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ABSTRACT

A STUDY ON DIFFERENTIAL ITEM FUNCTIONING (DIF) OF THE BASIC

MATHEMATICAL COMPETENCE TEST FOR JUNIOR HIGH SCHOOLS IN

TAIWAN

By

CHIEN-MING CHENG

This study investigates the relationship between gender group membership and

performance on test items using four differential item functioning procedures — Area

Measure, Likelihood Ratio test, Mantel-Haenszel, and SIBTEST. The analysis of DIF is

important because of concern that the basic competence test for junior high schools be

fair and impartial for every student. In this study, the presence of DIF for gender groups

is investigated for this new system of testing. The results of this study are the

identification of items that show evidence of DIF, a determination of which methods are

the most accurate for detecting DIP, and an investigation of the possible causes of DIF.

Both real and simulation data are analyzed to compare the four DIF methods. From

the results, synthesis and discussion of effect size, frequency, consistency, and Type I

error rate, of the four methods, SIBTEST was deemed the most appropriate to detect DIF

items for the basic mathematical competence test for junior high schools in Taiwan.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

For the past 40 years, high schools in Taiwan have administered an entrance

examination to select students best suited to enter particular schools. In 2001 the entrance

exam was replaced by the Basic Competence Test for Junior High Schools. This was the

first time the Basic Competence Test for Junior High Schools was put into practice. The

test is critical to students’ future development, because students will use the test results to

apply to senior high schools. There are concerns about the quality of the test item,

including their validity as achievement indicators and their fairness for the different

demographic groups of the student population. An important question is whether

performance on the test items is related to the demographic characteristics of the student

population. The issue is significant for the junior high schools, students, and their parents.

The demographic characteristics of interest include race, sex, and age. In Taiwan, the

proportion of minority population is about 5%. The students who participate in the basic

competence test are almost the same age. In addition, the difference in mathematics

performance between genders is always a controversy issue in education (Noddings,

1992). Society is also concerned about the issue of sex equality. Therefore, the purpose of

this study is to check the relationship between demographic group membership and

performance on test items. Gender is the specific demographic feature that is considered,

and performance differences are investigated in mathematics for junior high school

students in Taiwan.

Tests have existed in China since ancient times. Their purpose was to choose the



elite from among the people. Even today, similar tests are used throughout the world.

Why would such a system of testing endure so long? Because the test is believed to be an

impartial, fair, and open system. Many problems, however, have arisen in education

development over the past number of years because teachers’ instruction is influenced by

material included on the test; teachers’ teaching and behavior often follow the contents of

a test. The contents of tests were institutionalized and dominated teaching activities

(Chen, 2003; Liu, 2004; Shen, 2003; Ye, 2003). That is, teacher’s instruction is

influenced by the content of test.

In the past a student who wanted to enter senior high school or vocational high

school had to pass the Senior High School Entrance Examination. The textbook was the

bible of learning. Students spent a great deal of time memorizing the contents of a

textbook. However, these materials were far from real—life experience, and if the learning

experience cannot link with real-life experience, learning activities lack significance.

Knowledge learning is only information accumulation and does not cultivate

problem-solving abilities. Students who learn material by rote do not know how to apply

their knowledge to real-life experiences, affecting their level of creativity (Wu & Xie,

2001).

Due to the above shortcomings of the traditional test system, the Ministry of

Education has begun to concentrate on education reform. The entrance examination is a

very important part of this reform. The senior high school entrance examination has been

administered throughout schools in Taiwan for about fifty years. Since 2001 it has been

replaced by the Basic Competence Test for Junior High Schools. Parents, teachers, and

other educators are very concerned about this reform. The results of tests are related to



many significant matters such as individual prospects, fame for the family, the ranking of

schools, and the honor of teachers; the fairness of the test is a universal concern.

The Basic Competence Test for Junior High Schools is a very important

breakthrough in education because it adopts item response theory (IRT). Many topics in

IRT have been investigated, such as building item banks, calibration of items with an

examinee’s ability, setting standards, equating, and examination of differential item

functioning (DIF). Differential item functioning (DIF) may be defined as the performance

difference on a particular test question between individuals of comparable ability or

performance who belong to different groups (Dorans & Holland, 1993). The DIF topic is

important because of concern that the Basic Competence Test for Junior High Schools be

fair and impartial for every student. This is a very important issue. In this study the

presence of DIF for gender groups is investigated for this new system of testing. The

results of this study are the identification of items that show evidence of DIF and that are

judged to be due to bias, a determination of which methods are the most accurate for

detecting DIF, and an investigation of the possible causes of DIF. The results can be

important reference resources for parents, teachers, other educators, and the institution of

Basic Competence Test for Junior High Schools.

1.2 Purpose of the Study

Most large testing programs have a formal review in order to ensure that tests are

fair for all examinees. Formal review is part of the test development process where items

are inspected by content experts for text that might be inappropriate or unfair to relevant

test subgroups, including female examinees, minority group examinees, and disabled



examinees. But reviews are conducted before the tests are administered. Statistical

measures of DIF can also help test designers identify items that may be biased against

examinees. Typically, DIF analyses are conducted after the tests are administered using

large samples of exarninee data.

Many psychometric experts have tried to give a clear and concrete definition for

item bias. Cleary and Hilton (1968) gave the definition of item bias from the analysis of

variance viewpoint. They reasoned that item bias was an interaction between an item and

group membership. Angoff and Ford (1973) defined item bias as the difference in

difficulty parameters between two groups. Today researchers distinguish DIF from “item

bias.” Holland and Thayer (1988) used DIF (differential item functioning) or DIP

(differential item performance) to describe the performance difference between two

comparable ability groups.

Group differences in test performance should not be interpreted automatically as

evidence of bias because score differences might be valid reflections of group differences

in knowledge and experience, so the concept of relative difficulty was devised. Camilli

and Shepard ( 1994) refer to the raw or uninterpreted relative difficulty as differential item

functioning or DIF. DIF statistics would be used to identify all items that function

differently for different groups; then, after logical analysis to determine why the items

seem to be relatively more difficult, a subset of DIF items might be identified as “biased”

and presumably then eliminated from the test. The item is called biased if it is determined

through logical analysis to be the result of factors unrelated to the construct that is the

target for the test. That is, bias is operationalized as relative item difficulty that

exaggerated or distorted group differences. Bias means that some dimension other than



the target of the test affects performance, and the groups differ on that dimension. DE is

just a statistical measurement and its presence does not necessarily mean that an item

should be deleted (Angoff, 1993). DE may indicate that there is some curriculum or

instruction difference that results in differences in performance rather than some biasing

factor (Harris & Carlton, 1993; Lane, Wang, & Magone, 1996). In this study the

researcher will adopt the perspective of Camilli and Shepard (1994) to distinguish

between DE and bias.

The detection of DE has been included in item analysis procedures by test

practitioners around the world. The objective is to identify items that show DE and

eliminate those that likely represent item bias in order to improve fairness for examinees

of different backgrounds. Data and experience from analyzing DE can contribute to

future reference materials to improve the quality of items. If there are no DE items in the

test, test impartiality for examinees will increase as will the validity evidence for the test

as an instrument to measure latent abilities of examinees.

Research on item bias can be traced back to 1905. A. Binet and T. Simon

administered the original version of the intelligence test. They found there was significant

difference between children of working class backgrounds compared to those from

middle class families (Tai, 1994). From that time, cultural bias has become a topic of

research.

In the late 19603, American society experienced the rise of women’s liberation and

the civil rights movement. Since that time, most of school admissions, diploma granting,

and employment and personnel selection have depended on test results to achieve

equality and fairness for groups (Tai, 1994). American educators are especially interested



in differences in test results by gender and race. For instance, Jensen’s (1968) research

found the difference between whites and blacks’ intelligence is about one standard

deviation. Williams (1971) also believed traditional education and professional tests were

advantageous to middle class whites. Freedle and Kostin (1988) researched whether the

items in a test exhibited differential item functioning for different groups. Their findings

established that some items were advantageous to whites. The problems arising from item

bias are still a concern worldwide. Walstad and Robson (1997) used the DE method to

detect male-female differences on multiple-choice tests in economics and found DE

exhibited on particular items. Mailer (2001) found that in the Wechsler Intelligence Scale

for Children — Third Edition, of the 151items studied, 52 were found to function

differently for boys and girls. Ryan and Chiu (2001) found that the gender DE for the

word problem category was an issue. Gibson and Harvey (2003) investigated the Armed

Services Vocational Aptitude Battery and found DE was commonplace at the individual

item level and could be found to favor each sub-groups in some cases. Lane, Wang, and

Magone (1996) researched gendered-related DE on a middle-school mathematics

performance assessment and found four tasks favored female students and two tasks

favored male students with respect to uniform DE. In the past decades in Taiwan, Wu,

Houng, Shu, Chen, and Chen (1994), Tai (1994), Chien, Liu, Sheu, Kuo, and Yin (1995),

Chen (1996), Huang (1999), and Huang and Li (1999) used data to study DE. Chien, Liu,

Sheu, Kuo, and Yin (1995) suggested that test designers increase the analysis of DE

when developing a test. Thus, it is imperative to study whether the ability test items are

fair with regard to differences of gender, race, geographic location, and socio-economic

status in Taiwan.



A mathematics test is administered to measure an examinee’s mathematics ability. It

would be disadvantageous to examinees who have low reading ability and

socio-economic status if the influential factors on mathematics test scores were to include

reading ability and cultural differences as well as mathematics ability of examinees.

Similarly, it would not be appropriate if the test scores that measure examinees’

mathematics ability were also an index of attitude toward mathematics and discriminated

against examinees with negative attitudes.

1.3 Research Motivation and Goals

Many different methods for detecting DE are available. The earliest method of

detecting DE is the “transformed item difficulty method” provided by Angoff (1972).

The method compares the correct answer probability for two groups. Because the

transformed item difficulty method only considers item difficulty, it cannot detect the

relationship between group membership and discrimination (Merz & Grossen, 1979).

The xz test procedure was developed by Scheuneman (1979). The 352 test procedure

usually separates examinees into many subgroups by the total test scores and assumes

that the ability of examinees in the subgroups is approximately equal. Although research

supports the 352 test procedure as superior to the transformed item difficulty method, it

still has many disadvantages. For instance, the arbitrariness involved in the designation of

intervals for the total score indicates that results may vary with the characteristics of the

data, that the index of DE could be easily confounded by the sample size, and that

valuable information may be lost by treating a continuous variable as a categorical

variable (Ironson, 1982).



The item characteristic curve method is based on item response theory. Three of the

ways to use IRT to detect DE are (Camilli & Shepard, 1994; Ironson, 1983):

1. Comparison of the measured difference between two item characteristic curves for

different groups — the method calculates the area between the two item characteristic

curves for different groups as the index of DE. There are three kinds of such DE

measure: first is the area measure; second is the squared differences measure; and the

third is a weighted area and squared differences measure.

2. Comparison of the vectors of item parameters: the essential point of this method is to

test the equality of item parameters.

3. Comparison of the goodness of fit between the item response model and data: the

method for detecting DE is to compare the item fit statistic across the groups of

interest, differences in fit may indicate DE.

Many researchers have found the transformed item difficulty method inferior to the

item characteristic curve method and 352 test procedure (Ruder, Getson, & Knight, 1980;

Shepard, Camilli, & Averill, 1981; Shepard, Camilli, & Williams, 1985; Subkoviak,

Mack, Ironson, & Craig, 1984). And many researchers also have found that detecting DE

based on item response theory is superior to the transformed item difficulty method and

the )6 test procedure (Ironson, 1977; Ironson & Subkoviak, 1979; Merz & Grossen, 1979;

Runder & Convey, 1978; Runder, Getson, & Knight, 1980; Shepard, Camilli & Averill,

1981; Shepard, Camilli & Williams, 1985; Subkoviak, Mack, Ironson, & Craig, 1984).

Therefore, this study will include the signed area measure between two item

characteristic curves and the comparison of the goodness of fit between the item response

model and data to detect DE.



Mantel-Haenszel (M—H) is another method used to detect DE. The earliest person to

present M-H is Cochran (1954), and later Mantel and Haenszel (1959) and Mantel ( 1963)

expanded the method. M—H pOSsesses a logical and concise concept that is the extension

and application of the 12 test procedure. Because the distribution of x2 of M-H is known

in advance and the probability of the value of a test statistic or one more extreme can be

computed, the M-H method is used as a significance test. Many researchers prefer to use

M-H to detect DE. The study will also adopt the M-H method because it is an

economical, convenient, and easy to calculate measure.

SIBTEST (Simultaneous Item Bias Test) developed by Shealy and Stout ( 1993a,

1993b) is the latest and a nonparametric method to detect DE. It has comparative

performance to the M-H method. It has good Type I error rates across varying levels of

item discrimination and sample sizes when group mean abilities differ (Chang, Mazzeo,

& Roussos). Therefore, SIBTEST will be adopted in this study.

DE means the performance difference on a particular test question between

individuals of comparable ability who belong to different groups. The appearance of DE

indicates that an item may be affected by content unrelated to the construct that is the

focus of the assessment. Such effects may have an unfavorable influence on the validity

of the item. The entrance examination for high school was administered for more than 40

years in Taiwan. It was the only available way to choose appropriate students from junior

high school for senior high school. The reliability and validity of the entrance

examination had never been evaluated. However, the test was still accepted and trusted

by the public. But from a psychometric viewpoint, there was concern about the fairness

and rationality of the entrance examination when a single test result was the only measure.



No pilot test or measure of the test’s validity and appropriateness for the examinees was

available because in order to keep all test items confidential they were designed in an

imperial examination ball. A concern for test quality has led the Ministry of Education to

follow the current trends in measurement procedures. Beginning in 2001 the Ministry of

Education, in an attempt to reform the entrance examination program, introduced the

Basic Competence Test for Junior High Schools to replace the traditional entrance test.

This was a milestone for the examination system of Taiwan because in the past the

entrance examination was administered once a year and adopted the theory of classical

test theory.

Today the Basic Competence Test for Junior high Schools is administered twice a

year and adopts item response theory. There is as yet no research to determine the

fairness of the mathematics items on the Basic Competence Test for Junior High Schools.

Therefore, this study’s research will use the M-H, area measure, likelihood ratio test, and

SIBTEST to investigate DE by gender for the first Basic Competence Test for Junior

High Schools in 2001. The goal will be to determine the consistency of all the methods

employed, power and accuracy, and characteristics of any detected item bias. In addition,

the Type I error rate of all methods employed in this study will be investigated.

Based on the above research motivation, the research questions are as follows:

1. Is there significant DE in test items from the basic mathematics competence test

based on gender groups?

2. How consistent are results for the different ways of detecting DE?

3- Which is the best procedure for detecting DE?

4. What is the Type I error rate of detecting DE for the different methods?

10



5. Which of the items detected as showing significant DE are considered to be biased

after logical analysis?

6. What should be done to determine if the DE is due to instructional differences or

some biasing feature of the items with the results after identifying DE items?

1.4 Definitions

1.4.1 Item response theory

Item response theory is also called latent trait theory. It is a kind of mathematical

model. The mathematical model is a mathematical function used to describe the

conditional probability of a response given the level of the latent ability (Thissen &

Steinberg, 1986). There are many item response models that are developed from this

theory, but the one-parameter logistic model, two-parameter logistic model,

three-parameter logistic model, and four-parameter logistic model are the basic models.

The format used in the basic mathematical achievement test is multiple-choice.

Multiple-choice items have some non-zero probability of responding correctly even when

the examinee has very little knowledge. The instrument was a 32-item mathematics test

with four choices for each item. Examinees were asked to select an option that is the best

or exact answer. For multiple-choice items, the three-parameter logistic model is the most

suitable (Yu, 1993). Thus the study will adopt the three-parameter logistic model. The

three item parameters are a - discrimination, b - difficulty, and c — pseudo guessing.

ll



1.4.2 Item characteristic curve method

An item characteristic curve (ICC) is the graph of an item characteristic function, a

mathematical model used to describe the relationship between examinee item

performance and trait. The shape of ICC is an S-shaped curve that describes the

relationship between the probability of correct response to an item and the ability scale.

An ICC can be used to predict the probability of answering an item correctly from the

examinee’s ability level. The ICC can show the item’s difficulty, discrimination, and

guessing parameters. The item characteristic curve method is a kind of DE detection

method. That is, the item characteristic curve method is used to compare the item

characteristic curves with different groups of interests. The difference between the ICCs

for different groups is the index of DE.

1.4.3 Mantel-Haenszel

Mantel-Haenszel is a method used to detect the item performance difference for

different groups. In the beginning, the estimation of a common odds ratio a or log

a was the M-H statistic used as the index of DE. But this method is limited to the 2x2

contingency table. It is not practical because M-H is only used to detect the difference of

the two groups. Thus Landis, Heyman, and Koch (1978) improved upon the

Mantel-Haenszel method with the Cochran-Mantel-Haenszel (CMH) in order to use it

with multi-level data. In this study, the researcher will adopt SAS software to run the

CMH statistical analysis to compute the general association statistic. If the statistic is

significant, it means the item exhibits DE. Then the average of the DE item for each

group will be determined to see whether the item is advantageous to any group.

12



1.4.4 Likelihood ratio test: Model comparison measures (Neyman & Pearson, 1928)

The likelihood ratio test (LR) (Thissen, Steinberg, & Gerrard, 1986; Thissen,

Steinberg, & Wainer, 1988, 1993) is used to compare two different IRT models in order to

test whether the IRFs of the two groups are the same. Thissen et al. (1988) noted that this

approach is preferable for theoretical reasons. One of the models is called the compact

model, and the other is called the augmented model. The augmented model includes all

the parameters of the compact model and additional parameters. The LR tests whether or

not the additional parameter in an augmented model is significantly different from 0.

1.4.5 SIBTEST

SIBTEST(Shea1y & Stout, 1993a, 1993b) is a non-parametric DE detection

method. SIBTEST is similar to the standardization method in concept. But SIBTEST has

some unique characteristics. SIBTEST has a statistical significance test. The matching

variable in SIBTEST is a latent score rather than an observed score. Although SIBTEST

was developed from an IRT framework, it does not require item calibration. However, the

method assumes that the abilities of examinees who have the same score are equal. The

DE estimate from SIBTEST uses the number correct score as the matching variable for

detecting subgroup differences. It is noteworthy that the scores of matching subsets do

not include the studied item score. That is the examinee is assigned to subgroups based

on a total scores that does not include the studied item. This is obviously different from

the M-H method.
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1.4.6 Basic Competence Test for Junior High Schools in Taiwan

The Basic Competence Test for Junior High Schools is a result of education reform

policy created by the Ministry of Education in Taiwan. The purpose of the test is to

measure the basic abilities of students in junior high schools and how much they have

learned by the time they complete junior high school. The content of the test covers the

basic, important, and core knowledge and ability of students. “Basic competence” means

the comprehensive, basic, and important ability of the learner who was systematically

instructed for the duration of the three-year junior high school program. The score they

achieve is used to help students decide which school to attend, senior high school or

vocational senior high school. The test is designed by the Institution of Basic

Competence Test for Junior High Schools.
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CHAPTER 2

LITERATURE REVIEW

Historian DuBois (1970) indicated that ancient China had the idea of ability

measurement since 2,200 BC. But China didn’t conduct scientific research on the

measurements. Psychometrics, which was developed in the West, was not practiced in

China. Only later did researchers in China begin to pay attention to psychometric

research.

Psychometrics is a division of science that studies psychological testing and

assessment. The research area includes quantitative psychology, individual difference,

and mental test theories (Cohen, Montague, Nathanson, & Swerdlik, 1988). In the late

19th century, scientific psychology was born, and psychologists were interested in

quantifying psychological traits. As a result Binet-Simon developed the first intelligence

test in 1905.

Test theory can be divided into classical and modern test theory, depending on how

scores are analyzed and interpreted. These theories use different mathematical models.

Classical test theory (CTT) is still regarded as practical test theory. Many tests are

still built using relationships in data based on classical test theory. CTT hypothesizes that

an examinee has a true score and observed scores. The true score is the expected value of

the observed scores obtained over an infinite number of independent repeated testing

using the same test (Croker & Algina, 1986). The observed scores are computed from

examinees’ responses to items and true scores are hypothetical values that can be

estimated. CTI' attempts to evaluate the association between observed scores and true

scores. CTT is built on the true score model.
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2.1 Item Response Theory

IRT was developed to overcome some of the shortcomings of classical test theory.

The relationship between an examinee’s item performance and ability can be described

by a monotonically increasing function, called an item characteristic function. Different

item response formats correspond to different item response models. An item response

model is composed of a mathematical formulation and basic assumptions. Due to the

robustness of IRT models to violations of assumptions, IRT seems to be preferred to CTT

and it is respected by current psychometric researchers. Basic concepts, basic

assumptions, item response models, advantages and disadvantages, and applications of

IRT are described below:

2.1.1 Basic concepts of IRT

The basic concepts of IRT are as follows (Hambleton, 1989; Hambleton &

Swaminathan, 1985; Yu, 1997):

1. The performance of an examinee on a test item can be predicted or explained by a

single factor. Because the factor cannot be observed, it is called a latent trait or

ability which is the desired measurement objective.

2. The relationship between performance and ability can be expressed by a

monotonically increasing mathematical function called an Item Characteristic

Function (ICF). The ICF provides the right response probability at each examinee

ability level. A graph of the ICF is called Item Characteristic Curve (ICC).

3. Different types of response data have different item response measurement

models and ICCs because of different requirements and assumptions.
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4. Every ICC includes one or more parameters to describe item characteristics and

an examinee’s ability. Therefore, the shapes of ICC are different if the number of

parameters is different. The most often seen shape is a non-linear regression line.

2.1.2 Basic assumptions

Because the relationship between an examinee’s item performance and ability can

be expressed by a mathematical function, an item response model is also called a

mathematical model (Hambleton, 1989). Item response models have common basic

assumptions. Support for the assumptions should be established before an IRT model is

applied to test data. The basic assumptions of IRT are as follows:

1. Unidimensionality: All of the items in the test measure the same ability or latent

trait. The items on a test should measure the same ability. The meaning of

unidimensionality is simple, but it is not easy to find data that meet the

unidimensionality assumption. Hambleton and Swaminathan (1985) thought data

with a dominant first factor would meet the requirements for unidimensionality.

In fact, many testing situations require multiple abilities. That is, they require an

assumption of multidimensionality (Bock & Aitkin, 1981; Hambleton, 1989;

Reckase, 1985). Multidimensional models are still in development.

Unidimensionality is still the principal basic assumption.

Local independence: The examinee’s response to each item is independent in a

prabilistic sense from responses to other items. That is, the response to one item

does not influence responses to any other items regardless whether an examinee’s

response is correct or incorrect. Usually, local independence will be true if the
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assumption of unidimensionality can be supported (Lord, 1980).

3. Non-speed test: An examinee’s bad test performance is due to a lack of ability

rather than to a time constraints.

If the assumptions of the IRT models are met, they have the property of invariance,

which includes the invariance of item and examinee parameters. The invariance of an

examinee’s ability estimate means that it doesn’t change when measuring with different

test items, except due to measurement error, once the scale for the parameters has been

set to a common metric. The invariance of item parameter estimates is that they do not

change with subgroups (e.g., sex, race, or area) except for measurement error. The

invariance property provides the basic theory for test linking and equating.

IRT provides the standard error of estimate for every examinee’s ability. The inverse

of the square of the measurement standard error is defined as the information for the

ability estimate. Information is an index for evaluating the accuracy of the ability

estimate. Information is a new measurement concept. It aids in designing items, building

item banks, implementing computerized adaptive testing, and test equating. Information

and invariance are the main factors that make a distinction between IRT and CTT (Yu,

1997).
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2.1.3 Item response model

Item response models can be classified by different scoring methods. In general,

there are three types of scoring: dichotomous, multicategory, and continuous. The models

can also be distinguished by the mathematical form of the characteristic curve. Using the

three methods of measurement scoring, Table 2.1 presents IRT models (Hambleton &

Swaminathan, 1985):

Table 2.1 Theoretical model ofItem Response Theory

 

 

Data property Theoretical model Reference

Dichotomous Latent Linear Lazarsfeld and Henry

(1968)

Perfect Scale Guttman(l944)

Latent Distance Lazarsfeld and Henry

(1968)

1-, 2-, and 3-Parameter Lord (1952)

Normal Ogive Model

1-, 2-, and 3-Parameter

Logistic Model

Bimbaum(1957, 1958a,

1958b, 1968); Lord and

Novick (1968);

Lord (1980); Rasch (1960);

Wright and Stone (1979)

The shape of the item characteristic curve will be different if the item response model is

different. The following Figure 2.1 is three variants of ICCs for the IRT models.
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(a) l-parameter (p11:b=0, p12:b=.5) , (b) 2-parameter (p21 :b=0, a=1.5; p22:b=.5, a=2)
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Figure 2.1 Three ICCs of[RT

The S shape ICCs of Graph (a), (b), and (c) are respectively for the one-, two-, and

three-parameter logistic model.

Bimbaum presented the three-parameter logistic model in 1968. Its item

Characteristic function is as follows:

Dana-bi)

P- (9 = c- + 1— c-
l( ) I ( l)1+eDai(0_bi)

 

Pi( 9 ) means the probability of the ability 0 to answer correctly the item i. D is a constant

and equal to 1.7. bi is the ith item difficulty. The larger the bi value, the more

20



difficult will be the item. a, is the ith item discrimination. The greater the slope is, the

greater the discrimination. c, is the ith lower asymptote parameter. The three-parameter

logistic model considers simultaneously difficulty, discrimination, and lower asymptote

parameters. Therefore, it is appropriate for the multiple-choice format test. Graph e is the

item characteristic curve of the three-parameter logistic model. The guessing parameter

can improve the fit to multiple-choice test data.

2.1.4 The application of IRT on Detecting DE

IRT can offer effective application for detecting DE. Its applications are described

as follows:

DE is of concern to test users and developers. DE indicates whether an item

functions differently for different subgroups of a population. This is a minimal

requirement for determining if a test item is potentially unfair to a certain group. The

methods for detecting DE based on IRT are the Lord )8 test, the ICC area measure and

the likelihood ratio test. Among these methods, the ICC area measure and likelihood ratio

test are better supported by empirical research. This study uses the ICC area measure and

the likelihood ratio test to analyze the data from the basic mathematical competence test

given in 2001 to detect DE in the test.

2.2 Types of DE

From the IRT viewpoint, when the IRFs of two groups are identical, that is, the ICCs

of two groups are the same, it indicates the item does not exhibit DE, as in graph 1 of

Figure 2.2. If the ICCs of two groups are different, it shows that there is differential
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functioning. That is, the item exhibits DE. Mellenberg(1982) differentiated DE into

uniform and non-uniform types. Uniform indicates that the answer performance of the

focal group (or the reference group) consistently maintains a relative advantage. In other

words, the ICCs of two groups are different and do not intersect at any ability level, as in

graph 2 of Figure 2.2. The item is advantageous to the reference group in graph 2 of

Figure 2.2. Non-uniform DE indicates that the ICCs of two groups are different and

intersect as in graph 3 of Figure 2.2. The graph indicates that the item handicaps the focal

group at low and intermediate ability levels, and the reference group at high ability levels.

   

 

  

          

Reference

Pi(0) Pi(0) PKG) Reference

Focal

Focal

0 O 0

Graph 1: No DE Graph 2: Uniform DE Graph 3: Non-uniform DE

Figure 2.2 Types ofDIF

2.3 DE and Impact

To distinguish between DE and impact is important. DE means differences in item

functioning after groups have been matched with respect to the ability that the item

purportedly measures. Item impact can be described as any group discrepancy in item

performance that reflects actual knowledge and experience differences on the construct of

interest (Clauser & Mazor, 1998). DE is different from a performance difference caused

by differences in the ability level of the two groups. A difference in performance between

two intact groups is called impact (Lu, 1999). Dorans and Holland (1993) used Simpson’s

Paradox to make a distinction between DE and impact. Table 2.2 shows the performance
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of group A and Group B students. Suppose 1440 students answered correctly in group A

of 2400 students. The answer right proportion is 60 %. 1200 students answered correctly

in group B of 2400 students. The answer-right proportion is 50 %. The difference in

proportion of correct responses between the two groups is 10 %. The answer right

proportion of group B is 0.1 higher than group A on the low, middle, and high ability

level. In fact, the item is advantageous to group B. The example shows the importance

of the ability grouping for detecting DE.

Table 2.2 The performance oftwo groups on an item

 

 

 

Group A Group B

Group Number Right # Proportion Number Right # Proportion

Low 400 40 0.1 1000 200 0.2

Middle 1000 500 0.5 1000 600 0.6

High 1000 900 0.9 400 400 1 .0

2400 1440 0.6 2400 1200 0.5

2.4 DE Detecting Methods

2.4.1 IRT methods

IRT DE procedures primarily detect if there are differences between item

parameters for the reference group and the focal group. That is, are the two item response

functions the same? The most commonly used IRT DE procedures are Lord’s x2 test

(Lord, 1980), a measure of the area between ICCs (Camilli & Shepard,1994; Lord, 1980;

Millsap & Everson, 1993), and the likelihood ratio test (Thissen, Steinberg, & Wainer,

1988, 1993).
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1. Lord x2 test method

Lord (1980) provided a statistical procedure to test whether the item parameters of

two groups are different. In applying Lord’s x2 to examine DE, the first step is to employ

IRT software, like the BILOG program, to calibrate the item response data from the focal

and reference groups. The item parameters estimated always have their individual scale

origin and unit because of IRT scale indeterminacy. Therefore, a direct comparison of the

item parameter estimates cannot be made. Before making a comparison, item parameter

estimates must be transformed to the same scale through a linking procedure. Then DE

analyses can proceed.

Lord suggested fixing the c parameter from the three-parameter model or using the

two-parameter model. The null hypothesis for Lord’s xz test is: ap =aR, bF=bR . The

difference between the two item parameters estimate can be expressed as the following

vector,

V’=[ ap -aR, bF‘bR] .

The formula for Lord’s )8 test is as follows,

76: V's"v .

where S is the variance-covariance matrix of the item parameter estimate differences. By

the large sample theorem, Lord’s xz estimates follow the x2 distribution with 2 degrees of

freedom under the null hypothesis. If the x2 estimate reaches a significant level, the null

hypothesis is rejected indicating that the item has DE. If the variance and covariance

matrices cannot be estimated accurately, errors may result in subsequent identification of

DE items. Under the above conditions, use of Lord’s )8 would not be justified (Lane,

Stone, Ankenmann, & Liu, 1995).
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2. IRT measure of DE (area measure)

Another method for detecting DE is to calculate the area between the IRFs or ICCs

for the two groups. The larger this area, the more serious is the DE. When applying the

area measure to detect DE, the item parameters of the two groups have to be calibrated,

then linked to the same scale. If PR(0) and PF(9) respectively represent the IRFs of the

reference and the focal group, the area between two ICCs can be defined as:

A: 3(PR(0) - PF(0)) , where S indicates the range of ability 0.

If the area measure retains a positive or negative sign after calculating, it is called

the signed area measure. If the value is positive or 0, it is called unsigned area measure.

That is, unsigned area measure is the absolute value of the area between two ICCs.

The formula for the signed area measure is,

SA: j [PR(0) - PF(9)]d9.

S

(Rudner, 1977)

SA>0 indicates the item is advantageous to the reference group; SA<0 indicates the item

is advantageous to the focal group. This measure is easily interpreted in real application.

Its disadvantage is that the IRF differences at different points on the O-scale that may be

calculated would offset each other when the ICCs of two groups intersect. Then the real

value of DE would be underestimated.

The formula of unsigned area measure is:

UA: j Ime) - me) | d0.

s

(Raju, 1988, 1990)
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or UA=Wm, (49) - PF (6)]2d6 .

s

(Camilli and Shepard, 1994)

The unsigned area measure is usually bigger than the signed area measure when an item

presents non-uniform DE.

3. Likelihood ratio test: Model comparison measures (Neyman & Pearson, 1928)

The statistic for the LR test can be expressed as follows,

G2j="2 log [Likelihood (Compact model)/ Likelihood (Augmented model)]

The above Likelihood(-) expresses the maximum likelihood estimates of the

parameter estimates in the compact or the augmented model. j refers to the parameter

number difference between the augmented and the compact models. The distribution of

G2 is x2 distribution with j degrees of freedom under the null hypothesis. In applying the

LR test to detect DE, all the item parameters are assumed equal when estimating the

parameters of the compact model. In the augmented model, all the item parameters

except the studied item are assumed equal. The DE test is employed to compare the

maximum likelihood function of the two models in order to check whether there is a

significant difference.

Following the terminology of Judd and McClelland (1989) and its application to

IRT by Thissen et al. (1993), the model comparison approach is implemented to compare

the relative fit of the two models. The first is called the compact model (C) and the

second, the augmented model (A). Model (A) is an elaboration of model (C). The model

(A) has all the parameters of model (C) plus a set of additional parameters. In this study,

there are 3 parameters because there are one more additional item in model (A). The goal
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of the comparison is to determine if the additional parameters in model (A) are necessary.

Suppose the null hypothesis is H0 :1" = Setc (where Setc contains N parameters),

and the alternative hypothesis is H, :I‘ = SetA (where SetA contains N+M parameters),

where F stands for the true set of parameters. Model C, the compact model, has M fewer

parameters than Model A. The likelihood ratio (LR) of interest for the two models is

R = L‘ (Model - C)

L. (Model — A)

 

[2 (M) e —21n(LR) = [—21n L‘ (Model — C)] — [—21n L‘ (Model — A)]

G(C) = —2ln L‘(Model — C) and G(A) = -21n L‘ (Model — A) are defined.

Then 12 z -21n(LR) = G(C) —G(A)

Utilizing the Camilli and Shepard (1994) steps for estimating DE, the Model

Comparison Approach is as follows:

1. With a 3PL IRT model, estimate item parameters and obtain 352 goodness-of-fit

statistic G(l) for a 32-item test.

2. Choose Item 1 to study.

3. Create two items for item 1:

Code Item 1R as answered by the Reference (male) group and not reached by the

Focal (female) group. Code Item 1F is answered by the Focal group and not reached

by the Reference group.

Original coding for Step 1

Item 1 2 3 32

Response variable u] u; u3 u32

Recoding for estimation run for item 1 in step 4
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2 3 4 33 34

Reference uz 113 u; um -

Focal uz 113 u; — 111p

«- .. means not reached

4. Re-estimate parameters and obtain )8 transformation of the likelihood ratio G(2) for

the 34-item test.

5. Compute G(l) - G(2). This is approximately )6 with 3 degrees of freedom.

6. If G(l) — G(2) exceeds the critical value, flag Item 1 as showing statistically

significant DE.

7. Repeat Steps 2-6 with all the other items.

In the above three types of IRT DE procedures, Lord’s x2 test and LR test are

significance tests. The results show only the information whether or not there is a

statistical difference between the two IRFs of the two groups, but it cannot specify the

magnitude of difference. Raju (1990) provided two sampling distributions for the mean

and standard deviations of the infinite interval area measure. He also provided the

statistic for the signed area measure - Z(EST) and the statistic for unsigned area

measure — Z(H). Both of them have a z distribution. In addition, the item parameters of

the Lord )(2 test and the ICC area measure in practical application need to be linked

before comparison. However, for the LR test the item parameters are simultaneously

estimated and there is no requirement for linking of parameter scales. Therefore, the LR

test is the best of the three methods. The LR test is gradually becoming more accepted for

detecting DE. Kim and Cohen (1995) compared the performance of three methods and

found the consistency of results very high for those DE test procedures. A limitation of
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IRT based procedures is that the data have to correspond to the unidimensionality

assumption of the models. The above methods also require large samples for accurate

parameter estimation if the two- or three-parameter model is used (Clauser & Mazor,

1998).

2.4.2 Non-IRT methods

Non-IRT procedures include the Mantel-Haenszel method (Mantel & Haenszel,

1959; Holland & Thayer, 1988), the standardization method (Dorans & Kulick, 1986), the

logistic regression analysis method (Swaminathan & Rogers, 1990), and the SIBTEST

procedure (Shealy & Stout, 1993a).

1. Mantel-Haenszel method

M-H is a variant of the contingency tables analysis method. The M-H method

usually uses the total scores of the test as a matching variable for the reference and the

focal groups. For each of the k score levels, a 2x2 contingency table can be produced (as

shown in Table 2.3). Every item has a 2X2Xk contingency table, at least in theory.

Sometimes score groups have to be combined because of low frequencies.

Table 2.3 20 contingency tablefor total score k

 

 

Item Score

Group 1 0 Total

Reference Ag, 13;, Nat,

Focal Ck Du NFk

Total Mn, M01: Tk
 

Tk : frequency of score k. NRR: the number of persons in the reference group.

NFkI the number of persons in the focal group. Mik: the number answering the item

correctly. M0k: the number answering the item incorrectly.

The null hypothesis of M-H method is: The value of common odds-ratio parameter
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am, of the reference and the focal groups is equal to l. The estimate of am, is as

follows:

2AkDk /Tk

_L_______

2.3ka /Tk

k

07M}; =

If the value of am is larger than 1, the reference group more easily answers correctly.

If the value of am, is smaller than 1, the focal group more easily answers correctly.

Mantel and Haenszel (1959) provided a x2 statistic to test the hypothesis of

am, =1.0. The formula is:

  
 

2

[ZAk-ZE(Ak)-%]

MH12= " - "
zVaer)

k

In the formula, E(Ak) and Var(Ak) are respectively defined as:

 

E(Ak)=__lg.‘__l
k- ’ Var( Ak ),._. ivjifizl-IM 1k 0k

Tk T, (T, - 1)

Under the null hypothesis, szH is x2 distribution with 1 degree of freedom. Rejecting the

null hypothesis means the item response data support the existence of DE. In real

applications, am, is converted to another DE type of measure called MH D-DE. The

conversion formula is:

MH D-DE = -2.35 1n(aMH) ,

After am, is transformed to MH D-DE, the difficulty scale (MH D-DE) used by

ETS is used to interpret the difference between the two groups. Positive values of MH

D-DE mean items advantage the reference group. Negative values of MH D-DE mean
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the items advantage the focal group. Because the result of a significance test is easily

influenced by the sample size, ETS designed a DE critical classification system that

simultaneously considers two criteria — the results of the significance test and the value

of MH D—DE. If the value of MH D-DE is not significantly different from 0 and the

absolute value of MH D-DE is smaller than 1.0, it is classified as A type DE. If the

absolute value of MH D-DE is bigger than 1.5 and the value of MH D-DE is

significantly larger than 1.0, it is classified as C type DE. Items that do not fall into the A

and C classifications are classified as B type DE. Type A indicates insignificant or slight

DE. Type B means medium DE. Type C means serious DE (Lu, 1999). The M-H

method has been shown to be effective with reasonably small samples (e.g., 200

examinees per group). The major limitation of the M-H procedure is that it is unable to

detect non-uniform DE (Narayanan & Swaminathan, 1996).

2. Standardization method

The standardization method is also used to identify DE. The standardization method

uses the proportion of correct responses (p- value) to identify differences in item

difficulty between two groups. The null hypothesis for the standardization method is that

the proportion of correct responses is the same for the reference and the focal groups for

all values of the number-correct score. The DE index for the standardization method is

called STD P-DE. Its value is equal to the difference in the proportion of correct

responses for the two groups times the relative frequency of the focal group at each score

level number. The formula is:

STD P-DE = Zwk (PFk - PM)

k

In the formula, Wk: an/HF , HR is the number of correct answers at score level k; m: is
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the number in the focal group; P R is the proportion of correct answers at score level k in

the focal group. Pm, is the proportion of correct answers at score level k in the reference

group.

The proportion correct scale is used to describe the magnitude of DE. The range of

values for STD P-DE is between -1 and +1. Negative values mean the item advantages

the reference group. Positive values mean the item advantages the focal group. ETS also

has a criterion to classify the level of DE. If the absolute value of STD P-DE is smaller

than .05, it indicates the magnitude of DE can be ignored. If the absolute value of STD

P-DE is between .05 and .10, it means the item needs to be checked. If the absolute value

of STD P-DE is bigger than .10, it means the item shows evidence of serious DE and

needs to be investigated carefully. Dorans and Holland (1993) provided the standard error

of STD P-DE to quantify the stability of STD P-DE estimate. Although the ratio of STD

P-DE to its standard error can be computed, the standardization method still has no

formal statistical test procedure.

3. Logistic regression analysis method

Swaminathan and Rogers (1990) applied the logistic regression analysis method to

detect DE. They considered logistic regression analysis method to be a link between

contingency table and IRT methods. The difference between the logistic regression

analysis method and contingency table methods (e.g., M-H) is that logistic regression

analysis method considers the total scores as a continuous variable. The contingency table

methods consider the total scores as an categorical variable. That is, the total scores are

limited in number in contingency table methods. But the total scores represent the

observed ability level. Logistic regression analysis method, on the other hand, uses total
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test scores and groups to predict the probability of correct response. The basic model of

logistic regression analysis method is:

62

 

P( =1):

u 1+ez

Z = 10+119+TzGH3(OG).

In the equation, 0 is the observed ability level that is represented by the test total score. G

is the group that is coded as 0 and 1. 1', is the combined log odds ratio. Regression

coefficient 12 corresponds to the item performance difference for the groups. 13

corresponds to the interaction of group and ability. The full model 1 is then

Z = ro+119+rzG+r3(GG).

A situation with uniform DE would not need the interaction term and could be

represented by the simpler model 2

Z = toH10+rzGt

Finally, there is another situation with no interaction and no DE, only the ability term

would be necessary. This would result in the simplest model 3

Z = 10+110.

Logistic regression analysis method uses maximum likelihood to estimate the

regression coefficient of the model. The procedure for applying logistic regression

analysis method to detect DE is similar to the likelihood ratio test for IRT. Model 1 and

model 2 are compared to check whether or not the I3 is significantly different from 0. The

Value is tested by using the x2 distribution with 1 degree of freedom. If the hypothesis that

T3=0 is rejected, it means the interaction between group and ability is significant. The

item therefore has non-uniform DE. If the hypothesis of r3=0 is not rejected, model 2 and
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model 3 are compared to check whether or not the 12 is significantly different from 0. It is

also tested by using the x2 distribution with 1 degree of freedom. If the hypothesis of 12:0

is rejected, it means the item has uniform DE. Simulated and real data studies have

shown that the logistic regression analysis method procedure produces results similar to

M-H when testing for uniform DE. It is superior to the M-H statistic for identifying

nonuniform DE (Clauser, Nungester, Mazor, & Ripkey, 1996; Rogers & Swaminathan,

1993).

4. SIBTEST procedure

The theoretical framework of SIBTEST (Huang & Li, 1999)

Shealy and Stout (1993a, 1993b) used mathematical statements to describe DE—

that is, Tip(0) #3 TiR(0). 0 indicates the ability being measured. Til:(0) and T1R(0) indicate,

respectively, the marginal item response function of the focal group (F) and the reference

group (R) for the ith item. The function is defined as, Tig(0)= I Pi(0,n)fg(0,n)dn , g: the

focal group and the reference group. Pi(0,n) is the probability of correct response for an

examinee with ability (0,11) for certain item i, and the probability is controlled by the two

ability parameters 0 and r]. fg(0,n) indicates the conditional density function of the

distribution of ability n when 0 is known.

In applying SIBTEST to detect DE, the first step is to separate the total set of items

into two subsets. One is a valid subset that is composed of non-DE items. Another subset

is designated the suspect subtest that will be the target of the DE test. When the

SIBTEST DE statistic is calculated, the first k items out of the total of N items are the

valid subset (non-DE item). U, represents the item score. It is a O or 1 score. Then the
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. . k . .

examinee total score rs X = 2',=0Ui for the valid subtest. The other rtems, from k+1 to

N, are the suspect subtest (suspected DE item). The examinee total score is Y =

2:“! U.- for the suspect subtest.

The formula for the SIBTEST DIF statistic is:

K

flu = ZPHYIi/c —YF,.).

k=0

In the formula, Pk is the proportion of scores X=k for the focal group on the valid subtest;

(171;], - I713. ) is the difference of the adjusted average score of both groups on the suspect

subset. The scores can be based on one item or a bundle of items. If it is based on one

item, it provides a DE test. If it is based on a bundle of items, it provides a DTF test. If

there is no DE or DTF, 13v will be 0. The adjusted scores are the scores after regression

correction. The primary aim of regression correction is to adjust the studied subtest scores

for the two groups so that they are now estimates of the same latent ability in the case of

no test bias, even if group target ability discrepancy exists. The theory and method of

regression correction is in Shealy and Stout (1993a).

The statistic for testing the null hypothesis using SIBTEST to detect DE or DTF is :

B=_§.U__

608..)

where 0(BU) is the estimated standard error of BU, The SIBTEST B statistic is an

approximation to the standard normal distribution under the null hypothesis (H0 : B = 0 ).

If the observed B value is larger than the 100(1-a) percentage point of the 2 distribution,

the null hypothesis is rejected. The B statistic is designed for detecting uniform DE.
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Recently SIBTEST was extended for detecting non-uniform DE (Li & Stout, 1996). It

(SIBTEST) produces Type I errors at approximately the nominal level because of

regression correction, has reasonable statistical power, and performs well with relatively

small examinee samples (Narayanan & Swaminathan, 1994; Roussos & Stout, 1996).

The M-H, logistic regression analysis method, and SIBTEST have generally been

found to perform satisfactorily in simulation studies. The differences among the three

methods are small (Narayanan & Swaminathan, 1994; Rogers & Swaminathan, 1993;

Shealy & Stout, 1993a). However, the power of the M-H method to detect non-uniform

DE is very weak (Narayanan & Swaminathan, 1996). This is because M-H is not

designed for detecting non-uniform DE. The standardization method is usually used to

help describe the extent of DE.

DE procedures based on observed scores usually use the total scores as the

matching variables. However, the total score is not a valid matching variable when the

ability distribution is different between reference and focal groups. The fact that

examinees have the same total scores does not indicate they have the same ability. Some

research indicated that a Type I error rate is usually higher than average when the

discrepancy of examinees’ ability distribution of two groups was apparent and the

discrimination of items was higher or lower (Allen & Donoghue, 1996; Lu, 1996; Lu &

Dunbar, 1997; Roussos & Stout, 1996); total scores cannot effectively match the

examinees’ ability of the two groups. The ability discrepancy is confounded with DE.

The major advantage of the M-H and standardization methods is that they are easily

calculated. In addition, these methods have complete guidelines for interpreting DE. The

major advantage of the logistic regression method is that it conveniently detects

36



non-uniform DE. The major advantage of SIBTEST is the regression correction to adjust

for systematic error due to the difference in ability distributions of the two groups and to

reduce the confounding of ability difference and DE in order to effectively control Type

I error (Roussos & Stout, 1996; Shealy & Stout, 1993a). In addition, the SIBTEST can

evaluate the DTF of a bundle of items and investigate the phenomena of amplification or

cancellation of DE in bundles of items.

The purpose of this research is to compare the two IRT methods and the two

non-IRT methods; the researcher selected the “area measure,” “likelihood ratio test” IRT

methods, and the Mantel-Haenszel, and SIBTEST, non-IRT methods in order to

investigate the research questions. The disadvantage ofAM method is that the IRF

differences at different points on the 0-scale that may be calculated would offset each

other when the ICCs of two groups intersect (Lu, 1999). Then the real value of DE

would be underestimated. So AM method is not appropriate to detect non-uniform DE.

The major limitation of the MH procedure is that it is not appropriate to detect

non-uniform DE (Narayanan & Swaminathan, 1996). The B statistics in SIBTEST

designed by Li & Stout (1996) is used for detecting non-uniform DE. Therefore, the four

methods used in this study, two methods — AM and M-H are fit to detect uniform DE and

the other two methods - LR and SIBTEST are appropriate to detect non-uniform DE.
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CHAPTER 3

RESEARCH METHODOLOGY

The intent of the study is to determine whether DE is present in the basic

mathematical competence test for junior high schools using gender to define groups. The

second intent is to investigate how well the four detection procedures work. In order to be

representative, samples were taken from the full population of all examinees attending

the test. After getting the sample data, the researcher used four DE methods to analyze

the data. The related tools, processing procedure, design, and analyses were described as

follows.

3.1 The Objective of the Research

The mathematics portion of the student’s Basic Competence Test for Junior High

Schools was administered in April 2001. The number of examinees was 299,368. For the

purposes of this study, a number of random samples were selected from the full sample.

Gender was the basic demographic information used in the study.

3.2 Tools of Research

The tools of research include

3.2.1 Instrument: The Basic Mathematical Competence Test for Junior High Schools in

Taiwan

The major differences between the traditional entrance examination and the basic

competence test are the test contents and development of that test. The basic competence

test is designed to evaluate the knowledge and cultivated ability of students after they
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have completed their compulsory education. The basic competence test uses a

continuously developing item bank for construction of the examinations. Item bank

development includes:

1. Item writing and revision: Traditional principles of item development were followed

that require that a large number of items be written both by teachers who teach in middle

schools and by mathematics experts. Mathematics experts who were not the writers of

items and measurement experts then examine the items to determine if they meet the

requirements for content validity. If they do not, the items are deleted or revised.

2. Pilot test: The items put in the item bank have to have the same scale; appropriate item

and examinee samples are important. The institution uses a matrix sampling design with

overlapping items to collect data and concurrent calibration in order to get the same scale

of item parameters to build the item bank. Concurrent calibration can obtain smaller

equating error than other methods (Li, and Yang, 1999). The ability distribution of

examinees participating in the pilot test is normal. Each item in the pilot test was

administered to between 240 and 320 9th grade students who lived throughout Taiwan.

Tests were administered in junior high school classes whose students’ abilities

distributions were normal.

1. Items calibration, equating, and the test of goodness of fit

The test was composed of the items that were chosen by computer from the item bank

and followed the aim of the test, which had been publicly announced. The chosen

program was designed by the committee of Basic Competence Test for Junior High

Schools using “Delphi” language to write the program. When the test is composed,

writers usually add some limitations to the program and use an iterative method to choose
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an item from the item bank. After running the program, writers recheck the items. A

researcher on the test development committee indicated that the selection procedure

usually is run two or three times in order to develop the test. The test specifications

include item content from the junior high school mathematics curriculum. Difficulty

values are targeted between .5 and .75. The mathematics test specifications include,

i. Items emphasizing comprehension, application, logical reasoning,

and proof of mathematics knowledge.

ii. Items avoiding memorization and emphasizing the comprehension of basic

concepts.

iii. Items are chosen by the curriculum criteria emphasizing the curricular content.

iv. The stem of the item completely describes the problem. The item order has to

be logical (e.g., the items should be ordered from easy to difficult). The

distracters should be developed to include the errors typically made by

examinees.

There were 32 items on the test. All of the items were multiple-choice. Examinees

had to choose one correct answer from four options on each item. The content of the test

included the mathematics covered in junior high school. In general, the curriculum

covered three general topics: algorithms, algebra, and geometry. The items were

classified into these three categories. The total number of items on algorithms was 5. The

total number of items on algebra was 9, and the total number of items on geometry was

18.
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3.2.2 The computer software used in the study are:

i.

ii.

iii.

iv.

vi.

vii.

BILOG -MG

DIMTEST

SAS

SPSS

MATLAB

S-Plus

Dimensionality-Based DE/DBF Package

3.3 Processing Procedure

The research questions are as follows:

1. Is there significant DE in test items from the basic mathematics competence

test based on gender groups?

How consistent are results for the different ways of detecting DE?

Which is the best procedure for detecting DE?

What is the Type I error rate of detecting DE for the different methods?

Which of the items detected as showing significant DE are considered to

represent item bias based on logical analysis?

What should be done if the DE is due to instructional differences or some

biasing features of the items after one identifies DE items?

In order to answer the above research questions, the following procedures will be

followed.
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3.3.1 Obtaining data

The test for junior high schools is the responsibility of the Institute of the Basic

Competence Test Center for Junior High Schools. The data for this research were

obtained from the Institute. The data consisted of the item responses of the student

population. The total number of examinees taking the test was 299,368. For the purposes

of this study, a sample of 29,876 was selected from the full samples. The sample method

was the stratified random sampling by gender and location.

First, samples of 2,000 males and 2,000 females from the 29,876 real response data

were selected because in empirical study 4,000 cases are a sufficient and appropriate

sample to run IRT (Baker, 1990; Cohen & Kim, 1993; Kim & Cohen, 1991; Lim &

Drasgow, 1990; Raju, van der Linden, & Fleer, 1995). BILOG-MG software was used .

to estimate the examinees’ abilities and item parameters. The distributions of examinees’

ability were computed for males and females.

Based on the estimated item parameters and the ability distribution for males and

females, the three-parameter logistic item response theory (IRT) model was used to

simulate the students’ response data for 100 sets of data. Each data set had 1000

responses of males and females, respectively. The total number of items is 32, resulting in

100 response data tables (that is, a 2000[examinees]><32 matrix for each table). The four

DE detection methods were used to analyze each response data table resulting in 100

values for each method. Because there are no DE items for the simulation data,

distribution is based on the null hypothesis with no DE items. For every item, the 100

DE statistics yield a distribution. There are 32 distributions for each method. There will

be 128 distributions, and the mean and standard deviation for each distribution will be
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computed. Guided by previous simulation research (Rogers & Swaminathan, 1993;

Narayanan & Swaminathan, 1994; Cohen, Kim, & Wollack, 1996; Kim & Cohen, 1998),

100 replications are deemed enough to give some information about the sampling

distribution of the statistics under the null hypothesis of no DE. In addition, the

fixed-sample—size procedure (Law & Kelton, 2000) to calculate a confidence level of

95% of an absolute error after obtaining 10 replications in order to judge whether or not

the 100 replications are enough to yield stable estimates of the sampling distributions.

Second, 100 sets of response data were randomly sampled with replacement from

the 29,876 real responses. Each data set comprised of 1000 responses from males and

females, respectively. The total number of items is 32, resulting in 100 real response data

tables (that is, a 2000[examinees]x32 matrix for each table). The four DE detection

methods were used to analyze the 100 sets of data. Each method will result in 100 values

for each item. The distribution will be based on real data for the alternative hypothesis.

There will be 128 distributions. Both the mean and standard deviation for each

distribution will be computed.

The z-statistic is computed based on the mean and standard of the sampling

distribution of the statistic under the null hypothesis of no DE of the same item for same

method, resulting in a 32(item)x4(method) table. A comparison can be made of the

z-statistic of each item between four methods in order to determine which one has the

biggest z-score. In addition, a one-way ANOVA was used to determine whether or not

there are differences among four methods for the 32 items. Figure 3.1 is a flow chart of

the processing procedure.
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3.3.2 Type I error rate

A critical value can be obtained for testing significance once the a value is set. For

instance, the statistic for testing the null hypothesis using SIBTEST to detect DE or DTF

is,

B=—fl—”—.

am.»

In the formula, 0(Bu) is the estimate standard error of PU. The distribution of the

SIBTEST B statistic can be approximated by the standard normal distribution under the

null hypothesis. If the observed B value is larger than the 100(1-0) percentage point of

the 2 distribution, the null hypothesis is rejected. The B statistic is designed for detecting

uniform DE. If a equal to .05 is set, the critical value is equal to 1.96 for a two-tailed

test. The number of values that exceed the critical value was calculated from the

simulation data. For example, if 100 values are calculated and there are 7 values bigger

than 1.96, the Type one error rate will be .07. Then a 32(item)><4(method) table can be

got and the Type I error rate for each item among the four methods can be compared.

3.3.3 Design and analysis

The following four methods are used in the analysis: area measure (IRT-based

procedure-“Sign-Area”), likelihood ratio test (model comparisons measures for

identifying DE), Mantel-Haenszel method, and SIBTEST. The groups for comparison

are male versus female. The total number of items identified with significant DE were

determined for each of the four DE methods, and then the number of common items

identified among methods was determined. In addition, simulation data were used to
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identify critical values that yield common a errors for the different methods.

Comparison of DE: Area Measure (IRT-based Procedures- “Sign-Area”)

Prior to the DE analyses, several preliminary analyses will be run.

Unidimensionality. The data from the two target groups were separately factor

analyzed using principle components analysis to determine the degree to which the item

response data can be fit by a unidimensional model. DIMTEST (Stout, 1987) software

was used to assess unidimensionality. If the unidimensionality assumption is not

supported, then the IRT-based method may be not appropriately used to detect DE items.

In addition, there will be many DE items in the test because there is not a dominant

factor. Or applying multidimensionality DE method to detect is an alternative choice.

Estimation of item parameters. BILOG-MG (Zimowski, Muraki, Mislevy, & Bock,

1996) was used to estimate the item parameters and students’ ability. The BILOG-MG

program can estimate lPL, 2PL, and 3PL IRT models from test data with dichotomous

item response formats. There are three main estimation options for scoring examinees: (a)

maximum likelihood (ML), (b) expected a posteriori (BAP), and (c) maximum a

posteriori (MAP). In this study, EAP will be used to estimate the item parameters and

student abilities because then a trait level estimate will be computable for all examinees,

even for perfect all-endorsed and not-endorsed response patterns. BILOG-MG was also

used for one of the DE detection methods. The fit of the model to the data was evaluated

using the likelihood ratio goodness-of-fit statistic, G2, distributed as )8, a test of the

model against a general multinomial alternative model, as discussed by Thissen,

Steinberg, and Gerrard (1986). Because the area between the ICCs for males and females

is infinite when the lower asymptotes are not equal for the 3PL model, only the special
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case in which c1 = cz = 0.2 will be considered here (Raju, 1990). There are four options

for each item in the test. The vocabulary test in Raju’s (1990) study sample also has four

responses per item. Therefore, 0.2 is the appropriate choice.

Linking of item parameter estimate. The item parameter estimates were transformed

for the comparisons — estimates from the female sample were transformed to the scale

underlying the male sample. IRT-based DE analyses require that the estimated item

parameters from the two subpopulations be put on a common scale prior to any DE

analysis. The transformation procedure that was called “Characteristic Curve Method”

described by Stocking and Lord (1983) was used because it takes into account all

available information (Hambleton & Swaminathan, 1985). The item parameter estimates,

a’s and b’s only, from the female group were linearly transformed so that the transformed

item estimates were on the same scale as the item parameter estimates for the male group.

This transformation was necessary because the item parameters were separately

calibrated for the male and female groups. The transformed a- and b-parameters for the

female group were used in the subsequent computations of the signed area.

Statistical tests for DE indexes. Using the Characteristic Curve Method item

parameter estimates obtained in the previous step, SA was computed by using MATLAB

software. Raju’s (1990) 2 statistics for SA were computed to identify items with

Significant DE. Because the sample size is large, the 2 statistics associated with SA was

assumed to be normally distributed and a two-tailed test of z>2.81 or z<-2.81 (or = .005)

Was used to identify items with significant DE. But in this study, the same criteria for or

(a = .05 and a = .01) with other methods was adopted.

47



Computation of DE: Likelihood Ratio Test-Model comparison measures

LR compares a compact model and an augmented model. The statistic for the LR

test can be expressed as follows:

sz = -2 log [Likelihood (Compact model)/ Likelihood (Augmented model)].

sz is distributed as a12 under the null hypothesis with degrees of freedom (df) equal to

the difference in the number of parameters estimated in the compact and augmented

models. For this study, sz is distributed as a12 with 3 df. If a=.05, then the critical value

is 2'32 =7.82. That is, if the value of G2]- is greater than 7.82, the item will be considered to

exhibit DE. Similarly, if a=.01, then the critical value is 2’32 =1 1.34. In the compact model,

the item parameters are assumed to be the same for both the reference and focal groups.

BILOG-MG permits equality constraints to be placed on items for estimation of the

compact model. In the study, the parameter estimates for all 32 items for the compact

model are set to be equal in both the reference and focal groups. In the augmented model,

item parameters for all items except the studied item are constrained to be equal in both

the reference and focal groups. These constrained items are referred to as the common or

anchor set. In for the LR method, only the item parameters for the studied item are

different in the reference and focal groups. For instance, in this study, for the augmented

model in which Item 1 is the studied item, item parameter estimates for Item 1 will be

unconstrained in the reference and focal groups. Items 2-32 form the anchor set for the

augmented model and each is constrained to have the same parameter estimates in both

81’cups. The metric used in LR is based on the set of items constrained in the anchor set.

In this study, the augmented models are constrained to study a single item at a time. All

items are studied sequentially for DE.
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Comparison of DE: Mantel-Haenszel Method

The CMH procedure in SAS will be used to implement the Mantel-Haenszel Method.

Thirty-three groups will be used for the analysis; score groups from 0 score to 32. But the

group will not be used if the frequency in the reference or focal group is 0 for a score

category. In the ideal case, there will be 33 282 contingency tables for total score k from

0 score to 32. For this study, 12M“ is )8 distribution with 1 degree of freedom. If a=.05,

then the critical value is xi,” = 3.84. That is, if the value of {Mir is greater than 3.84, the

item will be considered to exhibit DE. Similarly, if a=.01, then the critical value

is 1:,” = 6.64. If the average score for an item is computed for each group, the group that

the item advantages can be determined. For instance, if the proportion of correctly

answering item 1 is .6 and .5 for males and females respectively, then item 1 will be

advantageous to the male group.

Comparison of DE: SIBTEST

In this study, the male group is the reference group, and the female group is the

focal group. The study investigates whether or not the 32 items in the Basic Mathematical

Competence Test for Junior High Schools in Taiwan exhibit DE between genders.

Assuming the total number in the valid subset is k, the other items from k+1 to 32 are the

suspect subtest. The process used was consistent with that suggested by Stout and

Roussos (1995) to purify the valid subtest before using SIBTEST to detect DE. The

Purifying procedures are as follows:

1. Do an automatic DE analysis (ADA) for the valid subset. Choose one of the

valid subtest items as the suspect subtest and to use the other items as the valid

subset. To repeat the DE detecting procedure in order to find the items that exhibit
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DE.

2. Repeat the procedure ofADA after excluding suspect DE items.

3. Repeat the second procedure until all the items are not DE. The valid subset items

will become the purified and can be used as a basis to detect DE.

The SIBTEST B statistic is an approximation to the standard normal distribution

under null hypothesis ( H0 : B = 0 ). If the observed B value is larger than the 100(1-0)

percentage points of the 2 distribution, the null hypothesis is rejected. That is, if a=.05,

then the cut point is 1.96. If the value of B is greater than 1.96, the item

will be considered to exhibit DE. Similarly, if a=.01, then the critical value is 2.58.

Detecting item DE

The researcher can estimate the magnitude z-score from observed data. The equation

is:

f‘iuo

5x

Z:

After obtaining the z—score for each item for each method, 1.65 criterion for a

z-statistic is used as a reference to judge the magnitude of z-score.

If the z-score of the four methods for each item are all bigger than 1.65, then the item

will be judged as exhibiting DE. Whether or not the item is biased requires a logical

analysis in addition to a significant DE index: one has to identify the intended construct,

infer the presence of a secondary construct in this particular item, and judge the latter to be

irrelevant to the former. Sometimes DE indices are unreliable. Different mathematics

exPerts will perform logical analyses to see what characteristics of the item’s content,
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format, or other data may have been investigated in prior studies of the test to explain the

difference in item difficulty for the different groups. That is, if the item exhibits DE and

belongs to geometry content, a mathematics expert in the field of geometry would examine

whether or not the item is biased between genders. In addition, if the item is judged as

biased against either gender, prior studies would be compared to try and determine the

cause. Because the various causes of bias include cultural differences, different curricula,

different instruction, or other factors that exist in the item content stem. It will be helpful

for the institution to avoid using biased items on the test in order to enhance the validity

and equality of the basic mathematical competence test. That is, DE statistical analyses

and subsequent efforts by mathematics experts to reevaluate the relationship of items to

measurement of the intended construct can lead to a far greater insight about the basic

mathematical competence test measures and how the items function.
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CHAPTER 4

RESULTS AND DISCUSSION

This chapter has two parts. The first part gives the results of the DE analysis for the

Basic Mathematical Competence Test for Junior High Schools in Taiwan and presents the

Type I error rate for the four methods used in this study. The second part is a synthesis

and discussion.

4.1 Research results for the DE analysis of the Basic Mathematical Competence Test for

Junior High Schools in Taiwan

Table 4.1 shows descriptive statistics for the total samples of 29,876 and 4,000 for

both boys and girls. The means and standard deviations for 29,876 and 4,000 samples

were similar.

Table 4.1 Descriptive statistics of29,876 and 4,000 real samples

  

 

Boys Girls

samples n Min Max M SD n Min Max M SD

29,876 15,411 0 32 18.44 7.55 14,465 2 32 18.41 6.93

4,000 2,051 3 32 18.4 7.64 1,949 3 32 18.5 6.86
 

Appendix 1 contains the three parameters estimated by BILOG—MG from the 4,000

and the 29,876 real data samples. Table 4.2 depicts the min, max, mean, and standard

deviation for a, b, and c.

Eble 4.2 Descriptive statisticsfor item parameter estimates based on the 4,000 sample

 

¥ a b c

min 0.65 -l.17 0.14

max 2.10 1.46 0.47

mean 1.42 0.23 0.25

_S.D. 0.38 0.70 0.08
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4.1.1 Unidimensionality

Hambleton and Rovinelli (1986) used nonlinear factor analyses to be a promising

technique for assessing dimensionality. Nandakumar (1994) compared Stout’s procedure

and nonlinear factor analyses — DIMTEST was more powerful and effective in detecting

unidimensionality. In this study DIMTEST software was used to determine whether or

not an assumption of unidimensionality for the data is tenable. The distribution of T is

approximately the standard normal z distribution. The range of T values for the 100 real

samples was between -2.3 and 1.58. It was a one-tailed test. All the values were smaller

than the critical value of 1.65 fora = .05 . Therefore, all the 100 real samples’ data were

consistent with a hypothesis that the data can be modeled with a single person

achievement parameter. The range ofT values for the 100 simulation samples was

between -2.58 and 1.59. It was also a one-tailed test. All the values were smaller than

1.65. Therefore, all the 100 simulation sarnples’ data also approximately corresponded

with unidimensionality. Whether real or simulated, the data sets were consistent with

the assumption of unidimensionality. The expected distribution of T values for DIMTEST

is a normal distribution with the values of the mean and standard deviation of 0 and 1,

respectively. A one-tailed test was used. The critical value corresponding to the .05 level

is 1.65. In contrast, in Table 4.3 both distributions of real and simulation samples have

smaller standard deviations than the recommended distribution. Also, the distribution of

the simulation group shifted farther to the left than the other two distributions. The

critical values corresponding to the .05 level for the simulation, real and recommended,

were 1.02, 1.36, and 1.65 respectively. That is, in general, the T values from the

simulation are smaller than those from the real data. If the critical value is set by the
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simulated data, there will be seven values greater than 1.02 for real data samples. This

is approximately equal to the 5 that would be expected by chance for 100 samples.

However, the results suggest that the distribution of the T statistic is not does not have a

mean of 0.0 and standard deviation of 1.0.

Table 4.3 Descriptive ofT valuesfor real and simulation samples

Real Simulation Recommended
 

min -2.30 -2.58 -

max 1.58 1.59 -

mean -0.03 -0.42 0

SD 0.84 0.88 1

95%C.I. 1.36 1.02 1.65

 

4.1.2 The results of Area Measure (AM) method

The statistical summary for the Area Measure to detect the DE items for 100

replications from real data are shown for Table 4.4. The 2 values of the 32 items were

between -7.25 and 7.19. The z means of 32 items for real samples were between -2.30

and 4.11. All of the 100 values of 2 were positive for Item 26. This demonstrates that

Item 26 was advantageous for males.

Statistical summary results of the Area Measure to for detecting DE for the 100

simulation samples are also shown for Table 4.4. The simulation results are centered

around zero, and many of the standard deviations are near 1.0. Occasionally the standard

deviations are much lower than 1.0. Most of the real data results are not centered around

zero suggesting that there is some DE, although much of it is not significant. The 2.

values of 32 items were between -3.49 and 3.61. The z means of 32 items for simulation

samples were between -.33 and .16.

The z-statistic for the 32 items for the Area Measure is also shown in Table 4.4. The
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values are between .01 and 3.78. Item 26 has the largest z-score. The second largest

z-score is for Item 21. The next largest are Items 32, and 22 with z-scores of 1.89, and

1.79, respectively. There are only five items with a z-score larger than 1.65.

After checking the histograms of the 32 items DE statistics for AM method for real

data, except Item 10, 13, and 31, all the others’ absolute skew values are smaller than 0.5.

All the histograms seem symmetric. For the simulation data, except Item 3 and 15, all the

others’ absolute skew values are smaller than 0.5. All the histograms of the 32 items DE

statistics also seem symmetric.
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Table 4.4 The z-statistic of real data to simulation dataforAM method
 

 

 

AM (n=100)

Real Simulation

Item Min Max M SD Min Max M SD z-statistic

1 -2.76 0.67 -0.74 0.67 -0.81 1.10 0.04 0.38 1.43

2 -2.24 1.88 -0. 19 0.87 -1.81 1.57 0.02 0.69 0.27

3 -3.28 1.14 -0.82 0.77 -1.26 2.95 -0.04 0.64 1.1 1

4 -0.99 1.16 -0.01 0.51 -1 . 10 1.36 0.16 0.47 0.35

5 -2.23 1.10 -0.65 0.55 -1.29 1.57 0.09 0.49 1.42

6 -1.66 0.89 -0.47 0.61 - l .39 1.83 -0.02 0.61 0.74

7 -3.68 3.20 -0. 16 1.48 -2.50 1.95 -0.17 1.04 0.01

8 -2. 15 2.54 0.39 0.95 -2.53 2.72 -0.24 0.91 0.67

9 -0.74 2.28 0.48 0.60 -1.83 2.63 -0.02 0.72 0.75

10 -2.98 4.49 0.14 1.36 -2.24 1.90 -0.12 0.82 0.23

11 -1.55 4.16 1.07 1.04 -2.87 2.11 -0.06 0.87 1.19

12 -1.62 4.91 1.05 1.18 —2.77 2.31 -0.14 0.92 1.13

13 -3.55 3.47 -0.51 1.08 -3.00 2.48 -0.01 1.09 0.46

14 -7.25 1.10 -l.92 1.42 -3.10 2.50 -0.04 1.04 1.51

15 -1.48 1.25 -0.13 0.56 -1.49 1.50 -0.14 0.60 0.02

16 -3.30 1.68 -1.00 1.05 -2.09 1.37 -0.25 0.74 0.83

17 -1.84 4.10 1.02 1.11 -2.24 1.93 -0.13 0.94 1.12

18 -3.68 4.46 0.13 1.49 -2.19 2.13 -0.15 0.91 0.23

19 -2.05 0.83 -0.76 0.52 -1.43 1.03 -0.09 0.47 1.35

20 -1.49 3.92 1.49 1.25 -2.42 2.24 -0.22 0.86 1.60

21 -6.06 0.36 -2.30 1.26 -3.49 3.01 -0.06 0.98 1.98

22 -5. 17 1.37 -1.95 1.33 -2.87 2.41 0.12 0.95 1.79

23 -3.45 3.97 0.89 1.50 -3.33 3.61 -0.17 1.18 0.79

24 -3.59 3.13 -0.45 1.06 -1.85 2.01 -0.33 0.81 0.13

25 -3.34 3.61 -0. 13 1.43 -2.38 2.75 -0. 16 0.90 0.03

26 0.34 7.19 4.11 1.26 -2.54 2.62 -0. 19 1.01 3.78

27 -2.58 2.88 0.24 1.01 -2.24 1.76 -0.11 0.83 0.38

28 -3.85 0.99 -1.15 1.05 -2.95 2.04 -0.13 1.04 0.98

29 -3.05 2.74 0.03 1.19 -2.22 1.75 -0. 19 0.83 0.21

30 -3.99 1.69 -1.39 1.21 -2.75 2.29 0.07 0.94 1.35

31 —2.27 2.94 1.02 1.00 -2.62 1.49 -0.03 0.79 1.17

32 -5.34 1.98 -1.99 1.28 -1.77 1.73 0.05 0.83 1.89
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4.1.3 The results of the Likelihood Ratio (LR) method

The statistical summary results for the Likelihood Ratio method for DE detection

for 100 samples from the real data are shown for Table 4.5. The 132 values for 32 items

for the real sample were between 0 and 44.24. The 132 means of 32 items for the real

samples were between 1.02 and 19.9.

The statistical summary results of the Likelihood Ratio method to detect DE items

for 100 simulation samples are shown for Table 4.5. The 132 values for the 32 items

were between 0 and 20.62. The 2’32 means of 32 items for the simulation samples were

between .52 and 3.38.

The magnitudes of Likelihood Ratio z-statistic for the 32 items are also shown in

Table 4.5. The values of z-statistic are between .17 and 2.89. Item 26 has the largest

z-score with a value of 2.89. Item 7 has the second largest z-score with 1.72. The next

largest is Item 32 whose z-score is 1.55. There are two items whose z-score is larger than

1.65.

Most of the mean chi-square values for simulated data items tend to be less than the

degrees of freedom. In addition, all the SDs for simulated data tend to be less than 3. That

is, the chi-square statistic for simulated data may underestimate the criteria of previous

studies.

The histograms of the 32 items’ DE statistics for LR method for real data are not

symmetric. Except for items 1, 7, 11, 21, 23, 24, 26, 30, 31, and 32, all the others’ skew

values are larger than 1. For the simulation data, except for item 5, 6, and 26, all the

others’ skew values are larger than 1 and larger than the skew values of real data. All the

histograms of the 32 items DE statistics also seem not symmetric. The reason is the
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distribution is approximately to chi-square with d.f.=3.

Table 4.5 The z-statistic of real data to simulation datafor LR method
 

 

 

LR (n=100)

Real Simulation

Item Min Max Mean SD Min Max Mean SD z-statistic

1 0 23.15 6.81 5.18 0 20.62 3.38 2.76 0.83

2 0 18.25 3.36 3.26 0 9.11 1.76 2.06 0.58

3 0 19.78 4.37 3.58 0 7.01 0.88 1.42 1.28

4 0 15.19 3.39 3.83 0 9.68 2.17 2.17 0.39

5 0.25 26.46 6.48 4.58 0 9.09 3.13 2.15 0.94

6 0 9.39 1.02 1.81 0 6.86 1.89 1.86 0.47

7 0.27 21.05 8.17 5.09 0 9.95 1.57 1.84 1.72

8 0 9.26 1.05 1.95 0 7.68 0.66 1.51 0.22

9 0 1 1.66 1.45 2.38 0 9.28 2.25 2.11 0.36

10 0 13.17 3.64 3.29 0 8.22 1.67 1.73 0.75

1 1 0 1 1.05 3.2 2.69 0 5.64 1.07 1.44 0.99

12 0 16.74 1.82 2.94 0 8.01 0.8 1.51 0.44

13 0 15.36 2.45 3.16 0 11.53 1.77 1.85 0.26

14 0 22.75 5.11 3.97 0 7.13 1.66 1.6 1.14

15 0 12.59 2.89 3.29 0 7.4 1.38 1.83 0.57

16 0 14.69 3.52 2.59 0 9.28 2.17 1.96 0.59

17 0 13.44 2.58 2.58 0 7.42 1.16 1.64 0.65

18 0 14.45 2.81 3.27 0 5.23 0.52 1.08 0.94

19 0 13.71 2.2 3.2 0 6.29 0.93 1.36 0.52

20 O 24.05 6.87 5.03 0 10.73 0.92 2 1.55

21 0 16.46 4.74 3.91 0 12.44 1.76 2.17 0.94

22 0 21.07 5 4.48 0 6.77 0.8 1.49 1.26

23 0 l 1.56 2.98 2.69 0 9.12 1.77 1.94 0.52

24 0 27.29 8.56 6.19 0 13.69 2.04 2.35 1.39

25 O 19.45 4.97 4.1 0 8.81 0.88 1.56 1.32

26 5.85 44.24 19.9 8.37 0 6.91 2.36 1.86 2.89

27 0 1 1.43 1.15 2.23 0 6.96 0.69 1.39 0.24

28 O 13.7 4.25 3.21 0 10.79 2.59 2.25 0.6

29 0 7.99 1.38 1.9 0 6.89 1.07 1.67 0.17

30 0 10.09 2.48 2.3 0 9.62 1.71 1.96 0.36

31 0 15.35 4.45 3.26 0 16.28 1.6 2.65 0.96

32 0 24.89 8.45 5.48 0 8.57 2.1 1.94 1.55
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4.1.4 The results of the Mantel-Haenszel (M-H) method

The statistical summary results for the Mantel-Haenszel method for detecting DE

for 100 samples from the real data are shown for Table 4.6. The12 values were between 0

and 42.84. The 12 mean values of 32 items for real samples were between .9 and 18.2.

The statistical summary results for the Mantel-Haenszel method for detecting DE

items for 100 simulation samples are shown for Table 4.6. The 12 values are between 0

and 7.14. The 12 mean values of 32 items for 100 simulation samples are between .23

and .97.

Table 4.6 shows the magnitude of M-H z-statistic of real data to simulation data for

12 with d.f.=1. The values of M-H z-statistic are between .02 and 3.12. The largest

z-score is 3.12 for Item 26. The second largest z-score is 1.66 for Item 20. These are

followed by Items 31, 22, 19, and 1 whose z-scores are 1.38, 1.30, 1.29, and 1.28,

respectively. There are 2 items whose z-scores are larger than 1.65.

The results in Table 4.6 are similar to those in Table 4.5 in that the mean chi-square

and SD values of simulated data tend to be less than the degrees of freedom. That is, the

chi-square statistics for the simulated data suggest that suggested critical values may

underestimate the amount of DE.

The histograms of the 32 items DE statistics for M-H method for real data are not

symmetric. Except for items 26 and 31, all the others’ skew values are larger than 1. For

the simulation data, except for items 3, 11, 24, 26, 29, 30, and 31, all the others’ skew

values are larger than 2 and larger than the skew values of real data. All the histograms of

the 32 items DE statistics also seem not symmetric. The reason is the distribution is

approximately to chi-square with d.f.=1.
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Table 4.6 The z-statistic ofreal data to simulation datafor M-H method

 

 

M-H (n=100)

Real Simulation

Item Min Max M SD Min Max M SD z-statistic

1 0.01 16.73 3.98 3.79 0 4.58 0.49 0.66 1.28

2 0 18.3 1.97 2.84 0 7.14 0.65 1.03 0.62

3 0 15.76 2.77 2.87 0 3.22 0.58 0.72 1.05

4 0 9.82 1.77 1.91 0 4.1 1 0.52 0.74 0.86

5 0 7.55 0.9 1.3 0 4.69 0.39 0.69 0.49

6 0 5.44 1.22 1.4 0 5.29 0.66 0.94 0.47

7 0 1 1.45 2.38 2.56 0 4.06 0.51 0.71 1

8 0 6.09 1.01 1.29 0 6.28 0.97 1.29 0.02

9 0 12.83 1.84 2.07 0 5.67 0.54 0.86 0.82

10 0 9.4 1.09 1.57 0 2.84 0.36 0.46 0.63

1 1 O 8.76 1.92 2.24 0 2.02 0.36 0.44 0.97

12 0 14.56 2.02 2.71 0 3.17 0.42 0.56 0.82

13 O 1 1.43 1.42 2.03 0 3.48 0.51 0.73 0.59

14 0 18 2.32 3 0 2.78 0.39 0.5 0.9

15 0.01 10.69 2.11 2.15 0 3.12 0.42 0.56 1.07

16 0 5.35 1.04 1.13 0 2.6 0.23 0.35 0.97

17 0 12.04 2.08 2.3 0 4.69 0.51 0.68 0.92

18 0 9.26 1.29 1.56 0 2.86 0.49 0.61 0.68

19 0 13.35 3.2 3.17 0 3.1 0.28 0.5 1.29

20 0 21.42 5.52 4.25 0 4.84 0.47 0.68 1.66

21 0 17.35 3.65 3.53 0 2.98 0.44 _ 0.61 1.27

22 0.04 22.52 4.43 4.09 0 4.93 0.57 0.95 1.3

23 O 7.51 1.46 1.76 0 4.08 0.54 0.73 0.68

24 0 8.08 1.29 1.67 0 1.56 0.29 0.34 0.83

25 0 8.81 2.02 2.34 0 3.89 0.42 0.64 0.93

26 3.88 42.84 18.2 8.1 O 2 0.33 0.47 3.12

27 0 7.84 1.06 1.53 0 3.09 0.46 0.57 0.52

28 0 8.93 1.03 1.39 0 2.58 0.37 0.45 0.64

29 0 5.47 0.9 1.08 0 1.47 0.3 0.32 0.75

30 0 5.94 1.48 1.56 0 2.54 0.4 0.5 0.93

31 0 8.05 2.5 2.25 0 1.76 0.28 0.36 1.38

32 0 12.98 2.38 2.56 0 2.67 0.24 0.39 1.17
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4.1.5 The results of the SIBTEST method

The statistical summary results for the SIBTEST method for detecting DE items for

100 samples from the real data are shown in Table 4.7.

"A.

B ' 6(3)

The B values were between -4.71 and 6.14, and the B mean values for 32 real

samples items are between -2.0 and 3.83.

The statistical summary results for the SIBTEST method for detecting DE items for

100 simulation samples are shown for Table 4.7. The B values are between -2.67 and 2.17.

The B means values of 32 simulation sample items are between -.50 and .25.

Table 4.7 shows the magnitude of the SIBTEST z-statistic for the real data compared

to the simulation data for B. The values of the z-statistics are between .04 and 4.67. Item

26 has the largest z-score. The second largest z-score is 2.68 for Item 20. These are

followed by Items 22, 21, 19, 4, 1, and 15 with z-scores 2.46, 1.87, 1.74, 1.72, 1.69, and

1.67, respectively. All the eight z-scores are larger than 1.65.

The results in Table 4.7 are similar to those in Table 4.5 in that the mean and

standard deviation of B values for the simulated data tend to be less than 0 and 1. That is,

the B statistics for the simulated data suggest that the test may underestimate the amount

of DE.

Checking the histograms of the 32 items’ DE statistics for SIBTEST method for real

data, most of the histograms seem symmetric. Except for items 15, 26, 31, and 32, all the

others’ absolute skew values are smaller than 1. But for the simulation

data, except Item 5, all the others’ absolute skew values are smaller than 0.5. The absolute

skew values are smaller than lfor most of the histograms of the 32 items DE statistics.
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Table 4.7 The z-statistic ofreal data to simulation datafor SIBTESTmethod

SIBTEST (n=100)

 

 

Real Simulation

Item Min Max M SD Min Max M SD z-statistic

1 -4.53 0.83 -1.65 1.09 - l .78 2.17 -0.07 0.75 1.69

2 -4. 14 1.71 -1.01 1.1 -2.67 1.2 -0.34 0.77 0.71

3 -4.24 0.47 -1.39 0.96 -1.88 1.12 -0.33 0.73 1.24

4 -2.07 3.5 1.2 1.06 -2.06 1.13 -0.32 0.66 1.72

5 -2.5 3.28 0.13 1 -2.22 1.67 -0.31 0.62 0.53

6 -2.56 2.31 -0.34 1 -2.41 1.65 -0.26 0.82 0.09

7 -3.78 1.79 -1.58 1.09 -2.06 1.5 -0.25 0.76 1.42

8 -2.53 2 -0.31 1.03 -2.63 1.38 —0.5 0.9 0.20

9 -1.24 3.88 1.05 0.96 -2.28 1.72 -0.26 0.77 1.51

10 -2.76 2.33 -0.7 1 -2.05 1.52 -0.1 0.67 0.70

1 1 -1.9 2.95 0.55 1.07 -2.43 1.52 -0.08 0.63 0.72

12 -1.5 3.33 0.84 1.04 -1.44 1.42 -0.25 0.7 1.23

13 -3 .26 1.89 -0.78 0.96 -2.05 1.74 -0.24 0.75 0.63

14 -4 1.23 -1.07 1.08 -1.45 1.86 0.05 0.64 1.26

15 -1.05 3.68 1.27 0.96 -1.58 1.32 -0.14 0.71 1.67

16 -2.96 2.43 -0.41 0.92 -1.7 1.17 -0.1 0.58 0.40

17 - l .7 3.45 1.07 0.96 -2.05 1.35 -0.17 0.72 1.46

18 -3.42 1.37 -0.74 1.01 -2.1 1 1.83 -0.04 0.75 0.79

19 -3.73 0.64 -1.5 1.01 -1.64 1.32 -0.07 0.58 1.74

20 0 4.67 2.1 1 0.93 -2.05 1.65 -0.07 0.68 2.68

21 -4.24 0.86 -1.6 0.97 -2.62 1.29 -0.01 0.71 1.87

22 -4.71 0.8 -2 1 -1.81 2.1 0.15 0.73 2.46

23 -2.24 2.76 0.4 1.04 -2.19 1.62 0.01 0.74 0.43

24 -2.22 3.83 0.46 1.1 1 -1.48 1.17 -0.01 0.63 0.52

25 ~2.05 2.95 0.86 1.13 -1.79 1.58 -0.2 0.68 1.14

26 1.39 6.14 3.83 0.98 -1.5 1.32 0.05 0.59 4.67

27 -1.95 2.67 0.12 1.05 -1.86 2.14 0.08 0.72 0.04

28 -2.57 2.48 -0.44 0.88 -1.91 1.43 0.1 0.63 0.71

29 -2.86 1.95 -0.44 0.98 -1.23 1.67 0 0.67 0.52

30 -2.71 1.76 -0.71 1.04 -1.41 2.09 0.25 0.65 1.1 1

31 ~16 3.1 1.01 0.94 -1.6 1.6 0.09 0.6 1.17

32 -3.14 3.27 -0.98 1.06 -1.27 1.41 0.17 0.55 1.36
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4.1.6 Type I error rate of the four methods

The results of Type I error rate of the four methods are based on the assumed

sampling distribution for the significance tests for each method. Table 4.8 shows the

significant number for each a=.05 and d=.01 for the four methods based on the simulated

data. The significant number is the frequency of items whose values are larger than the

critical value recommended by previous studies. For the AM method, the z is the tabled

value from the unit normal distribution. For example, for Item 11, four significant 2

values were obtained for a=.05 and 1 for a=.01. Because 100 replications were generated,

the expected number of significant 2 values due to chance at a normal (1 of .05 and .01 for

a single item was 5 and 1, respectively. For this sample size condition, 98 significant 2

values were obtained across all items for a=.05 and, 20 for a=.01. Therefore, the

Area-Measure Type I error rate was .031 and .006 for u=.05 and a=.01, respectively. Both

values are far smaller than .05 and .01.

For the Likelihood Ratio method, G(l)—G(2) is approximately 2’32 . Thirty-three

significant 132 were obtained across all items for a=.05 and 6 for a=.01. Therefore, the

Likelihood Ratio Type I error rate was .01 and .0019 for (1:05 and a=.01, respectively.

Both values are far smaller than .05 and .01. This is not consistent with Kim and Cohen’s

(1998) finding that indicates Type I error rates of the LR procedures were within

expected values at each of the nominal (2 levels. In this study, it seemed that the

observed values are much than the expected values.

For the M-H method, Table 4.8 shows the number of significant ,‘(z with d.f=l for

each item at a=.05 and a=.01. The 12 with d.f.=1 was the tabled value from the

chi-square distribution. Twenty significant 12 with d.f.=1 were obtained across all items
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for a=.05 and 0 for a=.01. The error rates for a=.05 and a=.01 are .00625 and 0,

respectively. Both values are far smaller than .05 and .01. Results in this study doesn’t

support the claim of Narayanan and Swaminathan (1994), Rogers and Swaminathan

(1993), Roussos and Stout (1996), and Shealy and Stout (1993a) that the performance of

Type I error control of the M-H was generally satisfactory. But in this study, it was really

much lower than expected.

For the SIBTEST method, Table 4.8 shows the number of significant p for each item

at a=.05 and u=.01. Thirty-two significant p were obtained across all items for a=.05 and

three for a=.01. The error rates of the SIBTEST method for a=.05 and a=.01 are .01

and .001, respectively. Both are smaller than .05 and .01.

All of the four detecting DE methods seem to be well under the expected number of

identified values. Therefore, the Type I error rate of the M-H method had the smallest

value among the four methods. SIBTEST, LR, and AM methods, in that order, followed.

Thus, the non-IRT for detecting DE methods has a smaller Type I error rate than IRT

methods. But the IRT methods are closer to expected number than non-IRT methods.



Table 4.8 Type I error offour methodsfor simulation data 

SIBTEST

(1:005 (1:001

Mantel-Haenszel

a=.05

Likehood RatioArea-Measure

Item a=.05

 

a=.01a=0.05 a=0.01a=.01 
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4.1.7 Results of the empirical research

In this study, four null distributions were created using 100 simulated data sets with

non-DE items for the four DE detection methods. For every item, 100 values were

determined for every method. The study used the 100 values to determine the distribution

under the null hypothesis of non-DE and determined the limits for 95% and 99%

confidence intervals. Then, the criteria for values were used to judge whether or not the

item exhibited DE using the real data. The values of i1.96SD and i 2.58SD for the

null distributions were used as the 95% and 99% confidence intervals, respectively, in the

AM and SIBTEST methods. After sorting the 100 values of the 100 simulated data, the

95th and 99th values were used as critical values. The 95% and 99% confidence intervals

for the 1,2 and Z: distributions were between 0 and the 95th and 99‘h values,

respectively. The range of confidence intervals for the four methods is shown in

Appendix 2.

The study used criteria from Appendix 2 to count the frequency of DE items for 100

replications of real data sets for the 32 items. The results are shown in Table 4.9.

The a=.01 case was used because of the large samples: 1000 males and females. For

the Area Measure method, the largest frequency of identified DE was 93 for Item 26.

The second largest was for Item 21 whose frequency was 43. These are followed by

Items 20, 1, 22, and 32 whose frequencies are 39, 37, 35, and 35 respectively.

For the Likelihood Ratio method, the largest frequency of DE detection is 99, also

for Item 26. The second largest is Item 32, whose frequency is 56. These are followed by

Items 24 and 7 with frequencies 42 and 41, respectively.

Using the M-H method, the largest frequency for a DE detection is 100, also for
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Item 26. The second largest is Item 20 whose frequency is 74. These are followed by

Items 31 and 1 with frequencies of 59 and 57, respectively.

For the SIBTEST method, the largest DE item frequency is 99 for Item 26. The

second largest is for Item 20 with a frequency of 66. These are followed by Items 22 and

19 with frequencies of 65 and 50, respectively. The summaries of percentage of time that

each item is detected by each method are shown in Table 4.10.
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Table 4.9 Thefrequency ofDIF detection in the 100 samplesfor real dataforfour

methods using simulation cut score criteria

Simulation cut_score

 

 

 

Area-Measure Likelihood Ratio Mantel-Haenszel SIBTEST

Item a=.05 a=.01 a=0.05 a=0.01 (1:0.05 a=0.01 a=0.05 a=0.01

1 53 37 44 30 63 57 56 41

2 15 6 14 11 25 16 28 14

3 23 1 1 48 31 45 37 35 20

4 9 0 24 17 32 21 60 20

5 34 16 42 31 32 3 24 10

6 1 l 1 3 3 21 2 15 5

7 6 3 69 41 37 28 45 28

8 l 1 3 11 5 8 0 9 2

9 5 1 5 3 37 1 1 39 24

10 21 11 29 17 29 23 26 20

1 1 27 1 1 34 21 46 35 32 16

12 27 15 25 5 39 21 32 22

13 6 2 14 10 23 13 18 10

14 51 29 43 26 46 34 47 28

15 5 0 25 15 46 38 54 32

16 28 17 15 3 47 35 26 13

17 27 12 16 8 46 37 45 24

18 37 1 1 41 18 28 14 25 1 1

19 29 12 26 15 67 41 59 50

20 53 39 67 19 78 74 80 66

21 55 43 30 18 67 46 61 41

22 55 35 49 31 63 37 79 65

23 26 8 15 1 29 13 19 9

24 14 4 51 42 39 28 31 16

25 21 11 59 22 36 29 42 29

26 96 93 99 99 100 100 100 99

27 15 7 10 6 18 12 18 8

28 16 8 12 10 30 12 22 10

29 16 7 3 4 39 23 26 1 1

30 39 22 14 4 42 27 42 26 ,

31 38 16 30 1 65 59 48 28

32 61 35 61 56 62 46 55 42

M 29.06 16.44 32.13 19.47 43.28 30.38 40.56 26.25

SD 20.61 18.61 22.55 19.84 19.33 21.28 20.89 20.70
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Table 4.10 The percentage oftime that each item is detected by each method using

simulation cut score criteriafor a = .01

 

Item AM Item LII Item M-H Item SIBTEST

26 93 26 99 26 100 26 99

21 43 32 56 20 74 20 66

20 39 24 42 31 59 22 65

1 37 7 41 l 57 19 50

22 35 3 31 21 46 32 42

32 35 5 31 32 46 l 41

14 29 22 31 19 41 21 41

30 22 1 30 15 38 15 32

16 17 14 26 3 37 25 29

5 16 25 22 17 37 7 28

31 16 11 21 22 37 14 28

12 15 20 19 11 35 31 28

17 12 18 18 16 35 30 26

19 12 21 18 14 34 9 24

3 11 4 17 25 29 17 24

10 ll 10 17 7 28 12 22

11 11 15 15 24 28 3 20

18 11 19 15 30 27 4 2O

25 11 2 11 10 23 10 20

23 8 13 10 29 23 11 16

28 8 28 10 4 21 24 16

27 7 17 8 12 21 2 14

29 7 27 6 2 16 16 13

2 6 8 5 18 14 18 11

24 4 12 5 13 13 29 1 1

7 3 29 4 23 13 5 10

8 3 30 4 27 12 13 10

13 2 6 3 28 12 28 10

6 1 9 3 9 11 23 9

9 1 16 3 5 3 27 8

4 0 23 1 6 2 6 5

15 0 31 1 8 0 8 2
 

The correlation between the four methods is shown in Table 4.11. The M-H and

SIBTEST methods have the highest correlation: .87 for thea = .01 critical value. The

LR and M-H methods have the lowest correlation: .61 fora = .01 critical value. The

correlation between non-IRT methods is higher than between IRT methods. The
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correlation between AM and LR was .72. Kim and Cohen’s (1995) finding that the

consistency performance of AM and LR procedures to detect DE was high is not

consistent with this study.

Table 4.11 The correlation among thefour methodsfor thefrequency ofDIF Items in the

100 real data samples using simulation cut score criteria

1 2 3 4
 

1. AM - 0.72** 0.81** 0.84**

2. LR - - 0.61** 0.68**

3. M-H - - - 0.87**

4. SIBTEST - - - -
 

“Correlation is significant at the .01 level (2-tailed).

The results of an ANOVA comparing the results of the four methods for detecting

DE items in the 100 real data samples by simulation cut score criteria for (1:01 and

(1:05 is shown in Table 4.12 and Table 4.13, respectively.

There were significant differences among the four methods for detecting the

frequency of DE with F=3. 17, p<.05 for a = .01. The results are shown in Table 4.12.

After a posteriori comparison, there was significant difference between the AM and M-H

methods. In addition, the frequency of detecting DE using M-H method was larger than

when using the AM method.
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Table 4.12 Summary ofANOVA andA Posteriori comparisonfor thefrequency ofDIF

items in the 100 real data samples among thefour methods using simulation cut score

criteria, a = .01
 

 

 

 

Source of Variation SS df MS F

Between Groups 3853.40 3 1284.46 3.17‘

Within Groups 50265.34 124 405.37

Total 54118.74 127

‘p<.05

 

Method I Method J Mean Difference (LI)

1 -3.03

-13.94’

-9.81

3.03

-10.91

-6.78

13.94"

10.91

4.13

9.81

6.78

-4.13

Note. Means of the four different methods differ significantly at p < .05 using the Tukey

honestly significant difference comparison. 1:AM, 2:LR, 3:M-H, 4:SIBTEST

p<.05
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There was also a significant difference among the four methods for detecting the

frequency of DE items with F=3.35, p<.05 for a = .05 . The results are shown in Table

4.13. After a posteriori comparison, there was significant difference between AM and

M-H methods. The frequency of DE items on M-H method was larger than in the AM

method. The results were basically the same for a=.05 and a=.01.

Although there was no significant difference between M-H and SIBTEST, SIBTEST

tended to identify fewer DE than M-H. This is not consistent with Gierl, Khaliq, and

Boughton’s (1999) finding.
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Table 4.13 Summary ofANOVA andA Posteriori comparison of thefrequency ofDIF

items in the 100 real data samples among thefour methods using simulation cut score

criteria, a = .05

Source of Variation SS df MS F

Between Groups 4374.77 3 1458.26 3.35‘

Within Groups 54043.72 124 435.84

Total 58418.49 127

*p<.05

 

Method I Method I Mean Difference (I-J)
 

1 2 -3.06

3 -1422‘

4 -11.50

2 1 3.06

3 -1 1.16

4 -8.44

3 1 14.22‘

2 11.16

4 2.72

4 1 1 1.50

2 8.44

3 -272
 

Note. Means of the four different methods differ significantly at p < .05 using the Tukey

honestly significant difference comparison. leM, 2:LR, 3:M—H, 4:SIBTEST

p<.05

The correlation between the z-statistic in this study and the frequency of DE

detection for four methods using simulation cut score criteria is shown in Table 4.14. The

results show that the SIBTEST method for a = .01 and LR method for a = .05 have

the highest correlation, .95, between the z-statistic and the frequency of DE detection for

four methods using simulation cut score criteria. LR method for a = .01 and AM

method for a = .05 have the lowest correlation, .89, between the z-statistic and the

frequency of DE detection for four methods using simulation cut score criteria. The

researcher has hypothesized that the higher the z-score, the higher the frequency, and that

the correlation must be high. The results show the correlations are high for the M-H and
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SIBTEST methods. The correlations of non-IRT methods are a little higher than the IRT

methods; all correlations are high, almost all are higher than .90. Using the magnitude of

z-score to replace the frequency of DE items will yield similar results.

Table 4.14 The correlation between the z—statistic and thefrequency ofDIF detection for

four methods using simulation cut score criteria

Method a Pearson

AM 0.05 0.89**

 

0.01 0.90**

LR 0.05 0.95**

0.01 0.89**

M-H 0.05 0.93**

0.01 0.94**

SIBTEST 0.05 0.94**

0.01 0.95**
 

MCorrelation is significant at the 0.01 level (2-tailed).

Using the critical values of previous research of the four methods

If the frequency of the DE item is high, it means that the item has a greater

possibility to be a DE item in a real situation. The critical values of previous research

seem greater than the critical values of simulated data for the four methods. Therefore,

the frequency of a DE item using the critical values of previous research should be

smaller than the frequency of a DE item using the critical values of simulated data. In

addition, this study will investigate the consistency between the two criteria for each

method.

Using previous research on the AM method, if a=.05 and a=.01, the criteria of 2

values is 1.96 and 2.58, respectively. The frequency of DE items in the 100 duplication

samples from real sample is shown in Table 4.15. The results for a=.01 were used

because of the large samples in every group: 1000 males and 1000 females. The highest

73



frequency of DE detection is 93 for Item 26. The second largest is for Item 21, with a

frequency of 43. These are followed by Items 14, 32, and 20 whose frequencies were 34,

27, and 24, respectively.

Using previous research on the Likelihood Ratio method, if 01:05 and 01:01, then

the criteria of 132 values are 7.82 and 11.34, respectively. The largest frequency for a

DE item is 86 for Item 26. The second largest is Item 24, with a frequency of 29. These

are followed by Items 7 and 32 with frequencies of 27, and 24, respectively.

Using previous research on the M-H method, if a=.05 and a=.01, the criteria of 1,2

values are 3.84 and 6.64, respectively. The largest frequency for a DE item is 97 for Item

26. The second largest is Item 20, whose frequency is 35. These are followed by Items 22

and 1, whose frequencies are 24 and 21, respectively.

Using previous research on the SIBTEST method, if 01:05 and 01:01, the criteria of

B values are 1.96 and 2.58, respectively. The largest frequency for a DE item is 84 for

Item 26. The second largest is for Item 20 with a frequency of 31. These are followed by

Items 22 and 1, with frequencies of 22 each.

After comparing the frequencies of DE items in Table 4.9 with those in Table 4.15,

the study has found that the frequencies of DE items for the criteria of simulation data

are larger than the frequencies of items for the previous studies. The researcher believe

this is because the criteria of simulation data are more restrictive than in the previous

studies. Similarly more restrictive criteria for Tables 4.5 and 4.6 result in chi-square

values for the simulated data that tend to be less than the degrees of freedom.
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Table 4.15 Thefrequency ofDIF detection in the 100 real data samples amongfour

methods using the criteriafrom previous research
 

 

 

Area-Measure Likelihood Ratio Mantel-Haenszel SIBTEST

Item a=.05 a=.01 a=0.05 a=0.01 01:0.05 a=0.01 11:0.05 a=0.01

1 4 2 34 18 43 21 38 22

2 2 0 8 3 16 5 21 7

3 6 2 l4 4 27 10 26 9

4 0 0 15 4 14 3 23 13

5 1 0 32 14 3 2 5 3

6 0 0 0 0 8 0 7 2

7 19 8 47 27 20 9 37 18

8 5 0 1 0 7 0 5 0

9 l 0 3 1 1 1 4 17 3

10 12 6 1 1 4 7 1 l4 1

l l 20 4 6 0 16 7 1 l 1

12 19 l 1 4 2 l6 9 15 7

13 1 l 2 7 4 9 3 12 1

14 53 34 18 6 19 7 18 9

15 0 0 10 l 18 6 18 8

16 17 5 4 2 3 0 3 1

17 19 7 4 2 17 4 15 4

18 19 6 10 2 7 l 1 1 2

19 1 0 8 3 33 13 34 14

20 40 24 29 14 57 35 54 31

21 56 43 20 8 35 17 33 15

22 45 30 22 9 43 24 54 22

23 33 17 7 1 10 3 9 2

24 7 3 47 29 8 2 9 2

25 14 7 21 7 25 5 20 7

26 96 93 93 86 100 97 91 84

27 7 2 3 1 10 1 6 1

28 19 1 l 12 5 6 1 4 0

29 8 4 1 0 2 0 6 1

30 36 14 3 0 1 1 0 13 1

31 18 3 17 2 29 7 l3 5

32 47 27 46 24 20 10 18 7

M 19.84 11.41 17.41 8.84 20.31 9.59 20.63 9.47

SD 21.48 18.62 19.40 16.18 19.55 17.81 18.49 15.59
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ANOVA results comparing the results for the four methods for detecting the DE

items, a=.05 and a=.01 are shown in Table 4.16. There is no significant difference

among the four methods.

Table 4.16 ANOVAfor thefrequency ofDIF items in the 100 real data samples among

four methods using the criteriafrom previous research

 

 

 

 

 

 

 

a = .05

Source of Variation SS df MS F

Between Groups 206.02 3 68.67 0.18

Within Groups 48385.59 124 390.21

Total 48591.62 127

a = .01

Source of Variation SS df MS F

Between Groups 116.59 3 38.86 0.13

Within Groups 36227.63 124 292.16

Total 36344.22 127

 

The correlations among the four methods using the criteria of previous research are

shown in Table 4.17. The M-H and SIBTEST methods have the highest correlation, .98

for a = .01 . The AM and LR have the lowest correlation, .76 for a = .01 . That is, the

correlations between the non-IRT methods were very high and larger than the IRT

methods. The result was similar to the empirical study.

Table 4.17 The correlation among thefour methodsfor thefrequency ofDIF Items in

the 100 real data samples by previous research

 

 

1 2 3 4

1. AM - 0.76** 0.85** 0.82**

2. LR - - 0.86** 0.86**

3. M-H - - - 0.98**

4. SIBTEST - - ‘ ‘

*’I‘—Cforrelation is significant at the 0.01 level (2-tailed).
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4.2 Synthesis Discussion

Item response models assuming a single latent ability that adequately accounts for

examinee test performance are referred to as unidimensional. Of course, this assumption

cannot be strictly met because there are always other cognitive, personality, and

test-taking factors those impacts on test performance, at least to some extent. DE is an

indicator of violation of unidimensionality. In this study, DIMTEST software is used to

assess unidimensionality. All sets whether real or simulation data sets, both

approximately corresponded with the assumption of unidimensionality. But Item 26 is

still detected as exhibiting DE. DIMTEST software is used to analyze whether or not

data have a dominant first factor. The dominant factor may only explain 25% of the data.

There is still more than 75% that cannot be explained by the dominant factor. Therefore,

significant DE between two groups can be expected whenever group distributions on a

secondary trait do not mirror those on the primary trait measured by the test.

The study found that Item 26 exhibited significant DE because the frequencies were

93, 99, 100, and 99 with simulation cut score criteria and 93, 86, 97, and 84 with previous

research criteria for AM, LR, M-H, and SIBTEST, a=.01. The results in Table 4.4 and 4.7

show that all the SA and B values for Item 26 are positive. That is, Item 26 favors males.

From Table 4.4, the simulated distributions do not seem to be consistent with the

expected null hypothesis distributions, which approximate the standard normal

distribution. The mean of the 32 simulation items is -0.08, and the standard deviation

is .82. There are only 6 items with SDs greater than 1. That is, most of the simulated

distributions were concentrated at zero. And the 95% and 99% critical values are smaller

than the expected critical values of the null hypothesis distribution. Therefore, there is
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frequency discrepancy for DE items between Tables 4.9 and 4.15. The discrepancy is

more apparent if the SD of the simulated distribution is very small. For example, the

frequencies of DE in the two tables for Item 1 using the AM method are 2 and 37

respectively fora = .01. This situation occurs also in the other three methods. The

expected distributions of LR and M-H methods are approximately 132 and 13. But almost

all means and SDs of the items of are smaller than expected for the null hypothesis except

the mean of Items 1 and 5 of the LR method. Therefore, the discrepancy occurs in Tables

4.9 and 4.14 for Items 3, 11, 14, and 22, a =.01, if the SD of the simulated distribution is

small and the discrepancy of the mean is large. The similar situation occurs with Items 3,

11, 14, 15, 16, 17, 19, 31, and 32 for the M-H method as well as Item 15, 30, and 32 for

the SIBTEST method. In general, the more discrepancy in the SD, the more different the

frequency of DE detection. The extreme example is that of the M-H method. Its mean

SD for the real distribution of the M-H method is 2.44 and the mean SD of the simulation

distribution for the M-H method is only .63. Similarly, the mean frequency of DE items

decreased greatly from 30.38 to 9.59 fora = .01 .

Because the simulated distributions do not seem to be consistent with the expected

null hypothesis distributions, the simulated distributions appear more concentrated and

have a smaller SD. For this reason, all of the Type I error rates of the four DE methods

for a = .05 and .01 are smaller than the expected values.

The reason may be that the assumption of the statistics of previous studies is

different from the results of this study. For example, the inferential statistics usually

assume the distribution of data is standard normal distribution but if the distribution of

empirical data is not normal there will be a different result. In Appendix 3, it is shown
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that the distributions for boys and girls are not normal distributions. That is, if it is

desirable to detect DE item on the Basic Mathematical Competence Test for Junior High

Schools in Taiwan by the four methods, more serious criteria should be adopted than the

indicated in previous studies. The correlation between the empirical results and the

previous research for the frequency of DE items in the four methods is shown in Table

4.18. The results show that the LR method for a = .01 has the highest correlation, .92,

between the empirical results and the previous research; and the M-H method for

a = .01 has the lowest correlation, .80, between the empirical results and the previous

research. In our analysis, the correlation is high between the empirical result and the

previous research for the AM, LR, and SIBTEST methods fora = .01 . That is, the higher

correlation indicates that the method has higher consistency between the two criteria for

detecting the frequency of DE items.

Table 4.18 The correlation between thefrequency ofDIF detectionfor the empirical

critical values and those based on previous researchfor thefour methods

 

 

Method 0: Pearson

AM 0.05 0.84**

0.01 0.91**

LR 0.05 0.88**

0.01 0.92**

M-H 0.05 0.85**

0.01 0.80**

SIBTEST 0.05 0.88**

0.01 0.88**
 

"Correlation is significant at the 0.01 level (2—tailed).

Table 4.19 shows the z-statistic for the four methods. Since a common variance

cannot be assumed in this case, z is more difficult to estimate. In this case, the root mean

Square as an average, within-population standard deviation can be used to standardize the
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difference between means. The larger the z-score, the more discrepancy between the

observed distribution based on the real data and the distribution based on the simulated

data. If the item has a large z-score, it means the item exhibits DE. By comparing the

magnitude of z-statistics for each item for the methods in Table 4.19 the results show that

SIBTEST has 12 items whose z-scores are the largest among the four methods, the AM

method has 10 items, LR has six items, and M—H has four items. The SIBTEST method

also had the largest mean z-score for the thirty-two items, 1.2. The mean z-scores of

thirty-two items of the other three methods are 0.96, 0.96, and 0.86 for M-H, AM, and LR

methods, respectively. From Table 4.19, AM seems to identify more DE items then M-H.

Both of them have the same mean z—score but M-H has a smaller SD than AM. Therefore,

the AM method has more extreme values than M-H method. This explains the fact that

AM method has 10 items — 5, 6, 8, 11, 14, 21, 23, 28, 30, 32 whose z-score is the largest

among the four methods but M-H only has four items — 16, 27, 29, 31. In fact, from the

frequency of DE items in Table 4.9, M-H has more frequency of DE detection than the

AM method.

If one adopts the criterion that an item is considered to exhibit DE if all the four

z-scores are larger than 1.65, the item is considered as suspect for DE if all the four

z-scores are larger than the mean z-score of the method, and the item is considered as

non-DE if all the four z-scores are smaller than the mean z-score of the method. For

example, the four z-scores of Item 2 are .27, .58, .62, and .71. All of the values are

smaller than their mean z-score - .96, .86, .96, and 1.2, respectively. Regarding the

agreement of the methods, Items 2, 6, 8, 10, 13, 23, 27, and 29 generally do not exhibit

significant DE, Items 3, 20, 21, 22, 31, and 32 have suspect DE, and Item 26 is
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identified as exhibiting significant DE. Therefore, the total agreement items for no DE,

suspect DE, and significant DE are 15. The agreement percentage was only 46.88%

(15/32). If the methods are divided into IRT and non-IRT, the agreement of non-IRT is

78.13% (25/32), and the agreement of the IRT method is 68.75% (22/32). Therefore, the

agreement between non-IRT methods is larger than IRT methods.

If items detected as DE adopt the Cohen’s rule-of-thumb criteria, d=.80 is a large

z-score. Then, Item 1, 3, 20, 21 , 22, 26, 31, and 32 will be detected as DE rather than only

Item 26. The criteria 2:] .65 was adopted in this study because only 5% probability the

z-score will larger than 1.65 in order to avoid many DE items. It will induce debate for

society if there are too many DE items in the test because the test has been administered

already and the results are reported to about 30,000 exanrinees. In addition, Scheuneman

(1987) found that DE effects were much more complex than originally anticipated,

resulting in complex interactions rather than simple main effects between different groups.
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Table 4.19 The z-statistic valuesfor thefour methods

 

 

 

Item A-M LR M-H SIBTEST

1 1.43 0.83 1.28 1.69

2 0.27 0.58 0.62 0.71

3 1.11 1.28 1.05 1.24

4 0.35 0.39 0.86 1.72

5 1.42 0.94 0.49 0.53

6 0.74 0.47 0.47 0.09

7 0.01 1.72 1 1.42

8 0.67 0.22 0.02 0.2

9 0.75 0.36 0.82 1.51

10 0.23 0.75 0.63 0.7

1 l 1.19 0.99 0.97 0.72

12 1.13 0.44 0.82 1.23

13 0.46 0.26 0.59 0.63

14 1.51 1.14 0.9 1.26

15 0.02 0.57 1.07 1.67

16 0.83 0.59 0.97 0.4

17 1.12 0.65 0.92 1.46

18 0.23 0.94 0.68 0.79

19 1.35 0.52 1.29 1.74

20 1.6 1.55 1.66 2.68

21 1.98 0.94 1.27 1.87

22 1.79 1.26 1.3 2.46

23 0.79 0.52 0.68 0.43

24 0.13 1.39 0.83 0.52

25 0.03 1.32 0.93 1.14

26 3.78 2.89 3.12 4.67

27 0.38 0.24 0.52 0.04

28 0.98 0.6 0.64 0.71

29 0.21 0.17 0.75 0.52

30 1.35 0.36 0.93 1.11

31 1.17 0.96 1.38 1.17

32 1.89 1.55 1.17 1.36

Min 0.01 0.17 0.02 0.04

Max 3.78 2.89 3.12 4.67

M 0.96 0.86 0.96 1.2

SD 0.78 0.57 0.51 0.9
 

The consistency of the magnitude of z-statistic between IRT methods and non-IRT

methods results in a correlation of .57 between IRT methods and .91 between non-IRT

methods. Therefore, non-IRT methods are much more consistent than IRT methods.
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The results ofANOVA comparing the four methods for z-scoores are shown in Table

4.20. The results show there is no significant difference at p < .05 between the four

methods.

Table 4.20 Summary ofANOVA ofAM, LR, M-H and SIBTESTmethodsfor z-statistic

 

 

Source of Variation SS df MS F

Between Groups 2.03 3 0.68 1.35

Within Groups 62.11 124 0.50

Total 64.15 127
 

The distribution based on simulated data has smaller variance than the expected

sampling distribution under the null hypothesis of no DE. That is, almost the entire mean

and SD of simulation distribution for each item on the four methods are smaller than the

mean and SD of the expected sampling distribution. That causes the results of the

magnitude of z-statistic in the study to be larger than the expected z-scores between the

observed distribution based on real data and the expected sampling distribution based on

previous studies. The results are shown in Table 4.21.
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Table 4.21 The z-statisticfor thefour methods by the expected distribution

 

Item A-M Likelihood M-H SIBTEST

0.87 0.68 0.98 1.58

0.20 0.07 0.39 0.96

0.92 0.28 0.71 1.42

0.01 0.08 0.40 1.16

0.80 0.65 0.06 0.13

0.56 0.45 0.13 0.34

0.13 0.93 0.60 1.51

0.40 0.44 0.00 0.31

0.59 0.34 0.41 1.07

0.12 0.13 0.05 0.70

1.05 0.04 0.43 0.53

0.96 0.25 0.43 0.82

0.49 0.1 1 0.21 0.80

1.56 0.42 0.52 1.03

0.16 0.02 0.54 1.30

0.98 0.1 1 0.03 0.43

0.97 0.09 0.50 1.09

0.10 0.04 0.16 0.74

0.95 0.17 0.83 1.49

1.32 0.70 1.36 2.19

2.02 0.34 0.92 1.62

1.65 0.38 1.07 2.00

0.70 0.00 0.24 0.39

0.44 0.91 0.16 0.44

0.10 0.38 0.47 0.81

3.62 2.32 2.92 3.87
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0.24 0.41 0.04 0.12

1.13 0.26 0.02 0.47

0.03 0.36 0.06 0.44

1.25 0.1 1 0.27 0.70

1.02 0.30 0.71 1.04

1.73 0.95 0.60 0.95

Min 0.01 0.00 0.00 0.12

Max 3.62 2.32 2.92 3.87

M 0.85 0.40 0.51 1.01

ksp 0.74 0.44 0.56 0.74

Using Table 4.22, correlations are computed between the frequency of DE using the

criteria in previous studies for 100 real samples and the z-statistic for AM, LR, M-H, and
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SIBTEST methods for a = .05 and .01. The order of the magnitude of correlations

corresponds with the results in Table 4.14. The correlations of non-IRT methods were

higher than IRT methods.

Table 4.22 Correlation between thefrequency ofDIF in previous research and z-statistic

for each method

 

 

Method 0! Pearson

AM 0.05 0.79**

0.01 0.81**

LR 0.05 0.90**

0.01 0.84**

M-H 0.05 0.92**

0.01 0.91**

SIBTEST 0.05 0.94**

0.01 0.91**
 

“Correlation is significant at the 0.01 level (2-tailed).

To judge whether an item is biased depends on the support of qualitative and

quantitative evidence. In general, DE detection is the result of statistic analysis and

quantitative evidence; DE is the necessary condition rather than the sufficient condition

for identifying an item as biased. There are many circumstances that can cause DE

problems, including instruction, material in textbooks, policy, and the item itself. An item

may function differently if it contains content or language that is differentially familiar to

subgroups of examinees, or if the item structure or format is differentially familiar to

subgroups of examinees.

There is a continuing controversy about gender performance differences in

mathematics test scores (Ryan & Chiu, 2001; Lane, Wang, & Magone, 1996; Noddings,

1992). The research literature documents many performance differences between males

and females. These differences appear in many mathematical fields. They have been

85



identified by investigating item characteristics that include content, type, and cognitive

background of items. For instance, females were found to perform less well on items that

measure geometry, computation, and ratio and proportion (Doolittle & Cleary, 1987;

Jackson & Braswell, 1992). Application problems, multiple-choice items, and some

specific terminology were also probably disadvantageous to females (Harris & Carlton,

1993; O’Neil & McPeek, 1993; Burton, 1995). Items that required solution strategies not

taught in class and the real world are more disadvantageous to' females (Harris & Carlton,

1993), whereas males are more at a disadvantage when it comes to algebra, calculation

related to book content, pure mathematics, short-answer, comparative, and abstract

property items (Doolittle & Cleary, 1987; O’Neil & McPeek, 1993; Burton, 1995;

Scheuneman & Grima, 1997). For graph or table items, there are no common conclusions

(Harris & Carlton, 1993; Scheuneman & Grima, 1997).

Item 26 was detected as exhibiting significant DE by the four methods. The

frequencies were 93, 99, 100, and 99 for AM, LR, M-H, and SIBTEST, respectively, for

01:01. After checking the magnitude of z-statistic for the four methods, the values of Item

26 were all found to be larger than 1.65. In conclusion, Item 26 can be classified as

exhibiting DE. In fact, the magnitude of z-statistic for Items 20, 21, and 22 were close to

the criterion, 1.65, except that one or two values were smaller. That is, every item has

four z-scores. Items 20, 21, and 22 have two or three values larger than 1.65 and merit

further discussion.
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Item 26:

Which of the following quadrilaterals is similar to the quadrilateral of Figure 1?

(A

(C)

 
The stem and answer for Item 26 are very clear and impossible to misunderstand.

However, it is possible to produce DE because of the form and content of the item. The

question is seldom seen in a textbook, reference book, or practice problem in Taiwan. It is

consistent with the research of Doolittle & Cleary (1987) that male high school students

perform relatively better than females on geometry items, which usually contains figures.

Although Item 26 seems similar to graph problems, it is actually more difficult: the

shapes of the quadrilaterals are similar, the directions are different for each of the four

answers, the exact proportion of every side is equal, and the length of a side is an

irrational number. Reasoning may be used to solve the problem. The second way to solve

the problem for some students may be to fold the graph paper in order to find the answer.

The third way to solve the item is to use the elimination method. After checking the

results, all the SA and B values of item 26 were positive. Therefore, the question for Item

26 may be resolved to the advantage of all male samples rather than only by certain

samples.

As a result, although the question for Item 26 exhibits DE, it is not a biased item,
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according to expert opinion. The way to avoid items like 26 exhibiting DE is to change

the mathematics instruction to females. As a start, mathematics teachers should use a

different mode of instruction in order to change the thinking and learning of female

students rather than to delete the item from the test in order to reduce DE problems. Item

26 should be kept on the test; more inter-gender discrepancies in mathematics ability will

be produced if this kind of DE item is removed. Findings in this study support the claim

of Ryan and Fan (1996) that changes in curriculum, instruction, and assessment may be a

part of the solution to resolve gender difference in mathematics performance.

Item 20:

A gang of pirates hides three boxes of treasure on Unknown Island. First, they hide a box

of treasure at the A place of Unknown Island. Then they walk x km east and 5 km south

to arrive at the B place to hide the second box of treasure. Then they go back to the A

place and walk 6 km west. They then walk 10 km north to arrive at the C place to hide the

third box of treasure. If A, B, and C are exactly on the same line, x=?

25

(A)3 (B)6 (C) -3— (D) 12

Item 20, does not seem to be an example of bias within the context of the discussion

with mathematics experts and teachers. The stem and the answer for the item are clear. At

least two methods can be used to solve Item 20. One is the traditional way — students

have to understand the concept of coordinates and orientation as well as how to match

them. Then students have to express the three points — a, b, c — as coordinates and use

the concept that if three points are on the same line, they have the same slope. In the

second method, the first half of this approach is the same as it is with the first half of the

previous method. Then, using the concept of similar triangular angles to solve for x, the
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content of Item 20 is related to the direction of the concept. Males usually have a stronger

concept of direction than females. Checking the mean of Item 20 for the AM and

SIBTEST methods reveals that in both cases the values for males were larger than for

females. This item supports the result from the previous item that instruction on similar

figures and right triangle geometry is different for the two genders.

Item 21:

If a rectangle whose two edges are bigger than 1 is composed of n squares whose length

of sides are equal to 1 and no square is left, then which of the following numbers 9am

be n?

(A)81 (B)85 (C)87 (D)89

In Item 21, it is a very easy concept to distinguish which number is a prime number.

The major task is to understand the meaning of the question. Then it is necessary to

decide whether to use a multiple of 3 or 5, at which point it becomes easy to choose the

right answer. A number is a multiple of 5 if the unit number is 0 or 5. A number is a

multiple of 3 if the sum of all the digits is a multiple of 3. For example, the sum of 8 and

1 is equal to 9. Therefore, 81 is a multiple of 3. If the above concept is understood and

the wrong answer is chosen, there may be a careless understanding of the word “cannot.”

Males usually are more careless than females. After checking the mean of Item 21 for

AM and SIBTEST methods, both the values for females were larger than for males.
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Item 22:

Figure 4.1 (below) presents the following mathematical game: Enter from the left side

and follow the instruction in the frame to determine the right path. Then where is the final

site?

 

Whether or not 4x+3y=7

is an equation with two,yes

Whether or not 2x(x+2)=5x+7 / the unknown quantity \ 2

110

entrance is an equation with 2-th order,

—p

 

   

the unknown quantity

    
Whether or not 4x+3y=7 3V 3

110

is an equation with two,

the unknown quantity

   

Figure 4.1 the following mathematical game

(A)1 (3)2 ((3)3 (D)4

For Item 22, one must know an equation for one squared unknown quantity and an

equation with two unknown quantity. It is also important to pay attention to the Chinese

character between “one” and “two.” “One” and “two” are very similar Chinese

characters. The item is also related to “careless.” After checking the mean of Item 22 for

AM and SIBTEST methods, both the values for females were larger than for males.

Since Item 26 is detected as exhibiting DE, if it is deleted from the test, the total

score mean for 15,411 males will shift from 18.44 to 17.91. Similarly, the 14,465 females

will shift from 18.41 to 17.96. In the beginning, the total score mean for males is larger

than females. But the result is just opposite after Item 26 is deleted. The reason is because

Item 26 is a non-uniform DE and is advantageous for males.

The test was reviewed by three experts, one mathematics professor and two

mathematics teachers from different junior high schools. The professor had 25 years
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teaching experience. Both mathematics teachers had taught more than 18 years. Table

4.23 presents the results of items reviewed by them. There was 81.25% (26/32)

agreement between the three experts’ opinions. This is similarly consistent with

Hambleton and Jones’s (1994) finding whose agreement is 78.67% (59/75). Items 6 and 9

were suspected of DE by some of the experts, but they showed no-DE after statistical

analysis. On the other hand, Item 26 was not considered as a biased item by the experts,

but it was determined to exhibit DE after statistical analysis.
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Table 4.23 The results of the items review

 

 

Item Content expert_l expert_2 expert_3 favor

1 Algorithmic X X X

2 Algebra X X X

3 Algorithmic X X X

4 Algebra X X X

5 Geometry X X X

6 Algorithmic O X 0 male

7 Geometry X X X

8 Geometry X X X

9 Algorithmic X 0 X male

10 Algebra X X X

1 1 Algorithmic X X X

1 2 Geometry X X X

13 Algebra X X X

14 Geometry X 0 X male

1 5 Algebra X X X

16 Algebra X X X

17 Geometry X X X

1 8 Algebra X X X

19 Geometry X X X

20 Algebra X X 0 male

2 1 Algorithmic X X X

22 Algebra X O X male

23 Algebra X X X

24 Geometry X X X

25 Geometry X X X

26 Geometry X X X

27 Algorithmic X X X

28 Geometry X X X

29 Geometry X X X

30 Geometry X X X

3 1 Geometry X X X

32 Geometry X X 0 female
 

X30 DE, 0: DE
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Item Reason

The content of item is related to basketball. Its relation to sports will be

advantageous for males.

9 The content of item is a creative operation, which is advantageous for males.

14 This needs higher thinking including geometry and algebra. It will be

advantageous for males.

The direction concept is necessary to solve the item. Males usually have the

stronger direction concept.

22 The mode of the item is like a video game. It will be advantageous for males.

32 It is related to folding paper. It is usually advantageous for females because

females like to fold paper.

 

20

A synthesis of the above results indicates that SIBTEST has the biggest mean

z-statistic, the highest mean DE frequency, and the most consistency between the

z-statistics and the frequency of DE detection using the simulation cut score and the

previous study. The SIBTEST method was found to be the most appropriate among the

four methods for detecting DE items for the Basic Mathematical Competence Test for

Junior High Schools in Taiwan. The study found that the consistency was low among the

four methods for detecting DE items. Although the SETEST was the most appropriate

in this study, if there were sufficient time and financial resources, of the four non-IRT

methods, using both the M-H and SIBTEST methods would likely be recommended to

detect DE items for the Basic Mathematical Competence Test for Junior High Schools in

Taiwan. This is consistent with Shealy and Stout’s (1993a) recommendation that in the

case of DE item analyses, practitioners use SIBTEST and M-H simultaneously, taking

special care to note when the two procedures give different answers regarding the

potential presence of bias.
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CHAPTER 5

CONCLUSION AND SUGGESTION

The content of this chapter includes two parts — research conclusions and

suggestions for future research.

5.1 Research conclusions

The purpose of the study was to evaluate four methods — Area Measure, Likelihood

Ratio, Mantel-Haenszel, and SIBTEST— for detecting Differential Item Functioning

(DE) for gender groups for the Basic Mathematical Competence Test for Junior High

Schools in Taiwan.

Concrete research questions are as follows:

1. To investigate the fairness for gender groups of the basic mathematical competence

test items.

2. To compare the consistency of results for the different methods of detecting DE.

3. To identify the best method for detecting DE.

4. To investigate Type I error rate for the different methods of detecting DE.

5. To investigate item bias in the basic mathematical competence test items.

6. To investigate if DE is due to instructional differences or to some biasing feature

expressed in the results of identified DE items.

The objects of the study were the 32 items of the mathematics portion of the

student’s Basic Competence Test for Junior High Schools. Data from 29,876 examinees’

were used to evaluate the 32 items. The 29,876 examinees, randomly selected from the

full 299,368 examinees who attended the mathematics portion of the student’s Basic

Competence Test for Junior High Schools, were administered the test in April, 2001. The
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tools of research included a. Instrument: the Basic Mathematical Competence Test for

Junior High Schools in Taiwan and b. computer software: DIMTEST, BILOG-MG, SAS,

SPSS, S-PLUS, MATLAB, and Dimensionality-Based DE/DBF Package. The following

conclusions came from statistical analyses:

1. All the real and simulated data sets met the assumption of unidimensionality.

2. Item 26 had the largest z-scores in the four detecting DE methods. Thus, Item 26 was

considered to exhibit DE, and Items 20, 21, and 22 were suspected of exhibiting DE.

3. The SIBTEST method had the largest mean z-score, followed by Mantel-Haenszel,

Area Measure, and Likelihood Ratio methods. There was no significant difference among

the four methods. The non-IRT methods were much more consistent than the IRT

methods.

4. Mantel-Haenszel method had the smallest Type I error rate, followed by SIBTEST,

Likelihood Ratio, and Area Measure method. The non-IRT DE detection methods were

better than IRT methods, with a small Type I error rate.

5. When the cut score criteria from the simulated data were adopted, the frequencies for

detecting DE for Items 26 were 93, 99, 100, 99 for the AM, LR, M-H, and SIBTEST

methods, respectively, for (1 =01. Cut score criteria frequency was the evidence for

identifying Item 26 as exhibiting DE.

6. The average of the frequency of DE on a=.01 and a=.05 for 100 real samples by the

criteria of simulation cut score was significant for the four methods. After a posteriori

comparison, the frequency of detected DE for the M-H method was higher than the AM

method.

7. The order of correlation between z-score and frequency of DE using the empirical
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study, a = .01 and .05, is the same: SIBTEST>M-H>LR>AM. The correlations of

non-IRT methods were a little higher than correlations of the IRT methods.

8. When the criteria of previous studies were adopted, the frequencies of detecting DE

for Item 26 were 93, 86, 97, and 84 for the AM, LR, M-H, and SIBTEST methods,

respectively —a = .01 . This, too, was evidence to support Item 26 as exhibiting DE.

9. The average of the frequency of DE, a=.01 and a=.05, for 100 real samples using the

criteria of previous studies was not significant for the four methods.

10. The order of correlation between z-score and frequency of DE using previous studies,

a = .01 and .05, is the same: SIBTEST>M-H>LR>AM. This order of correlation

corresponds with the result in conclusion 7, above.

11. The correlation between the non-IRT methods for the frequency of DE was higher

than the IRT methods for the two criteria.

12. The logical analysis of Item 26 by mathematics experts indicated that the identified

DE was not bias.

13. The consistency of the magnitude of z-score was greater for non-IRT methods than

for IRT methods.

14. The distribution based on simulated data seems to underestimate the spread of the

expected sampling distribution under the null hypothesis of no DE. The reason may be

that the assumption of the statistics of previous studies is different from the results of this

study. In this study, the distributions for boys and girls are not normal distribution based

on the histograms for males and females. That is, if a researcher wants to detect DE item

in the Basic Mathematical Competence Test for Junior High Schools in Taiwan by the

four methods, he or she should adopt more serious criteria than the previous studies. That
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caused the results of the magnitude of z-scores in the study to be larger than the expected

z—scores between the observed distribution based on real data and the expected sampling

distribution based on the previous studies. That also caused the frequency of the DE item

by the criteria of simulated data to be larger than by the criteria of the previous studies.

15 . From the results and synthesis discussion of z-scores, frequency, consistency, and

Type I error rate, of the four methods, SIBTEST was determined to be the most

appropriate to be applied to detect DE items for the Basic Mathematical Competence

Test for Junior High Schools in Taiwan. But if time and financial resources were adequate,

the non-IRT methods -—— M-H and SIBTEST methods together -— would be

recommended among the four methods to accurately detect DE for the Basic

Mathematical Competence Test for Junior High Schools in Taiwan.

5.2 Suggestion

This section will offer some suggestions for DE researchers based on this study’s

results.

5.2.1 The suggestions for test application

It is seldom that there are no items exhibiting DE in a test. In this study, there was

an item that exhibited DE in the Basic Mathematical Competence Test for Junior High

Schools in Taiwan, but there was not 100 % agreement using four methods to detect DE

items. Detection of differential item functioning in the test is essential to ensure that

mathematical competence test is measured equally across gender groups. Therefore, the

committee for the Basic Competence Test for Junior High Schools has to discreetly

examine the process and quality of the test items in order to ensure the items are impartial.
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In addition, the committee has to periodically investigate the items to identify any biased

items and remove them. Study results show that the Mantel-Haenszel method has the

smallest Type I error rate, followed by SIBTEST. SIBTEST has the largest mean z-score,

followed by Mantel-Haenszel; and Mantel-Haenszel has the largest frequency of DE

items in the 100 samples of real data among the four methods using the criteria of

simulation cut score followed by SIBTEST. Therefore, the non-IRT methods are

recommended in order to detect items exhibiting DE in the Basic Mathematical

Competence Test for Junior High Schools in Taiwan. The M-H method is effective for

detecting uniform DE but its statistical power is weak for detecting non-uniform DE.

Cross-SIBTEST can be used to assist in detecting non-uniform DE.

5.2.2 Future research direction and suggestion

1. In the study, the researcher used an S-Plus program to simulate the data. The

distribution of simulated data is not same with the variation of the expected distribution.

The future research should try to determine which is accurate.

2. One hundred replications were used in the study. In the future, more replications can be

used to investigate the four DE methods and again compare the simulated distribution

and expected distribution.

3. The way to generate simulation data: The simulation data in the study were generated

assuming no DE. In future studies, part of the simulation data should be generated with

some level of DE to compare power for the four detecting DE methods.

4. Data type: In the study, only dichotomous data was used. In the future, polytomous

data to investigate DE should be used in order to investigate whether the results
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demonstrate any discrepancy with a prior study.

5. In the study, only the mathematics test was used. In the future, the four methods can be

applied to the other subjects in the Basic Competence Test for Junior High Schools, for

example, English or Science, in order to investigate for DE items in the test.

6. In the study, only gender was considered. In the future, DE can be investigated for

different races, country and city, and social—economic status in the mathematics test.

7. The DE factor has been neglected in related studies of test design in Taiwan. But the

DE factor is important; for the future, DE analysis should be emphasized when

designing a test.

7. The mathematics content of the test can be divided into three categories: algorithms,

algebra, and geometry. To detect the DBF (Differential Bundle Functioning) by the three

categories is also a research direction.
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APPENDICES

Appendix 1 Item Parameter Estimates Based on the 4000 Sample

 

 

 

Item a b C

1 0.91 -0.27 0.46

2 1.57 090 0.27

3 1.24 -0.64 0.22

4 0.98 -1 . 17 0.20

5 1.21 -0.28 0.47

6 1.09 -0.90 0.18

7 2.05 -0.02 0.33

8 2.06 -0.63 0.16

9 1.18 -0.60 0.24

10 1.53 0.44 0.30

1 l 1.50 0.20 0.26

12 1.86 0.03 0.15

13 1.76 -0.06 0.26

14 1.55 0.62 0.29

15 0.97 -0.49 0.17

16 0.95 1.12 0.35

17 1.59 0.10 0.22

18 2.10 0.35 0.14

19 0.65 0.09 0.16

20 1.39 0.60 0.19

21 l .41 0.59 0.22

22 1.55 0.48 0.19

23 1.68 0.42 0.27

24 0.95 1.12 0.27

25 1.89 0.12 0.21

26 1.42 0.86 0.33

27 1.07 0.56 0.15

28 1.55 1.07 0.34

29 1.18 0.92 0.16

30 1.27 1.04 0.20

31 1.92 1.46 0.23

32 1.38 1.28 0.27

min 0.65 -l.17 0.14

max 2. 10 1.46 0.47

mean 1 .42 0.23 0.25

SD. 0.38 0.70 0.08
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Appendix 2 95% and 99% Confidence Intervalfor thefour methodsfrom simulation data
 

Item

AM

95%CI 99%CI 95%CI

LH

99%CI

MH SIBTEST

95%CI 99%CI 95%CI 99%CI
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(-.7l..78) (-.95,l.02) (0.6.90)

(-1.32.l.36) (-1.75.1.79) (0.6.24)

(-1.29,1.22) (-1.69,l.62) (0,3.49)

(-.76.1.09) (-1.05,1.38) (0.6.31)

(-.87.1.05) (-1.17.1.35) (0.6.87)

(-1.22,1.18) (-l.60,1.56) (0,5 .75)

(-2.21.1.86) (-2.85,2.50) (0.4.94)

(-2.03,1.56) (-2.6,2.12) (0.4.67)

(-1.44,1.4) (-1.88,1.85) (0.6.45)

(-1.72.1.48) (-2.23,1.99) (0.4.93)

(-1.76.1.63) (-2.30,2.17) (0.4.17)

(-1.94.1.67) (-2.51.2.24) (0.3.41)

(-2.14.2.12) (-2.82.2.79) (0.5.06)

(~2.07.1.99) (-2.72,2.63) (0.5.15)

(-1.31,1.04) (-l.68.1.41) (0.5.05)

(-l.7.1.19) (-2.16,1.65) (0.5.71)

(-1.97,l.71) (—2.55.2.29) (0.4.27)

(-1.94.1.65) (-2.5,2.21) (0.2.58)

(-1.01..82) (-1.30.1.11) (0.3.31)

(0.8.78)

(0.7.30)

(0.5.39)

(0.7.63)

(0.7.79)

(0.6.43)

(0.8.97)

(0.5.62)

(0.8.68)

(0.7.05)

(0.5.55)

(0.6.73)

(0.7.17)

(0.6.80)

(0.6.79)

(0.8.82)

(0.6.05)

(0.5.18)

(0.5.28)

(0.1.56) (0.2.18) (-1.53,1.39) (-2.0.1.86)

(0.2.66) (0.3.55) (-l.85.1.18) (-2.33,1.66)

(0.2.00) (0.3.02) (-l.75.1.10) (-2.20,1.55)

(0.2.21) (0.3.01) (-l.61,.97) (-2.02.1.38)

(0.1.03) (0.4.18) (-1.53..92) (-l.91.1.3)

(0.2.29) (0.5.06) (-1.87,l.34) (-2.38.1.85)

(0.2.05) (0.2.94) (-1.75,1.25) (-2.22.1.72)

(0.3.05) (0.6.20) (-2.25,1.26) (-2.81,l.82)

(0.1.83) (0.3.92) (-1.78,1.25) (-2.26,l.73)

(0.1.22) (0.1.86) '(-1.41,1.22) (-l.83,1.63)

(0.1.18) (0.1.87) (-1.32,1.16) (-1.71,1.55)

(0.1.42) (0.2.62) (-1.61.1.12) (-2.04,1.55)

(0.2.09) (0.2.92) (-1.7.1.22) (-2.16,1.68)

(0.1.41) (0.2.24) (-l.2.1.29) (-1.59.1.69)

(0.1.54) (0.2.13) (-1.53,1.26) (-1.97,1.7)

(0.0.76) (0.1.11) (-l.24,l.03) (-1.6.l.39)

(0.1.67) (0.2.12) (-1.57.1.24) (-2.02.1.69)

(0.1.53) (0.2.84) (-1.51,1.42) (-1.97,1.89)

(0.1.14) (0.3.00) (-1.21,1.08) (-1.58,1.44)

(-1.91,1.47) (-2.45,2.0) (0.4.29) (0.10.63) (0.1.61) (0.2.46) (-1.40,1.26) (-1.82,1.68)

(-1.98,1.86) (-2.59.2.47) (0.5.73)

(-l.74.1.97) (-2.32,2.56) (0.3.99)

(-2.49,2.15) (-3.23,2.89) (0.5.67)

(-1.92,1.26) (-2.42,1 .76) (0.7.07)

(-1.93.1.61) (—2.49.2.17) (0.3.33)

(-2.17.1.78) (-2.79.2.41) (0.5.97)

(-1.75,1.52) (-2.26,2.04) (0.3.96)

(-2.17,1.91) (—2.81,2.55) (0.7.77)

(-l.81,l.44) (-2.33.1.95) (0.4.60)

(-1 .77. l .90) (-2.35.2.48) (0.5.08)

(0.8.87)

(0.6.57)

(0.8.94)

(0.8.26)

(0.7.75)

(0.6.38)

(0.5.63)

(0.8.35)

(0.6.63)

(0.7.10)

(0.1.48) (0.2.70) (-l.40,l.37) (-l.83.1.81)

(0.2.34) (0.4.92) (-1.28,1.57) (-1.73.2.02)

(0.1.92) (0.3.58) (-1.43,1.45) (-1.89,1.91)

(0.0.95) (0.1.45) (-l.24,1.23) (-1.63,1.62)

(0.1.61) (0.3.03) (-1.54,1.13) (-1.96.1.55)

(0.1.42) (0.1.79) (-1.11.1.22) (-1.48,1.59)

(0.1.56) (0.2.49) (-1.34,1.49) (-1.78,1.93)

(0.1.20) (0.2.15) (-1.12.1.33) (-1.51.l.72)

(0.0.89) (0.1.45) (-l.32.1.32) (-l.74,1.74)

(0.1.25) (0.2.06) (-l.03.1.53) (-1.44,1.94)

(-1.58.1.52) (-2.08,2.01) (0.5.87) (0.14.06) (0.1.05) (0.1.49) (-l.08.1.25) (-1.45,1.62)

(-1.58.l.68) (-2.09.2.20) (0.5.90) (0.6.64) (0.0.94) (0.1.74) (-.91,1.24) (-1.25.1.59)
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Appendix 3 The ability distributions ofmales andfemalesfor 4000 real data

 

 
  

40

300

200-

100

0.

BOY

S.D.= l .03 Mean—’0

5
 

  
 

S.D.=0.90 Mean=0

102



Appendix 4 Thefirst Basic Mathematical CompetenceTtestfor Junior High Schoolsfor

2001

1. After calculating ( - \E )x 4%: +( - J; ), which one result can you get?

a a4 4
A - _ _ - _ __

( ) 3 (B) J; (C) 3 (D) 3

2. Sho-Sho goes to post-office and buys two kinds of stamps that are 5 dollars and 12

dollars, respectively. The total number of stamps is 29 and stamps cost 250 dollars. If

there is x pieces for 5 dollars and y pieces for 12 dollars. Which one of the following

linear combination equation is correct?

x+y=250 x+y=29

(A) (B)
5x+12y=29 5x+12y=250

x+ =250 x+ =29

(C) y _ (D) y _
12x+5y-29 12x+5y-250

3. After rounding off J; and 3Jle , choosing the approximate values to the first

digit of decimal are 7.5 and 8.3. Then. how much is it for x?

Tables of power and extraction of a root

 

 

        
 

 

N N2 «N 10N N3 t/fi 15./101? W

55 3025 7.416198 23.45208 166375 3.802952 8.193213 17.65174

56 3136 7.483315 23.66432 175616 3.825862 8.242571 17.75808

57 3249 7.549834 23.87467 185193 3.848501 8.291344 17.86316

58 3364 7.615773 24.08319 195112 3.870877 8.339551 17.96702

(A)55 (B)56 (C)57 (D)58

. If a store has a promotion activity, it costs 105 dollars to buy 3 packages of cookie

and 2 breads. How much can Xiao-Fen get back, if she uses 500 dollars to buy 6

packages of cookie and 4 breads?

(A) 290 (B) 395 (C) 105 (D) 210
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5. For Figure 1, E is cut to equivalent 4 sections by D. E F in AABC. AG : A—C

= 1 :3 . H is midpoint of AB. Which point is the center

of gravity of AABC ?

(A)X (B)Y

(C)Z (D)W

 

6. Chufiang-Chua_ng shot 10 balls and got 7 as well as

Shou-Shou shot 20 balls and got 14 in a basketball game. Which statement is mpg?

(A) The ratio between Chuang-Chuang got and shot is 7 : 10

(B) The ratio values between Shou-Shou got and shot is if;

(C) '.'7 : 10 = 7X2 2 10><2 = 14 : 20, then both of them have the same shooting average.

(D) Chuang—Chuang got 7 and Shou-Shou got 14, Shou-Shou has higher shooting

average.

7. For Figure 2. ABCD is a rectangle. If the coordinate of

 

 

    

Ais(-2,3),Bis(-2,-3)andDis(4.3),then i.

which option is the equation of line BC? A023) D(4,3)

(A)y-3=0 (B)y+3=0 o >X

(C) x - 1 = 0 (D) x - 4 = 0 392",” ‘7

Figure 2

8. If the radius of O. and 02 is 2 centimeters and 4 centimeters in a plane as well as

 

0,02 = 7 centimeters. Then, which graph indicates the position relationship between

(B)

(D)

01 and 02?

(A)

(C)

€
3
9

$
9
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9. If 1r 63.1 is a new operation symbol for use with 1 and 0, the rules are as follows:

1631 = 0

16130 = l

0%] = 1

0690 = 0

Then, which application of the operation is correct?

(A) (1691)€90 =1

(B) (1690)€Bl = 0

(C) (061306191 =1

(D) (16906131 = 0

10. Which is the solution of 91x2 - 53x + 6 = 0?

2 3 2 3

(A) 7 () 7 ()13 ()13

11. a is a natural number. Its positive factors are l. 2. 4. 7. 14, 28. Then which number

is the highest common factor of a and 210?

(A) 4 (B) 7 (C) 14 (D) 28

12. For Figure 3, line L1 parallels line L2. If 21 = 80°, 22 = 60° and E bisectzDBC,

then 23 = ?

 

(A) 10°

(B) 15°

(C)20°

(D)25°  
O

13. If y=2x2+l and y=2x2 - 1 are drawn on the same coordinate plane. which

statement is wrong about the relationship between the two function graphs?

(A) with the same open direction (B) both graphs are parabola

(C) with the same apex coordinate (D) with the same symmetrical axis
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14.

15.

If Figure 4 is composed of 1 square with edge length a and 4 squares with edge

length b (b>a), rectangle is composed of AB. E. C—D. A—D. How much the area

 

 

  

   
  

   

of rectangle ABCD? A b

(A) b2 + (b - a)2 B

(B) b2 + at2 D C

(C) (b + 202 Figure 4

(D) a2 + 2ab

Every cake has the same weight and every candy also has the same weight.

Shou-Shou takes a weighing scale to measure the weight of cake and candy. Get the

results as follows :

- - . . , cake candy

Frrst: For Flgure 5. the scale 1s balance 1f puttlng ' 1:: m. LQQQJ

two cakes in left hand and putting three candies in 10gram A Figure 5

 

 

the right hand. a I n O |

Second: For Figure 6, the scale is balance if putting 10 E ‘ Figure 6

grams weight in left hand and putting a cake and a

candy in the right hand.

Third: Which way can make the scale balance again if a candy has been put in the

left hand and a cake has been put in right hand?

(A) adding 2 grams weight in the left hand (B) adding 2 grams weight in the right hand

(C) adding 5 grams weight in the left hand (D) adding 5 grams weight in the right hand

16. If ab>0, which one is the graph of x + ay = b?

 

 

I y L

(A) _3_L (B)

O >X O X

(C) y (D) y

L L

o x o x
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17. For Figure 7, if the line CD is the perpendicular bisector of E and intersect E

on D, then which statement is wrong? ‘ic

(A) If using C as the center of a circle and GB as the radius

to draw a circle, then the circle should pass A. A D B 
(B) If using A as the center of a circle and AB as the radius Figure 7

to draw a circle, then the circle should pass C.

(C) If using B as the center of a circle and AC— as the radius to draw a circle. then

the circle should pass C.

(D) If using D as the center of a circle and AD as the radius to draw a circle, then

the circle should pass B.

18. For Figure 8, if the graph of y = x2 is shifted two units to right hand, then which one

quadratic equation can be indicated the dotted line? y =x2

(A) y = x2 + 2

(B) y = x2 - 2

(C) y = (x + 2)’

 

(D) Y = (X ' 2)2 Figure8

19. On coordinate plane. which one point has the smallest distance with x-axis?

(A)(1.3) (B)(5. -2) (CH-3.5) (D)(0. -4)

20. A gang of pirates hides three blocks of treasure on Unknown Island. First. they hide a

block of treasure at the A place of Unknown Island. Then they walk x km east and 5

km south to arrive at the B place to hide the second block of treasure. Then they go

back to the A place and walk 6 km west. They then walk 10 km north to arrive at the

C place to hide the third block of treasure. If A, B, and C are exactly on the same line,

x=?

(A) 3 (B) 6 (C) 2—35- (D) 12
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21. If a rectangle whose two edges are bigger than 1 is composed of 11 squares whose

length of sides are equal to 1 and no square is left, then which of the following

numbers cannot be 11?

(A) 81 (B) 85 (C) 87 (D) 89

22. Figure 9 (below) presents the following mathematical game: Enter from the left side

and follow the instruction in the frame to determine the right path. Then where is the

final site?

 

Whether or not 2x(x+2)=5x+7

entrance is an equation with 2-th order,

—-> the unknown quantity

  
 

(A11 (B)2 (C)3

 

  
 

 

  
 

23. For Figure 10. there are 4 kinds of rectangle — A. B, C,

and I). If every side of the 4 kinds of rectangle is

positive integer and there are 2A, 1B. 2C, and ID. If a

big rectangle is composed of the 6 rectangles, how long

is it for the two adjacent side of the big rectangle?

(A)2x+1,x+b

(B)2x+b , x+1

(C)x+2b , 2x+1

(D)x+1.2x+2b

 

   

 

   

 

   

 

   

 

   

   

Whether or not 4x+3y=7 yes 1

yes is an equation with two.

the unknown quantity

no 2

Whether or not 4x+3y=7 yes 3

no . . . /
is an equatron w1th two.

the unknown quantity

\

no 4

Figure 9

(D)4

X X

x A x A

b

B

x A.

c i c

b

D

Figure 10
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24. For Figure 11, in AABC, 2ACB=90°and B—C

  

> E.

To do: a circle with the center 0 on AB and is

tangent with AC and B_C. Which one is the 0

correct drawing method in order to get the center 0

of a circle? B

Figure 11
(A) choose the midpoint of AB as O

(B) make the perpendicular bisector of A—C and intersect KB- in O

(C) make the perpendicular bisector of E and intersect AB in O

(D) make the bisector of 2ACB and intersect E in O

 

25. For Figure 12, ABCD is a square and A on

the line L. DELL, BELL , perpendicular

points are E. F(E =31) respectively.

To prove I AADEE ABAF
 

 

Proof : 1.°.‘ABCD is a square, E = -A—D , Figure 17-

27 = 90°

2.2-fin . BFIL , .225 = 26 = 90°

3. (P)

4. .'.AADE5 ABAF   
Which one is the correct process and can be fill in (P).

(A) rfitL, BFIL. 27 =90° , .-.DE = E:

(B) vfitL, BFJL,27=90°..'.21= 24

(C) '.‘27 = 90° , 25 = 26 = 90°.'.22 = 23

(D) '.°27 = 25 = 90° , .'.21+ 22 = 22 + 23 . .‘.21 = 23
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26. Which of the following quadrilaterals is similar to the quadrilateral of Figure 13?

(A

(C

  
Figure 13

27. A series number at 1 a2 ’ ’ aloo have equal difference. If a7o—a57<0, then which

one is correct?

(A) 343 — 369 > 0

(B) 342 — 351 < 0

(C) a18‘1'351>75121'1'a48

(D) alz+a3l >a9+a34

28. For Figure 14, Mei-Meiimdscape desigr_ring company designs a rectangle garden

.. l6 ...........

whose longer side is 16 meters and ....................... B .....................

 

 

 

    

VVVVVVVVVVVVVVVVVVVVVVVV

Dbbtfibbfittbbbbbitbb DDDDS)DDDD

. . . «s16 «««««« ( (((CCQ‘ ((160881!

DSPSD’D)DD))) IDS!) 3))9903D
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. O))DDDFDDD)))DDDD)’ D))D))0
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)DFDDDDDD)))))DD))D D) )0.

CC¢¢1¢¢¢€QOC¢¢¢1¢C4 (((((

)DDDD’DDD)’)D>)"!D 3),)!

0110(I¢(¢l((((((((( (C11

t.»)b)bb’t'b’))bbtb DD.)
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AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

-

U

pedestrian precinct inside the garden. .

Flgure 14

Then the left area is 141 square meters

and belongs to flowers and plants area. How long is it for the width (EF ) ofT area?

(A) 1 (B) % (C) 2 (D) g
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29.

30.

31.

For Figure 15, PH is the perpendicular

  

bisector of APQR, Faitfi, and M is the P

midpoint of PO. Which one statement is

mg? M

(A) ME = H—Q

(B) mil/ii a H Q

(C) m = W Figure 15

(D) APQH-E APRH

For Figure 16, EB- . CD is the two diameters of circle

.fl.

o. If 2ACD = 22AOC and the radius of circle 0 is 30 C} ‘ B

centimeter. How long is the arc BC of the opposite

 

£1300.) Figure 16

(A) IOTT (B) 121T (C) 201T (D) 24Tl'

For Figure 17, AB is the diameter of circle 0, E is the tangent line passing B,

and D is on the arc ofAB. c

To do: choose Pfrom BC in order to let AP divide D

equally the area of AABC.

  
As following four drawing methods, which one is A '0 B

wron ?

—g Figure 17

(A) choose the midpoint of BC ,P , and connect AP

(B) make the bisector of 2A and intersect BC in P

(C) make the perpendicular bisector of B_D- , intersect BC in P. and connect AP

(D) make a line pass 0 and parallel A_C . intersect BC in P. and correct H3
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32. For Figure 18, AABC is an isosceles triangle. AB = AC = 13. B_C = 10

(1) Fold up E to the direction of 'A_C, make AB and E overlap, and appear

folded line E,asFigure 19.

(2) Fold up 5 to the direction of AC, as Figure 20, match CD and AC

together, and appear folded line E . as Figure 21.

Then, how much is it for the area of AAEC?

     
   

 

A A

A

S D
f“! E ‘

B D C D D C

Figure 18 Figure 19 Figure 20 Figure 21

65 65

B— C20 D—(A)15 ()4() ()3
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