, 20, 51 and 76%, respectively, at 200 ppm (Fig. 3.4E).

Anthocyanidins were prepared by the hydrolysis of anthocyanin enriched extract from *Cabernet sauvignon* grape skin under acidic condition. The hydrolyzed mixture was cooled, evaporated under reduced pressure and purified by MPLC afforded delphinidin (7), cyanidin (8), petunidin (10) and malvidin (11). Similarly, pure pelargonidin (9) aglycone was prepared from the acid hydrolysis of *C. mas* fruit anthocyanins.

The anthocyanidin cyanidin (8) inhibited the growth of breast cancer cells by 35 and 47% at 100 and 200 µg/mL (Fig. 3.5B), respectively. However, cyanidin did not

inhibit the growth of other cancer cell lines at 100 and 200 μg/mL. Similarly, delphinidin (7) inhibited the growth of breast cancer cell lines by 27 and 64% at 100 and 200 μg/mL, respectively, but did not affect the growth of stomach, lung, CNS and colon (Fig. 3.5A) cancer cell lines. The anthocyanidin malvidin (11) was effective against the cell proliferation on all cell lines tested. It inhibited the cell proliferation of colon, breast, lung, central nervous system, and stomach cancer cells by 75.7, 74.7, 67.7, 40.5, and 69 %, respectively, at 100 μg/mL (Fig. 3.5E). At 200 μg/mL, pelargonidin (9) inhibited 34, 62, 64, 63, and 65% of colon, breast, lung, central nervous system, and stomach cancer cells growth, respectively (Fig. 3.5C). One of the less abundant anthocyanidins found in nature, petunidin (10), showed 53 and 24% cell growth inhibitions of breast and stomach cancer cells at 200 μg/mL (Fig. 3.5D). Adriamycin (doxorubicin), the positive control, was tested at 0.181, 0.363, 0.725 and 1.45 μg/mL.

Anthocyanins 1, 4-6, and anthocyanidins 7-11 were assayed for their ability to stimulate insulin secretion by rodent pancreatic beta cells (INS-1 813/32). Anthocyanins and anthocyanidins were assayed at 4 and 10 mM glucose levels in the cell growth medium at 50 µg/mL initial concentration. The insulin secretion at 4 mM and 10 mM glucose were 27 and 83 ng of insulin/mg of protein, respectively (Fig. 3.6A). Anthocyanins delphinidin 3-O- glucoside (1) and cyanidin 3-O-glucoside (6) secreted 49.48 and 36.14 ng of insulin/mg of protein, respectively, at 4 mM glucose concentration. At 10 mM glucose level, anthocyanins 1 and 6 showed insulin secretion of 113 and 119 ng of insulin/mg of protein, respectively. The anthocyanins cyanidin-3-O-galactoside (4) and pelargonidin-3-O-galactoside (5) did not impact the insulin secretion at 4 mM glucose concentration. However, cyanidin-3-O-galactoside showed an increase of 17 ng

of insulin/mg of protein at 10 mM glucose concentration (Fig. 3.7). The pelargonidin-3-O-galactoside (5) was tested only once due to the limited amount of sample. The anthocyanin cyanidin-3-glucoside (6) was also evaluated for dose dependent insulin secretion at 5, 10, 50, 100 and 250 µg/mL concentrations. At 4 mM glucose level, the untreated cells and the cells treated with anthocyanin 6 secreted 33 and 46 ng of insulin/mg of protein, respectively. However, there was no significant difference in insulin secretion by compound 6 at 10, 50, 100 and 250 µg/mL concentrations. Anthocyanidins delphinidin (7) and cyanidin (8) secreted 25 and 29 ng of insulin/mg of protein, respectively, at 4 mM glucose concentration. At 10 mM glucose level, anthocyanidins 7 and 8 showed insulin secretion of 48 and 88 ng of insulin/mg of protein, respectively (Fig 3.6B). Pelargonidin (9) secreted 49 and 91 ng of insulin/mg of protein at 4 and 10 mM glucose, respectively (Fig 3.7). The aglycone petunidin (10) increased insulin secretion by 4 ng of insulin/mg protein at 4 mM glucose concentration and no significant increase in insulin level was observed at 10 mM level. However, malvidin (11) did not show an increase in insulin secretion with respect to the untreated cells. Anthocyanin 2 and 3 were not tested in this assay due to the limited supply of samples.

Discussion

Anthocyanins are pigments responsible for the orange, red, purple and blue colors of many fruits, vegetables, flowers, leaves, and roots. They are found in nature as polyhydroxylated and or methoxylated heterosides, derived from the flavylium ion or 2-phenylbenzopyrilium. Anthocyanins are biogenetically produced from tetrahydroxychalcone, naringenin, a precursor involved in the pivotal step of flavonoid

biosynthesis (Strack and Wray, 1993). Out of the 21 anthocyanidins reported, only 6 anthocyanidins are commonly found in fruits and vegetables. They are delphinidin, cyanidin, pelargonidin, peonidin, petunidin and malvidin. Anthocyanidins could very well be the immediate metabolite after ingestion of anthocyanins. This is because the β-glucosidase enzyme found in intestinal bacteria can easily hydrolyze respective anthocyanins (glycosides) to anthocyanidins (aglycones) (Miyazawa, et al., 1999). Although anthocyanins are well known for their antioxidant and anti-inflammatory activities, very little is known about their insulin secretion and anticancer activities.

Delphinidin 3-O- glucoside (1) showed higher inhibitory activity than delphinidin 3-O- rutinoside (2) in the lipid peroxidation, COX, and cell proliferation inhibitory assays. This is true because the bioactivity of anthocyanins is proportional to the molar amount of respective aglycones present in them. The aglycone, delphinidin, was not active against the cell lines tested except breast (IC₅₀=162.4 μg/mL). Also, delphinidin 3-O-galactoside did not show activity towards any cancer cell lines tested even at 200 μg/mL. However, delphinidin 3-O- glucoside and delphinidin 3-O- rutinoside showed potent growth inhibitory activity towards all tumor cell lines tested. Also, delphinidin 3-O- glucoside showed higher growth inhibitory activity than delphinidin 3-O- rutinoside in all cell lines studied. This indicated that each anthocyanin exhibits different biological activities with varying potency and the activity is dependent on both the aglycone and the glycoside substitution on its 3-position.

The cell proliferation inhibitory results obtained in this study for cyanidin, delphinidin, pelargonidin, petunidin and malvidin on stomach, colon, lung, breast and CNS cancer cell lines are in agreement with the effects reported for cyanidin on human

colon tumor cell lines HT-29 and HCT-115 (Kang, et al., 2003 and Kamei, et al., 1998). The data from the MTT assay indicated that a free hydroxyl group at 3-position in the flavylium moiety in anthocyanidins contributed to the cell proliferation inhibitory activity against human cancer cell lines studied. Also, the number of hydroxyl and methoxyl groups in B ring of anthocyanidin strongly influenced the growth inhibition of cancer cell lines studied. The highest inhibitory activity was demonstrated by malvidin with hydroxyl groups at 3 and 4' positions and methoxy groups at 3' and 5' positions.

It is well known that dietary antioxidants protect pancreatic β-cells from the damage due to oxidative stress. Various reports also indicated that consumption of fruits and vegetables, especially rich in polyphenols, decreased the incidence of type-2 diabetes (Anderson and Polansky, 2002; Landrault, 2003). The insulin secretion studies in our laboratory with pancreatic β-cells suggested that both anthocyanins and anthocyanidins are insulin secretagogues. Among the anthocyanins studied, delphinidin-3-O-glucoside (1) showed highest activity at lower glucose concentration. Although cyanidin-3-Oglucoside (6) was less active than delphinidin-3-O-glucoside at lower glucose concentration, it was more active at higher glucose concentration. galactosides, pelargonidin-3-galactoside (5) did not induce insulin secretion at 4 and 10 mM glucose concentrations studied where as cyanidin-3-galactoside (4) showed significant increase in insulin secretion. The ability of anthocyanins studied to secrete insulin was in the increasing order of delphindin-3-O-glucoside > cyanidin-3-O-glucoside > pelargonidin-3-O-galactoside. This indicated that the number of hydroxyl groups in ring-B of anthocyanins played an important role in their ability to secrete insulin. Among the anthocyanidins tested, pelargonidin was the most active at 4 mM glucose. Other aglycones did not potentiate significant insulin secretion at 4 or 10 mM glucose concentrations studied.

In summary the in vitro studies with various human tumor cell lines and pancreatic β -cells suggest that both anthocyanins and anthocyanidins in *Cornus* fruits may be effective for the prevention of cancer and type-2 diabetes. However, in vivo studies and clinical evaluation of these compounds must be carried out to validate the in vitro results.

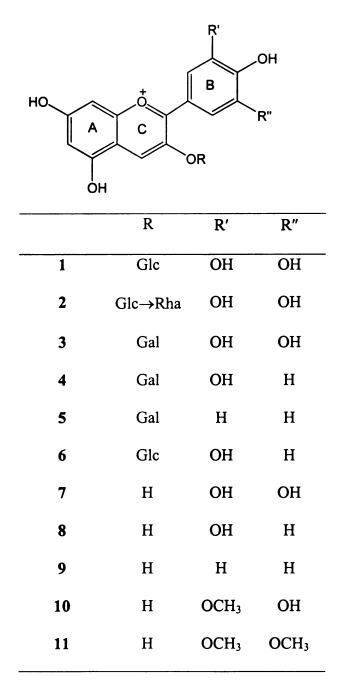


Figure 3.1 Structures of anthocyanidins (1-6) and anthocyanidins (7-11).

1. Delphinidin 3-O-glucoside: 2. Delphinidin 3-O- rutinoside; 3. Delphinidin 3-O-galactoside; 4. Cyanidin-3-O-galactoside; 5. Pelargonidin-3-O-galactoside; 6. Cyanidin-3-O-glucoside; 7. Delphinidin; 8. Cyanidin; 9. Pelargonidin; 10. Petunidin and 11. Malvidin.

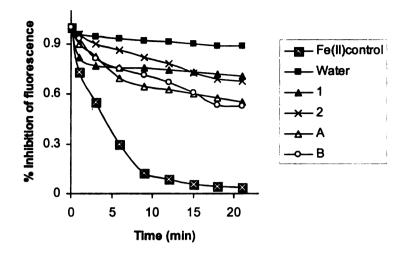


Figure 3.2 Lipid peroxidation inhibitory activities of anthocyanins 1 and 2 and methanol extracts of C. alternifolia (A) and C. controversa (B). Synthetic commercial antioxidants BHA, BHT, and TBHQ were tested at 1.66, 2.2 and 1.8 μ g/mL, respectively. Oxidation of lipid was initiated by the addition of ferrous ions. The rate of peroxidation was monitored by the measurement of decrease in fluorescence intensity with respect to time. Anthocyanins and extracts were tested at 50 and 250 μ g/mL respectively. Antioxidant standards BHA, BHT and TBHQ inhibited lipid peroxidation by 81, 85 and 84%, respectively. Vertical bars represent the standard deviation of each data point (n = 2).

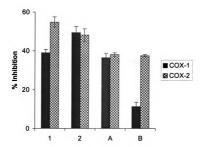


Figure 3.3. COX-1 and COX-2 inhibitory activities of anthocyanins 1 and 2 and methanol extracts of *C. alternifolia* (A) and *C. controversa* (B). Anthocyanins and extracts were tested at 50 and 250 μ g/mL respectively, at pH 7.0. Commercial anti-inflammatory drugs, aspirin (180 μ g/mL), ibuprofen (2.52 μ g/mL), naproxen (2.06 μ g/mL) and vioxx (1.67 μ g/mL) were used as positive controls. Aspirin, ibuprofen, naproxen and vioxx inhibited COX-1 activity by 61, 53, 80 and 0% respectively, and COX-2 activity by 24, 59, 96 and 76%, respectively. Vertical bars represent the standard deviation of each data point (n=2).

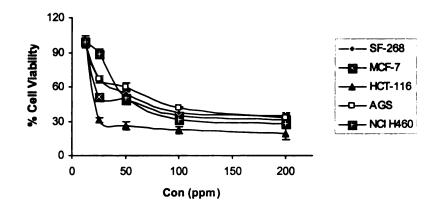


Figure. 3.4A

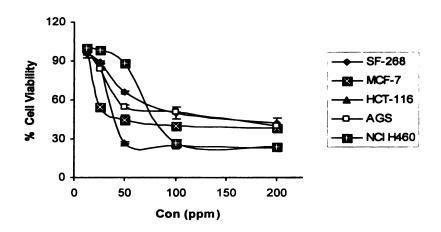


Figure. 3.4B

Figure 3.4. In vitro cell proliferation inhibitory results of anthocyanins 1-6 against human cancer cell lines. Adriamycin was used as positive control. The vertical bars represent ± SD of three individual experiments conducted in triplicate. 3.4A. Delphinidin 3-O-glucoside; 3.4B. Delphinidin 3-O-rutinoside. Anthocyanins were tested at 200, 100, 50, 25, and 6.25 μg/mL, respectively. At 200 μg/mL, all cell lines exposed to anthocyanins displayed growth characteristics identical to the solvent control.

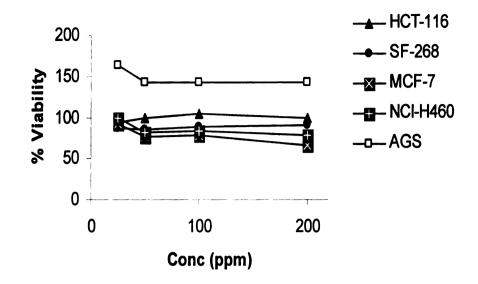


Figure. 3.4C

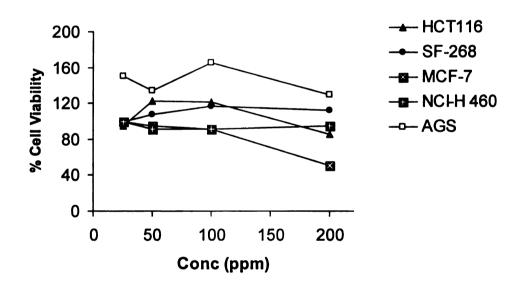


Figure. 3.4D

Figure 3.4 (cont'd). In vitro cell proliferation inhibitory results of anthocyanins against human cancer cell lines. 3.4C. Delphinidin 3-O-galactoside; 3.4D. Cyanidin 3-O-galactoside.

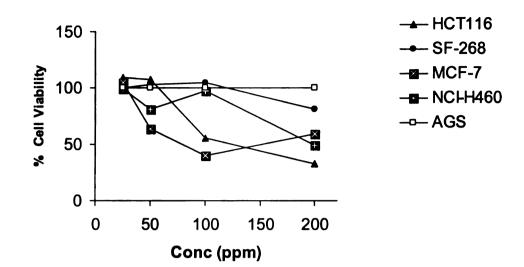


Figure. 3.4E

Figure 3.4 (cont'd). In vitro cell proliferation inhibitory results of anthocyanins against human cancer cell lines. 3.4E. Pelargonidin 3-O-galactoside.

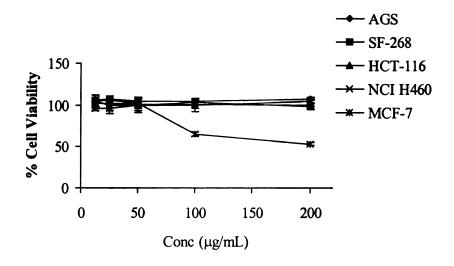


Figure 3.5A

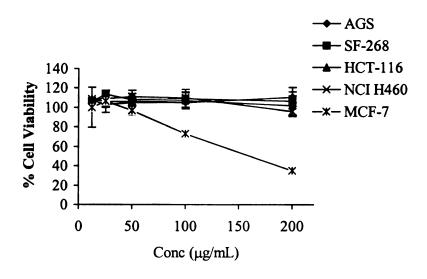


Figure 3.5B

Figure 3.5. In vitro cell proliferation inhibitory results of anthocyanidins 7-11 against human cancer cell lines. DMSO and adriamycin were used as solvent and positive controls, respectively. Anthocyanidins were tested at 200, 100, 50, 25, and 6.25 μ g/mL, respectively. The vertical bars represent \pm SD of three individual experiments conducted in triplicate. 3.5A. Delphinidin; 3.5B. Cyanidin.

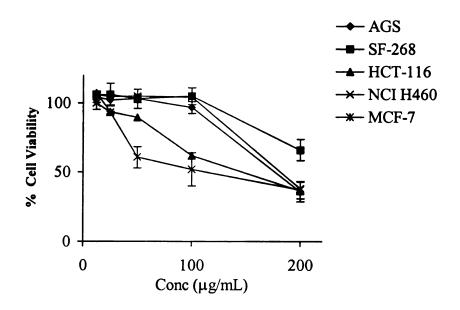
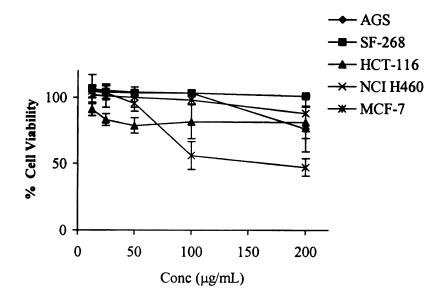



Figure 3.5C

Fig 3.5D

Figure 3.5 (cont'd). In vitro cell proliferation inhibitory results of anthocyanidins against human cancer cell lines. 3.5C. Pelargonidin; 3.5D. Petunidin.

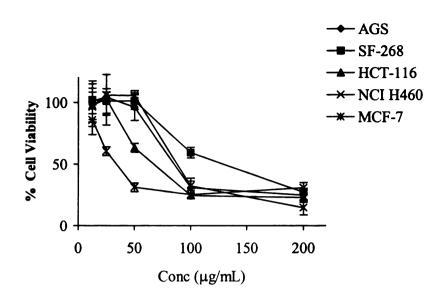
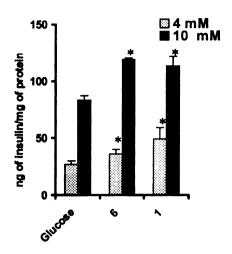
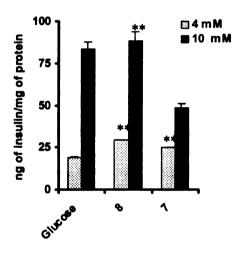




Fig 3.5E

Figure 3.5 (cont'd). In vitro cell proliferation inhibitory results of anthocyanidins against human cancer cell lines. 3.5E. Malvidin.

Fig 3.6A

Fig 3.6B

Figure 3.6 (A) The amount of insulin secreted per milligram of protein by compounds 1 and 6 and (B) by compounds 7 and 8 in the presence of 4 and 10 mM glucose. The final DMSO concentration in the assay wells was 0.1%. The results represented are the average of three or five independent experiments and each sample was assayed in duplicate. Insulin secretion by compounds 1, 6, 7 and 8 were significant at * (95% or $p \le 0.05$) or ** (99% or $p \le 0.01$) as determined by LSD using the t-test

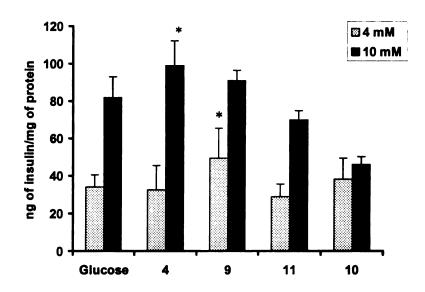


Figure 3.7 The insulin secreted by compounds 4, 9-11 at 4 and 10 mM glucose concentrations. The amount of insulin secreted was normalized to milligram protein. The final DMSO concentration in the assay wells was 0.1%. The results represented are the average of three independent experiments and each sample was assayed in duplicate. Insulin secretion by compounds 4, 9-11 was significant at * (95% or $p \le 0.05$) as determined by LSD using the t-test.

CHAPTER FOUR

FRUIT MATURITY, FLAVONOID AND ANTHOCYANIN PRODUCTION IN CORNUS FRUITS

Abstract

The genus *Cornus* is well known for its medicinal properties. Several *Cornus* species are used as traditional medicines in Asian countries including China, India, Korea and Japan. *Cornus kousa*, a widely grown plant among *Cornus* species, has not been investigated for its bioactive constituents. Bioassay-guided isolation and characterization of ripened red fruits of *C. kousa* afforded ursolic acid (12) and β-sitosterol (13) in addition to cyanidin-3-*O*-glucoside. The matured green fruits of *C. kousa* afforded cornin (14), kaempherol 3-*O*-rhamnoside (15), myricetin 3-*O*-rhamnoside (16), kaempherol 3-*O*-glucoside (17) and stenophyllin (18) in addition to compounds 12 and 13. The green fruits were devoid of anthocyanins. These compounds are isolated for the first time from *C. kousa*. Also, it is hypothesized that the biosynthetic pathways for the production of flavonoids in *C. kousa* fruits during ripening was shut down in favor of the production of anthocyanins.

Introduction

Flavonoids including anthocyanins are responsible for the flower colors in many species. These compounds account for a variety of flower colors such as red, orange, pink, purple, blue and yellow (Shirely, 2001). Flavonoids constitute a diverse family of aromatic molecules that are derived from phenylalanine and malonyl-coenzyme A. The colorless flavonoids such as flavonois and flavones may affect the flower color through the formation of molecular complexes with anthocyanins by the process called copigmentation (Justesen et al, 1997).

Flavonoids comprise of several groups including chalcones, flavones, flavones, flavones, flavandiols, anthocyanins, aurones and condensed tannins. Both flavonols and anthocyanins originate from the same substrate dihydroflavonol during their biosynthesis (Scheme 4.1). The dihydroflavonols represent as important targets in flavonoid synthesis. They act as intermediates for the production of anthocyanins through the action of dihydroflavonol 4- reductase (DFR) enzyme. The colorless flavonols are produced by the action of flavonol synthase (FLS) enzyme. FLS acts on dihydroflavonols by introducing an olefinic bond between C-2 and C-3 of the ring C in presence of cofactors 2-oxoglutarate, ascorbate and Fe²⁺ ions (Halto et al. 1993). However, the conversion of dihydroflavonols into anthocyanins involves at least 3 enzymatic steps beginning with a reduction at the 4-carbon position by dihydroflavonol 4-reductase (DFR). The competition between flavonol synthase (FLS) and DFR for common substrate may alter the flavonol-anthocyanin ratio in plants. By changing the flavonol- anthocyanin ratio, it is possible to produce the plants with different flower colors (Mol et al, 1998). Most plant tissues produce anthocyanins in response to external

stresses such as high light intensity and temperature. A low level expression of genes responsible for anthocyanin production may lead to the accumulation of flavonols by diverting dihydroflavonol to flavonols with FLS expression (Nielson et al., 2002). However, the control of FLS gene expression may direct flavonoid biosynthetic pathway either to anthocyanins or to flavonols in vegetative tissues. For example, in lisianthus (Eustoma grandiflorum Grise), the loss of FLS expression resulted in the loss of flavonol production and accumulation of dihydroflavonols without the overall increase in anthocyanin production. In contrast, tobacco plants showed three-fold increase in anthocyanin accumulation due to the loss of FLS activity (Nielson et al., 2002).

The genus *Cornus* contains many medicinal plants. Many of these species are used in traditional medicines in Asian countries. For example, *Cornus officinalis*, known as "Zhu Yu" or "Zao Pi" in Chinese medicine, was used as an astringent tonic for impotence, spermatorrhea, lumbago, vertigo and night sweats (www.ncsu.edu). The fruits of *C. officinalis* were used for antidiabetic preparations in China for several years. Fruits of *Cornus oblonga* have been used as a substitute for 'Zao Pi' (www.ncsu.edu). *Cornus kousa*, native to eastern Asia, commonly known as Korean or kousa dogwood, is an ornamental tree. It is a smaller tree with white or pink bracts and has dark green foliage late in the spring season. Its cultivars are increasingly used as landscape plants compared to the flowering dogwood *Cornus florida*, the widely used dogwood native to United States of America. This is mainly due to lack of disease and insect problems typically associated with *C. florida* (Trigiano et al., 2004). *C. kousa* bears colorful, attractive and edible fruits and are used for the production of wine in China (Seeram et al., 2002). Three anthocyanins, cyanidin 3-O-glucoside, delphinidin 3-O-glucoside, and

pelargonidin 3-O-glucoside were reported from C. kousa fruits (Du et al., 1974). Polyphenols β -glucogallin, (+)-catechin, (+)-gallocatechin and procyanidin B-3 were also identified from the callus of C. kousa (Kanji et al., 1993).

Anthocyanins are the major bioactive compounds reported in *Cornus* species. Total anthocyanin content of many *Cornus* species is 10-15 times higher than other fruits used as sources of anthocyanins (Shaiju et al., 2005). Very little is known about the compounds other than anthocyanins in *Cornus* fruits. Most reports were focused on the isolation, characterization and biological activities of compounds from *C. officinalis*. Our preliminary studies with water, methanol, and ethyl acetate extracts of *C. kousa* fruits showed promising lipid peroxidation and COX enzymes inhibitory activities. In this chapter, the bioassay guided isolation and characterization of compounds from ripened and matured green *C. kousa* fruits are presented.

Materials and Methods

All solvents used for isolation and purification were of ACS reagent grade (Aldrich Chemical Co., Inc., Milwaukee, WI). ¹H NMR spectra was recorded at 300 MHz on Varian INOVA and 500 MHz on VRX instruments. ¹³C NMR spectra were recorded at 75 and 125 MHz instruments. Compounds were dissolved in CDCl₃, CD₃OD, and DMSO-d₆ and chemical shifts are given in parts per million (ppm) relative to CDCl₃, CD₃OD, and DMSO-d₆ at 7.24, 3.31, and 2.49 ppm, respectively for ¹H NMR, and 77.0, 49, and 39.5 ppm, respectively, for ¹³C NMR. The silica gel used for Medium Pressure Liquid Chromatography (MPLC) was from Merck (35-70 μm particle size).

Thin Layer Chromatography (TLC) and Preparative Thin Layer Chromatography (P-TLC) plates (20 x 20, 500µm) were purchased from Analtech, Inc. (Newark, DE).

Plant Material: The red ripened fruits of C. kousa were collected on the campus of Michigan State University in August-September, 2002. The locations of trees were recorded in the Michigan State University Herbarium Plant Database. The green and matured C. kousa fruits were collected at 3934 E Sunwind Drive, Okemos, Michigan.

Extraction and Bioassay Guided Isolation of Compounds 12-18. The ripened fruits of C. kousa (1.6 kg) were pitted and the pulp was blended with water (1000 mL), and successively extracted with water, methanol, and ethyl acetate (500 mL x 3) to yield 124, 21.5, and 1.4 g of extracts, respectively.

The methanol extract (21.5 g) was stirred successively with ethyl acetate, methanol and water. The ethyl acetate and methanol soluble portion were combined based on TLC and evaporated under reduced pressure (1.3 g). This extract was applied to MPLC (silica) column and fractionated with CHCl₃:MeOH solvent system under gradient condition from 100% CHCl₃ to 100% MeOH. A total of 15 fractions were collected and each fraction was analyzed and combined based on TLC. Fractions 4 (33 g, 590 mL), and 5 (760 g, 130 mL) were combined based on TLC and purified by MPLC column (silica). The column was eluted, under gradient conditions, with 100% hexane to 100% acetone. A total of 10 fractions were collected. The evaporation of fraction 5 (60 mL) under reduced pressure afforded compound 12 (41.3 mg). The ¹H and ¹³C NMR spectral data of compound 12 were identical to the published spectral data of ursolic acid (Seebacher et al., 2003). The fraction 2 resulting from the above column on repeated purification by MPLC (silica) column with hexane:acetone as the mobile phase afforded

compound 13 (24.0 mg). The ^{1}H and ^{13}C NMR spectral data of compound 13 were identical to the published spectral data of β -sitosterol (Sakuri and Rahmani, 1995). The ethyl acetate extract mainly contained compounds 12 and 13, as confirmed by TLC, was not studied further.

The fresh and unripened green fruits of C. kousa (1.6 kg) were successively blended with methanol (1000 mL x 2) and ethyl acetate (1000 mL x 2), and centrifuged (model RC5C, Sorvall Instruments, Hoffman Estates, IL) at 10000g for 20 min at 4°C. The combined supernatants after evaporation under reduced pressure yielded methanol (80 g) and ethyl acetate (10 g) extracts, respectively. An aliquot of the methanolic extract (35.0 g) was dissolved in methanol (100 mL) and partitioned with hexane (150 mL x 3) to yield methanol (24.0 g) and hexane-soluble (10.0 g) fractions. A portion (5.1 g) of the methanol-soluble fraction was fractionated by MPLC (C-18) column using MeOH:H₂O as the mobile phase under gradient conditions from 10% MeOH to 100% MeOH. The fraction 2 (606 mg) from the above column was purified by C-18 column using MeOH:H₂O mobile system and subsequent purification by preparative thin layer chromatography afforded compound 14 (8.9 mg). The ¹H and ¹³C NMR spectral data of compound 14 were identical with that of cornin (Tanaka et al., 2001). The fraction 6 was further fractionated by Prep-HPLC (X-terra® Prep MS C₁₈, 19 x 250, 10 μm) under isocratic conditions using 0.1% TFA/H₂O: CH₃CN (75:25) as the mobile phase. The flow rate was maintained at 3 mL/min and the peaks detected at 275nm. A total of six fractions were collected and further purification of fraction 5 by HPLC using 0.1% TFA/H₂O:CH₃CN (80:20) as the mobile phase afforded compounds 15 and 16, respectively. The ¹H and ¹³C NMR spectral data of compound 15 and 16 were in

agreement with kaempferol 3-O-rhamnoside and myricetin 3-O-rhamnoside, respectively (Markhem et al., 1982). The compound 17 was obtained by the purification of fraction 6 using the same mobile system mentioned above. The ¹H and ¹³C NMR spectral data indicated that compound 17 was kaempferol 3-O-glucoside (Markhem et al., 1982)

Another portion of the methanolic extract (23.5 g) was dissolved in water (200 mL) and centrifuged. The supernatant was then fractioned by XAD-16 resin. The resin was washed with water (1000 mL x 2) and the adsorbed compounds were eluted with methanol (500 mL x 2) and the solution evaporated under reduced pressure to yield a residue (16.5 g). A portion (3.5 gm) of the was residue was further fractionated by MPLC (silica) using CHCl₃:MeOH as the mobile phase afforded six fractions. The fraction 2 obtained from the silica column was evaporated under reduced pressure and washed with CHCl₃ to afford compound 18 (2.4 mg). Compound 18 was identified as stenophyllin based on comparison of ¹H and ¹³C NMR spectral data to those reported in the literature (Tanaka et al., 2001).

Results

The Cornus plants belong to the family Cornaceae, commonly known as dogwood, produce colorful and attractive flowers and fruits. The Japanese dogwood, C. kousa is a deciduous tree and it produces flowers during May-June and fruits during August-September. All Cornus plants including C. kousa are widely grown as ornamental plants. The edible C. kousa fruits are fleshy, round or oval in shape with an attractive red color (Seeram et al., 2002). We have compared the fresh weights of C. kousa, C. mas, C. officinalis, C. controversa, C. alternifolia and C. florida ripened fruits.

Ripened fruit of *C. kousa* weighed about 15.6 g per fruit and was the highest among all the *Cornus* fruits studied (Shaiju et al., 2005). Even though *C. kousa* fruits are edible and widely used for the production of wine in Asian countries, these fruits are not consumed in the USA.

The ripened *C. kousa* fruits were sequentially extracted with water, ethyl acetate and hexane. The methanol extract showed promising activity in the preliminary lipid peroxidation and cyclooxygenase enzyme inhibitory assays. The fractionation and purification of this MeOH extract afforded compounds 12 and 13 in addition to the anthocyanin, cyanidin 3-O-glucoside. The ethyl acetate extract of *C. kousa* contained mainly of compounds 12 and 13 based on TLC and hence was not analyzed further.

Since all *Cornus* fruits studied yielded primarily anthocyanins, we have investigated bioactive compounds in green fruits. For this, matured green *C. kousa* fruits were collected just before the ripening process. The methanol extract of green *C. kousa* fruit was partitioned with hexane to remove chlorophylls and fractionated to afford compounds 12-18 (Fig. 3).

Discussion

The fruits of *C. kousa*, commonly known as kousa dogwood, resemble to raspberries. The plant *C. kousa* is a deciduous shrub or a small tree of about 7-10 m in height. Its cultivars include 'Autumn Rose', 'Ballerina', 'Beni Fuji' and 'China Girl'. Many of these cultivars are produced by the hybridization of *C. kousa* and *C. florida*. The anthocyanins are primary bioactive constituents in its ripened fruits. We have recently reported several anthocyanins and its concentrations in *Cornus* fruits (Shaiju et

al, 2005). Anthocyanins cyanidin 3-O-glucoside and cyanidin 3-O-galactoside were characterized and quantified from C. kousa ripened fruits.

Other components isolated from *C. kousa* ripened fruits were compounds 12 and 13. However, the analysis of unripened fruits afforded compounds 14-18 in addition to compounds 12 and 13 (Fig. 3). The concentration of 12 and 13 in ripened fruits was several times higher than in green fruits. It was interesting to note that *C. kousa* ripened fruits did not yield flavonoids but gave primarily anthocyanins cyanidin 3-*O*-galactoside and cyanidin 3-*O*-glucoside. This indicated that the biosynthetic pathway of flavonoids was regulated to a halt during the ripening process and favored the reaction which resulted in the accumulation of anthocyanins (Scheme 4.1).

We also have studied the ripened fruits of *C. controversa* and *C. alternifolia* for bioactive compounds. Both compounds 12 and 13 were isolated and characterized from methanol and ethyl acetate extracts of *C. controversa* and identified in *C. alternifolia* ripened fruits. The aqueous extracts of *C. controversa* and *C. alternifolia* are shown to be excellent sources for delphinidin 3-*O*-glucoside (1) and delphinidin 3-*O*-rutinoside (2) (Shaiju et al, 2005). The total anthocyanin content in these fruits is also shown to be 20-25 times higher than other known natural sources of anthocyanins. Based on the absence of flavonoids in the ripened *Cornus* fruits, it is hypothesized that the flavonone-dihydroflavonol-anthocyanin biosynthetic route was dominant during ripening in *Cornus* fruits which then lead to the accumulation of anthocyanins (Scheme 1).

The anthocyanin accumulation in leaves and flowers depends on various factors such as nutrients, temperature, availability of water, and in particular, light (Shamir and Nissim, 1997). We have reported anthocyanin production in relation to light quantity in

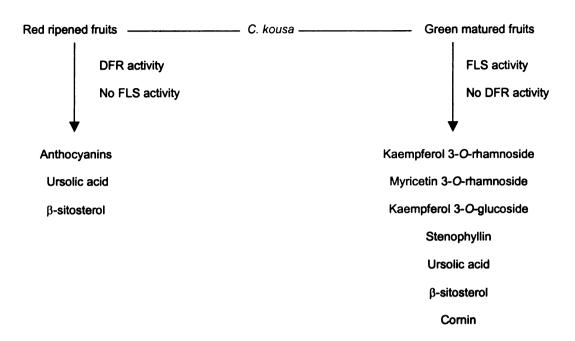
Pennisetum setaceum Cvs. Rubrum and Red Riding Hood (Beckwith et al., 2004). When P. setaceum leaves were exposed to different light environmental conditions such as UV supplemental light in the green house, high-pressure sodium supplemental light in the green house, cool-white fluorescent light in the growth chamber and outside sunlight, the production of anthocyanin varied remarkably (Beckwith et al., 2004). The maximum level of anthocyanin detected was in plants grown under fluorescent light conditions. This indicated that both light intensity and temperature played a role in anthocyanin production and accumulation. That is, low temperature generally promoted anthocyanin production while high temperature inhibited its accumulation (Mazza and Miniati. 2000). Anthocyanin may acts as a protective shield to the photosynthetic machinery by absorbing UV radiation. The effect of UV light on anthocyanin accumulation was also studied in Cotinus coggygria (Shamir and Nissim, 1997). The exposure of C. coggygria to UV light between 300 -400 nm produced a significant accumulation of anthocyanins in its leaves.

Various enzymes, phenylalanine ammonia-lyase (PAL), chalcone synthase, flavanone 3- hydroxylase, flavanone 3'-hydroxylase and several glucosyltransferases are responsible for the biosynthesis of anthocyanins. However, phenylalanine ammonia-lyase is recognized as a critical enzyme for anthocyanin synthesis (Ebel and Hahlbroch, 1982). Anthocyanin accumulation during ripening of several fruits is directly related to the PAL activity (Aoki et al., 1970; Hyodo, H, 1971). The studies on the relationship between PAL and anthocyanin at different temperatures indicated that both anthocyanin synthesis and PAL activity increased at low temperatures (Tan, 1979). Fruits held at alternating temperatures of 6 and 18°C produced double the amount of anthocyanins

compared to the fruits at 18 °C. The PAL activity was also stimulated by ethylene, low nutrient level, light, water condition, sugar content and fruit ripening. A report by Faragher and Broheir indicated that anthocyanin accumulation increased with the rise of ethylene level in ripening of fruits due to the stimulation of PAL activity (Faragher and Brohier, 1984). It was also hypothesized that low temperature may promote the anthocyanin production by reducing the activity of gibberellins (Saure, 1990).

Sugars are essential for the synthesis of anthocyanins. Fructose, glucose, lactose, maltose, and sucrose stimulate the synthesis of anthocyanins (Vestrheim, 1970). The catabolism of glucose though pentose phosphate pathway (PPP) has been associated with anthocyanin production in many fruits (Faust, 1965). Many reports indicate that anthocyanin production increase several times during the ripening of the fruits. For example, total anthocyanin in ripened raspberry fruits was four fold higher than in unripened fruits. In the case of 'Montmorency' sour cherries, total anthocyanin content increased from 2 to 43.6 mg per100 g fresh wt during ripening (Gross, 1987).

A recent report of gene expression studies of flavonoid biosynthesis in lisianthus (Eustoma grandiflorum Grise) indicated that phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI) and flavonoid 3' hydroxylase (F3'-OH) were the important enzymes expressed during bud development (Nielson et al., 2002). During the floral development, two new enzymes, dihydroflavonol 4- reductase (DFR) and flavonoid 3'5'- hydroxylase (F3'5' -OH), were expressed in addition to PAL, CHS and CHI although both CHS and CHI were expressed in lower levels (Nielson et al., 2002). This indicated that during the early flower development of lisianthus, there was


flavonoid accumulation and in later stages the pathway shifted more towards the accumulation of anthocyanins. A similar scenario is possible in *Cornus* plants as well.

Our studies with *C. kousa* fruits indicated that flavonoids are the major compounds in matured green fruits. The flavonoids accumulation in early stages of fruit development could be for protecting the plants from reproductive tissue damage. The high flavonois production may be due to the shift of biosynthetic pathway in favor of flavonois due to the over expression FLS gene. Contrary, ripened *Cornus* fruits showed high amount of anthocyanins and no flavonoid was detected in any of its species. This could be due to the shift of biosynthetic pathway in favor of anthocyanins with the expression of DHR. Molecular experiments to determine the up or down regulation of genes responsible for flavonoid and anthocyanin production in *Cornus* fruits should be carried out. Also, such experiments will be useful to further enhance the production of anthocyanins in *Cornus* and possibly in other edible fruits.

Scheme 1

Scheme 4.1. Reported flavonoid and anthocyanin biosynthetic pathway. CHS Chalcone synthase, CHI Chalcone isomerase, FSI Flavone synthase, IFS Isoflavone synthase, FLS Flavanol synthase, F3H Flavanone 3-hydroxylase, and ANS anthocyanidin synthase (Harbone, 1988., Taiz and Zieger, 1998)

Figure. 4.1 Structures of compounds 12-18 isolated from C. kousa fruits.

Scheme 4. 2. Compounds isolated from C. kousa fruits

CHAPTER FIVE

SUMMARY AND CONCLUSIONS

The genus *Cornus* have been used for thousands of years in many parts of the world especially in China and Japan. *Cornus* fruits are mainly used as a medicinal agent for the treatment of diseases associated with liver and kidney. The fruits of *C. officinalis* have been used for antidiabetic preparation in China for centuries. Even though *Cornus* species has reported several medicinal properties, very little is known about its bioactive compounds. A detailed investigation of botany, chemistry, biological and pharmacological activities of *Cornus* spp. conducted earlier studies is presented in Chapter 1. Based on the detailed literature review it was determined that *C. mas, C. officinalis, C. controversa, C. alternifolia, C. kousa* and *C. florida* fruits should be investigated further for bioactive compounds with potential human health benefits.

The ripened fruits of *C. mas, C. officinalis, C. controversa, C. alternifolia, C. kousa*, and *C. florida* were collected from Michigan State University campus in August-September 2002 and 2004. The matured green fruits of *C. kousa* were collected from 3934 E Sunwind Drive, Okemos, Michigan in August 2004. The anthocyanins in these fruits were isolated, characterized and quantified by various chromatographic and spectroscopic techniques. The isolation, characterization and quantification of anthocyanins in these *Cornus* spp. fruits are presented in **Chapter 2**. The quantification results of anthocyanins, delphinidin 3-*O*-glucoside (1), delphinidin 3-*O*-rutinoside (2), delphinidin 3-*O*-galactoside (3), cyanidin 3-*O*- galactoside (4), pelargonidin 3-*O*-

galactoside (5) and cyanidin 3-O-glucoside (6), indicated that C. controversa, C. alternifolia and C. mas are the excellent sources for these anthocyanins. The amount of delphinidin 3-O-glucoside (1), delphinidin 3-O-rutinoside (2), and cyanidin 3-O-glucoside (6) in C. alternifolia and C. controversa were 8.21, 8.44 and 0.02 mg; and 7.74, 5.92, and 0.02 mg/g of fresh fruits, respectively. Similarly, delphinidin 3-O-galactoside (3), cyanidin 3-O-galactoside (4), and pelargonidin 3-O-galactoside (5) in C. mas were 0.47, 1.66 and 1.62; and 0.15, 0.21, and 0.78 mg/g of fruits, respectively. Anthocyanin content in these species are 20-25 times higher than other major fruit sources of anthocyanins.

Although both anthocyanins and anthocyanidins were reported as potent antioxidant and anti-inflammatory agents, anticancer and insulin secretion activities of these compounds were not studied earlier. A detailed investigation of biological activities of anthocyanins and anthocyanidins were discussed in **Chapter 3**. Based on the studies conducted as part of my thesis research project, it was determined that both anythocyanins and anthocyanidins exhibited good anticancer and insulin secretion activities in addition to lipid peroxidation and cyclooxygenase enzyme inhibitory activities. At 50 µg/mL, delphinidin 3-O- glucoside (1) and delphinidin 3-O- rutinoside (2) inhibited lipid peroxidation by 71 and 68%, respectively. Similarly, they inhibited COX-1 enzymes by 39 and 49% and COX-2 enzyme by 54 and 48%, respectively, at 100 µg/mL. Anthocyanins, delphinidin 3-O- glucoside and delphinidin 3-O-rutinoside, and the anthocyanidin malvidin showed potent cell proliferation inhibitory activities when tested against human cancer cell lines, AGS (gastric), CNS (central nervous system, SF-268), HCT-116 (colon), NCI-H460 (lung), and MCF-7 (breast). Delphinidin 3-O-

glucoside (1) displayed 50% growth inhibition (IC₅₀) at 21, 25, 50, 60, and 75 μ g/mL, against colon, breast, lung, central nervous system (CNS), and stomach human tumor cell lines, respectively. Similarly, IC₅₀ values for delphinidin 3-O- rutinoside (2) were 38, 30, 76, 100, and 100 μ g/mL against colon, breast, lung, central nervous system (CNS), and stomach cell lines, respectively. Anthocyanins delphinidin 3-O- glucoside (1) and cyanidin 3-O- glucoside (6), and anthocyanidin pelargonidin (9) also showed promising insulin secretion activity when tested against rodent pancreatic β cells at 4 and 10 mM glucose concentrations.

A detailed study of all the non-pigmented fractions of C. kousa, C. controversa, and C. alternifolia fruits was discussed in **Chapter 4**. Bioassay-guided isolation, purification and characterization of methanol, ethyl acetate and hexane extracts of C. kousa ripened and unripened fruits afforded ursolic acid (12), β -sitosterol (13), comin (14), flavanoids, kaempherol 3-O- rhamnoside (15), myricetin 3-O-rhamnoside (16), and kaempherol 3-O- glucoside (17), and stenophyllin (18). The compounds ursolic acid (12) and β -sitosterol (13) were also identified in the fruits of both C. controversa and C. alternifolia. This is the first report of these compounds from C. kousa fruits.

My research on various *Cornus* fruits for bioactive compounds indicated that anthocyanins are the major active compounds present in all *Cornus* fruits. The evaluation of several compounds yielded from *Cornus* fruits in my study confirmed that anthocyanins and anthocyanidins were the most active in inhibiting lipid peroxidation, cyclooxygenase enzymes and the growth of human tumor cell lines. Also, it suggested that *Cornus* fruits containing high levels of these anthocyanins are powerful insulin

secretagogues and may be useful for the prevention of type-2 diabetes. The bioassay results also explained the anecdotal health claims associated with *Cornus* fruits.

The in vitro cell proliferation studies with various human cancer cell lines suggest that anthocyanins in *C. alterniflolia* and *C. controversa* fruits may be useful in the prevention of certain tumor progression. Because *C. alterniflolia* and *C. controversa* fruits have high amount of health beneficial anthocyanins, it is possible that these plants could be cultivated as alternate crops to yield fruits for tumor cell growth inhibitory and insulin secretion anthocyanins and anthocyanidins. However, in vivo studies and clinical evaluation of these compounds must be carried out to further validate the in vitro results.

Ornamental plants, both indigenous and introduced, provide a tremendous resource for value added products and functional foods. Anecdotal information on many of these species suggests the application of these plants not only in human health but also in the diversification of agricultural production. The *Cornus* spp. is already in mainstream horticulture production as landscape ornamentals. They also have similar botanical traits to horticultural crops in food production. For example, *C. mas* and *C. officinalis* can be easily integrated into tart cherry ('Montmorency' and 'Balaton®') production systems. Trees can be managed the same, *C. mas* and *C. officinalis* require minimal chemical inputs, and fruits can be harvested with the same equipment in the fall after the demands of cherry production has ceased. Production of *C. mas* while providing an economically valued crop can extend a production season without disrupting the current production system. The same is true for *C. alternifolia* and *C. controversa*; these species could be integrated into small fruit production systems. Ornamental plants production in the United States is an untapped resource for phytochemicals and

functional foods. Ornamental species can make a seamless transition into cropping systems with the value added benefits. *Cornus* spp. is one example where investigation, examination, and analysis offer therapeutic options in human health.

REFERENCES

- Anderson, R. A.; Polansky, M. M. Tea enhances insulin activity. J. Agric. Food Chem. **2002**, 50, 7183-7186.
- Aneuville, O.; Breuer, D. K.; De Witt, D. L.; Hla, T.; Funk, C. D.; Smith, W. L. Differential inhibition of human prostaglandin endoperoxide H synthase -1 and -2 by nonsteroidal anti-inflammatory drugs. *J. Pharmacol. Exp. Ther.* 1994, 271, 927.
- Aoki, S.; Araki, C.; Kaneo, K.; Katayama, O. L-Phenylalanine ammonia-lyase activities in Japanese chestnuts, strawberries, apple fruit and brackens. *Nippon Shokuhin, Kogyo Gakkaishi*. **1970**, *17*, 507-511.
- Arora, A.; Nair, M. G.; Strasburg, G. M. Structure activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. *Free Rad. Bio. Med.* 1998, 9, 1355-1363.
- Bailey, L.H.; In manual of cultivated plants. Macmillan, New York, 1977, p 77.
- Bain, J. F.; Denford, K. E. The flavonoid glycosides of *Cornus canadensis* L. and its allies in northwestern North America. *Experimentia* 1979, 35, 863-864.
- Beckwith, A. G., Zhang, Y., Seeram, N. P., Cameron N, P., Nair. M. G. Relationship of light quantity and anthocyanin production in *Pennisetum setaceum* 'Rubrum' and 'Red Riding Hood'. *J. Agric. Food Chem.* **2004**, *52*, 456-461.
- Bhakuni, R. S.; Shukla, Y. N.; Tripathi, A. K.; Prajapati, V.; Kumar, S. Insect inhibitory activity of arjunolic acid isolated from *Cornus Capitata*. *Phytotherapy Reser*. **2002**, *16*, 68-70.
- Bhakuni, R. S.; Shukla, Y. N.; Thakur, R. S. New triterpenoid from *Cornus capitata*. *Phytochemistry*. **1987**, *26*, 2607-2610.
- Chandra, A; Rana, J; Li, Y. Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC-MS. J. Agric. Food. Chem 2001, 49, 3515-3521.
- Chandra, A.; Nair, M. G. lezzoni A. Evaluation and characterization of the anthocyanins pigments in tart cherries (*Prunus cerasus L*). J. Agri. Food Chem. 1992, 40, 967-969.
- Chang, J. C.; Nair, M. G.; Nittiss, J. L. Metabolites of daidzein and genisten and their biological activities. J. Nat. Prod. 1995, 58, 1901.

- Chester, W.; Stone, C. Comparative studies of the anthocyanins in the red-fruited and yellow fruited flowering dogwood. *Bull. Torrey Botan. Club.* 1964, 91, 506-507.
- Choi, W. H.; Park, W. Y.; Hwang, B. Y.; Oh, G. J.; Kang, S. J.; Lee, K. S. Phenolic compounds from stem bark of *Cornus walteri* Wanger. *Saengyak Hakhoechi*. 1998, 29, 217-224.
- Conklin, K. A. Dietary antioxidants during cancer and chemotherapy: Impact on chemotherapeutic effectiveness and development of side effects. *Nutrition and Cancer*, 2000, 37.
- Delaveau, P.; Paris, R. R. The presence of rutoside and gallic acid derivatives in the flowers of *Cornus mas*. Preliminary studies in *C. sanguinea*. *Bull. Soc. Chim. Bio*. 1961, 43, 661-666.
- Denizot F.; Lang R. Rapid colorimetric assay for cell growth and survival. Modification to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods. 1986, 89, 271-277.
- Dolezal, M.; Valisek, J.; Famfulikova, P. Chemical composition of less-known wild fruits. *Royal. Socie. Chem.* 2001, 269, 241-244.
- Dominguez, X. A.; Franco, R.; Cano, G.; Garcia, S.; Gracian, P.; Sanchez, S. Mexican Medicinal plants XLV. Chemical study of tepeacuilote roots (*Cornus excelsa* H.B.). Rev. Latinaom. Quim 1981, 12, 35-37.
- Dongho, L.; Shin-Jung, K.; Seung-Ho, L.; Jaiseup, R.; Kyongsoon, L.; Kinghorn, A. D. Phenolic compounds from the leaves of *Cornus controversa*. *Phytochemistry* **2000**, *53*, 405-407.
- Du. C. T.; Wang, P. L.; Francis, F. J. Anthocyanins of *Cornus alternifolia* and *C. alba. Hort Science*, 1975, 10, 35-37.
- Du, C. T.; Wang, P. L.; Francis, F. J. Anthocyanins of Cornaceae, Cornus kousa Hance and Cornus florida L. Hort Science. 1974, 9, 243-244.
- Du, C. T.; Francis, F. J. Anthocyanins from Cornus mas. Phytochemistry 1973, 12, 2487-2489.
- Du, C. T.; Francis, F. J. New anthocyanin from Cornus mas. HortScience 1973, 8, 29-30.
- Du. C. T.; Wang, P. L.; Francis, F. J. Anthocyanins of Cornaceae, *Cornus canadensis*. Phytochemistry, **1974**, *13*, 2000.
- Ebel, J.; Hahlbroch, K. *The Flavonoids: Advances in research*. Harbone, J. B, Marby, T. J., Eds., Chapman & Hall, London, 1982, 641.

- Egger, K.; Keil, M. Flavanol glycosides in flowers of Cornus mas. Z. Pflanzenphysiol. 1969, 61, 346-347.
- Endo, T.; Taguchi, H. Constituents of Cornus officinalis. Yakugaku Zasshi. 1973, 93, 30-32.
- Fan, C., Xiang, Q. Y. Phylogenetic relationship with *Cornus* (Cornaceae) based on 26S R DNA sequences. *Am. J. Bot.* **2001**, *88*, 1131-1138.
- Faragher, J. D.; Brohier, R. L. Anthocyanins accumulation in apple skin during ripening: Regulation by ethylene and phenylalanine ammonia-lyase. *Sci. Hort.* 1984, 22, 89.
- Faust, M. Physiology of anthocyanin development in McIntosh apple. I. Participation of pentose phosphate pathway in anthocyanin development. *Proc. Am. Soc. Hort. Sci.* 1965, 87, 1.
- Frankel E. N. Lipid Oxidation. The Oily Press LTD, 1998, Dunn Otter Place, West Ferry, Dundee, Scotland.
- Fu, S.; Li, Z.; Wang, Z. Study on the gross saponins in natural beverages of *Cornus officinalis*. Zhejiang Linxueyuan Xuebao 1998, 15, 105-107.
- Goiffon, J. P., Mouly, P. P., Gaydou, E. M. Anthocyanin pigment determination in red fruit juices, concentrated juices and syrups using liquid chromatography. *Anal. Chem. Acta* 1999, 382, 39-50.
- Grigorescu, E.; Selmiciu, I.; Stanescu, U. Biochemical study of flavanoids in blossoms of *Cornus mas. Wyglozone Symp* **1972**, 83-89.
- Gross, J. Pigments in fruits. Academic Press Inc (London) Ltd, 24-28 Oval Road, London, NW1 7 DX. 1987.
- Hagiwara, A.; Yoshino, H.; Ichihara, T.; Kawabe, M.; Tamano, S.; Aoki, H.; Koda, T.; Nakamura, M.; Imaida, K.; Ito, N. and Shirai, T. Prevention by natural food anthocyanins, purple sweet potato color and red cabbage color, of 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP)-associated colorectal carcinogenesis in rats initiated with 1,2-dimethylhydrazine. J. Toxicol. Sci. 2002, 27, 57-68.
- Hann, R. M.; Sando, C. E. Scyllitol from flowering dogwood (Cornus florida). J. Biol. Chem. 1926, 68, 399-402.
- Harborne, J. B, Williams, C. A. Anthocyanins and other flavonoids. *Nat. Prod. Rep.*, 2001, 18, 310-333.

- Hatano, T.; Ogawa, N.; Kira, R.; Yasuhara, T.; Okuda, T. Tannins of cornaceous plants I. Cornusiins A, B, C, dimeric, monomeric and trimeric hydrolysable tannins from *C.officinalis*, and orientation of valoneoyl group in related tannins. *Chem. Pharm. Bull.* 1989, 37, 2083-2090.
- Hatano, T.; Yasujara, T.; Okuda, T. Tannins of cornaceous plants II Cornusiins D, E, and F, new dimeric and trimeric hydrolysable tannins from *Cornus officinalis*. *Chem. Parm. Bull.* 1989, 37, 2665-2669.
- Hatano, T.; Yasuhara, T.; Ahe, R.; Okuda, T. Tannins of cornaceous plants. Part 3. A. A galloylated monoterpene glucoside and dimeric hydrolysable tannin from *Cornus officinalis*. *Phytochemistry* **1990**, *29*, 2975-2978.
- Havsteen, B. Flavonoids A class of natural products of high pharmacological potency. Biochem. Phamacol. 1998, 32, 1141-1148.
- Hitoshi, M.; Yuko, N.; Masao, H.; Yumiko, Y.; Kazuypshi, O. Antioxidant activity of black currant anthocyanin aglycons and their glycosides measured by chemiluminescence in a neutral pH region and in human plasma. J. Agric. Food Chem. 2002, 50, 5034-5037.
- Hostettmann, K.; Hostettmann K, M.; Nakanishi, K. Molluscicidal saponins from Cornus florida L. Helv. Chim. Acta. 1978, 61, 1990-1995.
- Huangfu, Y., Wu, W., Sun, J., Effect of *Cornus* oil from the fruit of *Cornus macrophylla* wall on experimental atherosclerosis. *Wuhan Yixueyuan Xuebao*, **1984**, *13*, 30-34.
- http://www.gardenbed.com/source/20/1934 med.asp
- http://plants.usda.gov/classification/classification.cgi. USDA Natural resources conservation services, Plants classification
- http://www2.fpl.fs.fed.us/TechSheets/HardwoodNA/htmlDocs/cornus.html. Technology
 Transfer Fact Sheet, Center for Wood Anatomy Research, USDA, Forest ServiceForest Product Laboratory
- http://www.ces.ncsu.edu/fletcher/staff/rbir/cornus.html
- http://www4.ncsu.edu:8030/~qyxiang/cornushorticulture.html
- Hrazdina, G. Anthocyanins, *The flavonoids: Advances in Research*, J. B Harbone and T. J Marby Eds **1982**, 135-188, Chapman & Hall, London.
- Hwang; Yeon, S. Method for extraction of Chinese herbal medicine with restorative and tonic action. *Kongkae Taeho Kongbo*. 2002.

- Hyodo, H. Phenylalanine ammonia-lyase in strawberry fruits. *Plant Cell Physiology*. **1971**, 12, 989.
- Ishimuaru, K.; Arakawa, H.; Neera, S. Polyphenol production in cell cultures of C. kousa. Phytochemistry 1993, 32, 1193-1197.
- Jang H. M.; Yeon H. B.; Soo K. M.; Ho L. D.; Jung K. S.; Seup R. J.; Soon L. K. Chemical components from the stem bark of *Cornus controversa* HEMSL. Saengyak Hakhoechi 1998, 29, 225-230.
- Jayaprakasam, B.; Vareed, S. K.; Olson, L. K.; Nair, M. G. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. *J. Agric. Food Chem.* **2005**, *53*, 28-31.
- Jenson, S. R.; Kjaer, A.; Juhl, N. B. Glucosides in *Cornus capitata* and *C. kousa*. *Phytochemistry*, 1973, 12, 2301.
- Jensen, S. R.; Kjer, A.; Juhl, N. B. Dihydrocornin, a novel natural iridoid glucoside. *Acta Chem. Scand.* 1973, 27, 2581-2585.
- Jianrong, L.; Daozong X. Research development of *Cornus officinalis* Sieb. et Zucc. Functional compounds and its application in food industry. *Shipin Kexue*, **2003**, 24, 161-163.
- Justesen, H.; Anderson A. S.; Brandt, K. Accumulation of anthocyanins and flavones during bud and flower development in *Campanula isophylla* Moretti. *Anna. Bot.* 1997, 79, 355-360.
- Kamei, H.; Hashimoto, Y.; Koide, T.; Kojima, T.; and Hasegawa, M. Anti-tumor effect of methanol extracts from red and white wines. Cancer Biotherapy and Radiopharmacology 1998, 13, 447-452.
- Kamei, H.; Kojima, T.; Hasegama, M.; Koide, T.; Umeda, T.; Yukawa, T.; Terabe, K. Suppression of tumor cell growth by anthocyanins in vitro. *Cancer Invest.* 1995, 13, 590-594.
- Kang, S. Y.; Seeram, N. P.; Nair, M. G.; Bourquin, L. D. Tart cherry anthocyanins inhibit tumor development in Apc mice and reduce proliferation of human colon cancer cells. *Cancer Letters*, **2003**, *194*, 13-19.
- Kanji I.; Hiroko A.; Sumana N. Polyphenol production in cell cultures of *Cornus kousa*. *Phytochemistry*, **1993**, *32*, 1193-1197.
- Kean K. D.; Hwan K. J. A furan derivative from Cornus officinalis. Arch. Pharm. Res. 1998, 21, 787-789.

- Kelly, F. J. Use of antioxidants in the prevention and treatment of diseases. J. Int. Fed. Clin. Chem Chem. Lab. Med. 1998, 10, 21-23.
- Kenneth A. C. Dietary antioxidants during cancer chemotherapy: Impact on chemotherapeutic effectiveness and development of side effects. *Nutr. Cancer*, **2000**, *37*, 1-18.
- Kim, D. K; Kwak, J. H.; Ryu, J. H.; Kwon, H. C.; Song, K. W. A component from *Cornus officinalis* enhances hydrogen peroxide generation from macrophages *Saegyak Hakhoechi* 1996, 27, 101-104.
- Kim, H. P., Son, K. H., Chang, H. W., Kanr, S. S. Anti-inflammatory plant flavonoids and cellular action mechanisms. *J. Pharmacol. Sci.* **2004**, *96*, 229-245
- Kim, H. Y.; Oh, J. H. Screening of Korean forest plants for c lens aldose reductase inhibition. *Bioscience, Biotechnology, and Biochemistry*. 1999, 63, 181-188.
- Kim, B. J.; Kim, J. M.; Kim, H. P.; Heo, M. Y. Biological screening of 100 plant extracts for cosmetic use (II): anti-oxidative activity and free radical scavenging activity. *Internl. J. Cosmetic Sci.* 1997, 19, 299-307.
- Kim, D. K.; Kwak, J. H. A furan derivative from Cornus officinalis. Archi. of Pharmacal. Res. 1998, 21, 787-789.
- Kurihara, T.; Kikuchi, M. Studies on the constituents of flowers. IX. The components of the flowers of *Cornus controversa* Hemsl. *Yakugaku Zasshi* 1978, 98, 969-972.
- Landrault, N.; Poucheret, P.; Azay, J.; Krosniak, M.; Gasc, F.; Jenin, C.; Cros, G.; Teissedre, P.L. Effect of a polyphenols-enriched chardonnay white wine in diabetic rats. J. Agric. Food. Chem. 2003, 51, 311-318.
- Lee, D.; Kang, S. J.; Lee, S. H.; Ro, J.; Lee, K.; Kinghorn, A. D. Phenolic compounds from the leaves of *Cornus controversa*. *Phytochemistry*, **2000**, *53*, 405-407.
- Lee, S. H.; Tanaka, N.; Noneka, G.; Nishioka, I. Tannins and related compounds. Part 86. Sedoheptulose digallate from *Cornus officinalis*. *Phytochemistry*, **1989**, *28*, 3469-3472.
- Li, J.; Pan, Y.; Qin, X.; Zhang, X. Determination of loganin in Jiantangqing capsules by RP-HPLC. Zhongcaoyao, 1999, 30, 820-822.
- Ling W, H.; Jones P. J. Dietary phytosterols: A review of metabolism, benefits and side effects. *Life Sciences* 1995, 57, 195-206.
- Mamedove, N.; Craker, L. E. Cornelian Cherry: A prospective source for phytomedicine. *Acta Hort.* **2004**, *629*, 83-84.

- Marchant, C. A. Environmental health perspective supplements. 1996, 104, 1065-1073.
- Markham, K. R.; Chari, V. M.; Mabry, T. J. Carbon-13 NMR spectroscopy of flavonoids. *In The Flavonoids: Advances in Research*: Harbone, J. B.; Marby, T. J., Eds.; Chapman and Hall; New York, 1982, 19-134.
- Mas, T.; Susperregui, J.; Berke, B.; Chez, C.; Moreau, S.; Nuhrich, A.; Vercauteren J. DNA triplex stabilization property of natural anthocyanins. *Phytochemistry*, **2000**, *53*, 679-687.
- Mau, J. L.; Chen, C. P.; Hsieh, P.C. Antimicrobial effect of chinese chive cinnamon, and corni fructus. J. Agric Food Chem. 2001, 49, 183-188.
- Mazza, G.; Miniati, E. Anthocyanins in Fruits, Vegetables and Grains; CRC press, 2000.
- Miller, E. R. Cornin, a glucoside from Cornus florida L. Am. Pharm. Assocn. 1928, 17, 744-750.
- Millspaugh, C. F. In American Medicinal Plants. Dovar Publications. New York, 1974, 282.
- Min, J. H.; Yeon, H. B.; Soo, M. K.; Ho, L. D; Jung, K. S; Seup, R. J; Soon, L. K. Chemical components from the stem bark of *Cornus controversa* HEMSL. *Saengyak Hakhoechi.* 1998, 29,225-230.
- Miyazawa, M.; Kameoka, H. Volatile flavor components of crude drugs. PartVII. Volatile flavor components of *Corni Fructus* (*C.officinalis* Sieb.Et Zuee.). *Agric. Biol. Chem.* 1999, 53, 3337-3340.
- Moerman, D. E. Native American Ethnobotany. Timber Press, Inc. 1998, 176-180.
- Mudry, P.; Schilling, E. E. Flavonoids of Cornus florida. Bull. Torrey. Bot. Club. 1983, 110, 226-227.
- Nahaishi, H. Effects of black current anthocyanins intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. *Alt. Med.* Rev 2000, 5, 553-562.
- Nakaoki, T.; Morita, N. Medicinal Resources XII. Components of the leaves of *Cornus controversa*, Ailanthusaltissima, and Ricinus communis. *Yakugaku Zasshi* 1978, 78, 558-559.
- Nishino, C.; Kobayashi, K.; Fukushima, M. Helleridone, a cytotoxic constituent from *Cornus controversa*. J. Nat. Prod. 1998, 51, 1281-1282.

- Nielsen, I. L.; Haren, G. R.; Magnussen, E. L.; Dragsted, L. O. Rasmussen, S. E. Quantification of anthocyanins in commercial black currant juice by simple high performance liquid chromatography. Investigation of their pH stability and antioxidative potency. J. Agric. Food Chem. 2003, 51, 5861-5866.
- Nielson, K.; Deroles, S. C.; Markham, K. R.; Bradley, M. J.; Podivinsky, E.; Manson, D. *Molecular Breeding.* 2002, 9, 217-229.
- Norbek, R.; Kondo, T. Anthocyanins from flowers of *Crocus* (Iridaceae). *Phytochemistry*, **1998**, 47, 861-864.
- Omenn, G. S. What accounts for the association of vegetables and fruits with lower incidence of cancers and coronary heart diseases? *Ann. Epidemiol.* 1995, 5, 333–335.
- Polinicencu, C.; Popescu, H.; Nistror, C. Vegetal extracts for cosmetic use. 1. Extracts from fruits of *Cornus mas*. Preparation and characterization. *Clujul Med* 1980, 53, 160-163.
- Post, D. M.; Urban; James, E. Antimicrobial activity of dogwood fruits (*Cornus drummondii*) from winter food caches of eastern wood rafts (Neotama floridana). J. Chem. Eco. 1995, 21, 419-425.
- Powell, M.A. The flowering dogwood. *Horticulture Information Leaflet*, 600. North Carolina Cooperative Extension Service 1997.
- Robertson, A.; Soliman, G.; Owen, E. C. Polyterpenoid compounds. I. Betulic acid from *Cornus florida* L. J. Chem. Soc. 1939, 1267-1273.
- Sando, C. E. Inositol from blackberry (Rubus argutus Link) and flowering dogwood (Cornus florida). J. Biol. Chem. 1926, 68, 403-406.
- Sando, C. E.; Markley, K. S.; Matlack, M. B. Some chemical constituents of flowering dogwood (*Cornus florida*). J. Biol. Chem. 1936, 114, 39-45.
- Sahng, S.; Liu, Y.; Xiao, X.; Sun, Z.; Zhang, J.; Tian, S.; Jiang, X. Antioxidant properties of extracts from the stone of *Cornus officinalis*. *Linchan Huaxue Yu Gongye* 1990, 10, 217-225.
- Saure, M. C. External control of anthocyanin formation in apple, Sci. Hort. 1990, 42, 181.
- Seebacher, W.; Simic, N.; Weis, R.; Sat, R.; Kunert, O. Spectral assignments and reference data. *Mag. Reso. Chem.* **2003**, *42*, 636-638.

- Seeram, N. P.; Schutzki, R.; Chandra, A.; Nair, M. G. Characterization, quantification, and bioactivities of anthocyanins in *Cornus* species. *J. Agric. Food. Chem.* **2002**, 50, 2519-2523.
- Seeram, N. P.; Bourquin, L. D.; Nair, M. G. 2001. Degradation products of cyanidin glycosides from tart cherries and their derivatives. *J. Agric. Food Chem.* 2001, 49, 4924-4929.
- Shamir, M. O.; Nissim, A. L. UV-light effect on the leaf pigmentation of *Cotinus coggygria* 'Royal Purple'. Sci. Horti. 1997, 71, 59-66.
- Shirley, B. W. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology. *Plant Physio.* **2001**, *126*, 485-493.
- Shone, C. W; Hwang, L. J; Jen, W. S; Ming, L. J; Yuan, H. C.; Wen, K. Y. Colon cancer cells with high invasive potential are susceptible to induction of apoptosis by a selective COX-2 inhibitor. *Can. Sci.* 2003, 94, 253-258.
- Shrikant, A.; Debnath, M.; Jesse, J. Cyclooxygenase-2 and colon cancer. *Proc. Ind. Nat. Aca. Sci.* Part B. Biological Sciences. **2003**, *69*, 569-585.
- Slimestad, R.; Anderson, Q. M. Cyanidin 3-(2-glucosylgalactoside) and other anthocyanins from fruits of *Cornus suecica*. *Phytochemistry* **1998**, *49*, 2163-2166.
- Smith W. L.; Garavito R. M.; DeWitt D. L. Prostaglandin endoperoxide H synthases (cyclooxygenenases)-1 and -2. J. Bio Chem. 1996, 271, 33157-33160.
- Stermitz, F. R.; Krull, R. E. Iridoid glycosides of *Cornus canadansis*. A comparison with some other *Cornus* species. *Bioche. Sys. Ecol.* 1998, 26, 845-849.
- Steyn, W. J.; Wand, S. J, Holcroft, D. M.; Jacobs, G. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. *New Phytol.* **2002**,*155*, 349-361.
- Strack, D.; Wray, V. The Anthocyanins. *The Flavonoids. Advances in research since* 1986. Harborne, J B Ed London: Chapman and Hall, 1993, 1-19.
- Taiz, L.; Zeiger, E. *Plant Physiology*. Sinauer Associates, Inc., 1998, Publishers. Sundarland, Masachesetts.
- Talavera, S; Felgines, C; Texier, O; Besson, C; Manach, C; Lamaison, L. J; Remesy, C. Anthocyanins are efficiently absorbed from the small intestine in rats. *J. Nutr.* **2004**, *134*, 2275-2279.
- Tan, S.C. Relationship and interactions between phenylalanine ammonia-lyase, Phenylalanine ammonia-lyase inactivating system and anthocyanins in apples. *J Amer Soci. Hort.* **1979**, *104*, 581, 1979.

- Tanaka, N.; Famiya, T.; Shimomuru, K.; Ishimuaru, K. Micropropagation and polyphenol production in *Cornus* plants. Nippon Shokuhin, *Kagaku Gakkaishi*, **1998**, *5*, 170-177.
- Tanaka, N.; Shimomuru, K.; Ishimuaru, K. Bioactivities of *Cornus capitata* adventitious root producing galloyl glucoses *Phytochemistry* **2000**, *4*, 15-21.
- Tanaka, T.; Fujioka, T.; Fujii, H.; Mihashi, K.; Shimomuru, K.; Ishimuaru, K. An ellagic acid compound and iridoids from *Cornus capitata* root cultures. *Phytochemistry* **2001**, *57*, 1287-1291.
- Tian, G.; Zhang, T.; Yang, F. Preparative isolation of gallic acid from *Cornus officinalis* Sieb et Zucc by high speed counter currant chromatography. *Tianran Chanwu Yanjiu Kaifa* 2000, 12, 52-55.
- Tian, G.; Zhang, T.; Yang, F.; Itro, Y. Separation of gallic acid from *Cornus officinalis* Sieb. et. Zucc by high-speed counter-currant chromatography. *J. Chromatography* A. 2000, 886, 309-312.
- Trifan O. C.; Smith R. M.; Thompson B. D.; Hla T. Over expression of cyclooxygenase-2 induces cell cycle arrest. J. Bio. Chem. 1999, 274, 34141-34147.
- Trigiano, R. N.; Ament, M. H.; Windham, M. T.; Moulton, J. K. Genetic profiling of redbracted *Cornus kousa* cultivars indicates significant cultivar synonymy. *Hort. Sci.* **2004**, *39*, 489-492.
- Vareed, S. K.; Reddy, M. K.; Schutzki, R. E.; Nair, M. G. Anthocyanins in *Cornus alternifolia*, *Cornus controversa*, *Cornus kousa*, and *Cornus florida* fruits with health benefits. *Life Sciences*, 2005 (in Press).
- Venkatesh, M.; Merchant, J. R. Chemical investigation of Cornus macrophylla Wall. Current Sci. 1984, 53, 35.
- Vestrheim, S. Effects of chemical compounds on anthocyanin formation in 'McInto' apple skin. J. Am. Soc. Hort. Sci. 1970, 95, 712.
- Viano, J.; Gaydou, E. M. Composition of fatty acids and sterols of oils extracted from fruits of three species harvested in the Massif du Luberon: Aphyllantes monspeliensis L., Ranunculus gramineus L., and Cornus sanguinea L. Corps Gras 1984, 31, 195-197.
- Wagner, W. H. A natural hybrid of gray dogwood, *Cornus racemosa*, and round-leaved dogwood, *C. rugosa*, from Michigan. *The Michigan Botanist* 1990, 29, 131-137.

- Wang H, Nair G.M, Strasburg Gale, Chang Y. C, Booren A. M, Gary J I, Dewitt D. L. Antioxidant and anti-inflammatory activities of anthocyanins and their aglycon, cyanidin, from tart cherries. *J. Nat. Prod.* 1999, 62, 294-296.
- Wang, H.; Nair, M. G.; Iezzoni, A. F.; Strasburg, G. M.; Booren, A. M.; Gray, J. I. Quantification and characterization of anthocyanins in 'Balaton' tart cherries. *J. Agri. Food Chem.* 1997, 45, 2556-2560.
- Xu, L.; Li, H.; Tian, L.; Li, K.; Li, B.; Qian, T.; Sun, N. Chemical constituents of common Macrocarpium (Cornus officinalis). Zhongcaoyao 1995, 26, 62-65.
- Yamahara, J.; Mibu, H.; Sawada, T.; Fujimura, H.; Takino, S.; Yoshikawa, M.; Kitagawa, I. Biologically active principles of crude drugs. Antidiabetic principles of Cornus fructus in experimental diabetes induced by streptozotocin. *Yakugaku Zasshi* 1981, 101, 86-90.
- Yang, T. H.; Liu, S.C.; Sen, M. H. Constituents of the fruits of Cornus officinalis. Tai-Wan Yao Hsueh Tsa Chih 1971, 22, 1-4
- Yan, L; Tang, W; Ji, Y. Determination of ursolic acid in the pulp of *Cornus officinalis* by HPLC-ELSD. Yaowu Fenxi Zazhi. 2003, 23, 358-359.
- Yongwen Z.; Yuwu C.; Shiping Z. A. Sedoheptulose gallate from the fruits of *Cornus officinalis*. Yaoxue Xuebao 1999, 34, 153-155.
- Zanyin G. H.; Wang H. P. Survey of Chinese drugs for presence of antibacterial substances. *Science* 1949, 110, 11-12.
- Zhang, L.; Wang, C.; Li, Z.; He, Y.; Zhou, Y.; Wang, F.; Liu, W.; Zhang, Z.; Zhang, A. Determination of loganin and morroniside in *Cornus officinalis* injection by HPLC. *Tianran Chanwu Yanjiu Yu Kafia*, 1999, 11, 49-52.
- Zhang, Y.; Vareed, S. K.; Nair, M. G. Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. *Life Sciences* **2005**, *76*, 1465-72.
- Zhang, Y.; Jayaprakasam, B.; Seeram, N. P.; Olson, L. K.; DeWitt, D. L.; Nair, M. G. Insulin production and cyclooxygenase enzyme inhibition by *Cabernet sauvignon* grape skin compounds. *J. Agric. Food. Chem.* **2004**, *52*, 228-233.
- Zhao, W.; Chang, Y.; Li, J.; Hu, H.; Zhao, S.; Xue, Z. Study on the immuno pharmacological effect of Japanese cornel dogwood (*Cornus officinalis*) Zhongcaoyao 1990, 21, 113-116.
- Zhao, S. P.; Xue, Z. Chemical constituents of *Cornus officinalis* Sieb et Zucc. *Yaoxue Xuebao* 1992, 27, 845-848.

Zorina, A. D.; Matyukhina, L. G.; Ryabinin, A. A. Triterpenes in some plant species Khimiya Prirodnykh Soedinenii, 1966, 2, 291.