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ABSTRACT

A SIMULATION STUDY FOR EVALUATING THE AREA UNDER THE ROC CURVE
AND THE ERROR RATE IN BINARY CLASSIFICATIONS

By

Qinhua Huang

The area under the ROC curve (AUC) and the error rate are two important criteria designed to

measure the performance of classifiers. The maximum AUC and the minimum error rate indicates

the best classification. However, one cannot get the minimum error rate and the maximum AUC si-

multaneously under the same classifier. It is thus of interest to investigate the relationship between

the AUC and the error rate. Studying the relationship between the AUC and error rate, Cortes and

Mehryar (2004) have provided an expression of the expected value of the AUC for a given error

rate. In this thesis, I first study the validity of the expression given by Cortes and Mehryar (2004),

after that, I investigate the error rate distribution under a fixed range of AUC.

My results show that Cortes and Mehryar’s expression is not valid under some specific situa-

tions, and the expected average value of AUC is always smaller than the estimate of AUC from

Mote-Carlo samples. When the proportion of positive samples is not close to 0.5, the expected

average value of AUC calculated by Cortes and Mehryar’s expression deviates largely from the

Mote-Carlo samples of AUC. This indicates that the expression of the expected average value of

AUC for given error rate may not be accurate and should be caution used. I also provide useful

information for the quantiles of the error rate for given fixed range of AUC, with the proportion of

positive samples varying in [0.1, 0.5].
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Chapter 1

Introduction

1.1 Background

Classification is a common task in many fields of applications such as healthcare, genetic analysis,

and computer science. For example, Planet et al. (2001) proposed a molecular key-based method

to classify putative NTPase genes precisely [2]. Another example is given by Pang et al. (2002),

who studied how to classify documents by sentiment using machine learning including Navie

Bayes,maximum entropy classification and support vector machines [3]. Finally, Gorno-Tempini

(2011) studied how to classify primary progressive aphasia and its three main variants [1].

After the classification, it is important to study the accuracy of the classifications. There are

two common criteria used to measure the performance of classification: the error rate and the area

under receiver operating characteristics (ROC) curve (AUC). Recently, some researchers pointed

out that the AUC may be more pertinent measurement for classification than the misclassification

error rate[4].

The ROC curve is a plot that tests the performance of a binary classifier system as its discrimi-

nation threshold is varied, thus it can select classifiers based on their performance. It has been used

for a long time, and have been extended to visualize and analyze the diagnostic systems’ behav-

ior [43]. Besides, an increasing number of medical decisions have been made based on the ROC

graph, and a growing usage of the ROC curves have been seen in machine learning community

because of the realization that the error rate is not accurate enough to measure the classification
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performance [22]. Apart from being a mainly performance graphing method, the ROC graph also

has properties making it very useful for estimating error costs of skewed class distribution. And

these properties have become more and more important because the research about cost-sensitive

learning has gained a lot of attention lately [16].

1.2 Motivation

The area under ROC curve (AUC) and the misclassification error rate are two important criteria

designed to measure the performance of classifiers. For instance, Simon et al.(2003) used misclas-

sification rate to measure the performance of a class predication for DNA microarray data [42].

Golub et al. (1999) used the cumulative error rate to assess the accuracy of an gene expression

based classifier for cancer [39]. Wang et al. (2007) also used the overall error rate to assess

their classifier for rapid assignment of rRNA Sequence into higher taxonomy [40]. Another ex-

ample is given by Krizhevsky et al. (2012), who measured their classifier that designed to classify

high-resolution images in the ImageNet LSVRC-2010 contest by error rate [9]. Furthermore, S-

tatnikov et al. (2008) used the AUC to compare the random forests and support vector machines

for cancer classification based on microarray [34]. And Lee et al.(2008) used AUC to evaluate the

performance of a new method of classification which based on athway activities inferred for each

patients [35]. Finally, Ma et al. (2005) proposed a new method used a sigmoid approximation to

the AUC as a objective function to select and classify biomarker [8].

The most common methods to measure the performance of classification exercise is the error

rate and AUC. However, one cannot get the minimum error rate and the maximum AUC simulta-

neously under the same classifier. It is thus of interest to investigate the relationship between the

AUC and the misclassification rate. Cortes and Mehryar(2004) have provided an expression of the
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expected average value and the variance of AUC given a fixed error rate. However, the authors

warned that these equations require the classification or rankings with k errors to be equiprobable.

By equiprobable, they mean situations in which each test sample has the equal probability of being

misclassified [4]. In this thesis, I study the expression provided by Cortes and Mehryar(2004), and

point out the expression is inappropriate in some specific situations. And I conduct a simulation

experiment to investigate the relationship between the estimates of AUC and the estimate of error

rate. I conduct this experiment by simulating a binary distribution, and using logistic regression

with threshold as a classifier. I assume that the threshold for the classifier follows an uniform

distribution from 0 to 1. Then I calculate the estimate of AUC and the estimate of error rate for

each classification. To investigate how the estimate of error rate is distributed under the fixed

ranges of value of the estimate of AUC, I draw the cumulative distribution function (CDF) plots

and probability distribution function (PDF) plots of the estimate of error rate.

1.3 Classifier performance

In this thesis, I study the binary classification situations. In a binary classification exercise, every

sample is assigned to positive or negative class. A classifier is used to predict which class should

the sample be assigned to. Different classifiers produce different outcomes to predict the sample’s

class, some of them produce discrete class labels and others produce continuous outputs to different

thresholds. The thresholds can differ from 0 to 1 for a binary classification. If the outputs of a

classifier is smaller than the threshold, then the sample is classified as a negative; if the output of a

classifier is larger or equal to the threshold, then the sample is classified as a positive.

Given a classification model and a test sample, there may be four different outcomes (Table

1.1). If the test sample is positive and is assigned correctly, it is a true positive; if it is positive but
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Table 1.1: Classifier Performance

Condition Positive Condition Negative

Test Positive True positive False positive
Test Negative False negative True negative

is assigned to negative, it is a false negative. If the test sample is negative and be assigned correctly,

it is a true negative; if the test sample is negative but is assigned to positive, it is a false positive.

Some classification functions are used to measure the performance of binary classification. The

sensitivity (true positive rate) is estimated as

TruePositiveRate =
TruePositive

Total Positives

The false positive rate is estimated as

FalsePositiveRate =
FalseNegative
Total Negatives

The specificity is estimated as

Speci f ity =
TrueNegative

FalsePositives+TrueNegatives
= 1−FalsePositiveRate

1.4 Definition of ROC curve

The ROC curve is a plot that demonstrates how a binary classifier performs. It is a two-dimension

graph with the true positive rate on the Y axis and the false positive rate on the X axis. The ROC

curve can illustrate the relationship between the false positive and the true positive. Figure (1.1) is a

simple example of the ROC curve. Here, the diagonal represents the random classification, in other
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words, the classifier is conducted as a fair coin toss, and it is drawn as a reference. Point (0, 0) is

located at lower left and demonstrates the situation in which never issuing a positive classification;

the classifier commits no false positive errors but also no true positives. Oppositely, the point (1,

1) which is located at the upper right corner demonstrates no issuing negative classifications. The

point (0, 1) shows the perfect classification with zero false positive rate and one true positive rate.

Intuitively, one point performs a better classification if it is located to the northwest of another

because it has a higher true positive rate and a low false positive rate. Usually, a classifier which

appears near the X axis and on the left-hand side of a ROC curve would be taken as “conservative”

because they make positive classifications only with strong evidence so they make few positive

errors; however, the true positive rate doesn’t perform well too. And a classifier which appears on

the upper right-hand side of an ROC curve always be taken as “liberal” because they make positive

classifications with weak evidence to increase the true positive rate, but the high true positive rate

always affects the high false positive rate.

Figure 1.1: ROC curve
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1.5 Definition of AUC

As I mentioned in the previous section, an ROC curve is a plot of the true positive rate as a function

of the false positive rate. Reducing ROC performance from two dimensions to one single scalar

value may be easier to compare the performances of classifiers. AUC, which is defined as the area

under the ROC curve, is the most common method to measure the ROC performance. Since it is a

portion of area of the unit square, the value of AUC will always between 0 and 1. However, since

the random classification produces the diagonal line between (0, 0) and (1, 1) has an area of 0.5,

no realistic classifier should have an AUC under 0.5.

The value of AUC could be calculated by the expression given by Mann and Whitney (1947)

and Wilcoxon (1945), which is called Wilcoxon-Mann-Whitney statistic. The statistic is given by:

W =
∑

m
i=1 ∑

n
j=1 I(xi > y j)

mn
(1.1)

It is based on pairwise comparisons between a sample xi, i = 1, ...,m of random variable X and

a sample y j, j = 1, ...,n, of random variable Y . We identify x1,x2, ...,xm as the classifier outputs for

m positive samples, and y1,y2, ...,yn as the classifier outputs for n negative samples. The proof of

this expression is based on the observation that the AUC value is exactly the probability P(X >Y ).

So the AUC can be used as a measure of pairwise comparisons between classifications of the two

classes. With a perfect ranking, all positive samples are ranked higher than the negative ones and

AUC=1.
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Chapter 2

Literature Review

2.1 Methods of Classification

As a common task, classification has been studied in many cases. Researchers studied various

methods of classifications for different situations. Friedman (1989) studied how to use linear dis-

criminant analysis and Fisher’s linear discriminant method to classify multiple classes of samples

[23]. Mika et al. (1999) stated that linear discriminant analysis is a appropriate method to classify

continuous observations. Oppositely, the discriminant correspondence analysis is more appropriate

to classify discrete variable [24]. Murthy (1998) studied how to conduct decision trees method in

machine learning area [25]. Decision trees are methods that classify samples by sorting them based

on feature values. Each node in a decision tree stands for a feature in a sample to be classified, and

each branch stands for a value that the node can assume [28].

Another well known classifier is Beyesian networks. Naive Bayesian networks is one of the

simplest Beysian networks. It’s is combined by a directed acyclic graphs with one unobserved

node and several observed nodes and an assumption that the several observed nodes are inde-

pendent(Good, 1950). Another statistical methods for classification is instance-based learning .

Mitchell (1997) indicated that instance-based learning algorithms delay the generalization pro-

cess until classification is performed, and thus they are lazy-learning algorithms. [27]. Although

lazy-learning algorithms saved time for the training phase, it requires more time on classification

process[28].
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2.2 Development of ROC Curve Analysis

The first occurrence of ROC curve was during World War II, and it was developed by radar engi-

neers to detect the enemy object. Then ROC curve was used in the field of psychology to account

the perceptual detection of stimuli. Since then the ROC analysis has became useful in many fields

such as medicine, radiology, biometrics and data mining research.

Metz(1978) discussed the basic principles of ROC analysis. They showed that the ROC anal-

ysis could combine the true positive fraction and the false positive fraction, and make it easier to

compare hypothetical tests based on basic classification performance [14]. To estimate the value

of the AUC, Hanley et al.(1982) stated that the area under ROC curve represents a probability

that a randomly chosen positive sample is rated higher than a randomly chosen negative sample.

And this probability is the same quality of estimated by the nonparametric Wilcoxon statistic [21].

Moses(1993) proposed a construction to do ROC analysis by four steps to [29]. Bradley(1997)

further investigated the use of ROC analysis as a measure of classifier performance in the area

of machine learning algorithms. They stated that AUC has many advantages compared to over-

all accuracy (misclassification rate) as a measure performance [18]. Metz et. al(1998) provided

a new generalized method for ROC curve fitting. The new algorithm named ROCKIT conducts

all analyses available from previous ROC software and provides 95% confidence interval for each

estimates [30].
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2.3 Study of Investigating the Relationship between AUC and

the Misclassification Rate

In many classification exercise, researchers chose misclassification rate to measure the perfor-

mance of the classifier. For example, Kim et al.(2003) studied the classification error rate esti-

mation by bootstrap [36]. Another example is given by Och et al. (2003), who provided a new

algorithm for unsmoothed error count and studied different training criteria of statistical machine

translation models for optimize the minimum error rate [10]. Meanwhile, some researchers pro-

posed that the area under the ROC curve is an alternative measure to evaluate the classification

models. Herschtal and Raskutti (2004) introduced a binary classifier called RankOpt that can opti-

mise AUC using gradient descent [7]. Agarwal (2005) studied the generalization bounds for AUC.

In their paper, they defined the expected accuracy of ranking function and derive distribution-free

probabilistic bounds on the deviation of the empirical AUC of a ranking function. Furthermore,

they also derived both a large deviation bounds and a uniform convergence bound [31]. Thus it is

of interest to study the misclassification error rate and the AUC.

Cortes and Mehryar (2004) conducted a statistical analysis to investigate how AUC is related

to error rate. They derived the expression to compute the expected value of AUC over all classifi-

cations with a fixed error rate. Given a fixed error k, they pointed out there are three classification

situations: i) samples are classified correctly, ii) positive samples are misclassified to negative and

iii) negative samples are misclassified to positive. They further computed the AUC for each situa-

tion, and provided an expression to calculate average value of the AUC given k errors and x false

positive examples.

< AUC >x= 1−
x
n +

k−x
m

2
(2.1)
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Besides, they have provided an expression to calculate the variance of AUC given x false positive

samples. One year later, they gave an expression to calculate the confidence interval for AUC given

error number k and the number of positive samples and negative samples. Their analysis gave us

a good starting point to study the relationship between the error rate and the AUC. However,

these expressions given by Cortes and Mehryar are only correct under the assumption that all

classifications or rankings with k errors are equiprobable, which means each sample has the same

probability to be misclassified. This condition is rarely met in realistic settings.
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Chapter 3

Different Approaches to Address the

Relationship between the AUC and the

Misclassification Rate

3.1 The Expected Value of the AUC under fixed error rate

Cortes and Mehryar(2004) have provided an expression of the expected value of AUC overall

classifications with a fixed number of errors and compared that to the error rate.

Assume that the number of error k is fixed,and a binary classification task with m positive

samples and n negative samples is given. Under the assumption that all classifications or rankings

with k errors are equiprobable, the expected value of the AUC is given by Eq. (3.1) [4].

< A >m,n,k= 1− k
m+n

− (n−m)2(m+n+1)
4mn

(
k

m+n
− ∑

k−1
x=0

(m+n
x

)
∑

k
x=0

(m+n+1
x

)), (3.1)

Which is equivalent to

< A >=
∑

k
x=0

(N
x

)(N′
x′
)
(1−

x
n+

k−x
m

2 )

∑
k
x=0

(N
x

)(N′
x′
) (3.2)

Where x is the number of false positive samples, x′ is the number of false negative samples, N is the

number of negative samples, and N′ is the number of positive samples. The proof of this expression
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is based on weighting the expression (2.1) with the total number of possible classifications for a

given x. Thus, there are
(N

x

)
possible ways of choosing x false positive examples and

(N′
x′
)

possible

ways of choosing x′ negative examples. Here, the authors assumed the following condition: 0 ≤

x≤ k, and x′ = k− x.

However, the authors did not consider a situation where the number of misclassification k is

larger than the number of negative samples y, and in that situation, the range of false positive x

should be 0 ≤ x ≤ n. Similarly, the number of false negative k− x should is less than m, which

means x ≤ m. Thus, the value range of x should be [0,min(m,n,k)]. If we still use the expression

(3.2) to calculate the expectation of AUC given x when k > n or k > m, the expectation of AUC

can be less than 0.5 or even negative.

For example, if I have 100 positive samples, 900 negative samples, and 200 misclassified sam-

ples, the expectation of AUC is −0.1429524. I can also indicate this issue by plotting the value of

the AUC expectation calculated by expression (3.1). The plot of expression (3.1) with 100 positive

examples and 900 negative examples is shown in figure (3.1).

Figure 3.1: AUC Expectation (m=100,n=900)

Here, the red line is shown as a reference line as AUC = 0. From the figure we can see that

when the number of error k is much larger then the number of positive samples m, the expectation

12



calculated by expression (3.1) is negative. As I mentioned in previous sections, AUC is a proba-

bility of positive sample ranked higher than negative samples correctly, which indicates that AUC

should have a positive value. In order to use the expression (3.1) correctly, the assumption that the

number of errors is less than the number of negative samples and the number of positive samples

should be added.

3.2 Simulating the AUC Distribution under Fixed Error Rate

The pervious section showed that the expression (3.1) is not valid when the error number k is larger

than the number of positive samples m or the number of negative samples n. When the error number

k is smaller than min(m,n), the derivation of expression (3.1) is correct. Since the assumption that

each sample has same probability to be misclassified is hard to be achieved in realistic scenarios, I

further conduct an extensive simulation experiment to evaluate the validity of this expression when

k ≤ min(m,n) for moderate to large deviations of the equiprobable assumption.

3.2.1 Generating Binary Distribution

In order to investigate the validity of expression (3.1), I simulate binary distributed data from logis-

tic regression model. Since expression (3.1) is conditioned on m,n and k, I investigate five situations

corresponding to the ratio of positive samples r = m/(m+n) equals to 0.1,0.2,0.3,0.4,0.5.

First,I generated 1000 a1,a2,a3,a4,a5 ∼ N(0,0.5), and I set β1 = 3, β2 = −5.5, β3 = −5,

β4 = 2.5, β5 =−1.

Then I generated 1000 u∼U [0,1] independent by ai.

I define θ = 1/1+ exp(−(β0 +β1×a1 +β2×a2 +β3×a3 +β4×a4 +β5×a5))

I label examples to 0 and 1 by following rules:

13



if u≥ θ then y = 0

if u < θ then y = 1

To get a binary distributed data with 10% positive samples, I set beta0 = −8, and only use

the binary distributed datasets which have 100 positive samples (y = 1) to conduct the simulation

experiment. To get binary distributed data with 20% positive samples, I set beta0 = −4.5, and

only use the binary distributed datasets with 200 positive samples(y = 1) to conduct the simulation

experiment. Similarly, I set beta0 =−1.5,1,3.5 corresponding to get the datasets with 30%, 40%

and 50% positive samples. The reason I adjust beta0 is to adjust the probability (y = 1|a). By

adjusting P(y = 1|a), I can get the dataset with around 10% to 50% positive samples.

3.2.2 Using Logistic Regression as a Classifier

The logistic regression is a direct probability model. It is a special case of generalized linear

models. For logistic regression, the conditional distribution of binary data given covariates follows

a Bernoulli distribution with success probability bounded between 0 and 1. Thus one can use

binary logistic model to predict binary outcomes based on predictor variables.

Given a binary random variable y and a vector of predictors (could be continuous or discrete)

a, logistic regression can be used to predict the success probability P(y|a).

P(y = 1|a) = 1
1+ exp(β0 +∑

b
i=1 βiai)

(3.3)

Where b is the number of predictors. P(y|a) leads to a simple linear expression for classification.

Generally, we assign the label Y = 1 if the following condition holds:

P(y = 0|a)
P(y = 1|a)

< 1,
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Which is equivalent to

exp(β0 +
b

∑
i=1

βiai)< 1

After taking natural log of both sides, we can assign y = 1 if a satisfies

β0 +
b

∑
i=1

βiai < 0,

and assign y = 0 otherwise.

In the previous section, I simulate the binary distributed data (y,a). Then I choose logistic

regression as a binary classifier to classify the data. I choose a1,a3,a5 as predictors, and use

expression (3.3) to get the success probability can compare the probability to thresholds. I assume

that the threshold follows a uniform distribution from 0 to 1, and I randomly select one threshold

from U(0,1) for each classification. If the predicted probability is less or equal to threshold, then

ŷ = 0, else ŷ = 1.

3.2.3 Estimate of AUC and Expected AUC Calculation

As I mentioned before, the AUC is the area under ROC curve,a plot of true positive rate as a

function of false positive rate. To calculate the area under curve, I can integral under the ROC

curve. Thus it is necessary to calculate the true positive rate and the false negative rate at each

point of ROC curve first.

From my simulation, I can get the true positive rate and false negative rate by following for-

mula.

T PS =
number o f (Ŷ = Y = 1)

number o f (Y = 1)

FPS =
number o f (Ŷ = 0andY = 1)

number o f (Y = 0)
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I choose 1000 points on the ROC curve and calculated the true positive rate and false positive

rate for each point. Then I calculated the integral under the ROC curve to get the AUC. The Eq.(3.1)

given by Cores and Mehryar is the expected average AUC value under fixed error number k, which

means a fixed error rate. However, it is difficult to investigate the AUC distribution under every

k⊂ [0,min(m,n)]. So I investigate the AUC distribution under several small ranges of k = 10. And

I compare the estimate of AUC with the the expected average AUC under each range. To calculate

the expected average AUC, the number of error k needs to be known for each iteration. I define the

error number k as the count number of (̂Yi) 6= (Yi). Then I plug m,n,k into expression (3.1) to get

the expected average AUC.

3.2.4 Comparing the Estimate of AUC versus Expected Average AUC

I have 1000 samples in total, and there are m positive examples and n negative samples. I define the

ratio of positive samples r as r = m/(m+n). I compare the estimate of AUC and expected average

AUC under r = 0.1,0.2,0.3,0.4,0.5. First, I draw the empirical cumulative probability function

(CDF) plots of AUC under specific range of k to investigate the AUC distribution. After that, I

draw the probability density function (PDF) plots of the estimate of AUC under specific range of

k, and add the lower bound and upper bound of expected average AUC calculated by expression

(3.1) as reference lines to compare the estimate of AUC and the expected average AUC. Finally, I

give the descriptive statistics to show the difference between the estimate of AUC and the expected

average AUC under specific ranges of error number k.

First, I looked at the first situation where r = 10%, which means there are 100 positive samples

and 900 negative samples. In this situation, I only investigate the estimate of AUC distribution

when k≤ 100. Here, we plot the CDF and PDF for estimate of AUC with the estimate of error rate

from 0.07 to 0.08, 0.08 to 0.09 and 0.09 to 0.1. In each range of error rate, I have 2,924, 70,609

16



and 312,565 estimates of AUC values correspondingly.

Figure 3.2: CDF of estimate of AUC(r=10%)

Figure (3.2) showes that the estimate of AUC with lower error rate has a higher value. The

minimum and maximum of the estimate of AUC with error rate from 0.07 to 0.08 is largest among

three estimate of AUC. Then I plot the PDF of the estimate of AUC with error rate from 0.07 to

0.08, 0.08 to 0.09 and 0.09 to 0.1, and add the upper bound and lower bound of expected average

AUC calculated by expression (3.1). The PDF plot is shown in figure (3.3). Then I calculate the

difference between average estimate of AUC and the bounds(upper and lower) corresponding to

each range of error rate (Table3.1) as reference.

Figure 3.3: PDF of estimate of AUC(r=10%)
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Table 3.1: Difference between estimate of AUC and expected average AUC (r=10%)

Error rate (0.07,0.08] (0.08,0.09] (0.09,0.1]

Average estimate of AUC-lower bound 0.27612 0.31761 0.36258
Average estimate of AUC-upper bound 0.22388 0.2642 0.3079

Figure (3.3) indicates that the expected average AUC value is always lower than the estimate

of AUC. And from table(3.1) I find that when the error rate gets larger, the difference between

estimate of AUC and expected average AUC get larger too.

When r = 20%, there are 200 positive samples and 800 negative samples. In this case, I only

investigate the estimate of AUC distribution when k≤ 200. I plot the CDF and PDF of the estimate

of AUC with the estimate of error rate from 0.15 to 0.16, 0.17 to 0.18 and 0.19 to 0.2. In each range

of error rate, I have 39,892, 100,487 and 110,114 estimates of AUC values correspondingly. The

PDF is shown in figure (3.4).

Figure 3.4: CDF of estimate of AUC(r=20%)

From figure (3.4) I can see that the estimate of AUC has similar distribution under the range

of error rate from 0.17 to 0.18 and 0.19 to 0.20. Then I plot the PDF plot of the estimates of

AUC to investigate the difference between the estimates of AUC and the expected average AUC

(figure(3.5)).
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Figure 3.5: PDF of estimate of AUC(r=20%)

From figure (3.5) I find that the expected average AUC is always lower than the estimates of

AUC. And the estimates of AUC has the similar one mode distribution under error rate within

range of (0.17,0.18] and (0.19,0.20]. The estimate of AUC with error rate from 0.15 to 0.16 is

higher than the other two. The difference between average estimate of AUC and the bounds(upper

and lower) corresponding to each range of error rate is shown in table (3.2). The table shows that

when error rate gets larger, the difference between estimate of AUC and the expected average AUC

gets larger too.

Table 3.2: Difference between estimate of AUC and expected average AUC (r=20%)

Error rate (0.15,0.16] (0.17,0.18] (0.19,0.20]

Average estimate of AUC-lower bound 0.23484 0.28004 0.30864
Average estimate of AUC-upper bound 0.20752 0.25125 0.27902

When r = 30%, there are 300 positive samples and 700 negative samples. In this situation,

expression (3.1) only valid when k ≤ 300. We draw the CDF and PDF plot of the estimates of

AUC with the estimate of error rate from 0.19 to 0.20, 0.24 to 0.25 and 0.29 to 0.3. In each range

of error rate, I have 7,060, 48,399 and 55,015 estimates of AUC value. The plot of the CDF of the

estimates of AUC under each error rate range is shown in 3.6.
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Figure 3.6: CDF of estimate of AUC(r=30%)

From figure 3.6 I notice that the estimate of AUC under error rate from 0.19 to 0.20 has the

highest value. The distribution of the estimate of AUC under error rate from 0.24 to 0.25 an 0.29

to 0.30 are almost same. To further investigate the difference between the estimate of AUC and the

expected average AUC with same range of error rate, I plot the PDF plot of the estimate of AUC

with bounds of expected average AUC as reference (figure (3.7)).

Figure 3.7: PDF of estimate of AUC(r=30%)

From figure (3.7) I find that the value of the expected average AUC is much smaller than the

estimates of AUC under each range of error rate. And the table(3.3) of difference between average

estimate of AUC and the bounds(upper and lower) corresponding to each range of error rate shows
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that when the error rate gets larger, the difference gets larger simultaneously.

Table 3.3: Difference between estimate of AUC and expected average AUC (r=30%)

Error rate (0.19,0.20] (0.24,0.25] (0.29,0.3]

Average estimate of AUC-lower bound 0.1507 0.21916 0.32513
Average estimate of AUC-upper bound 0.13375 0.20008 0.30225

For the situation where r = 40%, there are 400 positive samples and 600 negative samples. In

this situation, I only investigate the distribution of estimate of AUC when k ≤ 400. I plot the CDF

and PDF of the estimate of AUC with the estimate of error rate from 0.24 to 0.25, 0.30 to 0.31,

0.34 to 0.35 and 0.39 to 0.4. In each range of error rate, I have 41,575, 26,702, 20,451 and 31,572

estimates of AUC value. The plot of the CDF of estimates of AUC under each error rate range is

shown in 3.8.

Figure 3.8: CDF of estimate of AUC(r=40%)

From this plot I notice that when the error rate is from 0.24 to 0.25, the estimate of AUC value

is significant higher than others. When error rate is from 0.39 to 0.4, the estimate of AUC value is

smallest. And the distribution of the estimate of AUC with error rate from 0.3 to 0.31, 0.34 to 0.35

and 0.39 to 0.4 is very similar with each other. The PDF plot of the estimate of AUC is shown in

figure (3.9).
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Figure 3.9: PDF of estimate of AUC(r=40%)

From figure (3.9) I can clearly see that the estimate of AUC with error rate from 0.24 to 0.25 has

the largest value, and the difference between it and the expected average AUC is smallest. For error

rate from 0.3 to 0.31, 0.34 to 0.35 and 0.39 to 0.4, the estimate of AUC has similar distribution.

However, the expected average AUC value differs a lot for these three ranges of error rate. The

table contains the difference between average estimate of AUC and the bounds(upper and lower)

corresponding to each range of error rate is shown in table (3.4).

Table 3.4: Difference between estimate of AUC and expected average AUC (r=40%)

Error rate (0.24,0.25] (0.3,0.31] (0.34,0.35] (0.39,0.4]

Average estimate of AUC-lower bound 0.11185 0.17863 0.23464 0.31688
Average estimate of AUC-upper bound 0.09987 0.16557 0.22012 0.29808

This table also shows that when error rate gets larger, the difference between the estimate of

AUC and the expected average AUC gets larger.

When r = 50%, there are 500 positive samples and 500 negative samples. So I investigate the

situation that k ≤ 500. I plot the CDF and PDF for estimate of AUC with the estimate of error rate

from 0.24 to 0.25, 0.30 to 0.31, 0.34 to 0.35, 0.39 to 0.4, 0.44 to 0.45 and 0.49 to 0.50. In each

range of error rate, I have 20,467, 28,456, 19,620, 15,038, 13,536 and 29,677 estimates of AUC

22



value. The CDF plot of estimate of AUC is shown in figure (3.10).

Figure 3.10: CDF of estimate of AUC(r=50%)

Figure (3.10) shows that the value of estimate of AUC with error rate from 0.24 to 0.25 is

significantly higher than other estimate of AUC with higher error rate. The estimate of AUC with

error rate from 0.3 to 0.31, 0.34 to 0.35, 0.39 to 0.4, 0.44 to 0.45 and 0.49 to 0.5 has similar

distribution. The PDF plot of those estimates of AUC is shown in figure (3.11).

Figure 3.11: PDF of estimate of AUC(r=50%)

The PDF plot (figure (3.11) also shows that estimate AUC with error rate from 0.24 to 0.25 has

the highest value, and the range of it is much narrow than others. For the estimate of AUC with

other ranges of error rate, the distribution is similar. However, the expected average AUC with

23



those ranges of error rate differs a lot. And I calculate the difference between average estimate

of AUC and the bounds(upper and lower) corresponding to each range of error rate (Table3.5)

as reference. The table shows that the difference between the estimate of AUC and the expected

average AUC gets larger when error rate gets larger. However, in this situation, the difference is

smaller than pervious situation with smaller proportion of positive samples.

Table 3.5: Difference between estimate of AUC and expected average AUC (r=50%)

Error rate (0.24,0.25] (0.3,0.31] (0.34,0.35] (0.39,0.4] (0.44,0.45] (0.49,0.5]

0.0859 0.1304 0.171 0.2212 0.271 0.3194Avg Est. of AUC-lower bound 
Avg Est. of AUC-upper bound 0.0759 0.1204 0.161 0.2112 0.261 0.3094

In order to compare the difference between estimate of AUC and expected average AUC in each

situation, I calculated the mean of difference between average estimate of AUC bounds (upper and

lower). The results are showed in table 3.6.

Table 3.6: The Difference between estimate of AUC and Expected Average AUC

r=m/(m+n) 0.1 0.2 0.3 0.4 0.5

mean of difference(with lower bound) 0.318771 0.274505 0.231665 0.2105 0.199911
mean of difference(with upper bound) 0.265325 0.245932 0.212028 0.195908 0.189911

Table 3.6 indicates that when r is gets larger, the difference between the expected average

AUC and estimate of AUC is gets smaller. That means when the positive samples and negative

samples are even distributed, the deviation of expression (3.1) is smallest though the equiprobable

assumption is not satisfied. But when the positive samples and negative samples are not evenly

distributed, we cannot use equation 3.1 as a reference.
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3.3 Study the Error Rate Distribution Under the Fixed AUC

Another objective of this thesis is to study how the error rate distributed under a fixed range of

AUC. To observe the distribution clearly, I draw the CDF plots of error rate for the fixed range

AUC of (0.49,0.51), (0.59,0.61), (0.69,0.71), (0.79,0.81) and (0.89,0.91). And I study situations

that the ratio of positive samples r = m/(m+n) vary from 0.1 to 0.5 by 0.1 to investigate whether

the distribution conditional on the ratio of positive examples.

In this section, I use the same Monte Carlo datasets with the previous section. In order to get

the large range of estimate AUC, I choose different predictors for logistic regression classifier for

each range of estimate of AUC. The threshold of classifier is randomly chosen from a uniform

distribution U(0,1).

3.3.1 CDF and PDF Plots for Error Rate Under the Fixed Range AUC

First, I study the situation that r = 10%. The CDF plot and PDF plot are shown in figure (3.12)

and figure (3.13). For estimate of AUC from 0.49 to 0.51, I chose a5 as predictor, and I have 3,444

estimates of AUC in this range. For estimate of AUC from 0.59 to 0.61, I chose a1 as predictor,

and I have 15,620 estimates of AUC in this range. For estimate of AUC from 0.69 to 0.71, I chose

a1,a4,a5 as predictor, and I have 35,709 estimates of AUC in this range. For estimate of AUC from

0.79 to 0.81, I chose a1,a3,a5 as predictor, and I have 7,982 estimates of AUC in this range. And

for estimate of AUC from 0.89 to 0.91, I chose a2,a4,a5 as predictor, and I have 31,450 estimates

of AUC in this range.

Figure 3.12 shows that when the estimate of AUC from 0.49 to 0.51, the majority values of

estimate of error rate is around 0.1. When AUC gets larger, the range of error rate becomes large

too, however, the maximum error rate is always around 0.9. The larger the AUC, the smaller the
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Figure 3.12: Error Rate Empirical Cumulative Distribution Under fixed AUC(r=10%)

Figure 3.13: Error Rate Distribution Under fixed AUC(r=10%)
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minimum error rate. From figure 3.13 I find that the mode of error rate is around 0.1, and the when

AUC gets large, the mode of the density gets closer to 0. I also calculate the mean, median, and

quantile of the error rate under different AUC (table3.7).

Table 3.7: Descriptive Statistics of Error Rate under Fixed AUC(r=10%)

AUC 0.49-0.51 0.59-0.61 0.69-0.71 0.79-0.81 0.89-0.91

Minimum 0.1 0.095 0.092 0.088 0.067
1st Quantile 0.1 0.1 0.1 0.1 0.089

Median 0.1 0.1 0.1 0.101 0.096
Mean 0.1817 0.1787 0.1691 0.156 0.1262

3rd Quantile 0.1 0.1783 0.116 0.127 0.107
Maximum 0.901 0.901 0.901 0.9 0.9

The descriptive statistic shows that the mean of the error rate gets smaller when the AUC gets

larger. The maximum error rate for each AUC around 0.9, and the the median of the error rate is

always around 0.1.

When r = 20%, there are 200 positive samples and 800 negative samples. For estimate of AUC

from 0.49 to 0.51, I chose a5 as predictor, and I have 1,968 estimates of AUC in this range. For

estimate of AUC from 0.59 to 0.61, I chose a1 as predictor, and I have 7,798 estimates of AUC

in this range. For estimate of AUC from 0.69 to 0.71, I chose a1,a4,a5 as predictor, and I have

31,384 estimates of AUC in this range. For estimate of AUC from 0.79 to 0.81, I chose a3,a4,a5 as

predictor, and I have 11,826 estimates of AUC in this range. And for estimate of AUC from 0.89

to 0.91, I chose a1,a2,a5 as predictor, and I have 60,867 estimates of AUC in this range.

I get the CDF plot and PDF plot in figure 3.14 and figure 3.15.

From the empirical cumulative function plot (3.14) I find that when estimate of AUC from

0.49 to 0.51, the majority of error rate is 0.2. When AUC gets larger, the minimum error rate

gets smaller, but the maximum error rate is always around 0.8. The probability density plot (3.15)

shows that there are two modes of probability in this plot. The higher one is around 0.2, and the
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Figure 3.14: Error Rate Empirical Cumulative Distribution Under fixed AUC(r=20%)

Figure 3.15: Error Rate Distribution Under fixed AUC(r=20%)
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lower one is around 0.8. When the AUC becomes larger, the higher mode is more closer to 0.1.

The descriptive statistics are shown in table (3.8).

Table 3.8: Descriptive Statistics of Error Rate under Fixed AUC(r=20%)

AUC 0.49-0.51 0.59-0.61 0.69-0.71 0.79-0.81 0.89-0.91

Minimum 0.199 0.192 0.178 0.154 0.111
1st Quantile 0.2 0.2 0.2 0.185 0.144

Median 0.2 0.2 0.2 0.197 0.161
Mean 0.3226 0.3157 0.2917 0.2524 0.1925

3rd Quantile 0.2 0.276 0.28 0.239 0.192
Maximum 0.8 0.801 0.8 0.8 0.8

This table indicates that the maximum error rate under each AUC is almost the same, which

around 0.8. The mean error rate gets smaller when AUC gets larger. For the first four range of

estimate of AUC, the first quantile of error rate is around 0.2. But for estimate of AUC from 0.89

to 0.91, the first quantile of error rate is munch more smaller, which is around 0.14. The minimum

and mean of error rate gets smaller when the range of AUC estimate gets larger.

When r = 30%, I have 300 positive samples and 700 negative samples. For estimate of AUC

from 0.49 to 0.51, I chose a5 as predictor, and I have 1,488 estimates of AUC in this range. For

estimate of AUC from 0.59 to 0.61, I chose a1 as predictor, and I have 4,156 estimates of AUC

in this range. For estimate of AUC from 0.69 to 0.71, I chose a1,a4,a5 as predictor, and I have

32,683 estimates of AUC in this range. For estimate of AUC from 0.79 to 0.81, I chose a3,a4,a5

as predictor, and I have 35,089 estimates of AUC in this range. And for estimate of AUC from

0.89 to 0.91, I chose a1,a2,a4 as predictor, and I have 20,490 estimates of AUC in this range.I get

the CDF plot and PDF plot in figure 3.16 and figure 3.17.

Based on empirical cumulative function plot (3.14) I notice that when the range of AUC esti-

mate is 0.49 to 0.51, there are two jump of CDF plot, one is around 0.3 and the other is around 0.7.

When the AUC estimate gets larger, the minimum error rate gets smaller, but the maximum AUC
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Figure 3.16: Error Rate Empirical Cumulative Distribution Under fixed AUC(r=30%)

Figure 3.17: Error Rate Distribution Under fixed AUC(r=30%)
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is always around 0.7. From the probability density plot I can see that when AUC estimate is small

(range of (0.49,0.51),(0.59,0.61),(0.69,0.71)) ,there are two modes of error rate, one is around 0.7

and the other is around 0.3. When AUC estimate gets larger,there are multiple modes. Both of

them have one mode around 0.7. For AUC estimate range from 0.79 to 0.81, it has one mode

around 0.3, one mode around 0.2 and another around 0.7. And for estimate of AUC from 0.89 to

0.91, it has one mode around 0.25 and another around 0.19. The descriptive statistics are shown in

table (3.9).

Table 3.9: Descriptive Statistics of Error Rate under Fixed AUC(r=30%)

AUC 0.49-0.51 0.59-0.61 0.69-0.71 0.79-0.81 0.89-0.91

Minimum 0.298 0.286 0.253 0.202 0.143
1st Quantile 0.3 0.3 0.293 0.247 0.179

Median 0.3 0.3 0.3 0.276 0.204
Mean 0.4264 0.4078 0.375 0.3157 0.2339

3rd Quantile 0.7 0.534 0.414 0.309 0.256
Maximum 0.7 0.702 0.701 0.7 0.7

This table shows that the maximum error rate for each value of the AUC is around 0.7. The

minimum and mean error rate gets smaller when the AUC gets larger. The median and first quantile

of error rate for first three ranges of AUC estimate are around 0.3. For the AUC estimate from 0.89

to 0.91, the first quantile and median error rate is much more smaller than 0.3.

For r = 40%, I have 400 positive samples and 600 negative samples. For estimate of AUC from

0.49 to 0.51, I chose a5 as predictor, and I have 1,488 estimates of AUC in this range. For estimate

of AUC from 0.59 to 0.61, I chose a1 as predictor, and I have 5,870 estimates of AUC in this range.

For estimate of AUC from 0.69 to 0.71, I chose a1,a4,a5 as predictor, and I have 34,875 estimates

of AUC in this range. For estimate of AUC from 0.79 to 0.81, I chose a1,a3,a5 as predictor, and I

have 16,566 estimates of AUC in this range. And for estimate of AUC from 0.89 to 0.91, I chose

a2,a3,a5 as predictor, and I have 9,290 estimates of AUC in this range.
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The CDF plot and PDF plot are shown in figure 3.18 and figure 3.19.

Figure 3.18: Error Rate Empirical Cumulative Distribution Under fixed AUC(r=40%)

Figure 3.19: Error Rate Distribution Under fixed AUC(r=40%)

From the CDF plot I can see that when the estimate of AUC is from 0.49 to 0.51, there are two

jump in the CDF plot, one around 0.4 and the other around 0.6. When AUC estimate gets larger,

the minimum error rate getting smaller. For AUC estimate from 0.89 to 0.91, the minimum error

rate is less than 0.2. However, the largest error rate still around 0.6. From the probability density

plot I notice that for estimate of AUC from 0.49 to 0.51 and 0.59 to 0.61, the error rate has two

modes, one around 0.6 and another around 0.4. For estimate of AUC from 0.69 to 0.71, the error

rate has three modes, one around 0.4, one around 0.35 and the other around 0.6. For AUC estimate
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from 0.79 to 0.81, the error rate has three modes, one around 0.3, one around 0.4 and the other

around 0.6. However, for estimate of AUC from 0.89 to 0.91, the error rate only has one mode and

it is around 0.2. The descriptive statistics are s shown in table (3.10).

Table 3.10: Descriptive Statistics of Error Rate under Fixed AUC(r=40%)

AUC 0.49-0.51 0.59-0.61 0.69-0.71 0.79-0.81 0.89-0.91

Minimum 0.395 0.359 0.305 0.238 0.152
1st Quantile 0.4 0.4 0.359 0.282 0.187

Median 0.4 0.4 0.396 0.325 0.214
Mean 0.4815 0.4643 0.4222 0.3505 0.2431

3rd Quantile 0.6 0.579 0.463 0.391 0.276
Maximum 0.6 0.602 0.601 0.6 0.6

This table shows that the maximum error rate for all ranges of the estimate of AUC is around

0.6. The mean and third quantile error rate gets smaller along with the AUC gets larger. The first

quantile and minimum error rate is around 0.4 for estimate of AUC from 0.49 to 0.51 and 0.59 to

0.61. And when AUC gets larger, the first quantile and minimum error rate gets smaller.

For r = 50%, there are 500 positive samples and 500 negative samples. For estimate of AUC

from 0.49 to 0.51, I chose a5 as predictor, and have 1,089 estimates of AUC in this range. For

estimate of AUC from 0.59 to 0.61, I chose a4 as predictor, and have 14,419 estimates of AUC

in this range. For estimate of AUC from 0.69 to 0.71, I chose a1,a4,a5 as predictor, and have

37,195 estimates of AUC in this range. For estimate of AUC from 0.79 to 0.81, I chose a1,a3,a5 as

predictor, and I have 19,311 estimates of AUC in this range. And for estimate of AUC from 0.89

to 0.91, I chose a1,a3,a4 as predictor, and have 5,969 estimates of AUC in this range.

Since the probability density function for estimate of AUC from 0.49 to 0.51 and for other

ranges of estimate of AUC differs a lot, I draw the PDF for these two situations separately. The

CDF plots and PDF plot are showen in figure 3.20, figure 3.21,and figure 3.22.

From the CDF plot I notice that when the estimate of AUC is from 0.49 to 0.51, the majority
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Figure 3.20: Error Rate Empirical Cumulative Distribution Under fixed AUC(r=50%)

Figure 3.21: Error Rate Distribution Under fixed AUC(r=50%)

Figure 3.22: Error Rate Distribution Under fixed AUC(r=50%)
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of error rate is equal to 0.5. And when AUC gets larger, the error rate varies from 0.16 to 0.5.

When the estimate of AUC is from 0.89 to 0.91, the minimum error rate is less than 0.2. From the

figure 3.21 I find that when AUC = 0.5, the probability that error rate equals to 0.5 is extremely

large. Based on figure 3.22 I find that when the estimate of AUC is from 0.59 to 0.61, the error

rate value has two modes, one is around 0.5 and the other is around 0.45. And for estimate of AUC

is from 0.69 to 0.71 , the error rate has two modes around 0.5 and 0.3. For estimate AUC from

0.79 to 0.81 and from 0.89 to 0.91, the error rate only has one mode which is around 0.25 and 0.2

correspondingly. The descriptive statistics are shown in table (3.11).

Table 3.11: Descriptive Statistics of Error Rate under Fixed AUC(r=50%)

AUC 0.49-0.51 0.59-0.61 0.69-0.71 0.79-0.81 0.89-0.91

Minimum 0.477 0.4 0.325 0.252 0.167
1st Quantile 0.5 0.472 0.383 0.295 0.203

Median 0.5 0.499 0.445 0.344 0.234
Mean 0.4999 0.4836 0.437 0.3622 0.2631

3rd Quantile 0.5 0.5 0.494 0.425 0.304
Maximum 0.508 0.505 0.505 0.5 0.5

From this table I find that the maximum error rate is around 0.5. The mean error rate gets

smaller when AUC gets larger. Only for estimate of AUC from 0.49 to 0.51, the first quantile and

the minimum error rate is around 0.5. For other larger AUC, the first quantile and minimum error

rate is much smaller than 0.5.
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Chapter 4

Conclusion

4.1 Summary

The objective of this thesis was to investigate the relationship between AUC and misclassification

rate. Cortes and Mehryar (2004) have provided expression for the expected value of AUC given

error number k that is only valid when all classification or rankings with k errors are equiprobable.

The assumption of this equation is too strong to met the real life scenarios. And I found that Cortes

and Mehryar’s expression is not valid in the situation where error number k is larger than min(m,n).

For their expression to be valid, the constraint k > min(m,n) needs to be imposed.

I simulated a binary distribution using logistic regression and used logistic regression model

as a classifier to study the relationship between misclassification rate and AUC. First, I compared

the estimate of AUC value to the expected average value of AUC calculated by equation 3.1 only

for situation that k ≤ min(m,n). The results showed the expected average value of AUC is always

lower than the estimate of AUC. When the positive samples and negative samples were evenly dis-

tributed, the difference between estimate of AUC and expected average value of AUC are smallest.

Thus, one can use equation 3.1 as a reference to learn the relationship between the AUC and the

error rate when I have same proportion of positive examples and negative examples. But when the

proportions of positive samples are extreme close to 0 or 1, this expression is very questionable to

be used.

Furthermore, I studied the error rate distribution under a fixed range of AUC value when r
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varies from 0.1 to 0.5. The results showed that when r = 0.1,0.2, the mode of error rate is always

around r or 1− r. When AUC becomes larger, the distribution of error rate becomes to the right

skewed, and the mean error rate becomes smaller.

4.2 Limitation

In this thesis, I did a simulation study to investigate the relationship between AUC and misclas-

sification rate for binary distribution. Specifically, I tested the validity of the expression given by

Cortes and Mehryar (2004) and studied the distribution of error rate under the estimate of AUC.

In the first analysis part, I calculated the estimate of AUC given fixed range of estimate of error

rate to validate the expression given by Cortes and Mehryar (2004). I got the estimate of error rate

by a logistic regression classifier. Because the threshold for the classifier is unknown, I just simply

assumed that the threshold follows a uniform distribution from 0 to 1. This assumption may be

uncorrect. In the second analysis part, I studied the distribution of estimate of error rate under

a fixed range of estimate of AUC. Because AUC is a continuous variable and I can not get the

error rate distribution under every single value of AUC, I just specifically looked into 5 intervals of

AUC. I did not use the same classifier the get these 5 intervals of AUC value because it needs an

extremely large number of Mote Carlo samples. Instead, I used 5 different classifier to get these 5

intervals of AUC value. This is not appropriate and the distribution of error rate under AUC would

be more accurate if I had more Mote Carlo samples.
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4.3 Discussion

In this thesis, I evaluated the validity of the expression provided by Cortes and Mehryar (2004)

for moderate to large deviations of the equiprobable. My results showed that when the positive

samples and negative samples are not evenly distributed, the expression is questionable. Based

on my work, people can have a brief idea of how error rate is distributed under a fixed range of

AUC. To investigate the relationship more precise, I can apply the Bayesian inference methods.

The difficulties of Bayesian inference is that both the error rate and the AUC are random variables,

and it is hard to define the distribution of AUC and error rate.
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