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ABSTRACT

The Existence of Global Solutions of a Variational Nonlinear Wave

Equation
By

Tae-Wan Park

We analyze the existence of smooth global solutions of a variational nonlinear wave
equation which originates from the modeling of orientation waves in a massive nematic
liquid crystal director field. We prove that the equation has the global solution in
three space dimensions and smooth solutions develop singularities in finite time in
one space dimension. The method depends on detailed analysis of solutions along the

nonlinear characteristics and careful selection of initial data.
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Introduction

During the past three decades, the initial value or Cauchy problem has long played
the central role in the theory of evolutionary differential equations, which describe
many fundamental physical processes of interaction. The Cauchy problem has been
studied extensively with considerable success. In spite of a great deal of recent ac-
tivity, many physically and mathematically important difficult problems remain. In
addition, mathematically quite interesting and physically significant questions remain
even when global existence and unicity have been well established. Among the most
interesting problems of this type are those of the asymptotic behavior, regularity and
stability of solutions.

This dissertation is focused on the nonlinear wave equation
ug — C(w)V - (C(u)Vu) =0, (1)

where the wave speed C is given positive function of u. In particular, we study

carefully the one dimensional version of the equation (1) which can be written as
uy — C(u)(C(u)uz), = 0. (2)

One motivation for studying (2) comes from the theory of liquid crystals. This
equation (2) has been derived by Saxton [44] for the director field in a simplified

situation of a nematic liquid crystal in the regime where inertia of the director field



dominates dissipation. That was based on the previous result by Leslie [32] and
Ericksen [4] which studied the strain of liquid crystal. Further details can be found
in [44], (8], and [9].

We give a brief explanation of how the equation arises in that context, and how the
liquid crystal problem differ from the related problem of wave maps from Minkowski
space to the two-sphere. Suppose n : R3 — S? maps three dimensional Euclidean

space into the two sphere. We define the ”energy” functional
1 2
v[n] = 3 |Vn|°dz.
Harmonic maps are solutions of the constrained variational principle
— =0, n-n=1.
n
The associated Euler-Lagrange equation is

An + |Vn|?n = 0.

There are two time dependent partial differential equations naturally associated with

this functional. One is the parabolic gradient flow
n; = An + |Vn|’n,
and the other one is hyperbolic Hamiltonian system
n, = An + (|Vn|? = n?)n. (3)

This hyperbolic partial differential equation is the Euler-Lagrange equation of the



action principle

%/{nf — |Vn[’}dzdt =0, n-n=1,

forn:R! x R? — S2.
A related and more general energy functional is from liquid crystal. In this case,
let n be an unit director field. The well-known Oseen-Frank energy functional in

nematic state [6] is given by
1
W(n] = E/W(n, Vn)dz,

where

W(n,Vn) = aln x (V x )2+ B(V-n)2+(n- V x n)?,

the positive constants a, 3, 7y are elastic constants of the liquid crystal. In the special
case a = = vy, the Oseen-Franck energy reduces to the harmonic map energy.
The form of the Oseen-Franck energy is determined (up to a null Lagrangian) by the
requirement that it is invariant under reflections n — —n and under simultaneous
rotations R of the spatial variables and the director field, z -+ Rz,n — Rn. The
harmonic map energy functional has a larger symmetry group, since it is invariant
under independent orthogonal transformations, z — Rz,n — Sn, of the domain and
target spaces.

There are three partial differential equations naturally associated with the Oseen-

Franck energy,
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nu=—71'1'+/\n. (4)

Here, ) is a suitable Lagrange multiplier which preserves the constraint that n is a



unit vector. Our interest here is in the hyperbolic equation, the last equation in (4).
This equation is the ”liquid crystal” analog of the wave map equation (3). It has the
action principle

% /{nf - W(n,Vn)}drdt =0, n-n=1.

A principle theme of our work is that the qualitative properties of (4) are completely
different from those of (3).
The simplest interesting class of solutions of (4) consists of planar deformations

depending on a single variable z [44]. The director field then has the form
n(z,t) = cosu(z,t)e; + sinu(z,t)e,.

Here, the dependent variable n € S! measures the angle of the director field to the
z—direction, and e, and e, are the coordinate vectors in the z and y directions,

respectively. Then

n} = | — u;sinue; + u, cos ue, 2 =2

V:.n= —u;sinuy,

and
Vxn = (-u;cosu)e; + (—u.sinu)e, + (uz cosu + uysinue,
= (ugcosu + uysinu)e,.

So

(V-n)? =ulsin’y,

(n-Vxu)’ = (-u,cos’u— u,sin’ u)’

= (—uz)2 = uf = O,

4



and

In x (V x u)|? = u2 cos® u(sin u + cos® u) = u? cos® u

Finally,

W (n, Vn) = au? cos? u + Bu? sin® u.

In this case, the action principle for n reduces to the one space dimension version of
é 2 2 2
— [ {ui — C*(u)u’}dzdt =0
ou
with the wave speed C given by
C%*(u) = accos® u + Bsin’ u.

The corresponding wave equation is (2).

Equation (1) also looks very similar to the perturbed wave equation
uy — CAu + f(u, Du, D*u) = 0. (5)

Blow-up for (5) has been studied extensively by Levine [33], John [16], Glassey [7],
Sideris [47], [48], Schaeffer [45], Kato [22], Hanouzet and Joly [10], Balabane [1], and
others, using integral methods. For the proof of the global existence, Klainerman
((23] and [24]) used the Nash-Moser-Hormander iteration scheme to get approximate
solutions to the Cauchy problem and establish the global convergence of approximate
solutions on ¢t > 0. Klainerman [26], Klainerman and Ponce [27] and Matdumura [41]
adopted another method, namely the extension method of local solutions to get the
global classical solution. This method can be essentially made in two steps. The first
step is to show the local convergence of approximate solutions on a domain locally in

time and get the local classical solution, and the second step is to establish some uni-



form estimates for local solutions to the original nonlinear problem, and consequently
the local solution can be extended to a global solution. This method is simpler than
the previous one, especially in the case that the local existence is well known. Li and
Chen [34], Li and Yu [37] used other methods. That method based only on the decay
estimate for solutions to the corresponding linear homogeneous equation and on the
existence and the energy estimate for solutions to the corresponding linear inhomo-
geneous equations, they got the global existence or the lower bound of the lifespan of
classical solutions to the Cauchy problem with small initial data for nonlinear wave
equations. Moreover, the global classical solution, if any, has the same decay prop-

erty when t — +o00 as the solution to the corresponding linear homogeneous equation.

In addition, Belchev, Kepka and Zhou [2] proved the global existence of solutions
to nonlinear wave equations using the Penrose conformal compactification method in
1999. They use new method which transforms the equations from Minkowski space
to the Einstein universe in order to change the global existence question to the local
one.

The blow-up for (1) without critical points of speed, to the first order, was studied
by Glassey, Hunter, and Zheng [8] using the characteristic method. Recently, Zhang
and Zheng [51] show the weak global solution of (2) with some smoothness condition
on the initial data.

In 1995, Hunter and Zheng proved that the asymptotic equation

1
(ug + uuy), = §u§ (6)

has global continuous weak solutions, even though smooth solutions of (6) break down
[14] and [15].

Equation (6) comes from an informal approximation of (2), when we look for a weakly



nonlinear asymptotic solution of (2) of the form
u(z, t;€) = up + euy (0, 7) + O(€?), (7)

with § =z — Cot, 7 = €t, and Cy = C(ug) > 0 is the unperturbed wave speed.

Looking at the coefficients of €2 in the expansion implies
U 1 1,2
(uir + Coururg)g = 500“10- (8)

Here, Cj = C’(up). Assuming that Cj # 0, the change of variables u = Cju,,z = 0,
and t = 7 transforms (8) into (6). In (6), (z,t) are not the original space-time
variables; instead z is the space variable in a reference frame moving with the
unperturbed wave speed, and ¢ is a slow time.

The results on (6) suggest that (2) also has global continuous weak solutions.
However, this question remains open, and recently Zhang and Zheng show the
existence of global weak solution to (2) with special Cauchy data [51].

In 1996, Glassey, Hunter, and Zheng [8] showed the singularity of the solution to (2)
without the critical points of the wave speed C(u). There, they used the method of
characteristics instead of the energy method. Unlike energy methods, this approach
only works in the case of one space dimension. That method is one of the important
motivation of this dissertation, here I also use the characteristic method to analyze

the behavior of solutions.

This dissertation will be organized as follows.
In Chapter 1, we discuss about the history and back ground of the perturbed
wave equation, and the existence of smooth global solution of (1) with small general

smooth initial data in high dimensions.



Especially we will prove the follow theorem.

Theorem 0.1 Assume that C(u) € C?(R) and ug € R such that C(ug) > 0,C'(ug) =

0. Then the initial value problem

Uy — C(U)V ' (C(U)VU) =0,

u(0,z) = ug + €f(z), w(0,z) = eg(x),

always has a global C*™ solution if € > 0 is small enough, when n > 3.

In Chapter 2, we will consider the non-existence of the smooth global solution
of (2) for general smooth initial data using the method of characteristics [40]. This
approach only works in the case of one space dimension at the moment.

Especially we will prove the follow theorem.

Theorem 0.2 Assume that C(u) € C*(R) satisfies the following:

(a) there exist positive constants 0 < Cy < C; < 0o such that Cy < C(u) < C; for
all u € R,

(b) C'(up) = 0 and C"(ug) # 0.

Suppose that u(t,z) € C?([0,T) x R) is a smooth solution of the initial value

problem,
u — C(u)(C(u)ug), =0,

U(O,.T) =up + ed)(f_)a

(0, 2) = —sign(C'(uo + 6))C(u(0, 2))uz(0, ),
where € > 0 is sufficiently small, ¢ € C'(R) with ¢ Z0,|d| < 1, and ¢"(a) # 0 when
¢'(a) = 0.

Then T < oo for some ¢, i.e. a global smooth solution does not ezxist.

This part is motivated by the work of Glassey, Hunter, and Zheng [8].
In Chapter 3, we will show that the space dimension n = 2 is the critical di-

mension of the existence of a global classical solution of a variational nonlinear wave
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equation. Here we will discuss the difficulties for energy method and characteristic
method. Even though we could not prove the development of singularity rigorously
at the moment, we indicate the possibilities. The study will be continued after the

completion of this dissertation.



CHAPTER 1

The existence of global smooth

solution in high space dimensions

To establish the global existence, we compare the variational wave equation (1)
uy — C(u)V - (C(u)Vu) =0
to the perturbed wave equation (5)
uy — CAu + f(u, Du, D*u) = 0.

During the past three decades, the perturbed wave equation was studied extensively.
There are lots of results about that wave equation, even though many physically and
mathematically important difficult problems remain.

In the first section we mention some related existence theorems of the perturbed
wave equation. And in the second section we show the existence result about the

variational wave equation.
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1.1 Motivation and history

Throughout this section, we will consider the initial value problem for nonlinear wave

equations
Ou = F(u, Du, D;(Du)), (t,z) € Ry x R", 1)
u(0,z) = ed(x), u(0,z) = eyp(z), z € R,
where
2 n o2
o=9% Ll
ot 4 0z}
is the usual wave operator,
0 0 0 0 d
Dz—(a_zl"”,a_xn)aD (&'153:_1"' 181:“)

and ¢,¢ € C°(R™), € > 0 is a small parameter.
Let
A= (A 8,7),

with A € Rvﬂ = (50’61)"' aﬂn) € Rn+l,7 = (71]))2 = 0,1"" » N, and .7 =
0,1,--- ,n.
Suppose that in a neighborhood of A=0, say, for |;\| < 1, the nonlinear term

~

F = F())in (1.1) is a sufficiently smooth function satisfying
F(3) = o|A'*®), (1.2)

where a is an integer > 1.
First consideration of the existence is the special case where the nonlinear term

F in (1.1) does not explicitly depend on u;
F = F(Du, D, Du). (1.3)

11



Based on the decay estimates on the L°(R") norm and the energy estimates for
solutions to the Cauchy problem for wave equations, Klainerman [23] used the Nash-
Moser-Hormander iteration scheme in 1980 to first prove the existence and uniqueness
of global classical solutions with small initial data for a = 1, and n > 6.
Furthermore, the solution possesses some decay properties when ¢t — +o0.

Three years later, under hypothesis
(n-1)/2>(1+1/a)/a, (1.4)

Klainerman [24] used same method to generalize his result to the general case that
« is an integer > 1. In particular, when a = 1, (1.4) reduces to n > 6. Moreover,
based on the decay estimates on the L9 (R™) norm (g > 2) of solutions to the Cauchy
problem for wave equations, Klainerman and Ponce [27] used the extension method
of local solutions in 1983 to recover the same result for the general case o > 1. A
simpler proof was given by Shatah [46] in 1982.

The relationship between n and « given by (1.4) can be explicitly expressed in

the table

When a = 1, the restriction n > 6 on the space dimension n is not optimal, and
Klainerman [26] actually improved it in 1985. Based on the Lorentz invariance of the
wave operator, he successfully used the extension method of local solutions to get the

global existence theorem under hypothesis for n > 4, instead of n > 6.

12



In a similar way as in Klainerman [26], we can prove that the lifespan T (¢) = +o0,
i.e., there exists a unique classical solution to Cauchy problem (1.1) (with (1.3)) on
t>0,if

2
—. 1.
n>l+a (1.5)

namely, there is a relationship between a and n as follows:

This result coincides with the previous table given by (1.4) when a > 2.
Generally speaking, as a restriction on the space dimension, hypothesis n > 4 is
necessary. In fact, John [17] has proved that, when n = 3, any nontrivial C? solution

to the Cauchy problem

uy — Au = u?,

u(0,z) = ¢(z), ue(0,z) = Y(z),z € R*

must blow up in a finite time, provided that the initial data have a compact support.
Moreover, Sideris [49] has also pointed out that, if the initial data are not small, then
classical solutions may blow up in finite time no matter what the space dimension is.

In the special but important case n = 3, since classical solutions may blow up in
a finite time even for small initial data, it is important to estimate the lifespan T (e)
of classical solutions.

Using a method based on an asymptotic expansion of the solution in powers of ¢,

13



John [19] proved that

lim ¥ T(e) = +o0

€e—0

for any integer N > 0, namely, the lifespan increases at least like a polynomial of
¢! as € = 0. Moreover, for solutions with spherical symmetry, it has been proved, in
the semilinear case F' = F(Du) by John [17] and Sideris [47], and in the general case
F = F(Du, D,Du) by Klainerman [25], that the lifespan

T(e) > exp {ae™}, (1.6)

for small € > 0 and a positive constant a.

Finally, John and Klainerman [21] and Klainerman [26] proved that (1.6) is still valid
for general solutions to the Cauchy problem under consideration, and they referred
to solutions of this kind as almost global solutions.

Furthermore, for the case n = 2, Kovalyov [30] proved that

N blelne)™2, if a=1,
T(e) 2

exp {ae?}, if a =2,
where a and b are positive constants.
A complete analysis on the lifespan of classical solutions to Cauchy problem (1.1)
with (1.3) can be found in Homander [11] and Li Ta-tsien and Yu Xin [36].

The lower bound of the lifespan of classical solutions to (1.1) (with (1.3)) for all

integers a,n with @ > 1 and n > 1 can be summarized as follows:

+00, if n>1+2,

T(e) > expf{ae™®}, if n=1+2 (1.7)

a’

be=o/(1=Ko)if n <1+ 2,

14



where K = i;—la and a, b are positive constants only depending on o and n. We may

outline this result in the following table

) a
T(e) > 1 2 a
n
1 be~! be=2 e be~
2 be~? exp {ae~?} oo
3 exp {ae '}
45, -

Thus, we recover the results mentioned above with some improvements, for instance,
in the casen =2 and a = 1.

We point out that all lower bounds in this table, except the case n = 2 and a = 2,
are known to be sharp because of Lax [31] (for n = 1 and a = 1), John [20] (for
n = 2,3 and a = 1), Kong De-xing [29] (for n =1 and a > 1) and Zhou Yi [52] (for
n > 1 and odd o > 1).

Now we turn to the general case where the nonlinear term F' may depend on u,
i.e.,

F = F(u, Du, D, Du).

Since the L?-norm of the solution to the wave equation cannot be estimated by the
standard energy method, the problem becomes more complicated and thus we need
some more refined estimates and analysis in order to get the lower bound of the
lifespan of classical solutions.

Matsumura used the extension method of local solutions in his thesis [41] to con-



sider the following Cauchy problem for a special kind of quasilinear wave equations
n
Uy — Au = Z bij(u, Du)uz,z; + F(u, Du)
1,7=1

He proved the global existence of classical solutions for small ¢ > 0, provided that

there is a relationship between n and a as follows

For the most important case o = 1, by means of the conformal mapping from R"*!
to R x S™, Christodoulou (3] obtained in 1986 the corresponding global existence of
classical solutions under the hypothesis that n is an odd integer > 5.

In 1988, Li Ta-tsien and Chen Yun-mei [34] used a simple method. This method
avoid the use of the Nash-Moser-Homander technique as well as the use of the ex-
tension of local solutions. Based only on the decay estimate for solutions to the
corresponding linear homogeneous equation and on the existence and the energy esti-
mate for solutions to the corresponding linear inhomogeneous equations, one can get
directly the global existence or the lower bound of the lifespan of classical solutions
to the Cauchy problem with small initial data for nonlinear wave equations. More-
over, the global classical solution (if any) will have the same decay property when
t — 400 as the solution to the corresponding linear homogeneous equation. By this
method, they eliminated the restriction that n must be an odd integer in the result
of Christodoulou [3], and their results in the general case n > 3 and @ > 1 can be

summarized as follows:
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T(e) = +oo, if K = 251(1 — Z)a > 1. Namely, if there is a relationship between o

and n as shown in the table

Recently, Hormander [12] (for n = 4) and Lindblad [39] (for n = 3) proved respectively
that the lifespan

o) > be2, if n=3 and a=1,
€

| exp {ae7'}, if n=4 and a =1,
where a,b are positive constants. Moreover, they also proved that in the particular

case

F1,(0,0,0) =0, (1.8)

then

- >exp{ac!}, f n=3 and a =1,
(o p{ac”'}
= +00, if n=4 and a=1.

This is to say, for n = 3,4, the same lower bound of the lifespan can be obtained
under assumption (1.8) as in the case where F' does not explicitly depend on u.
The following table summarizes all results mentioned above for all n, a withn > 3

and a > 1,

17



T(e) > 1 2,3,
n
be?
3
exp {ae~ '}, if 82F(0,0,0) =0
exp {ae" !} +oo
4

+oo if 32F(0,0,0) = 0

56, -

in which a,b are positive constants (Li Ta-tsien and Yu Xin [37]).

Besides, for n = 1 and all integers o with a > 1, we can get that

be—/2, in the general case,
T(€e) 2 § bemo(+a)/@+a) if [* g(z)dz =0,

be=?, if 82F(0,0,0)=0,Vl +a < < 2a,

where b is a positive constant [35].

For n = 2 and all integers a with a > 1, the following results can be obtained:

i a

T(e) > 1 2 34, ---
n

be 2
be 6
9 be~!, if [gdzr =0 400
exp {ae?}
be~2, if 92F(0,0,0) = 0| if 92F(0,0,0) = 0
B (B=3,4)

18



where e(e) is defined by
e2e(€)In(1 +e(e)) =1

and a, b are positive constants [35].

All these lower bounds, except the case that n = 4 and a = 1, are known to be
sharp due to Lindblad [38], Li Ta-tsien and Chen Yunmei [35], etc.

Here we rewrite Theorem 2.10 on page 77 in [28], and the proof can be found in

[34], [37] and [35].

Theorem 1.1 Consider the wave equation (1.1) with the assumption (1.2).

Then global existence of small solutions ezxists if

n—1
2

2
(1-—)a>1 and a>1.
an

Proof. The proof follow what we mentioned before.
When o > 3, we will use natural energy estimation, and when 1 < a < 3, the
proof consists recasting the equation as a fixed point problem for a suitable integral

operator, which is shown to be a contraction in the norm

sup(1 + t)("_1)(’"(2/°"))/2[u]30,an + sup[u(t)]s.2 + sup[Du(t)]s+1.2,
>0 >0 >0

where [Ulmp = (Xicm I(1 + |2])* Diu(z)|13,gn)) /%, that is, it is the weighted norm
involved in the global Sobolev inequality, sp > n + 10, and so+n+1< s < 255 — 9.

The details are in [34] and [35]. o
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1.2 Main result

In this section, we consider the initial value problem with high dimensions

uy — C(u)V - (C(u)Vu) =0, (1.9)

U(O,ZE) =up + Cf(.T), ut(oaz) = Gg(l'),
where ug is constant, f, g are given smooth functions with compact support and ¢ is
a small parameter.

Theorem 1.2 Assume that C(u) € C*(R) and uo € R such that C(up) > 0,C"(up) =
0. Then the initial value problem (1.9) for n > 3 always has a global C* solution if

€ > 0 is small enough.

Proof. Let u(z,t) = up + v(z,t), then the equation (1.9) turns to

vy — C*(up + v)Av — C(ug + v)C'(ug + v)| Vo[> = 0. (1.10)

And by Taylor’s series at u,,

Clup+v) = C(u0)+Za,~vk, (1.11)
k>2
C2(U0 + ’U) = C2(UO) + Zb,-vk,
k>2
C'(up+v) = bC"(uo)v+ Zc,—v".
k>2

Equation (1.10) becomes

vy — C*(ug) Av = d,C (ug)C" (o) v|Vu|? + Z div*|Vo|? + Z biv*Av. (1.12)

k>2 k>2

The right-hand side has order bigger than 3, consequently the initial value problem

(1.9) has a global C* solution when € is very small by Theorem 1.1 for n > 3. ]

20



We should remark that for n > 4, the global solution exists for any wug i.e., ug is

not critical point of wave speed C(u), as long as ¢ is small.

Corollary 1.1 Assume that C(u) € C*(R) is a positive function. Then the initial
value problem (1.9) always has a global C*™ solution if € > 0 is small enough, when

n > 4.

Proof. Set u = ug + v(z,t) then the equation for v is

vy — C?(up + v)Av — C(ug + v)C'(ug + v)|Vu|? = 0. (1.13)

In this case, the Taylor expansion gives us,

Clug+v) = Cl(up) + Za,»v", (1.14)
k>1
C*(ug+v) = C*(ug)+ Zbiv",
k>1
C'(up+v) = C'(up) + qu",
k>1

the equation (1.10) turn to

vy — C*(ug)Av = Zb,-v"Av + C(uo)C’ (w)| V| + Zd,-kaVv|2. (1.15)
k>1 k>1
The right hand side has order bigger then 2, Theorem 1.1 concludes that the initial

value problem (1.15) has a global C* solution with small initial data. a

We can also consider the initial value problem in high dimensions with a nonlinear

term such as

Uy — C(u)v : (C(U)VU) = F(u’ DU, D_-,D'U«), (116)

U(O,ZL‘) = Ug + Ef(lf), ut(07x) = Cg(l‘),

21



where
) ) ) )

D:t:(;s?la"'aa)’ Dz(E’E,’E)

f, g given smooth functions with compact support and € a small parameter.
Let

X = (UO)’\07A17' ° 7/\717Aij)

where 1 =0,1,---,n and 7=0,1,--- ,n,t+7 > 1.
Suppose that in a neighborhood of A = (uo,0,-- - ,0) say, for |A| < 1, the nonlinear

term F = F(}) in (1.16) is a sufficiently smooth function satisfying
F(}) = o(|A]"**),

where « is an integer > 1.

Corollary 1.2 Assume that C(u) € C%(R) and there ezists ug € R such that
C(ug) > 0,C'(up) = 0. Then the initial value problem (1.14) always has a global C*®

solution if € > 0 is small enough when dimension n > 3 and o > 2.

Proof. It follows directly from Theorem 1.1, [34], and [37]. o

Corollary 1.3 Assume that C(u) € C?*(R) is positive function. Then the initial
value problem (1.16) always has a global C* solution if € > 0 is small enough when

dimensionn > 4 and o > 1.

Proof. Again, it follows immediately from Corollary 1.1, [34], and [37]. m]
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where
) ) 6 9 1)

D= e P )

f, g given smooth functions with compact support and € a small parameter.
Let
;\ = (u0a AO, /\17 e ’Ana A1.])

where: =0,1,---,n and j=0,1,---,n,t+j > 1.
Suppose that in a neighborhood of A= (uo,0,---,0) say, for |:\| < 1, the nonlinear

term F = F(}) in (1.16) is a sufficiently smooth function satisfying
F(}) = o(|A]"**),

where « is an integer > 1.

Corollary 1.2 Assume that C(u) € C?(R) and there ezists ug € R such that
C(ug) > 0,C'(ug) = 0. Then the initial value problem (1.14) always has a global C*®

solution if € > 0 is small enough when dimension n > 3 and a > 2.

Proof. It follows directly from Theorem 1.1, [34], and [37]. O

Corollary 1.3 Assume that C(u) € C?(R) is positive function. Then the initial
value problem (1.16) always has a global C* solution if ¢ > 0 is small enough when

dimensionn > 4 and a > 1.

Proof. Again, it follows immediately from Corollary 1.1, [34], and [37]. O
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CHAPTER 2

The singularity of a wave equation

in 1 space dimension

In this chapter we show the formation of the singularity of a nonlinear wave equation
uy — C(u)(C(uw)u,) =0,

with positive function C(u).
In the sense of distributions in the space W>(R?2 ), the energy estimation given

us

E(u) = / u? + C*(u)u’dz = constant. (2.1)

—00
in 1-dimension case. This is well-known fact for the wave speed C(u) = C.
For general function C(u), multiplying u; on the original differential equation and
integration give us

/—oo uguy — C(u)(C(u)ug) udr = 0.

oo

Then integration by parts,

‘/_oo upuy + (C(u)ug) (C(u)uy)dx = 0.

o0
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Note

and

(C(u)ue) (Clu)ur)e = (Clu)us)(Clu)uz): = %[{C (w)uz}’]e.

We have
% [ 1w + Cwu)ldz =,

which implies the conservation of energy.

To show the non-existence of the classical global solution, we will show the blow-
up to the first order derivatives u, or u, in finite time while the function u itself stays
bounded.

In first section we will establish the boundedness of u during large time, and in sec-
ond section we will show that there is no classical global solution in a variational wave

equation in 1 space dimension by estimating a combination of first order derivatives.

2.1 Boundedness of u

To see the boundedness of u, we need the one special version of the Sobolev inequal-

ities. Next two Lemmas are the part of the Sobolev inequalities in [5].

Lemma 2.1 For any ball B(z,r) C R, there erists a constant C, depending only

on n, such that

][B )~ u@ldy < 0 Duwl (2.2)

B(z,r) ly - xln—l .
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Proof. Fix any point w € 0B(0,1). Thenif 0 < s <,

lu(z + sw) —u(z)] = I/ —u(z + tw)dt|
= |/ Du(z + tw) - wdt|
0

L]
< / | Du(z + tw)|dt.
0

Hence

/ lu(z + sw) — u(z)|dS < / / | Du(z + tw)|dSdt
8B(0,1) 8B(0,1)

= / / |Du(z + tw)
8B(0,1)

Let y = z + tw, so that t = |z — y|. Then converting from polar coordinates, we have

/ lu(z + sw) — u(z)|dS < / —lﬁl(y—)_lldy
8B(0,1) B e

(z,s) |.'II )
< / ——IDu(y,,)_lldy
B(z,r) |SB - yl

Multiply by s"~! and integrate from 0 to r with respect to s:

fB . lu(y) — u(z)|dy < = _lD_“(q)J_l_dy

n Jpen ly— x|

]

Next Lemma is a special version of Morrey’s inequality which is one of the Sovolev

inequalities in Chapter 5 of [5].

Lemma 2.2 Assume the dimension n < p < oo. then there ezxists a constant C,
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depending only on p and n, such that

sup |u| < Cllullw1,p®n)- (2.3)
Rn

Proof. Fix r € R*. We apply inequality (2.2) as follows:

lwﬂ|s‘ﬂmnmum—wwuwgﬂmnm@ww (2.4)
c Du(y)|

B [y — z|*!

dy
P.,\1/pP p-1/p
< C( Rn | DufPdy) (-/I;(z,l) |z — yl(n_l)p/p_l) + C”U”LP(Rn)

dy + C|lul|Lr(B(z1)

< Cllullwipmn)-

The last estimate holds since p > n implies (n — 1)}—’%l < n; so that

/ 1 dy < 00
ey |7 — gl D1 <

As r € R" is arbitrary, inequality (2.4) implies

sup |u| < Cllullwip®n)-
Rn

Theorem 2.1 If u is a solution of the initial value problem,

uy — C(u)(C(w)ug): =0, 0<t<T, (25)

U(O, .’L’) =1up + ff(.'L'), ul(O’x) = Cg(l'),

where € > 0 is sufficiently small, f(z) € CF(R), g(z) € CP(R) and there exist

positive constants 0 < Cy < C, < oo such that Cy < C(u) < C) for all u € R, then
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for any 0 < T' < Ty, u € L*=([0,T") x R).

Proof. The energy of (2.1) is

E(u) = / u? + C*(u)uldr = constant.

—00

So, we have the boundedness of L? norm of u; and u, using

/ uldz < E(u) < oo and

oo

CO/ uldr < E(u) < oo.

—00

We can conclude that Du € L? where D = 8/dz or 9/dt.
Remember that u — ug is compactly supported for each ¢ > 0 from the finite
propagation speed of the nonlinear wave equation. We see that ||u(t, -)||w12g) < M

for all t € [0, T'] Morrey’s inequality concludes that u € L*([0,T'] x R). m]

In next section we will show that the non-existence of the smooth global solution

of (2) for general smooth initial data.

2.2 Main theorem

In this section we consider the initial value problem

U — C(u)(c(u)uz)z =0,
u(0,z) = up + ed(z/e), (2.6)
(0, ) = —sign(C'(uo % 6))C(u(0, z))u(0, z),

where € > 0 is sufficiently small, ¢ € C'(R) with ¢ # 0,|4| < 1, and ¢"(a) # 0 when
#'(a) = 0.
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Theorem 2.2 Assume that C(u) € C%(R) satisfies the following:

(a) there ezist positive constants 0 < Cy < C; < 0o such that Cy < C(u) < C, for

allu € R,
(b) C'(up) =0 and C"(up) # 0.

Suppose that u(t,z) € C'([0,T) x R) is a smooth solution of (2.6) in0<t<T.

Then T < oo for some ¢, i.e. a global smooth solution does not erist.

Proof. We have to prove two cases, C(u) have a local maximum at ug and C(u)
have a local minimum at uy. However the proofs for the two cases are similar, so we
treat only the first case.

To prove this theorem, we will show that if u is continuous and |u| < oo, then u,
and u, must blow up in finite time.

The energy estimate of (2.6) is E(u) = [ uf + C?*(u)uldr = constant as in
(2.1), and here we will use the method of characteristics [8] .

We will write the non-linear wave equation (2) as a system of first order equations

by introducing new dependent variables

R = u+C(u)u,, (2.7)

S = u—C(u)u,.

Then, for smooth solutions, equation (2) is equivalent to the following system for

(R,u,S),

_ C, 2 2
R, -CR, = %C(R s?), (2.8)
Uy = §(R+S),
C' 2 2
Sg+CSI = ‘46(5 "R)a
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Figure 2.1. A characteristic region

with the constraint
R-S

e (2.9)

These equations will help us to estimate the values of R and S along characteristics
t+ and t_. Given any point (o, Zo) in the upper half plane ¢t > 0, let ¢.(z), or z4 (%),

denote the plus and minus characteristics through (¢, z¢), extended backward in time:

dti (x) 1
= = <t<

(see Figure 2.1). Let z; and z, denote the intersection points of ¢y with the z-axis.
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n = (1/V1+C?)(-1,0)
na = (1/VIFC)(1,C)
n3 = (0,-1)

Figure 2.2. Outer normal vectors

For the initial data in (2.6), We can estimate the total energy

E(u) = / ul + C*uldr (2.10)

- /m202¢'(§)2dm
< 2c? / ) #(2)dz
= 20 [~ sy
= 2Ce|4'll7,

= Me

for some constant M, where C is an upper bound for C(u).
Now, we will consider the divergence theorem with the vector F = (u2—C?u2, u?+

C?u?) and the characteristic region, Q2 in Figure2.1.

/ F - iids = / / divFdzdt. (2.11)
an Q

The left hand side of (2.11) is calculated with outer normal vector n, ny, and nz (See

Figure 2.2). So, that is
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1
/ — (—u? + C*i2 + Cul + C*ul)ds (2.12)
T4

+ / 1 (u? — C*u? + Cu? + C*u?)ds

-+
R

The right hand side of (2.11) is

//(uf — C%u2); + (u? + C*ul),dzdt. (2.13)
0

The first term in (2.13) turns to

//(uf — C*?) dzdt
T_ (t)

/ / (u? — C*ul).dzdt
I+(¢)

= - C%*?)d -—/ — C%u?)ds.
/ \/1+C'2 i \/1+C2 )
And the second term in (2.13) turns to
/ f Qutgties + 2(C(w)e)eC (w)uadzdt
Q
= //2utuu+2(C(u)ut)xC(u)u,dzdt
Q
= // 2'U¢Uu - 2C(U)UQ(C(U)U1)1d$dt
Q
2C?%(u) 2C?%(u)
+ / ﬁur ,ds—/+ mu,u,ds
_ / / 2y (gt — C(u)(C(w)u).)dzdt
2C?%(u)
+ T ds — T d
m““ T Vire e
2C?(u) / 2C?%(u)
= uds — Uy dS.
/x_ Vizer T ) Vizer

31



Hence, (2.13) is equal to

1 1
___4w_w@@-/
/x_ vi+cz ! z, V1+ C?

+/ 202(u)uuds—/ 2Cz(u)uuds
. Vite? o L VItC: ©

(u? — C?u?)ds (2.14)

Combining (2.11), (2.12), and (2.14), we have

C
2+ Ct2)d +/
. 1+C2(u‘ z)ds 2y V1I+C?
B /‘ 2C?(u) wotinds + 2C?(u)
. Viter o 2y V1+C?

(u? + C*ul)ds (2.15)

U uds

By (2.15) and total energy (2.10), we have

C

V1
c
1
C

(u? + C*u2 — 2Cu,u;)ds

~/::_ +C?
+ /z+ m(uf + C%u? + 2Cuzu,)ds < Me,
/ C

— Cu,)%d +/
Ve e NV v,

(ue + Cuz)’ds < Me,

C C
\/—1—+—07015 ‘/u(u, + Cug)lds < /I+ m(u, + Cu;)?ds < Me,
1. /1202
/ (uy + Cug)?ds < Mé—+CI€ = Ke. (2.16)
T4 0

Similarly, one can obtain

/ (u, + Cuz)?ds < Ke.
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Figure 2.3. ¢(z)

Using the energy estimate, we can see the deviation of u from uq as follows:

lu(t,z) —uol = |u(t,z4+(t)) — u(z,0) + u(z,0) — uo| (2.17)
S Iu(t, .’B+(t)) - U(:L‘, 0)| + |U(.'l‘, O) - uOl

td
/(; Eu(r, z4(7))dT +¢€

IA

t
/ (Cugz + up)dr + €

IN

0
t
(| (ug+Cug)?dr)V3/t + ¢
0

< KVet+e

for some constant K.
We choose § > 0 small enough that C’(u) does not change sign in the interval

[uo — 8, up). Actually
0< C'(u) <C;y for ue (up —6,up) (2.18)

for some positive constant C] since C"(up) < 0 and C’(ug) = 0. We also choose a point
Po € R such that ¢'(py) < 0, and sufficiently small number €¢;,0 > 0 such that the

term on the right hand side of (2.17) satisfies Kv/et+¢ < dfor0 < e < ¢,0 < t < o/e.

Now we have the following lemma for the sign of R.
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Lemma 2.3 Let —1 < ¢ < 0 and u,(0,z) = —C(u(0,z))u,(0,z). Then R(t,z) <0

when 0 < t < min{T,0/¢}.

Proof. From (2.8), the derivative of R along the minus characteristic line % =
—C(u) is
With zero initial data for R, i.e., R(0) = 0 from the choice of u,(0, z), and

ﬂl — C,(UO + 6¢($/€))
dt =0 " 4C(uo + ed(z/€))

(-8 <o. (2.19)

In (2.19), the equality can only hold when S|;—o = 0.
That means, by initial data in (2.6), S|=o = —2C(u(0,1))¢'(¥) =0, i.e. ¢'(£) =0

At that point

&R da C C' dR ds

an _ %~ yp2_ <2 et _
dt2 le=0 dt(4C)(R 5+ (40 (2R dt 2Sdt) 0,
and
‘—@| = f(g (R? - 52)+2d(c' (2R95-2Sd5) (2.20)
d3 ' T a2 4c dt 40 dt dt ‘
C'..  dR,, d’R ) d?S
+ (40)(2( )? 2335—2(—) —2SW)
C' dS
= —(=)(—=)2<
(20)(dt) <0

And in (2.20), the equality cannot hold, because of the calculation of the derivative

of S along the minus characteristic line.

ds

E = St—'CSI

= uy — C'(w)uuy — 2C(w)uz + C(u)C' (u)u? + C*(u)u,,
= 20%(w)uzz + 2C(u)C'(w)u? — C'(u)uguy — 2C (W) .
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Using the initial data in (2.6), we have

Do = 200,27 2¢"(E) + 30(u(0,9)C(w(0,2)(¢ (5))*

at =
+ 2(C(uo, x)))2%¢”(f)
4(C(u(0,2))) () #o.

€

So we can conclude that %s@h:o < 0, so finally we can say that %h:o < 0, when t is

very small, R is a decreasing function at ¢t = 0.
Now we consider the initial value problem

dR C'

!
- = 4—5(R2—S2)<—lR2, R(0) <0.

— 4C)
R < 0 follows from that the only solution of the initial value problem

W= e RO)=0

is the zero solution, and a standard comparison theorem in ODE (ordinary differential
equation).
We proved that R(t,z) < 0 along the minus characteristic line when

0 <t <min{T,o0/e}. O

Lemma 2.4 R is bounded. More exactly, we show that there is a constant k > 0

such that

—ke < R(t,z) <0 for 0<e<¢€, 0<t<ol/e.
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Proof. By Lemma23, R<0for0<e<e¢, 0<t<o/e.

Estimating 4F from below gives

dR ¢ e 2 1 o2
== == - > 1492
g be-0) = (R = 5) 2 =475

Therefore, integrating along the minus characteristics we get

G / ¢ S%(t,z_(t))dt
4Cy J, T

_ O [ St-(z),2)
= TG ), Cal @)™

’

it = —
1C? E(u) ke.

R(to,z0) > -

A%

Lemma 2.5 S becomes infinite for some t < t* = o(1/e).

Proof. We integrate the equation for S in (2.7) along the plus characteristic
4z — C(u) passing through the point z = epy at t = 0.

Using Lemma 2.2, this gives

s '

- == >C
dt 4C

2 _ p2y s 2
(S R)_4C1

(S% — k%e?) (2.21)

for some constant & in the region 0 < € < ¢y and 0 < t < oe™ 1.
Now we note that S(0, epy) = —2C(u(0, €pg)) e’ (po)-

And by Taylor’s series (1.11) and u(0, €py) = uo + €6(po)

S(0,epo) = —2(C(uo) + ) aie*¢*(p))4'(po)
k>2
= —2(C(uq) + (€)' (po)
= 2C(uo)(—4'(po)) + 2(0(€*)) (= (o)) > 0,
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where a; are positive constant.

Choosing ¢, smaller if necessary, we can assume that

Cl
4C,

im0 > (20 o) (~¢ () — K (222)

And also by Taylor’s series (1.11) and u(0, epg) = ug + €p(po),

C'(uo + €6(po)) = b1 C" (uo)ed(po) + Zcifkfﬁk(Po)) = b,C" (uo)ed(po) + o(€®).

k>2

So (2.22) turn to

ﬁl 5 01C"(uo)ed(po)
t=0 = 4C,

= [(2C%(u0)(~¢'(p0)))? = K3€l

for some constant b, and k;.
And C(u) has maximum at uy so C"(ug) < 0 and ¢(py) < 0, so b;C"(uo)d(po) > 0,

finally
ds Gkg
s> L
d =02 4C,

[(2C*(u0)(—¢'(10)))? — K*€*] > 0.

with constant k; and small enough e.

Then S is an increasing function of ¢ along the plus characteristics with positive data,
and the quadratic growth in the inequality (2.21) will drive S to infinity. To obtain

an upper-bound for the singularity formation time, we integrate the ODE (ordinary

differential equation)

dS _ 5 o222
5 - ° €(S° — b%€?)
S(0) = o%2>0.
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Using the separation of variables and partial sum,

1
(S — be)(S + be)
L( 1 B 1 )
2be’S —be S+ be
In(S —be) —In(S+be) = 2a’e’t+C

dS = d%edt

dS = ad’edt

S — be
= C,2a%be’t
S + be Celabe
And using the initial data then the solution is
S—be 5 ,,0%—be
S b c 2l b7 b,

Since S tends to infinity, then (S — be)/(S + be) goes to 1. From

1=, 2a2be2tzz " ﬁ:
and by Taylor series,
2a%be’t = ln(Zz 1— Zz) =In(1+ 022E6be)
- afffbe B %(0225)—6&)2 +
So this solution develops a singularity at time
1 o? + be 1 2be 1, 2be 1

= kg Pt~ o

2a2be? o? — bc) - 2a2b62(02 —be 5(02 — be

Therefore S becomes infinite when ¢t = o(:). Since R remains of order e, the

derivative u, and u, become infinite simultaneously when ¢ = o(1), provide that a

€
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smooth solution for u exists up to that time.

And this is the complete proof of Theorem 2.2.

39



CHAPTER 3

The wave equation in 2 space

dimension

In this chapter we study the equation in space dimension n = 2. Again, the nonlinear

wave equation is

uy — C(uw)V - (C(u)Vu) = 0. (3.1)

3.1 The energy method

The equation (3.1) can be written to
uy — C*(u)Au + C(u)C'(u)|Vul? = 0 (3.2)
By the Taylor expansion with u = ug + v(z,t), the equation (3.2) turns to

vy — C?(ug)Av = B1v| V| + Z ,32,k’Uk|V’U|2 + Z ﬁg,kv"Av. (3.3)

k>2 k>2
In (3.3), space dimension n = 2 and o = 2 as we stated in Theorem 1.1 of Chapter 1.
And 251(1— 2)a = ] < 1, Theorem 1.1 can not be directly used for global existence.

It seems that the major difficult is from the first term on the right hand side of (3.3)
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because this term corresponds to a = 2. In fact, it seems that nothing is known for

the global existence of small solutions for even

Ov = v|Vv|%

It is well known that any nontrivial solutions for

Ov = |Vol?

blows up in finite time. The factor v before |Vv|? should help some. The question is
whether it helps enough for the global existence. We have some preliminary estimates
which indicate the blow up. But we have some gaps, and are not confidently enough

to include them in this dissertation.

3.2 The characteristic method

Throughout this section, we will consider the nonlinear wave equations (3.1) using
the method in Chapter 2, characteristic method. However, unlike energy methods,
this approach only works for the functions with radial symmetry, essentially one space
dimension.

For this, let u(z,t) = ¢(r,t), 0> r = |z|. Then the equation (3.1) becomes

or =0. (3.4)

2
o~ Clp)Cle)n), ~ T

Since |Vul? = ((z1/r)¢'(r), (z2/r)¢'(r)) - ((@1/r)'(r), (x2/7)¢'(r)) = (¢'(r))* and
Au = 0y((z1/7)¢'(r)) + 8((z2/7)¢'(r)) = "(r) + 2/ (r) = 1¢/(r) = ¢"(r) + 76/ (r).
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In the sense of distributions in the space W' (R?%), the energy estimate gives us
{o o]
E(u) = / rp? + rC*(p)p2dr = constant.
0

To see this, multiplying 2r¢; on the original differential equation (3.4) and integration

give us

/ 2roupr — 2rC(9)(C(9)er)rpr — 2C%(p)prprdr = 0.
0

Then integration by parts,
| 2rowe+ 2rCo)p0.Cloer) ~ 20 )pnpudr = 0.
By product rule,

/ 2roupr + 2rC' (9)C(9) 0o + 2rC2 (@) pirppdr = 0.
0

We have
d o0
G || beh oo =0,

which implies the conservation of energy.

Now we will consider the initial value problem,

v — C(v)(C(v)v,)r = (C?(v)/7)v, =0,
v(0,7) = uo +€9(5), v(0,7) = %(3),

(3.5)

where € > 0 is sufficiently small, ¢ € C§°(R) with ¢ and 9 are even function since

the initial data are also radial symmetric, and C(v) € C?(R) satisfies the following:

(a) there exist positive constants 0 < Cy < C) < oo such that Cy < C(v) < C, for

all v € R,
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(b) C'(v9) =0 and C"(vp) # 0.

We will write the the non-linear wave equation (3.4) as a system of first order

equations by introducing new dependent variables

R = Vr(vi+C(v)v,), (3.6)

S = Vr(v—Cv)v).

Then, for smooth solutions, equation (3.4) is equivalent to the following system for

(R1 v? S)’

_ c’ 2 2 C
R,—CR, = 4C\/f(R S*) 21'5’ (3.7)
o = R+ S
t - 2\/; )
d C
_ 2 _p2y, Y
S, +CS, = _4C'\/F(S R%) + 2rS’
with the constraint
R-S
v = 2T (3.8)

The reasons we introduced the factor /7 in (3.6) are the following:

1. The resulting equation (3.7) for R and S along the characteristic lines look

simpler, and will be easier to estimate later; and
2. R and S are in L?[0, o0) from energy conservatives.

Given any point (Zp, ) in the upper half plane ¢t > 0, let t,(z) = r+(t) denote the
plus and minus characteristics through (¢, 7o), extended backward in time depending

on the ry:

dti(r) 1
= = < < g
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Figure 3.1. A characteristic region with far from origin

If 7o is far from origin then see Figure 3.1. And if r( is close to origin then we will
have to consider the reflection of the line on the minus region since the symmetry.

Let r; and r, denote the intersection points of ¢4 with the r-axis.

For the initial data in (3.5), We can estimate the total energy

Eu) = /Ooo r(v + C*v?)dr (3.9)
< [TrwGow e
& / y{¥2(y) + CH($ (1))} dy

& / " () + CAP W) dy
Me?

IN

IN

for some constant M, where C, is an upper bound for C(v).

Like Chapter 2, we will use the divergence theorem for a vector field F' = (ru? —

rC?u2, ru? + rC?u?) in a region bounded by two characteristic lines. See Figure 3.1.
/ F . fids = / / divFdrdt. (3.10)
a0 Q
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n = (1/V1+ C?)(-1,C)
ny = (1/V1+ C?)(1,C)
ng = (0,—1)

Figure 3.2. Outer normal vectors when far from origin

The left hand side of (3.10) is calculated with outer normal vector n;, ny, and n3 (See

Figure 3.2). That is,

/ \/I’W"Licz(-uf + C2 + Cu? + CPu?)ds (3.11)
ty

.
; /t L - Chul + Cu + Col)ds

The right hand side of (3.10) is

//ﬂ[r(uf — C%u?)), + [r(u? + C*u?)).drdt. (3.12)

The first term in (3.12) turns to

//[r(uf — C*u?)),drdt

= / — C?*u?)|,drdt

- C%u 2ds—

[ | -
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And the second term in (3.12) turns to

/ /ﬂ rl2usti + 2(C(w)u)eC (u)u,|drdt
_ / /n r[2ugug + 2(C (w)ue), C(w)u,Jdrdt
/ / r{2ustier — 2C(w)ue(C(u)ur)r] — 202 (u)ueu,drdt
N / 2rCu) oo / 2rC%(u) wuyds

Vizez e, V1+C2
2
- / / 2mt(u“—0(u)(0(u)u,),)—%drdt
Q
2rC?(u) 2tC?(u)
v [ Y uds— | 2 ud
L VixCE T | irer
2rC?%(u) / 2rC?%(u)
— upds — uyds.
/t_ vizer e T ) VixcE e

Hence, (3.12) becomes

C22d—/ - C%u?)ds
t \/1+C2 ) 5 ¢+\/1+02 )

+ / 2rC*(u) uds—/ 2rC2()uud3
Vizcz L VItcez

Combine (3.10), (3.11), and (3.13), we have

rC
5 \/1+—C2(ut + C*u?) ds+/ \/___Ci(uf-kczuf)ds
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By (3.14) and total energy (3.9), we have

/ -\/%(uf + C*u? - 2Cu,u;)ds
t-

/ ;C— + C*u? 4 2Cu,u,)ds
+

which means that,

— Cu,)%ds +

Hence, we can estimate u along characteristics

(uy + Cu,)%ds <

vival. e

/ r(u, + Cu,)%ds < Ké*.
ty

Similarly,

/ r(u, — Cu,)’ds < Ké.
t_

ut + Cu,)%ds < Mé.

(us + Cu,)?ds < Mé?,

(3.15)

(3.16)

These estimates are not enough to conclude that the solution is very close to

ug. But from the equation for R and S on characteristic curve, we can see that the

derivative of R along the minus characteristic line 92 & =—-C(v),
dR
- tr-() = R-C)R,
’
- Y p 1 © +3 S]
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And the derivative of S along the plus characteristic line %’t’- =C(v) is

Lltra®) = S+CWS,
. C L, C c o,
- 4C\/?S +27‘S 40\/?R'

The idea is to construct an initial data such that R(0,7) =0, S(0,r) > 0, and

C'(v(0,7)) > 0. Our hope is to prove the following:
1. R<O0fort >0,
2. S>0fort>0,
3. R? is suitably controlled; and
4. S blows up in finite time.

If we could establish 1, 2 and 3, then 4 might follow easily since the equations for S

has the form

ds h(t)S?
E(t’ T+(t)) 2 \/z

Since r ~ t when t — oo. This differential inequality will generate the singularity

of S in finite time. 1 and 2 can be shown if R is suitably controlled. From

dR c’ C

E(t’r—(t)) > _(4Cm52 + 27‘_(t)5),

one can see the possibility if the integral of the right hand side along the minus
characteristic 7_ is small.

Note that we already knew this

to
/ S%(t,r_(t))dt < Me?,
0
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we need a better estimate of S near r = 0. Our conjecture is that this is true, we will
continue to study this case carefully.

We also would like to remark that one can easily derive an nonlinear wave equation
of the form

uy — C1(u)(C1(u)uz): — Ca(u)(Ca(u)uy), = 0.

from the theory of liquid crystals. An interesting case is that u = ug is maximum of
C)(u) and simultaneously ug is the minimum of Cy(u). In this case, do we have global

solution close to uy? It seems that there is no answer to this simple question.

49



BIBLIOGRAPHY

50



BIBLIOGRAPHY

[1] M. Balabane, Non-existence of global solutions for some nonlinear wave equations
with small Cauchy data, C. R. Acad. Sc. Paris, 301 (1985), pp. 569-572.

[2] E. Belchev, M. Kepka and Z. Zhou, Global existence of solutions to nonlinear
wave equations, Com. in Partial Diff. Eq., 24(11 & 12) (1999), pp. 2297-2331.

[3] D. Christodoulou, Global solutions of nonlinear hyperbolic equations for small
initial data, Com. Pure Appl. Math., 39 (1986), pp. 267-282.

[4] J. L. Ericksen, On equations of motion for liquid crystals, Q. J. Mech. Appl.
Math. 29 (1976), pp. 202-208.

[5] L. C. Evans, Partial Differential Equation, AMS, Providence, (1995).
[6] F. C. Frank, Liquid Crystals, Discuss. Faraday Soc. 25 (1958), pp. 19-28.

[7] R. T. Glassey, Finite-time blow-up for solutions of nonlinear wave equations,
Math. Z., 177 (1981), pp. 323-340.

(8] R. Glassey, J. Hunter and Y. Zheng, Singularities of a Variational Wave Equation,
J. Diff. Eq., 129 (1996), pp. 49-78.

[9] R. Glassey, J. Hunter and Y. Zheng, Singularities and Oscillations in a Nonlin-
ear Variational Wave Equation, edited by J. Rauch, M. Taylor, IMA, Vol. 91,
Springer, (1997), pp. 37-60.

[10] B. Hanouzet and J. L. Joly, Explosion pour des problemes hyperboliques semi-
lineaires avec second membre non compatible, C. R. Acad. Sc. Paris, 301 (1985),
pp. 581-584.

(11] L. Hérmander, The life span of classical solutions of non-linear hyperbolic equa-
tions, Institute Mittag-leffler, Report No.5, (1985).

ol



[12] L. Hormander, On the fully non-linear Cauchy problem with small data II, in Mi-
crolocal analysis and nonlinear waves, (eds. M. Beals, R. Melrose and J. Rauch),
Vol. 30, IMA Volumes in Mathematics and its Applications, Springer-Verlag,
Berlin, (1991), pp. 51-81.

[13] J. K. Hunter and R. H. Saxton, dynamics of director fields, SIAM J. Appl. Math.,
51 (1991), pp. 1498-1521.

[14] J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation I,
Arch. Rat. Mech. Anal., 129 (1995) pp. 305-751.

[15] J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic variational equation II,
Arch. Rat. Mech. Anal., 129 (1995) pp. 355-383.

[16] F. John, Blow-up of solutions of nonlinear wave equations in three space dimen-
sions, Manuscripta Math., 28 (1979), pp. 235-268.

[17] F. John, Blow-up for quasilinear wave equations in three space dimensions, Com.
Pure Appl. Math., 34 (1981), pp. 29-51.

(18] F. John, Partial Differential Equation, Springer, New York, (1981).

[19] F. John, Lower bounds for the life span of solutions of nonlinear wave equations
in three dimensions, Com. Pure Appl. Math., 36 (1983), pp. 1-36.

[20] F. John, Non-existance of global solutions of Ou = 8/0tF(u;) in two and three
space dimensions, MRC Technical Summary Report, (1984).

[21] F. John and S. Klainerman, Almost global existence to nonlinear wave equations
in three space dimensions, Com. Pure Appl. Math., 37 (1984), pp. 443-455.

[22] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Com. Pure
Appl. Math., 33 (1980), pp. 501-505.

[23] S. Klainerman, Global Existence for Nonlinear Wave Equations, Com. Pure Appl.
Math., 33 (1980), pp. 43-101.

[24] S. Klainerman, Long time behavior of solutions to nonlinear wave equations,
Proc. Int. Congr. Math., warszawa, (1983), pp. 1209-1215.

[25] S. Klainerman, On ”almost global” solutions to quasilinear wave equations in
three space dimensions, Com. Pure Appl. Math., 36 (1983), pp. 325-344.

92



[26] S. Klainerman, Uni-form decay estimates and the Lorentz invariance of the Clas-
sical wave equation, Comm. Pure Appl. Math., 38 (1985), pp. 321-332.

[27] S. Klainerman and G. Ponce, Global small amplitude solutions to nonlinear
evolution equations, Comm. Pure Appl. Math., 36 (1983), pp. 133-141.

[28] S. Kichenassamy, Nonlinear wave equations, Marcel Dekker, New York, (1996),
pure and applied mathematics series 194.

[29] D. Kong, Life span of classical solutions to quasilinear reducible hyperbolic sys-
tems and its applications, Chin. Ann. Math. (in press).

[30] M. Kovalyov, Long-time behaviour of solutions of a system of nonlinear wave
equations, Com. in Partial Diff. Eq., 12 (1987), pp. 471-501.

[31] P. Lax, Development of singularities of nonlinear hyperbolic partial differential
equations, J. Math. Phys., (1964), pp. 611-613.

[32] F.M. Leslie, Some constitutive equations for liquid crystals, Arch. Rat. Mech.
Anal. 28 (1968), pp. 265-283.

[33] H. Levine, Instability and non-existence of global solutions to nonlinear wave
equations, Trans. Amer. Math. Soc. 192 (1974), pp. 1-21.

[34] T. T. Li and Y. M. Chen, Initial value problems for nonlinear wave equations,
Com. in Partial Diff. Eq., 13 (4) (1988), pp. 383-422.

[35] T. T.Liand Y. M. Chen, Global classical solutions for nonlinear evolution equa-
tions, John Wiley & Sons, Inc., New York, (1992).

[36] T. T. Li and X. Yu, Life-span of classical solutions to fully nonlinear wave equa-
tions, IMA Preprint Series 529, (1989).

[37] T. T. Li and X. Yu, Life-span of classical solutions to fully nonlinear wave equa-
tions, Com. in Partial Diff. Eq., 16 (6 & 7) (1991), pp. 909-940.

[38] H. Lindblad, Blow up for solutions of Ou = |u|P with small initial data, Thesis,
University of Lund, (1989).

[39] H. Lindblad, On the lifespan of solutions of nonlinear wave equations with small
initial data, Com. Pure Appl. Math., 43 (1990), pp. 445-472.

[40] H. Lindblad, Global solutions of nonlinear wave equations, Com. Pure Appl.
Math., 45 (1992), pp. 1063-1096.

93



[41] A. Matsumura, Global existence and asymptotics of the solutions of the second
order quasilinear hyperbolic equations with the first order dissipation, Publica-
tion RIMS, Kyoto University, 13 (1977), pp. 349-379.

[42] M. Reed, Abstract non-linear wave equations, Springer, New York, (1976), LNIM
series 507.

[43] K. Satyanad, Nonlinear wave equations, Marcel Dekker, New York, (1996), Pure
and applied mathematics series 194.

[44] R.A. Saxton, Dynamic instability of the liquid crystal director, in: Current
Progress in Hyperbolic Systems, W.B. Lindquist, ed., Contemp. Math., Vol.
100, Amer.Math.Soc., Providence, RI, 1989, pp. 325-330.

[45] J. Schaeffer, The equation u; — Au = |ul? for the critical value of p, Proc. Roy.
Soc. Edinburgh Sect. A, 101A (1985), pp. 31-44.

[46] J. Shatah, Global existence of small solutions to nonlinear evolution equations,
J. Diff. Eq., 46 (1982), pp. 409-425.

[47]) T. Sideris, Global behavior of solutions to nonlinear wave equations in three
dimensions, Com. in Partial Diff. Eq., 8 (1983), pp. 1291-1323.

(48] T. Sideris, Nonexistence of global solutions to semilinear wave equations in high
dimensions, J. Diff. Eq., 52 (1984), pp. 378-406.

[49] T. Sideris, Formation of singularities in solutions to nonlinear hyperbolic equa-
tions, Rat. Mech. Anal., 86 (1984), pp. 369-381.

[50] C. D. Sogge, Lectures on nonlinear wave equations, International Press, Boston,
(1995).

[51] P. Zhang and Y. Zheng, Weak Solutions to a Nonlinear Variational Wave Equa-
tion, Arch. Rational Mech. Anal., 166 (2003), pp. 303-319.

[52] Y. Zhou, Blow-up of solutions to the Cauchy problem for nonlinear wave equa-
tions with small initial data, Chinese Ann. Math. Ser. B, 22 (2001), pp. 275-280.

54



T

UMVERSTY LiBrARES
L

02736 5471




