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ABSTRACT

ON A CLASS OF NONLOCAL EVOLUTION EQUATIONS
By

Guangyu Zhao

The thesis includes three parts. In the first part, we study a nonlocal evolution
equation which describes the seed dispersal of single species and prove the existence,
uniqueness and stability of positive steady state solution to this equation. In the
second part, we study the principal eigenvalue problem and given a sufficient condition
that ensures the existence of coexistence state to a nonlocal evolution system. Then
we consider a competition model which involves two similar species. The existence of
coexistence states and their stability are investigated. In the third part, we establish
the existence, uniqueness and continuous dependence on initial values for the solutions
to a nonlocal phase field system. We also discuss the asymptotic behavior of the

solution and prove the global boundedness of the solutions.
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CHAPTER 1

Introduction

The spatial dispersal of cell or organisms is central to biology, it has important effects
both from ecological and genetic point of view in a variety of situations. Obviously the
mechanism of dispersal is of great importance in this context and has received much
attention recently. It is now a major focus of theoretical interest. The models for this
can be roughly placed into two categories. The first consists of models continuous in
both time and space. Most continuous models related to dispersal are based upon
reaction-diffusion equations, which have been extensively studied, (see {19, 30, 34, 38|
and [39]). The exact nature of dispersal and its theoretical treatment has became
an important question and in particular there is a variety of reasons that suggest
that the class of reaction-diffusion models, with its fundamental assumption that
motion is governed by a random walk, is too restrictive to model the seed dispersal.
These consideration led to the derivation [33], based on a variation of a position-jump

process, to the evolution equations of the form

ou

T ’7[/n k(z — y)u(y)dy — u(x)] + f(u,z)u, QCR" (L1)

under the constraint that £ > 0.
To gain a insight of the derivation of the model (1.1). We quote the section 2.1 of

[33]. Consider a single species in an n-dimensional habitat where the population can

1



be modelled by a single function u(z,t), which is the density at position z and at time
t. To establish the continuous model, we shall focus on the case n = 1 for clarity of
exposition ( It is straightforward to generalized to arbitrary dimension). Divide the
habitat R into contiguous sites, each of length Az. Discretize time into steps of size
At. Let u(i,t) be the density of individuals in site 7 at time {. With the assumption
that the rate at which individuals are leaving site i and going to site j is constant,
the total number should be proportional to: the population in the interval ¢, which
is u(i,t)Ax; the size of the target site, which is Az; and the amount of time during
which the transit is being measured, At. Let a(j,1) be the proportionality constant.

Then, the number of individuals leaving site i during the interval [t,t + At] is

oo

Y a(iuli, t)(Az)*At. (1.2)

j=—00j#i

It is biologically reasonable to believe that the mean and variance of the distances

moved are finite. Hence

Y. aljiAz, Y li-ila(i)(Az)*  and Y |j-iffe(,)(Az)?
j=—ooj#i j=—o0j#i j=—ooj#i

will all be assumned finite.

During the same time interval, the number of arrivals to site i from elsewhere is

00

> a@iuli.t)(Az)’At. (1.3)
j=—ooj#i
Finally, with each site we allow for the birth and death of individuals. Let f(u(z,t),?)

denote the per capita net reproduction rate at site 7 at the given population density.
We assume that this rate is constant over the time interval. Then the number of new
individuals at site 7 is

fu(i,t), Dui, t)AzAt.

With regard to f, the following assumption are made:

59—f<0

f0.2)>0. =



With (1.2) and (1.3), we deduce that the population density at location ¢ and time

t + At is given by

u(i,t+ A1) =u(i, )+ Y ali, j)u(j,t)ArAt
j=—ooj#i
- Y a(d)uli, )AzAt + f(u(i,t), i)uli, t) AzAt.
j=—o0j#i

Let both Az — 0 and At — 0, we obtain

%(;c, t) = ‘/;:[(y(:z,g/)zz(y/, 1) — a(y, 2)u(x,t)dy + [(u(z, 1), 2)u(z,1).

Assume that the rate of transition between the various patches, a(z,y), is homoge-
neous and only depends on the distance between patches i.e. upon |z — y|. Above

equation can be written as

5 = ke = vy - u(@)] + S 2)u (14)

where k is an even function with

and

vi= [ alshas

oo

Notice that the dispersal rate -y, which represents the total number of the dispersing
organism per unit time, play an important role in the model. It is worth to notice that
Bates, Fife, Ren and Wang [14] studied a dissipative model with nonlocal interaction
which is derived from the point of view of certain continuum limits in dynamic Ising
models. It is similar to (1.4) but with the bistable nonlinearity.

So far the habitat has been considered to be infinite in the extent. Somehow, it
is biologically unrealistic. With this in mind (1.4) may be modified to apply to a
habitat in R of length A by two natural ways which lead to the equations

ou

h
i ’7[/0 k(x — y)u(y)dy — w(xr)] + f(u,z)u (1.5)

3



with either foh k(s)ds < 1(# 1) or foh k(s)ds = 1. (see [33] for details) Although
the approach used to obtain (1.5) has similarities with the classical derivation of
the Laplacian via random walk, it is not assumed that individuals move from a given
patch with a binomial distribution. In contrast to the Laplacian, the integral operator
J in equation (1.5) is not a local operator, thus (1.5) should be considered as a model
with long-range interaction. With the assumption that (1.5) has a positive steady
solution u and the nonlinearity f(z,u) = u(a(z) — u), where a(z) is C! continuous,
in [33] it is shown that u is the global attractors for all solutions whose initial data is
non-trivial and nonnegative.

Based on (1.5), The authors also proposed a competitive system of the form

h
%% = 7 [/(; k(x = y)u(y)dy — u(e)] + f(u + v, ), (1.6)
. h
%;)- = *,2[/0 k(x — y)v(y)dy — v(c)] + [(w+ v, ) (L.7)

to try to understand how competition drives selection of v. Here u and v stand for
the densities of two different species. They discovered an interesting fact that the
slowest disperser as measured by dispersal rate is always selected. Their study also
reveals that both (1.5) and (1.8) can display very rich dynamics and hence gives rise
to many interesting mathematics issues. As pointed out in [33], the mathematical
analysis of (1.1) appears to be difficult even though the dispersal is represented by
a bounded operator. Unlike the reaction-diffusion equations, (1.1) no longer has a
regularizing effect.

In the study of classical dispersal models which are often based upon reaction-
diffusion equations, many uscful results on the global dynamics of diffusive equations
were established in terms of principal eigenvalues of scalar elliptic eigenvalue prob>-
lems. In [23], these linear elliptic eigenvalue problems are carefully explored. The
authors obtain several important properties of the principal eigenvalue which were

then used to study the global dynamics of logistic models. A trichotomy of the global
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asymptotics was also established. Meanwhile, by using monotone dynamical systems
theory, in [24] the authors derived similar results for some quasimonotone reaction-
diffusion systems with delays. Even though their approaches are not immediately
applicable to (1.1) due to the lack of compactness, the importance of the principal
eigenvalue is evident. Those approaches strongly suggest that an analogous idea us-
ing the principal eigenvalue should be developed, particularly for the case where the
reaction term is sublinear. In [33] the authors prove the existence of a principal eigen-
value for the integral operator Lu := J * u + b(z)u under certain conditions, where
J*xu = [,J(z,y)u(y)dy. We shall use those ideas combined with a comparison
argument to study the steady solutions of (1.1) and their stability.

In 1997, Bates [9] proposed the study of a nonlocal phase-field equation in which
motility of phase boundaries is temperature-dependent and temperature varies ac-
cording to a heat equation with phase change becoming a heat source or sink through
the latent heat of fusion. This system, when considered on a finite region, has the

form

%= ey - [Ja-pant) - sw+e. s
00 +lu)
——— =00 (1.9)

in (0,7) x Q, with initial and boundary conditions

u(0, ) = up(z), 6(0,z) = b(x), (1.10)
g_f;,m ~0 (1.11)

where T > 0, © C R” is a bounded domain. Here 6 represents temperature, u
is an order parameter, ! is a latent heat coefficient, the interaction kernel satisfies

J(—z) = J(z), and f is bistable.



For this system, one expect to see spinodal decomposition or the spontaneous
creation of a fine-scaled patterned structure from initial data that is close to homo-
geneous but with in a certain range.

The dissertation is organized as follows: In chapter 2, we adopt the sub-super
solution methods and local bifurcation theory to study the positive steady solution
to (1.1) and its uniqueness. We investigate the stability of this positive steady state
and the long time behavior of solutions to (1.1). In chapter 3, we are more interested

in the coexistence states of the competition system

Ou —dl[/ J(z,y)u(y)dy — b(z)u(z)] + u[M(z) + f(z,u) + F(z,u,v)v],
g,t, z € [0, h]
X g / Iz, p)(y)dy - b(z)e(@)] + vhm(e) + g(z.v) + G(z, u, v)u]

(1.12)

where h > 0,d; > 0(: = 1,2) and A,v € R. By studying the principal eigenvalue
problem, we are able to apply abstract results from the bifurcation theory to obtain
the existence of coexistence states. We also consider a special form of (1.12) which
involves two similar species. The existence of coexistence states and their stability are
investigated. In chapter 4, we focus our attention to the system (1.8)-(1.11) and prove
the existence, uniqueness and continuous dependence on initial data of the solution,
in this case, we require initial data ug € L*°(2), and 6, € L>=(Q) N W2(Q2). We also

discuss the asymptotic behavior of the solution.



CHAPTER 2

Existence,Uniqueness and Stability
of Steady Solution for a Nonlocal

Evolution Equation

In this chapter we study the existence,uniqueness and stability of positive steady state
solutions of nonlocal evolutionary problem of the form

% = /n J(x,y)u(y)dy + b(x)u(x) + f(x,u)
u(z,0) = ¢(r)

where J,b and f are sufficiently smooth functions and J is positive.

2.1 Existence and uniqueness of positive steady
solution

Let © be a bounded domain of R" of class C” for some v € (0,1). Let H be the
Hilibert space L?(2) with inner product (-,-). Let X := C(Q) be the Banach space of
real continuous functions on . Throughout this paper, X is considered as an ordered

Banach space with a positive cone X, where X, = {u € X|u > 0}. It is well known



that X, is generating, normal and has nonempty interior, which we denote by intX
(see [1] for more details). For ¢, € X, we write ¢ < p if o —p € Xy, o > ¢ if
¢—¢ €intX, and p € ¢ if § — ¢ € intX,. An operator T : X — X is called

positive if TX, C X,.

Definition 2.1.1 An operator A is said to be resolvent positive if the resolvent set
p(A) of A contains an interval (e, 00) and (A — A)~! is positive for sufficiently large

A€ p(A)NR.
We also denote the spectral bound of an operator A by
s(A) =sup{ReX: X € o(A)}

where o(A) is the spectrum of A.

Consider the linear operator L on X defined by

Lu(z) == /Q J(@, y)u(y)dy + b(x)u(z) (2.2)

where we assume that
(H1) J(x,y) € C(Q x Q,R*) is symmetric.

(H2) J(z.y) > 0, for any z,y € Q.

Lemma 2.1.2 Let L be gwen by (2.2). Assume that (H1) and (H2) are satisfied and
b€ X. Then L is a resolvent positive operator on X and s(L) € o(L). If there exist
A € R and a continuous function ¢ € X\ {0} such that Lo = Ap. Then A = s(L).

Moreover, s(L) is an isolated eigenvalue and ker(L — s(L)I) = span{¢}.

Proof. First, we prove that L is a resolvent positive operator on X. In fact, L
is a bounded, linear operator on X. Thus, p(L) contains (||L||,00). Choose w € R*

such that w > sup,.q| [, J(z,y)dy| + sup,q |b(x)|. Obviously, A € p(L) whenever
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A > w. To prove that (A] — L)™! is positive for all A > w, it is sufficient to show that
(L—=X)v <0 implies v > 0 for all A > w. Let v =v* —v~, where v~ = max {—v,0}

and v* = max {v,0}. If v~ # 0, then straight calculation yields that
0 < (J *’U+,‘U_) < ((L - )\)U_,U_)
and so
0<((L-=Xv,v7) < (sup| [ J(z,y)dy| +sup|b] — A)(v™,v") <O0.
zeQl JQ zeql
The contradiction shows that »~ = 0 in 2, and so » > 0 in Q. Since s(L) > —o0, by

([45]),Theorem 3.5), s(L) € o(L).

Now, assume that there exist ¢ € X, \ {0} and A € R such that
Jx¢=(A-b(x))e.

It is easy to see that J x ¢ > 0. Consequently, we have that ¢ > 0 and A —b(x) > 0.
If s(L) > A, then the linear operator K, defined by Ku = (s(L)—b(z)), is continuous
and bijective on X because that s(L)—b(z) is bounded and s(L)—b(z) > 0. Note that
(L—s(L)I)u = J*u— Ku. We infer that the linear operator L —s(L)I is Fredholm of
index zero because that J : u — J xu is compact on X (see [46], Theorem5.C, p295).
By ([32], Proposition 2.3 and 2.4 p.151), (see also [36]), s(/.) is an eigenvalue with
finite algebraic multiplicity and there exists a positive eigenfunction ¢ € X.\ {0}
associated with s(L). Since L is self-adjoint when considered as an operator on H, its
eigenfunctions corresponding to distinct eigenvalues are orthogonal, hence we have
(¢,¢) = 0. But this contradicts the fact that both ¢ and ¢ are strictly positive.
Thus, s(L) = A.

We now show that ker(L — s(L)) = span {¢}. Suppose this is not true, then there
exists an eigenfunction 1 associated with s(L) such that ¢ # t¢ for all t € R. Since

¢ > 0, there exist ¢ such that ¢+ ¢ > 0. Let { = inf {t € R|/¢ + ¢ > 0}. Note that



we have J * (f¢p + ) = (s(L) — b)(I¢ + ) and tp + ¢ # 0. Again, J * (fp +¢) >0
implies £¢ + 3 > 0, which violates the definition of . The contradiction yields the
desired conclusion.

To prove that s(L) is isolated, we assume to the contrary that there exists a
sequence {ji,}oo, C o(L) such that lim,_.opun = s(L). By ([46], Proposition1,p300),
it is evident that L — u,I is a Fredholm operator of index zero and hence u,, is
an eigenvalue of L on X if n is sufficiently large. On the other hand, thanks to
s(L) — b(z) > 0, we have j, — b(z) > 4 for some § > 0 provided n sufficiently large.
Let 6, be the corresponding eigenfunction with ||6,||x = 1. Due to the compactness
of J and the fact that the sequence {6,} is bounded in X, along some subsequehce,
still labelled n,

1Mool (ktn = b(z)) ™' % 6, — V||x =0

for some 9 € X. From (u, — b(z))"'J * 6, = 6,,, it follows that
(L—-s(L)I)¥ =0and |]Y||x =1.

Thus ¥ is an eigenfunction associated with s(/). Since ¥ does not change sign over
Q and is bounded away from zero, the convergence of (u, — b(z))~!J * 6, implies
(6,,9) > 0 and we arrive at a contradiction again. Therefore, s(L) is isolated and the

proof is completed.

Lemma 2.1.3 Let all assumptions in Lernma 2.1.2 be satisfied. Then the following
three statements are equivalent.

(1) There ezxists a @ € X\ {0} such that —Lu € X\ {0}.

(11) s(L) < 0.

(i1i) For each f € X, Lu = f has exactly one solution in X. Moreover, if w is a

solution to Lu = [ and f <0, then w > 0.

Proof. (i)=(ii). Suppose s(L) > 0. Let ¢ = Lu — s(L)u. Obviously, g < 0 and

g # 0. Let ¢ be the positive eigenfunction associated with s(L), then (¢,g) < 0. On

10



the other hand, we have
(6.9) = (¢, (L —s(L))u) = ((L — s(L)])¢.7) = 0,

which is a contradiction. Thus, s(L) < 0.

(i1)=> (i). This is trivial since the eigenfunction ¢ >> 0 and satisfics L¢ < 0.

(iii)=(ii). Clearly, 0 € p(L), thus s(L) < 0.

(ii)=(iii). The existence of a unique solution is ensured by the fact that 0 € p(L).
Suppose w is the solution to Lu = f and f < 0 with w ¢ X.. Let ¢ be the positive
eigenfunction associated with s(L). There exists ¢ > 0 such that t¢ + w > 0. Once
again, we let f = inf {t € R*|t¢ + w > 0}. Obviously, t¢¢+w # 0 and L(t¢ +w) < 0.

Now, let zo € Q be a point such that #¢(zo) + w(zo) = 0, then we have

0< / J(z0,9)(16 + w)dy = L(ié +w)(x0) < 0.

Since J(zo,y) > 0 and {¢ + w is nonnegative, we have t¢ + w = 0. The contradiction
leads to ¢ +w > 0, which of course violates the definition of . Consequently, w > 0

and the proof is completed.

Lemma 2.1.4 Assume (H1) and (H2). Suppose that by,by € X with by > by and
by # by. If Li; = pids,1 = 1,2, where Liu := J *u + byu and ¢; € X, \ {0},i=1,2.
Then py = s(Ly) > po = s(L,).

Proof.
From Lemma 2.1.2, it follows that u; = s(L,) and ps = s(L,). Furthermore,
J*x¢; = (i — b;)¢i,i = 1,2 and J x ¢; > 0 indicate ¢; > 0,7 = 1,2. Now, if pu; < po,

then
(L2 — p2I)p1 = L1y + (by — b1)dy — pradhy = (y11 — p2)é1 + (b2 — by)éy < 0.

According to Lemma 2.1.3, s(L2 — p2) < 0. This is impossible, because s(Lz —p2) = 0.

Therefore, s(L;) > s(Ls).

11



Next we consider the existence of solutions to

/QJ(:r,y)u(y)dy + b(z)u(z) + f(z,u) =0 (2.3)
For the remainder of this paper , we assume that
(H3) f(z,s) € C(Q x R*,R). dsf(z,s) € C(Q x R*,R) and f(z,0) = 0.
(H4) f(z,-) is strictly sublinear,i.e., for any a € (0,1), f(z, as) > af(z,s), where
s> 0.
(H5) f(-,s) and are continuous, uniformly for s in bounded sets.

We also let

M foru>0
g9(z,u) = u (2.4)
Ouf(z,0) foru =0.

It is clear that g € C'(2 x Q,R) and f(z,u) = g(r,u)u.
Definition 2.1.5 A function in X is said to be a subsolution of (2.3) if

/ J(z,y)u(y)dy + b(z)u(z) + f(z,u) > 0. (2.5)
Q
A supersolution is defined similarly by reversing the inequality.

Theorem 2.1.6 suppose that (H1)-(H5) arc satisfied. If (2.3) has a supersolution u
and subsolution u in X\ {0} such that u < @. Then (2.3) has a unique solution in
intX,.

Proof. We define V = {u € C(Q)|u < u < u}. By condition (H3), we see that

?) —
%—'g(x, u) is uniformly bounded on Q x V and

of

a(x, u)+b(r)+8>0 (2.6)

for (x,u) € Q x V provided 3 is sufficiently large. We define the mapping for 8 > 0

large as follows: v = Tu if
/K;J(;lt,y)'l'(y)(ly + b(x)v(x) — po(xr) = =[f (&, u) + pul. (2.7)

12



We also define

Ju(z) := /‘)J(x,y)v(y)dy + b(z)u — Bu(x).
Since J is invertible on X if 3 is sufficiently large and the right hand side of (2.7)
belongs to X for each u € V, T : V — X is well defined. Next, we show that T is
monotone in the sense that w; < w, implies Tw; < Tws, provided both w; and w,

belonging to V. In fact, if w; < w, then
Fw, = f(z,w,) + Bw; < Fw; = f(z,w2) + Pwo,

thanks to (2.6). Notice that
J(Twi) = —Fuw;,

thus, we have

J(Tw; — Tw,) < 0.

By virtue of Lemma 2.1.2, (—7)~! is a positive operator as long as 8 is sufficiently
large. Hence we obtain

Tw; < Twy

From this, we deduce that the sequence defined inductively by

wy, =Tu and u, = Tu,_,
is monotone decreasing. Similarly,

vy =Tu and v, = Tv,_,
define a monotone increasing sequence. Furthermore, we can show by induction that

<< <oy <up <<y <T
Because the sequence {ux} and {vi} are monotone, the pointwise limits
u' = lim ux(r) and v* = lim v (x)
k—o0 k—o0

13



both exist. Obviously, u < v* < u* < u. By the monotone convergence theorem, we

have

k—o0

i [ ey = [ Iy i [ Ity = [ a0y
On the other hand, by the continuity of f, we see
kll‘rgb f(z,ue(z)) + b(x)urs1(x) = f(z,u*) + b(z)u’(z),
kll_{l; f(z.vi(z)) + b(x)vrs1 () = f(z,v") + b(z)v*(2).
Since
[ 9@y = =) + 1) + Blue(z) — wecs 2]

it follows that
/ J(x, y)u*(y)dy + b(x)u* + f(z,u*) = 0.
0
Similarly,

/QJ(x,y)v'(y)dy +b(z)v* + f(x,v") =0.

Next, we show that both u* and v* belong to X, i.e, (2.3) has at least one positive
continuous solution. To this end, we make the following observations. First, we see
J *xu* € intX,. This together with (H3) implies that both u* and v* are bounded
away from zero. Second, due to the fact that J x u* + [b(z) + g(z,u*)]u* = 0 and u"

is strictly positive and bounded on Q, we may conclude that there is 6 > 0 such that
b(z) + g(z,u*) < =4, forallz e .
Furthernore, for any z,,r, € Q, we find that
Jxu'(z)) = T xu'(z2) + [b(x1) = b(z2)]u’ (21) + [f (21, u*(21)) = flaz, u'(21))] (2.8)

= =[b(x2) + Buf(z2,0u" (1) + (1 = O)u"(x2))] (" (z1) — u™(22)),

14



where 0 < 6 < 1. Without loss generality, we may assume u*(zr;) > u*(z;). Since
(H4) gives that g(z, -) is decreasing and 9, f(z, s) < g(z, s) for all s > 0, the following

inequalities are true
Ouf(z2,0u"(z1) + (1 = O)u"(22)) < g(x2, 6u’(z1) + (1 — O)u’(x2)) < g(x2, u’(x2))
Hence, we have
—[b(x2) + Ouf (2, 0u" (1) + (1 — 8)u"(x,))] > 6. (2.9)

From (2.8) and (2.9), we conclude that u* is continuous.

We now show the uniqueness of positive solutions in X,. We shall argue by
contradiction. Let ¢, # 2 be two positive continuous solutions of (2.3). Then it is
easy to see that ky; is a supersolution of (2.3) which is greater than both ¢, and
¢2 provided k is sufficiently large. Actually k can be chosen so that kg, > 1 + ¢2.
Hence we may assume without loss of generality that ¢, < ;. On the other hand,

the fact that g(z,¢)) < g(z, ¥2) and Lemmas 2.1.2 and 2.1.4 yield
0=s(L+g(z,¢1)) <s(L+g(z,p2)) =0

This contradiction completes the proof.
Next we assume that (2.3) can be written as
[ sty —u [ ey + S =o, (2.10)
Q 2
as is the case when it arises as the Euler-Lagrange equation. The existence of a
positive solution will be established by Crandall and Rabinowitz’s bifurcation theorem
which allows less restriction on f than is considered in [33].

In the following, we define

G(p,u) = /QJ(I,y)u(y)dy - u/nJ(x,y)dy + f(z,u, 1) (2.11)
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and

E = {(p,u) € Rx X|G(p,u) = 0}

L4 = {p € Z|for some uy € X\ {0}, (1, up) €T} .
Clearly, (2.10) has a positive solution if £ is not empty.
We also assume that
(H6) f(z,-,-) € C? uniformly for all z € Q. f(z,0,u) = 0 and 9y f(z,0,0) = 0.

(H7) fﬂ a'u_altf(.l', 0., 0)d$ # 0.

Theorem 2.1.7 Suppose that (H1),(H2),(H6) and (H7) are satisfied. Then (0,0) is

a bifurcation point of G(n,u) =0 and L., is not empty.

Proof. First, we see that G € C*(R x X, X) and G(u,0) = 0 for all p € R.

Moreover,

DyG(0,0)u = /

N

J(x, y)u(y)dy — u/ J(z,y)dy

4]

and

DuDuG(O, 0) = auaﬂf(.”l?, O, 0)

Since Dy G(0,0)1 = 0, Lemuna 2.1.2 implies that
s(DyG(0,0)) =0, kerDyG(0,0) =span{1},

and DyG(0,0) is a Fredholm operator on X whose index is zero. Here 1 stands for
constant function whose value is 1. According to Crandall-Rabinowitz’s theorem (cf
[28]), to show that (0,0) is a bifurcation point of G(u,u) = 0, we only need to verify
that

D“DuG(O, 0)1 ¢ I'a.llgeDuG(O, 0)
In fact, if this is not true, then there exists w € X such that
DyG(0,0)w = 0ydyf(z,0).
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Since DyG(0,0) is a bounded, self-adjoint operator on H, the Fredholm alternative
yields
(1,048, f (z,0)) = /n Budyuf(z, 0)dz = 0.

This contradicts the given condition. Therefore, (0,0) is a bifurcation point. By the
Crandall-Rabinowitz theorem, there is a nontrivial continuously differentiable curve
(u(s), u(-,s)) through (0, 0) such that (u(s),u(-,s)) € L, where s € (—4,6) for § > 0
and (p(0),u(-,0)) = (0,0). Furthermore, u(-,s) = s1 + o(s) and so £ is not empty.
Corollary 2.1.8 Assume (H1) and (H2). In addition, assume f(z,u) = pa(z)u +
h(z,u)u, where a € X and h € C*( x Q, R), h(z,0) = 0, dyh(z,0) < 0. Then
4 CR* fors € (0,6) provided [,a*(z)dz > [,a™(x)dz, where a~ = max{—a,0}
and a* = max {a,0}. Moreover, if a(z) > 0 in Q, then (0,0) is the unique bifurcation

point for positive solutions.

Proof. Let (u(s), u(-, s)) be the continuously differentiable curve ensured by The-

orem 2.1.7. Notice that, supposing the dependence on s,

/(;[J *u(r) — /()J(x,y)dyu(z)]d:c =- /Q[,ua(x) + h(z, u)|udz.

The symmetry of J implies

/n[pa(x) + h(z,u)]udr = 0. (2.12)

If s is sufficiently small, we have

/[pa(:c) + h(z,u)|udz = s / [1(s)(at = a™) + Oyh(x,0)s)dz + o(s?), (2.13)
0 Q

and from (2.12) and (2.13), we deduce that u(s) > 0 as s € (0, 4).
Now, assume a(z) > 0, suppose that p,; is another bifurcation point. Then there
is a sequence (ji,,1,) € Rt x X, such that (yn,u,) — (421,0). If yy = 0, nothing

needs to be done. Therefore, we assume p; > 0. Let u,(z") = ming u,(x). Note that

J*xup (™) — / J (", y)dyu, (£™) > 0.
0
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Consequently, p,a(z™)+h(z", u,(z")) < 0. On the other hand, we may choose N > 0
such that pna(z") > %#1 n})_in a(z) and |h(z", u,(z"))| < %pl n}_gna(x) whenever n >
N. The contradiction shows that (0,0) is the unique bifurcation point.

Throughout the rest of this section, We shall focus on the case that 2 C R and
establish the necessary and sufficient condition for the existence of a steady state
solution to (2.3). Besides the condition (H1)-(HS5), we assume that

(H8) 2 = (0,1),0 < ! < o0.

(H9) 3y, f(z,0) is Lipschitz continuous on Q.

(H10) f(-,s) is Lipschitz continuous, uniformly for s in bounded sets.

First, we need the following lemma which can be found in [33].

Lemma 2.1.9 Assume that (H1),(H2) and (H8) hold and that b € X is Lipschitz
continuous. Then L is a bounded, self-adjoint operator on H and has a simple eigen-
value A\ given by

Ao max (Lu.u).

lJullza =1
The mazimum is attained by a strictly positive eigenfunction ¢ € X. Also o(L) C

(—OO, Ao]

Lemma 2.1.10 Suppose that (H1)-(H4) and (H8)-(H9) hold. In addition, b is Lip-

schitz continuous on Q. Ifs(L+g(x.0)) < 0. Then (2.3) does not possess any solution
in X\ {0}

Proof. Suppose this is not true. Let w be a solution in X, \ {0}. By Lemma 2.1.2,
we infer that s(L + ¢g(z,w)) = 0. On the other hand, Lemma 2.1.2 and 2.1.9 ensure
that s(L + g(z.,0)) is a simple eigenvalue having an eigenfunction in int X, by (H4)

and Lemma 2.4, we have
0=s(L+ g(r,w)) <s(L+g(z,0)) <0.
The contradiction gives the desired conclusion.

18



Lemma 2.1.11 Suppose that (H1)-(H4) and (H8)-(H9) hold and that b € X s Lip-
schitz continuous. The following statements are equivalent.

(i) (2.3) admits a subsolution u € X\ {0} such that the inequality (2.4) is not
identical to zero.

(11) (2.8) admits an arbitrarily small subsolution in X\ {0}.

(111) s(L + g(z,0)) > 0.

Proof. (i)= (ii). It follows from the fact that

Leu + f(xr,en) > Leu+ef(r,u) >0

forany 0 <e < 1.

(ii)= (i). This is trivial.

(i)= (iii). Because of (i) and (H4),

(L+g(c,0)n > Lu+ g(r,u)u = Lu+ f(r,1),

that is, (L + g(z,0))(—u) < 0. As a consequence of Lemma 2.1.3, we have s(L +
g(z,0)) > 0. We next show s(L + g(z,0)) # 0. Suppose this is not the case. Let

Y € int X, be an eigenfunction corresponding to the eigenvalue 0, then
0= ((L+g(r.0))¢, —u) = (¢, (L + g(x,0))(~u)) <O.

The contradiction shows s(L + g(z,0)) > 0.
(ii))= (i). Again, let ¥ € intX, be an eigenfunction associated with the eigenvalue
s(L + g(z,0)), then Ley) + g(x,0)eyp > 0 for any € > 0. By the continuity of g(z, -),

we have
Ley + f(z,ey) = Ley + g(z, ep)ep > 0
for sufficiently small € > 0. Hence, €3 is a subsolution of (2.3).
Theorem 2.1.12 Suppose that (H1)-(H5) and (H8)-(H9) hold and that b € X is

Lipschitz continuous. If (2.3) has a positive supersolution u € X, then (2.3) has a

unique positive continuous solution if and only if s(L + g(x,0)) > 0
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Proof. We first prove the necessity. Let ¢ € X\ {0} be a positive solution to

(2.3). Then we have, in fact, ¢ > 0 and s(L + g(z,y)) = 0. Consequently,
s(L + g(z,0)) > s(L + g(r,9)) = 0.

Now, suppose that s(L + g(z,0)) > 0. Let ¢ be the positive eigenfunction asso-
ciated with s(L + g(z,0)), whose existence is guaranteed by the condition (H9) and
Lemma 2.1.9. In addition, the proof of Lemma 2.1.11 shows that v is a subsolution
of (2.3) for arbitrarily small €. Also, u € X and —(b(z) + g(z,u)u > J *xu > 0 force
u > 0, and hence £y < u for some £ > 0. It follows that (2.3) has a solution u in

X, withey <u<u

Corollary 2.1.13 Assume (H1)-(H{) and (H8)-(H10) and that b € X is Lipschitz
continuous. Suppose s(L + g(z,0)) > 0. Then the following statements are equivalent
(i) Problem (2.3) has a positive solution in X.
(i1) Problem (2.3) has a positive supersolution in X.
(111) Problem (2.3) has an arbitrarily large positive supersolution in X .

(1v) There exists v € int X, which is Lipschitz, such that s(L + g(z,v)) <0

Proof. The equivalence of (i) and (ii) is an immediate consequence of Theorem

2.1.12 and the fact that
Law + [(r,ow) < o(Lw + f(x,w)) =0,

where @ > 1 and w € X is a solution of (2.3). The equivalence of (ii) and (iii) comes

from the fact that if v is a supersolution of (2.3), then
Lky + f(x,ky) < Lk + kf(z,v) <0, for all k > 1.

If (2.3) has a positive solution w in X, then s(L + g(r,w)) = 0. Let v € int X, be

Lipschitz continuous. Due to (H10), b(x) + g(z, v) is Lipschitz continuous. Lemmas
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2.1.2 and 2.1.9 imply that s(L + g(z,v)]) is an eigenvalue of the linear and bounded
operator L + g(z,v)I on X and there is a strictly positive eigenfunction associated
with s(L + g(z,v)I). Choose v such that v > w, By condition (H4), g(z,-) is

nonincreasing, it follows from Lemma 2.1.4 that
s(L + g(z,v)I) < s(L + g(z,w)).

Therefore, (i) implies (iv). We now complete the proof by showing that (iv) implies
(ii). Let ¢ be the strictly positive eigenfunction corresponding to s(L + g(x,v)). Then
we have

Lk¢ + f(x,kp) = Lkd + kg(z,ko)p < Lk + kg(z,v)¢p < 0

for sufficiently large k. Thus, k¢ is the desired supersolution of (2.3).

2.2 The Existence and asymptotic behavior

In this section, we establish the basic existence and uniqueness results for (2.1) and
study the long time behavior of the solution to (2.1). We shall first establish local
existence and uniqueness in X.

For t; > 0, define X = C([0,¢1], X) with norm ||¢|| g = maxe(o.,] |9 x-

Theorem 2.2.1 Assume that (H1)-(H3) hold and b € X. For each ¢g € X, there

exists t; > 0 such that (2.1) has a unique solution in X.

Proof. We take the semigroup approach used in [9] to show the existence and
uniqueness. As usual, we define the linear operator L on X by L = J *u+b(x)u. For

each ¢ € X , we define mapping S¢ = u where

u = eltg(0) + / FeL(t—s) f(z,¢(s))ds (2.14)

0

Lt

and e™" is the uniformly continuous semigroup on X generated by L because L is

bounded on X. Now the equation (2.1) is reduced to (2.14). Since f(z,-) is locally
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Lipschitz, with an argument similar to that in [9], one can show that S is a contraction
mapping on X for the suitable t,. Therefore, the existence and uniqueness of the

solution to (2.1) follows from Banach'’s fixed point Theorem.

Definition 2.2.2 Let St = Q2 x (0,T) for0 < T < 0o. A function u € C*([0, 00), X)

is said to be a subsolution of (2.1) in St if

u < A J(z,y)u(y)dy + b(x)u(z) + f(z,u). (2.15)

A supersolution is defined similarly by reversing the inequality.

Proposition 2.2.3 Assume (H1), (H2),(H3) and (Hj) are satisfied and that b € X.
Then (2.1) has a global solution u(-,xz,v) for each ¢ € X,.

Proof. Let u be the solution to

uy = [, J(x,y)u(y)dy + b(r)u(x) + ¢(x,0)u
u(z,0) = ¢,
where g(z,0) is given by (2.4). Since L + g(z,0) is a bounded linear operator on X,

we have
Gz t.9)llx < llelE 9@, < ellE+ 9@ 0l .

This indicates that u is a global solution. Furthermore, & € X, according to the

comparison principle, see [33]. Due to (H5)
J(z,u) = g(z, u)u < g(r,0)u,
whenever u > 0. Thus, # is supersolution of (2.1). By the comparison principle,
0 <u(z,-,¢) <ulz,-9),

where u(z. . ¢') is the solution of (2.1) with »(0) = v. the desired conclusion follows
immediately.

Now, we are ready to give the main result in this section.
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Theorem 2.2.4 Assume that (H1)-(H4) and (H8)-(H10) are satisfied and thatb € X
is Lipschitz continuous. Then one of following statement holds.

(1) If s(L + g(z,0)) < 0, then the zero solution of (2.1) is globally asymptotically
stable in X, .

(1) If s(L + g(x,0)) = 0, then the solution of (2.1) u(x,t,v) with v € X\ {0}
satisfies

t]ifgu(-,t,w) =0a.e.

(iii) If s(L + g(z,0)) > 0, then (2.1) admits at most one stationary solution in

intX,. If (2.1) has a stationary solution u € intX,, then u is globally asymptotically

stable in X, .

(iv) if s(L + g(z,0)) > 0 and (2.1) has no positive stationary solution, then
lim |[u(-,t, @)l x = 0o, for all @ € X\ {0}

Proof. (i) Let ¢ be the eigenfunction associated with s(L + g(z,0)). According
to Proposition 2.2.3, 0 < u(z,t,¢) < e(L +9(I’0))t¢, where u(z,t, ¢) is solution to

(2.1) with ¢ € X\ {0}. Since s(L + ¢g(z,0)) < 0, for some M, > 0

Jle(E+ 90,0 < pre=at

(see [31) Theorem 1.3.4). Thus, we find lim,_ ||u(-, ¢, ¢)||x = 0.
(ii) Because of s(L + g(z,0)) = 0, ky is a supersolution of (2.1) if £ > 0. By the

comparison principle given in (33], we have
u(, t+ h kp) = ul- t,u(-, b, ko)) < u(-,t, kp)

for each h > 0,that is, the function t — u(-,t, k) is nonincreasing. This ensure that
the pointwise limit

u = limu(-¢t, kp) (2.16)

t—o0
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exists. By The monotone convergence theorem and the continuity of f, Lu = f(z,u)
and 0 < u < kp. In fact, we have u = 0 a.e. Otherwise, with J * u > 0, we may
argue as in Theorem 2.1.6 to deduce that u € int X, which contradicts the fact that
zero is the only non-negative steady state of (2.1) which is ensured by Lemma 2.1.10
Let ¢o € X4\ {0}. Then there exists k > 0 such that 0 < ¢y < kp. Again, the
comparison principle gives 0 < u(-,t, o) < u(-, ¢, k), for allt > 0. (ii) follows from
this fact together with (2.16).

(iii) By Lemma 2.1.11 and Corollary 2.1.13, (2.1) has an arbitrarily small subso-
lution e¢¢ and an arbitrarily large supersolution ku, where ¢ is the strictly positive
eigenfunction corresponding to s(L + ¢g(z,0)) and 0 < € < 1,k > 1. With the rea-
soning similar to that for (ii), we find that the function u(z, -, ep) is nondecreasing
while u(z, -, ku) is nonincreasing. Furthermore, since (2.1) has an arbitrarily small
subsolution, The comparison principle implies that there exist d(¢) > 0 and (k) > 0
such that u(-,t,ep) > 6(e) and u(-, ¢, ku) > é(k) for all ¢ > 0. The uniqueness of the
positive stationary solution of (2.1) together with previous argument yields that the

pointwise convergence
lim u(-,t,ep) =u, limu(-,t,ku) =u
t—o0 t—20
both hold true. Because u is continuous, Dini’s Theorem gives
lim ||u(-,t,ep) — ul|x =0, lim ||u(-, ¢, ku) —ul|x =0 (2.17)
t—oo t—00

(see [20]). For ¢ € X\ {0}, by the comparison principle, there exists h* > 0 such
that u(-,h*,¢) > 0 . Moreover, we have that u(-,t,7¢) < u(-,t + h*,¢) for some
0 < v < 1and u(-t,¢) < u(-1,5u) for some 5 > 1. Therefore, (iii) follows from
(2.17).

(iv) Corollary 2.1.13 suggests

s(L + g(z,v)) >0
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for each v € intX, which is Lipschitz. It is well known that L + g(z,v)] generates
a uniformly continuous semigroup (L +9(z V) on x. Let YP* € intX, be an

eigenfunction corresponding to s(L + g(z,v)I). By the spectral mapping theorem,
o(el(L+ 9@, ))) = glo(L+ 9z, )]) na oL+ 9z, v)) e — ets(L + g(z.0)) e,

The comparison principle gives

(L +g(z, U)I)¢0 > AL+ g(z, v)I)W' — pets(L + g(x,v)])w,’

where ¢¢ € intX, and p is a positive number such that py* < @o. Since s(L +
g(z,v)I) >0

lim [+ 96 00Dy = o0 (2.18)

for any ¢o € intX,. Note that (2.18) also holds for et(L +g(x,v)l)¢0 with o €
X\ {0} because that et +h)(L+9(2,9)]) 5 0 for some h > 0 (see [33]). In the
following, we shall adopt an idea in [23] to complete the proof. Suppose there is
wo € X4\ {0} such that

[Ju(-,t,wo)||x < c< o0

for all t > 0, where ¢ > 0 is constant. Therefore, we may choose positive constant
m > ¢ such that

0 < u(',t,'LU()) <m

for all t > 0. Consequently,

ut('7 ) wO) = L‘ll,(, K ’lU()) + f(l‘, u’('v ) 'LU()))
= Lu(-,-,wo) + g(r,u(-, -, wo))u(-, -, wo)

> Lu(-,-,uwo) + g(x,m)u(-, -, wp)
in Q x (0,00). This fact and the comparison principle imply that

e”(l’ +~(1(""7"’))w0 < u(-, t,wo)
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for t > 0. Thus, (2.18) yields
tliglo”u('vt,wo)“x = 00.

The contradiction completes the proof.
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CHAPTER 3

Existence and Stability of
Coexistence States for a Nonlocal

Evolution System

In this chapter we study the existence of component-wise positive steady state solu-

tions of nonlocal evolutionary problem of the form

at z € [0,h] (3.1)

5 dyLv + v[ym(z) + g(z,v) + G(z, u, v)y]

{ gu _ diLu + u[N(z) + f(z,u) + F(z,u,v)v],
h
where Lu := / J(z,y)u(y)dy — b(x)u(z) and h > 0. d; > 0(z = 1,2) and A,y € R,
We also ass?ume
(H1) J(-,-) € C([0, h]x[0, h], R*) is symmetric and J(x,y) > 0 for any z,y € [0, h).
(H2)foh |J(x + z,y) — J(x,y)|dy < C|z| for some C > 0.
(H3) b, I, m € X,\{0} are Lipschitz.
(H4) f(z,w) and g(z, w) are defined on [0, h] x [0, 00), and C* continuous in both

z and w, such that

f(z,0) =9g(z,0) =0, 9uf(z,") <0, 0ypg(z,-)<O.
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(H5) F(x,u,v) and G(z,u,v) are defined on [0, h] x [0, 00)? and C! continuous in
z and (u,v).

The system (3.1) admits three types of componentwise nonnegative solution cou-
ples in X x X that are independent of time. Namely, the trivial one (0,0), the

semitrivial positive solutions (w,0) and (0, v),where u, v are positive solutions of

diLu + u[N(z) + f(z,u)] =0, z € [0,h], (3.2)

doLv + v[ym(z) + g(z,v)] =0, = € [0,h] (3.3)

respectively, and the coexistence states, which are the solution couples (u, v) with both
components positive. (0, 0) is always a solution of (3.1). Moreover, (3.1) has a semi-
trivial coexistence state of the form (u,0) (resp.(0,v)) if and only if (3.2) (resp.(3.3))

has a positive solution in X.

3.1 The existence of coexistence states
We now consider the one-parameter family of eigenvalue problems
(L+XK)u=pu, AeRueX (3.4)

where the operator L is given by (3.1), b € X is Lipschitz. K € £(X) is the multipli-
cation operator by k € X. L(A) = L + AK. we shall denote the principal eigenvalue

of L(A) by p(\) , that is, an eigenvalue associated with an eigenfunction u € X .

Lemma 3.1.1 Suppose that k € X is Lipschitz, then the linear operator L()\) has a
unique principal eigenvalue equal to s(L()\)) and the mapping X — s(L())) is analytic.

Moreover, it is conver.

Proof. The existence and uniqueness of an principal eigenvalue for L(A) is an con-

sequence of Lemma 2.1.2 and 2.1.9. Moreover, the principal eigenvalue is equal to
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s(L(X)) for fixed A\. Therefore we only need to show that A — s(L(A)) is analytic.
Let A € R be an arbitrarily fixed number. Note that A ~— L()) is analytic from
(A=1,2+1) into £(X) and 5(L(X)) is a simple eigenvalue of L(X) with eigenvector

¥(A) € intX . By the Proposition 4.5.8 in [15] , there exists ¢ > 0 and analytic curve
{ﬂgwgysea-gi+q}cmxxsmhmmumxmmpqﬂunymbx

(L()¥(s) = m(s)w(s) and v(s) = $(X) +n(s),

where 7(s) € range(L(X) — 5(L(X))I ) and =(s) is a simple eigenvalue of L(s). For
sufficiently small €, ¥(s) € intX, if |s| < e. Lemma 2.1.2 implies s(L(s)) = = (s).
Since X is arbitrary, the desired result follows. Finally, u is convex with respect to A

because p(A) = supy,,,=1(L + AKu, u) is affine for fixed u.

Proposition 3.1.2 Suppose that k € X is Lipschitz. Let Ty = {x € [0,h]| k(x) >
0}, I~ = [0,h]\I'+. Then p(A) — o0 as A — oo if 'y # O and p(\) — oo as
A— —oo if I #0.

Proof. We only give a proof for 'y # 0. The case that I'_ # @ can be
treated similarly. Choose ' € 'y and § > 0 such that (' — 8,7’ +6) C Ty and
ming_s4 45 k(z) > ¢ for some positive constant c. Let e Co([0, h]) N X such that
suppf C (' = 6,2’ +9) and §=1in (' — %5, '+ l6) A Straightforward calculation

2
gives

~ o~ h _~
(L+AKBD) 2 = max [ Iy = 1Bl a1 + Acs
x € (0,h] Jo

Consequently,

p(A) = max ((L+AK)u,u) > 00 as A — oo.
llully =1

Next, we consider the eigenvalue problem

(L +AK)$ =0, (3.5)
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denoting a principal eigenvalue by A(k) and distinguish two cases

h h
O [Jeny @i W) [ I =be)
0 0
Remark 3.1.3 By the definition, A(k) is a oot of u(-).
Lemma 3.1.4 Assume (case D)

(i) (3-5) has two principal eigenvalues A\ (k) < 0 < Ap(k) if 'y #@ and T'_ # 0.

(ii) (3.5) has a unique principal eigenvalue A(k) > 0 if T~ = @ and (k) < O if
r,=0.

Proof. (i) Note that L(0)1 < 0. Lemma 2.1.3 implies j2(0) < 0. On other hand,
Proposition 3.1.2 shows that u(M) > 0 and p(—M) > 0 for some M > 0. By the
continuity of u, the result follows.

(i1) Suppose I'_ = 0. By (i), We see that (3.5) has a principal eigenvalue A*(k) >
0. Since k is nonnegative, by Lemma 2.1.4, p()) is monotone with respect to A.

Therefore, uniqueness follows.

Lemma 3.1.5 Assume (case N). Suppose Ty # @ and Ty # 0, then (3.5) has a
principal eigenvalue A(k) > 0 if foh k(z)dr < 0; A(k) <0 if foh k(x) > 0 and 0 is the

unique principal eigenvalue if foh k(z) =0 and k(z) # 0.

Proof.
Let (u(A), ¢())) be the eigenvalue-eigenfunction pair for (3.4). Differentiating
(3.4) with respect to A and noting x(0) = 0 and ¢(0) = 1, we find

L&'(0) + K1 = 1/(0)9(0),

1
where ' := -d(—/\- Integrating both side , we have

h
[) k(x)dx = hyd(0).
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If foh k(xz)dz < 0 then p'(0) < 0 and by the convexity of u, u(A) > 0 for any A < 0.
Furthermore, by Proposition 3.1.2, u has a positive zero. The case that foh k(z)dz >0
follows similarly. Next, we assume that foh k(z) = 0 and k(z) # 0. Clearly, p'(0) =0
and L¢'(0) = —k(z). Taking the derivative of (3.4) twice gives

L¢"(0) + K¢'(0) = pu"(0).
Consequently, we have

h h
hu"(0) = /0 k(z)¢'(0)dz = —./0 L¢'(0)¢'(0)dzx > 0. (3.6)

The last inequality is true because sup),,,|,,=1(Lu,u) = 0 and the supreme is attained
only by constant. The convexity of u and (3.6) implies p(A) > 0 for any A # 0.

Throughout the remainder of this section, o[dL, K] will stand for the principal
eigenvalue of (dL + AK)¢ =0

Proposition 3.1.6 Assume (H1)-(H5), then
diLw+w(M\(z) + f(z,w)) =0 n[0,h] (3.7)

has a uniquc positive continuous solution defined on (0, 1] if and only if X > o[d, L, Al].
Furthermore, if 0, is a positive continuous solution to (3.7), then 6, € int X, 1is

Lipschitz and the operator L, ) defined by
Lix=diL+N(x)+6,\Dy,[f(z,0)) + [(r.6))
15 1nvertible.

Proof. The existence of a unique positive Lipschitz continuous solution is an
consequence of Theorem 2.1.6. To prove the other part, we observe that s(d;L +
(M(z) + f(z,6,)I)) = 0 and 6\D,,f(z,6,) < 0, which implies s(L,,) < 0. Then

Lemma 2.1.3 gives the desired conclusion.
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Theorem 3.1.7 Assume (H1)-(H5). Let 0y € X, be the solution to (3.7). Consider
Y 1= o[d2L,ym + G(z, 01, 0)6,].

Then a continuum C* C R x int X, X int X, of coeristence states of (3.1) emanates

from the point (vy,6,,0).

Proof. We fix A € R and treat v as the bifurcation parameter. We first show
that (-, 0x,0) is a bifurcation point to a branch of coexistence states. To do that,
we use the theorem by Crandall and Rabinowitz in [28]. Consider the operator F :
R x X x X — X x X defined by

diLu +u[M(z) + f(z,u) + F(z,u,v)v)
Flv,u,v) =
daLv + v[ym(z) + g(r,u) + G(x,u,v)u]
F is an operator of class C? in (u,v) and analytic in v and the zeros of F are the
solutions to (3.1). Since ) solves (3.1), F(v,60x,0) = 0 for all v € R and hence

(7,61, 0) can be regarded as the known branch of solution to (3.1). The linearization

of F at (7,0, 0) with respect to (u,v) is given by

; Lyax F(x,0,,0)0,
\7(7) = D(u,v)f(')’, 0,\» 0) = 3
0 doL + ym(r) + g(x,0,) + G(x,0x,0)0,
where L, ) is the operator defined in Proposition 3.1.6. Let ¢ > 0 denote the prin-
cipal eigenfunction of d,L + ym(z) + ¢(r,6,) + G(r,6,,0)0,,which is unique up to

multiplicative constants. Then the null space of J(7,) is

N(J () = span { (L7 \(F(z,0x,0)0x¢), —¢)" } . (3.8)
Since L, , is invertible and R[d,L +~ym(z)+ g(z, 0,) + G(x, ), 0)8,] has codimension

one, the range of J(v,)

R(J(v)) = X x R[d2L + vam(r) + g(r.8,) + G(x,05,0)8,]
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has codimension one. Furthermore, the operator J(v) is a polynomial in y — v, and

can be written as

00
I =IJm)+(O-nHh, Hh= 0 i) | (3.9)

In particular, it is analytic in . From (3.8) and (3.9), we find that

Ti(N(T (1)) = span {0, m(z)¢)T} .

We claim that
m(z)p € RldoL + vam(z) + g(z,8,) + G(z, 6, 0)8.]. (3.10)
To show this, we argue by contradiction assuming that there exists u € X such that
(d2L + yam(z) + g(z, 02) + G(z,0x,0)8))u = m(zx)p.

Since doL + vam(z) + g(z,6,) + G(z,0,,0)8, is a self-adjoint operator on H, we
obtain foh m(z)p?dz = 0, which is impossible because the integrand is nonnegative

and nontrivial, and so (3.10) holds. Thus,

(0,m(x)9)" ¢ R(T (1))

and the following transversality condition holds

Ji(N(T () @ R(T () = X x X.

Therefore, it follows from Crandall-Rabinowitz’s Theorem that +, is a bifurcation
point. Furthermore, there exists ¢ > 0 and a curve s — (y(s), u(s), v(s)), |s| < ¢, of

class C! such that

(v(s), u(s),v(s)) = (va + O(s),0x + O(s), s + 0(52))’ s —0,
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and

F(v(s),u(s),v(s)) =0, |s]<e.

As (0x,p) € intX, x intX,, (u(s),v(s)) is component-wise positive if s > 0 is

sufficiently small and hence (3.1) has a coexistence state for some 7 near ~,.

3.2 Two similar competing species

In this section, we consider a special case of (3.1) where u and v stand for the densities
of two competing species. We assume that two species are very similar. Namely, in

what follows, we shall focus our attentions on the system

o

— = pLyu +u(a(z) + 76(z) — u —v),

gt in [0, h) (3.11)

v

— =pLyv+v(a(z) —u—-v)

ot
where Lyw := foh J(z, y)w(y)dy—foh J(z,y)dyw, a, B € X are Lipschitz in [0, h}, and
foh a(z)dz > 0. Assume that 7 is positive but very small. Clearly, when 7 = 0, u and
v play identical roles in this system. For each fixed u, there is a set of nonnegative

equilibria {(sv, (1 — s)v)|0 < s < 1}. Here v is the unique positive continuous solution

to the equation

uLyv +v(a(z) —v) =0. (3.12)

v depends smoothly on . (see the appendix for more details)

Following the approach employed in [34], we let M : (0,00) — R be defined by

h
M(p) = /0 B(e)o(x, p)ydr, p>0, (3.13)

For 7 = 0, we look for triples (u, v, 1) that satisfy
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pLyu+u(a(z) +76(z) — v —v) =0, in [0, h] (3.14)
uLyv+v(a(z) —u—-v)=0

and that are close to the curve F/fi x {u} for some g > 0, where

I = {(s0(A), (1 = o A0 < s < 1),

Note that for any p, I'y, x {1} is a curve of solutions of (3.14) for 7 = 0. Also, for any

small 7, (3.14) has the semitrivial solutions

(0,9(, ), 1) (independent of )

(a(v /'L’T)’ 07#)7

where u(-, u,7) is the positive solution of (3.12) with a(z) being replaced by v(z) =

a(z) + 70(x). For our purpose, we introduce the following function space.

Y = XxX

Xy = {(w,z) €y : /oh(w(x) — 2(z))0(z, B)dz =o}.

Clearly, X, is a closed subspace. As will become clear through the analysis presented
in the section, X is the complement of the subspace spanned by (v(z, iz), -9 (z, i))7,

which is the kernal of a Fredholm operator we discuss in Proposition 3.2.1

Proposition 3.2.1 Assume foha(:r)d:c > 0. Then for any p there exists a neighbor-

hood U of the curve F;’I x {1} inY x (0,00) and § > 0 with the following properties

(i) If M () # 0, then for 7 € (0, d) there are no solutions of (3.14) in U other than
the semitrivial solutions of (3.14).

(ii) If M(z) = 0 and M'(fi) # 0, then for 7 € (0,9) the set of solutions of (3.14)
in U consists of the semitrivial solutions and of the set ¥ N U, where £ is a smooth

curve given by
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L = {((u(r,s),v(r,s),u(r,s)) : =6 < s <1+46}. (3.15)

Here (7,s) — (u(7,s),v(r,s)) € Y and (7,s) — pu(7,s) € (0,00) are smooth functions

on [0,6) x (—4,1 + 4) satisfying the following relations

(u(‘rv 0),1}(7‘, 0)) = (0’ ?’(’)“(T? O)))v (316)
(u(7,1),v(r, 1)) = (u(-, pu(7,1),7),0), (3.17)
(u(O, 8), U(O) S), ”(0’ 5)) = (317(" ﬁ)’ (1 - 5)6()ﬁ))ﬁ) (318)

Remark 3.2.2 In other words, a branch of coeristence states bifurcates from the

branch of semitrivial equilibria (u,0) at p = p(7,1) and meets the other branch of

semitrivial equilibria (0,v) at p = pu(7,0). For 7 = 0 the branch coincides with I'z.
Note that from (3.18), it follows that the function u(t,s),v(r,s) and p(r,s) have

the following expansion for —§ < s <1446 and |7| < 1:

u(r,s) = sv(-, i) + Tu, (s) + O(1?), (3.19)
v(r,s) = (1= 8)T(-, &) + Tv1(s) + O(7?), (3.20)
p(r,s) = B+ 1hi(s) + O(?), (3.21)

where (u;,v;) €Y and g € R are smooth function of s.

Proof. We look for any triple (u,v,u) near F;’I x {1t} such that (u,v) can be

written as
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(u,v) = (s0(, ), (1 = $)(-, ) + (w, 2). (3.22)

where s € R and (w, z) € X, and they are in or near [0,1] and {(0,0)}, respectively.
Rewrite (3.22) as

(w0 =0(, 1)) = s(@(-, 1), =0(-, 1)) + (w, 2).
We shall find s and (w, 2) from

(w,2) = Qu)(u,v—73(,n),
s@(,p), -0(,n)) = (I-Q)(w,v (-, p)),

where I is the identity on Y and Q(u) is the projection of Y onto X, along the

subspace
X1(p) == span {(v(-, ), —0(-, u))}

(Note that X () is a complement of X, in Y for ;2 = ji.) In particular, we find the

following values of s and (w, ) for semitrivial equilibria:

(07 i)\(, “)) = (Ov i-}()H)) + (Ov 0)1 (323)

(ﬂ(, K, T)v 0) = (56(" ﬁ)v (1 - s)ﬁ( ﬁ)) + (T)(TV#): ((Ta /“))» withs = U(T~ #)1 (324)

where (7,¢) and o are smooth functions of (7, ) taking values in X, and R, respec-

tively. Clearly,
o(0.p) =1, (n(0, 1), ¢(0, 1)) = (0,0), (3.25)
since u(-, u,0) = v(-, p).
For a small § > 0 let F be the maponY x (—=4,8) x (=d0,1+d) x (u— 6.2+ d)
defined by
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F(w,z,7,s,p) =
pLyw — (w + 2)s0(-, 1) + (o = 0(-, )y — (w + 2)w + 7850(-, 1) + 70w
pLnz = (w+2)(1 = s)o(,p) + (a = 0(, 1))z — (w + 2)z
It is clear that F is well defined and smooth (in fact polynomial) as a Y-valued
map. By plugging (3.22) into (3.14), we see that, in order to finds solution to (3.14),

we need to solve the equation

F(w,z,7,s,u) =0, (3.26)
with (w, z) € X,. By examining the properties of F(w, z,7, s, ) for (w, z) € X,. we
find

F(0,0,0,s,u) =0 (s€(=6,1+6),p€(u—24,1n+9)), (3.27)

F(0,0,7,0,u)=0 (r€(=490),pe€(—-46,u+19)), (3.28)

F(n(r,),C(r, p), 7, 0(r, w), p) =0 (r € (<6,6),n € (A-8,F+06).  (3.29)
Define

E(s,p) := D( )F(O, 0,s,u) € L(Y,Y),

w, 2z

that is,

Ly —sv+ (a—-7v) —sv
E(s,p)=|*" (o =) : (3.30)
—(1-=s)v by — (1= s)v+ (@ —0)

We may rewrite (3.30) as

E(s,p) = K(1n) = V(s, 1),

where

Jxu 0
K)o = | ©
0 ud *v
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and

foh J(z,y)dy+sv+ (v —a) sv

V(s,p) :=
(1-s)o JFJ(z,y)dy + (1 - s)T+ (3 — a)

Since ¥ € intX, is a solution of (3.12), The fact that J*?v = (foh J(z,y)dy +v - a)v
immediately implies foh J(z,y)dy + 0 — a > 0 for any z € [0, h]. Therefore, V (s, u)
is an invertible operator on Y and it is a standard consequence of the compactness
of K(u) that E(s,u) is a Fredholm operator of index zero. By the definition of
F, the vector (3(-, 1), —9(-,))T is in the kernel of E(s,u), or equivalently it is an
eigenfunction corresponding to the eigenvalue 0 of E(s,u). By the positivity of v,

zero must be a simple eigenvalue of E(s, i) and
KerE(s, p) = span { (3(-, ), =0(-, #))} = X1 (n)-
Indeed, let (%, T) be an eigenfunction associated with 0. Plugging it into the equation
E(s,p)(u,v)T =0, |

we find
pLn (T +7) + (a — 20)(@ +7) = 0.

By virtue of Lemma 2.1.4, s(uLn + (@ —20)I) < 0. Consequently, uLy + (o —20)1 is
invertible. It follows that u+7 = 0 and (uLny+a—v)u = 0. By Lemma 2.1.2, one sees
that % = ¢v for some constant c. As will become clear late, ker F (s, 1) ® R(F (s, 1)) =
Y. This will confirm that zero is a simple eigenvalue.

Now, let P(s,u) be the continuous linear projection of Y onto X,(u) along the
range of F(s, ) (the range R(F(s, 1)) is a closed subspace of Y of codimension one).

P(s, 1) can be explicitly written as follows:

N5 w=s 52
P(s, ), 2)7 = & ”f"fi(ﬁ;z);”) 20 @) 0 ). (331)
o M
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In fact, we have

R(P(s,n)) = X1(n), (P(s,1))* = P(s,pt), and P(s,p)E(s,p) = 0.

These properties can be verified by a straightforward computation. Formula (3.31)

in particular implies

Yils, ) = R(E(s,)) = {(w,z) evi-s) [ S - s / 5wz = o} |

Also note that (s,u) — P(s,u) is smooth (in the operator norm). Following the

Lyapunov-Schmidt scenario, we now consider the system

P(s,p)F(w, 2, 7,3, 1) 0, (3.32)

(I = P(s,n)F(w,z,7,s,n) = 0, (3.33)

where (w, z) € X, and I is the identity on Y. If u is sufficiently close to z (and we

make & small enough for that to hold for all 4 € (& — 4,z + §), then

ker (s, 1) N X2 = {0}.

It follows that F(s, j) is an isomorphism of X5 onto Y>(s, sz). By the implicit function
theorem, we can thus solve (3.32), which leads to the following conclusion. There

exists §; > 0, a neighborhood U of (0,0) € X5, and a smooth function
(T7 S,,u) = (W(T,S,ﬂ),Z(T, Sy#)) : (_61161) X (_6171 + 61) x (ﬁ - 617;"Z + 61) - X2

such that (w(0, s, ), z(0,s,2)) = (0,0) and (w, 2,7, s, ) € U x (=dy,81) x (=;,1 +
1) x (& — 8,2 + 6,) satisfies (3.26) if and only if (w, z) = (w(7, s, u), 2(7, s, 1)) and

(7, s, 1) solves the bifurcation equation

P(s’ M)F(IU(TY S’ u)’ Z(T1 31 ’t))’ TY S’ u) = 0'
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By (3.28) and (3.29), w and z satisfy

(w(r,0,p),2(7,0,u)) = (0,0), (3.34)
(w(r,o(r, 1), 1), 2(7,0(7, 1), 1)) = (n(7, 1) (7. ). (3.35)

Now, defining £(7, s, 1) by

é(T’ S, ﬂ)(a(v /“)a _6(3 ”))T = P(S,/J,)F(’U)(T, S, /‘)’ Z(T, S, /J'))v T, S, ”)1

the bifurcation equation is equivalent to

&(r,s,u) =0. (3.36)

We immediately have the following solution of (3.25):

§(0,5,1) =4(7,0,4) =&(7,0(7, ), ) = 0. (3.37)

These identities hold because for each of the indicated values of (7, s, ) € (—6;,8;) x
(=01,148,) x (j1— 68y, 1+ 4,), there is a solution (w, z) € U of (3.26); see (3.27)-(3.29).
Recall that from these solutions, the triples (7,0, 1) and (7, 0(7, 1), 1) correspond to
semitrivial equilibria of (4.10); see (3.23),(3.24) and (3.35).

It follows from (3.37) that

E(r,s,p) = s(o(m, 1) — s)7€ (7, 8, 1)

for some smooth function &,(r,s, ). Solutions of (3.36) different from (3.37) are

found by solving

El (Ta S, ll) =0. (338)

Observe that
87'5(07 S, /L) = 5(1 - 3)61(07 S, “)v
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as 0(0,u) = 1. The derivative on the left-hand side is computed from

(a(')/")y _?('v“))a‘rg(ow 3?/") = aT(P(S’#)F(w(T) S’/‘)w Z(Tv S, ’l'))a TVS?”))IT =0
= P(s,u)Fr(0,0,0,s,u) + P(s,u)E(s, p)(wr, 27)

= P(s,u)Fr(0,0,0,s,pu)

(recall that R(E(s,p)) = ker P(s, u)). Using (3.31), we find

(1= s) fi B2

P(s7“)FT(01 O’ O)Sv“) = P(S,#)(Sﬂa(yﬂ)ﬂ)T = i (17(1“)1 _5(.’#))(

L
Thus
, _s(l- )M
O
ie.,
60,5, 1)l — 7 = ) (3.39)

etin)
To complete the proof, consider first the case M(n) # 0. Making 4, smaller, if

necessary, we infer from (3.39) that (3.38) has no solution in (—6;,8;) x (—d,,1+
81) x (@ — 6y, 11 + 8;). This implies statement (i) of Proposition 3.2.1.
Now assume M () = 0. Then

) M@
€ (0, s, 1)\ e =} foh 52(z, i)

If M'(z) # 0, the implicit function theorem implies that for some §, > 0, all solutions
of (3.38) in (—8y,0;) x (—6y,1+46,) x (fz — 6. i + J,) are given by

p=m(r,s), TE(=b2.02), s€(=0b2.1+5),

where m(7,s) is a smooth function satisfying m(0,s) = . Thus, in addition to the

solutions given by (3.37), the bifurcation equation (3.36) has the family of solutions
{(r,8,m(7,s)) : T € (=02,02), s€(=dp1+ 52)}- (3.40)

In this family, the point (7,0, m(7,0)) is also contained in the set of solutions found

in (3.37), and it corresponds to the semitrivial solution (0,7(-,u)) of (4.10) with
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u = m(7,0). Next we look for points (7, s, m(7,s)) in the family corresponding to the

semitrivial equilibria (u(-, g, 7),0). We see that s and 7 are found from the equation
s = o(r,m(r,s)). (3.41)

Since 0(0,1) = 1, for 7 =~ 0 there is a unique solution s = 3(7) of (3.41), and
it depends smoothly on 7. Hence for each fixed 7 =~ 0, (7,5(7),m(7,5(7))) is a
point contained in the family (3.40) which corresponds to the semitrivial solution
(u(-, p,7),0) of (4.10) with pz = m(7,3(7)).

Using the scaled variable 5 = s35(7), we define

u(r,s) = sv(-,m(r,5s)) +w(r,s,m(r,s)),
v(r,s) = (1-29)0(-,m(r,3))+ z(r, 5, m(7,5)),
u(r,s) = m(r,s).

These are smooth functions of (7,s) € (—§,6) x (=4, 1+46) if é is sufficiently small, and
(u(r,s),v(r,s)) is a solution of (3.14) for u = m(r, s). These solutions together with
the semitrivial equilibria contain all solutions of (3.14) in a small neighborhood of I'; x
{u} for 7 € (-6,6). The relations (w(0,s, i), 2(0,s,u)) = (0,0), m(0,s) = g, and
5(0) = 1 imply (3.18). The correspondences between the solution (7,3(7), m(7,3(7))),
(7,0, (0, 7)) of (3.36) and the semitrivial equilibria, as discussed above, imnply (3.16),
(3.17). This completes the proof.

Next we consider the stability of coexistence states on the curve ¥ given in Propo-

sition 3.2.1. A crucial step is to analyze the corresponding linear eigenvalue problem

plne + (@ +70 = 20— v)p + (—u)Y = Ap
BLNY + (—v)e + (e —u— 2v)Y = Ay

where (u,v) is the coexistence state of (4.10). When 7 = 0, we have (u,v) =

in [0, A, (3.42)

(sv, (1 — s)v) and (3.42) has an eigenvalue A = 0, the corresponding eigenfunction

being (v, —v). Let N(r,s, ) be the linear, bounded operator defined by
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N(7,s,u1)(p ¢)T — plye + (a+ 78 - 2u—v)p uwp
1S,y ’ v ”LNII) + (a - 21))1/; ’

it is easy to see that 0 is an eigenvalue of N(0, s, ) with corresponding eigenfunction
being (v,7). Moreover, 0 is (algebraically) simple and equal to s(N(0,s,u)). By
spectral perturbation theory, for |7| < 1, N(7,s, ;) has a simple eigenvalue, denoted
by A(r,s), such that lim,_o A(7,s) = 0, and A(7, s) corresponds to an eigenfunction
in the interior of Y,. Furthermore, we can show A(r,s) = s(N(r,s,u)). Hence the
sign of A(7,s) determines the stability of coexistence states on X. (For more details,
see Appendix). Note that

A7,0)=A(7,1)=0 (3.43)

for u(7,0) and pu(7,1) are bifurcation points (points of intersections of £ with the
branch of semitrivial solutions).

By straightforward but tedious computation, we can obtain a formula for A(7, s)
(the proof is given in the appendix). For the formulation we introduce some nota-
tion. Take the linear subspace spanned by ¥ to be © and let ©+be its orthogonal

complement in H. We have the self-adjoint operators defined on H

L = ply+a-7
L—-v = Ly +a-20.
Notice that £ is a Fredholm operators of index zero on H and 0 = supy, =1 (£Lw, w)
is the principal eigenvalue of £ (the eigenfunction is v). By Lemma 2.3 and 2.4, L -7

has the bound inverse (£ — 7)~'on H. Now we define £~ on ©* by setting L~!¢ = ¢

if and only £ = ¢ and ¢,¢ € ©L. Then we have the following results about A(7, s).

Proposition 3.2.3 For 0 < s <1land 0 < 7 < 1, the following staternent hold:
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(i)

h
ff [ sl - - e s)r} ,
oV

where C(7, s) is some constant uniformly bounded for s € [0,1] and 7 <« 1.

M7,5) =s(s = 1)72 {

(if) With z; as in (3.10), one has

1 h
1(s) = ——= 10[2s(L — 1)1 (137) + (1 — 25)L™1(0D)].
M) = g [ HR(E = )7 ) + (1~ 20750
Note that, by our assumption, M () = [, 592 = 0, so that £L71(87) is well defined.

Proof. see the appendix.

Lemma 3.2.4 The following holds for any nontrivial ¢ € ©+:

/Ohgp[(ﬁ -0) ' =L Mg >0 (3.44)
Proof. For t > 0 let
we) = | oL~ ).
Due to the fact that £ — tv is invertible for t > 0, h is well defined. We claim that h

is strictly increasing. To show this, we set ® = (£ — 77)~!p . With resolvent , it is

easy to see that

b SR .
o (L —to)” (vP). (3.45)
Then
dh h 90 h 1
7=/ wa—/o o (L — 7)1 (50)

h
= [we-maee

h
= /6<I>2>0.
0



The last inequality is strict since ® # 0. In the following we show that

h
lim, _, o+ h(t) = / oLy (3.46)
0

for every ¢ € O+, from which (3.44) follows. To prove (3.46), let Su := vu for
u € H. We always assume that 7 > 0 is small and C; are strictly positive constants

independent of 7. Then we have £~!0+ ¢ 6+ and

Ic™' < ¢y, (3.47)
(—Lg,9) 2 Callglly, ¢ €0t (3.48)
IIS|| < Cs, (3.49)
(Sv, %) > Cill¥llh, ¥ € H. (3.50)

Consider the equation
(L-tS)p=g, geO (3.51)

We first show that

llella < Csllglln. (3.52)

To prove this, set ¢ = ¢ + 1, where ¢ € R and y» € ©1. Substituting in (3.51), we
have

Ly — tcSU - tSY = g. (3.53)

Take the inner product with ¥ and use (3.49) and (3.50)

le| = 1(5¢,0)/(Sv, v)| < Csl[¥l|n (3.54)
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Take the inner product of (3.53) with —¢ and use (3.48), (3.49) and (3.54), we get

Collll% < (=L, ¥) = —(9,%) — te(ST, ) — t(S¥,¢) (3.55)

llgllallelle +t(Cs + DCsllwllZ, (3.56)

IN

which implies that

Ille < Crllglln (3.57)

if ¢ is small enough. Estimate (3.54) and (3.57) prove (3.52).

For ¢ given by (3.51), we set

1 -1 (SL1g,7) . .
0= t(,p LT g+ 5.0) V). (3.58)
It is easy to see that
(L-71S)0=h (3.59)
where
SL'g,0) .
h=SL"'g- —————( = Sv.
£ smay o

Clearly, ||h]|ly < Csllgllu. Applying (3.52) to (3.59), we also find ||0||g < Cs||h||y <

Collglla-

Finally, for any g € 6+, from (3.58)
h(t) = (9,¢) = (9.L7"g) + t(9,0).
Since |||y is bounded, we find that lim,_¢+ h(t) = (9. £L7'g). This proves Lemnma.

Theorem 3.2.5 Assume foh a(x)dr > 0. For any ji > 0, the following statements

hold true:
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(i) If M(z) # 0, then there exists ¢ > 0 such that for p € (i — ¢, + €) and
T € (0,¢€) problem (4.10) has no coexistence states.

(ii) If M() = 0 and M'(2) # 0, then for any sufficiently small € > 0, there exists
7 = 7(e) > 0 with the following property. For every 7 € (0,7), there exist u < & with
1,7 € (i — ¢, i+ ¢) such that for any p € [ji — ¢, i+, (4.10) has a coexistence state
if u € (u, £); moreover, any coexistence state, if it exists, is asymptotically stable.

Proof. We have pu(r,s) = i + 7511(s) + O(7%). By Proposition 3.2.3 and lemma
324, for p =~ ji and 7 = 0,p(,-) is strictly monotone. It follows that the first

statement of theorem hold with

p= inf p(r,s), m= sup pu(r,s)
S € [0$1] SG[O,].]

and that the coexistence state on the branch ¥ is unique for each fixed x4 € (y, ). By

Proposition 3.2.3 and Lemma 3.2.4, A(7,s) > 0 for small 7, and thus the coexistence

state is stable.

3.3 Appendix

Proof of Proposition 3.2.3. The proof of proposition 3.2.3 is given here after some
computational results, throughout, (u, v) will be a coexistence state of (3.14), u;, vy, o
are given by (3.19), (3.20) and (3.21) respectively, and ((,<) is the solution of (3.42).
Throughout the appendix, we assume that M (z1) = 0, where M is given by (3.13).

Note that ( =7, ¢ = —v for 7 = 0.

Lemma 3.3.1 The following statements hold
(1)
h
/ Puv = 0. (3.60)
0
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(12)
h h
A(7,s) = 7'/0 B(Cv + cu)//0 (Cv +<u). (3.61)

Proof.
(i) Multiply (3.14a) by v, (3.14b) by u and subtracting, we obtain

pu(Lyuv — Lyvu) + 78uv = 0. (3.62)

The result follows from integrating (3.62) over (0, k).
(ii) Multiplying (3.42a) by v, (3.42b) by u and subtracting, we find

A7, 8)(Cv —su) =v[uLn(+ (a+ 78 —u —v)] — u[uLlns + (a —u —v)]. (3.63)

Integrating (3.63) over (0, h) and using (3.14) we deduce that

h h
/\(‘r,s)/o (Cv —su) /0 {lLyvv+ (@+ 78 —u—1)] —s[ulnv + (@ — u —v)]}

h
= T/ B(Cv + su).
0
Set
A= (L -0 (@mLnd), (3.64)
B = (L - 7)"(8v), (3.65)
C = L7 (6v), (3.66)

and expand the eigenvalue (, ¢ in the form

< = ﬂ+ TC](',S) + T2C2(', T, S), (367)
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¢ = =0 +76(-8) +7%0(-, T, s). (3.68)

Lemma 3.3.2 For some v; € R, we have

(i)
uy = —s[A+sB+(1-3s)C]+ 7, (3.69)
vy = —(1-35)[A+sB - sC] —m7, (3.70)
(ii)
(i =-A—-25B+ (25 —1)C + 0, (3.71)
G =A+(25s-1)B—- (25 -1)C — y,0. (3.72)
Proof.

(i) From direct calculation, the following hold in [0, h]

[,I,LNU] + (/3 - f)ul + 9‘(’)\(/3 ) vl) + SﬁLNE =0, (373)

uLyvy + (8 —0)vy + (1 = 8)T(—uy —vq) + (1 = s)Lyv = 0. (3.74)

Multiplying (3.73),(3.74) by (1 — s) and s respectively, and subtracting, we find that
L[(1 = s)uy —svy] +s(1 - )0 =0,

from which it follows on taking the inverse and using definition (3.66) that
(1= s)u; — svy = —s(1 = s)C + y37. (3.75)

Adding (3.73) and (3.74), we have in a similar manner
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u +v=-A-sB. (3.76)

Then (3.69) and (3.70) follows from (3.75) and (3.76) by straightforward manipula-
tion.

(ii) Since A,(0,s) = 0, it is easy to check that ¢; and ¢, satisfy the following

L:CI - Sﬁ(cl + C]) + ZIILNE?+ i)\(ﬂ —-u) — v,) =0, (377)

l:(l - (1 - S)‘E(C] + C]) - ﬁlLNiI+ 6(211 + 'l)l) =0. (378)
Adding (3.77) and (3.78), by an argument similar to that used previously, we find
G+a=-B (3.79)

By (3.76), u; + v; = —A — sB. Substituting this and (3.79) in (3.77), we obtain
the equation which determines ¢; up to an additive term y4v. Using definition (3.64),
(3.65) and (3.66), it is easy to see that ¢; given by (3.71) satistics that equation, which

verifies (3.71). this and (3.79) yield (3.72).

Lemma 3.3.3 The following holds:

/ ' BT[2A4 + 2B + (1 - 25)C] = 0. (3.80)
0

Proof.
By (3.19)-(3.21) and (3.60),

h h
0= / Bur = ’r/ BT[svy + (1 = s)uy] + O(7?)
0 0

. h oy~
since fo Bv% = 0. Therefore

h
/ prfsvr + (1 = s)uy] = 0. (3.81)
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The result follows from (3.81) together with (3.69)-(3.70).

Proof of Proposition 3.2.3 In the following, C;(,s) denote quantities that are

uniformly bounded for s € [0, 1] and small 7. From (3.67) and (3.68),

h h
/ (Cv—cu) = / 9% 4+ 7Cy (T, 5). (3.82)
0 0
We now use (3.69)-(3.72) to obtain
h h h
/ Blv+eu) = (1- 23)/ 00 + ‘r/ By —uy + (1= 5)C + s61] + 72Cy(7, 5)
0 0 0
h
=7 / Bo((4s — 2)A + (652 — 45)B + (65 — 1 — 65%)C] + 72C3(7, 8).
0
From this and (3.80),
h h
/ B(Cv +u) = 2s(1 — s)‘r/ B(C — B) + 12Cy(7, s). (3.83)
0 0

As a consequence of (3.61), (3.82) and (3.83), we have
25(1—s) [ BO(B - C)
I

Since A(7,0) = A(7,1) = 0 for all 7 (see (3.43)), we have C5(0,7) = C5(1,7) = 0.

AT, 8) =71

+7C5(r, 5)). (3.84)

This implies that we can write Cs as Cs(7,s) = s(1 — s)Cg(7, s). This proves part (i)
of Proposition 3.2.3.

Part (ii) follows directly from Lemma 3.3.3 and the relation

A= (L —-70)"Y(LyD) = —[1 T,
The latter equality is obtained by differentiating the equation (3.12) for ¥ with respect
to .

In the remainder of the appendix, we simplify the notion by writing

N(t) = N(r,s,1), A(7,8)=X(7).
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Lemma 3.3.4 N(7) is a resolvent positive operator on'Y and s(N(7)) = A(7).

Proof. We first prove that N(7) is a resolvent positive operator on Y. Choose

n € p(N(7)) such that

h
> max J(z,y)dy+4 max (la(z)|+ |8(2)]}.
0> 4, o [ty ra) max (o@)]+15)

It is sufficient to show that (N (7) — AI)(w, z)T < 0 impliesw > 0 and z > 0if A > 7.

Let w* = max(0,w) and w~ = max(0, —w). z%*,z~ are defined similarly. Then we
have
pLyww™ + (a+ 70 — 2u — v)ww™ +uzw” — Aww~ <0 (3.85)
and
pLlyzz™ + (@ —u—2v)zz7 +vwz” — X227 <0 (3.86)

Integrating (3.85) and (3.86), we find

—(plyvw ™, w)p—((a+7-2u—v)w™,w )g—(vz",w )p+(Aw™,w )y <0 (3.87)

and

—(Lyz", 2 )y — (e = 2u—v)z7, 27 )y — (vw™, 27 g+ (A27,27 )y <0 (3.88)

Adding (3.87) to (3.88) and Multiplying the both side of resulting inequality by —1,

we have

(bLy(w™ +27),(w™+ 27 ))u+ ((a+ 76 —2u —v)w™, w7 )y
+(a—=2u—v)z7, 2 g+ (u+v)(w™ +27), (W™ +27))y
“Mw™ +27),(w™ +27))y

>0



With the positivity of u and v, we get

(uLn(w™ +27).(w™ +27))u + 2(la] + 18] +u+v)(w™ +27). (W™ +27))u

- Mw™ +27),(w"+27))y >0
and so

h
max J(z,y)dy+4 max a(z)|+|B(x)| - A} ((w™+27), (w™+2~ > 0.
(o, [T o udres | ma (o481 N +20), w7+ D
This would lead to a contradiction if w™ + 2z~ # 0 on 2. Thus we have w~ = 0 and
2~ =0o0n Q and hence w > 0 and z > 0 in Q by the continuity of w and z.

We observe that

N(r) = K(n) + W(7)

where

tJxw 0

K()(w, 2)T = !

0 ud *z

and
h
a+70—2u—v- / J(x.y)dy u
W(r)= 0

h
v a—u—2v—/ J(z,y)dy
0

When 7 = 0, as we proved in Proposition 3.2.1, W(0) is invertible and N(0) is a Fred-
holm operator of index zero. Moreover, 0 is an eigenvalue of N(0) with corresponding
eigenvalue (v, 7). By the spectral perturbation theory, for |7| <« 1, N(7) has a simple

eigenvalue, denoted by A(7) such that

lim A7)=0
0()

T —
and

limO(go(r), d(NT=@.0)T inY (3.89)

54



where (p(7),¢(7)) is an eigenfunction associated with A(7). Furthermore, due to

(3.19)-(3.21), we find

h h
limO[(a+T6—u—v—/0 J(x,y)dy)—/\(r)]=a—§—/o J(z,y)dy <0

T —
and so W(r) — wl is invertible for any w > A(7) if 7 is sufficiently small. On the
other hand, with the same reasoning, we see that W(7) is also a resolvent positive

operator and hence s(W (7)) € (W (7)). Consequently, we obtain that

s(W(r)) < A7) < s(N(7))
provided 7 is sufficiently small. Since K'(u) is a positive and compact operator on
Y, Theorem 4.7 in [45] shows that s(N (7)) is an eigenvalue of N(7) associated with

positive eigenfunction of N(7).

Next we show that

Suppose this is not true. Let (®(7),¥(7)) € intX, x intX, be an eigenfunction
corresponding to s(N(7)). For any t € R*, define ¢, = (¢(7) — t®(7)) and ¢4 =
(¢(7) — t¥(7)). By virtue of (3.89), for sufficiently small 7, () > 0,¢(7) > 0 and
then there exists ¢ such that ¢; > 0,¢; > 0 for ¢ < ¢, vr >0, d’f > 0 and either w5
or ¢; has a zero in [0, ). We may assume without loss of generality that there exists

) € [0, h] such that <pz(r1) = 0. Then

(nLnwz) (1) + (@ + 76 = 2u — v)(pg)(T1) + (udg) (1) — s(N(7))pz(x1) <0
and so
h
“/o J(x,y)pi(y)dy < 0. (3.90)

Since /.tfoh J(z,y)¢i(y)dy > 0, (3.90) implies ; = 0 and hence ¢; = 0, which is

impossible. Therefore, A(7) = s(N (7)) and the proof is completed.
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Proposition 3.3.5 Assume that a(z) is Lipschitz continuous in [0,h] with

foha(z)dz > 0 and p > 0. Then for each p
pLyu +u(a(z) —u) =0 (3.91)
has a unique solution in int X, which continuously depends upon p.

Proof. According to Lemma 3.1.5, s(;:Ly + al) > 0. Notice that Mnax la(z)| +1
is a supsolution to (3.91). Thus it follows from Theorem 2.1.12 tha—t E3.91) has a
unique solution w(y) in intX, for each p > 0. Furthermore, in light of the proof of
Theorem 2.1.6, it is evident that w(u) is also Lipschitz continuous in [0, h]. To show

the continuous dependence of w upon p, we define G: R x X — X by

G(p,u) = pLyu + u(a(z) — u).

Clearly, G is C in both x and u and each zero of G is a solution to (3.91). Now let &
be an arbitrarily fixed positive number. A linearization of G with respect to u leads

to the operator A: X — X

Au = pLyu + u(a — 2u).

By Lemma 2.1.3 , s(A) < 0. Consequently, A is invertible and so there exist a
pair (g, u(x)) in a small neighborhood U of (i, w(iz)) such that G(u,u(u)) = 0 and
li_I’I‘lj [lu(p) — w()|] = 0 in term of the implicit function theorem. Here U C (i —
:;, jt + 6) x X for some § > 0. By the positivity of w(jz), u(s) is also positive if p is
sufficiently close to 1. Then the uniqueness of w(u) implies w(u) = u(p). Thus the

proof is completed.
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CHAPTER 4

The Cauchy Problem for a

Nonlocal Phase-Field Equation

Consider the following problem

ug = / J(z - yu(y)dy - / J(z - y)dyu(z) - f(u) +16, (41)

(60 +lu); = 06 (4.2)

in (0,7) x Q, with initial and boundary conditions

u(0,z) = up(x), 6(0,x) = bo(x), (4.3)
o m=0, (4.4

where T > 0, Q C R" is a bounded domain. Here 0 represents temperature,u is an
order parameter, [ is a latent heat coefficient, the interaction kernel satisfies J(—x) =

J(z), and f is bistable.

4.1 Existence and uniqueness
In order to prove the existence, we make the following assumptions

(A1) M =sup [, |J(z — y)|dy < oo and f € C(R).
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(A2) There exist ¢ > 0, co > 0, ¢ > 0, ¢4 > 0 and r > 2 such that f(u)u >

alul” = czlul, and |f(u)| < eslul™! + .

Note that (A,) implies

F(u) = -/0“ f(s)ds > cs|u|” — csu| (4.5)

for some positive constants cs and cg.

We prove the existence of a solution to (4.1)-(4.4) by the method of successive
approximation.

Define 8 (¢, z) := y(x) and for k > 1 (u¥, §*)) iteratively to be solutions to the

system

W = / J(z - y)u® (y)dy - / J(x = y)dyu® () — Fu®) + 165D, (4.6)
[9]

0

61 — AW +6®) = — ) 4 gD (47)

in (0,T) x Q, with initial and boundary conditions

u(k)(O,x) = up(r), B(k)((),x) = y(x), (4.8)
06k
Wltm =0. (4.9)

Lemma 4.1.1 Withk =1, for anyT > 0, if uy € L=(Q), and 6y € H'NL>®(Q), then
there erists a unique solution (u,8) to system (4.6) -(4.9). Furthermore, u}), ugl) €

L=((0,T), L®(Q)) and 6V € L®((0,T), L*(Q)) N L3((0,T), H*(Q)).

Proof. Since the right hand side of equation (4.6) is locally Lipschitz continuous in

L>((0,T), L>(f2)), local existence follows from standard ODE theory. In order to



prove the global existence, we prove global boundedness of the solutions. For any

p > 1, multiplying equation (4.6) by |u("|P~!u and integrating over 2, we obtain

p+1d’/|u(”|”“da:+/f(um )V P udz
=//J(:L' — y)uM () [u® PV drdy (4.10)
- //J(x-y)u“)(x)lu(”I”'lu(l)dxdy+l/0(°)|u“)|"'lud:c.

Using Holder’s and Young’s inequalities and conditions (A,) and (Az), we have

|u(l)|p+ld’£+('/|n(l)|p+r Yudr

< Cp)Ci,

1
where C) is a constant independent of p and limp — coC(p)P +1 < ¢, with C,
independent of p.

We need the following version of Gronwall’s lemma (see Temam [44]):

Lemma 4.1.2 (Uniform Gronwall’s inequality) Let y be a positive absolutely contin-

uous function on (0,00) which satisfies

Y +uym <o

withm > 1,v > 0,6 > 0. Then, fort >0, we have

1 -1
m o+ (y(m - 1)ym -1, (4.12)

RIS

y(t) < (=)m

Using this and (4.11), we have
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p+1 -(p+1)

||n(”||£ﬂ < (C(]))Cf“)p +r-14 (Ctr-=2)t) 7—2 . (4.13)
Therefore,
1 p+1 -1
e ]lpsr < CE)PFHL(EC)PFT— 1 +(C(r-2)t)7 — 2. (4.14)

Letting p — oo, we have

lu |l < C. (4.15)

for some constant C.

Also from condition (A;) and equation (4.6), we have
llufV |l < C. (4.16)

Since equation (4.7) is a linear parabolic equation, by inequality (4.16) and stan-
dard parabolic theory, we have 8 € L*((0,T), L>(2)) N L2((0,T), H2(52)).

By induction, there exist unique solution (u(¥, (%)) of system (4.6)-(4.8). Further-
more, u(®, u{¥ € L=((0,T), L=()) and 6% € L=((0,T), L>(Q))NL((0, T), H*())
for every k. Now we prove that there exists a uniform bound for u*, u (%) and o).

Multiplying equation (4.7) by |§®¥|P~16(*)(z) for p > =, and integrating over €,

51
we have

/ |6®)P=16®gdz + / V(e®P-to®) . ve®dr + / 6% [P+ dz

=1l / / J(x = y)u® (y)|o® P~ 16N dydz + 1 / Fu®)|e®p-1etgp (4.17)

+l// T — )u(k)(:lt)|0(k)Ip'lﬁ(")dyd:c+ /Ig(k)lp-lg(k)g(k Ddr.
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Since

p+1

- 2

4p

(p+1)

S0P VO = ——=V(|6]P0) - V8, (4.18)

using Holder’s and Young'’s inequalities, we obtain

p+l 1
1
P dr + —— /Ve“" 2 2d1:+—/ ok P1dy

<allp) / |u"‘>|*’+'dx+C2(z,p> / k=D gy 4 / 1 @®)pde

for some positive constants ¢;(l,p) and c;(l, p) which depend only on p and .
Multiplying equation (4.6) by |u(")|(r —1p—1,® and integrating over Q, we

obtain

w(r=Dp+1 ®y1, 01 (r = p = 1,k
1_1p+1d'/| ( dz + [ F®)u®)] dx
// x —y)u®(y) [u(k)l(r Dp— lu(k)(l;xrdy+1/H(k“l)|u(k)|(r = Dp =104y
- //J(I - y)u(k)(r)lu(k)l r=1)p- 1u“‘)dzdy

(4.20)
Condition (Aj) implies
f(u)|u|(r -p-1, > ¢y |u|mDEHD _ 02|u|(r —Dp (4.21)
and
PP < erfu "= DPHD) 4 (4.22)

for some positive constants ¢ and cg. From equation (4.20), inequality (4.21), Holder’s

and Young's inequalities, we have
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S S TGRS VR SN Ry WETICE VRS VR
(r—1)p+1dt 2

(4.23)
<) +alnml) [1000prids

for some positive constants ¢(r,p) and ¢ (r, p,!).

Integrating (4.23) from O to t, we obtain

1) 1/| Wy (r=Dp+1g, 4 & //| W) = 1)(p + 1) gy
p+

<c(r,p)t + cl(r,p,l)/ /0““”]”“(19: +/|u0| r=1p+1 (4.24)
0
t
< c(uo, T, 7,p) +c1(r,p,l)/ /0("“1)|”“dr
0

for some positive constants c(uo, T, 7, p) and ¢, (7, p, ).

Integrating inequality (4.19) from 0 to t, using (4.22) and (4.24), we have

t
/ 1607+ dz < c(uo, b0, p, 7,1, T)(1 + / / 6%~ P+ dzxds) (4.25)
Y] 0

for some positive constant ¢(uo, Ao, p, 7,1, T) which does not depend on k.

By induction, we have

I6®)|P+dz < cet (4.26)
Q

for some positive constant ¢ which does not depend on k.

Similarly from inequalities (4.23) and (4.26), we also have

[u®PHdr < C, (4.27)
[

and

Alf(lt(k))|p+ldf <C (4.28)
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for some positive constant C which does not depend on k.

Equation (4.6), inequalities (4.26)-(4.28), and Young’s inequality imply

/ [ Ptldz < C (4.29)
1]

for some positive constant C' which does not depend on k.

This implies —lu{" + 6%~V € LP*1((0,T), LP*}(%?)) and

| = tuf? + 6% V| < C (4.30)

for some positive constant ' which does not depend on k.

The following lemma may be found in [29].

Lemma 4.1.3 Consider the following linear parabolic equation:

6 —ANO+6=g in (0,T) x Q,

O(Oa .'I?) = 90(I)a (431)
06
a—nlasz =0.

Ifp > 2 g € LP((0,T),LP(Q) and by € L®(Q) N W'Q), then 0 €
L>((0,T), L>(R)), and we have

T —_
sup (161l < Crax{{Baller ([ l9I)P, (4:32)
O0<t<T 0

where || - ||, denotes the norm of L?((0,T), L?()).

Applying Lemma 4.1.3 to equation (4.7), and using inequality (4.29), we have

16W]]% < C. (4.33)
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Multiplying equation (4.7) by 0;, and integrating equation (4.7) over €2, using

Holder and Young’s inequalities and (4.33), we have

T
/0 /n 165" 2dzdt < C (4.34)

for some constant C which does not depend on k.

Equation (4.7), inequalities (4.29), (4.33), and (4.34) yield

T
/ / |A0® | 2dzdt < C (4.35)
0 1]

for some constant C which does not depend on k.
Since ||6¥)||, < C, using a similar argument to that in the proof of Lemma 4.1.1,

we have

k¥ < C. (4.36)

and
)]l < C (4.37)

for some constant C' which does not depend on k.
Next we prove the convergence of {¥)} in C([0, T}, L(f2)).

From equation (4.7), we have

@K+ _ gy, _ A(6%+D — gk 4 (gk+1) _ g(kyy
(4.38)
= 1D ), 4 (g% — glk-1)

Multiplying equation (4.38) by (%+D — g*)) and integrating over , using

Holder’s and Young’s inequalities, we have
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ldi / 047 — 6 de + / V(%D — o®))Pdr + l/(9(’°+1> — g2
2 dt -

(4.39)
<2 / luf* — u Pz + / 6% — gD |24z
Since ||u®||, < C, from equation (4.6), and condition (A;), we have
/ [u*V) — u®) 2z < C(T) / |6®) — 9%~ D 2de, (4.40)
and
J1768) - )iz = 17000+ (1= Nu®) (s - u)da
(4.41)

<C(T) / [u® D) — 4 ®) 24,
Therefore, equation (4.6), and inequalities (4.40)-(4.41) imply
/|n§k+l) - 1l,§k)|2d.'l,‘
<4 [1 [ e =) - uaypaz +4 [([ I = gt - u®)ar
+4 / (f(u*D) — f(u*))2dz + 4 / (0% — gk-1)24y

< Cy(T) / 16 — gk=D|2dy

(4.42)
for some positive constant C;(7T) which does not depend on k.
Inequalities (4.39)-(4.42) yield
% / o+ — ") 24y < C(T) / 0% — g*=D) 2y (4.43)

for some positive constant C(T') which does not depend on k.

By induction, this implies
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(k-1)
/ 6% _ g2y < Zt)_ 5 / / 16" — 6°|dzds. (4.44)

So 6% is a Cauchy sequence in C([0,T], L%(2)). Therefore, there exists § €
C([0,T), L*(£2)) such that 6%) — ¢ in C([0,T], L*(?)). From (4.33)-(4.35), we have

16l < C, (4.45)
T
/ / |A62dxdt < C, (4.46)
9]
° T
/0 /n |6;|dzdt < C. (4.47)

Also from (4.36), (4.40)-(4.42), we have

u®) = uin C((0,T), L*(Q)), (4.48)
ul) - wy in C((0, T, LX), (4.49)
fW®) = f(u) in C([0,T), L3(9)). (4.50)

Therefore, letting k — oo in equation (4.6), we have

uy = / J(x = yyuly)dy - /Q J(r = y)dyn(x) — f(u) +10 (451)

fort > 0and ae. x €.
Since u{¥) — uy, 6% = g,, AO® —~ AG in L2((0,T), L2(R2)), letting k — oo in
t ty Yt t

the weak form of equation (4.7), we have

T T
/ /(lut + 6;)E(t, x)dzdt = / DOE(t, x)dxdt (4.52)
0o Ja o Ja
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for £(¢,z) € L((0,T), L3(Q)).

Since it is true of 8%), we also have

/ ! / n(t)(Dp + V8 - Vy)drdt = 0 (4.53)
0 9]

for any p € W%(Q) and n € L%(0,T). This implies g% =0a.eon (0,T) x 99.

Also we have

/n|0(0, ) — g|%dz < 3(/n 160, z) — (¢, z)|?dx + /n 0(t, z) — 60(¢, z)|%dx
®)(1, 2) — O|2dx
+/n|0 (t, ) — Bo|dr)

Since 8% (t,2) — 0 in C([0,T), L*(Q)), and since §%)(¢,x) and 8(t,:) are con-

(4.54)

tinuous with respect to t in L2(Q), by taking k arbitrarily large we can see that
6(0,z) = 6y a.e. in Q. Similarly, u(0,z) = ug a.e. in Q.

Equations (4.51)-(4.54) imply that » and 6 are solutions of system (4.1)-(4.4) in
a weak sense.

To prove uniqueness and continuous dependence on initial data, let ;0 € L>*(Q)N
W12(RQ), uip € L®(Q), and for R > 0, ||0io]|= < R, ||uio]|L~ < R, wherei =1,2.

Let u; and 6; be solutions corresponding to initial data wu;y and 6o, then we have
[16:ll.= < C(T, R), and |[ui||1= < C(T, R).

Denote v = u; — uq, w = 6, — 0. We have

v = AJ(::: —y)(y)dy — LJ(:E —y)dyv(xr) = ['(Auy + (1 = Nug)v +lw,  (4.55)
(w+ ) =Lw (4.56)

in (0,T) x Q, for some A(z,t) € [0,1]. We also have initial and boundary conditions

v(0,z) = vo(z), w(0,z) = wo(x), (4.57)
2 =0 (458)
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Multiplying equation (4.55) by vy, integrating over §2, multiplying equation (4.55)
by v, integrating over 2, multiplying equation (4.56) by w, integrating over 2, we

have

- /(f,(’\ul + (1 = Nug)vyy + lwyy)dz,

/ vy = / /ﬂ J(z — y)v(y)dyvdz — /,, Iz = y)dy? N
- /(f'(x\ul + (1= Nup)v? + lwv)de (4.60)

/(wtw +lyyw) = — / |Vw|*dx (4.61)

Adding equations (4.59)-(4.61) together, using Holder’s and Young'’s inequalities,

we have
d 2, .2 2, .2
T [w? + v*]dz < Co(T, R) [ [w* + v*|dz (4.62)

for some positive constant Cy(T, R).
Inequality (4.62) and Gronwall’s inequality imply the uniqueness and continuous
dependence on initial data of the solution of (4.6)-(4.7).

Denote Q; = (0,T) x 2, we have the following thcorem:

Theorem 4.1.4 If assumptions (A,) — (Aq) are satisfied, ug € L*() and by €
L™ N HY(R), then there exists a unique solution (u,0) € C([0,T],L=(Q)) to the
system (4.6)-(4.9) such that u; € L*(Qr), and uy, 0y, A0 € L*(Q7).

4.2 Asymptotic behavior of the solutions

In this section, we consider the long term behavior of the solution and prove that

there exists an “absorbing set” in some affine space.
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Multiplying equation (4.1) by u;, multiplying equation (4.1) by u, multiplying

equation (4.2) by 6, and integrating each over ), we have

/n|ut|2da;=/‘;‘[]J(.’L‘—y)u(y)ut(z)dydx._/Q/QJ(I_y)u(I)Ut(x)dzdy .
+ / J(u)ugdz +1 / Ouydz, (4.63)
a a

%% /n fuf*dz = /n /n J(@ = y)u(y)u(z)dydz — / / Y ppula)ddy (4.64)

+ f(u)udz-i—l/eud;r,
Q0 Q

and
—— [ |6]*dz +1 [ wbdx + [ |V6|°dr = 0. (4.65)
Since
% = [(u)uy, (4.66)
fu > c|u]” = colul, (4.67)
F(u) + cglu| > clu", (4.68)

adding equations (4.63)-(4.65) together, and using Holder’s and Young's inequal-

ities, for any small ¢ > 0 we have

/Iut|2dr+ /|u|2(lr+(1/|u| dx + /|9|2dr

44 & [(F) +calul)dz + / V6|2dz (4.69)
Q

SC(G)/|u|2dx+—/|ut|2dx+f/|0|2dx+c.
Q 2 Ja Q0
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From Poincare’s inequality [(6 — 8)%dz < C [ |V6|%dz, where § = |T11'| J 6dz, and

since [(6 + lu)dz = Iy = [(8o + lug)dz, we have

/ 6%dz < C(Iy) / u’>+ C(lh) +C / |V6|%dz. (4.70)

Denote Y (t) = [, |u]*dz + [, |0*dx + [,(F(u) + cgu|)dx. Using Holder’s and
Young’s inequalities again, (4.68), (4.69) and (4.70) yield

dY
T Ci(lo)Y < C2(lo) (4.71)

for some positive constants C(/p) and C,(Ip) which do not depend on initial data.

Gronwall’s inequality implies

Y < Cy(Ip) + Yoe G0t (4.72)
We have:

Theorem 4.2.1 There ezists a constant C(ly) and a time to(ly) which does not oth-

erwise depend on initial data such that

[[ull» < C(fp), (4.73)

19112 < C(Io) (4.74)

for t 2 to(’o).
Next we estimate ||V0||2.

The following lemma may be found in [44]
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Lemma 4.2.2 Let g, h, y be positive locally integrable functions on (ty, 00) such that

y' s locally integrable on (ty, 00), and which satisfy

d
d_?tl <gy+h forl>1y

t+1 t+1 t+1 (4.75)
/ g(s)ds < ay, / h(s)ds < ay, / y(s)ds < a3
t t t
for t > to, where a,, as, a3, are positive constants. Then
y(t +1) < (az +az) exp(a;) (4.76)

for any t > to.

Multiplying equation (4.2) by 6;, and integrating over 2, we obtain

/ +§E/|V9|2dr—/( l146;)d: (4.77)

Holder’s and Young’s inequalities and (4.77) imply

%/|V6|2d1‘ < c/(ut)zdx. (4.78)

By inequality (4.69), we also have

t+1
/ / IVé|2dz < ¢ (4.79)
t %}

Multiplying (4.1) by w;, integrating over Q, and using Holder’s and Young's in-

for t 2 to(]o).

equalities, we have

;/(ut)zd:c + ;t (F(u) + cglu|)dz < c/uzdx + /02dr +C. (4.80)
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Integrating from ¢ to t + 1, and using inequality (4.69), we obtain

/tHl /(ut)2dr <c (4.81)

Applying Lemma 4.2.2 to (4.78), using (4.79) and(4.81), we have

for t Z to(lo).

/ |V6|dz < ¢ (4.82)
for t Z to([g) + 1.

Theorem 4.2.3 There exists constants C(ly) and t,(Ip) = to(lp) + 1 independent of

initial data such that

[1V6l]2 < C(Io) (4.83)
for t > t,(Ip).

Corollary 4.2.4 If n = 1, there exists an absorbing set in an affine subspace of

L>® x W2(Q)

Proof. It follows from Theorem 4.2.1 and Theorem 4.2.3 that there exists an absorbing
set in W12(Q) for 8. We need to prove there exists an absorbing set for u in L*.
In fact, since n=1, W'%(Q2) — CA(Q) is compact, there exist constants C3(/y) and

to(1o) which do not otherwise depend on initial data such that

18]l < Cs(Io) (4.84)

for t > fo(]o)
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Using a similar argument to that in the proof of Lemma 4.1.1, we also have

|lufloo < C(1o). (4.85)

for some constant C(Ip) which does not depend on initial data and for t > to(/p)

Since

2 Bluye) = - / wldz — / V6|2dz, (4.86)
(“ 1) 0

integrating equation (4.86) from 0 to /, we have

E(uo, e0) — E(u(t), e(t)) = / / 247ds + /ot /ﬂ V6j2drds.  (487)

From (4.5), r > 2 and the Cauchy-Schwartz inequality, we have

//J(T— (u(z) — u(y) 2d'uiy+/(F(u T)) + 92)
> / / I(a = y)(u(a) = ) dady + s [ fuldz - / coluldz  (4.88)

> 7 / |u|"dx — g

for some constants ¢7 and cg.
Therefore E(u,e) is bounded below, we have F(ug,eq) — E(u(t),e(l)) < C for

some positive constant C which does not depend on t. This implies

2dzds + |V8[2dzds < C. (4.89)
[ fasas 7]

Multiplying equation (4.2) by A#, and integrating over €2, we obtain

|V0|2dx + [A9|2dx = -l u Abdz. (4.90)
2 dt t
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It follows from Holder’s and Young's inequalities that

—‘—i-/IVGIZdI-{-Cl/|A0|2d1‘$02./ lut|*dx (4.91)
dt Jo Q Q

for some constant C) and Cs,.

Since
/ V(6 - 6)[2dz = / (6~ 80) A8 — 6)dz < 116 — Bollal|AB — 60)lle,
Q (%3

from Poincare’s inequality, we also have ||V8||, < C||A8]],.

The inequality (4.91) implies

d
_/ |V0|2d.’l,‘+03/ |V6|2dx < Cg/ |t |Pd (4.92)
dt Jo Q Q

for some constant C;3 and C,.
Claim: [, |V6|%dz — 0 as t — oo.
Multiplying e€?* on both sides of inequality (4.92), and integrating from ¢ to 2t,

we have

< [Vo(2t, )| — e [Vo(, )|

2t (4.93)
SCI/ eca’/lut(s,:r)|2d:cds
t Q
This implies
IV6(2t,)II5 - e~|Vo(t. Il
(4.94)

2t
< (,'1/ (303(’_2‘)/ 1 (s, )2 dds.
t Q

Since [|VO(t,)||3 < C and [ [, [us(s, z)?dzds < C, from (4.89), letting ¢t — oo

in inequality (4.94) gives
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lin [|V6(2t, I3 =0. (4.95)
—00
Since sup,||0||. < C, by inequality (4.89), we have:

Theorem 4.2.5 If (u,0) is a solution of system (4.1) -(4.4), there exists a sequence

ty — oo such that

[] |[)J(x - y)uk(y)dy — A J(z = y)dyui(z) — f(ux) + 16k)?dz — 0, (4.96)

6 — c in W2 (4.97)

for some constant c, where ux(x) = u(ty, ) and 0i(x) = 6(tk, T).

4.3 Global boundedness of the solutions

In section 3, we proved that u and 6 are uniformly bounded with respect to ¢ for
dimension n = 1. In this section, we shall study the global boundedness of solutions
for higher space dimensions if the initial data 6, has better regularity. We prove
that the solution (u(f),8(t)) is uniformly bounded in suitable function space on the
entire interval [0, c0). We are also concerned with the regularity of solutions. Within
this framework, we are able to prove a sharper result on the asymptotic behavior of
(4.1)-(4.2).

Through out this section, we fix p such that p = 2,ifn =1,2,3 and p > 3, if
n > 3.

Let A be the unbounded linear operator from LP(Q) into itself defined by the

following:

Av=-Av+v,v e D(A)
B (4.98)
D(A) = {v e LP(Q) : Av € LP(), a|r = 0}.
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It is well known that A generates an analytic semigroup on the space LP(§2). Also
let X be the space D(A*) endowed with the graph norms ||.||, of A* for % <a<l

Define a linear operator on L? for ¢ > 1:
Lu = /{;J(:c - y)udy — /ﬂJ(z - y)dyu. (4.99)
Denote Qr = [0,T] x Q. We have the following comparison principle.
Lemma 4.3.1 Let u € C'([0,T), L9) for (g > 1) and
up < Lu+c(t, r)u, (4.100)

a.e on Q). Assume c(t,z) < M) on Qr for some positive constant My, then u(t,z) <0

a.eonf fort € [0,T].

Proof. Let p =M, + M +1and v = ue™ P! where M = sup f“ J(x — y)dy, we

have

v = u[e_pt - ;me—pt < e_pt(Lu +cu) — pu = Lv+cv — pu. (4.101)

Multiplying inequality (4.101) by (v*)?"! and integrating over 2, we obtain

(% /Q (v*)ida); < /ﬂ Lo )de + /ﬂ (o )dc - p /n (v*)dr. (4.102)

Since

/ Lo(v* )7 tdz = /n / J(x = y)otdy(vt) - dz
// (x — y)v dy(v™)?” ]dr—// —y)dy(v*)? ldr (4.103)

_/ J(x = y)vtdy(v*)? 'dx.
Q
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It follows from Holder’s and Young’s inequalities that

//J(m —y)vtdy(vt) dr
aJa
g—1 (4.104)

<([([ J(m—y)v*dy)"dx)%( Jorran @ < [oryan

Inequalities (4.102)-(4.104) yield

(% /n (v*)7dz)s + (p — My — My) /ﬂ (v*)idz < 0 (4.105)

Integrating (4.105) from O to ¢, we have

o™ ()13 < (v (0)]]2. (4.106)
v*(0) = 0 implies the conclusion.
Lemma 4.3.2 Instead of condition (A,), we assume

(A3) There exista; > 0, b; > 0, ¢; > 0 and r > 2 such that

<alu~2u+bu+c, ifu<0
flu): (4.107)

> aglulu —bu—cp, if u>0

Suppose that the condition (A,) and (A,) are satisfied, then there are positive con-

stants n; and ny such that

1

u(s)lloo < (n1 + luollig! +m2  sup  [|6(7)]]e0)™ — 1, (4.108)
0<7<s

where constants ny and ny only depend on a;, b;, ¢; and r.
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Proof. Choose any T > 0. Let M(s) = sup ||8(7)|| for each s € [0,T) and
0<7<s
set

1
(1) = (ny + |Juo|lfg’ + naM (s))7 — 1,

(4.109)

1
u(r) = —(m +|luollzg’ +n2M(s))T — 1

(4.110)

for each 7 € [0, s], where n; and n, are two constants which will be determined
later.

Notice that both @ and u are constant on the interval [0, s] for fixed s. Thus

iy — /9 J(z = y)ady + /ﬂ J(z - y)dyi + £(3) = f(@), (4.111)
and

(w)t - /QJ(x - Yudy + /n J(z —y)dyu + f(u) = f(u). (4.112)

We claim that f(@) > M(s) and f(u) < —M(s) on [0, s] for suitably chosen n,
and n,.

In fact, from condition (A;) and the definitions of % and u, we have

1
f(@) = M(s) 2azny = bon] =1 + aaluol|Z5" = balluoll

| (4.113)

1

— o+ (agng — 1)M(s) — bang — lM(s)T -1
and
1

—f(w) = M(s) > ayny = bin] = 1 4+ ay|[uollS? = b1l]uolle

(4.114)

! 1
— ¢ + (ang = DM (s) = byng ~ lM(s)m,
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b r—1
+(j)"“2 + 1} then

1
First, choosing ny = max; _ 1, 2{-—)

1

agng — 1 —byng ~ 1 >0and ayng —1—bng ~ 1 >0.

Inequalities (4.113)-(4.114) yield
l 1 1

S(i) — M(s) > agny —byn] — % = b ( )7' r—2_ ca — bong ~ 1,

and
1 1 1

_ l
—f(u) = M(s) > ajny — byn{ 1_ bi(— !

a )T‘2—cl—b1n2

Choosing n; such that

1 1 1

azn ‘b2nr—_l _b2(@)r—2 —Cz‘bzn;_l >0,
2

and
1 1 1

b
1)7'_2—c1—b1n2 120
a)

an; — blnr - 1 (

It follows from (4.111)-(4.118) that

w= [ Sy + [ I - vy + @ 216

and

ug - / J(x = y)udy +/ J(r = y)dyu+ [(u) <16
N Q

on [0,s]. Denote w = u — @ and w = u — u, then we have

wr — / J(r — y)w(y)dy + / J(r — y)dyw + cw < 0,
) Q0
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and
wr — / J(xr — y)w(y)dy + / J(x —y)dyw +cw <0, (4.122)
QN Q

1 1
where ¢ = / —f (Mi+ (1 - A)u)dr and ¢ = / —f (Au+ (1= Nu)d.
0 0

Lemma 4.3.1 and condition (A;) imply

I
IN
4
IA
]

(4.123)

on [0, s]. Therefore,

1
llu(s)lleo < (m1 + lluollis” + 2 sup [16(m)llee)™ = L (4.124)

Theorem 4.3.3 Suppose that conditions (A,) and (A;) are satisfied and (uo,6p) €
L*x X® with 5 < a < 1. Then there exists a unique solution (u,0) to (1.1) and (1.2)

which possesses the property described in Theorem 2.2. Moreover, (u,0) € L® x X

sup  ||8(t)]] xo < Ci(ai by, ci. [16o]] o, luolloo) (4.125)
<t< oo

sup  ||u(t)|leo < Calas, by, ci, ||6ol] o, |uolloo) (4.126)
0<t<x@

Proof. It follows from Theorein 4.1.4 that system (4.1)-(4.4) has a unique solution
(u,0) because y € X* C W2 N L*. Since uy € L>((0,T), L?), a basic regularity
result implies that § € C([0,T], X*). Without loss of generality, we may assume that

p>r—1+1and

|f ()| < (a1 +a2)|u|™" + (b) + b2)|u| + (c1 + c2). (4.127)
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Note that
1

([] |n,[”(l;1t);’ = (/ Lu+ f(u) + lOI”d;L')l—’

< (/ /I(r— Yudy|Pdx)P +(/ / rT—y (I1/u|”dt)
/|j u)Pdz)P +(/ |0|P(11)P

< (2My + by + by) (/ |u|p(l:r)p + (a; + ag)(/ |u|"Pdc)P
Q Q
1 1
1 [ 10Pd)? + (e + coll?
1}

- (r) r—1(p-1)-1 r—1+1
<@Mi+bi+ba+ar+a)(lullo P+ |lullo P Nl P
p—2 2
+116llo” 116117 + (e + )10,
(4.128)
Let A = p-1_ —1-— Due to inequality (4.128) and Lemma 4.3.2, we see that
p rp
llug(s. Mlp < Ci( - sup  |8(7)]l0)* + Coll6(s)II3, + Cs. (4.129)
0<7<s
Therefore,
sup  lug(s, )], < Caf Sup_ HB(S)Hoo) +Cs, (4.130)
<s<t 0<s<

where C;, (1 = 1,2,...5) are positive constants which only depend on a;, b;, ¢;, M),
|[olloos |160lloo and €.
By using the operator A, (1.2) can be formulated in terms of the abstract Cauchy

problem in the Banach space L?(2) as follows:

O + A0 =0 — luy (4.131)

6(0) = 6. (4.132)



Therefore
t
16(1)]]xe < lle™A6o]| o +L lle ™A% = ) (1uy(s, ) — 0(s))l| el
t
< e Yl6oll o + sup ([lug(s,)llp + [16(s)]1p) / (1 - s)"e~ ot = 3)gy
0<s<t 0

< Nollxa +( sup  [16(s)lloe) Cs / 5706054,
0<s<t 0

S8
(4.133)
Using the embedding X* — L*(Q), we obtain
sup [16()lloo < Ca sup 6]l xa < Cs( sup 16(&)]1e0)* + Co.
0 <t < Tnaz 0 <t < Tmazx 0<t<Tmaz
(4.134)
This implies
1
G —
sup  [I0(Dll0 < 75 +Co A (4.135)
0<t<Tmaz 1-

where Cg and Cy are positive constants which depend on a;, b;. ¢;, M1, ||uol]o, ||60]] xa
and Q.

Since the right side of inequality (4.135) does not depend on T, we have

sup ]|l < C
O<t<o

for some positive constant C, depending on the above parameters and on ||6|| .

Inequality (4.124) implies

sup  ||u|lo £ C. (4.136)
0<t<oo

Theorem 4.3.4 Assume that conditions (A,) and (A;) are satisfied and (ug,8,) €
L> x X°. If (u,0) is the solution to (1.1) and (1.2), then

8 € C*=7(]0,00), X7) N C*([e, 00), X) N C@([e, 00), D(A)) (4.137)
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forany0<y<a<1land0<e<o0o. Also
u € C'™P([0,00), L)

foranyﬁ=a—-p,l<u<a.
2p

Proof.

Since u; and @ belong to L*((0, c0), L?), we have

t+h t
[ A )+ 000, s = [ A + 000, il
0 0

(4.138)
< Ch'™ sup (|lug(s)llp + 116(s)ll)
0<s<o0
forany 0 < v < 1.
Meanwhile
[I(e™** = Ne™*8o|| xv < Cayh®7||6ol| - (4.139)
It follows that
6 € C*77([0,00), X") (4.140)
forany 0 <y < a.
Choosing 22 < v < a, from the embedding theorem, we have
p
6 € C*7([0,00), L=(Q2)). (4.141)
On the other hand,
t+h
e+ 1) = ul < [ 1L+ 176D + [1006) ks
t (4.142)
< C(|luolloo [16ollo0) .
Consequently,
lug(t + h) = wplloo < 2Milu(t + ) — u(t)llso + [1f (MIlu(t + h) — u(t)]] (4143)

+ 16t + h) = 0(t)llo < Cr(lluollso, [160]le0) 77
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for n =cu(t + h) + (1 — ¢)u(t).

A similar argument also shows that

u; € C*([0,00), LP). (4.144)
This completes the proof.

Proposition 4.3.5 If the condition (A;) is replaced by

(As) There exist a3 > 0, b3 >0, dy >0, d, > 0 and r > 2 such that

azlu|"%u + bsu — d; < f(u) < as|u|"%u + byu + ds. (4.145)

and (u(t),0(t)) are solution of (1.1-1.2) with (ug,0y) € L>® x X°, then there is a

constant K independent of ug and 0y such that

 lim [10-8ll,1.4 =0, (4.146)
limsup ||8]|o < K, (4.147)
t — o0
limsup ||u]]» < K, (4.148)
t — 00

where 6 = ﬁ Jo0dz, n <q<n+4, and § < 2n(a — n/2p)

Proof.

By interpolation theorem, we have

16 = Bllyyia < CIIE = 811, 12116 — BII'g2. (4.149)

From inequality (4.134), and sup¢||f|| < C, we have
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sup || — (7||Xa <C.
t
From section 3, we have
lim 0 - 0_ rl, = 0.
t = 00 ” ”u 1,2

This implies (4.146).

Since

||9”Wl,q <l6- énwla + ”é“Wl.m

and

181110 < CIIB113

for some constants C' and S.

Inequality (4.74) implies

lim SUPHOHH/I.Q < C(ly).
t — 0o

where Io = [,(lug + 6p)dr. Embedding theoremn implies (4.147).

(4.150)

(4.151)

(4.152)

(4.153)

(4.154)

Using a similar argument to that in the proof of Lemma 4.1.1 gives (4.148).

Remark 4.3.6 Inequalities (4.133), (4.147) and (4.148) also imply:

limsup ||8]| y« < C(lo).
t — o0

Next, we prove that there exists a subsequence tx such that u(ty) — u*, 6(tx) — c,

and (u®,c) is a steady state solution of system (4.1)-(4.4).

We assume:



(As) M =sup| [, J'(x — y)dy| < 00, and f € C'(R).

(A4) There exists a constant ¢; > 0, such that f'(u) + a(z) > ¢; > 0, where a(r) =

Jo J(z - y)dy.

We have:

Theorem 4.3.7 Assume that conditions (A,), (A3), and (A3) are satisfied, let (u,6)

be a solution of system (4.1)-(4.4), we have

[luglla = 0 as t — oo, (4.155)

[IV6]|]2 = 0 as t — oo. (4.156)

In addition, if (A4) is also satisfied, then there erists a subsequence {tx}, u € L%(f),

and constant C such that

llu(te, ) — a(z)|]2 = 0 as k — oo, (4.157)
[16 = Cll2 = 0 as k — oo, (4.158)
! / adz + C|0| = I, (4.159)

0

where I = [,(lug+6y)dr. And (i, C) is a steady state solution to system (4.1)-(4.4).

Proof.The conclusion (4.156) follows from (4.95).
Taking derivative with respect to t in equation (4.1), multiplying by u; and inte-

grating over €2, we have
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3t L1l = [ [ 96 = ptuinds = [ [ 16— piorapas o
/f(u ui(z dz+l/0tutda:

By (4.136) and Holder’s and Young’s inequalities, we have

d
‘—E/|u,|2d;t§ CI/ |ut|2dx+02/|0t|2dx (4.161)
Q Q Q

Multiplying equation (4.2) by 6;, integrating over 2, and using Holder’s and

Young’s inequalities, we have

2 y7 / |Vo)* + / |6;|%dz < C / |z | (4.162)

Inequality (4.89), (4.95), and (4.162) imply

/ / 164 (2)[2dz < C, / / g (2)2dz < C (4.163)
0 [ 0 [9]

for some constant C.

Let € > 0, it follows from (4.163) that there exists {s,} with

/ 14 (5n, )| 2dz — 0, (4.164)
Q

and there exists N such that and for any n > N and t > s,, we have

/ lut (sn, z)|°dz <€, (4.165)
Q

t
lug (s, )|’ dzds < e, (4.166)
a
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t
/ /Iet(s,x)lr"dxds <e. (4.167)
sn JQ

For any t > s, from (4.162), (4.165)-(4.167), we have

/ luy (s, 2)|%dz < (2 + c)e. (4.168)
Q
This implies (4.155).

Q
have § = w + ¢, — ¢z [, udz. By (4.156) and Poincare inequality, we also have

_ - I l
Denote w = 6 — 8, since = Wll Jobdz = 2 _ / udt = ¢; — cz/udrc, we
2] 12l Ja 0

llw]]2 = 0 as t — oo. (4.169)

Using this and (4.1), we have

a(z)u(t,z) + f(u) = /(J(:z: —y) — le)u(t,y)dy +lw + ley — 4. (4.170)
Q
Since operator K: L%(Q)) — L?(Q2) defined by
K(u) = /(J(-r —y) = lea)u(t, y)dy
Q

is compact, there exists a sequence {tx} such that K (u(tx)) converges to k in L%(Q2).
This and (4.155), (4.169) imply that a(z)u(ty) + f(u(tx)) is a Cauchy sequence in
L2(5).

From condition (A4), we have

crllu(te) = w(tm)|l2 < lla(@)u(ts) + fu(te)) — a(@)u(tm) + f(u(tm))]l2.  (4:171)
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Therefore, u(t;) is a Cauchy sequence in L?(Q), there exists @ such that ||u(tx) —
illz — 0.

The boundedness of HGHW“?(Q) and (4.156) imply (4.158).

Since

/(l” +0) = I,

This, (4.157) and (4.158) imply (4.159).

Since u(t;) and u are globally bounded, we have ||f(u(ty) — f(@)||]2 — 0. This,
(4.157),(4.158), and (4.170) imply that (@, C) is a steady state solution to system
(4.1)-(4.4).

We complete the proof.

If the initial data are smooth enough, we also have:

Corollary 4.3.8 If up(z) € W'9(Q), 6o(z) € W2°(Q) for ¢ > n, conditions (A,),

(A3), (As), (As) are satisfied, then there evists a subsequence ti such that

u(ty) = u” in CM(Q), (4.172)

6(tx) — ¢ in C™() (4.173)

where (u*,c) s a steady state solution of system (4.1)-(4.4), 0 < 7, v2 < 1 are two

constants.

Proof.
Since uo(z) € W1 9(Q), 8y(z) € W29(Q) for ¢ > n, by Theorem 4.3.3, there
exist solutions u € L*((0, 00), L*>(£)), 8 € C([0, 00), W22(§2)). This implics
V0| € C((0, 00), W 7 (). (4.174)
u(x + he;) — u(x)

h
From equation (4.1), we have

Denote AJ¥ =
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Ah,-u, = /“ Ah,’J(r - y)u(y)dy — Ah,J(x — y)dyu(r)

- J(z — y)dyD,iu — ! A iu+ 1A ,'0,
/n ( y)y h f(‘f) h h

where ¢ = Au(z + h) + (1 — Nu(z).

(4.175)

Since |]A;,H||LU(Q/) < HV()HLa(Q) for h < dist(0QY,00), and W7 — L*® we

have

sup [|A4f]lee < C
t

for some positive constant C which does not depend on h.

(4.176)

Multiplying equation (4.175) by |Aju|°~2A}u, integrating over ', using Holder’s

and Young’s inequalities, (4.176), and condition (A,), we have

3 o 1 o < ag
odt/ | A} +C/ |ALul” < C3

for some constants C', C; which do not depend on h.

Gronwall’s inequality implies

SLtlpllAZUIla <Gy

for some constant C, which does not depend on h. This implies

s1t1p |lug;|lo < Ca.

Since ||u||» < C, we have

Slt‘P”U”Wl,a <C.
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(4.180)



Therefore there exists a subsequence ¢, such that

u(ty) = u* in who(Q),
u(ty) — u* in CM(Q)
This and Theorem 4.2.5 yield

/ J(z — y)u*(y)dy — / J(z — y)dyu*(z) — f(u*) +1lc=0 (4.181)
Q Q

where ¢ is a constant.

Also (4.146) and Theorem 4.2.5 imply that there exists a sequence {t;} such that

li Ox — c =0. 4.182
im0k~ cll, 1. g (4182)

Since ¢ > n, by embedding theorem, we have

lim (|6 — c|l oy, = 0. (4.183)
ly — 00

This completes the proof.
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