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ABSTRACT

Pattern Formation in Some Nonlinear Systems

By

Peng Fang

We study the pattern formation arising in some nonlinear systems. The problems

come from material science and biological science. We study the instability in the

corresponding mathematical models and explain the pattern formation. In partic-

ular, one mathematical model we studied is an elliptic equation and the other is a

degenerate parabolic system. For the elliptic equation, we study the radial symmetric

solutions and the bifurcation into nonradial ones. For the parabolic system, we study

the existence of traveling wave solutions and the instability of the flat front.
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Introduction

The diversity of the natural shapes that surround us has a profound impact on the

quality of our lives. For this reason alone, it is not surprising that the origins of

these shapes have been the subject of serious study since antiquity. It has long

been believed that a quantitative study of natural forms will help us understanding

their origins and behaviors. Many physicists and mathematicians have devoted to

developing general approaches toward the quantitative description of the complex

patterns that are characteristic of most natural phenomena.

Among these patterns, there are relatively simple ones that can arise in many

simple and complex systems. For example, spiral and helix patterns are often found in

sea shells. One of the most studied examples of spiral pattern-formation in reaction-

diffusion systems is the Belousov-Zhabotinsky reaction. Labyrinthine patterns are

also considered to be a relatively simple pattern. These maze-like patterns can be

found in the well known Rayleigh-Béard convection experiments, in which a thin

layer of fluid is heated from below. Another phenomenon that has been extensively

studied is the viscous fingering in the well-known Hele-Shaw experiment in which a

less viscous fluid is injected into a more viscous fluid in a Hele-Shaw cell.

D’Archy Thompson was one of the first to attempt a mathematical description

of pattern forming process in his work ”On growth and form” from 1917. Cross

and Hohenberg provide an excellent technical introduction into the mathematical

concepts of pattern formation. Below, we briefly describe the basic principles and
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mathematical tools.

Pattern formation implies a change in symmetry. Spontaneous symmetry breaking

is particularly evident in fluids, which are structureless in equilibrium but exhibit a

surprisingly variety of patterns under nonequilibrium conditions.

In this thesis, we first present a mathematical model that describes the deflection

of an elastic membrane in an electromechanical system. The membrane is supported

by an annular boundary. The deflection of the membrane satisfies the following

parabolic equation

Bu /\ .
5t—_Au+(l——u—)2 in Q, 11—0 on 69, “(Sciyiol—O- (1)

Here 9 is an annulus.

In this dissertation, we show that the equilibrium solution does not necessarily

inherit the radial symmetry of the supporting boundary. Instead, nonradial solution

may bifurcate from the radial ones. We also study the exact multiplicity of such radial

solutions. We also address the finite time touch down behavior in such equation.

These issues will be presented in Chapter 1.

Pattern forming process can often be found in biological system. Recently, the

pattern formed by a bacterial colony growing on a thin agar plate has attracted many

mathematicians and biologists in an attempt to explain the intriguing patterns. A

particular interesting pattern is shown in Fig. 1.

Reaction-diffusion system has been often used as continuous model to describe

patterns and waves arising in far from equilibrium states. In spite that the equa-

tions look so simple, numerics has revealed that the equations generate complex

but regulated spatio—temporal patterns. On the the typical system is the following



 

Figure 1. A typical pattern in bacterial colony

reaction-diffusion system for two components u and v:

at = duAu + M)” — au — bu" (2)

v, = duAv — uv'" — a(1 — v) (3)

where a and b are positive constants. In particular, when m = 2 and n = 1, it

is called Gray-Scott equations. For m = 2, it is known that the system generates

diverse complex patterns in high dimensions depending on the values of m and n. One

typical phenomenon is the occurrence of spot patterns which are generated through

self-replicating process.

On the other hand, when a = 0, (2)-(3) reduce to the following closed system

u, = duAu + no“ — bu", (4)

v, = dvAv—uv'". (5)



In a bounded domain with the Neumann boundary conditions, it is proved that any

solution (u,v) becomes spatially homogeneous asymptotically, that is, there occurs

no pattern formation at all. Therefore, it has long been believed that such systems

are not so interesting from pattern formation viewpoints. Recently, Mimura et al

found that such system generate complex patterns in transient process, although it

generates no pattern asymptotically.

While diffusion alone tends to create uniform states, in 1952, Alan Thring sug-

gested that diffusion coupled with chemical reaction may lead to spatial patterns in

chemical composition. He speculated that such mechanisms would be sufficient to

explain patterns such as zebra stripes.

Several similar systems have been proposed by different authors to describe the

growth of bacterial colony on a thin plate. The systems have the following general

form

’3‘: 2 v.{Db(b,n)Vb}+g(b,n), (5)

an 2

'5? = DnVn—f(b,n), (7)

where D, and Dn are the diffusion coefficients of the bacteria and the nutrient, re-

spectively. Here b and n represent the density of the bacteria and nutrient. The

numerics showed that the system captures many patterns successfully.

Another purpose of this dissertation is to present a method to understand how

patterns can arise in such a system. We study the traveling wave solutionsto this

system and the instability of the wave front. The results will be presented in Chapter

2.
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CHAPTER 1

Pattern Formation in A

Mechanical System

1.1 Introduction and Summary of result

In 1968, at the age of 82, in the context of investigating fundamental questions in

electrohydrodynamics, Geoffrey Ingram Taylor 3‘ one of the great physicists of the

twentieth century, studied the electrostatic deflection of elastic membranes. Tay-

lor’s device is a soap film as the membrane material. He then applied a fixed high

voltage potential difference between two supported circular membrane. He showed

experimentally that the two membranes snap together and touch at a critical volt-

age. At smaller voltage, even though the membranes remained separate, they either

became unstable or failed to exist. This instability is now known to researchers in

microelectromechanical system (MEMS) and nanoelectromechanical systems (NEMS)

 

Although many researchers are familiar with one or another of Taylors contributions, few seem

to be aware of the incredible breadth of his scientific publications and their relevance to important

research questions today. The same person who is commonly remembered as the namesake for several

basic fluid flow instabilities (TaylorCouette, RayleighTaylor, and SaffmanTaylor) also was the first

to show experimentally that a diffraction pattern produced by shining light on a needle does not

change when the intensity of light is decreased. And these topics are only the beginning. Taylor made

fundamental contributions to turbulence, championing the need for developing a statistical theory,

and performing the first measurements of the effective diffusivity and viscosity of the atmosphere.
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fields as the pull-in instability.

The use of electrostatic forces to provide actuation is now a method of central

importance in MEMS and is of growing importance in NEMS. Here, we study the

electrostatic deflection of an annular elastic membrane. We investigate whether elec-

trostatically deflected membranes always inherit the radial symmetry of the mem-

brane’s domain.

In the recent work of Pelesko, Bernstein and McCuan [19], they derived a mathe-

matical model for the deflection of the membrane at the equilibrium state. The model

is essentially a semilinear elliptic equation with the corresponding boundary condi—

tions. This model incorporated the voltage as a bifurcation parameter. They showed

that asymmetric solutions exist through numerical investigation. A bifurcation dia-

gram was obtained. They conjectured that there are an infinite number of branches

intersecting the upper radially symmetric solution branch. However, they were un-

able to obtain the complete bifurcation diagram numerically where the equation is

very close to become singular.

Motivated by their work, we shall study this problem theoretically and we will

obtain the complete bifurcation diagram and prove their conjecture that there are

indeed infinitely many symmetry breaking point at the upper branch of the radial

solutions.

The problem we will study is the following semilinear elliptic equation with Dirich-

let boundary condition:

/\

—A’U, =W in 9, (1.1)

u = O on 80 (1.2)

where {I = {2: E R2 : 51 < |:1:| < 1} is an annulus in R2, u is the displacement of the

membrane. A serves as a bifurcation parameter and its exact meaning will be shown

in the next section.
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We investigate the exact number of positive radial solutions and non-radially

symmetric bifurcation of the above problem. The exact number of positive radial

solutions may be 2, 1, or 0 depending on the value of A. The upper branch of radial

solutions has non-radially symmetric bifurcation at infinitely many AN 6 (O, A‘). The

proof of multiplicity result relies on the characterization of the shape of the time-

map and shooting method. The proof of bifurcation result relies on a well known

bifurcation theorem by Kielhbfer [11].

In fact, we can prove the following results:

Theorem 1.1 There exists a X" such that the problem has no positive radial solution

for /\ > A', one radial solution for A = X“ and exactly two radial solutions for

0<A<x.

Theorem 1.2 There exists infinitely many A], E (0,/\") such that the upper branch

of radially symmetric solutions has a non-radially symmetric bifurcation at each Ak,

k=1,2,....

The chapter is organized as follows. In section 1.2, we shall show the full derivation

of the model proposed in [19]. In section 1.3, we show the existence results for small

A. In section 1.4, we obtain the multiplicity results and prove Theorem 1.1. In

section 1.5, we study the radial symmetry breaking problem and prove Theorem 1.2.

In section 1.6, we study the finite time touch down of the corresponding parabolic

equation.

1.2 Formulation of the model

We model the device shown in Figure 1.1, which consists of an annular elastic mem-

brane suspended above a rigid plate. The membrane is supported along the inner

and outer boundaries. A voltage difference is applied across the device in order to

7





Elastic Membrane at Potential V

Supported Boundary

 

 

Fixed Ground Plate

Ly' d Thickness of Membrane 2h
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Figure 1.1. A basic electrostatically actuated elastic membrane. The prime coordi-

nates indicate they have not yet been scaled.

cause deflection of the membrane. In particular, the upper surface of the membrane

is held at potential V, while the ground plate is held at zero potential.

We shall note the fact that most MEMS devices are of small aspect ratio, and use

thin components, i.e., h/d << 1 in Figure 1.1. We derive an approximate solution.

We assume the electrostatic potential 45 satisfies Laplace’s equation everywhere

away from the membrane and the plate:

A¢=a us)

It also satisfies apprOpriate boundary conditions on the membrane, that is,

sz on elastic plate (1-4)



and

¢:0 on ground plate. (1-5)

We model the elastic plate using the plate equation. In particular, the deflection u'

of the membrane satisfies

62 I a I

u + ai - pviu' + DV‘iu' = 33” |V¢ V. (1.6)
”h 0225' at'

 

Here p is the density of the membrane, h is the thickness, u is the tension in the

membrane, D is the flexural rigidity, and 50 is the permittivity of free space. VT

represents the differentiation with respect to :r’ and y’. The standard plate equation

has been modified in two ways. First, a damping term has been added. The parameter

a is the damping constant. Second, we have assumed a is proportional to velocity. We

shall rescale the system and rewrite in dimensionless form. We rescale the electrostatic

potential with the applied voltage, time with a damping timescale of the system, the

x’ and y’ with a characteristic length of the device, and z’ and u’ with the size of the

gap between the ground plate and the elastic membrane. We define

_u’ _q5 _x’ _y _z _nt’

(LL—E) ¢—V‘l (Ii—fa y—Z) z_E, t—aLQ' (1‘7)

 

In dimensionless form, we have

 

62¢ 02¢ 62¢

62’ (62$, + 6221,) + 52—2., = 0, (1.8)

gt 2 0 on ground plate, (1.9)

gt 2 1 on membrane, (1.10)

1 8% 6n 395
DEE-+5? —V3_U+6V:U = _A[€2 l v1¢i2 +($)2] (1°11)

Here qfi is a dimensionless potential scaled with respect to voltage V, a: and y are



scaled with respect to the length of the ground pate L, z is scaled with respect to the

gap size (1. We assume the displacement of the membrane u satisfies

  

82 ('32 2

. (b + di)+ a 96 ,
82:52 32,12 (9222

u = 0 on boundary. (1.13)

Au = A 62( (1-12)
 

Here a z «95%; is the inverse of the quality factor for the system. 6 = LTD“ measures 

the relative importance of tension and rigidity. c = if: is the aspect ratio of the system.

A = €0V2L2/2pd3, where T is the tension in the membrane and 60 is the permittivity

of free space. Note that A is a dimensionless number which characterizes the relative

strengths of electrostatic and mechanical forces in the system. As A is proportional

to the applied voltage, it serves as a convenient bifurcation parameter.

Assuming (1 < L, that is 6 << 1. Physically, this means that the lateral dimension

of the device are large compared to the gap between the membrane and the ground

plate. For many MEMS systems this is an excellent approximation. We exploit

the small-aspect ratio by setting 6 goes to zero in equation (1.8). This reduces the

electrostatic problem to

82¢ _

E? _ , (1.14)

which we may solve to find the approximate potential,

(25 z A2 + B.

We are primarily concerned with the field between the plates and hence apply the

boundary condition on (15 which is

05(3": y,u,t) : 17

10
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and

(Mar, y, 0, t) = 0.

Hence

E
3
1
6
2

Therefore, by sending 6 goes to zero and use this approximate potential in equation

(1.11), we find

A1 Wu Bu

as; + a? ‘

We shall focus on the equilibrium state deflection and set the time derivatives in

equation (1.15) to zero. We further simplify equation (1.15) by assuming that our

elastic membrane has no rigidity, i.e., 6 = O in (1.15). For convenience, we change

variable u i—> 1 — u. The result is the following semi-linear elliptic equation for the

displacement u:

in Q, (1.16) 

u=0 on 69. (1.17)

1 .3 Existence

In this section, we shall study the following semilinear elliptic equation with Dirichlet

boundary condition.

A

—Au=(I——T)2 on Q, (1.18)

u=0 on 80. (1.19)

First we show that there is no solution to our problem when A is sufficiently large.

That is, the membrane fails to exist when the voltage is sufficiently large. We prove

Theorem 1.3 There exists a A" such that when A > A“ there is no solution to equa-

11



 

 



tion (1.1) and equation (1.2).

Proof. Let A1 be the lowest eigenvalue of

—Au 2 Au on Q, (1.20)

2120 on on, (1.21)

with ul is the corresponding eigenfunction which can be chosen strictly positive on

Q.

Multiplying equation (1.1) by ul and integrating gives

fn—uAul — AL ———(1_ ”)2.

AIAUUI—A12—(l—uy.

Since ——1— > 2—7u, we have
(l—u)2—4

11.1 27

A/uuzA/——>—/uu.

1n 1 0(1—U)2_4 01

Hence, A 3 ii“

Remark. Any smooth solution it must be nonnegative by the maximum principle.

Next we shall obtain the existence result for small A. We have the following

theorem.

Theorem 1.4 There exists a solution to equation (1.1) and equation (1.2) for some

Small A.

12
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To prove this theorem, we should apply the well-known method of upper and lower

solutions [18]. Let us recall the following definition:

Definition 1.1 A function a E 02(0) is called an upper solution of equation (1.1)

and equation {1.2) if it satisfies the inequalities

—A’L—l 2m OD Q, (1.22)

1120 on 89. (1.23)

Similarly, y is called a lower solution if it satisfies all the reversed inequalities.

The following two lemmas provide us with a proper choice of lower and upper solu-

tions.

Lemma 1.1 Any constant c < 0 is a lower solution.

Lemma 1.2 y = i—vl is an upper solution when A S fialm. Here 01 and v1 is the

first eigenvalue and eigenfunction for the following problem:

—Av 2 av on (2', (1.24)

v=0 on 00', (1.25)

where Q’ is a proper domain with smooth boundary which contains (2 and has been

chosen such that m 3 v1 3 1 on 9.

Proof. It is sufficient to show that

13



In fact,

§> A _ A

4 — (1 - 1/3v1)2 ‘ (1 —a)2'

1 1 1 A

—Aa = —§Av1 = 5011711 _>_ 301mg 3-   

This completes the proof.

Using Lemma 1.1 and 1.2 and the well-known theorem that a solution exists

between an ordered pair of upper solution and lower solution, we obtain the existence

result.

1 .4 Multiplicity

In this section we are concerned with the multiplicity of positive radial solutions.

Consider the following equations:

Au+f(u) = 0 in Q, (1.26)

it = 0 on 09, (1.27)

where Q is either a radial or annular domain in R" and f is a strictly convex C2

function on [0, 00). According to the well-known result of Gidas, Ni and Nirenberg

[7] every positive solution of the above equations is radially symmetric if the domain

is a ball, i.e., it’s only a function of r 2 |x|. The number of positive solutions has been

widely studied for different types of f on a general bounded domain using variational

and topological methods, see e. g., [1, 2]. The problem is both fundamental and often

difficult.

During the last decade, there has been tremendous progress in studying these

problems when (I is a ball or entire R", see, e. g., [16, 17]. If the domain is a ball, then

ODE techniques can be applied to get more information on the number of solutions

[23]. Similarly, if the domain is a ball, we can also derive the exact multiplicity of

14



radial solutions [8, 12, 13, 14, 25].

A radial solution has the form it = u(r) where r = [x] = (x? + . . . + 27%)”? First

notefori=1,...,n,

 

 

87‘ 1 r

8113 : §($i + + mill/22$“ - _—

We thus have

If; n $12 $12

ux. : u'(r)—, uxaxu U. (T)? + u,( ) (T _ :5)

Consequently,

I! — 1

Au = u (r) + n T WT)

Hence the radial solution of equation (1.1) and equation (1.2) satisfies the following

 

equations

”(r) + lu’(r) + A — 0 in (e 1) (128)

u r (1 — u)2 — 1’ ’ '

u(el) = u(1) = 0. (1.29)

Let s = — 1n r, w(s) = u(r), then w(s) satisfies

w” + Ae’23——1—— = 0 in (0 — In 61) (1.30)
(1 _ w)2 ’ )

10(0) = w(—ln 61) = 0. ‘ (1.31)

Henceforth, we shall consider the following initial value problem

’U,”(T) + Ae—2rm : O in (0,-ln61), (1.32)

u(0) = 0 and u'(0) = p. (1.33)

15



Definition 1.2 Let u(-) = u(-,p,A) be the solution of equations (1.32) and (1.33)

and we define the time-map associated to the above initial value problem to be the

following function R:

R(p, A) = min{R > 0 : u(R, p, A) = 0}.

We shall prove in the next lemma that R(p, A) is well defined for all p. By the

boundary condition, it has exactly one critical point, at which it takes the maximum

value. We shall denote this critical point by r(p, A). Hence

u'(r) > 0 for r E (0,r(p,A)) and u'(r) < 0 for r E (r(p,A),R(p,A)).

Also note that u satisfies the following integral equation

u(r) 2 pr + AA (3 — r)e"23Z1—_;(8—))2ds.

To prove our multiplicity result, we need to establish several useful lemmas.

Lemma 1.3 R(p, A) is well defined.

Proof. First we claim that it is indeed well defined for p sufficiently small or large.

Suppose otherwise that limHJr00 u’(r) = 0. Multiplying equation (1.32) by u’ and

integrating gives

Hence

2 _ 1—u(

16
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Let h(r) = or lf—des, then we have

1 1 .

Ah'(r) + 2Ah(r) — 5p2 + 5'u'(r)‘2 — A = 0.

When r is sufficiently large,

 h(r) = [lilhfls

= —§/;u"(s)(1—u(s))ds

= l [—(1 — u)u' +p —/ u'2(s)ds]

A o

P
< —. 1.34_ , < )

Hence for sufficiently large r,

, 1 2 1 , 2

Ah (r) = -2Ah(r) + fip — 2U (r) + A

1 1
> _ _ 2 _ _ I 2

_ 2p + 2p 2u (r) + A

2 c > 0 (1.35)

for some constant c and p either sufficiently large or small.

Therefore,

e—2r

1— u(r)

 

c

>- 0"A>

for sufficiently large r. It follows that

saw = I

17



for p sufficiently large or small. Applying L’Hopital’s rule we have

   

—‘2r 2 i—2r _4 _—2r

lim h'(r) = lim e = lim e = lim e
r—>+oo r—>+oo 1 -— u(r) r—>+oo u’(7‘) r—>+oo u”('r)

, . 1 — u(r) ,
: l 4 —2T___ : — -’, ‘ z . _

r—iE-noo e 6"” 1.2111004” (1(7)) 0 (1 36)

This is a contradiction to the previous conclusion that h’ (r) 2 c > 0. Hence R(p, A)

is well defined for p sufficiently large and small. By continuous dependence on para-

meters, R(p, A) is well defined for all p. This completes the proof.

Lemma 1.4

lim R(p, A) = lim r(p, A) = 0.
p—>0+ p—>0+

Proof. Suppose otherwise, there exists a A > 0, e > 0 and a sequence pk —-> 0+ such

that

RI: 5 RU?!“ A) 2 6-

Since

u(r,pk) = pkr + A/ (s — r)e'2’———1————ds

o

 

 

< pkr - —, (1.37)

Thus RIC < 2%

18



 



Hence,

3,, 2 1

= —A — R 7 3—————d

”R" [0 (s ”e (1— u(sW S

2 A/ (e — s)e_25ds

0

> 0. (1.38)

This is a contradiction. Hence limp_,0+ R(p, A) = 0. It follows that limp_,0+ r(p, A) =

0. This completes the proof.

Lemma 1.5

lim R(p,A)= lim r(p, A) =0.
p—) 00p—i+00

Proof. Suppose limpnoo7-(p, A) 74 0, then there exists a To > 0 and a sequence

Pk —> +00 With uk(r) E u(r,pk, A) > 0 and u;(r) > 0 in (0, To).

Let 7" = To/2, we claim

lim supuk(7") = 1.

k—i+00

Otherwise, there exists 6 > 0 such that 0 < uk(?) 3 1 — c. It follows that

- — ”T fr—fe"2r———1 rUk(7') — pk +A/(;( ) (I—u(r))2d

2 pk? + 32/ (r — ‘7')e‘2’dr (1.39)

0

which is impossible since pk -—> +00. Hence choosing a subsequence if necessary, we

may assume

lim uk('f) = 1.

k-H-oo

Note that uk satisfies

u(r) = in (firo).



Let

1

Mkzinf{/Uk :rE(T,T0)},

(1— Uk)2

then

lim M), = 00.

k—>+oo

Note that Ae‘zr 2 A6470 in (fire). Let vk solves

v"(r) + Ae‘2TOMkv(r) = 0 in (fire).

It follows that vk has at least two zeros in (7", To) when k is sufficiently large. By Sturm

Comparison Principle, u), has at least one zero in (f, To). But this is impossible.

Hence

lim r(p, A) = 0.

p—H-oo

Finally, we prove limp_,+oo R(p, A) = 0. Otherwise, there exists a point r0 > 0 and a

sequence pk —> +00 with

uk(r) > 0 and u],(r) g 0 in (rk,r0)

where u,c E u(r,pk, A) and r), :- r(pk, A).

Let 7" = 52“, in view of previous lemma that limp_,+oor(p, A) =: O, we may assume

1“ > Tk for any It. We claim that

lim sup uk(f) < 1.

k—>+oo

Otherwise, by Sturm Comparison Principle again, u,c has zeros in (nu?) when k is

sufficiently large which is impossible since 7",, ——> 0 as k —-> +00.
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Note that

' Ae“2"‘

u'(r) = — / —,—ds,
Tk (1 — “(8))2

  

 

and

1 , Ate-2r ’ 2Ae‘2'
— ' = - . 1.40

(2" +1—u(r)) 1—u(r) ( )

Integrate equation (1.40) on (rt, r), we have

1 2 Ae"2f e42c /' 2Ae‘2s

— ' ’ - — A—— — ——d .

2” (T) 1— u(I“) + 1— u(Tk) n. 1— 11(3) 8

On the other hand, we have

 _ < _—2u(r) +/T,,1—u(3)ds _ u(r) +/ (1—u(s))2ds

5 ,,

1 I — 2 I —

S 2“ (r) +2|u(r)|. (1.41)

Hence

Ae—2f 8—27';‘ 1

—— A—<—"2 2". 1.42

1—u(f) + 1—u(T,,) - 2““) + Mr“ ( )

Integrate equation ( 1.40) on (0, rk), we have

Ae‘m T" 2Ae’2’ 1

—— ——d = - 2 A.

1—u(rk) +/0 l—u(s) S 2pk+

Therefore,

Ae"2"’= 1 1

> — — 2 A . 1.43

Combining equation (1.42) and (1.43), we have

u'(7‘“) —> —oo.
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Thus for r > r, we have

uk(r0) < uk(f) + u].(f‘)(r0 — 7‘) —> —00,

a contradiction to uk(r0) > 0. This completes the proof.

Lemma 1.6 Define R = R(A) = sup{R(p, A),p > 0}. Then R(A) is strictly decreas-

ing.

Proof. Let 0 < A1 < A2 and U2 is a solution at A2 on (0, R(A2)). Let v(s) = cu2(r)

with r = s/c where c is some constant greater but close to 1. It’s easy to see v(O) = 0

and v(R(A2) + e) = 0 for e = (c — 1)R(A2).

 

  

Note that

6—23 1 e—2s

II A = _ II A

v + 1(1—v(s>)2 8‘2”“ ‘(l—cu2(r))2
1 e-2r 6—23

2 —— — < 1.

coin-um)? *1(1_c..,(.~))2)—0 ( 44)

When c is sufficient close to 1. Hence v is a lower solution for

e-2r

v”(7") + Aim = 0,

12(0) 2 0, v(R(A2) + e) = 0.

Hence R(Al) 2 R(Ag) + 6. Hence R(A) is strictly decreasing. This completes the

proof.

Lemma 1.7 lim,\_,0+ R(A) = +00, 11mm“, R(A) = 0

Proof. Suppose lim,\_,o+ R(A) 79 +00, then there exists a number R“ > 0 such that

~ ~

a sequence Ak —+ 0+ with limk_,+00 R(Ak) = limk_,+oo R(Ak,pk) = R‘. Let us write
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uk(r) = u(r, Ak,pk), then

R.

I

z * 2 * /\ — * ~23 d.'0 uk(R) ka + k/o (s R)e (1—uk(s))2 s

A R‘
2 ml?“ + :2’3/ (3 — R*)e_23ds. (1.45)

0

 

Hence pk —> 0+ or R" = 0. But this contradicts the facts that limp_,0+ R(p, A) = 0

and R(A) is strictly decreasing. This completes the proof.

Finally for any given A, we study the shape of R(p). Note that R(p) is determined

by the implicit equation

v(R(p).p) = 0. (1.46)

Differentiating equation (1.46) we get the following equations for the derivatives of

R:

ur(R(p).p)R’(p) + up(R(p).p) = 0, (1-47)

tin-(Mp),1012(2))2 + 2urp(R(p). p)R'(p) + ur(R(p), p)R”(p) + upp(R(p), p) = 0- (1-48)

We write h(r, p) = up(r, p), z(r, p) = upp(r, p) and v(r, p) = u,.(r, p), then equation

(1.47) can be written as

v(R(p),p)R'(p) + h(301).!» = 0- (149)

If R’(p) = 0, we conclude from equation (1.48) that

v(R(p),p)R"(p) + 2(R(p).p) = 0- (1-50)

Applying equation (1.50), we may prove the following important Lemma.

Lemma 1.8 For a given A, if R’(p) = 0, then R”(p) < 0.
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Proof. Note that h(r, p) satisfies the following initial problem

2Ae"2"
h”

+ (1— ur
 

h(r,p) = 0, (1.51)

h(O, p) = 0, h’(0, p) = 1. (1.52)

If R'(p) = 0, then equation (1.47) gives us h(R(p),p) = 0.

We claim that h(r, p) > 0 on (0, R(p)). Otherwise let h(§(p),p) = 0 and h > 0 on

(0, €(p)). Note that v satisfies the following

,, 2Ae‘2’" 2Ae‘2’

0—103” (1 —u>2

  = 0, (1.53)

v(0,p) = p, v'(0,p) = -A. (1.54)

Recall that v(r(p),p) = 0. If £(p) Z r(p), then v < 0 on (£(p),R(p)). By Sturm

Comparison Theorem, v should have a zero on (6(p), R(p)) since h(R(p), p) = 0. This

is impossible.

If {(13) < T09), then v < 0 0n (7(a),R(p))- Since 0 = v(r(p).p) > h(TlpLP), by

Sturm Second Comparison Theorem, v > h on (r(p), R(p)) which is impossible since

h has to cross over v and reaches zero at R(p).

Next we claim z(R(p), p) < 0. Note that

2Ae"2' 6Ae‘2’"

" ——h2 = 0 1.55z +(1—u)3z+(1—u)4 , ( ) 

z(0,p) = 0, z'(0,p) = 0. (1.56)

We claim z is negative in some neighborhood of 0. Otherwise by observing equation

(1.55), we have 2” < 0. It follows that z’ < 0 in the neighborhood of0 since z’(0,p) =

0. This contradicts the assumption.
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Figure 1.2. Timemap Diagram

Next we claim 2 < 0 in (0, R(p)]. Otherwise, let z(r1, p) = 0 with z < 0 in (0, r1).

Comparing equation (1.51) and equation (1.55), it follows that h must have a zero in

(0, r1) which contradicts our previous statement. Hence z(R(p), p) < 0 and it follows

from equation (1.50) that R”(p) < 0.

We are now in position to prove Theorem 1.1.

Proof. In view of the above lemmas, we may obtain the timemap diagram as shown

in Figure 1.2. Horn which we can easily conclude the theorem. In fact, for any

given cl > 0, 3 A“ such that R(A”) = —ln £1 and there is a unique q such that

R(A‘, p) = — In 61, thus there exists a unique radial solution at A = A‘. For A < A‘,

we can find p1, p2 such that R(A, p1) = R(A, p2) = — In 61. The problem has two radial

solutions in this case. For A > A‘, since R(A) < — In 61, there is no radial solution.

This result is shown in Figure 1.3.
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Figure 1.3. Bifurcation Diagram

1 .5 Symmetry breaking

In previous section, we studied the multiplicity of radial solutions. Our purpose in

this section is to study how radial symmetry can be broken, that is, to describe

the bifurcations of these radial solutions to non-radial solutions. The problem of

non-radial bifurcation from radial solutions on balls were studied by Dancer [4] and

Smoller and Wasserman [22, 24], on an annulus by Lin [15] and others.

Let us first introduce a few basic concepts and the celebrated result by Crandall

and Rabinowitz [3]. We will also illustrate the theorem by an example. Then we shall

introduce a very useful bifurcation theorem due to Kielhbfer [11] which is what we

applied in this thesis. For a summary on bifurcation theory, see for example [9].

We shall consider two real Banach Spaces, U and V, as well as a nonlinear abstract

operator

F: RxU—>V

of the form

F(A, u) = L(A)u + R(A, u)
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and the associated nonlinear abstract equation

F(A, u) = 0

where the following assumptions are assumed to be satisfied:

0 There exists A0 6 R and a,b E R, a < A0 < b, such that L(A) is a linear

operator from U to V for all A E (a, b). Moreover, 3 r 2 2 such that the map

A —-) L(A) is of class C" and L(Ao) is a Fredholm operator of index zero.(R[L(A0)]

is a closed subspace of V and dimN[L(A0)] = codimR[L(A0)] < 00.

o R is an operator of class C' such that R(A, 0) = 0 and DuR(A, 0) = 0 for each

A E (a, b).

Definition 1.3 (A0, 0) is a bifurcation point from the curve of (A, 0) if there exists a

sequence (Amun) E (a, b) x (U\{0}) such that lim(A,,,u,,) = (A0, 0) and F(Amun) = 0.

Definition 1.4 A0 is a nonlinear eigenvalue of L(A) if (Ao,0) is a bifurcation point

from the curve (A, 0) and R(A, it) satisfies the second assumption.

In other word, A0 is a nonlinear eigenvalue of L(A) if the fact that bifurcation

occurs is exclusively based on the linear part.

Definition 1.5 zero as a simple eigenvalue of L(Ao) if N[L(A0)] EB R[L(A0)] = V.

For this, we need to assume U C V.

Definition 1.6 A0 is an eigenvalue of the pair (L0,L1) if zero is an eigenvalue of

L0 — AOL] where L0 := L(AO) and L1 :2 %(AO).

Crandall and Rabinowitz found that if F(A, u) is of class C2 and

dimN[L0] = 1,
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L1(N[Lo]) EB R[L0] = V,

then (A0,0) is a bifurcation point from (A,0). h'Ioreover, under these assumptions,

the set of solutions bifurcating from (A, 0) at A = A0 consists of a curve of class C1.

The second condition is usually referred to as the Crandall-Rabinowitz transversality

condition, or nondegeneracy condition. Due to the huge number of applications of

the result, it has become one of the most celebrated in nonlinear functional analysis.

We shall state this theorem more rigorously as following

Theorem 1.5 (Crandall-Rabinowitz[3]) Suppose F(A, u) is of class C' for some

r 2 2 and zero is a simple eigenvalue of (L0, L1). Let Y C U be a subspace such that

Nuqev=a

Then, there exists 6 > 0 and two mappings of class C"1

A:(—e,e) —)R, y:(—e,e) —)Y

such that

and for each s E (—e, e)

Fouynn)=o

u(s) := s(¢o + 31(8))-

Moreover, there exists p > 0 such that if F(A,u) = 0 and (A,u) 6 Bp(A0,0), then

either it = 0 or (A,u) = (A(s),u(s)) for some 3 E (—e,e). Here Bp(A0,0) is a ball

centered at (A0,0) with radius p. Furthermore, if F is assumed to be real analytic,

then so are A(s) and u(s).
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Note that (A'(0),q§0) is the tangent vector to the curve (A(s),u(s)) at (A0,0); it is

usually called the bifurcation direction.

We shall illustrate the application of Crandall-Rabinowitz theorem by the follow-

ing example.

Example 1.1 Consider the nonlinear boundary value problem

I!

—u (x) = Au(x)[1+ h(u(x))], x E (0,1), (1.57)

u(0) = u(1) = 0, (1.58)

where A is a real parameter and h is a function of class C3 such that

h(u) = h2u2 + 0(u2)

asu—>0 withh2750.

Note that u E 0 is a solution of eq. (1.57) for any A E R. Our goal is to apply

Crandall-Rabinowitz theorem to show the existence of nonzero solution of eq. (1.57)

with small amplitude and arbitrary nodal behaviour. To put it under the abstract

framework introduced earlier, we consider the Banach spaces

U = 0300,11). v = C(io. 1))

then the operator F defined by

F(A,u) = u" + Au[1+ h(u)], (A,u) E R x U

makes sense and is of class C3 if [luiloo is sufficiently small. We also have

L(A)-u :2 u" + Au, R(A, u) := Auh(u).
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It is easy to see that the eigenvalues of L(A) are

An = ngrr2

where n E N, n 2 1. Moreover, for each n 2 1,

N[L(An)] = span[sin(n7rx)]

and due to Fredholm alternative,

1

R[L(An)] = {v E V :/ v(x) sin(n7rx)dx = 0}.

0

Thus, for any integer n 2 1,

sin(n7r - x) ¢ R[(L)\n)]

and hence zero is a simple eigenvalue of L(An). Therefore, applying Crandall-

Rabinowitz theorem, we have the following result

Corollary 1.1 Let n _>_ 1 be an integer and consider

1

Yn 2: {u E U :/ u(x)sin(n7rx)dx = 0}.

0

Then there exist 6 > 0 and two mappings:

An : (—e,e) —) R yn : (—c,e) —> Yn

of class 02 such that

Au(O) = An, yn(0) = 0
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and for each s E (—e, e)

F(A,,(s), s[sin(nrr-) + y,,(s)]) = 0.

Moreover, if (A,u) is sufficiently close to (An,0) and F(A, u) = 0, then either 21 = 0

or there exists 3 E (—c, e) for which

(A. u) = (Ans). slsin(mr-) + yawn).

Therefore, for any integer n 2 1, eq. (1.57) has a curve of solutions (Au(s),u,,(s))

emanating from (A, 0) at A = An where un(s) :2 s[sin(n7r~) + yn(x)].

Let a(A) denote the classical eigenvalue of the family L(A) perturbed from the

zero eigenvalue of L(AO):

0&0) = 0, (MAO) = (20,

where (to spans N(L(A0)). Then the following result holds

Proposition 1.1 If zero is a simple eigenvalue of L(Ao), then a'(Ao) 75 0 if and only

if zero is a simple eigenvalue of the pair (L0, L1),i.e., L1(N[L0]) EB R[L0] = V.

As we recall Crandall’s theorem which states that if zero is a simple eigenvalue of the

pair (L0, L1), then (A0, 0) is a bifurcation point. In other word, (A0, 0) is a bifurcation

point if a'(A0) sé 0. However, the meaning of nondegeneracy condition is not so clear,

in [3] it is a technical condition which was just needed to apply the implicit function

theorem to a modified equation where the trivial solution was eliminated.

The following theorem deals with degenerate eigenvalue and is due to Kielhiifer

[11].
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Theorem 1.6 Assume U C V and zero is a simple eigenvalue of L(AO). Then A0 is

a nonlinear eigenvalue of L(A) if and only if a(A) changes sign as A crosses A0.

With the aid of this result, we now study the symmetry breaking problem. We

shall consider the linearized problem about a given radial solution 21:

2A

A ————: = .w+(1_u)3w 0

We may write w in the spherical harmonic decomposition form:

00

w = Z 0N(T)¢N(9),

N=0

and aN satisfies the equation:

a"+1a'+ 2A —Ea —0

N r N (1 — u)3 r2 N _

together with the boundary conditions aN(1) = 0 = aN(el).

If the above equation admits a nonzero solution aN 79 0 for some N 2 1, then

radial symmetry breaks. We consider the following eigenvalue problem:

2A N2]

0N = —#N,Ica~-

all-+10, + —__

N r” (1—u)3 r2

Let U = C02(el,1) and V = C(61,1).

We have the following lemma.

Lemma 1.9 If u is a radial solution on the upper branch, then for arbitrary positive

integer N, pN,1(A) < 0 for A sufi‘iciently close to zero.
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Proof. It is well known that the eigenvalue pNv,1(A) can be characterized by

firm = inf {fi%, (15 E C02([61,1])} ,

l

where

 

If u is a positive radial solution, then

l'vu'2=/..(1—u)2

Since u is a solution on the upper branch, HUIIoo —> 1 as A —> 0+. Note that for

arbitrary p > 0, there exists a > 0 such that

2u

l—u

 2p for uZl—a.

Letfl1={xefl:u21—a},92={xEQ:u<1—a}.

Hence

_ 1 2u 2 u2

2M“) “ Ah((l—uv‘(1—u)3)““V
2a 1 u2

2_ 2 _

[QIVUI A/nU—U) (l—ul2u+N 9T2

N2 2u A
< _ 2 _ 2_ _ .

- 1 “(Q'WHe a“ (sips —u)l (l-uVu

S 1-p+——/ V112-( 621,1) al |

 

  

(1.59)

for some constant M > 0 which is independent of A.

Hence for any given N > 0, pit/,1 < 0 since p > 0 can always be chosen to be
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sufficiently large.

Remark. It’s easy to see that if u is an upper branch solution, then

(/,,|vul2)i 2 2”“
1—61

 

as A —> 0. In fact,

u(r) = fru’(s)dsS(1—el)i(/ (u'(s>)2ds)%

(fn Ivul )2 (1.60)
 

S (1— 60%

1

\/ 271'61

Lemma 1.10 p0,1(A*) = 0.

Proof. Let p1(A) be the principal eigenvalue of

2

l/Jfl‘l' _¢_— _#(——_1_)wa {CE (61,1)

Clearly,

 u1(/\)=inf[/ rim/[:03 Wtit imam»).

On the other hand, note that

1

it, = inf [Q(¢)/ / new. d) e Gian. 11)].

where

 QM) = /11 r (at? — (1 303%) dr.

Thus

 #a1 2 inf [1mm — A] - at}; f: (, Elysee}.

34

 



By a more general result by Keller [10] which states that pl(A‘) 2 A‘, it follows that

[10,1 (AI) = 0.

Definition 1.7 A0 is called a non-radial bifurcation point with mode It ifnk,1(A0) = 0

where k is a positive integer.

We now apply the above result to prove the symmetry breaking result.

Proof of Theorem 1.2. Since u0,1(A*) = 0, it follows that pN,1(A*) > 0 for N Z 1.

By Lemma 1.9, for any N 2 1 there exists AN 6 (0, A“) such that pN,1(AN) = 0 and

u(A) changes sign as A crosses AN. See Figure 1.4. Hence by Theorem 1.6, there is a

bifurcation at AN where the radial symmetry breaks. The proof is completed.



 

 
Figure 1.4. The change of sign as it” crosses A axis at Ak

1.6 Finite Time Touchdown and Touchdown Pro-

file

In this section, we modify a recent result by Flores et al. [6] and show that above a

critical voltage, the membrane will touch the plate in finite time. These are apparently

more important issue in the actual design of a MEMS device. For example, how to

increase the stable operating range by increasing the critical voltage (pull-in voltage)

V.. This increase in the stable Operating range may be important for the design

of microresonators. Another example is how to decrease the time for touchdown,

thereby increasing the speed of switch.

Now we consider the following time-dependent deflection of the membrane
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u(r, g, t) which satisfies

Bu

‘a—t —AU+ (1_u)2
 in Q; u=0 on ('39; u(r,y,0)=0. (1.61)

The solution u of (1.61) is said to touchdown at finite time if the maximum value of

u reaches 1 at some finite time t = T. < 00. At such time, the membrane touches the

fixed ground plate. We prove the following theorem.

Theorem 1.7 Let A1 > 0 and u] be the smallest eigenvalue and the corresponding

eigenfunction of the Dirichlet eigenvalue problem

—Au = Au on 9; u = 0 on 09. (1.62)

IfA > :\ E 52171, then the solution u of (1.61) reachese -1 at finite time.

Proof. This proof is based on a key result in [6].

Without loss of generality we assume that ul > 0 in Q, and we normalize ul so

that f” u1 = 1. Multiplying (1.61) by ul and integrating over O, we have

d U1

_ = A .

(”Lulu Lu] u+A/n(l—u)2

Using Green’s Theorem, we obtain

d U1

— = —x\ /\ ————.

dt nulu l/Qulu+ A(l—Ul2

Introducing an energy-type variable E(t) by E(t) = fQ ulu, we have

 

dE U1

— A E: A —. 1.6
dt + ‘ [flu—u)? ( 3)
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Applying Jensen’s inequality on the right-hand side of (1.63), we obtain

dE A
—- AE>——————.
dt +1 -(1—E)2

On the other hand, we have

E(O) = O, E(t) g supu/u1 = supu.

o o 0

Now we let F (t) solves

dF /\

35+“ " (—1—F)2’ ”0) “0' “'64)

It follows by a standard comparison principle that E(T) 2 F(t) on the domains of

existence. Therefore, we conclude

F(t) g E(t) S sup u.

o

On the other hand, we may determine t in terms of F by separating variables in

(1.64). And we have that when

F = 1.

T is finite if the integral is finite. A simple calculation shows that the integrand

is finite if /\ > /-\ E 3.371. Thus ift = T, where T. < T, u reaches 1.
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CHAPTER 2

Pattern Formation in A Biological

System

2.1 Description of Biological Experiment

Bacteria grown on thin agar plate may develop colonies of various spatial patterns,

depending on both bacterial species and environmental conditions. We briefly de-

scribe an experimental study done by Ohgiwari (1992). They used a bacterial strain

of Bacillus subtilis. The bacteria was point-inoculated at the center of an agar plate

containing peptone as a nutrient in a plastic petri dish with a diameter of 88mm.

The swimming of the bacteria is a random walk type of movement and can be done

only in a fluid with low viscosity. To produce such fluid the bacteria cooperatively

secrete lubricant in which they can swim.

In order to move, reproduce and perform other metabolic activities, the bacteria

consume nutrients which are given in limited supply. The growth of a colony is thus

limited by the diffusion of nutrient toward the colony—-the bacterial reproduction

rate is limited by the level of nutrient available for the cells. If the nutrient is deficient

for a long enough time, the bacteria begin the process of sporulation. They step

normal activities and change into a spore. The sporulating bacteria may emit a wide
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range of materials, some of which are unique to sporulating bacteria. These emitted

chemicals might be used to signal other bacteria about the condition at the location

of spores.

Even though the initial seed of bacteria is radially symmetric, the colonies may

develop various morphological patterns in response to environmental conditions. Ob-

servations of such patterns occurred as early as 1938. It was first reported by Fujikawa

and Matsushita [32] that the colony may exhibit branching patterns similar to the

type known from the study of fractal formation in the process of diffusion-limited

aggregation (DLA). When the agar medium becomes softer, the colony turns to Show

a dense-branching morphology (DBM) with a smooth circular envelope. When both

the nutrient concentration and the softness of the agar are high, the colony grows al-

most homogeneously into a radial shape. Other types of patterns such as concentric

rings and Eden-like pattern may also appear.

2.2 General Mathematical Model

To explain each characteristic colony pattern, various models have been developed.

For example, a diffusion limited aggregation model for DLA pattern proposed by

Fujikawa and Matsushita [33], a communicating walkers model for DLA and DBM

patterns by Ben-Jacob et a1. [26, 27]. In a recent paper, Kawasaki et al. [39] devel-

oped a simple reaction diffusion model which closely captured all five different colony

patterns. Other reaction diffusion models can be found in, for example, Kitsunezaki

et al. [40], Matsushita et al. [43], Lacasta et al. [41].

All of the above models contains the population density b(;r, t) of the bacterial

cells at time t and spatial location :1: and the concentration of the nutrient 72(33, t).
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The models can be generalized into the form

I

g; = v-{D.(b,n)Vb}wan). (2.1)

g; = awn—f(b,n), (2-2)

where D, and D" are the diffusion coefficients of the bacteria and the nutrient, re-

spectively. It is usually assumed that the diffusion coefficient Dn is a constant, while

the diffusion coefficient of the bacteria Db depends on both bacterial density and the

nutrient concentration.

In [39], they chose Db(b, n) = onb, g(b, n) = nb, f(b, n) = nnb.

In [40], Db(b, n) = ob", g(b, n) = nb - pb, f (b, n) = bn. Note that the first term

in g(b, n) represents the rate at which the nutrient is consumed, the second term

represents bacteria becoming stationary.

The initial concentration of bacteria and nutrient is set to be

b($, 0) = b0($),

n(a:, O) = no,

where no is a positive constant since the nutrient is initially uniformly distributed,

and b0(x) is the initial bacteria density which is a function with compact support.

A typical numerical simulation is shown in the next figure.
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Figure 2.1. A typical numerical simulation

2.3 Existence and Large Time Behavior of Weak

Solution

We consider the following nonlinear diffusion system:

2—1: :: A(uk) + um'l) — a(u, ’U)'U.n in QT 22 Q X (01 T), (2'3)

(69—: = dA(vl) — umv in QT, (2.4)

where k,l,m and n are positive integers, d is a positive constant and a(u,v) is a

strictly positive function of u and v. Q is a smooth domain of RN and T > 0. The

following boundary and initial conditions are assumed

g;— : g}: = 0 on 89 x (0, T), (2.5)

(u(x, 0), v(rr,0)) = (u0(x), vo($)) for all z 6 0. (2.6)
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In the context of bacteria growth, a is the bacteria density and v is the nutrient

density.

When m = n = 1 and k = l = 1 and a(u,v) is a constant, the model is the

well-known Gray-Scott model in chemistry. A special case is the scalar equation

at = A(u"), (2.7)

which is called the porous medium equation for k > 1. To understand some basic

behavior of the solution, we shall first present this equation as an example. Specifi-

cally, we look for a ”similarity” solution of the porous medium equation and observe

its property.

Example 2.1 Let us look for a solution u with the form

u(x,t) = —w( :2: a: E R" (2.8)

t0 t—fi)’

where the constants a, 6 and the function w : R" ——> R are to be determined.

We insert (2.8) into (2. 7) and obtain

at"(°+”w(y) + flit-(“"31 - Dw(y) + t'(°k+2‘3)A(w")(y) = 0 (2-9)

for y = t‘Bar. To put (2.9) into an expression involving only variable y, we require

a + 1 2 oh + 25.

Then (2.9) reduces to

aw + By - Dw + A(wk) = 0. (2.10)

Let us further assume that w is in fact radial, that is, 211(3)) 2 w(]g]). Then (2.10)
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becomes

 

H n- — 1

+aw + lirw' + (wk) (wk)' 2 O. (2.11)

where r = [y], ’ 2 dir. Now if we set a = 7113, we have

(r"_1(wk)')' + fi(r"w)' = 0.

Thus

r"‘1(wk)' + firnw = a

for some constant a. Assuming limrnoow = lim,_,00 w’ = 0, we conclude a is in fact

0. Hence

 

Consequently,

 

where we took the positive part of the right hand side to ensure w 2 O. Recalling

w(y) = w(r) and the rescaling, we obtain

1 k—1lx2“”fl

at :_ b_— f- a

where

n [3 __ 1

mk—n+2""mk—n+2

  
a:

This solution is called Barenblatt’s solution to the porous medium equation.

Based upon this special solution, one can easily observe that it has compact support

44



for each time t > 0. This is a general feature for nonnegative weak solutions of the

porous medium equation with compactly supported initial data. The porous medium

equation becomes degenerate wherever u = 0, and this type of parabolic equation is

generally called degenerate parabolic equation. So the set u > 0 moves with a finite

propagation speed which is a general feature of degenerate parabolic equation. Thus it

is often regarded as a better model of diffusive spreading than the linear heat equation

(which predicts infinite propagation speed).

One may also observe that for k = 2, the first derivative of the solution is discon-

tinuous but finite at the boundary of the support, and for k > 2, the first derivative

diverges at the boundary of the support. This is also a general feature of degenerate

parabolic equation, that is, the solution may not be classical. Hence one shall seek

solutions in a weaker sense.

Definition 2.1 We say (u, v) is a weak solution on [0, T] if it satisfies:

(2') u, v 6 C(QT) and u, v _>_ 0,

(ii) For all 45 E C2’1(QT) such that 2:3 = 0 on 69 x [0,T], we have for allt E [0, T]:

Lu(t)¢(t) = Luo¢(0)+/Ot/n(ukA¢+u¢t+ (umv—a(u,v)u")¢), (2.12)

fnv(t)(b(t) = [fiver/5(0) +AtL(dle¢+u¢t —umv¢). (2.13)

In a very recent study by Mimura et al. [30], they studied the existence and large

time behavior of such weak solutions. The proof is very technical and tedious, we

refer interested readers to their paper. Here we shall state their main results:

Suppose that

1) U0, v0 6 0(9) and 0 S u0,vo g M for some constant M > 0. and



2) a(u, v) is strictly positive and locally Lipschitz or a = O, and

k+2/N, ifN23,

13 m < (2.14)

k+1, ifN=1,2.

In the case a 7t 0, the problem admits a unique weak solution (a, v) satisfying

0 S u(x,t) _<_ C0, and 0 S v(x,t) g M for all (1:,t) E Q X (0, T),

for some constant C0 > 0.

There exists a constant v°° such that

lim (u(t), v(t)) = (0, v°°) uniformly in O.

t—>oo

Furthermore, if 1 S m < n, v°° = 0, while if 1 g n g m, then v°° > 0. Especially if

m = n, then v°° _<_ a(O, v°°).

For the case a = 0, they obtained similar result and

lim (u(t),v(t)) = (< uo + v0 >,O) uniformly in O.
t—>oo

2.4 Main result and methods

As we indicated earlier, bacteria grown on the surface of thin agar plates often develop

colonies of various spatial patterns, such as fractal morphogenesis, dense-branching

pattern. Recently Kawasaki et al. [39] proposed a degenerate parabolic system with

cross diffusion that captures the qualitative features of the growth patterns. The
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model is

g; = DbV - {nbe} + nb, (2-15)

92—: = DnVZn — nb
(2'16)

with initial conditions

b(:z:,y,0) = b0, n(:1:, y,0) = no.

Here b is the bacteria density and n is the nutrient density.

Recently, Maini et al. [45] considered the one-dimensional version of the model

and a special case 0,, = 0. They studied the existence and uniqueness of traveling

wave solutions. The found that such solutions exists only for speeds greater than

some threshold speed and the wave with the minimum speed has a sharp profile. For

speeds greater than this minimum speed the waves are smooth. By considering the

special case Dn = 0, the authors were able to reduce the problem to a phase-space

analysis in R2.

In this thesis, we consider a more general model and we will not assume D" = O.

The model we will study takes the form

8b

E = va.{npkab}+n‘Ib’, (2.17)

g" = DnV2n—nqb’. (218)

To our knowledge, there is little theory on traveling wave solutions on such coupled

degenerate diffusion system with cross-diffusion.

Our method is based on Schauder-fixed point theorem. By fixing n in a properly

chosen S ace V we investi ate the existence of travelin wave solution b. For such
,
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a traveling wave b, we can find a traveling wave solution a which lies in a compact

subset of V. In this way, we may define a continuous mapping T : V —> V with

Tn = n. Invoking Schauder-fixed point theorem, we conclude the existence of a

traveling wave solution pair (b, n).

A key part of the thesis is to investigate the existence of finite traveling wave

solution for a degenerate cross-diffusion equation. Our method is inspired by a very

recent study of a similar problem by Malaguti [42]. We will transform the existence

of traveling wave solution b to the solvability of a first-order singular boundary value

problem which can be done by typical shooting and comparison argument. For more

information on singular ODE, see [28, 34, 38, 42, 44].

Our main goal is to prove the following theorem.

Theorem 2.1 For k = 1, q 2 1, p = 0, l > 1, there exists a constant velocity U. such

that the system admits a traveling wave solution (b(§),n(§)) where b is a monotone

finite traveling wave solution and n is a monotone classical traveling wave solution.

Here 5 = :2: — vt is the usual wave coordinate and by finite traveling wave we mean

{i = SUp{€: b(§) > 0} < 00.

Remark. Even though our result is very restricted on the values of k and p, most

part of our analysis in this thesis works through without such restrictions. We shall

keep them until the occasion arises when we need to impose such restrictions. It is

our future concern to extend our result to more general cases.

In section 2.5, we simulate the 1D problem and oberseve the long time behavior of

the solutions. In section 2.6 we will derive some properties of traveling wave solutions.

In section 2.7 we investigate the existence of finite traveling wave b for a given n. For

this part, the result is general and we place no restriction on k. In section 2.8, we
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derive the equivalent problem and study the existence of a traveling wave n for the

determined finite traveling wave solution b. In this part we shall require that k = 1

in order to derive the equivalent problem. In section 2.8 we apply Schauder fixed

point theorem to deduce the existence of traveling wave solutions (b, n) where b is of

finite type. In section 2.10, we study the instability of the flat front and explain the

fingering pattern in the bacterial colony.

2.5 Numerical Simulation to 1D Problem

In this section we consider the one dimensional problem on [0, 1]

6b 6 6b

3n 02n

with Neumann boundary condition and initial data is chosen to be

b(:r,0) = —(:1: — 0.25)(:r — 0.75), n(:1:,0) = 1.

We numerically simulate the problem on time interval [0, 0.2] and we have the results

shown in Figure 2.2 and 2.3. The numerical results show b stays compact supported.

The long time behavior can be seen when we calculate the density functions up to

t = 9, the results are shown in Figure 2.4 and 2.5. We can see that b tends to a

uniform state and n tends to 0 asymptotically.
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b(x,t)

 

Distance x

Figure 2.2. Bacteria Density

n(x,t)

 

Distance x

Time 1 012

Figure 2.3. Nutrient Density
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b(x,t)

 

Distance x

Figure 2.4. Bacteria Density

n(x.t)

 

Distance x 1 0 Time t

Figure 2.5. Nutrient Density
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2.6 Travelling Wave Solution

We consider the system

(9b (9 8b
— : —-- P k— ‘ql8t D8$(n b (92:) + n b, (2.21)

an 82n

a : 5-1:; — nqbl, (2.22)

where (:13, t) 6 R x R+ and D is the rescaled non-dimensionalised diffusion coefficient

of b.

Let us denote the spatially uniform steady states by (b, n) = (b,, 0), (0,11,), where

n, and b, are some constants. We may assume that initially the nutrient is uniformly

distributed in the plate and there is no bacteria seed. Hence a prOper initial steady

state is given by

b=0, n=1, for all —oo<x<oo.

We shall also assume that

3b 8n

—— . 2.2a$,ax—>Oasx—):l:oo, for all t>0 ( 3)

Let 6 = :1: — vt be the wave coordinates in which b and n solve

D(n”b"b’)’ + vb’ + nqb’ = 0 (2.24)

n" + vn’ — nqbl = 0 (2.25)

where ’ denotes the derivative with respect to wave coordinate 5. Equations (2.24)-

(2.25) are to be solved subject to the following boundary conditions ahead of the

52



wave

b—+0,n—>1as£—>+oo, (2.26)

and behind the wave

b —-> bs,n —> n, as 5 —> —oo. (2.27)

2.6.1 Properties of the traveling wave solutions.

Property 1. n, = 0, b, =1.

Proof. Integrating on both sides of equation (2.24) from —00 to +00 gives

+00

—vb, + / nqb' = 0 (2.28)

00

from which we conclude that b, > 0 since v > 0. But nabs = 0, hence n, = 0. To

conclude that b8 2 1 we integrate Equation (2.24) from —00 to f, we have

6

npbkb’ + v(b - b,) +/ nqb’ = 0. (2.29)

—00

On the other hand, integrating equation (2.25) from —00 to g, we have

E

/ nqbl = n’(§) + vn(£). (2.30)

Substituting expression (2.30) into equation (2.29) and passing 5 to +00, we have

—vbs + v = 0. (2.31)

Therefore b, E 1.

Pr0perty 2. If n, b are the traveling wave solutions, then n is monotone increasing

and b is monotone decreasing if 0 < b < 1.
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Proof. The monotonicity of n follows directly from equation (2.25). In fact,

77.” + vn' = n‘lbl 2 0, (2.32)

or equivalently

(n'e”£)’ 2 0. (2.33)

Integrating this inequality from —00 to 5, we obtain n’e”é > 0. Hence n’ > 0 for

all 5.

For a traveling wave solution b(§), we prove that

b’(§) < 0 for 0 < b({) < 1.

We first suppose that b’ ((30) == 0 for some {0, then from equation (2.24) we have

 

anbkb" + D(n”b")’b’ + vb’ + nqb’ = 0. (2.34)

Hence

,, 4b ‘

b<<o>=-Jlf23.tféii<0-
Therefore we may define

5,. = inf{{ : b’(s) > 0 for all s E (€,{0).}. (2.36)

Therefore 5,. > —oo => b’(€.) 2: 0 since 0 < b < 1 = b(-—oo) = 1. Furthermore,

b’ (6...) = 0. On the other hand, from equation (2.24) we conclude that npbkb’ is

positive and strictly decreasing in (5., {0], in contradiction with b’(.£,) = 0 = b’ (50).

Thus if b’ (E) > 0 in some interval (61,52) with b’ (£1) = 0, we necessarily have

b(€1) = 0 which again in contradiction since npbkb’ is positive and decreasing in
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(61,52). Therefore we conclude that b’(€) < 0 when 0 < b < 1.

2.7 Existence of b for a given n

Let

(1 = inf{{ : b({) < 1} E RU {—00};

£2 = sup{£ : b(£) > 0} E RU {+00}.

Since b is strictly decreasing on (61,52), it follows that the inverse of b(§), denoted by

5 = 6(b) is well defined on (0, 1) and takes value in (51,52). Therefore we may define

n(b) = n(6(0) (2-37)

and

u(b) = an(b)b"b’(§(b)) < 0 for all b 6 (0,1). (2.38)

In fact, {1 = —00. We state this in the following lemma.

Lemma 2.1 {1 = —00.

Proof. The proof is similar to the proof of property 2 in previous section.

Let n(b) E V where V is the closed convex set of the Banach space C°([0,1])

defined by

n(b)
 V :2 {n(b) E CO[0,1], 0 S n g 1, limsup S L, n(b) Z 1/L(1— b)}

b—>1- -b

where L is a sufficiently large constant and will be chosen later. We shall see later in

the thesis the reason why we define such a space.
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Differentiating both sides of equation (2.38) with respect to f we have

u’(b)b’(£) = anbkb" + (Dupbkyb' = —vb' — nu}. (2.39)

Therefore u as a function of b satisfies

p+q b bk+l

u'(b) = —v — Dn u( ) , b 6 (0,1). (2.40) 

Our next step is to derive the boundary condition at 0 and 1.

Lemma 2.2 u(0+) = u(1‘) = 0.

Proof. If 52 = +00, i.e., b is a classical traveling wave, it follows that

u(0+) = lim Dn”(b)bkb’(§) = 0.

£—i+oo

If 62 < +00, i. e., b is a finite traveling wave solution, we may assume that it vanishes

at 5 = 0. We expect that as E —) O

b(6) ~ A(—§)°. (2-41)

Substitute this expression into

anbkb” + D(n”b")’b’ + vb’ + nqb’ = o

where the derivative is with respect to 6, we obtain

anAk+l[a(a _1)+ ka2](_€)(k+l)a~2 + Dpnp—l7l’(—Ak+10)(—€)(k+l)O-l

—vAa(-—g)"-‘ + n"A’(—§)"’ = 0. (2.42)
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Equating the dominated terms at g = 0 we have

(k+l)cv—2=a—1,

Dn‘pAk+1[a(a -1)+ ka2] — v.40 = 0

where n" = limb_,0 n(b) > 0.

Hence we have

 

a =1/k,

kv

A = .

Dn*”

From the definition of u, we have

u(0+) = lim Dn”(b)b’°b’(§)

b—>0+

= lim anAk(—§) . (—Aa)(—§)1/k_1

{40+

=0.

u(1‘) = 0 follows from the definition.

Therefore a solves the following singular boundary value problem:

an+q(b) bk+l

u

u'(b) = —v — for b 6 (0,1), 

subject to

u(0+) : u(1") = 0.

We now consider the solvability of this singular problem.
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2.7.1 First-order singular boundary value problem

Given n(b) E V, we consider the following existence problem:

Problem P1. Find a pair (v, u) with v > 0 such that

 .u'(b) = —v — anJflwakH for b 6 (0,1), (2.48)

u(0+) = u(1") = 0, (2.49)

it < 0 in (0,1). (2.50)

2.7.2 Existence of a critical velocity

In this section we show that P1 is solvable with a unique negative solution u = u(b)

if and only if v 2 v" for some positive v“ which depends on the choice of n(b).

We first prove the following lemma

Lemma 2.3 If there exists qb 6 01(0, 1) such that

an-i—q (b) bk+l

¢(b) for b 6 (0,1), (2.51) 

¢’(b) > -v -

such that (b(0+) = 0 and ¢(b) < 0 for b 6 (0,1). Then P1 is solvable and the solution

0 > u(b) > (h(b).

Proof. The proof is based on shooting argument and some comparison techniques.

First, for a fixed constant b0 6 (0, 1), note ¢(bo) < 0, let a E [¢(b0), 0), we consider

the following initial value problem:

k+lp+q

u'=—-v-Db n (b), 0<b<1, 



and let u represent the unique solution of it. We first claim that u(b) < 0 on (0, b0).

Suppose otherwise there is a b" E (0, b0) satisfying u(b) < 0 for all b E (b*, b0] and

lim u(b) = 0.

b—)b‘+

Since

4lfitmrwu—Derruwr=—Doa“
%rur)<m

hence we can find a constant c > 0 such that

u' : —vu — Dbk+lnp+q(b) > ;c_ > 0

u u(b)

 

for all b* < b < b" + c, which would imply that u > 0 for b* < b < b” + c, clearly a

contradiction.

Next we assert if a > ¢(b0), then

(b(b) < u(b) < 0 for 0 <bg b0.

Since ¢(b0) < a = u(bo), we may define

b = inf{b : 45(3) < u(s) for s E (b, bo)}

Suppose b > 0, then u(b) = ¢(_b) and

 

 

I Dbk+lnp+q(b)

n(b) — - u(lz)

: _,_Dr“ave)

(202)

< 49(9),
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which is clearly absurd.

In view of the arguments above, we have proved that u is well defined in (0,1)0).

Now we may define (0, b0) to be the maximal existence interval for solution a. The aim

is to show that b0 2 1 for some a E [0(b0), 0). Let u 1 and u; be two distinct solutions

corresponding to initial value 011 and 02 respectively. Suppose for definiteness that

C21 < (12,

then

u1<u2 in (0,min{ba,,ba,}),

hence

b0, 2 bar

We now claim that if the [ a | is sufficiently small, then

b0 <1 and u(b;) = 0.

The trick is to construct an upper solution and use a similar comparison argument

as in the earlier part of the proof of this lemma. Since

lim —vu — Dbk+lnp+q(b) < 0,
(b,u)—)(bo,0)

there exists a sufficiently small constant M > 0 and A < 2M such that

Db"+’np+q(b) M
_v _ _—

U U
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for all —A < u < 0 and b0 _<_ b< b0+/\. Leta > '—)\ and define

 

w = —\/a"2 — 2M(b — b0)

for be g b 3 be + 2% which solves the following initial problem:

M

ll}, : _—a

ll)

If)(b0) =0.

We have

02

(”+274- <b0+/\<1.

Moreover, u’(b0) > 0, hence u(b) > u(bo) = a > —2\ in a right neighborhood of b0.

Put

02

I = [b0,min{bo + 2M’baH’

we deduce that

u(b)>——A for all beI.

Apply a similar comparison argument as before to conclude u(b) > ib(b) for all b E

(be, be) 0 (b0, b0 + %). Since 43(b0 + 2115;): 0, we have

2
a

ba<b ——-<1.._ 0+2M

Now we let 0;“ = inf{a E (d)(bo),0) : b0, < 1}, then b0. = 1, therefore the

corresponding solution u is defined and negative on (0,1) and u > (b in (0,1) and

u(0+) = 0. This completes the proof.

We are now in position to prove the following solvability result for Problem P1.

Theorem 2.2 There exists v“ > 0, such that for all v > v“, Problem P1 has a unique
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negative solution.

Proof. We first show P1 is solvable for v sufficiently large. To this aim, we let

 

  

an+q(3)8k+l

c = supsem,” s , (2.52)

which is well defined. Let

W?) = -\/Eb-

Then, for v > 2\/E, we have

Dbk+lnp+q (b) Dbk+lnp+q (b)

—v — < —2 c +

4(1)) f m

s —2\/E + W: = ¢’(b) (2-53)

for all b 6 (0,1).

Hence ¢(b) satisfies condition of Lemma 2.3. Therefore P1 is solvable for every

v > 2\/E. We now show that P1 is not solvable for v = 0. Otherwise, let u solves

I Dbk+lnp+q(b)

u:— 

’11.

defined on some interval (a, 1) with 0 < a < 1 and u(b) < 0 for all b E (a, 1). Integrate

the equation above in [b, b] with a < b < b < 1 we obtain

5

u2(b) = u2(b) — 2/ Dsk+lnp+q(s)ds. (2.54)

b

Therefore, if u(l‘) = 0, we have

 

u(b) = —\/2 [bl Dsk+lnp+q(s)ds (2.55)

which implies u(0+) < 0, a contradiction.
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We now let

v" = inf{v : P1 is solvable}

which is well defined and v* > 0 based on the observation above.

We prove that for every v > v“, P1 is solvable. Given v > v", take 17 such that P1

is solvable with v < v and the unique solution a for 27. Since

_, _ Dbk+lnp+q(b) Dbk+lnp+q(b)

u = —v — _ > -—v — _ ,

”U. U

  

hence it satisfies condition of Lemma 2.3. Therefore, we conclude the solvability for

v.

Finally we prove that P1 admits at most one solution. Suppose for contradiction

that ul and u2 are two distinct solutions of P1. For deflniteness, we assume

u1(b0) > U2(bo) for b0 6 (0,1),

it follows that

, , Dbk+'n"+q b Db"+'n”+q b
v.1(bo) - U2(bo) z .— 0u1(bo)( 0) 0u2(b0)( 0)

> 0. (2.56)

  

Hence if u1(b0) > u2(b0), then u’1(b0) > u§(bo). Therefore, it is impossible that

This completes the proof.
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2.7.3 Finite traveling wave at v*

The main goal of this section is to show that b is a finite traveling wave at the

minimum wave speed. We will also show that b is a classical traveling wave if v > v”.

The idea is to characterize the type of b by the value of u'(0+).

Lemma 2.4 u'(0+) = 0 or u’(0+) = —v.

Proof. We first show that if u’ (b‘) = 0 for some sufficiently small b“ then u"(b“) > 0.

To this aim, we write

g(b) = Dbk+lnp+0(b),

it follows that

 

Note that

g'(b) = Dbk+l‘lnp+"—1[(k + 1)n(b) + (p + q)bn'(b)] > 0

for b sufficiently small. Hence if there exists b‘ sufficiently small such that u’(b‘) = 0,

then u"(b*) —_- Jig-l > 0.

Therefore we conclude that there exists 0 < b < b‘ such that

u"(b) > 0 or u"(b) < 0 on (0, b).

Case 1: u"(b) > 0 on (0, b). In this case u’(0+) < 0 exists and it follows from

(u' + v) - 3;- : —Db"+"‘np+q(b)

that u'(0+) = —v.

Case 2: u"(b) < 0 on (0,5). In this case, —v < u’(0+) S 0, similarly we obtain

u'(0+) = 0.
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Lemma 2.5 b is a finite traveling wave if and only if u’(0+) = —v.

Proof. If b is finite traveling wave, then from Lemma 2.2, at g = 0, we have

kv
 

 

b = — l/k. 2.r(6 D4,,.,,( 5) ( o7)

Therefore by equation (2.39) we have

, + _ , _ _ n"bl

u(0 ) _ 61—135“ v b’ )

kv
: _ 1- q __ "1k _ l/k—l/k+l

"+5351” (an) ( E)

= _v, (2.58)

On the other hand, if u’(0+) = —v, we have

 

. i _ . u(b) b

51.1321“) _ til—131+ b BMW

1' ”im —,

b—+O+ Dbk—lnp

(2.59)

 which is — if k = 1 and —00 if k > 1. This implies that b is a finite traveling

Dn‘P

wave solution.

Lemma 2.6 For v sufficiently large, b({) > 0 for allé E R. In other word, b(§) is a

classical traveling wave solution.

Proof. Note that for v sufficiently large, there exists A > 0 such that

>
“
I
t
:

—v + g —(k + in. (2.60)

We claim that

u(b) 2 —Ab‘““, (2.61)
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for all b 6 [0,1]. Suppose u(b) < —Ab’“rl for some 5 6 (0,1), then

 

 

- Dbk+lnp+q(b)
’ b = — — _

u( ) u(b)

D5k+lnp+q()',)

< -—v + A5k+l

< —v + P-

A

g —A(k +1) 3 —A(k +1)B’c+‘—1. (2.62)

Hence

u(b) + Ab“l < u(b) + AbMl < 0 for all b > b (2.63)

which contradicts u(l‘) : 0.

Now for any {0 E (—00,§2), let b({0) 2 b0, we have

be

50 - £2 = €'(b)db
0

_ “an(b)b’°

‘ l. u(b) db

1 b°Dn"(b) _
g 7/0 b, db——00. (2-64)
 

Hence {2 = +00 which implies that b is a classical traveling wave solution. Note here

we applied the fact that l 2 1.

Now our goal is to show that when v = v“, b is a finite traveling wave solution. In

view of Lemma 2.5, we shall show that when v = v“, the solution of

 

satisfies u’(0+) = ——v‘.
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The trick is to construct a converging sequence of solutions which satisfy this

property. To Show this, we define a continuous function g,,(b) on [0, 1] as:

1

’n+2

  

] , 0 S g,, S Dbk+l'rip+q(b) for b E [ 1 1 ]nb=0 0 ,

g() on [ n+2n+1

 

l

n b =Dbk+l p+qb 1 .andg() n () on [n+1’]

It holds that

%S%w

We consider the following problem:

To find a function un : (0,1) -) R‘ and vn > 0 such that

 

un(0+) = un(1‘)= 0.

Let us emphasize here that vn is also an unknown of the problem. We shall prove the

following theorem.

Theorem 2.3 There exists a unique solution un : (0, 1) —+ R‘ and vn of the problem.

u is of class C1.

Proof. The problem is equivalent to

 

 

 

1 9n 1
= — n — — ,1 , 2.6"un v Un on [n + 2 ] ( o)

1

n = — nb 0, , 2.66a v on I: n + 2] ( )

1

I Z _ ln~ 2.67

u,,(1—) = 0. (2.68)
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Note that the solution of this equivalent problem is of C1 since u’($) = —v,,. We

apply the shooting argument and comparison techniques on [$, 1] similar as in

Section 3 to the problem:

 
 

 

, 9n 1
= — n — — ——,1, 2.69

un U an 0n [n+2 l ( )

1 vn

,, = — , 2.70

a (n+2) n+2 ( )

1

' : — n. 2.71
un(n+2) 'U ( )

We can show that there exists a unique vn such that un(1') = 0.

We now examine several properties of an. Some of them will be applied in the proof

of the next lemma. The proof is all the similar shooting and comparison argument.

We shall briefly show the proof of the second one.

Lemma 2.7 an satisfies:

p1 un(b) = —vnb on [0, :35].

p2 un(b) Z —v“b for all b 6 [0,1].

p3 u" 2 un+1 for all b 6 [0,1].

Proof. p2 Since un(b) = —v,,(b) > —v*b on (0, #2], hence if 3 bsuch that un(b) <

1]. Fiirthermore, 3 b E ( 1 b) such that ”n(b) =
—v*b for some n, b must be in ( 31—2,

_1_

n+2’

—v"‘b and u;,(b) < —v*. However,

 

which is a contradiction.

Now we will prove that v,, determined in the theorem above has the following

properties.

Lemma 2.8 {vn} is monotone increasing and limn.”r00 2),, = v’.
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Proof. First we show that {vn} is monotone increasing. Suppose 3v” > vn+1 for

some n. Then,

    

 

 

1 — v" — v,, + 1 1

n : <' n -

“(n+2) n+2 n+2 u +1(n+2)

We also have

1 gn+1( ) 1
up 2 _Un < _vn _ n+2 I

"(714-2) +1 un+l(n+2) n+1(n+2)

since

( 1 )> 0gn+l 72 + 2 -

Hence un(b) < un+1(b) in a right neighborhood of F1472? therefore in this neighborhood

 

I 911 9n+1 I
b = — n - — — n — — = b .

un( ) ’U u" < ’t) +1 “n+1 un-i-l( )

Hence

1

“n(b) _ “n+1(b) < un( l‘ un+l( ) < 0
n+2 n+2

for alle[1 1].
n+2’

This is a contradiction with un(1‘) = un+1(1‘) = 0. Hence

”n S vn+l-

We now prove that vn S v“. Suppose 3 vn > v“, then

1 —vn -—v“ 1

= < <

n+2) n+2 n+2 ”(n+2

    

un( ),

where we have applied the fact that u’ > —v‘ for all b 6 (0,1).

We also have

1 ) < *< '( 1:_’U‘n —’U U

n+2 n+2

  

uti ).
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1

Hence un(b) < u(b) < 0 is a right neighborhood of "+2. For everv b in this nei rhbor-
. E»

hood, we have

 

n n l)lk+l p+q l

1111(1)) : ”'Un —' L < —"U‘ — g— < —"Ut — ) n ()) : U,(b)

an a u

which contradicts with un(1") = u(1‘) = 0.

Finally, we show limn_,+oo vn = v“. Let

6 = limsupvn S v“.

n—H-oo

Note that we may define u(b) = limn_,+oo un(b), we have

  

 

 

1 . 1

u(b)—u(nH) — "1441446) ‘“"(n+1))

b

= lim u

n—++00 _1__

n+1

_ 1' b g"
— 1m —vn — —

n—H-oo n_l_l un

b k+l p+q

= / —6—Db " (b). (2.72)
0 u

Hence u solves

k+l p+q

u' = —v — Db Z (b) on (0,1),

Moreover, we have u(0+) = 0 and u(1‘) = 0.
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By the definition of v“ we conclude that v 2 v*. Hence 5 E v“. Note that

u(b) = lim un(b) 2 —v*b for b 6 [0,1).
n—++00

Applying monotone convergence theorem to {an} we can show that u solves

k+lp+qb

u=—v—Db Z () in (0,1), 

Hence

Therefore

This shows that the traveling wave at minimum wave speed v‘ is of finite type.

We conclude this section with a few properties of the negative solution u.

Lemma 2.9 Let u = u(b) be a negative solution of Problem P1. Then, there exists

u'(1") = 0.

Proof. Let u(b) be a solution of P1. Let M :2 limsupb_,1_ 35—9,) and m 2:

liminfb_,1— :4}? 2 0. There are three possible cases: either m = M > 0 or M > m 2 0

and M = m = 0. We show the first two are impossible.

In fact, if m = M > 0, then

an+qbk+l b — 1. I __ _ . :—

bgm_u(b)— v 613i]- b—l u(b) v<0,

 

a contradiction. Here we applied the fact that lim supbal- 7:9,] S L.
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If M > m 2 0. Then for any given m0 6 (m, M) there exists a sequence {b,,}

which converges to 1 such that

u(bn) : m0 and (1‘92), 3 0. 

 

b=bn

Hence,

1 D p+q bn bk+l

lim u'(b,,)= lim —v—— n ()n =—v<0,
n—)+00 n—++00 m0 bn — 1

therefore we may assume u’ (bn) < 0 for every n. On the other hand,

(:Ebl);=bn 2 bn1—1 [U'(bn) _ 1:021] = bn1—1lu'(b")_ mo] > 0.    

I

A contradiction to previous statement that ($3), b S 0. Therefore, M = m = 0,

i.e., there exists u’(1') = 0.

Using this lemma, we can further show that

Lemma 2.10 For the solution u of Problem P1, there exists C1 < 0, C2 < 0 such

that

C2(1 — b)?” S u(b) S C1(1 — b)p+q for b sufficiently close to 1.

Proof. We only need to show that it is impossible to find negative constants C1, C2

such that u(b) Z C1(1 - b)p+q+7 or u(b) S C2(1 —- b)”+"‘7 for any 7 > 0 as b -—> 1‘.

Otherwise, we either have

an+qbk+t

n(b)

an+qbk+l

> —v - ..

— 01(1 _ b)p+q+1

D(1/L)P+‘1(1 — new“!

(31(1 — b)P+‘I+7

u'(b) = —v—-

 

I
V
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for b sufficiently close to 1. A contradiction to Lemma 2.9.

Or we have

DLP+q(1 — new“!
1) — ..

— 01(1 - b)P+‘I—’7

 

as b —> 1’. A contradiction to Lemma 2.9 again.

In fact, we can improve this result in the next lemma.

Lemma 2.11 There exists C2 < 0 such that u(b) Z C2(1 — b)p+q for all b E [0,1].

Proof. Suppose that there exists 5 6 [0,1] such that u(b) < 02(1 — (3)9”. Then we

have

 

 

— an+q(b)bk+‘
’ b = — — _

u( ) v u(b)

DLP+<I(1 — new?“

- — "' 02(1 —B)p+q

< -Cz(p + q)(1-5)”+"'l

for 02 sufficiently large so that

DLp+qu+l _

—v — —C——— < —C2(p + q)(1— b)”+q".

2

Thus

u(b) — C2(1— b)”+" < u(b) — C2(1—b)”+q < 0

for every b > b. A contradiction to u(1’) = 0. This ends the proof. This result is

illustrated in Figure 2.6.
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u(b)

<— 02(1-p)p+q

  
 

Figure 2.6. Sketch of u

2.8 The Equivalent Problem

Now that we have shown that for any n E V, there exists a v" which depends on the

choice of n such that b is a finite traveling wave, we may assume that

b(§) = 0 for E Z 0. (2.73)

We shall simplify the problem by reducing it to a system in the interval 6 < 0 only.

Note that n satisfies

n" + vn' = 0 for 6 Z 0. (2.74)

We have the following lemma:
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Lemma 2.12 The problem

n" + vn' = 0 in (0, +00), (2.7.3)

n(0) = n" with 0 < n" < 1, (2.76)

n'(0) = v(1-— n*), (2.77)

has a unique bounded solution that satisfies lim€_,+00 n({) = 1.

Proof. We consider the following ODE system:

A phase plane analysis shows that every trajectory can intersect the n — axis at

most once. Hence p’ changes sign at most once, and consequently n(+00) exists. Let

n(+00) = c, a direct integration shows that

+00 +00

/ n =-/ 1m,

0 0

hence

—v(1 — n") = —vc+ vn“.

Therefore

lim n({) = c =1.

£—>+00

In view of this lemma, we may reformulate the problem into:

Problem P2. Find (v, b, n) with v > 0 such that

D(n”bk)" + vb' + nqb’ = 0, g < 0, (2.78)
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n" + vn' — nqb’ = 0, g < 0, (2.79)

n'(0) = v(1— 72(0)), n(—00) = 0, (2.80)

b(—00) = 1, b(0) = 0. (2.81)

We have seen that as { varies from —00 to 0, b = b(§) decreases monotonicity from

1 to 0. We can therefore define

g:§(b) as the inverse function of b(€)

where b varies from 0 to 1 and 5 takes value in (—00, 0).

As before we define

 

u(b)=Dn”b"b’(§(b))<0 for all be(0,1) (2.82)

and

M0=n®®h 980

Since

d _ , d _ u(b) d

d—g-Wa-anaa’

we can transform problem P2 into the following equivalent problem:

Problem P3. Find (v,u, n) solves

Dbk+lnp+q(b)

u' = —v — , (2.84)

u

 

u ( u ,),+ u
I .—

Dbknp Dbknp' vaknP
 n' — nqb’ = 0, (2.85)

u(()+) = u(1’) = O, (2.86)
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kn”

n'(0+) =z;(1—n(0)).b1351+ib(b) = —(1—n(0))Dn(O)”(k =1), n(1_)= o, (2.87) 

u<0 in (0,1) (2.88)

we shall also need

 

1 k p

/ Db ” db z —oo. (2.89)

0

Remark. The first equality in equation (2.87) is equivalent to the first equality

of equation (2.80) only for k = 1. Therefore from here we shall take k = 1.

2.9 A fixed point

Give n(b) E V, let (2), u) be the unique solution of Problem P1 such that u'(0+) = —v,

i.e., the corresponding b is a finite traveling wave. Consider the following:

Problem P4. Find n(b) such that

u ,, , ~, _ Dn“’fz"b’+1 _ ,

(_Dbnpn) + vn ——u — 0 in (0,1), (2.90)

8' + D(1 — n)n” = 0 at b = 0, (2.91)

71(1) 2 0. (2.92)

We shall show that Problem P4 admits a unique solution that is also in V. To

prove this fact, we begin with the following local existence result.

Lemma 2.13

 

u ~ , ~, annqb’” ,
(Dbknpn') + vn — -—u—— = 0 1n (0,1), (2.93)

72(0) 2 no, 0 < 71.0 < 1, (2.94)
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8(0) = D(n0 — 1)n*”, (2.95)

n(b) > 0 for b > 0 and close to 0. (2.96)

has a local solution. Here n* : limbao n(b).

Proof. Take

E = {fl(b)lfl(b) E C([O,b0]),0 S 77. S no for 0 S b S 00,

and some small b0 > 0 to be determined later}.

Then E is a closed convex set in C([0, M). Before proceeding it is helpful to rewrite

equation (2.93) as an equivalent integral equation. Assuming that n is a smooth

solution on the interval (0, b0] with b0 3 1, we integrate once to get

  

  

u ~ _ u(s) ~ ~ b 01871431“

'— l ' b — = —. 2.97

12w" .355. 037.2(3)” +””( ) ”"0 f0 u(s) ( )

Since

- u(s) ~I _ —'U _ tp

31—1be DsnP(s)n — Dn"‘1"D(n0 1)” ’

we have

u b annqsl“

Dbflf’fi, + ’Ufl(b) — ’U 2/0‘ ——u—(s—)——. (2.98)

A second integration yields

5 n” b p 8 npfiqTHl

 

 

For small b0 and 0 g b 3 b0, we have

Ogngn0<+oo,
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(17$ C< +00. 

007.8(0) - 1)an fbonwrw

u(b) 0 u(r)

This shows the operator defined above is a compact operator. Therefore it has a

fixed point in E, i.e., it has a local solution.

To establish the existence and uniqueness of solution to P4, we shall also need to

following lemmas:

Lemma 2.14 If 71(0) 2 no is sufi‘iciently close to 1, then 21(1) 2 0. If 21(0) 2 no is

snfi‘icz’ently close to 0, then n(b) = 0 for some 0 < b < 1.

Proof. We prove this Lemma by contradictions. We start with the following equa-

  

tion:

DbP bDM '+1 Db?
8+” "fi=[v+/ ""8 ] ". (2.100)

11 0 u(s) 11

Let h(b)= ——which18 clearly nonpositive. The above equation can be rewritten as

b

(efé’vmswsm’ = ef:”h(s)dsh(b) [11+ / h(sws’ds] . (2.101)

0

Let H(b) = cf: ”WW3, and J(b) = v + fob h(s)nqs’ds. Integrating both sides, we have

Ham—8(0) = [bi—(311'

b

= —H(b)J(b)——H(0)J(O)—)/(8):-1-H(s)h(s)7”1"(s)s'd8

: 111(0),](b)—1—/0b:—sH( (3)3.‘ds (2.102)
’U

Suppose that no is sufficiently close to 1 but n(b) = 0 for some 0 < b < 1. Then

the left side of the above equation is sufficiently close to -1. But since H (b) > 0,

 J(b) = Dgnm' + 1)n(b) > 0 and fob %H(sh)(s)f1"(s)s’ds < 0. Thus the equality above

is impossible. Hence we conclude that n( 1) 2 0 for no sufficiently close to 1.
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To prove the second statement, we note that

 

 

 

 

u ’ Dbl p+q

u(0)=11mu+v=11m- n =0

b—>0 b—>0 u

for l > 1.

Since

u fin _ -( u )I + ’0 73,, + anflqbl+l

Dan _ Dan u

u’ u upnp‘ln’ , annqbl“
: _ __ _ , 2.103

_Dan Db2nP Dbnzl’ + v u ( )

and

lim u’ _ u __u"(0)

b—+0 Dan Db2nP _ 2Dn“?

   

Thus ifp = 0, l > 1, we have a”(0) < 0.

Note that there exists 6 > 0, such that

I

(22+L — i) >3 and 3)- < LEI <21) on [0,6].

Db Db2 2

We claim that a" < O on{b E [0, 6] : a > 0}.

If not, 3 61 6 (0,6) such that

a (61) = 0, H(b) < 0 on (0, 61).

Thus if we let

 

We have [(61) = 0.
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On the other hand,

v~, an(0)

I> —§n(0)— ”/2 6’ > 0 for 71(0) << 1.

This ends the proof of the lemma.

Remark. Note in the proof of this lemma, we added the restriction on p and I

such that p = 0, l > 1. We expect the result to be true for more general p and I. For

the rest of this thesis, keep in mind that p = 0 even though our argument as follows

does not necessarily need this condition and thus we shall still keep this notation.

Lemma 2.15 Let n1, in be the solutions corresponding two different initial value

7110 and noo with ”10 > n2o, then n1 > no on [0,min{T(n1o),T(n2o)}] where T(n,o)

represent the corresponding maximal existence interval in the sense that n(T) = 0.

Proof. Suppose otherwise there is a bo E [0, min{T(n1o), T(n2o)}] such that n1(bo) =

n2(bo) and in > no on [0, bo), then 733(1),.) < n’2(bo). We should have

H(bo) ~' " u(bO) ~I ~

DbonP(bo)m(b0) + vn1(b0) v > DbonP(bo)n2(b0) + vn2(bo) v, (2.104)

while

50 17“? 1+l b0 p~q 1+1

/ _Dn72,3 < f 27212:, (2.105)

0 u(s) 0 21(8)

which is clearly a contradiction to (2.98).

In view of the above Lemmas, we have established the following theorem

Theorem 2.4 Problem P2 admits a unique solution. The solution it satisfies the fol-

lowing property:

 



’Il

 
lim sup 5 L,

B—H‘ 1_ b

—M g 71’ S 0.

Proof. Since equation (2.90) is only degenerate at b = 1. The boundedness of n’ on

[0, 1) follows from standard ODE theory. We shall study the boundedness at b = 1.

To this purpose, we let n(b) ~ (1 — b)"t with a 2 1 as b —> 1. Let n(b) ~ (1 — b)5 as

b —-> 1. In view of equation (2.90), we have

DnP'fq

 
u ~ — as b -—> 1.

v

Thus as b —> 1, it satisfies

9 ~q

(in) + m’ + 21-73- = 0. (2.106)
_v ”Q

Suppose that B < 1, matching the leading singular terms in the equation above, we

 

have

fl—1=Q(B_a)7

or

_aq—l

9— q__,.

This is clearly impossible since a 2 1. Thus we conclude fl 2 1, or equivalently, 77(1)

exits. In fact, by matching the coefficients, one can show that

~

gL. 
lim sup

b—>l' " b
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Let W : Dgnfl and differentiate (2.85), we get 

'll

Db pW’)’ + on" — (Iowa/0’ — um)“ = 0. (2.107)

n

(
 

Also

W(0) > 0, W(1) = 0.

The maximum principle yields W > 0 in (0,1), i.e., a’ < 0 in (0,1). Note that to

deduce W(1) = O, we have applied the fact that 731(1) is bounded.

By Lemma 2.14, we have the bound on 73(0). The uniqueness follows from Lemma

2.15. This ends the proof of this theorem.

We shall now combine Lemma 2.15 with Theorem 2.4. For every n E V, we define

(v, u) to be the solution of P1 and a by Theorem 2.4, and introduce the mapping T

by

Tnzn.

Clearly, T maps V into itself, and its image lies in a compact subset of V (since

-—M S n’ g 0). By the uniqueness part in Lemma 2.15, it also follows that T

is continuous. Invoking the Schauder fixed point theorem, we conclude that there

exists at least one fixed point for T. We shall denote it by (v‘, u, n). To show that

the corresponding (v*, b, n) is a solution to problem P2, we shall only need to show

equality (2.89).

In fact, we do have the following conclusion.

1 k p

Lemma 2.16 / mdb 2 —oo.

0 u(b)

Proof. We shall start with the following facts. There exists a constant L > 0 such

that n(b) 2 1/L(1 - b) and a constant C2 < 0 such that u(b) Z C2(1 — b)”+q where

(u, n) is the pair in the fixed point stated above. The first. fact is trivial. The second
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Figure 2.7. Sketch of n

fact follows from Lemma 2.11. Thus

  

lobknv 1 Db"(1/L)P(1— b)? ___

l. mom’s/o Cam—b)?” "

Remark. Note that we kept k and p here and it is true for general k and p as long

aqul.

2.10 Instability of Flat Front

In this section, we carry out the linear stability analysis of the traveling wave front.

A similar analysis on a nondegenerate reaction diffusion system can be found in the

papers by Horvath et al.[36, 37]. They introduced a small spatial perturbation of the
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traveling wave solution. Upon linearization of the system, they obtained a dispersion

relation. Using numerical method, they obtained a detailed diagram of the dispersion

relation and explained the instability phenomenon. Because of degeneracy at the flat

wave front, we not only perturb the wave front but also the bacteria and nutrient

function at the front.

The system we will analyze takes the form

8b

a = DAbk+1+nb, (2.108)

987% = An—nb. (2.109)

For the convenience of analysis, we introduce the perturbed coordinate:

n = € + 66332900 c08(99)

in terms of which the bacteria and nutrient density can be expressed as

b(n. y, t) = 110(0) + 6b1(n)e$p(x\t) C08(99).

"(a y, t) = n0(0) + en1(n)exp(lt) 608(99)-

Here 5 is the traveling wave coordinate, bo and no are the traveling wave solutions.

n, = (no),,(—vo + eAexp(/\t) cos(qy)) + e(n1),,(—vo + eAe$p()\t) cos(qy))ea:p()\t)

cos(qy) + enlAexp(/\t) cos(qy),

”xx 2 (”ohm + 6(71'1)1777e$p()‘t) COS(qy)7
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" ("om-6061990 Sin((1;I/) + 6(m)n(—H1)6’-1‘1v(/\l)~‘2irl(<12/)6IP(M)608019) +

672162300009) sin(qy),

(710)n(—€q2)€113p()\t)(303011!) + <n.)...(—«1)2m:p(2At)(sin (1y)?

+6nlexp(/\t)(—q2) cos(qy) + 0(62).

Substituting the above expressions and Equalizing the 6 terms in equation (2.109),

we obtain

(no),,/\ — 0007.1)" + n1/\ 2 (71.1)",7 — Q2010)" — Q2711 — Tlobl — nlbo. (2.110)

Similarly we calculate

b. = (bo)n(—Uo + dam/V) c08((19) + 6(b1)n

(——vo + cAexp(At) cos(qy))e:rp()\t) cos(qy) + eblAecrp(At) cos(qy)

(W1). = (k + 1)b"((bo). + e(b1)nexp(x\t) cos(qy))

(bk-Him = (k + 1)kbk—l((b0)n + 6(b1)n6$19()\t)€05(qy))2

+(k + 1)bk((bo),,,, + 6(b1),,,,e:z:p()\t) cos(qy)

(bk+l)y = (k + 1)b'°[(bo)n(-é<1)e$p(/\t) Sin(qy) + 6(b1)n(-6q)e$p(/\t) 8in(qy)el‘p(/\t)

C08(99) + E121(-q)e:vp(/\t)sin(qy)l

(bk+l)yy = (k + 1)b’°[(bo),,(—£q)exp(/\t) sin(qy) + 6(b1)n(—cq)e:rp()\t)sin(qy)exp(/\t)

008(99) + 6b1(-q)e:1310(/\t)sin(€19)]2 + (k + llb"[(bo)nn(€q)2 eXI)(2/\t) si1120131)

+(bo).,(-692) expW) C08(9y) + ebl exp(At)(-q2) C08(99) + 0(8)] (2-111)

Substituting the above expressions into equation (2.108) and equalizing the e
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terms, we have

(bola/\‘v0(blln+b1/\ = (k+ 1198—118212100): +2<k+1>kb§ ‘00).0).

+(k+

+(k +1)(b0)kl-qz(b0)n “ q2b1] + 711110 + nobl-

1)kb§‘1b1(bo)oo + (k +1)(b0)k(b1)mz

(2.112)

Using equations (2.110) and (2.112) we can linearize the original system (2.108)—

(2.109) into

L11 L12 b1

L21 L22 n1

where

Ln =

L12 =

L21 =

L22 =

82

Df’—

b0)

—n03

62

an_2

+110—

/\+Df'q2 0

0 /\+q2

, 6

Db?(f)+vo— +710

377

02 .. Bbo

an

8

+(2DfD7 +2120)???

Bbofl"

”H2 —2+ 710,f(—

3

—b.

81) 0

Here f 2: b3“ and the differentiation is with respect to bo.

Similarly, if we have the following system:

bl: D V (n v bk+1)+ nb

n¢=An—nb
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”I + (”Ola

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)

(2.118)

 



After some tedious calculation, we arrive at the following linearized system:

I:11 L12

£21 £22

Now if we consider

earized system:

L11

L21

This implies that

b A+D ’ 2 0 b + b
1 = 71on 1 ( Oln 2119)

n1 0 A + q2 n1 + (no),,

02 , B

= Dnoa—n2(f)+’U05;"+7l0

2 II b

= Dnof’é—62 +(2Dnof 639 + ’00)2
an 317

IIInab ”82b

+Dn0f ( 6;)21'1)Mfg——3:) + no

, 3

+Dn0f (n0)"0_17 +Dnof(:0)n (b0)m (2-120)

I a I

= b0 +Df (bola"077 +Df((boln )2 +Df (b0)nna (2-121)

= —no, (2.122)

62 0

— 6—772 + ’Uo—an —b(). (2123)

the regular perturbation, similarly we obtain the following lin-

= (2.124)

51 = b1 + (bo)", 721 = n1 +010)".

AS we’ve seen before, bo is singular at the front, the above expression indicates that g:

is not a small perturbation. That’s why we can’t use the usual perturbation method.
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For this ei envalue roblem we consider two se arate re ions. For > 0 we have
_ 9 1

02711 877.1 2 2 Ono

7977+an—7) -(/\+q )n1_(’\+q )5;

which can be solved. In fact,

n1 = (1 — Co)”0€$P(_’Uo'7) + d0€$P(-’W77)-

. -‘/12 /\ 2 . . . . .

w1th w = ”0 10:“ +q ) and do 18 to be determmed usmg the boundary condltlon at 

77 = 0. Since n1 and its derivative are continuous at n = 0, we have

n1(0) = (1 — co)vo + do,

and

0,,n1 = —(1 — co)vg — dow.

Since we require that bl/bo is bounded, we may assume that at 77 = 0 b1 vanishes as

(21 = B ( ‘77)3-

By a straightforward calculation we obtain

B = A (Eloy/k

_k_voD

and
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Hence

b A

b—;—>-k—U for 7)—>0

which is finite.

The boundary conditions at n —> —00 are given by

b1 —) 0, anbl —) 0,

n1 —) 0, 6,,111 ——> 0.

Note A is small when q is small. Also n1 2 O and bl = 0 for q = 0 and so for

small q, [)1 and m are both of order q2 too. This implies that in equation (2.113) for

q small, the terms on the right hand side involving b1 and n1 are of order q“. Hence

to order q2, we have

L11 L12 b1 2 /\ + ID‘f’q2 0 (bo)" (2125)

L21 L22 n1 0 /\ + (12 (n0)n

Let L“ be the adjoint Operator of L which is obtained from

°° (151 °° .. zPl

/ (la/114%”! =/ (¢1:¢2)L (2126)

*°° (b2 “°° $2

Let z/q and 1,122 be the eigenvector of

I 62 6

L“ = Df 7’77" _ ”00—" +120 1”" (2.127)

b0 567,3 U061" — b0
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Hence by the definition of L‘, we have

°° b1 0° 7491

f (21,112» =/ (b1,b2)L*
00 711 00 $2

Hence

oo A + Df’q2 0 in

/ W1, ¢2lL an = 0

”°° O /\ + q2 679'?

from which we obtain the following relation

+00 abo 8710 _ 2 +00 , abo 6710

A/wo ($18—77 +1/J2—g) — ‘4 [_00 (lef 5-1; “ma—n)

So when q is small, we have

dA II

agile—0 ‘T

with

+°° , 0b 871

11=‘/—00 (Di/hf .5; +KZ’28—no)

and

+°° 8b 6

I2 =/ (#2119779 + $201170).

00

(2.128)

(2.129)

(2.130)

(2.131)

(2.132)

(2.133)

From this dispersion relation, one may be able to conclude that for fix k, there

exists a threshold Dk such that the flat interface is unstable for small q if D < Dk

and it is stable for all q if D > Dk. A possible dispersion diagram is as shown in

Figure 2.8.

This can be explained in the following way. We consider a perturbed flat front

moving from left to right as sketched. At the tip of bacteria finger that penetrate
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D small

\

/\ -\ - v -
Q

.— D large

 
Figure 2.8. An illustration of the dispersion relation for different D values

into the nutrient region, the nutrient gradients are compressed and the nutrient

diffusion is enhanced. The ”feeding” of the interface from the nutrient is hence

enhanced there, and this tends to make such fingers grow larger. On the other hand,

on the back of such fingers, the bacterial diffusion is reduced,’ this tends to reduce

the finger from growing, and hence stabilize the interface perturbation. The relative

strength of the two effects is determined by D. When D > Dk, the stabilizing effect

takes over, when D < Dk, the destabilizing effect wins over.

92



BIBLIOGRAPHY

[1] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex

nonlinearities in some elliptic problems, J. Func. Anal.122 (1994) 519-543.

[2] A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Cambridge University

Press, (1993).

[3] M.G. Crandall, P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct.

Anal.8 (1971) 321-340.

[4] E. N. Dancer, On non-radially symmetric bifurcation, J. London Math. Soc.20

(1979) 287-292.

[5] L. C. Evans, Partial Differential Equation, AMS, Providence, (1995).

[6] G. Flores, G.A. Mercado, J .A. Pelesko, Dynamics and Touchdown in Electrosta-

tic MEMS, Proceedings of ICMENS 2003 (2003) 182-187.

[7] B. Gidas, W.M. Ni, L. Nirenberg, Symmetry and related properties via the

maximum principle, Commun. Math. Phys.68 (1979) 209-243.

(8] DD. Hai, Positive solutions for semilinear elliptic equations in annular domains,

Nolinear Analysis37 (1999) 1051-1058.

[9] Julian Lopez-Gomez, Spectral theory and nonlinear functional analysis, Chap-

man & Hall/CRC research notes in mathematics series 426 (2001)

[10] H. Keller, D. Cohen, Some positive problems suggested by nonlinear heat gener-

ation, J. Math. Mech.16 (1967), 1361-1376.

[11] H. Kielhofer, Degenerate bifurcation at simple eigenvalues and stability of bifur-

cating solutions, Journal of Functional Analysi338 (1980) 416-441.

[12] Song-Sun Lin, On the existence of positive radial solutions for nonlinear elliptic

equations in annular domains, Journal of Differential Equations 81 (1989) 221-

237.

93

 

 



[13] Song-Sun Lin, Existence of positive nonradial solutions for nonlinear elliptic

equations in annular domains, Tran. of Amer. Math. Soc. 332 (1992) 775-791.

Song-Sun Lin, Peng-Ming Pai, Existence and multiplicity of positive radial solu-

tions for semilinear elliptic equations in annular domains, SIAM J. Math. Anal.

22 (1991) 1500-1515.

Song-Sun Lin, Positive radial solutions and non-radial bifurcation for semilinear

elliptic equations in annular domains, J. Differential Equqation386 (1990) 367-

391.

[16] K. Mcleod, Uniqueness of positive radial solutions of Au+ f(u) = 0 in R", Tran.

Amer. Math. Soc.339 (1993) 495-505.

[17] K. Mcleod, J. Serrin, Uniqueness of positive radial solution of Au + f(u) = 0 in

R", Arch. Rational Mech. Anal.99 (1987) 115-145.

[18] CV. Pao, Nolinear Parabolic and Elliptic Equations. Plenum Press, New York,

1992.

[19] J .A. Pelesko, D.H. Bernstein, J. McCuan, Symmetry and symmetry breaking in

Electrostatic MEMS, in press

[20] J.A. Pelesko, Mathematical Modeling of Electrostatic MEMS With Taylored

Dielectric Properties, Siam J. Appl. Math62 (2002) 888-908.

[21] J .Karatson, P.L. Simon, Bifurcations for semilinear elliptic equations with convex

nonlinearity, Electronic J. Difi. Eqn.43 (1999) 1-16.

[22] J.A. Smoller, A. Wasserman, Symmetry-breaking for semilinear elliptic equations

with general boundary conditions, Comm. Math. Phys.105 (1986) 415-441.

[23] J.A. Smoller, A. Wasserman, On the monotonicity of the time-map, J. Diff.

Eqn.77 (1989) 287-303.

[24] J .A. Smoller, A. Wasserman, Symmetry-breaking for positive solutions of semi-

linear elliptic equations, Arch. Rational Mech. Anal.95 (1986) 217-225.

[25] S.L. Yadava, Existence and exact multiplicity of positive radial solutions of semi-

linear elliptic problemmas in annuli, Adv. in Diff. Eqn. 6 (2001) 129-154.

[26] E. Ben-Jacob, O. Shochet, A. Tenenbaum, 1. Cohen COMMUNICATION, REG-

ULATION AND CONTROL DURING COMPLEX PATTERNING OF BACTERIAL

COLONIES, Fractals, 2, (1994), 15-44.

94

 



[27] E. Ben-Jacob, O. Shochet, A. Tenenbaum, 1. Cohen GENERIC MODELING OF

COOPERATIVE GROWTH PATTERNS IN BACTERIAL COLONIES, Nature, 368, 46-

49.

[28] LE. Bobisud, J .E. Calvert and W.D. Royalty, SOME EXISTENCE RESULTS FOR

SINGULAR BOUNDARY VALUE PROBLEMS, Diff. Int. Eq., 6 (1993), 553-571.

[29] X.F. Chen, A. Friedman, A FREE BOUNDARY PROBLEM ARISING IN A MODEL

OF WOUND HEALING, Siam J. Math. Anal., 32, (2000), 149-152.

[30] E. Feirleisl, D. Hilhorst, M. Mimura and R. Weidenfeld, ON A NONLINEAR DIF-

FUSION SYSTEM WITH RESOURCE—CONSUMER INTERACTION, Hiroshima Math.

J., 33, (2003), 253-295.

[31] PC. Fife, J .B. McLeod, THE APPROACH OF SOLUTIONS OF NONLINEAR DIFFU-

SION EQUATIONS TO TRAVELING FRONT SOLUTIONS, Arch. Rat. Mech. Anal.,

65, (1977), 335-361.

[32] H. Fujikawa, M. Matsushita, FRACTAL GROWTH OF BACILLUS SUBTILIS ON

AGAR PLATES, J. Phys. Soc. Jap., 58, 3875-3878.

[33] H. Fujikawa, M. Matsushita, BACTERIAL FRACTAL GROWTH IN THE CONCEN-

TRATION FIELD OF NUTRIENT, J. Phys. Soc. Jap., 60, 88-94.

[34] J.A. Gatica, V. Oliker and P. Waltman, SINGULAR NONLINEAR BOUNDARY

VALUE PROBLEMS FOR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS,

Journal Of Differential Equations, 79, (1989), 62-78.

[35] Y. Hosono, TRAVELING WAVE SOLUTIONS FOR SOME DENSITY DEPENDENT

DIFFUSION EQUATIONS, Japan J. Appl. Math, 3, (1986), 163-196.

[36] D. Horvath, V. Petrov, S.K. Scott, K. Showalter, INSTABILITIES IN PROPAGAT-

ING REACTION-DIFFUSION FRONTS, J. Chem. Phys., 98 (8), (1993), 6332-6343.

[37] Agota Toih, D. Horvéth, W.V. Saarloos, LATERAL INSTABILITIES OF CUBIC AU-

TOCATALYTIC REACTION FRONTS IN A CONSTANT ELECTRIC FIELD, J. Chem.

Phys, 111 (24), (1999), 10964-10968.

[38] Ya.I. Kanel’, STABILIZATION OF SOLUTIONS OF EQUATIONS OF COMBUSTION

THEORY FOR INITIAL FUNCTIONS OF COMPACT SUPPORT, Mat. Sbornik, 65,

(1964), 398-413.



[39] K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda and N. Shigesada, MOD-

ELING SPATIO-TEMPORAL PATTERNS GENERATED BY BACILLUS SUBTILIS, J.

Theor. Biol., 188, (1997), 177-185.

[40] S. Kitsunezaki, INTERFACE DYNAMICS FOR BACTERIAL COLONY FORMATION,

J. Phys. Soc. Jap., 66(5), (1997), 1544-1550.

[41] AM. Lacasta, LR. Cantalapiedra, C.E. Auguet, et al., MODELLING OF SPA-

TIOTEMPORAL PATTERNS IN BACTERIAL COLONIES, Physical Rev. E, 59,

(1999), 7036-7041.

[42] Luisa Malaguti and Cristina Marcelli, SHARP PROFILES IN DEGENERATE AND

DOUBLY DEGENERATE FISHER-KPP EQUATIONS, J. Differential Equations,

195, 2003, 471-496.

[43] M. Matsushita, J. Wakita, H. Itoh, I. RafOls, T. Matsuyama, H. Sakaguchi,

M. Mimura, INTERFACE GROWTH AND PATTERN FORMATION IN BACTERIAL

COLONIES, Physica A, 249, 1998, 517-524

[44] Donal O’Regan, THEORY OF SINGULAR BOUNDARY VALUE PROBLEMS, Chapter

9, World Scientific, 1997.

[45] R. A. Satnoianu, P. K. Maini, F. S. Garduno and J. P. Armitage, TRAVELLING

WAVES IN A NONLINEAR DEGENERATE DIFFUSION MODEL FOR BACTERIAL

PATTERN FORMATION, Discrete and Continuous Dynamical System-Series B, 1,

2001, 339-362.

96



ll]ll]l][]l]ll[]l]l[l]l]ll[[[l]l  

 


