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ABSTRACT

ADDITIVE COEFFICIENT MODELLING VIA MARGINAL INTEGRATION

AND POLYNOMIAL SPLINE SMOOTHING

By

Lan Xue

In this dissertation, we propose a flexible semi-parametric model called additive

coefficient model (ACM). In the ACM, one assumes that the response depends linearly

on some covariates, whose regression coefficients, however, are additive functions of

another set of covariates. The ACM can be viewed as a generalization of the classic

linear models in the sense that instead of assuming the coefficients to be constants

like the linear model does, it allows the regression coefficients to vary with another

set of covariates through an additive function form.

This dissertation focuses on the estimation of the ACM. Two different approaches

are considered. One is the local polynomial based marginal integration method, and

the other one is the polynomial spline estimation. The local polynomial smoothing

is local in nature, whereas the polynomial spline is a global smoothing method. This

difference, in turn, leads to the difference in the asymptotic behavior of the two types

of estimators.

Under weak dependence, the point-wise asymptotic normality is established for

the marginal integration estimators. It is found that, the estimators of the parameters

in the regression coefficients have rate of convergence I/fi, and the nonparametric

additive components are estimated at. the same rate of convergence as in univariate



smoothing. In contrast, only mean square convergence is established for the poly-

nomial spline estimators. However, the polynomial spline method is much simpler

in both computation and inference. The nonparametric versions of AIC and BIC

are adopted easily based on polynomial spline estimation, for the model selection

purpose.

Monte Carlo studies are conducted to compare the numerical performances of the

two estimation methods, as well as the model selection procedures. The simulation

studies show that besides being highly efficient in terms of computing, the polynomial

spline estimators are also more accurate than or at least as good as the local poly-

nomial based estimators. The ACM is also successfully applied to several interesting

empirical examples: West German GNP, Housing price, and Sunspot data, where

the semi-parametric additive coefficient model demonstrates superior performance in

terms of out-of—sample forecasts.
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Chapter 1

The model

1.1 Introduction

An important task in statistical analysis is to quantify the association between two

sets of variables, say a univariate variable Y and a (ii-dimensional vector X. In re-

gression analysis, one focuses on the averaged (or expected) response of Y given X,

i.e., m(X) = E(YIX), which is also known as regression function. To estimate the

unknown regression function m(X), the parametric regression analysis begins with as-

suming m(X) takes a pre-deterinined function form with only finitely many unknown

parameters, i.e.,

m(X) = m (AX),

where ,8 is a set of unknown coefficients, and the function m (,B,x) is specified in

advance. As a special case, the linear regression assumes m (,3, x) is a linear function

in ,0. The unknown coefficients 6 can be estimated using e.g. least squares method.

However, the restricted parametric form often can’t explain (or approximate) well



the complicated data structure. Furthermore, the parametric regression can lead

to excessive estimation biases and erroneous inferences, if a wrong model function

m (,6,x) is used.

On the other hand, nonparametric regression makes minimal assumptions about

the regression function m. Without assuming m (fix) take any particular form, it

allows the data to speak for themselves , thus they uncover the data structure that

linear and parametric regression are unable to detect. To estimate the nonparametric

regression function m, several smoothing methods were developed, for example, kernel

smoothing (Nadaraya 1964, Watson 1964, Gasser & Miiller 1984), local polynomial

smoothing (Cleveland 1979, Wand & Jones 1995, Fan & Gijbels 1996), polynomial

spline (Stone 1985), smoothing spline (Eubank 1988, Wahba 1990), penalized spline

(Eilers & Marx 1996, Ruppert, Wand & Carroll 2003) and Wavelet thresholding (Chiu

1992, Donoho & Johnstone 1995, Hardle, et a1. 1998). In this dissertation , we focus

on two of them: the local polynomial smoothing and the polynomial spline.

A serious limitation of the general nonparametric model is the “curse of dimen-

sionality” phenomenon. This term refers to the fact that the convergence rate of

nonparametric smoothing estimators becomes rather slow when the estimation tar-

get is a general function of a large number of variables without additional structures.

Many efforts have been made to impose structures on the regression function to partly

alleviate the “curse of dimensionality”, which is broadly described as dimension reduc-

tion. Some well-known dimension reduction approaches are: (generalized) additive

models (Chen & Tsay 1993a, Hastie & Tibshirani 1990, Sperlich, Tjostheim & Yang

2002, Stone 1985), partially linear models (Hardle, Liang & Gao 2000) and varying



coefficient models (Hastie & Tibshirani 1993).

The idea of the varying coefficient model is especially appealing. It allows a re-

sponse variable to depend linearly on some regressors, with coefficients as smooth

functions of some other predictor variables. The additive-linear structure enables

simple interpretation and avoids the curse of dimensionality problem in high dimen-

sional cases. Specifically, consider a multivariate regression model in which a sample

{(Y,, X,, T,)}?=1 is drawn that satisfies

1,," = m (XhTi) +0(X,-,T,-) 5i: (1.1)

where for the response variables Y, and predictor vectors X,- and T,, m and 02 are

the conditional mean and variance functions

m(X,,T,) = E(K|Xi,Tz-), 02 (XieTi) = var(Y.'|Xz-,Ti) (1-2)

and E(5,-|X,—,T,-) = 0, var(e,|X.-,T,-) = 1. For the varying coefficient model, the

conditional mean takes the following form

d

m (x, T) = Zm(X1)T} (1.3)

1:1

in which all tuning variables Xz,l = 1, ...,d make up the vector X, and all linear

predictor variables Tbl = 1, ..., d are univariate and distinct.

Hastie & Tibshirani (1993) proposed a backfitting algorithm to estimate the vary-

ing coefficient functions {01; (1:1)}1991, but gave no asymptotic justification of the

algorithm. A somewhat restricted model, the functional coefficient model, was pro-

posed in the time series context by Chen & Tsay (1993b) and later in the context

of longitudinal data by Hoover, Rice, Wu & Yang (1998), in which all the tuning



variables Xhl = 1, ..., d are the same and univariate. For more recent developments

of the functional coefficient model, see Cai, Fan & Yao (2000). In a different direc-

tion, Yang, Hardle, Park & Xue (2004) studied inference for model (1.3) when all

the tuning variables {Xfl}1slsd are univariate but have a joint d—dimensional density.

This model breaks the restrictive nature of the functional coefficient model that all

the tuning variables X(,l = 1, ..., d have to be equal. On the other hand, it requires

that none of the tuning variables Xhl = 1, ...,d are equal. In this dissertation, we

propose a more flexible additive coefficient model, which includes functional/varying

coefficient models as special cases.

1.2 The Additive Coefficient Model

We propose the following additive coefficient model which has a more flexible form,

namely

d1 d2

m(X,T)= Z a,(X)T,, m(X): Z (1,,(Xs),\7’1§l_<_d1, (1.4)

[:1 .9 =1

in which the coefficient functions {a,(X)};11___ 1 are additive functions of the tuning

variables X =2 (X1, . . . ,Xd2)T. Note that without the additivity restriction on the

coefficient functions {(r¢(X)};1l___ 1, model (1.4) would be a kind of functional coeffi-

cient model with a multivariate tuning variable X instead of a univariate one as in

the existing literature. The additive structure is imposed on the coefficient functions

{01(X)}fl__}l, so that inference can be made on them without the “curse of dimension-

ality” .



To understand the flexibility of this model, we look at some of the models that

are included as special cases:

1. When the dimension of X is 1 ((12 = 1), (1.4) reduces to the functional coefficient

model of Chen & Tsay (1993b).

2. When the linear regressor vector T is constant ((11 = 1, and T1 5 1), (1.4)

reduces to the additive model of Chen & Tsay (1993a), Hastie & Tibshirani

(1990).

3. When for any fixed I = 1,...,d1, 043(13) E 0 for all but one s = 1, ...,d2, (1.4)

reduces to the varying coefficient model (1.3) of Hastie 8.: Tibshirani (1993).

4. When d1 = (1;; = d, and 015(153) E 0 for l at s, (1.4) reduces to the varying-

coefficient model of Yang, Hardle, Park & Xue (2004).

The additive coefficient model is a useful nonparametric alternative to the para—

metric models. To gain some insight into it, consider the application of our estimation

procedure to the quarterly West German real GNP data from January 1960 to De-

cember 1990. Denote this time series by {0, 2:}, where G, is the real GNP in the

t-th quarter (the first quarter being from January 1, 1960 to April 1, 1960, the 124-

th quarter being from September 1, 1990 to December 1, 1990). Yang & Tschernig

(2002) deseasonalized this series by removing the four seasonal means from the series

log (GEM/Gt”) ,t = 1, 120. Denote the transformed time series as {ELIE}. As the

nonparametric alternative to the optimal linear autoregressive model selected by the



Bayesian Information Criterion (BIC),

Y: = 6116-2 + €2Yt—4 + Eta (1-5)

we have fitted the following additive coefficient model (details in subsection 4.2.1),

Yt = {61+ 011(Yt—1)+ 012 (Yin—8)} Yt—2

+ {(52 + 021(Y¢_1)+ 022 (16-3)} Yt_4 + 08;. (1.6)

Using this model, we can efficiently take into account the phenomenon that the effect

of 11-2, Yt_4 on Y, vary with Yt_1, 11-3. The efficiency is evidenced by its superior

out-of—sample one-step prediction at each of the last ten quarters. The averaged

squared prediction error (ASPE) is 0.000112 for the linear autoregressive fit in (1.5),

and 0.000077 to 0.000085 for fits of the additive coefficient model (1.6). Hence the

reduction in ASPE is between 31% and 46%, see Table 4.2.3. Figure 4.1 clearly

illustrates this improvement in prediction power, in which circle denotes the observed

value, and cross (triangle) denotes the predictions by linear autoregressive model

(1.5), and additive coefficient model (1.6) respectively. One can see that the additive

coefficient model out-performs the linear autoregressive model in prediction for 8 of

the 10 quarters.

1.3 Model Identification

For the additive coefficient model, the regression function m (X, T) in (1.4) needs to

be identified. One practical solution is to rewrite it as

d1 (12

m (X,T) = Z a,(X)T,, m(X) = a“, + Z 0,,(X3), V1 313.1,, (1.7)

l = 1 s = 1



with the identification conditions

E{w(X)a,s(XS)} E 0, l: 1, ...,d1,s = 1, ...,d2, (1.8)

for some nonnegative weight function 21), with E {w(X)} = 1. The weight function

11) is introduced so that estimation of the unknown functions {(n(X)}1 S l S (11 will

be carried out only on the support of w, supp (in), which is compact according to

assumption (A7). This is important as most of the asymptotic results for nonpara-

metric estimators are developed only for values over compact sets. By having this

weight function, the support of the distribution of X is not required to be compact.

This relaxation is very desirable since most time series distributions are not com-

pactly supported. See Yang & Tschernig (2002), p.1414 for similar use of the weight

function.

Note that (1.8) does not impose any restriction on the model, since any regression

function m((X T) =Zdl__1 232—_ 1 a{,(X)T1 can be reorganized to satisfy (1.8), by

writing

d1

With 010 z E {10(X) Zf2_-— lals(X3)} 013(X5): (11.3(X3) _ E {1U(X)CI;8(X5)} ‘

In addition, for the functions {015(X3)}i <Sdf and parameters {aloh < l < all

to be uniquely determined, one imposes an additional assumption.

(A0) There exists a constant C > 0 such that for any set of measurable functions

{b,s(Xs)}% (8:12 that satisfy (1.8) and any set of constants {(1.1}1 < l < d1,

|
/
\
l
/
\



the following holds

d1 2d2

E Z (1.1+ Z b,,(X,) T, (1.9)

[=1 3 =1

d1 d1 d2

20 Z a?+ Z Z E{b?.(X.)} - (1.10)

[=1 l=ls=1

Lemma 1.3.1. Under assumptions (A0) and {A5) in the subsection 2.5.1, the rep-

resentation in (1.7) subject to (1.8) is unique.

Proof. Suppose that

d1 d2 d1 d2

m(x,T)= 2 {am 2 a..(X.)}Ti= Z {6.0+ Z abut.) T.

1: 3:1

dlvd2

1=1,s=

dlad2

with both the set {a)3(X,) 1 , {along and the set {3130(3) l=l,s=l’

{510%, satisfying (1.8). Then upon defining for all 3,!

bls(Xs) E a1.4/Ya) “’ als(Xs)a at E 510 — 0’10

one has 2211: 1 {a1 + :32: 1 b)s(XS)} T, E 0. Hence by assumption (A0)

(11 (12 2 . d1 d1 d2

0=E 2: “1+ 2 bls(Xs) TI 20 Z ale—+- Z Z E{bl23(X-‘3)}

1:1 3:1 1:1 l=13=1

entailing that for all s,l, a, E 0 and b128(X,) E 0 almost surely. Since assumption

(A5) requires that all X3 are continuous random variables, one has b(s(:r) E 0 for all

3,1. I

1.4 Data Generating Process

In this dissertation, we consider {(Y,,X,-,T,)}" a sample generated from the re—
i=l’

gression model (1.1) and (1.2) with its conditional mean function described by (1.7)



and the identifiability conditions (1.8), (1.10). Furthermore its error terms {5,};1

are assumed to be i.i.d with E5,- = 0, Es,2 = 1, and with the additional property

that e,- is independent of {(Xj,TJ-) ,j g i} ,i = 1, ...,n. With this error structure,

the explanatory variable vector (X,, T,) can contain exogenous variables and/or lag

variables of 1”,. If (X,,T,) contains only the lags of Y,, it is a semi-parametric au-

toregressive time series model, which is a useful extension of many existing nonlinear

time series models such as exponential autoregressive model (EXPAR), threshold au-

toregressive model (TAR), and functional autoregressive model (FAR), as well as the

linear autoregressive model.

To obtain the asymptotics of the estimators proposed in this dissertation , we need

some additional properties on the data generating process {CJZI = {(Y,, X,, T,)}:1.

First we assume {C321 is strictly stationary. The following definition of strict sta-

tionarity is from Brockwell & Davis (1991).

Definition 1.4.1. (Strict Stationarity) The series {(32, is said to be strictly sta-

l

tionary if the joint distributions of ((11, . . . ’(tk) and (Ct1+ h’ . . ”Ctk + h) are

the same for all positive integers h and t1, . . . , tk 6 2”.

Second, we assume {CJZI is weakly dependent. Generally speaking, weak de-

pendence allows the observation at time t to be dependent with the observations at

the other times, say, t + 1:, but requires this dependence diminishes to zero as the

observations are far apart, i.e. |k| —> 00. There are several definitions of weak depen-

dence (or mixing) when the dependence is measured by different mixing coefficients.

Here we quote the definitions of two commonly used weak dependence, the so—called



a—mixing and B-mixing from Bosq (1998).

Definition 1.4.2. (or—mixing) Let {(321 = {(Y,,X,,T,)}:l be a strictly stationary

vector process. Let $31,, and .7}? denote the o-algebras generated by {C,-,i Z n + k}

and {(0, . . . , Cu} separately. Then the a- coefficient which measures the correlation

00 . .
between fn+k and .73 IS given as

a(k) = sup |P(A)P(B) - P(AB)|.

A 6 f3", 8 6 £21,,

The vector process {(321 is a-mixing (or strongly mixing) if its a-coefficient

a(k) —> 0, as [kl —-> oo. Specially, the vector process {(321 is geometrically a-

mixing if its (it-coefficient goes to O geometrically fast, i.e. oz(lc) 3 cp", for some

constants c > 0, 0 < p < 1.

Definition 1.4.3. (fl—mixing) Let {(3121 = {(Y,-,X,-,T.~)}f_:1 be a strictly stationary

vector process. Let 31,, and .753“ denote the a-algebras generated by {(,,i Z n + k}

and {C0, . . . , Cn} separately. Then the [j-coefficicnt which measures the correlation

00 . .
between 7:”+1: and .753“ IS given as

30%"): SUP E SUP |P(A|f3)—P(A)|

n21 Aémk

The vector process {Ci}:1 is fl-mixing if its ,B-coefficient ,8 —> 0 as |k| —+ 00.

Similarly, the vector process {(321 is geometrically fi-mixing if its ,B-cocfficient goes

to 0 geometrically fast, i.e. [3(k) 5 cp", for some constants c > 0, 0 < p < 1.

The fl—mixing is stronger than a—mixing, because the coefficients satisfy the

inequality that

m(k) g /3(k)/2.

10



Both a- and f3- mixing are weaker than the m-dependence, i.e., 0 {Cut 3 T} and

0 {Chi 2 T + k} are independent for all k > m. Most importantly, the a- and [3-

mixing contain the usual linear autoregressive and moving average (ARMA) models.

For more discussions about mixing, see Bosq (1996).

The rest of the dissertation is organized as follows. In chapter 2, a local poly-

nomial based marginal integration method is proposed to estimate the coefficient

functions. The asymptotic normality is developed. In chapter 3, a fast polynomial

spline estimation is developed for the estimation. Also a model selection procedure

based on nonparametric Bayesian Information Criterion (BIC) is proposed for infer-

ence purpose. In chapter 4, two simulation studies are given to compare the numerical

performances of two proposed estimation methods, and the model selection procedure.

Also the proposed methods are successfully applied to three empirical examples.

11



Chapter 2

Marginal Integration Estimation

2. 1 Introduction

The main focus of this dissertation is to estimate the additive coefficient model (1.7),

in which for every I = 1, ..., (12, the coefficient of T2; consists of two parts, the unknown

parameter 0:0. and the unknown univariate functions {rush S s S d2: The first

approach we propose is the local polynomial based marginal integration method.

The marginal integration method was first discussed in Linton & Nielsen (1995) in

the context of additive models, see also the marginal integration method for general-

ized additive models in Linton & Hardle (1996). To see how the marginal integration

method works in our context, observe that according to the identification condition

(1.8), for every I = 1, ...,dl one has,

010 = E {w(X)ozz(X)} = /w(x)m(x)tp(x)dx (2.1)
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and for every point x = (x1, ...,rd2)T, and every I = 1, ...,d1,s = 1, ...,d2, one has,

a¢0+a,3($s) = E{w_3(X_s)a)(:r3,X_s)} (2.2)

= /w-.(u-.)a.<x.,u-.><p_.(u_.)du_.

where

_ T
u_s — (111,...,u3_1,u3+1,...,ud2),

T

((133,u_5) _—_ ('u1,...,us_1,13,u3+1,...,ud2) ,

the density of X is cp, and the marginal density of

x_, = (X1,...,X8 _ 1,X8+1,...,Xd2)T

is 80—3, and 'u)_s(x_5) = E {u2(Xs,x_,,)} = fw(u,x._s)d<,os(u). In addition, the mar-

ginal density of X5 is denoted by 903. Intuitively, one has

  

Z w(Xi)az(Xi) . ws(Xz-,_s)az(xs. Xi,—s)

0110 m 1:1 n , 013(41’3) z 1:1 n — 010 (2.3)

:1 w(X,) Z21 w,(X,-,_3)

and the dg-dimensional functions {al(x)};11= 1 in the above equations (2.3) can be

replaced by the usual local polynomial estimators. This is the essential idea behind

the marginal integration method. To gain more insight of it, we consider the following

simple example.

Example: Suppose we have the data generating from the simple additive coeffi—

cient model

Y = {2 + Slll(X1) + X2}T1+{1+ SIH(X2)}T2 'i‘ E,

where independent of each other, X1 and X2, follow U [—7r,7r], and T1, T2 follow

N(0, 1) and 5 is the normal noise term. In this case, we take in to be the identity
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function. Denote m(X) = 2 + sin(X1) + X2, and 02(X) = 1 + sin(X1). Then simple

calculation shows that

E(01(X)) = 2; E(a2(X)) =1

E((YI(QF1,X2)) = 2 + Slfl(.’l‘1); E (02(151, X2))=1+ SlIl(.171)

E(02(X1,1‘2)) = 2 + 172; E(OQ(X1,.’L‘2)) = I.

We will discuss the same example in the simulation study.

2.2 Estimators of constants

According to the first approximation equation in (2.3), to estimate the constants

{amnilz 1 , we first estimate the unknown functions {al(x)};1l___ 1 at those data points

X, that are in the support of the weight function to. More generally, for any fixed x E

supp (w), we approximate m(x) locally by a constant a), and estimate {az(x)};ll___ 1 by

T

minimizing the following weighted sum of squares with respect to a = (011, . . . , a(11) ,

.. d1 2

Z Y. — 2: an“. KH(X.- — x), (2.4)

‘=1 l = 1

where K is a dg-variate kernel function of order ql, see assumption (A1), H =

diag{h0,1,...,ho d2} is a diagonal matrix of positive numbers 110,1,...,h0 (12’

called bandwidths, and

1 I .

KH(x) = ———-K 31..., "2 .

h0,1 hO,(12
d2

1] [10,3

s=1

 

T

Let d = ([11,...,d'd1) be the solution to the least squares problem in (2.4).
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Note that 52 is dependent on x, as is (2.4), and the components in a give the esti-

mators for {al(x)};11= 1 . To emphasize the dependence on x, we write (1 = 51 (x) =

A

T

((31 (x),...,ad1 (x)) . More precisely, let

(T1, TM1 )

W<x>=diag{KH(X.—x>/n}.g.g., Z= s s . Y=<YI....,Y.)T

  (Tn, Tndlj

and e; be a dl-dimensional vector with all entries 0 except the l-th entry being 1.

Then {&;(x)}1 S l < (11 is given by

a,(x) = 6;" {Z7"W(x)z}'1 zTW(x)Y. (2.5)

3

By (2.3), the parameter am can be estimated as a weighted average of &)(X,-) s,

i.e.,

,. 21-1—1 ’LU(X1‘)&I(X;‘)

a = '“n , l=1,...,d. (2.6

l0 Zg=1w(xi) 1 )

Theorem 2.2.1. Under assumptions (AU-(A7) in subsection 2.5.1, for any I =

 

1,...,d1,

x/mézo — a10) 3* N {04712},

where the asymptotic variance 0,2 is defined in {2.20).

The rate of 1/\/r_i at which rim converges to 0110 is due to two special features

of d)(x). First, the bias of é)(x) in estimating m(x) consists of terms of order

hgl 1, . . . ,hgl d2, bounded by 1/,/fi according to assumption (A6) (a), see the deriva-

tion of Lemma 2.5.5 about the term P61. Second, the usual variance of [11(x) in

estimating m(x) is proportional to 71-1115, 1 - - - I261 (12’ which gets reduced to l/n due
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to the effect of averaging in (2.6), see the derivation of the term Peg in (2.18) and

(2.19). This technique of simultaneously reducing the bias by the use of a higher

order kernel and “integrating out the variance ”is the common feature of all marginal

integration procedures.

2.3 Estimators of function components

In the following, we illustrate a procedure for estimating the functions {013(T,)};11: 1,

for any fixed 3 = 1,. . . , d1. Let T, be a point at which we want to evaluate the func-

tions {013(I3)}1 S l S ()1 . According to (2.3), we need to estimate {a¢(x)};il___ 1 at

those points (x,,X,-,_s) that lie in the support of w. For any x E supp (w) , dif-

ferently from estimating the constants, we approximate the function m(u) locally

at x by m(u) z (r) + 237:, [3,301.3 — 978)], and estimate {a)(x)};11= 1 by minimiz-

ing the following weighted sum of squares with respect to a = (a1, . . . ,adl)T,

,3 = (511w-afilp""’fll111""’fidlp)T

2

11 all p

Z Y,- — 2: {m + Z a,,(x,, _ 3,)2‘} T,- khs(X,-, — .r,)L03(x,-,_, — x_,)

i=1 (:1 ‘ 1:1

in which k is a univariate kernel, L is a (d2 — 1)-variate kernel of order qg, as in

assumption (A1) in the subsection 2.5.1, the bandwidth matrix

C, = diag {91, ...,gs _1,gs +1,...,gd2},
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and

   
t
a

Q on

c
:

I

l

L 311 113—1 ”5+1 312

Ill 98’ 91’ ’93—1 , 98+1, , gd2

' _ d2,s' 76 s

for u_s = (u1,u8 _ bus +1,...,ud2) . Let (”1,3 be the solution of the above least

squares problem. Then the components in (3! give the estimators for {a1(x)};11: 1 ,

which is given by

d,(x))=e,T{Z,TW(x)z,}“z§"w,(x)v, (2.7)

where e, is a (12+ 1)d1-dimensional vector with all entries 0 except the l-th entry being

 

  

1,

= ' -1 . ._ . _W,(x) _ diag {n khs(X,, xleG,(Xt.-s x—8)}1$ign

and

Tf1{(Xls — Is)/hs} Tfi "-i {(Xls — xs)/hs}p Tip

Z, =

TI, {(Xm, — 173)/113}T£,...,{(Xn3 — 1‘s)/hs}p T:

[p{(X13 "' fail/half ® T?

= (2.8)

[P{(X113—1.ISM/h HT (ET:

in which p(u) = (1,u, . . . , up)T and (8) denotes the Kronecker product of matrices.

Then for each s, we can construct the marginal integration estimators of a), for

 

l = 1,. . . ,dl simultaneously, which are given by

. 2'11'lu-s(X.--s)dz(:rs.X.~_.-) .

al ($3) = :_ n v ‘ L _ 010: (29)

3 21:1 w_3(X,-,_,)

17



where the term rim is the fi-consistent estimator of am in Theorem 2.2.1. The

estimator 611,612,) is referred to as the p-th order local polynomial estimator, where p

is the highest polynomial degree of variables X,,, — 2:3, i = 1, ..., n, in the definition

of the design matrix Z, in (2.8). In particular, the local linear (p = 1) and the local

cubic estimators (p = 3) are the most commonly used.

Theorem 2.3.1. Under assumptions A1-A7 in the subsection 2.5.1, one has, for any

x = (T1, ...,1‘d2)T E supp(w), andl = 1, ...,dl, s = 1, ...,(lg,

Vnhs {d13(a:s) — 013(238) — h§+lms(1:3)} A N {0, 0124333)} , (2.10)

where 17,8(233) and 0123063) are defined in (228) and (2.30), respectively.

Finally, based on (2.6) and (2.9), one can predict Y given any realization (x, t) of

(X, T) by the predictor

d1 d2

m(x,t)= Z a,0+ Z and.) 1,. (2.11)

:1 3 =1

To appreciate why a), can be estimated by (11, at the rate of 1/\/7—i71_,, which is the

same as the rate of estimating a nonparametric function in the univariate case, we

discuss two special features of d,(x) given in (2.7), which are similar to those discussed

in subsection (2.2). First the bias of (i)(x) in estimating (11(x) is of order h?“ +51%“,

where the first term can be understood as the approximation bias caused by locally

approximating at, using a p—th degree polynomial, see the derivation of P52 in Lemma

2.5.9, and the second term can be considered as the approximation bias by locally

approximating functions {awhifl using a constant, which is bounded by 9.1%.. since

the kernel I. is of order (12, see P33 in Lemma 2.5.9. The order (13%,, of the second
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bias term is negligible compared to the rescaling factor of order 1/M, according

to (A6) (b). Hence, only the first bias term appears in the asymptotic distribution

formula (2.10). As for the variance of &l(x) in estimating m(x), it is proportional to

n"1h;1gl‘ 1 - - - 9:193:11 - - - 9321, but due to marginal averaging of variables X,,_s, the

bandwidths 91,...,gs _ 1, gs + 1""19d2 related to X,,_, are integrated out, see P31

in Lemma 2.5.9. Then the variance of a, is reduced to the order n‘lhs‘l. If the

same bandwidth h, is used for all variable directions in X, then Assumption (A6)

(b) would imply that nn'dZ/ (2p + 3) ——> 00 and hence restricting (12 to be less than

2p+ 3, for the asymptotic results of Theorem 2.3.1 to be true. That is why we prefer

the flexibility of using a set of bandwidths 911 ..., gs _ 1, gs + 1, ..., gd2 different from

h,.

2.4 Implementation

Practical implementation of the estimators defined in (2.6) and (2.9) requires a rather

intelligent choice of bandwidths H = diag {’10, 1, ...,ho, d2}, {hs}1 S S S d2, and

G, = diag {91, ...,gs _ 1,93 + 1, ...,gdg}. In the following, we discuss the choices of

such bandwidths.

a Note from Theorem 2.2.1 that the asymptotic distributions of the estimators

{amfiilz I depend only on the quantity of, not on the bandwidths in H. Hence

we have only specified that H satisfy the order assumptions in (A6) (a) by

taking hm = = [30112 = x/var(X)log(n)71—1/(2q1 — 1), where ql is the

order of the kernel K, required to be greater than (d2 + 1) /2, and var (X) =
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3 =1

1,...,d2.

1/d2

2

{ H var (X3)} , in which var (X,) denotes the sample variance of X3, s =

The asymptotic distributions of the estimators {(113}1; (S :2 depend not only

|
/
\
|
/
\

on the functions 7713(5123) and 0123(333) but also crucially on the choice of band-

widths ha. Moreover, for each s = 1, ..., d2, the coefficient functions {c)z,s(:1:,,)},d=11

are estimated simultaneously. So we define the optimal bandwidth of h,, de-

noted by hwph as the minimizer of the total asymptotic mean integrated squared

 

errors of {astral = 1,... ,(11}, which is defined as

d1
d1 d1

[21AMISE {(113} = 11:00“) [:1 [0123055)de + ha [El/0125(TSMTS.

Then limp, is found to be

2 1 /(2p+3)

_1f 013 (13,) do,

2n(p+:1)22:1: 1f77129 (IS) divs

in which 7713 (1‘3) and 0123(173) are the asymptotic bias and variance of fin, as in

 
hsppt =

(2.28) and (2.30). According to the definitions of 7713 (.733), 0,23 (13,), f 7)le (1:3) dx,

and f 0123(T,)d1:, can be approximated respectively by

d, n
2

1

/ f + 1)‘ 2 off“)X(::$)/up+ll Z {w., (XL-s) Tu’Kfs (1‘a$s.xz’,-s, Ti)} d” divs.

P - 3 n i=1
I

 

12 9.92 X,_,)o2(,,XT)

—Zu—S( S( )/K*s(,,.2uXT,)du,

9909)

where the functions K(‘3 are defined in (2.29).

To implement this, one needs to evaluate terms such as a)?+1) ($3), 02(x,t),

cp(x), 90(x_3) and Kfs. We propose the following simple estimation methods for

those quantities. The resulting bandwidth is denoted as 03.0m-
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(p+1)
1. The derivative functions 01, (3173) are estimated by fitting a polynomial

regression model of degree p + 2

([1 [2+2

EY|=XT Z Z Za,,,5XT,.

l=ls=1k=0

Then a)?” (1‘3) is estimated as (p + Dial/SJ,+1 + (p + 2)!a,rs,p+2x,. As a

by-product, the mean squared error of this model, is used as an estimate

of 02(x).

2. Density functions (0(x) and cp(x_,), are estimated as

i?"2: 1h (Xd2)¢{X(X01:3}

1
Xis' - $3,

x..,) — a1§“8'23,1x-.,2 “1)¢{h(x-8’d2 _1)}

with the standard normal density 4) and the rule-of-the—thumb bandwidth

  

h(,X m) =\/var(X){4/((m +
2)}1/(m+4)n—1/(m+4)

3. According to the definition in (2.29), the dependence of the functions

Kl‘;(u,x,t) on u and t is explicitly known. The only unknown term

E (TTT|X = x) contained in SC: l (x) is estimated by fitting matrix poly—

nomial regression

d2 p

E (TTTIX = X) = C + Z chkznf

S=1k=l

in which the coefficients c, c,, are d, x (1, matrices.

In this procedure, one simply uses polynomial regression to estimate some of the

unknown quantities, which is easy to implement, but may lead the estimated
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optimal bandwidths to be biased relative to the true optimal bandwidths. The

deveIOpment of a more sophisticated bandwidth selection method requires fur-

ther investigation.

0 Since Theorem 2.3.1 implies that the asymptotic distributions of the estimators

1 < s<
{01,}1-.<_ l <— (12do not depend on {0, }f912__1, we only specify that the G, sat-

isfies the order assumption in (A6) (b) g, = = 9.9—1 2 gs+1 = = 51% =

595,1,”12/ log(n), in which qg, the order of the kernel function L, is required to

be greater than (d2 — 1) /2, and hwp, is the optimal bandwidth obtained using

the above procedure.

Following the above discussion, the order of the kernels K and L are required

to be greater than ((12 + 1) /2 and (d2 — 1) /2 respectively. If the dimension of X

equals to 2, kernels K and L can have order 2. We have used the quadratic kernel

15

16

kernels K, L are product kernels.

k (u)= —(1 — 11.22) 1“,,151}, where 1“,,151} is the indicator function of [—1,1] and the

Lastly, the matrix ZTW(x)Z in (2.4) is computed as ZTW(x)Z + n‘lTTT, and

the matrix ZSTWs(x)Z, in (2.7) as

ZZWS(X)Z, + (nhs,op,)—l var (X) {/k(u)p(u)p(u)Tdu} ®TTT,

following the ridge regression idea of Seifert & Gasser ( 1996).
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2.5 Assumption and proofs

2.5.1 Assumptions

We have listed below some assumptions necessary for proving Theorems 2.2.1 and

2.3.1. Throughout this subsection, we denote by the same letters c,C etc., any

positive constants, without distinction in each case.

(A1)

(A3)

The kernel functions k, K and L are symmetric, Lipschitz continuous and

compactly supported. The function k is a univariate probability density function,

while K is d2 variate, and of order q,, i.e. f K(u)du = 1 while

/K(u)u’1“-~u2‘:2du = 0,

for 1 S r1+---+ rd2 _<_ q, — 1. Kernel L is (d, — 1) variate and of order (12.

Denote p" = max(p + 1, q,, (12). Then we assume further that

The functions (113(933) have bounded continuous p*-th derivatives for 1 S l 3

(11, I S S S d2.

The vector process {(32, = {(Y,,X,,T,)}f:1 is strictly stationary and geo-

metrically [i-mizing.

According to (1.1) of Bosq (1998), the strong mixing coefficient a (k) S ,3(k)/2,

hence

a (k) g cpk/2. (2.12)

(A4) The error term satisfies:
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(a) The innovations {5,}:1 are i.i.d with E5, = 0, E5? = 1 and E |e,|2+6 < +00

for some 5 > 0. Also, the term 5, is independent of {(Xj,TJ-) ,j S i} for

alli> 1.

(b) The conditional standard deviation function a (x,t) is bounded and Lip-

schitz continuous.

(A5) The vector (X, T) has a joint probability density 1b (x,t). The marginal densi-

ties of X, X, and X_, are denoted by (,9, 4,03 and (0‘, respectively.

(a) Letting q‘ = max(q1, (12) — 1, we assume that w (x, t) has bounded contin-

uous (f-th partial derivatives with respect to x. And the marginal density

(0 is bounded away from zero on the support of the weight function w.

(b) Let S (x) = E (TTTIX = x) . We assume there exists a c > 0, such that

S (x) 2 cId2 uniformly for x E supp(w). Here Id2is the d2 x d2 identity

matrix.

(c) The random matrix TTT satisfies the Cramer’s moment condition, i.e,

there exists a positive constant e, such that E |T,T,.|k g ck‘leE |T,T,I|2,

and ElTlTlll2 S c holds uniformly for k = 3,4, . . ., and 1 S l,l' g (1,.

(A6) The bandwidths satisfy:

(a) For 11 = diag{h01, . . . ’I’Odg} in Theorem 2.2.1, flags,“ —> 0 and 'nhpmd OC

0 . d
n for some a > 0, where hmax = max{hOl, . . . , 110,12}, hpmd = H22: 1h0,,

and or means proportional to.
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(b) For the bandwidths 11,, and G, : diag {91, . . . ,g, _1,g$ +1,...,gd2 _1}

of Theorem 2.3.1, hS = O {'n‘l/(2p+3)}, nhsgprod 0C ”0 fOT some 01 > 0 and

(Tlhs 11171)”2 9312.“ —’ 0,» Where gmax = max {911 ' ' '193-1793+17' ’ "9(12 " I}’

gprod = H392, gs' '

(A7) The weight function 11) is nonnegative, has compact support with nonempty in-

terior, and is Lipschitz continuous on its support.

2.5.2 Technical lemmas

The proof of many results in this dissertation makes use of some inequalities about

U~statistics and von Mises’ statistics of dependent variables derived from Yoshihara

(1976). In general, let 5,,1 g i S n denote a strictly stationary sequence of random

variables with values in R“ and )3-mixing coefficients 13(k), k = 1, 2, ..., and r a fixed

positive integer. Let {6” (F)} denote the functionals of the distribution function F

0f 52'

6,, (F) =/gn (T1,...,xm)dF(T1)~~-dF(.rm),

where {9,} are measurable functions symmetric in their 711 arguments such that

flgn ($11"'1$m)l2+6 (1F(1'1) ' ' ' dF($m) S A411 < +00-

sup fly" (.131, ...,:rm)|2+6 dFé' ,...,€- (.171, ...,;I:,,,) S Mn,C < +00,

)6 SC ‘1 ""(i1,....,i,,,

for some 6 > 0, where SC = {(i1,....,i,,.,)|#,(i1,....,i,,,) = c},c = 0,...,m — 1 and

for every (i1,....,i,,,),1 g i, g g in, S n, #,(i1,....,i,,,) = the number ofj =



1, ..., m — 1 satisfying ij+1 — i, < r. Clearly, the cardinality of each set SC is less than

m—c

The von Mises’ differentiable statistic and the U-statistic

0" (F71)

ll

3:
3

/gn( "-vxm) an(-Tl)"'an(xm)

l

:
1
]
.
.
.

3

Q
:

:
5

A f
!
"

2
.
“

3 v

 
Un : (,1, Z gn(€i11'"1€im)

V

allow decompositions as

C

9,, (F,) : 9,, (F) + Z (:n) v56), v16) : f 9,, (2:1, 2,) 1’1 [dF,,(a:,-) -— dF(x,-)1,

i=1

m m C

U, : 9,(F)+Z(C)U,g>,

Up = (2;!2)! Z / g... (1,1,...,:r,c)x

1gn<-~<agn

I] [211,19]- — a) — mm] .

 

where gm. are the projections of 9,,

gm, (T1, ...,l‘c) = [gn(.1‘1,...,.’13m)(1F(Ic+1)"-dF(l‘m),C = 0,1, ...,m,

so that 9”,) = 6,,(F), g, = gm", and I3‘1 is the indicator function of the nonnegative

part of Rd,Ri = {(y1,...,yd) E Rdlyj Z 0,j = 1, ...,d}.

Lemma 2.5.1. If ,8(k) 3 Clk‘(2+6l)/5l.6 > 6' > 0, then

31/50)? + 50,5)? 3 c (m, 5, r) 22:0 x

11 171—1 r

Alf/(2+6) Z i:,.36/<‘2+6>(1:)+ Zn’c'MfémH):kflJ/(2+6)(k)} (2.13)

{ k=r+1 c’=0 ‘ k=l
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for some constant C(m,6,r) > 0. In particular, if one has fi(k) _<_ Cgpk,0 < p < 1

then

m—l

E14522 + 15115)2 g c (m, 6, r) C2C(p)n‘c {Mg/(2+5) + Z n-C’Mfl,‘2+”}. (2.14)

c’=0

Proof. The proof of Lemma 2 in Yoshihara (1976), which dealt with the special

case of 9,, E g,r = 1, Mn = M,’, and yielded (2.13), provides an obvious venue of

extension to the more general setup. Elementary arguments then establish (2.14)

under geometric mixing conditions. I

For any x E supp (w) , we can write

zTW(x 23—12190:X,-—x),TTT,

z5‘W(x : :Zkh (X,,—.:,)”G. (x,,_,—x_,) x

iié<=>r<=>1w>1
in which, as before, ® denotes the Kronecker product of matrices. Define also the

following matrix

s,(x) = {/ k(u)p(u)p(u)Tdu} ®S(x) (2.15)

where S(x) = E(TTT1X = x) as defined in (A5) (b). For any matrix A, |A| denotes

the maximum absolute value of all elements in A.

Lemma 2.5.2. Let

bl = ln 7?. (hglax + 1/\/71h'prod)b2, =11] n (h, + 991.22.»: + 1/V fillsgprod) =
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and define the compact set B = supp(w) C R612. Under assumptions (A 1)-(A6), as

n —+ 00, with probability one

sup IZTW(x)Z — cp(x)S(x)| = 0(b1),

xEB

sup szws<x>z. — r(X)Sa(X)| = 0(b2)-
xEB

Proof: We only give the proof of the second part. Without loss of generality, one

may assume B is bounded by the unit hypercube in Rdz. Observe that

sup IZZW,(x)z. — so<x>s.(x>|
x68

3 sup IEZZ‘Ws(x)Zs — w(x)Sa(x)l + sup |Z3W8(x)Zs — E(Zst(x)Zs)l.
xEB xeB

By a Taylor expansion and the fact that the kernel function L is of order (12, we can

show that

12271 sup IE {ZZW3(X)ZS} — (0(x)Sa(x)| —> 0.

x68

For the second term, consider a covering of B by of}? closed hypercubes

d2

Bjn = {x : ||x — Xj H S v; 1 , where {xj )2); denote the center points of the of}? closed

hypercubes, and ||~|| denotes the supremum norm. Then

by sup |z;"w.(x>zs — E {ZZws<x>zs}l
x63

3 bglsup sup IZZW3(X)Z3 -— ZZW3(x,-)Zs

j x6 Bjn

+12;1 sup sup lEZZW3(x)Zs - E {ZZWS(x3~)Z3}|

+b§1 sup IZZWs(x]-)Zs — E {ZZW8(xJ-)Zs} .

j

 

(2.16)
 

Note that the elements in ZZWS(X)ZS are of the form

 

1 n

X _ 1‘ k

.7; Z khs (‘Xis _ 373) L03 (Xi,—s — x-S) ( ”h 3) 71,711,

i=1
'8
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, 1

for k = 0, . . . , 2p, 1 g 1,! 3 all, which is denoted as U,, (x) = — 2;, Um (x). Index

n

k, l, l, are suppressed for notation convenience. Then the elements in

IZ’STW3(X)Z3 — ZZW3(x]-)ZSI are

IUn (x) — U7. (xiii s 3: IUn.<x> — Uni-(ail

1 n X. — a: k

S a 23 kt. (X... — ms) La. (x.-. - ..-.) (ii—i)
i=1 ’

Xis — 1"3 k

_ khs (X13 — LII-7'3) LGs (xi'_3 _ xj,-s) (——;;—J—-) 71171.14 .

 

Under the assumption (A1), there exists a positive constant c, such that

C n

lUn (X) _ Un 09'“ S ———‘2——: TilTh’l/n S

(hsgprod) v71 i=1 (h'sgprod)2 ”n

C

almost surely, as a result of assumption (A5) (c) entails that E (TTT) < 00. Choosing

on = [(hsgpmd)—3] (note on —> 00), we have

b," sup sup IZZW,(X)Z, — ZZWS(x,-)Z3| = 0(1)

almost surely. Similarly, one can show that

b;1 sup sup IE {ZZW3(X)ZS} — E {Z3W3(xj)Zs}| = 0(1).

J XE Bjn

For the last term in (2.16), note that the elements in

ZZW5(x,-)Zs — E {ZZW3(x,-)ZS} are of the form

3.4x.) = tux.) — E {Enos} -—— £2 w...- (x.> — E {U....~<x.~>}1 = 3,211.2. (xi).
i=1

By assumptions (A1) and (A5) (c) that TTT satisfies the Cramer’s moment condi—

tions, we have, for d = 3. 4, . ..

X k d
is _ 17's

E IUm' (Kind = E khs (Xis — $191405 (XL—3 — xj,—s) (f) TuTz-z'

 

|
/
\ .d ,

(1 11-2 4
2

(WHITE-fl SL1, (m: Turn.) ,
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where on = C0 (hsgpmdf1 for some CO > 0. Meanwhile

ElU;;,(x,)|d = ElUn...-(xj)—E{Uni(xj)}ld

|
/
\

ZIE{U..-<x.>H"(d)E IU...<x.-)| < «2.2d!E|71-zT.-zl
r=0

as long as the constant Co is sufficiently large. Applying Theorem 1.4 (Bosq 1998)

and inequality (2.12), we have, for any integer q E [1, g], e > 0 and each k 2 3

 

 

 

n

523% C [ ]2k/(2k+1)

P{|S,, (xj)| > bge} 3 a1 exp (—25m§ + 5Cnb28) + a2 (k) 5p (1+ 1 ,

where

2n 82

= — 2 1 th E U‘a1 q + < + 25mg +5cnb25) 102 m2: { (xJ-)}2 ,

k/(2k+2)

E206) =11n(1+T) with m, = ”(1209-)”,

By taking q = [n/ (In n)2], the first term

 a1 exp — q€2b§ < C1 9X13 {—02 (In ”)2}
25mg + 5Cnb28 —

and the second term

 
]2k/(2k+l)

(1.2(k) §p[q+1 _<. Caexp{—C4(lnn)2}.

where the cfis are strictly positive constants. So, for any integer 1 S j 3 ug, we have

P{|S,, (xj)| > be} 3 c1 exp {-C2 (1n n)2} + c3 exp (—c4 (1n n)2).

Then for any 8 > 0

P{b,-'sgplsn(x,)g|>e} ZP{b21|Sn(x,-)| >5}

3

S of: [(:1 exp {—c2(1n n)2} + (:3 exp (—c4 (1n n) 2)] .
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Since we have taken on = [(hsgpmd)_3],

:P{b;'sup|sn(x,)| > e}

n J'

S Zvfl [c1 exp {—c2 (In 71)?) + C3 exp (—c4 (1n n)2)] < +00.

it

By the Borel-Cantelli lemma, we have, b; 1 sup]. |Sn (xj)| —> 0 almost surely. The rest

of the lemma follows immediately. I

2.5.3 Proof of Theorem 2.2.1

By observing that, e,T{ZTW(X,~)Z}_l ZTW(X,-)Zep = 6”,, where 6,, equals to 1 if

I = l, and equals to 0 otherwise, we have

—Zw(x){a,0—a,0}—_ 1+11+111 (2.17)

i=1

in which

_ 1 n . T T r
1 _ n;w(X,)el {ZW-)_1Z} ZW(X)E,

1 " _

11 = ;Zw(x,)ef{zTW(x.)z} 1zTW(x,-)x

d1 d2

M— clr+ Z op, (X”) Zey ,

ll:]_ 3:].

111 = — m(X.) Z az..(X.-.)

M H

M .
5
2

+

'
W

:
9

le’

j=1,...,n
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and E = {0 (X1, T1) 51, . . . ,o (X22, Tn) en}T, the vector of errors. Next, observe that

d1

M — 2 C1! + :2 (11's X23) 261!

l, = 1d 521

= [Ii d: {ap2(X )s_al' (Xi8)}Tfl'

—”18— 1 3:1,...,n

Define

d1 d2

R1(Xi) ——- Z Z {om (X..) —- no. (x..)} sz'

l, = 13 = 1 J:l,...,n

one can rewrite II as

= £210 (x,) [eT{zTW(x.)z}“zTW(x.-)R1(x,)] .

Now let vl be the integer such that I)“1 + 1: 0(1(11 + 2Lmax ). Following immediately

from Lemma 2.5.2, one has

T _S(x)’1 _ S(x)‘1v1 _ZTW(x)zs-1(x) " . x

”W"Z} o<x> ‘ o<x> Zl’dl o<x> lid“)
 

 

 

= Z Q..(x)+ onx)

where the matrix Q2 (x) satisfies

sup |Q2 (X)| = 0 (hilt...+ 2) W-p-l-
x68

To prove Theorem 2.2.1, we need the following lemmas.

Lemma 2.5.3. Define

D... = —Zw(x)o2((x,-)ZTW(X)E

12,2 = —Zw(XX)ZTW(X,-)R1(X2).
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Then as n -> +00

|Dn1| + ll),,2| = 0(l2(11+ 2) w.p.1.
'max

Lemma 2.5.4. For fixed V = 1, v1, define

n

1

F12, = T1: w(X2-)Q1.,(X,)ZTW(X,)E,

i=1

F22, 1' % ’UJ(X,‘)Q1U(X2)ZTW(X2)R1(Xi).

i=1

Then as n —> +00

|F1ul + |F22| = o (Hf/WI) w.p.1.

Proof: For simplicity of notation, we only consider the case of F12, with z/ = 1

  

 

 

  

 

 

Fu(X)

= i ; m(x,)s-'(x.) 5—85) — E{Z;:(V)S){i)z}l S‘1(X2)ZTW(X,~)E

= 192—192

Let g, = (x., T2, 5,), and define

2.02.2.) = m(an-‘(xa [5525— E{Z52V(V,S')Z}] ><

S—1(X2)I{}1(Xj — X1) TjO' (Xj,Tj) EJ‘

S(X,) _ E{ZTW(X,-)Z}]
  

99(le 9020(2)

S-1(Xj)KH (X; — Xj) T20 (Xi, T2) 51'.

+w (Xj)S'1(XJ-) [
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Then P1 can be written as the von Mises’ differential statistic

1 72

P1 =fiZQn<£ie€fla

i,j=1

which can be decomposed as

1

_ 5 {0"(F) + 2v? + V9}

in which

0,, (F) = [9" (u, v) (ngi (11.)dFEj (v) = 0.

In order to write down the explicit expressions of V5,”,Vlf), let Ei denote taking

expectation with respect to the random vector indexed by i and Em denote taking

expectation with respect to the random vector indexed by j using the empirical

measure, both under the presumption of independence between 5,: and 53-. One has

an) ZEiEnJgn (Epgj) %;gn1(€1

in which

( — 'w z “I z §£z_) — E {ZTW(Z)Z}
.ln.l (£1) _‘ / ( )Ls ( ) [90(Z) (p2(Z)

5_1(Z)KH (Xi _ Z) 9&‘(ZleTj0 (X,-, Ti) 52‘-

 

1

Clearly 9,1,1 has mean 0 and variance of order bf. So Vn“) = 5 22:1 9n,1 (5].) =

0p(b1/\/n) Finally for Vn2),by Lemma 2.5 .,1 under assumption (A3), one has for

some small 6 > 0

2 2 2

E(v£12))2 S cn-Z Mum" +1l1n20+0 +AI2+on—1

71,1
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where Mn, Mnn and MM are the quantities which satisfy the following inequalities

13,132 Ign (£1,59le 3 M, < +oo

l
/
\

8.1;? 13,, Ian (51-, 53-) I“ Mme < +00
2 J

E;- Ign we)!“ S Ma < +00

And observe that

2+6

Ei,j lgn (£i)€j)| |
/
\

cb112+6E [w (X,) KH (XJ. _ xi) Tjo (Xi: Tj) 5j|2+6

|
/
\

cbf+6c<p>{E Imx —x>'rja<x3,'r>|

1 (2+6)/(2+26)

S (Ii—1+”) cb¥+60(p)-
prod

2+6 }(2+6)/(2+26)

So we can take Mme"— hpr‘jfél‘z”)“2+2” Cb2+6, and by setting the mixing coefficient

((1+26)(2+6)/2+26) cb2+6
p to 0, one also gets Mn =hpmd Similarly, we can show that

Mm = cbf+6h;r(02:6). So by taking (5 small, one has

E (P12)

2/(2+6) 2/(2+6)

S m—z (hprgg26)(2+6)/(2+26)brew) + m—3(b2+6hpr(::5)) + cb§/n

S cn-2bfhgrig+26)/(2+26) + (n 3()2hpm((§+6)/2+6) + cbl/n

g cn—lbf.

Similarly, we can show that E1322 _<_ cn‘lbf. So we have F11 = 0,,(b1/fi). I

Lemma 2.5.5. Define

Plnziztfi

i=1

 
3{e,S Xi)ZTW(X1)R1(Xi)}

then P1,, = Op (hnm)-— 0,D (n’1/2) as n —> oo.



Proof: Let K,” (X,T) = eETS"l (X) T, then

 

1 n w(X,-)

P": — K' X,,T- K Xt—X,
l ”2;,j=1(p(xi) l( J) H( J )X

(11 (12

Z Z {0'1'3(st)-az's(Xis)}TJ-z'

l’=lS =1

which is again a von Mises’ statistic. Its 8,, is of the form

(11 d2

/::E:; KI, (Z,t) KH (X — Z) Z 2 {0,1,8 ($3) _ 02’s (2,3)} t1! X

(=1S=1

((,0 (z) I? x, t) dzdxdt.

 

After changing of variable 11 = H'1 (x — z), the above becomes

d1 d2

/ w<z>K;(z.t>K<u> Z 2 {01's (2. + how.) — 01's as} ‘1' x

' = 15 = 1

1/1(z + Hu, t) dudzdt

= 00,611)
m&X

where the last step is obtained by Taylor expansion of 0113 (23 + limits) to ql-th degree

and of d) (z + Hu,t) t0 (ql — 1)-th degree, which exist according to assumptions

(A2) and (A5) (a). By assumption (A1), all the terms with order smaller than hfilax

disappear. So the leading term left is of 123,121,, order. It is routine to verify that VS,”

and V?) are 0,, (I221...) as well. Hence P1,, = 0,, (MR...) and assumption (A6) (a)

entails that 0,, (I121...) = 0p (n‘1/2). I

Finally we can finish the proof of Theorem 2.2.1 as follows. Define

 

P2,, = ;11_ i w (Xi) {82118-1 (Xi) ZTW (X1) E} .

 

i=1 90(Xz')

Then

1 n m(X‘) q -

2n = 52‘ 900%)!“ (KnTj) K11 (Xj — X,)a (Xj,T]-)ej (2.18)

i,j=l
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which again, by a von Mises’ statistic argument, becomes

hZ/gg—lKHXTflKMXj—X)¢(X)dx0(xi’Tj)5j+0p( 10%" )”2hprod

which, after changing of variable Xj = x + H11 becomes

-1— Z/w (x, — Hu) K; (x,- — Hu, 1“,) K (11) a (x,,T,-) sjdu + 0,, (1705-1)
n j_1 n hpmd

1 n , 10 n

= —Zw(X,) K: (XjaTj)0(vaTj)51 + 0p (“—2g )+ 0:2 (hrqnlax)
n j=1 n hpwd

= %Zw (x,-) K; (x,, T,) 0 (x,, T,) e,- + 0,,(n-1/2) . (2-19)
j=1

1

Now come back to the decomposition of a 2;, w (X,) (0210 — am) as in (2.17), and

by Lemmas 2.5.2, 2.5.3, 2.5.4, 2.5.5, one has

1 n .

7—1 2: 100(1) (0:0 — 01(0)

i=1

d2

1 n l -

= ; ZIU(XJ') Kl (Xj,Tj)0 (Xj,Tj)Ej + Z (113 (st) + 0,, (TL 1/2) .

i=1 3 =1

Now define

d2

72‘ = “1(le K;(xjaTj)0(XjaTj)5j+ Z 013(st)

3 =1

= le + Tjg.

Then by the condition that 51- is independent of {(X,, T,)},.Sj, we have

E {w (Xj) K; (XJ', Tj) 0’ (Xj,Tj) Sj} = E {11)(XJ‘) K; (Xj,Tj)0'(Xj,Tj)} E(Ej) = 0

and by the identification condition that E {w(X) 2:52: 1 Otis (X5)} = 0- SO E (le =

0. Furthermore, by assumption (A3), {Tj} is a stationary ,B-niixing process, with
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geometric fi-mixing coefficient. By Minkowski’s inequality, for some 6 > 0

, 1/(2+6) 1/(2+6)
ElTj|2+6 S{(EI7-j1|2+6) + (EITjQIQ-Hs) }

2+6

By assumptions (A1), (A4), (A5) and (A7), we have

E lTj1l2+<5 = 15"“)(Xj)1{;I (Xj
aTj)U(XjTj)

|2+6

(
Y
)

N
.

= E |w (X1) 81509”qu (inTj)|2+6 E |5j|2+6

2+6
d1

5 CE 2 lszl E|51|2+6

z: 1

1/(2+5)

g c 2 (E|T_,,|2+“) E|5j|2+6<+00

z: 1

By assumption (A7) that weight function w has compact support and the continuity

2+6 2+6

of the functions 112,013, one has E lszl < +00. So E lle < +00. Next, define

+00 +00

0,2 = Z cov (70,71) = ZZcov (70,73) + var (7'0)

j=-OO j=l

+00

= 2 Zcov (T0, 73-2) + var (TO) (2.20)

j=1

which is finite by Theorem 1.5 of Bosq (1998). Applying the central limit theorem

for strongly mixing process (Theorem 1.7 of Bosq 1998), we have

1 11

17.52711 2} N(O,0’l2) .

i=1

Theorem 2.2.1 now follows immediately by the assumption (A6) (a) on the bandwidths

1

and the fact that — 221:1 w(X,-) —> 1 as. I

'n
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2.5.4 Proof of Theorem 2.3.1

Following similarly as in the proof of Theorem 2.2.1, let v2 be an integer which satisfies

b3? :2 0013”). Then by Lemma 2.5.2, one has

 
T x -1_~8‘;‘(x)_S,:1(x)v2 xv x

{st3( )z,} m) — W) ”2:21!“ > +Qs() (2.21)

where

 

A“) = ’(p+ 1>d1 -

and the matrix Q, (x) satisfies

suple (x)| = 0 (h§+2) w.p. 1.

x68

Also as in the proof of Theorem 2.2.1, by the equation that

(.31 {szs (x,,) z,}‘1 sz, (x,,) Zsep = 5”,, 1’ = 1,. . . ,d,

for fixed I = 1,... ,dl and s = 1,. . . ,dg, we have the following decomposition

—711210—13“i,— s ){QIsC''73) — 0113 (173)}

= 52:: w-, (x,,-,> [er {z’fws (XL—3) z,}“1 ZZWS (Kw) Y — at ($8) — 5110]

z ,1; Z 20-, (x,,_,) [63m{sz3 (x,,_,) z,}‘1 zg‘ws (x,,_,) {Y - M

:0 a(v)( d1 (12

+ M- 2112—:_L——agzse(d1v + 1') — E C" + 2011'; (Xis’) Zsel'

l_ l’_— 1 s';£s

1 T!

+ 5 gm- (x,,_s) gmX)+—Z x,-3) (mo — 0'10) (2.22)
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where M is the mean vector, as defined in Theorem 2.2.1. Next define

d1 p “(W

R1=R1(:r,)=[z {m(X) -§_j )(X-s—flr)}73] ,
I

l = 1
j=1,...,n

d1 d2

R2 (Kay—3) = Z 2 {01’3’ (st’) ‘ az’s’ (Xis')} sz’ ,

li=lsl7és

R3 = :11”; w-8 (Xi.-8) {Z 013' (Xis')} 7

s';és

 

j=l,...,n

R4 = 71" {Z w_s (XL—3)} (élo — (1(0), (2.23)

031(13):link—s(XX1,—)s)3{(lTQs(—Ts,xi,-s) ZTWs (TSiXi,—3)E} (224)

n

1

032 ()Is :31; w—s(Xi,-s) {est (I37 Xi,—s) ZIWS (Is: Xi,-s) R1} 1

1 11

033(33) : 7" Z w—s (XL—3) {8},st (1'3, xi,—s) was (333: Xi,—s) I12 (Xi,—s)} a

' i=1

1
3,10,) = E 2 UL, (xw) [ef {A (3:8, x,,_,)}’ sz, (23,, x,,_,) E] (2.25)

i=1

1 " ,

Races) = g 2:; w.., (in-..,) [(:,T {A (2:5, X,,-,)} 23% (x3, x,,-,) R1] ,

1 " ,.

R,3(1's) = g 2 10"3 (XL—3) [81T{A (xSaXi,—s)} ZZWs (1'3, Xi.—s) R2 (xi,-s)] 7

i=1

1 11 111-3 Xi.-.» _ .

Psl(xs) = E ZW{efSa IZZWS ($51Xi,—s) E} , (2.26)

1:1 7 1,—3

1 n w—s (XL—S) _

[352(173) = a ZW{611180 IZZWS ($3, Xi,-s) R1},

£21 31 1,~s

1 n Il)_s(Xi’-3 _

P33($3)= —st_)){elrsalz:w3 (IS?X1—‘3))(XR2"-3)}.
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One can then write (2.22) as

T!

1

; w-3(Xi.-S) {ésl($3) _ asl($s)}

i=1

3 3 ”U2 3

= Z Pam) + Z D,,—(x,) + Z2Ram) + R3 + R4. (2.27)

The proof of Theorem 2.3.1 is completed by applying assumption (A6) (b) on the

bandwidths 11, and Gs, and the asymptotic results on each term of the decomposition

in (2.27). These asymptotic results are presented in the following lemmas:

Lemma 2.5.6. As n —> +00

7727.123 = 0,. (WT) , MR4 = 0,. (x/h—s)

Lemma 2.5.7. As n —+ +00

sup |Dsl (23,) + 032 (13,) + 033 (1:3)| = o (h§+2) w.p. 1.

2:, E supp(ws)

Lemma 2.5.8. For any fixed 7" = 1, ...,vs, as n ——> +00

sup |R,,(;L-,)|+|R,,(g:,)|+|a,3(x,)| =o(b;/,/nh,) w.p. 1.

2:, E supp(ws)

Lemma 2.5.9. As 72. —2 +00

P31

1 n ILL—s (Xj-s) 1 X‘s—IS

= _ ___’___K* __3_*_ s, ‘-s, . '—-s .,T. .

n 14:; ¢($81Xj,—3) hs ls( hs 117 X]. T3) ‘P—s (X1, )0 (X1 J)5J

+01, {(72115 log 71,)4/2} ,

P32 (353) = h’S’HmS ($5) + 01,015“) T

P33 (Is) 1' Op( anzax) = 0P {(7th log "VI/2} ’
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in which

611

2 Off?” (335) fup+lE {w-s (X—s) TI’Kl‘s (“2 $3, X_s, T)} du

_ 1

"13 (x3) _ (p+1)!

ll

(2.28)

with

Kl; (u,x, T)— e,Tng (x)q* (u,T) k(u), q'(u,T) = (T,uT, ...,in)T. (2.29)

Furthermore

WPSIAN{O,UIZS (3:3)}

in which

2 _ was (z—S)

0.. (1.) — / ————¢,(x,,z-,) x

K122 (u, 113,, z_,, t) $33 (z_,,) 02 (rs, z_8, t) w (:rs, z_3, t) dudz_sdt. (2.30)

Proof of Lemma 2.5.6. According to Theorem 2.2.1

MR4:{Zw-_,)(}a,0—a,0)=—,/?zTo,, (M)=op( In).

Meanwhile, according to the identify condition (1.8) and the central limit theorem

for strongly mixing process (Theorem 1.7 of Bosq 1998), we have

1 n

\/ rith3 = , /.II,]I.3; ;11Ls(X,-,_s) Z (.Yls' (Xis’) = 71,130,, (V l/n) = 0,, ( [1.3) .

s'963

These two equations have completed the proof of lemma. I

Proof of Lemmas 2.5.7 and 2.5.8. We have left these out as they are similar

to Lemmas 2.5.3, 2.5.4. I
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Proof of Lemma 2.5.9. From the definition in (2.26) and using the von Mises’

statistic argument

1 " w_,(x,-_,)1 X-s—rrs

P1 == - -----L----1(' -l--- 's i—s: '

‘ nch<x..X.-,-.)h. "( h. ’x’x' T’)X
z.j=1

LG, (XL—s "‘ xi,—s) 0 (Xj: Tj) 51

1 n w_. (z_ X- —x
=: — _—-—ss K,“ "J 3. 37 —8 T

nhsfg/Mxmz—s) ”( h. 'x z ’ J)x

L08 (Xj.-s — Z—s) 0 (ij T1) 53' X

90-5 (z_s) dz_3 + 0,, {(nhs log n)_1/2}

which after changing of variable L, = Xj,_s — Gav, one has

 

 

_ 1 :n: [LU-3 (Xj‘_s — GsV) * Xj _ 13

P31 — fills 1:1 / 90 (its, Xj.-s " GsV) K15 < [ls 2x31 X175 Gav: T3) L(V)

—1/2
xw_s (x,,_, — Gav) dvo (X,, T,) s,- + op{(nh,10gn) }

_ 1 " _w_s_<_Xa—_3>K st-Ts_ 11,18 j=l (p($5, ij‘fii) (8 ha

+0p {(nhs log 1071/2} .

 x..- T.) 2_.(X.-._.)a (xi, T.)

By assumption (A4) (a) that 5,- is independent of {g}, j S i}, the first term is the

average of a sequence of martingale differences. Then by the martingale central limit

theorem of Liptser and Shirjaev (1980), the term \/nhsP31, or

 

Vnhs n w_3 (X ‘,_3) N X—s — Is

”he, _ 1 (p (1:33 X1], _s) [3 ——J’18— ,x81Xj,—S) Tj
C10—3(Xj,—:5)(7 (Xj, Tj) 51'

J: ,
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is asymptotically normal with mean 0 and variance

 h;l /flfif (33 gsxs,zs,z_s,t) 992—3 (z_,,)o2 (z,t) 2/2 (z,t) dzdt

= fW—tgéif—Tz—zlj—JK122(u,xs,z_s,t)w2_s (z_,,)o2 (:13, + hsu,z_s,t) x

1/1(.’l.'3 + hsu, z_3, t) dudz_sdt

= f—flilflzwamzflfl) (p3 (z_8)02(:rs,z_3,t) x

(P (x.,z_.) s s

w (.733, z_3, t) dudz_sdt + 0(hs)

= 0123 (£133) + o(h.s)

in which the leading term 0,23 (138) is as defined in (2.30). Hence we have shown that

(wisps, 5» N {0, (7,23 (2:3)} .

For the term P32($s)

1 n 10-3 (Xi _s) T _l T

P. .=—§ —' S zw,x,_,

‘20?) n i1 <p(1-3,Xi,-s){€1
O! 8 ( , )Rl}

w_s(X£_s) 1 X] —.’Its

= a2,“)h."e(—T—XT)L05(XJ'T”X"”)
”=1

 

d v1 X P 05,2(1133) X v T

x 2:1: a..( ...)—§: v, ( .s—m.) j)
v=0

w-8_—(_1x—s) 1 —' 1133

:/d :E—(rs,x_s) ’Tifznsl(18(g)hs ,1‘3,X_3,t LGS (Z_5 X_s)

p

2: (GM...) _ZLIf, %.S)U}t,, x
v=0

 

l 1

w (z, t) 80—3 (X—s) dzdx-s(1t {1 + 0p (1)}-
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After changing of variable 23 = :cs + hsu and z_s = x_s + Gsv, the above equals to

(x d1 a<p+1> (1.)

-8 _s)———-K' , s, -s,t L -LL———hp+1 “It,//—————()mfl “(use x > (v) 1'2 (pH), u x

1,0 (2:3 + hsud,x_s + Gsv,t) 97—3 (x_s) dudvdtdx_3 {1 + 010(1)}

hp“ 0(p+1)( 10-3 (x_3)_. p+1.,
_ (p+1)ll 5:1 QW//H$31x_s)Kl‘;(u, 7:3,x_3,t) u 1,,

xi!) ($3,lx-s, t1)¢_3 (x_s) dudtdx_s {1 + op(1)}

 

hp+l

_ s (ps+l)(

" (p+1)!l,210‘ “in/WAX”) X

{/Kzl(u,:rs,x-s,t) up+1tyw(t|xs,x_s)dudt} 90-5 (x—s)dx—s{1 + 010(1)}

 

(h:1

= )l le—ll a(P3)(:c+lJ‘s/UPHE‘lw (X—s)7l’Kl; (u,$s,X_s,T)}du
 

+01)pl:(h§+l)

= h?“ (95s) ms (Is) + 0p (”3“)

with 77,3 (1:5) as defined in (2.28). Lastly, the term P33 is

3:1: £11111 {€733,71sz3 (XW) R2 (Xi—3)}
_1 90 ($3: Xi,-s)

_ _ w—s(xi,-3_______)__:_l_ ,. st—xs . _ _ _ .

_iz'JZl—T—_(X1113, ' -8)hs K18 ( ha :Isaxzrs, T1)
LGs (XL—3 X"_s)

d1 d2

x Z Z {al’s’ (st’) _ al's' (Xis')}731

l, = 13' 7é s

 
(x__s)1K

S _ 173

:{:(/V
/_-_——(W)E-Kl1352

; hs 3:1;81x—sg
t) LGS (2-3 -— X_s) X

d1 d2

2 2 {W43 a, (;;3,)}t,, 1.1) (z,t) ¢_s(x-s)dzdx_sdt{1+op(1)}

l = 13 #3
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which after changing of variable, 23 = x8 + hsu and LS = x_s + Gav, equals to

//;”(-—3——:53)w Wm)

d1612

Z Z {al's’ (1‘8I + gsrvsI) — alts; (1:81)} tll X

l, = 13 aé s

w (335 + hsu, x_3 + Gsv, t) 80—3 (x_s) dudvdtdx.3 {1 + 0p(1)}

—_- Op( 312M): 0,, {(nh log 70—1/2}

by Taylor expansion to (]2~-th degree of all, and (q()2 — 1)-th degree of ’l/J, using as-

sumptions (A2) and (A5) (a). Then the result follows from assumption (A1) that L

is a kernel function of qg—th order. I
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Chapter 3

Polynomial Spline Estimation

3.1 Introduction

In the last chapter, we have proposed a local polynomial based marginal integration

method to estimate the unknown coefficient functions. Asymptotic distributions have

also been obtained. The parameters {010%,}, are estimated at the parametric rate

d1) d2

l=l,s=
1/ JR, and the nonparametric functions (at, ($5) 1 are estimated at the same

rate as the univariate smoothing. However, due to the integration step and its ‘local’

nature, the kernel type method proposed in the last chapter can be quite computa-

tionally expensive. Based on a sample of size n, to estimate the coefficient functions

{at (x)},al=1l in (1.4) at any fixed point x, a total of (d2 + 1) n weighted least squares

estimations have to be done. So the computational burden increases dramatically as

sample size n and the dimension of the tuning variables d2 increase.

In this chapter, we propose a much faster estimation method of polynomial spline

for model (1.4). In contrast. to the local polynomial, polynomial spline is a global
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smoothing method. It characterizes the nonparametric function components by only

a finite number of parameters. One needs to solve only one least squares estimation

to obtain the estimators of all the components in the coefficient functions, regardless

of the sample size n and the dimension of the tuning variable d2. Thus it reduces the

computation substantially.

As an attractive alternative to the local polynomial smoothing method, polyno-

mial spline has been used to estimate various models, for example, additive model

(Stone 1985), the functional ANOVA model (Huang 1998a, 1998b; Huang, Kooper-

berg, Stone & Truong 2000), the varying coefficient model (Huang, Wu & Zhou 2002),

and additive model for weakly dependent data (Huang & Yang 2004). The asymptotic

results of above polynomial spline estimators are developed for either i.i.d. data or

longitudinal data, except for Huang and Yang (2004), which gives partial derivation

of the asymptotic results for time series data. In contrast, we gave complete proof of

the polynomial spline estimators’ rate of convergence for time series data under geo-

metrically strongly mixing condition. Another major innovation in this dissertation is

the use of approximation space with unbounded basis, while all the works before have

bounded basis. For example, Huang, Wu & Zhou (2002) has imposed the assumption

that T = (T1, . . . ,le)T in (1.4) has compactly supported distribution to make their

basis bounded. The method proposed in this current work only imposes some mild

moment conditions on T.

The rest of this chapter is organized as follows. Section 3.2 discusses the identifi-

cation of model (1.4). Section 3.3 presents the polynomial spline estimators, their Lg

consistency and a model selection procedure based on Bayes Information Criterion
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(BIC). It is worth mentioning here that the estimation and model selection procedure

developed in Section 3.3 applies not only to model (1.4), but adapts automatically

to all of the four submodels mentioned before: varying coefficient model (Hastie &

Tibshirani 1993), functional coefficient model (Chen & Tsay 1993b), additive model

(Hastie & Tibshirani 1990, Chen & Tsay 1993a), and simple linear regression model.

This feature is not shared by any local polynomial and kernel estimators. Technical

assumptions and proofs are given in section 3.4.

3.2 The Set-up and Notations

As introduced in the last chapter, {(Y,, X,, T0};1 is a sequence of strictly stationary

observations generated from the additive coefficient model (1.1). But differently from

before, we assume the predictor vector X has a compact support, since most of

the polynomial spline approximation is conducted on a compact set. Without lose

(12
of generality, let the compact set be X = [0,1] . Accordingly, the identification

condition ( 1.8) is simplified to

E{azs(X,s)}=0,l=1,...,d1,s=1,...,d2. (3.1)

The errors {5,};1 in (1.1) are i.i.d with E (E,|X,, Ti) 2 0, E (5?|X,,T,~) = 1, and 5,- is

independent of the a-field f,- = a {(X,, Tj) ,j g i} for i = 1, . . . ,n. The conditional

variance function 02 (x,t) is assumed to be continuous and bounded. The variables

(X,, T,) can consist of either exogenous variables or lagged values of Y,.

Following Stone (1985), p.693, the space of s—centered square integrable functions
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on [0, 1] is

A2: {(1:E{(1(X3)}= 0, E {02 (X3)} < +00} ,1 g s S (12.

Next define the model space M, a collection of functions on X x Rdl as

(11 d2

M = m (x, t) = Zen (x) it; a; (x) = am + 2013(13);als E A3

[:1 8:1

in which {awhill are finite constants. The constraints that E {013 (X3)} = 0,1 3 s 3

d2 ensure unique additive representation of 0,, but are not necessary for the definition

of space M.

In what follows, denote by E, the empirical expectation, Engo = 2;, (0 (X,, T,) /n.

We introduce two inner products on M. For functions m1, m2 6 M, the theoretical

and empirical inner products are defined respectively as

(m1,m2) = E{m1(X,T)m2(X,T)},

(711.1,n12)n = En {m1 (X, T) m2 (X,T)}.

The corresponding induced norms are

llm1||§= Em? (X,T), “mini. = Enmf (X,T)-

The model space M is called theoretically {empmlcally} identifiable, if for any m E M,

||m||2 = 0 (IlmHQfi = 0) implies that m = 0 as.

Lemma 3.2.1. Under assumptions {C1} and (02) in the subsection 3.4 .1 , there exists

a constant C > 0 such that

(11 (12 d1 d2

llmlli 2 0 Z 0120 + Z Hats”: an = Z 0'10 + Zals it E M

3:1i=1 (:1 5:1



Hence for any m E M, |lm||2 = 0 implies that am = 0,011,, = 0 a.s., for all 1 g l S

d1,1 S s g (12. Consequently the model space M is theoretically identifiable.

d2

Proof. Let A1(X) = 040+ Z (m(Xs), and vector A(X) = (A1(X), . . . , Ad1(X))T.

3:1

Under assumption (C2), one has

d1 d2 2

“mil: = E Z azo+ZOzs(Xs) T. =E[A(X>TTTTA(X>]
[=1 8=1

Cl} (12 2

2 c3E[A(X)TA(X)] =c3E a,o+Za,,(X,)

which, by (3.1), equals to

di

C3 Zazzo+:z:E Zals(X3)

Applying Lemma 1 of Stone (1985), one gets

41 d2

llmll2_> C3 :010 +{((1" (ll/”dz —1:ZEOI23(Xs

i=1 s=l

where 6 = (1 — cl/c2)”2 with 0 < c1 5 c2 as specified in assumption (C1). By taking

C = 03 {(1 — (5)/2}d2 _ 1, the first part is proved. To show identifiability, notice that

d1 d2

for any m = 2 (am + 2 £113) t, E M, with ||m||2 = 0, we have

(=1 3:1

(11 d2 d1 d2

0:3[Z 020+Zazsfxs)}7l2 >C[ZOIO+ZZE{013

1:1 3:1 I- 1 s—l

which entails that am = 0 and (m(Xs) = 0 as. for all 1 S l g d1,l S s 3 d2, or

m = 0 a.s. I
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3.3 Polynomial Spline Estimation

3.3.1 The estimators

For each of the tuning variable direction, i.e. s = 1,... ,d2, we introduce a knot

sequence k5,, on [0,1], which has Nn interior knots and is denoted as,

k3,":{0=x3,0<x3,1<--~<13,Nn<xs,Nn+1=1}.

For any nonnegative integer p, we denote $03 = go”([0, 1] ,km), the space of functions

that satisfy

(i) It is a polynomial of degree p (or less) on each of the intervals [2:33, xs,,+1),i =

0,...,N,, — 1, and [$5,N,,’$s,Nn +1] ,

(ii) and if p Z 1, it is p — 1 continuously differentiable on [0, 1] .

A function that satisfies (i), (ii) is called a polynomial spline. It is a piecewise

polynomial connected smoothly on the interior knots. For example, a polynomial

spline with degree p = 0 is a piecewise constant function, and a polynomial spline with

degree p = 1 is a piecewise linear function and continuous on [0,1]. The polynomial

spline space 903 is determined by the degree of the polynomial p and the knot sequence

 
k5,". Let hs = hm = maxizom N" leJ-H — $3,,- , which is called mesh size of k3,,

and can be understood as the smoothness parameter like bandwidth in the local

polynomial context. Define h = maxs ___ 0 (12 h,, where h measures the overall
, . . . , .

smoothness. In what follows, denote by C” ([0, 1]) the space of p—times continuously

differentiable functions.



Lemma 3.3.1. Forl g s 3 d2, define 99;) = {gs : gS E 903, E(gs(Xs)) = 0}, the space

of centered polynomial splines. There exists a constant c > 0, so that for any as 6

A2 fl Cp+1([0,1]), there exists a gs 6 9:2, such that “as — gsll00 S c ”agwlll] hg’“.

00

Proof. According to de Boer (2001), p.149, there exists a constant c > 0 and spline

function g; 6 gas, such that Ila, — ggllw _<_ c ”(19“)” hf”. Note next that IE (g;)| g

00

IE (93 - asll + IE (as)l S Ila; - asllx. Thus for gs = 9; - 3(93) E 903, one has

Ha. — Mo. 3 Ha. — ggum + E (9;) s 2c||agp+1>llm hi“. -

Lemma 3.3.1 entails that if the functions {(113 (.733) [(1:11’:211n (1.4) are smooth, they

are approximated well by centered splines {91, (x3) 6 p2 fill’jjl. As the definition of

(,9? depends on the unknown distribution of X3, the empirically defined space 952‘" =

{gs :93 E cps, En(g,s) = 0} is used. Intuitively, function m E M is approximated by

some function from the approximate space

d2

Mn = mn(X 13) =::91(X))lz; 91(XX): 0110 + Zgzs($s);gzs E w?"

321

Given a sequence of observations {(Y,,X,~, T0}?_1 generated from the regression

model (1.1), the estimator of the unknown regression function m is defined as its

‘best’ approximation from the space Mn, i.e.

n

. . 2
m = argmmmn 6 Mn Z (Y, — mn (Xi‘T,)} . (3.2)

i=1

To be precise, we introduCe the following basis notations. Let Jn = Nn + p

and {11233, w“, . . . ,ws Jn} be a set of basis for the polynomial spline space 903, for

s = 1,... ,d2. For example, we have used the well-known truncated power basis in
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the implementation

p

{1,223, . . . ,xg’, (:53 — 15,1): , . . . , (x5 — :55, N”) } (3.3)
+

in which (:c)’; = (x+)p. Let

W: {1,w1,1,...,wl’Jnyu,wd2,1,...,wd2,Jn},

then {wt1,... thdl} is a set of basis oan, which has dimension R" = d1{d2Jn +1},

and (3.2) amounts to

d1 d2 J,

fir(x,t)=z ao+ZZa,,,-w,,,(x,) i, (3.4)

1:1 3:1 j=l

in which the coefficients {6,0,613‘1J = 1,... ,d1,s = 1,. . .,d2,j = 1, . . .,J,,} minimize

the sum of squares

2

71 d1 d2 Jn

Z X _' 2 C(0 + Z:Z cts.jU)s,j (Xis) Ti (35)

i=1 (=1 s=l j=l

with respect to {c,0,c13,j,l = 1, . . . ,d1,s =1,...,d2,j = 1,... ,Jn}. Note Lemma3.4.5

entails that, with probability approaching one, the sum of squares in (3.5) has a unique

minimizer.

For t = 1,...,d1,s = 1,...,d2, denote

Jn

022(223) = Z agitating). (3.6)

1:1

Then the estimators of {0'10}zd=11 and {als (r3)}f1=11’:1:21 in (1.4) are given as

(12
A A * .

0110 = 6104-2 E11013: l=1,~-:d1,

s=1

é13(Is) = 0730103) — End}; l = 1,. . . ,d1,s = 1,. . . ,dg. (3.7)



where {6115(3123) {1:111:21 are empirically centered to consistently estimate the theoreti-

cally centered function components in (1.4). These estimators are determined by the

knot sequences {kmfiljl and the polynomial degree p, which relates to the smooth-

ness of the regression function. We will refer to an estimator by its degree p. For

example, a linear spline fit corresponds to p = 1.

Theorem 3.3.1. If 0115 E Cp+1([0,1]),f0rl=1,...,d1,s = 1,. . . ,d2, and under the

assumptions (CI)-(C5) in the subsection 3.4.], one has

um — m||2 = o, (W + l/nh)

andforl = 1,...,d1,s =1,...,d2,

|a,0 — aml = 0,,(hp+1 + 1/nh) ,||&,, — ms”, = op(hP+1 + 1/nh) .

Following from Theorem 3.3.1, the optimal order of h is n‘l/(21”3), and in that case

“a, — ms ”2 = Op (n‘l/(2P+3)), which is the same rate of the mean square errors of the

marginal integration estimators in Chapter 2 . The constants {manilv however, are

estimated at a faster parametric rate of 1/fl by the marginal integration method.

3.3.2 Knot number selection

An appropriate selection of the knot sequence is important to efficiently implement

the proposed polynomial spline estimation method. Stone (1986) found that the

number of knots is more crucial than its location. Thus we discuss an approach

to select the number of knots Nn using the Akaike Information Criterion (AIC).

For knots locations, we use either equally spaced knots (the same distance between
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any adjacent knots), or quantile knots (sample quantiles with the same number of

observations between any two adjacent knots).

According to Theorem 3.3.1, the optimal order of N" is nl/(2P+3). Thus we propose

to select the ’optimal’ Nn denoted as N3” from the set of integers in [0.5Nr, min (5N,., Tb)]

with N, = nl/(2P+3) and Tb = {n/ (4d,) — 1} /d2 which ensures that the total number

of parameters in the least square estimation is less than n/4.

To be specific, we denote the estimator for the i-th response Y,- by Y, (Nu) =

in (X,,T,—), for i = 1, - -- ,n. Here a depends on the knot sequence as given in (3.4).

Let qn = (1 + d2 Nn) d1 be the total number of parameters in the least square problem

(3.5). Then N3pt is the one minimizing the AIC value

N3” = argmin AIC (Nu) (3.8)

Nn E [0.5Nr, min(5Nr, Tb)]

,. 2

where AIC (N,,) = log (MSE) + 2q,,/n with MSE = 2;, {Y,- — Y,- (N,)} /n.

3.3.3 Model selection

For the full model (1.4), a natural question to ask is whether all the functions

d1,d2 ‘ . . . . d1,d2
{a13(:r3) l=l,s=l are Significant. A Simpler model by setting some of {013 (11:3) (.321

zero may perform as well as the full model. For 1 S l 3 (11, let S; denote the set

of indices of the tuning variables which are significant in the coefficient function of

T1, and S the collection of indices from all the sets 5,. The set S is called the model

indices. In particular, the model indices of the full model is Sf = { Sf1, . . . , Sfdi },

where SfIE—{1,...,cl2},1§ls d1. For two indices S = {Sl,...,Sd1},S' =

{Si,...,S;]1}, we say that S C S’ if and only if S, C Si: for all 1 S l 3 all and
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SI sé S, for some t. The goal is to select the smallest sub-model with indices S C Sf,

which gives the same information as the full additive coefficient model. Following

Huang & Yang (2004), both AIC and BIC are considered.

For a submodel ms with indices S = {S1, . . .,Sdl}, let an be the number of

interior knots used to estimate the model 1115 and Jn,s = NW3 + p. As in the full

model estimation, let {6,0, end-,1 S l _<_ (11, s 6 81,1 3 j S Jn,S} be the minimizer of

the sum of squares

2

n d1 Jn.S

Z Y,- — 2 cm + Z Z c,,,,-w,,, (X,,) T,- . (3.9)

Define

d1 Jn,S

ms (Xi) = Z 510 + Z Z 513.jwsJ ($5) tl- (3-10)

(:1 i S E St j=1

, A 2

Denote Y,” = mg (X,,T,-),i = 1, - -- ,n, MSES = 2;, (Y,- -— Y”) /n, and the total

number of parameters in (3.9) as ([3 = Zldzll {1 + # (80.1”). Then the submodel is

selected with the smallest AIC (or BIC) values, which are defined as

AICS = log (MSES) + 2qS/n, BICS = log (MSES) + log (n) qS/n.

Let So and S be the index set of the true model and the selected model respectively.

The outcome is defined as correct fitting, if S = SO; overfitting, if So C S; and

underfitting, if S0 /CS, that is, SO, /CS1, for some I. For either overfitting or

underfitting, we denote S 7A SO.

Theorem 3.3.2. Under the same conditions as in Theorem 3.3.1, and an x

Nn.So X nl/(2P+3), the BIC is consistent: for any S # SO, lim,,_.00 P (BICS > 81050) =

1, hence limnnoo P (S = SO) = 1.

57



The condition that an x ano is essential for the BIG to be consistent. The

number of parameters ([3 depends on the number of knots and the number of additive

terms used in the model function. To ensure BIC consistency, roughly the same

sufficient number of knots should be used to estimate the various models so that q;

depends only on the number of functions terms. In the implementation, we have used

the same number of interior knots ngt (see (3.8), the optimal knot number for the

full additive coefficient. model) in the estimation of all the submodels.

3.4 Assumption and Proofs

3.4.1 Assumptions and notations

The following assumptions are needed for our theoretical results.

(C1) The tuning variables X = (X1, . . "ngl are compactly supported and without

lose of generality, we assume that its support is X = [0,1]d2. The joint density

of X, denoted by f(x), is absolutely continuous and bounded away from zero

and infinity, that is, 0 < c1 S minxeX f(x) 3 maxxeX [(x) 3 02 < 00.

T

Instead of assuming that T = (T1, . . . ,le) is bounded as in Huang, Wu and

Zhou (2002), we impose the following (conditional) moment conditions on T.

(C2) (i) There exist positive constants O < c3 3 c4,such that C3Idl S E(TTT|X =

x) S 641(11 uniformly for all x E x. Here [(11 denotes the (11 x d1 identity matrix.

I 17:

(ii) For some sufiicient large m > 0, E IT; < +00, for l = 1, . . . ,d1.
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(iii) Furthermore we assume that there exist positive constants c5, c6 such that,

c5 3 E{(T1T1r)2 + 60 |X = x} S (:6 as. for some 60 > 0 and l,l' = 1,. .. ,(11.

(C3) The (12 sets of knots denoted as

k3,": {0=xs,ogx,,1 g st.Nn st’Nn+1=1},s=1,...,d2,

are quasi-uniform, that is, there exists c7 > 0

max (I‘M-+1 — xs,j,j = 0, . . . , Nn)

max _ , 3 c7.

3 :17. . . ,d2 n11n(.’175‘j+1 — 1133‘”) = 0, . . . , N")

 

1

Furthermore the number of interior knots Nn >< n21) + 3, where p denotes the

 

degree of the spline space and ‘ x’ denotes both sides have the same order.

Let h = max

1

th—2P+3.

S ___ 1, . . .,d2;j = 0, . . . , Nn Ixm-H — xs’j|. Then (C3) implies that

 

(C4) The vector process{ct}t°: = {(Y,,X.t,Tt)}f:_oO is strictly stationary and
'1'”

geometric strongly mixing.

(C5) The conditional variance function 02 (x,t) is continuous and bounded.

Assumptions (C1)-(C5) are common in the nonparametric regression literature.

Assumption (C1) is the same as Condition 1, p.693 of Stone (1985), assumption (0),

p.468 of Huang & Yang (2004). Assumption (C2) (i) is a direct extension of condition

(ii), p.531 of Huang & Shen (2004). Assumption (C2) (ii) is a direct extension of

condition (v), p.531 of Huang & Shen (2004), and of the moment condition A.2 (c)

p.952 of Cai, Fan & Yao (2000). Assumption (C3) is the same as in equation (6),
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p.249 of Huang (1998a), and also p.59, Huang (1998b). Assumption (C4) is similar

to condition (iv), p.531 of Huang & Shen (2004). Assumption (C5) is the same as

p.242 of Huang (1998a), and p.465 of Huang & Yang (2004).

3.4.2 Technical lemmas

For notational convenience, we introduce, for 1 S l 3 d1, 1 S s 3 d2,

d2

a“, = a“, + 23 Bag, a,,(x,) = am.) — Bays. (3.11)

s=l

. . . . _ d1 - d2 -
Then one can rewrite m defined in (3.2) as m — 21:1 CY“) + 25:1 azs(x3) t), We

center the aunts) in (3.11) with respect to the theoretical mean, instead of the em-

' ‘ ‘ " ' x " d1 ‘" dlidQ

pirical mean as a15(x3) does in (3.7). The terms {alohzv {015(175) l=1,s=1 are not

directly observable and serve only as the intermediate step in the proof of Theorem

3.3.1. By observing that, for 1 g l 3 (11,1 3 s S d2

d2

ézsfl‘s) = 513(333) — Enézs, 5110 = 5'10 — 2 3715113, (312)

3:1

the terms {€110}?le {643(3) (dig; and {a,0}f’=1,,{a,,(x,)}f’=1;fj, differ only by a

d1: d2

constant. In section 3.4.3, we first prove the consistency of {amfiig , {&13(.’E5)}l=1‘3=1

in Theorem 3.4.1. Then Theorem 3.3.1 follows by showing {E,,&15}:1=lijl:21 negligible.

We use the B-spline basis for the proofs, which is equivalent to the truncated

power basis used in implementation, but has nice local properties that each base is

supported on a finite number of the knot intervals, see de Boor (2001) for more de-

tails. With .1,, = Nn +p, we denote the B-spline basis of ass by b, = {53.0, . . . vbs, Jn}'

For the polynomial spline spaces {99352, defined in subsection 3.3.1, define the
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corresponding subspaces: 992 = {g E 903,E {g (X,)} = 0}. Note that the functions

{&,s(.xs),1 S l S (11} E 992. For 1 S s S (12,denote B3 = {8,1, . . . , Bs Jnl’ in which

E (113,-)

B” = N" (be ‘m
(2,0) ,j =1,...,J,,. (3.13)

Note that under assumption (C1), E (bag) > 0. Thus 83,,- is well defined.

Now, let B = (1,131,1,. . . , Bl, Jn" . . , Bd2,1, . . . , Bd2 Jan’ in which 1 denotes the

identity function defined on x. Define

T

G = (Bt1,...,Btdl) = B®t,

T

where t = (t1, . . . , (d1) . Then G is a set of basis for Mn. For easy reference of the

T

elements in G, we write G = (01,. . . ,GRn) , with R, = d1(d2Jn +1). Using (3.2),

one gets an alternative representation of

d1 Jn

m:m(x,t)=z c,0+Z2Zc;,,B,, 1,,

(=1 8:]. j:—l

in which 6‘ ,a‘ -,1 S l S d1,1 S s S d2,1 S ' S Jn minimizes the sum of s uares
IO [3,] .7 q

as in (3.5), with w,,- replaced by BS, Applying Lemma 3.2.1, a function mu 6

m

(12

Mn has a unique representation as mn(x,=t) Z)-dll{azo + 2929(xsl} tug};

5:1

992. Thus for {a,0}f’:1,, {(1130175)},d___ll’,:1__2_l defined in (3.11), one has filo = fibril, =

#
1

ZCISst,j(Is),1SlSd1,1SSSdQ.

i=1

Theorem 3.4.1. Under assumptions (CU-(C5), if (st E (.Ip+1([0,1]), forl S l S

d1,1 S s S d2, one has

Hm — ml]2 = 0,, (NH + l/nh),

max [(110 — “(0| + max ”(S-l — ms“. = O (th + 1/nh) .

1<t<_d 1SlSd1,1SsSd2 s 2 p



To prove Theorem 3.4.1, we first present the properties of the basis G in Lemmas

3.4.1-3.4.3.

Lemma 3.4.1. For any 1 S s S d2, and spline basis 83., as in (3.13), one has

(i) E(Bs,,-) = 0,forj=1,...,J,,.

(a) E|B,,,|" x N5/2‘1,forj= 1,...,J,,,k >1.

(iii) There exists a constant C > 0 such that for any vector a = ((11,.. . ,aJn)T, as

2 JJa n

E: astJ 2 C E: 012-.

j=1 j=1

n—>oo,

    2

Proof. (i) is trivial. (ii) follows from Theorem 5.4.2 of DeVore & Lorentz (1993), and

assumptions (C 1), (C3). To prove (iii), we introduce the auxiliary knots for{ks',,}:1:,.

Recall that k3,, is a knot sequence on [0, 1] with Nn interior knots,

ksan={0=$s.0<xs.1<"’<$3,Nn<$3,Nn+1=1}'

 

 

For 5 = 1,. ..,(12, we denote the auxiliary knots 137,, = = xs,_1 = $39 = 0, and

$S,Nn+p+1="'=:ES.1an+2=$.S,Nn+121'Then

J 2 J J .— 2
TI Tl n a. NnE (bs")

ZastJ = Z a,- V NanJ' ‘- Z J E (b ) J (33,0

i=1 2 i=1 i=1 38 2

J J *2
n z—— " aw/NnE b5-

2 C1 2 (lj AfanJ — Z J E (b 0() ,J) b8.0

1:1 j=1 3' 2

where ”H; is defined as Hf“; = ‘lff2 (x)dx, for any square integrable function f.

Let dsg = (aim-+1 — xs,,-_p) / (p +1). Then by Theorem 5.4.2 of Devore 8.: Lorentz
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(1993), there exists a positive constant C, such that the above is

 

J J 2
n n -\/N E(b )

> . C 2N,,d, - a] " 3” ds
- ‘1 gal '1 + J; E(bsp) '0

~1an

> chZagNndsj >(.:(1C()/p+1c72a§. I

J'=—1 j=1

Lemma 3.4.2. There exists a constant C > 0, such that as n —> 00, for any sets of

coefficients, {c10,c)3,,-,l=1,...,d1;s =1,...,d2;j=1,...,Jn}

d1 d2 .1an

Z CIO+ZZCwBsd ‘1 >0: Czo+dZZCzsj

Proof. By Lemma 3.2.1, there exists a constant C1 > 0 such that

d1 d2 J, 2 d1 d2 Jn 2

Z cw + 22%an 3 2 01 Z a, + Z 2%ij
1:1 8:1 j=l 2 (=1 s=l j=1 2

Lemma 3.4.1 provides a constant Cg > 0, so that the above is

d1 d2 Jn

2 z: + 02:31..-
[=1 8:1 j=l

The lemma now follows by taking C = min(C2,1)C1. I

Lemma 3.4.3. Let (G, G) be the Rn x Rn matrix defined as (G, G) = ((C,-,G,~)).R7l
I.J=l'

Define (G, G)" similarly as (G, G), but replace the theoretical inner product with the

empirical inner product, and let D = diag( (G, G)). Define

Q, ———sup ID 1("2(((G,G)n — (G, G))D"1/2|,

where sup is taken oven all the elements in the random matrix. Then as n —+ 00,

on = o, (\/n‘1h‘1 10g2(n)).
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Proof. For notation simplicity, we consider the diagonal terms. For any 1 S l S

. 1 '2

(12,153 g (11,1313 J, fixed, 1a 5 = (En—E){B§,(X,)7}2} = —§jg,, in

’ n i=1

which 5,- = Bi, (Xm)??? — E {83,- (X,s) TS} Define Ta = T,)I{ for some

ITul S n6},

0 < 6 < 1, and define E, E,- similarly as 5 and 5,, but replace T; with Ty. Then for

any 6 > 0, one has

 
12 ~ 12 ~

P |€l26 32773752 SP Mae 031,3”) +P(€¢€) (3.14)

in which

Eszlm

nmé—l '
P(€#E) S P(Tu 7971-1, for somei: 1,...,n) S ZPUTill Zn“) S

i=1

Also note that

sup |B.,,-(xs)l= lf{bSJEMb l<
b,50

US$331 0<stS1Efbs,0)

cx/Nm

 

for some c > 0. Then by Minkowski’s inequality, for any positive integer k 2 3

- I: ~ k

x37?) + {E ..,-(X3711) ]

2k—l [nw‘ckNJf + (an)k] S n26kckNJf.

k

E |
/
\

E.-
  

2""1 [E

      

|
/
\

On the other hand

~ 2

B2 . (X )r2
5,] 3 l ..

Z 2 l — E2 {Big (X3) 7?}

 
- 2

£1
 

E

  

E

 

33, (X)T,21{

 EIB:J~(X.>TE|2 ml > n}

_ 2

 

- E2 {33.) (Xs)T12} -
 

2

in which, under assumption (C2)

   

  

2

1 6
13132.X r31 13134.,Y,E(—r4+0x)

s,]( 8) [{lTll > ”6} — s,]( ) "6,5071 l

an

S n:‘50 [W3XS” S ”660’
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where 60 is as in assumption (C2). Furthermore

E2 {33, (X3) TE} 3 c3132 {33, (X,)} _<_ c,

E |B§’, (X,)T,2|2 2 CSE (BS, (X,)|4 2 Clo-5 / (33,, (.1,-3)?de 2 cc1c5Nn.

> an. So there exists a constant c > 0, such that
 

.. 2

Thus E lel 2 av, — n6,"
0

forallk>2

’2
2

”
k—2 ~

E ‘£,| S ”261:6st S ((:r1.66N,2,) klE _,

   

Then one can apply Theorem 1.4 of Bosq (1998) to 2;, 8,, with the Cramer’s con-

stantcr= cn66N2. Thatis, for anye>0, qE [1, 3,] andk>3, one has

qe210g2(n)/nh

%lZ:—1€i2l €(/L——Oi2h(n) S a1eXp -d

25mg + 56c,(/log2(n)/nh

n 2k/(2k+1)

k __was

 

 

 

  

 

where

n e2 log2(n)/nh 2 ~2

a1 = 2—+2 1+ ,m2=E§,

q 25mg + 5w, log2(n)/nh

k/(2k+1) ~

a2(k) = Mn 1+ 5m”

log2(n)/nh

Observe that 560,

 

ccn6‘sN3V—10g2hn 10(), by taking 6 <—————(2———122pp.+3)

Then by taking q—- 71/{c0 log (77)}, one has a1 = O=(3)—- O{log(n)),} a2(k) =

Nk/(2k+1)

0 n n = o (n3/2). Thus, for n large enough

log2(n)/nh

10g2(n))

nh

2 1
_

650:5;2) } + 0n? exp {— log(p)(,:010g (71)} .

 

 

 

S clog(n) exp {-
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Thus by (3.14), taking on, e, m large enough and use assumption (C4), one has that

0° 10g2(n)
2,1,1” sup1<G,G>. — men 2 . 7,,—

< 2:, {d1d2((N +2)}2 {clog(n)exp{_i;95gc%l}

E T m
+cn3/2 exp {— log(p)(50 10g (7‘)} + nrlmsl-ll }

 

< 2:1 {d1d2((M + 2)}2 71—3 < +00

 

in which N, x n21): 3. Then the lemma follows from Borel—Cantelli Lemma and

Lemma 3.4.1. I

Lemma 3.4.4. As n —1 00, one has

(Sblr 962) " (9914152)
10g2(n)

n ‘ ___ 0 ___

(91 5 Mill; E M, ll¢1ll2 ll¢2ll2 p nh

 

In particular, there exist constants 0 < c < 1 < C such that, except on an event

whose probability tends to zero as n ——> oo, cllmll2 S ||m||2m S C ||m||2 ,Vm E M,.

Proof. Using the vector notation, one can write (23, = aTG, (b2—— a2G, for the R, x 1

vectors a1, a2.

Rn Rn Rn Rat

|<¢11¢2ln - ($1,¢2>| = <2: 01101, 02101) - <Zale,,Za2,G,->

l j=l j=li=1 2': ,

Rn R11

2 |a1,a.2,||(G',-,G,-)n—(G,~,G,)S| Qn Z lanavl “Gilb llGj||2

i,j=1 i,j=1

R,

S QnC Z lalia2jl S anv 333313332-

i,j=1

On the other hand by Lemma 3.4.2,

Hall: Halli = (a? (G, G> al) (at <G,G>a2) > (‘2a12a1ai‘a2
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Then

   

<¢lf¢2>n _ <é17¢2> < QnC V alraV a§a2 = O (Q ): O 10g2(n)

ll¢1|l2l|¢2l|2 _ CVafan/agag p n p nh   

Lemma 3.4.4 shows that the empirical and theoretical inner products are uniformly

close over the approximation space M". This lemma plays the crucial role analogous

to that of Lemma 10 in Huang (19983). Our result is new in that (i) the spline

basis of Huang (1998a) must be bounded, whereas the term t in basis G makes it

possibly bounded; (ii) Huang (1998a)’s setting is i.i.d. with uniform approximation

rate of 0,, (1), while our setting is a-mixing, broadly applicable to time series data,

with approximation rate the sharper Op ( log2(n) /Till). The next lemma follows

immediately from Lemmas 3.4.2 and 3.4.4.

Lemma 3.4.5. There exists constant C > 0 such that except on an event whose

probability tends to zero as n —+ 00

d1 d2 J, 2 d1 d2 J,

z z: a 20: aim.-
l=l s=1 i=1 2," 1:1 3:1 j=l

3.4.3 Proof of mean square consistency

Proof of Theorem 3.4.1. We denote

Y = (Y1,...,Y,,)T,m ={'m(X1,T1),...,m(X,,,T,,)}T,

E = {0(x1, T1)51, . . . , o(Xn, Tn)s,,}T.

Note that Y = m + E, and projecting this relationship onto the approximation space

Mn, one has m = iTH—E, where m is defined in (3.2), and m, E are the solution to (3.2)
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with Y,- replaced by 7n(X,-,T,~) and o(X,,T,-)s,~ respectively. Also one can uniquely

represent m as m = 2:121, (310 + 23221313) 1,1,6“ 6 «pg. With these notations, one

has the error decomposition rii — m = Wt — m +6, where fi— m is the bias term, and E

is the variance term. Since for 1 _<_ l S d1,1 S s S d2,a(s E C”+1 ([0,1]), by Lemma

3.3.1, there exist C > O and spline functions 91.. E (02, such that

“013 -— nglloo S Clip-H. (3.15)

Let mn (x,t) = d__11-{010 + 23319155 (x3)} t; 6 Mn. One has

(11 d2 d1 d2

“m ‘- mnllz S EZ l|{018(15) gls (1133)}tl||2_ C4 22 Hats (1.8)—.913 (38mm

1:1 8:1 (=1 s=1

S (:4(7h.p+1. (3.16)

Also ||m - mnllg,” S Ch?“ 3.5. Then by the definition of projection, one has

Hm - Wilts... S llm - mn||2,,. S Chp“

which also implies llfii — mn||2m<_ Hm- mllz'n + Ilm— mull.” S Clip“. By Lemma

3.4.4

— — 1 2

“m' — m'nllz S “m — Tnnllzm (1 _ Qn) / = 0p (hp-H) .

Together with (3.16), one has

Hm — fill2 = Op(hp+1) . (3.17)

Next we consider the variance term E. For some set of coefficients
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one can write 5 (x, t) = 2:”; 61,0,- (x, t). By the definition of projection, one has

1

K 511 \ K ; Z?=1G1 (Xi7Ti)U(Xi7Ti)Ei \

- 1 n

Rn (12 ; Zi=1G2(XiaTi)U(XiaTi)5i

((013 Gj)n)j,j’=l . :

    (are, ) ngy=1GRn(thi)0(XiaTi)5i )

Multiplying both sides with the same vector, one gets

( e. i

A

(12

((11 (12 (Allin ) (<Gj’Gj>n).fj?=l .

l as t

{ £2.11 G1 (Xini)a(Xi1Ti)€i

1

) ‘7; 2:1 G2 (Xi,T.-)0 (XiaTi)5i

  

  1 n

K '7; 21:10]?” (X,,T,~)o(X,,T,-)e, )

2

Now, by Lemmas 3.4.2, 3.4.4, the LHS is ”2f; (1,-G, ” 2 c (1 — on) 2,713; (3;, while
2,7:

the RHS is

1fl

ll

/
‘
—
\ 3
°

3
.
3
,

V

S

/
\

Q.

T
.
)

|

«
0

2 ‘
1

A

M
E
D
A

:
3

l
*
-
‘

:
5

2 1/2

Gj (X,,T,)o(X,~,T,-) 5i) }



and as a result

2
1 n

I|e|l§_< 00- Q.)ZR:(; :0,- (x.,T.)a<X.-,T.)s.~)

i=1

Since 5,- is independent of {(Xj,T,-) ,j S i}, for i = 1,. . .,n, one has

Rn 1 n 2

E Z(a 203‘ (X1,Ti)0(xi,Ti)5i)

1:1 i=1

=E ;_12:{Gj((X,,T) 0(XisTi)€i}2

i=1

R,, 1
, CJn 1

_. ;;E{GJ(X1,TI)U(Xi’Ti)Ei

_ n :0 (71h)
   

where one makes use of the boundedness of a (x,t) and E {C,- (X.-,T,-)}2 (Lemma

3.4.1 (ii) and assumptions C2, C5). Therefore “(3.“: = 0,,(n'1h‘1). This, together

with (3.17) prove that Hm — m||2 = O,D (hl’+1 + l/nh). Now Lemma 3.2.1 entails

that for some constant C > 0, one has

d1 d2

”m — m”: 2 0 Z (5110 — 0110)2 + Z “(315 — 013”:

(=1 3:1

ThusforlSlSd1,1SsSd2,

|am — 0110] = o, (W + 1/nh) , “a, — e,,u, = o, (W1 + l/nh) . .

Proof of Theorem 3.3.1.

By (3.12), one only needs to show |E,,&,s| = 0p(hp+1 + 1/nh) , for 1 S l S

(11,1 S s S d2. Note that [Endlsl S IE” {Ens — (115}! + IEnolsl , whose first term

lEn {£113 _ alsll l
/
\

”fits — alsllg'n S ”013 — Z-1-'l:¢ll;g‘rl + “(its - Z1'nlsllgz'n

|
/
\

””13 — .‘llsll2,n + “fits ‘ {Its-”2,” + “(~st — 1715”“.
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with “013 — glsllzn < Ila;s — glslloo S Chp“, and applying Lemmas 3.2.1 and 3.4.3,

one has

I
/
\

(1+ Qn) “515 _ glsnz S (1+ Q11) ”7—77: _ mnllz : Op (hm-1):”615 — 915 ”2,1;

”[113 — a-ls”2,n S. (1+ Q71) ”(313 — alsllz‘n S (1+ Qn) ”(EH2 = 0p (VI/71h.) .

Thus IE" {5:3 — als}| = 0,, (hp+1 + 1/nh). Since |Ena13| = 0p(1/\/1_i), one now

has IEnErzsl = Op (her1 + \/1/nh) Theorem 3.3.1 now follows from the triangular

inequality. I

3.4.4 Proof of BIC consistency

We denote the model space M3 corresponding to the submodel mg as

Ms: =:Z:OI(X)tz; 01(X)=azo+ Z azs(xs);azsefl‘§ ,

8 E St

and its spline approximation space Mn,S as

Mn,S: mn(X t) =Zgz(X)Xltz; 91(XXl=azo+ Z gzs($s);gzs E 902 ,

S E S;

where H2 = {(13:E{(r§(Xs)} < +oo,E{ozs (X3)} = 0}. For 5' C 3;, Ms C M5,;

and Mms C Mn, Sd. Let ProjS (and Projms) be the orthogonal least square pro-

jection operator onto M5 (and Mn,S) with respect to the empirical inner product.

Then fits defined in (3.10) can be viewed as: m5 = Projnvs (Y). As a special case of

Theorem 3.3.1, one has the following result.

Lemma 3.4.6. Under the same conditions as in Theorem 3.3.1, one has

lime — men. = 0,.(11/vg+1+ NS/n) .
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Now denote c(S,m) = H ProjS m — m||2. One has the following results: if m 6

M50, ProjS0 m = m, thus (3(30,’In) = 0; and if S ovcrfits, since m 6 M50 C Ms,

C(S, m) = 0; and if S underfits, c(S,m) > 0.

Proof of Theorem 3.3.2. Notice that

MSES — MSESO

MSES0

MSES — M81350

= E{02(X,T)}(1+ 0pm) {1+ ”P (1)} + ""2””)/‘2”+3’ log (n),

q - q

BICS — BICSO —‘°’——S—° log 

{1 +0p(1)} + (71)

 

since qs — qSo x Til/(2W3), and

1 n
1 n A

2

MSESO g E 2: {v.- — m (x, my + ZZ {mSO (x.,T.) — m (x.,T.-)}

i=1 i=1

= E{a2<x,T>}<1+op<1)>.

Case 1 (Overfitting): Suppose that So C S and SO 75 S. One has

MSES — MSESO = “as — 77259“; = ”as — 7313,0113“ + 0,. (1)}

S (HIAWS ‘— ml); + “771.30 — mug) {1+ 012(1)} = 0p (n—(2p+2)/(2p+3)).

Thus limn_.+oo {P (BICS — BICS0 > 0)} = 1. To see why the assumption qS—qSO x

nl/(2P+3) is necessary, suppose q50 x n’, with r > 1 / (2p + 3) instead. Then it can be

shown that

nr-l r-1 0

MSES — M51233O = —E{02 (X,T)} {1 + 0p(1)}— n 100(n) {1 + 019(1)}, 

which leads to limn_.+oo {P (BICS — BICSo < 0)} = 1, instead.

Case 2 (L'nderfitting): Similarly as in Huang & Yang (2004), we can Show that if

S underfits, MSES — MSES0 2 02 (S, m) + 0p (1). Then

 

.2 S.

BICS—BICSO> ° ( .m)+op(1)
_ [3(02(X,T)}(1+op(1)) +0p(1)’
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which implies that limn_.Jr00 {P (BIC,3 — BICS0 > 0)} = 1. I
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Chapter 4

Examples

4.1 Monto Carlo Studies

In this section, we study the finite-sample performances of the proposed methods

which include: two estimation methods (integration estimation and polynomial spline

estimation), the bandwidth selection procedure for the integration method, and the

model selection procedures based on nonparametric AIC and BIC proposed for the

polynomial spline estimation. For those purposes, two Monte Carlo studies are de-

signed: one with an i.i.d set up and the other one with a nonlinear time series set

up. In both examples, sample sizes are taken to be n = 100,250 and 500, and the

number of replications is 100.

To assess the performance of the estimators of function components, we introduce

the averaged integrated squared error (AISE). By denoting the estimated function of
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ms in the i-th replication by dug, we define

”grid 100

A
A 1 A

ISE(o',-(s) = E5",2: {a,((3 mm) — oas(:z:m)}2 and AISE(azs) = m EISEWLB):

where {xm}m"g_r1rlid are the grid points where the functions are evaluated.

4.1.1 An i.i.d example

The data are generated from the following model

Y = {c1 + a11(X1) + (112 (X2)} T1 + {62 + 021(X1)+ 022 (X2)} T2 + e (4.1)

with

Cl: 2, c2 = 1,011 (2:1) = on (2:1) = Sln(1'1),(112(1‘2) = :52, 0:22 (23;) = 0,

where X = (X1, X2)T is uniformly distributed on [—7r, 1r] x [—7r, 7r], and T = (T1, T2)T

follows the bivariate standard normal distribution. The vectors X, T are generated

independently. The error term 5 is a standard normal random variable and indepen-

dent of (X, T).

First, to assess the performance of the data-driven bandwidth selector in section

2.4, we plot in Figure 4.2 the kernel estimates of the sampling distribution density of

the ratio limp, /h1,opt, where hlppt is the optimal bandwidth for estimating an and

Q21. Solid curve is for n = 100, dotted curve is for n = 250, and dot-dashed curve

is for n = 500. One can see that the sampling distribution of the ratio limp, /h1,opt

converges to 1 rapidly as the sample size increases. Similar results are also obtained

for hgppt, the optimal bandwidth for estimating 012 and 0122. The plot is omitted.
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The simulation results indicate that the proposed bandwidth selection method is

reliable in this instance. The fact that the distribution of the selected bandwidth

seems skewed toward larger values is due to the use of simple polynomial function as

a plug-in substitute of the true regression function.

Second, we use three different methods: linear spline (p = 1), cubic spline (p = 3)

and the marginal integration, to estimate this additive coefficient model. In the

polynomial spline estimation, we use equally spaced knots with the number of interior

knots chosen by the proposed AIC procedure. For 3 = 1, 2, let ximin, xiymax denote

the smallest and largest observation of the variable x, in the i-th replication. Knots

‘ :L‘i ], with the number of interior knots
s.min ’ s,max

are placed evenly on the intervals [1:

Nn selected by AIC as in subsection 3.3.2.

To make fair comparison, the functions {Gishzfmfl are estimated on a grid of

equally-spaced points 15",, m = 1, ..., ngrid with x1 = —0.9757r,1:n . = 0.9757r, n

grid grid =

62.

Respectively, Tables 4.2.3 and 4.2.3 report the means and standard errors (in

the parentheses) of {cl},=1‘2 and the averaged integrated squared errors (AISE) of

{(izs}f:ll"z2 for the three fits. One observes for all three fits, the standard errors of

the constant estimators and the AISEs of the estimators of the function components

decrease as samples sizes increase. This result numerically confirms our asympototic

convergence results.

Also the polynomial spline method performs overall better than the marginal

integration method. The two spline fits (p = 1, 3) are generally comparable, but

clearly the cubic fit (p : 3) is slightly better than the linear fit (p = 1) for the

76



large sample size (n = 250, 500). The fitting results are also visually presented in

Figures 4.3 and 4.4, which give the plots of the 100 estimated curves using marginal

integration and cubic spline fitting respectively. In both figures, (a1-a4) are plots

of the 100 estimated curves for 011(11) = sin(:z:1), a12(a:2) = 1:2, 021(1‘1) = sin(.r1),

(122(232) = 0 for n = 100. (bl-b4) and (cl-c4) are the same as (a1-a4), but for

sample size n = 250 and n = 500 respectively. They clearly illustrate the estimation

improvements as sample sizes increase for both fittings. (d1-d4) give the plots of

their typical estimated curves, whose ISE is the median of the 100 15133 from the

replications. The solid curve represents the true curve, the dotted curve is the typical

estimated curve for n = 100, the dot-dashed and dashed curves are for n = 250 and

n = 500 respectively, which shows even for sample size as small as 100, the fits are

satisfactory.

As mentioned earlier, the polynomial spline method enjoys great computational

efficiency. It takes merely 20 seconds or less to run 100 simulations using polynomial

spline method on a Pentium 4 PC. The computation time is almost the same for

different sample sizes. However for marginal integration method, the computation

burden increases dramatically as the sample size increases. For example, it takes

marginal integration about 2 hours to run 100 simulations for samples size n = 100;

and takes about 20 hours for sample size n = 500.

Next we test the model selection criteria proposed in the subsection 3.3.3. For

each replication used for estimation, a model selection is also conducted. Polynomial

splines with p = 1,2,3 are used for estimation. The model selection results are

presented in Table 4.4. For each setup, the first, second and third columns give the
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number of underfitting, correct fitting and overfitting over 100 simulations. It shows

that the BIC gives rather accurate selection results (more than 86% correct selection

rate) even when the sample size is as small as 100, and gives absolute correct selections

when sample sizes increase to 250 and 500. This confirms our assertion that BIC is

consistent. Compared with BIC, AIC tends to over-fit. But AIC has the advantage

that it never under-fit.

4.1.2 A nonlinear autoregressive example

In this example, the data are generated from a nonlinear autoregressive time series

model

Yt = {01+ 01101—1) + 012 (Yr—2)} “-3 + {62 + 021(Yt-1)

+022 (IQ—2)} ”-4 + 0.15}, (4.2)

with cl = 0.2, (:2 = —0.3 and

011(u) = (0.3 + u)exp(-4u2), 0112 (U) = 0'3/{1+(U ‘1)4}’

(121 (u) = 0, (122 (u) = —(0.6 +1.2u)exp(—4u2).

The e, is the i.i.d. standard normal noise.

In each replication, a total of 1000+ n observations are generated and only the last

n observations are used to ensure stationarity. An example of the simulated series

with n = 100 is given in Figure 4.5.

For estimation, we have used linear polynomial spline (p = 1). We have used the

quantile knot sequences, which is shown to be better than the equally spaced knots.
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The coefficient functions {0'13}?’=21,3=1 are estimated on a grid of equally-spaced points

on the interval [—1,1], with the number of grid points ngrid = 41.

Tables 4.5 and 4.6 summarizes the estimation results, which includes the means

and standard errors (in the parentheses) of {él}z=1,2 and the averaged integrated

squared errors (AISE) of {[113 (8:222 Similar to the i.i.d example, the estimation

is shown to improve as sample sizes increase, which again supports the asymptotic

result. For visual representation, the fitting results are also presented in Figures 4.6,

which give the plots of the 100 estimated curves using marginal integration and cubic

spline fitting respectively. In both figures, (a1-a4) are plots of the 100 estimated

curves for {d15}f:11"22 when n = 100. (bl-b4) and (cl—c4) are the same as (a1-a4), but

when n = 250 and n = 500 respectively. (d1-d4) are give the plots of their typical

estimated curves, whose ISE is the median of the 100 ISEs from the replications.

The solid curve represents the true curve, the dotted curve is the typical estimated

curve for n = 100, the dot-dashed and dashed curves are for n = 250 and n = 500

respectively, which shows even for sample size as small as 100, the fits are satisfactory.

The model selection results are presented in Table 4.7. AIC is found to tend to

overfit, compared with BIC. Also as the degree of the polynomial spline is increased,

the selection results improve, except the case that the sample size is small (n = 100).

For the sample sizes 71 = 250, 500, we have obtained quite desirable model selection

result.
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4.2 Empirical Examples

4.2.1 West German GNP

In this subsection, we discuss in detail the West German real GNP data first men-

tioned in the introduction. Yang & Tschernig (2002) found that it had an autore-

gressive structure on lags 4, 2, 8 according to FPE and AIC, lags 4, 2 according

to BIC, where the FPE, AIC and BIC are lag selection criteria for linear time se—

ries models as in Brockwell & Davis (1991). On the other hand, lags 4, 2, 8 are

selected by the semi-parametric seasonal shift criterion, and lags 4, 1, 7 are se-

lected by the semi-parametric seasonal dummy criterion for the slightly different

series {log (0&4/Gt+3) :31. Both semi—parametric criteria are developed in Yang

& Tschernig (2002). According to Brockwell & Davis (1991), p.304, the lag selection

criteria AIC and FPE of the linear time series models are asymptotically efficient but

inconsistent, while BIC selects the correct set of variables consistently. Therefore one

may fit a linear autoregressive model with either Yt-2, Y¢_4 or Yt_2, Y,_4,Yt_3 as the

regressors, with the understanding that the variable Yt_3 may be redundant for linear

modeling

Linear AR (24): Y, = (III/3-2 + ath-4 + 08,, (4.3)

Linear AR (248): Y, = b1Y¢_2 + b2Yt_4 + b3Yt-g + (75,. (4.4)

From Table 4.2.3, it is clear that besides being more parsimonious, the linear

model (4.3) has smaller average squared prediction error (ASPE), compared with the

model (4.4). Thus model (4.3) is the preferred linear autoregressive model. Moreover,
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Figures 4.9, 4.10 show that the Scatter plots of Y, against the two significant linear

predictors, Y¢_2 and Y¢_4, along with the least squares regression lines, actually vary

significantly at different levels of Yt_1 and Yt—s- Here the three levels are defined as:

H, the high level, is the top 33% percent of the data, L, the lower level, is the lower

33% percent of the data, and M, the middle level, is the rest of the data. So we have

fitted the additive coefficient model (1.6) in the introduction.

We use the first 110 observations for estimation and perform one—step prediction

using the last 10 observations. When estimating the coefficient functions in model

(1.6), we first use marginal integration with local cubic fittings. According to the

bandwidth selection method in section 2.4, we use bandwidths 0.0031 and 0.0020

for estimating the functions of Y¢_1 and Yt_3 respectively. The estimated coefficient

functions are plotted in Figure 4.11. We have also generated 500 wild bootstrap

(Mammen 1992) samples and obtain 95% point-wise bootstrap confidence intervals

of the estimated coefficient functions. From Figure 4.11, one may observe that the

estimated functions have obviously non-constant forms. In addition, their 95% con-

fidence intervals can’t completely cover a horizontal line passing zero in any of the

four plots. This supports the hypothesis that the coefficient functions in (1.6) are

significantly different from a constant. (Notice that by the restrictions proposed in

(1.8), if a coefficient function is constant, it has to be zero.)

To assess the sensitivity of marginal integration estimation method to the degree of

the local polynomial, we have also fitted the model (1.6) using local linear estimation

(i.e. taking p = 1 in Z3). Table 4.2.3 shows that overall the marginal integration

estimation for model ( 1.6) is not sensitive to the order of local polynomial used.
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We have also applied the polynomial splines (p = 1,3) to fit the model. The curve

estimates are plotted in Figure 4.12, in which solid lines denote the estimation results

using linear spline (p = 1), and dotted lines denote estimates using cubic spline (p =

3), which are generally agreeable with those obtained from the marginal integration.

For the two linear autoregressive models, we estimate their constant coefficients by

maximum likelihood method. The estimated coefficients are Lil = —.2436, 6.2 = .5622

and (31 = —0.1191, 132 = 0.6458, (33 = 0.0704.

Table 4.2.3 gives the ASEs (averaged squared estimation error) and ASPES (av-

eraged squared prediction error) of the above six fits. Spline fits overall are better

than those from local polynomial. All four fits of the additive coefficients provide

significant improvements over two linear autoregressive models in both estimation

and prediction.

4.2.2 Wolf’s annual sunspot number

In this example, we consider Wolf’s annual sunspot number data for the period 1700-

1987. Many authors have analyzed this data set. Tong (1990) used a TAR model

with lag 8 as the tuning variable. Chen & Tsay (1993b) and Cai, Fan & Yao (2000)

both used a FAR model with lag 3 as the tuning variable. Xia & Li (1999) proposed

a single index model using a linear combination of lag 3 and lag 8 as the tuning

variable. Motivated by those models, we propose our additive coefficient model (4.5),

82

 



in which we use both lag 3 and lag 8 as the additive tuning variables,

Y, = {61+ 011(Yt—3)+ (112 (31—8)} Yt—l + {C2 + 021(Yt—3)+ 0122 (Yt—8)} ”-2

{Ca + O'31(Yt—3)+ 032 (32—8)} Yt—s + 05,. (45)

Following the convention in the literature, we use the transformed data, where

Y, = 2(m— 1), X, denotes the observed sunspot number at year t. We use

the first 280 data points (Year 1700-1979) to estimate the coefficient functions, and

leave out years 1980-1987 for prediction. We have used marginal integration with

local cubic fitting (MI), linear spline (P81) and cubic spline (P83) to estimate the

unknown coefficient functions. In the marginal integration, the bandwidths 6.87 and

6.52 are selected for estimating functions of Y,_3 and functions of Y,_8 respectively.

The estimated coefficient functions with integration fits are plotted in Figure 4.13.

The time plot of the fitted values is given in Figure 4.14, in which solid line represents

the fitted values and circles represents the observed values. The fitting using splines

are similarly, thus is omitted.

The averaged squared estimation errors (ASE) using integration, linear spline and

cubic spline are 4.18, 3.64 and 3.72 respectively. Finally we use our estimated model

to predict the sunspot numbers in 1980—1987, and compare these predictions with

those based on the TAR model of Tong (1990), the FAR model of Chen & Tsay

(1993), denoted as FAR1, and the following two models; the FAR model of Cai, Fan

& Yao (2000) denoted as FAR2

Y: = 01(Yt—3lyt—1 + 0'2 (Yt—3) Yt—2 + 03 (Y,_3) Yz—3 (4-6)

+06 (Yt-3) Yt—G + (x8 (Yr—3) Yt—S + 0Q,
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and the single index coefficient model of Xia & Li (1999) denoted as SIND

Yt = (Do {94 (GM—3.114)} + ¢1{g4(6a)/t—32}/t—8)}Yt-l (4-7)

+452 {94 (GM—3.124)} Yt-2 + ¢3{!14 (9, Yt-s, Yt-8)} Yt—3

+¢4 {94 (9, Yt—s, Yt—8)} Yt—S + O'Et

in which 94 (6, Y,..;,, Y,_8) = cos (6) Y,_3 + sin (6) Y,_8.

According to Condition (A.1) b, p.952 of Cai, Fan & Yao (2000), the conditional

density of Y,_3 given the variables (Y,_1, Y,_2, Y,_3, Y,_6, Y,_8) should be bounded. It

is clear, however, that Y,_3 is completely predictable from (16-1,Y,_2,Y,_3,Y,_6,Y,_8),

and hence the distribution of Y,_3 given the variables (11-1,l/,_2,Y,_3,Y,_6,Y,_8) is

a probability mass at one point, not a continuous distribution with any kind of

density. Thus, the use of model (4.6) has not been theoretically justified. Simi-

larly, model (4.7) is also not theoretically justified, since according to Condition C5,

p.127? of Xia & Li (1999), the conditional density of 94 (6, Y,_3, Y,_3) given the vari-

ables (Y,_1, Y,_2, Y,_3, Y,_8, Y,) should be bounded, whereas again, the distribution of

94 (6, Y,_3, Y,-8) given the variables (Y,-1, Y,_2, Y,_3, Y,.,,, Y,) is also a point mass. In

addition, we illustrate that model (4.7) is unidentifiable. For any set of functions

{(00, . . .,¢4} that satisfy (4.7), one can always pick an arbitrary nonzero function

f (u) and define

~

(60(1‘) = $001) + “f (u) «.51 (u) = $1 (u) ’52 (u) = (152 (it),

«.3300 = Mu) — cc>s<0f<u>.?/3.<u) = as. (u) — sin (6)] (n).

It is straightforward to verify that the new set of functions (60,...,$4} satisfy

(4.7) as well. One possible fix of this problem is to drop either one of the terms
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(133 {94 (6, Y,.;,, Y,_.3)} Y,_3 and 054 {94 (6, Y,_3, Y,_8)} Y,_8 from (4.7), then the model

is fully identifiable and satisfies Condition C5, p.1277 of Xia 85 Li (1999). Hence the

current form of (4.7) may be considered an overfitting anomaly.

Despite the fact that models (4.6) and (4.7) suffer these theoretical deficiencies,

we have listed the average absolute prediction errors (AAPE) and averaged squared

prediction errors (ASPE) of model TAR, FAR1, FAR2, SIND and our proposed model

in Table 4.2.3. By comparing the AAPEs and ASPEs, our model outperforms TAR,

FARl and FAR2, while the unidentifiable SIND model has smallest AAPE and ASPE.

We believe that this superior forecasting power of (4.7) is due to the prediction ad-

vantage of overfitting models. For example, in forecasting of linear time series, the

overfitting AIC/FPE selects models more powerful than the consistent BIC, see, for

instance, the discussion of Brockwell &. Davis (1991), p.304.

4.2.3 Housing price

In this example, we consider the Tucson housing price data, which consists of 2971

sales observations during year 1998. The data contains unit—specific information on

sale price (PRICE), lot size (LOT), age of dwelling in years (AGE), square footage

(SQFT), and the absolute locations of housing units which are represented by Carte—

sian {20, y} coordinates, derived from latitude and longitude, referenced against the

southwestern-most observation. We are interested in predicting the unit housing price

from its determinants: LOT, AGE, SQFT, and absolute location. In determining the

housing price, the interactions between the absolute location and the other determi-
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nants: AGE, SQFT, and LOT are found to be significant. Interestingly, Fik et al.

(2003) modeled the interaction by including a polynomial expansion (to the third

degree) of the property’s {:r, y} coordinates in the coefficients of the other determi-

nants. The following terms are found to be significant: AGE, AGE2, SQFT2, LOTz,

AGE*SQFT, LOT*y2, LOT* y3, SQFT* y3, SQFT*$2, SOFT“:2 * y. We will refer

to this model as the “parametric model” later. (For detailed discussion, see Model 3

in Fik et al. 2003). Instead of restricting the absolute location interaction with the

other determinants through a polynomial expansion, the interaction is modeled by

including additive smooth functions of the location coordinates into the coefficient

functions. Considering that the term AGE * SQFT is significant, we have also in-

cluded AGE in the coefficient functions, naturally resulting in the following additive

coefficient model

10g (PRICE) = LOT2 + 00 (AGE) + {C1 + 011(I)+ C212 (y) + 013 (AGE)} SQFT

+ {c2 + 0121 (:13) + 022 (y) + 023 (AGE)} LOT + e. (4.8)

To see if Model (4.8) is redundant, the following two sub-models are also considered

log (PRICE) = LOT2 + 00 (ACE) + {6, + 011 (:r) + 0112 (y) + 013 (AGE)} SQFT

+ {C2 + 021 ((13) + (122 (y)} LOT + E, (4.9)

log (PRICE) = LOT2 + a0 (AGE) + {C1 + a“ (:1?) + 012 (y)} SQFT

+{C2 +021 (1') +022(7J)}LOT+5' (4-10)

To estimate the above three additive coefficient models, quadratic spline (p = 2)

is used. Table 4.2.3 gives the adjusted R-squares and BICs of the parametric model
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in Fik et al. (2003) and three additive coefficient models. Among those four models,

the full additive coefficient model (4.8) gives the highest adjusted-R2 (0.855), and

model (4.10) gives the smallest BIC (-3.62). According to either adjusted-R2 or BIC,

the semiparametric additive coefficient model is preferred over the parametric one.

As did in Fik et al. (2003), we have also compared the four models in terms of

their prediction accuracies. Similar to Fik et al. (2003), a sample of 2471 observations

is randomly selected from the database and used to estimate the model. Using the

estimated model, we predict the housing prices of the remaining 500 samples. The

prediction performance is evaluated via averaged absolute prediction error (AAPE)

and the percentage of predicted prices within 10% of actual prices. As given in

Table 4.2.3, the additive coefficient models show great improvements in prediction

too, compared with the parametric model. Among them, the model (4.10) is most

appealing, it has the simple interpretable structure, but gives good predictions as the

full model (4.8) does.
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ASE ASPE

 

Integration fit, 7) = 1 0.000201 0.000085

 

Integration fit, p = 3 0.000205 0.000077

 

 

 

Spline fit p = 1 0.000194 0.000076

Spline fit p = 3 0.000179 0.000081

Linear AR fit 24 0.000253 0.000112

 

Linear AR fit 248 0.000258 0.000116

 

Table 4.1: GNP data: the A8138 and ASPES of six fits.
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Integration fit c1 = 2 02 = 1

 

72.2100 1.9737(03574) 1.0406(0.2503)
 

n=250 2.0299(02410) 1.0056(0.1490)

 

n=500 1.9786(0.1680) 1.0026(O.1111)

 

Spline fit p = 1

 

n=100 1.9776(0.0497) 0.9862(0.0208)

 

n=250 2.0389(0.0188) 1.0023(0.0065)

 

n=500 2.0091(0.0136) 1.0035(0.0030)

 

Spline fit p = 3

 

n=100 1.9894(0.0568) 1.0061(0.0194)

 

n=250 1.9936(0.0225) 1.0011(00059)

 

n=500 1.9871(0.0074) 0.9974(0.0024)

 

Table 4.2: Simulated i.i.d example: estimation of constants.
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Integration fit CYii 012 021 022

 

n=100 0.1609 0.2541 0.1205 0.2761

 

n=250 0.0568 0.0963 0.0338 0.0649

 

n=500 0.0295 0.0483 0.0191 0.0310

 

Spline fit p = 1

 

n=100 0.0742 0.0883 0.0824 0.0626

 

n = 250 0.0314 0.0369 0.0271 0.0214

 

n=500 0.0138 0.0191 0.0143 0.0104

 

Spline fit p = 3

 

n=100 0.0944 0.1279 0.1023 0.0814

 

n=250 0.0258 0.0396 0.0227 0.0232

 

n=500 0.0120 0.0155 0.0128 0.0096

 

Table 4.3: Simulated i.i.d example: estimation of function components.
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10049603970891 1

 

2500100 00100 001000

 

5000100 00100 001000   
n AIC

 

1000 83170 87130 8218

 

2500 86140 89110 8713

 

5000 93 70 93 70 946      

Table 4.4: Simulated i.i.d example: model selection with BIC and AIC.
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Spline fit 19 = 1 c1 = 0.2 02 = —0.3

n = 100 0.2504(00481) —0.2701(0.0374)

n = 250 0.1983(0.0271) —0.2936(0.0279)

n = 500 0.1989(0.0202) —0.2975(0.0209)

 

Table 4.5: Simulated nonlinear AR model:
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Spline fit p = 1 011 Op 001 02-2

 

n=100 0.0113 0.0050 0.0042 0.0195

 

n=250 0.0030 0.0021 0.0025 0.0039

 

n=500 0.0015 0.0011 0.0016 0.0019

 

Table 4.6: Simulated nonlinear AR model: estimation of function components.

93



 

 

p=1 p=2 p=3

 

10011 8810 69311945

 

250 0100 00100 001000

 

500 0100 00100 001000   
n AIC

 

100089114 9510 8812

 

250090100 89110 9010

 

50009190 93 70 928       
Table 4.7: Simulated nonlinear AR model: model selection with AIC and BIC.
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Year X, TAR FARI FAR2 SIND .\II PS1 PS3

 

1980 154.7 5.5 13.8 1.4 2.1 14.9 0.2 4.5

 

1981 140.5 1.3 0.0 11.4 1.7 2.4 8.2 5.3

 

1982 115.9 19.5 10.0 15.7 2.6 17.5 9.8 9.9

 

1983 66.6 4.8 3.3 10.3 2.4 1.37 14.2 12.8

 

1984 45.9 14.8 3.8 1.0 2.3 5.92 0.3 1.6

 

1985 17.9 0.2 4.6 2.6 7.6 1.96 5.9 6.5

 

1986 13.4 5.5 1.3 3.1 4.2 0.57 2.3 4.6

 

1987 29.2 0.7 21.7 12.3 13.2 0.7 2.9 1.1

 

AAPE 6.6 7.3 7.2 4.5 5.7 5.5 5.8

 

ASPE 85.6 101.1 81.6 34.3 71.9 52.08 47.17

 

Table 4.8: Wolf’s Sunspot Number: out—of-sample absolute prediction errors.

 

Adjusted-R2 BIC AAPE Percentage

 

 

 

 

Model (4.8) 0.855 -3.61 14932.6 60.8

Model (4.9) 0.853 -3.61 15127.49 61

Model (4.10) 0.852 -3.62 14940.36 61.2

Parametric model 0.834 -3.57 16464.12 54.6

 

Table 4.9: Tucson housing price: estimation and prediction results.
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Figure 4.1: GNP data: one-step prediction performance.
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Figure 4.2: Kernel density estimates of h1,0p,/h1,op,.
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Figure 4.3: Plots of the estimated coefficient functions using marginal integration.
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Figure 4.4: Plots of the estimated coefficient functions using cubic spline.
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Figure 4.6: Plots of the estimated coefficient functions using linear spline.
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Transformed quarterly GNP data
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Figure 4.8: GNP data after transformation: time plot of the series (Y, =1.
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Figure 4.9: Scatter plot of Y,, Y,_2 at three levels of Y,_1.
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Figure 4.10: Scatter plot of Y,, Y,_2 at three levels of Y,-8.
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Figure 4.11: Estimated functions and their bootstrap 95% confidence intervals.
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Figure 4.12: Spline approximations of the functions.
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Figure 4.13: Estimated function components.
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Figure 4.14: Time plot of the fitted values based on marginal integration.
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Figure 4.15: Estimated functions with cubic spline approximation.
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Figure 4.16: Time plot of the fitted values with cubic approximation.
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