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ABSTRACT

NATURAL RESONANCE REPRESENTATION OF THE TRANSIENT

FIELD REFLECTED FROM A MULTILAYERED MATERIAL

By

Bradley Thomas Perry

The transient reflection from a multilayered material structure is a deep and in-

volved problem, even though closed form representations are available in the frequency

domain. This thesis presents a novel approach for evaluating the transient field re-

flected from a layered material. Here a natural resonance representation is sought for

the temporal response in both the late time of the layered structure, and the late time

of individual substructures making up the layered material stack. In seeking this rep-

resentation, a time domain reflection coefficient is defined, such that the convolution

with a finite duration incident waveform yields the reflected field in the time domain.

Through the definition of this time domain reflection coefficient, a methodology for

obtaining the temporal response evolves. Questions on the source of the resonance re-

sponse during various time periods are answered in this thesis, and the conditions for

existence of the natural mode series are developed. It is found that for an n-layered

material stack, a natural resonance representation can be found for the transient field

if the backing material is either a perfect conductor, or a lossless medium. When the

backing layer is lossy, a non-time limited branch out contribution appears. It is also

found that with the addition of a lossless layer, this branch out contribution can be

turned off. This is a valuable result with applications to non—destructive evaluation

of materials.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Time domain electromagnetics has been utilized for many applications, such as radar

target discrimination [1]-[3] and materials characterization [4],[5], mainly due to its

adaptability to broadband signals. The singularity expansion method (SEM) [6],

which views the late time of a temporal response of a scatterer as a series of residues

at the poles of the Green’s function [7], has been used by many for radar target

discrimination. This late time is defined as the time period after the entire scatterer

has been illuminated by the incident wave and the scattered field has returned to the

observer. Applications of SEM and its limitations are the subject of [8]-[10].

The extinction pulse (E—pulse) technique [1H3] is a target identification scheme

which was born out of the singularity expansion method. This technique uses a

natural mode series representation of the late time response to devise a waveform

that will extinguish the modes present in a measured response through a convolution.

The E-pulse consists of a series of pulses and is designed for a given radar target.

For convolution of the E—pulse with the intended target, all modes in the band of

the response are annihilated, giving zero energy from the convolution in the late

time. In addition to radar target discrimination, the E-pulse technique has been

applied in non-destructive evaluation of materials [4],[5]. Here, E—pulses are created

from baseline measurements of known materials, and convolution with an identical

material measurement will yield zero energy in the late time. Experimental results

have shown that the E—pulse technique can work well for material testing. The validity

of the E-pulse technique for non-destructive evaluation is the motivation of the study

of the form of the transient field, which is done analytically in this thesis.



1.1 Background and related work

There is a lack of detailed analysis for the transient response of a layered medium

in terms of a resonance series, except for work done by Tihuis and Block in 1984

[11],[12], and more recent work performed by Oh [13] and Suk [14].

In the work of Tihuis and Block, the transient scattering of a normally incident

plane wave from a lossy dielectric slab is considered using the singularity expansion

method. Their work, however, is semi-analytic and does not clearly show that the

late-time response can be expressed as a pure natural resonance series, due to difficulty

in evaluating the branch out contributions and infinite contour contributions needed

to evaluate the Laplace inversion integrals.

Oh also considers the reflection from single layers of materials backed by free space,

or by a perfect conductor. This work is rigorous and shows that a natural resonance

representation is valid for the reflection from an air-backed lossy material layer, as

well as a conductor-backed one. Consideration is given to oblique incidence, and the

behavior of the poles of the frequency domain reflection coefficient with changing

incidence angle are analyzed heavily. Early time responses from these material slabs

are found to be identical to the response from the single interfacial reflection, which

is considered in detail by Suk.

Suk analyzes the transient response for plane-wave reflection from a single planar

interface between two material half spaces. This is a rigorous development which

shows that the interfacial reflection from a dissipative material is composed of both

an impulsive component and an infinite tail, which has to do with conduction currents

in the lossy medium.

The work presented in this thesis looks to expand on the work done by Oh and Suk

by considering multilayered material problems. Since these problems involve various

material regions, the interfacial reflection coefficients developed by Suk are valuable.



Also, the method employed for the factorization of the frequency domain reflection

coefficient for a multilayered material problem is based on the approach used by Oh

in his single material layer analysis.

1.2 Overview of the research

This thesis is presented as a series of postulates on the form of the late time temporal

response for various geometries, along with verifications of these postulates, which

lead to a general property describing the late time behavior of an n-layer structure.

Chapters 3 through 5 consider simple problems, the solutions to which provide suffi-

cient evidence to form a hypothesis about the behavior of an n-layer structure. This

hypothesis is verified through the developments of Chapter 6.

Oh showed that the late time response of a single layer backed by either free space

or a conductor is a natural mode series. This leads one to consider the question

‘can the late time response of a material stack with more than a single layer also be

a natural mode series?’, and, if so, ‘under what conditions will this be true?’. To

answer these questions, the reflection from an air backed single lossy layer terminated

by a perfect electric conductor is first considered. Physical reasoning suggests that

there should be a ‘middle time’ period during which the response of the structure is a

natural mode series identical to that of the single air-backed layer, since the incident

wave will not have reached the conductor backing and thus no information about the

position of this backing can be available in the reflected response. After this middle

time period there should be a late time during which the response differs from that

of the air-backed layer. An important question is ‘will this late time response, which

must include information about the entire structure, also be a natural mode series?’,

and, if so, the additional question of ‘will the natural frequencies be the same as those

of the middle time response, or will an entirely new natural mode series arise, either

replacing or augmenting the middle time series?’ must be considered.



Examining the temporal response of the air backed lossy layer terminated by a

conducting screen, the time domain response is found to have a natural mode series

representation once the response from the refection off of the second interface is

observed at the observation plane; this provides a definitive turn on time for the

natural mode series and marks the beginning of the middle time period that was

speculated. Further, it is found that the natural resonance representation during the

middle time period is given in terms of the poles of the frequency domain reflection

coefficient for the air-backed lossy layer, as physical reasoning would suggest. The

observation of the responSe from the reflection off- of the conductor returning to the

observation plane is the event that marks the end of the middle time period. After

this event occurs, the time domain reflection coefficient is found to have an entirely

new natural resonance representation related to the poles of the frequency domain

reflection coefficient for the entire problem. Hence, the response of the air-backed

lossy layer present during the middle time period is turned off, and replaced by a

different natural mode response.

With this knowledge, the next question to consider is ‘does the presence of a pure

natural mode series in the late time have anything to do with the properties of the

backing layer?’. To study this, a single lossy layer, backed by a material layer, either

lossless or lossy, is considered.

In examining the response from a single lossy layer backed by a material half space,

it is found that whether or not the late time response of this structure is a natural

mode series is dependent only on the properties of the material backing. When a

lossless half space is considered, the response is found to have a natural resonance

representation in the late time. However, when a lossy half space is considered, it

is found that a pure natural resonance representation is not possible, as there may

be a branch out contribution to the temporal response. This is found to be the case

regardless of the properties of the first material layer.



Combining this with the results from Oh, a statement can now be made that a

single lossy layer, backed by a perfect conductor, or a lossless half space, will have a

late time response that is a pure natural mode series. However, when that same layer

is backed by a lossy region, the late time natural mode response will be augmented

by a branch cut contribution which is not time-limited. The portion of the response

due to this branch cut contribution is an infinite tail which pollutes the natural mode

response.

These results lead to one last question, that is, ‘is it the properties of the final

backing layer in an n—layer material stack that determine the form of the response in

the late time of the structure?’. To explore this, a stack consisting of two lossy layers

backed by a perfect conductor is considered.

It is found in this exploration that the response of the two-layered material struc-

ture backed by a perfect conductor is a natural mode series during the late time.

This implies that the branch cut contribution that is present in the middle time of

the response is turned off when the reflection from the conductor backing reaches the

observation plane; that is, at the start of the late time. Thus, the presence of the

conductor terminates the infinite tail in the response of the single layer backed by a

lossy layer, and initiates a pure natural mode series.

These results lead to the following hypothesis about the response of an n—Iayer

system:

1. The late time reflected field response of an n-layer system is a pure natural mode

series if the backing layer is lossless or a perfect electric conductor. If the backing

layer is lossy, the late time reflected field response is a natural mode series augmented

by a non-time limited branch cut contribution.

2. If an additional interface is added to produce a new n +1 layer structure, the early

time response will be the same as the total response of the n-layer structure. This

response will turn off completely at a time associated with the reflection from the new

 
 



interface with the backing material, and a late time response will turn on consisting

of a natural mode series that is augmented by a branch cut contribution only if the

new backing is lossy. If the n-layer structure had a non—time limited component in

its late time, this component will turn off at the start of the late time of the n + 1

layer structure. This hypothesis is verified in Chapter 6 by decomposing an n-layer

structure into simpler substructures and continuing the decomposition until one of

the simple problems of Chapters 3 through 5 is reached.



CHAPTER 2

FREQUENCY DOMAIN AND TIME DOMAIN REFLECTION

COEFFICIENTS

In order to consider the transient field reflected from a multiply layered dielectric,

begin by examining the frequency domain reflection coefficient. This reflection co-

efficient has a closed form representation for planarly layered materials, which can

be found using various approaches, including the wave matrix method [16] and iter—

ative approaches [17]. In both of these approaches, the frequency domain reflection

coefficient for a layered material is written in terms of interfacial reflection and trans-

mission coefficients, which are found for interfaces between two material regions of

semi-infinite extent. The derivation of these reflection and transmission coefficients

are outlined in Section 2.2. For this work, the wave matrix method is utilized and an

explanation of this method is included in Section 2.3.

The time domain reflection coefficient is defined in Section 2.4, such that the

reflected field in the time domain is given as the convolution of this time domain

reflection coefficient with an incident field of finite duration.

2.1 The plane wave field

For a source—free region of linear, isotropic, homogeneous material, Maxwell’s equa-

tions in terms of the fields E and H are given in point form as

V x E = —jwuH (2.1)

V x H = jwcCE (2 2)

—+

V- E = 0 (2.3)

V - 71’ = 0 (2.4)

\
l



where cc(w) is the frequency dependent complex permittivity, which is defined by

ec(w) = 6 + a/jw. Here, dielectric loss is included through the conductivity, 0'.

Taking the curl of Faraday’s law, which is given in (2.1), gives

VxVsz—jwu(VxH)

= wZMCCE (2.5)

where Ampere’s law, given by (2.2) has been utilized. Using V x V x E = V(V -

—+ -—)

E) — V2E and Gauss’s law, given in (2.3), Equation (2.5) can be written as

V??? + k2? = o (2.6)

where k = W\/l.l«€c is the wave number of the medium. Similarly, taking the curl of

Ampere’s law, which is given in (2.2), gives

—> —>

VxVxH=jwcC(VX E)

= (fuse—1:1, (2.7)

where Faraday’s law, given by (2.1) has been utilized. Using V x V x H = V(V -

If) — V273 and Gauss’s magnetic law, given in (2.4), Equation (2.7) can be written

as

V2H + kZH = 0 (2.8)

Equations (2.6) and (2.8) are the homogeneous vector Helmholtz equations. In rect-

angular coordinates, the vector Helmholtz equations reduce to three scalar Helmholtz

equations of the form

V24) + k2,!) = 0 (2.9)



where 1,!) is representative of the 1:, y, and 2 components of the electric and magnetic

fields. Equation (2.9) has a product solution in terms of a linear combinations of

harmonic functions, which can be found through a separation of variables. Since

exponentials describe propagating wave functions, the scalar term if is written as

10 = A(w)eijk$(“’)feijky(w)yeijk2(w)z (2-10)

where A(w) is the amplitude spectrum of the plane wave and kg + k3 + k3 = 1:2.

Using this solution for each component of the electric field, the solution to (2.6) is

given by

E(?, w) = E0(w)eijk$(w)xeijky(“”613ij (“27' (2.11)

where E00») is the vector amplitude spectrum of the electric field. Defining the wave

vector as

me) = 2193(2)) + mega) + 214.0), (2.12)

the electric field can be written as

E1720) = E0(w)e-j k (WW. (2.13)

where 7" is the position vector given by 7’ = 552: + fly + ’22. Here, the negative sign

has been taken in the exponential function, allowing the wave vector components to

be either positive or negative, depending on the physics of a given problem. For a

uniform plane wave, electric and magnetic fields are related by

——>—>

kxE

wu-

—.)

H: (2.14)

The plane-wave field, which has E and H mutually orthogonal to one another, and

to the wave vector, is said to be transverse electromagnetic, or TEM, to the direction



of propagation.

2.2 Interfacial reflection and transmission coefficients

Consider a uniform plane wave incident on a planar interface between two regions

of space, as shown in Figure 2.1. The material in each region is assumed to be

isotropic and homogeneous with material parameters (flifig). Here, n,- is the frequency

independent permeability of the ith region, and cf is the frequency dependent complex

permittivity of that region, which is a complex number that includes dielectric loss.

Since the incident field is uniform, the wave vector associated with this field may be

written as

I“ = Elk-i (2.15)

where

kitw) = (431116.504) (2.16)

Without loss of generality, it can be assumed that the unit vector fff lies in the x2-

plane and makes an angle 9," with the interface normal, as shown in Figure 2.1. The

angle 0," is the angle between the direction of propagation of the planar phase fronts

of the incident field, and the normal to the interface. This angle is referred to as the

incidence angle of the incident field. With this, the wave vector can be written as

_’i A - A A i A i
k = :1: k1 sm 6m + 2 k1 cost = 2: km + z kz (2.17)

The fields in each region of space are solved for directly in the frequency domain. The

incident electric and magnetic field are given by (2.13) and (2.14) as

737(7241) = E6(w)e‘j k’iwi'? (2.18a)

_.. exa-
H’= W1 . (2.18b)
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To proceed, note that a uniform plane wave can be decomposed into two orthogonal

components. The two components are distinguished from one another by the plane

in which the electric field lies. The first of these is parallel polarization, in which

the electric field lies in the plane containing the interface normal and the direction of

propagation, as shown in Figure 2.2. The form of the interfacial reflection coeflicient

for this polarization is the subject of Section 2.2.1. The second case is when the electric

field vector is perpendicular to this plane (perpendicular polarization), as shown in

Figure 2.3. The derivation of the interfacial reflection coefficient for perpendicular

polarization is the subject of Section 2.2.2. A solution for both of these polarizations

is sufficient to characterize any arbitrary incident uniform plane wave. The total

field in any region of space is given as a superposition of the fields found for each

polarization.

2.2.1 Parallel polarization

For parallel polarization, where the electric field lies in the plane containing the

interface normal and the direction of propagation, the incident field is given using

(2.18) and examining Figure 2.2 as

. . ki Ai . - -

Eh = 6(Ek—i—sz—f) e‘flk‘gx‘Lkéz) (2.19)

fill = gFQe-jrktwkiz) (2.20)

771

Here 171 =W is the frequency dependent intrinsic impedance of region 1.

It is hypothesized that the total field in region 1 will be given by the incident

field superposed with a reflected plane-wave field with wave vector, 75’", while the

field in region 2 is given by a single transmitted plane-wave field having wave vector,

7:". Although the reflected and transmitted fields are not known explicitly at this

point, their form is known. This is because the reflected and transmitted fields cannot

11



have vector components that are not present in the incident field, in order to satisfy

boundary conditions at the interface. Letting E6 be the amplitude of the reflected

field gives

—> Akr Akr _-

Efi = Mei—2,708 J<k5x+k52> (2.21)

1'

Fifi — ago—e'jl’cfx’rkgzl (2.22)

1

for parallel polarization. Similarly, letting E6 be the amplitude of the transmitted

field gives

_l kt kt - t .t~
Efi = E6(EE§—Ef)e-J(kfl+kz‘) (2.23)

2 2

t

fill : agne-jtkifikéz), (2.24)

2

where 112 = m is the frequency dependent intrinsic impedance of region 2.

In region 2, kg = (19.92 + (1:92, with the amplitude given by the wave number,

k2 = (1) [1.262.

In order to satisfy continuity of tangential electric and magnetic fields over the

entire interface, the x-variation of all three partial fields, that is the incident, reflected,

and transmitted fields, must be identical; i.e.,

g=a=a (mm

These constraints on k; and k; also place constraints on k; and k5,. Thus, (1992 +

(k2)2 = (1632 + (1992 = k2, which requires k; = :lzkg. Here k; = —kf; is chosen to

give propagation of the planar wave fronts away from the interface.

12



The boundary condition on continuity of tangential electric field requires

—-+- -—> —-)t

ZX(E“+E”) z=0—ZX E” 2:0 (2.26)

Using the constraint on the x-component of the various wave numbers and the bound-

ary condition on the electric field leads to

i r

_z [35

. kt

E’ J—
[cl 0 + k1

E5: k2 E6. (2.27)

Dividing (2.27) by the amplitude of the incident field, Ef, gives

1" ET t Et

54—9 = fag—9. (2.28)
k; E6 ’62 kz E0

The boundary condition on the magnetic field at the z = 0 interface also requires

continuity. Thus, with the hypothesized form of the fields in each region, continuity

of tangential magnetic field requires

A —+- —-) A —>

ZX(HlI+Hll)z=0:ZX Hfi 2:0 (2.29)

Using the constraint on the x-component of the various wave numbers and the bound-

ary condition on the magnetic field leads to

E E" Et
_0+__0.=_0 . (2.30)

171 171 772

Rearranging terms in this equation gives

Er Et
75% = 171.5(1), (2.31)

0 '72 o

13



The addition of (2.28) and (2.31), along with k; = —k; gives

_E_g,= 22]l reg/42

Ei) Z] + Z] k1 ’63.

 

= II LET h kg (2.32)

where, using (2.17) and (2.25),

ki

lel = i? = 1710050,” (2.33a)

t

ll_kzl72__’73 2_ t21/2__77_2_ 2_ 2 . 2 _ 1/2
22 _ k2 _ k2(k2 (km) ) _ k2(k2 tel sm 0”,) . (2.33b)

Here T” is a frequency-dependent transmission coefficient that relates the tangential

components of the incident and transmitted fields for parallel polarization. This will

be referred to throughout this thesis as the interfacial transmission coeflicient. The

relationship of this transmission coefficient to the total fields is given by

t

24 _ E”, _am T“ = II II _ z. _ 2‘ i . (2.34)

Z2 + 21 EH11? E0(kz/kl)

Plugging the interfacial transmission coefficient back into (2.28) gives

1:" ET

Tll =1+—‘?—0—.=1+R“. (2.35)
k1 E1

2 0

Here R” is a frequency—dependent reflection coefficient that relates the tangential

components of the incident and reflected fields for parallel polarization. This will

be referred to throughout this thesis as the interfacial reflection coefficient. The

14



relationship of this reflection coefficient to the total fields is given by

,.

R1 = £26. = as - Elm z .221 — zl'
’93 E5 E0 E' Z] + Z]

Ilix

 

with Z]| and Zg given by (2.33).

2.2.2 Perpendicular polarization

(2.36)

For perpendicular polarization, where the electric field lies perpendicular to the plane

containing the interface normal and the direction of propagation, the incident field is

given using (2.18) and examining Figure 2.3 as

73*: = ggge-jtktméz)

A. Ei ki lei . i 2'
H1 = .2 (43.1 +31) e-Jlkx$+k22)

711 tel ’61

(2.37)

(2.38)

It is hypothesized that the total field in region 1 will be given by the incident field

superposed with a reflected plane-wave field with wave vector, If", while the field in

_,

region 2 is given by a single transmitted plane—wave field having wave vector, k t.

Although the reflected and transmitted fields are not known explicitly at this point,

their form is known. This is because the reflected and transmitted fields cannot

have vector components that are not present in the incident field, in order to satisfy

boundary conditions at the interface. Letting E6 be the amplitude of the reflected

field gives

E: = gESe-flkffikk)

'fir = 535 _3§+3§ e-jtktx+k§z>

i 771 161 ki

15

(2.39)

(2.40)

 



for perpendicular polarization. Similarly, letting E6 be the amplitude of the trans-

mitted field gives

- t t

E: = gEge‘JikakzZ) (2.41)

t t t

71"] = % (—e-'l:—€+2%£) e—jikifikézi (2.42)

2 2 2

In order to satisfy continuity of tangential electric and magnetic fields over the

entire interface, the x—variation of all three partial fields, that is the incident, reflected,

and transmitted fields, must be identical; i.e.,

a=g=a 9a)

The constraints on k; and k; also place constraints on k; and kg. Thus, (k2,)2 -l-

(R792 = (k5,)2 + (M)2 = k2, which requires k; = :tkg. Here k; = -k: is chosen to

give propagation of the planar wave fronts away from the interface.

The boundary condition on continuity of tangential electric field requires

2x (31+E’1) z =2‘x ’E’fL (2.44)
=0 z=0

Using the constraint on the x-component of the various wave numbers and the bound-

ary condition on the electric field leads to

%+%=% (um

Dividing (2.45) by the amplitude of the incident field, Ei, gives

ET Et
E? = E29 (2.46)

0 0
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The boundary condition on the magnetic field at the z = 0 interface also requires

continuity. Thus, with the hypothesized form of the fields in each region, continuity

of tangential magnetic field requires

(2.47)

Using the constraint on the x-component of the various wave numbers and the bound-

ary condition on the magnetic field leads to

 

 

_ 2.48

k1771 ki 711 IC2772 ( )

rearranging terms in this equation gives

$99 = 11525453. (2.49)
k; E6 772 kg k; E6

The addition of (2.46) and (2.49), using k; = —kf.;., gives

J.

El? = _2_Zz___
E5 z,i + z]—

: Ti (2.50)

where, using (2.17) and (2.43),

.L klm
Z1 = ki = m/cos 6m (2.51a)

Z

k . —1/2
ZQL = 2:72 = 102772 (kg — k? sm2 6;”) . (2.51b)

Z

Here Tl is a frequency-dependent transmission coefficient that relates the tangential

components of the incident and transmitted fields for perpendicular polarization. This

will be referred to throughout this thesis as the interfacial transmission coefficient.

17



Plugging the interfacial transmission coeflicient back into (2.46) gives

10

E
Ti=1+—‘3=1+Ri (2.52)

E0

or

i = El] = ——Z1’:— 2i. (2.53)
E0 Z2 + Z1

Here RJ' is a frequency-dependent reflection coefficient that relates the tangential

components of the incident and reflected fields for perpendicular polarization. This

will be referred to throughout this thesis as the interfacial reflection coefficient.

2.3 Wave matrix method

The wave matrix method is used to obtain the frequency domain reflection coefficient

of a multilayered medium in terms of the interfacial reflection and transmission co-

efficients derived in Section 2.2. Consider a plane wave with amplitude c1 incident

from the left and another plane wave with amplitude 52 incident from the right on the

planar interface shown in Figure 2.4. In region 1 there will be a wave which is par-

tially made up of a reflected wave and partially made up of a wave transmitted past

the discontinuity from the right, propagating in the negative 2 direction. In region

2 there will be a wave which is partially made up of a reflected wave and partially

made up of a wave transmitted past the discontinuity from the left, propagating in the

positive 2 direction. Letting the amplitude of the wave propagating in the negative

2 direction and the amplitude of the positive 2 propagating wave be given by b1 and

c2, respectively, these waves can be written as

bl = Rfc1+beg

02 Til-Cl + RIO) (2.54a)

18
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n+3“ 12+

bl=(T1—— 1+1)b2+-i02

71 TI

1 _
7 (62 — R, b2) (2-553)

1

"
I

where R? and RI— are the interfacial reflection coefficients for waves incident from

the left and right, respectively. The terms T1+ and T1” are interfacial transmission

coefficients. Equations (2.55) can be written in matrix form as

61 _ 1 1 RT C2 All A21 C2 (2 56)
_ __+ _ _ _ = .

0] T1 -R1 Til-T1 - R?R1 b2 A12 A22 ()2

The matrix [A] is termed the wave-transmission chain matrix because it relates the

amplitudes of the waves on one side of a discontinuity interface to the amplitudes of

the waves on the other side. For the case of planar discontinuities, the elements of

the wave-transmission matrix are given as

 
 

1

A = —-
11 T1+

R-t-

A = ——121 T1+

-RI RI

422 2 trfo — Rita,- = (1 — Rf)(1 +12?) + (Rf)2 = 1

+ + —+

T1 T1 T1

since R? = —R1’ using (2.36) and (2.53) for parallel and perpendicular polarizations.

Here T1+ = l + R? and T1" = 1 + RI- are the interfacial transmission coefficients for

transmission from the left and right, respectively, and are given by (2.34) and (2.50)

for parallel and perpendicular polarizations. Since only the interfacial reflection and

19



transmission coefficients for incidence from the left onto the planar interface appear,

the simpler notation of R1 = Rf and T1 = ”If will be utilized. Equation (2.56) can

thus be written as

Cl 1 1 R1 02

= — (2.57)

b1 T1 R1 1 b2

Before considering a cascade connection of n layers, the wave—transmission matrix

for a length of unbounded space needs consideration. Consider a wave cle"jkzz which

propagates in the positive 2 direction, and another wave blejkzz propagating in the

negative 2 direction. At 2 = O, the amplitudes of the waves are c1 and b1, respectively.

At another terminal plane, 2 = 21, the complex wave amplitudes are given by c2 =

cle‘jkzzl and b2 = b1 ejkzzl. The wave amplitudes at z = 0 can thus be related to

those at z = 21 by

C] = Cgejkzzl (2.58)

bl = bge’jkzzl (2.59)

These equations are written in matrix form as

c ejkzzl 0 c

1 = . 2 (2.60)

01 0 e-szzl 02

The diagonal matrix

ejkzzl 0

(2.61)

0 e’jkzzl

relates the amplitudes of the waves propagating in the positive 2 and negative 2

directions at one plane to those of the same waves at another terminal plane an

electrical distance kzzl away. With this, a cascade connection of n material regions

can be examined.
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Consider the n—material stack shown in Figure 2.5, where each material layer is of

thickness A,- and the 2"” interface is located to the left of the 2“ layer. Each material

layer has parameters (114,623 0,) which may differ between individual layers, or remain

the same, without invalidating the results contained here. Using the developments of

(2.56) through (2.61), the complex wave amplitudes to the left of the ith interface can

be related to the amplitudes to the left of the (2' + 1)“ interface, with propagation

occurring in region 2', as

c,

bi

1 Hi ejsz-A, 0 Ci+1

Rt 1 0 €_jkz’iAi bi+1

.
‘
fl
l
H

(2.62)

Using this, the complex wave amplitudes at the first interface to the n layered material

structure can be written in terms of the amplitudes at the second interface as

01 1 I esz,1A1 RIC-szn-Al 62

:57 'k A 'k A (2'63)b1 1 R16] 2,1 1 6.] 2,1 1 b2

Thus, if 02 and ()2 are now written in terms of C3 and ()3 using (2.62), and C3 and b3

in terms of C4 and b4, and so on, the amplitudes c1 and b1 can be found as a matrix

product of n matrices which characterize propagation through each layer of material.

The complex wave amplitudes at the input to the first layer are thus given in terms

of the amplitudes at the output from region n as

ejkz,iAi Rae—jkzn'Az’Tl

= H i . . 6”“ (2.64)

. Ti RieszaAi e—sz,tAt bn+1

The frequency domain reflection coefficient at the input to the layered material is

found using (2.64) as l" = ()1 /c1. The interfacial reflection coefficients, which are

needed to compute F, are given for parallel and perpendicular polarization by (2.36)
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and (2.53) as

Z- — Z-_1

21' -I- Zi_1 ( )

and the interfacial transmission coefficients from (2.34) and (2.50) as

Ti = 1+111.966)

Here, the wave impedances used to determine the interfacial reflection and transmis-

sion coefficients for each polarization are given for region 0 by

170 cos 6," parallel polarization

20 = (2.67)

710 (cos Bin) ‘1 perpendicular polarization

and for the ith region as

%(k’2 _ 19(2) sin2 91n)1/2 parallel polarization

2,; = (2.68)

min-(k? - kg sin2 0,-n)_1/2 perpendicular polarization

where 0;“ is the incidence angle for the wave impinging on the interface between

region 0 and region 1.

2.3.1 Frequency domain reflection coefficient for two-layered geometries

The geometries which are rigorously considered in Chapters 3 and 5 are cases of two-

layered geometries. For this reason, and to provide an example using the wave matrix

method, the derivation of the frequency domain reflection coefficient for this specific

geometry will be shown here.

Beginning with (2.64) and examining Figure 2.6, the forward and backward trav-

elling waves at the z = 0 interface can be found in terms of the fields at the output
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from the second layer as

Cl 1 esz,1A1 Rle-sz,1A1 81122112 326-11622A2 63

b1 TITZ RlejszAl e—jszAl R2ejkz,2A2 e“jkz,2A2 b3

am

where dependance on the angular frequency, w, is understood for the wave numbers,

hi, and the interfacial reflection coefficients, R4. Defining the propagation factors

P1 = e—szlel and P2 = e_3k212A2 and carrying out the matrix multiplication gives

c1 1 Hfimfif&fi+mfifi Q

h zfififig am

m+mfi mmfi+fifi a

The frequency domain reflection coefficient can be found as the ratio of backward

travelling to forward travelling waves at the z = 0 interface, or

{>1 = (Ri(w) + R2(w)P12(w))C3 + (R1 (C1))R2(L«J)f’22 (W) + P12(w)P22(w))b3

Cl (1 + Rl(w)R2(w)P12(w))63 + (Rz(w)P22(W) + R1(«019120101922(w)()b:i )

2.71

I‘(w) = 

dividing through by the complex amplitude of the forward travelling wave at the third

interface and using R3 = b3/C3, gives the frequency domain reflection coefficient from

the two-layered geometry as

91 = R1011) + R2(w)P12(w) + (R1(w)R2(W)P§(w) + P12(w)P22(w))R3(w)

C1 1 + R1(w)Rz(w)P12(w) + (32(w)P22(W) + R1(w)P12(w)P§(w))R3((w) )

2.72

I‘(w) = 

For the special case of a conductor backed geometry, where the interfacial reflection

coefficient R3 = —1, the frequency domain reflection coefficient is given by

= R102) + 1220113120) — Pf(w)P§(w) - R1(w)R2(w)P22(w) .

1 + R1(w)32(w)P12(w) — R1 (w)P12(w)P22(w) - 1320012.? to)
 mm mm

Since the frequency domain reflection coefficient, F(w) exists, a Laplace domain rep-
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resentation also exists. This quantity is given by F(s) = I‘(w) 3

wz-r

.7

2.4 Time domain reflection coefficient

To define the time domain reflection coeflicient, begin by considering the response

due to a finite duration input waveform. Letting the input waveform be given by

g(t), where G(s) = £{g(t)}, the frequency domain response is given by

F(s) = G(s)F(s) (2.74)

where I‘(s) is the frequency domain reflection coefficient found in Section 2.3. The

time domain response of the system is thus given as

f(t) = £_1{F(8)} = C’1{G(8)1'(8)}- (2-75)

Although this is the temporal response of the system, the response cannot be written

as g(t) * E’1{F(s)}, because the inverse Laplace transform of I‘(s) either may not

exist, or may be difficult to compute. This is because the frequency domain reflection

coefficient, I‘(s), does not go to zero uniformly on all of the infinite contours used in

evaluating the Laplace inversion integral. However, by neglecting the contributions

from these infinite contours, since G(s) does go to zero on them, a new quantity, F(s)

is defined. This quantity is identical to F(s), except for its behavior as [3] —+ 00. The

quantity F(s) will satisfy

c-lictstftsil = £'1{G(s)I‘(s)} = is). (2.76)
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since G(s) goes to zero on the infinite contours. With the infinite contour contribu-

tions neglected, the inverse transform exists, and by the convolution theorem,

N) = 9(1) * 1'0) (277)

where I‘(t) = £—1{F(s)} is defined as the time domain reflection coeflicient. Note

that this time domain reflection coefficient, when convolved with a finite duration

incident waveform, gives the reflected field.

Exploration into the form of the time domain reflection coefficient is given for

specific geometries in Chapters 3 through 5, and for the n—layer case in Chapter 6.

2.4.1 Propagation through lossy media - wave velocity and transit time

To determine the start and end of the various time periods, a complex-analysis based

approach is taken in Chapters 3 through 6. To relate the distinction of the various

time periods to physical events, the propagation of a plane wave through a dispersive

medium is considered. To do this, consider the solution for the total field of a plane

wave propagating in a homogeneous region of permittivity, c, permeability, ,u, and

conductivity, 0, reflected from a perfect conductor.

In a source free region, the electric and magnetic fields, E and H, satisfy identical

wave equations given in the time domain by

82E(z, t) 3E(z, t) _ 6('92E(z, t)

522 "‘0 at ” 8t2 :0 (2'78)

and

82H(z,t) aH(z,t) 6a2111(z,t)
622 - [JO—5;— — [1 m2 = 0 (2.79)

Here it is assumed that the plane of field invariance is the xy-plane, with generalization

to any planar surface obtained through a simple rotation of the coordinate axes. Thus,

propagation of the plane-wave occurs in the iii-direction.
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Begin by considering the lossless (a = 0) case, assuming the region z < 0 contains

a perfect conductor. Boundary conditions at the conductor require the tangential

component of the electric field to vanish. Since the electric field is orthogonal to 3,

requiring

0H(2, t)

62 2:0

 

=0

gives E(0, t) = 0 and thus satisfies boundary conditions. The solution to (2.79),

subject to the above boundary condition, and assuming H(0, t) :2 H0f(t), is given by

H(z,t)= [:0 (t — 5) + 5:9 (t + S)’ (2.80)

where v = 1/(ue)1/2. With the solution for the magnetic field, H, the electric field is

obtained as

  E(z,t) = W2HOf(t — S) — ”“2”on + S), (2.81)

Examining this solution for the electric and magnetic fields, the term f(t + z/v)

can be interpreted as a wave field disturbance propagating in the —z-direction with a

velocity 12. Similarly, the term f(t—z/v) can be interpreted as a wave field disturbance

propagating in the +z-direction with the same velocity 4).

Now consider the case of propagation through a lossy medium, again assuming

the region 2 < 0 contains a perfect conductor. The solution to (2.79), with the

boundary condition of vanishing tangential electric field at the conductor, assuming

H(O,t) = H0f(t), is given in [17] by

”(“1 =%Qe'f""f (t —a) + 5'76wa + S)
 

  

 

2 t+z/v J 0v (t _ 21,2

851’ t—-—z/v 2%\/222—— (t - u)2v2

where v = 1 / (116)1/2, as in the lossless case. The first two terms of this solution
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are similar to the terms in the lossless case, modified by an exponential damping

factor. This term gives the necessary decay associated with propagation through a

dissipative material. The interpretation of these two terms as propagating wave field

disturbances remains valid, with propagation velocity, v. The remaining term, which

only appears in the case of a lossy medium, results in an extension of the disturbance

through the medium, due to currents induced by the passing wavefront. This response

will be a remnant left behind as the wavefront passes.

The important result for defining the time periods of the transient response from

a layered material is that the leading edge of the wavefront propagates with wave

velocity U, which is again defined by

0 = (2.83)
1

«in

where p = 21,120 and e = 67-50 are the frequency independent permeability and per-

mittivity of the material. Note that in free space, this wave velocity is given by the

speed of light, c.

With the wave velocity of a plane wave propagating in a lossy medium known, the

two-way transit time in a layer of material can now be considered. It is important

to note that this transit time is not just the propagation time for the wave to travel

through the slab. The timing between the initially-reflected wave, which sets the

time-reference of the transient response, and the subsequent response due to various

reflections inside the material layer can only be properly described by considering

the field over an observation plane.[17] Consider the observation plane designated

P—P in Figure 2.7. This plane intersects the first interface at the first “exit point”

of the wave that is initially transmitted into the layer. To arrive at this plane, the
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initially-reflected wave takes the path B, arriving at the observation plane at a time

D sin 9m

(2.84)

’00

after the initial reflection. Here 110 is the wave velocity in region 0. To arrive at this

same plane, the wave that penetrates the surface takes the path A, arriving back at

the reference plane at a time

2A1

01 COS 6t ,

 (2.85)

where 9t is the transmission angle into region 1, and U1 is the wave velocity in the

medium. Noting that D = 2A1 tan 0,3, the time difference between these two waves

arriving at the reference plane is given by

 

1: 2A1 [1_ sinGtsinGin]. (2.86)

2)) cos 9t 110/111

Utilizing Snell’s law of refraction, which gives

”()0 sin 92'"

— = —— 2.87

111 sin 6t ( )

the two-way transit time of the material layer is found to be

6

T1 = 23305—9 (2.88)

1

This quantity appears in the complex-analysis based approach taken in Chapters 3

through 6, and is found to determine the start and end of the various time periods.

2.4.2 Simulation based comparison of NMS to IFFT

For purposes of comparing the natural mode series (NMS) to the inverse fast-Fourier

transform (IFFT), the reflection coefficients of several layered arrangements are com-

28



puted. Consider the two layer material stack shown in Figure 2.8, with layer thick-

nesses of 25 and 24 millimeters and material parameters of (110,4.860) and (110,251.50).

Using the wave matrix method detailed in Section 2.3, the reflection coefficient can

be found and an inverse fast-Fourier transform can be performed. This procedure

gives the time domain reflection coefficient, however it gives no physical insight into

the source of the response. To gain this insight, a natural mode series representa-

tion is found using the poles of the frequency domain reflection coefficient. These

poles are found using the secant method, with initial guesses generated using an E-

pulse program on the time domain reflection coefficient found by an IFFT. Figure

2.9 is a comparison of the IFFT of the reflection coefficient with the resulting natural

mode series representation for the air-backed case found using (3.16); here the first 7

modes are used to construct the natural mode series, as listed in Table 2.1. For the

conductor-backed case shown in Figure 2.10, a comparison of the IFFT to the NMS

for the conductor-backed case, using the 8 modes listed in Table 2.2 to construct the

natural mode series is shown in Figure 2.11.

Note that, in each case, there is no difference between the IFFT and the NMS

results after the reflection from the second interface has returned to the observation

plane. This implies that the natural mode series is a valid representation of the tem-

poral response for times after the reflection from the first material-material interface

is seen at the observation plane. This is an interesting result, since the late time is

generally taken as starting after the wave has completely penetrated the entire stack

of materials and has been reflected from the last interface. A rigorous, complex-

analysis—based approach is given in Chapter 6 to evaluate the contributions of branch

cuts to the time domain reflection coefficient, and to accurately determine where the

late-time period begins. In this chapter the reflection coefficient is decomposed into

various components which are used to validate the natural mode series representation

for both the n—layer material stack in the late time, and portions of the early time.

29



 

Pole Amplitude Natural Mode Amplitude
 

Mode
 

Real Part I Imaginary Part
 

Real Part ] Imaginary Part

 

—0.41045 x 1010 0.90877 x 1011 0.35161 x 10117 —0.23713 x 109
 

—0.40353 x 10m 0.81846 x 1011 0.36648 x 1010 0.24961 x 109
 

—0.38304 x 10jo 0.70678 x 1011 0.40979 x 1010 —0.16679 x 1011
 

—0.42604 x 10” 0.61114 x 1011 0.31807 x 1010 0.74073 x 108
 

—0.41727 x 1010 0.40177 x 1011 0.33693 x 1010 —0.20099 x 109
 

-0.39591 x 1010 0.31051 x 1011 0.38275 x 1010 0.24041 x 109
  O

H
M
O
O
A
O
I

 —0.3889 x 1010  0.19793 x 1011  0.39755 x 1010  —0.21095 x 109
 

Table 2.1. Natural mode frequencies and coupling coefficients for the problem of

Figure 2.8

30

 



 

Pole Amplitude Natural Mode Amplitude
 

Mode Real Part Imaginary Part Real Part Imaginary Part

 

—0.14262 x 1010 0.96877 x 101T 0.33152 x 10m —0.14396 x 109
 

—0.18016 x 11?0 0.8627 x .1011 0.42388 x 1010 0.23251 x 108
 

—0.17131 x 1010 0.66496 x 1011 0.4025 x 1010 —0.16103 x 109
 

—0.16018 x 1010 0.553 x 1011 0.37517 x 1010 0.20664 x 109
 

—0.14772 x 1010 0.46196 x 1011 0.34423 x 1010 —0.18384 x 109
 

—0.17866 x 1010 0.35327 x 101r 0.4203 x 1010 0.73224 x 108
 

-0.13724 x 1010 0.2531 x 1011 0.31817 x 1010 0.32635 x 108
   O

H
N
W
Q
M
O
)

—0.17567 x 10W  0.15598 x 1011  0.41304 x 10m  —0.12013 x 109
 

Table 2.2. Natural mode frequencies and coupling coefficients for the problem of

Figure 2.10
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Figure 2.1. A discontinuity interface between two material regions
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 (44.43:) (712.89

Figure 2.2. Fields at an interface between two materials for parallel polarization
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(fluff) (112.85) 

Figure 2.3. Fields at an interface between two materials for perpendicular polarization
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Figure 2.4. Fields at a discontinuity for incidence from each direction
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Figure 2.5. An n-material cascade of planar layers
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Figure 2.6. Geometry for a two layered material stack
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Figure 2.7. Timing diagram for determining transit time in a lossy material layer
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A1=25 mm A2=24 mm
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Figure 2.8. A two-layered, air-backed geometry
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Figure 2.9. Time domain reflection coefficient for a two-layered, air-backed geometry
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Al =25 mm A2=24 mm
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= (1,4.8, 0) = (1.2.5.0)

  
Figure 2.10. A two-layered, PEC-backed geometry
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Figure 2.11. Time domain reflection coefficient for a two-layered, PEC-backed geom-

etry
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CHAPTER 3

AIR-BACKED LOSSY LAYER IN THE PRESENCE OF A

CONDUCTING SCREEN

As a first step towards the development of a procedure for multiply layered materials,

an air-backed lossy layer in the presence of a conducting screen is considered. The

geometry is shown in Figure 3.1. This builds upon the work completed in [13], where

the transient reflection from an air-backed lossy layer was rigorously developed. As

shown in Chapter 2, the frequency domain reflection coefficient for a two-layered

geometry backed by a perfect electric conductor is given using the wave matrix method

as

R1 to») + Rz(w)P12(w) — P12(w)P§(w) — R1 (wisztwwez (w)
 

 

m” = 1 + R1(w)R2(w)P12(w) — R1(w)P12(w)P22(w) — 1220);?th (3‘1)

with interfacial reflection coefficients

_ Z1011) — Zo
R1(9)) -W, (323»)

__ Z200) - Zilw)

RM "' 2204) + 21(w)’ (3'2”

where Z1(w) and Z2(w) are the wave impedances in the material layers given for

parallel (TM) and perpendicular (TE) polarizations, respectively, by

 21(0) = k213i???” (3.3a)

23(4)) = ———ki,(c’::7(’:f)w’ (3.35)

where 17,: (w) = ‘ / 11.,- /cf is the frequency dependent intrinsic impedance in region i. 20

is the wave impedance in free space, which takes on the same forms as (3.3), but with
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frequency independent intrinsic impedance, n0. P1(w) and P2(w) are propagation

factors given by

191(0) = e‘jkzil“ (3.4a)

192(0) = e‘jkzfl". (3.45)

Examining the geometry of Figure 3.1, it can be seen that R1(w) = —R2(w), so (3.1)

can be rewritten in terms of just the first interfacial reflection coefficient, 171(0)), and

the propagation factors given in (3.4) as

= 131(9)) - R1(W)P12(W) - P12 (Mp22 (W) + 31(9))1’22 (w)

1 — R¥(w)Pl2(w) — R1(w)P12(w)P22(w) + R1(w)P22(w)'

 I’(w) (3.5)

Since k1? = 163,- + kg,- and kw' = 133,0 = 1:0 sin 02-” to satisfy boundary conditions at

all points on the planar surfaces, the wave impedances will take the forms

 

2,100) = g(ftg — kg sin2 6..., z” = no cos 0,, (3.6a)
2

k- .
1 = 7.772 I = 770

Z (w) \/k2—k23in20- , ZO cos0z-n (3.61))
1' 0 m

  

 

for parallel and perpendicular polarizations, respectively. For notational purposes,

the propagation factors will be written in the form

122(0) = e—iji(w), (3.7)
2
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where the expressions contained in the exponent are given by

1.071(0)) = 2kz,1d

 

= 2d\/Icf - kg sin2 a...

 

= w— — - sin2 0,, (3.8)

2

= 112-2,3 cos 0,”. (3.9)

Here, the complex permittivity is given by cflw) = 617-60 + o/jw, and a nonmagnetic

material layer is assumed; i.e., 111 = #0- To simplify notation, the quantity El =

Q, — sin2 19,-” is defined, giving

 (3.10)

3.1 Laplace domain representation

Since the frequency domain reflection coefficient, I‘(w), exists, a Laplace domain

representation also exists. This quantity is given by

F(s) = F(w)

mw—mmRm—Rmfim+fiwa

1- Rf(S)P12(S) - R1(3)P12(3)P2(3)+31(3) 1322(8)

R1(s) — R1(s)e’3T1(s) — 6SW?3)) + R2(s)e

1_ Rage-371(3) _ R1(S)e—s(‘rl(s)+72(s3)) + R1(S)€—ST2(S)s)

 

-8T2(S

 (3.11)
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with expressions appearing in the exponentials given by

871(8) = J'wT1(w)| .
0):;

2d __ a
:5— 61+...—

C

2d
= -—-(/zl\/§, /s + :3—

c 6160

= ¥fgj¢§m (3.12)

was) = jwr2<w>|
(42:?

2h

= s—c— cos 6m = 37-2 (3.13)

where the quantity 31 = —a/E160 has been defined. The interfacial reflection co-

efficient for the first interface is given simply as R1(s) = R1(w) 3. The wave
(‘92-.

impedances, which are needed to compute the interfacial reflection coefficient by

(3.2), are given for parallel polarization as

 

 

W?

= 33—11— 191? - kg sin2 0,"

6C

= [£27171 \/é — sm2 0m

no _ a
61 + —

(Iii/60) 860

= "WE/3V S _ 31. (3.14a)
361,. + 0/60

 

46



and for perpendicular polarization by

  

 

 = EVA/8:71 (3.14b)

The interfacial reflection coefficient, 121(3), can thus be written for parallel and per-

pendicular polarizations using (3.2), as

«afifl" (3511' + %) COS gin

121(8) _ «E—lfifl + (3511' + 2%)00591'11

30080171 _ \fé-lfifl

scos 0m + \/E—1\/§\/STST

 parallel polarization

(3.15)

 

perpendicular polarization

3.2 The time domain reflection coefficient

Using the frequency domain reflection coefficient found in Section 3.1, the time domain

reflection coeflicient of the material stack, I‘(t), which is defined through an inverse

temporal transform, can be found. This time domain reflection coefficient, when

convolved with a finite duration incident waveform, gives the reflected field in the

time domain.

In order to use the extinction pulse technique, it must be shown that the time

domain reflection coeflicient can be represented in terms of a natural mode series,

after a finite period called the early time. The time period during which the natural

mode series is an accurate representation of the time domain reflection coefficient
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is commonly referred to as the late time. Thus, in the late time, the time domain

reflection coefficient should take the form:

00

I‘(t) = Z Anesnt (3.16)

n=1

where An is the amplitude coefficient associated with the nth pole, 8,, = on + jwn,

of the frequency domain reflection coefficient. This representation of the temporal

field is found by taking the inverse Laplace transform of (3.11), neglecting infinite

contour contributions for which (3.11) does not approach zero uniformly. To perform

this inverse transform, the singularities of the frequency domain reflection coefficient

are explored, and the evaluation of the integral

/ I‘(s)eStds (3.17)

Br

is carried out through complex plane integration for several ranges of time, t. Here,

the integration is carried out along the contour Br, which is the Bromwich path. The

Bromwich path, which defines the inverse Laplace transform, is a path in the complex

s-plane which is taken parallel to the imaginary axis, to the right of all singular points.

Evaluation of the integral in (3.17) gives the time domain reflection coefficient as

1
: O—- P S CStdS

(3'18)

.7277 Br ( )

1(1)

when infinite contour contributions are neglected. In order to carry out the contour

integration involved with the evaluation of this integral, singularities of the integrand

need to be determined, and appropriate branches defined.
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3.2.1 Singularities of the frequency domain reflection coefficient

Singularities of the frequency domain reflection coefficient take on various forms.

First, 371(3) and 21(3), given by equations (3.12) and (3.14), respectively, contain

complex square roots which lead to branch points at s = 0 and s = 31. Corre-

spondingly, branch cuts are taken along the negative real axis to define the principal

branches of the square root functions. In addition, observing that the frequency

domain reflection coefficient may be written as

 P(s) = (3.19)

there are poles associated with the zeros of the denominator, D(s). These poles will

appear in the left half of the complex s-plane, with some lying on the real axis, and

the rest occurring in conjugate pairs.

3.2.2 Evaluation of the time domain reflection coefficient

Evaluation of the time domain reflection coefficient is carried out by factoring the

frequency domain reflection coefficient such that the inverse Laplace transform of the

individual components are physically meaningful during various time periods. The

definition of these time periods, the factorization used in each time period, and the

implications of these developments are the subjects of Sections 3.2.2.1 through 3.2.2.3.

In evaluating the Laplace inversion integral, Jordan’s Lemma is used many times

to evaluate the integral contributions from various contours. This lemma is given by

[15] as

Theorem 3.1 (Jordan’s Lemma) If H(z) is an analytic function having the property

56: 3939—271lim H(Rej9)=0, — or
R—roo “

3
1
:
17r 7r

2 2
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uniformly with respect to 0, then, if b is a nonzero real number,

lim H(z)ebzdz = 0, if b < 0
R—>oo Cl

lim H(z)ebzdz = 0, if b > O

R—voo 02

where 01 and C2 are semicircles in the right and left half planes, respectively, centered

at the origin and of radius R.

3.2.2.1 Early time: t < T1

The early time is defined as the time period before a response is observed at the obser-

vation plane due to reflection from the second interface, as discussed in Section 2.4.1.

This response should be identical to the interfacial reflection for two semi-infinite

media during this time period. Because of this, the frequency domain reflection co-

efficient is factored into the sum of the interfacial reflection coefficient of the first

interface, R1(s), and a reduced reflection coefficient defined by

I"(8) = 1“(8) - 131(3)

_(1 _ Rf(s))(R1(s)e‘STl(3) + e-8(T1(8)+T2(8)))

1 — R¥(S)e—STI (3) -— R1 (3)e_8(7'1(3)+72) + R1(3)e_372(3) .

 (3.20)

Since the inverse Laplace transform is a linear operation, the time domain reflection

coefficient for the entire structure is given as a sum of the inverse Laplace transforms

of the two components of the frequency domain reflection coefficient. The inverse

Laplace transform of the interfacial reflection coefficient, given by R1(t), is rigorously

developed in [14]. The evaluation of the inverse Laplace transform of the reduced

reflection coefficient remains; this is given by I" (t) = £‘1{f"(s)}, where f’(s) is

identical to I"(s), except for its behavior at infinity. This inverse transform is found
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by evaluating

1

—_—— I"(s)e3tds, 3.21

.727r Br ( )

neglecting infinite contour contributions for which I"(s) does not go to zero uniformly.

On an infinite contour, Coo, exponential terms appearing in the numerator of the

reduced reflection coefficient are given using (3.12) as,

2d 2d

lim {— El+fl}=-&-\/E—1éT1 (3.22)

|s|—900 C 860

Letting t1 = t — T1, which is negative for t < T1, evaluation of the integration along

the Bromwich contour in (3.21) is obtained by closing the integration contour in the

right half of the complex s-plane, as shown in Figure 3.3. Right half plane closure

is justified here, since t1 is negative for the time period t < T1. Note that T1 is the

two-way transit time of the first material region, as discussed in 2.4.1. The early time

is thus given by the time period t < T1. The integration on the infinite contour Coo

is given by

/ I"(s)e3tds =/ I"(s)eSTleSt1ds (3.23)

Coo Coo

Here, Jordan’s Lemma cannot be directly applied to evaluate the integral contribution

over 000, because the integrand does not go to zero as |s| —1 00 at all points on the

contour. However, it is possible to apply Jordan’s Lemma, when the following theorem

from [15] is used:

Theorem 3.2 Let f(t) be a function which is APC (almost piecewise continuous)

and which is identically zero fort greater than some number T. Then the Laplace

transform of f(t) approaches zero uniformly as 3 becomes infinite in a right half

plane,

71'

larg(3 _ COM S E,

where c0 = 00 + jwo is any complex constant in the 3 plane.
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To use this theorem, recall that the time domain reflection coefficient is always con-

volved with a finite duration incident waveform. Letting this waveform be given

by g(t) and noting that this waveform is APC, the spectral response of the system

is G(s)I"(s), where G(s) = £{g(t)}. Using Theorem 3.2, G(s) will approach zero

on the infinite contour, Coo. The response of the system thus approaches zero on

_the contour. Defining f’(s) as a function which approaches zero uniformly on the

infinite contour, and which satisfies £-1{G(s)l‘(s)} = £‘1{G(s)f‘(s)}, the infinite

contour contribution is neglected to give the time domain reflection coefficient as

1'" (t) = £'1{f’(s)}. Thus, the time domain reflection coefficient in the early time is

identical to the inverse Laplace transform of the interfacial reflection coefficient, as

developed in [14].

3.2.2.2 Middle time: T1 < t < T1 + T2

The middle time for this structure is defined as the time period between the observa-

tion of the reflection from the second interface at the observation plane, as discussed

in Section 2.4.1, and the observation of the reflection from the conductor. During

this time period, physical reasoning suggests that the temporal response should be

identical to the reflection from the first layer of material backed by free space. Be-

cause of this, the frequency domain reflection coefficient is factored into the sum of

the reflection coefficient for a single air-backed lossy layer, which is rigorously devel-

oped in [13], and a reduced reflection coefficient defined by the difference between

the total reflection coefficient and the frequency domain reflection coefficient for the
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single air-backed lossy layer. The reduced reflection coefficient is thus given by

I‘I2lay('3) = PCS) _ 1“llay(3)

= ms) _ R1(s)(1 —2R2(s_)e-“1(S>)

1 - R1(s)e 871(8)

_e-S(T1(8)+72)

x

1 — Rash-371(3)

 

 

(1 - Rf(s))2
X

1 — R%(s)e'371(3) — 31(s)e-3(T1(8>+T2) + R1(s)e‘572(3)

 (3.24)

Since the inverse Laplace transform is a linear operation, the time domain reflection

coefficient for the entire structure is given as a sum of the inverse Laplace transforms

of the two components of the frequency domain reflection coefficient. The inverse

Laplace transform of an air—backed lossy layer is rigorously developed in [13]. The

evaluation of the inverse transform of the reduced reflection coefficient remains; this

is given by P’Zlay(t) = £‘1{f"2my(s)}, where Balm/(s) is identical to Palm/(s), except

for its behavior at infinity. This inverse transform is found by evaluating

1 I

l”‘2lay
j27r B (s)eStds, (3.25)

7'

neglecting infinite contour contributions. On an infinite contour, Coo, exponential

terms appearing in the numerator of the reduced reflection coefficient are given using

(3.12) and (3.13) as,

lim {2—d €1+i+2—,Ecosflm }=?ii\/a+ %cosflméT1+T2 (3.26)

|s|—soc C 860 C C C

where T1 and T2 are the two-way transit times of the first and second layer, re-

spectively, as discussed in 2.4.1. Letting t2 = t - (T1 + T2), which is negative for

t < T1 + T2, evaluation along the Bromwich contour in (3.24) is obtained by closing
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the integration contour in the right half plane of the complex s-plane, as shown in

Figure 3.3. Right half plane closure is justified here, since t2 is negative during this

time period. The end of the middle-time period is defined by (3.26). The integration

on the infinite contour C00 is given by

I"(s)e3tds=/ F'(s)eS(T1+T2)eSt1ds (3.27)

Coo Coo

It is not possible to apply Jordan’s Lemma directly to this integral, since the integrand

does not go to zero uniformly on the entire contour, 000. However, by definition of the

time domain reflection coeflicient, the infinite contour contribution is to be neglected.

Thus, during the middle-time period, the time domain reflection coefficient is identical

to the the time domain reflection coefficient for the air-backed lossy layer, which is

rigorously developed in [13]. It is found in [13] that after the time T1, the time domain

reflection coefficient for the air-backed lossy layer is given by a natural mode series.

3.2.2.3 Late time: t > T1 + T2

The late time of the response for this geometry is defined as the portion of the transient

response after a response from a reflection off of the conductor backing arrives at the

observation plane, as discussed in Section 2.4.1. For this time period, the frequency

domain reflection coefficient is factored into the sum of the reflection coeflicient for

a single air-backed lossy layer, which is rigorously developed in [13], and a reduced

reflection coefficient defined by the difference between the total reflection coefficient

and the frequency domain reflection coefficient for the single air-backed lossy layer,

as is done for the middle time. The reason for this factorization is two—fold. First,

the time domain reflection coefficient for the air-backed lossy layer is known to be a

natural mode series after the time T1, thus only the reduced reflection coefficient needs

to be addressed. Second, by examining the properties of the individual components

of the time domain reflection coefficient, some insight into the transient response can
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be obtained. The reduced reflection coefficient is given by (3.24), and repeated here

as

I”mag/("5.)
= P(S) — P1lay(3)

1(3) _ RI(S)(1 -— R2(s)e_3"1(3))

1 — Rage-371(8
)

—e"8(71(8)
+7‘2)

x

1 " Rash-371(3
)

 

 

(1 — 13%))2
X

1_ R¥(S)e-—sr1(s) _ R1(S)e—s(r1(s)+r2) + R1(S)e—ST2

 (3.23)

Evaluation of the inverse transform of the reduced reflection coefficient is carried

out through the integration along the Bromwich path, neglecting infinite contour

contributions; this integration is given by

1

EF [Br rglay(s)e8tds. (3.29)

On an infinite contour, Coo, exponential terms appearing in the numerator of the

reduced reflection coefficient include the two-way transit times of the two layers, T1

and T2 as in (3.26). Letting t2 = t — (T1 + T2), which is positive for t > T1 + T2,

evaluation along the Bromwich contour in (3.28) is obtained by closing the integration

contour in the left half of the complex s—plane, as shown in Figure 3.7. When closure

is taken in the left half plane, many integration paths are involved. In this discussion,

these integration paths will be referred to in two groups, the outer contour, C, which

includes integration paths parameterized by quantities receding towards infinity, and

the inner contour, C", which includes integration paths taken along the branch cut.
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These integration contours are given by

C=BruL1uogoucgooL2

CI=lAU71U72U...U77Ul1UlgU...Ul6UlB

Then, by Cauchy’s residue theorem

f C! Pézay(s)e3td3 = .72“Z R€3[P’21ay(8)€3t, comple
x poles]. (3.30)

CU

Thus, determination of the time domain reflection coefficient is possible provided the

integral contribution from each path is known.

3.2.2.3.1 Contributions from the outer contour, C

The Laplace inversion integral is found by computing (3.30) for the Bromwich path

contribution in terms of the contributions from all other integration paths and compu-

tation of the residues from the enclosed simple poles. The outer contour, C, consists

of various integration paths that are parameterized by quantities that recede towards

infinity, including the Bromwich path which defines the inverse Laplace transform.

Contributions from C; and 00—0

Integral contributions from 03:, and 00.0 are given directly by Jordan’s lemma,

as stated in Theorem 3.1, since Palm/(s) —-> 0 on the infinite contours. Thus, direct

application of Jordan’s lemma gives

[0+ Félay(s)e3tds = 0 (3.31)

00

f0— F’Qlay(s)e3tds = 0. (3.32)

00

Contributions from L1 and L2

On L1 and L2, Jordan’s Lemma cannot be directly applied to evaluate the integral
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contributions, because the integrand does not go to zero as |s| —+ 00 at all points

on the contours. However, by definition of the time domain reflection coefficient,

contributions from L1 and L2 are to be neglected, as discussed in Section 2.4.

3.2.2.3.2 Contributions from the inner contour, C’

The segments of the inner contour C’, which enclose the branch cut, can be broken

into three groups. The first group consists of the contours '72, '73, '75, and 76, etc,

which enclose the real poles on the branch cut. Note that two poles are shown on

the real axis here, but more may appear depending on the properties of the material

layers, and the incidence angle. The second group is made up of contours '71, 74, and

77 that enclose the branch points. The straight line segments immediately above and

below the branch cut make up the final group. Within this group, the segments 1A

and 13, which lie to the left of all of the branch points will be handled separately

from the segments ll through 16-

Contributions from '72, '73, 75, and 75

The integral contributions from the first group of contours, which enclose the poles

on the negative real axis, can be found by calculating the residues of Palm/(3)6“ at

the poles. It is found that all of the poles of Film/(3) are of first order and thus the

residues may be found from

 

 

Res [Pglay(s)63t,poles] = 31_i+rr91k(s — Sk)[F’210y(S)€St] = Akesk‘ (3.33)

3=Sk

where

-sk(T1(Sk)+T2) _ 2 . 2

Ak = e d (1 RIM» (3.34)

M331 (8)] Wk

is the complex mode amplitude, and the denominator of the reduced reflection co-

efficient has been written as 1 — M(3). Note that l’H6pital’s rule has been used to

obtain the form of the complex mode amplitude shown here. Carrying out the details
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of the differentiation gives

a [M(s>]= j [12%>e_..1(.) + <1 — R¥<s>e-ST1<S>>><

>< (Rhee-”1(3) + R1<s)e-S<TI<S>+T2> — Has>e‘3th)

L
_
.
_
l

=2[(1 — R21(s)e_371(3)) _ R1(s)(e‘3(T1(3)+T2)_ 6‘372)]§[R2(s)6—sr1(s)]

+(1— R'fls>e“371(3),, [Rusxe_..1(.)..,)__,,2]

)+T=[2RI(3)e-STI(8>(2(1-R¥(s)e‘STl(S)-) R1(s)(e 715‘ 2)- (372))

_ 2 —sr(s) —s(r(s)+r)_ —sr d

+(1 R1(s>e 1 Me 1 2 e 2)].1is1(>]

12%(8) (2(1 __ R¥(s)e-371(3Rls()(e—s(r1(s)+r2) _ e—sr2))§_s_ [e—sr1(s)]

)—

+ R,(.)(1 - R¥(s)e“"1<s>)§;
[e—s(r1(s)+r2) _ e—sr2] (3.35)

with the derivatives of the exponential terms given by

%[e—s(rl(s)+r2) _e—sr2] ___ _ [<d\/'-_\/_2__3___;j181++-2—h)e —s(r1(s)+r2) _ (9;)8—37'2]

and

C

The derivative of the first interfacial reflection coefficient is found using (3.15) as

 dis-[121(3)] = 25):; (3.36)

where, for parallel polarization,

2s2 —ss

T(s)= x/Ellx/Efi—_;1 (se61r+ £6)cos(9,-n— 261r\/a\/§\/s — sl c030,”

9(3) = (361,» + ‘51)2 cos29in + 2(selr + £1) fiffiy/S — 31 cos 9,2,, + 213(3 - sl)

0 0
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and for perpendicular polarization,

T(s) = 2\/‘é_1\/s\/s — 31 cos 91h— cos Qinfijf—V—gég—gl

(2(3) = 32 cos2 9,” + 2cosflins\/E—1\/s\/s — 81+ Els(s - 31)

Here it is noted that the residues of the poles located on the branch out must be

evaluated carefully, taking into account the value of functions on each side of the

branch cut. For this particular problem, the reduced reflection coefficient is even

about the branch cut, as discussed on pages 62 through 67, so the values on each side

of the branch cut are the same. This allows the evaluation of the residues from each

side to be combined into one evaluation, where all of the residues are evaluated using

(3.33).

Contributions from 71, '74, and 77

The integral contribution from the contour surrounding the branch point at s = 0

can be computed by denoting the radius of '74 as r0 and letting (790 be an angle

measured counterclockwise from the real axis to the point on '74. This allows any

point on the contour to be located as s = roej¢0. The reflection coefficient on the 74

contour is given in the limit of r0 —-> O, i.e., s —> O, as

fix/3V3: - (361r+‘65)C030in

121(8) = \f—fim+ (361,» +“—3)cos 9m

ficosdin— ffls—sl _1

ficosflin-l-JE—h/s—sl

 —+ —1 parallel polarization

 
perpendicular polarization

(3.37)

For parallel polarization, as s —» 0 terms in the numerator of the reduced reflection
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coefficient are given by

(x/E—x/Ex/ETSl-(Sflr+ 1)0089z'n)2

(f—x/Ex/F: +(361r %)cos0.-n)2

4fx/Ex/s-—s((361,. %)cos6m)0

(f—75781—8 +(se1r+—0)cost9.-n)2

_4x/=i\/3s/s———s((861r++26)C030in)(1++,/-—1,/g,/s——s—+:e1,cosa,n)—

(F6 cos 6%)2 —0 cos 8,

1—R¥(s) = 1— 

 

 
 

Using the first two terms of the binomial expansion, this can be written as

 
 

4\/€_1\/5\/3—-T((3€1r+)0059m)[12f\/§\/:9:_::—S1+3€1rC059in]

   

1 _ 1221:“) 0—cos 0m)2 0 cos 0,"

flfiv'svs—T sq. zffifl 3.1,. N .

4(0/50)C080in1((0/50) +1) [12 (0/€O)<30892'n 2(0/60)] f

(3.38)

Thus, the numerator of the reduced reflection coefficient is proportional to s as s —> 0

for parallel polarization, using (3.28). Similarly, for perpendicular polarization, as

s —+ 0 terms in the numerator of the reduced reflection coefficient are given by

,_ R§(.)=1_W50050m — «am?

Moose... + «ENE—71>?

_ 47373787500821.

_ 630089372 + Jaw—7)?

=4 ficosdin (1+ ficosdm )-2

«3.5—‘5 @7375

 

Using the first two terms of the binomial expansion, this can be written as

2 _ ficosdin _ flcosflin ~

1—R1(S)—4—_—\/E_1\/3_:~_9—1—(1 2——vfifl) ,/'s' (3.39)

Thus, the numerator of the reduced reflection coefficient is proportional to s as s —1 O
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for perpendicular polarization, using (3.28).

For both polarizations, terms in the denominator are given, as s ——) 0, by

1 — R¥(s)e_371(3) = 1 — 12%(3) + R¥(s) — R¥(s)e-371(3)

=1— Rte) + R%(s><1— e—STIW)

~ \/3 + 871(8) ~ £0 + 3) ~ ,/§ (3.40)

and

R.<s>e"2<1 — e-W”) ~ (371(3)) ~ s73 (3.41)

where (3.38) and (3.39) are utilized. Thus, the denominator of the reflection coefficient

is also proportional to s, as s —2 0 for each polarization. The reduced reflection

coefficient, for both parallel and perpendicular polarization, is then given using (3.28),

(3.38), and (3.39) as s —+ O by

_(1 _ 32(3))26-8(T1(8)+T2)

1 _ Ri?(s)e—sr1(s)) (1 _ R¥(S)€—STI(3) _ R1(S)(e—s(rl(s)+r2) _ e—sr2))

 

I

1-‘2lay(3) = (

—+ Dll’i (3.42)

Since the numerator and denominator of the reduced reflection coefficient are both

proportional to s for each polarization, as re —> 0, the reduced reflection coefficient

goes to a constant, Dllii. Thus,

P(8)88t = DI],_Lest

and

lI‘(s)eSt _<_ IDH'i |er0t.
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Therefore

I/ I‘(s)e3tds] S 27rr0|D”"L|eT0t ——) 0, (r0 ——> 0).

74

As a result, the integral contribution from the contour around the branch point at

s = 0 is given by

A Fglay(s)e‘3tds = O (3.43)

The integral contributions from the contours surrounding the branch point at

s = 31 can be computed by denoting the radius of both 71 and 77 as r1 and letting

451 be an angle measured counterclockwise from the real axis to a point on either 71

or 77. This allows any point on the contours to be located as s = 31 + rlej¢l. The

reflection coefficient on the contours are given in the limit of r1 —-+ 0, i.e., s —> 31, as

\/E—1\/§V 3 " 31 _(351r + 2%) COS gin
—’

_ a g.R1(s) = \/E_1‘/§,/s 31 + (8611- + €0)cos m

SCOSOin - \/E—l\/§V3 " 31 _)1

scos 0m + fiR/EVS — 31

 —1 parallel polarization

perpendicular polarization

(3.44)

In an analogous development to the one for the branch point at s = 0, it can again

be shown the both the numerator and denominator of (3.28) are proportional to s,

and thus ["21ay(s) becomes constant on the contour. This leads to

/ F’zlayeStds = / F'zlay(s)eStds = 0. (3.45)

'71 '77

Contributions from segments above and below the branch cuts

The contributions from the straight line segments of the inner contour immediately

above and below the branch cuts are separated into two groups. The first group is

given by lA and l3, which lie to the left of the branch points. The rest of the contours,

11 through l6, lie to the right of the leftmost branch point. Note that if more than

two poles lie on the real axis, more contours would be included in at least one of
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these groups. The developments here will remain valid for any number of integration

contours along the branch cut.

Branch cuts which define the principal branches of the complex square root func—

tions of the wave impedances and propagation factors are taken along the negative

real axis. These branches are defined by —7r < $0 3 7r, and —1r < (151 3 7r. Looking

at Figure 3.8, begin by examining the integration paths designated as A+ and A...

For the contour 14+, 450 = 451 = 7r. Letting s = —:c, where :1: is a nonnegative real

number, denote a point on the negative real axis, the product of the square root

functions found in the wave impedances and propagation terms take the form

fifl: \/r_0\/1“_16j(¢0+¢1/ =fima"_— —\/E,/x_+?1. (3.46)

On A_, 430 = 4.31 = —7r, and the product of square roots is given by

\/§‘/s — 31: fl :5 + sle—j7r = —\/§\/:r + 81. (3.47)

Thus, the products of the square roots are analytic on the A contours, and

FIZlay(S)lA+'—‘ I‘2lay((A—S)|
(3.48)

Since the integrations above and below the branch out are taken in opposite directions,

f Félay(s)63tds +/ Félay(s)e‘9tds = O (3.49)

[A (B

On 8+, (150 = 1r, $1 = 0, and the product of square root functions found in the wave

impedances and propagation terms is given by

«EMS — 31 = fiV—x — 31(sz2 = jflV—x — 31. (3.50)
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Similarly, on B-, (190 = —7r, $1 = 0, and

x/Ex/s_—_si = x/EV—x—we’mr" = -jx/:?x/-x—-81- (3-51)

The product of square roots on the B contours is not found to be analytic, so further

investigation into the form of the reduced reflection coefficient is needed. Plugging

(3.50) into (3.12) gives the term 371(3) on a contour directly above the branch cut as

sn(s)| = jyx/ENN—w— 81 = ml (3.52)
B+ C 8+

where <I>1|3+ = gJE—h/Ev—x — 31 has been defined. The wave impedances, which

are needed to compute the interfacial reflection coefficient by (3.2), are given by (3.14)

on the contour B+ as

zjwafim
 Z“ 3.53

1(8) B+ -—$61,. + 0/60 ( a)

for parallel polarization, and as

zfls) "0‘” (3.53b) 

3+ = J fiffi,f._—x— 31

for perpendicular polarization. Plugging (3.51) into (3.12) gives the term 371(3) on a

contour directly below the branch out as

.2d _ .

871(8)|B_ = —J-c—\/a\/5v -IL‘ - 81 = J2¢1 B_ (3-54)

where <I>1|B- = —%\/?I\/:E(/—x — 31 has been defined. The wave impedances are
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given for parallel and perpendicular polarizations, respectively, by (3.14) as

 

 

zl'(s)|B_ = —j"°€f+v:2; 31 (3.55a)

zfls). "0x (3.55b)

3- = -]\/'€_1\/5\/-$ - 81

on the contour 8.. Thus, odd symmetry is seen about the branch out along the B

contours for both the propagation terms and the wave impedances; i.e.,

2) =—z|113+ 113-

3| =-«»I1B+ 1

(3.56)

B_ (3.57)

Plugging 121(3) into (3.28) and multiplying top and bottom through by (21 + ZO)4,

the reduced reflection coefficient takes on the form

_68(T1(8)+T2)

X

(21 + 20)2 — (21 — 2526871“)

X ((21 - 20>2 — (21 + 20)?)2

(21 + 20)2 — (21 — 2526-83“) — (21 — 20M -— Zo)(63(71(3)+72) — em)

= —16ZfZ§/5(s) (3-58)

 

I“|I2lay('3) =

 

where the products in the numerator have been carried out and e_3(71(3)+72) has
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been moved into the denominator term, 15(3). This term is given by

~

0(3) = 68(T1(s)+72) [(21 + Zo)4 _ 2(21 + Z0)2(Zl _ ZO)2e—sr1(s)

+ (21 - Zo>4e’2”1‘3’ — (2,2 — 23) [(21 + 20)2 — (21 — are—"1‘34 x

X (e—s(‘rl(3)+7’2) _ e—ST2)]

= e3(71(3’+72)[(21 + Z0)4 — 2(21 + zo)2(21 — zo)2e'"1(s>

+ (21 — zo)4e-2"1(3) — [(211 + 221(zfzo — 23) + 23)

- (Zi‘ — 221(31220 — 28) + 28)e"”1(s>] (e-“THSHW — 6-3.2,] (3.59)

Multiplying the exponential term es(719“?) into the square brackets and expanding

some of the bracketed wave impedance terms gives

5(3) = (Z? + 22120 + ZE)263(71(3)+’2) —— 2(21 + ZO)2(ZI — Zo)2eST2

+ (Z? - 22120 + 23)2e‘3(71(3)‘72) - (211 + 221(Z?Zo — ZS) + ZS) x

x (1 — 8371(5)) + (211 — 2zl(z§zo — 23) + zg)(e-3"1(3) — 1) (3.60)

Continuing to multiply out the bracketed wave impedance terms and regrouping gives

13(3) = [21102372 + 1) + 28(6372 — 1) + 6233372] (671(3) + (311(3))

— 2[z‘14(e372 + 1) + 23(e3T2 — 1) — zzfzgeW]

+ 2[Z12Z0(2esT2 + 1) + 28(283T2 —- 1)] Z1(6371(3) — 6’37“”) (3.61)

Using Q1 = (371(s)/2j) from Equations (3.52) and (3.54), the denominator of the
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reduced reflection coefficient becomes

13(3) = [23163872 + 1) + 23(88T2 — 1) + 623363872] (efl‘l’l + e-m’l)

— 2]zf(e“2 + 1) + 23(e3T2 — 1) — 2Z§Z§eST2]

+ 2[Z¥Zo(2e”2 +1) + 23(212872 —— 1)] 21(92‘1’1 — e-fi‘l’l)

= 2 [2102372 + 1) + 2369.372 — 1) + 6Z¥Z§e8T2] cos2<I>1

— 2 [21102872 + 1) + 2362"? — 1) — 2212236372]

+ 43' [zfzoaem + 1) + 23(2e372 — 1)] (21 sin 2<I>1) (3.62)

Note that the wave impedance, Z1, appears in 5(3) either raised to an even power,

or multiplied by (sin 2<I>1). Since regions 0 and 2 are free space, using (3.56) through

(3.62) gives

r’2my(s) 3+ = r’,,ay(s) B_. (3.63)

Since the integrations above and below the branch cut are taken in opposite directions,

the evenness about the branch out of the reduced reflection coefficient gives

I" 3 (adds +/ s 6 ds—— 0 (3.64)

[1U12U13 Zlay() I4UZ5U16 P2lay()8

The time domain reduced reflection coefficient is thus given in the late time by

(3.30) as

F’21ay—-ZR83[F,21ag/(MM ,complea: poles] + :Res[l"2my(s)63t,real poles]

= 2: Res[[Palm/(8)8€M,p0189 =2: Ake‘i‘kt (3.65)

which is a pure natural mode series with amplitude coefficients given by (3.34). Note

that the complete pole series gives this response, with residue contributions due to
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both the complex poles and the poles on the branch cut.

Since the two components of the time domain reflection coefficient are each given

by a natural mode series by [13] and (3.65), the time domain reflection coefficient

is also a natural mode series during this time period. It is important to note that

the poles of the total reflection coefficient do not include the poles of the reflection

coefficient for the air-backed slab. The poles of the air-backed slab reflection coefficient

are in fact cancelled by poles of the reduced reflection coefficient, once this response

turns on at the start of the late time. This cancellation gives a response that is a

natural mode series based just on the poles of the total reflection coefficient, rather

than some superset of the poles of the substructure reflection coefficients.
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Figure 3.8. Inner contour integration paths for left half plane closure
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CHAPTER 4

MATERIAL-BACKED MATERIAL LAYERS

Having considered the addition of an interface to a geometry which was known to

have a natural mode series representation after a finite time period in Chapter 3, the

next step is to consider a single material layer backed by some material. Doing this,

with the consideration that either the material layer, the backing layer, or both, are

lossy, allows the examination of the effect of loss in one or both of the materials on

the response of the system. This is also the first consideration of a backing layer other

than free space or a perfect conductor.

As shown in Chapter 2, the frequency domain reflection coefficient can be obtained

using the wave matrix method. For the single layer with a material backing, this

reflection coefficient is given as

 

 

_ R109) + 32(w)P12(w)

PW) — 1+ R1(w)R2(w)P12(w)’ (4'1)

with interfacial reflection coefficients

__ 21(0)) - Z0
R1(w) -m, (4-23)

__ 22(0)) - 21(0))
122(6)) — 22(0)) + 21(w). (42b)

Here Z1(w) and Z2(w) are the wave impedances in the material layers given for parallel

(TM) and perpendicular (TE) polarizations, respectively, by

kz,i(w)77i(w)
 z,“ (w) k.- (w) (4.3a)

23(1)) = W (4.3b)
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where 171(0)) and 172(w) are the frequency dependent intrinsic impedances of the ma-

terial layers, given in terms of the complex permittivities, cflw) and 63(6)), and per-

meabilities, #1 and 112, as

#1 c 01__, = _, , 4.4n1(w) 61(3)) 61(3)) €1r€0+Jw ( )

#2 c 02
_, = —_ , 4.

”20”) 65(0)) 620‘”) 627‘604" JO.) ( 5)

Here, 61,. and 62,. are frequency independent relative permittivities, and 01 and 02 are

the frequency independent conductivities of the first and second material, respectively.

In this development, only nonmagnetic materials will be considered, thus 111 = 112 =

no. The wave impedance in free space, 20, takes on the same forms as (4.3), but

with frequency independent intrinsic impedance, 770- Since 11:? = k3,,- + kit. and

11:” = [63,0 = 160 sin 02'" to satisfy boundary conditions at all points on the planar

surfaces, the wave impedances take the forms

 

ZN (w): 772\/k2 k0 sin2 9611, Z II = 170 cos 9171 (4.6a)

24(6)) _— km” , z-L _— "0 (4.6b)
O .

 
 

 

for parallel and perpendicular polarizations, respectively. P1(w) is a propagation

factor given by

P1(w) = e-jkzvld (4.7)

where d is the physical thickness of the material layer, and (62,1 is the z-directed wave

number in region 1. For notational purposes, the propagation factor is written in the

form

P120”)= €_jw1(w), (4.8)
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where the expression contained in the exponent is given by

(4271(0)) = 2kz,1d

 

= 2d\/k¥ — kg sin2 6,”

 

2d C
= w— 51- —- sin2 a," (4.9)

C 60

To simplify notation, the quantity E1 = 61,. — sin2 917; is defined, giving

 (4.10)

4.1 Laplace domain representation

Since the frequency domain reflection coefficient, F(w), exists, a Laplace domain

representation also exists. This quantity is given, inserting the propagation factor,

P1(w), from (4.8), as

_ 121(3) + R2(s)e'371(3)
F s = l" w

( ) ( ) ‘43:; 1+ R1(s)R2(s)e‘371(3)

 (4.11)

with the expression appearing in the exponential term given by

371(5) = ij1(w)]w=§
.7

2d _ 01

= 8— 61+ —

c 860

2d 0

= —,/E1\/§ s + _——1—
c 6160

= ¥¢a¢§m (4-12)

where the quantity 31 = —01/E160 is defined. The interfacial reflection coefficients

are given using (4.2) as R1(s) = R1(w)] and 122(3) = 122(6)) . The wave

w: w—

3

.7V
4
0
:
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impedances, which are needed to compute the interfacial reflection coefficients, are

given for parallel polarization as

H __ ll
Z,- (8) — Z (w)

8

= Th623— k0 sin2

= km),1:03“—sin20,-

= (65/60) Va

mffix/T-Tz

36,, + (Ti/60

 

 

 

 (4.13a)

and for perpendicular polarization by

25(3) = 2%)]
—4

w .7

k377i

fl? — 16(2) sin2 6m

164771

kg \/(€,f/€0) — Sin2 0m

770

fit + (Oi/860)

= "03 . (4.13b)

x/Ex/Ex/ST—SE

 

 

 

 

 

 

 

with s,- = —a,-/E,reo. The interfacial reflection coefficients can thus be written for

parallel and perpendicular polarizations using (4.2) and (4.13), as

«fifivs — ~91 _ (3511' + (01/60)) 0056311

R1(3) = \/E—1\/§\/3 - 31 + (3511' + (01/60)) 0089111

secs gin " JE—h/Efl

scos 6m + (fix/Em

parallel polarization

perpendicular polarization

(4.14)
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and

(861r + apfififl- (Sézr + %§)x/E—1\/§\/S—-3f
 

 

a
0

- 01

122(3): (361r+;é)\
/§§\/§\/s—

—_s—2+(352
r+?§)\/afifl ll P

“a“; 8—8 —¢E_2\/§\/3—“-§
.L—ol

mfim+¢5
fim

13(4 1,)

4.2 The time domain reflection coefficient

Using the frequency domain reflection coefficient found in Section 4.1, the time domain

reflection coefficient of the material stack, I‘(t), which is defined through an inverse

temporal transform, can be found. This time domain reflection coefficient, when

convolved with a finite duration incident waveform, gives the reflected field in the

time domain.

In order to use the extinction pulse technique, it must be shown that the time

domain reflection coefficient can be represented in terms of a natural mode series,

after a finite period called the early time. The time period during which the natural

mode series is an accurate representation of the time domain reflection coefficient

is commonly referred to as the late time. Thus, in the late time, the time domain

reflection coefficient should take the form:

00

I‘(t) = Z AneS"t (4.16)

n=l

where An is the amplitude coefficient associated with the nth pole, 3,, = on + jwn,

of the frequency domain reflection coefficient. This representation of the temporal

field is found by taking the inverse Laplace transform of (4.11), neglecting infinite

contour contributions for which (4.11) does not approach zero uniformly. To perform

this inverse transform, the singularities of the frequency domain reflection coefficient
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are explored, and the evaluation of the integral

/ r(s)e3tds (4.17)

Br

is carried out through complex plane integration. This is done in several steps, cor-

responding to several ranges of time, t. Here, the integration is carried out along

the contour Br, which is the Bromwich path. The Bromwich path, which defines the

inverse Laplace transform, is a path in the complex s-plane which is taken parallel to

the imaginary axis, to the right of all singular points. Evaluation of the integral in

(4.17) gives the time domain reflection coefficient as

1

I‘(t = ,— 1" 3 (adds 4.18) 3,, B.- < ) < )

when infinite contour contributions are neglected. In order to carry out the contour

integration involved with the evaluation of this integral, singularities of the integrand

need to be determined, and appropriate branches defined. These are explored in

Section 4.2.1.

4.2.1 Singularities of the frequency domain reflection coefficient

Singularities of the frequency domain reflection coefficient take on various forms.

First, 8T1(S) and Z1;(s), given by equations (4.12) and (4.13), respectively, contain

complex square roots which lead to branch points at s = 0, s = .91, and s = 32.

Correspondingly, branch cuts are taken along the negative real axis to define the

principal branches of the square root functions. In addition, observing that the fre-

quency domain reflection coefficient may be written as

 I‘(s) = (4.19)
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there are poles associated with the zeros of the denominator, D(s). These poles will

appear in the left half of the complex s-plane, with some lying on the real axis, and

the rest occurring in conjugate pairs.

4.2.2 Evaluation of the time domain reflection coefficient

Evaluation of the time domain reflection coefficient is carried out by factoring the

frequency domain reflection coefficient such that the inverse Laplace transform of the

individual components are physically meaningful during various time periods. The

definition of these time periods, the factorization used in each time period, and the

implications of these developments are the subjects of Sections 4.2.2.1 and 4.2.2.2.

4.2.2.1 Early time: t < T1

The early time is defined as the time period before a response is observed at the

observation plane due to reflection from the second interface, as discussed in Section

2.4.1. The temporal response should be identical to the interfacial reflection between

two semi-infinite media during this time period. Because of this, the frequency domain

reflection coefficient is factored into the sum of the interfacial reflection coefficient of

the first interface, 121(8), and a reduced reflection coefficient defined by

1“'(8) = I‘M-31(3)

= (1 — R¥(s))R2(s)e-”1<s> (4 ,0)

l + R1(s)R2(s)e"s"1(3) I .

 

Since the inverse Laplace transform is a linear operation, the time domain reflection

coeflicient for the entire structure is given as a sum of the inverse Laplace transforms

of the two components of the frequency domain reflection coefficient. The inverse

Laplace transform of the interfacial reflection coefficient, given by R1(t), is rigorously

developed in [14]. The evaluation of the inverse Laplace transform of the reduced

reflection coefficient remains; this is given by I"(t) = L-1{F’(s)}, where F'(s) is

identical to F’(s), except for its behavior at infinity. This inverse transform is found
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by evaluating

1

,—— r’(s)e3‘ds, (4.21)

327T Br

neglecting infinite contour contributions for which I" (s) does not go to zero uniformly.

On an infinite contour, Coo, exponential terms appearing in the numerator of the

reduced reflection coefficient are given using (4.12) as,

lim {34 €1+i'—1—}=-2—g\/%§2T1 (4.22)
|s|—900 C SEO

Letting t1 = t — T1, which is negative for t < T1, evaluation of the integration along

the Bromwich contour in (4.21) is obtained by closing the integration contour in the

right half of the complex s—plane, as shown in Figure 4.3. Right half plane closure

is justified here, since t1 is negative for the time period t < T1. Note that T1 is the

two-way transit time of the first material region, as discussed in Section 2.4.1. The

early time is thus given by the time period t < T1. The integration on the infinite

contour Coo is given by

/ 'I"(s)e3tds=/ F'(s)eSTleSt1ds (4.23)

Coo00

Here, Jordan’s Lemma cannot be directly applied to evaluate the integral contribu-

tions over Coo, because the integrand does not go to zero as |s| —> 00 at all points

on the contour. However, by definition of the time domain reflection coefficient, the

infinite contour contribution is to be neglected, as discussed in Section 2.4. Thus, the

time domain reflection coefficient in the early time is identical to the inverse Laplace

transform of the interfacial reflection coefficient, as developed in [14].

4.2.2.2 Late time: t > T1

The late time of the response for this geometry is defined as the portion of the transient

response after a response from a reflection off of the second interface arrives at the
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observation plane, as discussed in Section 2.4.1. For this time period, the frequency

domain reflection coefficient for the entire geometry, given by (4.11), is considered.

Evaluation of the inverse transform of the reflection coefficient is carried out through

the integration along the Bromwich path, neglecting infinite contour contributions;

this integration is given by

372}; Br F(s)e3tds. (4.24)

On an infinite contour, Coo, the exponential term appearing in the numerator of

the reflection coefficient is given using the two—way transit time of the material layer,

T1, as in (4.22). Letting t1 = t — T1, which is positive for t > T1, evaluation along

the Bromwich contour in (4.24) is obtained by closing the integration contour in the

left half of the complex s-plane, as shown in Figure 4.4. For closure of the integration

contour in the left half plane many integration paths are involved. In this discussion,

these integration paths will be referred to in two groups, the outer contour, C, which

includes integration paths parameterized by quantities receding towards infinity, and

the inner contour, C", which includes integration paths taken along the branch cut.

These integration contours are given by

C=BTUL1UC§OUCJOUL2

C,=lAU71U72U...U’79UllUlQU...Ul8UlB

Using Cauchy’s residue theorem, evaluation of the closed contour integration is given

by

f I‘(s)e3tds = j27r2 Res [F(s)e‘9t, complex poles]. (4.25)

CUC’

Thus, determination of the time domain reflection coefficient is possible provided the

integral contribution from each path is known.

Contributions from the outer contour, C.
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The Laplace inversion integral is found by computing (4.25) for the Bromwich path

contribution in terms of the contributions from all other integration paths and compu-

tation of the residues from the enclosed simple poles. The outer contour, C, consists

of various integration paths that are parameterized by quantities that recede towards

infinity, including the Bromwich path which defines the inverse Laplace transform.

Contributions from 032, and 0,;

Integral contributions from C; and 00-0 are given directly by Jordan’s lemma, as

stated in Theorem 3.1. Since I‘(s) —> O on the infinite contours, C; and 00-0, direct

application of Jordan’s lemma gives

[06% F(s)e3tds = 0 (4.26)

/ I‘(s)eStds = 0. (4.27)
C"

Contributions from L1 and L2

On L1 and L2, Jordan’s Lemma cannot be directly applied to evaluate the integral

contributions because the integrand does not go to zero as |s| —> 00 at all points on

the contours. However, by definition of the time domain reflection coefficient, the

infinite contour contribution is to be neglected, as discussed in Section 2.4.

Contributions from the inner contour, C".

The segments of the inner contour C", which enclose the branch cut, can be broken

into three groups. The first group consists of the contours 72, 74, 75, and 78, etc,

which enclose the real poles on the branch cut. Note that two poles are shown on

the real axis here, but more may appear depending on the properties of the material

layers and the incidence angle. The second group is made up of contours 71, 73, 75,

77, and 79 that enclose the branch points. The straight line segments immediately

above and below the branch cut make up the final group. Within this group, the

segments lA and lB, which lie to the left of all of the branch points will be handled
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separately from the segments 11 through lg.

Contributions from 72, 74, 75, and 78

The integral contributions from the first group of contours, which enclose poles

located on the branch out, can be found by calculating the residues of I‘(s)e‘9f at the

poles. It is found that all of the poles of F(s) are of first order and thus the residues

may be found from

Res[F(s)eSt,p0les] = Sling (s — 3k) [F(s)eSt] = Akeskt (4.28)

s=sk A k

where

‘3le(3kl
Ak = Rl(3k) + R2(3k)e , (429)

§;[R1(8)R2(s)e‘371(3)]

 

 328k

is the complex mode amplitude, using l’Hépital’s rule to obtain the form shown here.

Carrying out the details of the differentiation gives

(1

E;
i[Rl(s)Rz<s)e-STI<S>] = [R2<s)e"”1<3>1£[al(s)] + [Ruse-311(3)]
d3 [122(8)]

+ [R1 (s)R2(s)] Ed; [game]

with the derivative of the exponential term given by

The derivative of the first interfacial reflection coefficient is found using (4.14) as

 

%lR1(S)l = 521(3)
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where, for parallel polarization

232 — 331 a _

T1(s)= \/E—1—\/—§———8—1\/§__ (selr+ 46) cos 9271— QelrfiJR/s — 31 cos 6,"

2
a 0

91(3) = (3617- + :1) cos2 6,” + 2(8611- + 6—1)\/61\/§\/s - 31 cos 0,” + E13(s — 31)

O 0

and for perpendicular polarization

-
232 —33

T1(S)=2\/a\/§\/8-s
lcosdin- cosQin\/E—l_\/§___s—.:1

91(3) = 32 cos2 0m + 2cos OinsfifiVs‘ —- 31+ 213(3 — 31)

The derivative of the second interfacial reflection coefficient is found using (4.15) as

 

where, for parallel polarization

 

(S)=\/6—\/—[(61r—-€2r—:0)st—31\/3—82

13(51 - 82) 01 02
_ _ + _—

+ 2 \fs - sh/s — .92 (36” + 60 3621" 60

 

 

01 2 0’2 2

92(3) = (361,- + -—-) Egs(s — 32) + (352,. + —) "€1.3(s - 31)

50 ‘50

a a

+ 2(selr + '6—1)(S€2r + 2—2) \/E1\/E23\/s — sh/s — 32

0 0
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and for perpendicular polarization as

 

 

8(81 - 82)

=\/€—1\/—\/8 Sufi? - S2

 

522(3) = E28(s — 32) + 213(3 — 31) + QfiifiEa/s -— ssh/s — 32

Here it is noted that the residues of the poles located on the branch cut must be

evaluated carefully, taking into account the value of functions on each side of the

branch cut. The evaluation of the integral contributions from each of the contours

which combine to enclose the poles on the real axis are thus given as

/ I‘(s)eStds—- —j7rZ Res[[((+s)l)e t,real poles],

'72 74

/ P(8)83td8—— -j7rz Res[I‘((_)es)| t,real poles], (4.30)

76178

where the designators (+) and (-) correspond to the values of the frequency domain

reflection coefficient above and below the branch cut, respectively.

Contributions from 71, 73, 75, 77, and 79

The integral contribution from the contour surrounding the branch point at s = O

can be computed by denoting the radius of 75 as m and letting (130 be an angle

measured counterclockwise from the real axis to the point on 75. This allows any

point on the contour to be located as s = memo. The reflection coefficients on the

75 contour are given in the limit of To —> 0, i.e., s -—» 0, as

\/——1\/§\/3-—3_ _ (861r+)COS 6m

121(8) = \fi—lfim + (861r+ %)COS gin

\/§cos(9,-n— f-Ms—sl _1

ficosdin+\/—‘/s—sl

 

-—» —1 parallel polarization

 

perpendicular polarization
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($1>f¢=s—— (Z—g>ff——_

32(3) __, (SEM/Wan (Z—gmv—Tl

fifl‘fim 3 C'L

«av-irwaf—s—z 1

This gives the reflection coefficient from (4.11) as

 1' parallel polarization

perpendicular polarization

 

—1 + C'"i

Thus,

I‘(s)e3t = —e“

and

’I‘(s)eSt S erOt.

Therefore

./ I‘(s)eStds| g 27rroer0t —-> 0, (7‘0 —+ 0).

75

As a result, the integral contribution from the contour around the branch point at

s = 0 is given by

/ I‘(s)eStds = o. (4.31)

'75

The integral contributions from the contours surrounding the branch point at

s = 31 can be computed by denoting the radius of both 73 and 77 as T1 and letting

m be an angle measured counterclockwise from the real axis to a point on either 73

or 77. This allows any point on the contours to be located as s = 31 + rlej‘f’l. The

reflection coefficients on the contours are given in the limit of TI —) 0, i.e., s -—+ 31, as

\/E_1\/5\/—— sl — (set + $3) case...
 

 

—+ —1 arallel polarization

R1(8) = fiTfiV 3 _ 31 + (3511‘+%)CO5 gin p

0 ‘ / _

3 cos m _ffi S 811 perpendicular polarization

300305,, +\/'_\/—\/s— 31
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(ses— + égwswsvs? — (sesr + gw‘avsm

R2(s) = (sflr + %)\E2\/§\/S — 32 + (352,. + %)\/E_l\/§\/'3—_§1‘

«WM—_s —fwsm

 

 

 

 

-—s —1

x/Efix/S - 81 + \/3_2\/§\/8 - 82

This gives the reflection coefficient from (4.11) as

$1 :t e-8T1(8)

F(S): 1_e_37.1(3) :41

Thus,

I‘(s)eSt = 1126‘“

and

'F(8)68t S 6(81+r1)t.

Therefore

|/ l"(s)eStds| S 7rrle(81+rl)t —+ 0, (n —+ 0).

73,77

—>l II -p01

.1. -—p01

As a result, the integral contribution from the contour around the branch point at

s = 31 is given by

/ I“(s)eStds = 0.

73,77

(4.32)

The integral contributions from the contours surrounding the branch point at

s = 32 can be computed by denoting the radius of both 71 and 79 as 7'2 and letting

(132 be an angle measured counterclockwise from the real axis to a point on either 71

or 79. This allows any point on the contours to be located as s = 32 + T26j¢2. The

reflection coefficients on the contours are given in the limit of T2 —> O, i.e., s —+ 32, as

«E‘s/5v” - 81-(3261r + 29008911; A ll

— /——_ £1 . = 2
R1(8) _, \/€—1\/3—2 S2 31 + (52511‘ + £0 ) 0036111

820089272 - \/'€—1\/§§\/82 - 81% Ci

SZCOSOin+\/§T\/§\/32 -81 2

 

92

|| —polarization

.1. —polarization



(Sélr + %g)v%§\/§(/W - (Sézr + ilk/fix/Es/FE
0
 

 

‘/
—* “—1 — 01

{32(3) = (8611‘ + glib/53%; S - 82 + (862,. + gg)\/E_1\/
§fl H p

EVE/F‘s— _ fiffi S _ 32 1 J. -pol

flfifl+fivsF—s "

This gives the reflection coefficient from (4.11) as

Cng q: e-srl(s)

 

 

P s — é Dllsi

( > I; else-ass

Thus,

F(S)€8t ___ Dl|,.l_est

and

|p(3)est S |D||,i|e(32+7‘2)t.

Therefore

I / I‘(s)eStds. S wrngll’i|e(s2+r2)t —-> 0, (r2 —> 0).

71,79

As a result, the integral contribution from the contour around the branch point at

s = 32 is given by

/ I‘(s)e3‘ds = 0. (4.33)

71979

Contributions from segments above and below the branch cuts

The contributions from the straight line segments of the inner contour immediately

above and below the branch cuts are separated into two groups. The first group is

given by lA and 13, which lie to the left of all the branch points. The rest of the

contours, ll through lg, lie to the right of the leftmost branch point. Note that if more

than two poles lie on the real axis, more contours would be included in at least one of

these groups. The developments here will remain valid for any number of integration

contours along the branch cut.
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Using (4.11), and noting that this equation can be written simply as [(9) =

N(s)/D(s), the numerator and denominator of the frequency domain reflection coef-

ficient can be put into the forms

N(S) = (Zl - Z0)(Z2 + Z1) + (Zg — Zl)(Z1+ Zo)e—3T1(S)

=(zszs—zozl>(1+e371(3))+(Z12-Zozz)(1-6871(3))

  —(2122 — 2021) cos(s237'1(.S33)) +J‘(Zl2 - Zozz)sin (33(3))

2 X — 32, (4.34)

and

17(8) = (Z1 + Zo)(Z2 + Z1)+(Z1 - Zo)(Z2 - Z1)e'STl(S)

= (2122 + zozl)(1+ 6371(3)) + (Z? + Zozg)(1 - 8-371(3) )

  

="2(zlzg+zozl)cos(”1(S))+ j(Z
1+ZOZZ)Sm(ST;§3))

=X+y, M%)

where a multiplication and division by 2(3371/2 has been used, and the quantities X

and )7 have been defined as

  

  

X = 2122 cos (8728)) + jZl2 sin (33?” (4.36)

y = 2921 cos (83.39)) +j2022 sin (87-28)) (4.37)

This allows the frequency domain reflection coefficient to be written as

X—y

x+y

X2—2xy+y2
= x2 + y2 . (4.38)

 l"(s) =
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Using this expression, the behavior of the reflection coefficient about the branch cut

can be examined by evaluating the quantities X2, y2,and Xy about the branch cut.

Defining the quantity (1)1 = 819-392 and writing these expressions out gives

X2 = Z12Z§ cos2 (D1 + j221222(Zl sin (1)1) cos (1)] — Z? sin2 (1)1 (4.39)

322 = 2ng cos2 (1)1 + j2zgzg(zl sin (D1)cos cpl — 23233312 (111 (4.40)

X)? = Z()Z12Z2[cos2 (1)1 — sin2 (1)1] +j[Z% + Z?]ZO(Zl sin (D1) cos (1)1 (4.41)

Branch cuts which define the principal branches of the complex square root functions

of the wave impedances and propagation factors are taken along the negative real

axis. These branches are defined by —7r < 459 3 7r, and —1r < (15,- 3 7r. Looking at

Figure 4.5, begin by examining the integration paths designated as A+ and A_. For

the contour A+, (bl = qba = 453 = 1r. Letting s = -:c, where a: is a nonnegative

real number, denote a point on the negative real axis, the product of the square root

functions found in the wave impedances and exponential terms take the form

x/EVS - $0 = Mflej(¢1+¢a)/2 = fivx + sacej7r = —\/E\/:c + so (4.42)

fids — 33 = flflejmfiqfifivz = M541: + sflej7r = —\/§,/a: + 35 (4.43)

where 30 and 33 represent the two branch points 31 and 32, such that Isal g |sfil.

Which of the branch points 31 and 32 correspond to 30, and which to 35, depends on

material properties in each region, and incidence angle. Every case will be examined

in this section.

On 11., (1)1 = 90 = ((53 = —7r, and the products of square roots found in the wave
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impedances and exponential terms are given by

fiVs—sa = fi\/x+sae_j7r= —\/E\/:I:+sa (4.44)

\/§,/s—SB = fifle’jfi: —\/Em (4.45)

Thus, the products of thase square roots are analytic on the A contours, and

r(s)| = F(s)| (4.46)
A+ A—'

Since the integrations above and below the branch cut are taken in opposite directions,

/ l"(s)e‘9tds +/ F(s)eStds = 0 (4.47)

lA (B

On B+, m = 90 = 7r, qbfl = 0, and the products of square root functions found in

the wave impedances and exponential terms are given by

x/sx/s'is'a = «Ex/me“: 454m (4.48)

«gm = fimefi/2= NEH—7; (4.49)

Similarly, on B_, (251 = 950 = —7r, $3 = O

\/§\/s — so, = fiVm + sac—j" = —\/§\/:c + 30 (4.50)

\/§,/s — 35 = Mid—:1: — sfie—j"/2 = —j\/E\/——x——_s_fl' (4.51)

On 0+, (231 = 7r, (pa = (253 = O, and the products of square root functions found in
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the wave impedances and exponential terms are given by

JEVS — sa fiV—x — saejfl/2 = jfiV—z — 80, (4.52)

fifl = fiWW/z = jfif—TTSfi' (4.53)

Similarly, on C_, 451 = —7r, $0 = 9513 = 0

fiv 3 — so: fiv ‘33 “ Sue—jwfl = —j\/E\/:E——Ta (4-54)

fim .—_- fiWe-jW/Z = mag/rm (4.55)

The products of square roots along the B and C contours are not found to be analytic

when moving from a point on one side of the branch cut to a point on the other side,

so further investigation into the form of the reflection coefficient is needed. To do

this, individual consideration is given to various combinations of lossy and lossless

materials.

4.2.2.2.1 Lossy layer backed by a lossless half space

For a lossy layer backed by a lossless half space, the branch point at s = 32,

where 32 = —02/6269, disappears, and only the paths C+ and C- need to be con-

sidered, since so, = 32 = 0. Note that the wave impedance in region 2 becomes

Z2 = mJ’E—z/egr, which is not a function of 3. Taking 35 = 31, the wave impedance

of region 1 is given using (4.53) and (4.55) by

 

 

21] = ', _ = 21 4.56
C+ h/qfiM—x — 31 + ( )

”770$
le = _ _ = 21- 4.57

C- —]\/€1\/IE‘/—III -— 31 ( )
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Similarly, the term (D1 = 371(3) /2j is given by

d

¢1|C+ = Z\/ Elfiv —CE —' 31 = (1)14. (4.58)

d

(DIIC = _El/Elfil/ —:L‘ - S = (I91- (4.59)

Thus, on the contour 0+, the terms which determine the behavior of the reflection

coefficient are given by

X2 = 212+23 cos2 91+ + j2Z§+Zz(Zl+sinc1>1+)cos<1>1+ — zf+ sin2 (DH

3,2

X3?

28Z¥+ cos2 <I>1+ +j22322(Z1+ sin Q1...) cos <I>1+ — 282% sin2 (131+

20212+Z2[cos2 <I>1+ — sin2 ¢1+1+ 3123 + 212+1zo(zl+ sin (p1,) cos (61+

Similarly, on the contour, C_,

X2 = Ziizg cos2 91_ + j2Z12_Z2(Z1_ sin <I>1_)cos<1>1_ — Zf__ sin2 <1>1_

y? = z§z¥_ cos2 <I>1_ + j2Z322(Z1_ sin <I>1_)cos cpl- — Zgzgsin2 cpl-

xy = Z9Z12_Z2[0082 <1>1_ — sin2 <I>1_] + 312% + Z%_]zo(zl- sin o1_)cos<1>1_

Note that wave impedances that change sign as a point moves from 0+ to C- across

the branch cut appear raised to even powers, or grouped with a sine function that

also changes sign upon crossing the branch cut. Thus, the quantities X2, 322, and

Xy are even about the branch cut, and by (4.38),

r(s)| — r(s)|0+ _ (4.60)
C-

So, for the lossy layer backed by a lossless half space, the integral contributions from
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contours above and below the branch cut are given by

/ I‘(s)e‘9tds +/ I‘(s)eStds = O (4.61)

llUl2Ul3Ul4 l5U16Ul7U18

since integrations are taken in opposite directions.

4.2.2.2.2 Lossless layer backed by a lossy half space

For a lossless layer backed by a lossy half space, the branch point at s = 31,

where 31 = —01/Eleo, disappears, and only the paths 0+ and C- need to be con-

sidered, since so, = 31 = 0. Note that the wave impedance in region 1 becomes

21 = DOVE—1/61,., which is not a function of 3. Also, the term T1(S) becomes a con-

stant; this gives (1)1 proportional to s, which is analytic across the branch cut. Thus,

taking 85 = 32, the wave impedance of region 2 is given using (4.53) and (4.55) by

 

 

-770$
Zgl = , _ = Z2 (4.62)

0+ Jx/sz/Ev-x - 82 +

22' — "0‘” = Zg- (4.63)

C- — Wax/5717755

Thus, on the contour 0+, the terms which determine the behavior of the reflection

coefficient are given by

X2 Z12Z3+ cos2 (P1 + j22¥Z2+(Zl sin (D1) cos (D1 - Z? sin2 (D1

322 = 232126642 <I>1 + j22322+(21 sin <I>1)cos (pl — 2323+ sin2 (p1

xy = 202,222+[cos2cpl —sin2<1>1]+j[Z§++Zf]zo(zlsin<r>1)cos<1>1

99



Similarly, on the contour, C_,

x2 = 2,22; cos2 (D1 + 322722421 sin (1)1)cos<I>1 — Ziisin2 <I>1

322 = 2ng cos2 in + 322322421 sin <I>1)cos<I>1 — z§z§_ sin2<I>1

X31 = Z9Z12Z2_[cos2 (D1 — sin2 (1)1] +j[Z§_ + Z12]Z9(Z1 sin (D1) cos (1)1

Note that wave impedances that change sign as a point moves from 0+ to C. across

the branch out are not grouped with a sine function that changes sign between the

contours. Thus, the quantities X2, 322, and Xy are not even about the branch out

for the lossless layer backed by a lossy half space. Thus, using (4.38),

r(s)( ss r(s)' (4.64)
C+ C—

This is an important result, because the time domain reflection coefficient will not be

given by a pure natural mode series in the late time since the integral contributions

from contours above and below the branch out do not cancel; i.e.

/ I‘(s)estds + / P(s)e3‘ds ,s 0. (4.65)

11U12U13Ul4 l5U16Ul7U18

4.2.2.2.3 Lossy layer backed by a lossy half space

For the case of the lossy layer backed by a lossy half space, evaluation of the

contours above and below the branch cut are examined in three cases. These cases

represent combinations of material parameters for which l31l < ISQI, |31| > |32l, and

|81| = |82|s

Case 1: (01/31) < (02/32)

Examining each combination of material parameters for the two material regions,

beginning with the case of (01/31) < (oz/E2), the behavior of the frequency domain
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reflection coefficient on each side of the branch cut is determined. For this first case,

30 = 31 and .35 = 32. Using (4.48)-(4.55), wave impedances on each integration path

take on the form

Zgl

22'

 

3+1},

B_,C_

 

 

 

 

 

Z - "0x — Z
13. ‘ v’s‘ivsv—Hsi ‘ 1

-no:v : 21+

jx/fifiv-JI — 81

norr Z
—— 1—

373—1735 —$ - 81

-nox = 22+

jfiifiv-x - S2

7701‘ = 22

jx/frzx/iv-IL‘ - 82

(4.66)

(4.67)

(4.68)

(4.69)

(470)

thus, Z1+ = —Zl_, 22+ = —Z2_. The exponential terms appearing in the frequency

domain reflection coefficient are given using

87'}

8T1

 8T1

B-

=—?§-’(/s—i¢s¢s—+—si=—2<I>i

.2d _ .

ij/ax/Ev-x — 81 =J2<I>1+

.2d _ .

-J—C'\/a\/E\/—IE - 81:1291—

(4.71)

(4.72)

(4.73)

where the quantity (D1 = (371(s)/2j) is defined. It is important to note that <I>1+ =

—<1>1_.

On B+, plugging (4.66) through (4.73) into (4.36) and (4.37) gives

x2 = 2,223+ cos2 (D, + 922722421 sin cpl) cos<I>1 — Ziisin2 (p,

372 = 28212 cos2 <I>1 + j2Z§Zz+(Z1 sin (1)1) cos <I>1 — Z3Z§+ sin2 (D1

202 = Z9Z12Z2+[c052<1>1—sin2<I>1]+j[Z%++le]ZO(lein<I>1)cos<I>1
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Similarly, on the contour, B_,

X2 = ZI2Z22_ cos2 (1)1 +j2Z1222_(Zl sin (1)1) cos (1)1 — Z? sin2 (1)1

3’2 = ngiZ cos2 (1)1 + j2Z322_(Z1 sin (P1) cos (1)1 — 232; sin2 (1)1

.732 = ZOZ12Z2_[cos2<I>1—sin2<1>1]+ j[Z§_+Zf]zo(zlsin<1>1)cos<1>1

Note that wave impedances that change sign as a point moves from 8+ to B- across

the branch cuts are not grouped with a sine function that changes sign crossing the

branch cut. Thus, the quantities X2, 322, and X37 are not even about the portion of

the branch out for which the B contours run. Thus, by (4.38),

(4.74)

For the contour 0+,

x2 = 212,222+ cos2 <1>1+ +j2le+Zg+(Z1+sin<I>1+)cos<I>1+ — Zf+sin2<1>1+

3,2
2327+ cos2 <I>1+ + 322322421, sin<I>1+) cos<I>1+ — 2323+ sin2 (pl,

.732 = zozf+zg+[cos2 (61+ — sin2 <I>1+] +3123, + Z12+]Zo(Zl+sin<I>1+) cos<I>1+

Similarly, on the contour, C_,

x2 = 2,213- cos2 <1>1_ + 3223222421- sin <I>1_)cos ¢,_ — Zf_ sin2 q>1_

3’2 = Z§Z12_ cos2 (1)1- +jZZgZ2_(Z1_ sin (1)1-) cos (1)1- — Z32; sin2 (1)1-

xy = 2021224663 cpl- - sin2 <I>1_] + j[z§_ + z,2_]zo(zl_ sin<I>1_)cos<I>1_

Note that wave impedance, 21, which corresponds to the lossy material in region 1,

only appears raised to even powers, or grouped with a sine function that changes sign
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upon moving from the 0+ to the C- contour, as the wave impedance does. However,

for Zg, which is the wave impedance in the backing material of region 2, sign changes

occur which change the values of the quantities X2, 322, and X)? on opposite sides

of the branch cut. Thus, since X2, 322, and X3) are not even about the branch cut,

thus

(4.75)

Case 23 (01/31) > (02/32)

For this case, so, = 32 and 85 = 81. Using (4.48) through (4.55), wave impedances

on each integration path take on the form

 

 

 

 

 

|3+ 0+ = AER/E —$-SI=ZI+ (4'76)

ZI|B_,C_ = jflfim$_$_81=zl_ (4.77)

22 3+ = 22 B_ = “,5“?ij = 22 (4.78)

220+ = iff";_“:_x__s_=zg+ (4.79)

220- = iffim =22- (4.80) 

Thus, 21+ = —Zl-, Z2+ = —Z2_. The exponential terms appearing in the frequency

domain reflection coefficient are given using

371‘ = 2—d\/E—1\/_\/—1:—31=j2<1>1+ (4.81)

3+»C+

snlB C = —j—\/E—1fi\/-:r—sl =j2<I>1- (4.82)
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On B+, plugging (4.76) through (4.82) into (4.36) and (4.37) gives

X2 = Z¥+z§cosz<1>1+ +j2le+Zg(Zl+sin<I>1+) cos<I>1+ — 231+ sin2 «pl,

322 = 2ng+ cos2 41+ + j22322(zl+ sin CD1+)cos <1>1+ — 2323mm? cpl,

xy = Z0Z12+Z2[cos2 <1>1+ — sin2 41+] +3123 + 212+]ZO(Zl+ sin<I>1+)cos<I>1+

Similarly, on the contour, B_,

x2 = 21123 cos2<1>1_ +j2zf_zz(zl_ sin<I>1_)cos<I>1_ — zit sin2<I>1_

3’2 = 232%: cos2 «>1- + j22322(zl_ sin (P1_)cos<1>1_ — 23238112 41-

xy = ZOZ12_Z2[cos2 <1>1_ — sin2<I>1_] + 312% + z¥_]zo(zl_ sin <I>1-)cos<I>1_

Note that wave impedances that change sign when moving from a point on the B+

contour to a point on the B- contour across the branch out appear raised to even

powers, or grouped with a sine function that also changes sign crossing the branch

cut. Thus, the quantities X2, 3’2, and X)? are even about the branch cut, and by

(4.38),

P(S)IB+ = 17(3)) (4.83)B—'

The expressions for X2, 372, and X)? on the integration paths C... and C- are given

by the same equations as in case 1, since the wave impedances and propagation factors

are identical for these paths for all combinations of (01/21) and (02/22). Therefore,

as in case 1,

(4.84)

Case 3: (01/31) = (02/52)

For this case, the integration paths B+ and B- disappear, leaving just the inte-

gration paths along 0+ and C'_. These expressions are the same as in the first two
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cases, thus

C_. (4.85)F s ’ I‘ s '( )C+ ae ( >

This is an important result, because the response will not be given by a pure

natural mode series in the late time, since the integral contributions from contours

above and below the branch cut do not cancel; i.e.

l"(s)e‘9tds + / l"(s)e8tds 75 O (4.86)

./11U12U13Ul4 l5Ul6Ul7U18

4.2.2.2.4 Conclusions for the late time period for material-backed mate—

rial layers

In the late time, the time domain reflection coefficient may or may not be a pure

natural mode series, since a branch cut contribution can exist. The time domain

reflection coefficient is given by (4.25) as

F(t) = Z Res[I‘(s)e3t, complex poles] + g: Res [I‘(s)|+e5t,real poles]

+ g: Res [P(s)|_e3t, real poles] — j—évr- Z]; I‘(s)e3tds (4.87)

i i

Here, the pole contributions from the complex poles included inside the closed con-

tour, and the contributions from the poles on the real axis combine to give the com—

plete pole series, where all of the residues are evaluated using (4.28). It should be

emphasized here that caution needs to be exercised in evaluating these residues, as

the correct value for the frequency domain reflection coefficient on each side of the

branch out needs to be used in order to obtain the correct solution.

Note that this response, unlike the air-backed and conductor-backed cases consid-

ered in [13], may include a branch out contribution in the late time of the system.

This is the case when the backing material is lossy. It is assumed that this response

will be a non-time limited response, as it is for the reflection for a single interface
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involving lossy material. Note also that the first material layer can be either lossy or

lossless, yielding a branch out contribution in either case.

Another important result to note here that the integral contributions from the

contours along the branch cut disappear when the backing material of region 2 is

lossless. This is important because it shows that cancellation of a branch cut con-

tribution from the interfacial reflection occurs upon the return of the reflection from

the second interface to the observation plane. This has implications in a multilayered

problem, where some of the layers may be lossless, yielding a pure natural mode series

representation during portions of the early time of the system. This is explored in

detail in Chapter 6.
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Figure 4.1. Material-backed lossy dielectric layer
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Figure 4.2. Single interface between free-space and a lossy dielectric
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Figure 4.3. Closure of the Bromwich contour in the right half plane.
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Figure 4.4. Closure of the Bromwich contour in the left half plane.
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Figure 4.5. Inner contour integration paths for left half plane closure
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CHAPTER 5

TWO MATERIAL LAYERS BACKED BY A PERFECTLY

CONDUCTING SCREEN

Having examined the various subproblems associated with the geometry of Figure

5.1, the temporal response for two planar material layers backed by a perfect electric

conductor is considered. This geometry is interesting because, unlike the structure

considered in Chapter 3, the middle time response of this structure does not neces-

sarily have a pure natural mode series representation. Evaluation of this geometry

thus gives insight into the behavior of the response in regard to a turn on and turn

off behavior of various components.

As shown in Chapter 2, the frequency domain reflection coefficient for a two-

layered geometry backed by a perfect electric conductor is given using the wave matrix

 

 

method as

PM = R1(w)+ R2(w)P12(w) - Pi?(w)P22(w) - R1(w)R2(w)P22(W) , (5.1)

1 + R1 (“01920401912 (8)) - R1(w)P12(w)P22(w) - R2(¢«I)1’22(W)

with interfacial reflection coefficients

31(8) =%, (5.2a)

Here Z1 (w) and Z2 (w) are the wave impedances in the material layers given for parallel
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(TM) and perpendicular (TE) polarizations, respectively, by

 z,“(w) [cm/:2?” (5.3a)

2304) = mk'éjiwzjf) (5.3b)

where 171(w) and 172(w) are the frequency dependent intrinsic impedances of the ma-

terial layers, given in terms of the complex permittivities, ef(w) and e§(w), and per—

meabilities p1 and #2, as

#1 c 01
= , = f—, 5.4

m(w) 6.1;(w) 61(4)) 511‘60 + W ( )

— l;— ecw =6 6 2 .WWW/agar 2() 2.0+”, (55)

In this development, only nonmagnetic materials will be considered, thus in = [.12 =

 

#O- The wave impedance in free space, Z0, takes on the same forms as (5.3), but

with frequency independent intrinsic impedance, 770- Since k? = k3,,- + kg,- and

k3,,- = 193,0 = [so sin 6,” to satisfy boundary conditions at all points on the planar

surfaces, the wave impedances take the forms

 

Zz“(w) = 'Zl\/ki2 — k3 sin2 6,”, Z3 = 770 cos 6),, (5.6a)

z

  

[MT 770

Zflw) -—- 2 '2‘. 2 , 26L = COS, (56b)
\/ki — k0 sm 9,” m

for parallel and perpendicular polarizations, respectively. P1(w) and P2(w) are prop-

agation factors given by

P1(w) = efikzild (5.7a)

132(4)) = 8-37.2371. (5.7b)
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For notational purposes, the propagation factors will be written in the form

92(8) = e—J'WM, (5.8)
2

where the expressions contained in the exponent are given by

w71(w) = 2kz,1d

 

= Mfg? - k3 sin2 a,”

 

d C

= w-2— 11 - sin2 6),, (5.9)
c 60

and

ng(w) = 2kz,2h

 

= 2h(/kg — kg sin2 9),,

 

C

= 4.2% 6—2 - sin2 02-”. (5.10)

c 60

To simplify notation, the quantities El = 61,- — sin2 6,” and E2 = 62,. — sin2 0),, are

defined, giving

 

2d _ 0

71(8) = __c-l/E1+jw1€0 (5.118.)

72(w) = 3’: E2 + 02 (5.11b)

c jweo

 

5.1 Laplace domain representation

Since the frequency domain reflection coefficient, I‘(w), exists, a Laplace domain

representation also exists. This quantity is given, inserting the propagation factors,
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P1(w) and P2042), as

 

I‘(s) = F(w) _S

”-3

121(3) + 122(3)e-871(s) _ e—s(n(s)+‘rz(s)) ._ R1(3)R2(s)e-3"2(8) (512)

‘ 1 + R1(3)R2(s)e‘371(3) _ R1(s)e’3(71(3)+72(3)) _ 32(s)e—sr2<s> '

with expressions appearing in the exponential terms given by

8T1(8) =jWT1(w)l 3

”:3

2d _ 0'1

2 S— 61 + _—

C 860

2

= —d\/€—1\/§ s + 51
c 6160

2d _

= ?\/€—1-\/§\/3—31 (5-13)

and

372(3) = ij2(W)l .
“:3

2h _ 02

= s— 62 + -—-

c .360

= %\/g_2\/§ s + :22.
C 6260

2h _

= —C-\/EE\/§\/s - 82 (5-14)

where the quantities 31 = —01/Eleo and 32 = —02/Egeo have been defined. The

interfacial reflection coeflicients are given using (5.2) as R1(s) = R1(w) 3 and
w=-v

.7

R2(s) = R2(w) 8. The wave impedances, which are needed to compute the inter-
w:-v

.7
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facial reflection coefficients, are given for parallel polarization as

Z”(s) = 29ml 3

“=3
 

_ ’7' 2 2 - 2
— gin/k1. —kosm 0,7,

= £c£73\/i —sin20-

 

k
2' £0 m

’70 - 0i

(cg/co) V 6' 860

mffJ—— s.
= , 5.15a

Sfir + 03/50 ( )

and for perpendicular polarization by

2%) = Zflmlwzg
.7

ki’h‘

(fl? — 15351112 0,”

ki’lz‘

km/(éf/Eo) — sin2 a...

no

x/Ei + (Oi/350)

7703

x/E—ix/gx/S - 82"

 

 

 

 

 

 

 (5.155)

The interfacial reflection coefficients can thus be written for parallel and perpendicular

polarizations using (5.2), as

fi‘lfifi—T — (361,. + (01/60)) 605981

121(3) = Vern/3W + (scu- + (01/81)) 008%
.szcos0,-n - \fl'fi/EVS ‘“ 31

scos0,-n + \/?_1\/§\/S - 31

parallel polarization

perpendicular polarization

(5.16)
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and

(as... + $755737? — (set + amt/5m
 

 

R2(s) = (“11" + $757578?32 + (3.2,. + aim—175m “ —p01

“ER/3V3” aka/
Em

Lflml

fi—lfi s — 81 + EVEN
(517)

5.2 The time domain reflection coefficient

Using the frequency domain reflection coefficient found in Section 5.1, the time domain

reflection coefficient of the material stack, I‘(t), which is defined through an inverse

temporal transform, can be found. This time domain reflection coefficient, when

convolved with a finite duration incident waveform, gives the reflected field in the

time domain.

In order to use the extinction pulse technique, it must be shown that the time

domain reflection coefficient can be represented in terms of a natural mode series,

after a finite period called the early time. The time period during which the natural

mode series is an accurate representation of the time domain reflection coefficient

is commonly referred to as the late time. Thus, in the late time, the time domain

reflection coefficient should take the form:

W

I‘(t) = Z AneSn‘ (5.18)

n=l

where An is the amplitude coefficient associated with the nth pole, 3n = on + jean,

of the frequency domain reflection coefficient. This representation of the temporal

field is found by taking the inverse Laplace transform of (5.12), neglecting infinite

contour contributions for which (5.12) does not approach zero uniformly. To perform

this inverse transform, the singularities of the frequency domain reflection coefficient
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are explored, and the evaluation of the integral

/ I‘(s)e8tds (5.19)

Br

is carried out through complex plane integration. This is done in several steps, cor-

responding to several ranges of time, t. Here, the integration is carried out along

the contour Br, which is the Bromwich path. The Bromwich path, which defines the

inverse Laplace transform, is a path in the complex s-plane which is taken parallel to

the imaginary axis, to the right of all singular points. Evaluation of the integral in

(5.19) gives the time domain reflection coefficient as

1

1"(t) = -:—— I‘(s)eStds (5.20)

.7 27" Br

when infinite contour contributions are neglected. In order to carry out the contour

integration involved with the evaluation of this integral, singularities of the integrand

need to be determined, and appropriate branches defined.

5.2.1 Singularities of the frequency domain reflection coefficient

Singularities of the frequency domain reflection coeflicient take on various forms.

First, 371(3), 372(3) and Z,(s), given by equations (5.13) through (5.15), contain

complex square roots which lead to branch points at s = 0, s = 31, and s = 32.

Correspondingly, branch cuts are taken along the negative real axis to define the

principal branches of the square root functions. In addition, observing that the fre-

quency domain reflection coefficient may be written as

 r(s) = (5.21)

there are poles associated with the zeros of the denominator, D(s). These poles will

appear in the left half of the complex s-plane, with some lying on the real axis, and
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the rest occurring in conjugate pairs.

5.2.2 Evaluation of the time domain reflection coefficient

Evaluation of the time domain reflection coefficient is carried out by factoring the

frequency domain reflection coefficient such that the inverse Laplace transform of the

individual components are physically meaningful during various time periods. The

definition of these time periods, the factorization used in each time period, and the

implications of these developments are the subjects of Sections 5.2.2.1 through 5.2.2.3.

5.2.2.1 Early time: t < T1

The early time is defined as the time period before a response is observed at the

observation plane due to reflection from the second interface, as discussed in Section

2.4.1. This response should be identical to the interfacial reflection between two

semi—infinite media during this time period. Because of this, the frequency domain

reflection coefficient is factored into the sum of the interfacial reflection coefficient of

the first interface, R1(s), and a reduced reflection coefficient defined by

I"(8) = NS) - 121(3)

_ (1 — R¥(s))(82(s) - (same-3m»

1 + R1(s)R2(3)e-srl(3)
_ R1(s)e‘3(T1(3)+7'2(3))

_ R2(s)e-872(s)'
 (5.22)

Since the inverse Laplace transform is a linear operation, the time domain reflection

coefficient for the entire structure is given as a sum of the inverse Laplace transforms

of the two components of the frequency domain reflection coefficient. The inverse

Laplace transform of the interfacial reflection coefficient, given by R1 (t), is rigorously

developed in [14]. The evaluation of the inverse Laplace transform of the reduced

reflection coefficient remains; this is given by I"(t) = £‘1{F’(s)}, where F’(s) is

identical to I"(s), except for its behavior at infinity. This inverse transform is found
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by evaluating

1

35; Br FI(S)83tdS, (5.23)

neglecting infinite contour contributions for which I" (s) does not go to zero uniformly.

On an infinite contour, Coo, exponential terms appearing in the numerator of the

reduced reflection coefficient are given using (5.13) as,

, 2d _ 01 2d _ A

11m -— + -——- = -— = T 5.24|s|—*oo{ c (/61 350} c V61 1 ( )

Letting t1 = t — T1, which is negative for t < T1, evaluation of the integration along

the Bromwich contour in (5.23) is obtained by closing the integration contour in the

right half of the complex s-plane, as shown in Figure 5.3. Right half plane closure

is justified here, since t1 is negative for the time period t < T1. Note that T1 is the

two—way transit time of the first material region, as discussed in Section 2.4.1. The

early time is thus given by the time period t < T1. The integration on the infinite

contour Coo is given by

/ I"(s)e3tds=/ P’(s)eSTleSt1ds (5.25)

Coo COO

Here, Jordan’s Lemma cannot be directly applied to evaluate the integral contribution

over 000, because the integrand does not go to zero as |s| —> 00 at all points on

the contour. However, by definition of the time domain reflection cOeflicient, the

infinite contour contribution is to be neglected, as discussed in Section 2.4. Thus, the

time domain reflection coefficient in the early time is identical to the inverse Laplace

transform of the interfacial reflection coefficient, as developed in [14].

5.2.2.2 Middle time: T1 < t < T1 + T2

The middle time for this structure is defined as the time period between the observa-

tion of the reflection from the second interface at the observation plane, as discussed
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in Section 2.4.1, and the observation of the reflection from the conductor. During

this time period, physical reasoning suggests that the temporal response should be

identical to the reflection from the first layer of material backed by a half space of

the second material. Because of this, the frequency domain reflection coefficient is

factored into the sum of the reflection coefficient for a single material-backed lossy

layer, which is developed in Chapter 4, and a reduced reflection coefficient defined

by the difference between the total reflection coefficient and the frequency domain

reflection coefficient for the single material-backed lossy layer. The reduced reflection

coefficient is thus given by

I«Wag/(s) : 11(3) — Fllay(5)

= I‘(s) — 31(8) + R2(8)e’”1(3)

1 + R1(s)R2(s)e‘STl(3)

_e—s(n(s)+r2(s))
= X

1 + Rl(s)Rz(s)e‘"1(S>

X (1 - Ri(s))(1 - 113(3))

1 + R1(S)R2(s)e—371(3) — R1(s)e-8(T1<3>+72(8)) — R2(s)e‘372(3)

(5.26)

 

 

Since the inverse Laplace transform is a linear operation, the time domain reflection

coefficient for the entire structure is given as a sum of the inverse Laplace transforms

of the two components of the frequency domain reflection coefficient. The inverse

Laplace transform of a material-backed lossy layer is developed in Chapter 4. The

evaluation of the inverse transform of the reduced reflection coefficient remains; this

is given by PIZIaym = £-1{F’2[ay(s)}, where F’mayfis) is identical to Pam/(s), except

for its behavior at infinity. This inverse transform is found by evaluating

1 I

_ I‘2lay
j27r B (8)63td8, (5.27)

7'
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neglecting infinite contour contributions. On an infinite contour, Coo, exponential

terms appearing in the numerator of the reduced reflection coefficient are given using

(5.13) and (5.14) as,

, 2d 01 2h 02 2d 2h

1 _,/- _— —,/- _ =_ - _ - a .Islgrnoo{c €1+8€0+ C 62+360} C\/€—1+ c\/_€— T1+T2 (528)

where T1 and T2 are the two-way transit times of the first and second material layer,

respectively, as discussed in Section 2.4.1. Letting t2 = t— (T1 +T2), which is negative

fort < T1 +T2, evaluation along the Bromwich contour in (5.26) is obtained by closing

the integration contour in the right half of the complex s-plane, as shown in Figure

5.3. Right half plane closure is justified here, since t2 is negative during this time

period. The end of the middle-time period is defined by (5.28). The integration on

the infinite contour Coo is given by

/ I"(s)e8tds=/ F'(s)eS(T1+T2)e3t1ds (5.29)

Coo Coo

It is not possible to apply Jordan ’3 Lemma directly to this integral, since the integrand

does not go to zero uniformly on the entire contour, Coo. However, by definition of the

time domain reflection coefficient, the infinite contour contribution is to be neglected.

Thus, during the middle-time period, the time domain reflection coeflicient is identical

to the the time domain reflection coefficient for the material-backed lossy layer, which

is rigorously developed in Chapter 4. It is found in Chapter 4 that after the time T1,

the time domain reflection coefficient for the material-backed lossy layer will be given

by a natural mode series if the material backing is lossless, otherwise a branch out

contribution may be present. This holds here as well, since the response is identical

to that of the material-backed layer during the middle time period.
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5.2.2.3 Late time: t > T1 + T2

The late time of the temporal response for this geometry is defined as the portion of

the transient response after a response from a reflection from the conductor backing

arrives at the observation plane, as discussed in Section 2.4.1. For this time period,

the frequency domain reflection coefficient for the entire geometry, given by (5.1), is

considered. Here the entire geometry is used because the middle time response is

not necessarily a natural mode series. By examining the properties of the reflection

coefficient for the entire structure, insight can be gained into the possible existence

of a branch cut contribution in the late time. Also, insight can be obtained as to

what happens to the the branch out contribution that may be present in the response

during the middle time, once the late time begins.

Evaluation of the inverse transform of the reflection coefficient is carried out

through the integration along the Bromwich path, neglecting infinite contour con-

tributions; this integration is given by

1

-,-— I‘seStds. 5.30m B. <) < )

On an infinite contour, Coo, exponential terms appearing in the numerator of the

reflection coefficient include the two-way transit times of the two layers, T1 and T2 as

in (5.28). Letting t2 = t— (T1 +T2), which is positive for t > T1 +T2, evaluation along

the Bromwich contour in (5.30) is obtained by closing the integration contour in the

left half of the complex s-plane, as shown in Figure 5.5. For closure of the integration

contour in the left half plane many integration paths are involved. In this discussion,

these integration paths will be referred to in two groups, the outer contour, C, which

includes integration paths parameterized by quantities receding towards infinity, and

the inner contour, C’, which includes integration paths taken along the branch cut.
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These integration contours are given by

C=BruL1uC§0ucgoUL2

C’=lAU71U72U...U’79UllUlQU...U18UlB

Using Cauchy’s residue theorem, evaluation of the closed contour integration is given

by

f I I‘(s)e3tds = j27r 2 Res [I‘(s)e3t, complex poles]. (5.31)

CUC'

Thus, determination of the time domain reflection coefficient is possible provided the

integral contribution from each path is known.

5.2.2.3.1 Contributions from the outer contour, C

The Laplace inversion integral is found by computing (5.31) for the Bromwich path

contribution in terms of the contributions from all other integration paths and compu-

tation of the residues from the enclosed simple poles. The outer contour, C, consists

of various integration paths that are parameterized by quantities that recede towards

infinity, including the Bromwich path which defines the inverse Laplace transform.

Contributions from 0:0 and 0,;

Integral contributions from 0;, and Co}, are given directly by Jordan’s lemma, as

stated in Theorem 3.1, since I‘(s) —> 0 on the contours. Thus, direct application of

Jordan’s lemma gives

/ r(s)e8tds = o (5.32)

038

I‘(s)eStds = 0. (5.33)

058

Contributions from L1 and L2

On L1 and L2, Jordan’s Lemma cannot be directly applied to evaluate the integral
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contributions, because the integrand does not go to zero as |s| —) 00 at all points on

the contours. However, by definition of the time domain reflection coefficient, the

infinite contour contribution is to be neglected, as discussed in Section 2.4.

Contributions from the inner contour, C"

The segments of the inner contour C", which enclose the branch cut, can be broken

into three groups. The first group consists of the contours 72, '74, ’76, and ’78, etc,

which enclose the real poles on the branch cut. Note that two poles are shown on the

real axis here, but more may appear depending on the properties of each material

layer, and the incidence angle. The second group is made up of contours ’71, 73, 75,

'77, and '79 that enclose the branch points. The straight line segments immediately

above and below the branch out make up the final group. Within this group, the

segments lA and lB, which lie to the left of all of the branch points are handled

separately from the segments 11 through l8.

Contributions from 72, '74, ’76, and ’78

The integral contributions from the first group of contours, which enclose poles

on the branch cut, can be found by calculating the residues of I‘(s)e3t at the poles.

It is found that all of the poles of I‘(s) are of first order and thus the residues may be

found from

Res [F(3)6“, poles]

 

= lim (3 - sk)[F(s)eSt] = Akeskt (5.34)
s—ask

323k

where

 

_ R1(3k) + R2(sk>e’8m<3k) — e-SkWstW — R1(Sk)R2(8k)e’SkT2(3k)
A

'° 8144(3)]
 S=8k

(5.35)

is the complex mode amplitude, with the denominator of the reflection coefficient

written as l—M(3) Note that l’H6pital’s rule has been used to obtain the form of the
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complex mode amplitude shown here. Carrying out the details of the differentiation

gives

—[M(S)]= ; [32(8)8Mm +R1(8)63(71(3)+T2(S)) -R1(8)R2(8)6—371(3))]

=e[-8(T1(8)+72(3)) _ R“(3)6371(8)]d_‘: [31(3)]

+ [e-STQ(3)— R1(s)e371(3)];8[R2(s)]

+ [lame-"2(3) — R1(s)R2(s)] 21';d[e’3T1(3)]

+ [R2(s) + R1(s)e-371(3)] Ed; [e—STZM]

with the derivatives of the exponential terms given by

and

_dd_8[e—5T2(s)}_ _[hz@T—ii/Egee—sr2(s)]

The derivative of the first interfacial reflection coefficient is found using (5.16) as

the] = $18
 

where, for parallel polarization,

232 —SS

T1(s) = fififie€1r+ :0)cosflin —2elr\/_\/§\/s — 31 cosflz-n

a 2 0

91(3) = (361,- + :1) cos2 0,” + 2(selr + 6—1)\/'€1\/§\/s — 81 cos 0;" + €1.3(s - 31)

0 0
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and for perpendicular polarization

-
2s2 —83

T1(S) = 2\/e_1\/-s-\/s — 81 cos Om— cos 0;n\/'e_‘_7___s -.:‘1

(21(3) = 52 cos2 0,2,, + 2cosflms\/E—1_\/§\/s — 31+ €1.3(s — 31)

The derivative of the second interfacial reflection coefficient is found using (5.17) as

 11418:;

where, for parallel polarization

 

T2(S)=\/€_1\/€—2[(€1r—-62r:O)S\/8-S1\/S-S2

1 3(32—31) ( 01)( 02]

+2\/s—31\/.§—32 3€1r+60 “Zr-+50)
 
 

0’1 2_ 02 2_

{22(5) = (361,- + E—) 628(8 — 32) + (362,. + :) 618(8 —- 31)

0 0

a a

+ 2(361,» + 21) (8627- + 6—2) \/E1\/E23\/s - 31\/s - 31

0 0

 

and for perpendicular polarization as

 
__ _ _ 3(31-82)

_fififi-Slx/S-Sz

 

 

92(3) = 323(8 - 82) + 318(3 — 81) + 2\/E1\/Egs\/s — 81%3 — 32

Here it is noted that the residues of the poles located on the branch cut must be
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evaluated carefully, taking into account the value of functions on each side of the

branch cut. For this particular problem, the reflection coefficient is even about the

branch cut, as discussed on pages 131 through 140, so the values on each side of the

branch out are the same. This allows the evaluation of the residues from each side to

be combined into one evaluation giving

/ I‘(s)e3tds = —j27r 2: Res [I‘(s)e3t, real poles]. (5.36)

72W4U76U’78

Contributions from 71, 73, 75, 77, and 79

The integral contribution from the contour surrounding the branch point at s = 0

can be computed by denoting the radius of 75 as r0 and letting 430 be an angle

measured counterclockwise from the real axis to the point on 75. This allows any

point on the contour to be located as s = roej<1{’0. The reflection coefficients on the

75 contour are given in the limit of r0 —+ 0, i.e., s —+ 0, as

\fl—IfiVS-S — (351r+ %)cos0.-n
U —)

121(3) = «Es/573 — 81 +(351r + 26L) cos B...

ficosgin " fiivs - sl_) __1

ficosOZ-n + \fER/s — 31

 —1 parallel polarization

 perpendicular polarization

(égwawis—z- ($757731

122(3) _, (%)¢'€‘2¢:92+ (gt/57:31

\/5r1\/‘—31--\/E—2\/-—52é01_

fim+¢5¢f~92 1

This gives the reflection coefficient from (5.12) as

 2 01' parallel polarization

perpendicular polarization

P _ —1+C("i —1+C("i

(5) " 1.4 ".4
 =—1

Thus,

l"(s)e3t = —e3t



and

|I‘(s)e‘°t S erOt.
 

Therefore

I/ F(s)e3tds| S 27rroer0t —-+ 0, (r0 —4 0).

75

As a rasult, the integral contribution from the contour around the branch point at

s = 0 is given by

/ r(s)e3‘ds = 0. (5.37)

75

The integral contributions from the contours surrounding the branch point at

s = 31 can be computed by denoting the radius of both 73 and 77 as r1 and letting

(151 be an angle measured counterclockwise from the real axis to a point on either 73

or 77. This allows any point on the contours to be located as s = 31 + rlej¢1. The

reflection coefficients on the contours are given in the limit of r1 —> 0, i.e., s —> 31, as

75757?—- s1 — (sq.- + gnaw...
_ 0'

121(3) = \/€—l\/§V3—31+(3€1r+ 2%)00891'”

scosélz-n — \/E—1\/§,/s — 51_+1

scosflz-n + fififls - 81

 

-* -1 II -p01

J. —pol

(8611- + $75,757:: — (3.2,. + $37577: _)

172(3) _____ (351,. + %)7%3,/§,/s — 32 + (862,- + %)\/E_1(/§\/§——31

75771—1 — 75757: _, _,

This gives the reflection coefficient from (5.12) as

 1 ll -p01

_L —pol

4:1 1 63-371 (s) __ e—s(rl(s)+1'2(s)) + 6-372(s)

N8) = 1 — e-371(3) :l: e-3(Tl(s)+72(s)) $ 6-872(8)

 

where the top sign is taken for parallel polarization, and the bottom sign for perpen-
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dicular polarization. Thus,

P(S)€St : :Fest

and

|F(S)83t _<_ g(sl'H'Ilt.

 

Therefore

l] F(s)eStdsl S 27rr1e(31+r1)t —+ 0, (r1 —-+ 0).

73U’r7

As a result, the integral contribution from the contour around the branch point at

s = 31 is given by

/ I‘(s)e3tds = 0. (5.38)

73U77

The integral contributions from the contours surrounding the branch point at

s = 32 can be computed by denoting the radius of both 71 and 79 as 1'2 and letting

(132 be an angle measured counterclockwise from the real axis to a point on either 71

or 79. This allows any point on the contours to be located as s = 32 + r2ej¢2. The

reflection coefficients on the contours are given in the limit of r2 -—+ 0, i.e., s —r 32, as

75775782 - 81-(8261r + 21;) COS 9m
 

 

 

 

 

A H H
— —pol

171(3) _. “ax/37732 - 81+(8261r + %)cos0in 2

I 32 case... - 7575273773, g C, 1 _p01

82 COS 9m + 7378—2782 — 31 2

(Sélr + 29757378 — s — (sag. + $375,757;ng 1 || 1

—) — —p0

122(3) = (361,- + %)¢%—2_\/§‘/s — 32 + (362,. + “ER/{173‘ /3 __31

fiffi S—Sl—fifi 8—82 —>—1 .L—POl

fiTfivs — 31 + \/E—2\/§\/8 - 82

This gives the reflection coefficient from (5.12) as

ll,J- — _ ||,1 _

F(S) _ 02 2F 6 371(3) — e 3(Tl(3)+72(3)) i 02 8 8T2(s) é D|Li

_ 1 ; Ogle—ms) _. Ogle—scrnsnms» :1: e-sr2(s)
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where the top sign is taken for parallel polarization, and the bottom sign for perpen-

dicular polarization. Thus,

F(S)€3t = D”,_Lest

and

lp(3)est S|Dl1,i|e(32+r2)t.

 

Therefore

If F(s)e3tds| S 27rr2|D”’J‘|e(32+r2)t ——> 0, (r2 —> 0).

711179

As a result, the integral contribution from the contour around the branch point at

s = 32 is given by

/ I‘(s)e3tds = 0. (5.39)

71W9

Contributions from segments above and below the branch cuts

The contributions from the straight line segments of the inner contour immediately

above and below the branch cuts are separated into two groups. The first group is

given by lA and l3, which lie to the left of the branch points. The rest of the contours,

ll through l6, lie to the right of the leftmost branch point. Note that if more than

two poles lie on the real axis, more contours would be included in at least one of

these groups. The developments here will remain valid for any number of integration

contours along the branch cut.

Using (5.1), and noting that this equation can be written simply as l"(s) =

N(s)/D(s), the numerator and denominator of the frequency domain reflection coef-
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ficient can be put into the forms

N(s) = (21 — 29% + 211+(22 - 211(21+ Zoe-”1(3)

— (21 + 201(22 + 211e‘8(71(31+7213” - (21 — 201(22 — 211687213)

= 2122(1 + e‘371(8>)(1 — 73-82(8)) — 2022(1 — e-STI(8>)(1 — 72-82(8))

— 2021(1 + e-37‘1(81)(1+ ire-”291) + 270 — e-ST1(31)(1+ 532(3))

_—jZ1Z2 cos ( 37;“)) sin (3T2(,S)) + Z0Z2 sin (83.39)) sin (ST2(,S))    

 

J 23 2]

— ZoZ1 cos(—--—-%—-T(.s))cCOS (if?) +j212sin(-%S—))COS(ST§J(«S))

= x + W.
(5'40)

and

D(s) = (Z. + 201(22 + 21) + (21 -— 201(22 — 218—”1(3)

— (21— 29% + Zoe“WWW — (22 — 29% + Z079—8T2(S)

= Z1Z2(1+ e-371(s))(1— e—STQM) + Z0Z2(1— e‘371(s))(1 — e-872(3))

+ 2021(1+ e"371(3))(1+ e-ST2(81)+ 27(1— e—3T1(S))(1 + (372(3))

__ . 371(3) . 872(8) . S71(8) . 872(8)
— jleg cos (-2—j-) s1n (T) — Z0Z2 s1n ( , )s1n( , )

  

 

J 23 22

+ 2021 cos (£2532) cos (2'?) +3.2? Sin (37;.(87) COS ($2)

= __x +731. (541)

where a multiplication and division by 63(T1/2+T2/2) has been used, and the quantities

X and 32 have been defined as

   X: ZOZQ sin (371(8)) sin (ST2(S))— ZoZ1 cos03(ST1(S)) cos (SJ—2&2) (5.42)

  

27' 2] 2] 2J

y = ZlZg cos (833(8)) sin (833(8)) + Z12 sin (fig—392) cos (%€2) (5.43)
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This allows the frequency domain reflection coefficient to be written as

X + jy

-r1’ + 73’

-X2 — j2XJ/ + 322

X2 + 3’2 '

NS)

 (5.44)

Using this expression for the reflection coefficient, even symmetry about the branch

cut can be shown if the quantities X2, y2,and Xy are shown to have even symmetry

about the branch cut. To show this, the behavior of each of these quantities on either

side of the branch cut needs to be evaluated.

Branch cuts which define the principal branches of the complex square root func-

tions of the wave impedances and propagation factors are taken along the negative

real axis. These branches are defined by -1r < 430 3 7r, and —7r < ()5,- 3 7r. Looking

at Figure 5.6, begin by examining the integration paths designated as A+ and A_.

For the contour A+, ¢1 = ¢a = (1);; = 1r. Letting s = —:r, where a: is a nonnegative

real number, denote a point on the negative real axis, the products of the square root

functions found in the wave impedances and exponential terms take the form

\/§\/s — so, = \/r_1\/r_aej(¢1+¢O)/2 = 75572: + smej7r = —\/:1_c\/:c + 80 (5.45)

J5,“ - 33 = flfieflmflsfivz = «LE/a: + sflej7r = —\/:5,/x + 3,3 (5.46)

where so and 35 represent the two branch points 31 and 32, such that lsal 3 Hal

Which of the branch points 51 and .92 correspond to .90, and which to 33, depends

on the material properties of each region, and the incidence angle. Every case will be

examined in this section.

On the contour A_, 451 = $0 = (1)3 = —7r, and the products of square roots found
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in the wave impedances and exponential terms are given by

\/§\/s — so 2 £72: + soe"'j7r = —\/a_:\/:1: + so (5.47)

fifl = fiWe-j" = —\/:E\/:T35 (5.48)

Thus, the products of these square roots are analytic for the portion of the branch

cut which the A contours run, and

r(s)| F(s)| (5.49)
A+ — A—°

Since the integrations above and below the branch cut are taken in opposite directions,

/ I‘(s)e3tds+/ I‘(s)e3tds = 0 (5.50)

IA 113

On the contour B+, d1 = do = 7r, d3 = 0, and the products of square root

functions found in the wave impedances and exponential terms are given by

737s—sa = 757271338”: Mix/ES; (5.51)

75m = 72577—35172: jfim (5.52)

Similarly, on the contour B_, d1 = do = —7r, d5 = 0

fivs-so = J5 r+soe—j"= —\/:_r_\/.r+so (5.53)

75/51?[, = 7577—7955-1714 = —j\/:E\/—_x—-_-TB (5.54)

On 0+, d1 = 7r, do = ¢B = 0, and the products of square root functions found in
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the wave impedances and exponential terms are given by

\/§\/s—so = JEV—x—soejfl/zz jfiV—z—so

fids—sa = fi,/—x—s)3ej"/2= jfiM—x—sfi

Similarly, on 0., d1 = —7r, do = d3 = 0

x/Ex/s-sa = fiv-x-sae’j"/2= -j\/5\/-x-sa

\/§‘/8—Sfi = fi,/—x—sfie_j"/2= —J'\/5:-,/—:1:—35

(5.55)

(5.56)

(5.57)

(5.58)

The products of square roots for the portion of the branch cuts which the B and C

contours run are not found to be analytic, so further investigation into the form of

the reflection coefficient is needed.

Case 1: (01/351) < (02/32)

Examining each combination of material parameters for the first and second layer,

beginning with the case of (01/21) < (02/22), the behavior of the frequency domain

reflection coefficient on each side of the branch cut is determined. For this first

case, so = 31 and 3,3 = 32. Using (5.51) through (5.58), wave impedances on each

integration path take on the form

 

 

 

 
 

 

Z = Z = 770:” :2

15., ‘5_ 72—17577“, 1

z — “70$ —z

10+ " 175757—451“ 1+

Z — "of -z

IC- — j7’ET7E7—z-31 _ 1—

z I '70:” Z
2 = . = 2

3+,C+ J\/€r2\/5\/ "'17 " 32 +

Zgl = "0“: =22_

B—.C— 775757-13 - 82
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(5.60)

(5.61)

(5.62)

(5.63)



so, Z1+ = —Z1.., 22+ = —Z2_. The exponential terms are given using

 

2d

8T1 = 371' = ——\/'€'1\/E\/.’L‘ + S = -2‘I>1 (5.64)

B+ B- C

.2d _ .
371 0+ = 7—6‘1/elfi1/‘33 — 31 = J2<I>1+ (5.65)

2d

87'} C = —j-C—‘/E1\/5\/—a: — s = j2<I>1_ (5.66)

2h

87'ng C = j—VEQfiV—CII — S = j2¢2+ (5.67)

+» + 0

.2h _ .
ST2|B C = —]?\/€2\/1;\/—$ — 32 = J2<I>2_ (5.68)

where the quantity <11,- = (37,-(s)/2J') has been defined. Note that (11,-... = —<I>,-_ in all

cases.

On the contour B+, plugging (5.59) through (5.68) into (5.42) and (5.43) gives

X2|B+ = Zng+ sin2(j<I>1) sin2 <1>2+ — Z8Z12c0s2(j<1>1) cos2 <1>2+

— 2Z3Z122+ sin(jQ>1) cos(J'<I>1) sin (112+ cos (112+ (5.69)

y2|B+ = Z12Z22+ 00320411) sin2 (112+ + Z? sin2(J'<I>1) cos2 <I>2+

+ 2ZfZg+ sin(j<I>1) cos(J'<I>1) sin <I>2+ cos <I>2+ (5.70)

xy|B+ = sin(J'<I>1) cos(j<1>1)(zoZlZ§+ 5152 <12, — 202? cos2 <I>2+)

+ ZoZl2Z2+ sin (112+ cos <I>2+(sin2(j<I>1) — cosz(j<I>1)) (5.71)
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Similarly, on the contour B_,

X2|B_ = Z3Z§_ sin2(j<1>1) sin2 (1)2- — Z3Z12 cos2(j<I>1) cos2 (D2-

— 2Z3Z1Z2_ sin(j<I>1) cos(j<I>1) sin (1)2- cos (1)2- (5.72)

3?le = Z12Z%_ cos2(j<I>1) sin2 CD2- + Zi‘sin2(j<1>1)cos2 (D2-

+ 2Z?Z2- sin(j<I>1) cos(j<I>1) sin (D2,. cos <I>2_ (5.73)

2’le- = sin(j<I>1) cos(j<I>1)(Z0Z1Z%_ sin2 @2_ — Zozi’ cos2 c2-)

+ 202,222- sin <r>2- cos <I>2_(sin2(j<1>1) — cos2(j<I>1)) (5.74)

Note that wave impedances that change sign as a point moves from 3+ to B- across

the branch out appear raised to even powers, or grouped with a sine function that

also changes sign upon crossing the branch cut. Thus, the quantities X2, 322, and

X)? are even about the branch cut, and by (5.44),

r | = r I . 5.7(s) 3+ (s) B_ ( 5)

For the contour 0+,

X2|C = 2323+ sin2 CD1+ sin2 <1>2+ — 2323+ cos.2 <I>1+ cos2 <1>2+
+

— 2Z8Z1+Z2+ sin <I>1+ cos <I>1+ sin CD2+ cos <I>2+ (5.76)

y2|C = Zf+23+ cos2 (1)1... sin2 <I>2+ + Z11+ sin2 <I>1+ cos2 <I>2+

+

+ 2Zi3+ Z2+ sin <I>1+ cos <I>1+ sin <I>2+ cos <I>2+ (5.77)

xy‘c = sin <I>1+ cos ¢1+(zozl+z§+ sin2 <I>2+ — 2029+ c052 <1>2+)
+

+ ZOZ¥+Z2+ sin (1)2... cos <1>2+(sin2 <I>1+ - cos2 <I>1+) (5.78)
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Similarly, on C- ,

x2] = 232; sin2 <1>1_ sin2 <52- - 23.21% cos.2 <51- cos2 <52-
C-

- 2Z321_Zg_ sin (D1- cos (1)1- sin (D2- cos (D2-

3’2) = Z12_ Z%_ 0052 (1)1- sin2 (D2- + Z1: sin2 (P1- cos2 CD2-
C-

+ 2Zi3_Z2_ sin (1)1- cos (D1- sin (1)2- cos @2_

xyl = sin (D1- cos <I>1_(Z0Z1-Z§_ sin2 (1)2- — ZoZiL cos2 (1)2-)

C-

+ ZoZ12_ 22.. sin <I>2_ cos <I>2_(sin2 <I>1_ — cos2 (1)1-)

(5.79)

(5.80)

(5.81)

Note that wave impedances that change sign as a point moves from the 0+ contour

to the C- contour across the branch cuts appear raised to even powers, or grouped

with a sine function that also changes sign in crossing the branch cuts. Thus, the

quantities X2, 372, and Xy are even about the branch cut, and by (5.44),

F(S)|C+ = F(S)lc-'

Case 2: (01/31) > (02/32)

(5.82)

For this case, 30 = 32 and 35 = 31. Using (5.51) through (5.58), wave impedances

on each integration path take on the form

 

 

 

 

 

21’ = - — -nox - 21+

3+,C+ Jx/afi '17 - 31

ZI'B_.C— — -J'\/?—1\/5 -$ - 51 — Zl—

Z2 2 ZZI = - -7701: ___

3+ 3— —x/€—2-\/5\/$ + 32.

Z = -7703: = 22

2 0+ jVE—zx/Ev-x - 32 +

22 = ”’0‘” = 22-

0— -J'\/E_2—\/5\/-$ - 32 
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(5.83)

(5.84)

(5.85)

(5.86)

(5.87)



Thus, 21+ = —Z1_, 22+ = —Zg_. The exponential terms are given using

.2d _ .
STI’B C' = ]—\/€1fi\/—$—S =32<I>1+

+, + C

.2d _ .
sn‘B C = —]—C—\/61\/§\/—$-31=J2<1>1_

2h

8T2 = STgl =———\/Eg\/E\/:E+S =—2<I>2

B+ B- C

.2h _ .

8T2 0+ = J—C-V€2\/5\/-$-82=32‘P2+

.2h _ .
8720 = —]-C—\/€2\/.’E\/—$—S =32<I>2_ 

On B+, plugging (5.83) through (5.92) into (5.42) and (5.43) gives

X2|B+ = 232% sin2 91+ sin2(j<I>2) - 232;“; cos2 91+ cos2(j<I>2)

— 2Zng+Z2 sin (P1... cos <I>1+ sin(j<I>2) cos(j<I>2)

y2|B+ = Z12+Z§ cos2 (PH. sin2(j<1>2) + Zf+ sin2 <I>1+ cosz(j<1>2)

+ 2212.22 sin 91+ cos 91+ sin(j<I>2) cos(j<I>2)

26le+ = sin <I>1+ cos <I>1+(Z0Z1+Z% sin2(j<I>2) — ZoZi)‘+ cos2(j<I>2))

+ ZoZ12+Z2 sin(j<I>2) cos ¢2+(sin2 <I>1+ — cos2 <I>1+)

XZIB = Z3Z§ sin2 (1)1- sin2(j<I>2) - Z3Z¥_ cos2 (D1- cosz(j<I>2)

— 2Z8Z1_Z2 sin (P1- cos <I>1_ sin(j<1>2)cos(j<1>2)

yQ‘B = Z12_Z§cosz <91- sin2(j<I>2) + 212 sin2 <91- cos2(j<1>2)

+ 2Z?_ Z2 sin (D1- cos <I>1_. sin(j<I>2) cos(j<I>2)

xle_ = sin <91- cos <I>1_(zozl_z§ sin2(j<1>2) - ZoZi'L cos2(j<1>2))

+ ZOZIZ_Z2 sin(j<I>2) cos(j<I>2)(sin2 (D1- — cos2 <I>1_)
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(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)

(5.95)

(5.97)

(5.98)



Note that wave impedances that change sign as a point moves from B+ to B- across

the branch cuts appear raised to even powers, or grouped with a sine function that

also changes sign upon crossing the branch cuts. Thus, the quantities X2, 3’2, and

X)’ are even about the branch cut, and by (5.44),

r(s)| = r(s)|3+ (5.99)B—°

The expressions for X2, 372, and X)? on the integration paths 0+ and C- are

given by equations (5.76) through (5.81), since the wave impedances and phase factors

are identical for these paths for all combinations of (a) and (5%). Therefore, as in

case 1,

r(s)| = r(s)| (5.100)
C+ C—'

Case 3: (01/31) = (02/32)

For this case, the integration paths 8.). and B- disappear, leaving just the in-

tegration paths along 0+ and 0-. These expressions are given by equations (5.76)

through (5.81), as in the first two cases.

Thus, for all combinations of (01/21) and (oz/E2), the frequency domain reflection

coefficient displays an even symmetry about the branch cut along the entire negative

real axis. Since integrations along the branch cut are taken in opposing directions,

there will be no contributions from integrating along these paths; i.e.,

/ I‘(s)| eStds+/ 1(9)) ends

1112 3+ 1314 0+

+/ P(s)| eStds+/ I‘(s)l estds=0. (5.101)

15,16 8" 17,18

Thus, in the late time, the time domain reflection coefficient is given from (5.31)
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_ L stI‘(t) — 3,2” Br I‘(s)e d3

= 2: Res [1"(s)e3t, complex poles] + Z Res[F(s)eSt, real poles]

= Z Res[I‘(s)eSt,poles] = Z Akeskt (5-102)

11:

which is a pure natural mode series, with amplitude coefficients given by (5.35). Here,

the pole contributions from the complex poles included inside the closed contour, and

the contributions from the poles on the real axis are combined to give the complete

pole series for this geometry, where all of the residues are evaluated using (5.34).

It is important to note that the response of the two-layered material structure

backed by a perfect conductor is a natural mode serias during the late time. This

implies that the branch cut contribution that is present in the middle time of the

response is turned off when the reflection from the conductor backing reaches the ob-

servation plane; that is, at the start of the late time. This has important implications

in the form of the temporal response in that a turn on and turn off behavior can be

identified. This behavior provides motivation for investigation into this occurrence

for the n-layered case in Chapter 6.
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Figure 5.1. Air Lossy Lossy PEC
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Figure 5.2. Single interface between free-space and a lossy dielectric
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Figure 5.3. Closure of the Bromwich contour in the right half plane.
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Figure 5.4. Material-backed lossy dielectric layer
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Figure 5.6. Inner contour integration paths for left half plane closure
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CHAPTER 6

N-LAYERED MATERIAL PROBLEMS

The temporal response from a multilayered material backed by a material half space

is obtained through the inverse Laplace transform of the frequency domain reflection

coefficient. For a planar layered structure, this reflection coefficient is easily obtained

in closed form using the wave matrix method. A methodology for performing the

inverse Laplace transform on a general, multilayered material is developed here.

Calculation of the inverse Laplace transform for an N-layered material structure

is broken up into various steps, corresponding to various time periods of the temporal

response. Physically, these steps have to do with the time that it takes for an incident

electromagnetic field to penetrate the multilayered structure. These time periods are

determined by the thickness of each material layer, along with the speed of light

in that layer. Further discussion on the definition of these time periods is given in

Sections 6.2 and 6.3.

The inverse Laplace transform is defined by an integration in the complex s-plane

along the Bromwich path. This is a path which is taken parallel to the imaginary axis,

to the right of all singular points. Singularities in the frequency domain reflection

coefficients occur in various forms. An example of the types and locations of these

singularities is given in Figure 6.1. Examining the figure, one type of singularity

present is simple poles, which will appear both on the real axis, and as complex

conjugate pairs. Either type of pole will appear in the left half of the complex s-plane

for this passive system. In addition to simple poles, the frequency domain reflection

coefficient contains complex square roots due to the terms 373(9) and Z,(s). The
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quantity 373(3) is given in Chapters 3 through 5 as

  

213. .

‘x/EIw/E 8+.”
C 5i 60

= 242473757? (91)

875(8) =

where A,- is the physical thickness of the material layer, c is the speed of light in free

space, and E,- = 6,1,. — sin2 02-". Here 6,, is the relative permittivity of region 2', and

0,3, is the incidence angle of a wave in region 0 impinging on the first interface to the

layered material. The wave impedance of region 2' is given by

 perpendicular polarization

1703

I nova/378787:

865 + 05/60

(5.2)

 parallel polarization

In both the wave impedance and propagation terms, the product of complex square

roots fife—:37 appears. These square roots will lead to branch points and corre-

sponding branch cuts in the complex s-plane. The branch points are given by s = O

and s = 3i- The quantity 3, = —a,-/E,-eo is a nonpositive real number, so the branch

points are located on the real axis.

6.1 Evaluation of the Laplace inversion integral

In taking the inverse Laplace transform, closure of the integration path in the complex

plane will take place in either the left or right half plane, depending on the behavior

of the integrand on an infinite contour. The implications of closure in each half plane

are discussed here.

6.1.1 Left half plane closure

When closure is taken in the left half of the complex s-plane, as shown in Figure 6.2,

many integration paths are involved. In this discussion, these integration paths will
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be referred to in two groups, the outer contour, C, which includes integration paths

parameterized by quantities which recede towards infinity, and the inner contour,

C", which includes integration paths taken along the branch cut. These integration

contours are given for the example of Figure 6.2 as

C=BruL1uC§ou050LJL2

C’=IAU’)1U’72U...U’77U11UlgU...UlfiUlB

Using Cauchy’s residue theorem, evaluation of the closed contour integration is given

where f(3) represents the frequency domain reflection coefficient for which the inverse

Laplace transform is sought. Thus, determination of the time domain reflection co-

efficient is possible provided the integral contribution from each path is known. Note

that the singularities shown in the s-plane in Figure 6.2 are for illustration purposes,

and the actual singularities associated with a given frequency domain reflection coef-

ficient will vary. Thus, more poles, branch points, and branch cuts will occur in some

cases, and additional segments will be added to the inner contour. The formulations

included here are valid for any number of these contours.

6.1.1.1 Contributions from the outer contour, C

The Laplace inversion integral is found by computing (6.3) for the Bromwich path

contribution in terms of the contributions from all other integration paths and compu-

tation of the residues from the enclosed simple poles. The outer contour, C, consists

of various integration paths that are parameterized by quantities that recede towards

infinity, including the Bromwich path which defines the inverse Laplace transform.

Contributions from 03:, and Co},
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When closure in the left half plane is warranted, that is for t > O, integral contri-

butions from CS}, and CC; are given directly by Jordan’s lemma. This is given in [15]

as

Theorem 6.1 (Jordan’s Lemma) If H(z) is an analytic function having the property

lim H(Rejo) =0, — 53—27:gas
R—voo t

o
l
=
i

I
A

Q I/
\

w
i
n

3

m
l
:

uniformly with respect to 6, then, if b is a nonzero real number,

lim H(z)ebzdz = 0, if b < 0
R—ioo C1

lim H(z)ebzdz = 0, if 5 > 0
R—ioo C2

where Cl and 02 are semicircles in the right and left half planes, respectively, centered

at the origin and of radius R.

Since f(s) —+ O on the infinite contours, 032, and Co}, for the reflection coefficients of

interest here, application of Jordan’s lemma gives

[0+ f(s)e3tds = O (6.4)

(s)e3tds = 0, (6.5)

Co—o

where t > 0.

Contributions from L1 and L2

On L1 and L2, Jordan’s Lemma cannot be directly applied to evaluate the integral

contributions, because the integrand does not go to zero as |s| —i 00 at all points on

the contours. However, by definition of the time domain reflection coefficient, the

infinite contour contributions are to be neglected, as discussed in Section 2.4.
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6.1.1.2 Contributions from the inner contour, C"

The segments of the inner contour C" , which enclose the branch cut can be broken

into three groups. The first group consists of the contours '72, '73, 75, and ’76, etc.,

which enclose the real poles on the branch cut. Note that two poles are shown on the

real axis here, but more may appear depending on both the properties of the material

layers, and the incidence angle. The second group is made up of contours '71, )4, and

'77 that enclose the branch points. The straight line segments immediately above and

below the branch cut make up the final group. Within this group, the segments 1A

and l3, which lie to the left of all of the branch points will be handled separately

from the segments l1 through [6.

Contributions from 72, 73, 75, and '75

The integral contributions from the first group of contours can be found by cal-

culating the residues of f(3)6“ at the poles. For the reflection coefficients considered

here, it is found that all poles of f(s) are first order and thus the residues may be

found from

Res[f(8)68t,P0153] = 3115131,}8 - 3k) [f(3)68t] (6.6)

3=3k

It is important that care be taken in evaluating the residues from poles residing on the

branch cut. The formula for computing the residues given here is valid for poles on

the branch cut, since there exists a neighborhood around the pole where the function

f(s) is single valued, even though the neighborhood is in more than one Riemann

sheet.[15] Since this is true, a semicircular integration path around the pole will yield

j7r times the residue, when the proper value of f(s) is taken. If f(s) is even about

the branch cut, then the value on both sides is the same, and the distinction between

the two sides need not be made. Explicit expressions for the residues can be found by

evaluating (6.6), but they depend on the form of the reflection coefficient, and thus

are not included in this general formulation.
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Contributions from 71, 74, and )7

The integral contribution from the contour surrounding the branch point at s = 0

can be computed by denoting the radius of 74 as r0 and letting (1)0 be an angle

measured counterclockwise from the real axis to the point on 74. This allows any

point on the contour to be located as s = roejd’O. Computing the reflection coefficient

on 74 in the limit of r0 -—> 0 it is anticipated that this will lead to the reflection

coefficient approaching a constant on the contour, as has been the case in every

geometry considered. If this constant is given by D, then

I‘(s)e3t = Be“

and

|F(s)e3t S DerOt.

 

Therefore

I/ I‘(s)e3tdsl S 277r0Der0t —> 0, (r0 —+ 0).

’74

With this, the integral contribution from '74 is given as

/ f(s)e3tds = 0 (5.7)

'74

Analogously, the integral contribution from the contours surrounding the branch

point at s = 31 can be computed by denoting the radius of '71 and '77 as r1 and

letting ¢1 be an angle measured counterclockwise from the real axis to a point on

either '71 or 77. This allows any point on the contours to be located as s = 31 +r1ej¢l.

Computing the reflection coefficient on the contours as r1 —+ 0, it is anticipated that

this will lead to

/ f(s)e3tds = 0. (6.8)

71U‘Y7
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Contributions from segments above and below the branch cuts

The contributions from the straight line segments of the inner contour immedi-

ately above and below the branch cuts require further knowledge of the form of the

frequency domain reflection coefficient. This is the focus of Section 6.4, which ex-

plores the conditions for the existence of a branch cut contribution. Discussion of

the contributions due to the branch cuts will be deferred to that section, noting only

that a branch cut contribution is possible, and the integral along the Bromwich path

is thus given using (6.3) through (6.8) by

B f(slestds = j27r 2: Res [f(s)eSt, complex poles]
,.

+ j7r2 Res [f(s)l+e‘9t, real poles]

+ jrrz Res [f(s)| 83‘, real poles]

—Z/f(s)e3tds (6-9)

for closure in the left half plane.

6.1.2 Right half plane closure

When closure is taken in the right half of the complex s—plane, as shown in Figure 6.3,

only two integration paths are involved, and no singularities of the reflection coefficient

are contained within the closed contour. One of these paths is the Bromwich path,

labelled Br, which defines the inverse Laplace transform, and the other is an infinite

contour, marked Coo. Thus, by Cauchy’s Integral theorem,

f f(s)e3tds= f(s)e3tds+/ f(s)e3tds=0 (6.10)

C 37' Coo

where f(s) is the frequency domain reflection coefficient for which the temporal re-

sponse is desired. Using (6.10), the infinite contour contribution is all that is needed
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to determine the inverse transform. For the reflection coefficients discussed here, di-

rect application of Jordan’s Lemma will not be possible in evaluating the contribution

of the integral over Coo, since f(s) will not approach zero over the entire contour.

However, by definition of the time domain reflection coefficient, the infinite contour

contribution is to be neglected. Thus, when the closure of the Laplace inversion in-

tegral can be taken in the right half plane, which can be done if t < 0, the inverse

Laplace transform of the reflection coefficient is equal to zero. This is used in Sec-

tion 6.3 to establish a factorization of the frequency domain reflection coefficient into

substructure responses which occur during certain time periods associated with the

transit times of the material regions.

6.2 Form of the reduced reflection coefficient

To examine the transient reflected field from a layered material in terms of the layers

which make up the structure, several substructures and the decomposition of their

reflection coefficients will first be considered. These substructures are layered geome-

tries which can be identified as components of the multilayered structure of interest.

The choice of which substructure to use for the decomposition of the frequency do—

main reflection coefficient is based on the response seen at an observation plane during

a given period of time. For example, if the time period of the response is between the

two-way transit times of first two layers, then the substructure response used in the

decomposition of the reflection coefficient is that of the first layer backed by a half

space of the second material. This is used in decomposing the reflection coefficient

into a reflection coefficient describing the response of the substructure, and a reduced

reflection coefficient.

The earliest portion of the temporal response corresponds to a time period in

which only a reflection from the first interface is seen at the observation plane. The
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response for a single interface between two regions of space is given as

I‘(Sl = R1(8), (6-11)

where R1(s) is the interfacial reflection coefficient for the interface between region

0 and region 1. The interfacial reflection coefficient is computed for the interface

between any two material regions as

_ Zi - Zi—l

34(3) -m (6-12)

where Z; is the wave impedance for the ith region of space as given in (6.2).

Now consider the reflection from a single layer, backed by a material half space as

shown in Figure 6.5. This is the geometry whose temporal response will appear after

the two way transit time of the first layer. The frequency domain reflection coefficient

for the single layer is found, using the wave matrix method discussed in Section 2.3,

as

P1lay(3) = N1(3)/191(3)

N19) = 81(3) + R2(s)P12(8)

= N0 + 122(3) [Pf(s)] (6.13a)

01(3) = 1+ R1(8)R2(3)P12(8)

= D0 + 122(s) [R1(s)P12(s)] (5.135)

where N0 = 121(3) and D0 = 1 are the numerator and denominator of the frequency

domain reflection coefficient for a single interface, as given by (6.11). The interfacial

reflection coefficients for the first and second interface are given by 121(3) and 122(3),

respectively, and P12(s) = e"371(3) is related to the propagation of a wave through
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the material layer, with 371(3) given by (6.1).

To examine the response from this structure, the assumption is made that the

early time response, which occurs prior to the two way transit time of the material

layer, will be identical to the reflection from a single interface. Because of this, the

frequency domain reflection coefficient is decomposed into two components. The first

of these is the reflection coefficient for the single interface between two material half

spaces, given by the interfacial reflection coefficient of the first interface, and the

second is the reduced reflection coefficient. The reduced reflection coefficient for the

single layer geometry is defined as the difference between the reflection coefficient

for the two interface structure, and the one for the single interface. The reduced

reflection coefficient is thus given by

PIllay(S) = F1lay(5) — 121(8)

8 2 3

= <1 — Ri(s))——R2§,:Z,()

S 2 S

= Ti<s>Tr(s)——Rifi,if;,()

=[T1+(s)P1(s)] [fig—g] [Tf(8)P1(3)], (6.14)

where rum/(3) is the frequency domain reflection coefficient for the single layer ge-

ometry. Here T1+ (s) and T1" (5) are the interfacial transmission coefficients for for-

ward and backward transmission though the first interface, T? (s) = 1 + R1(s) and

T1. (3) = 1 — R1(s), respectively. The reduced reflection coefficient is thus composed

of the transfer functions for the direct path to and from the second interface, divided

by the denominator of the reflection coefficient for the single layer structure.

Now consider adding a third interface to the layered structure, as shown in Figure

6.6. The frequency domain reflection coefficient is given using the wave matrix method
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P215148) = N2(8)/Dz(8)

N25) = 81(3) + 32(8)P12(8) + 33(8)P12(3)P22(8) + Busmnsmnswfls)

= we + 133(8) [No(s)82<s)P3(s) + 1055935)] (915a)

02(3) = 1 + Ri<s>Rn(s>Pf(s> + Rl(s)Rs(s>Pi<s)P§(s> + R2(S)R3(8)P22(8)

= nus) + 835) [00(8)32(8)P22(8) + Ri(s)P?(s)P%<s>] (5.155)

where N1(s) and D1(s) are the numerator and denominator for the single layer struc-

ture, as given by (6.13). Also, N0(s) and D0(s) are the numerator and denominator

of the single interface structure, whose response is given by (6.11). The various ex-

ponential terms, P12(s) and P22(s), describe the propagation through the first and

second material layers, respectively.

To examine the response from the two layer structure, the assumption is made

that the early time response, which occurs prior to the two way transit time of the

two material layers, will be identical to the reflection from a single layered structure,

backed by a material half space. Because of this, the frequency domain reflection co-

efficient is factored into two components. The first of these is the reflection coeflicient

for the single layered structure, given by (6.13), and the second is the reduced reflec-

tion coefficient. The reduced reflection coefficient is defined for the two layer structure

as the difference between the reflection coefficient for the three interface structure,

and the one for the two interface geometry. The reduced reflection coefficient is thus

given by

I1,2lay(3) = I.‘2lay(3) — I‘llay(3)

= N2(8)Dl(3) - N1(8)Dz(8)

D2(3)Dl(3)

 (5.15)
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where the various terms in the numerator of the reduced reflection coefficient are

given by

N2(s)D1(s) = (R1 + 12ng + R3P12P22+ R1R2R3P22)(1+ 1211221812) (5.17)

and

N1(s)D2(s) = (R1 + R2P12)(1+ R1R2P12 + 12113319121322 + R2R3P22) (6.18)

where dependance on the complex variable, 3, is suppressed for brevity. The difference

between the terms in (6.17) and (6.18) can be simplified to give

N2(8)Di(3) - N1(S)Dz(8) = R319121922 + RiR§R3P12P22 - RiR3P12P22 " 3333131252

= R3P12P22(1+ 13%? - Rf - R?)

= R3P12P22(1— R§)(1— 123). (5.19)

The reduced reflection coefficient for the two layer case is thus given by

 

 

 

S 2 S 2 8

range) = (1 — 85(3))(1— 53<s>33ggfg,§,if:,‘ )

8 2 S 2 S

= ns(s)7.-<s>7;<s>7;<n1933:1552; )

= [Tf’(s)P1(s)T§'(s)P2(s)] [Dzfifijfifl] [Tr(s>P1<s>T2‘<s>P2<8>la

(5.20)

where T1+ (s) and T1“ (3) are the interfacial transmission coefficients for forward and

backward transmission though the first interface, and T; (s) and T5” (3) are for the

second interface. These transmission coefficients are found for forward and backward

transmission as Ti+(s) = 1 + R,(s) and Ti"(s) = 1 - R,(s), respectively. The reduced
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reflection coefficient is thus composed of the transfer functions for the direct path

to and from the third interface, divided by the product of the denominators of the

reflection coefficients for the single layer structure and the two layer geometry.

Now consider adding a fourth interface to the layered structure, as shown in Figure

6.7. Then, the frequency domain reflection coefficient is given using the wave matrix

method as

P3lay(3) = N3(S)/D3(8)

N3(s) = R1 + 15213,2 + 12310121922 + 1211225231322 + 111123124193

+mmmfifi+mmmfifi+mfififi

= N2(s) + R4 [N1(s)R3P32 + N0(s)R2P22P§ + P12P22P32] (6.21a)

D3(s) = 1 + 1211221312 + 12112319121922 + 1221231022 + R3R4P§

+mmmmfifi+mmfifi+mmfififi

:pmwn4m@m%+mmfifi+mfififi] 0mm

where the numerator and denominator are given in terms of the numerator and de-

nominator of the reflection coefficients for all of the substructures as described by

(6.11), (6.13), and (6.15). The various exponential terms, P12(s), P22(s), and P§(s),

describe the propagation through the three material layers.

To examine the response from the three layer structure, the assumption is made

that the early time response, which occurs prior to the two way transit time of the

three material layers, will be identical to the reflection from a two layered structure,

backed by a material half space. Because of this, the frequency domain reflection co-

efficient is factored into two components. The first of these is the reflection coefficient

for the two layered structure, given by (6.15), and the second is the reduced reflection

coefficient. The reduced reflection coefficient is defined for the three layer structure as
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the difference between the reflection coefficient for the four interface structure, and

the one for the three interface geometry. The reduced reflection coefficient is thus

given by

I{flag/(3) = IBldg/(5) " Iblag/(3)

= N3(S)D2(S) - N2(S)D3(S)

03(3)D2(8) «

 am

where the various terms in the numerator are found as

N3(S)D2(s) = (R1 + R2P12 + R3P12P22 + R1R2R3P22 + R1R3R4P32

+mmmfifi+mmmfifi+mfi@fiw

xu+mmfi+mmfifi+mmfi)mm

and

N2(8)D3(s) = (R1 + R213? + R3P12P22 + R1R2R3P22)><

xu+mmfi+mmfifi+mmfi+mmfi

+mmmmfifi+mmfifi+mmfififi)mm
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The difference between these terms can be simplified as

mmmm—Mmmm=mfififi+fifimfififi+fifimfififi

+fifim%fifi-fififimfififi

—@mfififi-fimfigfi—fimfififi

= R4P12P§P32(1+ Rift/3 + 12ng + R3123

— RiRiRi - R3 - R3 — Hi)

= 8482103150 - 8in — R3><1 — 8%) (6.25)

The reduced reflection coefficient for the three layer case is thus given by

R4(S)P12(S)P§(S)P32(S)

D3(S)Dz(8)

184(Slf’12 (3)1322 (8)1332 (8)

D3(S)Dz(8)

=4fifiqfiwfiflmggahfifiqayfiL(mm

 

Inlays) = <1 — R%(s>)<1— 83(3))(1 — 153(3))

 =WBMWMWMWW¢®K®

where T1+ (s) and T1" (3) are the interfacial transmission coefficients for forward and

backward transmission though the first interface, T2+ (3) and T2- (3) are for the sec-

ond interface, and T; (s) and T; (s) are for the third interface. These transmission

coefficients are found for forward and backward transmission as T; (s) = 1 + 123(8)

and T3— (s) = 1 - R3(s), respectively. The reduced reflection coefficient for the three

layer structure is thus composed of the transfer functions for the direct path to and

from the fourth interface, divided by the product of the denominators of the reflection

coefficients for the two layer structure and the three layer geometry.

Continuing to add interfaces to the geometry, the general case of an N-layer geom-

etry can be addressed. Beginning by examining the processes used to determine the

forms of the numerator and denominator of each reflection coefficient for the cases
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of one through four interfaces, given by (6.11), (6.13), (6.15), and (6.21), a recursive

formula for determining the numerator and denominator of the frequency domain

reflection coefficient can be found for any number of interfaces as

2' 1—2 5

M(S) = IVs—1(8) + Ri+1 H P,‘2(S) + Z Nj(S)Rj+2(S) H 1313(8) (6273)
.= j=0

k=j+2

 
D.-(s)=D.-_1(s)+P.-+1 R1(s) HP,-s)+2jD(s)R,+2s) II 935)

L j1= k—J+2

(6.27b)

This form of the numerator and denominator of the frequency domain reflection

coefficient can also be obtained through a direct examination of the wave matrix

method. This is due to the fashion in which the transmission chain matrices for each

material layer are cascaded to give the desired frequency domain reflection coefficient.

Using the form of the numerator and denominator of the frequency domain reflec-

tion coefficient given in (6.27), the reflection coefficient of a N-layered geometry can

be written as

PNlay(3) = NN(8)/DN(8)

N _2

NN(3)=NN—(3s)+RN+1 HP,-(s)+ 2jN.(s)()Rz+2(s) H P} (s)

j=l =0 j=i+2

(6.28a)

N N-2

DN(3)=DN—1(3)+RN+1 1‘31(3)l—IPJ2 )+ ZDi(3)R/i+2() H 133-2(3)

j=1 =0 j=i+2

(6.28b)

where the numerator and denominator are given in terms of the numerator and de-

nominator of the reflection coefficients for all of the substructures comprising the
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N-layered geometry. The various exponential terms, PJ-2(s), describe the propagation

through the different material layers.

To examine the response from this structure, the assumption is made that the

early time response, which occurs prior to the two way transit time of the N material

layers, will be identical to the reflection from a (N — 1)-layered structure, backed by

a material half space. Because of this, the frequency domain reflection coefficient is

factored into two components. The first of these is the reflection coefficient for the

(N - 1)-layered structure, and the second is the reduced reflection coefficient. The

reduced reflection coefficient for the N-layered geometry is defined as the difference

between the reflection coefficient for the (N + 1) interface structure, and the one for

the N interface geometry. The reduced reflection coefficient is thus given by

PIIVlay(S) = FNlay(3) — F(N—l)lay(s)

: NN(S)DN—1(S) - NN—1(S)DN(S)

DN(3)DN—1(3)

_ RN
—5—N§§_—1[DN- (HP,(s)+:2:0N.-P.-+2 H P,-2((s))

j=i+2

N-2

-NN_1(R1fiPj2())+ZD,R4+2 fi Pj2(8))

i=1 j=i+2

 

(5.29)

 

Defining AN = [15:1 P32(s) and B,,N = 119;,+2 Pj2(s) to simplify notation, and

164



plugging in 010.1 and NN_1 using (6.27) gives

N—3
RN 1

PlVlay(S) = —DND:V1 [(DN-Z + RN [RiAN—i + E , DkRk+2Bk.N—1DX

' k=0

N—2

>< (AN + Z NiRd+2Bi,N) - (NN—2+

i=0

N—3 N—2

+ RN [AN—1 + Z NkRk+2Bk,N—1D (RIAN + Z DiRi+ZBi,N)]

k=0 i=0

(6.30)

The terms in brackets are multiplied out using

N-3 N—2

(RiAN—i + Z DkRk+2Bk,N—1)(AN + Z NiR/iJrZBiW)

N-3 N—2

- (AN—1 + Z NkRk+2Bk,N—1)(R1AN + Z DiRi+2Bi,N)

k=0 i=0

N—3

= Ri( Z NkRk+2(AN-lBk,N - ANBk,N—1) + ANNN—zRN)

k=0

N—3

+ ( Z DkRk+2(ANBk,N-1 — AN—lBk,N) - ANDN-2RN)

k=0

N—3 N—2

+ Z Z (DkNi _ DiNkle+2R4+23k,N—135,N
(6.31)

k=0 i=0

where summation terms have been combined by pulling the N — 2 term out in each of

the first two expressions. Plugging in the expressions for ANBk,N-l and 2410-18)“N,
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the single summation terms in (6.31) are exactly zero, giving

N—3 N—2

(RiAN—1 + Z DkRk+2Bk,N—1) (AN + Z NiRi+2Bi,N)

k=0 i=0

N—3 N—2

— (AN_1 + Z NkRk+sz,N-1)(R1AN + Z DiRd+2Bi,N)

k=0 i=0

: RlANNN—2RN "' ANDN_2RN

N—3 N—2

+ Z 2(Dsz‘ — DiNk)Rk+2Ri+2Bk,N-lBi,N (6.32)

k=0 i=0

The expression for the reduced reflection coefficient is thus given by

N-2

RN 1
WNW/(s) = mi": [DN—2 (AN + Z N,R,+2B,-,N)

i=0

N-2

- NH (Pl/11v + 2: Pia-4.28.5) + RlAnNMRi-v
i=0

N—3 N—2

- ANDN—2Riv + RN 2 E (Dsz’ - DiNkle+2Ri+2Bk,N—lBi,N

k=0 i=0

(5.33)

Next, examining the double summation in (6.33), for indices which occur in both

summations, that is for i = 0 : N — 3 and k = 0 : N — 3, expansion of the summations

shows that the double summation is equal to zero. This will leave only the i = N - 2

term, which is a single summation. To see this, take the example of N = 5. For this
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example, the double summation in (6.33) is given as

2 3

Z :(DkNi—DiNk)Rk+2Ri+2Bk,4Bi,5

k=0 i=0

2 2

= Z 2(DkNi — DiNk)Rk+2R/i+2Bk,4Bi,5

k=0 2:0

2

+ 2(DkN3 - D3Nk)Rk+2RSBk,4B3,5 (6-34)

k=0

Looking at the double summation term with identical indices for both sums and

expanding out the sums gives

2 2

Z2(Dsz' - DiNk)Rk+2Ri+2Bk,4Bi,5

k=0 i=0

= (DoNo - D0N0)R§Bo,430,5 + (DINO - DoN1)R3R2(BI.4Bo,5 - 30,4316)

+ (DlNl - DiN1)R§Bl,4Bi,5 + (DzNo - DoN2)R4R2(B2,4Bo,5 - 30,4325)

+ (D2N2 - DzN2)R42132,432,5 + (DlNz - 02N1)R3R4(Bl,432,5 - 32,431,5)

= o (6.35)

where the difference between the products of terms involving Bi,N can be shown to

equal zero by plugging the quantities Bi,N = 119;”?! sz(s) back into (6.35). With

this, the reduced reflection coefficient is given as

RN 1
p’ =_"'_

Mal/(S) DNDN—lx
N-2 N-2

X [UN—2 (AN + Z NiR4+2Bi,N) - NN—2 (RIAN + Z DiRdHBLN)

i=0 i=0

N-3

+ Riv (RIANNN—z - ANDN-Z + Z (DkNN-2 — DN—2Nk)Rk+2Bk,N)]

k=0

(6.36)
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Rearranging terms to combine the first two summations into one gives

R

F'Nzayb) = 133/+ng [(1 - R?\,r)(DN--2AN — NN—2R1AN)

N—2

+ Z (DN-sz - DkNN-2)Rk+2Bk,N

k=0

N—3

+ Riv Z (DkNN—2 — DN—2Nk)Rk+2Bk,N] (5-37)

k=0

Now noting that the N — 2 term in the first summation is exactly zero, a (1 — 12%,)

can be pulled out of the equation, leading to

R
I _ N+l _ 2

N-3 N—3

X [UN—2 (AN + Z NiRi+2Bi,N) - NN—2 (RIAN + Z DiRi+2Bi,N)]-

i=0 i=0

(6.38)

At this point, the derivation of the form of the reduced reflection coefficient becomes

recursive, because the portion of the equation in brackets can be written generally as

i—l i—l

D,- (AN + Z NjRJ-HBM) — N,- (RI/1N + Z 0,19,23,16)

j=0 j=0

i-2 i—l

= (Di—1 + Ri+1 [RI/11' + Z DkRk+ZBk,i]) (AN + Z: NjRj+2Bj,N)

k=0 j=0

i-2 i—l

- (Ni—1 + R141 [Ai + Z NkRk+ZBk,i]) (RIAN + Z DjRj+2Bj.N)

16:0 i=0

(6.39)

where D,- and N,- have been substituted from (6.27). Note that many terms on the

right hand side of (6.39) will cancel out, as they did in (6.30). Using analogous steps

168



to (6.31)-(6.35) gives

z—l i—l

132-(AN + Z NjRj+gBj,N) - Ni(R1AN + Z DjRj+gBj,N)

j=0 i=0

:0 _ RH-l)><

i-2 i-2

x [D,-_1(AN + Z NjRj+2Bj,N) - Ni—1(R1AN + Z DjRj+2Bj,N)]

i=0 i=0

(6.40)

Continually reapplying (6.40) for decreasing values of 2', until i = 3, at which point

simple expressions for the terms No, Do, N1, and D1 are available, gives the reduced

reflection coefficient as

N

RN+1 2
FNzay(33:)m1130— R,- )x

1:

X [D1(AN + NoRzBko) - N1(R1AN + DOR2BO,N)] . (6.41)

Plugging in the expressions for No, Do, N1, and D1, using (6.11) and (6.13), and

writing out the products AN and BO,N gives

_R___N+112)

N N '

H-[Q+ 121122P12(s)) (1'1 193.2(3) + 1?le H P}(s))

i=1 N i=2N

_ (31+ 3213126)) (121 H P]?())+ R2 fi 122(5)).)]

j=1 j=2

(6.42)
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Multiplying out the bracketed terms and rearranging the equation gives

N

RN 1
PAM/(s): DNDNN ||(1—R§)x

" =3

x [fi 102.2(3) [(1 + 121122612“) + 1?.ng + 121122172)

_ (R:+ 1311921312 (8) + R3 + Rlepl—zn]

—“51%;?I10 — R?))[fi P-2(s)[((1— R%)(1— 116]] (643)
J:—-1

Finally, combining the product terms allows the reduced reflection coefficient for the

N-layered material structure backed by a material half space to be written as

I‘Nlayk'33:) 1.‘Nlayfs3") I-‘(N--1)lay(s3)

RN+1(8)11—VI(1—R2(s))P-2(s)

=)DN(3DN—1(S) i=1

+ RN+1 s) s

=[fiT (SW‘(S)][DN(s)DN-1(s>] [HT(10”] (6'44)

 

 

where Ti+(3) and {Ti—(s) are the interfacial transmission coefficients for forward and

backward transmission though the 3th interface. These transmission coefficients are

found for forward and backward transmission as Ti+ (s) = 1 + 133(3) and Ti-(s) =

1 — R;(s), respectively. The reduced reflection coefficient is thus composed of the

transfer functions for the direct path to and from the N + 1 interface, divided by the

product of the denominators of the reflection coefficients for the N layer structure

and the (N —- 1) layer geometry.
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6.3 Decomposition of the temporal response using substructure re-

sponses

The reflection from a multilayered structure is considered in terms of substructure re

sponses in this section. These substructures are layered material structures backed by

material half spaces, which can be identified as components of the larger multilayered

geometry.

Begin by considering the temporal response due to reflection from a single interface

between two materials as shown in Figure 6.4. The interfacial reflection coefficient

is given in the frequency domain by (6.12) in terms of the wave impedance in each

region of space. The time domain response is obtained through an inverse Laplace

transform of the interfacial reflection coefficient. This reflection coefficient may be

multiplied by a unit step function without changing the response, since the system is

causal. The time-domain reflection coeflicient is thus given for a single interface by

Punt(t) = [Rimlum (6-45)

This response consists of an impulsive component resulting from the discontinuity

between the two regions of space, and, in the case of a lossy half space, an infinite tail

which slowly decays. The second of these terms results from conduction currents in

the lossy material, and will prohibit a pure natural mode series representation from

fully describing the transient response, as long as it is present. A rigorous exploration

into the components of this interfacial reflection coefficient can be found in [14].

By adding a second interface to the material structure, a single layer geometry

with a material backing as shown in Figure 6.5 is created. The frequency domain

reflection coefficient for this structure can be decomposed into two parts. The first of

these is the interfacial reflection coefficient given by (6.11), since the response should

be identical to that of the single interface during the early time. The second part of
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the frequency domain reflection coefficient is the reduced reflection coefficient, which

is given by (6.14). Taking the inverse Laplace transform of the frequency domain

reflection coefficient yields the temporal response of the layered structure. Because

the inverse Laplace transform is a linear operation, the temporal response of the

single layered geometry can be found as the sum of the inverse transforms of the

components of the frequency domain reflection coefficient. Examining (6.14), the

term P12(s) = 6-371(3) appears in the numerator. Looking at the behavior of 11(3)

on an infinite contour,

 

. 2A1 _ 0'1 2A1

11m ——\/6 1 + = \/E = 'r

|s|—+00 c 1 seoEl c 1 1

with this, which is the two—way transit time of the material layer as discussed in

Section 2.4.1, the inverse transform of the reduced reflection coefficient is found by

closing the Laplace inversion integral in the right half plane for t < 7'1, and in the left

half plane for t > 1'1, since 7'1 is a positive real number. The inverse transform of the

reduced reflection coefficient will thus be zero for t < 7'1, and nonzero after this time.

Thus, the inverse Laplace transform of the frequency domain reflection coefficient

for this structure can be multiplied by a unit step function without changing the

response. The temporal response for t > 7'1 is explored in detail in Section 6.4. The

response of the two interface geometry is thus given as

Fzmdt) = Punt(t)U(t) + F'zmt(t)U(t - T1) (646)

Plugging in the definition of the reduced reflection coefficient, which is the difference

between the reflection coefl'icient for the two interface geometry, and that of the single

interface structure, the temporal response of the two interface structure can be written
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P2int(t) = R1(t)U(t) + (P2int(t) - R1(t))U(t - 71)

= R1(t)(u(t) - ”(t - 71)) + innt(t)u(t - T1)

= [R1(t)U(t)lu(Tl - t) + P2641 (t)u(t — n) (6.47)

The temporal response from a single layered structure is thus given by the response

of the single interface geometry for a time t < 7'1, where 71 is the two way transit time

of the material layer. After this time, the response of the single interface substructure

turns off, and a late time response from the entire structure turns on. The form of

this late time response is considered in Section 6.4. This behavior of one response

turning off, and another turning on is an important result. It gives that the branch cut

contribution of the interfacial reflection coefficient, R1(t), is exactly cancelled when

the response from the next interface arrives at the observation plane. This provides

motivation to continue adding interfaces to find out if the turn on and turn off behavior

of the responses will continue, yielding an algorithmic approach to finding the time

domain reflection coefficient for a structure with an arbitrary number of layers.

Adding a third interface to the material structure creates a two layer, material

backed geometry shown in Figure 6.6. The frequency domain reflection coefficient for

this structure can be decomposed into two parts. The first of these is the total reflec-

tion coefficient for a single layer structure, as given by (6.13). This is used because the

response of the multilayered structure should be identical to that of a material backed

material layer during the early time. The second part of the frequency domain reflec-

tion coefficient is the reduced reflection coefficient, which is given by (6.16). Taking

the inverse Laplace transform of the frequency domain reflection coefficient yields the

temporal response of the layered structure. Because the inverse Laplace transform is

a linear operation, the temporal response of the two layered geometry can be found as
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the sum of the inverse transforms of the components of the frequency domain reflec-

tion coefficient. Examining (6.16), the term P12(3)P22(s) = e‘3(Tl(s)+T2(s)) appears

in the numerator. Looking at the behavior of 71(3) + 72(3) on an infinite contour,

  

2A 2A
lim [Tlfi 1+ ”1 +—62-\/E_2 1+ ‘72

Isl—’00 55031 86032

 

with this, which is the two-way transit time of the first two material layers, as dis-

cussed in Section 2.4.1, the inverse transform of the reduced reflection coefficient is

found by closing the Laplace inversion integral in the right half plane for t < T2,

and in the left half plane for t > 1'2, since 7'2 is a positive real number. The inverse

transform of the reduced reflection coefficient will thus be zero for t < 72, and nonzero

after this time, thus, a unit step function can multiply the inverse Laplace transform

of the reflection coefficient without changing the response. The temporal response

for t > 72 is explored in detail in Section 6.4. The response of the three interface

geometry is thus given as

P367405) = I‘2z'nt(t‘)u(t) + P32646140 - T2)

Plugging in the definition of the reduced reflection coefficient, which is the difference

between the reflection coefficient for the three interface geometry, and that of the

two interface structure, the temporal response of the three interface structure can be
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written as

F3int(t) = F2int(t)u(t) + (F3620) - I“2mt(t))U(ll - T2)

= P2int(t)(u(t) — “(t - T2)) + P3int(t)u(t - T2)

= [P2int(t)u(t)lu(T2 - t) + I-‘31'11t(t)u(t— T2)

= [Rift)u(t)lu('f1 - t) + [P2int(t)u(t - T1)lu(T2 - t) + F3int(t)u(t - T2)

(6.48)

The temporal response from a two layered structure is thus given by the response

of the single interface geometry for a time t < 71, where 71 is the two way transit

time of the first material layer. After this time, the response of the single interface

substructure turns off, and a late time response from the single layer structure turns

on. This response continues until a time 72, which is the two way transit time of the

two material layers. At the time 72, the response of the single layer geometry turns

off, and a late time response for the entire structure turns on. The form of this late

time response is considered in Section 6.4.

Continuing to add interfaces to the material structure eventually creates an N layer

geometry backed by a material half space, as shown in Figure 6.8. The frequency do-

main reflection coefficient for this structure can be decomposed into two parts. The

first of these is the frequency domain reflection coefficient for the (N - 1) layer geom-

etry, and the second part is the reduced reflection coefficient, which is given by (6.44).

Taking the inverse Laplace transform of the frequency domain reflection coefficient

yields the temporal response of the layered structure. Because the inverse Laplace

transform is a linear operation, the temporal response of the N—layered geometry can

be found as the sum of the inverse transforms of the components of the frequency do-

main reflection coefficient. Examining (6.44), the term “11:1 132-2(3) = 119-[:1 e‘sms)

appears in the numerator.
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Looking at the behavior of 211:1 Ti(s) on an infinite contour,

 

'8""°° i=1

N . N 2Ai _ 02' N 2Ai

:76“) = 1"“ ZTV‘TW T 3606- = 27%? = TN
i=1 ' i=1

with this, which is the two-way transit time of the N material layers, the inverse

transform of the reduced reflection coefficient is found by closing the Laplace inversion

integral in the right half plane fort < TN, and in the left half plane for t > TN, since TN

is a positive real number. The inverse transform of the reduced reflection coefficient

will thus be zero fort < TN, and nonzero after this time, thus, a unit step function can

multiply the inverse Laplace transform of the reflection coefficient without changing

the response. The temporal response for t > TN is explored in detail in Section 6.4.

The response of the (N + 1) interface geometry is thus given as

P(N+1)int(t) = PNint(t)u(t) + P,(N+1)mt(t)u(t — TN)

= FNint(t)u(t) + (F(N+1)int(t) — PNint(t))u(t - TN)

= FNint(t)(u(t) - ”(t - TN)) + P(N+1)int(t)u(t '- TN)

= [Ri(t)U(t)lu(T1 - t) + [P2int(t)u(t - T1)lu(T2 - t)

+ + lPNmt(t)U(t - TN—1)lu(TN - t) + P(N+1)int(t)u(t - TN)

(6.49)

The temporal response from a N-1ayered structure is thus given by the response of the

single interface geometry for a time t < T1, where 71 is the two way transit time of the

first material layer. After this time, the response of the single interface substructure

turns off, and a late time response from the single layer structure turns on. This

response continues until a time 1‘2, which is the two way transit time of the first two

material layers. At the time 7'2, the response of the single layer geometry turns off,

and the late time response for the two layer geometry turns on. This turn on and
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turn off behavior of the various substructure responses continues until the two way

transit time of all N layers has elapsed, when the late time response for the entire

structure turns on. The form of the late time responses are considered in Section 6.4.

6.4 Determination of the branch cut contribution

The recursive forms of the numerator and denominator of the reflection coefficient,

given by (6.27), can be expanded out to find explicit forms, which give information

on the form of the temporal response. This can be done relatively easily for a small

number of layers. However, for many layers, expansion in this way is prohibitively time

consuming. For this reason, the recursive nature of the numerator and denominator

is exploited in order to show the origin, or existence, of a branch cut contribution

to the late time response of a N layer geometry, without placing the expressions in

explicit form. Several products will be employed throughout this derivation in order

to simplify equations as much as possible. For notational purposes, these products

will be written as

b

Aa,b = H(sz+1 + Zi) (550a)

i=a

b

160,), = H P}. (6.50b)

i=a

Exploration into the origin of the branch cut contributions is carried out by looking

at the forms of the denominator and numerator of the reflection coefficient, in Sections

6.4.1 and 6.4.2, respectively. The implications of these forms will be discussed in the

context of the frequency domain reflection coefficient in Section 6.4.3.

To begin, the possibility of branch cut contributions due to a product of square

roots is examined, since these appear in the wave impedance and propagation terms

found in both the numerator and denominator of the reflection coefficient. For a
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material region 1', the term which describes propagation through the 3th region and

appears in the frequency domain reflection coefficient is given by

Pi2(s) = e—STT'(3) (6.51)

with

2Ai _ 02'

372(3) - T\/€—z\/§ 3+ fig

2A1 fi‘flx/m- (6.52)
C

 

where A,- is the physical thickness of the material layer, c is the speed of light in free

space, and E, = 6,, — sin2 0,”. Here 6,, is the relative permittivity of region 2', and

05,, is the incidence angle of a wave in region 0 impinging on the first interface to the

layered material. The wave impedance of region 1' is given by

 perpendicular polarization

7708

2(8) 2 «6.5m

’ . vex/EJ573784

' Séir + 03/60

(6.53)

 parallel polarization

In both the wave impedance and propagation terms, the product of complex square

roots VEJETS; appears. These square roots will lead to branch points and corre-

sponding branch cuts in the complex s-plane. The branch points are given by s = 0

and s = 32?- The quantity .9,- = —a,-/E,-eo is a nonpositive real number, so the branch

point is located on the real axis. Branch cuts are taken along the negative real axis

for each complex square root, defining the principal branches of the square roots for

—7r < 650 S 7r and —7r < d),- S 7r, each of which is measured from the positive real axis,

as shown in Figure 6.9. Looking at this figure, begin by examining the integration

paths designated as A+ and A_. For the contour A+, (1)0 2 cl),- = 7r. Letting s = —:c,
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where x is a nonnegative real number, denote a point on the negative real axis, the

product of the square root functions found in the wave impedance and propagation

terms takes the form

,/§,/—‘s— s, = mfieiWoWfl/z = «are+ 3,191" = —,/E,/——x+ s,- (6.54)

on A_, $0 = (p,- = —7r, and the product of square roots is given by

x/Ex/s-—sz- = 75/278764" = NEW (6-55)

Equations (6.54) and (6.55) show that the product of the square root functions is

analytic when crossing the branch cut along the A contours, thus

Z.(s)|A+ = Z.(s)| (6.56)
A-

(6.57)ST,(8)IA+ = sn(s)|A-.

On the contour 8+, ((90 = 7r, 6),- = O, and the product of square roots is

«Em = «Nix—7.9"” = jfiHTsE. (6.58)

Analogously, on 8., $0 = —7r, (2), = 0 yielding

«3F— = «Ems-W = _j¢5¢:5—_—S. (6.59)

Plugging (6.58) and (6.59) into (6.52) and (6.53) gives

“770$ . . .

. _ perpendicular polarization

Z-(s) = “2‘5" "“3" (6.60)
1 8+ jnm/eh/EM-x—s,

-:I:€i,~ + 03/60

 

 parallel polarization
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77013

21(8) _ jx/E-ifiv-ir-Si

 

perpendicular polarization

 

 

_ .
(6.61)

B- - ' x/- — 'JUm/E—n/E a: 8' parallel polarization

-$6ir + (Ti/<50

.2A' _

sn<s>l..=2-.—wzw——x-s.. (.5
.2A' _

8T5(S)IB_ = -J C' WNW—x _ 32" (6’63)

thus

Zi(S)IB+ = -Zz°(8)lB_ (6.64)

st'(8)lB+ = -STi(3)lB_ (6'65)

In order to examine symmetry of various quantities about the portion of the branch

cuts along which the B contours lie, the following quantity is defined

 

 

, _ 86(8)
(I), — 2], (6.66)

Note that, using (6.65), ¢ii8+ = -<I),- B . Plugging (6.66) into (6.51) leads to

Pi = e—STi(3)/2 (6.67)

= e—j‘l’i (6.68)
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which allows the following relationships to be written for the B contours

13271 _ pi = ejq’i _ e-j‘l’z‘

= 32 sin (I),- (6.69)

Pi—l + P,- = ejéi + 62—3-45

= 2 cos (1),. (6.70)

Finally, even symmetry about the branch cut, which is necessary for cancellation of

the integrals taken in opposite directions on the B contours, can be shown for the

following quantities using (6.64) through (6.66), and the even and odd properties of

the cosine and sine functions, respectively,

  

Zi(s) sin (D,- 8+ = 2,-(3) sin <I>,- B— (6.71a)

2 2
z, (s)|B+ = z, (s)|B_ (6.71b)

cos (I),- 3+ = cos <1),- _ (6.71c)

  

These relationships are used extensively in the examination of the forms of the numer-

ator and denominator of the frequency domain reflection coefficient, which is carried

out in Sections 6.4.1 through 6.4.2.

6.4.1 Form of the denominator

In this section, the denominator of the frequency domain reflection coefficient for an

N—layered material structure is manipulated into a form which can be used to help

validate a natural mode series representation of the time domain reflection coefficient

in the late time of the structure. Here, the late time begins after the two way transit

time of the N regions comprising the N-material structure. The manipulation of the

denominator proceeds by continuously utilizing a recursive form of the denominator
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and collapsing the equation by defining quantities which are even about the branch

cuts. This is done at each step along the way, eventually leading to a recursive

expression which allows for N steps to be performed. Finally, once the expression is

placed in terms of the denominator of the frequency domain reflection coefficient for

a two layered structure, explicit expressions for the denominator are substituted in,

leaving the expression in terms of quantities which are even about the branch cut,

and wave impedances. The wave impedances may be even or odd about the branch

cut, depending on the material characteristics of the region.

To this end, begin by establishing some relationships for the 3th layer of a multi-

layered structure. These relationships will prove extremely useful in the exploration

into the form of the transient response from the multilayered structure.

6.4.1.1 Equations for the i-th layer

To utilize the symmetry relationships of (6.71), it is helpful to place the denominator

in an alternative form. To do this, R,- is plugged into (6.27b), and the result is mul-

tiplied though by A0,), noting a cancellation of terms in A0,,- with the denominators

of the interfacial reflection coefficients for indices of 0, j, and i. The denominator is

then found in terms of the wave impedances, rather than the reflection coefficients as

D3A0,i = Di—1A0,i + (Zi+1 - Zz')><

5—2

X (Zi - ZO)A1,i—1Bi,i + Z Dj(Zj+2 - Zj+1)A0,jAj+2,i—lBj+2,i

i=0

= XD,6—1(Zz'+1 + Zr) + yD,i—1(Zi+1 - 22') (5-72)

where dependance of parameters on the complex variable, 3, is suppressed for brevity.

Several quantities are defined here in order to aid in the understanding of the steps
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used in this derivation. These quantities are given by

X13,- = 0,280,,-

= Di-1A0.i—1(Zi+1 + 22') + (Zi+1 - Zi)yD,i-1

= XD,i—1(Zi+1 + 22') + yD,2’—1(Z2'+1 - Z2) (6.733)

5—1

310,2 = [(21 - ZO)A1,2'IBI,2'+1 + Z Dj(Zj+2 — Zj+1)A0,jAj+2,iBj+2.i+1]

j=0

= (Z:+21+ Zi)P1-2+1[(Zi - ZO)A1,i—1131,5+

+ :D-( — )A A 18 +(Z. —Z-)P-2 D-_A -_
(Zj+2 Zj+1 Oj j+2,i-1 j+2,2' 2+1 2 2+1 2 l 0,2 1

= yD,2‘—1(Zi+1 + Z2)P1'2+1 + XD,i—1(Zi+1 — 20132241 (6-73b)

Here the 2' — 1 term was removed from the summation in 321),, and (2,-4.1 + Z,)P22+1

was factored out of the remaining terms in order to write ym- in terms of 3113,21

and XD,,-_1. Various quantities involving the sum or difference of the expressions in

(6.73) are utilized in the exploration of the form of the denominator for an N-layered

material. These terms will use the relationships

(X06 i yD,2‘) = (XD,i—1(Zi+1 + Z2) + yD,2‘—1(Z2'+1 - 25))

4,025.-1(2111 + 21);)?.11 + x5.-1(Z.-+1— Z.)a"’.1)

i+1(1 i P161)(XD,i—1+ lbs—1)

+ 21(1 4 13.3.1) (851-1 — 3251.1) (674)

Because of various operations carried out on the denominator, the two quantities

given by (6.74) appear in various combinations, including the squaring of either of
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the quantities, given by

2 2 2 2 2
(X0,- i 3’D,1') = 1+1(1i 131-+1) (9506—1 + yin—1)

2

+ Z301}: PiZ-I-l)2(XD,2-1" yD,2‘-1)

+ 22241320 + P22+1)(1— Piz+1)(XD,i—1 + yD.i—1)(’YD.i-1 " de-l)’

(6.75)

and the product of the two quantities, which takes the form

(X11,- + 370,2) (X03: — 310,2)

= (1+ P22+1)(1- 13524.1) [31'2“ (9502-1 + 37136—02 + Z12 (9303-1 - yD,2‘-1)2]

+ Zi+1Z2[(1+ 131-2+1)2 + (1 — 13124.1)2] (Abs—1 + yD,i—1)(XD,i—l - 3’0,i—1)-

(6.76)

The products of (6.75) and (6.76) appear often in the denominator of the frequency

domain reflection coefficient. The following recursive formula, which appears in the

course of this derivation and is utilized heavily, contains all combinations of (6.75)

and (6.76).

4‘1P(7§_.) [(916-1 + jZN+1g2,i—1)(XD,N—(2+1) + yD.N-(i+1))2

+ (51,,- + jZN+1§2,,) (XD,N_(,-+1) — LVD,N_(,-+1))2 + (93,2-121—1 + jg4,i—1)x

x ZN_,-(XD,N_(,-+1) + yD,N_(1+1))(XD,N-(i+1) " yD.N-(i+1))]

= (91,1 + jZN+1g2,2') (“YEN—(2+2) + yD,N_(1+2))2

+ (51,241 + jZN+1§2,i+1) («YEA/4,712) — yD,N_(,-+2))2 +(Q3,1°ZN+1 + j94,z')x

X ZN—(2'+l) (“Vow-(2+2) + yD,N-(i+2)) (“lbw-(2+2) — 3’0,N-(z‘+2))

(6.77)
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where the following quantities arise from application of (6.73) through (6.76)

91,1 = Z1264 [912—1 0082 ‘PN—z' — 51381112 (pN—i

- g4,i—1(ZN-2' Sin ‘I’N—z‘) COS ‘I’N—i]

g.=Z2,g. 2(1) ._§.°2q).
2,2 N-2 2,2—1 COS N—2 2,2 3m N—2

+ 93,1—1(ZN—1'Sin ‘I’N—i) COS ‘PN—il

§-=Z2- §.2(p._g. ‘24).
1,2+1 N—(2+1) 1,2 COS N—2 1,2—1Sln N—2

- 94,2-1(ZN—1'Sin ‘PN—i) COS ‘I’N—i]

5. =22. g. 2(1) ._g. -2q,.
2,2-H N-(2+1) 2,2 COS N—2 2,2-1 3m N—2

+ g3,2’—1(ZN—i Sin ‘I’N—z‘) COS ‘I’N—i]

93,2 = 212V—2' [COS2 (EN—2’ — Sin2 (pN-i] g3,,_1

- 2 [922—1 + 52,2] (ZN—2' sin ‘I’N—i) COS ‘I’N—i

g,“- = 212V—2' [COS2 (PN_2° — Sin2 (pN—i] 94,--1

+ 2[91,1‘—1 + 51,2](ZN—1'Sin ‘I’N—i) COS (pN-2'°

6.4.1.2 N-Layer geometry

Consider the N-material, planar layered geometry shown in Figure 6.8, where region

0 is free space, and region N + 1 is a material which may or may not be lossy. The

denominator of the frequency domain reflection coefficient, multiplied by AQN, is

given by (6.72) for 2' = N as

DNAON = XD,N—1(ZN+1 + ZN) + yD,N-1(ZN+1 - ZN) (6-78)
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To explore the properties of the denominator of the reflection coefficient, begin by

plugging in expressions for XD,N—l and yD,N_1 using (6.73). Doing this gives

DNAON = [XD,N—2(ZN + ZN—i) + J’D,N-2(ZN — ZN—1)] (ZN+1 + ZN)

+ [yD,N—2(ZN + ZN-1)P1;2+1+ XD,N—2(ZN - ZN—1)P1%/] (ZN+1 — ZN)-

(6.79)

Rearranging terms to separate the XD,N—2 and yD,N_2 terms gives

DNAON = «Vow—2 [(ZN+1 + ZN)(ZN + ZN-1)+ (ZN+1 - ZN)(ZN - ZN—1)P12V]

+ yD,N—2 [(ZN-H + ZN)(ZN - ZN—1)+(ZN+1 — ZN)(ZN + ZN_1)P,%,].

(6.80)

Multiplying out the wave impedance terms in brackets and regrouping gives

DNAON = XD,N—2 [ZN(ZN+1 + ZN—1)(1 + PN) + (va + ZN+1ZN—1)(1 - 1361)]

+ yD,N—2 [ZN(ZN+1 - ZN—1)(1 + PN) + (va - ZN+1ZN—1)(1 — PRO]

_ 2

= A(1+ P12V)+jl3(1 jPN) (6.81) 

where the quantities A and B are defined as

A = XD,N—2(ZN+1ZN + ZNZN—i) + J’D,N—2(ZN+1ZN - ZNZN—i) (5-823)

3 = XD,N—2(Z12v + ZN+1ZN—1) + J’D,N—2(va — ZN+1ZN—1) (68%)
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. . . l—P2
Multiplying the denominator by (A(1 + 191%,) — j51—111))4‘1P152 in order to take

advantage of (6.69) through (6.71) gives

 

— 2 - 1‘P12v -1 —2DN=DNAQN A(1+PN)-JB( j ) 4 PN

P'1+P 2 P‘l—P 2

—A( 2 ) +8( 32 )

= A2 cos2 <I>N + 82 sin2 <I>N (6.83)

where <I>N is defined by (6.66) as 8TN(S)/2j, and (6.69) through (6.70) are utilized.

Plugging A2 and 82 into (6.83) using (6.82) gives

— 2 2 2 2 2 2 2
UN = ZN+1ZN (XDN—z + J’D,N—2) + ZNZN_1(XD,N—2 - yD,N-2) COS ‘I’N

2 2

+ [ZN (“YEN—2 + yD,N—2) + va+1ZI2v-1(XD,N—2 - yD,N—2) ] sin2 (I’N

+ 2ZN+IZJZVZN-1 (XD,N—2 + J’D,N—2) (XD,N—2 - 3’D,N—2) (6-84)

Rearranging (6.84) to organize the equation in terms of various products of (XD,N_2:l:

yD,N-2) gives

_ 2

DN = [216,142, cos2 6N + Z}, 31112 6N] (xD,N_2 + 32611.2)

2

+ [Z12vZ12v_1cos2 <I>N + Zfi+1Z12v_lsm2 @N] (XD,N-2 — 320,164,.)

+ [231%] ZN+IZN—1(XD,N—2 + yD,N—2) (XDN—z - yD,N-2)

= F1 (XD,N—2 + yD,N-2)2 + F2 (XD,N-2 " yD,N—2)2

+ F3ZN+IZN—1(XD,N-2 + yD,N—2) (XD,N—2 - yD,N-2)- (6-85)

Here the functions F1 through F3 are even about the branch cut, since they are

defined in terms of wave impedances and trigonometric functions which are raised to
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even powers. Plugging in expressions for the various products of (XD,N—2 :t 320,164)

using (6.75) and (6.76) with 2' = N — 2 gives

EN = F1[Z]2v_1(1+ P§_1)2 (“YEN-3 + yD,N_3)2 + ijv_2(1 —- P§_1)2x

X (XDN—s - 3’13,N—3)2 + 2ZN—izN-2(1 + P§_1)(1- P12v_1)><

X (XDN-a + 3’D,N—3) (XDN—s - lbw-3)]

+ F2 [21217—10 - 1019—1)2 (XD,N—3 + yD,N-3)2 + Zzzv—2(1 + PN—1)2X

X (XD,N—3 - J’D,N-—3)2 + 2ZN-—1ZN—2(1 + 13131—1)“ - PN_1)X

X (XD,N—3 + yD,N-3) (XDN-s - lbw—3)]

+ F32N+1ZN-1[(1 + 49121-90 - 10121-1) [216-1 (X511-.. + yD,N-3)2

+ Z12V—2(XD,N—3 - yD,N-3)2] + ZN—IZN-Z [(1 + PN—flz

+ (1 — 1316-02] (XDN—s + yD,N—3) (XDN—a ._ yD,N-3)]- (5-86)

Rearranging (6.86) to organize in terms of the various products of (XD,N—3in,N—3)

gives

EN =Z12V_1[F1(1+ 103,4)2 + F2(1— Pfi_1)2

2 2 2
+ FBZN+1ZN—1(1 + PN_1)(1 - PN_1)] (XD,N—3 + yD,N—3)

+ 2,2,,_2[F1(1— PKH)2 + F2(1+ 10,'(,_,)2

2 2 2
+ F3ZN+1ZN~1(1+ PN—1)(1 — PN-1)] (XD,N—3 - J’D,N—3)

+ ZN—IZN-2 [2 [F1 + F2l(1+ P1i/_1)(1— PN-i)

F 2 Z 1 P2 2 1— P2 2+ 3 N+1 N—1[( + N_1) +( N-1)] X

X (XD,N—3 + yD,N—3) (XDN—s - 3’D,N—3)- (6-87)

Multiplying through by 4"1P1\_,2_1 in order to take advantage of (6.69) through (6.71)
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gives

4-1PN315N = Z12V_1[F1cos2 <I>N_1— F2 sin2 <I>N_1

+ jF3ZN+1(ZN-15in ‘PN—i) COS <I’N-i] (XD,N—3 + yD,N—3) 2

+ 2,2,,_,, [ - F1sin2 216-1 + F2C082 <I>N_1

+ jF3ZN+1(ZN—15in ‘I’N—1) COS (pN-l] (“YEN—3 - yD,N-3)2

+ ZN_2 [21' [F1 + F2](z,,,_1 sin <I>N_1) cos ¢N_1

+ 15‘3ZN+1Z}?V_1[cos2 <I>N_1— sin2 <I>N_1]] x

X (XD,N—3 + yD,N—3) (XD,N—3 - yD,N-3)

= (91,1 + jZN+192,1) (XD,N—3 + 3’1),N—3)2

+ (51,2 + jZN+1§2,2) (KAN—3 - yD,N-3)2 + (93,1ZN+1 + 294,1) X

X ZN-2 (XDN-s + yam-3) (XD,N-3 - yam-3) (6.88)

where (DN_1 is defined by (6.66) as STN_1(8)/2j, and

91,1: Z12v_1[F1C082 (DN_1—— F2 sin2 (DN_1]

92,1 = F3(ZN—l Sin (EN—03137-1 COS ‘I’N—i

(31,2 2 Z12v_2[F2 cos2 <I>N_1 — F1 sin2 <I>N_1]

52,2 = F3(ZN—1 Sin ¢N—1)Zz2v—2 COS ‘I’N—i

63,1 = F3ZIZV_1[0082 <I>N_1 — sin2 <DN_1]

Q4,1= 2[F1+ F2] (ZN-1 sin (EN-1) COS (PN_1.

Note that the quantities 91,1 through 94,1 are defined in terms of F1 through F3,

wave impedances, and trigonometric functions, thus 91,1 through 94,1 are even about

the branch cut as shown by using (6.71) and evenness of F1 through F3.
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Multiplying by 4—1PN321 the right hand side of (6.86) has the form of the left

hand side of (6.77) for 2' = 2, thus,

_ _ _ _ . 2
4 2PNE1PN320N = (91,2 + JZN+192.2) (XD,N—4 + yD,N—4)

~ 6 ~ 2 .

+(91,3+J ZN+192,3) («Vow—4 - yD,N—4) + (93,2ZN+1 + 194,2) X

X ZN-3 (XD,N-—4 + J’D,N-4) (XD,N—4 - yD,N—4) (6-89)

with

91,2 = 216/-2 (91,1 C082 ‘I’N—2 - 51,2 sin2 ‘PN—2 - 94,1(ZN—2 Sin (EN—2) COS ‘I’N—2

92,2 = Z12v—2 92,1 COS2 (JPN-2 - 52,2 sin2 ‘I’N—z + 93,1(ZN—2 Sin ‘I’N-z) COS ‘1’N—2l

~ 2 ~ 2 . 2 - '

91,3 = ZN_3 [91,2 COS ‘I’N-2 - 91,1Sm ‘PN—2 - 94,1(ZN—2 Sm ‘PN—2) COS ‘I’N—2

 92,3 = va_3 (92,2 COS2 ‘I’N—2 - 92,1siTl2 ‘I’N—2 + 93,1(ZN—2 Sin ‘I’N—2) COS ‘PN—zl

 93,2 —_- Z12V—2 .cos2 <I>N_2 — sin2 <I>N_2] 93,1

— 2 [92,1 + 92,2] (ZN—2 sin @N—2) COS ‘PN—2

_ 2 2 - 2

94,2 - ZN_2 [COS ‘PN—Z ' 31“ (EN—2] 94.1

+ 2 [91,1 + 51,2] (ZN_2 sin <I>N_2) cos <I>N-2

Note that the quantities Q13 through 94,2 are defined in terms of 91,1 through 94,1,

wave impedances, and trigonometric functions. Thus, 91,2 through 94,2 are even

about the branch out using (6.71) and evenness of 91,1 through 94,1.

Multiplying by 4_1PN2-3’ the right hand side of (6.89) again has the form of

the left hand side of (6.77), this time with 2' = 3. This leads to terms 913 through

943, which are defined by (6.77) in terms of 91,2 through 64,2, wave impedances,

and trigonometric functions, thus 913 through 943 are even about the branch cut

using (6.71) and evenness of 91,2 through 942. Continuing to multiply through by
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4_1PN2—i and applying (6.77) for increasing values of 2', until 2' = N — 3, and then

multiplying by 4'2P1"2P2_2 leads to

N-l

— —
— —

.

_
-

_

2

4 (N 1) H P2. 2DN = (Q1,N—3+JZN+192,N—3)[4 2P1 2P2 2(XD»1+yD’1) l
i=1

~ . ~ —2 —2 —2 2
+(g1,N—2+JZN+lg2,N—2)[4 P1 P2 (Kai-3’00]

+ (g3,N-3ZN+1 + jg4,N—3)X

X Z2 [44131—21952 (950,1 + yD,1)(XD,1 - 3’D,1)] (5-90)

with

91,N-3 = 23? L91,N—4 C082 (1’2 - 91,N—3 S1112 (1’2 - 94,N—4(Z2 sin (1’2) COS 4’2]

' ~ . . l

92,N_3 = Z3 92,N_4 cos2 <I>2 - 92,N_3 Sin2 (1)2 + Q3,N_4(Z2 Sin (1)2) cos <I>2J

,

g1,N—2 = 2% gl,N—3 COS2 (1’2 - 91,N-4 sinz (1’2 - g4,N—4(Z2 sin 4’2) COS (1’2

 
~ "" . . l

92,N_2 = 2% 92,N_3 cos2 <I>2 — g2,N_4 sm2 (P2 + g3,N_4(Zg 8111 (P2) cos <I>2J

g3,N_3 = 2% cos2 <I>2 - sin2 Q2] Q3,N_4 — 2[92,N—4 + 62,N—3] (Zg sin (1)2) cos (1)2

 g4,N_3 = 2% cos2 (1)2 — sin2 (1)2] 94,16-.. + 2 [91,11]...) + 51,N_3] (22 sin (D2) cos <I>2

Here g1,N_3 through 94,164,, which are defined by (6.77) in terms of 91,N—4 through

g4,N_4, wave impedances, and trigonometric functions, are even about the branch

cut using (6.71) and evenness of 91,1641 through Q4,N_4. This symmetry about the

branch cut is established through the continual reapplication of (6.77) leading to the

form of (6.90).

At this point, the expressions for (X0,1 :1: 32111) are simple enough to be written
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out explicitly. These expressions are found as

(X111 i 3’03) = DiAo,1 i [(21 - Zo)A1,1lBi,2 + 00(22 - Zl)AO,OBZ,2]

: (1 (22 - Z1)(Z1- Zo)

(Z2 + Zl)(Zi + 20)

i [(21 — Z0)(Z2 + Zl)P12P22 + (22 — Zi)(Zl + ZO)P22]

 

P12)(Z2 + Zi)(Zl + 20)

___ 22(1 :1 p22)(z1(1 + P12) + 211(1— P12»

+Z1(1¢P§)(z1(1 —P12)+ZO(1+P12)) (6.91)

2

The expressions for (XDJ :1: 32m) and (XDJ + 370,1) (X111 — 370,1) can thus be

written out explicitly as

(10,1. 52.1,.)2 = 22111. 12.212 [2111 + 522 + 286 - 11212

+ 221,210+ P12)(1— Pb] + Zf(1q: P22)2><

x [2% — P12)2 + 23(1 + P12)2 + 221,210+ P12)(1— 1312)]

+ 221220 + P22)(1— P22)><

x {(2% + zg)(1+ P12)(1— P12) + 2021 [(1 + 1012)2 + (1 — P12)2]]

(6.92)

and

(XDJ + yD,1)(XD,1- 320,1) = (1+ P22)(1- P2,) [22 [Z12(1 + P12)2 + 26(1— P12)2

+ 221,210+ P12)(1— 1312)] + 212 [z§(1 — 1912)2 + 23(1 + 1912)2

+ 221,210+ Pf)(1— P12)]] + z1zz[(1 + 1922)2 + (1 — P3P] x

x [(2% + zg)(1+ P12)(1— P12) + zoz1[(1+ 10;")2 + (1 — P12)2]] (6.93)

Thus, the expressions in square brackets in (6.90) can be written explicitly. The first
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of these is given as

(1... + 1...)?

=Z§ cos2 (D2 [Z12 cos2 (1)1 — Z8 sin2 (D1 + 2jZ0(21 sin (1)1) cos (1)1]

— 2% sin2 <I>2 [23 c032 <I>1 — 2% sin2 <I>1 + 2120(21 sin <21) cos <91]

+ 2j(22 sin <22) cos <22 [j(z1 sin 61) cos<1>1(zf + 23) + 2to [cos2 <1>1 — sin2 <I>1]]

= [2% cos2 (1)2[Z%cos2 <I>1 — 2% sin2 <I>1] -— 212 sin2 (1)2 [Z3 cos2 (1)1 — Z12 sin2 Q1]

— 2(Z2 sin (1)2) cos <I>2(Z1 sin <I>1) cos <I>1(Z% + Z8)] + jZo [2(21 sin (D1) cos <I>1x

x [2% cos2 (P2 — Z12 sin2 (1)2] + 2le [cos2 <I>1 — sin2 (1)1] (Z2 sin (1)2) cos (1)2]

éHl + jZOH2 (6.94)

where (1)2 and (D1 are defined by (6.66). The quantities defined here as H1 and H2 are

only functions of wave impedances and trigonometric functions, and are even about

the branch cut using (6.71). The second expression found in square brackets in (6.90)

is given by

4_2P1—2P2-2 (XDJ - 3’03)2

= — Z3 sin2 (1)2 [Z12 cos2 (1)1 — Z3 sin2 (P1+ 2jZ0(Zl sin (1)1) cos $1]

+ Z12cos2 <I>2 [Z3 cos2 (191 — Z12 sin2 (D1 + 2jZo(21 sin (P1) cos $1]

+ 2j(Z2 sin (P2) cos CD2 [j(21 sin (1)1) cos ¢1(Z12+ 23) + ZoZflcos2 (1)1 — sin2 <I>1]]

= [ - 2% sin2 (1)2 [Z12 cos2 <I>1 — Z3 sin2 (1)1] + Z? cos2 (1)2 [Zg cos2 <I>1 — 212 sin2 (1)1]

— 2(22 sin (1)2) cos <I>2(21 sin (1)1) cos <I>1(Z¥ + 28)] + jZo [2(21 sin CPI) cos (1)1 x

x [Z12 cos2 <I>2 — Z3 sin2 (1)2] + 2Z12 [cos2 <I>1 — sin2 (1)1] (22 sin <I>2) cos (1)2]

$1771 + 320172 (6.95)
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The quantities defined here as B1 and 1:72 are only functions of wave impedances and

trigonometric functions, and are even about the branch cut using (6.71). Finally, the

third expression found in square brackets in (6.90) is given by

22 [4"21'31—21’2-2 (XDJ + 320,1) (950,1 - yD,1)]

== j(22 sin (D2) cos <I>2 [2%[212 cos2 <I>1 — 2% sin2 <I>1+ 2jZ0(Z1 sin (1)1) cos (1)1]

+ Zl2[Zg cos2 <I>1 — Z? sin2 (1)1 + 2jZ0(21 sin <I>1) cos (1)1]]

+ 2% [j[cos2 (1)2 —— sin2 (1)2][(Zl2 + Z8)(Zl sin (1)1) cos (D1

+ Z()Z¥(cos2 (1)1 — sin2 <I>1)]]

= Z0 [Z§Z¥(cos2 <I>1 — sin2 (1)1) — 2[Z% + Z12]Z2 sin <I>2 cos <I>2(Z1 sin (1)1) cos (1)1]

+ j [22 sin <22 cos <1>2 [23 [2,2 cos2 <I>1 — Z3 sin2 <I>1] + Z3 [Z3 cos2 <I>1 — 23 sin2 <21]

+ 2%[cos2 (D2 — sin2 CD2](212 + Z8)(Zl sin (1)1) cos (1)1]

'3 H320 +jH4 (6.96)

The quantities defined here as H3 and H4 are only functions of wave impedances and

trigonometric functions, and are even about the branch cut using (6.71).

Plugging (6.94) through (6.96) into (6.90) gives

N-l

44”“) II P172511 = (9111-3 + jZN+192,N_s)(H1 + 126112)

i=1

+ (§I,N—2 + jZN+1§2,N—2)(fi1 + 230172)

+ (g3,N—3ZN+1 + jg4,N-3)(H3ZO + 2H4) (6-97)

Examining this equation, it can be seen that all quantities in the equation are even

about the branch cut, with the possible exceptions of 20 and ZN+1- These wave

impedances will exhibit an evenness about the branch out if the regions they corre-
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spond to are lossless. This occurs because the wave impedance of a lossless region of

space is independent of the complex variable, 3. However, if these regions are lossy,

the wave impedances will display an odd symmetry about the branch out by (6.64).

Implications of the wave impedances displaying either even or odd symmetry about

the branch cut on the form of the transient field are discussed in Section 6.4.3.

6.4.2 Form of the numerator

In this section, the numerator of the frequency domain reflection coefficient for an

N-layered material structure is manipulated into a form which can be used to examine

the form of the time domain reflection coefficient in the late time of the structure.

Here, the late time begins after the two way transit time of the N regions comprising

the N-material structure. The manipulation of the numerator proceeds by contin-

uously utilizing a recursive form of the numerator and collapsing the equation by

defining quantities which are even about the branch cuts. This is done at each step

along the way, eventually leading to a recursive expression that allows N steps to be

performed. Finally, once the expression is placed in terms of the numerator and de-

nominator of the frequency domain reflection coefficient for a two layered structure,

explicit expressions for the numerator and denominator are substituted in, leaving

the expression in terms of quantities which are even about the branch cut, and wave

impedances. The wave impedances may be even or odd about the branch cut, de-

pending on the material characteristics of the region.

To this end, begin by establishing some relationships for the ith layer of a multi-

layered structure. These relationships will prove extremely useful in the exploration

into the form of the transient response from the multilayered structure.

6.4.2.1 Equations for the i-th layer

To utilize the symmetry relationships of (6.71), it is helpful to place the numerator in

an alternative form. To do this, R,- is plugged into (6.27a), and the result is multiplied
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though by AM, noting a cancellation of terms in A0,,- with the denominators of the

interfacial reflection coefficients for indices of j, and z'. The numerator is then found

in terms of the wave impedances, rather than the reflection coefficients, as

NiA0,i = i—1A0,i + (Zi-i-l - Zilx

i-2

>< ADJ—IBM + Z Nj(Zj+2 — Zj+1)AO,jAj+2,i—IIBj+2,i

j=0

= XN,¢—1(Zz'+1 + 22') + yN,i—1(Zi+1 - Zi) (598)

where dependance of parameters on the complex variable, 3, is suppressed for brevity.

Several quantities are defined here in order to aid in understanding of the steps used

in this derivation. These quantities are given by

XNJ = MAM

= XN,i—1(Zi+1 + Zi) + yN,i—1(Zz'+1 - Zi) (699a)

i—l

yN,i = [A0,i131,i+1 + Z Nj(Zj+2 - Zj+1lA0,jAj+2,iBj+2,i+1]

i=0

i-2

= (Zi-H + 20135.1 [Aw—1131; + Z Nj(Zj+2 - Zj+1)A0,jAj+2,i—1Bj+2,i]

i=0

+ (Zi-H - Zilpia-lNi-IAOJ-l

= yN,i—1(Zi+1 + 20135.1 + XN,z‘-1(Zz'+1 - 2013111 (5-99b)

Here the z' — 1 term was removed from the summation in yN,,-, and (224.1 + ZflPfiH

was factored out of the remaining terms in order to write Jim,- in terms of yN,,--1

and XN,,-_1. Various quantities involving the sum or difference of the expressions in

(6.99) are utilized in the exploration of the form of the numerator for an N-layered
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material. These terms will use the relationships

(95m i yN,i) = (XN,2'—1(Zz‘+1 + Zi) + yN,i-1(Zi+1 - Zi))

fl: (yN,i-1(Zi+1+ Zi)Pzg{-1+ XN,z'—1(Zi+1 - 20324.1)

= i+1(1i Pza-l)(XN,i-1+ yN,i—1)

+ 2.0 3: 103.1) (XN,.-_1 - yN,.-_1) (6.100)

Because of various operations carried out on the denominator in 6.4.1, the two

quantities given by (6.100) appear in various combinations with the quantities

(XDJ- :t 370,35), given by (6.74) when these same operations are performed on the

numerator. Terms which appear include the combinations of

(260.- i ya.) (m im)

= 23+,(1i 13.1,)2 (XD,,-_1 + yD,,_1)(xN,,--1 + yN,,-_1)

+ 212(1 4: P12“? (Arm—1 - 3202—1) (Alva—.1 - yN,i—l)

+ 2241227011: 10.7100: P3“) [(Xm—l + yD,i—1)(XN,i—1 - yN,z’-l)

+ (Xm-i - yD,i-1) (XNJ—l + yN,i—1)] (5-101)

and

(Xm i 3’02) (XNJ 3F yN,i)

= 23.10 a: P.%.1)(1 a 132.1)(XD,.-_1+ yD,.-1)(XN,.-_1+ Jaw--1)

+ Z1202}: P1711)“ 3F Pz?+1)(XD,i—l — yD,i—1)(XN,i-1 — yN,i—1)

+ Zi+lzi[(1i 132+]? (9502—1 + yD,i—l) (XNJ—l - yN,i—1)

+ (1 a P.%.1)2(XD,.-_1 — yD,.-_1)(X~,.--1 + yN,.~_1)]. (6.102)
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The products of (6.101) and (6.102) appear often throughout the manipulation of

the numerator of the frequency domain reflection coefficient. The following recursive

formula, which appears in the course of this derivation and is utilized heavily, contains

all combinations of (6.101) and (6.102).

4131?: [mm--1 +jZN+1H2,i-1)><

>< (XD,N—(i+1) + yD,N—(i+1))(XN,N-(’i+1) + yN.N—(i+1))

+ (72212 +jZN+1fi2¢l><

x (XD,N_(,+1) - yD,N-(i+1)) (XN,N-(i+1) - yN.N-(i+1))

+ (H3,z-_1Zi—1 +jH4,i—1)><

>< ZN—z' (Atom—(2+1) + yD,N—(i+1))(XN,N—(i+1) — yN,N—(i+1))

+ (H3,i_1Zz'—1 +jfi4,i—1)X

X ZN—i (“YEN—(2+1) — yD,N—(i+1))(XN,N—(i+1) + yNiN—(i+1))]

= (H12 + jZN+1H2.i)X

x (XD,N_(,+2) + yD,N_(i+2)) (XN,N—(i+2) + yN.N-(i+2))

+(fi1,,-+1 +jZN+1fi2,i+1)X

x (XD,N—(i+2) - yD,N—(i+2)) (XN,N—(i+2) " yN.N-(i+2))

+ (H3,iZN+1 + jH4,i)ZN-(i+1) x

x (“YEN—(H2) + yD,N-(i+2)) (XN,N—(i+2) "" yN.N-(i+2))

+ (H3,iZN+1 +jfi4,i)ZN-(i+1)x

X (XD,N—(i+2) — yD,N—(i+2)) (XN,N—(i+2) + yN,N_(,-+2)) (6.103)
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where the following quantities arise from application of (6.99) through (6.102)

711,,- = 212v_,- [711,54 cos2 <I>N_,- — 711,,- sin2 <I>N_,-

- [HM—l + fi4,i-1](ZN—i3in ‘PN-i) COS ‘I’N—i]

712,,- = Zj2\,_,-[H2,i-1cos2 <DN_,- — 772,, sin2 (DN_,-

+ 2H3,,'_1(ZN_,- sin (DN_,-) cos (DN_,-]

711,241 = 212v_(,-+1) [73126082 ‘I’N—i - "Hm—19112 cI’N—z'

- [H4,z‘—1 + 7714,241] (ZN—i sin (DN—z‘) COS ‘I’N—i]

712,141 = 212v_(,-+1) [7222 6032 ‘I’N—i - H2,i-1 Sin2 ‘I’N—z'

+ 2H3,,-_1(ZN_,- sin (PN_,-) cos <I>N_,-]

71:22. 24> -—'2<I> -H-3,z N—z COS N—z 3m N—z 3,2—1

- [Ham—1 + fiat] (ZN-i sin ‘I’N-z') COS ‘I’N-z'

H-=Z2-H- 24> -—fi- “24>-4,z N—z 4,2-1COS N—z 4,2—15m N—z

+ [Hm—1 + fi1,i](ZN-i3in ‘I’N—z‘) COS ‘I’N—i

72:22.7? 2<1> -—H- '2<I>-4,2 N—z 4,1—1 COS N—z 4,2—1 31“ N—z

+ [7113-1 + 771,13] (ZN_,' Sin (PN..,') COS (pN-i

6.4.2.2 N-Layer geometry

Consider the N—materia.l, planar layered geometry shown in Figure 6.8, where region

0 is free space, and region N + l is a material which may or may not be lossy. The

numerator of the frequency domain reflection coefficient, multiplied by AOJV’ is given

by (6.98) for 2' = N as

NNAOJV = XN,N—1(ZN+1 + ZN) + 3’N,N-1(ZN+1 - ZN) (5-104)
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To explore the properties of the numerator of the reflection coefficient, begin by

plugging in expressions for XN,N—1 and yN,N_1 using (6.99). Doing this gives

NNA0,N = (XN,N-2(ZN + ZN—1)+ yN,N—2(ZN - ZN—1))(ZN+1 + ZN)

+ (yN,N..2(ZN + ZN-1>va + XN,N-2(ZN — ZN_1)P?V)(ZN.1 — ZN)

(6.105)

Rearranging terms to separate the XN,N—2 and yN,N_2 terms gives

NNAo,N = XN,N_2[(ZN+1+ ZNXZN + 211/-1) +(ZN+1 — ZN)(ZN — 216.01%]

+ yN,N-2[(ZN+1+ ZNXZN - ZN-1)+(ZN+1— ZNXZN + ZN-llpgfl

(6.106)

Multiplying out the wave impedance terms in brackets and regrouping gives

NNA0,N = XN,N-2[ZN(ZN+1+ ZN-1)(1+ P121!) + (312v + ZN+1ZN—1)(1 - 19111)]

+ 3’N,N—2 [ZN(ZN+1 - ZN—1)(1 + 131%) + (312v - ZN+1ZN—1)(1 - 1D1%)]

 

1—P2
=C(1+P§,) +jD( J N) (6.107)

where the quantities C and D are defined as

C = XN,N-2(ZN+1ZN + ZNZN—1)+ yN,N—2(ZN+IZN - ZNZN—1) (6108a)

D = 266.22% + ZNHZJH) + yN,~_2(Z?V — ZN+1ZN-1) (61081»)

. . . sr-(s) , . 2

UtlllZlIlg <1),- = (‘53—), and multiplying through by (Au + PN) _

i—P2
jB (”_j'fl))4—1P1\_/21 which is the same term the denominator is multiplied by in
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Section 6.4.1, leads to

NN = NNA0,N(A(1+ P1210 - 14%))?le

  

1—P2 1--P2
_ 2 - N 2 _- N -l —2_(C(1+PN)+]'D( j ))(A(1+PN) ]B( .j ))4 PN

= AC cos2 <I>N + BDsin2 <I>N +j(A’D - BC) sin <I>N cos <I>N (6.109)

Here, the terms AC, 8D, AD, and BC are calculated using (6.82) and (6.108). The

first term is given by

AC = XN,N—2XD,N—2(ZN+1ZN + ZNZN—1)2

+ yN,N—23’D,N—2(ZN+1ZN - ZNZN—1)2

+ (XD,N-2yN,N-2 + XN,N—2yD,N—2)(ZI2V+1212V - 216212114)

= ZI2V+1212v(XD,N—2 + yD,N—2)(XN,N—2 + 3’N,N—2)

+ Z12VZJZV—1(XD,N—2 - J’D,N—2)(XN,N—2 - yN,N—2)

+ 2ZN+1212VZN—1[(/YD,N—2 - yD,N-2)(XN,N—2 + yN,N—2)

+ Wow—2 + yD,N—2)(XN,N—2 - yN,N—2)]~ (6-110)

Next, 8D is found as

373 = XN,N—2XD,N—2(Zz2v + ZN+1ZN—1)2 + yN,N—2yD,N-2(Z12v - ZN+1ZN—1)2

+ (XD,N—23’N,N—2 + XN,N—23’D,N—2)(va — va+1va_1)

= va(XD,N—2 + yD,N-2)(XN,N-2 + yN,N—2)

+ Z12v+1212V—1(XD,N—2 — yD,N—2)(XN,N—2 - 3’N,N—2)

+ 2ZN+1212VZN-1 [Wow—2 - yD,N—2)(XN,N—2 + yN,N—2)

+ («Vow—2 + yD,N—2)(XN,N-2 - yN,N—2)]~ (6-111)
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AD and BC are given by

AP = XN,N-2XD,N—2(ZN+1ZN + ZNZN—1)(Z12v + ZN+1ZN—1)

+ yN,N—2yD,N—2(ZN+IZN - ZNZN—1)(212V - ZN+1ZN-1)

+ XD,N—2J’N,N—2(ZN+1ZN + ZNZN—1)(212v - ZN+1ZN—1)

+ XN,N—2J’D,N—2(ZN+1ZN - ZNZN-1)(Zz2v + ZN+1ZN-1)

= ZN+1Z?V(XD,N-2 + yD,N—2)(XN,N-2 + yN,N—2)

+ vaZN—1(XD,N—2 - yD,N—2)(XN,N—2 + yN,N—2)

+ Z12V+1ZNZN—1(XD,N—2 + yD,N—2)(XN,N—2 - yN,N—2)

+ ZN+1ZNZIZV_1(XD,N—2 - 3’0,N—2)(XN,N—2 - yN,N—2) (6-112)

BC = XN,N—2XD,N-2(ZN+1ZN + ZNZN—IXZIZV + ZN+1ZN—1)

+ yN,N—2yD,N-2(ZN+IZN — ZNZN—l)(ZJ2v - ZN+1ZN—1)

+ XD,N—23’N,N—2(ZN+1ZN - ZNZN-1)(212v + ZN+1ZN—1)

+ XN,N—23’D,N—2(ZN+IZN + ZNZN—1)(Z12V — ZN+1ZN—1)

= ZN+1Z?V(XD,N—2 + yD,N—2)(XN,N—2 + yN,N—2)

+ Z13VZN—1(XD,N—2 + yD,N—2)(XN,N—2 - yN,N—2)

+ ZJZV+1ZNZN-1(XD,N—2 - yD,N—2)(XN,N—2 + yN,N—2)

+ ZN+IZN212V-1(XD,N—2 - yD,N-2)(XN,N—2 — yN,N—2)- (65-113)

The difference between (6.112) and (6.113) is then given as

AD - BC = (312v - 212v+1)ZNZN—1 [(XD,N-2 - 3’D,N—2)(XN,N—2 + 3’N,N—2)

- (XDJv—z + J’D,N—2)(XN,N—2 — yaw—2)] (6-114)
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Plugging (6.110) through (6.114) back into (6.109) gives

NN = [Z12v+1212v (XD,N—2 + yD,N—2) (XMN—z + yN,N—2)

+ Z12v212v_1(XD,N—2 - 3’D,N-2) (XN,N—2 - yN,N—2)] C082 ‘I’N

+ [ZN (XD,N—2 + yD,N—2) (XN,N—2 + yN,N—2)

+ ZN+1va.—1(XD,N—2 - 3’D,N-2) (XMN—Z - 3’N,N—2)] sinz (DN

+ 2ZN+1Z12vZN—1 [(XDN—z - yD,N—2) (XMN-Z + 3’N,N—2)

+ (XD,N—2 + yD,N—2) (XN,N—2 - yN,N—2)] + 1(va - 2121/“) X

X ZNZN—l sin ‘I’N COS (PN [(XDN—z - 3’D,N—2) (XN,N—2 + yN,N—2)

- (XD,N—2 + 3’D,N—2) (XN,N—2 - yN,N—2)] (6-115)

Rearranging (6.115) to organize the equation in terms of various products of

(XD,N—2 =1: yD,N—2) and (XN,N—2 i yN,N—2) gives

NN = [2121!“sz cos2 <I>N + va sin2 <I>N] (IVAN—2 + 370,104) x

x (XN,N_2 + yN,N_2) + [Z12VZ%V_1 cos2 <I>N + Z12v+1Z12v_1 sin2 <I>N] x

X (XD,N—2 - yD,N—2) (XMN—z - yN,N—2) + [22N+1212V +j(Z12v—

- Z12v+1)ZN sin ‘I’N COS q’N]ZN—1(XD,N—2 - yD,N—2) (ANN—2 + yN,N—-2)

+ [2210,14 — “2%, — va+1)ZN sin <I>N cos 0N] x

X ZN—1(XD,N-2 + yD,N—-2) (XN,N—2 - yN,N—2)

= F1(XD,N—2 + yD,N—2) (XN,N—2 + yN,N—2)

+ 1'52 (A’D,N—2 - yD,N— )(XN,N—2 - yN,N—2)

+(ZN+1F3 + jF4)ZN- 1 XD,N—2 - 3’D,N—2) XN,N—2 + yN,N—2)( (

+ (ZN+1§3 - J'F4)ZN—1(XD,N—2 + yD,N—2) (XMN—Z - yN,N—2) (6-115)
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Here the functions F1 through F3 are even about the branch cut, since they are

defined in terms of wave impedances and trigonometric functions which are raised

to even powers. Multiplying through by 4‘1Pfi31, plugging in the expressions for

(XD,N—2 :1: 32mm) and (XMN—z :l: JIN,N_2), and rearranging terms gives

4-1P1172_1NN = Z%v_1 [F1 cos2 (DN_1— F2 sin2 $10-1 + j(ZN+1F‘3+

+ jF'4)ZN_1 sin <DN_1 cos (PN_1 + j(ZN+1F3 — jF‘4)ZN_1 sin <I>N_1 cos (bN_1] x

X (XD,N—3 + 37D,N—3) (XN,N—3 + yN,N—3) + ZEN—2 [fiz €082 (PN—i-

— 13131112 010-1 + j(ZN+1F3 + jF4)ZN_1 sin <I>N_1 cos<1>N_1

+ j(ZN+1f3 - j§4)ZN—1 sin ‘I’N—i COS ‘PN—i] X

X (XD,N—3 - yD,N—3) (XN,N—3 - yN,N—3)

+ ZN-2[J'[F1 + F2l(ZN-15in ‘I’N-ll COS ‘I’N—i + (ZN+1F3 +J'1‘54)COS2 ‘I’N—i

— (ZN+1133 - J'I":41)Sinl2 ‘PN—i] (XD,N—3 + yD,N—3) (XMN-B - yN,N—3)

+ ZN—z [3W1 + §2](ZN—1sin ‘PN—il COS ‘I’N—i - (ZN+lf3 + 3'1’54)COS2 ‘I’N—1

+ (ZN-+1153 - 3.2503112 ‘PN—l] (XD,N—3 - yD,N—-3) (XN,N—3 + 3’N,N—3)

= (711,1 + jZN+1H2,1) (XD,N—3 + J’D,N—3) (XN,N—3 + yN,N-3)

+ (771,2 + jZN+1fi2,2) (XD,N—3 - 3’D,N—3) (XN,N—3 - yN,N—3)

+ (H3,1ZN+1 + J'H4,1)ZN—2 (XD,N—3 + yD,N-3) (XMN—B - yN,N—3)

+ (H3,1ZN+1 + jfi4,1)ZN-2 (XD,N—3 - yD,N—3) (XN,N—3 + yN,N—3) (6-117)
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with <I>N_1 defined by (6.66) as STN_1(S)/2j, and

711,1: 212V_1[F1c082 <I>N_1— F2 sin2 <PN_1]

712,1 = 2F3ZIZV_1(ZN_1 sin <I>N_1)cos <I>N_1

721,2 = Z12V_2 [F2 cos2 <I>N_1 — F1 sin2 (DA/4]

722,2 = 2F3Z12V_2(ZN_1 sin <DN_1) cos <I>N_1

713,1 = f53erzv_1[cos2 (DN_1 - sin2 (DA/-1]

H44 == [131+ F2] (ZN_1 sin <I>N__1) cos <I>N_1 + F4Z12V_1

724,1 = [131 + 132] (ZN—1 Sin cI’N—llCOS ‘I’N—l — 1E4312v—1

Note that the quantities 711,1 through 714,1 are defined in terms of F1 through F3,

wave impedances, and trigonometric functions. Thus, 711,1 through H44 are even

about the branch cut using (6.71) and evenness of F1 through F3.

Multiplying by 4’1Pfi2_2, the right hand side of (6.117) has the form of the left

hand side of (6.103) for 2' = 2, thus,

4-2PN2—1PN32NN

= (711,2 + jZN+1H2,2) (XD,N—4 + yD,N——4) (XN,N-4 + yN,N—4)

+ (711,3 + jZN+1fi2,3) (XD,N—4 - yD,N—-4) (XN,N—4 - yN,N—4)

+ (H3,2ZN+1 + jH4,2)ZN—3 (“YEN—4 + 3’D,N—4) (XN,N-4 - yN,N—4)

+ (H3,2ZN+1 + jfi4,2)ZN—3 (XD,N—4 - yD,N—4) (XN,N—4 + yN,N—4)

(6.118)
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with

711,2 = Z12V_2[H1,1cos2 <I>N_2 — 721,2 sin2 <DN_2

- [714,1 + 714,1] (ZN—2 Sin ‘I’N—2) COS (I’N-2]

712,2 = 2,2(,_2 [712,1 cos2 <1>N_2 — 712,2 sin2 <1>N_2

+ 2H3,1(ZN_2 sin <I>N_2) cos <I>N_2]

7:213 = 212V—3 [721,2 cos2 (1)104 — 711,1 sin2 <I>N_2

- [714,1 + 7L74,1] (ZN-2 Sin ‘I’N—2) COS ‘I’N-2]

7:223 = Z12V_3[fi2,2 cos2 (DA/-2 — 712,1 sin2 <DN_2

+ 2H3,1(ZN_2 sin <I>N_2) cos <I>N_2]

713,2 = 212V—2 [0032 <PN_2 — sin2 (1)104] 713,1

- [712,1 + 722,2] (ZN—2 sin ‘PN—2) COS ‘PN—z

H43 = Z12V_2 [714,1 0052 <I>N_2 — H4,13in2 <I>N_2]

+ [711,1 + 771,2] (ZN-2 Sin ‘I’N-2) COS ‘PN—z

72243 = Z%,_2 [714,1 cos2 (DA/-2 — 714,1 sin2 (PA/-2]

+ [711,1 + 7712] (ZN—2 sin (PA/-2) COS (EN—2

Note that the quantities 711,2 through H43 are defined in terms of 711,1 through

714,1, wave impedances, and trigonometric functions. Thus 711,2 through 714,2 are

even about the branch out using (6.71) and evenness of 711,1 through 714,1.

Multiplying by 4_1PN2-3’ the right hand side of (6.118) has the form of the left

hand side of (6.103), with z' = 3. This leads to terms 7113 through 7143, which are

defined by (6.103) in terms of 711,2 through 714,2, wave impedances, and trigonometric

functions. Thus 7113 through 7143 are even about the branch out using (6.71) and

evenness of H13 through 7142. Continuing to multiply through by 4‘1P1;2_i and
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applying (6.103) for increasing values of 2', until 2' = N — 3, and then multiplying by

4‘2P1-2P2—2, leads to

N—l _

4—<N-1> II Pi‘2NN
i=1

= (“LN-3 + jZN+1H2,N-3) [4‘2P1—2P2-2 (XDJ + yD,1)(XN,1 + yN,l)]

+ (fi1,N—2 + jZN+1fi2,N—2) [44131—21352 (XDJ — 3’D,1)(/1’N,1 - yN,1)]

+ (H3,N—3ZN+1 + jH4,N—3)Z2 [4’21’1-21‘272 (XDJ + 37D,1) (XN,1 - yN,l)]

+ (H3,N—3ZN+1 + jfi4,N—3)Z2 [4'2Pf21’2-2 (XDJ - yD,1) (XNJ + J’N,1)]

(6.119)

with

H1,N_3 = 2% [H1,N_4 COS2 (1’2 - fi1,N_3 Sin2 (P2

- [H4,N_4 + fi4,N_4] (Z2 Sin (1)2) COS (1)2]

H2,N_3 = Z32 [H2,N-4 COS2 (132 — HEN-3 Sin2 (1)2 + 2H3,N_4(Z2 sin (1)2) COS (1)2]

fil,N—2 = 2% [fi1,N—3 C082 (1’2 — H1,N—4 sin2 (1’2

— [H4’N_4 + fi4,N_4] (Z2 sin (1)2) COS (1)2]

7122/4 = Z3 7222/4, cos2 <I>2 — H2,N_4 sin2 (1)2 + 2H3,N_4(Z2 sin <I>2) cos (1)2]

LCOS2 (D2 — Sin2 (1)2] H3,N_4 - [H2,N-4 + fi2,N_3] (Z2 Sin (P2) COS (D2
2

H3,N-3 = 33

 H4,N_3 = 2% [7142/41 cos2 (1)2 — fi4.N-4 sin2 (1)2]

+ [H1,N_4 + fi1,N_3] (Z2 sin (1)2) COS (1)2

fi4,N_3 = Z3 [fi4,N_4 0032 (1)2 — H4,N_4 sin2 (1)2]

+ [71121-4 + fil,N—3] (Z2 Sin (132) C08 (1)2

Here H1,N_3 through H4,N_3, which are defined by (6.103) in terms of H1,N_4
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through H4,N-4, wave impedances, and trigonometric functions, are even about the

branch out using (6.71) and evenness of H1,N—4 through H4,111-4. This symmetry

about the branch cut is established through the continual reapplication of (6.103)

leading to the form of (6.119).

At this point, the expressions for (XD,1 :1: 32m) and (XN,1 :t 32m) are simple

enough to be written out explicitly. These expressions are found as

(XNJ i yN,1) == N1A0,1 i [A0,1131,2 + N0(Zz - Zl)A0,0132,2]

= (22 + Z1)(Z1- 20) + (Z2 - Z1)(Zi + ZO)P12

:1: [(Z2 + Z1)(21 + Z0)P12P22 + (Zz - Zi)(Zi - 201322]

= 22(1 :1: P22)(21(1+ P12) — 20(1— 1312))

+ 210 s P§)(zi(1 - P12) - 30(1 + P?» (6.120)

Repeating (6.91),(XD,1 :1: 320,1) is given by

(X611 320,1) = 22(1i P22)(Zi(1+ P12) + 260— P12»

+ 2,0 g: P22)(Z1(1 — P12) + 20(1+ P?» (6.121)

The expressions in brackets in (6.119) can be written using (6.120) through (6.121).

The first of these terms is given by

4’21’1'21’2-2 (XDJ + yD,1)(XN,1 + yN,1)

= [Z2 cos <I>2(Z1 cos (1)1 +jZ0 sin (D1) + jZ1 sin <I>2(jZ1 sin <I>1 + Z0 cos (D1)] X

x [Z2 cos <I>2(Z1 cos <I>1 -— jZO sin (P1) +j21 sin <I>2(jZ1 sin (D1 — Z0 cos (D1)]

= Z3 cos2 <I>2 (Z12 cos2 (1)1 + Z3 sin2 (P1) + Z? sin2 (1)2(Zfsin2 (1)1 + 28 cos2 (1)1)

+ 2(Z2 sin (1)2) cos (132(21 sin (1)1) cos (1)1 (Z3 - Z?) 2 GI (6.122)
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The quantity defined here as G1 is only a function of wave impedances and trigono-

metric functions, and is even about the branch out using (6.71). The second expression

found in brackets in (6.119) is given by

4'2Pf2P{2(XD,1 - yD,1)(XN,1 - yN,1)

= [1Z2 sin ¢2(Z1 COS (1’1 + jZo sin <1’1) + Zl COS ‘1’2(J'Z1 sin (1’1 + 20 COS 91)] X

x [ng sin (1)2(21 cos (1)1 — jZo sin (D1) + Z1 cos <I>2(jZ1 sin <I>1 — Z0 cos <I>1)]

= —Z% sin2 (1)2 (Z12 cos2 <I>1+ Z3 sin2 Q1) — Z12 COS2 (1)2(Z12sin2 (1)1 + 23 C052 4’1)

+ 2(22 sin <22) cos 22(21 sin <21) cos <I>1 (23 — 212) £- 5}, (6.123)

The quantity defined here as 51 is only a function of wave impedances and trigono-

metric functions, and is even about the branch out using (6.71). The third expression

found in brackets in (6.119) is given by

ZZ[4-2P1_2P2_2(XD,1+ 320,1) (Kl/NJ — yN,1):l

= Z2 [[Z2 cos <I>2(Z1 cos (1)1 + jZO sin (1)1) +jZ1 sin (D2(jZ1 sin (1)1 + Z0 cos <I>1)] x

x [ng sin (1)2(Z1 cos (1)1 — jZO sin (1)1) + Zl cos (D2(jZ1 sin (1)1 - Z0 cos (1)1)]]

= Z22Z12Z0 + j [(Z2 sin (1)2) cos (P2 (Z§(Zia c052 (P1 + Z3 sin2 (1)1) — 212(Z12 sin2 (1)1

+ Z3 cos2 (1)1)) + Z§(Z1 sin (P1) cos <I>1(Z¥ — 23) (cos2 <I>2 — sin2 (D2)]

2 G320 + 304 (6.124)

The quantities defined here as G3 and G4 are only functions of wave impedances and

trigonometric functions, and are even about the branch cut using (6.71). Finally, the
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fourth expression found in brackets in (6.119) is given by

22

 

4“2P1—2P2—2 (X111 — 370,1) (XNJ + yN,1)J

= Z2 [[ng sin (1)2(Z1 cos (1)1 + jZO sin <I>1) + Z1 cos (1)2(jZ1 sin (D1 + ZO cos (D1)] x

x [Z2 cos (1)2(Z1 cos <I>1 — jZO sin (P1) +jZ1 sin <I>2(jZ1 sin (1)1 —- Z0 cos <I>1)]]

= Z3Z¥Z0 + j [(Zz sin (1)2) cos (1)2 (Z%(le cos2 (P1 + Z3 sin2 (1)1) — 212(le sin2 (1)1

+ 23 COS2 (1,1)) + 2%(Z1 sin (D1) cos <I>1 (Z12 — Z3) (cos2 (1)2 — sin2 <I>2)]

= Z2 [4_2Pf2P2—2(XD,1 + yD,1)(XN,1 — yN,1)] (55-125)

Plugging into (6.119) gives

N—l

4_(N—1) H Pi-ZNN = (H1,N—3 +jZN+lH2,N—3)Gl

i=1

+ (fiIW—Z + jZN+1fi2,N—2)§1

+ (2H3,N—3ZN+1 + J'(H4,N.—3 + fi4,N—3))(G3ZO + 104)

(6.126)

Examining this equation, it can be seen that all quantities in the equation are even

about the branch out, with the possible exceptions of Z0 and ZN+1- These wave

impedances will exhibit an evenness about the branch cut if the regions they corre-

spond to are lossless. This occurs because the wave impedance of a lossless region of

space is independent of the complex variable, .9. However, if these regions are lossy,

the wave impedances will display an odd symmetry about the branch out by (6.64).

Implications of the wave impedances displaying either even or odd symmetry about

the branch out on the form of the transient field are discussed in Section 6.4.3.
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6.4.3 Form of the reflection coefficient

The frequency domain reflection coefficient is given by

_ NN(S) _ NN(S)

PM“) ' Dive) “ 5M8)

  (6.127)

where NN(s) and EN (3) are defined by (6.109) and (6.83), respectively. Multiplying

and dividing by 4‘(N"1)1'[i1:'1'1Ri"2 gives

way“) = 4-(N—1>IIN:1 10:an '
2: ‘l

 (6.128)

Here, the numerator is given by

N—l

4-(N—1) H Pi—27V-N = (H1,N—3 +jZN+1H2,N—3)Gl

i=1

+ (H1,N—2 + jZN+1H2,N—2)GI

+ (2H3,N—3ZN+1 + j(H4,N—3 + fi4,N—3))(G3ZO +104)

(6.129)

and the denominator by

N—1

4—(N'1) H Pi—QEN = (91,N—3 +jZN+lg2,N—3)(H1 +jZ0H2)

i=1

+ (51,N—2 + jZN+1§2,N—2)(Hl + J'Zofizl

+ (g3,N-3ZN+1 + 3'94,N-3)(H3ZO + J'H4) (6-130)

Both the numerator and denominator are given in terms of wave impedances for

regions 0 and (N+1), and quantities which are even about the branch cuts. Quantities

displaying evenness about the branch out lead to identical expressions on each side of

the branch cut. Thus, since all other quantities are even about the branch cut, there is
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only a possibility of a branch out contribution due to the material properties of regions

0 and (N + 1) in the late time of the N-layered system. Since region 0 is assumed to

be free space, only the properties of the backing material region will determine the

form of the late time response. If this region is lossless, the wave impedance will be

even about the branch out. This will lead to evenness about the branch out for the

frequency domain reflection coefficient and the cancellation of integral contributions

due to integration paths located on opposite sides of the branch cut. Thus, if region

(N + l) is lossless,

2 : / f(s)e3tds = 0. (6.131)
. 1.
z z

The integration along the Bromwich path is then given by

Br f(s)eStds = Z [Res(f(s)est),poles] (6.132)

Thus, for an N-1ayered material structure backed by a lossless material half space, the

late time response is a natural mode series, assuming that region 0 is free space. This

development also validates a natural mode series representation for substructures of

the multilayered structure, during the late times of these substructures, provided that

the backing material of the substructure is lossless. If the N layer material structure

is backed by a lossy half space, it is likely that there will be a branch out contribution

which pollutes the natural resonance response. Examining 6.129 and 6.130, it appears

that a pure natural resonance representation of the time domain reflection coefficient

is not possible with a lossy backing layer, however this has not been shown explicitly,

and proving this is left as future work.
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Figure 6.1. Singularities of the frequency domain reflection coefficient
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Figure 6.3. Right half plane closure of the integration path. |b| —+ 00,0 < c < 00
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Figure 6.4. Single interface between two material half spaces
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Figure 6.5. Single layer geometry backed by a material half space
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Figure 6.6. Two layer geometry backed by a material half space
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Figure 6.7. Three layer geometry backed by a material half space
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Figure 6.8. N—layered structure backed by a material half space
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Figure 6.9. Inner contour integration paths for left half plane closure
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CHAPTER 7

TIME AND FREQUENCY DOMAIN MEASUREMENTS

In this chapter, the experimental setup and procedure for obtaining a measured re-

sponse from layered material is examined. An overview of time-domain and frequency-

domain measurement systems is given in Section 7.1, including benefits and draw—

backs of each measurement system. Determination of experimental parameters and

calibration procedures for each of these measurement systems are discussed in Section

7.2, and results of measurements for various material sheets are given in Section 7.3.

Comparisons of the two measurement systems are provided throughout the chapter.

7.1 Measurement Systems

Time-domain and frequency-domain measurement techniques for scattering from pla-

narly layered dielectric materials are examined here. Included are descriptions of

measurement systems and calibration techniques for both time and frequency-domain

setups. For both systems, reflection measurements are made using the MSU reflec-

tivity arch range. The arch range is a circular structure measuring 6.096 meters in

diameter with transmitting and receiving horn antennas and dielectric lenses placed

at a height of 1.219 meters. The horn antennas have a 2 GHz to 18 GHz bandwidth

and are manufactured by American Electronics Laboratories, Inc. (AEL), model H-

1498. These horn antennas can be placed at arbitrary locations on the perimeter of

the arch, as shown in Figure 7.1. To measure the backseattered fields the two horn

antennas are placed adjacent to each other in order to approximate a mono—static

configuration.

Comparisons of the data measured using the frequency—domain and time-domain

systems are given in Section 7.3.3. It is shown there that nearly equivalent temporal

results may be obtained using the two systems, and that these results compare favor-
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ably with theory. Importantly, the performance of each system is “tuned” through the

adjustment of the various measurement parameters. Thus, the comparison between

systems reflects trade—offs regarding measurement time and measurement accuracy

chosen using the best judgment of the operator. With the signal levels allowed by

the various sources, the noise reduction allowed by using a reasonable number of

averages, the attenuation in the cables, the dynamic ranges of the systems, the band-

width of the antennas, and the geometrical positioning of the samples, equally good

time-domain results may be obtained using the two systems.

7.1.1 Time Domain Measurement System

True time-domain measurements are made using a digital sampling oscilloscope

(DSO), a pulse generator, and the MSU reflectivity arch range. Scattering targets

are placed at the center of the arch range and are supported by a metallic pedestal

that centers two foot by two foot material sheets at a height of 1.219 meters, which is

the height of the horn antennas. This setup provides the most uniform incident field

for the reflection measurements [18]. The time domain response is measured using

a Hewlett Packard HP84750A digitizing oscilloscope with HP54753A TDR module.

The TDR module is a plug-in which allows for time-domain reflectometry / time-

domain transmission measurements through 18 GHz and 20 GHz input channels.

The TDR unit uses an integrated step generator to send a 200 mV step with a 45

ps rise time from channel 3 of the D80 to the trigger input of a Picosecond Pulse

Labs (PSPL) 40158 step generator. This trigger signal is shown in Figure 7.2. The

PSPL 4015B step generator creates another step using a PSPL 4015RHP remote pulse

head. This -9 volt step output with 15 ps fall time is sent into the PSPL 5208 pulse—

generating network, creating 20 ps, approximately gaussian pulses, whose amplitudes

are -3 volts, as shown in Figure 7.3. The spectrum of this pulse is obtained through a

fast Fourier transform (FFT) and is shown in Figure 7.4. Significant spectral content

is visible in the range 2-18 GHz.
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The output pulse from the pulse-generating network is transmitted by an AEL

H-1498 horn antenna mounted 35 cm behind a dielectric lens. This horn antenna

is mounted for horizontal polarization. The receiving antenna is an identical horn

antenna placed adjacent to the transmitting horn, also mounted for horizontal po—

larization and placed behind a dielectric lens, as shown in Figure 7.5. This setup is

meant to approximate a mono—static arrangement; however, the antennas are sepa-

rated by 70 cm at their apertures, corresponding to a bistatic angle of 11.5 degrees.

The receiving antenna is connected to channel 4 of the D80, where the voltage is sam-

pled using 1024 sample points (which is the maximum number of samples allowed) in

a typical 5-20 us time window.

7.1.1.1 Benefits of the time-domain system

While both systems have many benefits, several important ones are discussed here

for the time—domain measurement system.

Data is collected directly in the time domain. Since the temporal response of the

material is desired, the time-domain system gives this directly. However, calibration

must still be done in the frequency domain (see drawbacks in Section 7.1.1.2).

Time gating of multipath signals is easily done to raw measurements. Since the

time domain data is directly available, no processing is required to remove undesired

clutter not present in the background response (such as multipath reflections).

Broadband data is obtained with a single measurement, which can be quite rapid.

By using a short-duration pulse, data over the entire equivalent band is produced from

a single measurement. This measurement can be done quite quickly. However, to

improve the SNR, many averages are usually taken, which increases the measurement

time (see drawbacks in Section 7.1.1.2). Typical measurement time for the data

presented here is 15-20 seconds.

Receiver (oscilloscope) can be replaced with a high-quality digitizer (can be minia-

turized). Although a relatively expensive digitizing oscillosc0pe was used as the re-
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ceiver in the laboratory experiments, this can be replaced with widely available high

speed A/D converters and signal amplifiers. This would be useful in a portable ver-

sion of the system. However, producing the required pulse might be difficult (see

drawbacks in Section 7.1.1.2).

Can measure the response of nonlinear materials. The reflected-field response of

nonlinear material samples is directly available in the time domain data.

7.1.1.2 Drawbacks of the time-domain system

As with every measurement system, the time-domain measurement system has its

drawbacks. Several of these, which are important to the measurements of interest,

are discussed here.

Many averages or high pulse amplitude required for good SNR. Unlike with the

frequency domain system, the time domain system cannot make use of narrow filters

to eliminate noise. Thus, the SNR is increased through the use of averaging. This

increases the measurement time. The SNR can also be increased by reducing the

distance between the antennas and the sample, and by using a pulse with a higher

amplitude. The distance to the sample is set to provide approximately uniform illumi-

nation of the samples, and increased pulse amplitude requires the use of a high-power,

linear, wideband amplifier.

Calibration is done in the frequency domain. Even though the data is collected

in the time domain, calibration is performed in the frequency domain. Thus, the

data must be transformed into the frequency domain, and the calibrated data must

be windowed before transforming back into the time domain. Direct time-domain

calibrations are possible, but these often prove difficult to implement.

Narrow pulse width required to get equivalent wideband data. A pulse of very

short duration (about 10 ps) is required to get data in a band equivalent to that

available from the network analyzer used in the frequency domain system (2-18 GHz).

Producing a narrow pulse of sufficient amplitude is difficult, especially in a portable
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system.

Drifting of time reference can cause lowering of SNR. An important tradeoff exists

between the number of averages and the resulting drift in the time reference of the

receiver. As the number of averages is increased, the SNR increases. However, as

the measurement time increases, inaccuracies in the time reference due to thermal

drifting increase. Thus, there is an optimal number of averages to use.

Receiver is “wide open” and thus prone to interference from external sources. The

bandwidth of the input stage of the receiver is only limited by the response time of

the electronics. Thus, any strong external CW signals will be passed through and

measured by the receiver, appearing as “noise.”

The receiver has a low dynamic range. The dynamic range (ratio of largest to

smallest measurable signal) of the sampling oscilloscope is relatively low — roughly

40 dB. However, by setting the time window of the measurement appropriately, only

the reflected signal must be measured. Thus the large direct coupling signal between

the transmit and receive antennas can be omitted. This is not possible with the

frequency- domain system, since the direct coupling is present at all frequencies, and

thus a larger dynamic range is required with the frequency-domain system.

7.1.2 Frequency Domain Measurement System

The frequency domain measurement system consists of a Hewlett Packard 8510C

vector network analyzer (VNA) and the MSU reflectivity arch range. For reflection

measurements, scattering targets are placed at the center of the arch range and sup-

ported by a metallic pedestal at a height of 1.219 meters; this places the center of

the two foot by two foot target at the height of the horn antennas. This arrangement

provides the most uniform incident field for measurement of the reflected field. [18]

The frequency response is measured using the HP 8510C vector network analyzer

with HP 8517B S-parameter test set, which has a bandwidth of 45 MHz to 50 GHz.

Port 1 of the S-parameter test set is attached directly to the transmit antenna and
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port 2 is connected to the receive antenna as shown in Figure 7.6; both transmit

and receive antennas are AEL H-1498 horn antennas with 2 to 18 CHz bandwidths.

The horn antennas are both mounted 35 cm behind dielectric lenses and configured

for horizontal polarization. The arrangement of the transmit and receive horns is

shown in Figure 7.5. This setup is meant to approximate a mono-static arrangement;

however, the antennas are separated by 70 cm at their apertures, corresponding to a

bistatic angle of 11.5 degrees.

7.1.2.1 Benefits of the frequency-domain system

While both systems have many benefits, several important ones are discussed here

for the frequency-domain measurement system.

VNA has a very stable signal source. The synthesized signal source in the HP

8510C VNA is highly accurate (with 1 Hz resolution) and not prone to drifting.

With a properly chosen dwell time, the frequency can be considered as stable.

VNA has a large dynamic range. The dynamic range (ratio of the largest to the

smallest measurable signal) of the VNA is over 120 dB. This allows the small reflected

signals to be separated from the large signals due to the direct-path coupling between

the transmitting and receiving antennas.

Calibration is done in the frequency domain. The data is measured in the fre-

quency domain, where the calibration takes place. However, the data must first be

transformed into the time domain to gate out multipath reflections, which cannot be

subtracted as background clutter (see drawbacks in Section 7.1.2.2).

Receiver is phase locked and therefore not prone to erternal interference. Since the

received signal is phase-locked to the transmitted signal, interference from external

signals at the same frequency is reduced.
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7.1.2.2 Drawbacks of the frequency-domain system

As with every measurement system, the frequency-domain measurement system has

its drawbacks. Several of these, which are important to the measurements of interest,

are discussed here.

Time-domain aliasing requires fine sample interval and large number offrequency

points. This is a very serious problem with the frequency-domain system. The fre-

quency sample interval determines the span of the time-domain signal (through the

FFT time/frequency relationship). This span must include all of the significant events

in the time response. Problems occur when reflections from distant objects (walls,

ceilings) or multipath signals are present in the data. If the frequency step size is not

fine enough to provide a time span that will encompass these events, the events will

wrap around and overlap with the desired sample response. Often these events cannot

be subtracted as background clutter, because they originate as reflections from the

target, and thus are not present in the background measurement. Experience shows

that the sampling rate of the 8510C cannot be set high enough to accommodate the

distant reflections within the laboratory unless absorbing material is used to eliminate

the reflections altogether. Thus, a field unit might be prone to this difficulty.

Long measurement times, especially with long dwell time. VNA measurements can

take a considerable amount of time to complete. As mentioned earlier, a tradeoff is

used between measurement time and accuracy. For the measurements presented here,

a typical time to acquire one measured waveform is 60-90 seconds.

Averaging required to gain full benefit of dynamic range. While the dynamic range

of the 8510C is quite impressive, only signals above the noise level can be measured.

Thus averaging is used to improve the SNR. This increases the measurement time.

Must convert data into the time domain to do time gating. Time gating is used

to eliminate reflections not present in the background measurement and direct inter-

actions between the antennas. The measured data must be converted into the time
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domain via the FFT in order to do the time gating. This requires the application of

a windowing function which is thus present in the final data.

Equipment is very complicated and costly — difficult to miniaturize. A good VNA

is a very expensive item requiring significant maintenance. A portable system with

the capabilities of a VNA would be hard to produce. The VNA can be replaced by

a source and a receiver, but with reduced capabilities producing inferior measured

results.

Cannot measure the time response of nonlinear materials. Data obtained from a

frequency-stepped system cannot be used to determine the time response of a non-

linear material. That is, for a given radiated frequency, the nonlinear reflected-field

response of the material is manifested through higher harmonics, which are not mea-

sured by the VNA.

7.1.3 Arch Range Calibration

In order to obtain the desired reflected-field response, the system response and the

effects of the surrounding environment need to be removed through an appropriate

calibration. The techniques described in [19]-[21] are employed. The system response

is a function of the cables, antennas, antenna coupling, dielectric lenses, mutual in-

teractions, and arch-range clutter. A block diagram of the measurement system is

given in Figure 7.7. Examining this figure, the measured waveform of an unknown

target is formulated as

Rr(f) = E(leT(f)HR(f){HA(f)

+ Hnummmwi(f) + Hg’cm + HC(f)l} + N(f)- (7.1)

Here Hg“f) is the unknown response of the target and N(f) is the background

noise present in the environment. Examining Equation (7.1) and Figure 7.7, the

measured waveform is formulated beginning with the source pulse, E(f) This pulse
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arrives at the transmitting horn antenna, which has a transfer function of HT(f)

Next, the field is radiated by the horn antenna and is either passed through a colli-

mating lens, with a transfer function of HTL(f), or it directly couples to the receiving

antenna, with this path represented by the transfer function HA(f) The portion of

the field passing through the collimating lens is then either reflected by the target

directly, which is the scattered response Hg:(f), or it is involved in interactions with

objects in the laboratory environment. Interactions with the environment are either

direct, which are referred to as arch-range clutter with transfer function HC(f), or

they are mutual interactions between the target and the environment, represented

by the transfer function ch(f) With all three of these paths, the signal returns

through another collimating lens, which has a transfer function of HRL(f). Finally,

the signal passes through the receiving horn, with transfer function HR(f), and arrives

at the receiver. The receiver will also pick up background noise, which is included

through the term N(f)

To obtain the desired target response, several measurements are required to elim-

inate undesired components of the response. The first of these measurements is used

to eliminate the effects of the laboratory environment, and is carried out by taking

a measurement with the material holder left empty. This background measurement

includes the same responses as the measurement target, with the exception of the

scattering and mutual interaction terms. Thus the background measurement is given

as

Rb(f) = E(leT(f)HR(f){HA(f) + HTL(f)HRL(f)HC(f)} + N(f)~ (7-2)

By taking this background measurement immediately following other measurements,

the error introduced by the background noise, N(f), is minimized. By subtracting
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the background response from the target response, the following result is obtained:

Raw) = E(f)HT(f>HR(f)Hn(f)HRL(f)[Him+Hsc(f)1

= S<f>IH§<f>+H£CmL (7.3)

This result is in terms of a transfer function of the measurement system, S(f ), the

desired target response Hg(f), and a mutual interaction term, H£C(f), which rep-

resents interactions between the target and objects in the environment, such as the

metal stand used to hold the material sheets. Thus the desired target response can be

obtained if the system transfer function is known and the mutual interaction terms

are assumed negligible. (In fact, these terms are often quite important and must be

removed using time gating). To acquire the system transfer function, the response of

a calibration target must be measured. The response of the calibration measurement

with the background measurement removed is found to be

Raw) = 5(0ng(f) + chun. (7.4)

Here Hg(f) is the theoretically known response of the calibration target. By as-

suming the mutual interaction between the calibration target and the surrounding

environment, HgC(f), can be neglected or removed, the system response is obtained

as

S(f) = RC-b(f)
(7.5)

HEU) ‘

This system transfer function is used to obtain the unknown target response as

HE(f) = 51$ (7.6)

Calibration procedures using the developments of (7.1) through (7.6) are covered
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in Sections 7.2.2 and 7.2.3 for the time-domain and frequency-domain measurement

systems, respectively.

7.2 Experimental Procedures

In this section, procedures involved with selection of experimental parameters are

discussed, along with calibration procedures and examples for both the time domain

and frequency domain measurement systems. Included in the calibration procedures

are necessary measurements and weighting techniques needed to obtain the desired

response from raw measured data, and to reproduce the results contained in Sections

7.3.1 through 7.3.3.

7.2.1 Determination of Experiment Parameters

Before carrying out measurements of the material sheets, various experiment param-

eters needed to be determined. Many of these parameters were selected to either

maximize the signal-to—noise ratio (SNR) or minimize the effect of mutual interac-

tions on the measurements. Increasing SNR provides for more accurate results in

arch range measurements, while minimizing the mutual interactions in the measure-

ments allows the system response and the desired target response to be obtained using

the calibration procedures outlined in Section 7.1.3 and detailed for the time-domain

system in Section 7.2.2 and for the frequency-domain system in Section 7.2.3.

Other things that need to be considered in order to obtain meaningful, accurate

results are the affect of the metal stand on measurements, in comparison to the Styro-

foam stands used in many arch range studies, and the tradeoffs between measurement

time and accuracy. Experimental parameters for both the time-domain system and

the frequency-domain system are explored here.
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7.2.1.1 Time Domain Measurement System

By maximizing signal-to-noise ratio, more accurate results can be obtained from the

arch range measurements. In general, increasing the number of averages will increase

the SNR [20]; however, when the background noise is high, the subtraction of the

background noise measurement can worsen the results due to small time drifts in

longer sampling processes. It has been found that 1024 averages provide a good SNR

without an excessively long sampling process. [18]

In order to minimize the affect of mutual interactions on the measurement, absorb-

ing foam and time—gating are used. Typical time-windows are 5—20 ns as mentioned

earlier. Based on the duration of the target response, 10 ns windows were chosen

for measurements taken with the time-domain measurement system. This allows the

response of the material to the incident field to be measured, while the effect of mu—

tual interactions between the material and surrounding objects is removed if they are

sufficiently separated in time. It also allows the strong direct interaction between

the horns, which is difficult to completely remove through subtraction, to be win-

dowed out, since it occurs much earlier in time than the target response. Due to

the proximity of the metallic pedestal used to support the scattering targets, further

determination of its effect on the measured results is required. To accommodate this,

measurements are taken using a 2 foot by 2 foot conducting plate atop both the metal-

lic support structure and a Styrofoam pedestal. A comparison of these measurements

is shown in Figure 7.8. For comparison purposes, measurements of several spherical

targets were also taken on both metal and Styrofoam pedestals. The results for a 14

inch spherical calibration target are shown in Figure 7.9. It can be seen by compar-

ing these figures that interactions between the spherical structures and the metallic

pedestal are significant, while the interactions between the planar structures and the

metallic pedestal are negligible. Since the materials used here are planar layers, and

an aluminum plate is used for calibration purposes, the effect of the metallic support
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pedestal is found to be negligible.

7.2.1.2 Frequency Domain Measurement System

In order to maximize signal-to—noise ratio in the frequency domain system, several

measures were taken. First, the source amplitude was set at 15dBm, which is what

was determined to be a safe level, just short of the maximum rating of the S-parameter

test set, which is 17dBm. In addition to increasing the signal strength, averaging was

used. In general, increasing the number of averages will increase the SNR [20]; how-

ever, when the background noise is high, the subtraction of the background noise

measurement can worsen the results due to small time drifts in longer sampling pro-

cesses. [18] To determine the number of averages to use, measurements were taken

using 2, 4, 8, 16, 32, 64, 128, 256, and 512 averages, all for 201 sample points. Re-

sults are summarized in Table 7.1 and Table 7.2. Table 7.1 uses the measurements

taken using 256 averages as the baseline measurements for comparison to the other

cases. This table shows that increasing the number of averages decreases the differ-

ence between the cases, as expected. Table 7.2 uses the measurements taken using

512 averages as the baseline measurements for comparison to other cases. Examining

this table, it is seen that increasing the number of averages does not decrease the

difference between the cases. This is because the small time drifts encountered in the

longer measurement process cause the background subtraction to worsen. For this

reason, a maximum of 256 averages are chosen for measurements using 201 sample

points.

Another parameter which determines the amount of time that a given measure-

ment takes is the dwell time. This quantity is the amount of time that the network

analyzer waits before taking measurements, after the source has settled at a point in

the frequency list. To determine a minimum dwell time for the arch range measure-

ments, dwell times ranging from 1 to 25 milliseconds were tested. All measurements

were taken using 201 points over the 2 to 18 GHz band with averaging turned off.
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It was found that measurements for dwell times between 10ms and 25ms showed no

differences across the band, while measurements for shorter dwell times differed for

the lowest frequencies in the band.

As with the time domain system, the affect of the metallic support pedestal was

found to be negligible.

7.2.2 Calibration of the Time Domain System

Measurements made using the time domain system were calibrated using an aluminum

plate. To illustrate this calibration procedure, the measurement of a 25 millimeter

thick garolite sheet backed by a conductor is considered. Examining the calibration

procedure outlined in Section 7.1.3, three measurements are required for this calibra-

tion: measurement of the material, shown in Figure 7.10, a background measurement,

given in Figure 7.11, and a calibrator measurement. The calibrator used for this work

was a conducting plate of the same size as the samples, whose measured response is

shown in Figure 7.12.

To obtain the system transfer function (7.5) is used. The background measure-

ment is subtracted from the measured response of the conducting plate and is time

windowed to exclude multi—path interactions, which are not considered in the theo—

retical response. This response, which is shown in Figure 7.13, is then fast-Fourier

transformed. Upon dividing by the theoretical reflection coefficient of the calibrator

plate, which is negative unity, the system transfer function is obtained. This transfer

function, also called the system response, is shown in Figure 7.14.

Subtracting the background measurement, applying a time window, and fast-

Fourier transforming the material measurement gives the result shown in Figure 7.15.

This response is divided by the system response found previously according to (7.6)

to give the calibrated response of the material measurement in the frequency domain,

as shown in Figure 7.16. The data is then truncated to include only the band from 2

to 18 GHz, since the rest of the data is outside of the bandwidth of the horn antennas,
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and is thus not meaningful.

To obtain the time-domain response, a windowing function is applied to smooth

the roll off of the data around 2 and 18 GHz; this is used to avoid excessive oscillation

in the time domain response due to an abrupt truncation of the bandwidth, analogous

to weighting with a rectangular window. A cosine-taper window is chosen because

it retains more of the energy in the waveform under transformation than does a

Gaussian window centered at 10 GHz, allowing more of the response to be seen.[19]

Applying the cosine—taper window gives the response in Figure 7.17, and fast-Fourier

transforming gives the calibrated material response in the time domain. Figure 7.18

shows the calibrated material response compared to simulation results obtained using

the wave matrix method with e,- = 4.75, which are fast Fourier transformed using the

same windowing function. It can be seen here that the measured result matches well

with the theoretical response.

7.2.3 Calibration of the Frequency Domain System

The frequency-domain measurement system is calibrated using a two—level approach.

This involves a full two-port calibration of the network analyzer and a calibration

using a conducting plate.

The primary calibration for the frequency domain system is a full two-port cali-

bration which uses the HP85056A 2.4 mm calibration kit. This kit is used to calibrate

to the end of the 2.4 mm cables which connect directly to the S-parameter test set.

The full two—port calibration is carried out through three types of measurements: re—

flection, transmission, and isolation. Reflection measurements are taken using short

circuit, open circuit, and broadband matched-terminated standards on both ports 1

and 2. After reflection measurements are completed, transmission measurements are

taken. This involves four measurements with the cables connected directly to one

another. Next, isolation measurements are taken if desired. For this work, isolation

measurements were omitted from the calibration. From this point on, a correction

236



is automatically applied to the measured data on the network analyzer, which cali-

brates out the affects of everything between the sources and the plane of the 2.4mm

connectors.

Further calibration of the system is carried out using a conducting plate. This

calibration requires that three measurements be taken: a material measurement, a

background measurement, and a calibrator measurement. The calibrator measure-

ment is made using a conducting plate, whose theoretical reflection coefficient is nega-

tive unity. To obtain the system response, the background measurement is subtracted

from the calibrator response using either a math function in the network analyzer or

a computer program and a division by the theoretical reflection coefficient. The re-

sult is shown in Figure 7.19. Comparing this to the system response found using the

time-domain system, Figure 7.20 shows that the results are nearly the similar, except

for the strong oscillations on the data from the frequency-domain system. This oscil-

lation occurs because time gating has not been applied to this measurement as this

was done to the sample measurements, rather than the system response. Next, the

background measurement is subtracted from the material measurement. The result is

then divided by the system response found previously to give the calibrated response

of the material measurement in the frequency domain, as shown in Figure 7.21. The

data is then truncated to include only the band from 2 to 18 GHz, since the rest of

the data is outside of the bandwidth of the horn antennas.

To obtain the time domain response, a cosine—taper window is applied to smooth

the roll off of the data around 2 and 18 GHz. Applying this windowing function

gives the response in Figure 7.22, and fast-Fourier transforming gives the calibrated

material response in the time domain. Figure 7.23 shows the calibrated material

response compared to simulation results obtained using the wave matrix method,

which is fast-Fourier transformed using the same windowing function. It can be seen

here that the measured result matches up well with the theoretical response.
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7.3 Measurement Results

Measurements for cast acrylic, polyvinyl chloride (PVC), and garolite material sheets

are considered here. Each of these samples is square, two feet by two feet on a

side, and one inch thick. Only the PVC has a dielectric constant specified by the

manufacturer: 6,- = 3.19. The dielectric constant of cast acrylic is estimated from

published data to be around 6,- = 2.5. The dielectric constant of garolite is assumed

to be close to bakelite at er = 4.75.

The results of measurements taken with the time-domain and frequency-domain

systems are presented in Sections 7.3.1 and 7.3.2, respectively. Each material was

measured with both an air backing and a conductor (PEC) backing (using an alu-

minum sheet). In addition to single layer measurements, various two layer measure-

ments were also taken with both air and PEC backing. All results are calibrated

using a conducting plate, as discussed in 7.2.2 and 7.2.3, and are weighted using

cosine-taper windows. Measurements are compared to simulation results found using

the inverse fast-Fourier transform of the reflection coefficient obtained via the wave

matrix method. In all of these theoretical responses the materials are assumed to be

perfect, lossless, nonmagnetic dielectrics, with permittivities that are independent of

frequency.

7.3.1 Time Domain System Measurements

Measurements were taken using the time-domain system, with 1024 samples, 1024 av-

erages, and a 10ns time window. All materials measured were two feet by two feet and

approximately one inch thick. Both air-backed and conductor-backed measurements

were taken with material sheets supported by a metallic pedestal.

The calibrated, time-domain measured response for an acrylic sheet backed by a

conductor is shown in Figure 7.24. Figure 7.24(a) is the temporal response, which

matches well with the theoretical response found using the wave matrix method.
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Figure 7.24(b) is the frequency-domain response, which also matches relatively well

with the theoretical response. There are some differences that show up more in the

frequency-domain response than in the time-domain response. These differences are

due both to variations in the thickness of the acrylic sheet, and to loss in the materials

that are not accounted for in the simulations. Figure 7.25 shows the response of

the air-backed acrylic sheet. It can again be seen that the time domain response

matches very well with theory, while some differences show up in the frequency-

domain response. Figure 7.26 and Figure 7.27 are responses for conductor and air

backed garolite, respectively. In both of these cases, there is good agreement with

theory for the time-domain response, however, the material shows some loss, causing

deviations from the theoretical response which was assumed lossless. The frequency-

domain response matches reasonably well, but again there is some loss and some

variation in the thickness of the garolite sheet. Figure 7.28 and Figure 7.29 are the

conductor and air backed responses for measurement of polyvinyl chloride (PVC).

Two layer measurements were also taken using the time-domain measurement

system. These include a garolite-acrylic stack, with the response for the conductor-

backed material stack shown in Figure 7.30, and the response for the air backed

material stack in Figure 7.31. Figure 7.32 is the response for an air-backed acrylic-

garolite material stack. All of these measurements agree well with theory for the

time domain response, while the frequency domain responses deviate from theory as

discussed above for the single layer cases.

7.3.2 Frequency Domain System Measurements

Measurements were taken with the frequency domain system using 201 sample points

across the frequency band from 2 to 18 GHz, 32 averages, and a dwell time of 10 ms.

All materials measured were two feet by two feet and approximately one inch thick.

Both air—backed and conductor-backed measurements were taken with material sheets

supported by a metallic pedestal.
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The calibrated, frequency domain measured response for the conductor backed

and air backed acrylic sheet are shown in Figure 7.33 and Figure 7.34, respectively.

Figure 7.35 and Figure 7.36 are the measured responses for the conductor backed

and air backed garolite sheet. Measurements of the polyvinyl chloride (PVC) sheet

are shown in Figure 7.37 and Figure 7.38 for the conductor-backed and air-backed

cases. The time-domain responses shown in these figures match up very well with the

theoretical responses found using the wave matrix method. The only difference found

in these responses is in Figure 7.35, where there is evidently loss in the material, since

the measured signal dies off faster than the theoretical response, in which the material

was assumed lossless. The frequency-domain responses shown in these figures also

match up well, with deviations from the theoretical response again occurring due to

loss in the materials and variations in the thickness of the material sheets.

Two-layer measurements were also taken using the frequency-domain system. The

response for a conductor backed garolite-acrylic material stack is shown in Figure 7.39.

Figure 7.40 shows the response for a conductor backed PVC-garolite material stack.

The time domain responses shown in both of these figures match up well with the

theoretical responses found using the wave matrix method. The only deviations from

the simulated results occur because of loss in the material, which can be seen in the

later portion of the time-domain results. The frequency—domain responses also match

well.

7.3.3 Comparison of Results from the Time-Domain and Frequency-

Domain Systems

In comparing time-domain measured data to frequency-domain measured data, very

good agreement is seen between the measured time-domain response results in all

cases. Measurements of an acrylic sheet with conductor and air backing are shown in

Figure 7.41 and Figure 7.42, respectively. Figure 7.43 and Figure 7.44 show conductor-

backed and air-backed garolite measurements, comparing the time domain measure-

240



ments to the frequency domain measurements. Measurements of polyvinyl chloride

(PVC) are compared in Figure 7.45 and Figure 7.46 for conductor-backed and air-

backed cases. The comparison of a two layer material stack is shown in Figure 7.47,

for a conductor-backed garolite-acrylic stack. Although the time-domain responses

found using both systems are nearly identical, there are some differences in the mag-

nitudes of the frequency domain responses. The “noise” in the magnitude of the

frequency-domain responses measured by the frequency-domain system is due both

to less averages being used with the frequency-domain system, and the fact that time

gating of later multipath signals was not done for the system response; because of

this, time-aliasing can occur and creates oscillations in the measured results. The

time-domain responses agree quite well because the phases of the frequency-domain

responses (which are not shown, to save space) agree well.
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Averages Frequency

Amplitude 2 MHz 8 MHz 12 MHz 16 MHz 18 MHz Average

1 0.085 1.296 0.999 1.810 1.499 0.814

2 —0.253 1.206 0.750 1.905 1.941 0.770

4 0.296 1.100 0.586 1.485 2.042 0.627

8 —0.500 1.078 0.681 1.655 1.902 0.600

16 —0.163 0.986 0.665 1.555 2.009 0.567

32 —0.648 0.977 0.622 1.531 2.047 0.516

64 0.133 0.971 0.512 1.386 1.672 0.451

128 -0.224 0.816 0.377 1.275 1.189 0.341

256 0.000 0.000 0.000 0.000 0.000 0.000

512 —0.116 1.550 1.882 2.344 2.804 1.326

Phase I 2 MHz 8 MHz 12 MHz 16 MHz 18 MHz Average

1 0.355 —l.540 -—0.656 —0.730 —0.440 0.145

2 0.039 —1.388 -0.623 —0.684 —0.566 0.028

4 0.584 —1.303 —0.491 —0.487 —0.570 0.000

8 0.152 —1.204 —0.417 —0.482 —0.351 0.034

16 0.697 —-1.188 —0.411 —0.470 —0.354 —0.005

32 0.147 —1.205 —0.403 —0.435 -0.272 0.000

64 0.131 —1.097 —0.372 —0.413 -0.316 —0.084

128 0.240 —0.993 —0.257 —0.186 —0.239 -0.129

256 0.000 0.000 0.000 0.000 0.000 0.000

512 0.376 -0.843 -0.170 0.369 0.166 0.026
 

Table 7.1. Percent difference between measurement with given number of averages,

and measurement with 256 averages
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Averages Hequency I

Amplitude 2 MHz 8 MHz 12 MHz 16 MHz 18 MHz Averagej

1 0.201 —0.251 —0.867 —0.522 —1.269 —0.503

2 —0.137 —0.339 -1.110 -0.429 —0.839 -—0.546

4 0.413 -0.443 —1.271 —0.840 —0.741 —0.687

8 —0.384 —0.465 —1.178 —0.674 —0.877 —0.714

16 —0.047 —0.556 —1.194 —0.772 -0.773 —0.746

32 —0.533 —0.564 —1.236 —0.795 —0.736 —0.796

64 0.249 -0.571 —1.344 -0.937 —1.101 —0.860

128 —0.108 —0.723 —1.477 —1.045 —1.570 -0.968

256 0.116 ——1.527 —1.847 —2.291 —2.727 —1.300

512 0.000 0.000 0.000 0.000 0.000 0.000

Phase 2 MHz 8 MHz 12 MHz 16 MHz 18 MHz Average

1 —0.020 -0.703 —-0.486 —1.095 —0.605 0.134

2 —0.335 —0.549 —0.453 —1.049 —0.730 0.019

4 0.207 —0.464 —0.321 —0.853 -0.735 —0.012

8 —0.222 —0.364 —0.247 —0.848 —0.516 0.021

16 0.321 —O.348 —0.241 -0.835 —0.519 —0.018

32 —0.227 -0.364 —0.233 —0.801 —0.437 —0.012

64 —0.244 —0.256 —0.202 —0.779 —0.481 -0.096

128 —0.135 -0.151 —0.087 —0.553 —0.404 -0.141

256 —0.374 0.851 0.171 —0.367 —0.166 —0.012

512 0.000 0.000 0.000 0.000 0.000 0.000   
Table 7.2. Percent difference between measurement with given number of averages,

and measurement with 512 averages
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Figure 7.1. Arch range setup for the time-domain measurement system
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Figure 7.2. Step output from channel 3 of the HP54750A used as trigger for the PSPL

4015B step generator
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Figure 7.3. Transmitted pulse created by the PSPL 5208 pulse-generating network
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Figure 7.6. Arch range setup for the frequency-domain measurement system
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Figure 7.11. A typical background measurement for the time-domain measurement

system (Note the change in scale)
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Figure 7.14. System response for the time-domain measurement system
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Figure 7.18. Calibrated temporal response of PEC-backed garolite sheet measured

with the time-domain system
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Figure 7.34. Air-backed acrylic - Measurement using frequency-domain system

(a)temporal response and (b)spectral response
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Figure 7.36. Air-backed garolite - Measurement using frequency-domain system

(a)temporal response and (b)spectral response
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CHAPTER 8

CONCLUSIONS

In this thesis, the temporal response for reflection from an n—layer material structure

is explored. This work builds on work done by Oh, which showed that the late time

response of a single layer backed by either free space or a conductor is a natural

mode series. Oh’s work leads one to consider what conditions lead to the late time

response of a material stack with more than a single layer having a natural resonance

representation. To answer this question, the reflection from an air backed single

lossy layer terminated by a perfect electric conductor is first considered. Physical

reasoning suggests, and the analysis shows, that there is a middle time during which

the response of the structure is a natural mode series identical to that of the single air-

backed layer, since the incident wave has not reached the conductor backing and thus

no information about the position of this backing is available in the reflected response.

The middle time period is found to correspond to the time between the observation

of the response due to reflection from the second interface, and the observation of

the response from the conductor at an observation plane. After this middle time

period there is a late time during which the response is an entirely new natural mode

series related to the poles of the frequency domain reflection coefficient for the entire

problem. Hence, the response of the air-backed lossy layer present during the middle

time period is turned off, and replaced by a different natural mode response.

With this knowledge of the response from a multilayered structure, properties of

the backing layer and their relationship to the presence of a pure natural mode series

in the late time are considered. To study this, examination of the response of a single

lossy layer, backed by a material layer, either lossless or lossy, is undertaken. It is

found that whether or not the late time response of this structure is a natural mode
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series is dependent only on the properties of the material backing. When a lossless

backing half space is considered, the response is found to have a natural resonance

representation in the late time. However, when a lossy half space is considered, it

is found that a pure natural resonance representation may not be possible, as there

may be a branch out contribution to the temporal response. This is found to be the

case regardless of the properties of the first material layer.

Thus, a single lossy layer, backed by a perfect conductor, or a lossless half space,

will have a late time response that is a pure natural mode series. However, when that

same layer is backed by a lossy region, the late time natural mode response may be

augmented by a branch cut contribution which is not time-limited. The portion of

the response due to this branch cut contribution is an infinite tail which pollutes the

natural mode response.

Next, the properties of the backing layer in an n—layer material stack are explored

in order to determine their affect on the form of the response in the late time of

the structure. For this, a stack consisting of two lossy layers backed by a perfect

conductor is considered. It is found in this exploration that the response of the two-

layered material structure backed by a perfect conductor is a natural mode series

during the late time. This implies that the branch out contribution that is present in

the middle time of the response is turned off when the reflection from the conductor

backing reaches the observation plane; that is, at the start of the late time. Thus,

the presence of the conductor terminates the infinite tail in the response of the single

layer backed by a lossy material, and initiates a pure natural mode series.

All of these results lead to the following hypothesis about the response of an n-

layer system. First, it is hypothesized that the late time reflected field response of

an n-layer system is a pure natural mode series if the backing layer is lossless or a

perfect electric conductor. Also, if the backing layer is lossy, the late time reflected

field response is hypothesized to be is a natural mode series augmented by a non-time
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limited branch cut contribution. This hypothesis proves to be true, with the backing

layer being the determining factor as to whether the late time response is a pure

natural mode series. It is also found that the addition of another interface, which

produces a new it + 1 layer structure, has an the early time response that is identical

to the total response of the n-layer structure. This response turns off completely at a

time associated with the reflection from the new interface with the backing material,

and a late time response turns on consisting of a natural mode series that is only

augmented by a branch cut contribution if the new backing is lossy. If the n-layer

structure has a non-time limited component in its late time, this component turns off

at the start of the late time of the n + 1 layer structure.

8.1 Suggestions for Future Work

In this work, a lot of emphasis was placed on the determination of the branch out

contributions to the temporal response of layered material structures. There is still a

great deal of work to be done in exploring layered material problems. Some sugges-

tions for this work include:

Tracing of pole trajectories for the air-backed lossy layer terminated by a perfect

conductor for oblique incidence, as a function of both the position of the conductor,

and the incidence angle. This investigation should be straight forward for incidence

angles below the Brewster angle, but may become intriguing as grazing incidence is

considered.

Tracing ofpole trajectories and numerical evaluation of the branch out contribution

for the lossy material-backed material layer as the backing material is varied from

a lossless material to a highly lossy one. This becomes interesting because of the

nonexistence of branch cut contributions for both the lossless case, and the perfect

conductor case, while at points in between, a branch cut contribution may occur.

Verification of integral contributions from the paths around branch points vanish-
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ing. It was assumed in this thesis that these paths yield no contributions to the inverse

transform, however, this was not verified for the n-layered case. This assumption was

based on these contributions being zero for all cases examined.

Determination of whether there will be a branch out contribution during the late

time response when the backing material is lossy. This thesis shows rigorously that

there will not be a branch out contribution if the backing material is lossless, however

the mandatory inclusion of a branch cut contribution when the material is lossy

has not been shown rigorously. That is to say, there was not an evaluation done

to find out if a branch cut contribution is guaranteed when the material is lossy.

Determination of the form of the branch out contribution as a non-time limited wave

has not been shown rigorously for the layered case either, it was assumed based on

the developments of [14].

Consideration of transmission through material stacks has not been considered

here. It would be interesting to explore the properties of the transmitted field through

a stack of materials to find out if a natural resonance series exists. If so, does it exist

at all times for the transmitted response, or is there a distinction of time periods as

in the reflection case?

These are only a few of the many open questions which warrant exploration in

this field.
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