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Abstract

Subloops of the unit octonions
By
Stephen M. Gagola III
The class of Moufang loops is defined by the identities z(y(zz)) = ((zy)z)z,
z(z(yz)) = ((2z)y)z, and (zy)(2z) = (z(yz))z; Non-associative finite simple
Moufang loops form the central topic of this work. The emphasis will be on
their connections with composition algebras. A composition algebra over some
field, not necessarily finite, is either F'1 with charF' = 2 or an algebra with a
non-degenerate quadratic form, ¢, that admits composition. If its dimension
over the field is eight then we have what we call an octonion algebra. Here we
categorize all the subloops of the unit octonions and in particular describe all
the finite maximal subloops by using the reflection groups of these Moufang
loops. Furthermore, Lagrange’s Theorem for Moufang loops then follows as

a corollary.
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1 Introduction and Main Results

In this section, we explain the necessary material and introduce the needed
notation. After presenting the basic notions, let us briefly summarize the results of
this work.

Let F be an arbitrary field and A a vector space over F. A is said to be an
algebra over F if there is a bilinear multiplication on A satisfying :

1. z(y+2) =zy +z2
2. (z+y)z=z2+y2
3. (az)y = a(zy) = z(ay)

for all z,y,2z € A and a € F. Notice that an algebra is not necessarily associative,
meaning z(yz) = (zy)z for all z,y,z € A. Also, an algebra is not always assumed
to contain an identity element. A subalgebra of A is a subspace, B, of A that forms
an algebra with respect to this multiplication. We will denote this by B < A. A
bilinear form on A is a map (|-) : A x A — F such that

L (z +ylz) = (zl2) + (yl2),

2. (zlz +y) = (z|z) + (zly), and

3. (azly) = a(zly) = (xlay),

forany r,y,2 € Aanda € F. If B < A then B* = {r € A|(c|y) =0 for all y € B}.

Amap q: A — Fis a quadratic form on A if



1. g(ax) = a%q(z) forallz € Aanda € F

2. and the map from A x A to F given by (z|y) = q(z +y) — q(z) — q(y) is a

(symmetric) bilinear form.

We say that the quadratic form g is non-degenerate if {z € A|(z|y) = 0 for all
ye A} =0.

An algebra A over a field F' is a composition algebra if it has a multiplicative
norm, that is, a quadratic form, ¢ : A — F, with g(ab) = g(a)q(b) for all a,b € A,
is nonzero for F'1, and in general is non—degeneréte. A composition algebra does not
have to contain an identity element but is closely related to one that does contain an
identity. Such a connection is an isotopy and every composition algebra is isotopic
to an algebra with an identity, see Jacobson (13, p. 418]. The following theorem,
dealing with the dimension of composition algebras, was proven by Hurwitz [12]. A

proof is given in section three below.

Theorem 1.1. Suppose A is a composition algebra over a field F. Then it is of

dimension one, two, four, or eight.

A composition algebra of dimension four is usually called a quaternion algebra,
and such an algebra of dimension eight is usually called an octonian algebra. A
quaternion algebra is associative. However, unlike the quaternions, the octonions
are nonassociative but do satisfy the Moufang identity. z(x(yr)) = ((zz)y)z (see
proposition 3.9). Omne can show that such an identity, z(z(yx)) = ((zz)y)z, is

actually equivalent to:



L. z(y(zz)) = ((zy)z)z
and

2. (zy)(2z) = (z(y2))z (see Lemma 3.1 of [4]).
We call a composition algebra a division algebra if it contains no zero-divisors.
Otherwise it is said to be split.

A quasigroup is a non-empty set S with a closed binary operation, (z,y) — z -y,

such that

1. a- z = b determines a unique element =z € S given a,b € S and

2. b=y - a determines a unique element y € S given a,b € S.

A loop is a quasigroup, L, with an identity element and a subloop of L is a subset of
L which, under the binary operation, is a loop. A finite loop L is said to have the
Lagrange property if for any subloop K of L the order of K, |K]|, divides the order
of L, |L|. Lagrange’s Theorem says that finite groups have the Lagrange property.
but in general, a finite loop does not satisfy the Lagrange property. For instance,
one can easily construct a loop of five elements all of which are of order one or two

as one can see in Table 1.

l{a{bfc|d
1f1jalb|c|d
alalll{d|b]|c
blblc|1l]|d]|a
cflc|d|a|l}|b
d{d{bfcl|all

Table 1: A multiplication table for a loop of order five



The reason for this is because without associativity, the coset decomposition

breaks down.
Definition 1.2. A Moufang loop is a loop, L, that satisfies the Moufang identities.

The main results of this thesis are the following four theorems. The first is
a version of the Aschbacher-O'Nan-Scott Theorem [2] and is valid for subloops of

octonion algebras.

Theorem 1.3. Let L be a subloop of an octonion algebra, C, over the field F.
Consider the reflection subgroup R = R(L) = (p, | T € L) where V. = F8. Then

there are three possibilities:
1. V > [V, R] with one of the following

(a) L < St for some hezagon line S;
(b) L < Q for some nonsplit quaternion subalgebra Q;

(c) L < [V,R], where L is totally isotropic and F 1is a nonperfect field of

characteristic two;

2. V = [V, R] is reducible and there is a quaternion subalgebra Q with L < QUQ*;

3. R is irreducible on V.

Here, [V, R] = span ({—v+v" | r € R,v € V}). By areflection, p,, of V we are
referring to the map p, : V — V sending v to v — (qi(‘g.z. We will let O(V, q) be the

orthogonal group with respect to g consisting of all the linear transformations that



preserve q. Note that we always have p, € O(V,q) (see [25]). By irreducible, we
mean that there does not exist a proper subspace of V' that is left invariant under
R. Also, for a hexagon line we mean a totally singular 2-space that is contained in
1+ such that the multiplication is zero.

In the split case, the subalgebras S* and Q are uniquely determined up to the
action of Aut(C). See Proposition 5.4 and Theorem 5.6 below.

The loops that can occur under Theorem 1.3.1 and 1.3.2 are relatively elementary
in structure. The loop (S*)* is described in detail in Section 5 and is a loop extension
of the abelian group F? by the group GL,(F). The loops under Theorem 1.3.2
contain subloops of index at most 2 that are contained in the quaternion subalgebra
Q. Since quaternion algebras are associative, their subloops are groups.

We will only describe the finite subloops that occur in Theorem 1.3.3.

Theorem 1.4. Let L be a finite subloop of an octonion algebra C over the field
F. Let R = {p, [ z € LY < O(C,q). If R is irreducible on C then R is one of the

following and unique up to conjugacy in O(C, q):
1. R ="*Qf (F,) for some finite subfield F, of F of odd characteristic. We have

C split and SLL(F,) < L < F*- GLL(F,).

2. R = Of (F,) for some finite subfield F, of F of characteristic 2. We have C

split and SLL(F,) < L < F*-GLL(F,).

3. R=W(Es) =204 (2) and 2GLL(2) < L < F* - 2GLL(2) when charF is not

2.



Notice that the previous two results give a precise description of all finite subloops
of octonian algebras. We have already discussed the structure of such subloops
under 1.3.1 and 1.3.2 in general. Since a quaternion algebra always has a quadratic
extension that is split, the finite subgroups that may occur are to be found on
Dickson’s list [24, Theorem 6.17] of finite subgroups of the matrix algebra M,(F).
These two theorems can be thought of as providing an analogue of Dickson’s theorem
for octonian algebras.

In particular, we find all the maximal subloops of finite octonian algebras.

Theorem 1.5. Let C be a finite octonion algebra over a field F and let L be a

mazimal subloop of B where SLL(F) < B < GLL(F). Then L is one of the

following:
1. L= (5*)" N B for some hezagon line S;
2. L=(QUQ"*)" N B for some quaternion subalgebra Q;
3. L =F*-GLL(F,)N B for some mazimal subfield F, of F;
4. L ={z € Blq(z) € G} for some mazimal subgroup, G, of {q(z)|z € B};
5. L =F*-2GLL(2) N B where F = F,, for some odd prime p.

As a corollary to Theorem 1.5, we get the following theorem which has been a

conjecture for over forty years.

Theorem 1.6. All finite Moufang loops have the Lagrange property.



There have been several recent proofs of the Lagrange property for finite Moufang
loops. The author of this thesis and his supervisor give a proof in [8]. There is also
an independent and earlier proof by A. Grishkov and A. Zavarnitsine [9] and a
third proof by E. Moorhouse [18]. All of these proofs make use of the classification
of finite simple groups in two ways. First, they use a result of Liebeck [17] to
reduce to the case of finite Paige loops P(gq). Secondly, they use Kleidman’s list
[16] of the maximal subgroups of the triality group PQg(q) : S; to treat the finite
Paige loops P(q). Zavarnitsine has a second paper [27] in which he classifies the
maximal subloops of finite octonian algebras, as in Theorem 1.5. Again, he appeals
to Kleidman’s list.

The proofs of Theorems 1.5 and 1.6 given here are fundamentally different from
these others. In particular, Theorem 1.5 is independent of the classification of finite
simple groups and Theorem 1.6 is only dependent on Liebeck’s work. Indeed, other
than from using Liebeck’s result once, the only place where nonelementary finite
group theory is used in this thesis is in the case of characteristic 2 in Theorem 7.2.
Also, as noted there, this part of the argument can probably be simplified as well.

In this thesis, as well as these other references, the crucial starting point is Doro’s
observation [6] that Moufang loops correspond to certain groups with triality. The
treatment of groups with triality used here is that of [8] and [10].

The standard reference for general loop theory is Bruck [4] and for octonian
algebras Springer and Veldkamp [22]. For group theory see [24], and for geometry

see [29].



2 Notation and Terminology

For a field F' consider the algebra, C, consisting of all the matrices

a v

u b
where a,b € F and v,u € F3. Here, addition is defined by

a v cC «a a+c v+a
+

u b B8 d u+08 b+d
and multiplication is defined by

a v [ ¢ « ac+v-p ax+dv—uxj

u b B8 d WB+cu+vxa bd+u-«

where v - u and v x u are the standard dot product and cross product. One can

a v
obtain an octonion algebra by letting ab — v - u = det be its norm, ¢q. A

u b
straightforward calculation shows that ¢ is a quadratic form and is multiplicative.

Let C be this algebra over the field F with the quadratic form, ¢ : z — det(z).
We will denote the associated bilinear form as (z|y) = q(z + y) — q(z) — q(y)

where z,y € C. For every element, v, in C we will define the conjugate of v as

a «
? = —v + (v|1)1. Notice that an element z = € C is invertible if and
8 b
b -«
only if det(z) # 0 and that its inverse is 5
-3 a
10
Clearly det = 0, so C is a split octonion algebra. Indeed, as we will
00

see in Proposition 5.4, any split octonion algebra over F is uniquely determined and

8



is therefore isomorphic to C. Indeed if F is finite, then there are always nonzero sin-
gular elements. So any octonion algebra over a finite field, F, is split and isomorphic
to C.

By Proposition 3.9, C satisfies the Moufang identities. In particular, the set of
all the invertible elements of C, GLL(F), is a Moufang loop. Let SLL(F’) be the
set of all the elements in GLL(F’) that are of norm one. The center of SLL(F), the
set of all elements that commute and associate with the other elements of SLL(F),
is Z(SLL(F)) = {£I}. Similarly, Z(GLL(F)) = F* - I.

Using the natural definition of homomorphisms for loops (see Bruck [4, Chapter
IV]) gives rise to what we mean by “normal subloops” and “simple loops”. The
subloop N of L is a normal subloop if there exists a homomorphism ¢ : L — L,
such that N = ker(y). If the only normal subloops of L are L and {1} then we
say that L is simple. It was proven by Paige [20] that if F is a finite field then
PSLL(F) = SLL(F)/{%1} is a simple Moufang loop and usually denoted by P(F)
or P(q) where ¢ = |F|.

When F is finite, since dimg(V) is even, there are (up to equivalence) two non-
degenerate quadratic forms on V, distinguished by the sign, €. For the corresponding
orthogonal group we will write O§(F"). Furthermore, *Q§(F) will be used to denote
the subgroup of index 2 in O§(F’) that is generated by the reflections, p,, with center,
z, of square norm. Also, we will use “Q§(F’) to denote the subgroup of index 2 in
Og(F') which is generated by the reflections, p,, with center, y, of nonsquare norm.

In addition, we will let 1V (Ey) represent the Weyl group of the Lie algebra Fj.



3 General Composition Algebras

We start off with some observations about the composition algebras. Here we
will let A be any composition algebra that contains an identity element, 1. By
definition, all subalgebras contain the identity element. Using the definition of v
one can see, from section 1.3 of F. Veldkamp and T. A. Springer [22], that:

1. 3= —py(v) forallv e A,

2. 9=—vforallvelt
3. » = v for any element v € A, and
4. v+ u = 7 + @ for any elements v,u € A.

Lemma 3.1. For any elements z,v,u € A, the following properties hold:
1. (vzluz) = (vlu)g(z),
2. (1|u)(z|v) = (v|uz) + (z|uwv), and
3. (zulv) = (u|zv) and (uzlv) = (ufvz).
Proof. By definition of the bilinear form
(veluz) = qlvz + uz) - q(vz) - q(uz)
= q((v + u)r) — q(v)q(z) — q(u)q(z)
= q(v+u)q(z) — ¢(v)q(z) — q(u)q(z)
= [g(v + ) = q(v) = q()] ¢(x)
= (v[u)q(x).

10



Since

(zluz) + (z|uwv) + (v]uz) + (v]uv) = (z + vju(z + v))
= (1ju)g(z + v)
= (1ju)[(z]v) + ¢(z) + q(v)]
= (lju)(zlv) + (1|u)g(z) + (1]u)q(v)

= (Lu)(z[v) + (z|uz) + (v]wv),

one can subtract (z|uz) + (v|uv) from both sides to obtain (1ju)(z|v) = (v|uz) +
(z|uv).

We can now use part two to prove part three.

(ulzv) = (u|(-z + (z]1)1)v)
= (u| — zv + (z|1)v)
= (u| — zv) + (ul(z|1)v)
= —(ufzv) + (z]1)(ulv)
= —(uzv) + (zulv) + (zv|u)
= —(ufzv) + (zulv) + (ulzv)

= (zulv)

11



Also,

(uvz) = (u|v(~z + (|1)1))
= (u| — vz + (z]1)v)
= (u| - vz) + (ul(z|1)v)
= —(ulvz) + (ulv)(z|1)
= —(ulvz) + (uz|v) + (vzlu)
= —(ulvz) + (uzlv) + (ulvz)

= (uz|v)

Lemma 3.2. For anyv,u € A

1. 9(vu) = q(v)u = (wv)v

2. uv = vu

Proof. Since

(9(vu) = g(v)ulz) = (3(vu)lz) ~ ¢(v)(ulz)

= (vu|vz) - q(v)(ulz)

= q(v)(ulr) — g(v)(ulx)

=0

for all z € A. by non-degeneracy, o(vu) = g(v)u.

12



Also, since

((w)7 = g(v)ulz) = ((wv)v]z) — g(v)(ulz)
= (uvjzv) — q(v)(ulz)
= q(v)(ulz) — q(v)(ulz)

=0

for all z € A, by non-degeneracy, g(v)u = (uv).

Likewise, since

(@ — va|z) = (wvl|z) - (vi|z)
= (1)(uwv)z) - (alvz)
= (Zluwv) - (az|v)
= (Z|uv) — (Z|uv)

=0
for all z € A, by non-degeneracy, wv = v4.
Lemma 3.3. For all z,v,u € A
1. v(uz) + u(vx) = (vju)z

2. (zv)a + (zu)? = (v|u)zx

13



Proof. By Lemma 3.2 (u + v)((u +v)z) = q(u + v)z. Therefore,

0= (u+v)((u+v)z) - qlu+v)z
= (u+v)((2 + v)z) — q(u +v)z
= u(@z) + v(vz) + v(iz) + u(vz) — q(u + v)z
= q(u)z + q(v)z + v(az) + u(vz) — q(u + v)z
= v(az) + u(dz) — (vju)z.

Hence, v(tz) + u(vz) = (v|u)z.

Likewise,

0= (z(u+v)utv-qu+v)
= (z(u+v))(@ + ) — q(u + v)z
= (zw)@ + (zv)0 + (zv)@ + (zu)7 — q(u + v)z
= q(w)z + q(v)z + (2v)@ + (zu)7 — g(u + v)z
= (zv)@ + (zu)d — (v]u)z.

Thus, (zv)a + (zu)v = (v|u)z.

Lemma 3.4. For all v,u € A, v(uv) = (vu)v

14



Proof. For any v,u € A,

v(uwv) = v(wv) + @(0v) — q(v)@
= (v[z)v — q(v)u
= (up)v — q(v)u
= (vu)v + (v0)@ — q(v)a

= (vu)v.

a

Remark 3.5. Notice that, by 3.3, 2§ + yZ = (z|y)1 for any z,y € A. So we obtain
that (zg)z + q(z)y = (z|y)z. So by Lemma 3.4, zjz + q(z)y = (z|y)z. Therefore, if

q(z) # 0 then p.(y) =y — E¥z = ZLagz.

Lemma 3.6. Let a € A with q(a) =0 and a # 0, then = € aA if and only ifaz = 0.

Proof. If z € aA then az € a(aA) = g(a)A = {0}.
Now suppose az = 0. Let y € A such that (¢|y) = 1. By Lemma 3.3, a(yz) +

y(az) = (aly)z. Hence, z = a(yz) € aA. O

Theorem 3.7. Let a,b € A with g(a) = 0 = q(b), a # 0, and b # 0. Then aA
and bA coincide if and only if a and b are linearly dependent; their intersection is
a line, a subspace of dimension two, if and only if (a|b) = 0 with a and b linearly

independent, their intersection is 0 if and only if (a|b) # 0.

Proof. This is Theorem 4 of van der Blij and Springer [3)]. O



Corollary 3.8. There does not erist a singular plane, a totally singular subspace of

dimension three, B, in 1t such that zy = 0 for all z,y € B.

Proof. If zy = 0 for all z,y € B then Zy = 0 for all z,y € B. Thus, by Lemma
3.6,y € zA for all z,y € B. Therefore B C zA for all z € B. From Theorem 3.7
we have that dimp(yANzA) < 2 for any linearly independent elements z,y € B.

Therefore, dimp(B) < 2. O

Proposition 3.9. If A is a composition algebra then all of the Moufang identities

are satisfied.
Proof. Claim: z(zy) = z%y and (yz)r = yz? for all z,y € A.

z(zy) — 2’y = (z + T - Z)(zy) — ((z + Z - T)2)y

= (z + Z)(zy) - Z(zy) - ((z + Z)z)y + (Zz)y

= (Zz)y — Z(zy) since z + T = (z|1)1
= q(z)y — q(z)y by Lemma 3.2
=0

for all z,y € A. Likewise, (yz)r = yz? for all z,y € A.

16



Let fi(z1, T2, T3) = (T172)z3 — z1(Z273). Since

(z122)Z3 — 21(Z223) = (2172)23 — Z1(T273) +
+ (z1 + z2)[(z1 + 22)73) — (71 + T2)%z3
= (T122)x3 — 21(z273)+
+ z1(2273) + T2(2123) — (2172)T3 — (T271) 3
= Z2(7173) — (7271) 3

= —fl($2,1'11$3)
and

(z122) T3 — T1(Z223) = (21Z2)T3 — T1(Z273)+
+ (72 + 73)° = [11(22 + T3))(Z2 + Z3)
= (z1Z2)z3 — T1(T273) +
+ 71(z2x3) + T1(23T2) — (2122) 23 — (T173) T,
= 21(z322) — (2123)22

= - fi(z1, 3, T2)

hi (Ia(x),lo(z),xa(s)) = sgn(o) fi(z1, T2, x3).

17



Let f: Ax Ax Ax A — A be the Kleinfeld function [15],

fa(z1, 22,23, 24) = ((T1Z2)T3)T4 — (2122)(T324)+
= ((z23)z4)T1 + (T273)(T4T1)+
+ ((z3z4)z1)Z2 — (T324)(Z172)+

- ((:174171)132).’123 + (1242131)(.’1:21‘3).

Notice that f(x1, T2, T3, 24) = — fo(Z2, T3, T4, T1). Also,

fo(T1, 72,73, 24) = ((2172)73)T4 — (122)(z3T4) +
— ((z2z3)zTa)T1 + (T273)(zaz1)+
+ fi(z3z4, 71, 72)

— fi(Z4T1, T2, T3)

= ((2122)73)T4 — (T122)(T3T4) +
— ((z223)Ta)T1 + (T23) (Taz1) +
+ fi(z2, 7324, 7))
— fi(z2, 73, T471)

= ((1122)13)z4 — (T122)(T324) +
— ((z2z3)s)T) + (T273) (Tam1 )+
+ (w2(r304)) 1 = 2o((2324)11)
= (w223)(warr) + 02 (23(2421))

= filv zg, £3,24) = fi(ro, 23, 09) 0y — 12 fi (23, 24, 21).

18



So fo(xy, T2, z3,23) =0 for all z; € A. Thus

0 = fo(z1, T2, T3 + T4, T3 + T4)
= f2(I],.’E2,l‘3,l‘4) + fg(l‘l, $2,I4,$3)+
+ fo(x1, T2, T3, 23) + f2(21, T2, T4, T4)

= fa(z1, T2, T3, T4) + fo(1, T2, T4, T3)

meaning, fo(z1,Z2, T4, 3) = — f2(T1, T2, T3, 24). Therefore, since fo(zy, T2, 23, 24) =
—fz(Iz,Is,xmll) and f2(11,12,$4,13) = —fz(fl?l,xzyl's,h)y f2(zo(l)axa(2)1za(3)7170(4)) =

sgn(a)f2(1:1 »I2, T3, I4)' SO

0= fQ(I17$2,xly$3)
= filz172, 71, T3) — fi(z2, 1, z3)T) — T2 f1(21, T3, T1)
= fi(z122, 71, 73) — fl(xz,zl,zs)xl - fol(ISyzl:Il)

= fl(Ill'z,iEl,l‘a) - f1($2,$1,133)171

which implies that f)(zz2,x),z3) = fi(z2, 71, 23)T).

19



From this we conclude that for any z,y,2 € A,

z(y(z2)) — ((zy)1)z = z(y(z2)) — (TY)(22) + (2Y)(22) — ((2Y)7)2
= —fi(z,y,z2) — fi(zy, T, 2)
= —fi(zz,z,y) — fi(zy,z, 2)
=-filz,z,9)z - fi(y,z,2)z
= - fi(z,z,y)z + fi(z, z,y)x

=0

meaning, z(y(zz)) = ((zy)z)z for any z,y, z € A. Hence, A satisfies all the Moufang
identities.

Another proof can be found in [22] (see Proposition 1.4.1, page 9). O

Proposition 3.10. If B is a subalgebra of a composition algebra, A, and v is con-
tained in B* then B+ Bv is also a subalgebra with Bu < Bt. Moreover, ifa = s+tv

and b = = + yv then ab = (sz — q(v)§t) + (t + ys)v for s,t,z,y € B.

Proof. Since B is a subspace containing the identity, B + Bv is a subspace that
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contains 1. For any a = s+ tv,b = z + yv € B + Bv we get that

ab =(s+tv)(z + yv)
= sz + (tv)z + s(yv) + (tv)(yv)
= sz + [(v]E)t — (t2)7] - s(7T) + (—Fv)(yv) by Lemma 3.3
= sz + [0 + (tT)v] — s(vg) + (—vt)(yv) by Lemma 3.2
= sz + (t2)v + s(vg) + (vE)(yv)

= sz + (tZ)v + [(7]s)y — ¥(57)] + v(ty)v by Lemma 3.3 and Moufang’s identity

= sz + (tT)v + [0+ 9(59)] + (—v(ty))v
= sz + (tZ)v + (ys)v + (—(gt)v)v by Lemma 3.2
= sz + (tZ)v + (ys)v — q(v)gt by Lemma 3.2

= (sz — q(v)yt) + (T +ys)v € B+ Bw.

Therefore, B + Bv is also a subalgebra and since (b;|byv) = (bobyv) = O for all

b; € B, Bu < B*. a

Theorem 3.11. (Dickson’s Theorem) If B is a non-degenerate subalgebra of a com-
position algebra, A, with dimp(B) = n and v is contained in B+ with q(v) # 0 then
B + Bv is a non-degenerate subalgebra with dimg(B + Bv) = 2n. Furthermore, if

a=s+tvand b=z + yv then ab = (sz — q(v)yt) + (tT + ys)v for s,t,z,y € B.

Proof. By Proposition 3.10, B + Bv is a subalgebra of A. Since ¢(v) # 0, v is
invertible with v=! = q”(LT) Thus dimg(Bv) = dimpB = n. Suppose there exists an

element b, € B such that bjv € B. Then, since B is nondegenerate, there exists
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an element b, € B such that (by|bjv) # 0. Thus (b,by|v) # 0. But byb, € B and
v € B*. Hence, by contradiction, BN Bv = 0. Therefore, B + Bv is a subalgebra
of dimension 2n. Let s + tv be some fixed element in B + Bv where t # 0. Since B

is non-degenerate, there exists an element y € B such that (y|t) # 0. So
(yvls + tv) = q(s + yv + tv) — q(yv) — g(s + tv)
= (slyv + tv) + q(s) + q(yv + tv) — q(yv) — (sltv) — g(s) — g(tv)
= 0+q(s) + (yvltv) + q(yv) + g(tv) — q(yv) — 0 — g(s) — g(tv)
= (yvltv)
= (y|t)q(v) by Lemma 3.1

# 0.
Therefore B + Bv is a non-degenerate subalgebra of dimension 2n. O

Theorem 3.12. If B = F'1 is a proper subalgebra of a composition algebra, A, over
the field F of characteristic two and v is contained in A\ B with (v|1) # 0 then
B + Bv is a non-degenerate subalgebra with dimg(B + Bv) = 2. Furthermore, if

a = s+tv and b = z+yv then ab = (sz — q(v)ty) + (sy + (v|1)ty)v for s,t,z,y € B.

Proof. First of all notice that such an element, v, exists since A is non-degenerate

and

(al]51) = g((a + 8)1) — g(al) — q(s1)
=a?+2a8 + 3% - a® - 32

=0
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for all 1,81 € F1. Since B is a subspace containing the identity, B + Bv is a

subspace that contains 1. Since v € A which is non-degenerate,

v? =0+ (v|]1)v = (v|1)v
— o+ (vl L) - (v]1)v
=v(-v + (v|1)1) — (v|]1)v

=0+ (v|l)v

q(v)1 + (v[1)v

For any a = s + tv,b = z + yv € B + Bv we get that

ab =(s+tv)(z + yv)
= sz + (tv)z + s(yv) + (tv)(yv)
= sz + (tx)v + (sy)v + (ty)v® since s,t,z,y € F1
= sz + (tz)v + (sy)v + (ty)(q(v)1 + (v|1)v)

= (sz + q(v)ty) + (tz + sy + (v|l)ty)v € B + Bu.

Therefore, B + Bv is a subalgebra of dimension 2. Let al + Bv be some element in

B+ Bv witha,8 € F. If 8 # 0 then

(al + Bv|1) = (al|l) + (8v|1)
= 3(v|1)

#0.
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If 3=0and a # 0 then

(al + Bu|v) = (allv)
= a(llv)

#0.

Hence B + Bv is a non-degenerate subalgebra of dimension 2. O

Lemma 3.13. If A is a composition algebra of dimension 8 then A is nonassociative.

Proof. Suppose A is of odd characteristic. One can generate A using Dickson’s
Theorem 3.11 and letting vy, v2,v3 € A with g(v;) # 0 for all 7, such that v, € 1+,

vy € (1,1)%, and v3 € (1,v),v2)*. Then

v1(v2v3) = — v, (U372)
= —v,(v3v2)
= 13(0,v2)
= v3(v,v3)
= —(0102)03

= — (‘Ul 1'2)1'3

# (1’11’2)1'3-

Therefore, if A is of odd characteristic then A is nonassociative.
Now suppose that A of of characteristic 2. One can generate A using Theorems
3.11 and 3.12 and letting vy, vo.v3 € A such that (v,]1) # 0, vo € (1, v7)*, and
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v3 € (1,v;,v2)*. Then

v1(vavs) = v1 (V32)
= v (vsvy)
= U3(01v2)
= v3 ((v1 + (v1|1)D)vy)
= v3(v1v2) + (v1]1)v302
= (0102)3s + (01[1)vsz

= (v1v2)vs + (v1|1)v3v2

# (v1v2)vs.
Hence, if A is of characteristic 2 then A is nonassociative. O

Theorems 3.11 and 3.12 along with Lemma 3.13 can be used to prove Hurwitz’s

Theorem 1.1.

Proof. Assume there exists a composition algebra of dimension higher than eight,
namely A, that contains B; = F1. By Theorem 3.11 or 3.12, there exists a non-
degenerate subalgebra of A, B,, that is of dimension 2. If B,. is a non-degenerate
composition algebra of dimension 2" that is properly contained in A then by Theo-
rem 3.11, there exists a non-degenerate subalgebra of A, B,.+1, that is of dimension
2"*1 B,us1. Since A is of dimension higher than eight, by induction on n, A contains
a non-degenerate subalgebra of dimension sixteen, B + Br, where B is of dimension
eight. By Proposition 3.9, B + Buv satisfies the Moufang identities. Thus, for every
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T +yv,s+tv € B+ Bu we get that

0= (z +yv) ((z +yv)(s + tv)) — (z + yv)*(s + tv)
= [z(zs) — 2% — q(v)s(Fy) + q(v)(s§)y — q(v)2(Ty) + q(v)(ZD)y]
+ [tz® — (tz)z + y(52) — (¥5)T + q(v)y(Ft) - q(v) (¥y)t] v
= [0 — q(v)(0) — q(v) [Z(ty) — q(v)(zt)y]]

+ [0+ y(5) — (¥5)Z + q(v)(0)] v.

Therefore, y(5Z) = (y5)Z for all y,5,Z € B. Hence, the octonion algebra B is
associative. But, by Lemma 3.13, the octonion algebra B is nonassociative. So by
contradiction, there does not exist a composition algebra of dimension higher than

eight. O

4 Moufang Loops

The following are some well known properties of Moufang loops that will be used
later in this paper. See Bruck [4, Chapter VII] for unexplained material.
Lemma 4.1. For a Moufang loop, L, every element £ € L has a unique two sided

inverse, 1.

Lemma 4.2. If r,y € L where L is a Moufang loop then:

Lzl (zy) =y,
2.x(c7y) =y,
3.y = (yr)xt.
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4.y = (yz ")z,

and

5. z(yz) = (zy)z.

Lemma 4.3. Let z,y € L for some Moufang loop, L.
1. If k > 0 then z*y = z(z(...z(zy)...)) with k copies of T.
2. If k <0 then z*y = (7Y (z"!(...z7 (z"'y)...)) with —k copies of 1.
3. If k > 0 then yz* = ((...(zy)z...)T)T with k copies of .
4. If k <0 then yz* = ((...(yz™1)...)c")z~! with —k copies of z71.

Proof. Part one is easy to see for k = 0 or 1. Suppose it is true for all 0 < k < n.

Then

"Hy=(z-z---z)y with (n + 1) copies of =

((z(z---z))z)y
=z((z- - z)(zy)) by the Moufang identity
= a(e(--2(ay) )

Thus, z"*'y = z(z(---z(zy)---)) with n + 1 copies of z. So, by induction, for

all k > 0, 2%y = z(x(---z(zy)---)) with k copies of z. Similarly, if k& > 0 then

yr* = ((--- (zy)z - -+ )r)x with k copies of r.
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Part two is easy to see for k = —1. Now suppose that it is true for alln < k < —1.

Then

T =(z'.z7'...g71 with (1 — n) copies of
y=( )y ( ) cop
=z (="t 2z )y
=z (7t 27 (z7y)) by the Moufang identity

=7z @) )

Thus, 2"~ 'y = z7}(z7'(--- 27 (z7'y)---)) with 1 — n copies of z~!. So, by de-
duction, for all k < 0, z*y = (7' (z7'(---z~'(z"'y)---)) with —k copies of z~!.

Similarly, if k < 0 then yz* = ((--- (yz~!)---)z~!)z~! with —k copiesof z~!. O

Lemma 4.4. If z and y are contained in some Moufang loop, L, then z"(z™y) =

In+my and (y.’L‘")ZL‘m — yxn+m'
Proof. This follows from Lemmas 4.3 and 4.2. O

From this one can show that any Moufang loop is diassociative. That is, any
two elements of a Moufang loop generate a group. This was proven by R. Moufang
[19] herself back in 1935. However, there are many diassociative loops that are not
Moufang loops. Furthermore, as seen in Table 2, there exist diassociative loops that
do not satisfy the Lagrange property. In this example we have the Steiner loop of

order ten where any two elements generate a group of order four, namely Z; x Z,.
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1 a bc | a(bc) b ca | b(ca) c ab | c(ab)
1 1 a bc | a(bc) b ca | b(ca) c ab | c(ab)
a a 1 a(bc) | bc ab c c(ab) | ca b | b(ca)
bc bc | a(bc) 1 a c c(ab) | ab b b(ca) | ca
a(bc) || a(bc) | bc a 1 c(ab) | ab c b(ca) [ ca b
b b ab c c(ab) 1 b(ca) | ca bc a a(bc)
ca ca c c(ab) | ab | b(ca) 1 b a a(bc) | be
b(ca) || b(ca) | c(ab) | ab c ca b 1 a(bc) | be a
c c ca b b(ca) | bc a a(bc) 1 c(ab) [ ab
ab ab b b(ca) | ca a a(bc) | bc | c(ab) 1 c
c(ab) || c(ab) | b(ca) | ca b a(bc) | bc a ab c 1

Table 2: The Steiner loop of order ten

A Latin square design is a pair (P, A) of points, P, and lines, A, such that:

1. P is a disjoint union of three parts R, C, and F;

2. each line | € A contains three points and meets each part R, C, and E exactly

once;

3. any pair of points that are contained in different parts belongs to exactly one

line.

For a loop, L, there is a Latin square design of L, D, that has a point set P =

LrULcULE, where L; = {a;|la € L} isa copy of L, and a line set A = {{ag,bc,ce} =

[a,b,c]| (ab)c=1€ L}.

The automorphism group, Aut(D,), of the Latin square design Dy is the set of

all bijections f : P — P that take lines to lines. So [a,b,¢] € A if and only if

{f(a)., f(b), f(c)} € A. For a € R, let 7, be the map that exchanges the sets C and

E such that 7,(b) = ¢ and 7,(c) = b if and only if [a,b,¢] € A.
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Suppose there exist elements f,g € Aut(DL) such that fleoe = 72 = gleue-
Then fg~! is trivial on CU FE and therefore is trivial on P. Thus, f = g. Therefore,
7, has at most one extension, and if it exists then it has order two. So we will just
call this extension 7,. If L is a Moufang loop then such an extension exists, namely:

Tgp— az lag

Ta: Yo y lag

1,-1

Zg—a”

2
. C

This is because if (zy)z =1 then:

Ty = z7!

= 1=(z7'z7 )y

-1
= a[(z'z7 )y e =1
= [a(z7'z7Y)] [y a7 =1

= [a(z7' (ala'2™)))] [y'a7 ] =1

= [(az7'a)(a7'2Y)] [y'a7!] = 1.

We will call such an extension a central automorphism of Dy with center a. The
same holds for central automorphisms 7, and 7, with the centers y € C and z € E.
(See [10] and (8] for discussion.)

For a Moufang loop, L, we call G, = (7|t € LR U L¢c U Lg) the triality group
of L. In general, a triality group, G, is a group generated by a normal subset, T, of
elements that are of order two along with a homomorphism = : G — S3 such that
for any g.h € T, |gh| = 3 when n(g) # 7(h), G being an example (see (8, 10]).
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Lemma 4.5. Let L be a subloop of C* where C is an octonion algebra. Suppose
L spans C and f,g € G, with f|; = g|;, € {R,C,E}. Then g(z;) = sf(z;) and

g(zx) = s7! f(xx) where s € F* and {i,j,k} = {R,C, E}.

Proof. Without loss of generality we may assume that f|g = g|g. Thus, fg7!is

trivial on E.

IR ¥ IAR

Case 1. If fg! : 1p = agr then fg™' : ¢ 4.y g1y, - Assume that a ¢ F1.

Zg 2

Since L spans C, there exist elements z,y € }, such that (za)y # z(ay). Also, since
[z, ay, (ay)'z7'] € A, [fg7'(2), fg~"(ay), fg~ ((ay)~'z7")] = [za,y, (ay)'z7!] €
A. But ((za)y)((ay)~'z7') # (z(ay))((ay)~'z~!) = 1. Hence, by contradiction,

a € F1 meaning g(zr) = sf(zr) and g(z¢) = s~ f(z¢) for some s € F.
4
TR WM Q¢

Case 2. Suppose fg~! : 1g — ac. Then fg~! : ¢ yc — yaz' - Assume that

2 2E
\

a ¢ F1. Since L spans C, there exists an element z € L such that za # az.
Also, since [z7!,za,a”'] € A, [fg™'(z7"), fg~ (za), fg~'(a7)] = [z,az7!,a7T] € A.

But zar 'a™! # zz"'aa”! = 1. Hence, by contradiction, a € F1 meaning fg~! :

TR SIc

§ ye— s lyg for some s € F. Since L spans C, there exist elements x,y € L\ F'1

2E © 2E

\
such that zy # yr. But [fg~'(«). fg~ (y), fo " (v~ a™Y)) = (s 'y, sx,y™ 'zt ¢ A

1

since s 'y(sx)y ta Tt = yoy tem # ayy~tr~t = 1. Hence fg7'(1R) € Le.
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This completes the proof of Lemma 4.5. a

5 Structure of Octonion Algebras

Here we will let C be an octonion algebra over a field F.
Lemma 5.1. If L is a subloop of C then the subspace spanned by L over F,

spang(L), is a subalgebra of C.

Proof. For kyly + - + knln, {1} + - + ki, I;, € A where k;,k{ € F and [l € L,
(kily + - + kaln) (KL + - + KL L) = kyki (L) + - + Kokl (Iall,) € A. Hence, A is

a subalgebra of C. a

Lemma 5.2. Let L, < L, be subloops of C that span C over F. Then R(L,) =
R(L,) if and only if L, C F* - L,.
Proof. Suppose R(L,) = R(Lz). Then, for every z € Ly\ L1, pz = py,Pys - - Py. fOr
some p,, € Ly. Thus, p,(L,) C F*-L, and {%:ﬂl € Ll} C F-L,. Hence, since L,
spans C over F, {(l|z)|l € L} # {0} and z € F* - L,. Therefore, if R(L;) = R(L,)
then L, C F* - L,.

Now suppose that L, C F*- L,. Then for any = € L,, x = ky for some y € L,

and k € F*. Since p, € O(C,q), pr = pry = py. So for all T € L, we get that
p: € R(L,). Therefore, if L, C F* - L, then R(L,) = R(L,). O
Lemma 5.3. Let L be a subloop of C* such that L spans C over F and R(L)
s wreducible on C. Then a copy of either R(L) or R(L),/{+I} s contained in

G rnrk with a normal subgroup of inder two.

32



Proof. Let ¢ : R(L) — G ,1nr1 be defined as:

w(pz) = Tzg

Claim : ¢ is well defined.
Proof of claim
If p,, = pz, then by Lemma 5.2, z, = kz, for some k € F. Thus, z; = z, €

L/LNF1and 7, = Tg,. A

Claim : ¢ is a homomorphism.
Proof of claim

The map ¢ is a homomorphism as long as
w(leng o prn) = TIIET-‘HE e T:cng
is well defined. Suppose pz,pz; " Pz, = Py, Py, * * * Py.. Where m and n are both odd.

Thus,

—2a (- (T2(21221)72) - )Tn _ —ym (- (R2(01Z01)72) " JYm
q(z1)g(z2)-q(zn) q(y1)9(y2)-q(ym)

for all z € L. Therfore,

P G PR CIE R V] P BB E

9(2)a(z2) - (@) =0 e am =

_ ) Yo Gz = 00)u7 ) Jum
= a(2)a(y2) -+~ 9(Um-1) = =500 e
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for all z € L. Thus,

To(- - (23 @z )23 ) )T = Y (3 27 ) ) - )Um

€EL/LNF1

for all z € L/LNF1. Hence 74, Tz, " T2n (2E) = Ty Tyn, =" Tymg (2£) for all
z € L/LNF1. So, by Lemma 4.5, Tz, Tz, =" Tzap = Ty Tya, **“ Tymg- Likewise, re-
guardless of what m and n are, if pz, pz; - =~ Pz, = Py Py~ Py then 7y 7oy - o7y, =

TygTuag " Tymg- HeNCe, pisa homomorphism. A

Claim : There is a one-to-one correspondance between the reflections, p,, of R(L)

and the central automorphisms, 7., forz € L/L N F1.

Proof of claim

Clearly, by definition of ¢, for every £ € L /L N F1 there exists an element v € L

such that ¢(p,) = 7. If v,u € L such that p(p,) = 7., = p(p.) then u = av
2

for some o € F. Thus, p,(2) = — 15 = —%i = —;’);’(ZS = —% = py(2) for all

z € L. Therefore p, = p, and there is a one-to-one correspondance between the

reflections, p,, and the central automorphisms, 7. A

Moreover, if ©(pz,pz, "+ Prsn) = TorgTaag " Trang = 1 then
NP B T o,
Iop (- xo(x] zay )0 -+ )Tom = 2

forall z€ L/LNF1. Thus, for all z € L there exists an element k, € F such that
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o2z 227 ra) Joam
) am) . Ke?

q(z1) - - q(w2n-1)

Hence,

Ton (- (22(F12ZT)T2)~ )Tan _ k,z

Pz,Pzy " P2 (2) = ST G

for all z € L. Furthermore, since

q(2) = q(pz,Pz, * * * Pz2a(2))
= Q(kzz)

= k2q(2),

k, € {£1} for all z € L.

Now suppose z;, 22 € L such that k,, # k,,. Then charF # 2 and without loss of
generality we may assume that k,, = 1 and k,, = —1. Therefore, since p,, € O(C, q),
(21]22) = (21| — z2) which implies that (z;|z2) = 0. Thus, L = {z € Lk, = 1}U{z €
L|k, = —1} < UUU* for some subalgebra, U, of C. Notice that for all z,u € UNL
andve UtNL, p(z) =z € UNLand p,(z) =z — %‘f}u € UN L. But since
R(L) is irreducible on C, either UNL = & or Ut N L = @. Hence, k,, = k,, for all
21,29 € L.

Therefore ker(p) < {£I}. Hence, there exists a copy of either R(L) or R(L) / {1}

in G, 1nF1 with a normal subgroup, (the rotation subgroup), of index two. a

Proposition 5.4. If a composition algebra of a given dimension, C, over a field,

F, is split then it is unique up to isomorphism. Moreover, if F is a finite field and



C is of dimension greater than one then C is split. Such an algebra of dimension

eight is of type OF (F).

Proof. Let C be a composition algebra over the field F that is split. Suppose there
does not exist an element z € C such that ¢(z) = 0 and (z|1) # 0. So for every
z € C with g¢(z) = 0, £+ Z = 0. Choose a nonzero element y € C such that
q(y) = 0. Since g(yz) = q(y)g(z) =0forallz € C,yz+yz =0forall z € C.
So (y|z)1 = yZ + z§ = 0 for all z € C. But C is a non-degenerate algebra. By
contradiction, there exists an element £ € C such that ¢(z) = 0 and (z|1) = 1. Note
that z + £ = (z|1)1 = 1. Thus C contains a subalgebra, Fz + FZ = F1 + Fz, of
dimension two over F that is isomorphic to F & F. So any two split composition
algebras of dimension two over some field, F', are isomorphic.

Now suppose that A, and A, are proper composition subalgebras of C) and C,,
respectively, and are of dimension greater than one with A} = A,. Let b; € A} for
i € {1,2}. Since C; is non-degenerate, there exists an element ¢; € C; such that

(bilc;) # 0. Let ¢; = a; + a} where a; € A; and a} € A}. Thus,

q(a; + b;) — q(a;) — (b)) = (bila;)

= (bila;) + (bila})
= (b,"(l,‘ + (l:)
£0.

Hence, there exists an element s; € A} with ¢(s,) # 0. Let o € A; such that

q(a)) = q(i‘). Then there exists an element t; = a”s; € A} such that ¢(t,) = L.
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Therefore, by Dickson’s Theorem 3.11, A; + A1t; < C; and Ay + Asty < Cy are
isomorphic composition algebras of dimension twice that of A,.
So by induction on the dimension of A;, we get that any two split composition

algebras of the same dimension over some field, F', are isomorphic. O

Definition 5.5. A hezagon line of a split octonion algebra C is a totally singular

2-space that is contained in 1+ such that the multiplication is zero.

A hexagonic structure contains points and lines where any two points can be
joined by a path containing at most three lines and there does not exist any 2, 3, 4,
or 5-gons. For an octonion algebra, C, we will call a point, a singular 1-space, P,
with P? = 0. We say that a point P is incident to a hexagon line E if P C E. This
induces a hexagonic structure which we call the generalized hezagon. Details of this

construction can be found in [21].

Theorem 5.6. The automorphism group of a split octonion algebra, C, is of type

G2(F) and is transitive on the hezagon lines (see chap. 2 in [22]).

Definition 5.7. The stabilizer of a subspace, U, of C is the subspace Stabc(U) =

{zeC|lzueUlU for all u € U}.

Let H be an additive subgroup of an octonion algebra, C, such that {h—1|h € H}
is contained in a hexagon line of C. Also, let Q be a subalgebra of C that is
contained in the stabilizer of {h — 1| h € H}. The product Q e H is defined to
be the algebra with underlying set {(z,h)|z € Q.h € H} and the binary operation
(,9)(y, h) = ey 1+ ax(h = 1) + (¢ — 1)y).
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Example 5.8. For a field F let C be the split octonion algebra defined in section 2.

4

a (v1,v2,v3)
C = la,b,v;,u; € F
(w1, uz, u3) b
( 0 (0,v2,0)
The subspace S = |ve,us € F p C C is an ezample of a
\ (0,0,Ug) 0
hezagon line of C. The stabilizer of such a hexagon line in C is the subspace
a (v1,v2,0) _st
(UI,O,U3) b
a (v1,0,0) 1 (0,,,0)
=~ )
(uhO)O) b ( (01 01 ‘U.3) 1
> My(F) e F2.

Such a subspace is an algebra that is mazimal in C (see section 6).

Now let K be a subloop of GLL(F) such that K < L = (S*)" for some hexagon

line S. Without loss of generality, by Theorem 5.6, we may assume that S =

0 (0,s,0)
|s,t e F
(0,0,¢) 0
Thus
a (U[,UQ,O)
SL = |a1b1v1)U211t17u3 €F
(uy,0,u3) b

Define

a (v1,0,0)
m:L— la,b,vy,uy € Foab —vyuy #0 p = GLy(F)

(U],0,0) b

as
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a (vh V2, 0) a (Ul ) 0) O)

s =
(u1,0,us3) b (u1,0,0) b
Note that
a (v1,v2,0) c (0, a2,0)
™
(w1,0, u3) b (51,0, Bs) d
ac+v16; (acy + dvy, aay + dvy + w183 — u3f,0)
=

(bﬁl + cu,, 0, ’),H;; + cuz + vyap — ’Ug(ll) bd + (751231

( ac + 101 (acy + dvy,0,0)

\ (b6 + cuy,0,0) bd + u )

/ a (v1,0,0) c (n,0,0)
\ (UI,0,0) b (16110’ 0) d
a ('U],'UQ,O) c (alaazyo)
= s
(ulror U3) b (ﬁl)oy ﬁ3) d
1 (0,'02,0)
So 7 is a homomorphism with ker(r) < |va,us € F
(Ov 0, ’U,3) 1

Note that both the ker(w|k) and Im(n|k) are groups. This brings up the ques-
tion: “Does there exist a homomorphism ¢ from Im(7|k) @ ker(m) onto Im(n|k) e
ker(m|k)?" If so then ¢|x is a one-to-one homomorphism from K onto I'm(r|x) e
ker(m|x) and

K = [ (Im(n|x)) o ker(r|x)

~GeH
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where G < GLy(F) and H < F2.

Now let L be a subloop of C* such that L < Q U Q* for some quaternion
subalgebra Q. If L < Q then L is associative and therefore a group that is isomorphic
to a subgroup of GL,(F). Otherwise if L £ Q then G = LN Q is a subgroup of L
with [L: G] =2 and G = H < GLy(F). So L = GUGV for some v € LNQ* and by
Dickson’s Theorem 3.11 (g + hv)(z + yv) = (92 - q(v)q(v)y~'h) + (g(z)hz™! — yg)v

for any g,h,z,y € G.

Lemma 5.9. If F, is a subfield of F then GLL(F,) < GLL(F).

6 Proof of Theorem 1.3

In this section we will let L be a subloop of an octonion algebra, C, over a field
F and R = R(L) will be the reflection group of L.
Lemma 6.1. If L is a subloop of C and U is a subspace of C that is left invariant

under R(L) then L C U UU* and U* is also left invariant under R(L).

Proof. Since U is an invariant subspace of C, for every z € L and every u € U we
have that p.(u) € U. Therefore, u — %x €Uforanyze Landu e U. Soif z
is an element of L then z € U unless (z|u) =0 for all w € U. Hence, LC UUU*.

Moreover, if v € Ut and £ € L then either z € Ut or (z|v) = 0. Therefore,

p(v) =v— %.c € Ut and U+ is left invariant under R(L). 0

Lemma 6.2. Suppose 1 € U where U is a subspace invariant under R(L). Then
for any y € L, yU is an R(L)-invariant subspace of C.
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Proof. Let y be some fixed element in L. Note that for any z € L

u) = yu — Mz
px(yu) =y @)

gy (ﬂrIU)x
RATES

for all w € U. If (yz|u) # 0, then gz ¢ UL. By 6.1, ;(%:c € U U U*. Therefore,

;&51: = v for some v € U. Thus, yv = y(;(gy—):c) = z. Hence p.(yu) = yu — %lyv €

yU. Therefore, yU is an invariant subspace of C. O

Lemma 6.3. Let U be a non-degenerate subalgebra of C with dimp(U) =n. IfU
is invariant under R(L) and £ € L\U then U + zU 1is an invariant non-degenerate

subalgebra of dimension 2n.

Proof. By 6.1 z € U+, so by Dickson’s Theorem 3.11 U + zU is a non-degenerate
subalgebra of dimension 2n. In Lemma 6.2 we showed that zU is an invariant
subspace. Therefore, the non-degenerate subalgebra, U + zU, is also invariant under

R(L). ]

Now suppose L is a subloop of C* such that L does not span C. For any set
S C C we will denote the vector space spanned by S over F as spang(S). The

symbol A will always be used to denote the span of L over the field F.

Lemma 6.4. If C is not split and A is properly contained in C then A C Q for

some quaternion subalgebra, Q, of C or A is totally isotropic.

Proof. Since C is not split, for every 0 # & € C, ¢(«) # 0. Let B, = F1 < A.
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If A = B, then by Theorem 3.11 or 3.12, there exists a non-degenerate subalgebra
of C, By, that contains A and is of dimension 2. Since g(z) # 0 for all z € By,
by Dickson’s Theorem 3.11, there exists a non-degenerate subalgebra of C, @, that
contains A and is of dimension 4.

If A# B, and A is not totally isotropic then by Theorem 3.11 or 3.12, there
exists a non-degenerate subalgebra of A, B,, that is of dimension 2. If A = B,
then since g(z) # 0 for all z € By, by Dickson’s Theorem 3.11, there exists a non-
degenerate subalgebra of C, @, that contains A and is of dimension 4. Otherwise,
if A # B, then there exists some element y € AN By with g(y) # 0. Thus, by
Dickson’s Theorem 3.11, there exists a non-degenerate subalgebra of C, @, that is
contained in A and is of dimension 4. Assume A # Q. Then there exists some
element z € AN Q* with g(z) # 0 and by Dickson’s Theorem 3.11, A contains the
non-degenerate subalgebra, C. But A is properly contained in C. Hence, A C Q

for some quaternion subalgebra, @, of C. a

For now on, in this proof of Theorem 1.3, we will assume that C is split. We

now want to prove the following proposition.

Proposition 6.5. If a subloop L, of C does not span C, then we have one of the

following:

1. Ly < St for some hexagon line S;
2. Ly < Q for some nonsplit quaternion subalgebra Q;

3. L, is totally isotropic and F 1s a nonperfect field of characteristic two.
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Definition 6.6. The radical of an algebra, B, which we will denote by Rad(B), is

the subspace {b € B|q(b) =0 and (z|b) =0 for all z € B} of B.
Lemma 6.7. Rad(A) is an ideal of A.

Proof. Here we want to show that for v € Rad(A) and u € A, both uv and vu
are in the radical of A. So suppose v € Rad(A) and u € A. By Lemma 3.1,
(1ju)(z|v) = (v|uz) + (z|uv) for any z € A. Thus, (1|u)0 = 0 + (z|uv) which tells
us that (z|uv) = 0. Also, g(uv) = ¢(u)g(v) = ¢(u)0 = 0. Therefore, uv € Rad(A).

A similar argument shows that vu € Rad(A).

Lemma 6.8. The stabilizer of a hezagon line of C is a subalgebra of C.

Proof. Let U = spanp(v,u) be a hexagon line of C. Certainly, the stabilizer,
stabc(U), is a subspace of C that contains 1. Also, for any z € stabc(U) and
a € U, (z|a) = (1|Za) = 0 since Za = [(z|]1)1 — z]a € U. Thus, stabc(U) C U*. If

z,y € stabc(U) then for any a € U, we get that



for some b, c € U. Therefore, stabc(U) is a subalgebra of C. O

For now, the symbol B will always be used to represent a maximal composition

subalgebra of A such that 1 € B.

Lemma 6.9. Either B is nondegenerate and B + Rad(A) = A or B = F1 and A

is totally isotropic.

Proof. If B is non-degenerate then, by definition of Rad(A), B N Rad(A) = {0}.
Suppose there exists an element v € B+ N A such that g(v) # 0. Then, by Dickson’s
Theorem 3.11, B+ Buv is a composition algebra contained in A. But B is a maximal
composition subalgebra of A. Thus, g(v) = 0 for all v € B+ N A. Since q(v) =0 =
q(u) for allv,u € BtNA, (v|u) = g(v+u)—q(v)—q(u) = 0. Hence, B*NA C Rad(A)
and therefore Bt N A = Rad(A). So if B is non-degenerate then B + Rad(A) = A.

Now suppose B = F'1 where F is of characteristic 2 and A is not totally isotropic.
Then B N Rad(A) = {0} since g(z) = 0 for all z € Rad(A). Therefore, if there
exists an element v € A such that (v|1) # 0 then, by Theorem 3.12, B+ Bv is a
composition algebra contained in A. Since B is a maximal composition subalgebra
of A, (v|1) =0 for all v € A. Moreover, (v|u) = (vii|l1) = 0 for any v,u € A. Let y
be any element in A and let @ = g(y). There exists a unique element 8 € F such
that 82 = «. Since q(y— 1) = (y.81)+q(y)+g(81) = 0+« +« = 0, there exists an
element §1 = y; € B and an element y — 81 = y, € Rad(A) such that y = y; + y».

Hence if B = F'1 where F' is of characteristic 2 then B + Rad(A) = A. a
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Lemma 6.10. Suppose dimp(B) =4. If dimp(A) = 6 then A is the stabilizer of a
hezagon line, Rad(A). Otherwise, A is either properly contained in the stabilizer of

a hezagon line or is a nonsplit quaternion subalgebra.

Proof. Suppose there exists an element v € AN B+. We will first show that B + Bv
is an algebra of dimension 6 over the field F'. So suppose that s+tv, z+yv € B+ Bu.

By Proposition 3.10 we have that

(s + tv)(z + yv) = (s — q(v)(gt)) + (1T + ys)v

=sz+ (tZ+ys)v € B+ Bu.

Let u € Bt with g(u) # 0. Since dimp(B) = 4, B is non-degenerate and,
by Dickson’s Theorem 3.11, B+ Bu = C. Let v/ € C such that g(v) = 0 and
(vj') # 0. Since Cv and CvV' are totally singular and C = C(v + ¢') is non-

degenerate, dimp(Cv) = 4 = dimp(Cv’). So

4= dzmp(Cv)
= dimp(Bv + (Bu)v)

= dimp(Bun Cv) + dimg(B N Cv)

since Bv C B* = Bu and (Bu)v C (Bu)B* C (Bu)(Bu) C B by Proposition
3.10. Thus, since Cv is totally singular and B, Bu are non-degenerate subspaces of
dimension four, dimp(Bu N Cv) < 2 and dimp(B N Cv) < 2. Thus, we get that
dimp(Bv) = dimp(Bun Cv) = 2. Since dimp(B + Bv) =4+ 2 =6, dimp(A) > 6

with Bv C Rad(B + Bv).



We now want to show that Bv = Rad(A). For any r € Rad(A) we have that
dimp(B+Bv+Br) < dimp(A) < 8. Thus BuNBr # @. So dimp(BvNBr) € {1,2}.
But dimg((B+Bv)N(B+Br)) # 5, otherwise B+ Bz C (B+Bv)N(B+Br) for some
z € Rad(A) and dimp(B+ Bz) = 6 for all z € Rad(A). Hence, dimg(BvNBr) = 2
and 7 € B + Bv. Now if tv,yv € Bv = Rad(A) then (tv)(yv) = —q(v)gt = 0.
Therefore, A = B + Bv is a maximal subalgebra of C and stabilizes a totally
singular 2-space with multiplication zero, Rad(A). By Lemma 6.8, stabc(Rad(A))
is a subalgebra of C. Therefore, either A = stabc(Rad(A)) or C = stabc(Rad(A)).
But for any v € Rad(A), dimp(Cv) = 4. Hence, C # stabc(Rad(A)) and A =
stabc(Rad(A)).

Now suppose A = B and is split. Let v be an element in A+ such that g(v) = 0.
Then A is properly contained in B + Bv which is the stabilizer of a hexagon line,

Rad(B + Bv). O
Lemma 6.11. Let H be a hezagon line and let z € H\{0}. Then zC < Stabc(H).

Proof. Let y € H\Fz and v € C. By Lemma 3.3, y(zv) + Z(gv) = (g|z)v = 0.
Thus, y(zv) = —Z(gv) = z(gv) € zC NyC. But, by Theorem 3.7, zCNyC = H.

Hence, y(zC) C H and zC < Stabc(H). O

Lemma 6.12. If dimp(B) < 2 then A is not maximal. Moreover, A is properly

contained in the stabilizer of some hexagon line.

Proof. Case 1. If dimp(Rad(A)) =0 then A = B and A = B is properly contained
in a quaternion subalgebra. Moreover, by Lemma 6.10. A is contained in the stabi-
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lizer of a hexagon line.
Case 2. If dimg(Rad(A)) =1 then Rad(A) = Fz with z # 0. Since Az C Rad(A),
dimp(A/Anny(z)) = 1. Thus A = Anny(z) + F1. Let H be a hexagon line
containing z. Therefore, by Lemma 6.11, Ann,(z) = zC < Stabc(H). Hence
A < Stabc(H).
Case 3. If dimp(Rad(A)) = 2 then, since Rad(A) is an ideal of A, A is prop-
erly contained in the stabilizer of Rad(A). Let Rad(A) = spang(a,b). Suppose
ab = kya + kyb for ky,k, € F then 0 = a%b = a(ab) = kja? + ky(ab) = ky(ab). Thus
either k; = 0 or ab = 0. If k; = 0 then ab = k,a and 0 = ab?® = (ab)b = k,ab. Hence
ab = 0. Therefore, A is properly contained in the stabilizer of a totally singular
2-space with multiplication zero, Rad(A).
Case 4. Suppose dimp(Rad(A)) = 3 with Rad(A) = spang(a,, as,a3). By corol-
lary 3.8 there exists some a # b € {a;,az,a3} such that ab # 0. Notice that
ab ¢ spang(a,b). Otherwise, if it were then ab = kja + kb and 0 = a?b =
kia? + koab = kyab # 0. Thus, Rad(A) = spang(a, b, ab).

Since Rad(A) is an ideal of A, for any z € B we have that xb = kja+k,b+ k3(ab)
for some k, ko, k3 € F. By multiplying both sides of the equation on the right by b
we get that 0 = k;(ab) + 0 + 0. Thus, k; = 0 and Bb C spang(b, ab).

Now for any x € B we have that x(ab) = kja+kab+k3(ab) for some ky, ko, k3 € F.
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By multiplying both sides of the equation on the right by b we get that

ki(ab) + 0+ 0 = (z(ab))b
= —[(ab)z]b
= [(ab)Z]b
= a(bzb)
= —a(bzb)
= —a(xbb)

=0.

Thus, k; = 0 and B(ab) C spang(b, ab). Moreover, b(ab) = —b(ba) = b(ba) = b%a =
0. Hence, A is properly contained in the stabilizer of a totally singular 2-space with

multiplication zero, spang(b, ab). O

Thus, if C is split and L is a subloop that does not span C then L is contained
in the stabilizer of a hexagon line, S. This completes the proof of proposition 6.5.
We will now show that L spans V if and only if V = [V, R]. Since C is non-

degenerate, for every z € L there exists some v € V such that (z|v) # 0. Therefore,
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we know that:

[V,R] =span ({-v+v" | r€ R,ueV})

= span ({—v+v— (q:?l;)))x | z€e Live V})

= span ({ ‘;(";';’)z |zeLlve V})

= span(L).

Thus V = [V, R] if and only if L spans V. So if V > [V, R] then L does not span
V and therefore L is either contained in a quaternion subalgebra or, by Proposition
6.5, L < St for some hexagon line S.

Now let us suppose that V' = [V, R] and that R is reducible. Thus, V contains
some proper invariant subspace. We showed in Lemma 6.1 that there exists some
proper invariant subspace of V' that contains the identity, 1. Let U be a minimal

invariant subspace of V such that 1 € U.
Lemma 6.13. Rad(U) = {0}.

Proof. Since p,(u) = u — My € U foral ueU, (ylu) =0 for all y € L\U.
v q(v)

Therefore Rad(U) C Rad(spang(L)) = Rad(V) = {0} a

We now want to show that U is a composition algebra. By Lemma 3.2, for

. -1 _ 1 = _ -1 (=]1) :
every r e UNL, z7° = 75 = amt t+ q(.r)l € U. We showed in Lemma 6.2
that zU is an invariant subspace of V for any x € U. Since both U and zU are
invariant subspaces that contain the identity, 1, zUNU is also an invariant subspace

containing the identity. By minimality of U, +U = U. Therefore for all .y € UNL,
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z,y € UNL, zy € U. Since U is invariant under R, L C U UU*. Also, since C is
non-degenerate, dimp(U)+dimp(U+) = 8. Soif V = [V, R] then dimp(UNU*) =0
and U = span(U N L). Hence, U is closed under multiplication and is therefore a
composition algebra of dimension 1, 2, or 4.

If dimp(U) < 2 then, since span(L) = V, by Lemma 6.1, there exists an element
z € LNU*. So from Lemma 6.3 one can use Dickson’s Theorem 3.11 and Theorem
3.12 to find an invariant composition algebra of dimension 4, Q. Hence, we showed
in Lemma 6.1 that L is contained in Q U Q*.

We now have the material to prove Theorem 1.3.

Proof. If V = [V,R] and R = R(L) is reducible then, from the material above,
L C QU Q" for some quaternion subalgebra Q. If V > [V, R] and C is not split
then, by Lemma 6.4, L is contained a quaternion subalgebra, Q. If V > [V, R] and C

is split then, by Proposition 6.5, L is contained in S+ for some hexagon line S. O

7 Proof of Theorem 1.4

Proposition 7.1. Let G < GL,(F) with n > 2, be generated by reflections for
char(F) # 2 and generated by transvections for char(F) = 2. Suppose that G is
irreducible but imprimitive on V = F™. Then there exists an element g € GL,(F)
with G9 monomial. Indeed, G9 = D : S,, where S, is the group of permutation
matrices and D is a group of diagonal matrices. Also, there is a subgroup A of F*

with either D = A", being the group of all diagonal matrices with entries from A,



or D = A" !, being the subgroup of determinant 1 matrices.

Proof. Let T = TC be the generating set of reflections (transvections), elements of
order 2 with [V, ] of dimension 1, for all ¢t € T'.

For W a proper block of imprimitivity in V, there is an element ¢t € T such
that W* # W. Thus, [W,t] has dimension at least that of W. Therefore W and
[W, ] both have dimension exactly 1. Let = {W;|1 < ¢ < n} be the n blocks of
WG, each a 1-space. The group G permutes Q2. Therefore, G may be conjugated
by some g into the group of all monomial matrices. Identify G with this conjugate.
Let D be the kernel of the action of G on (2, that is, the subgroup of the diagonal
matrices that are contained in G. By irreducibility, the group G,/ D induced on 2
is a transitive subgroup of Sym(f2) = S,,.

Every t € T is either in the diagonal subgroup D, and fixes W; for all 7, or
exchanges two of the blocks, say W; and W;, and induces the transposition (z, )
on the block set, 2. A transitive subgroup of S, that contains transpositions is
the whole group S,. Therefore, G/D = Sym(Q) and every t € T\ D acts as
a transposition. In the monomial group we get that, for any ¢,s € T\ D with
tD # sD, ts has the same order, 2 or 3, as t D.sD of the corresponding transpositions
in G/D = §,.

For 1 < j < n-1,lettjj4+1 € T inducing (5,7 + 1) on Q. Thus, S =
(tr2y - o tnoin) = W(Apo) = S, with G = D 0 S, If 0 # e € Wy then

E = e*f = {ey,...e,} is a basis with e; € W

5, which § permutes as it does .



We will write our matrices with respect to the basis F, so that S is the group of all
permutation matrices.
Let t =t; ; be the transposition (z,j) € TNS. On Fe; + Fe; it acts as
01

10

and the monomial conjugates of t inducing the same transposition on 2 are of the

form

for a € F*. Therefore there exists a subgroup A < F* such that tD N T consists
exactly of these elements with a € A.

Therefore, the elements t(tD NT) € D generate the determinant 1 group iso-
morphic to A®~1. If TN D = & then this subgroup is all of D. If TN D # @, then
D is the full diagonal group with entries from A.

O

For a finite field K, the group O§(K) has a quasisimple derived group Q§(K).
(See [25] for this and other facts about orthogonal groups.) If K is of characteristic
2 then Q§(K) has index 2 in O§(K), which is generated by its unique conjugacy class
of transvections. If K is not of characteristic 2 then Q§(K) has index 4 in O§(K),
which is generated by its two conjugacy classes of reflections. Let *Qg(K) be the
subgroup of index 2 in Oy(K) that is generated by the reflections, p,, with center,

z, of square norm. Also, let ~Q§(K’) be the subgroup of index 2 in Oy(K') which is
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generated by the reflections, p,, with center, y, of nonsquare norm. Here we also
write *Q§(K) for O5(K). The rest of this section is devoted to a proof of Theorem

1.4. In particular, we let L,C, F, and R be as in the statement of the theorem.
Theorem 7.2. R is one of the following and unique up to conjugacy in O(V, q):

1. R =5Qg(F,) for some finite subfield F, of F of odd characteristic with ¢ equal

to — or + and § equal to —, +, or *;

2. R = OY(F,) for some finite subfield F, of F of characteristic 2 with € equal to

— or +;
3. R =W(Eg) = 205 (2) where F = F, for some odd prime p;
4. R =Sy where charF # 3;
5. R = S,¢ where charF = 5;
6. R=A":Sg wherel # A< F* and n=7 or 8.

Proof. As R is generated by a conjugacy class of reflections (transvections) of
O(V,q), it has a derived group R’ of index 2. Also, R is irreducible on V.

In characteristic 2, the theorem follows from Proposition 7.1 and Kantor (14,
Theorem II]. (Kantor restricts attention to transvection groups over finite ficlds, but
this immediately implies the results for any finite group generated by transvections:
see [5, Theorem 3.4B].)

For now we will assume that the characteristic of F' is not 2. For R imprimitive,
the theorem holds by Proposition 7.1. In the case where R is primitive we may apply
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the work of Wagner on primitive finite groups generated by reflections [26, Result,
Table II, p. 520]. (Note that this table contains some misprints.) In addition to
the conclusions of the theorem, Wagner’s results include groups with derived group
SLg(F,) and SUg(F,), for F, a finite subfield of F. These groups contain transvec-
tions and therefore cannot be contained in any orthogonal groups of characteristic

other than 2. O

Remark 7.3.

1. In the first two cases of the theorem, R' contains Siegel elements (long root
elements) s. Such elements have [V, s] totally singular, so these cases can only occur
when C is split.

2. Wagner’s results are elementary and self-contained. Kantor’s proof makes
use of several big classification theorems from the theory of finite groups. It is likely
that in the special case used here (finite groups generated by orthogonal transvections

in characteristic 2) can be given an elementary proof following the work of Wagner.
Lemma 7.4. R % O; (F,) and R % *Qg (F,) for any subfield F, < F.

Proof. By [6, Corollary 4], there exists a copy of S; in the outer automorphism group
of R. But, by {23, Theorem 30], S; is not contained in the outer automorphism group

of either Og (F,) or Qg (F,). Thus R 2 Og (F,) and R % *Qg (F,). a
Lemma 7.5. R % Sg, R% Syp, and R% A" : Sg forn =7 or 8.

Proof. Suppose R = S, for some m € {9,10}. Since S,, does not contain a normal
subgroup of order two, by Lemma 5.3, R contains a subgroup, A,,, of index two that
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is isomorphic to the rotation group of GL, 1nr1. Thus, by [6, Corollary 4], there
exists a copy of Sz in the outer automorphism group of A,,. But, by [11, Chapter
IL5], |Out(A,)| = 2 for all n # 6. Hence, R 2 Sy and R 2 Sp.

Assume R = A™ : Sg for n = 7 or 8. By Lemma 5.3, either R contains a
subgroup, A™ : Ag, of index two that is isomorphic to the rotation group of G, 1nm
or R/{+I} contains a subgroup, H : As, of index two that is isomorphic to the
rotation group of G rnr1. Since G; = A™ : Ag, and G, = H : Ag have a normal
subgroup, N;, with G;/N; = Ag, by [6, Corollary 1] and [6, Corollary 4], there
exists a copy of S; in the outer automorphism group of G;/N; = As. But, by [11,
Chapter I1.5], |Out(As)| = 2. Hence, R % A™ : Ss.

a

Lemma 7.6. If L is a mazimal subloop of B = {r € GLL(F)|q(z) € G} and

R(L) = Q}(F,) then SLL(F,) < L < F* - GLL(F,).

Proof. By maximality of L, L = F* - LN B. Since ¢(1) = 1, a square, we have that
R(L) € {*QF(F,),0f (F,)}. Thus by 5.2, either F* - L = GLL(F,) or F*-L =
F*-{v € GLL(F,)|q(v) is a square}. Thus for any element £ € SLL(F,) there exist
elements a € F* and y € L such that z = ay. Hence, sinceay € F*- LN B, z € L.

Therefore SLL(F,) < L < F* - GLL(F,). a

Therefore, by Theorem 7.2, if R(L) is irreducible then either R(L) = *Qg (F,)
for F, < F, R = O (F,) for F, < F, or R(L) = 204 (2). Furthermore, by Lemma

52,if L < GLL(F) then L = L, where either SLL(F,) < L, < F*-SLL(F,) or



2SLL(2) < Ly < F* -2SLL(2). This completes the proof of Theorem 1.4.

8 Proof of Theorem 1.5

In this section we will let C be a finite, and therefore split, octonion algebra over
a field F. Also, we will let L be a maximal subloop of loop B where SLL(F) <
B < GLL(F).

Lemma 8.1. B = {z € GLL(F)|q(z) € G} for some multiplicative group G < F*.

Proof. Note that ¢ defined in the follow way:

¢:B— F*

z— q(z)
is a group homomorphism from B to F* with ker(p) = SLL(F). Thus

B = U zxker(p) where q(zx) = k

keIm(p)

= {z € GLL(F)lq(z) € Im(p)}

O

Proof of Theorem 1.5.  If L is a maximal subloop of B = {z € GLL(F)|q(z) € G}
that contains SLL(F) then, by 8.1, L = {x € GLL(F)|q(z) € H} for some subgroup
H < G. Furthermore, by maximality of L, H is a maximal subgroup of G.
Suppose L is a maximal subloop of B that does not contain SLL(F). If L
does not span C' then, by Theorem 1.3, L is contained in and therefore equal to
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(S*)" N B for some hexagon line S. If L spans C and R(L) is reducible then by
Theorem 1.3, L is contained in and therefore equal to (QUQ*)" N B for some
quaternion subalgebra, @Q, of C. If L spans C and R(L) is irreducible on C then, by

Theorem 1.4 and Lemma 7.6, R(L) is one of the following:
1. *QF (F,) for some proper subfield F, of F;
2. Of (F,) for some proper subfield F, of F;
3. 204 (2) when F = F, for some odd prime p.

Thus, since R(GLL(F,)) = Of (F,), R(2GLL(2)) = 203 (F,), and the reflection
group of {v € GLL(F,)|q(v) is a square} is *Qg (F,), by Lemma 5.2, if R(L) is one

of these groups then L is one of the following:

1. L = (F*-GLL(F,)) N B for some maximal subficld F, of F;,

2. L = (F*-{veGLL(F,)|q(v) is a square})N B for some maximal subfield, F,,

of F;
3. L =(F*-2GLL(2)) N B where F = F,, for some odd prime p.

But, since {v € GLL(F,)|q(v) is a square } < GLL(F,) and (F*-GLL(F,))NB <

B, L is one of the following:
1. L =(F*-GLL(F,))N B for some maximal subfield F, of F,
2. L =(F*-2GLL(2)) N B where F = F, for some odd prime p.

Therefore, if L is a maximal subloop of B then L is one of the following:
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1. L = (S*)" N B for some hexagon line S;
2. L =(QuUQ*)" N B for some quaternion subalgebra Q;
3. L = F*-GLL(F,) N B for some maximal subfield F, of F;,
4. L = {z € B|q(z) € G} for some maximal subgroup, G, of {¢(z)|z € B};
5. L = F* - 2GLL(2) N B where F = F, for some odd prime p.
Corollary 8.2. If B = SLL(F) then L is one of the following:
1. L= (S*)"NSLL(F) = SLy(F) e F? for some hezagon line S;

2. L =(QUQY)" NSLL(F) = HUzH uhere H = Q* = SLy(F) for some

quaternion subalgebra Q;

3. L=F* GLL(F,)nSLL(F) =

SLL(F,) if F is of characteristic two or dimp, F is odd

SLL(F,)2 if F is of odd characteristc

for some mazimal proper subfield F, of F;
4. L=F* 2GLL(2)NSLL(F) = 2SLL(2) where F is of odd characteristic.

Proof. Parts (1) and (2) follow from Theorem 1.5.
If L, = GLL(F,) < GLL(F) then there is a group homomorphisin q : GLL(F) —
F* such that q(L,) = F; and q(kz) = k%q(z) for all k € F. Let k be an element of

F and x be in L, such that Az is in SLL(F). So, since A?q(«x) = g(kr) = 1, we have
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that k2 =q(z)" ' € F,.
Case 1. If F is of characteristic two then k € F;, and F* - GLL(F,) N SLL(F) =
F: - GLL(F,)NSLL(F) = SLL(F,).
Case 2. If F is of odd characteristic then k € H < F* where F; < H is of index
two. Thus F* - GLL(F,)NSLL(F) = H- GLL(F,) N SLL(F,) = 2SLL(F,).
This concludes part (3).

Now suppose L, = 2GLL(2) < GLL(F) where F is of odd characteristic. Since
L,/{+I} is simple and ¢ : L/{+I} — F is a homomorphism, ker(q|., /(+1}) =
L,/{xI}. Thus, if k € F and z € L, such that kx € SLL(F) then k? = k%q(z) =

q(kz) = 1. Hence, F*-2GLL(2)NSLL(F) =2GLL(2)NSLL(F) =2SLL(2). O

9 Lagrange’s Theorem for Moufang Loops

Proof. Assume that the theorem is not true and let L be a Moufang loop of minimum
order such that the Lagrange property does not hold. It was proven by Bruck
[4, p. 92] that if H is a normal subloop of L such that the Lagrange property holds
for both H and L/H then Lagrange’s property also holds for L. Thus, by minimality
of L, L does not have any normal subloops. Since Lagrange’s Theorem is true for all
finite groups, L has to be a finite nonassociative simple Moufang loop. Licbeck [17]
classified such loops as Paige loops, P(q) = PSLL(q). By minimality of L = P(q),
there exists a maximal subloop M < L = P(¢) such that || does not divide |L|.

By Corollary 8.2, there arce five possibilities for M.
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Case 1. For M = PSLy(q) e Fq2,

_ d%¢?-1) Bgt-1) _
|M| = gcd(g+1,2) | ged(g+1,2) — |P(q)|

Case 2. For M = HU zH where H = PSLy(q), z € H, and q(z) =1,

M| = 29(q%~1) -1 _ |P(q)|

T ged(g+1,2) | ged(g+1,2)

Case 3. For M = SLL(q,)/{£I} where F,, < F,

|M| = (-1 | Ae-1) _ |P(q)|

gcd(g+1,2) gcd(g+1,2)
Case 4. For M = 2SLL(q,)/{xI} where F,, < F and is of odd characteristic,

M| = 212195:12 | 4q-1) _ |P(q)|

gcd(q+1,2)

Case 5. For M = 2SLL(2)/{+x1} where F is of odd characteristic,

3 4_1

IM| = 2120 | 21— |p(g)|

Hence, by contradiction, there does not exist a Moufang loop of minimal order

such that the Lagrange property fails. O
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