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ABSTRACT

CONTACT MECHANICS OF LAYERED COMPOSITES
UNDER AXISYMMETRIC INDENTATION

By
Zhenwen Wang

The analytical studies on contact mechanics have been limited to problems of
either half space or single layer due to mathematical difficulty, though layered
composites subjected to indentation are commonly encountered in industrial
applications. The studies of indentation of layered composites, however, are
based on numerical approaches. This dissertation provides a theoretical method
for the contact mechanics of layered composites subjected to axially symmetric
indentation. A new function is introduced in this dissertation to reduce the
complexity of the mathematical process, and mathematical solutions are
provided for all the problems investigated in this research. However, the
mathematical solution for the final integration could only be obtained for the point
loading condition. A numerical method was used to evaluate the final results for
other loading conditions, such as uniform stress, flat indentation and spherical
indentation. In this dissertation, the effects of material property, layer thickness,
boundary condition, loading condition, and lamination on contact mechanics were
investigated for the cases of a half space, a single layer bonded to a rigid base, a
single layer bonded to an elastic half space and two-layered composites bonded
to a rigid base. The dissertation also investigated the frictional effect at the

contact interface. Both shear slip and normal separation theories were



incorporated into the mathematical formulation, allowing the study of debonding
at the interface between layers. New transformed shear slip and normal
separation coefficients are proposed to study the imperfect bonding interfaces
with a finite length. Contact mechanics models have been proposed based on
numerical results. These models provide insight into the relationships among
total load, maximum displacement, contact radius, layer thickness and material

properties, and guidelines for engineering applications.
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CHAPTER ONE INTRODUCTION

1.1 Introduction

1.1.1 History

Contact mechanics is a subject that has been discussed for more than a century.
Early in 1882, the first academic paper, “On the Contact of Elastic Solids”, was
published by Heinrich Hertz, With the increasing demand in the engineering
development in railway and marine reduction gears, rolling contact of bearing
industry and construction engineering, extensive efforts were made to the contact
mechanics study, along with other engineering mechanics theory. Hertz's theory
was restricted to frictionless surfaces and perfect elastic bodies. Over the last
half century, research in contact mechanics has focused on the removal of these
restrictions for the pure contact problem. At the same time, development of the
theories of plasticity and linear visco-elasticity paved the road to investigate the
stresses and deformations at the contact of inelastic bodies. With the advances
of composite manufacturing technology and its extensive usage in the aerospace
and automotive industry, contact mechanics was applied to composite study in

the past few decades.

1.1.2 Summary of contact mechanics research

The Boussinesg-Flamant problem was the very first contact problem that was
approached with theoretical mechanics. It was defined as a half space loaded by
a point load. Flamant (1892) obtained a solution by way of a three dimensional

solution for normal loading on a straight boundary. Boussinesq (1892) extended




the solution to the case of an inclined force, which can be visualized as a

combination of normal and tangential loadings.

Dean, Parsons and Sneddon (1944) presented a theoretical approach to semi-
infinite elastic solid with defined stress applied at the interior of the solid. The
direction of the loading conditions is perpendicular to the surface of the semi-
infinite solid. In order to simplify the mathematic work, the authors had to assume
the material is incompressible and the loading is uniform stress. They also
investigated the compressible elastic solid with numerical method. They found
that by using a single numerical factor, a fair accuracy can be achieved for the

general case from the equivalent incompressible medium.

During the course of investigation of the distribution of stress and displacement in
elastic solids, it used to be carried out through guessing appropriate combination
of solutions, which satisfy the prescribed boundary conditions in any special
case. Love (1939) used this cumbersome method in the case of a conical punch.
With some experienced engineers’ pioneer work on rigid indention, Harding and
Sneddon (1945) noticed that a systematic application of integral transforms into
the rigid indentation of semi-infinite elastic solid will reduce the problem into a
pair of integral equations, which fall into the classic mathematical cases studied
by Titchmarsh (1937) and Busbridge (1938). In the Harding and Sneddon study,
they established the foundation for the mathematical solution for axial symmetric
indentation problem. Though the development is limited to the semi-infinite
elastic solid, the authors pointed out the possibility of extending the method to

the solution for the stress distribution in a plate with finite thickness. Sneddon




(1951) presented a solution for a finite thickness plate perfectly bonded to a rigid
support. He used a symmetrical approach, mirrored the material and the loading
along the bonding interface with a rigid support. Therefore, by solving a finite
plate with doubled thickness and symmetrical loading at both top and bottom
surfaces, it leaded to the solution equivalent to the single thickness plate
perfectly bonded to a rigid base. Later, Sneddon used the theory developed by
Harding and Sneddon (1945) to successfully obtain solutions for the Boussinesq

problem with flat-ended cylindrical (1946) and rigid cone indenters (1948).

With more and more theoretical development driven from the industry, more and
more research was focused on sliding contact. After the half-space point solution
by Boussinesq and Cerutti, it seemed that integration of the point loading
condition would lead to all other loading conditions. However, this direct
approach normally leads to a series of intractable integrals with mathematical
difficulties. Green (1949) introduced a method for the stress analysis of normally
loaded half space, which can be extended to the shear loading of the half space.
Based on the Green study, Hamilton and Goodman (1966) developed the
equations for the complete stress field due to a circular contact region carrying
Hertzian normal pressure and a proportional distributed shearing traction. The
shearing traction is represented by the normal pressure multiplied by the
frictional coefficient. A complex harmonic function was used in their investigation.
The solution for the stresses inside the indented material was developed to
illustrate the potential failure point. Stress boundary conditions were specified for

the half space solid in their research.



Based on some Russian pioneer work, Meijers (1968) developed a symbolic
solution for the contact problem of a rigid cylinder pressed on an elastic layer
connected perfectly to a rigid base. Hertz contact boundary condition was
assumed in his development with no friction between the cylinder and the layer
for the generalized plain stress problem. Meijers focused on developing a
symbolic solution for both thin and thick layer conditions. He used a basic integral
equation for the pressure distribution at the contact interface presented by
Aleksandrove (1962) and Koiter (1963), by introducing a complex kernel function
for the contact stress and displacement and expanding the kernel function into a
power series. The first three coefficients of the power serials were evaluated by
using numerical integration for different Poisson ratios. With this approximating
work, Meijers was able to develop a general solution for both thin and thick single
layer indentations. The details of the numerical processing are quite
cumbersome and it is very difficult to extend the approach to layered composite

due to the complexity of mathematics.

Pao et al (1971) studied the upper and lower bounds of the maximum stress of
an elastic layer bonded to a half space elastic foundation by a rigid cylinder. The
symmetrical loading technique from Sneddon’s (1951) was used for his
calculation. A combination of half space and single layer solutions from
Sneddon’s development was used in this investigation. Pao used a segment
approach to divide pressure distribution into many small intervals. By assembling
a matrix from each interval, he was able to come up with a series of functions to

gain a numerical solution. Different boundary conditions, frictionless and rigid



bonding, between the layer and rigid base were investigated. The stress and
displacement component was evaluated to demonstrate the effects from position

ratio, friction between layer and the rigid support, and layer thickness.

Ting (1966) presented symbolic and numerical solution of the contact stresses
between a rigid indenter and a viscoelastic half-space, which extended the
research from elastic media to viscoelastic media. In his approach, he introduced
a method which can solve an arbitrary axisymmetric indention on viscoelastic half
space. A dynamic rebound of a rigid sphere on viscoelastic half space was
studied by Hunter (1960). A numerical method was used to evaluate the result by

both authors.

Dhaliwal (1970a) developed a solution for the single layer pressed against an
elastic foundation. A different numerical method was used to develop the
solution, which achieves good agreement. He also developed a symbolic solution
for an arbitrary profile (1970b). However, no numerical result was presented in

his further investigation.

Gupta et al (1973 and 1974) studied stress distributions in plane strain of a
layered elastic solid subjected to arbitrary normal and shear boundary loading.
Fourier transform of Airy stress function was used in his investigation. His
analysis result shows that internal stress distributions as obtained by elliptical
contact pressure are valid for most cases. He also pointed out that the half width
and maximum pressure on the surface may be quite different from Hertzian

solutions in order to solve the problem with his approach.




Matthewson (1981) presented a theory for the indentation of a soft coating by a
rigid body. The theory is based on the assumption that the coating is perfectly
bonded to the substrate, and behaves linearly elastically. The displacement of
the contact boundary condition is approximately approached by a finite power
series. The approximation used quantities averaged through the coating
thickness. This assumption differs from many other publications, where an exact
displacement boundary condition was met, and stress on the boundary problem

was approached approximately.

Jaffar (1993) used Chebyshev series method to study the surface deformation of
a bonded elastic layer indented by a rigid cylinder. His result shows close
agreement with the exact solution for the half plane problem with the derived

asymptotic formula for a thick layer.

Giannakopoulos (1997a, 1997b) investigated the indentation of solids with
gradients in elastic properties. A power law material model was used in his
approach. Due to the difficulties, commercial finite element code was used to

study different indentation case.

1.1.3 Contact mechanics in composite material

There are a lot of studies and publications in laminate composites study. Pagano '
(1970) presented a theoretical solution for laminate composites. Swanson (2004)
studied the Hertzian contact loading of orthotropic materials. He used both
procedures, developed by Willis (1966) and Pagano (1970) separately, and

further developed a detailed numerical method to achieve the results for laminate



composites. This research is to focus on the layered composite. Each layer has
homogeneous material property. Literature on laminated composites is not

reviewed in details.

Layered composite indentation was very challenging in contact mechanics. In the
application, a soft coating on a hard substrate is very efficient for protection. in
automotive safety design, a soft layer on a hard supporting structure provides the
necessary stiffness to meet the design requirements and also provide cushion to
minimize the injury of vehicle occupant. To the author’s knowledge, few
publications are available in this subject. The major theoretical study was limited
to indentation of single layer bonded to an elastic half space. The majority of the
industry currently uses finite element approach with commercial code, such as
LS-DYNA®, Abaqus®, PAMCRASH®, MADAMO® for dynamic research,

Abaqus®, Nastran®, ANSYS®, etc. for static study.

Shield and Bogy (1989) studied a multiple region contact solution for a flat
indenter on a single layer bonded to a half space. The flat indenter has sharp
corners, which has singularity. Since it is a multi-region contact problem, each

region has its own solutions.

Jorgensen et al (1998) studied spherical indentation of composite laminates with
controlled gradients in elastic anisotropy. His study provides an insight of
indentation of the indentation problem on orthotropic media. There is no known
analytical method for the problem he was trying to solve. Finite element approach

was used in his investigation.




Lu and Liu (1992) presented an Interlayer Shear Slip Theory for delaminating
analysis, which was extended from a layer-wise laminate theory, the previous
development by Lee and Liu et al (1991). The continuity condition of the
interlaminar shear stresses on the composite interfaces was satisfied, which is
only valid for analysis of laminates with shearing mode (mode 1l and mode lll). In
order to be able to handle the normal mode (mode ), Liu et al (1994) extended
the Interlayer Shear Slip Theory by introducing linear normal separation theory.
Combining both linear shear ship theory and linear normal separation theory, the
theory became robust to solve complex loading conditions. in this research, both
shear slip theory and normal separation theory was implemented into the

development as part of the advanced study.

There is tremendous literature regarding the classic topic of contact mechanics.
The books authored by Gladwell (1980) and Johnson (1985) provided rich
reference literature on contact mechanics. Only some critical publications are
reviewed here, which represent major progresses of the research and theory

development.

1.1.4 Approach to layered composites

In order to solve the contact problem, simplifying boundary conditions was critical
for mathematical success. For a rigid indenter, the contour of the indenter shape
defines the deforming shape contact interface. Specifically, the displacement at
the contact interface can be defined, and the normal tractions outside the contact
area disappear. It seems that the proper boundary conditions have to be mixed

displacement and traction. In order to solve this boundary value problem which



involves biharmonic equations, certain transformation is needed. With the mixed
boundary condition, mathematical difficulty for the theoretical approach to the

contact problem rises.

v
<

Figure 1 Boundary condition of the indentation

In this research, the focus is on contact mechanics of the axially symmetric
indentation. The general setup of the problems is illustrated in Figure 1. Hankel
transformation is used in order to solve the biharmonic equation. The details of

Hankel transformation are discussed in Chapter Two.

1.2 Object of this study

In automotive safety development, head injury is based on the acceleration level.
In crash accident, the human head contacts the vehicle interior trim. The human
head is a complex structure, which can be simplified as a rigid skull and a

deformable skin. In recent development, the dummy head was optimized as a




vinyl skin and polyurethane skull structure, which represent the human structure
more closely. In these developments, due to the complexity of the mathematical
modeling, there is no thorough theoretical study of the structure. All the research
work done in the last three decades was based on experiments and experience,
though a lot of papers were published. Most of the research in the industry was

done on experiments and finite element analysis.

The vehicle interior trim normally is constructed by sandwich composite with a
metal supporting base. The sandwiched composite is made of foam and plastic
materials, such as Ensolite®, rubber foam, urethane, polyurethane,
thermoplastics, etc. There were a lot of studies on the structure design, but few
literatures from contact mechanics study can be found on indentation study of
layered composite. The author’s early experimental study (Liu, Dang and Wang,
1996 and1997) of foam composite under low velocity impact was the initial drive
that leads into the research. It was realized that the theoretical studies for the
contact mechanics of layered composites are needed to better understand the
performance of the composite materials. This dissertation develops a theoretical
approach to this problem to provide some design guidance for the composite

structures.

From the literature review, most of the research is limited to two dimensional,
semi-infinite and single layer materials. To the author’s knowledge, the results of
indentation to the layered composites have not been seen. The objective of this
study is to investigate the layered composites subjected to indentation by an

axisymmetric indenter. A new technique is proposed and significantly reduces

10



the complexity of the mathematics, which provides a unique way to look into
stress and displacement distribution. The final goal is to develop a model for the
composite indentation that can be used as guidance for the design. Also shear
slip and normal separation theory are incorporated into this technique to study
the bonding interface. An imperfect bonding with finite length was studied with a
step function for the shear slip coefficient, which provides insight into the local

debonding of the composite material.

1.3 State of the problem

This dissertation will study the layered composite indented by an axisymmetric
indenter. An elastic theoretical study of the indentation was carried out in this
study. Studied cases include a half space, one layer bonded to rigid base, one
layer bonded to an elastic half space, and two layer bonded to rigid base. The
shear slip theory was incorporated into the above development and investigated

in this dissertation as well.

1.4 Contents of this dissertation
This dissertation includes seven chapters. Chapter One reviews the studies done

in the past, and states the subjects that are to be investigated in this study.

Chapter Two discusses the basic theory developed for this study. In this chapter,
we develop the basic theoretical derivation, discuss the Bessel function used in
the study, and the Hankel transform that is the core part of the mathematical

base for this study. We also discuss the exact solution of some simple cases.

11



Lastly, we discuss the details of the approach with a stress boundary condition

for the contact problem.

Chapter Three discusses the detail of a numerical approach to the final solution
for complicated cases. Mathematica® was used in this approach to reduce the
mathematical work significantly. Microsoft® C++ programs were developed for
the numerical calculation in the final result for this investigation. Verifications
were carried out among these derivations. For example, the numerical result is
verified against the theoretical solution for point loading. By increasing the
thickness of the first layer, a two-layer case would be simplified to a one-layer

case, etc.

Chapter Four discusses some basic applications. Six different cases are

investigated in this chapter:

Case 1, material study: with half space and point loading, we investigated
aluminum, steel, nylon material to understand the stress and displacement for

different material under the same loading condition.

Case 2, thickness study: two layer half spaces are used to investigate the
thickness effect. The composite consists of an aluminum layer bonded perfectly
with a very thick nylon base. Spherical indentation is investigated during the

study.

12



Case 3, boundary condition study: in this case, a two layer half space with a
combination of aluminum/steel, aluminum/nylon, aluminum/rigid are investigated,

using spherical loading.

Case 4, loading conditions: an aluminum half space with different loading
conditions, point loading, uniform pressure, flat indentation, and spherical shape

indenter are studied.

Case 5, lamination study: two different cases are investigated — material order
and thickness ratio. For material order study, the thickness ratio is set to
constant, and the composites of Nylon/Aluminum and Aluminum/Nylon were
investigated with spherical indentation. For thickness study, with a fixed material
order, both Nylon/Aluminum and Aluminum/Nylon, the thickness ratios are

presented in this chapter.

Case 6, Shear slip theory: This was studied for two-layer composted indented

against a rigid base.

Chapter Five presents models with the techniques developed in the previous
chapters. The relationship of force, deflection, Young's modulus, thickness, and
contact radius is incorporated into simple models. These models provide simple
and valuable information as guidance to design and applications for layered

composite.

Chapter Six is presents some insight into the advanced study. The pure shear

traction at the indentation interface is presented. With friction coefficient to relate

13



normal traction and shear traction, the solution to a more general contact
problem can be obtained. Moreover, the shear slip theory and normal separation
theory are introduced into the technique developed in the previous chapters. With
the shear slip coefficient being set to a step function with Hankel transform, we

investigate the limited imperfect bonding for the composite under indentation.

Chapter Seven summarizes the results and concluded the study of this
dissertation. Some insights into the theory are discussed and suggestions to

future study were presented.

Lastly, bibliographies and appendices provide references and the information
that can’t be covered in detail in the main section of this dissertation due to

limited space.
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CHAPTER TWO DEVELOPMENT OF THEORETICAL ANALYSIS

In this chapter, we develop a new technique that will be used subsequently to
solve contact problems consisting of the layered composites. Validations of the
technique are presented as they are necessary for the justification of later
applications. For the simple case of point loading, the new technique leads to the
same solution as otherwise presented by Sneddon (1953). For other loading
cases, such as uniform pressure, flat contact and spherical punch, the stress and
displacement solutions are in integral forms and explicit expressions are not

found. Therefore, numerical methods are sought to investigate these cases.

2.1 Elasticity Analysis Based on Cylindrical Coordinate System

Based on the free-body diagrams shown in Figure 2, we can establish the
following equilibrium equations (Timoshenko and Goodier, 1970), which are also
the governing equations for cylindrical bodies under static loading. Note that both

equations are independent of & and the body force is not considered in the

formulation.

dor 0%z ,0r=96 _ (2-1a)
or or r

9tz 00z  Trz _, (2-1b)
or Oz r
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Figure 2 Stresses acting on an element of a solid revolution.

Since linear elastic analysis for isotropic bodies is of interest in this research, the

following Hooke's law is imposed

& = oy ~v@g + )] (2-2a)
£g = é[ag -v(o, +0;)] (2-2b)
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;= 4lo, ~v(o, +ag)] (2-2c)

where E is Young's modulus and v is Poisson’s ratio. Based on the cylindrical

coordinate system, we can have the following linear strain-displacement

relations.
g, =2 (2-3a)
or
g =L (2-3b)
r
g, =2z (2-3c)
0z
Ou, Ouy
_Our Ouz 2-3d
Tre oz or ( )

where ¢ and y are strains and v is displacement. The subscripts r, ¢ and z

represent the coordinates in the radial, circumferential and thickness directions,
respectively. There are four strain components while only two displacement
components. The relations between Cartesian and the cylindrical coordinate

systems are expressed as follows (Timoshenko 1970)
oy =0, cos? 6+ oy sin® 6 - 27,9 sinfcosd (2-4a)

oy =0, sin? 6+op c0529+21,9 sinfcosd (2-4b)
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Txy =(0y, —0g)sinfcosf + r,,g(cos2 6 -sin? 6) (2-4c)

Substitute the above relations into the comp ability equations in the Cartesian

coordinate systems, we have,

2

Vzar—i(ar—a’g)+——l—i—(0',.+0'9+0'z)=0 (2-5a)
r? 1+v 52

Vzag +—2—(0',. —09)+Lli(or +og+0;)=0 (2-5b)
2 1+vror

r

For convenience, it is possible to introduce a stress function ¢ (Love, 1927). The

stress components are related to the stress function in the following manners:

0y = AV, =24+ Wy (2-6a)
0, =GBA+4u)V20, — 24+ W)pssy (2-6b)
2 2
0 = AV>4; == (A + (2-6c)
0
Tz = (A4 20) V24~ 24+ 1z (2-6d)
, 3% 18 8%, ,
where V- = —+—-—+—— is Laplace operator, and A and x are Lame’s
a2 ror 52

constants. They are associated with Young’s modulus £ and Poisson ratio v by

the following equations
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Ev

A=Y (2-7a)
(+v)1-2v)
E
=0+ (2-b)

It is noted that Equations (2-6) satisfy the equilibrium equations automatically. If
we substitute Equations (2-6) into the compatibility equations, i.e. Equations (2-

5), we find the following biharmonic equation
4,_
vig=0 (2-8)

This equation combines equilibrium equations, linear strain-displacement
relations and compatibility equations. It is the ultimate governing equation for

linear elastic analysis for isotropic solids under static loading.

Similar to the stress components, the displacement components can also be
expressed in terms of the stress function by combining Equations (2-1), (2-3) and

(2-6). The following two equations are useful for later applications

A+
Up == a rz (2-9a)
U
uy = l";f" v ArHy (2-9b)
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2.2 Hankel Transformation and Bessel Functions
Before we get into the details of solving the above biharmonic equation, we
should briefly discuss the basic theories of Hankel transformation and Bessel

functions, as they are useful for developing the solutions of contact problems.
When a function K(a,x) is a known function of two variables a and x, and the

integral

I(a)= j £(x)K (e, x)dx (2-10a)
0

is convergent, then Equation (2-10a) defines a function of the variable a. This
function is called the integral transform of function f{x) by the kernel K(a,x).

Examples of some commonly used kernel functions are:

Laplace transform K(a,x)=e &

iox

Fourier transform K(a,x)=¢"

Mellin transform K (a, x) = x%~|

If the kernel function K(a,x)=xJ,(xa), then we have

f@)= [xf(x)J, (xa)dx (2-10b)
0
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f(x)= [af (@), (xa)da (2-10c)
0

where J,(xa) denotes a Bessel function of order v of the first kind, i.e.

_l)n(x/2)2n+v
nl(n+v+1)

- (
Jy(x) = Z
n=0

where I'(n+1) = n! is the Gamma function when » is an integer.

The function f(a) defined by Equation (2-10b) is called the v _order Hankel
transform of function f(x). Equation (2-10c) is called the Hankel inversion

theorem.

If we let x=r and a=¢, then Equation (2-10b) can be rewritten as follows

F© = [if (Io(réHr (2-10d)
0

The Hankel transformation has the following property

@ 2
g ot =27 (2-11)
0 r

V4¢ can be expressed as V2(V2¢). If we take the Hankel transform of Equation

(2-8) and use the relationship of Equation (2-11), then we have
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(s ¢}

2 N
[ro?wo&r = (=5 - &) [rao(ré)dr (2-12a)
0 dz 0

© 2 ©
[rv2(v2)I0 (& = (:—2 - &) [P Wo(rérdr (2-12b)
0 z 0

Substituting Equation (2-12a) into (2-12b), we have

© 2 ©
[rv o (& = (25 - £2)? [rio(rérdr =0 (2-13)
0 dz 0

@

Let G(&,z2) = Ir¢]0(r§)dr , i.e. the Hankel transform of ¢(r,z), then
0

a2 2
(d—2-§ )°G(£,2)=0 (2-14)
Z

The integration of Equation (2-14) is elementary and its solution can be

expressed as
G(£,2) = (A + Bz)e %% +(C + Dz)e*® (2-15)

where A4, B, C, and D are functions of £. Now we can develop stress and

displacement expressions based on Equation (2-15).

2.3 Displacement Solutions

If we multiply both sides of Equation (2-9a) by rJ,'(r¢) and integrate over r from

0 to «, we have the following equation after integration by parts
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[e ¢
A+u_dG
frup i (r&ydr = 252
M odz

0
Inverting this result by using the Hankel inversion theorem, i.e. Equation (2-10c),

we obtain the following expression

e 0]
up =2 6299 5, yae (2-16a)
Moy dz

Similarly, from Equation (2-9b) we have

@ 2

d“G A+2
Jruzdoreyar == -2=H£2G
0 dz

Inverting this result by using the Hankel inversion theorem, i.e. Equation (2-10c),

we have

d?G /‘L+2/1

= j:( L2EE £2G)o(re)dE (2-16b)

2.4 Stress Solutions
In a similar manner, we can find the expressions for stress components.

Multiplying both sides of Equation (2-6a) by rJ(r¢), integrating them over r and

inverting the equation by using the Hankel inversion theorem, i.e. Equation (2-

10c), we find
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Iﬁ[

(2-16c¢)

In a similar fashion, multiplying both sides of Equation (2-6d) by r/,(r¢),

integrating them over r and inverting the equation by using the Hankel inversion

theorem, Equation (2-10c), we find

jé[

2
G (2-16d)
dz?2

Obtaining the expressions for o, and oy is not as simple as the components we

just obtained. If we add Equation (2-6a) to Equation (2-6c), then we have

2
0
o, +0g =[2(4+u>57—2w21¢z
z

Multiplying both sides of this equation by rJ,(&r), and integrating them with

respect to r from 0 to o, we obtain

© 3 2
[rio, +ao)o(rérdr = 24 +;z)‘: g2 (—“—'——52)‘16
0 Z

Inverting the above equation by using the Hankel inversion theorem, i.e.

Equation (2-10c), we obtain

3
o, +og = j:(z S R YN (2-16e)

24



Now let us rewrite the equilibrium equation, Equation (2-1a), in the following form

207,

i("20"'):"(0'r +og)-r
oz

or

Substituting Equation (2-16d) and (2-16e) into the above equation, it yields

—(r Yo,)=2r Ié(l—+#§2£)J0(r¢)d5 2 Ié [A Oig (/1+2#)—]J0(’§)d5

Integrating the foregonng equation with respect to r, mterchanging the order of

the integrations and using the integrals

[rao(re)dr =Z0y(rg)  and
0 g

[Prnee =2 500~
0 ¢ ]
we obtain
jﬁ[zdz— + 62+ 20 Do (reas - A2 204 [+ % L nros (@160
From Equations (2-16e) and (2-16f), we have

09 =A[el T 290\ perag + 2 (299 5 pyar (2-169)
0 dz dz r 0 dz
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As discussed earlier, A4, B, C and D of Equation (2-14) are functions of .

Without losing any mathematical generality, we can let

G*(é,z)=W[(A+Bz)e_z§ +(C + Dz)e*% 1p(&) (2-17)
ES

oc

where p(¢&) = Irp(r)Jo(rf)dr is a function of &, and Jj and J; are Bessel
0

functions of its first kind. Substituting Equation (2-17) into Equations (2-16), we

have

0y = [E{[AE+B(-2v+28))e™ ¢ +[-CE+ D(1-2v - 2&E))e™ } B(£) o (r&)d¢
0
(2-18a)

Trz = [{LAE - BQ2v - 28)]e™7% +[CE + D(2v + 28))e** } B(§)J (r§)dE
0

(2-18b)

oy = [E[-AE+ B+ 2v - 28)]e™ 25 +[CE+ D(1+2v + 28)e* } B(£)J o (ré)dE
0

- JU-48 4 BA- 260675 4[CE + DO+ 2607 ) LBV (1)
0

(2-18c)
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o9 = [2(Be™ + De)p(&) o (ré)ds
0

+ [(l(-A4¢ + B -28))e™™ +[CE+ D(1+ 2£)]e™ }}ﬁ(«fu, (ré)d¢
0
(2-18d)

up = [CEDS - Ag + BU- 2608 4(CE 4 DA+ 2601e™ 1P (r6)d
0
(2-18e)

ur = [FEUAE + B - v+ 2017 +(CE+ D1+ 26016 1BEN o)
0

(2-18f)
The details can be found from appendix A. For simplicity, let us define

o, =[AE+B(1-2v+z8)e ¥ +[-CE+ D(1-2v - zE)e*  (2-19a)

t,, =[AE - BQ2v - zE)]e ¢ +[CE+ DQ2v + z&)]e?®  (2-19b)

= 1 +E'” {[~A& + B(1-z&)]e *% +[CE+ D + zE))e?®}  (2-19¢)
u, = —HTV{[Aé‘ +BQ—4v +28)]e”% +[CE+ D(1+ 28)]e™¢ ) (2-19d)
Since u = , then Equations (2-19c) and (2-19d) become
2(1+v)

27



2uu, =[-AE + B -zE) e +[CE+ D + z&)]e?s (2-19€)

—2pmuy =[AE+BQR-4v+2E)]e " +[CE+ D(1+ 2&))e™® (2-19f)

Accordingly, the stress and displacement components can be expressed by the

following relations.

o, = ojcr;éﬁ(i)Jo(ré)dé (2-20a)
Ty = ?r; B(E)o(rE)dé (2-20b)
u, = oju:@'(é)h(ré)dé‘ (2-20c)
uy = ;}uQﬁ(f)Jo (r)dé (2-20c)

The use of Hankel transformation greatly simplifies the expressions of stress and
displacement components and has significant benefit of reducing mathematical
complexity in imposing boundary conditions. In the following sections, we will
apply these results to a few special contact problems of the layered composites

consisting of perfect bonding interfaces.

28




2.5 Exact Solution for Half Space under Point Load
The solution for a half space subjected to a point load was developed by
Sneddon (1953). The same problem is solved below to validate the new

technique.

i

Figure 3 Half space with axisymmetric loading p(r).
Since both stress and displacement components have to be zero when z
approaches infinity, C and D must vanish in Equation (2.17), i.e.

(I+v)(1-2v)

(4 + Bz)e * p(g) (2-21)
Eg

G*(,2)=

Equations (2-18) can then be simplified as
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o, = [E{[AE+B(-2v +28)}e ¥ 5(£)Jo (rE)dE (2-22a)
0

[o o]

= [[A& - BQ2v - 28)]e™ 26 B(£)J o (r&)dE (2-22b)
0

o, = [E[-4&+B(l+2v - z8)le™* p(&)J o (rE)déE
0

(2-22¢)
- ?[(-Ai + B(1 - 2))e™ L B (r)dé
o, +0g = :jé[—Aé + B(1+4v - 2 BEW (rE)de (2-224)
u, = ?“—%E[—Af +B(-zO)le BV, (rE)dE  (2:220)
uz = ?'—“Et”—’mw(z—m 287 B(E)o(rE)de (2-221)

Similarly, Equations (2-19a), (2-19b), (2-19e) and (2-19f) can be simplified as

o, =[AE+B(1-2v+2&))e” (2-23a)
t, =[AE - BQ2v - z&))e” *¢ (2-23b)
Quu, =[-AE + B(1 - z&)]e” ¢ (2-23c)
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—2umy =[AE+ B2 -4 +28)]e 7 (2-23d)

With the use of Equation (2-17), the boundary conditions can also be simplified.
This provides us with a great advantage of solving the contact problems of

layered composite, i.e.

o, = ?écr;ﬁ(«:wo(r:)dé (2-253)
Tre = Ojr; B(E)Jo(ré)dE (2-25b)
uy = ?iu:ﬁ(f)ll(ré)ds‘ (2-25¢)
u, = oju;f?(f)Jo(ri)dé (2-250)

The boundary conditions for the contact problem defined in Figure 3 are

oz|z=0 = p(r) when r<a (2-26a)
az|z=0 =0 when r >a (2-26b)
Tre, g =0 (2-26¢)
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If the indenter has a smooth edge, the normal stress component vanishes at the
edge. However, if the indenter has a sharp edge, there is singularity around the

edge.

From Equations (2-26) and (2-25), with Hankel inversion theorem, Equation (2-

10c), we have

*

o, =1 (2-27a)

z=0

*
Trz

=0 (2-27b)
z=0

With the above boundary condition and Equations (2-23a) and (2-23b), we have
A+ B(1-2v)=1 (2-28a)
AE-2vB =0 (2-28b)

Solving the above equations, we have

Therefore, function G defined in Equation (2-21) becomes

G =1 ";(;3‘ ™) (v + 26)e7% p(&)
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Substituting the solutions 4 and B into Equations (2-22), we can find all stress

and displacement components in the half space. Details of the analysis are given

in Appendix B.

o, = [(1+28)877 B(&)Jo (ré)dE (2-29a)
0

Ty = [26272° B(EW (rE)dE (2-29b)
0

o, = [(1-286)8 2 (&) o (rE)dé +} [(-1+ 20 + 28)e 2 (&, (rE)dE
0 0

(2-29¢)

0o = [P BEMo(r)dE - [(-1+2v + 20 BN o
0 0

(2-29d)

up = [EEOERZ20) 285400, (rgdg (2-29)
0

u, = J'(1+v)(—2; 2V"z§)e'2‘§ﬁ(§)J0(r5)d¢' (2-290)
0

For near point loading, the normal stress distribution on the contact surface found

by Sneddon (1951) is
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p(r)= (—{;)—0—3 (2-30a)
(a2 + r2 )5

The Hankel transform of p(r) is
P& = [ (rEddr = (-3 )™ (2-30b)
0 T

Substituting Equation (2-30b) into Equations (2-29), we have all stress and

displacement components. Details of analysis can be found in Appendix C.

2 2
L= __(21)(3z+a)(z+a) +ar (2-31a)
n 2
[r® +(a+2)%12
Trz =_(£) 3rz(a+2) (2-32b)

[r2 +(a+ z)2]5

(=1+2v)a+2) + 2w(atz)-rz ] (2-33c)
3

r[r2 +(a+z)2]5 [r2 +(a+z)2]5

og = —(21)[10 “2)+
w r

(-l+2v)a+z) __ (a+2r rz[2(a + 2)* —r2]]
1 3 b
"Arl+@+2)%12 [P +(a+2)212  [r?+(a+2)?)2

o, =2i[1(1-2v)+
mwrr

(2-34d)

(1+v)P

1-2v)(a+z
iy =22 (-2)a+z) .

[(-1+2v)+ 5] (2-35€)
r

1 3
r[r2 +(a+z)2]2 [r2 +(a+z)2]2



L _U+wp (5-4v)az +(3-2)z% +2(1-v))a? +r?)

2= 5¢ ] (2-36f)

[ 3
[r2 +(a+z)2]2

These solutions are identical to the solutions presented by Sneddon (1951).

2.6 Traction Boundary Conditions for Contact Problems

The most challenging part of using the new technique to solve general contact
problems is the integral involved in Equations (2-29). A transformation technique
will be necessary to reduce the complexity of integration. However, the type of
boundary condition is also of a major concern as the inversion of the transform
will become very difficult, if not impossible, if mixed boundary conditions are
imposed. In other words, either displacement or traction should be used in each
contact problem to reduce the complexity of the dual integrations. Moreover, in
reality, all contacts occur with limited contact surfaces and the displacements are
unknown in the non-contact areas adjacent to the contact surfaces, even though
we can assume there is no deformation at areas far away from the contact areas.

Therefore, specifying displacements is not feasible in solving contact problems.

On the contrary, since there is no traction on the surfaces of non-contact areas, it
automatically leads to specifying traction boundary conditions for studying
contact problems. The focus perhaps should be placed on how to define the
tractions on the contact surfaces. As the tractions on the contact surfaces
depend on geometry and surface condition of the contact problem, there is no
easy rule to guess the traction on the contact surface. However, many pioneers

have defined tractions with their experience and knowledge in mathematics and
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physics. The traction boundary conditions have been refined to be close to reality
for some commonly used indenters, such as those with point, flat, and spherical

noses.

Johnson (1985) summarized the pressure distribution for contact problems with a
circular region. For a circular contact region with a radius a, it is required to find
displacements at a surface point and stresses at an internal point due to the

pressure distributed over the circular region. Solutions in closed form can be

found for axisymmetric pressure distributions in the form of p = po(1 - r2) az)” .

When n =0, it is a uniform pressure. When n = —%, it is for a flat punch. When

n= % , it represents a spherical indention condition. Combining with a point load,

o(r)

, we have defined the
2r*r

which can be represented by a function of p(r) =-

pressure distributions for indenters with regular shapes. We will use Hankel
transformation in the following chapters. For point loading, Sneddon (1951) used

p(r)=—£——£— instead of p(r) = - o(r)

for the point loading approach,
27 (g2 + 72312 2%y P g app

because it lead to singularity solution at the contact point with infinite stress when

é(r)

27 *r

using function p(r)=- . With revised stress distribution

a

function p(r) = P , it eliminates the singularity with more realistic

2w (02 +r2)3/2

result.
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The contact traction distributions and associated Hankel transforms for several

contact problems are summarized in Table 1.

Table 1 Summary of axisymmetric indentation interface stress distribution and its

Hankel transforms

Hankel Transform
Indenter | Contact Interface Stress p(s) =
Profile Distribution Total Load o0
[rp(r)Jo(ré)r
0
Near P a p
Point pr)=-——————> | p p(&) = ——e %
Loading 27 (a2 4+r2)3/2 27
= —p( when 0s
Uniform p(r) = —po when Osr<a 5 » )__ﬂj (@)
Pressure —m” pg p(&) = It ag
p(r)=0 whenr>a
r2 ‘l
p(r)=-po(l-—) 2
Flat a? 2 —, . Poasin(a&)
Punch -2ma” pg p(&) = _—4‘_
when Osr<a
. p(r)=0 when r>a
r2 l
p(r)=-po(1-—)2 _ Po .
Spherical a 2 a2 P =-—3
Indenter 3 Po aé
when Osrsa [a& cos(a&) — sin(as)]
p(r)=0 when r>a
Cylinder - < =ry = PO
Shape p(r)=-po when r1srsr2 _a( 2 2) (&) z
Uniform 2 PO
Pressure | P() =0 when r<r1 & r>r2 [rJ1(rné)-nJi(né)]
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CHAPTER THREE NUMERICAL SOLUTION AND VERIFICATIONS

In this chapter, we use the theory developed in Chapter Two to obtain solutions
for several contact problems, e.g. a single-layer material situated on a rigid base,
a single-layer material situated on an elastic base and a two-layer composite
situated on a rigid base. A numerical scheme is developed to calculate the
integrations which cannot be executed analytically. Validations of the numerical

scheme are carried out through the investigations.

3.1 Elastic Layer on Rigid Base

A single elastic layer situated on a rigid half base is one of the most common
contact problems in the real world, e.g. soft thin films and protection coatings on
metals. In this section, we will develop a generic solution for this contact problem.
For any loading condition as shown in Figure 4, we assume there is no friction on

the contact surface and the bonding between the elastic layer and the rigid base

is perfect.
p(r)
Phibe
Elastic Layer le—2a}2—»l r
AL T T
Rigid Base
\

Figure 4 Single layer situated on rigid base.
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Based on the above assumptions, we have the following boundary conditions:

atz=0
o, = p(r) (3-13)
Ty = 0 (3-1b)
atz=h
u, =0 (3-1¢c)
u, =0 (3-1d)

Combining Equation (2-18a) with the boundary condition Equation (3-1a), we

have
[or @00 (re)dE = p(r)
0

If we apply Hankel's inverse transformation to the above equation, we obtain the

following relationship

*

o, = 1 (3-23)

where a; is defined in Equation (2-17a). Similarly, combining Equations (2-18b)

and (3-1b), we have
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[rreB(&)Jo(rE)dE =0
0

After applying Hankel's inverse transformation to it, we have
Ty, =0 (3-2b)

where r:z is defined in Equation (2-17b). Moreover, combining Equations (2-18d)

and (3-1c), we have

0

fuzB(&)Jo(r)dg =0
0

Using Hankel's inverse transformation, we have
u, =0 (3-2¢c)

where u; is defined in Equation (2-17d).

As the fourth exercise, combining Equations (2-18c) and (3-1d), we have

o0

[urp(£)J1(r&)de = 0
0

After using Hankel’s inverse transformation, we have

uy =0 (3-2d)
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where u, is defined in Equation (2-17c).

As given in Chapter Two, we have defined

(1+v)(1-2v)

e [(A+ Bz)e %% +(C + Dz)e?% 15(&)

G(¢&.2) =

If we use Equations (2-17), Equations (3-2) can be rewritten as follows.

14 B(2-v)+D(1-2v) + AE ~CE =0 (3-4a)
(A4+C)E-2(B-D)yv=0 (3-4b)
Age™"S —cgeS (1 +v) - Be " (1- he) - DS (1 + hE) = 0 (3-4c)
A%e™S £ CEeh + Be P (2 v+ hE)+ Dl (<2 + dv + hE) =0 (3-4d)

The variables A, B, C and D can be found from solving the foregoing equations,

i.e.

_2e*M (2440 -2 —n2E% + w5 -3¢ +2h¢))

A (3-5a)
EG+eYS 3-av) - v+ 2e2hS (5-12v + 8v2 +2K2£2))

5 2% (—1+e2hS (<3 + 4v) + 2h8) (3-5b)
3+e¥ 3 dv)—dv+ 20215 (5-12v +8v2 +20%E2)

Co_ AB=4vw+e?"S 24 4v? 4+ h2E% + v(-5+2h8)) (3-5¢)

£G4 e B tv)—ay+ 2218 (5—12v +8V2 +2h2£2))
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3-dv+e2hS (1+2h)

_ (3-5d)
3+e*M (3 dv)—dv+ 20215 (5-12v+ 82 +2K%£2)

B=

3.2 Elastic Layer on Elastic Base
Shown in Figure 5 is an elastic layer situated on a semi-infinite elastic base. It
can be considered as an extension from the previous case which is an elastic

layer situated on a rigid base.

p(r)
l l v l l >
ol '
r
Layer 1 2at—»
h
Layer 2
v z

Figure 5 Elastic layer situated on elastic base.

To simplify the boundary conditions, there is no friction at the contact surface and
layer 1 is perfectly bonded to layer 2. The thickness of layer 1 is h and the
contact radius is a. If we use superscript to represent the layer, the boundary

conditions for this contact problem can be summarized as follows

atz=0
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o = p(r) (3-6a)

Do (3-6b)
atz=h

o = (3-6¢)

NOJNEY (3-6d)

u® =, (3-6e)

NOJNe) (3-6f)

The function of G(&,z)for layer 1 and layer 2 can be written, respectively, as

6= ”;5";; 204+ Biz)e ™7 +(Cp + Dy2)e 6 1p(E) (3-7a)
1

I ”ZE";; 22D 4y + Byz)e ™7 +(Cy + Dy2)e* 1p(£) (3-7b)
2

For layer 2, the stress at a point far from the origin vanishes. Therefore, C; and

D; shall be zero and function G, (&,z) becomes

(I+va)1-2vy)

T2 (4 + By2)e " p(&) (3-7c)

GZ(ész)z

E>¢
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With the use of Equations (2-18) and Hankel's inverse transformation, the

boundary conditions, i.e. Equations (3-6), become

atz=0
oM =1 (3-8a)
D = (3-8b)

atz=nh
510 _ 5*2) (3-8¢)
1) =1, (3-8d)
u, D =2 (3-8e)
u;(l) - u:(Z) (3-8f)

Substituting Equations (2-17) into the foregoing equations and defining C> =0 and

D,=0, we have

1+ Bj(1-2v))+ Dy (1-2v) + 4= C1E =0 (3-9a)

=2Bpvi +2D1vi + A1+ C1€ =0 (3-9b)



Ale—h]‘f{ - Aze_hléf - Clehléé’ - Ble—hlé(—l +2v) - $) (3-9¢)
- Bze—hlg(l - 2vz + hlé) - D]ehlg(—l + 2v1 + hlé) =0

Ale_hléf- Aze—hlgf + Clehl‘f;‘ + Bze—hl"r@vl -h$) (3-9d)

—Bie M& (<2vy + &) + Die™ME vy + &) =0

ey . C1eM (1 +v)) . Are S (14 v7) . Bre ME 1+ v)(1 - &)

Ey Ey Ey EyS
B vy ) 1o mE) DM vt mg)
EyS E\S
(3-9d)
Aje™Me (14 v)) . Cle" U 4v) A M1+ vy)
Ey Ey E;
. Boe ME (14 vy (=2 + 4vy — &) . Bie M (14+v))(2 - 4v; + 1 &) (3-%0)
E\g E\é
DM e v2 e dv +mE)
Eig

Solving the six equations simultaneously, we can identify A4, By, C4, D4, A2 and
B>. With the use of Mathematica ®, the computational work can be significantly
reduced since the formulae can be manipulated for the convenience of
programming and the potential errors can be reduced to minimum. Details of the

computational scheme can be found in Appendix D.
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3.3 Two-Layer Composite on Rigid Base

The formulation of a two-layer composite situated on a rigid half base will allow
us to evaluate the effect of interfacial bonding condition on composite
performance. In this investigation, we assume there is no friction on the contact
surface and there are perfect bonding conditions between layer 1 and layer 2,

and between layer 2 and the rigid half base.

N
r
Layer 1 2a— hy

Layer 2 sz
SSSS S S SANS S S S S S S S S

Rigid Base 7

v

Figure 6 Two-layer composite on rigid base.

The boundary conditions for this problem are as follows

atz=0
ol = p(r) (3-10a)
D=0 (3-10b)
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at z=h

ol = 5@ (3-10c)

P =1 (3-10d)

uld =4? (3-10e)

OJC) (3-10f)
atz=h +h

u? =0 (3-10g)

u? =0 (3-10h)

The function of G(&,z)for layer 1 and 2 can be written, respectively, as

Gi(& 1) = L 144 pi2ye2 4 (Cy + Di2)e € 1B(6) (3-11)

ES

(1+vy)1-2vy)
Ey&?

G2(&,2) = [(A3 + Byz)e 2% +(Cy + Dyz)e? 15(£) (3-11b)

Combining Equations (2-18) and (3-10), and using Hankel's inverse

transformation, we have

at z=0
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oV =) (3-12a)

-0 (3-12b)
at z = hy

PAUPC) (3-12¢)

7 =7, (3-12d)

uy M =, @ (3-12e)

u,V =, (3-12f)
at z=hy +hy

uy® =0 (3-12g)

u, P =0 (3-12h)

Substituting Equations (2-17) into the above boundary conditions, we obtain the

following eight equations
1+ Bj(1-2v)) + Dy(1-2v)) + 41& - C1£ =0 (3-13a)

2Bivi +2Dpvi + 416+ C1£ =0 (3-13b)
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Aje M s ye™ S Cle M8 g 1 Cre16 8 4 Bye M (<14 205 — h1E)
+ Bl MS (1= 2v) + &) - D1eME (<14 2v) + ) (3-13c)
+ DyeMé (<14 2v9 + &) =0

Ae S s dpe™ Mo s 1 Cle Mo e~ Cre15 8 4 Bye M (20 - h1E)

(3-13d)
+ Bie ™M 22wy + b &)+ Dy (2vy + &) + Do (<2vy) — &) = 0

ey . Cre 1+ v)) . Aze 1S (14 vy)
Ey Ey Er
e a+vy) . Bie™ME 1+ v))(1 - B &) . Bye M (14 vy )1+ &)
Ey Eyg Ey¢
DM v+ mE) _ Dae"E 4 vy)1 4 )
E\é Ex¢

(3-13e)

0

Al 1+ v) . CleMe(+v) e ™ME1+vy) CreM14vy)
Ey E Ey Ey
. Bye M (14 v ) (=2 + 4vy — &) . Bie ™M (14 v )2 - 4v; + by &)
Ezé Ejé
. Dy (14 v )2 +4v + &) Dye”E (L4 vy )-2+4vy + ) _
EyS Ex¢

(3-13f)

0
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e b4 vy et IS (14 vy )2 dvy + 1 E e

E
£2 2 (3-13g)
G 14 vyy Dy MRS (14 vy )24 dvy tE+ B8 0
E; £y
e S 4y N Bye HI2)S (14 v )1 = & ~ hpg)
E2 E2s (3-13h)
N CreM+m2)5 (1 4y, . Dy MHES (1 yo )1+ g+ hy&) 0
Ey Ey¢

Solving the eight equations simultaneously, we can obtain solutions for A4, By,
C4, Dy, Az B3, C; and Dy. In order to simplify the mathematical work, it is an
advantage to use Mathematica®. Details of the procedures are given in Appendix

E.

3.4 Validations

To the author’s best knowledge, there is no analytical solution for the stress and
displacement components of the contact problems except the case investigated
in Chapter Two, i.e. a half elastic space loaded by a point force. Hence,
numerical solutions are sought to evaluate the stress and displacement
components for the three contact problems mentioned in this chapter. In this
research, Gaussian integration method is used for the stress and displacement
integrations. With the use of Mathematica to simplify the formulations, C++
programs are developed to evaluate the integrations. The following validations

are then carried out:
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1. Validate the numerical solution for the point-loaded half space problem
with comparison to the analytical solution.

2. Validate the numerical solution for the problem of an elastic layer on a
rigid half base with comparison to the analytical solution for the point-
loaded half space problem.

3. Validate the numerical solution for the problem of an elastic layer on a
rigid half base with comparison to the analytical solution for the point-
loaded half space problem by largely increasing the thickness of the
elastic layer.

4. Validate the numerical solution for the problem of the two-layer composite
on a rigid half base with comparison to that of an elastic layer on a rigid
half base by largely increasing the thickness of layer 2.

5. Validate the numerical solution for the problem of the two-layer composite
on a rigid half base with comparison to that of an elastic layer on a rigid
half base by using identical material properties for the two layers.

3.4.1 Numerical integration vs. theoretical solution

In Chapter Two, we derive the theoretical solution for the elastic half space under
point load. The range of the integration is from 0 to « for the parameter ¢&.
However, this kind of integration is not possible in the numerical process.
Gaussian integration is thus used to evaluate the integration and to determine

the integration upper limit of parameter ¢ of Equations (2-25).
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64 points 64 points 64 points
A A /_J\_\
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0 a1l a2 ... al19 a20
4

Figure 7 Gaussian point integration algorithm.

The numerical integration uses 64 Gaussian points. The integration interval is
divided into many small sections, typically 20 sections as shown in Figure 7, to
achieve better convergence and accuracy. The parameter £ is normally chosen

to be 40 for a unit contact radius.
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-0.02 <beeooeoe°°°°:°°e g
0.04 donaanss®™™

. -0.06 —— z=0 exact

& 008 - o=l exact

- A z=2 exact

g 010 - ---z=3 exact
0.12 o z=0 numerical
014 o Zz=1 numerical’

s z=2 numerical

0.16 o z=3 an“”

0.0 1.0 20 3.0 40 5.0 6.0
rla

Figure 8 Numerical solution vs. exact solution for elastic half space.

As shown in Figure 8, the numerical integration and exact solution matches very
well. The Gaussian integration points and the upper limit of & for the integrations
are therefore used subsequently to evaluate more complex contact problems in

this research.

3.4.2 Validations among cases

Solutions for the following contact cases are obtained: (1) a half space, (2) an
elastic layer on a rigid half base, (3) an elastic layer on an elastic half base and
(4) a two-layer composite on a rigid half base. Among these solutions, some
cases should share the same solutions if the thicknesses and material properties

of layers are well chosen. For example, case (2) should become case (1) if the
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thickness of the elastic layer in case (2) approaches infinity. Similarly, case (3)
should reduce to case (1), if the elastic layer and the base of case (3) has the
same material properties as the half space of case (1). Similar comparisons can
be applied to cases (3) and (4) and others. Only the aforementioned

comparisons will be presented in this research.

(i) Comparisons between case (1) and case (2)

If we increase the thickness of the elastic layer of case (2) to infinity, we should
arrive at the same result of case (1). For a spherical indentation, if the layer
thickness is 30 mm, Young's modulus is 7GPa, Poisson'’s ratio is 0.33 and the
contact radius is 1 mm, the comparisons of stress and displacement components
between case (1) and case (2) are shown in Figure 9 to Figure 12. Case (2)

reduce to case (1) very well.
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-40.0 —e—z=1 one layer on rigid
—e—2z=2 one layer on rigid
-50.0 - ——2z=3 one layer on rigid
| —=——2z=4 0ne layer on rigid

-60.0 . :
0.0 1.0 20 3.0 4.0 5.0
r (mm)

-------

6.0

1.0 —8— z=0 half space Y
20 —o0—2=1 half space i
| s —A—2=2 half space |
Z 30 —6—2z=3 half space |
g —¥— z=4 half space |
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Figure 10 Comparison of shear stress between case 1 and case 2.
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Figure 12 Comparison of normal displacements between case (1) and case (2).
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(ii)) Comparisons between case (1) and case (3)

The case consisting of an elastic layer situated on an elastic half base, i.e. case
(3), can be reduced to the half space case, i.e. case (1). The numerical results
are given in Figure 13 to Figure 16 based on the foregoing material properties

and thickness.

‘ 10.0 |
.00 : :
100 ::—z=00nelayer i
’ —o—z=1 one layer | |

l E_zo_o | —A— z=2 one layer :
! - | —e—Z=3 one layer ‘
’ g -30.0 e z=4 one layer ;| |
‘ —=— =0 two layer ’ :
400 - | ——z=1twolayer |

l o - ——Z=2 two layer | }
-50.0 - - z=3 two layer ‘J |

} 600 —— z=4 two layer ﬂ |

| 0.0 1.0 2.0 3.0 4.0 50 6.0
! r (mm)

Figure 13 Comparison of normal stresses between case (1) and case (3).
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Figure 15 Comparison of radial displacements between case (1) and case (3).
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Figure 16 Comparison of normal displacements between case (1) and case (3).

(iii) Comparisons between case (2) and case (4)

If the two layers of case (4) have identical material properties, it will hold the
same results as case (2). Details of the results are shown in Figure 17 to Figure

20.
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Figure 17 Comparison of normal stresses between case (2) and case (4).

=-20 —a—-z=0 one layer '
\ ¢ . —e—2z=10ne layer |
‘v-30 ' —A—z=2 one layer |
N —o—z=3 one layer
® 40 ——Zz=4 one layer |
| —e—2z=0two layer
-5.0 ——z=1 two layer |
. ——2Z=2two layer '

6.0 ——z=3two layer |

| - z=4 two layer I, |

-7.0 - e ‘

0.0 1.0 20 3.0 40 5.0 6.0
r(mm)

Figure 18 Comparison of shear stresses between case (2) and case (4).
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Figure 20 Comparison of radial displacements between case (2) and case (4).
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In the foregoing comparisons, we have simplified the complex cases to simple
cases. We have validated the numerical solutions with the analytical solution for
the half space problem, the problem of an elastic layer on a rigid half base with
the problem of half space, the problem of an elastic layer on an elastic half base
with the problem of half space, and the problem of two-layer composite on a rigid
half base with the problem of an elastic layer on a rigid half base. These
calculations serve as cross-validations for the derivation and programming of the
numerical scheme. With all these exercises, we have successfully developed and
validated the numerical scheme. In the next chapter, we will use the numerical

scheme to study more applications.

62



T

CHAPTER FOUR BASIC APPLICATIONS

We have validated the solution formulae and numerical scheme for studying
contact problems in the previous chapter. In this chapter, we use the numerical
scheme to study some basic contact problems, such as effects due to material
property, thickness, boundary condition, loading condition and lamination of
layers. Material property has strong effect on both stress and displacement
distributions. We studly it first. Finite thickness, especially thin layer, can alter the
stress and displacement distributions in a half space. It is investigated secondly.
Base condition and loading condition are another two fundamental elements for
mechanics analysis. They are also critical to the response of materials subjected
to contact forces. They are examined subsequently. The last part of this chapter
is focused on the lamination effect of composite layers. We confine our studies to
composites with perfect bonding interfaces. Only the lamination with different

material properties and thicknesses are of interest.

4.1 Effect of Material Property

Three different materials, such as steel, aluminum and nylon, are used in the
following investigations. They represent hard, intermediate hard and soft
materials. For simplicity, we choose to investigate the half space problem loaded
by a point force. The material, loading condition and boundary condition are
summarized in Table 2. We use relatively small force and contact radius in the
studies to avoid the possible numerical overflow in the C++ program. These

values can be scaled by 100 times to 1,000,000 times without changing the
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numerical values during calculations. For the rest of the chapters, we continue to

use Newton (N) for force and millimeter (mm) for length.

Table 2 Material properties for steel, aluminum and nylon.

Steel Aluminum Nylon
Total Load P 100 N 100N 100N
Indentor Shape near-point load near-point load near-point load
Young's Modulus | 200,000 MPa 7,000 MPa 2,500 MPa
Poisson Ratio 0.29 0.33 0.40
Contact Radius 1.0 mm 1.0 mm 1.0 mm

Shown in Figures 21 and 22 are the elastic stress distributions. As expected,

they are identical for all different materials. These results can also be attributed

to the equilibrium equations, Equations (2-2), which are not dependent on any

material property. The displacement distributions, however, are dependent on the

material property. They are higher for softer materials, which have lower Young's

modulus, as illustrated in Figures 23 and 24.

64



—o—2z=1STL

4.0 ——2z=2STL |
| —-—2z=3STL
6.0 . —¥—z=4STL |
- | —e—z=0AL
g 80 C—e—z=1AL
N | —a—2z=2AL
6 -10.0 | —e—2z=3 AL |
—w—2z=4 AL
-12.0 e 20 Nylon \
140 | ——2=1Nylon |
' i —a—2z=2 Nylon |
-16.0 @ - ——z=3Nylon
" —u—2=4 Nylon l
-18.0 - —

0.0 1.0 20 30 40 5.0 6.0
r (mm)

Figure 21 Normal stress distributions based on different materials.

Orz (MPa)
t
1]
o
>
r

T

0.0 1.0 20 3.0 40 5.0 6.0

Figure 22 Shear stress distributions based on different materials.
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4.2 Effect of Thickness

In this section, we study the thickness effect on the stress and displacement
distributions in contact problems. An elastic layer situated on an elastic half base
and subjected to a spherical indenter is selected for investigation. The elastic
layer is made of aluminum while the elastic half base is made of nylon. The
thickness of the top layer, aluminum, varies from 1 mm to 8 mm. Table 3

summarizes the contact problems.

Table 3 Material properties used for thickness study

Layer 1: Aluminum Layer 2: Nylon
Total Load 100 N 100 N
Indenter Shape spherical spherical
Young’s Modulus | 7,000 MPa 2,500 MPa
Poisson Ratio 0.33 0.40
Thickness 1,2,4 and 8 mm infinity
Contact Radius 1.0 mm 1.0 mm

Using the analytical formulae and numerical scheme developed in Chapter
Three, we calculated the stress and displacement distributions and present them

in the following diagrams.
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The normal stress distributions at the contact surface between the indenter and
the top elastic layer are identical for all different thicknesses of the top layer.
Apparently, the contact stress distribution is of a local phenomenon and is not
affected by the thickness of the layer underneath it. As the top elastic layer
becomes thicker, the normal stress distribution at the same depth below the
contact surface becomes higher. This is because the elastic half base, which is
made of nylon, has lower stiffness than the top elastic layer, which is made of
aluminum, and tends to release the normal stress distribution. This phenomenon
can also be identified from Figures 26 and 27 in which the normal stress
distributions for h= 2, 4 and 8 mm are almost identical for z= 0.25 and 0.5 mm
and from Figure 28 in which the normal stress distributions for h= 4 and 8 mm

are almost identical for z= 1mm.

The shear stress distributions vanish identically on the contact surface for all
cases, as shown in Figure 29, due to the free shear traction boundary condition.
When the top elastic layer becomes thicker, the shear stress distribution at the
same depth becomes lower. This phenomenon is opposite to that of normal
stress distribution. Moreover, at the interface between the top layer and the
bottom half space, the shear stress distribution for h= 1mm reduces significantly,

as shown in Figure 32.

The radial displacement distributions, shown in Figures 33 to 35, change from
negative at the contact surface to positive at z= 1mm. Whether it is positive or
negative, the thinnest top layer always has the largest deformation. The normal

displacement distributions, shown in Figures 36 to 38, are related to the shape of
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the spherical indenter. As the top layer becomes thicker, the vertical

displacement becomes smaller.
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Figure 29 Shear stress distribution at the contact surface.
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4.3 Effect of Base Condition

In this section, we study the effect of different material combinations on the
stress and displacement distributions. The elastic layer situated on an elastic half
base with a spherical indenter is chosen for investigations while steel, aluminum
and nylon, given in Table 2, are used for material combinations. We compare the
results of aluminum indenting on a soft, hard and rigid base. The numerical

results are presented in the following diagrams.
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Figure 39 Normal stress distributions at the contact surface.

Shown in Figure 39, the normal stress distributions at the contact surface for all
three combinations are exactly the same, indicating again the local phenomenon
at the contact surface. As the stiffness of the half base increases, the normal

stress increases, as shown in Figures 40 and 41.
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The shear stress distributions vanish at the contact surface, as shown in Figure
42, due to the free shear traction boundary condition. When the stiffness of the
half base increases, the shear stress distribution decreases for the depth z= 0.5
mm, as shown in Figure 43. However, it increases for the depth z= 1 mm, as
depicted in Figure 44. This is because a harder base can sustain a higher stress
than a softer base. The displacement distributions, both radial and normal
components, as depicted in Figures 45 to 50, can also be interpreted based on

this argument.
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Figure 42 Shear stress distributions at contact surface.
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Figure 44 Shear stress distributions at z=1.0 mm from contact surface.
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4.4 Effect of Loading Condition

In this section, we study the effect of loading condition on stress and
displacement distributions. The half space problem (made of aluminum) is
chosen along with various load conditions, e.g. near-point load, uniform stress,
flat punch and spherical loading, for the investigations. All cases have an

identical total force although the geometry of the indenters is different.

At the contact surface, we see numerical oscillations for all cases except the one
subjected to a near-point load, which has exact solution. The spherical indenter
has the highest maximum normal stress followed by flat punch and then by
uniform stress. The near-point load gives the highest maximum normal stress.
Besides, it should be noted that the maximum normal stress is located away from

the origin except for the near-point load case.
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4.5 Effect of Lamination

In this section, we study the effect of lamination on the stress and displacement
distributions. The two-layer composite situated on a rigid half base and subjected
to a spherical indenter is chosen for investigation. Two cases are studied: the
ratio of Young’s moduli and the ratio of thicknesses between the two layers. For
the ratio of Young's moduli, we use nylon/aluminum (the ratio E1/E2= 0.0356)
and aluminum/nylon combinations. For the ratio of thickness, we base it on
nylon/aluminum. More specifically, we fix the thickness of the top nylon layer and
change the thickness of the bottom aluminum layer so the relative location of

interest to the loading surface can be maintained the same.

From the calculations, we can see the stress distributions do change with the
thickness ratio, as shown in Figures 67 and 68. The displacement distributions,
however, change with the thickness ratio. As the thickness ratio between the first
layer and the second layer decreases, the radial displacement distributions

increases slightly while the normal displacement decreases.
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Figure 68 Shear stresses at the bonding interface for nylon/aluminum
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Figure 70 Normal displacements at the bonding interface for nylon/aluminum.
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Similarly, we investigate the stacking order of aluminum/nylon, E1/E2= 28.1. As
the thickness ratio decreases, the normal stress decreases as shown in Figure
70. However the shear stress increases as shown in Figure 71, and, both radial

and normal displacement distributions increase.
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Figure 71 Normal stresses at the bonding interface for aluminum/nylon.
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4.6 Cylinder Shape Indenter

We can also study the cylinder shape indenter for each case with the
development in Chapter 3. Unfortunately, only the uniform stress in a cylinder
shape has a mathematical solution for the Hankel transform on stress on
boundary condition p(r). The others cases need numerical solution for the
surface. Here we will use the half space to demonstrate the solution. The stress

and displacement distributions for aluminum material are shown in the following
figures. We have set r1=2.0, r, =3.0, a=1.0 for the calculation. The other cases

are straightforward and not discussed here.
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Figure 75 Cylinder shape uniform pressure indentation
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Figure 76 Normal stress distributions for cylinder shape uniform stress
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Figure 78 Radial displacement for cylinder shape uniform stress
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Figure 79 Normal displacement for cylinder shape uniform stress
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CHAPTER FIVE CONTACT THEORIES

In this chapter, we will summarize some important results obtained in the
previous chapters by presenting the relationship between the applied load and
the maximum deflection for each case. These relationships, also called contact

theories, will be useful in engineering practices.

5.1 Half space

For the case of half space, there is an explicit expression between the load and
the deflection and the maximum deflection at the location at z=0 and r=0. If we
substitute z=0 and r=0 into Equation (2-36f) for a point load, we have the

following relationship

*
P=—""0_E*l; (5-1a)
(1-v%)

This equation is the contact theory for a point load exerted on a half space and

has also been obtained by other researchers.

For other loading conditions, we don’t have explicit relationship from the previous
derivations. The relationships between the loads and the deflections, however,
are implicit and complicated except at point (0,0). These relationships, for point
(0,0), can be obtained by using Mathematica® and are given below

2
*
uniform pressure P = (z*a)” E*Uz (5-1b)

1-v?)
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a

flat indentation P = 3 E*Uz (5-1c)
(1-v%)
spherical indentation P = — ¢ —E*Us (5-1d)
3(1-v©)

For all half space cases, the individual load and the deflection relationship is
linear at point (0,0). However, the coefficients of them vary with the shape of the
indenter. We may use the same manner to evaluate the deflection at point (0,0)
for cases other than half space. However, due to the complexity of the integrals
involved in the derivations, we are not able to extract the relationships
analytically. Therefore, a numerical method should be used to determine the
relationships between the load and the deflection and between the stiffness and
the ratio of layer thickness. In the following sections, we will use the spherical
indenter as an example to develop these correlations for the cases of a single
layer on a rigid base, a single layer on an elastic base and a two-layer composite

on a rigid base.

5.2 Single layer on rigid base

Firstly, we focus on the co-relationship between the load and the deflection.
Since our derivations have been based on the linear elastic theory, the load and
the deflection should have a linear relationship. Aluminum was chosen for this
study, which had a Young's modulus of 70,000 MPa, a Poisson’s ratio of 0.33, a

material thickness of 1 mm. The following relationship can be achieved:
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Figure 80 Force vs. deflection for single layer on rigid base.

From the force-deflection diagram shown in Figure 80 and the associated least-

squares fitting line, the load and the deflection, as expected, have a perfectly

linear relationship since the square regression R? =1. If we define the stiffness
as the load divided by the deflection, we can study the relationship between the

stiffness and the material, i.e. Young’s modulus.
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Figure 81 Stiffness vs. Young's modulus for single layer on rigid base.

Figure 81 shows that the stiffness and the Young's modulus has a linear
relationship. The layer thickness can be normalized by the contact radius which

is directly related to the radius of the spherical indenter. We will investigate the

relationship between U_PE and the ratio of thickness and contact radius, h/a.
4
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Figure 82 Relationship between stiffness and h/a.

The exponential fit seems to give the best fit to the data points given in Figure 82.
Therefore, the case of a single layer on a rigid base can be represented by the

following equation

P=3.8l49*E*Uz*(-’l
a

-0.6389
) (5-2)

5.3 Single layer on elastic base

We have developed a contact relationship for a single layer situated on a rigid
support. In reality, most of the base is not really rigid, but elastic. In this section,
we will use the same numerical approach to develop the contact model for the

case of a single layer on an elastic base.
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Figure 83 Force vs. deflection for single layer on elastic base.
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Figure 85 Normalized stiffness vs, the ratio of Young's moduli.
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From Figure 83, we can conclude that the stiffness increases with the Young's
modulus of the top layer. We further normalize the data points by dividing them
with the Young’'s modulus of the bottom layer, i.e. E2. The results are shown in
Figure 85. The normalized curves imply that there is a linear relationship
between the stiffness of P/U and the Young's modulus of the top layer with fixed
a=1 and h=4. A simple contact model can be proposed to reflect the correlation
given in Figure 85:

E

P=14666*U*Ey*| =2 (5-3)
2 \E

-0.9058
1 ]

We can see, as the ratio between the Young’s moduli increases to 10, the curve

levels off, implying the supporting base is approaching rigid.

1.2 y= 0.7936x°26%8 ‘ |
1 R®=0.9769 |

Stiffness P/U/E2

Figure 86 Stiffness vs thickness changes

109



Figure 86 shows that the stiffness is also associated with the thickness. As the
thickness increases, the stiffness is approaching to a half space result. With
known materials, such as E1=70000 and E2=200000 for this case, the following

model can approximately represent the contact relation:

-0.2658
i ] (5-4)

P=0.7936*U*E2*(—1
a

Combining equations 5.3 and 5.4, we have

E -0.4529 h
P=1.0788*U*Ey*| =2 2 (5-5)
2

-0.1329
E| a j

5.4 Two layer composite on rigid base

We use a similar approach to study the case of two-layer composite situated on a
rigid base. With the numerical scheme developed earlier, we can identify the
effect of the layer materials, if no simple explicit analytical relationship can be

identified.
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Figure 87 Force vs. deflection for two-layer composite on rigid base.
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Figure 88 Relationship between stiffness and the ratio of Young’s moduli.

From the calculated data points, a contact model is presented as follows:

E -0.854
P=1.6383*U*E,*| -2 (5-6)
2\ E

1

Similarly, the stiffness and the thickness ratio are calculated and plotted in Figure
89. The relationship is

h

P=09423*U*E; *(—
h

~0.3962
) (5-7)

Combining Equations 5.6 and 5.6, we have
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E -0.427 h -0.1831
P=12425*U*E,*| =2 - (5-8)
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Figure 89 Stiffness vs. thickness ratio of the two layers.
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CHAPTER SIX ADVANCED STUDY

In this chapter we will apply the techniques developed in previous chapters to
study cases involving contact interface and bonding interface. First of all, we will
derive a general formulation for cases with shear loading condition. Combining
normal and shear loading conditions, we will be able to study frictional effect at
indentation surfaces. We will also incorporate a shear slip condition into
interfaces of layered materials to simulate cracks in the layers and to in<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>