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ABSTRACT

A fully explicit optimal two—stage numerical scheme for solving

reaction—diffusion-chemotaxis systems

By

Jui-Ling Yu

Reaction-diffusion—chemotaxis systems have been proved to be fairly accurate

mathematical models for many pattern formation problems in chemistry and biology.

These systems are important for computer simulations of the patterns, parameter

estimations as well as analysis of the biological properties. In order to solve reaction-

diffusion-chemotaxis systems, efficient and reliable numerical algorithms are essential

for the pattern generations. In this thesis, a general reaction-diffusion-chemotaxis

system is considered and specific numerical issues are discussed. We propose a fully

explicit discretization combined with a variable optimal time step strategy for solving

the reaction-diffusion—chemotaxis system. Theorems about stability and convergence

of the algorithm are given to show that the algorithm is highly stable and efficient.

Numerical experiment results are given for one testing problem and one real experi-

mental problem.
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Introduction

One of the important branches in mathematical biology is the study of pattern for-

mation. In 1952, Alan Turing proposed the reaction-diffusion model as the chemical

mechanism for biological patterns [25]. The idea was that the interaction between

the passive diffusion and chemical reaction will envolve into a spatiotemporal pattern.

Moreover, the motion of the biological cells is often influenced by the environ-

ment. This influence refers to chemotaxis, which is often known as directed random

movement. The presence of chemotaxis provides a general tendency for bacteria to

move toward the chemotaxattractant [17].

The study of chemotaxis phenomenon among bacteria began in the nineteenth

century. In 1884, Wilhelm Pfeffer, Engelmann, and their associates discovered that

bacteria move preferentially toward a concentration of oxygen, minerals and organic

nutrients. These researches demonstrated chemotaxis by observing whether bacteria

in a suspension gathered near or away a gas bubble which contains a certain amount

of oxygen [4]. In 1893, Beijernck discovered that bacteria move toward oxygen

“

macroscopically. He concluded that the bacteria search for a certain optimum

concentration of oxygen.” Later, Sherris, Preston, and Showmith and Baracchini

and Sherris comfirmed the results.



A significant number of researches in molecular biology were done by Julius Adler

and his co—workers around 1966. He tested the chemotaxis behavior of bacteria by

using Escherichia coli and Salmonella typhimurium bacteria. His strategy of studying

the chemotaxis phenomenon by using the simplest organism has provided the proof

for and inspired the study in the mechanism of synthesis and control of biology

macromolecules. In this thesis, we studied one of Adler’s papers on the chemotaxis

behavior of the Bach bacteria because “ the vast knowledge of its biochemistry and

genetics could be brought to bear on the problem. [18]”

The mobility of the E. coli and many other bacteria depends on swimming and

tumbling. Swimming is a near straight run. Tumbling is a very rapid and jerky

movement during which the cells are reoriented to a new direction. The movement of

swimming (lasts for seconds) is interrupted by tumbling (lasts for tenths of seconds).

Cells respond to the temporal and spatial changes in the environment by modulating

the probability of tumbling. When cells encounter a favorable environment, they

reduce the frequency of tumbling so that the swimming time in a favorable direction

is increased. Therefore, a net migration along the desired direction is formed. That

is chemotaxis [8].

The motion of swimming and tumbling is controlled by bacteria flagella which

consists of a long filament. It is a left handed helix. The flagella turns either

clockwise or counterclockwise as a propeller. The clockwise motion producing a

pushing force results in the motion of swimming. The counterclockwise motion

resulting in deformation of the filament produces tumbling [8].

Bacteria sense the change in the local concentration of chemicals through



membrane receptors binding chemical’s moleculaes. The cells estimate the change

in the gradient of chemicals by measuring the change in the receptor’s occupation

[16]. It results in a shift in the clockwise and counterclockwise motion in the flagella

motor. The addition of an attractant results in the supression of tumbling. The

supression time may last for a few seconds or minutes. It depends on the strength of

the chemotaxis [8].

The general form of the reaction-diffusion—chemotaxis system is

% = DuAu _ V(ux(a)Va) + f(z, y. t)

a
a“ = V - DaVa + 90w)

u(:r, y, t), a(:r,y,t) represent the concentation of cells and the concentation of

chemoattractant substrate respectively. DuAu is the diffusion term or random

walk, and which mainly characterize the movement of swimming. Du > 0 is the

constant diffusivity describing the speed of bacteria. V(ux(a)Va) describes the

biased random movement which is induced by external chemicals. It has been proven

that the nonlinearity in the reaction term is a necessary condition for the pattern to

be formed. No general analytical solutions are available at the present time. Thus,

a numerical simulation provides a comprehensive understanding of the reaction-

diffusion-chemotaxis systems and the mechanism of the underlying biology [17].

For the past years, numerical methods for reaction-diffusion systems have been

well-studied: for example, the ADI type of scheme, the finite element method,

monotone iterative methods, and the multigrid method. However, the development

of numerical methods for solving reaction-diffusion—chemotaxis systems have not

been thoroughly studied due to the additional nonlinear chemotaxis term [26].

Furthermore, most of the time, numerical methods are too complicated to be used
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in practice. The idea of this thesis is to construct a numerical method, which is not

only reliable but also easy to implement so that it can be applied to complex systems.

Many numerical methods have been studied to solve the PDEs: for example, the

fully implicit method, the ADI method, and the explicit method [3, 23]. The explicit

method is especially easy to implement and does not have to invert the matrix

resulting from the implicit method. One of the approaches to get the explicit scheme

is to use the method of line, which discretizes the spatial and temporal variables

separably, changes PDEs to an ODE system, and solves the ODE system at each

time level [1]. In this thesis, the standard finite difference and the upwind scheme

are proposed for spatial discretization, and the spatial matrix obtained from it are

sparse matrices. They are less expensive to integrate than the full matrix during the

numerical simulation [11].

The convergence rate of the numerical solution strongly depends on the distrib-

ution of the eigenvalues of the spatial discretization. If the matrix is symmetic and

positive definite, many efficient iterative methods can be achieved to obtain fast

convergence. The spatial matrix we obtained from the finite difference scheme is

not symmetric due to the chemotaxis term and the boundary condition. Therefore,

it is necessary to develop an efficient numerical scheme to treat the nonsymmetric case.

The development of numerical methods for solving the ODE system are well—

studied: for example, Euler’s method and the n‘h—stage Runge-Kutta method. The

explicit Runge-Kutta method has advantages of low storage, high accuracy, flexible

stability region and easy implimentation [11]. However, since the method is explicit,

the time step is often restrictive. It has become an unfavorable feature of the explicit



scheme. There are many research papers addressing the issue of improving the

convergence rate for Runge—kutta method with different stages [11, 12, 13].

Since the spatial matrix of the ODE system is time dependent in the chemotaxis

system, the stability region will vary by time. Since the size of the matrix is very

large and the matrix is not symmetric, it is not possible to find the eigenvalues

analytically, and using the existing numerical methods to estimate the distribution

of eigenvalues are too expensive. Therefore, the time step has to be forced to

be very small to satisfy all the stability conditions for the ”time dependent”

ODE system. In this thesis, we develop an efficient numerical method. The anar-

lytic form of explicit time can be easily calculated and the time step is locally optimal.

We study the properties of a particular Runge—Kutta method with n=2 for

choosing the optimal time step. Since for nth-stage Runge-Kutta method, the

stability function is a nth degree polynomial function, the analysis for the MinMax

problem becomes complicated and the analytic form of the optimal time step does

not seem possible. Furthermore, introducing more stages does not guarantee the

efficiency of the CPU time [12].

The generation of patterns depends on the distribution of eigenvalues of the ODE

system. The ODE system contains eigenvalues with positive and negative real parts.

We have to take these two parts into consideration during the numerical simulation.

The stability issue has to be addressed since we want to make sure that patterns

which are generated from the computation simulation are derived from the original

PDEs, not due to numerical instability.

Ian.



We propose an optimal two-stage method to solve the ODE system with time

dependent spatial matrix. The method keeps the advantage of the two-stage

Runge-Kutta method for its higher accuracy and easy implementation. In addition,

the time steps are enlarged, also we can arrive at the explicit formulation for the

time step. The numerical experiments show that the optimal two-stage scheme is

accurate and converges faster than the standard two-stage Runge-Kutta method for

the time evolution problem.

In Chapter 1, the fully explicit discretization for the spatial variables is discussed.

The method of line and the upwind scheme for the chemotaxis term are the main

topics of this chapter. The method we used to find the optimal time step for the

standard two-stage Runge-Kutta method will be addressed in Chapter 2. In this

chapter, we mainly discuss the method to solve a MinMax problem. In Chapter

3, a fully explicit optimal two-stage scheme is proposed to solve the ODE system.

The consistency of the numerical method is investigated. Stability and Convergency

are addressed in Chapter 4. Finally, the results of numerical experiment on the

comparsion between the standard two-stage Runge—Kutta method and our optimal

two-stage scheme will be shown. A real problem will be tested against our numerical

method.



CHAPTER 1

A fully explicit discretization

Many interesting patterns happen as bacteria consume nutrients, proliferate, perform

random walks and the biased movement towards high concentration of chemicals

[4, 10, 16, 21]. The time evolution of chemicals is described by reaction—diffusion-

chemotaxis equations [20]. In these models, the microorganisms are simulating

through 2D density, and a reaction-diffusion—chemotaxis equation of this density

characterized their time evolution. The equation is coupled with other reaction-

diffusion equations, since the chemotaxis substrate diffuses and produces by itself

[16, 20].

The general reaction—diffusion—chemotaxis systems have the following form:

% = DuA'u. — V(UX(G)Va) + f(xa y, t)

50.
E _ v.D,Va+g(a,U)-

u(:r, y, t), a(x,y,t) represent the concentation of cells and the concentation of

chemoattractant substrate respectively. DuAu is the diffusion term or random walk,

and which mainly characterize the movement of swimming. Du > 0 is the constant



diffusivity describing the speed of bacteria. V(ux(a)Va) describes the biased random

movement which is induced by external chemicals. The movement is biased either

along the gradient direction or in the opposite direction of the gradient [16]. x(a) 2 0

is the chemotaxis parameter function describing the speed of chemotaxis, f(:1:, y, t)

is the reaction term for cells, which indicate the growth rate of cells.

For simplicity, we use a 1D reaction-diffusion-chemotaxis equation to demonstrate

the analysis of our numerical scheme. We also assume boundaries are periodic with

period 3, and the initial value is known,

Bu

6—1; = uuza: _ (UX(G)az)x + f($,t),.’L' 6 [0,6], (1.1)

u(z,0) = u0(:r),x E [0, Z],

u(0, t) = u(€, t).

The equation (1.1) is generally nonlinear so the analytical solution is difficult to

solve. Therefore, numerical simulation becomes crucial to investigating the mecha-

nism of the underlying biology. To solve this equation numerically, a very common

method is to apply the method of lines [15] which discretizes spatial and temporal

variables separately, then turns the PDE into an ODE system and solves the ODE

system at each time level.

Take a uniform mesh of f2 = [0, K] with mesh size h = Z/N. Let 1:,- E Q be a

grid point, then x,- + 1 = 2:,- + h. A time step of size t" + 1 — tn will be denoted

as At, and we adopt the standard notation a? z u(:r:,~,tn), etc. We use the

standard second-order centerd difference to approximate the Laplace operator, and
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Figure 1.1: Method of Line

the first-order upwind scheme for the gradient operator. The assumption of using an

upwind scheme [19] is crucial in the deveopment of our numerical method. It ensures

the stability of the numerical scheme.

For simplicity, let us denote x(a)Va by q(t). Then,

Bu

5 = dunm — (q(t)u)z + f(a:, t)

= Muir... —2ur+ur_1
h2 )_ (qzu + quit)? + fin,

where (gum)? is approximated by the first-order upwind scheme, is.

q”+ q” n
(qua? z ‘ 2,] "van.- (q. > 0)

If— I‘

+ ——q12hlqzl‘711ui, (q? < 0)

(1.2)

(1.3)

(1.4)



where

‘77-f-a:ui = uil+1 — u?

If q? > 0, (1.2) becomes

0a 2a" +u" q"

5,; = duth‘z—) -(an)” - flu:- at: 1) + f."

du n —2du

— h—Z—ui+1+(T—(qz)"—q—Wll +(% )11+fin(15)+h

The periodic boundary condition can be approximated by

UN—i = “—1

UN+1 = U1

Let u" = [11?] and f” = [fin] be a vector obtained by the usual ordering. Then

(1.5) can be represented by the matrix form as follows:

= M(t")un + f". (1.6)

d—

Letwi=—_ig‘u- (9x)? ‘gfi-Z 0,1,2,---N, then M(tn)=

10
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a (N+1) x (N+1) matrix. Observe that the spatial matrix is time dependent.

By the method of line, we have turned the PDE into an ODE system. Many

numerical methods have been studied to approximate the temporal derivative in the

ODE system. For example, Euler’s method, and the 72‘” stage Runge-Kutta method

[15]. Among all of these numerical schemes, the explicit Runge-Kutta method has

been widely applied. It has the advantages of high accuracy, flexible stability region,

low storage, and ease of implementation [11]. However, step size has been limited

due to the nature of the explicit method. Due to this fact, we are forced to choose

a smaller step size than is needed to guarantee the convergence of the numerical

scheme. Oftentimes, the restricted time step increase the CPU time which becomes

a unfavorable feature of the explicit scheme. Many researchers have been working

on improving the preformance of explicit Runge—Kutta method by releasing the time

11



step constraint. Our idea is to adjust the appropriate time step so that the spectral

radius of the spatial matrix in the ODE system is minimized. Therefore, optimal

convergence can be achieved [11, 13]. This leads to the solution of the MinMax

problems [11, 13]. Detailed analysis of the MinMax problems will be addressed on

Chapter Two.



CHAPTER 2

An optimal two-stage Runge-Kutta

method

For the nth stage explicit RK method, the stability function 12(2) is a function with

degree 11. When n 2 3, the formulation of R(z) becomes complicated and the analytic

form of the optimal time step does not seem possible. Furthermore, it is too expensive

to update the time step by using the modified projected Lagrangian Algorithm and

introducing more stages of the optimal RK method does not guarantee the efficiency

of the CPU time [12]. Therefore, We focus on applying the optimal two-stage RK

method to solve the chemotaxis system under the stability consideration.

The main purpose of this section is to obtain the optimal time step for the standard

two-stage Runge-Kutta integration. First of all, let us assume the spatial discretizar

tion matrix M and the reaction vector in the ODE system is time independent.

du

13



If the we set the reaction vector as zero, the system becomes

du_

Let us use the standard two-stage Runge—Kutta integration to solve (2.2), we get

11(0) = u" + AtMu” (2.3a)

an“ = a" + 92i(Mu" + Mum). (2.3b)

The parameter At usually stands for the time step. When we treat (2.3) as a

stande iterative method, it is actually a one-step method:

A

u”+1 a" + %Mu" + 7tM(un + AtMu”)

At2 2 n

ll

Let P denote the amplification factor, i.e,

Ar2 2

then (2.4) can be written as

11"“ = P(At)u"

P"+1(At)u°. (2.6)

The generation of patterns depends on the distribution of eigenvalues of the

ODE system. The system contains eigenvalues with positive and negative real parts.

14



We have to take care of these two parts during the numerical simulation processes.

Therefore, the stability issue has to be addressed.

2.1 Stability issue

Let us consider the nonhomogeneous ODE system,

du n n

where M is a constant matrix, f” is a constant vector.

Let v0 denote the perturbation of the initial condition no. Then the solution vector

v” + 1 after nth iterations and the exact solution a" + 1 satisfy the following:

n+1 n. At2 n

u = P(At)u +(1+At+—2—)f (2.8)

n+1 n Atz n

v = P(At)v + (1 + At + T)f . (2.9)

Let 6" + 1 = v" + 1 — an + 1 denotes the perturbation error after n + 1 iterations,

we have

5"“ = p(At)e" = p"+1(At)5°. (2.10)

Horn equation (2.10), we know that the error e" + 1 will be bounded if the norm

of the amplification factor is less than one. Nevertheless, the iterative procedure will

converge, if and only if, the spectral radius of the amplification factor is less than a

unity (Issacson and Keller 1966). Moreover, the convergence speed of the iterative

15



procedure depends on the size of the spectral radius; if the size of the spectral radius

is small, the iterative procedure will converge faster. This gives rise to formation of

the MinMax problem.

The characteristic polynomial of the amplification factor is

erA(At,/.t) = 1 + Atp + 2 #2,

where a is an eigenvalue of M.

Note that the characteristic polynomial A(At, a) is a function of time step and

eigenvalues.

Definition 1 Let a = a + bi. Define f(a, b, At) = |A(At,p)[2.

Theorem 2 If b is bounded, then f(a, b, At) = f3(At) = (1 + aAt + %a"’At"’)2 +

0(At3).

Proof.

2

f(a, b, At) = |1+ At(a + bz‘) + ATtnz + bi)2|2

- Atz 2 2 -2
|1+At(a+bt)+7(a —b +2ab2)|

2

[(1 + aAt + ATthzZ — b2)]2 + (Atb + Atzab)2

4

= (1+ aAt)2 + Arm;2 — b2)(1+ aAt) + ATtm? —— (22)2

(PM + 0(At3)+

4

(1 + aAt)2 + a2At2(1 + aAt) — PM + ATta“

(2.11)



+ b2At2 + 0(At3) + 0(At4)

= (1 + aAt + gazAt2)2 + 0(At3) (2.12)

Since the truncation error of the standard two-stage Runge—Kutta method

is 0(At3), the higher order terms appeared in can be ignored. Moreover, the

minAt maxa f(a, b, At) can be simplified as minAt maxa fa(At) since we are only

interested in the case where % S fa,(At) < 1 when a < 0. It is worth noting that the

optimal two-stage scheme matches well with the theoretical analysis in the following

sense: eaAt is numerically represented by fa(At) = 1 + aAt + §a2At2. If a > 0, the

accuracy of the numerical solution is the only criteria for us to choose the time step.

We have to choose At small enough so that fa(At) will accurately integrate eaT.

The stability issue is not important here, since eaT is growing and aAt will not lie

in the stability region. If a < 0, we have to consider both accuracy and stability of

the numerical scheme. However, they often imply each other. When a < 0, fa(At)

corresponds to a decay mode. We have to choose the right time step so that fa(At)

is less than a unity. In other words, the choice of the time step has to restrict

aAt to stay in the stabiliy region so that fa(At) is a correct integratration of eaT[15].

Lemma 3 For o < 0, fa has the following properties:

(a) fa(0) =1 and rot—72) = 1.

(b) fé(0) = a.

(c) fa(At) 2 0, At > o, and fa(At) < 1,At e (o, —-2/a).

(d) mom 6 R fa(At) occurs at At = —1/a.

(e) minAt e R fa(At) = 1/2-



Proof. The proof is straightforward using the properties of the second—degree poly-

nomials. Cl

Theorem 3 shows that the optimal time step can be determined by the largest

and smallest real part of the eigenvalues of the ODE system.

Theorem 4 Ifa < 0 and -amax < a < ‘a'min’ where “min > 0 and amax > 0 are

constant then minAt > 0 maxa E l—amax ‘am' ] Ifa(At)|2 is obtained at Atopt =

i in

2

amin amax'

Proof. f;(At) = a + a2At = 0. Let f;(At) = 0, get At = —%.

Moreover, f(—$) = g > 0.

ram

 

1

 

 

N
I
H

      
llaMax Alopt -1/a 1/aMin

Figure 2.1: The solution of the MinMax problem.

From Lemma (3) and the graph, it is clear that the optimal time step will be

obtained if

f—amin(At0pt) = f—amax(At0pt)-

18



i.e.

1 2 2 1 2 2
1 — aminAtopt + 5amnAtopt = 1 — amaxAtopt + -2—amxAt opt

5(amax - airin) Atom = amax _ amin-

which implies

19



CHAPTER 3

An optimal two-stage numerical

scheme

In this section, we will extend ideas from chapter 2 to the nonhomogeneous ODE

systems with time dependent spatial matrix, i.e,

du

d? = (t)u + f(t). (3.1)

An optimal two—stage scheme will be constructed. The consistency of the numerical

scheme will be discussed in this section.

Let us consider the following two-stage scheme for solving (3.1)

”(1) = u" + alAt[M(t") + M(t"+1)]u" (3.2a)

on“ = u" + agAt[M(t") + M(t"+1)]u(1). (3.2b)

There are two parameters a1 and a2. We are looking for a} and a2 so that

the two-stage scheme is consistent in time and space, i.e, having the truncation error

20



being 0(At3). Meanwhile, the time step will be locally optimal according to the

analysis in Chapter 2. Treating (3.2) as a standard iterative method, the two-stage

scheme becomes

un+1

ll u" + agAt(M(t”) + M(t"+1))[u" + alAt(M(t") + M(t"+1))u"]

[I + a2At(M(t") + M(t"+1)) + a1a2At2(M(t") + M(t"+1))2]u"_

Since Mtt" + 1) = Me") + AtM'rtn) + om).

u"+1 [I + azAt(M(t") + M(t") + MAW”) + 0W2)”

+ a1a2At2(M(t") + M(t”) + AtM’(t”) + 0(At2))2]u"

[I + 2a2AtM(t”) + o2At2M'(t")

+ 40102At2M(tn)2 + 0(At3)]u". (3.3)

Moreover, Taylor expansion of u at time t” is

o(t"+1) = u'(t”)+u(t")At+ WT)At2+0(At3)

= u(t") + AtM(t")u(t”) + -A2—t(M’(t")u(t”)

+ M(t")u’(t"))+0(At3)

= u(t") + AtM(t")u(t") + A—2t2-(M’(t")u(t")

+ M(t")2u(t”))+0(At3)

= [I+AtM(t")+AthM’n")

+ A—t2M(t")2]u(t") + 0(At3). (3.4)

21



Matching coefficients from (3.3),(3.4) get

a _1
1—4)

and

1

2.C12:

Therefore, we can set up the optimal two-stage scheme as the following:

um = u” + iAt[M(t”) + M(t"+1)]u" (3.5a)

on+1 = u" + éAt[M(t") + M(t"+1)]u(1). (3.5b)

Note that the coefficient of the Euler’s predictor is 1, and the coeflicient of 'ltapezoid

corrector is % [15]. (3.5) is not a standard two-stage Runge—Kutta method. The con-

sistence of the numerical scheme will be derived in Theorem 5, which shows that the

difference between the differential equations and the two-stage scheme we presented

here can be controlled. Because the analysis for the 2D case is similar to the case for

1D, for simplicity, the 1D model equation is presented in the proof.

Theorem 5 (Convergence) Assume that ][ Mn+Mn + 1 [IS a for alln, let |] en ||=|]

on — on") n, and (n + 1)At g T. If || 60 u: 0 then u e" “g 0(h) + 0(At2).

Proof.

The general reaction—diffusion-chemotaxis eauation is

an

a = duuzx _ (q(iL‘)U.);,-, + f(IE, t)’ (3'6)
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Since the upwind scheme is of order one in space, the finite difference discretization

 

 

gives

Bu _ uf+1—2u?+u[’_1 git—Gill ,

5i _ d“( h2 l h 1“

q"+l<1”| qt-lqfl n
_ 1__1. n ui_;__1_ n i . Oh

2h v—zu 2h V+xu +f1. + ( )

du _2du

= h_2ui+l+(—[7,2

qt _qi— _qi + qt 11 qt" n 61‘“ n

— ,1 2,] "'1. — —-2—q"",,''V.u.> +h3u._.-h1+f+0()

wheret=0,1,2,---,N.

Therefore,

an n n n

5Y=M(t )u +f +O(h). (3.7)

Applying the two-stage scheme to (3.1), we get

um 11" + iAt[(M(t") + M(t"+1))u" + f(t”) + f(t"+1)] (3.8)

on“ = a" +éAt[(M(t")+M(t"+1))u(1)+f(t")+ f(t”+1)] (3.9)

Viewing two-stage scheme as a standard iterative method, we get

n+1 n n+1

11"“ = [I+At(—M+M +E(———M+M )Zun
2 2 2

+ _[(fn+fn+1)+_4t(Mn+Mn+1)(fn+fn+1)]

The Taylor expansion of u at t" is

u_(t"+1)— u(t")+u’(t")At+u"Us—)At2+0(AAt3)
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= u(t") + At(M(t")u(t") + f(t") + 0(h))

+ ATttM'unuu") + Means") + Maura")

+ f(t")’ + 0(h)) + 0(At3)

Since M(t"') = M(t" + 1) — M’(tn)At + 0(At2),

U(
tTH-l)

= u(t") + %M(t")u(tn) + %(M(t"+1) — M’(t")At

0(At2))u(t") + Atf" + At0(h) + ATtZ(M’(t")u(t")

M(t")2u(t") + M(t")f" + (f")’ + 0(h)) + 0(At3)

2

u(t") + %(M(t”) + M(t"+1))u(t") — 92LM(tn)'u(tn)

0(At3) + Atf" + At0(h) + -A2i2(M’(t")u(t") + M(t”)2u(t"))

2 2 2

A7tM(t")f” + AT’W + AT’OUL) + 0(At3)

At2

2 2 2

_M(t")f" + Atf" + At0(h) + —2—0(h) + —;(f")'
2

2 12

ac") + 923(Mlt") + M(t”+1))u(t") + ATHM“ )

u(t") + %(M(t") + M(t"+1))u(t") + M(t")2u(t") + 0(At3)

 

2

{@222 _ _M_§‘”_)At + 0(At2))2u(tn) + 0(At3)

2 2

ATtZM(t")f" + Atf" + At0(h) + -A-2t—0(h) + ATtUn),

(I + 923w" + Mn“) + é§(M(t") + M(t”+’)2)u(t”) + 0(At3)

é2fiM(tn)fn + Atf" + é;(fn)l + At0(h) + ATROUL)

Assuming there is no rounding error, i.e,
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f" = f(tn),M(tn) = M”, and en+ 1 = u(tn+ 1) — un+ 1, then

n+1

2

e = [I + 925(M” + W“) + —A8t(M" + M"+1)2]e" + 0(At3)

At2 At2 At2

+ 7M"? + Atf" + 7f; + At0(h) + —2—O(h)

At At
_ 7Un+ fn+1+ T(jwn + Mn+1)(fn +fn+l)]

2

= [I + %(M" + M"+1) + A%(M" + Mn+1)2]e” + 0(At3) + At0(h)

At2 At2 At

+ 7001) + Atf" + TU"), — ”2—(fn + 1m“)

At2 At2
+ TMnfn—?(Mn+Mn+1)(fn+fn+l)

At n n+1 At2 n n+1 2 n 3
: [1+7(M +M )+?(M +M )]e +0(At)+At0(h)

At
2

+ Atf" + A715(f")’ — £22m — —2-(f" + (f")’At + 0(At2))

At2 At2

+ —2—M"f" — ?(2M" + O(At))(2f" + O(At))

At n n+1 Atz n n+1 2 n 3

= [I+?(M +M )+?(M +M )]e +0(At )+At0(h)

2

= [I + %(M" + M"+1)+ fist—(Mn + Mn+1)2]"+1e0

+ (n + 1)At(0(h) + 0(At2)).

Since (n + 1)At S T and co = 0, it implies

||e"|| g 0(h) + 0(At2).

This completes the proof. I]

n n + 1

Let Jn = M t + M t , then the two-stage scheme for the homogeneous

problem can be written as
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u" + 1 = (I + AtJn + éAtnght".

It follows from the analysis in chapter 2 that the optimal time step will be obtained

if we set Atopt =W. Let {aili = 1 be the real parts of the eigenvalues

of Jn, then

“min = mz’nai < 0 {at}

6'mass = "ma,- > 0 {02'}-

Observe that the matrix I + AtJn + éng depends on time. The stability region

varies as the numerical scheme is marching on time. In practice, the optimal time

step will be updated according to the distribution of the eigenvalues of the matrix

I+AtJn+ 9%ng at each time level. We call the two-stage scheme an optimal scheme

in this sense.
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CHAPTER 4

Stability and Convergence

In this section, we will investigate the stability and convergence of the optimal

two-stage scheme.

Theorem 6 (Convergence) Assume that [I Mk + Mk +1 [[3 a for all k + 1 5 N,

(tN S T, tN+1 > T) and tn = nAt g T. If ]|u(t0) — 110]] = 0, then I] u(tn) — n [[5

C(T)(0(h) + 0(At2)).

Proof. Let ”en” = ||u(tn) — an”. From the proof in Theorem 3, we get

n+1 At Atz 2 n 3

lie 1 s II1+7<Mn+Mn+1>+Y<Mn+MA1>Hue “+0(At)

+ At0(h)

2

3 (1+ %a + égt—azfllenll + 0(At3) + At0(h)

2,

g (1 + %a + AYE?)2 n e"‘1 n

At At2 2 3 3
+ (1 + 70: + ?a )(O(At )+ At0(h)) + 0(At ) + At0(h)

2

g (1 + %a + est—ozrfl u e0 n
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At At2 2 n At At2 2 ,,_,

+ [(1+—2—a+?a) +(1+—2—a+-——8—-a)

+ ---+ 1](0(At3) + At0(h)).

Since ”.30” = o, and

At At2 2 a At 2
_ __ = _ __ A1+2a+8a 1+(2+8cx)t

3 1+ fiAt,

therefore,

A 2 .

(1+ 95th: + 73:02)”+1 _<_ em.

Moreover, since

2
a a (I

— —At > —,

2 + 8 _ 2

it implies that

1 2

a 0:2 S _'
5 + §At CY

We conclude that

n (1+ S‘ia + Muzzy“ — 1

|| 6 +1 H = 292% +8-ég3-a2 (0(At3) + At0(h)).

g EefiT(O(At2) +0(h))
C!

 

< C(T)(0(At2) +0(h)).

U

Lax’s equivalence theorem says that if we approximate a linear initial-value

problem by a linear finite-difference method that satisfies the consistency condition,
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then stability is necessary and sufficient condition for convergence [23]. Since

the reaction-diffusion-chemotaxis equation is nonlinear, it does not satisfy Lax’s

condition. Therefore, we have to investigate the stability issue.

Theorem 7 (Stability) Assume that H Mn + Mn +1 “_<_ a for all n + 1 S N, let

[en |= marl | “l —— u(tl) [,0 $1 3 n for all n such that nAt _<_ T. If] e0 [S 5

then I 6" [_<_ Cl(T)€ + C(T)(O(At3) + AtO(h)), where C = C(T) is a constant which

depends on T, but not At and Ax.

Proof. It follows from the proof of convergence, we have

,, At
ll 6 +1” S H 1+ -2—(M,, + Mn+1)

At2

+ —8—(M.. + Mn+1)2 II H e” II +0(At3) + NOW

3 (1+ 923a + éga’) ll 6”“1 II

+ (1 + 921a + %fia2)(O(At3) + AtO(h))

+ 0(At3) + AtO(h)

3 (1+ %a + %Q2)n+15 + [(1+ %a + 953022)"

+ (1+ %a + %fia2)"“1+~-+1](0(At3)+ AtO(h)).

Since

(1+%a+%§3a2)n+(1+%§a+-‘}2fia2)"’1+---+1
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therefore,

(1 + %a + —Z%3a2)”+15 + C(T)(0(At3) + AtO(h))

(1 + fiAt)"+le + C(T)(0(At3) + AtO(h))

ll 6”“ II |
/
\

|
/
\

o16<At><n+1>o + C(T)(0(At3) + AtO(h))|
/
\

l
/
\

e37}: + C(T)(0(At3) + AtO(h))

l
/
\

efiTe + C(T)(0(At3) + AtO(h))

S 01(T)5 + C(T)(0(At3) + AtO(h)),

where Cl (T) = efiT and C(T) = 2/ozefiT. El
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CHAPTER 5

Numerical Experiments

In this chapter, we use a 1D testing equation to test the efficiency of the two-stage

numerical scheme. The results of a comparison between the numerical and analytical

solutions will be given. Furthermore, we will show that the optimal two-stage

scheme converges with the analytical solution for the time evolution problem while

the standard two-stage Runge-Kutta method converges only when the time step is

small enough. Moreover, the optimal two-stage scheme converges much faster than

the standard two-stage Runge—Kutta method in the region of convergence. Later in

this chapter, we will test the numerical scheme against a realistic problem.

5.1 1D testing problem

Let us consider the following testing equation

du

where f = (ta: — 1)e—tcos(:r — t) + te_tsin(a: — t).
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Assume :t: G [0, 2n],t > 0, and the boundary is periodic.

The analytical solution of (5.1) is given by

t

u(a:, t) = e‘ sin(a: — t).

We solve the equation by the two-stage scheme. We use the first-order upwind

method to approximate the chemotaxis term, and the standard second—order centerd

difference to approximate the diffusion term. Since t2: is positive for t > 0, the

chemotaxis is approximated by the backward difference operator. This leads to the

following setting:

Let u2-(t) z u(:r2-,t), then

 

du “4+1 '— 2114' + ut—l ui — rut—1Et- : h2 —tu2 —t£L’i( h )+f($i,t)

1 -2 tn 1 txi

== mum + (723' — t -- ‘h—lui + ('2'; + ”Ii—)ui-l + “$13 t)’

where i = 0, 1, 2, ...N.

The boundary condition is

u_1= ’LtN_1.

Therefore, we can set up the ODE system as the following :

du_
__Mn 11

d, (t)U+f.

where M(tn) =
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n 1 tux] 1 _ fl \
f TO B? "l' h it? h

1 tna: 1

'22 + —hQ T? ‘52

1 tnx n 1

+ 7'

i? 2 h.

1 1 t"a:N_1

l a a + h it i

where T? = TI; —tn— 1%,,- =0,1,2,~- ,N.

_ n n + 1

The matrix Mn = M“ ) + 340 ) can be evaluated by changing the time level

from t" to t" +1.

Since the matrix size is usually very large and entries of the matrix vary according

to different time levels, it is not possible to find all the eigenvalues in analytic form.

The existing numerical algorithms, e.g. the power method, are too expensive

to estimate the eigenvalues. Moreover, we only need the extreme eigenvalues to

calculate the adapted time step. The Gerschgorin Theorem from linear algebra will

be used for this purpose.

Theorem 8 (Gerschgorin) The union of all discs K2- 2: {u E l/t — a22- [g

22 = 1 k 72 2. | aik I} contains all eigenvalues of the n x n matrix A = [aikl-
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Proof. See the reference [23]. CI

The estimation of the eigenvalues for the first row and the rest of the rows will be

discussed separately, since they have different structures which are due to the effects

of boundary conditions.

For the ith row, where i = 1,2,. . . N, the diagonal entries are

_ 7',-"’+'r1"+1 _ —2 (t"+t"+1) x,(t"+t”+1)

— 2 — h? 2 2h °

 

an

The absolute sum of the off diagonal entries for each row is

i [0" l‘ 2 + :1:,-(t" +t"+1)

. . . 2’ _ h2 2h °
2:00752

 

Gerschgorin’s Theorem implies all the eigenvalues of M are contained in the union

of

—2 t" + t"+1 at" + t"+1 2 a:,(t" +tnt1)
/\ — —- — —— — .

I (h? ( 2 l ( 2h. - h2 + 2h
  

The smallest and largest real part of the eigenvalues satisfy

tn + tn+l( tn + tn+1 $2,011 + tn+l)

2 2 ) h

 

—4

)SASfi—(

For the extreme case,

_—4 t"+t"+1 :c,(t"+t"+1)

‘amin-n‘l—t—l‘ h
 



n n + 1

Since —amax = —(t—+—ttz—) < 0, it shows that the largest eigenvalues are on the

left hand side of the complex plane. Therefore, we only have to consider the case for

-ama:r < 0. By theorem 4 and

  

 

 

 

 

 

  

 

1 1

AtrowO : 2 tn + tn+1 > Atrowl z 2 tn + tn+1 (tn + tn+1) >

715 + ( 2 ’ E + ( 2 ) + h h

At 2 = 1 >
Tow 2 t" + tn+1 (tn + tn+1)

}? + (—2—) + 2h h

At = 1> rowN 2 tn + tn-l-l (tn + tn+1) ’

E5 + (—2—_) + W h

the time step is

2 1

Atom = amin + amax : 2 t" +13"+1 (t” + tn“) ' (52)

it? ( 2 ) + W h

For the first row of the matrix M, i = 0,

a _ 2 t” +t"+1)

00 — hz 2 i

1 tn + tn+1 1 tn +tn+1

Ejillaod- [ZW—l-T‘l’ I iii—(Tll

The location of eigenvalues for this row is

2 tn+tn+1 1 tn+tn+1 1 tn+tn+1

IA+E§+(—2—)ISE+(——2—)+l§—(Tll-
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In this case,

—3 1 tn+tn+1 1 1 tn+tn+1

——t" tn+1————-——— <A<—— ———-————,hg <+ > Ihg < 2h )1- _ h2+|h2 2h )I

The lower bound is

_3 1 tn+tn+1

_ min=__ t" tn“ _ __ ..____,a h2(+)|h2(2h)l

The upper bound is

1 1 1t"+t"+1)l

m" h2 lh2 ( 2h

When —amax Z 0, we set -amax = 0. Therefore, the time step is separated into

two cases as follows:

 

 

 

1 if?“ < tn+tn+l

4 + (t“ + t"+1)(4h2 + h) h2 — 2

2

2+tn+tn+1 lffi> 2

h2 2

Since time step in (5.3) is greater than time step in (5.2), the optimal time step is

1

Ato = . 5.4
Pt 2 tn + tn+1 + (tn +tn+1) ( )

PM 2 )fl 2
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5.1.1 Results for 1D experiment

 

 

 

 

      

Method / Time 1 2 3 4 5

Optimal two stage 284 637 1060 1553 2116

Standard Runge-Kutta At = 0.002 500 1000 1500 2000 2500

Standard Runge—Kutta At = 0.004 250 Div Div Div Div
 

Table 5.1: Number of iterations.

This table is the number of iterations with different methods at different time.

The table says that the standard two-stage Runge-Kutta method will converge when

the time step is small enough. However, the optimal two-stage method converges

faster than the Runge—Kutta method when both methods converge. When the time

step for the Runge-Kutta method is increased, it will diverge.
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Optimal two-stage vs. Runge-Kutta two-stage method
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Figure 5.1: Error between numerical simulation and analytic solution.

This picture shows the relative error between numerical simulation and analytic

solution. While the two—stage Runge—Kutta method blows up in a short time, the

optimal two-stage method is still very accurate. It shows that the optimal two-stage

scheme not only is accurate but also converges faster than the two-stage Runge-Kutta

method.

5.2 Simulation of Adler’s experiment

In this section, we will test the optimal two-stage scheme with a realistic problem.
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5.2.1 Chemotaxis phenomenon

The study of chemotactic behavior of bacteria originated in the nineteenth century.

In 1884, Pfeffer discovered the chemotaxis phenomenon in bacteria by observing

a capillary tube which contained an attractant and motile bacteria. The bacteria

accumulated near the higher concentration of the attractant. In 1901, Rothert,

Jennings and Crosby found that bacteria often avoided the region of lower density

in a capillary tube. In 1972, H. C. Berg and D. A. Brown analyzed the microscope

motion of the bacteria by comparing the quantitative run-twiddle analysis between a

wild type, a nonchemotactic mutant and an uncoordinated mutant. They discoverd

that bacteria responsed to the external environment by modulating their pattern

of motion shifting bewteen swimming and tumbling: swimming is a nearly straight

run, tumbling is a very rapid and jerky movement which redirects the cell to a new

random direction. Usually, the motion of swimming is followed by a brief tumbling.

When bacteria encounter a favorable external environment, they decrease the

tumbling probability and extend the time for swimmimg in the preferred directions.

It results in a bias in the random walk and net movement in the gradient of the

attractant. That is chemotaxis [8, 16].

The swimming and tumbling modes are modulated by the bacteria flagella. Each

one consists a long filament, a left handed helix of protein subunits and a basal end

attached to the cell membrane. The basal end serves as a turning wheel. It turns the

filament as a propeller. The motion of swimming is produced by the anticlockwise

rotation of the left-handed helix. It results in a forward movement. The clockwise

rotation gives rise to a backward motion, producing tumbling.

Bacteria sense the change of the external environment via membrane receptors
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binding the chemical substrate. The cells reflect the change in the concentration

of chemicals by the relative number of occupied binding sites, not by the absolute

concentration of the substrate. “The receptor proteins perform as reporter molecules,

which sending information about the current concentration of ligand to a central

mechanism (tumble regular). The tumble regular then creates signal to rule the

direction of the rotation of flagellar rotary motors” [8].

It is worthwhile to mention that we can derive the chemotaxis coefficient from

the proportion between the occupied (denoted by No) and free receptors (denoted

by Nf). The ratio of the occupied receptors and the total number of receptors is

NIIWXLW- Let T0 and Tf represent the mean time of a receptor occupation and the

mean time when the receptor is free. Note that Tf is inversely proportional to the

concentration of the substrate and T0 is a constant which is related to the process of

internal cellular. Thus

No To C

——=—=—— 5.5
Nf+N0 Tf+T0 K+C ( )

and

a 1v0 _ K ac

55%, + N0) ‘ (K + C)2 823’ (5'6)
 

where K :- (£72,2—) is a constant, and {If—f5: is known as the “receptor law”. The

receptor law says that the chemotactic reponse vanishes when all of the receptors

have been occupied [16].

We tested our numerical scheme by using Julius Adler’s series of work [4, 5, 6, 22]

in the quantitative investigations into the chemotaxis. His work has inspired and
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influenced researchers in the area of molecular biology and mathematical biology,

especially in the field of pattern formation. We will briefly describe his experimental

work and the results of one of his papers in 1966 before demonstrating the numerical

results.

5.2.2 Experiment results

 

Figure 5.2: Photographs showing bands of E. coli in a capillary tube. In all the ex-

periments reported here, capillary tubes were filled with a liquid medium, inoculated

at one end with 200000 to 2000000 bacteria, and then closed at the ends with plug of

agar and clay, all according to procedure described in full elsewhere. The tube were

incubated horizontally at 37C. The origin, which is turbid because of the bacteria

that have not moved out, is visible at the left, then the second band of bacteria, then

the first band. Plugs at the ends are not shown. The concentration of galactose was

0.00025 mole per liter.

Julius Adler and his associates use E. Coli in most of his experiments. Since “

the vast knowledge of its biochemistry and genetics could be brought to bear on the

problem.” It is an inhabitant in the human or animal intestine and it is nonpathogenic

in normal environments. Ecoli is a. mobile bacteria, it moves by propelling itself

with flagella around cells. E. Coli is known to be moving preferentially toward oxygen.
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E. Coli were placed at one end of a closed capillary tube. The other end of the

capillary tube was closed with plugs of agar and clay. It contained different amounts

of oxygen and an energy source. Two clear and visible bands of bacteria with a

constant speed moved from the end after adding bacteria into the tube. Some cells

still remained at the end of the tube. If the amount of dissolved oxygen was lower

than the energy source (the amount of oxygen is not enough to oxidize all the

energy source), then the first band traveled along, consuming all of the oxygen. The

second band would move out when the cells were able to deplete the energy source

anerobically. On the other hand, when there is enough oxygen for the cells to oxidize

the energy source, the first band totally exhausted the energy source aerobically.

Under these circumstances, the second band used up the remaining oxygen to oxidize

the endogenous energy source. In this situation, the bacteria in the first band

generated a steeper gradient along the concentration of the energy source than the

gradient in the concentration of oxygen. Bacteria then moved preferentially toward

the higher concentration of the energy source. Bacteria in the second band created

gradients in the concentration of oxygen and galactose. Bacteria therefore migrated

toward the higher concentration of oxygen [4, 18, 24].

These two crowded regions of bacteria are the effect of chemotaxis. Since if random

walk or diffusion is the only transport mechanism for the movement of bacteria, the

distribution of bacteria density should look like a linear function which falls from

high-to low density.
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Figure 5.3: Utilization of oxygen by bands of bacteria in 0.00025 M galactose. Oxy-

gen was measured polargraphically by inserting an oxygen needle electrode into the

capliiary tube in 4-mrn steps when the first and second bands were visible where

shown by arrows.
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Figure 5.4: Utilization of 0.00025 M galactose. The tube contained C14- galactose

(0.00025 mole/liter and 1000000 counts per minute per milliliter). At 4 or 8 hours,

when the first and second bands were visible where shown by arrows, the tube was

factionated into ten compartments, each 8 mm long. the contents of each compart-

ment were chromatographed on paper, with n-butanol, acetic acid, and water (12:3:5)

as the solvent, and the radioactivity in the galactose region of the chromatogram was

measured in a paper-strip counter.
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Figure 5.5: Utilization of oxygen by bands of bacteria in 0.000005 M galactose. Mea-

surements were made as in Figure 5.3 and Figure 5.4. Utilization of 0.000005 M galac-

tose. The tube contained Cl4-galactose (0.000005 molde/liter and 200000 counts per

minute per milliliter). At 4.75 hours when the first and second bands were visible

where shown by the arrows.

45



5.2.3 Mathematical Model for pattern formation in E.coli

experiment

We deal with a continuous, deterministic model to describe bacteria growth. The

characteristics of the model we describe are all two dimensional. First, we will

explain the following notation and its units H

o u : bacteria density : [u]=cells/cm3.

o g : concentration of galactose : [g]=mmole/cm3.

o s : concentration of oxygen : [s]=mmole/cm3.

o t : time : [t]=hours.

o a: : distance along the tube (peri dish) : [x]=cm.

o X1(g) = chemotactic sensitivity for galactose : [X1(s)]=cm2/hour.

o X2(s) = chemotactic sensitivity for oxygen : [X2(g)]=cm2/hour.

0 Du > 0 : bacteria motility : [Du]=cm2/hr

0 D9 > 0, and D3 > 0 : constant diffusivities : [D]: cm2/hr.

0 Yg > 0 : bacteria yield constant, which gives the yield of bacteria per galactose

taken up : [Y9]: mass u/mass g.

0 Y3 > 0 : bacteria yield constant, which gives the yield of bacteria per oxygen

taken up : [Y3]: mass u/mass s.

For a closed region, the time rate of change 'of the bacteria concentration should

be equal to the bacteria flux across the boundary of the closed region. Assume that
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reproduction is not negligible. This gives

an 8"] CC ' 3)

B—t— —— —% + BZT‘th , (5.7)

where J = J(x, t) is the flux of the bacteria. It consists of two parts : diffusion and

chemotaxis.

The diflusion or random walk is given by

—DuVu. (5.8)

The chemotaxis flux is

uX1(g)Vg + ux2(s)Vs, (5.9)

where X1(g) and x2(s) are the chemotactic sensitivity to the galactose and oxygen

respectively. They represent the strength of chemoattractant. The presence of u in

the above equation is because the bacteria flux is the number of bacteria crossing

a unit area per unit time. Therefore, increasing the number of bacteria will in-

crease the bacteria flux. In the case of repellent, the flux will have a positive sign [16].

Here we use the Keller-Segel model with p=2 or the receptor law [18].

Co

XKS(5) =m (5.10)

where CO and C1 are positive constants. Note that as lz'ms —+ ooXKs(S) = 0,

which means that bacteria will prefer to stay where they are if there is plenty of

chemoattractant.
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Thus, the total bacteria flux J is:

J = uX1(g)Vg + ux2(s)Vs — DuVu. (5.11)

For the growth term, we adapt Monod’s law

V19

fl(g) = m:
(5.12)

where V1 > 0 and K1 > 0 are constants.

If the amount of nutrient (galactose, in this case) is restricted, bacteria will consume as

much as food as they can. When the supply of nutrient is abundant, the consumption

rate is independent of the concentration of nutrient. We say the growth rate is

saturated with respect to the nutrient [18]. Under this circumstance, the reproduction

of bacteria only depends on the bacteria density and the eating rate per bacteria is

Together with (5.11),(5.12), the bacteria equation u is

ut = DuAu — V(uxl(g)Vg) — V(ux2(s)Vs) + f1(g)u, (5.13)

where A = 82/63:? + 02/8xg is the standard Laplace operator, which simulates the

diffusion process. V = 6/01:1 + 0/(9x2 is the gradient operator.

The model also contains nutrient (galactose) and oxygen. Nutrient was taken up

by bacteria at the same rate as bacteria reproduction. This suggests that the nutri-

ent consumption (following Monod’s law) has a sigmoid characteristic. Meanwhile,
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the nutrient also diffuses itself. A simular assumption also holds for oxygen. How-

ever, oxygen does not contribute to the growth of bacteria. Hence, the equations for

nutrient and chemotaxis are:

gt = DgAg - f1(g)u/Yg, (5.14)

st = DsAs -— f2(s)u/Y;. (5.15)

where Yg > 0, Y; > 0 are the bacteria yield constants, Yg gives the yield of bacteria

per nutrient taken up. Y3 gives the yield of bacteria per oxygen taken up.

According to Adler’s experiment, the ends of the capillary tube are closed. No sub-

strate flows through the boundary. Therefore, the normal derivative on the boundary

is zero. i.e,

811 89 83

anlan an an anlan 0 (5 6)

Moreover, the initial condition for bacteria is :

uo(:z:) if “an” S K

u(:1:, 0) =

0 Otherwise.

which approximates the initial inoculum of the bacteria in the center of the agar

plate (in the two dimensional case).

Galactose and oxygen are uniformly distributed at the beginning. The initial condi-

tions fitting Adler’s experiment are

9(33, 0) = 90(1), (5.17)
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5(23, 0) = 30(2). (5.18)

5.2.4 The coefficient function

To complete the model equations, we have to estimate the parameter function. It

is crucial to have an accurate parameter estimation to ensure the presentation of

patterns. The original paper does not contain the quantitative data of the experiment,

so we use ChiChia Chiu’s paper [14] as a reference to guess the correct order for the

parameter function. The values of parameters are chosen as follows.

0 Du = 0.001, D9 = 0.005 D3 = 0.033

0 u0(x) = 5 x 10‘6 if ”2:” S 6, where 6’ = 7.5 x 10‘2

0 30(2) 2 4 x 10‘5, 90(2) 2 2.64 x 10‘5

. Y9 = 0.001, Y3 = 0.0001

CKI = 0.02,DK1= 2 x 10—6

CK2 = 0.04, DK2 = 3.3 X 10—5

v1 = 0.35, K1 = 4 x 10-6

V2 = 0.6, K1 = 5.5 x 10-5

Q = [—R, R] x [—R, R], where R =1

These parameters come from experiments and literature. In the numerical sim-

ulation, we fix all parameters except u0(:r), 90(3) in order to accommodate Adler’s

experiment.
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5.2.5 Intuitive explanation of pattern formation mechanism

The nutrient (galactose) and chemoattractant (galactose, oxygen) will exhaust as

time goes to infinity. This implies that the growth of bacteria and the effiect of

chemotaxis will eventually become zeros. In the end, the only term which remains in

effect is the diffusion of bacteria. The solution become spatially homogeneous. This

is not an interesting phenomenon in pattern formation. Thus, we have to investigate

a dynamic solution [20].

Note that galactose not only plays a role as an energy source but also as

chemoattractant. Therefore, galactose and oxygen both serve as chemoattractant.

They both direct the movement of bacteria. However, oxygen does not contribute

to the growth of bacteria. The bacteria take up suger and oxygen, creating a

gradient of nutrient and chemoattractant. They move preferentially toward higher

concentration of substrates and generate a population there. However, the diffusion

of the bacteria has a dissipated effect, which flattens out the population peak. The

speed of diffusion and the eating speed of the bactera for these chemicals are not

identical. As a consequence, two sharp and visible bands migrate out.

5.2.6 An optimal two-stage numerical scheme

Let Q = [0,8]2 with mesh size h = 26/N. Let $ij E Q be a grid point, then

$i+1,1 = $21 + h and $1,j+1 = $1j + h, etc. The time step is denoted as At,

and “ij % “$.5-

Let us solve the equations for the nutrient concentration, 9, the attractant con-
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centration, s, using the optimal two stage scheme:

 
 

89 92'+1,' —' 293' + 91—1; 92', '+1 — 2923' + 92', '—1

=D,( , '3 .)+,,g(. , ,)

 
 

797 h? h?

- f2(gijuij)/Y:q

D9 D9 4Dg D9 D9

= figz‘uj + 72—29041 — 7923' + 32-92;” + 3590—1

- f2(gz'juz'j)/Yg' (519)

33 5i+1,j - 28m + 3i—1,j 52',j+1 — 28M + 82332—1

a : D3( h2 ) + D3( hz )

- f1(50'uz'j)/Ys

D3 D3 4D3 D3 D8

= 7133i+1j + 72792741 — 7513' + fist—U + fisz’j—l

" f1(3ijuij)/Ys- (5.20)

The boundary conditions are

9—1j = 913', 9N+1j = gN—lja gi—l = 921, and 9—1,N+1 = 9i,N—1,

8—1j = 813', 3N+1j = «SN—13', Si—l = Sn, and 8—1,N+1 = 5i,N—1a

where i,j = 0,1,2... ,N.

Now, we can investigate the time step of the ODE system 8./8t = M(t) + f(:r, t) for

g and s.

From (5.19) and the boundary, the diagonal entries of 9 matrix and the summand of

the off diagonal entries are

h2 ’ h2
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respectively. By the Gerschgorin Theorem, we get

40,4D,,

_ 757'
[A+ )1? Is

For 2' = 0, 1, 2, - - - ,N. Therefore, the real part of the extreme eigenvalues of M for g

are contained in

—8D

[ hg
 ,0].

Hence, the optimal time step for g is

h2

= —, .214,,9 (5 >Atg

Similarly, the optimal time step for s-equation is

h2

At, = 40 . (5.22) 

In the following section, we present optimal two—stage scheme for solving the

reaction-diffusion-chemotaxis equation.

The equation for it has the following form

at = DuAu — V(uxl(s)Vs) — V(ux2(g)Vg) + f1(g)u. (5.23)

The optimal two—stage scheme for u is defined by the following:

 

 

 

Bu _ Amth-j Ayhuij

at _ D" h? +D“ h?

X1(3)V$s+lxl(s)sz| _

( 2h Vzrh)ijuij

”(3)sz — [X1(5)V$s|

- ( 2h Vihlz‘juij

(5.24)
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X1(8)\7 8+ IX (8W 8| _
( y 2h 1 y Vyhlz'juz'j

X (8W 8 - IX (8W 8|
( 1 y 2h 1 y Vyh)z.7u3.7

X 9V59+ X ngg _( 2( ) 2h] 2( ) IVmh)ijuij

 

 

 

X2(9)Vx9_ IX2(9)ngl

( 2h th)iJuui]

x (9)Vg+lx (9)V 9| ..
( 2 y 2h 2 y Vyh)ijuij

X2(9)Vy9_lX2(9)Vygl+
( 2h V30sz0

+ fl(gij)uij (5.25)

 

 

where vgh and V3}; are first order backward difference operators such that

(Vii. + Vgh)u5= (Uij_ui—1j)+(uij - uz‘j—l),

and V: and V+h 3/h are first order forward difference operators such that

(Vi); + vyh)uij= (ui+1j— Uij) + (“'in — Uij)

V2,, Vy are the centered difference operators

Va: = ui-i-lj — ”Mi—13',

Vy = uij+1 — uz'j—L

Note

._ + -
Axhuz'j — vxhuij — Vrhuij'

and (X1(3))ij = X1(3ij)-

The zero flux boundary conditions for u are approximated by
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71—13“ = U133 UN+1j = uN—lja ui—l = mi, and u—1,N+1 = ”LN—1'

Therefore, (5.24) can be written as

  

 

 

 

 

 

 

 

 

% ___ DuUi+1j — 2:? + Uni—13’ + Baum-+1 — 2:3]: + 11.25-}

_ (X1(S)V$s :hIX1(s)V$s| )ijwij _ iii—13')

_ (xl(s)v.s 215' X1(s)v,s| )ij(qu _ W)

— (X1(S)Vys :Ile1(S)VySI lifluzj — ”(j—1)

— (X1(8)vys 2th1<S>VySI )ij(uz'j+1 — uz’j)

_ (X2(9)ng :th2(9)ngl)ij(uij _ qu)

_ (X2(9)ng ;h|X2(9)ng| )ij(ui+1j _ 0.3-)

_ (X2(9)Vy9 :hIX2(9)Vy9l)ij(uij _ Haj—1)

_ (X2(9)Vyg ghl><2(g)Vy9|>150,”+1 _ W)

+ f1(gij)uz'j-

That is,

_8_u = [9—1, + (X1(s)sz + IX1(3)Vx3|)H

at h2 211 ‘3

x ng+ x ngg( 2() 2]] 2() 55125—1.-

 

 

fi (X1(5)Vy5 + |X1(S)Vy3l)__

h? 2h ’3

X2(9)Vy9 + IX2(9)Vy9| ..
( 2h )0]

 

 

ufi-l

—4Du 20(3)sz + lX1(S)vx3l __

—h—2_ — ( 2h )”

 

+ l
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X1($)Vy3 + |X1(3)Vy3|
 

- (

+ (X1(3)Va:8 — |X1(5)Va:5l
 

 

2h

 

2h

Du

2h )

2h )

_ (X2(9)Va:9 + [X2(9)Va:9l)

(X2(9)Vzg - IX2(9)V59|)

”(3)sz — |X1(s)sz|

(X1(8)Vy8 — |X1(3)Vy5|),_

2h ’9

_ (X2(9)Vy9 + |X2(9)Vy9|)

2h

X2(9)Vy9 "' lX2(9)Vygl

+ ( 2h )0]

 

1.7

 

U

 

 

+ [75 _ ( 2h

(>901)ng - [X2(9)Va:9|

2h

 

D

)z'j

)z'jluz'm

X1(3)Vy5 — lX1(3)Vy3l
 

+ [77.7 _( 2h

(X2(9)Vy9 — IX2(9)Vygl

2h

where i,j = 0,1,2~- ,N.

 

)z'j

)ijluz'j+la

Let (0)” denote the time level. Then the diagonal entries of the spatial matrix

M

.= h2 _(

= M(t") +2M(t"+1)
 

—4Du
 

X1(8)Va=8 + [X1(3)Vx3|

of the ODE system for u is

(X1(5)V:c5 + |X1(3)Va:3l)n+1
 

4h

X1(5)Vx5 - |X1(5)Vx5|

4h

X1(s)Vys + IX1(s)Vys|

4h

X1(5)Vy3 - le(3)Vy5l

4h

_ (”WWW + |X2(9)ngl 1...

4h '3

(X2(9)ng - [X2(9)ngl )1.

4h 2’

_ (X2(g)vyg + lX2(g)V3/gl)n

4h

(X2(g)Vyg - |X2(9)Vy9| )9

4h 2]

 

+(

-(

+ (

 

 

 

 

 

 

)2;- +

)1} —

)2; +

_ (20(9)va + lX2(g)V:cgl)n+l

+(

fj—

+(

 

)3 _ 4h ‘7'

20(3)sz — lX1(S)vI€Sl n+1

X1(3)Vy3 + lX1(3)Vy3l n+1

(newts — lxl(s)Vysl ...1
4h z]

 

 

 

 

4h 27'

20(9)ng - lX2(9)Vx9l)n+1

4h '7'

(X2(g)Vy9 + IX2(9)Vy9| )1.“

4h '3

20(9)va _ lX2(g)Vy9l)n+1

4h ’9 °

 

 

 



The summand of the absolute value of the off diagonal entries for each row is

Z laijl

j_laj#i

4D,,
 

h2
-(

20(3)sz "' lX1(S)Va:5l
 

4h

20(5)sz — |X1(5)vxsl
 

- (
4h

X1(3)Vx8 + |X1(S)Vz3|
 

+ (
4h

X1(3)Vy5 - |X1(8)Vy8|
 

- (
4h

X1(3)Vy3 + |X1(3)Vy3l
 

+ (
4h

)gfl

>:;-+

)3-

)

 

—(

+(

-(

+

X2(g)v:cg - lX2(g)V:cgl)n, __

2]

X2(g)vrcg + lX2(g)vxgl)n +(

4h

 

4h

X2(9)Vyg — IX2(9)Vy9|
 

(X2(9)

4h

V319 + [X2(9)Vy9l
 

4h

n

U

2'1

)3.

)3}

-(

+(

>009)sz + le(s)sz|
 

(
4h

X1(3)Vy3 _ lX1(S)V3/Sl )n+l

)0.“

1]

 

4h

X1(5)Vy3 + lX1(3)Vy3l

ii

 

(

-(

+(

4h

)flfl

2]

 

X2(9)V29 - IX2(9)V:::9| )7.“

4h

X2(9)V:cg + lX2(g)V$gl )n+l

ij

 

4h
27’

 

X2(g)vyg — lX2(g)V3/gl )n+l

4h

20(9)va + lX2(g)V3/gl )n+l

ij

 

4h
ij'

Therefore, the estimated largest and the smallest eigenvalues can be found by the

following. The smallest eigenvalue of the spatial matrix M is

“_amin :

(

(

(

(

(

—8Du

h2

X1(5)V23 + |X1(3)V53|

-(

X1(s)sz + IX1(s)V$s|
 

2h

 

X1(3)Vy3 + lX1(3)Vy5l

2h

 

X1(3)sz - |X1(3)V:c3|

2h
)

 

X1(8)Vy3 — |X1(3)Vy5|

2h

 

2h

X2(9)ng + |X2(9)V229l
 

2h
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)n+1

2'J'

n —

ij

>23+

>:3-+

)2;—

)
Tl

1'}

X1(8)Vy3 + |X1(3)Vy5|
 

(
2h

X1(5)V15 - le(3)Vx3l

)

 

(
2h

X1(3)Vy3 - |X1(S)Vy8|
 

(

(

2h
)

X2(9)ng + |X2(9)ngl

n+ 1

“ij

)0.“
U

n+1

ij

)n+1
 

2h
ij

 



 



_ (X2(9)Vy9+|X2(9)Vy9l)n._ (X2(9)Vy9+lX2(9)V1/9l 541

2h ‘9 2h ‘3

X Vx—X V597. gixg—gixgn+ ( 2(9) 92hl 2(9) |)ij+( 2( ) 2h] 2( ) It)“

X2(9)Vy9 - IX2(9)Vy9| n X2(9)Vy9— [X2(9)Vy9l n+1

  

  

+  

Note that “amin < 0. The largest eigenvalue of the spatial matrix M is

—amax = 0.

Therefore, the time step for b system is

 

4D,, lsts+ lsts nM) = 1/(7+(X( ) 4hlx () I)”

20(3)sz + lX1(5)V$3l)n+l

4h ‘7

X1(3)Vy3 + lX1(3)Vy5l )1}. (X1(5)Vy3 + lX1(3)V3/Sl )n.+1

4h ’3 4h '3

_ (>009)sz — |X1(3)Vx3[ )5 _ (>00)sz - |X1(3)V:c3| )1...“

4h ’3 4h ‘3

_ (X1(8)Vy8 — |X1(8)Vysl)n. _ (X1(3)Vy3 _ lX1(8)Vy'sl)T-r+l

4h ‘3 4h ’3

(X2(9)ng + |X2(9)ngl )7. + (X2(9)V59 + |X2(9)ng| )7.“

4h. ‘9 4h '3

_,_ (X2(9)Vy9 + IX2(9)Vy9|).._ + (X2(9)Vy9 + [X2(9)Vy9|)p_+1

4h “J 4h '3

(X2(9)ng - IX2(9)V59I),. _ (29(9)ng - IX2(9)V59|)..11

4h '3 4h '3

_ (X2(9)Vy9 - IX2(9)Vy9| )5 _ (X2(9)Vy9 - |X2(9)Vy9l)15+1

4h 23 4h '1 '

 

+ (

+ (
  

  

  

  

  

  

  

The optimal time step for the our model equation is

min {Atb, Atg, Ats} . (5.26)
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5.2.7 Results of numerical experiment

In this section, the results of the numerical experiments will be demonstrated to

compare with Adler’s experimental results [4]

This picture is taken from Adler’s experiment. The explanation of this picture will
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Figure 5.6: The relation between the amount of galactose and the distance of the

bands of bacteria.

be described upon each graph of numerical simulation. We will use 2D pictures to

simulate the 1D phenomenon. The reason is, first, Adler’s experiment can be done in

the agar plate. Secondly, most of patterns are shown by using 2D pictures. We want

to make sure that our numerical method is suitable for general patterns.
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Figure 5.7: This set of pictures simulates the movement of bands of bacteria when

the concentration of galactose is higher than oxygen.

The amount of galactose and oxygen varied during the experiment. When the

concentration of galactose was above a certain level, the second band moved less far

from the origin as the concentration of galactose was increased. It showed that the

band would not proceed unless the bacteria ingested all the galactose. On the other

hand, the distance for the first band did not vary. Probably, the consumption rate of

oxygen was saturated.
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Figure 5.8: The picture shows the movement of bacteria when the concentration of

galactose is below the oxygen.

The experiment also tested the movement of bacteria when the concentration of

galactose was under a certain amount. In this case, increasing the concentration of

galactose slowed down the movement of the first band and facilitated the movement

of the second band. Since bacteria in the first traveled along and consumed all

galactose, it would take more time for the bacteria to consume nutrient when the

amount of galactose was increased. At the same time, the consumption of oxgen was

also increased for the first band of bacteria. Therefore, less oxygen was left for the

bacteria in second band. Bacteria in the second band would then needed less time to

use it up.
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Figure 5.9: Relation of the amount of oxygen and the distance of the bands of bacteria.

When the concentration of galactose was too high, only the first band appeared

during the experiment. The experiment of different oxygen levels was tested under

this condition. It was observed that the higher the concentration of oxygen, the

slower the band moved. The condition was similar to the galactose, the bacteria

moved out only when they used up all the surrounding oxygen. Therefore, increasing

the concentration of oxygen would decrease the speed of the band.
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CHAPTER 6

Conclusion

This thesis develops a new numerical method to solve the reaction-diffusion-

chemotaxis systems. This optimal two-stage method is to improve the performance

of the explicit two-stage Runge-Kutta method for the time evolution problems. It

retains the advantage of the explicit two-stage Runge-Kutta method of simple, easy

implementation, and higher accuracy. In addition, the explicit formulation of the

time step can be calculated. The time step is adapted and locally optimal. The

consistency, convergence and the stability issues have been proved. The comparison

between the optimal two—stage scheme and the two-stage Runge-Kutta method has

been made. Table 1 and Figure 1 show that the optimal two-stage scheme is accurate

and converges faster than the RK method for the time evolution problems. A real

problem is also used to test out numerical method. Mathematical equations are con-

structed to model Adler’s experiment in which patterns of two bands emerge. The

numerical simulation and the experiment results are well matched.
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