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ABSTRACT

NONLOCAL CAHN-HILLIARD EQUATION
By

Jianlong Han

The thesis includes three parts. In the first part, we study a nonlocal Cahn-Hilliard
equation with no flux boundary condition and prove the existence, uniqueness and
continuous dependence on initial data of the solution to this equation. We also apply
a nonlinear Poincaré inequality to show the existence of an absorbing set in each
constant mass affine space. In the second part, we study the existence, uniqueness
and continuous dependence on initial data of the solution to a nonlocal Cahn-Hilliard
equation with homogeneous Dirichlet boundary conditions on a bounded domain.
Under a nondegeneracy assumption the solutions are classical but when this is re-
laxed, the equation is satisfied in a weak sense. Also we prove that there exists a
global attractor in some metric space. In the third part, we establish the existence,
uniqueness and continuous dependence on initial values for classical solutions to the
Cauchy problem of a nonlocal Cahn-Hilliard equation. We also prove that under cer-
tain conditions, there exists a discontinuous steady state solution for this equation in

a bounded domain.
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CHAPTER 1

Introduction

An interesting phenomenon is observed when a molten binary alloy is rapidly cooled to
a lower temperature. We find that the sample becomes inhomogeneous very quickly,
decomposing into a very fine-grained structure - two concentration phases, one rich in
one component and one rich in the other component. As time passes, the fine-grained
structure becomes more coarse with larger particles growing and smaller particles
tending to dissolve. The sudden appearance of a fine grained structure is called
spinodal decomposition. The coarsening process is called Ostwald Ripening.
In 1953, materials scientists John Cahn and John Hilliard derived the following

equation:
u = —A(2Au—F'(u)) for x€e QCR" and t>0, (1.1)

with the natural boundary conditions

Ou 0 1 -
—BZ—O and a—n(Au—/\F(u))-—O on ON.

They conjectured that (sometimes called the Principle of Spinodal Decomposition),
“Most solutions to the Cahn-Hilliard equation that start with initial data near a fixed
constant in the spinodal region exhibit fine-grained decomposition.” Since the conjec-

ture agrees with the outcome of physical experiments, the Cahn-Hilliard equation has



been accepted as a meaningful model of the dynamics of phase separation in binary
alloys.

To derive the Cahn-Hilliard equation as a model for the evolution of a concentra-
tion field in a binary alloy, we take the point of view that microstructure changes in
such a way as to decrease the total free energy of the sample, consistent with the sec-
ond law of thermodynamics. Not only should the free energy decrease but it should
do so as quickly as possible.

The Helmholtz free energy of a state is
E=H-TS,

where H is the total interaction energy, T is the absolute temperature, and S is
the total entropy of mixing. Using accepted definitions of H and S, for a scaled

concentration field u at fixed subcritical temperature, one can derive the expression

E(u) = %//J(z — y)(u(z) — u(y))®dzdy + /F(u(m))dz, (1.2)

where C is a positive constant, F' is a double well function, having local minima at
+1, and the interaction kernel J is assumed to be integrable with positive integral
and with J(—z) = J(z) by the symmetry of interaction between sites.

The goal is to find dynamics for the field u which decreases E(u) optimally, con-

sistent with thermodynamic principles. This suggests the evolution law.
0
7_6% = —grad E(u), (1.3)

where v > 0 is called the relaxation coefficient since it determines the rate at which
u approaches equilibrium.

In the evolution equation, for each ¢, u(t) is a function of position, that is, u(t)
lies in some space of functions X defined on a spatial domain, and so @ € X for

ot
all t > 0. On the other hand, E: X — R is a nonlinear functional and grad E(u) is



therefore the linear functional on X defined by
< gradE(u),v >= dihE(u + hv)|p=0, (1.4)

where <, > is the duality pairing. In order to have (1.3) make sense, X must be a

Hilbert space. First we consider the case X = L?(R"). In this case, we get
grad ;2 E(u) = C[(/ J(2)dz)u — J * u] + F'(u),

where * is convolution. On a bounded domain €, this is given by Jxu = [, J(z -

y)u(y)dy. Taking [ J =1, C =1 and denoting f = F’, equation (1.3) becomes
7%=J*u—u—f(u). (1.5)
We call this the Nonlocal Allen-Cahn equation. In (1.2), if we make the approximation
u(z) — u(y) ~ Vu(z) - (z - y),

and assume J is isotropic, equation (1.3) leads to

ou

5= dAu — f(u), (1.6)
the appropriate boundary conditions being
Ou
- 0.

This is called the Allen-Cahn equation.

Note that both versions of the Allen-Cahn equation do not preserve the average
value of u. This violates conservation of species if we are modeling phase change in
binary alloys. One way to correct this is to select a new metric space with respect to
which we take the gradient of the energy. So following Fife [23], we consider a new
Hilbert space H;', where H™! is the dual of the Sobolev space H! and the subscript
zero refers to mean value zero. Recall that, if f € L? and f f =0, there is a unique

¢ such that

-A¢ = f, %:O, and/¢=0.

3



We use the notation ¢ = (—Ay) ! f. Since (—Ay)~! is a positive self adjoint operator,
fractional powers of it are well defined. The space H; ! is the completion of the space

of smooth functions of mean value zero in the norm
1

H“”HO" = ”(‘AO)_2U”L2'
The inner product is given by
1 1
<u, v >y1=< (=Ao) 2u,(-Ao) 2v>2
for u, v belonging to Hy . If u € H; ! and v € L?, then

<V >p1=< < (=Ap)~ uv>L2

This means that the representative of grad E(u) in H;' is (—A)(grad LzE(u)) and
instead of the Nonlocal Allen-Cahn equation, we have the following Nonlocal Cahn-

Hilliard equation

%—?:A((LJ( y)dyu(z /J:c— y)dy + f(u)). (1.7)

with natural boundary condition

([ J(z — y)dyu(z) — [, J(z — y)u(y)dy + f(u))
on

Integrating the equation over €2, using the Divergence Theorem and the boundary

d
dt/nu !

so species are conserved. Also, to see that energy decreases along trajectories, note

= 0.

condition we have

that

T =2 [ [256 - 9)(u(a) - uu))e) — w(w))dzdy + f P (u)uds

—2//Jx— z)uy(z)dzrdy — 2//Jx— wy(y)dzdy—
//JI— y)uy(z dxdy+2//Jx— y)u(y) dzdy+/f Judz.

(1.8)



For the case of a bounded domain 2, using the symmetry of J, if we write a(z) =

JoJ(@ — y)dy, J xu(z) = [, J(z — y)u(y)dy, and k(u) = a(z)u — J * u(z) + f(u),
then we have

dE (u)

= [(a@ua) - I s u(@) + w))uds

/k u)Ak(u
(1.9)

Again using a first order approximation for u(z) — u(y), the local equation corre-

sponding to (1.7) is

%tti = -A(dAu— f(u))) for x€e QCR® and t>0, (1.10)

with the natural boundary conditions

Ou 0
e 0 and —a—(Au - f(u))) =0 on 9.
This is the Cahn-Hilliard equation (1.1).

Equations (1.5), (1.6), (1.7), and (1.10) are important in the study of materi-
als science in modeling certain phenomena such as spinodal decomposition, Ostwald
ripening, and grain boundary motion. Equations (1.7) and (1.10) share some common
features, for example, the mass is conserved and the energy is decreased. There is a
lot of work on equation (1.10), see for example (2], (3], [4], [5], [8], [9], [10], [11], [18],
[19], [21], [35], [39] and references contained in those articles.

However, for equation (1.7), there are very few results. To the best of our knowl-
edge, the only results related to equation (1.7) were given in [26] by H. Gajewski and
K. Zacharias and in [29] by G.Giacomin and J. Lebowitz .



In [26], H. Gajewski and K. Zacharias considered the equation
0

5 (7 (0= w) = V- () =0,
3(6’::’) loa = 0, (1.11)

u(z,0) = up(z),

where w(z) = [, &(|z — y])(1 — 2u(y))dy, v = f'(v) + w, and f(u) = ulogu + (1 -

u) log(1 — u).
a(z, Vv)
fr(w)

(a(z, 51)81 — a(z, $2)s2) (51 — $2) > sy — s2%, s1, 52 € Ry,

The mobility x has the form u = where a satisfies:

a
(a(z, s1)s1 — a(x, s2)s2)(s1 — 82) < ——1|sl — 59
3

They proved the existence and uniqueness of a solution to equation (1.11).

In [29], G. Giacomin and J. Lebowitz considered the equation

5F0(P)

Op =V -[o(p)V(—)]

F
on T¢, the torus R%mod Z%, where J ;,Ep) is the L, gradient of Fy. Here, o is a
function from [0, 1] taking nonnegative values and such that ¢(0) = o(1) = 0, and

Ro(p) = [ flotonir+ 3 [ [ It =r)(otr) = ot arar'

. . | ..
The function f. has a double well structure, symmetric about 2 with the minimum

at values p* and p~ < p*.

Denote g(p) = fc(p)+@(p—%) where J(0) = [r, J(r)dr. In [29], it is assumed

that:

(1) There exists a constant ¢ > 0 such that

ol

< D(p)=a(p)g"(p) < c

for all p € (0,1).



(2) Both g and o are symmetric with respect to %

(3) J € C?(T9), J > 0 and J(r) depends only on |r|.

With the above assumptions, G. Giacomin and J. Lebowitz indicated how one
might prove the existence and uniqueness of solutions.

In chapter 2, we study equation (1.7) with no flux boundary condition and prove
the existence, uniqueness and continuous dependence on initial data of the solution to
this equation. We also apply a nonlinear Poincaré inequality to show the existence
of an absorbing set in each constant mass affine space. In Chapter 3, we study the
existence, uniqueness and continuous dependence on initial data of the solution to
equation (1.7) with Dirichlet boundary conditions on a bounded domain. Under
a nondegeneracy assumption the solutions are classical but when this is relaxed,
the equation is satisfied in a weak sense. Also we prove that there exists a global
attractor in some metric space. In chapter 4, we establish the existence, uniqueness
and continuous dependence on initial values for classical solutions to the Cauchy

problem of equation (1.7). We also prove that under certain conditions, there exists

a discontinuous steady state solution for equation (1.7).



CHAPTER 2

The Neumann boundary problem
for a nonlocal Cahn-Hilliard

equation

2.1 Existence and uniqueness

Consider the integro-differential boundary value problem

(5 =8 I - v - [ J@-puwiy+ fw)in 9,¢>0

§ W Iz = pdyula) = fo S —phu@dy+ FW) _ o 1 50 450, (1)

\ u(z,0) = up(x).

In order to prove the existence of a classical solution to (2.1), we need the initial
+ ﬁ 2_+£
data to satisfy the boundary condition. So we assume uy(z) € C 2 (Q) for

some 3 > 0, and uy(z) satisfies the compatibility condition:

fn y)dyuo(z) — fg J(z — y)uo(y)dy + f(uo))

= =0 on 0Q. (22




Rewrite (2.1) as

( Ou )
5 a(z,u)Au+ b(z,u,Vu) in Q,t >0,
Ou  Oa(z) / oJ(z —y) _
< a(z,u) o + n u(z) Ton u(y)dy=0o0n 90,1t >0, (2.3)
\ u(z, 0) = uo(x),

where
a(z,u) = a(z) + f'(u),
@) = [ I - vy,
o
b(z,u, Vu) = 2Va - Vu + f"(u)|Vul|® + ula — (AJ) * u.

We assume the following conditions:
(A1) a(z) € C**#(Q), f € C***(R).
(A2) There exist ¢; > 0, ¢c; > 0, and 7 > 0 such that

a(z,u) = a(z) + f'(u) > c1 + colul*.

(A3) 09 is of class C**A,
Note that (A;) implies

F(u) = /: f(s)ds > ca|u|*"t? — ¢4 (2.4)

for some positive constants c3 and c;.

For any T > 0, denote Q1 = Q2 x (0,T). We first establish an a priori bound for

solutions of (2.1).
Theorem 2.1.1 If u(z,t) € C*(Qr) is a solution of equation (2.1), then

max [u(z, t)] < C(uo) (2.5)

for some constant C(uy).



In order to prove the theorem, we need the following lemma.

Lemma 2.1.2 If u(z,t) € C*'(Qr) is a solution of equation (2.1), then there is a
constant C(ug) such that

sup ||u(-, t)lg < C(uo) (2.6)
0<t<T

for any ¢ < 2r + 2.
PROOF. Let

E(u) = %//J(:r —y)(u(z) — u(y))®dzdy + /F(u(x))d:c. (2.7)

It follows from (1.9) that

dE(u)
dt

<0.
Therefore E(u) < E(up), i.e.,
1/ [ - ve) - u)dzy + [ Fu@)is
<3 [ [ 76 - - w)dsdy + [ Flun(o)iz

From condition (A4,), (2.4), and Young’s inequality, we obtain

/ |u|**2dz < C(uo).
Q

Since this is true for any ¢t > 0, we have

sup /|u|2'+2dx < C(u),
Q

0<t<T
where C(ug) does not depend on T.

Since  is bounded, it follows that

sup |lullg < C(uo)
0<t<T

for any g < 2r +2.

10



We will prove the theorem with an iteration argument.

PROOF. For p > 1, multiply equation (2.1) by u|u|[P~! and integrate over §2, to

obtain
/u|u|”'1u¢dm= —/a(x,u)Vu-V(u|u|p'1(a:))d:1:
//VJ(x— 1)V (ululP~(z))dydz
+//VJ(x—y)u(y)V(ulqu‘l(:c))dyd:c.
Since
/a(x, u)Vu - V(ululP~)dz =p/a(z, u)|ulP~!|Vu|’dz
Q Q
and
p+1
r— + 1
Vil 2 2= 22
with condition (A,), we have
1 p+1
/ afe, WV VuluP iz > 7 e / Vel 2 [Jds
p+2r+1

__dper / V| 2 |lds.

p+2r+1)2
This yields
+1
1 p+1 4pc, p 2 2
p+1dt |y d+(+) [V]u| |“dz

—//VJ(x—y)u(z)V(ululp—l(x))dydI

i / / VJ(z - y)u(y)V(uluf (z))dydz.

From Cauchy-Schwartz and Young’s inequalities, together with

V(ulu~") = pluf~'Vu,

11

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)



we have
-/ / VJ(z - g)u(@)V(uluP~ () dydz
< Mip / ||u|PVu(x)|

p+1 (2.14)
<M1p/|u| 2 |Vu Jlul 2 dz
p+1
AP /|Vlu| 2 |2dx+M2p/|u|”+1dz
"(p+1)2 Q ’

for some positive constant M, which does not depend on p, and M; =sup [ |VJ(z —

y)|dy. Also we have
[ [1996 - l9 @l @)z

—p / / IVJ( = 9)llu()llu(z) P [Va(z)|dedy
p—-1 p—-1
<p / u(z)] 2 |Va(@)|u(z)| 2 / VJ(z - 3)llu(y)ldydz
<ep / [u(z)P | Vu(z) Pdz + c()p / fu(z)P | / VI (z - 3)llu()ldyl?

<ep / lu(x)l”‘lqu(z)I"’dw

—1 5. P+1 L
p[/ Ju x)v'“dz]PH f [[ VI - @)y’ 2 dr)P+

<ep / [u(z) P~ |Vu(z) Pdz

p-1 2
+ c(e)pl / fu(z) P+ d)P 1 / ()P dy)P+ 1 M2

<o / fu(z) P [ V() Pdz + c(e)pM? / fu(z) P+ dz
p+1
clp /IVIuI 2 2d:1:+M3p/|u|”+1dac
(9]

(2.15)

for some constant M3 which does not depend on p. Inequalities (2.12)-(2.15) imply

p+1
/|u|p+ld 4 2P 2p01 /W| | 2 |2d:r§C-(p+1)2/IUI”“dx- (2.16)
Q

12



Now we need the following Gagliardo-Nirenberg inequality,

ID?vl| s < CilID™]|5rIoll7a + Calloll o, (2.17)
where
) 1 ) 1 1
Lca<t, 2=L4a--Dy+1-0)-. (2.18)
m s n r o n q
In (2.17),set s=2,j=0,7r =2, m =1, to get
|oll3 < CillDo| 3% [0] |24 + Co|[][3. (2.19)
pr + 1
2(pk—1 +1
Letv=|ul 2 ,uk=2",q=(“—k1+—),and
pr+ 1
n(2 —q) n
= = ) 2.20
¢ n(2-—q)+29 n+2+22% (220)
Using Young’s inequality this yields
e+ 1 a bk +1
/ |u|M T Lor < e/ |VIiu| 2 |Pdz+ce 1- a(/ |u|Mk-1 ldz)“k-l +1
Q Q Q
(2.21)

If we set p = p in (2.16) and plug (2.21) into (2.16), we obtain

d 2c1p e+ 1
ad pet+1y +——15/V 2 |2z
g [1ute Tz g 2208 [ o2 |

we+1 __a pe +1
< Cm + 1)2(6/ [VIu| 2 |JPdr+4ce 1- a(/ |u|Me-1 F ldz)ﬂk—l +1),
Q Q

(2.22)
: 1 C1lk
Choosing € = Cla £ 172 et we have
dt f [l * ldz + Ci(k) | IVIu] 2 |de < Cz(k)(/ Jul-1 + Laz) e + 1,
Q Q Q
(2.23)

13



1 a 2

= C1Hk = l—a.,. €11k -l—a. 1-—
where C) (k) ST Co(k)=C c (ﬂk n 1) (e +1)

Choosing € = 1 in (2.21), this and (2.23) also imply

pr+ 1
%/ |u|"’°+1dx+Cl(k)/ |u|“’°+1da:504(k)(/ et + Lggy o + 1
Q Q Q

where Cy(k) = C2(k) + c.

By Gronwall’s inequality, we have

e+ 1
/ |u#e T ldz < / uo|#* T ldz + 242 Ca(k sup/ |u|Me-1 + 1ggy -1 + 1
C1(k) "0 (2.24)
e +1 ’
< 6(k) max{MH T 1|0 (sup f jufte-1 + Lggy s + 13,
>0 Jo
2 C
where d(k) = ¢(1 + px)®, a = = and M, = sup |ug|. This implies
- z€N
i+ 1
f ful™ * 1dz < 6(k) max{Mi* * 1q, (sup / |u| k-1 + Lgg) e + 1y
Q 20 Jq
ﬂ_k‘i pe+1
< H(IQ|5 (k — i) Me—i +1 max{M“k +1 (sup/ luldz) 2 }.
1=0 t>0 Jq
(2.25)
Since el < 2¢, we have
Bk—i + 1

pe+1 pe+1 pe+1
8(k)5(k — 1)Me-1 + 1g(k —2)me—2+1...511) 2

Scl+2+---2'°-‘_(2a)k+(k—1)2+---+(/rc—z')2"+---+2’°-1 (2.26)

k k+1
<62 —1(20)—k+2+ -2

and

pe+1 e+ 1 .
- |-t 2 <P tL

(2.27)

14



Estimates (2.25)-(2.27) and Lemma 2.1.2 imply
1

1
( / |ul ¥ Laz) e + 1 < C|0|2%* max{ My, sup( / lul2dz)2} < Cluo)  (2:28)
Q >0 Ja
where C(uo) does not depend on k. Since this is true for any k, letting k — oo in

(2.28), we have
|lulleo < C(uo),

and therefore,

sup ||ulleo < C(uo)- (2.29)

0<t<T

Since u € C(Qr), it follows that

max |u(z, t)| < C(uo)
Qr

Remark 2.1.3 In (2.29), since C(ug) does not depend on T, we also obtain a global

bound for u whenever there is global existence of a classical solution.

Since maxg,. |u| < M, after a slight modification of the proof of Theorem 7.2 in

Chapter V in [30], using the equivalent form (2.3) we have

Theorem 2.1.4 For any solution u € C*'(Qr) of equation (2.1) having maxg,. |u| <
C, one has the estimates
max |Vu| < K1, lul5F < Ko, (2.30)
T
where constants K,, K,, and § depend only on C, ”u"HCQ(Q) and Q, |- |8:6) is the

Holder norm given in [30].

In (2.3), setting v(z,t) = u(z,t) — uo(z), we obtain the equivalent form

4 ~
gt—v = a(z, v, up)Av + b(z, v, Vv, up) in Q,t>0,
§ a(z,v, Uo)g:-: + 9(z,v,u9) =0, on 0, t>0, (2.31)
| v(z,0) =0,

15



where
a(z,v,up) = a(z,v + ug),

b(z, v, Vv, ug) = a(z,v + up)Aug + b(z, v + uo, V(v + up)),

and

da(z)
“on

aUO

a
/ 7= =) (44, 1) + uo(y))dy.

Since (2.2) implies 9(z,0,uo) = 0, the compatibility condition for (2.31) is also sat-
isfied.

J)(J;,v,uo) = (v(z,t) + uo(z)) + a(z, v, ug) —

Denote
ov 7
and
ov
Lo'U = E - ClAv

where ¢, is the constant in condition (A;).

Consider the following family of problems:

r ALv+ (1= X)Lov =0 in Qr,
< z\(&(x,v,uo)g:’—z +9(z,v,u0)) + (1 - A)(cl(g—” )=0 ondNx[0,T), (2:32)
\ v(z,0) = 0.

Lermma 2.1.5 If v(z,t,\) € C*'(Qr) is a solution of (2.52), then
max |v(z,t,A)| < K, (2.33)
Qr

where K does not depend on \.

16



PROOF. Since Aa(z,v,up) + (1 — Ay > Ay + (1 = A)ep = ¢ > 0, the terms in
(2.32) also satisfy (A;) — (A2) and so (2.33) follows from Theorem 2.1.1.

Consequently one may also conclude from Lemma 2.1.5 and Theorem 2.1.4 that:
Lemma 2.1.6 If v(z,t,)) € C>(Qr) is a solution of equation (2.32), then
ncl_)a;XIVv(:c,t,/\)| <Ky, |o(z,t, N5 < Ko, (2.34)
where constants K,, K,, and § do not depend on .

We will use the following abstract result(see [30]):
Theorem 2.1.7 (Leray-Schauder Fized Point Theorem) Consider a transformation
y=T(z,A)

where z,y belong to a Banach space X and 0 < A < 1.

Assume:
(a) For any fized A\, T(-, ) is continuous on X.
(b) For z in bounded sets of X, T(z, ) is uniformly continuous in \ on [0,1].

(c) For any fized A\, T(-,\) is a compact transformation, i.e., it maps bounded

subsets of X into precompact subsets of X.

(d) There ezists a constant K such that every possible solution  of x —T(z, ) = 0
with A € [0,1] satisfies : ||z|| < K

(e) The equation £ — T(z,0) = 0 has a unique solution in X.

Then there ezists a solution of the equation x — T'(z,1) = 0.

Define a Banach space

1+ 7
X = {v(z,t) € Cl +B’T(QT) :v(z,0) = 0}
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with the usual Holder norm.
For any function w € X satisfying conditions maxgy, |w| < M and maxg,. |[Vw| <

M,, we consider the following linear problem

(

v — (Aa(z, w, u0) + (1 — Ney) Av + Mb(z, w, Vw, up) = 0 in Qr,
~ ov - ov
¢ Aa(z, w,uo)% + Y(z,w,u)) + (1 — A)Cl%- =0 on 09 x [0,T],
\ v(z,0) =0.
(2.35)
+ ﬂ 2_+£
It is clear that there exists a unique solution v(z,t,A) € C "2 (Qr) of (2.35).

Define T'(w, A) by
T(w, ) = v(z,t, A).
Lemma 2.1.8 For w being in a bounded set of X, T(w, ) is uniformly continuous
in A

PROOQOF. Let w € X with ||w||x < M and let v; = T(w, \y), v, = T(w, A2), and

v = v, — v2. We have:
4

Vt — (Ald(x,w,uo) + (1 - A])Cl)A’U = (/\1 - /\g)h(:l:,w,vz),

- 0
§ (Ma(z, w,u) + (1 - /\1)61)6—:: = (A = A2)g(z,w, va), (2.36)
\ v(z,0) =0,
where
h(z,w,vy) = (a(z,w,uo) — 1) Avy — l;(x,w, Vw, u),
and
(:cwv)—c%—&(xwu)a—vz—
g\r,w,v2) = an y Wy U0 an .

Since |w|xy < M and Ma(z,w,uo) + (1 =Xy > ¢ > 0, from (2.35) we have

|[va(z, ¢, A2)|| C*(Qr) < N for some constant N independent of A;. Therefore

max |h(z,w,v2)] < N}, max|g(z,w,vs)] < N,

18



for constants N, and N, that do not depend on ;. Note also that Aa(z, w,up) + (1 —
Aer > ¢ > 0 for all A € [0,1]. It then follows from linear parabolic theory that the
solution of equation (2.36) will approach zero in X as |A\; — Ap| = 0.

Similarly, one can see that for any fixed A, T'(z, ) is continuous in X. Fur-

+ ﬂ .2+_ﬁ + ﬁ ﬂ
thermore, since C "2 (Qr) > C " 2 (Qr) is compact, we see that

T(w, A) is a compact transformation.
These observations, Lemma 2.1.5—Lemma 2.1.8 and the Leray-Schauder Theorem

imply the existence of a solution v(z,t) of (2.31), and therefore:

Theorem 2.1.9 Let 3 > 0. For uy € C**#(Q) satisfying the boundary condition
248
+8,—= .
(2.2), there ezists a solution u to (2.1) withu € C 4 2 (Qr).

We complete our goal of establishing well-posedness with the following:

Theorem 2.1.10 (Uniqueness and continuous dependence on initial data)
If uy(z,t) and uy(z,t) are two solutions corresponding initial data uyo(z) and

ugo(z) of equation (2.1), then

sup / |luy — ugldz < C/ |u10 — ugoldz, (2.37)
Q

0<t<T Jq

where C only depends on T.

PROOF. For any 7 € (0,T), 6 € C*!(Q,) with _3_0_ =0 on 90 x (0,7), we have

/(;u,-(:r,T)O(z,T)d:r—/ i(z,0)0(z,0) da:+/ / (ui6; + B(z,u;)AG)dzdt

/ / ONJ x u;dzdt +/ HQ * w;dzdt,
0 6n

where B(z,u) = a(z)u + f(u). Hence,

/(ul - ug)0(z,7)dz = /(uw — ug)0(z,0)dz
Q

)

+ /T/(ul — u)(6: + HAO)dzdt + /OT /n OAJ * (uy — uy)dzdt (2.39)

oJ
/ ‘/anggﬁ * U] - U2)dl'dt

(2.38)
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where
B(z,u;) — B(z,us)

for wu; # uy

H(z,t) = N
(1) 0B(z,u;)
_ for wu; = u,.
Ju
Let 0 be the solution to the final value problem
(00 .
5= —H(z,t) A0 + [0 in ,0<t<rT,
00
{ —=0 on 00,0<t<, (2.40)
on

where h(z) € C§°(2), 0 < h <1 and 3 > 0 is a constant.

By the comparison theorem, we have
0<6<ePlt-),
Therefore, from (2.39) we have

/n(ul — ug)hdz
/(ulo — ug)0(z,0)dz +/ / u; — up)B0dzdt (2.41)

/ /BAJ* (uy — u2) d:rdt+/ / 0—— * (u; — ug)dzdt.
an

/(u1 — ug)hdz
!
.
< / |10 — ugle P dx +/ /|u1 — ug|BeP " dzdt (2.42)
Q o Ja

T T
+ Cl/ / luy — ug|e?*="dzdt + 02/ / luy — ua|eft"dzdt.
0o Ja 0o Ja

Letting 8 — 0 and h — sign (u; — u3)* in (2.42), we have

/(ul - ’U.2)+d.’L’ S / |U10 - 'U,20|d.'1: + C3/ / IU1 - ’Uqld.’l?dt. (243)
Q Q 0 Q

Interchanging u; and u, gives

/ |uy — usp|dz < / |uio — ugo|dz + C:;/ / luy — ug|dzdt. (2.44)
Q Q o Ja

20
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By Gronwall’s inequality, (2.44) yields

/ |luy — ugldz < C(T)/ |uyo — ugoldz. (2.45)
! Q

Remark 2.1.11 If uo(z) € L*°(f2), we can consider weak solutions as follows:

Define

X = (/@) € ¥ @] 9(e) = [ J(o =) ), GHIoR =0)
and let

B = Closure of X in the L? norm.

Definition 2.1.12 A weak solution of (2.1) is a function v € C([0,T),L*(Q)) N
L*(Qr) n L%*[0,T),H (), with u, € L*[0,T),H () and Vh(z,u) €
L?((0,T), L*()) such that

< wy(z,t),¥(z) > +/th(x,u) - Vy(z)dz
(2.46)

- /(VJ *u(-,8)) - Vy(z)dr =0
Q
for all v € H'(Q) and a.e. time 0 <t < T, where h(z,u) = a(z)u + f(u), a(z) =

fQ J(z — y)dy, and
u(z,0) = ug(x). (2.47)

Theorem 2.1.13 If (A;) — (A3) are satisfied and ug € L*®(Q) N B, then there ezists

& unique weak solution u of (2.1)

Essentials of the proof: Since uy € L®(2) N B, there exists a sequence uf)k) € X

such that

k
lJud

k
lu$leo < C,

—-—u — 0,
oll 2 (2.48)
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where C does not depend on k. Consider equation (2.1) with initial data u(()k).
There exists a unique classical solution u(¥). By the energy estimate and other a
priori bounds, one can find a subsequence and a weak limit u such that

u®) =y in L2((0,T), H(Q)),
u® 5w in  L2((0,T), L*(Q)),
llull < C,
(2.49)
h(z,u®)) = h(z,u) in L%((0,T), H(R)),
h(z,u™®) = h(z,u) in L%((0,T), L*(R)),
u? = u, in L2((0,T), H1(Q)),

and u satisfies equation (2.46).

2.2 Long term behavior in the L? norm

First, we establish a nonlinear version of the Poincaré inequality.

Proposition 2.2.1 Let 2 C R" be smooth and bounded. For p > 1, there is a
constant C (2, p) such that for allu € WH(Q) with [,u =0,

/ lufdz < C(2,p) / IV |ul?2dz. (2.50)

Q Q
PROOF. If (2.50) is not true, there exists a sequence {ux} C W% (Q) such that
/uk =0, /|uk|2”dx > k/ |V |ug|?|*dz. (2.51)

Q Q Q
If wy = -u—k, then it follows that
||k 2p
1
[wk =0, / |wi|*dz = 1, / |V |we|P[dz < A (2.52)
Q Q Q

Therefore, there exists a subsequence (still denoted by {|wi|?}) and w € H'(R) such

that

[wklP — w in H' and |wi|’ = w in L2 (2.53)
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Since [, |V|wglP|?dz < %, for any ¢ € C§°(2), we have

0w P
oz, pdz = 0 (2.54)
for i=1,-- - ,n. Therefore,
ow
= 2.
Qa:cicpdx 0 (2.55)

fori=1,---,n and p € C§°(f2). So Vw =0 a.e in £, and w is constant in Q.

By taking a subsequence, (2.52) and (2.53) yield

1 1
w= (-Il—l)i, and lwklp - (|1_|)2 a.e in . (256)
So, we have
1
|we| — (ﬁ)QP a.e in Q. (2.57)

Since f wy = 0, there exists a unique solution ;. to

)
- Ap = wg in Q,
9y
13, =0 on 99, (2.58)
/ wdz = 0.
\ Ja
From (2.58), we obtain
/|V<Pk|2 = /wkwk < lwell p2llokll f2- (2.59)

Since Jq wxdz = 0, by Poincaré’s inequality, ||¢x|| 12 < ||Vl 12> therefore (2.58)
and (2.59) imply

IVell 2 < cllwll 2 (2.60)

and
/V(|wk|p"lwk)V¢kdz=/Iwkl”“dx. (2.61)
Q Q
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Since

V(|wk [P~ wk) = plwk P~ Vg,

we have

|V (Jwi P wi)| = plweP~H | Vwg| = |V]wil?).

Hence, from (2.61), we have
/ |wi " dz = / V (|wil?~ wi) Viprdz
Q Q
< [ 9wl Vrlas
Q
S IV welPll 21l Verl| 2

—0

as k — oo, by (2.52) and (2.60). Hence, along a subsequence,
|wi[P*! — 0 a.e in £,
i.e,
|lwg] = 0 a.e in Q.

This contradicts (2.57).

(2.62)

(2.63)

(2.64)

(2.65)

Remark 2.2.2 In [6], the same result was established independently by Alikakos and

Rostamian, which was brought to my attention by Professor Alikakos.

The following lemma may be found in 38]

Lemma 2.2.3 (Uniform Gronwall inequality) Let y be a positive absolutely continu-

ous function on (0,00) which satisfies
Y +vyf <6
with p > 1,v>0,6 >0. Then, fort >0, we have
1 -1

y(t) < (g)l_7 +(wp-1)t)P— 1.

24
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We use this to prove the following:

1

Proposition 2.2.4 Let o < ( )27‘, where ¢, and cy are the constants in assump-
C2

tion (Az), and let 4y = I%l- fﬂ wodz. If u(z) is a solution of (2.1), and |G| < oy, then

for any q > 1, we have

g+1
/ﬂ|u —gldt liz <y + (fir:) 2r (2.67)

where C; depends on oy and q, and C, depends on q.

PROOF. Let u = v + 4 in equation (2.1). Since

ov_ou
ot ot’
Vv = Vu,

and
Va(z)v — (VJ) xv = Va(z)u — (VJ) xu

(2.1) becomes

ov

n =V - (a(z,u)Vv +vVa(z) — (VJ) xv), (2.68)

with the boundary condition
(a(z,u)Vv +vVa(z) — (VJ) xv) - n =0 on ON.

Multiplying equation (2.68) by |v|9~'v, integrating by parts, and using Holder’s and

Young’s inequalities gives

ma—/ |v|q+1d:c+q/a(:c u) |9~ 1|Vv|2d:l:
+1 (2.69)

/|V|U| 2 Pdz+ M(e( /|v|q+ldx
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Since |v]|?" < 2%~ !(Ju|? + |1o|?"), with condition (A;) we have

a(z,u) > c; — co|do|”" + 5 |v|2’ (2.70)
It follows from (2.69) and (2.70) that
. g+1
g+1,, 4@ -c2|u0|2)/ 2124
q+1dt/|vl g S, VRl 2 s
1 g+2r+1
gc2 — 2 (2.71)
2
+ 2% (g + 2r +1)2 / Vvl |“dz
q+1
< e(q)/ |V|v] 2 |2d:c+ M (e(q)) /|v|q+ iz,
Q
i 4 ( 2r)
Choosing o < (—2)21’, e(q) = q—f;:_—%?o—- in (2.71), for |@o| < ap, we obtain
1 g+2r+1
q+ l dt / o T 22 (g+2r+1)2 Jq Vil |“dz (2.72)
< M(e(g), ) [ lof**ida.
Q
Since [ vdz = 0, Proposition 2.2.1 implies
g+2r+1
/ |72 +1dz < C / V| 2 Pds (2.73)
It follows from (2.72)-(2.73) and Holder's and Young’s inequalities that
g+2r+1
& [wimas @[ prrtas) 9¥T <cga) T
for constants C3(q) and C4(q, ag). By Lemma 2.2.3, we have
g+1 g+1
Cs(q) Cs(g)t2r -
v|tdr < (=)t 2r+ 1y (28T g 2.75
‘/nl | (C4(q,ao)) ( g+1 ) (2.75)

From Proposition 2.2.4, we have

Theorem 2.2.5 Assume ap > 0 is gwen in Proposition 2.2.4, ¢ > 1, and

1
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Then for any solution of (2.1) with | QI| J uodz| = |Go| < ao, there ezists a time

to(co,q) > 0 such that

l|ullg+1 < &, for all t > to(ao, q). (2.76)

Remark 2.2.6 Applying Proposition 2.2.1 to the standard Cahn-Hilliard equation,
we can prove that there exists an absorbing set in each constant mass affine L? space

directly as follows:

Let u satisfy
( Ou

5 = D(-ddu+ f(w) in Qt>0
7 Ou =0, 0Lu _ on 89, t>0, (2.77)
on on
| u(z,0) = uo(z),

where
2p—-1

fu) = Eai"ja az-1>0, peN, p2>2.
For simplicity, assume || = 1, let [ uo(z)dz = @, and v = u — .

Multiply equation (2.77) by v and integrate over Q2 to get
d 2d
f'”' - +d/|Av|2 +C/lV]v|”|2 <c /|u|2 + k(@io),

where k(@) depends only on .

Since [v = 0, by Proposition 2.2.1, we have

[wﬁsc/wwm.

By Hélder's and Young’s inequalities we have

d [ |v|*dz o7
@ + Cz(/ [v]*) < k(a).

So by Gronwall’s inequality, there exists an absorbing set in the affine space Hy, =

{UE L2,ﬁf‘u=ﬁ0}.
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2.3 Long term behavior in the H! norm

In Section 2.2, we considered the long term behavior of the solution in the L? norm
for any given p > 1. In particular, there exists a “local absorbing set” in the sense
that if | [uo| is not too large, the solution enters a fixed bounded set in the affine
space @g + L? in finite time (note that @y = | Q) fn uyg is conserved by the evolution).
In this section we consider the long term behavior of the solution in the H! norm. In
this case, we do not need any restriction on | [ u,|.

Note that (A;) implies

f(w)u > cs5|u|?*? — ¢¢ for some constants cs and cg.
We make additional assumptions on the nonlinearity,
(Aq) |f(w)] < crlul™*! + c,

(As) F(u) = [} f(s)ds < colul**? + c10, and ¢5 > co.
Remark 2.3.1 (4,), (A4), and (As) hold for f(u) = c|u|*u+ lower terms.

Denote ¢ = |—81)[ fo ¥dz and write ¢ = ¥ — .
For ¢ € L%(Q), satisfying ¢ = 0, we consider the following equation:

(

AN

00
{ pplon=0 (2.78)

/oo

The equation (2.78) has a unique solution 8 := (—Ao)~!(¢). Denote ||¢||-; =

1
(Ja w(—Ao)-1(¢)dz)§. This is a continuous norm on L?(12).

Since @ = @, is constant, we may write the equation as

O(u —u)

—— = AK(u), (2.79)
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where K (u) = [, J(z — y)dyu(z) — [, J(z — y)u(y)dy + f(u). Applying the operator

(—=2Ap)™! to both sides of equation (2.79), we obtain

d(—=Dop)~!

(-9 + K(u) = 0.
Taking the scalar product with u — % in L?(f2), we have
s = a2 + (K (), u— 1) =0.

From condition (A4;)-(As), we have

(K(u),u — )

/(/Ja:— )dyu(z) — /J(:c— y)dy + f(u))(u(z) — @)dz

=//Ja:—-y)u2(xdydx—//Jx—y u(y)u(z)dydz
/f(u dz—ﬁ/f
//Jx—- u(z) — u( ))2da:dy+/uf( dx—u/f

> 2//J z — y)(u(z) — u( ))2dxdy+/(c5|u|2'+2—c6)da:
gl f (crluPr* + ca)dz

> %//J(x — y)(u(z) — u(y))?dzdy + cs / |u|?+2dz
- e/ |u|>*2dz — c(a, €)

for any € > 0. Choosing € = c5 — cg, we have

(K(u),u— 1)

//J(z— ) — u( ))2dxdy+c9/|u|2’+2dx—c( )

//J -y ) — u( ))2dzdy+/ F(u)dz — c(a)

(u) - c(a)
= E(u) — c(ao).
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Also from (2.83), we have
(K(u),u—7) > c / w22z — c(go) (2.84)

for some positive constants ¢ and ().

Since ||.||-; is a continuous norm on L?(f2), we have

llu = @]y < Cllu - @ll2. (2.85)
Therefore,

llu = @o||—1 < C||u — tol[2
< Cllu — dollar+2 (2.86)
< Cllu|l2r42 + C(io)

for some positive constants C and C(,). From (2.81), (2.84), and (2.86), it follows

that
d = |12 = 112r+2 =
g1t~ BollZy + Cllu = @] |27 < C(ao). (2.87)

By Lemma 2.2.3, we obtain

|lu — @ol[2, < ( )THL+(Cr)t) T (2.88)

Thus, we have proved:

Theorem 2.3.2 There ezists M(iiy) such that for any p > M (iig) 2T + 2, there ezists

a time ty such that
[lu —aol|-1 < p, V2>t (2.89)
From (2.81) and (2.82), we also obtain

llu — @ol[2, + E(u) < c(ao). (2.90)

N =
S|
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Integrating from ¢ to t + 1, then (2.89) implies

| Blu(s))ds < (1) = () + % (2.91)

for t > ty. Since E(u(t)) is decreasing, (2.91) implies

E(u(t)) < ¢*(t0) (2.92)

fort >ty + 1.

Since, from (2.4),

B) 2 g [ [ I - v - uw)dsdy + [ Plujds

(2.93)
2 03/ [u]**? — c4,
inequalities (2.92) and (2.93) yield
/ |u**? < eu(to) (2.94)

for t > t,.

1
Corollary 2.3.3 There ezists c,(iig) > M(ig)2T +2 such that for any p > c. (i),

there ezists a time t§ such that
J 1l < @) for v 6 (2.95)

Next we estimate ||Vul|,.
Denote h(z,u) = a(z)u + f(u). Multiplying (2.1) by h(z, u) and integrating over

2, we have

/h(:c,u)u¢+/|Vh(1:,u)|2 =/VJ*u-Vh(:z,u). (2.96)

Since
2.1 2
h(z,u)u, = (a(z)u + f(u))u, = &[ga(r)u + F(u)], (2.97)
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and
[ 97 - Vha,u) < cllulf + 51VAG 0B (2.98)
equation (2.96) yields
d [.1 9 1 2 B
7 [-2-a(:z:)u + F(u)] + 3 |Vh(z,u)|* < c||ulls. (2.99)

Integrate (2.99) from ¢ to ¢t + 1, and use assumption (A4,) and Corollary 2.3.3, to

obtain

/ttﬂ / |Vh(z,u)* < c (2.100)

for some constant c and all t > t.

Multiply (2.1) by h(z,u); and integrate on 2 to obtain
/h(z,u)tu¢+/Vh(a:, u) - Vh(z,u), =/VJ*u'Vh(:c, u)s. (2.101)

Since

h(z,u)eu, = a(z)uf + f'(v)ui > c1u?,

/thu) Vh(z,u), 2dt/|Vh1:u

and

-

(2.102)

/VJ*u Vh(z,u), /VJ*u Vh(z,u) - fVJ*ut Vh(z,u),

we have

Cl/lutl + = /|thu
(2.103)
< —t/VJ*u-Vh(:c,u) - /VJ*ut-Vh(z,u).

Estimate (2.103) with the Cauchy-Schwartz, and Young’s inequalities imply
d 2 4 2
7 |Vh(z,u)|* < 7 2VJ xu-Vh(z,u) +v [ |Vh(z,u)] (2.104)

for some constant v >0.

32



For t < s < t + 1, multiplying (2.104) by €~*), we have

a%[e"("’)/Wh(x, u)]?] < e‘f“-&)(j%/ﬂ?J*u - Vh(z,u). (2.105)

Integrating (2.105) between s and ¢ + 1, we obtain

"’/ |Vh(z, u.(x,t+ D)? - e”""’)/|Vh(:z:,u(:c,s))|2
a2 (2.106)

t+1
5/ e"(‘_“)i/2VJ*u(-,u)-Vh(:c,u(z,p))dxdu.
s d# Q

Write
t+1 d
/ e'r(t—u)_/ 2VJ xu(-, pu) - Vh(z,u(z, p))dzdu
s du Ja
= [ 397 4 u(, ) - Vhz, u(a, ) dals
Jo (2.107)
= [ e [ 290 sl - Vhiz, (e, u)doda
s Q
= Il + 12.
Also,

h= 0 [ 290 1u ) - Vhiz, u(e, w)dsls*
[¢)
= '7/ 2VJ xu(-,t +1) - Vh(z,u(z,t + 1))
1]

_ t=9) / AVJ x u(-, s) - Vh(z, u(z, 5))dz.
(1]

(2.108)

Using the Cauchy-Schwartz and Young’s inequalities, this is bounded above by

-y
¢ |Vh(xu(xt+1 |2+C/|uxt+1)|

2
‘7hxuz 2+(: u\zr, s 2
|A| ( ’ ( ,S))| /l (’ )I

for some constant C. Furthermore,

t+1
I -/ 7e’('"“)/2VJ*u( p) - Vh(z,u(z, i))dzdp
(2.109)

t+1
<C/ /‘|thu1:u|2 /Iuruz]dp
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Estimate (2.106) becomes
e / IVA(z, u(z, t + 1)) — 7 / Vh(z, u(z, )2 <
Q Q
-y
52—/ |Vh(z,u(:c,t+1))|2+C/ |u(:r,t+1)|2+/|Vh(1:,u(z:,s))|2 (2.110)
Q Q

+C /ﬂ w9 +C [ " | 19tz )+ [ tutewPan

Therefore,
it 4
e—f IVh(z, u(z,t + 1))[?
2 Jg

<@ [ [9hiz,u(e )P+ C [ fulzt+ P+ [ (Vi@ u@ )P @11
19} 0 113

+ [t o+ [ 1 (VA utm)+ [ ool

Integrating (2.111) from ¢ to t + 1 with respect to s, we have

-
CT / |Vh(z, u(z, t +1))|*dz
t+1 t+1
5/ et~ ’)/ |Vh(z, u(z, s))lzd:cds+C’/ /|u(x t+1)|*dzds
t+1 t+1
/ /IVh (z, u(z, s))|2d:z:ds+C/ /Iu (z,s)|*dzds
t+1 t+1
+C/ / [/ |Vh(z, u(z, u))|2d1+/ |u(z, u)|*dzx])duds (2.112)
t s Q N
t+1
S/ / |Vh(x,u(z,s))|2dzds+C/ lu(z,t + 1)|%dz
¢t Ja Q

t41 t+1
+/ /|Vh(:c,u(x, s))|2dxds+C/ /Iu(x,s)lzdxds
t Ja ¢ Ja

t+1
+C f (= 1) fn IVh(z, u(z, m))2dz + /n fu(z, ) Pdz]d.

By (2.95) and (2.100), estimate (2.112) yields
/ |Vh(z,u(z,t +1))|*dz < C(i) (2.113)
Q

for t > ¢,(y) and some C(io) > 0.

Since
Vh(z,u(z,t+1)) = (a(z) + f'(u(t + 1)))Vu(z,t + 1) — u(z,t + 1)Va(z), (2-114)
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we have
/th z,u(z,t+ 1))2 > /| (u(t + 1)) 2| Vu(z, ¢ + 1)
_ / lu(z, t + 1)Va(z)[? (2.115)

Z/Q—cl|Vu($ t+1)|2 = D(a)

for t > to(o) and some constant D(iy).

Estimates (2.113) and (2.115) imply
/n|Vu(x,t+ 1|2 < G(), (2.116)
for t > t3() and G(@p) > 0. Thus, we have
Theorem 2.3.4 There ezists a time tj(to) such that
llullan < e(@io) for t > t5(@o). (2.117)
Remark 2.3.5 [38] gives a similar result for the Cahn-Hilliard equation.
Also we have the following theorem

Theorem 2.3.6 If u is a solution of (2.1), and Q(u) = (f, J( dy)u(z) — J *

u(x) + f(u(z)), then there ezist a sequence {tx} and u* such that

u(ty) = u* weakly in H!,

(2.118)
Q(u(ty)) = Q(u*) weakly in H',
and Q(u*) is a constant, i.e. u* is a steady state solution of (2.1).
PROOF-. If u is a solution of (2.1), from (1.9), we have
dE
d(t“) = / IVQ(u)|2dz. (2.119)
This implies
/ | [9Qu)Pdadt = E(u(0) - B(T)). (2.120)
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Recall that

Ew%=i//Ju—wwurwmm%Myﬁ/nw@mL
Using (2.4), we have
—-E(u(T)) <C, (2.121)

where C does not depend on T.

(2.120)-(2.121) imply

/ ” / IVQ(u)|dzdt < C, (2.122)
0 Q

for some positive number C. So there exists a sequence {tx} with t; € [k, k + 1], such

that

/ IVQ(u(ty))[2dz — 0. (2.123)
Q
From (2.29), Remark 2.1.3, and (2.117), we have

|lu(te)lleo < Ch,
(2.124)
|lu(te)llm < Co.
Observations (2.123) and (2.124) imply that there exists a subsequence of {¢x} (still

denoted by {¢}) such that

u(ty) — u* weakly in H',

u(ty) = u* strongly in L?

(2.125)
Q(u(ty)) = v weakly in H',
Vv=0a.ein Q.
Since ||u(tk)”oo < C’1 and Hu‘”oo < Clv we have
11 (ulte)) = F(u)lliz < Cllu(te) = u”|lza. (2.126)
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for some constant C.
(2.125) and (2.126) imply
v=Q(u") a.e in §,

v = constant, (2.127)

/u‘d:t:=/u0dm.
Q Q

So u* is a steady state solution of (2.1).

2.4 Applications to other nonlocal problems

The method for the nonlocal Cahn-Hilliard equation can also be applied to other
nonlocal problems. For example, we consider the following integrodifferential equation
that may be related to interacting particle systems with Kawasaki dynamics (see [18],

[31], [32], [33], [34])):

( ";t_" = Alu~—tanh(8J +w)) in Q,t>0,
{ d(u — tanh(BJ * u)) —0on 0Q,t>0, (2.128)

on
u(z,0) = uo(z),

where [ is a constant and J is a smooth function.

Note that the average of u, @ is constant in time.
2+«

2 (Qr) is a solution of (2.128), multiplying equation

a,

2+
If u(z,t) € C

(2.128) by u and integrating by parts, we have

ldf'“'2 /[Vu|2 /v (tanh(B8J * u))Vu (2.129)

Since

48V J * u

V(tanh(BJ x u)) = (e_B'] xu | oBJ * u)2

37




and

(e—ﬂJ*u +eﬁ.]*u)2 >4

)

we have
/ IV (tanh(8J * u))[2 < / BRIVJ % ul? < C(Q,J, B) / fuf2. (2.130)
The Cauchy-Schwartz inequality and (2.129)-(2.130) imply

2
ldf'“' /|v 2 <@, J,8) /|u|2 (2.131)

By Gronwall’s lemma, we obtain

/ luf? < (T, uo). (2.132)
A similar argument to that in the proof of Theorem 2.1.1 yields

sup |u| < C(uo, T). (2.133)

Qr

The analogues of Theorems 2.1.4-2.1.10 yield

Theorem 2.4.1 If a(z) = [ J(z — y)dy € C***(Q), 8Q is of class C*** for some

a > 0, and uy(z) € C***(Q) satisfies the compatibility condition, then there ezists a
2+«

24+a,——
unique solution u(z,t) € C * 2 (Qr) to (2.128).

For the long term behavior of the solution, we consider

du
= = DK(u), (2.134)

where K (u) = u — tanh(8J * u).
Apply the operator (—2A)~! to both sides of (2.134), where (—2)~! is defined
in (2.78). We obtain

d(=Do) ™" (u — 1)
dt

+ K (u) = 0. (2.135)
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Taking the scalar product with u — %o in L%(Q2), we have
——||lu = @l |%, + (K (u),u — @) = 0. (2.136)

Note that
(K(u),u — @g) = (u — tanh(BJ * u),u — o)

= (u— 1 + Tlo, u — To) — (tanh(BJ * u), u — %)

2/|u—ﬁol2— |ﬂo|/|u—ao|_/|u_ﬂ0| (2.137)
Z;/'“"UOI — B(ip)

for some constant B(p).

Continuity of the embedding gives

|lu — tol[-1 < Cllu — Goll2- (2.138)
Equation (2.136) yields
d =2 =12 =
2l = ol 2, + Cllu = Goll?, < 2B(do). (2.139)
Gronwall’s inequality implies
|lu — |2, < %ﬁ") + Ke ©t. (2.140)
2B(y)

So, there exists C(@g) > and ty := to(@o) such that for t > ¢,

C

|lu = |2, < C(a), (2.141)

and so there exists an absorbing set in the H;' norm.

For t > tp, integrating (2.136) from ¢ to t + 1 gives

llu-,t +1) = @l = [lu(-,t) - doll2,

t+1
/ / lu(z, s) — to|*dzds < B(iy).
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Inequalities (2.141)-(2.142) imply
t+1
/ / lu(z, s) — dg|*dzds < C(). (2.143)
t Q
for some constant C(@,). This yields
t+1 )
/ / lu(z, s)|*dzds < C(ao). (2.144)
t Q
So there is a t; € [t,t + 1], where [, |u(z,t;)|?dz < C(@o). From (2.131) we have

t+1
/ lu(z,t + 1)|°dz < / lu(z, ,)|%dz + C(R, J, ﬂ)/ /Iu(z, s)|%dzds
Q Q t Q

(2.145)
< Ci()
for t > t,.
By (2.132) and (2.145), we have
sup/ lu(z,t)[>dz < C(i). (2.146)
t>to JOQ

By (2.131) and (2.146), using a similar argument to that in the proof of Theorem

2.1.1, we have
sup ||¢]leo < C(uo). (2.147)
t>0

Next we estimate ||Vul|2

Integrating (2.131) from ¢ to t + 1 with ¢ > t,, we have

t+1 t+1
(st + D2 = [ul- 8)IB + / /Q Vultds < C / o)l (2.148)
t t

Inequalities (2.145) and (2.148) yield

t+1
/ / |Vul|?dr < C(iy). (2.149)
t 0

Multiplying (2.128) by u, and integrating over 2, we obtain
/(u,)2 + /Vu -Vu, = /V(tanh(ﬁ] *xu)) - Vu,. (2.150)
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Note that

/V(tanh(ﬂJ*u -Vu, = d_/ (tanh(BJ * u)) - Vu
(2.151)

/ V(tanh(BJ * u)); - Vu,

/Vu-Vut 2dt/|wl2 (2.152)

and

|V (tanh(BJ * u)).| =

(48V J * ut)(e"'B‘] *u g BT xuy _gpryy g (B ru =B * UY(VJ) *u
| (e—ﬁJ *u y oBJ* u)3

< Clluy 2.
(2.153)
It follows from (2.150)-(2.153) that
la 2
/ “ 2dt/ Vel
= —fV(tanh(ﬂJ* u)) - Vu — /V(tanh(ﬂJ *u))s - Vu
dt
g (2.154)
< E/V(tanh(ﬂJ* u)) - Vu+/C||u,||2|Vu|
< %/V(tanh(ﬂ] xu)) - Vu+ %Hutllg + C/ |Vul?
Therefore,
d 2 4 2
= [ 1Vul? < = [ 2V(tanh(8J +w)) - Vu+C [ |Vuf?, (2.155)
where C depends on 4, J and 2.
For t < s < t + 1, multiplying (2.155) by e€(*=%), we have
d 2_C(t-s)
21/ 1Vu(z,5) et da)
s (2.156)

< eC(“’)(—id;[/ 2V (tanh(BJ * u(-, s))) - Vu(z, s)dz].
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Integrating (2.156) between s and ¢t + 1, we obtain

/qu(a:,t + 1)l2e-Cdx _ / IV’U.(:L', S)|26C(t—s)d$

t+1
< / eC“-“%[ / 2V (tanh(BJ * u(-, 1)) - Vu(z, p)dzldp

= Il-

We compute

I = [eC(““)/2V(tanh(ﬁJ +u(-, p))) - Vu(z, p)dz]|H
+ /Hl CeClt-#) /2V(tanh(ﬁJ *u(-, 1)) - Vu(z, u)dzdu
= e‘C/2V(tanh(ﬂJ xu(-,t+1))) - Vu(z,t + 1)dz

— =) /2VtanhﬂJ *u(-,s) - Vu(z, s)dz

t+1
+/ CeCl-#) /2V(tanh(ﬂJ *u(-,p))) - Vu(z, p)dzdp
=P+ P+ P;.
First,
P = e_C/2V(tanh(ﬂJ *xu(,t+1))) - Vu(z,t + 1)dz

e—C

< - |Vu(z,t + l)|2dx+C/lu(x,t+ 1)|%dz

for some constant C. Also sincet < s < t+ 1, e€(t%) < 1, and we have
P, < /|Vu(x, s)]zdm+C/ |u(z, s)|%dz,
and
t+1
Ps [ Wu@upds+ [ lue wPdada
Estimate (2.157) becomes

/|VU(I,t+1)|2e_Cdx—/|Vu(z,3)|?ec(t-8)dx
o
<= [ IVulz,t+ )P+ C / [u(z,t +1)dz + / Vu(z, 5)dz

+C/|u(z, s)|%dz + /t+1[/|Vu(z,u)|2dz +C/|u(:c,u)|2dx]d/t.
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This yields
/ |Vu(z,t +1)’dr
< C[/ |Vu(z, s)|’dr + / lu(z,t +1)|*dz + / |u(z, s)|%dz (2.163)
t+1 t+1
+ [ [19uwPdsdu+ [ [ luten)idodul
¢ ¢

Integrating (2.163) from ¢ to ¢t + 1 with respect to s, we obtain

/|Vu(:r,t+ 1)|%dz < C[/ttﬂ / |Vu(z, s)|*dzds

t+1 t+1
+ / f lu(z, ¢ + 1)|2dzds + / / lu(z, s)Pdzds
t t

t+1 t+1
+ / / Vu(z, 1) Pdzdy + / / lu(z, 1) Pdzdy] (2.164)
g ‘
=C[/ /qu(:r,s)]zdxds+/|u(x,t+1)|2da:ds
¢

+/:+l/|u(x, s)|*dzds).

Therefore, estimates (2.144), (2.145), (2.149), and (2.164) imply
/ Vu(z, t + 1)2dz < C(do) (2.165)

for t > ty(uo) and for some constant C(iy).
This means that there exists an “absorbing set” in the affine space Hj, relative

to the H! norm.
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CHAPTER 3

The Dirichlet boundary problem

for a nonlocal Cahn-Hilliard

equation

3.1 Existence, uniqueness and continuous depen-
dence on initial data for classical solutions

In this part, we study the following integrodifferential equation

(5 = 8 I =iy - [ J@-puay+ fw) i Qn

J w=0 on Sr, (3.1)

| u(z,0) = uo(z),

where as before Qr = Q x (0,T), Sr = 2 x (0,T), Q C R” is a bounded domain,
J(—z) = J(z) for € R*, and f is bistable. We do not assume that J is nonnegative
but its integral is assumed to be positive.

Rewrite (3.1) as
u, = (p(z) + f'(u))Au+ 2Vp(z) - Vu + f"(u)Vu - Vu+ulp — (AJ) xu, (3.2)
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where
p(z) = AJ(:C —y)dy, and (AJ) *u = /QAJ(I — y)u(y)dy.
We make the following assumptions
(B)) J € C**'(R"), f € C*(R) for some v > 0,
(B;) There exists ¢; > 0 such that a(z,u) = p(z) + f'(u) > ¢,
(B;3) 99 is of class C?*7.
We first establish an a priori bound for the solution of (3.2).

Remark 3.1.1 Note that bistability of f is not important for our results. However,
the nonlinearity cannot have a slope that is too negative, whereas there is no such
restriction for the local Cahn-Hilliard equation. This is not just a technicality since

the equation has no solution with p(z) + f'(u) < 0.

Proposition 3.1.2 Assume (B;) — (Bs3). If u(z,t) € C(Qr) NC?*'(Qr) is a solution
of (3.2), then

max |u| < C(Q, T, u) (33)
Qr
for some positive constant C(Q, T, ug).

PROOF. Set u(z,t) = ve’, where o is to be determined. Then Vu = e?*Vu,

Au = et Av, and (3.2) becomes

e’tv, + ve®o = (p(z) + f'(u))e” Av + 2Vp(z) - Vve

(3.4)
+ f"(u) Vv - Vve + Apvect — (AJ) * ve’.
Multiplying (3.4) by v and using vAv = %A’UQ — |Vv|?, we obtain
1 2 2 _ 1 ' 2 ' 2 2
5 (W) +vio = S (p(z) + f1(u) Av" = (p(z) + f'(u))|Vo[" + Vp(z) - Vo 55
h :

+ §f"(u)Vv -Vov?e® + Apv? — v(AJ) xv.
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If there exists (Pp,ty) € Qr with ¢, > 0 such that v?(P,t) = maxv?, then
Av?(Py, ty) <0, Vv2(Py,t9) = 0, (v2),(Po, o) > 0, and (3.5) yields
(0 = B0)*(Posto) < = [ AT(Rs = 4)olu o)y (P, o) (36)
Choose o large enough such that 0 — max(Ap) > § > 0, we have
max|o] < 5 [ lntoldy < Me [ julutolldy < Maellulle (37)

for some positive constants M, M; and M,.
On the other hand, multiplying (3.1) by u and integrating over €2, it follows from

Holder’s and Young’s inequalities and condition (B;) that

—— < .
2 /u dz K u d.’E, (3 8)

where K depends only on J and 2. This yields

/ W?dz < C(T) / w2d. (3.9)
Q Q
It follows from (3.7) and (3.9) that
[v(Po, to)| < Ci|uoll2- (3.10)
Therefore,
max |v| < max{C}||uo||2, max |uo|}. (3.11)

Since max |u| < €°T max |v|, (3.3) follows from (3.11).
If u(z,t) is a solution of (3.1), maxg, |u| < C, after a slight modification of

Theorem 7.2 in Chapter V in [30], we have

v
249,142 _ ,
Theorem 3.1.3 For any solution u(z,t) € C 7 2(Qr) of equation (3.1) hav-
ing maxgy, |u| < C one has the estimates
max |Vu| < Ky, [uly?” < Ko, (3.12)
Qr T

where constants K\, K, and vy depend only on C, J, c1, uo, and the boundary of Q2
(- Ig:‘ﬁ is a Holder norm defined in [30]).
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In order to prove the existence of a solution, we use Schaefer’s fixed point theorem

from [22] or [25].

Theorem 3.1.4 (Schaefer’s Fized point Theorem). Suppose X is a Banach space,

and
A: X - X
1S a continuous and compact mapping. Assume further that the set
{u € X|u= pA[u] for some 0 < p <1}
s bounded. Then A has a fized point.

The a priori bounds established above will be used in conjunction with this to

prove

Theorem 3.1.5 Suppose conditions (B,) — (Bs) hold, uo(z) € C?**7(Q) and uplsq =

Y
24,1+ - _
0. Then there erists a solution u(z,t) € C v 2(Qr) of equation (3.1).

PROOF. Let v = u — uyp, then (3.2) becomes

4

vy = a(z,v)Av+ b(z, v, Vv),

\ vlea = —uo, (3.13)
v(0,z) =0,
\
where
a(z,v) = a(z,v + uy),
b(z,v, Vv) = a(z, v + uo) Aug + b(z, v + ug, V(v + up)),
and

b(z,u, Vu) = 2Vp- Vu + f"(u)|Vul]® + ulp — (AJ) * u.
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144, _
Define X = {we C " 2 (Qr)|w(0,z) = 0}.

For any w € X, consider the following linear equation

4
vy = a(z,w)Av + 5(:1:, w, Vw),

ET—, (3.14)
v(0,z) = 0.
\
) .
Since w € X, a(z,w) and b(z,w, Vw) belong to C "’ 2(Qr), and so there exists a
2+1,1

+1
unique solution v € C 2 (Qr) of equation (3.14).

Define an operator A : X — X such that
v = Alw].

Claim 1: A is continuous from X to X.

In fact, if v; = A{w,], v = A[ws], and ¢ = v; — v, then ¢ satisfies

¢
q = a(z,w)Aq + k(z,w, w,),

\ dlon =0, (3.15)

where

k(z,w,,w;) = (a(z,w,) — a(z, ws))Avy + l;(x, wy, Vw,)

=b(z, wq, Vwy).
Fixing w,, as w, approaches w; in X, we have
v T
(&(:r, wl) - &(.’E, w?))AU2 — 0in C , 2 (QT)a
Y

b(z, wy, Vw,) — b(z, wa, Vw,) — 0 in C% E(QT).

Y
Therefore, k(z,w,, ws) = 0 in C% 2(Qr).
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This implies ¢ — 0 in X as w; — wy, so A is continuous in X.

Claim 2: If w = pA[w), there exists a uniform bound C such that

llw|]|x < C.

In fact, if u =0, then w = 0. If 0 < p < 1, since Ajw] = %w, iw is a solution of

(3.14), we have

( -~
wy = a(z, w)Aw + pb(z, w, Vw),

 wlea = —puo(z), (3.16)

{ w(0,z) = 0.
Proposition 3.1.2 and Theorem 3.1.3 imply

||wl] Lo 17 <C,

C +7, 5
where C does not depend on .
2+ m
Finally, the compactness of A follows from the fact that C T (Qr) <
1
Tty — L .
C 2 (Qr) is compact. This completes the proof.

We will prove the uniqueness and continuous dependence on initial values of the

solution in the next section.

3.2 Existence, uniqueness and continuous depen-
dence on initial data for generalized solutions

In section 3.1, under the assumption (B;), equation (3.1) is a nondegenerate parabolic
equation. In this section, we consider the degenerate case. Consider the following

equation with ug € L*(f2)

( Z_I: = A(h(z,u)) — /nu(y)AJ(:v —y)dy in Qr,
on S, (3.17)
| u(z,0) = u(2),
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where

h(z,u) = p(z)u(z) + f(u)

with p(z) defined in section 2. Instead of nondegeneracy condition (B;), we assume:

(B;) For every fixed z, h(z,0) = 0, and 6hg;’ v) > d,|u|™ for some positive constants

ry and d,.

Definition 3.2.1 A generalized solution of (3.17) is a function
u € C([0,T] : L}(Q)) N L*(Qr) such that

/‘;u(z,t)l/)(x,t)dz:—//tu(x,t)w,(x, s)da:ds=/ o h(z,u)AY(z, s)dzds

(3.18)
- f / (AT % u(-, 8))0(z, s)dzds + / u(z, 0)(z, 0)dz
t Q
for all € C**(Qr) such that ¥(z,t) =0 forz € Q and 0<t < T, and
u(z,0) = uo(z). (3.19)

We first prove the uniqueness.

Proposition 3.2.2 Let u;,u; be two solutions of equation (3.17) with initial data

Uy, U € L®(N), then

Nur(7) — u2(7)]| 1) £ C(T)||u10 — u20]|L1(02)

for each 7 € (0,T), and some constant C(T).

PROOF. For any 7 € (0,T), and ¥ € C?!(Q,) with 9|sq =0 for 0 < ¢t < 7, after

multiplying (3.17) by v and integrating over € x (0, 7), we have

/{;u,(x T)Y(z, 7)dx —/ ui(z,0)y(z,0) dz-i-/ / w; Yy + h(z, u;) Ay)dzdt

/ / (AJ * u;)pdzdt.
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Setting z = u; — up and zyp = uj9 — ug, equation (3.20) gives

/Qz(a:,'r)zp(a:,r)dz=/‘;z0(z)z/)(x, 0)dx

, r (3.21)
+/ /z(wt + b(z, t)A1/;)dzdt+/ /(AJ*z)wdzdt,
0o Ja o Ja
where " "
(x’ul) — ($,U2) for u 7‘—' Ua,
b(z,t) = th = U2
hy(z,uy) for u; = u,.
Following the idea in [7], we consider the problem:
4
%=—bA¢+u¢ in Q 0<t<rT,
Y¢v=0 on 9, 0<t<r, (3.22)
| ¥(z,7) = 9(a),

where g(z) € C§°(R?) ,0< g <1, and v > 0 is constant.
Since b just belongs to L>(Qr) and may be equal to zero, we perturb to get a

1
nondegenerate equation, by setting b, = p, xb+ e where p, is a mollifier in R", and

f(;r fn(/’n * b — b)2dzdt < ‘n% Consider

r%J)z—b,,Azlz+m/) in Q 0<t<r,
Y v=0 on 09, 0<t<rT, (3.23)
| ¥(z,7) = o(a).

1
Since b, > - the equation is a nondegenerate parabolic equation, and so there

exists a solution 1, € C%!(Q,).
Lemma 3.2.3 The solution of (3.28) has the following properties

(1) 0< g <77,

(1) / / bn| () |2dzdt < C,

0o Ja
(4ii) sup / |V, |2dz < C,
Q

0<t<lr

where the constant C depends only on g.
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PROOF. Since 1 > g > 0, by the comparison principle, e/*=™) > 1, > 0, this

proves (i).

For (ii) and (iii), multiplying equation (3.23) by A%, and integrating over 2 x

(¢,7), we have

1 / Vi (2, ) [2dz + / / ba| Ao dzds
2 Ja t Ja
+V/ /|V1/Jn|2d:cds= l/ |Vbn(z, 7)|2dz.
¢ Ja 2 Ja

Since ¢Yn(z,7) = g(z), V¢u(z,7) = Vg, we have

sup / Vyal2dz < C(g)

0<t<t Jn
and
,
[ / balApa[Pdadt < C(g).
t Ja
Therefore,
//bnlAz/zn|2d:cdtSC.
o Ja

Replacing ¥ by v, in (3.21), and using (3.23) we obtain

/ 2(z,7)g da:—// (b — b,) A dzdt

- /ﬂ 2z, 0)¢n(0)dz + / / (8% 2+ ve)udrdt.

Since

/T/z(b—bn)Awndxdt
/ J o / [s oo Pty

< — =0,
\/r_z -
equation (3.26) implies

/ 2(z,7)g(z)dz
)

< / |z(z,0)|e""""dz + / |AJ * 2z + vz|e*™ T dzdt.
Q Q-
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Letting v — 0 and g(z) — sign z*(z,7) in (3.27), we have

[(ul —up)tdr < [ |uro — usgoldz + // |AJ * z|dzdt. (3.28)
Q Q Q-

Interchanging u, and u, yields
/ |’U2 - U1|d$ S / |’U20 — uloldl' + C/ |u2 e ulldxdt (329)
Q Q Q-
(3.29) and Gronwall’s inequality imply the conclusion.

Remark 3.2.4 Since every classical solution is also a weak solution, this also proves

the uniqueness and continuous dependence on initial values for classical solutions.

To prove the existence of a solution to (3.18), we consider the regularized problem

and take ug € C?*7(Q) for some v > 0, with ug|sq = 0.

";’9_’: = A(h(z,u)) - /n AJ(z —-y)uly)dy in Qr,
o on S (3.30)
\ u(z,0) = uo(z),

where

h¢(z,u) = p(z)u(z) + f(u) + eu.

2+
24y, — _
By Theorem 3.1.4, there exists a classical solution ue(z,t) € C 7 2 (Qr).
These solutions are uniformly bounded:
Lemma 3.2.5 There ezists a constant C, independent of €, such that
max |ue(z,t)| < C (3.31)

Qr

forall0<e<1.
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PROOF. Multiplying equation (3.30) by u and integrating over 2, we have

2dt/“ +‘/'W|2 f z) + f'(u)|Vul* = l/uzﬁp(x)—/uAJ*u.

(3.32)

Using Holder’s and Young'’s inequalities, we obtain

max [ u?<C,
0<t<T

where C) does not depend on €. A similar argument to that in the proof of Proposition
3.1.2 yields (3.31).
Now we can prove the existence of a generalized solution.

We need the following lemma.

Lemma 3.2.6 Ifr > 0 is a constant, u, v € R, then we have

T T 1 T
|(ful"w = [o["v)| 2 o fu — o] (3.33)

Oht(z,u)
ot

/ o g 7 [ @ur= [ 2 P (- ad v (3.34)

Oh (z, )
at

[ahe%‘l(—m*u) < C/(e+p(x)+f'(u))|ut|
/\/e+pz)+f |U¢|\/6+P )+ f'(u))

<§/(e+p( )+ f(u ))|u¢|2+C/e+p )+ f'(w),

Multiplying equation (3.30) by and integrating over 2, we have

Since u is uniformly bounded, and = (e + p(z) + f'(u))u,, we have

(3.35)

where C does not depend on e.

Equation (3.34) and inequality (3.35) imply

/ /6h€(z u /|Vh‘ nu)f? < /|Vh6 z,u)[* + C. (3.36)
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€
Note that the first term is positive from the expression for ——. Therefore,

ot
sup /|Vh€(z, u)|? < C, (3.37)
0<t<T
and
T ahf ,
/0 / e, < (3.38)

where C does not depend on e.

Since u is uniformly bounded, we also have

/OT/ '%'2 B /OT / (e +p(2) + f/(w) |l
<C /0 ' / @iétfi‘lu, (3.39)

S Cl’

where C; does not depend on e.
We show the dependence on € by writing ue. We have

Oht(z,ue)
=% llezom)L30 < C,

max ||VhE(z, ue)|| 2@ < C, (3.40)

0<t<T

max IhE(x,u5)| <C,
Qr

where C does not depend on e.

Also from condition (B;) and (3.40), we obtain

O(|ue|™u
||—-('I—%It——€l|]m((o,r),m(n)) <C,
max ||V (|uel"ue)llzxa) < C, (3.41)

max |ue|[" ! < C.
Qr

It follows from (3.40) that h¢(z,ue) is equicontinuous from [0,7] into L?(2) with

values in a bounded subset of H!(Q2). Since H!(Q2) < LZ%*(Q) is compact, by
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Arzela-Ascoli’s lemma, there is a sequence €, — 0 such that h®n(z,ue,) — v in
C([0,T), L3(9)).

Also from (3.41), we know that |ue|™ue is equicontinuous from [0, 7] into L?(R2)
with values in a bounded subset of H!(2). By Arzela-Ascoli’s lemma, there exists
€x — 0 such that |u,|u, = v; in C([0,T], L*()), where u, = ue,,.

By Lemma 3.2.6, we have

/ [ty — U | Hdzx < 2'/ [Jtn| g — |t | U | d. (3.42)
Q Q

Therefore, {u,} is a Cauchy sequence in C([0,T], L"**(R2)) and there exists u such
that u, — u in C([0,T], L"*1(Q)).

By Lemma 3.2.5, we can also conclude that u € L*°(Qr). Since f is differentiable,
we have h®n(z,ue,) = h(z,u) in C([0,T], L+ (Q)).

Letting ¢, — 0, we see that u satisfies equation (3.18), and u is a generalized
solution with initial data u, € C3*7(Q).

For ug € L®(R), choose ug, € C2*7() such that
[|uon — uol|L1() = 0 as n — oo. (3.43)
By Proposition 3.2.2, we have

oiltlp [|lum (t) — un(t)||1 (@) < Clltom — Uonl|L1 (), (3.44)

where C does not depend on m,n. Furthermore, there is a constant C), depending
only on ||ug||L, such that ||u;||L~ < Cj.
By (3.43) and (3.44), there exists u € C([0,T], L!(R2)) such that u,(t) = u in
C([0,T], L*(9)), clearly u is a generalized solution.

We have proved:

Theorem 3.2.7 For any T > 0 and ug € L*°(R2), if conditions (B,), (Bj), and (B3)
are satisfied, then there ezists a unique function u € C([0, T}, L'(2)) N L>®(Qr) which

satisfies equation (3.18).
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3.3 Long term behavior in the H! norm

In this section, we prove that there exists a continuous semigroup associated with

equation (3.1). Then we consider the boundedness in time of the solution.

Definition 3.3.1 A weak solution of (3.1) is a function
u € C([0, T], L*()) n L*=([0, T], L=(R)) N L*([0, T}, Hy(Q)), ue € L*([0, T}, H~'(12)),
h(z,u) € L*((0,T), H'(R)) such that
< w(z,t),¥(z) > +/ Vh(z,u) - Vy(z)dz
a (3.45)
= [@75ut i)z
for all p € H(Q) and a.e. time 0 <t < T, where h(z,u) = p(z)u + f(u), and

u(z,0) = up(z). (3.46)

Theorem 3.3.2 If (B,) — (B3) are satisfied and ug € L>®(S2), then there ezists a

unique solution u of (3.45).

PROOF. Since uy € L*>(f2), there exists a sequence uf)k) € C*(Q) with vy > 0

such that

k
u$? — uo||z2 — 0,

(3.47)
g lleo < C,
where C does not depend on k.
We consider the following problem
r %t’f = A(h(z,u) — J*xu) in Qr,
Su=0 on Sr, (3.48)
| u(z,0) = u(z)




2+

244,27
! 2 (QT)) and

By Theorem 3.1.4, there exists a classical solution u¥) € C

max |u®(z, )| < C, (3.49)

Qr
where C does not depend on k.
Multiplying equation (3.48) by u*) and integrating over 2, we have

d [, [u®|?dz
dt

Since Vh(z,u®) - Vu® > ¢;|Vu®)|2 4+ uVp - Vul), where c; is defined in condition

+ / Vh(z,u®) - Vu®dz = / (AT * u®)uF gz, (3.50)
(1] 0

(B;), from equation (3.50), we also have

sup [|u(k)||L2 < Ci(D), (3.51)
0<t<T
T
/ / |Vu®|2dzdt < Cy(T), (3.52)
0 Q0

where C,(T'), C5(T) do not depend on k.

Since by (3.49), u*) is uniformly bounded, from inequality (3.52), we have

T T
/ / |Vh(z, u®)|*dzdt =/ / [u®Vp + (p(x) + f'(u®))Vul |2dzdt
o Ja o Ja

(3.53)
< G3(T)
for some positive constant C3(T") which does not depend on k.
From equality (3.53) and equation (3.48), we also have
Hugk)”L2((0,T),H—l(Q)) < Cy(T), (3.54)

where C4(T') does not depend on k.
Inequalities (3.51)-(3.54) imply that there exist subsequence of {u*} (still denoted

by {u*}) and v, u, g such that
h(z,u®) = v in L%((0,T), H'(Q)),
u® =y in L%((0,T), H(R)), (3.55)

u¥) =g in L*((0,T), H™}(2)).
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Since |[u®||p0 < C and u®) —» u in L*((0,T), L*(2)), we have

||u”L°° < C"

h(z,u®) = h(z,u) in L%((0,T), L*()),
(3.56)

g = Uy,

v = h(z,u).

This implies that u is a weak solution of (3.45). Uniqueness follows from Proposition

3.2.2.

Corollary 3.3.3 If up € H}() N L*(Q), and if u € C([0,T],L*Q)) N
([0, T}, L®(Q)) N L¥([0, T}, HX(Q)), with uw, € LA([0,T], H-\(R)), satisfies equa-
tion (3.45), then u € C((0,T], L*(Q)) N L=([0, T}, L*(R)) N L=([0, T}, H:(®)), and
uy € L%([0,T), L*(2)). Furthermore, if dimQ = 1, we also have u € L*([0,T], H*()),
and u € C([0, T}, H'(Q))

PROOF. Since up € H}(Q) N L®(f2), we may assume Huék)ll m < C for some

constant C which does not depend on k in (3.47). Multiplying equation (3.48) by

Oh(x,u®)
M and integrating over 2, we have

(k) (k)
/6h 4 2dt/|Vh:r u /6h 4 )( AJ xu®). (3.57)

A similar argument to that in the proof of (3.34)-(3.38) in section 3.2 shows

sup /|Vh(:c,u(k))|2 <C, (3.58)
0<t<T
and
T (k)
/ / %é—;———lugk) <cC, (3.59)
0

where C does not depend on k.
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Condition (Bj) and (3.58)-(3.59) imply

sup / |[Vu®|? < ), (3.60)

0<t<T

T
/ / uI? < C, (3.61)
0

where C) does not depend on k.

and

Therefore, by passing to limits as a subsequence of £k — oo, we deduce

u € L*([0,T), H}(2)), u, € L%([0,T], L*(?)), and

h(z,u) € L*®([0,T], H3()).

If diim Q = 1, multiplying (3.48) by —Au*) and integrating over 2, we have

1d

Ea/|Vu(")|2dx+/Ah(z,u("))Au(")da: = /AJ*u(")Au(")d:v. (3.62)

Since
Ah(z,u®) = u®Ap + 2Vp - Vu®) 4+ ()| Vu® 2 4+ (p + (™) Au®, (3.63)
by Hoélder’s and Young'’s inequalities, and using (3.49) and (3.60), we have
/ AT+ u® AuRdz < € / |Au®2dz + Ce), (3.64)
and
/ Ah(z, ") AuPdz > / (p + f' ()| Au®)2dz — C(e) / |Apu® Pdz
- e/ |Au®)2dz — C(e) / |Vp - Vu®)|2dz
- e/IAu(k)|2dx - Cl(e) / I (u™) 2| Vu® | dz (3.65)
- e/ |Au®2dz

> (e — 36)/|Au(k)l2d1: —C(e) — C(c)/]Vu(k)|4dz.
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In order to estimate [ |Vu*)|*dz, we need the following Gagliardo-Nirenberg inequal-

ity,
IDl| s < CilID™||7 -0l 6" + Callvll Lo,
where

1 1
<a<l, —=—+a(——T—
s T n

J )+(1—a)%.
In (3.66),sets=4,j=0,r=2,m=1,n=1,r=2,a=%,q=2toget
13
lIvllg < GullDolI3 ]l + Callvll2.

Let v = Vu*), then (3.68) and (3.60) give
1 3 1
1Vu®]|4 < G| Au®]|3]|Vu®|[F + Cal[Vu®)]|g < CllauP||F + C.

This and Young’s inequality imply
IVu®[§ < el|au®]3 + Cle).
Inequalities (3.65) and (3.70) imply that
/Ah(:c, N Au®dz > (¢, — 3¢ — Cey) / |Au®)|2dz — C(e, €1),

where constant C(¢, €;) does not depend on k.
Equation (3.62), inequalities (3.64) and (3.71) imply

1d

ia_tflvu(k”zdf + (c1 — 4e — Cé¢) / |Au®|2dz < Cle, ).

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

Choose € and ¢, small enough such that ¢, — 4¢ — Ce; > 6—21, and integrate over (0,T)

to obtain
1 (k) 2 1 k) (12 1 T (k)12
3 |Vu'™(T)| da:—§ |[Vu'™(0)|°dz + bl |Au'™|*dz < C.
)}
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Therefore, there exists a subsequence such that u; — u in L2((0,T), H%(R2)). Since
u € L?((0,T), H%(?)) and u, € L?((0,T), L%(2)), we also have u € C([0, T}, H*(R)).
This completes the proof.

In order to prove the existence of an absorbing set, instead of (B,), we assume
(B3) There exist positive constants c;, c; and r such that a(z,u) > co|ul” + ¢;.
Also, we assume
(Bs) There exist positive constants c; and ¢4 such that a(z,u) < c3|u|” + c4.

First we study long term behavior in the L” norm.

We need the following version of Gronwall’s lemma (see Temam [38)):

Lemma 3.3.4 (Uniform Gronwall inequality) Let y be a positive absolutely continu-

ous function on (0,00) which satisfies
y' +vy? <6

withp>1,v>0,0 > 0. Then, fort > 0, we have

1 -1

5 -
mas(yp+wwp—nnp—l- (3.74)
With this we can establish

Proposition 3.3.5 If u is a solution of (3.1), then for p > 1, we have

+1 p+1

_pr: B
/,, ufP*ldz < (j;—g)pﬂﬂ +(—d;(i)1t) r (3.75)

where d,(p) and da(p) are constants which do not depend on the initial data.
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PROOF. Multiplying equation (3.1) by u|u|P~! and integrating over 2, we obtain

/u]u|""1u¢dx= —/a(z,u)Vu'V(ulul”‘l)dx

//AJ T — y)u(z)u(zr)|ul’~ dydz 76

//AJ T — y)u(y)u(z)|uff~'dydz

+ //VJ(:D — 1) - Vu(z)u(z)|ulP dydz.

Since
p—1 — p+1 .
/nu|u| wdx = +1dt/|u| dz, (3.77)
/a(z,u)Vu-V(uluF"l)dx:p/a(:c,u)|u|”'l|Vu|2dx, (3.78)
Q Q
p+1
Vi 2 2= 22 pupyoup, (3.79)
and
p+r+1 9
V2 = B gy, (3.580)
from (B;) we have
4 p+1
/a(a: u)Vu - V(u|u[P!) pc1 /|V|u| 2 |%dz
Q
) p+r+1 (3.81)
PC2 T 9 |2
— [ |V 2 dr.
(p+,+1)2/n| ju Pz

Equations (3.76)-(3.80) and inequality (3.81) yield

4 o 4 p+r+1
2 [pras e 29 [ 2 P =22 o 2 s
/fAJ — 9)|uPdydz — //AJx_ Ju(z) P dydz
+/Q[QVJ($—1/)-VU(I)U(I)IuI”“dydx,
(3.82)
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By Holder’s and Young’s inequalities, we have

/ / u(x)|u|”'1VJ(a: —vy) - Vu(z)dydz
ptl

<M/(|u| (Va2 o

(3.83)

Sefnlul |Vu(z)] dx+C(e)/f;|u| dz

p+1
Viu 2 |%dz+C f Prldy,
- ooy LV 2 Pz [ P

Also,
[ [ 1896 - wiuwlu@rdyds
P 1
< ([ a1 +2([ ([ 1856 - )ty 7dz) + (384)
< C/ |u|P*ldz,
Q
and
/ / 1A (z — y)||u(@) P dydz < C / lufP*da. (3.85)
NnJn [}
Inequality (3.82) and estimates (3.83)-(3.85) imply
4 1 p+tr+1 1
p+1 PC1 2 2 PC2 / 2 2
p+1dt/|| o+ 20 /|V|| |dx+(++1 1V]ul dz
p+1 1
< (p+ 7 / Viul 2 [2dz+ C(e) /n lufP* dz.
(3.86)
Let € = % in (3.86), then we obtain
2 p+1 ) prr+1
P+1g pcl 2 |2 pC2 / T2 2
g e 2 [ v 2 P s [ o P
< C/ |u|Pt!dz.
0
(3.87)
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Therefore,

d p+r+1
G [Pt ai) [V 2 Par <) [uprias 489
dt Jo Q Q
for some constants d;(p) and dy(p).
p+r+1
Setv=|ul 2 and y = M, so that (3.88) becomes
p+r+1
4 / (o] dz + dy (p) / Vo|2dz < da(p) / lo|dz. (3.89)
dt Jo Q Q

By Poincaré's inequality, [, [v|*dz < C [, |Vv|*dz, we have

% [1wrds + i) [ Pas < atp) [ polra, (3.90)

where d;(p) and d;(p) have been redefined.

Since v < 2, it follows from Halder's and Young'’s inequalities that
2

% [[10de+ o) [ 17d0)7 < da(p). (3.91)

where d,(p) and d2(p) have been redefined.
The conclusion follows from Lemma 3.3.4.
Using a similar argument to that in the proof of Theorem 2.1.1 in Chapter 2, we

obtain
Proposition 3.3.6 If uy € L>°(N2), then
sup ||ulle < C(uo). (3.92)
£>0
Next we need to estimate ||Vulls.

Theorem 3.3.7 Assume that u is a solution of (3.1) and conditions

(By), (By), (Bs) and (By) are satisfied. There ezists to > 0 such that if t > to then

sup ||Vul|]; < C, (3.93)

t>to

where constant C does not depend on initial data.
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PROOF. Multiplying (3.1) by a(z, u)%tg, and integrating over (2, we obtain

Ou Ou
/ﬂa(x, u)|a|2dz =/ﬂV-(a(z,u)Vu)a(x, u)ad:r-l~

//VJ(x —v) - Vu(z)a(z, u)%dxdy+
ala

5 (3.94)
[ [@D@ - vutoate. 03 dzdy-
/ / AJ)(z — y)u(y)a(z, u)a dzdy.
Since
/‘;V - (a(z, v)Vu)a(z, u)-‘Z—Zd:c =- /na(:r:, u)Vu - V(a(:c,u)%)dx
=- /(a(z,u)Vp(a:) . Vu%dz— (3.95)
Q
a(z, u)f”(u)qu|2%t1£ — a*(z, u)Vu%)dx,
and
%% [ @(a,u)|Vupds = /,, (alz, v) f"(u)|vu|'~% + a¥(z, u)vua—gtﬁ)dx, (3.96)
this yields
/ V- (a(:c,u)Vu)a(x,u)th:c =— -;—% a®(z, u)|Vu|?dz
f 3 (3.97)
—/(a(x, u)Vp(:r)-Vu—udx.
Q ot
It follows from (3.94) and (3.97) that
/Qa(x,u)|%‘|2dx - %% ncz2(:c,u)|Vu|2drc
- /(a(:c, u)Vp(x)-Vua—u-d:L‘
Q ot
Ou
+/Q/QVJ(:E -y)- Vu(x)a(r,u)adxdy (3.98)

ou
+ /ﬂ /n (AJ)(z = y)u(z)alz, u) 5 dzdy

- [ [0 - vuty)atz, Gy dsdy
nJN
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Note that

/a(x, u)Vp(x)-Vu%dx < e/a(z, u)|?ﬁ|2dx+C(e)/a(z, u)|Vul|?dz, (3.99)
Q ot Q ot Q

Ou ou ,
/‘;/s;VJ(x -y)- Vu(x)a(x,u)ad:cdy < e/ﬂa(x,u)l?ﬁl dz + C(e) /na(:v, u)|Vu|?dz,
(3.100)
Oou ou , 2
/;;/Q(AJ)(I - y)u(:v)a(z,u)adzdy < e/ﬂa(:c, u)lal dz + C(e)/r;a(z,u)u dz,
(3.101)

and

du

[ [ - nuwate oty < [ a@ulgPas
+0(0) [ al@u)([ (AT - vty

(3.102)
Choosing € = %, it follows from (3.98)-(3.102) that
1d a®(z,u)|Vul?dz < C(/ a(z,u)|Vul|’dr

+/{;a(z, u)u2dx+/(;a(:c, u)(/ﬂ AJ(z — y)u(y)dy)?dz).
(3.103)

From condition (B,), we have

/a(:c, u)|Vu|?dz < /(C3|u[’ + ¢4)|Vul|’dz
? : 49 (3.104)

]
2 2 —_—

= _— \V) 2 |%d / Vul|?d ,

/ﬂ(r”) Vil 2 Pdo+ [ clVuPds

/a(x,u)u2dx < /(c3|u|’ + c4)u’dx
f f (3.105)

=/c3|u|'+2dx+/c4u2dz,
Q Q
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and

/n a(z, u)( /n (AJ)(z - y)uly)dy)Pdz < /ﬂ (calul” + ca) /n (AT)(z — y)uly)dy)dz

<cC / u(y)?dy / (cslul” + c4)dz.
[¢) 1)

Note that Proposition 3.3.5 implies

/c3|u(x,t)|'+2d$+/c4u(z, t)?dr < C
] 0

(3.106)

(3.107)

for t > ty and for some constant C which does not depend on initial data and

/ u(y)’dy / (cslul” + cs)dz < C
N N

for t > ¢y and for some constant C' which does not depend on initial data.
Also, inequality (3.87) and Proposition 3.3.5 yield
t+1 2 \? r+2 t+1
/ / (—) |V|u| 2 |*dz +/ / cs|Vul’dz < C
t a\7r+2 t Q
for t > ¢, and for some constant C which does not depend on initial data,

and

t+1 t+1
/ /az(x,u)IVulzda:ds 5/ /(c3|ul'+c4)2|Vu|2dxds
¢ Q t Q
t+1
< / / cs([V]ul" 12 + [Vu[2)dzds
t Q
<C

for t > to and for some constant C which does not depend on initial data.

It follows from (3.103)-(3.108) that

r+2

4 / o (z, w)|Vul?dz < Cy( / Vel 2 |2z + / (Vuldz + Cy)
dt Jo Q Q

(3.108)

(3.109)

(3.110)

(3.111)

for some constants C; and C; which do not depend on initial data and for ¢ > ¢,.

For to < t < s < t+ 1, integrating inequality (3.111) between s and ¢t + 1, we

obtain
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/ a®(z,u(z,t + 1))|Vu(z, t + 1)|%dz - / a?(z, u(z, 5))|Vu(z, s)|%dz
? b1 T+2 ? (3.112)
<l 1 Viute,wl 2 P+ [ [Vue, e + Cald).

Integrating (3.112) from ¢ to ¢ + 1 with respect to s, we have

/ a®(z,u(z,t + 1))|Vu(z, t + 1)|’dz < /Hl/ (z,u(z, 5))|Vu(z, s)|*dzds

t+1 t+1 r+ 2
+CI(/ / [/ |V |u(z, u)| 2 |2dx+/ |Vu(z, p)|2dz + C,)duds).
Q

(3.113)

By (3.109), (3.110), (3.112) and Fubini Theorem, we obtain
/az(:r,u(:v,t +1))|Vu(z,t +1)|%dr < C (3.114)

Q
for some constant C and for t > ¢,.
Condition (B3) and (3.114) yield
/ |Vu(z,t +1)|°dr < C (3.115)
Q

for t > t, and for some constant C which does not depend on initial data.

3.4 Existence of a global attractor

In this section, we prove that there exists a global attractor for weak solutions in
some metric space for n = 1.
Let H be a metric space, S(t) (¢t > 0) be a family of operators, which map H into

itself and enjoy the usual semigroup properties

S(t+s)=5(t)-S(s) Vs, t >0,
(3.116)
S(0) = I (Identity in H),
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S(t) is a continuous operator from H into itself for all t > 0. (3.117)

The following lemma may be found in [38).

Lemma 3.4.1 Assume that H is a metric space and that the operators S(t) satisfy
(3.116) and (3.117) and the following condition:

For every bounded set B there exists ty which may depend on B such that
Ui, S (t) B is relatively compact in H.

Assume that there ezists an open set U and a bounded subset B of U such that
B i3 absorbing in U. Then the w-limit set of B, A = w(B), is a compact attractor
which attracts the bounded sets of U (for the inclusion relation). Furthermore, if H

is a Banach space and U is conver and connected, then A is connected too.

Let X = L*(f2) with the metric from L!(2). From Theorem 3.3.2 and Corollary
3.3.3, there exists a semigroup S(t) associated with equation (3.1).

From Proposition 3.3.6, we have that S(t) maps L>(f2) to L*(f2).

Since for n = 1, H(Q) — C*(f) is compact, from Theorem 3.3.7, we see that
There exists an absorbing set in H! N X.

Therefore, by Lemma 3.4.1, we have the following theorem.

Theorem 3.4.2 For n = 1, if conditions (B,), (B;), (Bs), and (B,) are satisfied,
then the semigroup associated with (3.1) possesses an attractor A C H'(Q)NX which

18 mazimal and compact.

70



CHAPTER 4

The Cauchy problem and steady
state solutions for a nonlocal

Cahn-Hilliard equation

4.1 The Cauchy problem for a nonlocal Cahn-
Hilliard equation

We consider the following equation:

ot (4.1)

Ou = A(p(u) —J *u)in R" x (0,7),
u(z, 0) = uo(z),

where ¢(u) = u + f(u), f is bistable (e.g. f(u) = u(u? — 1)),  is convolution.

For T > 0, let Q7 = R" x (0,7T). We make the following assumptions:
(C)) f € C*P(R) and ¢ (u) > c for some positive constants ¢ and S,
(Cy) J € C**A(R"), AJ € L'(R*) N L®(R"), and f5. J = 1.

First, we prove the uniqueness and continuous dependence of solutions on initial

data. We have
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Proposition 4.1.1 Let u; (1 = 1,2) be two solutions of equation (4.1) with initial
data uy (i = 1,2). If conditions (C;) and (C,) are satisfied, if u; € C([0,T], L}(R"))N
L®(Qr), and if uip € L'(R") N L*®(R") (i = 1,2), then

sup / luy — ug|dz < C(T)/ |uro — ugoldz (4.2)

0<t<T

for some constant C(T).

PROOF. For any 7 € (0,T), and ¢ € C*!(Q.), with ¥ = 0 for |z| large enough,

after multiplying (4.1) by %, and integrating over [0, 7] x R™, we have
/n ui(z, 7)Y (z, 7)dz = /" ui(z,0)y(z,0)dz
+ /0‘1 /n(u,«j;t + cp(ﬁi)A1/1)dxdt - /OT - YAJ * u;dzdt.
(4.3)

Set z = u; — ua, 29 = U0 — Uso, then (4.3) gives

/.. 2(z, 7)Y(z, T)dz = /" 20(z)¢(z,0)dz
+ /01 /n 2(z,t) (Y + b(z, t) Ayp)dzdt — /OT . YAJ * z(z, t)dzdt,

(4.4)

where
<p(ul) - (p('lL2) fOI' u # us,
b(z,t) = Uy — U2 (4.5)
¢'(uy) for u; = u,.

Let g(z) € C§°(R™) have compact support, 0 < g(z) < 1, and take A > 0. We will
choose 1, above, to satisfy certain conditions. First, consider the following final value

problem on a large ball Bg(0)

( O

i =b(z,t) DAY+ A for |z|<R,0<t<T,
J‘t/)=0 on |z|]=R,0<t<T, (4.6)

| ¥(z,7) = g(a) Zl <R
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There exists a unique solution of (4.6) ¥ € C%!(Bg(0) x (0,7)) which satisfies the

following properties:

0<y <t (4.7)
/ / b(z, £)| Av|2dzdt < C, (4.8)
0 JBg(0)
sup / |Vy|%dz < C, (4.9)
0<t<t J Bg(0)

where the constant C only depends on g.
In order to extend % to be zero outside of Bg(0), we define ég € Cg°(R™) such

that
(

OS£RSI’
§r=1 if [zf|<R-1,

€ =0 if |s| > R-3,

(4.10)

| IV£r(2)], |A8R(2)] < C
for some constant C which does not depend on R.

Let v = €rty, where 1 satisfies (4.6) in Bg(0) and is zero outside. Using -y instead
of ¢ in (4.4), we have

/n;n 2(z,7)g€rdz — /Rn Er(z)2o(z)Y(z,0)dz + //T(AJ * 2 — \z)€pydzdt
= / b(z,t)z(z,t)(2VER - Vo + Y AER)dzdt (4.11)
Q-

= G(z, R).
Since u; and u, belong to L®(Q7), and since b is positive, from estimates (4.7)-(4.9)

and (4.10), we have
G(z R)| < / / (blur — usl (2] VERI V] + [Bl| AERD)
0 JBg\Bgr-1

< c/ / b(lwr| + Jus)) (| V| + 1)dzdt (4.12)
0 JBg\Bg-)

gc// (Jus] + Juz|)dzdt.
0 JBg\Bg-)
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Since u; and u, belong to L!(Q7), letting R — oo we have G(z, R) — 0.

This implies

/ z(z,7)g(z)dz < |z0(z)|e™*"dz +/ / (|AJ * z — Az|e*tdzdt.  (4.13)
n 0 n

Rﬂ

Letting A — 0 and g(z) — sign z*(z, ), we obtain
/ (uy —up)tdz < / |uro — ugoldz + C/ luy — ug|dzdt. (4.14)
n R’l 0 Rﬂ
Interchanging u, and u, yields
,
|u1 - ’U.Qldl' S / |u10 — ’quldl‘ + C/ [u1 - Ugldl'dt. (415)
]Rn n 0 Rn

Inequality (4.2) follows from (4.15) and Gronwall’s inequality.

Next we prove the existence of a solution to equation (4.1).

Theorem 4.1.2 For any T > 0, if ug(z) € C2*#(R"), and if ¢ and J satisfy as-

sumptions (Cy) and (C2), then there ezists a unique solution of (4.1) which belongs

24+ 8
2 , ———
0 2 P T2 (@) N LN@r) N L2@).

PROOF. Since ug(z) = 0 for |z| large enough, we consider

r gt—u = A(p(u) — J *u) in Bg(0) x (0,7),
q u(z,t) =0 on 9Bg(0) x (0,T), (4.16)
\ u(z,0) = uo(z).

From Theorem 3.1.5 in Chapter 3, there exists a unique solution of (4.16) u(z,t) €

244,218

2 (Br(0) x (0,T)).

Let u(z,t) = ve' in (4.16), then we have

C

elv, + ve! = @' (u)etAv + " (u)|Vv|?e? — e AJ x v. (4.17)
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Multiplying (4.17) by v and using vAv = %sz — |Vv|?, we obtain

%(v2)¢ +v? = -;—go'(u)Av"’ + %ga”(u)Vv -Volet — @' (u)| Vo> —vA(J xv).  (4.18)

If there exists (Pp,t9) € Bgr(0) x (0,T] such that v?(Py,t)) = maxv?, then
A‘U2(Po,t0) S 0, V‘Uz(Po,to) = 0, V’U(Po,to) = 0, U?(Po,to) Z 0, and (418) yields

v3(Po, o) < — AJ(Py — y)v(y, to)dyv(FPo, to)- (4.19)
Bp

This yields

max|v| < M / lo(y, to) | dy (4.20)
Bgr

for some constant M which does not depend on R.
Since u = 0 is also a solution of (4.16) with initial data uo = 0, by Proposition
3.2.2 in Chapter 3, we have
|u(z,t) — 0ldz < C(T) |uo — 0|dz (4.21)
Bg Br
for some constant C(T') which does not depend on R.
Inequalities (4.20) and (4.21) imply
max |v| < C(T)/ |uoldz. (4.22)
Br
Since uy € L}(R"), we have

max |v| < B(T) (4.23)

for some constant B(T') which does not depend on R.

This yields

max |u| < B(T)e” (4.24)
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for some constant B(T") which does not depend on R.

Now we have proved the solution of (4.16) is uniformly bounded, i.e.,

max_|u(z,t)| < C
Bgrx[0,T]

for any R > 0, where C does not depend on R.

A similar argument to that in the proof of Theorem 3.1.3 in Chapter 3 yields
|lurll2+s < C(K,T) (4.25)

for any R > K = constant, where up, is a solution of (4.16) in Bg x (0,T) and C(K,T)
is a constant which does not depend on R (|| - ||2+5 is a Holder norm defined in [30]).
By employing the usual diagonal process, we can choose a sequence {R;} such
that ug,, Dug,, and D?up, converge to u, Du, and D?u pointwise, and u satisfies
equation (4.1). From (4.21) and (4.24), we also have u € L}(Qr) N L®(Qr).

Uniqueness follows from Proposition 4.1.1.

4.2 Steady state solutions for a nonlocal Cahn-
Hilliard equation

In this section, we consider the following equation:

/J:c— Ydyu(z /J:z:— y)dy + f(u) = C in 9,

‘/(;u(z)d:c =0,

where (2 is a bounded domain, C is a constant. The case when 2 = R or R" has been

(4.26)

treated by others (see [10], [12], [16], [17] and references therein).

Proposition 4.2.1 Suppose 2 C R" is a closed and bounded set, J(z) > 0 and is
continuous on R™, supp D B;s(0) for some positive constant §, and f is nondecreasing.

Then the only continuous solution of equation (4.26) is zero.
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PROOF. Without loss of generality, we assume that f(0) = 0. If f(0) # 0, we
may use f(u) — f(0) instead of f(u) in (4.26).

Case 1: C <0 in equation (4.26).

If the conclusion is not true, since f udz = 0, and u is continuous on 2, there
exists Py € 2 such that u(FPp) = maxu(z) > 0.

Let A = {y € Q|u(y) = maxu(z)}.

We claim: There exist Py € A and r > 0 such that K := (2 \ A) N B,.(P) has
positive measure. If this is not true, we have meas(2\ A) = 0. This and u(z) = maxu
on A imply [, u = [, u > 0. This contradicts [, u = 0.

Since SuppJ D Bj(0) implies SuppJ(Py — -) O Bj(P,), choosing r; = min{é,r}

gives
meas(K N By, (P,)) > 0, (4.27)
J(Po—y)>0on KN B, (R), (4.28)
and
u(Py) — u(y) > 0 on K N By, (P). (4.29)

Inequalities (4.27)-(4.29) imply

/QJ(Po — y)(u(Po) — u(y))dy 2 /K J(Po - y)(w(Po) — u(y))dy > 0. (4.30)

ﬁB,-l (Po)

This and f(u(FP)) > 0 imply

/ J(Py = y)u(Po)dy - / J(Py— yyuly)dy + fu(P)) >0,  (431)
[1] Q

contradicting (4.26).

Case 2: C > 0 in (4.26).

In this case, taking P, such that u(FPy) = minu < 0 leads to a contradiction in a
similar way.

If f'(u) changes sign, we make the following assumptions:
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(E) Q=(-1,1)ifdimQ =1, Q= (=1,1) x @ if iimQ > 1.
(Ez) J(z) = J(|z]), J(z) > 0, and

MZsup/J(:c—y)dyZig{f)/J(x-—y)dyZm>0
=€ Jq

zeN JN

for positive constants M and m.

(E3) f € CY(R), f is odd, f(1) = 0, there exist § > 0 and a € (0,1) such that
f'(z) > 6 on [a,00), and f(—a) > (1 +a)M.

(E¢) C =0 in (4.26).

Remark 4.2.2 Condition (Ej3) implies that f(—1) =0, f'(u) > é on (—o0, —a], and
—f(a) 2 (1+a)M.

Let j(z) = [, J(z — y)dy. From (E;), we have

m < j(z) < M. (4.32)

Dividing equation (4.26) by j(z), we consider

_ _ 4 f(@)
v / e @) - (4.33)
/ u(:c)dz = 0.
Q

Theorem 4.2.3 If assumptions (E,) — (E,) are satisfied, then there erists a solution

of equation (4.33) such that

>a forze M, =(0,1) x
u(x) (4.34)
< -aforzre M;=(-1,0)x .

Moreover, we have

-1<u(r) <1 (4.35)
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PROQF. Following the idea in [10], let
B = {u € L*(Q)| u(—z1,2") = —u(z1,2'), u(z) € [a,1] for z € M,}.

The definition of B implies that u(z) € [-1, —a] for z € M,.
Define

Tu(e) = u(s) + = /x— dy—u(x)—ﬁ(())]

We want to show T : B — B is a contraction map if A is small enough.
In fact, since j(z) = [, J(z — y)dy, with assumption (E;), we have j(—z,,z') =
j(z1,2'). And if u(z) € B, we have:

h 1
T(u(-z1,2")) = u(—x1,2") + ————-,—/ J(=z1 =y, 7' — ¥)u(y, v')dydy’
J(_xlaz o

' h !
— hu(—-z,,2') + mf(ﬂ(—xl,l ))
1
= —u(z,,1’) - ) / N J(=z1 + 21, 7' — ¢ )u(21, ¢ )dz1dy
+ hu(z;,z') — mf(U(rl,I'))
= —u(z,2’ :1:1,:1:) / /, - 21,7 = Y )u(z1,y)dzidy’
+ hu(xl, ) m (’U,(.’L‘l,l' ))
1
= —(u(z, ') + 7o) /;1 N J(z) — 21, 2" — y)u(z1,y)dzdy’
— hu(zy, ') + j(x:l, x,)f(u(xhx')))

= —T(u(z,,2)).
(4.36)

Choose h small enough such that

1, _
heg @ <1k (4.37)

for u € [-1,—a]U|[a,1] and z € Q.
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This implies that u — hlu + % f(u)] is increasing in u on [a, 1]. Since u(y) > a

for y € My, and u(y) > —1 for y € M,, we have for z € M,

/J(m—— y)dy + u — hju + — () f(w)]
> m/ﬂJ.’t— )u(y)dy+a—ha-hmf(a)
1
=h=s | J(a: y)u ()dy+h—(—)- M,J(x_ y)u ()dy+a—ha—hmf()
1
>ha3(_z) MlJ(x—y)dy—h;m MzJ(a:— )dy+a—ha—h—(z—)f(a)

1 1
=a- ha]—(—) . J(z - y)dy - hf@ . J(z - y)dy - mf(a)

>a- —[(1 +a) J(z —y)dy + f(a)]
>a
(4.38)
by (Es).
Also,
Tu(z) = hﬂ}x—) fn J(z - y)uly)dy +u— hfu + ( /W)
< hj(Lx) /ﬂ J(& - y)u(y)dy +1— h - hj(—x) 1) (4.39)

<1

for z € M,.

Estimates (4.36)-(4.39) imply that T maps B to B.
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For u,v € B, choosing h small enough so that 0 < 1 — h(1 + 6%) < 1, we have

ITu — Tl =||(u—v)+£7/n~f(w—y)(uw) — v(y))dy

- hulz) = v(2)) = == () = SOl
_ hf'(Ou + (1 — 6)v) h
=Nt~ h = LTS - ) 4 25 [ (= ) (ut) — o)l

<(1= AU+ 5l = vlleo + hll(s = o)l
<(1 = o)l = vl
(4.40)

where 6(z) € (0,1) for all z € Q. Here we used (E3) and the fact that for any z € Q
either u(z), v(z) > a or u(z), v(z) < —a.
Therefore, T is a contraction map from B to B and so there exists a unique point

u € B such that Tu = u. Estimates (4.35) follows from the definition of B.

Remark 4.2.4 If we just consider the solution to

/ J(z — y)u(z)dy — / J(z — y)u(y)dy + f(u) =0 in Q (4.41)
Q Q

without the condition [, udz = 0, then the conditions that f is odd and J(z) = J(|z|)
are not necessary. In this case, we can use a similar method to that in [10] to prove the
existence of a discontinuous solution under conditions (E,), (E3)’, and (E,), where

(E3)': f € CY(R), f(-1) = f(c) = f(1) = 0 for c € (-1,1), there exist § > 0,
a € (0,1), b € (-1,0) such that f'(z) > 4 on [a,00) U (—00,b), f(a) < —(1 +a)M,
and f(b) > (1 + b)M, where M is defined in (E,).
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