

LIBRARIES MICHIGAN STATE UNIVERSITY EAST LANSING, MICH 48824-1048

This is to certify that the dissertation entitled

NITRATE REDUCTION PATHWAY IN SHEWANELLA ONEIDENSIS MR-1

presented by

Claribel Cruz-García

has been accepted towards fulfillment of the requirements for the

Ph.D.

degree in

Crop and Soil Sciences and Environmental Toxicology

Programs

Major Professor's Signature

Date

MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE

2/05 c:/CIRC/DateDue.indd-p.15

NITRATE REDUCTION PATHWAY IN SHEWANELLA ONEIDENSIS MR-1

by

Claribel Cruz-García

A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Crop and Soil Sciences and Environmental Toxicology Programs
Department of Crop and Soil Sciences

ABSTRACT

NITRATE REDUCTION PATHWAY IN SHEWANELLA ONEIDENSIS MR-1

by

Claribel Cruz-García

Shewanella oneidensis MR-1 is a gram-negative bacterium with an extraordinary metabolic versatility in anion reduction, including the reduction of NO₃, Fe(III), U(VI), Mn(IV), Se(VI), Cr(VI). While reduction of nitrate and nitrite has been described for this microorganism, it is not known whether the reduction is by denitrification or dissimilatory nitrate reduction into ammonium (DNRA). By both physiological and genetic evidence, I proved that DNRA is the nitrate reduction pathway in this organism. Using the complete genome sequence of S. oneidensis MR-1, I identified a gene encoding a periplasmic nitrate reductase based on its 72% sequence identity with the napA gene in E. coli. Anaerobic growth of MR-1 on nitrate was abolished in a site directed napA mutant I constructed, indicating that NapA is the only nitrate reductase present. The anaerobic expression of the napA and nrfA, a homolog of the cytochrome b552 nitrite reductase in E. coli, increased with increasing nitrate concentration until a plateau was reached at 3 mM KNO₃. This indicates that these genes are not repressed by increasing concentrations of nitrate.

The reduction of nitrate generates intermediates that can be toxic to the microorganism. To determine the genetic response of MR-1 to high concentrations of nitrate, DNA microarrays were used to obtain a complete gene expression profile of MR-1 at low (1 mM) versus high (40 mM) nitrate concentrations. Genes encoding transporters and efflux pumps were up-regulated, perhaps as a mechanism to export toxic

,

compounds. In addition, the gene expression profile of MR-1, grown anaerobically with nitrate as the only electron acceptor, suggested that this dissimilatory pathway contributes to N assimilation. Hence the nitrate reduction pathway could serve a dual purpose.

The role of EtrA, a homolog of Fnr (global anaerobic regulator in *E. coli*) was examined using an *etrA* deletion mutant I constructed, *S. oneidensis* Etra7-1. The global transcriptome suggested a starvation response for anaerobic cultures of EtrA7-1 when nitrate was the electron acceptor. Genes involved in the activation and synthesis of the LambdaSo, MuSo1 and MuSo2 prophages of MR-1 were up-regulated, suggesting a phage infection. This could be responsible for the low growth yields observed for EtrA7-1 when compared to the wild type. Starvation is a stress condition that is known to induce viral infections. Even though starvation was not directly targeted for examination, the results in this study suggest that EtrA might play an important role in the survival of MR-1 under starvation. Moreover, the low biomass suggests a greater sensitivity of MR-1 to starvation than the toxicity associated with high nitrate concentrations. Down-regulation of genes involved in the nitrate reduction pathway was also observed for EtrA7-1 relative to the wild type, which suggests a positive regulatory role for this protein in the nitrate reduction pathway of *S. oneidensis* MR-1.

Copyright by

Claribel Cruz-García

2005

DEDICATION

To my family for all the support, love and encouragement.

ACKNOWLEDGEMENTS

I would like to thank the College of Agriculture at Michigan State University especially Dr. James E. Jay for all the support he gave me when I most needed it. Thanks to him, Dr. Melvin Yokoyama and Dr. Tony Nuñez, I was able to continue and finish my PhD. I need to give special thanks to my advisor, Dr. James M. Tiedje, for accepting me in his laboratory even when my background was unrelated to his work. Dr. Tiedje always demonstrated trust and faith in his students and for him there is nothing impossible. This great quality inspired me and motivated me to continue and finish my goal.

I was very lucky of having a second but not less great advisor, Dr. Alison E. Murray. She introduced me to this research area with a passion and such enthusiasm that was impossible to walk away from it. Her encouragement and positive enforcement motivated me to explore and get involved in all this new research area. Even in the distance, she was able to help me and always managed to have time for long conversations and great scientific discussions. I also need to thank all the people at the Tiedje Lab, especially Héctor L. Ayala, Verónica Grüntzig, Xiaoyun Qiu, Carlos Rodríguez Minguela, Claudia Etchebehere, Mary Beth Leigh, Elica Moss, and Debora Rodríguez for all the laughs and the good times and for always being there for me to help with good scientific and personal advices. I am very grateful of Lisa Pline, Pat Englehart and Joyce Wildenthal for all the help, great attentions and beautiful friendship. Many people at Michigan State University help me with their expertise in some of the analyses presented in this thesis. Thanks to Jonathan Dahl at Soil Testing Lab for the N-species analyses and Annette Thelen and Jeff Landgraph at the Genomic Technical Support Facility for helping with the Q-RT-PCR and DNA microarray analyses. I would also like to thank Liyou Wu and Jizhong Zhou at Oakridge National Laboratory for providing the Shewanella oneidensis MR-1 complete DNA microarray slides.

I would like to thank the members of my graduate committee, Dr. Clayton Rugh and Dr. Syed Hashsham, for all the help and the good professional and personal advices.

Thanks to Dr. Joel Klappenbach for revising my writing and for the help in the mutagenesis process.

My friends in Michigan made of this experience a very sweet one, being away from home was not easy. The Figueroa family, the Sullivan-Figueroa family, the Jiménez family, the Caulkett family, the Estrada-Feliú family, Jaime Graulau, Juliana Pérez, Simone Charles, Tomeka Prioleau, Pedro Torres and Michelle Martínez became the family and friends that we could always count on. Thank you all.

I do not have words to thank my family for all their love, support and patience. I need to thank my dad, Carlos Cruz, for being my greatest inspiration and my model. Thanks for being the greatest dad ever, for all the love and endless words of encouragement. Thanks to my mom for all the love and her faith in me. Thanks for all the encouragement and the guidance throughout my school years. This title is yours. I need to thank God for my wonderful sisters Brenda Cruz and Waleska Cruz, for always being there for me with words of love and hope. I have to thank all my grandparents, aunts, uncles and cousins for all the prayers and good wishes.

Gustavo and Carlos G. Sepúlveda, the light in my life, thank you for the patience, help, love and support. Gustavo, thanks for all the nights spent in the lab helping me with experiments and data analyses. I am very grateful of the scientific discussions and the challenging questions. Thanks for the love and understanding during the bad times and

moreover, thanks for Carlos and for all the happiness you have brought into my life. I have to thank the Sepúlveda Family for taking me into their family and for all the prayers.

Thank you God for given me this opportunity and for always being with me.

TABLE OF CONTENTS

LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF SUPPLEMENTAL TABLES	xiv
CHAPTER I.	
INTRODUCTION AND RATIONALE	
OBJECTIVES AND EXPERIMENTAL APPROACHES	15
REFERENCES	20
CHAPTER II.	
REDUCTION OF NITRATE IN SHEWANELLA ONEIDENSIS MR-1	26
ABSTRACT	27
INTRODUCTION	
MATERIALS AND METHODS	
RESULTS	
DISCUSSION	
REFERENCES	41
CHAPTER III.	
NapA IS THE ENZYME RESPONSIBLE FOR THE REDUCTION OF NITRA	TE IN
SHEWANELLA ONEIDENSIS MR-1	
ABSTRACT	
INTRODUCTION	
MATERIALS AND METHODS	
RESULTS	58
DISCUSSION	
REFERENCES	
CHAPTER IV.	
ROLE OF EtrA IN THE REGULATION OF THE NITRATE REDUCTION	
PATHWAY IN SHEWANELLA ONEIDENSIS MR-1	88
ABSTRACT	
INTRODUCTION	
MATERIALS AND METHODS	
RESULTS	
DISCUSSION	120
REFERENCES	
CHAPTER V.	
SUMMARY AND FUTURE RESEARCH.	134
SUMMARY	
FUTURE RESEARCH	

REFERENCES	141
APPENDIX A. SHEWANELLA ONEIDENSIS MR-1 DELETION MUT	ANTS142
APPENDIX B. SUPPLEMENTAL TABLES	146

LIST OF TABLES

TABLE 1.1	Genes involved in nitrate reduction in E. coli and their homologues in Shewanella oneidensis MR-1
TABLE 2.1	Stoichiometry of nitrogen ions measured in Shewanella oneidensis MR-1 anaerobic cultures with 2 mM KNO ₃ as the electron acceptor and lactate as the electron donor
TABLE 3.1	Bacteria, plasmids, primers and oligonucleotides used in this study51
TABLE 3.2	Genes induced in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO ₃
TABLE 3.3	Genes repressed in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO ₃
TABLE 4.1	Bacteria, plasmids, and primers used in this study93
TABLE 4.2	Genes induced in anaerobic cultures of EtrA7-1 relative to the wild type (reference strain)
TABLE 4.3	Genes repressed in anaerobic cultures with nitrate of EtrA7-1 relative to the wild type (reference strain)
TABLE 4.4	Genes induced in anaerobic cultures of EtrA7-1 at 1 mM (reference) versus 40 mM KNO ₃
TABLE 4.5	Genes repressed in anaerobic cultures of EtrA7-1 at 1 mM (reference) versus 40 mM KNO ₃

LIST OF FIGURES

FIG. 1.1	Model proposed for the regulation of the expression of the <i>nrf</i> and <i>nap</i> genes in <i>Escherichia coli</i>
FIG. 2.1	Growth of Shewanella oniedensis MR-1 on different concentrations of nitrate
FIG. 2.2	Growth of Shewanella oneidensis MR-1 on different concentrations of nitrite
FIG. 2.3	Growth rate of Shewanella oneidensis MR-1 in anaerobic cultures at different nitrate and nitrite
FIG. 2.4	Nitrate, nitrite and ammonium concentrations in Shewanella oneidensis MR-1 in anaerobic cultures grown in the presence of nitrate as the electron acceptor
FIG. 3.1	Concentrations of nitrate, nitrite and ammonium in cultures of Shewanella oneidensis MR-1 used for Q-RT-PCR analyses at the time the cells were harvested for RNA extraction
FIG. 3.2	Expression of napA in cultures of Shewanella oneidensis MR-1 grown at different nitrate concentrations under anaerobic conditions (•), aerobically with no nitrate (•) and aerobically with 3 mM nitrate ()60
FIG. 3.3	Expression of <i>nrfA</i> in cultures of <i>Shewanella oneidensis</i> MR-1 grown at different nitrate concentrations under anoxic conditions (*), aerobically with no nitrate (*) and aerobically with 3 mM nitrate (*)62
FIG. 3.4	napA gene deletion confirmation by PCR64
FIG. 3.5	DNA sequence of <i>napA</i> deletion in MR-165
FIG. 3.6	Growth curves for Shewanella oneidensis MR-1 wild type grown in M1 medium aerobically (♦), and anaerobically with 3 mM nitrate () and Shewanella oneidensis MR-1 \(\Delta\napA\) grown aerobically (■) and anaerobically with 3 mM nitrate (*)
FIG. 3.7	Concentrations of nitrate, nitrite and ammonium in cultures of Shewanella oneidensis MR-1 wild type and Shewanella oneidensis MR-1 Δ napA for growth curve after 24 h incubation period68
FIG. 3.8	Distribution of differentially expressed genes (> 2-fold change) grouped in 20 functional categories after cultivation on 1 mM (reference) versus 40 mM nitrate concentration

FIG. 4.1	etrA gene deletion confirmation by PCR102
FIG. 4.2	DNA sequence of the etrA deletion in MR-1103
FIG. 4.3	Growth of Shewanella oneidensis MR-1 wild type (♦), EtrA7-1 (■), EtrA7-1 complement (), and EtrA7-1 harboring pCM62 (*) under anaerobic conditions with 3 mM KNO ₃
FIG. 4.4	Concentrations of nitrate, nitrite and ammonium in cultures of Shewanella oneidensis MR-1 wild type, EtrA 7-1, Etra7-1 complement (harboring pCCG02c) and EtrA7-1 harboring pCM62 during growth curve after 10 h incubation period
FIG. 4.5	Concentrations of nitrate, nitrite and ammonium in cultures of Shewanella oneidensis MR-1 wild type, EtrA 7-1, Etra7-1 complement (harboring pCCG02c) and EtrA7-1 harboring pCM62 during growth curve after 23 h incubation period
FIG. 4.6	Distribution of differentially expressed genes (> 2-fold change) grouped in 20 functional categories in anaerobic cultures of EtrA7-1 with 2 mM KNO ₃ as the sole electron acceptor relative to the wild type (reference strain)

LIST OF SUPPLEMENTAL TABLES

SUPPLEMENTAL TABLE A.1. Shewanella oneidensis MR-1 deletion mutants and primer sequences	
SUPPLEMENTAL TABLE B.1. Genes induced in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO ₃	147
SUPPLEMENTAL TABLE B.2. Genes repressed in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO ₃	167
SUPPLEMENTAL TABLE B.3. Genes induced in anaerobic cultures of EtrA7-1 relative to the wild type (reference strain)	184
SUPPLEMENTAL TABLE B.4. Genes repressed in anaerobic cultures with nitrate of EtrA7-1 relative to the wild type (reference strain)	194
SUPPLEMENTAL TABLE B.5. Genes induced in anaerobic cultures of EtrA7-1 at 1 mM (reference) versus 40 mM KNO ₃	206
SUPPLEMENTAL TABLE B.6. Genes repressed in anaerobic cultures of EtrA7-1 at 1 mM (reference) versus 40 mM KNO ₃	212

CHAPTER I INTRODUCTION AND RATIONALE

INTRODUCTION

Nitrogen is one of the crucial elements in the building blocks of life: nucleic acids and proteins. Nitrogen exists in nature in various oxidative states that range from +5 for nitrate (the most oxidized specie) to -3 for ammonium (the most reduced compound). Nitrogen compounds found in the biosphere undergo several transformations, which constitute the biogeochemical nitrogen cycle. These transformations that are predominantly carried out by bacteria and archaea regulate the local and global concentration of each nitrogen form. Thus, these processes are important in maintaining the various nitrogen species in balanced or non-harmful levels. Nitrate is one of the most important nitrogen species in agriculture and in the environment. Due to excessive use of fertilizers, nitrate has become a contaminant in groundwater. Nitrate is also of clinical concern since elevated levels in drinking water have been associated with some forms of cancer and methaemoglobinemia (11, 18, 49).

Nitrate is a reactant in three pathways in bacteria. (i) Assimilatory nitrate reduction is one of the most important biological transformations since it provides a nitrogen source for organism growth. This pathway reduces nitrate to nitrite, and finally to ammonium, which is used for the synthesis of amino acids. (ii) Nitrate respiration uses nitrate as the electron acceptor for the generation of energy from a proton motive force. It is a component in denitrification, which is a respiring process where nitrate is converted sequentially into dinitrogen $(NO_3 \rightarrow NO_2 \rightarrow NO \rightarrow N_2O \rightarrow N_2)$. The electron accepting capacity of nitrate in denitrification is 5 electrons per nitrogen. Nitrogen oxide gases produced as intermediates in this pathway are associated with the green house effect and ozone depletion. In agriculture, this process represents an area of great concern because

nitrogen is the most limiting nutrient in crop cultivation and significant loss of nitrogen fertilizer is attributed to denitrification. On the other hand, bacterial denitrification is used for nitrate removal as part of a wastewater treatment prior to the release in the environment. (iii) Dissimilatory nitrate reduction into ammonium (DNRA) is an important process in some anaerobic environments. Three possible functions have been proposed for DNRA: nitrite detoxification, redox balancing, and energy generation. DNRA is characterized by the reduction of nitrate to nitrite but, instead of being reduced to N₂ as in denitrification, nitrite is reduced directly to ammonium. In contrast to denitrification, DNRA conserves nitrogen, which makes it advantageous. This process is most favorable in anaerobic environments due to the high capacity of nitrate to accept electrons when reduced into ammonium (8 electrons per nitrogen). Due to its importance, nitrate reduction has become the subject of many research studies. However, there are crucial aspects that are yet to be elucidated.

Shewanella oneidensis MR-1

Shewanella oneidensis MR-1 is a Gram negative, facultatively anaerobic, polarly flagellated γ proteobacterium. Formerly known as Shewanella putrefaciens, MR-1 was first isolated from the Oneida Lake, NY, USA from which its name was acquired. This bacterium has been found in soil, sediments, the water column and clinical environments (19, 51). Bacteria from this genus have been studied for decades, but due to recent findings, which identify Shewanella oneidensis MR-1's potential metal bioremediation, there has been increasing interest to better understand the metabolic capabilities of this organism (20, 47, 51).

Unlike most isolated bacteria, MR-1 is a metal-ion reducer and has the advantage of utilizing a wide array of compounds as electron acceptors including oxygen, nitrate, nitrite, fumarate, thiosulfate, elemental sulfur, dimethyl sulfoxide, trimethylamine Noxide, iron oxide, manganese oxide, chromium oxide and uranium oxide (19). The Institute for Genomic Research (TIGR) released the genome sequence of Shewanella oneidensis MR-1 (NC004347 whole genome, NC004349 megaplasmid) in 2002. The genome sequence revealed the presence of numerous genes that encode for an array of electron transport systems including up to 39 c-type cytochromes, the greatest number identified in a bacterial genome thus far. Although the genome does not show an extremely high number of metal ion transporters, the large number of cytochrome genes might explain the metabolic versatility of this microorganism. Studies have indicated that MR-1 can utilize nitrate and nitrite as electron acceptors in a two-step reaction coupled to growth where nitrate is reduced to nitrite and nitrite into ammonium (21). In addition, studies have indicated that MR-1 can reduce Cr(IV) by co-metabolism with nitrate reduction, for energy acquisition (25). MR-1 reduces U(VI) and Cr(IV) into the insoluble forms U(IV) and Cr(VI), which are immobile, thus less toxic and bioavailable. Chromium reduction by co-metabolism with nitrate has been observed in S. oneidensis MR-1 while reduction of uranium has been associated with nitrite reduction in other members of the genus (52). Even though ammonium has been detected as a product of nitrate reduction in MR-1, there is a controversy about whether denitrification is taking place in the cell (14, 21). According to the genome sequence of Shewanella oneidensis MR-1, the genes necessary to carry out this process are absent; however, those required for DNRA are present (TABLE 1.1).

TABLE 1.1. Genes involved in nitrate reduction in *E. coli* and their homologues in *Shewanella oneidensis* MR-1.

Escherichia coli	Shewanella oneidensis MR-1	COG Annotation
napFDAGHBC	napDAGHB, napF, cymA (napC	Periplasmic nitrate reductase
	homologue)	
narGHJI		Membrane-bound nitrate reductase
narZYWX		Membrane-bound nitrate reductase
narL, narX	***************************************	Two-component regulatory system
		nitrate sensitive
narP, narQ	narP, narQ	Two-component regulatory system
		nitrate sensitive
nrfABCDEFG	nrfA, nrfF, nrfDCG	Periplasmic nitrite reductase
nirB		Membrane-bound nitrite reductase
fnr	etrA	Oxygen sensing regulator

Dashed lines represent no homologues found in MR-1.

Genes and proteins involved in bacterial nitrate reduction

Most of the genetic and biochemical studies on nitrate respiration and DNRA have been done in *E. coli* (26, 39, 45, 46). Two types of bacterial nitrate reductases have been described: assimilatory nitrate reductases (Nas) and dissimilatory nitrate reductases (Nap and Nar).

Assimilatory nitrate reductases have been found in phototrophic and heterotrophic bacteria. They are comprised of two types, ferredoxin- or flavodoxin-dependent. These enzymes reduce nitrate to nitrite, which is then further reduced into ammonium and incorporated into cell material. Genes involved in assimilatory nitrate reduction are found in the same operon as those involved in assimilatory nitrite reduction. Different nomenclature has been given to homologous genes of these enzymes in different bacteria but the *nas* term is more commonly used and some authors believe it is more appropriate (26, 38).

In contrast to the assimilatory nitrate reductases, many types of dissimilatory nitrate reductases have been observed in bacteria and archaea. A single organism may possess more than one type (e.g. *E. coli* expresses three dissimilatory nitrate reductases) (5, 10, 32, 45). These enzymes can be distinguished not only by their structure and gene sequence but also by their biochemical properties (5, 26, 39, 46). There are two types of dissimilatory nitrate reductases: the membrane-bound respiratory (Nar) and the periplasmic (Nap) nitrate reductases. In *E. coli* the membrane-bound nitrate reductases can be further divided into NarZ and NarA. NarZ, encoded by *nar*ZYWV genes, is constitutively expressed in the cell at low levels under aerobic or anaerobic conditions (5, 26). NarA, encoded by *nar*GHIJ genes, and in contrast to NarZ, is only expressed under

anaerobic conditions. The activity of NarA represents 90% of the total activity of the membrane-bound nitrate reductases in *E. coli* K12 (26).

The bacterial membrane-bound nitrate reductase has three subunits: α (112-140KDa), β (52-64KDa) and γ (19-25KDa). Nar uses NADH as an electron donor, can reduce chlorate and is inhibited by low concentrations of azide (3, 21, 45). This enzyme has been found in microorganisms capable of denitrification and anaerobic respiration (26). This protein is expressed under anoxic conditions. Since it is membrane-bound, it has the ability to generate energy by a proton motive force.

In contrast to Nar, the periplasmic nitrate reductase (Nap) is expressed under aerobic and/or anaerobic conditions and its activity is not affected by low concentrations of azide (3, 45). Several biochemical properties have been used to identify NapA from NarG but the two most common are inability to use NADH as an electron donor and to reduce chlorate. Nap has been purified as a two-subunit enzyme consisting of a molybdopterin-containing catalytic subunit A (~90 KDa) and a [4Fe4S] cluster and a diheme cytochrome c_{552} subunit B (~16KDa). Since Nap cannot generate a proton motive force for energy conservation due to its location (periplasm), different roles have been attributed to this enzyme in different bacteria. Experiments on the Nap systems of Thiosphaera panthotropha, Rhodobacter capsulatus and Rhodobacter sphaeroides DSM 158 suggest a redox-balancing role when there is an excess of reducing agents (37, 38, 41). Due to the presence of Nap in most aerobic denitrifiers, a second role has been suggested for Nap and that is as the enzyme responsible for the first step in aerobic denitrification (3, 33). These studies suggest that since Nap is expressed under aerobic and anaerobic conditions, it plays a role in the transition from aerobic to anaerobic

respiration. Once the conditions become more anaerobic, Nar is the primary enzyme and Nap plays a secondary role. However, a study on *Pseudomonas* sp. strain G-179 showed that while this is true for *P. denitrificans* it is not for *Pseudomonas* sp. strain G-179 where Nap is the primary enzyme required for the reduction of nitrate into nitrite in denitrification (3). This investigation suggested that the periplasmic nitrate reduction in this organism generates energy by showing the inability of Nap mutants to grow on nitrate. The mechanism of energy generation using Nap in this organism is not clear. *Pseudomonas* sp. strain G-179 was originally classified as a *Pseudomonas* but a phylogenetic analysis using the 16S rDNA sequence of various nitrate reducers revealed a 97% similarity to *Rhyzobium galegae* (3).

In *E. coli*, Nap is encoded by the *napFDAGHBC* operon. Studies in this organism have demonstrated that NapABCD, but not NapFGH, are essential for periplasmic nitrate reduction when glycerol, formate and glucose are used as substrate (32). In an attempt to elucidate the role of NapFGH, mutants defective in either ubiquinol or menaquinol biosynthesis, revealed that NapG and H, but not F, are essential for electron transfer from ubiquinol to NapAB (5). This investigation also proved that NapC has an essential role in electron transfer from both ubiquinol and menaquinol to NapAB. In further investigations, the deletion of either *napG* or *napH* abolished the activity of NapA in cultures of naphtoquinone defective strains of *E. coli* K12 (6). This study indicates that *napG* and *napH* encode an electron transfer complex. The function of this complex seems to be important to maintain a redox-balancing growth.

Several studies in the Nap systems of enteric bacteria have shown expression only under anaerobic conditions (32, 33, 45, 53). This contrast to the biochemical properties

observed for the Nap in some denitrifiers, however this difference has been attributed to the variation in the organization of its operon (45). This group of bacteria, including E. coli, is capable of DNRA, but not of denitrification, which suggests a different but unclear role for this system. The genome sequence of various microorganisms reveals a pattern in the genetic organization of the nap operon that might determine its physiological role (32, 33). In all organisms, for which the genome sequence has been published, the nap operon consists of napDABC genes as a common template. In addition to this template, different permutations of other genes have been documented in different types of bacteria. For example, the nap operon in denitrifiers consists of five genes napEDABC, whilst E. coli, which is a non-denitrifier and other ammonifying bacteria do not carry the napE gene but contain napGHF genes in addition to the napDABC. Pseudomonas sp. G-179, which utilizes a different denitrification pathway, as described above, possesses a nap operon that even when it contains the napE gene, is different from that of the denitrifiers (napEFDABC). The nap operon of Shewanella oneidensis MR-1 is different from any nap operon described; this strain does not possess napC or napF (napDAGHB) (19). The organization of the nap operon of MR-1 is very interesting since the internal genes are arranged as those in the nap operon of E. coli, however homologues of napF and napC (cymA) are found in different loci (30). This genetic organization may explain similarities and uniqueness of the nitrate reduction pathway of MR-1 compared to those in E. coli and in other bacteria.

Recent experiments on *E. coli* have demonstrated that the *nap* operon is preferentially expressed under low concentrations of nitrate and/or nitrite, whilst the *nar* operon is expressed when the concentrations of nitrate and/or nitrite are high (33, 53). In

an effort to demonstrate whether the Nap system was an energy generating process in E. coli, an experiment was performed using NarA-/NarZ mutants, thus only Nap was carrying out any nitrate reduction in the cell. Since the mutant grew poorly, a second mutation was performed abolishing NarL (response regulator) activity. The NarL mutation resulted in improved growth, which confirms that the poor growth was partly due to repression of nap expression by NarL. Another experiment using NarL mutants expressing only nap as the sole nitrate reductase, demonstrated that Nap activity could be high enough to support anaerobic respiration but that it does not constitute a site to generate a proton motive force (45). This experiment confirmed the observations for the regulation of the expression of nar and nap operons. The results demonstrated that NarL and NarP induce the nap and nar genes in response to NarX and NarQ (12, 13). E. coli possesses a nitrate and nitrite two-component regulatory system consisting of NarX, NarQ, NarP and NarL. NarQ and NarX are the two sensor transmitter proteins while NarP and NarL are the two response regulators. It has been shown that NarP and NarL compete for the same DNA-binding site. They both induce nar and nap but it has been shown that NarL, but not NarP, represses nap at high concentrations of nitrate. This has also been observed and studied in depth for the nitrite reductase systems reported in E. coli (54).

The reduction of nitrate is followed by the action of a nitrite reductase. E. coli has two nitrite reductases encoded by the nrfABCDEFG and the nirB operons, which reduce nitrite into ammonium (7, 9, 54). Even though these enzymes catalyze the same reaction they have different roles and biochemical properties. NirB is a cytoplasmic enzyme while NrfA is located in the periplasm. NarL, NarP, NarQ and NarX regulatory systems along

with the regulatory protein Fnr regulate the expression of these two enzymes (31, 48, 54, 57).

In a study of *E. coli*, NrfA was highly expressed under low concentrations of nitrate and/or nitrite while NirB was induced only under high concentrations of nitrate (54). Hence, NirB was proposed to have a role in detoxifying the cell from high levels of nitrite produced by the action of NarG, which is also induced under high concentrations of nitrate. The authors also suggested that NirB might recycle NADH by oxidizing it when there is an excess of reducing equivalents. On the other hand, since NrfA is expressed under low concentrations of nitrate and inhibited at high concentrations, it may work together with Nap using the nitrite that it generates. As previously mentioned, recent investigations suggest a redox-balancing role for NapA in *E. coli* conferred by a NapG/NapH complex (6). It is still not clear whether *E. coli* can generate energy from this process but it has been suggested that Nap and Nrf form a complex where some of their components are membrane-associated enabling the conservation of energy (34).

A model for the regulation of these genes in *E. coli* establishes that at low concentrations of nitrate, NarP and NarL are autophosphorylated, which will allow them to bind the activation sites at positions -79 and -70 of the *nrfA* operon (FIG. 1.1). Fnr will bind to its recognition site in the operon and the expression of *nrf* will be induced. As nitrate reaches a higher concentration, NarL will also bind to -50 and -22 sites, for which the affinity is lower. At site -50 NarL will interfere with Fnr binding and at site -22 it will interfere with RNA polymerase binding to the promoter. These will cause suppression in the expression of *nrf* (45, 53, 54).

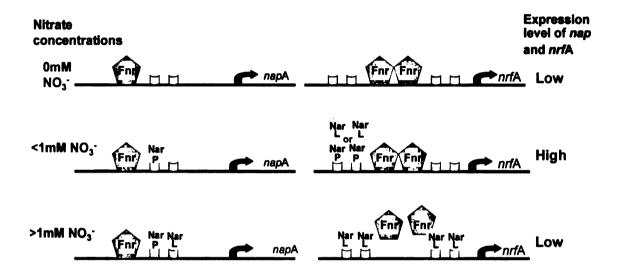


FIG. 1.1. Model proposed for the regulation of the expression of the *nrf* and *nap* genes in *Escherichia coli*. When the concentrations of nitrate are low, the expression level of these genes is induced by the response regulator NarP and the transcription factor Fnr. Once the nitrate concentrations increase, NarL gets activated and blocks the sites for Fnr and NarP, therefore the expression of *napA* and *nrfA* is repressed (Wang and Gunsalus, 2000; Potter et al., 2001).

The benefits of periplasmic nitrate reduction in terms of energy acquisition are not completely clear. Many experiments to elucidate the role and mechanism of this pathway have revealed intriguing results on the physiology of various organisms that keep challenging researchers around the world. The nitrate reduction process in S. oneidensis MR-1 seems to be even more interesting, since it is very likely that periplasmic nitrate reduction into ammonium is the primary nitrate reduction pathway used by this organism when nitrate is the only electron acceptor. S. oneidensis MR-1 possesses homologues for the genes that have been reported as necessary to carry out only this pathway (TABLE 1.1). Previous studies have suggested that S. oneidensis MR-1 is capable of denitrification, however this has been a subject of controversy (14, 21). An experiment with different strains of Shewanella putrefaciens (including MR-1) using nitrate and nitrite as sole electron acceptors has primarily detected production of N₂O, and ammonium in low concentrations in the cultures of MR-1 (21). This study also describes the partial purification of a membrane-bound nitrate reductase from MR-1, which the authors claim corresponds to Nar, and a membrane-bound nitrite reductase. These results do not coincide with the genome sequence of S. oneidensis MR-1 since only the nap and nrf operons are present, which encode periplasmic proteins.

The study of the nitrate reduction pathway in *Shewanella oneidensis* MR-1 has been limited to physiological investigations. There has been a lack of detailed genetic studies. Understanding expression of the genes involved in this process in MR-1 is needed to clarify some of the questions regarding the role of the Nap system in this organism. Also, genetic expression analyses can help understand the metabolism of nitrate and its potential to conserve energy for cell survival in other organisms, some of

them pathogens like *Haemophilus influenzae* (34). Since MR-1 is genetically similar to *E. coli*, the models discussed above can be used to help explain what is occurring in MR-1 (27). The evolutionary implications of the absence of the *napF* and *napC* homologues from the *nap* operon of MR-1 might help answer more questions about the pathway.

Several studies mentioned above have been performed using mutants defective in alternative nitrate reduction pathways, which have given rise to important models proposed for this system. Based on these approaches and on the fact that the genome sequence of MR-1 does not show the genes for the NarL/NarX two-component regulatory system, and Nap is the only nitrate reductase encoded, this is an excellent organism to study and to confirm what has been proposed for this system without the need of extensive DNA manipulation. This research focuses on the study of the nitrate reductase(s) involved in the reduction of nitrate and the elucidation of this mechanism in *Shewanella oneidensis* MR-1. This investigation also clarifies some of the contributions of the periplasmic nitrate reduction to the anaerobic metabolism, which is an important process in the global nitrogen cycle.

OBJECTIVES AND EXPERIMENTAL APPROACHES

Objective 1. Determine the growth rate of *Shewanella oneidensis* MR-1 when either nitrate, nitrite or nitrous oxide was used as the only electron acceptor.

This objective will not only provide the optimal concentrations of nitrate and nitrite necessary for growth but will also provide information about the tolerance of this microorganism to the levels of nitrate and nitrite supplied. The growth of *Shewanella oneidensis* MR-1 was examined and compared to that of the positive control, *Pseudomonas stutzeri*, for the reduction of nitrous oxide when the later was the only electron acceptor. Nitrous oxide is one of the intermediates in denitrification and this experiment is positive evidence for this pathway.

Objective 2. Determine the intermediates in the nitrate reduction pathway in S. oneidensis MR-1 by their sequential production and consumption.

The growth rate, and the concentration of nitrate, nitrite and ammonium were analyzed over time in anaerobic cultures of *Shewanella oneidensis* MR-1 grown in minimal medium with 2 mM KNO₃ as the only electron acceptor. This experiment also establishes the balance of N-compounds.

Objective 3: Determine the gene expression pattern of *S. oneidensis* MR-1 when grown anaerobically under different concentrations of nitrate.

To quantify napA, nrfA, narQ and narP mRNA copy numbers, Quantitative-Real Time-PCR was used (8). The principle of Q-RT-PCR resides in a constant monitoring of the

PCR amplification of the targeted template allowing the quantification of the initial gene copy number. The cautious design of a set of primers, and sometimes of a probe, that anneals between the primers specific for the gene of interest is important for the success of the Q-RT-PCR. The TaqMan technology from Applied Biosystems was used for the Q-RT-PCR analysis. This technology requires the addition of the probe that contains a reporter dye at the 5'end and a quencher at the 3'end (www.appliedbiosystems.com). The amplification of the template starts with the annealing of the primers and the probe to the template following the elongation step by the DNA polymerase. Once the polymerase encounters the probe, it degrades the probe by its 5' nuclease activity. At this point the dye is released and separated from the quencher, which was keeping it from expressing all the fluorescence. Fluorescence increases with the increase in amplification of the template. This fluorescence is then detected by a RT PCR machine through an optic fiber. These data are translated into a value known as the C_T or threshold cycle which is calculated from the curve generated from the fluorescent measurements recorded every few seconds. In order to ensure accuracy of the technique, many safety measures should be taken into consideration. For example, it is important to include a standard and an internal control in the experiment if an absolute quantification is desired. The standard could be a PCR product of the gene of interest in a known concentration. This will allow the extrapolation of the C_T to the actual concentration or copy number of the targeted transcript. The internal control should be a gene that does not change between conditions or treatments, so it can be utilized to account for mechanical errors and for reaction inhibitors. Primers and a probe specific for the gene chosen as control are used to

quantify its transcripts as it is done for the genes of interest. Quality of the samples and the use of quality reagents are also critical for obtaining accurate results.

Objective 4: Analyze the global gene expression profile of *S. oneidensis* MR-1 when grown anaerobically under high and low concentrations of nitrate.

In order to globally analyze the difference in gene expression under a low and a high concentration of nitrate, a *Shewanella oneidensis* MR-1 complete genome DNA microarray was used (17). The spotted DNA microarray contains 4648 unique fragments representing individual open reading frames from *Shewanella oneidensis* MR-1. Total RNA extractions from MR-1 anaerobic cultures grown on 1 mM and 40 mM KNO₃ were labeled with two different fluorescent dyes and hybridized in triplicate on these microarray slides. This experiment examines the genetic or molecular behavior of the cell when the concentrations of nitrate are increased dramatically.

Objective 5: Determine existence of more than one nitrate reductase in MR-1.

The construction of a *nap* mutant was performed using the Cre-lox mutagenesis protocol for Gram-negative bacteria (24). Mutagenesis in *Shewanella oneidensis* MR-1 as well as in many other bacteria has been a great challenge (23). This protocol had to be modified in order to overcome some of the obstacles presented when it was applied to MR-1. This protocol consists of four major steps, which will be discussed briefly. The first step is the insertion of the PCR products of the regions flanking the *nap* gene by ligation. This procedure requires the design of two pairs of primers (amplifying a region of 400-600 bp

in length for better efficiency of recombination) for the amplification of the regions flanking the nap gene. Each primer is designed so their respective 5' termini posses complementary tags to permit insertion into the suicide vector. This can be accomplished if the tags include an enzyme recognition site (two different tags were used per primer set to allow directional insertion of the fragments). The napA flanking regions are then cloned into the suicide vector, which in this case was pCM184. This suicide vector possesses a kanamycin resistance (Kan) cassette flanked by two loxP sites and two multiple cloning sites. The flanking regions of the napA gene were ligated, flanking the two loxP sites. Once the vector is characterized by sequencing, the second step is its electroporation into E.coli \(\beta 2155 \) competent cells for subsequent transference of the vector into MR-1. This E. coli strain is an auxotroph for di-amino-pimelic acid (DAP), which in its absence disables the growth of the bacterium. This is a great advantage because, after the mating E. coli \(\beta 2155 \) harboring the vector with the flanking regions of the gene of interest and Shewanella oneidensis MR-1, they are spread on LB plates with kanamycin but no DAP. This media will allow only the growth of the MR-1 cells that were successfully transformed with the vector. Since this is a suicide vector it is expect to be eliminated as the bacteria duplicates, because it should not replicate in MR-1. Unfortunately, that was not the case and the vector remained in the cell. Hence, another vector, pKNOCK-Gm, known to be a suicide vector in MR-1 was then selected and the fragment including the flanking regions of napA, loxP sites and the kanamycin cassette from pCM184 were excised by enzymatic digestion and moved into the multiple cloning site of pKNOCK-Gm (as the name implies, it is gentamycin resistant) (1). Then, this vector (pCCG01) was electroporated into E. coli β2155 competent cells, from which it was subsequently transferred by conjugation into MR-1. The MR-1 kanamycin resistant, gentamycin susceptible colonies were then diagnosed for the deletion by PCR. The kanamycin cassette replaces the gene by homologous recombination between the flanking regions in the suicide vector with those in the chromosome. The third step involves the introduction by conjugation of a plasmid encoding the Cre recombinase (pCM157) into the mutated colonies. The Cre recombinase recognizes the *loxP* sites flanking the kanamycin cassette and recombines them, excising the kanamycin cassette and leaving a residual *loxP* sequence. The fourth and last step is the curing of the plasmid. This was achieved by inoculating the positive transformants in liquid media without tetracycline, the antibiotic for which this plasmid confers resistance, and it is transferred until the resistance is lost. Characterization of the mutant was performed by diagnostic PCR and DNA sequencing. Growth on nitrate as the only electron acceptor was tested for the mutant.

Objective 6: Determine the role of EtrA in the nitrate reduction pathway of Shewanella oneidensis MR-1.

A S. oneidensis MR-1 etrA deletion mutant was generated as described above. The growth, nitrate reduction capabilities and global gene expression profile when cultivated with nitrate as the only electron acceptor were analyzed in comparison with those of the wild type. DNA microarray analyses were done as described above. The results obtain from this work will resolve how S. oneidensis MR-1 reduces nitrate and provides insight into the global regulatory control of this process in response to nitrate concentrations.

REFERENCES

- 1. Alexeyev, M.F. 1999. The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques. 26:824-8.
- Beliaev, A.S., D.K. Thompson, T. Khare, H. Lim, C. C. Brandt, G. Li, A.E. Murray, J.F. Heidelberg, C.S. Giometti, J. YatesIII, K.H. Nealson, J.M. Tiedje, and J. Zhou. 2002. Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors. OMICS 6:39-60.
- 3. Bedzyk, L., T. Wang, and R. W. Ye. 1999. The periplasmic nitrate reductase in *Pseudomonas* sp. Strain G-179 catalyzes the first step of denitrification. J. Bacteriol. 181:2802-2806.
- 4. Braker, G., J. Zhou, L. Wu, A.H. Devol, and J.M. Tiedje. 2000. Nitrate reductase genes (*nirK* and *nirS*) as functional markers to investigate diversity of denitrifying bacteria in Pacific Northwest marine sediment communities. Appl. Environ. Microbiol. 66:2096-2104.
- 5. Brondijk, T.H., D. Fiegen, D.J. Richardson, and J.A. Cole. 2002. Roles of NapF, NapG and NapH, subunits of the *Escherichia coli* periplasmic nitrate reductase, in ubiquinol oxidation. Mol. Microbiol. 44:245-255.
- Brondijk, T.H., A. Nilavongse, N. Filenko, D.J. Richardson, and J.A. Cole. 2004. NapGH components of the periplasmic nitrate reductase of *Escherichia coli* K-12: location, topology and physiological roles in quinol oxidation and redox balancing. Biochem. J. 379:47-55.
- 7. Browning, D.F., C.M. Beatty, A.J. Wolfe, J.A. Cole, and S.J.W. Busby. 2002. Independent regulation of the divergent *Escherichia coli nrfA* and *acsP1* promoters by a nucleoprotein assembly at a shared regulatory region. Mol. Microbiol. 43:687-701.
- 8. Bustin, S.A. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25:169-93.
- 9. Clegg, S., F. Yu, L. Griffiths, and J.A. Cole. 2002. The roles of the polytopic membrane proteins NarK, NarU, and NirC in *Escherichia coli* K-12: two nitrate and three nitrite transporters. Mol. Microbiol. 44:43-55.
- 10. Cole, J.E. 1996. Nitrate reduction to ammonium by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136:1-11.

- 11. Craun, G.F., D.G. Greathouse, D.H. Gunderson. 1981. Methaemoglobin levels in young children consuming high nitrate well water in the United States. Int. J. Epidemiol. 10:309-317.
- 12. **Darwin, A.J., and V. Stewart**. 1997. Nitrate and nitrite regulation of the Fnr-dependent *aeg-46.5* promoter of *E. coli* K-12 is mediated by competition between homologous response regulators (NarL and NarP) for a common DNA-binding site. J. Mol. Biol. **251**:15-29.
- 13. Darwin, A.J., E.C. Ziegelhoffer, P.J. Kiley, and V. Stewart. 1998. Fnr, NarP, and NarL regulation of *E. coli* K-12 *napF* (periplasmic nitrate reductase) operon transcription in vitro. J. Bacteriol. 180:4192-4198.
- 14. De Windt, W., N. Boon, S.D. Siciliano, and W. Verstraete. 2003. Cell density related H₂ consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by *Shewanella oneidensis* MR-1. Environ. Microbiol. 5:1192-1202.
- 15. Evans, C., A.N. Young, M.R. Brown, D.J. Brat, J.S. Parks, A.S. Neish, and N.M. Oyesiku. 2001. Novel patterns of gene expression in pituitary adenomas identified by complementary deoxyribonucleic acid microarrays and quantitative reverse transcription-polymerase chain reaction. The Journal of Clinical Endocrinology and Metabolism. 86:3097-3107.
- Flanagan, D.A., L.G. Gregory, J.P. Carter, A. Karakas-Sen, D.J. Richardson and S. Spiro. 1999. Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA. FEMS Microbiol. Lett. 177:263-270.
- 17. Gao, H., Y. Wang, X. Liu, T. Yan, L. Wu, E. Alm, A. Arkin, D.K. Thompson, and J. Zhou. 2004. Global transcriptome analysis of the heat shock response of *Shewanella oneidensis*. J. Bacteriol. 186:7796-803.
- 18. Gulis, G., M. Czompolyova, J.R. Cerhan. 2002. An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia. Environ. Res. 88:182-187.
- 19. Heidelberg, J.F., I.T. Paulsen, K.E. Nelson, E.J. Gaidos, W.C. Nelson, T.D. Read, J.A. Eisen, R. Seshadri, N. Ward, B. Methe, R.A. Clayton, T. Meyer, A. Tsapin, J. Scott, M Beanan, L. Brinkac, S. Daugherty, R.T. DeBoy, R.J. Dodson, A.S. Durkin, D.H. Haft, J.F. Kolonay, R. Madupu, J.D. Peterson, L.A. Umayam, O. White, A.M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T.R. Utterback, L.A. McDonald, T.V. Feldblyum, H.O. Smith, J.C. Venter, K.H. Nealson, and C.M. Fraser. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis MR-1. Nat. Biotechnol. 20:1118-1123.

- 20. Holden, M., S. Bentley, M. Sebaihia, N. Thomson, A. Cerdeño-Tárraga, and J. Parkhill. 2003. The magnificent seven. Trends Microbiol. 11:12-4.
- 21. Krause, B. and K.H. Nealson. 1997. Physiology and enzymology involved in denitrification by *Shewanella putrefaciens*. Appl. Environ. Microbiol. 63:2613-2618.
- 22. Lund, K., and J.A. DeMoss. 1976. Association-dissociation behavior and subunit structure of heat-released nitrate reductase from *Escherichia coli*. J. Biol. Chem. 251:2207-2216.
- 23. Maier, T.M., and C.R. Myers. 2001. Isolation and characterization of a Shewanella putrefaciens MR-1 electron transport regulator etrA mutant: reassessment of the role of EtrA. J. Bacteriol. 183:4918-26.
- 24. Marx, C.J., and M.E. Lidstrom. 2002. Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques. 33:1062-7.
- 25. Middleton, S.S., R.B. Latmani, M.R. Mackey, M.H. Ellisman, B.M. Tebo, and C.S. Criddle. 2003. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol. Bioeng. 83:627-37.
- 26. Moreno-Vivián, C., P. Cabello, M. Martínez-Luque, R. Blasco, and F. Castillo. 1999. Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J. Bacteriol. 181:6573-6584.
- 27. Murray, A.E., D. Lies, G. Li, K.H. Nealson, J. Zhou, and J.M. Tiedje. 2001. DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc. Natl. Acad. Sci. 98:9853-9858.
- 28. Myers, C.R., and J.M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown *Shewanella oneidensis* MR-1. J. Bacteriol. 174: 3429-3438.
- 29. Myers, C.R., and J.M. Myers. 1992. Fumarate is a soluble enzyme in anaerobically grown *Shewanella putrefaciens* MR-1. FEMS Microbiol. Lett. 98:13-20.
- 30. Myers, C.R., and J.M. Myers. 1997. Cloning and sequencing of cymA, a gene encoding a tetraheme cytochrome c required for reduction of Iron (III), fumarate, and nitrate by Shewanella oneidensis MR-1. J. Bacteriol. 179:1143-1152.

- 31. Page, L., L. Griffiths, and J.A. Cole. 1990. Different physiological roles of two independent pathways for nitrite reduction to ammonia by enteric bacteria. Arch. Microbiol. 154:349-354.
- 32. Potter, L.C., and J.E. Cole. 1999. Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. Biochem. J. 344:69-76.
- 33. Potter, L.C., P. Millington, L. Griffiths, G.H. Thomas, and J.E. Cole. 1999. Competition between *Escherichia coli* strains expressing either a periplasmic nitrate reductase or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? Biochem. J. 344:77-84.
- 34. Potter, L., H. Angove, D. Richardson, and J. Cole. 2001. Nitrate reduction in the periplasm of gram-negative bacteria. Adv. Microb. Physiol. 45:51-112.
- 35. Rajeevan, M.S., D.G. Ranamukhaarachchi, S.D. Vernon, and E.R. Unger. 2001. Use of real-time quantitative PCR to validate the results of cDNA Array and differential display PCR technologies. Methods: A Companion to Methods in Enzymology. 25:443-451.
- 36. Reyes, F., M. Gavira, F. Castillo and C. Moreno-Vivián. 1998. Periplasmic nitrate-reducing system of the phototrophic bacterium *Rhodobacter sphaeroides* DSM 158: transcriptional and mutational analysis of the *napKEFDABC* gene cluster. J. Biochem. 331:897-904.
- 37. Richardson, D. J., G.F. King, D.K. Kelly, A.G. McEwan, S.J. Ferguson, and J.B. Jackson. 1988. The role of auxiliary oxidants in maintaining the redox balance during phototrophic growth of *Rhodobacter capsulatus* on propionate or butyrate. Arch. Microbiol. 150:131-137.
- 38. Richardson, D.J., and S.J. Ferguson. 1992. The influence of carbon substrate on the activity of the periplasmic nitrate reductase in aerobically grown *Thiosphaera pantotropha*. Arch. Microbiol. 157:535-537.
- 39. Richardson, D.J., B.C. Berks, D.A. Russell, S. Spiro, and C.J. Taylor. 2001. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. CMLS. Cell. Mol. Life. Sci. 58:165-178.
- 40. Rickman, D.S., M.P. Bobek, D.E. Misek, R. Kiuck, M. Blaivas, D.M. Kurnit, J. Taylor, and S.M. Hanash. 2001. Distinctive molecular profiles of high-grade and low-grade gliomass based on oligonucleotide microarray analysis. Cancer Res. 61:6885-6891.

- 41. Roldán, M.D., F. Reyes, C. Moreno-Vivián, and F. Castillo. 1994. Chlorate and nitrate reduction in the phototrophic bacteria *Rhodobacter capsulatus* and *Rhodobacter sphaeroides*. Curr. Microbiol. 29: 241-245.
- 42. Saffarini, D.A., and K.H. Nealson. 1993. Sequence and genetic characterization of etrA, an fnr analog that regulates anaerobic respiration in Shewanella putrefaciens MR-1. J. Bacteriol. 175:7938-79.
- 43. Sears, H.J., G. Sawers, B.C. Berks, S.J. Ferguson, and D.J. Richardson. 2000. Control of periplasmic nitrate reductase gene expression (napEDABC) from Paracoccus pantotrophus in response to oxygen and carbon substrates. Microbiol. 146:2977-2985.
- 44. Shepard, B.D., and M.S. Gilmore. 2002. Differential expression of virulence-related genes in *Enterococcus faecalis* in response to biological cues in serum and urine. Infect. Immun. 70:4344-4352.
- 45. Stewart, V., Y. Lu, and A.J. Darwin. 2002. Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by *Escherichia coli* K-12. J. Bacteriol. 184: 1314-1323.
- 46. Stolz, J.F., and P. Basu. 2002. Evolution of nitrate reductase: molecular and structural variations on a common function. Chembiochem. 3:198-206.
- 47. **Tiedje, J.M**. 2002. *Shewanella*-the environmentally versatile genome. Nat. Biotechnol. **20**:1093-4.
- 48. Unden, G., S. Achebach, G. Holighaus, H.G. Tran, B. Wackwitz, and Y. Zeuner. 2002. Control of FNR function of *Escherichia coli* by O₂ and reducing conditions. J. Mol. Microbiol. Biotechnol. 4:263-268.
- 49. Van Leeuwen, J.A., D. Watner-Toews, T. Abernathy, B. Smit, M. Shoukri. 1999. Associations between stomach cancer incidence and drinking water contamination with atrazine and nitrate in Ontario (Canada) agroecosystems, 1987-1991. Int. J. Epidemiol. 28:836-840.
- 50. Vandecasteele, S.J., W.E. Peetermans, R. Merckx, and J. Van Eldere. 2001. Quantification of expression of *Staphylococcus epidermidis* housekeeping genes with taqman quantitative PCR during in vitro growth and under different conditions. J. Bacteriol. 183:7094-7101.
- 51. Venkateswaran, K., D.P. Moser, M.E. Dollhopf, D.P. Lies, D.A. Saffarini, B.J. MacGregor, D.B. Ringelberg, D.C. White, M. Nishijima, H. Sano, J. Burghardt, E. Stackebrandt, and K.H. Nealson. 1999. Polyphasic taxonomy of the genus *Shewanella* and description of *Shewanella oneidensis* sp. Nov. Intl. J. Syst. Bacteriol. 49:705-724.

- 52. Wade, R., and T.J. DiChristina. 2000. Isolation of U(VI) reduction-deficient mutants of Shewanella putrefaciens. FEMS. Microbiol. Lett. 184:143-8.
- 53. Wang, H., C.-P. Tseng, and R.P. Gunsalus. 1999. The *napF* and *napG* nitrate reductase operons in *Escherichia coli* are differently expressed in response to submicromolar concentrations of nitrate but not nitrite. J. Bacteriol. 181:5303-5308.
- 54. Wang, H., and R.P. Gonsalus. 2000. The *nrfA* and *nirB* nitrite reductase operons in *Escherichia coli* are expressed differently in response to nitrate than to nitrite. J. Bacteriol. 182:5813-5822.
- 55. Ye, R.W., W. Tao, L. Bedzyk, T. Young, M. Chen, and L. Li. 2000. Global gene expression profiles of *Bacillus subtilis* grown under anaerobic conditions. J. Bacteriol. 182:4458-4465.
- 56. Yuen, T., E. Wurmbach, R.L. Pfeffer, B.J. Ebersole, and S.C. Sealfon. 2002. Accuracy and calibration of commercial oligonucleotide and custom cDNA microarrays. Nucleic Acids Res. 30:e48.
- 57. **Zumft, W.G.** 2002. Nitric oxide signaling and NO dependent transcriptional control in bacterial denitrification by members of the FNR-CRP regulator family. J. Mol. Microbiol. Biotechnol. 4:277-286.

CHAPTER II

Reduction of Nitrate in Shewanella oneidensis MR-1

ABSTRACT

Nitrate is an important environmental resource and can also be a contaminant. Bioremediation of nitrate can be achieved by nitrate reduction to dinitrogen gas, which in nature is mostly performed by denitrifying bacteria. The enzymes and the mechanisms behind nitrate reduction have been the subject of many studies in E. coli as well as in denitrifying bacteria. Shewanella oneidensis MR-1 is a y-proteobacterium, which has the ability to utilize a wide variety of electron acceptors including nitrate and nitrite. It has been a subject of controversy as to whether this gram-negative bacterium reduces nitrate by denitrification or by dissimilatory nitrate reduction into ammonium (DNRA). In this study, Shewanella oneidensis MR-1 was grown anaerobically using KNO3 or NaNO2 as the sole electron acceptor, showing a maximum growth yield at 4 mM and 2 mM, respectively. Anaerobic cultures of MR-1 in minimal medium using 20 mM lactate as the electron donor and 2 mM KNO₃ as the electron acceptor showed a sequential reduction of nitrate to nitrite and then to ammonium. Nitrate reduction into ammonium was coupled to growth. When MR-1 was inoculated under anaerobic conditions using N_2O as the only electron acceptor, no growth or gas production was observed. These results establish that Shewanella oneidensis MR-1 is not capable of denitrification but instead carries out DNRA.

INTRODUCTION

Shewanella oneidensis MR-1 is a metal ion reducer that has extraordinary versatility in the variety of compounds it can reduce under oxygen-limited conditions. Among the compounds it can utilize, there is oxygen, nitrate, nitrite, fumarate, Mn(III), Fe(III), elemental sulfur, sulfide, thiosulfate, dimethyl sulfoxide (DMSO), trimethylamine N-oxide (TMAO), Cr(VI), and U(VI) (9). S. oneidensis MR-1 reduces nitrate, generating energy for growth, as it reduces Cr(VI) into its insoluble form, a less harmful form (12). Nitrate, chromium and uranium, all reduced by S. oneidensis MR-1, are regulated pollutants of great concern due to their human health implications. All of them have been linked to various forms of cancer (5, 7, 8, 12, 16, 21).

In S. oneidensis MR-1 two different pathways have been described for the reduction of nitrate: the dissimilatory nitrate reduction into ammonium (DNRA) and denitrification (6, 10). In denitrification nitrate is sequentially reduced into dinitrogen $(NO_3 \rightarrow NO_2 \rightarrow NO \rightarrow N_2O \rightarrow N_2)$, whilst in DNRA, nitrate is reduced into nitrite and then into ammonium. No bacterium has been reported to carry out both complete pathways (18). In order to determine which of these pathways takes place in the organism, the nitrogen intermediates and products are determined (20). To measure denitrification, acetylene is used since it inhibits the enzyme that catalyzes the reduction of nitrous oxide into dinitrogen (nitrous oxide reductase) causing the accumulation of nitrous oxide which is easily quantified. Dinitrogen production can also be measured but due to its high abundance in the atmosphere it is harder to quantify its production. Accumulation of ammonium is measured in cultures to determine whether DNRA is the nitrate reducing

process. In the studies mentioned above where the reduction of nitrate was measured in cultures of MR-1, ammonium was measured only in one of them (10) and the concentration detected was very low. Each of these previous reports detected nitrous oxide but in very low amounts compared to the concentration of nitrate supplied.

Although these studies concluded that denitrification is occurring in MR-1, the data from its genome sequence does not support this conclusion. The complete genome sequence of MR-1 revealed the presence of all the genes necessary to carry out DNRA but key genes for denitrification, such as those for denitrifying nitrite, nitric oxide and nitrous oxide reductases, are not present (9). Preliminary studies in our laboratory have shown that insignificant amounts of N₂O and no N₂ have been detected when *S. oneidensis* MR-1 was cultivated anaerobically with nitrate as the only electron acceptor suggesting that the nitrate reduction pathway in this organism is yet to be resolved.

Nitrate reduction in bacteria has been studied for decades (20). Despite all of the knowledge acquired on this subject, there are still important genetic and biochemical aspects that need clarification. This study focuses on nitrate metabolism of *Shewanella oneidensis* MR-1. MR-1 was cultivated under different growth conditions to determine the optimal concentrations of nitrate and nitrite for growth as well as the intermediates produced from the reduction of nitrate when the later is used as the sole electron acceptor. The inability of *Shewanella oneidensis* MR-1 to use nitrous oxide and the lack of gas production from the reduction of nitrate confirm that denitrification is not taking place in this microorganism and the production of ammonium shows that DNRA is the operative nitrate reduction pathway.

MATERIALS AND METHODS

Growth conditions and bacterial strains. Shewanella oneidensis MR-1 (ATCC 700550) was the strain used in this study. *Pseudomonas stutzeri* (provided by Verónica Grüntzig at the Center for Microbial Ecology at Michigan State University) was the bacterium used as a positive control in the nitrous oxide utilization assay. Growth curves were performed in anaerobic modified LML liquid medium (2). This media was supplied with 20 mM lactate as the electron donor, 0.01% of vitamin-free Casamino Acids, and 0.01% of a trace metals solution (11). The medium also contained either 0.5, 1, 2 and 4 mM NaNO₂ or 0.5, 1, 3, 4, 10, 40 and 100 mM KNO₃ as electron acceptors. The anaerobic cultivation was performed in 30 ml Balch tubes with 15 ml of medium, which was previously degassed by boiling and purged with helium. The tubes were closed with butyl rubber stoppers to prevent aeration. A vitamin solution (23) was added by injection after autoclaving. These cultures were inoculated by injection of a 1% Shewanella oneidensis MR-1 culture that had been grown aerobically for 12 h in LML. This inoculum originated from an overnight starter culture grown in LB medium. Incubation was performed at 30°C without shaking.

Cultures used to determine consumption and production of nitrate, nitrite and ammonium by *Shewanella oneidensis* MR-1 were cultivated in Modified M1 minimal medium (14) without NH₄Cl. The M1 medium was supplemented with 20 mM sodium lactate as the electron donor. HEPES (pH7.2) was added to buffer the medium at a 50 mM final concentration. KNO₃ was added as the electron acceptor at 2 mM final

concentration. Other medium components were prepared as specified above. Negative controls of each growth condition were no inoculation and media without the electron acceptors but inoculated.

Nitrate, nitrite and ammonium analyses. To determine the consumption and production of intermediates during the bacterial reduction of nitrate, three 30 ml Balch tubes containing 15 ml of M1 medium with 2 mM KNO₃ were inoculated as indicated above. These cultures were incubated at 30°C and an OD measurement at 600 nm was taken every 3 to 4 h after an initial 8 h incubation period using a Varian Cary 50 BIO UV-Vis spectrophotometer (Varian, Zug, Switzerland). After the OD measurements were taken, a 2 ml sample was sterile filtered (0.22 µm syringe filter). These samples were analyzed for nitrate and nitrite using a Lachat QuickChem Automated Flow Injection Ion Analyzer following the Copperized Cadmium Reduction Method as in QuickChem Method No. 10-107-04-1-A (Lachat Instruments, 1988) at the Soil Testing Lab at Michigan State University. The ammonium analysis was performed by the salicylate colorimetric method (15).

Cell growth on nitrous oxide as sole electron acceptor. To determine whether or not Shewanella oneidensis MR-1 is capable of utilizing nitrous oxide as an electron acceptor, a 1% inoculum from an aerobic culture grown for 12 h was used to inoculate 20 Balch tubes with 10 ml of LML medium prepared anaerobically. Nitrous oxide gas was added to 10 tubes. The remaining tubes with their helium headspace were used as negative controls for anaerobicity, without nitrous oxide or any other electron acceptor. These cultures were incubated at 30°C without shaking for 3 weeks. Each tube had a Durham tube (inverted smaller tube) at the bottom to observe gas production. The same procedure

was performed as a positive control for nitrous oxide utilization, using a *Pseudomonas* stutzeri culture grown for 12 h as an inoculum. Ten tubes without inoculum served as negative controls for gas production. This same experiment was also performed using 4 mM KNO₃ as the only electron acceptor, instead of nitrous oxide, with *S. oneidensis* MR-1 and *P. stutzeri* as inocula.

RESULTS

effects of increasing concentrations of nitrate or nitrite in the growth of Shewanella oneidensis MR-1. When Shewanella oneidensis MR-1 was inoculated in anaerobic LML medium in the presence of KNO₃ as the only electron acceptor, the biomass increased with increasing concentrations of nitrate until 4 mM KNO₃, where maximum yield occurred (FIG. 2.1). When the nitrate concentrations were higher than 4 mM, the biomass was dramatically reduced and the maximum yield reached was similar at all concentrations tested up to 100 mM, which was the highest. However, the growth rate in cultures with NO₃⁻ showed an increase until 2 mM (1 h⁻¹), and decreased at higher concentrations (FIG. 2.3). Similar growth rates were calculated for MR-1 cultures on NO₃⁻ concentrations higher than 2 mM (0.5 h⁻¹).

When nitrite was supplied as the only electron acceptor, biomass of MR-1 increased with increasing concentrations of NaNO₂ until 2 mM, where the maximum cell yield was observed (FIG. 2.2). Higher concentrations of NaNO₂ resulted in lower growth yields. The growth rate of MR-1 cultures on NO₂ decreased with increasing NO₂ concentrations (FIG. 2.3).

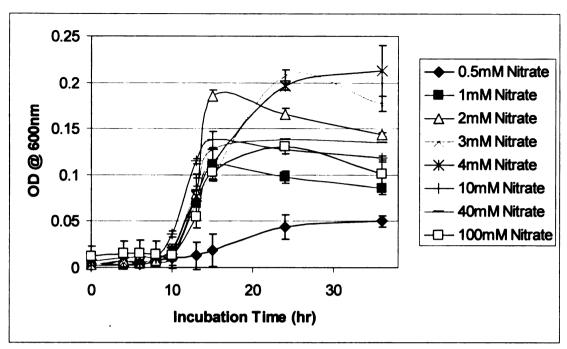


FIG. 2.1. Growth of *Shewanella oniedensis* MR-1 on different concentrations of nitrate. The data are mean and standard deviation of three biological replicates monitored by optical density measurements.

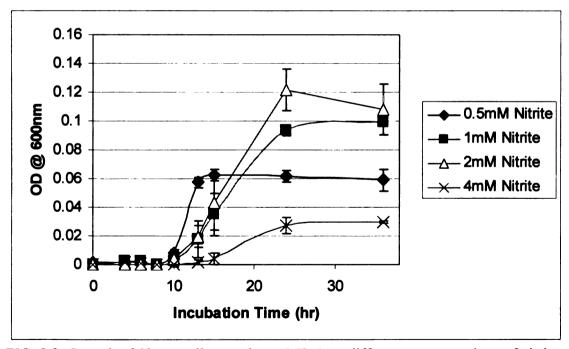


FIG. 2.2. Growth of *Shewanella oneidensis* MR-1 on different concentrations of nitrite. The data are mean and standard deviation of three biological replicates monitored by optical density measurements.

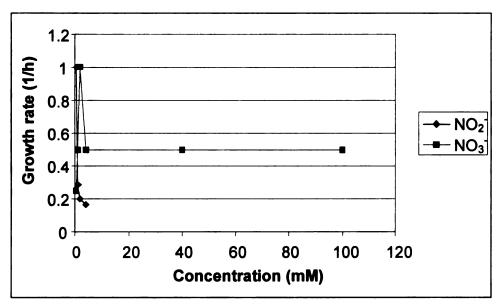


FIG. 2.3. Growth rate of *Shewanella oneidensis* MR-1 in anaerobic cultures at different nitrate and nitrite. The growth rate was calculated from the results of the growth curves shown in FIG 1 and 2. These values were calculated using the average of the optical densities obtained in three biological replicates.

Consumption and production of intermediates in nitrate reduction of Shewanella oneidensis MR-1. After 8 h incubation, the culture was in early log phase and nitrate was almost completely depleted and nitrite was produced to a stoichiometric maximum (2 mM)(FIG. 2.4). Ammonium remained at its initial concentration. After 12 h, growth was approximately at mid-log phase and nitrite consumption was commenced along with ammonium accumulation. Nitrate and nitrite were completely consumed and growth reached its maximum at 15 h. At this point ammonium concentration reached 2 mM.

After this time the cultures continued to accumulate ammonium to approximately 3 mM

presumably as a result of cell death. The maximum consumption rate of NO₃ was 0.2 mM/h, whilst for nitrite it was 0.5 mM/h.

Growth of Shewanella oneidensis MR-1 when N2O is the sole electron acceptor.

When S. oneidensis MR-1 was incubated with N₂O or NO₃⁻ as its sole electron acceptor, no N₂ production was observed. In the contrary, those tubes inoculated with P. stutzeri showed N₂ production, and growth from both electron acceptors, as expected for the positive control. Growth of MR-1 did occur with NO₃⁻ but not in N₂O cultures. This study indicates the inability of Shewanella oneidensis MR-1 to grow or produce any N₂ gas from the reduction of nitrate or nitrous oxide.

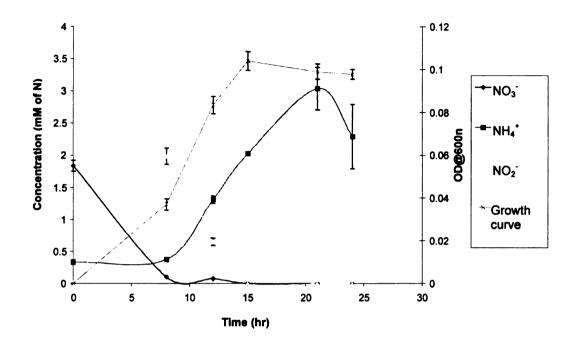


FIG 2.4. Nitrate, nitrite and ammonium concentrations in *Shewanella oneidensis* MR-1 in anaerobic cultures grown in the presence of nitrate as the electron acceptor. OD measurements were obtained at each sampling. These measurements (including the N-species concentrations) are the mean and standard deviation of three biological replicates.

TABLE 2.1. Stoichiometry of nitrogen ions measured in *Shewanella oneidensis* MR-1 anaerobic cultures with 2 mM KNO₃ as the electron acceptor and lactate as the electron donor. The concentrations of each of the N-compounds were an average from three biological replicates and the averages were added for the inorganic nitrogen budget of the cultures.

Incubation Time (h)	NO ₃ - (mM)	NO ₂ - (mM)	NH₄⁺ (mM)	Balance N (mM)
0	1.84	0.00	0.33	2.17
8	0.10	1.98	0.37	2.45
12	0.07	0.65	1.31	2.03
15	0	0.00	2.03	2.03
21	0.00	0.00	3.04	3.04
24	0.00	0.00	2.29	2.29

DISCUSSION

This study clarifies the dissimilatory nitrate reduction pathway of *Shewanella oneidensis* MR-1. Stoichiometric results of inorganic nitrogen species confirmed that nitrate is reduced to ammonium. These experiments showed a sequential reduction of nitrate into nitrite and subsequently into ammonium. The production of the NO₂ in amounts equivalent to the nitrate supplied indicates that the entire nitrate concentration was converted to first nitrite before been converted to ammonium. This indicates that DNRA is the pathway occurring in *Shewanella oneidensis* MR-1. Also, the inability of MR-1 to reduce N₂O supports DNRA as the nitrate reduction pathway, instead of denitrification.

In this study, neither nitrous oxide nor dinitrogen were measured, but previous experiments performed in our laboratory have demonstrated that when MR-1 was grown using nitrate as the only electron acceptor insignificant amounts of N₂O and no N₂ were detected. Studies on MR-1 that led to the claim of MR-1 as a denitrifier were based on nitrous oxide production but without establishing the stoichiometry of the products (6, 10). Detection and production of nitrous oxide from nitrate has been reported for a number of non-denitrifiers but in all cases this production is less than 30% of the nitrate reduced (3, 4, 19). An investigation to examine the different sources of nitrous oxide in the environment confirmed that all the nitrate-respiring bacteria analyzed, including the *Escherichia* and the *Enterobacter* genera, produced N₂O (3). Moreover, studies in the non-denitrifier *Escherichia coli*, detected N₂O as a product of the reduction of NO₂ by the nitrate reductase. In this study, reduction of nitrite and production of nitrous oxide decreased significantly in an *E. coli* nitrate reductase mutant. Reduction of nitrite into NH₄⁺ and N₂O was observed for the wild type, however no energy was generated when

N₂O was produced. Nitrous oxide production has also been suggested to be the result of an abiotic process, where hydroxylamine (an intermediate in the nitrite reduction into ammonium by NrfA) is converted to nitric oxide and N₂O under specific conditions (4, 24).

Denitrification is defined as the complete reduction of nitrate into dinitrogen (20). In this study, cultures of MR-1 failed to produce gas when grown with NO₃ or N₂O as electron acceptors. In contrast to cultures with N₂O, growth on nitrate was detected, which indicates that even when the cell had enough energy to grow, the metabolic pathway used to generate the energy was not producing gas intermediates as would occur in denitrification. Moreover, cultures of *P. stutzeri*, a well-characterized denitrifier, which was used as a positive control, produced gas. This indicates that contrary to standard denitrifiers, MR-1 is incapable of carrying out the last step of denitrification. This coincides with the lack of the *nosZ* gene in the genome, which encodes the nitrous oxide reductase described in other bacteria (18).

No organism has been described that can execute the complete pathway of both DNRA and denitrification. Wolinella succinogenes, a ε-proteobacterium, has been hypothesized to reduce nitrous oxide to dinitrogen with nitrate as the electron acceptor when either H₂ or formate is supplied as electron donor (18). The genome sequence of W. succinogenes, a non-denitrifier that, like MR-1, can reduce nitrite into ammonium, has been recently reported as encoding a unique nos cluster lacking some of the genes found in other bacteria but having a novel N₂O reductase gene. This nitrous oxide reductase has been identified as a cytochrome c and the authors hypothesized that it can be part of a novel electron transport when either H₂ or formate is used as the electron donor. Thus,

even when the microorganism cannot carry out denitrification some of its products can still be detected in the cultures. Some of the *nos* genes (*nosLDFYA*) have been described in the genome sequence of MR-1 but there is no homolog for a nitrous oxide reductase. In a study comparing the gene expression profile of MR-1 under aerobic versus anaerobic growth with nitrate as the electron acceptor, the *nos* genes were induced (1). Even though MR-1 does not posses a homolog of this particular *nos* gene, it is possible that MR-1 might be capable of a novel nitrous oxide reduction like *W. succinogenes*, but its conversion to N₂ was not seen under the growth conditions used in this study. However, the studies mentioned previously in which nitrous oxide was detected as the result of nitrate reduction in cultures of MR-1, added H₂ to the medium (6, 10).

Even though the genome of MR-1 codes for some of the proteins involved in denitrification, it does not seem to possess all of the genes required for this process. The genome sequence does not show homologues of *nir* (genes for the reduction of nitrite into nitric oxide), *nor* (genes involved in the reduction of NO into N₂O), and *nosZ* (enzyme required for the reduction of N₂O into N₂). In experiments were the gene expression profile of MR-1 was studied using DNA microarray in cultures grown under anaerobic conditions with nitrate as the sole electron acceptor, significant induction of *napBGHA*, *nrfA*, *narQ*, and *cymA* (*napC* homolog, ref. 13) genes was reported (1). All of these genes are required for the DNRA pathway in *E. coli* when the reaction takes place in the periplasm (17, 22). Although this study presents physiological evidence to support that MR-1 is not capable of denitrification, mutational and gene expression analyses is needed to better characterize the nitrate reduction process in this bacterium.

This study confirms the ability of Shewanella oneidensis MR-1 to use the DNRA pathway for growth. However, the reduction in biomass and growth rate with increasing concentrations of nitrate and nitrite indicates cytotoxicity at higher concentrations. Growth rate on nitrate decreased at concentrations higher than 2 mM, while the growth rate on nitrite decreased at concentrations higher than 0.5 mM. This indicates a higher cytotoxicity caused by nitrite than nitrate. Also the consumption rate of nitrite was faster than that of nitrate, which might indicate a need of the organism for a faster disposal of the more toxic compound. Increasing concentrations of nitrate become toxic as well but the cell seems to tolerate it better showing a higher and constant growth yield independent of the nitrate concentration up to 100 mM. These results suggests that nitrite causes toxic effects in MR-1 and that MR-1 probably has a mechanism to protect the cell against the nitrite toxicity, perhaps by sensing the concentrations of nitrate and controlling the amount that gets reduced, which will result in lower growth yields that could be kept constant independent of the nitrate concentration. In conclusion, even when the cell is sensitive to low concentrations of nitrite, it can still grow under considerably high concentrations of nitrate and use it for growth.

REFERENCES

- 1. Beliaev, A.S., D.K. Thompson, T. Khare, H. Lim, C. C. Brandt, G. Li, A.E. Murray, J.F. Heidelberg, C.S. Giometti, J. YatesIII, K.H. Nealson, J.M. Tiedje, and J. Zhou. 2002. Gene and protein expression profiles of *Shewanella oneidensis* during anaerobic growth with different electron acceptors. OMICS 6:39-60.
- 2. Beliaev, A.S., and D.A. Saffarini. 1998. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 180:6292-6297.
- 3. Bleakley, B.H., and J.M. Tiedje. 1982. Nitrous oxide production by organisms other than nitrifiers or denitrifiers. Appl. Environ. Microbiol. 44:1342-1348.
- 4. Corker, H., and R.K. Poole. 2003. Nitric oxide formation by *Escherichia coli*. J. Biol. Chem. 278:31584-31592.
- 5. Craun, G.F., D.G. Greathouse, D.H. Gunderson. 1981. Methaemoglobin levels in young children consuming high nitrate well water in the United States. Int. J. Epidemiol. 10:309-317.
- 6. **De Windt, W., N. Boon, S.D. Siciliano, and W. Verstraete**. 2003. Cell density related H₂ consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by *Shewanella oneidensis* MR-1. Environ. Microbiol. **5**:1192-1202.
- Divine, K.K., L.C. Pulling, P.G. Marron-Terada, K.C. Liechty, T. Kang, A.G. Schwartz, T.J. Bocklage, T.A. Coons, F.D. Gilliland, and S.A. Belinsky. 2005.
 Multiplicity of abnormal promoter methylation in lung adenocarcinomas from smokers and never smokers. Int. J. Cancer. 114:400-5.
- 8. Gulis, G., M. Czompolyova, J.R. Cerhan. 2002. An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia. Environ. Res. 88:182-187.
- 9. Heidelberg, J.F., I.T. Paulsen, K.E. Nelson, E.J. Gaidos, W.C. Nelson, T.D. Read, J.A. Eisen, R. Seshadri, N. Ward, B. Methe, R.A. Clayton, T. Meyer, A. Tsapin, J. Scott, M Beanan, L. Brinkac, S. Daugherty, R.T. DeBoy, R.J. Dodson, A.S. Durkin, D.H. Haft, J.F. Kolonay, R. Madupu, J.D. Peterson, L.A. Umayam, O. White, A.M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T.R. Utterback, L.A. McDonald, T.V. Feldblyum, H.O. Smith, J.C. Venter, K.H. Nealson, and C.M. Fraser. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis MR-1. Nat. Biotechnol. 20:1118-1123.

- 10. Krause, B. and K.H. Nealson. 1997. Physiology and enzymology involved in denitrification by *Shewanella putrefaciens*. Appl. Environ. Microbiol. 63:2613-2618.
- 11. Löffler, F.E., R.A. Sanford, and J.M. Tiedje. 1996. Initial characterization of a reductive dehalogenase from *Desulfitobacterium chlororespirans* Co23. Appl. Environ. Microbiol. 62:3809-3813.
- 12. Middleton, S.S., R.B. Latmani, M.R. Mackey, M.H. Ellisman, B.M. Tebo, and C.S. Criddle. 2003. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol. Bioeng. 83:627-37.
- 13. Myers, C.R., and J.M. Myers. 1997. Cloning and sequencing of cymA, a gene encoding a tetraheme cytochrome c required for reduction of Iron (III), fumarate, and nitrate by Shewanella oneidensis MR-1. J. Bacteriol. 179:1143-1152.
- 14. Myers, C.R., and K.H. Nealson. 1990. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in *Shewanella putrefaciens* MR-1. J. Bacteriol. 172:6232-6238.
- 15. Nelson, D.W. 1983. Determination of ammonium in KCl extracts of soils by the salicylate method. Commun. In Soil Sci. Plant Anal. 14:1051-1062.
- 16. Papathanasiou, K., C. Gianoulis, A. Tolikas, D. Dovas, J. Koutsos, N. Fragkedakis, and N. Papathanasiou. 2005. Effect of depleted uranium weapons used in the Balkan war on the incidence of cervical intraepithelial neoplasia (CIN) and invasive cancer of the cervix in Greece. Clin. Exp. Obstet. Gynecol. 32:58-60.
- 17. Potter, L., H. Angove, D. Richardson, and J. Cole. 2001. Nitrate reduction in the periplasm of gram-negative bacteria. Adv. Microb. Physiol. 45:51-112.
- 18. Simon, J., O. Einsle, P.M. Kroneck, and W.G. Zumft. 2004. The unprecedented nos gene cluster of *Wolinella succinogenes* encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS. Lett. 569:7-12.
- 19. Smith, M.S. 1983. Nitrous oxide production by *Escherichia coli* is correlated with nitrate reductase activity. Appl. Environ. Microbiol. 45:1545-1547.
- 20. Tiedje, J.M. 1994. Denitrifiers. Methods of soil analysis, Part 2. Chapter 14:245-267.
- 21. Van Leeuwen, J.A., D. Watner-Toews, T. Abernathy, B. Smit, M. Shoukri. 1999. Associations between stomach cancer incidence and drinking water

- contamination with atrazine and nitrate in Ontario (Canada) agroecosystems, 1987-1991. Int. J. Epidemiol. 28:836-840.
- 22. Wang, H., and R.P. Gunsalus. 2000. The *nrfA* and *nirB* nitrite reductase operons in *Escherichia coli* are expressed differently in response to nitrate than to nitrite. J. Bacteriol. 182:5813-5822.
- 23. Wolin, E.A., M.J. Wolin, and R.S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238:2882-2886.
- 24. Zumft, W.G. 1993. The biological role of nitric oxide in bacteria. Arch. Microbiol. 160:253-264.

CHAPTER III

NapA is the Enzyme Responsible for the Reduction of Nitrate in Shewanella oneidensis MR-1

ABSTRACT

NapA is a microbial periplasmic nitrate reductase that is of interest due to a possible relationship between the organization of its operon and the physiological role it plays in the organism. S. oneidensis MR-1 has one ORF (SO0848) similar to known nitrate reductases, and it has 72% sequence identity to the napA gene of the well-studied Escherichia coli K12. A napA deletion mutant was unable to grow on nitrate, confirming that NapA is the only functional nitrate reductase in MR-1. MR-1 also possesses a gene that codes for nitrite reductase (SO3980), NrfA. The expression of napA was upregulated at high (40 mM KNO3) concentrations of nitrate, which indicates that there is not a repressor regulation system for this operon at high nitrate concentrations as there is in E. coli, and is consistent with the absence of an alternative pathway in MR-1. napA and nrfA, quantified by Q-RT-PCR, were both expressed under aerobic conditions, although reduction of nitrate, was highly inhibited, indicating that the lack of activity under this condition was likely due to oxygen inhibition of the nitrate reductase and not to its transcription.

INTRODUCTION

Nitrate reduction has been extensively studied in many bacteria. In Gram-negative bacteria nitrate reduction is characterized by the location and biochemical properties of their nitrate reductase. This enzyme catalyzes the reduction of nitrate into nitrite, the first step in the nitrate reduction pathway. Two types of enzymes have been described, an assimilatory and a dissimilatory nitrate reductase. The assimilatory nitrate reductase is a membrane-bound protein that catalyzes the conversion of nitrate into ammonium. The ammonium is then incorporated into amino acids and then into cell material. There are two dissimilatory nitrate reductases, classified by their location in the cell: a membranebound (Nar) and a periplasmic (Nap) nitrate reductase. Nar is associated with the cytoplasmic membrane and Nap is solubilized in the periplasmic space (23). In most nondenitrifying bacteria these enzymes have been associated with a nitrite reductase. Nar has been associated with the NirB nitrite reductase, which is also located in the cytoplasmic membrane. On the other hand, Nap has been found in association with NrfA, which is a periplasmic nitrite reductase (6, 23). The proximity of these proteins within the cell has been described as energetically advantageous for cell growth. Moreover, a multi-enzyme complex between the Nap and Nrf proteins has been proposed for E. coli and other bacteria. This complex might help conserve energy in the cell by avoiding losses of nitrite ensuring high efficiency in its reduction to ammonium (23).

NapA has been identified in different kinds of bacteria including denitrifiers, non-denitrifiers, pathogens and even phototrophic bacteria. Studies in *Shewanella oneidensis*MR-1 have described the capabilities of MR-1 to reduce nitrate (7, 13, 38). A nitrate

reductase was partially purified from membrane extracts of MR-1 suggesting that it is a membrane-associated protein (13). In this same study, a nitrite reductase was also partially purified and it also seemed to be membrane-bound. However, the biochemical and structural properties of the nitrate and nitrite reductases described in that study do not correspond to those previously described for the membrane-bound nitrate and nitrite reductases in other organisms. One of the criteria used to classify the nitrate reductase of MR-1 as membrane-bound was its activity in the membrane fraction of the cell but, in a study of *Pseudomonas* spp. G-179, Nap was found in both the periplasmic and the membrane fractions of the cell (2). This study suggested that Nap might undergo a maturation process where Nap is cleaved from the membrane. Another possibility might be the formation of a protein complex between the soluble subunits and a membrane-bound protein such as NapC, which is essential for the Nap system.

Although these authors found three subunits of the nitrate reductase in MR-1, their molecular weights are not in the range of those previously isolated: α , β and γ were 90, 70 and 55 KDa, respectively for MR-1. In addition, the nitrite reductase detected, contrary to the Nir isolated from denitrifiers, was not periplasmic but membrane-bound. The other biochemical and structural properties observed for the nitrate reductase detected in MR-1 are similar to those observed for NapA in other bacteria (2, 25, 32, 34). Some of these properties include insensitivity towards low concentrations of azide and activity in the presence of oxygen (significantly lower than that under anoxic conditions).

According to the complete genome sequence of MR-1 (11), this microorganism possesses a likely periplasmic nitrate reductase, which shares 72% sequence identity to the NapA of *E. coli*. The *nap* operon has been sequenced in different bacteria and a

relationship between its organization and its physiological role has been proposed (21, 22, 23). In all organisms, for which the genomic sequence has been published, the nap operon consists, among others, of napDABC genes in this same order. S. oneidensis MR-1 possess napDAGHB, and is the only organism so far which does not have the napC gene in the same gene cluster, although it has a homolog (cymA) located in a different loci. There is also a homolog of the napF but it is also located in a different loci. MR-1 also possesses the nrfABCDEF genes, and the narP and narO genes, which code for one of the two-component regulatory systems involved in the regulation of the nrf and nap operons in E. coli. The cymA gene encodes a cytochrome c proven to be required for nitrate reduction in MR-1 as well as for its homolog in E. coli (18, 19). Studies in a S. oneidensis MR-1 cymA deletion mutant indicate its requirement not only for nitrate respiration but also for the reduction of nitrite via NrfA, Fe(III), and fumarate and for growth with dimethyl sulfoxide (DMSO) (28, 29). That investigation proved the role of CymA as a common electron supplier for at least five different anaerobic energygenerating processes. DNA microarray data from MR-1 cultures grown under anaerobic conditions with nitrate as the sole electron acceptor demonstrated significant induction of nrfA, napBGHA, narQ, and cymA genes (3).

In this study the expression of the *napA* and *nrfA* genes was monitored in aerobic and anaerobic cultures of MR-1 under different nitrate concentrations. An increase in the expression of these genes was observed with increasing concentrations of nitrate until it reached a plateau. Also, a global gene expression profile was examined for MR-1 anaerobic cultures grown at a low versus a high concentration of nitrate. A *Shewanella*

oneidensis MR-1 napA deletion mutant was generated to test whether this was the enzyme responsible for the nitrate reduction.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The bacterial strains, plasmids, primers and probes used in this study are described in TABLE 3.1. Cultures of Shewanella oneidensis MR-1 for DNA microarray and Q-RT-PCR experiments were incubated at 30°C after inoculation in Modified M1 minimal medium (17) with no NH₄Cl to avoid interference with chemical analyses, HEPES (pH 7.2) was added to buffer the medium at a 50 mM final concentration. The medium was supplemented with 20 mM lactate and KNO₃ was added as the electron acceptor at 1 mM and 40 mM final concentration for the DNA microarray experiments. The Q-RT-PCR experiments also included expression analyses of cultures under 0.1 mM, 0.25 mM, 0.5 mM, 3 mM, 10 mM, and 15 mM KNO₃. Aerobic cultures of MR-1 with 3 mM KNO₃ and without it were analyzed using O-RT-PCR. In order to make the media anoxic, the media were degassed by boiling and purged with helium. The medium (100 ml) was transferred to 250 ml serum bottles and closed with a butyl black stopper. The medium was inoculated by injection with a 1% inoculum from a 12 h aerobic culture in M1 media, which originated from an overnight starting culture in aerobic M1 media as well. The medium was autoclaved and 0.1 ml of Wolfe's vitamin solution (41) was added by injection with a sterile syringe. Incubation was performed at 30°C without shaking. Negative controls for each growth condition were no inoculation and medium without the electron acceptors but inoculated.

Cultures of Escherichia coli \(\beta 2155 \) (auxotroph of diaminopimelic acid) were grown in Luria-Bertani (LB) medium supplemented with 100 ug/ml of diaminopimelic acid (DAP). These cultures were incubated at 37°C. Shewanella oneidensis MR-1 was cultivated in LB media and incubated at 30°C during the mutagenesis process. Antibiotics for E.coli were prepared and added as described elsewhere (26). The antibiotics used for the selection of MR-1 positive transformants were added in the following concentrations: 25 ug/ml of kanamycin, 7.5 ug/ml of gentamycin, and 10 ug/ml tetracycline. Total RNA preparations. To determine gene expression profiles total RNA was extracted from cultures of S. oneidensis MR-1 grown in triplicate as described above. Cells were collected at mid-log phase and concentrated by centrifuging at 4°C for 30 min at 7,500 rpm. The pellets were washed with 1 ml of an ice-cold 1X DEPC-treated PBS solution (26). The RNA was extracted with The RNAwiz Solution following the instructions of the manufacturer (Ambion, Inc.). The RNA extraction was followed by an isopropanol precipitation (26) and its resuspention in the RNA storage solution (Ambion, Inc.). The RNA samples used for DNA microarray analyses were treated with RNase-free DNaseI (Roche) to eliminate residual DNA. The samples were purified by phenol, phenol:chloroform (1:1) and chloroform extractions, and stored in ethanol at -80°C until ready for use. The RNA samples used for Q-RT-PCR were DNase treated using the DNA-free Kit (Ambion, Inc.) and purified using the RNeasy Mini Kit (Qiagen). Quality of the RNA was observed using the RNA 6000 Pico LabChip kit and the 2100 Bioanalyzer (Agilent Technologies). The RNA concentration was determined with OD measurements at 260 nm using a Varian Cary 50 BIO UV-Vis spectrophotometer (Varian, Zug, Switzerland).

TABLE 3.1. Bacteria, plasmids, primers and oligonucleotides used in this study.

TABLE 3.1. Bacteria, plasmids, primers and oligonucleotides used in this study. Strain, plasmid, Description or nucleotide sequence Source, reference				
primer or probe	Description of nucleotide sequence	Source, reference		
primer or probe		or relative position of primer or probe		
Bacterial Strains		of primer of probe		
E. coli β2155	Diaminopimelic acid auxothroph used for cloning and conjugation	8		
S. oneidensis	Lake Oneida, N.Y., sediment	16		
MR-1	Lake Official, 14. 1., Sedifficial	10		
S. oneidensis MR-	napA gene deletion derived from MR-1	This study		
1 ΔnapA	map/1 gone detection derived from Mix-1	ins study		
1 шларт				
Plasmids				
pCM157	Broad-host-range cre expression vector	14		
pCM184	Broad-host-range allelic exchange vector	14		
pCCG185	pCM184 with napA upstream flank	This study		
pCCG186	pCCG185 with napA downstream flank	This study		
pKNOCK-Gm	Broad-host-range allelic exchange vector	1		
pCCG01	pKNOCK-Gm with napA flanking regions separated by two loxP	This study		
•	sites flanking a kanamycin resistance gene	·		
Primers ^c				
napAN Fwd				
napAN Rev	G <u>CATATG</u> GGCGGCTAATGCT CAT AGTGTT	CAT Start codon		
	C <u>GAATTC</u> TCTTGCCCCATTCCTCCCT	504nt upstream ^d		
napAC Fwd		the start codon		
napAC Rev	C <u>GAGCTC</u> CAGACATCGCAGCGTAATCCTT	2452		
	G <u>CCGCGG</u> AGTGCCCCGTAAAAGTGATGAA	517nt downstream		
napAScreen Fwd		stop codon		
	AGACATCGCAGCGTAATCTC	499nt downstream		
napAScreen Rev	T000T0T001	stop codon		
	TCCCTCTCCAAAGGGATAGC	484nt upstream		
napAScreenout	CTCTC ATCCTCTCCCC ATT	start codon		
Fwd	GTGTCATGCTCTGCGGATT	728nt downstream		
napAScreenout	A ATCCCCCTCCC ATTC A A	stop codon		
Rev	AATGCGCCTGGGATTGAA	591nt upstream start codon		
23SRT Fwd 23SRT Rev	TAGCGAAATTCCTTGTCGGG	1920		
	GAGACAGCGTGGCCATCATT	1920		
23Stemp Rev napART Fwd	GTATCAGTTAGCTCAACGCCTC	2847		
napART Rev	AGAAAGCCCTGTTAACCGTGG	210		
napAKT Kev napAtemp Rev	TCATCCGCAGCAATGGTGT	101		
nrfART Fwd	GATCGAAGCTACGGTTCTCG	751		
nrfART Rev	GCCACATGTATGCCGTGACT	257		
nrfAtemp Rev	TTTACAGCTCCAGCAAGCCA	357		
	ACGTTTCATACTCGGGATGC	775		
Probes		• • •		
23SRTProbe				
napARTProbe	AGTTCCGACCTGCACGAATGGCG	1942		
nrfARTProbe	CTGTATTAAAGGTTACTTCCTGTCGAAAATCATGTACGG	237		
	CGTAATACCTTGCGTACTGGCGCGC	283		

The sequence for the primers is written from the 5'end to the 3'end.

b Primers were designed using putative gene sequences of S. oneidensis MR-1.

c For primer sequences, the restriction sites incorporated are underlined. CATATG, Ndel; GAATTC, EcoRI; GAGCTC, SacI; CCGCGG, SacII.

d Even though the napA gene is in the opposite direction in the genome, the sequence at the right end of the start codon will be denominated as upstream and the one at the left side of the stop codon as downstream.

Quantitative-Real-Time-PCR (Q-RT-PCR). Total RNA (1 ug) was reverse-transcribed using the Superscript II Kit (Invitrogen) and hexamer primers. cDNA was purified using the Qiagen Purification Kit (Qiagen). The cDNA concentration was determined by spectrophotometry at 260 nm and 700 pg was used as the template for the Q-RT-PCR. Gene specific primers and probes were designed using Primer Express® 1.0 software (Applied Biosystems). BLAST of the sequences against the MR-1 genome was performed to test for specificity. The reaction was carried out with 1X TaqMan® Universal PCR Master Mix (Applied Biosystems) and 500 nM each of, primers and probes. The quantification of napA transcripts was done by Q-RT-PCR using the napART Fwd and napART Rev primers, and the napART probe (TABLE 1). In the same manner, nrfA transcripts were quantified using the nrfART Fwd and nrfART Rev primers, and the nrfART probe. The reaction was performed using the ABI PRISM® 7900HT Sequence Detection System (Applied Biosystems) at the Genomics Technical Support Facility at Michigan State University. A standard calibration curve was prepared with a serial dilution of a PCR product of the putative genes in MR-1 as templates. The PCR product for the napA calibration curve was amplified with the napART Fwd and napAtemp Rev. The PCR product for the nrfA calibration curve was amplified with nrfART Fwd and nrfAtemp Rev. Primers and a probe specific for the 23S rDNA (23SRTFwd, 23SRTRev and 23SRT probe) were used to quantify the 23S rRNA transcripts. This gene was used as an internal control to normalize the difference in the efficiency of the amplification and technical manipulations (4). A calibration curve was also prepared for the 23S rRNA gene using a PCR product amplified with the 23SRT Fwd and the 23Stemp Rev. The template concentration for this reaction was optimized to 7 pg but the concentration of primers and probe was the same as for the other genes.

Triplicates of each sample were run for all the reactions. A negative control (no cDNA added) was run for each of the reactions.

Absolute quantification was calculated by interpolating each sample with their corresponding standard curve.

napA deletion mutagenesis. Molecular procedures such as genomic and plasmid purifications, restriction digestions, sticky ends repair, ligations and electroporations were performed as previously described (26). Primers for PCR reactions (TABLE 3.1) were designed using the Vector NTI® software (InforMax, Inc.) and synthesized at Integrated DNA Technologies (www.idtdna.com).

a) napA allelic exchange vector generation. The MR-1 napA flanking regions were cloned into the broad-host-range vector pCM184 for further replacement of the napA gene in MR-1 by a kanamycin cassette. This replacement occurred by homologous recombination of the flanking regions in the vector with those in the genome. The kanamycin cassette in pCM184 is flanked by two loxP sites, which are in turn flanked by two multiple cloning sites (MCS) (14). The primers napAN Fwd (NdeI) and napAN Rev (EcoRI) were used to amplify the region upstream of the napA gene start codon while the napAC Fwd (SacI) and napAC Rev (SacII) amplified the region downstream the stop codon. The product of these reactions was approximately 500 bp each, to ensure high efficiency of recombination (14). Each primer had a restriction site linker at the 5'end for an enzyme that was chosen using the pCM184 MCS as a reference for directional cloning of the fragments. After amplification, the N fragment (upstream) was double digested

with NdeI and EcoRI and the C fragment (downstream) with SacI and SacII. These two fragments were cloned one at a time into the vector (pCM184) that was previously digested with the corresponding restriction enzymes depending on the fragment to be cloned. After the fragment and the vector were digested, these were gel purified using the QIAquick® Gel Extraction Kit (Qiagen). A vector:insert ratio of 1:3 was used for the ligation reaction and 1 ul of this overnight reaction was used to electroporate *E. coli* B2155 electrocompetent cells. The positive transformants were selected by plating on LB agar supplemented with kanamycin and DAP. The colonies were screened with the primers used to amplify each fragment. Once both fragments were inserted a final PCR screen was performed to check for the correct incorporation of the fragments into the vector generating pCCG186. A set of primers including napAScreen Fwd, which anneals to the inside region of the C fragment and napAScreen Rev that anneals to the inside of the N fragment were used for the screen.

Due to replication of the suicide vector (pCCG186) in MR-1, pCCG186 was digested with EcoRI and SacI to excise the kanamycin cassette with the loxP sites and the N and C fragments (a fragment of approximately 2.5 kbp), which were transferred into pKNOCK-Gm (1) for the generation of pCCG01. The pKNOCK-Gm broad-host-range vector has a gentamycin resistance gene and a R6K origin, which needs a π protein for propagation. Since this protein is not present in MR-1 this plasmid made a good suicide vector. To clone the fragment excised from pCCG186 into pKNOCK-Gm, this vector was digested with SmaI, which is a blunt end cutter and the plasmid was dephosphorylated with calf intestinal phosphatase to avoid self-ligation. The sticky ends product of the digestion of the insert with EcoRI and SacI were repaired using T4 DNA

polymerase. The reaction products were gel purified as described above and a vector:insert ratio of 1:16 was used for the ligation reaction. Electroporation and screening of the transformants was performed as described above.

b) <u>napA</u> allelic exchange vector transfer into Shewanella oneidensis MR-1. pCCG01 was introduced into MR-1 by conjugation (protocol from Margie Romine, Pacific National Laboratory). The E. coli \u03b82155 harboring pCCG01 was inoculated in LB liquid media supplemented with 100 ug/ml of DAP and 50 ug/ml of kanamycin. Overnight cultures of MR-1 and E. coli \beta 2155 harboring \text{pCCG01} were mixed in microtubes, the mixtures consisted of 0.5 ml of MR-1 with either 0.5 ml or 1 ml of E. coli cultures. Individual controls for each culture were also prepared simultaneously. These cultures were mixed by vortex and concentrated by centrifuging at 4,000 rpm for 2 min at room temperature. The supernatant was discarded and the pellet was gently swirled with the pipette tip in the remaining of the medium (approximately 100 ul). Then, this solution was spotted on an LB plate with DAP and incubated at room temperature for 12 to 16 h. Controls were spotted on individual plates. After incubation, the spotted cultures were scrapped and resuspended in 1 ml of 1X Phosphate-Saline Buffer (PBS) (26). Two 10fold serial dilutions were prepared and plated on LB agar with 25 ug/ml of kanamycin and no DAP to avoid growth of the E.coli \u03b82155, thus only the MR-1 cells that were successfully transformed with pCCG01 were able to grow. To check for the loss of the vector and replacement of the napA gene by homologous recombination the colonies obtained were transferred to LB plates with kanamycin and LB plates with kanamycin and gentamycin. Positive MR-1 napA deletion mutants were expected to be resistant to kanamycin and susceptible to gentamycin. Those colonies were screened by PCR using

napAScreenout Fwd and napAScreenout Rev which anneal approximately 210 bp downstream and 90 bp upstream from the *napA* flanking regions included in pCCG01, respectively. This screening ensures that the recombination occurred in the targeted area.

- c) Removal of kanamycin cassette. The two *loxP* sites flanking the kanamycin cassette are recognition sites for Cre recombinase. This recombinase excises the region inside the *loxP* sites by recombination leaving one of the *loxP* sites. pCM157 is a *cre* gene expression vector (14) which was electroporated into *E.coli* β2155. This vector was transformed into *Shewanella oneidensis* MR-1 ΔnapA Kan^r by conjugation as described above. Colonies susceptible to kanamycin and resistant to tetracycline were selected as positive transformants. These were screened by PCR using napAScreenout primers to confirm the loss of the kanamycin cassette.
- d) pCM157 curation from S. oneidensis MR-1 \(Delta napA\). Cultures of MR-1 \(Delta napA\) (Tet Kans) were transferred three times on LB liquid media with no antibiotics and then screened for tetracycline susceptibility on LB agar. This phenotype indicates the loss of the pCM157 plasmid. Colonies were transferred and screened until the correct phenotype was obtained. Colonies susceptible to kanamycin and tetracycline were diagnosed with PCR the napAScreen primers and with primers targeting the inside region of the MR-1 napA gene (napART Fwd and napAtemp Rev). DNA sequencing performed at the Genomics Technical Support Facility at Michigan State University confirmed the deletion. The napAScreen Fwd was used to sequence the upstream region from the loxP site and the napAScreen Rev for the sequence downstream. These two sequences were assembled into one sequence using Vector NTI Suite 8.0 software.

Growth comparisons of Shewanella oneidensis MR-1 wild type and MR-1 ΔnapA. The cultures of the the wild type and three MR-1 ΔnapA independent mutants were cultivated aerobically and anaerobically with 3 mM KNO₃ in M1 minimal medium as described above. Growth was monitored constantly by OD measurements at 600nm. Samples from each culture were collected throughout the incubation period for determination of nitrate, nitrite and ammonium concentrations by a Lachat QuickChem Automated Flow Injection Ion Analyzer following the Copperized Cadmium Reduction Method as in QuickChem Method No. 10-107-04-1-A (Lachat Instruments, 1988) at the Soil Testing Lab at Michigan State University. The ammonium analysis was performed by the salicylate colorimetric method (20).

Gene expression profiles of MR-1 growth anaerobically with 1 mM and 40 mM KNO₃. Global gene expression profiles of anaerobic cultures of MR-1 at a low and a high nitrate concentration were compared using DNA microarray technology. A *Shewanella oneidensis* MR-1 complete genome microarray containing a total of 4197 PCR amplicons and 451 oligonucleotides representing individual open reading frames (9) was provided by Liyou Wu and Jizhong Zhou at Oakridge National Laboratory, Oakridge, TN, USA. cDNA preparation and labeling were performed as previously described (27) using a 2:3 ratio of 5-(3-aminoallyl)-dUTP and dTTP. Hybridization and post-hybridization washes were done as described elsewhere (10). Three biological replicates per treatment were used for the hybridization of six microarray slides including technical duplicates (dyeswap). The slides were scanned using an Axon 4000B scanner (Axon Instruments, Inc.). The data analysis was performed using the GeneSpring 6.0 software (Silicon Genetics).

with less than 55% of pixels greater than background plus two standard deviations were eliminated from the analyses (15). The data was filtered using the Benjamini and Hochberg false discovery rate with 95% confidence and only those genes with a >2-fold change in magnitude were considered significant.

RESULTS

Expression analyses of napA and nrfA in cultures of *Shewanella oneidensis* MR-1 by Q-RT-PCR. Liquid samples from the cultures used in the Q-RT-PCR analyses were analyzed to quantify nitrate, nitrite and ammonium concentrations in the medium. Insignificant amounts of nitrite and ammonium were produced in aerobic cultures supplemented with 3 mM KNO₃, and not much nitrate consumption was seen (FIG. 3.1). The anaerobic cultures with 0.1 mM to 1 mM KNO₃ showed disappearance of nitrate and nitrite, although in cultures with the higher initial concentrations, nitrate, nitrite and ammonium remained.

The expression of napA in anaerobic cultures of MR-1 increased with increasing concentrations of KNO₃ until 3 mM after which the expression reached a plateau (FIG. 3.2). The expression of napA in the MR-1 aerobic cultures with 3 mM KNO₃ and without nitrate did not show a significant difference between each other or when compared with the anaerobic cultures grown on 0.5 mM, 1 mM, 3 mM KNO₃ ($F_{\alpha=0.05}$ 9, 20). The expression of napA in anaerobic cultures with 3 mM, 10 mM, 15 mM and 40 mM KNO₃ was not significantly different between each other. However, the difference in its expression in anaerobic cultures on 40 mM KNO₃ when compared to that of aerobic and

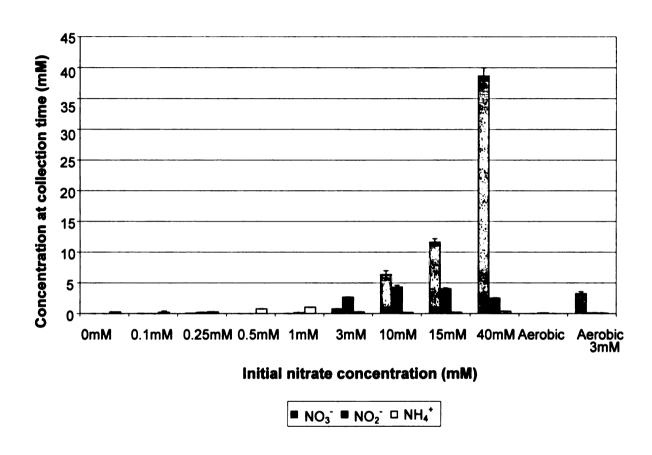


FIG. 3.1. Concentrations of nitrate, nitrite and ammonium in cultures of *Shewanella oneidensis* MR-1 used for Q-RT-PCR analyses at the time the cells were harvested for RNA extraction. Three biological replicates were used for each condition to calculate the mean and the standard deviation.

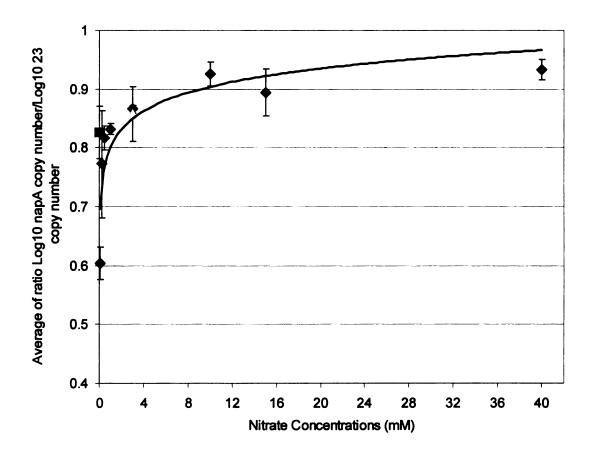


FIG. 3.2. Expression of *napA* in cultures of *Shewanella oneidensis* MR-1 grown at different nitrate concentrations under anaerobic conditions (*), aerobically with no nitrate (*) and aerobically with 3 mM nitrate (*). Three biological replicates each done with three analytical replicates were used to calculate the mean and the standard deviation for each growth condition.

anaerobic cultures on 0.1 mM, 0.25 mM, 0.5 mM and 1 mM KNO₃ was statistically significant.

The maximum expression of nrfA was reached at 1 mM KNO₃ and higher concentrations showed a constant expression of the gene (FIG. 3.3). The expression of nrfA was not significantly different ($F_{\alpha=0.05}$ 9, 20) between anaerobic cultures grown on nitrate at concentrations higher than 0.1 mM KNO₃. The difference in the expression of nrfA in the aerobic cultures without nitrate when compared to that of aerobic cultures with 3 mM KNO₃ was statistically significant. The nrfA expression in aerobic cultures with and without nitrate was not significantly different when compared to the other anaerobic cultures (except for those at 0.1 mM KNO₃, which was statistically different from all the other conditions tested).

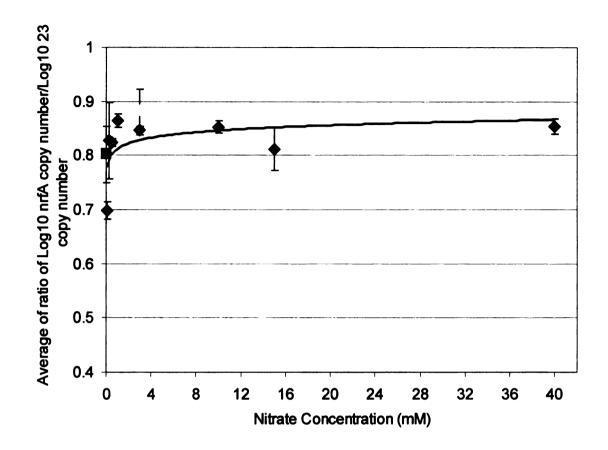


FIG. 3.3. Expression of nrfA in cultures of Shewanella oneidensis MR-1 grown at different nitrate concentrations under anoxic conditions (\blacklozenge), aerobically with no nitrate (\blacksquare) and aerobically with 3 mM nitrate (\blacksquare). Three biological replicates each done with three analytical replicates were used to calculate the mean and the standard deviation for each growth condition.

napA deletion mutagenesis and complementation analysis. The napA deletion mutants obtained were confirmed by two diagnostic PCR reactions. The first reaction generated a fragment of approximately 1300 bp, which corresponds to the size of the flanking regions and the loxP residual left after the recombination by the Cre recombinase (FIG. 3.4). This PCR product was sequenced. A control using the MR-1 wild type genomic DNA as template was used for the same reaction. Since in this case the napA gene is present the fragment size is approximately 3800 bp long. This PCR reaction does not only confirm the absence of the gene but also demonstrates the correct location for the incorporation of the construct at the time of the homologous recombination. This is a critical problem for mutagenesis in MR-1, where after the transformation with the allelic exchange vector, the construct often gets integrated somewhere else in the genome. The second diagnostic PCR reaction amplified a region inside the napA gene. No amplification was observed in the case of the $\triangle napA$ mutants as expected if the gene was deleted. A positive control for this reactions was performed using the MR-1 wild type genomic DNA as the template. The fragment for this reaction was approximately 541 bp long.

The PCR products of the mutated region in the $\triangle napA$ (FIG. 3.4; lanes 1, 2 and 3) were used for DNA sequencing (FIG. 3.5). This sequence includes approximately 500 bp to each side of the deletion and the loxP residual (in boldface).

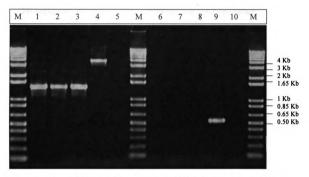


FIG. 3.4. napA gene deletion confirmation by PCR. This is a 1% agarose gel 1X TAE which has the PCR reactions to confirm the MR-1 $\Delta napA$ mutants. Lanes labeled as M are for 1 Kb plus DNA ladder (Invitrogen Life Technologies). Lanes 1-5 correspond to PCR screening with napAScreenout primers. Lanes 6-10 correspond to PCR screening with napART Fwd and napAtemp Rev primers. Sample order: lanes 1 and 6, MR-1 $\Delta napA$ 22; lanes 2 and 7, MR-1 $\Delta napA$ 66; lanes 3 and 8, MR-1 $\Delta napA$ 68; lanes 4 and 8, MR-1 wild type; and lanes 5 and 10 negative control (no DNA).

1 agcatttttc tcatcgatca gtctccaatc cccattttag catcgctaat gtgctcaagt 61 tgaggatcaa gcgcacccga tgggcaggct tttatgcagg gaatatcctc acacatttcg 121 cagggaatgt gtcttgcggt aaagaatggc gtgccagtgg cggcgccatc gaaccaacgt 181 gccagtgtta gcgtgtcgta agggcaagcc tccacacaca aaccgcagcg cacgcaggcc 241 gagagaaaat cgctctcctc aagggcgccc ggtggtctgc aagcttgagg agcgagctgg 301 cettggettt ttgeegtage egttaageet aateecaega gteecateae acageeagee 361 tttgccgtcg tggccaaaaa ctggcgacgg ttgacttgct tggctgtgaa tgcactctta 421 acttgctgac tcaccttaga ctccttaatt gctattaatt gacgccatcg ctatcaaatg 481 aaggettagg cetteateae ttttaegggg eacteegegg tategataag etggateeat 541 aacttegtat aatgtatget ataegaagtt atgeggeege catatgggeg getaatgete 601 <u>atagtgtt</u>tc ctcactcatt ttttctaaca gttcttgttc taggggctcg acttggtggt 661 aaatcaaact ggcggataac acgccggaca gggcattgat ggcttcaaca ttatcgagaa 721 tggccttttg gctatctcct tcgagggtaa taaccaattt accttcgggg gaaatggcgt 781 ggatategea gecetttaag geggttatat eggeetetae etgttgtaag geattgggeg 841 eggeatgtae caegaggetg gtaacatggt attectgaet catageggtg atcettatet 901 ggagatgcat tcagttgcgt ttgataaatt ttagtacaac taaatgtgga tacctgcgag 961 tetagacetg attaaaaatg tgggtatace teacaagagg tattgaaggg gatagtegat 1021 cgggatcaaa gtttta

FIG. 3.5. DNA sequence of *napA* deletion in MR-1. This sequence was assembled using vector NTI Suite 8.0 software. The assembly included the sequence upstream the *napA* gene and the one downstream using primers napAScreen Fwd and napAScreen Rev, respectively. The sequences underlined represent the sequence of the napAC Rev and napAN Fwd primers. The sequence in boldface corresponds to the *loxP* residual.

Growth of MR-1 wild type versus MR-1 $\Delta napA$ mutant. Growth under aerobic and anaerobic conditions with nitrate as the electron acceptor was compared in cultures of the wild type versus the $\Delta napA$ mutant (FIG. 3.6). Based on OD measurements, the aerobic growth was similar in the wild type and in the mutant. However, for anaerobic cultivation with 3 mM nitrate, no growth was detected for the $\Delta napA$ mutant, contrary to the wild type for which growth was observed. No growth was detected in the anaerobic controls without nitrate.

Analyses of nitrate, nitrite and ammonium were performed in the medium to determine whether the mutant could reduce nitrate (FIG. 3.7). No nitrite was detected in the medium. Low concentrations of ammonium were detected in cultures lacking nitrate as well as in the mutant cultures supplied with nitrate probably generated from cell material. As expected, in the wild type cultures reduction of nitrate and production of nitrite and ammonium was detected (FIG. 3.7).

Due to the length of the napA gene (2,484 bp), the construct of an expression vector for the complementation of the Δ napA mutant was not possible. However, the inability to grow and reduce nitrate when nitrate was the only electron acceptor was observed for three independent MR-1 Δ napA deletion mutants. This ensures that no other spontaneous mutation was causing the phenotype. These results are not shown for simplicity of the graphs.

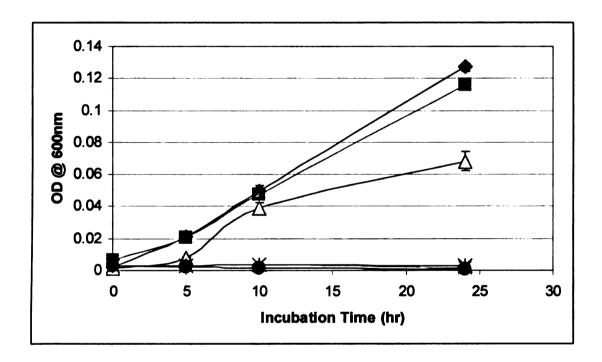


FIG. 3.6. Growth curves for *Shewanella oneidensis* MR-1 wild type grown in M1 medium aerobically (\blacklozenge), and anaerobically with 3 mM nitrate () and *Shewanella oneidensis* MR-1 \triangle napA grown aerobically (\blacksquare) and anaerobically with 3 mM nitrate (). Cultures without nitrate inoculated with the wild type (*) and the \triangle napA mutant (\bullet) were included as negative controls.

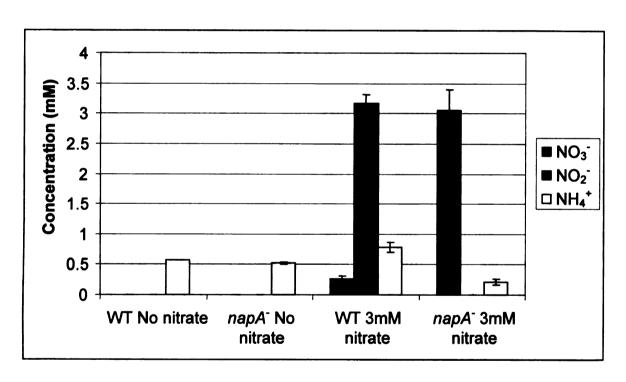


FIG. 3.7. Concentrations of nitrate, nitrite and ammonium in cultures of *Shewanella oneidensis* MR-1 wild type and *Shewanella oneidensis* MR-1 Δ napA for growth curve after 24 h incubation period.

Gene expression profiles of MR-1 anaerobic growth on 1 mM and 40 mM KNO₃ The total number of genes differentially expressed, greater than 2-fold in anaerobic cultures of MR-1 on 1 mM KNO₃ compared to those on 40 mM, was 1082 genes. Of these, 517 were up-regulated and 565 down-regulated at 40 mM relative to 1 mM KNO₃ cultures. The genes up-regulated and down-regulated has been grouped in 20 functional "TIGR Role" categories (FIG. 3.8). The categories with higher percentage of up-regulated as well as the down-regulated genes were the "conserved hypothetical" (22% of the down-regulated and 15.2% of the up-regulated genes) and the "hypothetical proteins" (19.7% of the down-regulated and 12.4% of the up-regulated genes). The other categories with high percentage of up-regulated genes were "Protein synthesis" (11.5%), "Transport binding proteins" (8.85%) and "Energy metabolism" (8.85%)(FIG. 3.8). The up-regulated genes are arranged per category and only those showing a five-fold change or higher were reported in this chapter, except for the genes involved in regulatory functions for which all the genes with a fold change higher than two were included (TABLE 3.2). A complete list of all the genes induced two-fold or higher is provided (SUPPLEMENTAL TABLE B.1). The genes induced in the protein synthesis category include a variety of ribosomal protein genes, different tRNA synthetase genes and other genes involved in translation. Among the transport binding proteins there are a large number of genes encoding ABC transporters such as sulfate, copper and molybdenum ABC transporters. Also, three genes included in this category and annotated as proton/glutamate symporters (SO0157, SO0922 and SO3562) were highly induced. In the energy metabolism category, genes associated with nitrate metabolism such as hcp, napADG and H were significantly induced. In this category a large number of upregulated genes encode cytochromes such as *cydAB*, *ccoNOPQ*, *ccmF-1* and SO4047, SO4048 and SO4643. Genes encoding ATP synthases were also induced (*atpIBE* and *F*).

The "purines, pyrimidines, nucleosides and nucleotides" category also comprise a significant percentage of up-regulated genes (4.42%). This group includes *carAB*, *nrdDG*, *guaB*, *apt*, *udp*, *upp*, among others. There are also genes involved in amino acid biosynthesis that were significantly induced. Some up-regulated genes included in the "other categories" and in "conserved hypothetical" and "hypothetical" are associated with the LambdaSo phage, which is one of the three phages reported in MR-1 (11). Induction of genes associated with redox response and oxidative stress was also observed (*katG-2*, *dsbB*, *uvrA*, *uvrD* and some co-chaperone genes) (TABLE 3.2, SUPPLEMENTAL TABLE B.1).

The categories with higher percentages of down-regulated genes following the "conserved hypothetical" and the "hypothetical proteins" are the "unknown function" (11.8%), the "regulatory functions" (7.9%) and the "energy metabolism" (6.4%)(FIG.3.8). The down-regulated genes have been grouped per functional "TIGR Role" category and only those down-regulated 5-folds or higher were reported in this chapter, except for those involved in regulatory functions for which all the genes with a fold change higher than two were included (TABLE 3.3). A complete list of all the genes repressed two-fold or higher is provided (SUPPLEMENTAL TABLE B.2). Under the "unknown function" category there are genes that encode hydrolases (e.g. SO0177, SO1585, SO1670, SO2333, SO4039, SO4092), oxydoreductases (SO0900, SO3382, SO2813), domain proteins (e.g. SO0033, SO0296, SO0805, SO0815, SO1208, SO2495, SO2862, SO3489) and AMP binding proteins (SO0075, SO0355, SO1971). Among the

genes that belong to the "regulatory function" there is an array of transcriptional regulators for genes involved in the synthesis of amino acids (glnB-2, glnD, metJ, among others) and of other proteins such as flagellin (flgM), prophage LambdaSo Cro/CI family (SO2990) and AraC/XylS family (SO1762, SO3488). Down-regulated genes involved in energy metabolism include genes of the TCA cycle, DMSO anaerobic reduction (dmaA-1, dmaB-1) and genes involved in redox response such as thioredoxin (trxAC), glutaredoxin (SO2745) and NADH dehydrogenase I (nuoA). Other genes involved in redox response and oxidative stress in MR-1 and in other bacteria (24) that were down-regulated include katB, hemH-2, phrB, ahpCF, sodB, ohr and some genes that encode heat shock proteins (hslU, grpE, ibpA)(TABLE 3.3, SUPPLEMENTAL TABLE B.2).

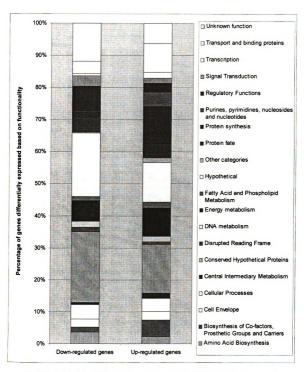


FIG. 3.8. Distribution of differentially expressed genes (> 2-fold change) grouped in 20 functional categories after cultivation on 1 mM (reference) versus 40 mM nitrate concentration. The total of genes down-regulated is 519 and the up-regulated is 571.

TABLE 3.2. Genes induced in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO₃.

I ADLE 3.2.	Gene	Relative	unures of MR-1 at 1 mm (reference) versus 40 mm KNO ₃ .
Gene ID	name	expression*	COG Annotation
		ding Proteins	CO MINORIVE
SO0827	lidP	22.48 (±11.00)	L-lactate permease
SO4652	sbp	18.15 (± 8.56)	sulfate ABC transporter, periplasmic sulfate-binding protein
SO4654	cysW-2	10.13 (± 0.30) 10.07 (± 2.89)	sulfate ABC transporter, permease protein
SO3553	0,5 11 2	9.973 (± 2.32)	sulfate permease family protein
SO4150		9.901 (± 2.23)	transporter, putative
SO3599	cysP	9.506 (± 1.97)	sulfate ABC transporter, periplasmic sulfate-binding protein
SO4653	cysT-2	8.15 (± 1.79)	sulfate ABC transporter, permease protein
SO4077	0,01 -	6.736 (± 1.30)	TonB-dependent receptor, putative
SO2857		6.331 (± 1.71)	sodium/solute symporter family protein
	Metabolism	, ,	,, ,, , ,, , ,
SO0849	napD	18.8 (± 9.08)	napD protein
SO1363	hcp	15.57 (± 4.04)	prismane protein
SO1926	gltA	14.24 (± 5.58)	citrate synthase
	Ü	` ,	NADH:ubiquinone oxidoreductase, Na translocating, alpha
SO0902	nqrA-1	13.64 (± 5.33)	subunit
SO2136	adhE	12.51 (± 3.13)	aldehyde-alcohol dehydrogenase
SO1364		8.712 (± 2.22)	iron-sulfur cluster-binding protein
SO0848	napA	8.617 (± 4.86)	periplasmic nitrate reductase
			NADH: ubiquinone oxidoreductase, Na translocating,
SO0903	nqrB-1	6.49 (± 1.93)	hydrophobic membrane protein NqrB
SO2743	acs	6.439 (± 1.54)	acetyl-coenzyme A synthetase
SO3286	cydA	5.869 (± 1.37)	cytochrome d ubiquinol oxidase, subunit I
SO4509		5.607 (± 2.30)	formate dehydrogenase, alpha subunit
•	Acid Biosyn		to the contract of the contrac
SO0277	argF	8.366 (± 1.39)	ornithine carbamoyltransferase
SO2903	cysK	5.94 (± 2.23)	cysteine synthase A
•	. •	es, nucleosides an	
SO1218	deoA	6.847 (± 1.45)	thymidine phosphorylase
SO2791	cdd	5.448 (± 1.39)	cytidine deaminase
SO2403	cmk	5.285 (± 1.39)	cytidylate kinase
SO1301	pyrB	5.165 (± 1.73)	aspartate carbamoyltransferase
	tory Function		transprintional regulator. TetP family
SO1415		11.18 (± 3.81)	transcriptional regulator, TetR family
SO3901 SO3627	icc	7.949 (± 3.12) 6.185 (± 2.77)	lacZ expression regulator transcriptional regulator, TetR family
SO3027 SO3059		5.778 (± 0.90)	formate hydrogenlyase transcriptional activator, putative
SO2305	len	5.163 (± 1.63)	leucine-responsive regulatory protein
SO2303 SO0843	lrp	5.153 (± 1.40)	transcriptional regulator, LysR family
SO1806	pspF	4.98 (± 1.18)	psp operon transcriptional activator
SO1916	pspr.	2.802 (± 0.34)	transcriptional regulator, LysR family
SO2490		2.714 (± 0.62)	transcriptional regulator, RpiR family
SO3538	hlyU	2.457 (± 0.42)	transcriptional regulator HlyU
SO0393	fis	2.422 (± 0.34)	DNA-binding protein Fis
SO1328	113	2.3 (± 0.46)	transcriptional regulator, LysR family
SO3874		2.228 (± 0.61)	transcriptional regulator, LysR family
SO1687		2.17 (± 0.57)	transcriptional regulator, MerR family
23.007		(- 0.01)	(Continued)

TABLE 3.2. (Cont'd) Genes induced in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO₂

Como ID	Gene	Relative	COC Amendation
Gene ID SO2652	name	$\frac{\text{expression}^{\text{a}}}{2.154 (\pm 0.30)^{\text{b}}}$	COG Annotation prophage MuSo2, transcriptional regulator, Cro/CI family
SO2632 SO3460		2.134 (± 0.30) 2.135 (± 0.33)	transcriptional regulator, LysR family
6) Protein	Synthesis	2.133 (± 0.33)	transcriptional regulator, Lysk family
SO0230	rpsJ	7.618 (± 2.33)	ribosomal protein S10
SO1855	rmf	6.964 (± 3.00)	ribosome modulation factor
SO0007	rpmH	6.416 (± 2.58)	ribosomal protein L34
SO1288	rpsU	6.221 (± 1.08)	ribosomal protein S21
SO2261	1930	6.027 (± 1.03)	RNA methyltransferase, TrmH family, group 1
SO3940	rplM	5.857 (± 1.86)	ribosomal protein L13
SO1357	rpsP	5.855 (± 1.81)	ribosomal protein S16
SO0241	rplN	5.674 (± 1.32)	ribosomal protein L14
SO1359	trmD	5.544 (± 1.39)	tRNA (guanine-N1)-methyltransferase
SO0231	rplC	5.379 (± 1.44)	ribosomal protein L3
SO2402	грѕА	5.299 (± 2.07)	ribosomal protein S1
SO3939	rpsI	5.279 (± 1.91)	ribosomal protein S9
SO0242	rplX	5.148 (± 0.66)	ribosomal protein L24
7) Protein	-	,	,
SO2196	- 400	8.50 (± 1.45)	LPXTG-site transpeptidase family protein
SO2267	hscB	7.891 (± 3.31)	co-chaperone Hsc20
SO1252		5.58 (± 1.02)	peptidase, U32 family
SO0218	secE	5.48 (± 1.27)	preprotein translocase, SecE subunit
8) Cellular		, ,	• •
SO3245	flgF	9.09 (± 2.30)	flagellar basal-body rod protein FlgF
SO3229	fliE	7.49 (± 1.13)	flagellar hook-basal body complex protein FliE
SO0837		6.70 (± 1.82)	beta-lactamase, putative
SO3250	flgB	5.46 (± 6.74)	flagellar basal-body rod protein FlgB
) Conserv	ed Hypoth	netical Proteins	
SO4302		21.56 (±12.00)	conserved hypothetical protein
SO0944		13.57 (± 4.92)	conserved hypothetical protein
SO2821		13.16 (± 6.13)	conserved hypothetical protein
SO3542		12.73 (± 3.19)	conserved hypothetical protein
SO4504		9.54 (± 2.98)	conserved hypothetical protein
SO1287		9.45 (± 3.25)	conserved hypothetical protein
SO4505		8.70 (± 2.79)	conserved hypothetical protein
SO0449		7.53 (± 1.11)	conserved hypothetical protein
SO3891		7.14 (± 4.93)	conserved hypothetical protein
SO3507		6.88 (± 1.14)	conserved hypothetical protein
SO1657		6.68 (± 1.88)	conserved hypothetical protein
SO0324		$6.51 (\pm 1.24)$	conserved hypothetical protein
SO4651		$6.12 (\pm 5.86)$	conserved hypothetical protein
SO3720		5.29 (± 1.09)	conserved hypothetical protein
SO3085		5.15 (± 2.76)	conserved domain protein
SO4131		5.08 (± 0.95)	conserved hypothetical protein
10) Hypotl	netical Pro		
SO0941		8.25 (±2.07)	hypothetical protein

(Continued)

TABLE 3. 2. (Cont'd) Genes induced in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO₃

Gene ID	Gene name	Relative expression ^a	COG Annotation
SO4656	_	7.59 (±2.84)	hypothetical protein
SO0581		7.55 (± 2.36)	hypothetical protein
ORF03631		7.05 (± 2.75)	hypothetical protein
SOA0157		6.87 (± 2.38)	hypothetical protein
SO1947		5.91 (± 1.01)	hypothetical protein
SO4701		5.50 (± 1.27)	hypothetical protein
SO1516		5.35 (± 2.44)	hypothetical protein
SOA0158		5.13 (± 1.51)	hypothetical protein
11) Central	Intermedia	ary Metabolism	
SO3738	cysJ	13.93(±3.94)	sulfite reductase (NADPH) flavoprotein alpha-component
SO1871		11.13(±6.92)	S-adenosylmethionine decarboxylase proenzyme, putative
SO3727	cysD	8.33 (±3.00)	sulfate adenylyltransferase, subunit 2
SO3726	cysN	7.3 (± 1.87)	sulfate adenylyltransferase, subunit 1
SO3737	cysI	7.01 (±1.53)	sulfite reductase (NADPH) hemoprotein beta-component

The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures of MR-1 grown at 40 mM KNO₃ to that of the anaerobically grown at 1 mM KNO₃ (reference).

The standard deviation was calculated from six data points, which included three independent biological

samples and two technical samples for each biological sample.

TABLE 3.3. Genes repressed in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO₃.

		Gene	Relative	c cultures of MR-1 at 1 mM (reference) versus 40 mM KNO ₃ .
1) Energy Metabolism SO0274 ppc 0.17(±0.04)* SO0452 trxC 0.11 (± 0.05) thioredoxin 2 thioredoxin 1 coniferyl aldehyde dehydrogenase 2) Amino Acid Biosynthesis SO3191 trpE 0.19 (± 0.05) SO1268 0.17 (± 0.03) SO4349 ilvC 0.05 (± 0.02) SO3493 vfiA-1 0.18 (± 0.05) SO1786 glnS 0.13 (± 0.04) 4) Regulatory Functions SO4037 metJ 0.50 (± 0.17) SO2990 0.50 (± 0.14) SO3193 0.50 (± 0.14) SO3193 0.50 (± 0.12) SO3199 glnB-2 0.50 (± 0.14) SO3199 glnB-2 0.50 (± 0.14) SO3199 glnB-2 0.50 (± 0.14) SO3199 draft dr	Gene ID			COG Annotation
SO0274 ppc 0.17(±0.04) phosphoenolpyruvate carboxylase trxC 0.11 (± 0.05) thioredoxin 2 SO0466 trxA O.09 (± 0.05) thioredoxin 1 coniferyl aldehyde dehydrogenase SO3199 trpE 0.19 (± 0.05) thioredoxin 1 society anthranilate synthase component I glutamine synthetase SO3499 ilvC 0.05 (± 0.02) society socity society society society society society society				
SO0452 trxC 0.11 (± 0.05) thioredoxin 2 SO04606 trxA 0.09 (± 0.05) thioredoxin 1 SO3683 0.07 (± 0.01) conferyl aldehyde dehydrogenase 2) Amino Acid Biosynthesis SO3199 trpE 0.19 (± 0.05) conferyl aldehyde dehydrogenase SO1473 smpB 0.17 (± 0.03) anthranilate synthase component I glutamine synthetase SO4439 ilvC 0.05 (± 0.02) SSrA-binding protein SO3369 glnS 0.13 (± 0.04) SSrA-binding protein SO4786 glnS 0.13 (± 0.04) glutamine synthetase SO4173 meD 0.05 (± 0.02) strah-binding protein SO4187 meU 0.50 (± 0.01) met repressor To5046 glnS 0.13 (± 0.04) prophage LambdaSo, transcriptional regulator, Cro/CI family transcriptional regulator, UpsR family To50419 transcriptional regulator, DysR family transcriptional regulator, LysR family				nhosphoenolnyruyate carboxylase
SO0406		• •		• • • • • • • • • • • • • • • • • • • •
SO3683			• •	
2) Amino Acid Biosynthesis SO3109 trpE 0.19 (± 0.05) anthranilate synthase component I SO1268 0.17 (± 0.03) anthranilate synthase component I SO14349 iIvC 0.05 (± 0.02) detol-acid reductoisomerase SO1403 smpB 0.20 (± 0.08) SsrA-binding protein SO3403 yfiA-1 0.18 (± 0.05) cibo-acid reductoisomerase SO1786 glnS 0.13 (± 0.04) ssrA-binding protein SO4057 metJ 0.50 (± 0.17) met repressor SO2990 0.50 (± 0.11) met repressor prophage LambdaSo, transcriptional regulator, Cro/CI family transcriptional regulator, TetR family SO3193 glnB-2 0.50 (± 0.12) met repressor SO3519 glnB-2 0.50 (± 0.12) transcriptional regulator, TetR family SO3419 trpR 0.44 (± 0.12) transcriptional regulator, LysR family SO3419 trpR 0.42 (± 0.07) transcriptional regulator, TetR family SO4263 0.40 (± 0.06) transcriptional regulator, TetR family transcriptional regulator, LysR family S		uan	• •	
SO3019 broles trpE (0.19 (± 0.05) broles (± 0.02) anthranilate synthase component I glutamine synthetase (± 0.04) glutamine synthetase (± 0.04) glutamine synthetase (± 0.04) glutamine synthetase (± 0.05) glutamine synthetase (± 0.04) glutamine synthetase (± 0.04) glutamine synthetase (± 0.04) sketol-acid reductoisomerase sketol-acid reductoisomerase S01473 smpB (0.18 (± 0.05) sol (± 0.18) 0.18 (± 0.05) (± 0.04) six A- binding protein ribosomal subunit interface protein [glutaminyl-tRNA synthetase] \$01478 metJ (± 0.05) sol (± 0.12) 0.50 (± 0.14) glutaminyl-tRNA synthetase \$04080 metJ (± 0.05) sol (± 0.12) 0.50 (± 0.14) met repressor \$05059 metJ (± 0.07) sol (± 0.12) sol (± 0.14) 0.50 (± 0.14) met repressor \$0319 glnB-2 proper (± 0.05) (± 0.12) sol (± 0.14) sol (± 0.14) transcriptional regulator, TetR family transcriptional regulator, LysR family transcriptional regulator, Gank family transcriptional regulator, TetR family transcriptional regulator, AsnC family transcriptional regulator, LysR family transcriptional regulator, TetR family transcriptional regulator, LysR family transcriptional regulator, LysR family transcriptional regulator, TetR family transcriptional regulator, L		cid Biosy		connery raidenyde denydrogenase
$S01268 \\ S04349 iVC \\ 0.05 (\pm 0.02) \\ S) Protein Synthesis \\ SO1473 \\ smpB \\ SO3403 \\ yfiA-1 \\ 0.18 (\pm 0.05) \\ SD1786 \\ glnS \\ 0.13 (\pm 0.04) \\ A gegulatory Functions \\ SO4037 \\ metJ \\ SO2990 \\ 0.50 (\pm 0.14) \\ SO3193 \\ SO3519 \\ SO3519 \\ SO3519 \\ SO3519 \\ yfnB-2 \\ 0.50 (\pm 0.14) \\ SO3529 \\ trpI \\ 0.46 (\pm 0.12) \\ SO3629 \\ trpI \\ 0.44 (\pm 0.12) \\ SO346 \\ 0.44 (\pm 0.12) \\ SO3419 \\ SO365 \\ SO3403 \\ SO365 \\ To Al (\pm 0.09) \\ SO365 \\ SO365 \\ SO365 \\ SO365 \\ To Al (\pm 0.09) \\ SO365 \\ S$	•	-		anthranilate synthase component I
SO4349 ilvC 0.05 (± 0.02) ketol-acid reductoisomerase 3) Protein Synthesis Son Hording protein SO3403 yfiA-1 0.18 (± 0.05) ribosomal subunit interface protein SO1786 glnS 0.13 (± 0.04) glutaminyl-tRNA synthetase 4) Regulatory Functions metJ 0.50 (± 0.17) met repressor SO2090 0.50 (± 0.14) prophage LambdaSo, transcriptional regulator, Cro/CI family transcriptional regulator, TetR family SO3519 glnB-2 0.50 (± 0.12) introgen regulatory protein P-II SO0529 trpI 0.46 (± 0.12) transcriptional regulator, LysR family SO3419 trpR 0.43 (± 0.07) transcriptional regulator, TetR family SO3482 sixA 0.41 (± 0.07) transcriptional regulator, AraC/XylS family SO3455 0.41 (± 0.07) transcriptional regulator, AraC/XylS family SO4567 0.41 (± 0.07) transcriptional regulator, LysR family SO40457 0.40 (± 0.06) transcriptional regulator, LysR family SO40457 0.38 (± 0.03) transcriptional regulator, LysR family SO4069 0.		upL	• •	· · · · · · · · · · · · · · · · · · ·
3) Protein Synthesis S01473 smpB 0.20 (± 0.08) SsrA-binding protein S03403 yfiA-1 0.18 (± 0.05) ribosomal subunit interface protein S01786 glnS 0.13 (± 0.04) glutaminyl-tRNA synthetase 4) Regulatory Functions metJ 0.50 (± 0.17) met persessor S02990 0.50 (± 0.08) transcriptional regulator, TetR family S03519 glnB-2 0.50 (± 0.12) prophage LambdaSo, transcriptional regulator, Cro/CI family S03519 glnB-2 0.50 (± 0.12) introscriptional regulator, TetR family S01259 0.44 (± 0.12) transcriptional regulator, LysR family S01662 0.44 (± 0.17) transcriptional regulator, AraC/XyIS family S02419 trpR 0.43 (± 0.09) transcriptional regulator, TetR family S02493 0.42 (± 0.07) transcriptional regulator, AraC/XyIS family S04567 0.41 (± 0.11) transcriptional regulator, LysR family S042455 0.40 (± 0.05) transcriptional regulator, LysR family S03494 0.38 (± 0.07) transcriptional regulator, LysR family		ilvC		
SO1473 smpB O.20 (± 0.08) SsrA-binding protein			0.03 (± 0.02)	ketor-acid reductorsomerase
$SO3403 yfiA-1 \\ SO1786 glnS \\ SO1786 glnS \\ SO13 (\pm 0.04) \\ \textbf{Regulatory Functions} \\ SO4057 metJ \\ SO2990 0.50 (\pm 0.14) \\ SO1393 0.50 (\pm 0.12) \\ SO3519 glnB-2 0.50 (\pm 0.12) \\ SO3519 glnB-2 0.50 (\pm 0.12) \\ SO3519 trpI 0.46 (\pm 0.14) \\ SO1259 0.44 (\pm 0.12) \\ SO346 0.44 (\pm 0.12) \\ SO3419 trpR 0.43 (\pm 0.09) \\ SO1762 0.42 (\pm 0.07) \\ SO3082 sixA 0.41 (\pm 0.09) \\ SO4567 0.41 (\pm 0.11) \\ SO30165 0.40 (\pm 0.04) \\ SO2495 0.38 (\pm 0.07) \\ SO3404 0.38 (\pm 0.06) \\ SO2455 0.40 (\pm 0.06) \\ SO30494 0.38 (\pm 0.06) \\ SO30494 0.38 (\pm 0.06) \\ SO30494 0.38 (\pm 0.06) \\ SO30405 0.33 (\pm 0.07) \\ SO30406 0.33 (\pm 0.07) \\ SO30494 0.38 (\pm 0.06) \\ SO3052 0.33 (\pm 0.07) \\ SO3053 0.33 (\pm 0.07) \\ SO3054 0.33 (\pm 0.07) \\ SO3055 0.30 (\pm 0.07) \\ SO3057 0.31 (\pm 0.06) \\ SO3058 0.30 (\pm 0.07) \\ SO3059 0.33 (\pm 0.07) \\ SO3025 0.30 (\pm 0.07) \\ SO3494 0.38 (\pm 0.06) \\ SO3054 0.30 (\pm 0.07) \\ SO30599 0.33 (\pm 0.07) \\ SO1626 0.27 (\pm 0.09) \\ SO163 0.25 (\pm 0.10) \\ SO1643 rseA 0.23 (\pm 0.11) \\ SO1649 tyrR 0.17 (\pm 0.04) \\ SO1659 tyrR 0.17 (\pm 0.04) \\ SO1669 tyrR 0.17 (\pm 0.04) \\ Transcriptional regulator, putative transcriptional regulator, LysR family transcriptional regulator, putative transcriptional regulator, LysR family transcriptional regulator, Data family transcriptional regulator, LysR family tran$	•	•	0.20 (± 0.08)	Sar A hinding protein
SO1786 glnS O.13 (± 0.04) glutaminyl-tRNA synthetase		-		
SQ4057 metJ 0.50 (± 0.17) met repressor SO2990 0.50 (± 0.14) prophage LambdaSo, transcriptional regulator, Cro/CI family transcriptional regulator, TetR family SO3193 0.50 (± 0.08) transcriptional regulator, TetR family SO3519 glnB-2 0.50 (± 0.12) nitrogen regulatory protein P-II 1 SO0529 trpI 0.46 (± 0.14) trpba operon transcriptional activator SO1259 0.44 (± 0.17) transcriptional regulator, LysR family SO3419 trpR 0.43 (± 0.09) transcriptional regulator, GntR family SO1762 0.42 (± 0.07) transcriptional regulator, AraC/XylS family SO2493 0.42 (± 0.07) transcriptional regulator, AraC/XylS family SO3082 sixA 0.41 (± 0.09) phosphohistidine phosphatase SixA SO4567 0.41 (± 0.01) transcriptional regulator, LysR family SO2455 0.40 (± 0.07) transcriptional regulator, LysR family SO3844 0.38 (± 0.06) transcriptional regulator, TetR family SO40041 0.38 (± 0.06) transcriptional regulator, PemK family SO04025 flgM 0.37 (± 0.10) negative regulator of flagellin synthesis FlgM <td></td> <td>•</td> <td>• •</td> <td>•</td>		•	• •	•
SO4057 metJ 0.50 (± 0.17) met repressor SO2990 0.50 (± 0.14) prophage LambdaSo, transcriptional regulator, Cro/CI family SO1393 0.50 (± 0.08) transcriptional regulator, TetR family SO3519 glnB-2 0.50 (± 0.12) nitrogen regulatory protein P-II 1 SO0529 trpI 0.46 (± 0.14) trpba operon transcriptional activator SO1259 0.44 (± 0.17) transcriptional regulator, LysR family SO346 0.44 (± 0.17) transcriptional regulator, GntR family SO3419 trpR 0.43 (± 0.09) transcriptional regulator, AraC/XylS family SO2493 0.42 (± 0.07) transcriptional regulator, TetR family SO3082 sixA 0.41 (± 0.01) phosphohistidine phosphatase SixA SO4567 0.40 (± 0.06) transcriptional regulator, LysR family SO2455 0.40 (± 0.07) transcriptional regulator, LysR family SO3944 0.38 (± 0.03) transcriptional regulator, TetR family SO3254 flgM 0.37 (± 0.10) ranscriptional regulator, PemK family SO4028 0.33 (± 0.07) resplay transcriptional		•		giutaminyi-tKNA synthetase
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. •	•		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		meu	, ,	•
SO3519 glnB-2				
$SO0529 trpI \qquad 0.46 (\pm 0.14) trpba operon transcriptional activator \\ SO1259 \qquad 0.44 (\pm 0.12) transcriptional regulator, LysR family \\ SO0346 \qquad 0.44 (\pm 0.17) transcriptional regulator, ContR family \\ SO3419 trpR \qquad 0.43 (\pm 0.09) transcriptional regulator, AraC/XylS family \\ SO1762 \qquad 0.42 (\pm 0.07) transcriptional regulator, AraC/XylS family \\ SO2493 \qquad 0.42 (\pm 0.07) transcriptional regulator, TetR family \\ SO3082 sixA \qquad 0.41 (\pm 0.09) phosphohistidine phosphatase SixA \\ SO4567 \qquad 0.41 (\pm 0.11) transcriptional regulator, AsnC family \\ SOA0165 \qquad 0.40 (\pm 0.06) transcriptional regulator, LysR family \\ SO2455 \qquad 0.40 (\pm 0.07) transcriptional regulator, LysR family \\ SO295 \qquad 0.38 (\pm 0.07) transcriptional regulator, LysR family \\ SO3494 \qquad 0.38 (\pm 0.06) transcriptional regulator, TetR family \\ SO3254 flgM \qquad 0.37 (\pm 0.10) transcriptional regulator, PemK family \\ SO0402 \qquad 0.33 (\pm 0.07) transcriptional regulator, LysR family \\ SO0402 \qquad 0.33 (\pm 0.07) transcriptional regulator, LysR family \\ SO1626 glnD \qquad 0.29 (\pm 0.07) transcriptional regulator, LysR family \\ SO1626 \qquad glnD \qquad 0.29 (\pm 0.07) transcriptional regulator, putative \\ SO1603 \qquad 0.25 (\pm 0.10) transcriptional regulator, putative \\ SO1603 \qquad 0.25 (\pm 0.10) transcriptional regulator, LysR family \\ SO2847 \qquad 0.23 (\pm 0.05) sigma-E factor negative regulatory protein \\ SO2827 \qquad 0.22 (\pm 0.03) transcriptional regulator, LysR family \\ SO3799 asnC \qquad 0.22 (\pm 0.03) transcriptional regulator, GntR family \\ SO1898 \qquad 0.20 (\pm 0.08) transcriptional regulator, putative \\ transcriptional regulator, putative transcriptional regulator, GntR family transcriptional regulator, putative transcriptional regulator, putative transcriptional regulator, putative transcriptional regulator, Dutative trans$		- ID-0		
SO1259 0.44 (± 0.12) transcriptional regulator, LysR family SO3419 trpR 0.43 (± 0.09) transcriptional regulator. GntR family SO3419 trpR 0.43 (± 0.09) transcriptional regulator, GntR family SO1762 0.42 (± 0.07) transcriptional regulator, AraC/XylS family SO2493 0.42 (± 0.07) transcriptional regulator, TetR family SO3082 sixA 0.41 (± 0.09) transcriptional regulator, AraC/XylS family SO4567 0.41 (± 0.01) transcriptional regulator, AraC/XylS family SOA0165 0.40 (± 0.09) transcriptional regulator, AraC/XylS family SO2455 0.40 (± 0.00) transcriptional regulator, LysR family SO3494 0.38 (± 0.07) transcriptional regulator, LysR family SO3494 0.38 (± 0.03) transcriptional regulator, PemK family SO40041 0.33 (± 0.01) transcriptional regulator, PemK family SO4025 figM 0.37 (± 0.10) transcriptional regulator, LysR family SO4026 glnD 0.29 (± 0.07) transcriptional regulator, LysR family SO4365 0.27 (± 0.09) transcriptional		•		• • • • • • • • • • • • • • • • • • • •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ирі		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
SO1762 0.42 (± 0.07) transcriptional regulator, AraC/XylS family SO2493 0.42 (± 0.07) transcriptional regulator, TetR family SO3082 sixA 0.41 (± 0.09) phosphohistidine phosphatase SixA SO4567 0.41 (± 0.11) transcriptional regulator, AsnC family SOA0165 0.40 (± 0.06) transcriptional regulator, LysR family SO2455 0.40 (± 0.07) transcriptional regulator, LysR family SO3494 0.38 (± 0.06) transcriptional regulator, TetR family SO3404 0.38 (± 0.03) transcriptional regulator, PemK family SO3254 flgM 0.37 (± 0.10) negative regulator of flagellin synthesis FlgM SO402 0.33 (± 0.07) resplay (± 0.07) transcriptional regulator, LysR family SO402 0.33 (± 0.07) resplay (± 0.07) regulator, LysR family SO402 0.33 (± 0.07) regulator, LysR family SO1626 glnD 0.29 (± 0.07) regulator, DysR family SO1626 glnD 0.28 (± 0.10) regulator, DysR family SO1265 0.27 (± 0.09) transcriptional regulator, Dutative			• • •	, ,
SO2493 $0.42 (\pm 0.07)$ transcriptional regulator, TetR familySO3082sixA $0.41 (\pm 0.09)$ phosphohistidine phosphatase SixASO4567 $0.41 (\pm 0.11)$ transcriptional regulator, AsnC familySOA0165 $0.40 (\pm 0.06)$ transcriptional regulator, LysR familySO2455 $0.40 (\pm 0.07)$ transcriptional regulator, LysR familySO0295 $0.38 (\pm 0.07)$ transcriptional regulator, LysR familySO3494 $0.38 (\pm 0.06)$ transcriptional regulator, PemK familySO3254flgM $0.37 (\pm 0.10)$ negative regulator of flagellin synthesis FlgMSO0402 $0.33 (\pm 0.07)$ transcriptional regulator, LysR familySO0899 $0.33(\pm 0.11)$ transcriptional regulator, LysR familySO1626glnD $0.29 (\pm 0.07)$ regulator of sigma DSO1265 $0.27 (\pm 0.09)$ transcriptional regulator, putativeSO1603 $0.25 (\pm 0.10)$ transcriptional regulator, putativeSO1343rseA $0.23 (\pm 0.05)$ sigma-E factor negative regulatory proteinSO2847 $0.23 (\pm 0.05)$ sigma-E factor negative regulatory proteinSO2847 $0.22 (\pm 0.09)$ transcriptional regulator, LysR familySO3799asnC $0.22 (\pm 0.03)$ transcriptional regulator, GntR familySO1898 $0.20 (\pm 0.08)$ transcriptional regulatory protein TyrR		trpR	•	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				· · · · · · · · · · · · · · · · · · ·
SOA0165 $0.40 (\pm 0.06)$ transcriptional regulator, LysR familySO2455 $0.40 (\pm 0.07)$ transcriptional regulator, LysR familySO0295 $0.38 (\pm 0.07)$ transcriptional regulator, LysR familySO3494 $0.38 (\pm 0.06)$ transcriptional regulator, TetR familySOA0041 $0.38 (\pm 0.03)$ transcriptional regulator, PemK familySO3254flgM $0.37 (\pm 0.10)$ negative regulator of flagellin synthesis FlgMSO0402 $0.33 (\pm 0.07)$ transcriptional regulator, LysR familySO0989 $0.33 (\pm 0.11)$ transcriptional regulator, LysR familySO1626glnD $0.29 (\pm 0.07)$ protein-P-II uridylyltransferaseSO0433rsd $0.28 (\pm 0.10)$ regulator of sigma DSO1265 $0.27 (\pm 0.09)$ transcriptional regulator, putativeSO1603 $0.25 (\pm 0.10)$ transcriptional regulator, TetR familySO4326 $0.24 (\pm 0.06)$ sigma-E factor negative regulatory proteinSO2847 $0.23 (\pm 0.11)$ transcriptional regulator, LysR familySO3799asnC $0.22 (\pm 0.09)$ regulatory protein AsnCSO2282 $0.22 (\pm 0.03)$ transcriptional regulator, GntR familySO1898 $0.20 (\pm 0.08)$ transcriptional regulator, putativeSO1669tyrR $0.17 (\pm 0.04)$ transcriptional regulatory protein TyrR		sixA		• •
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				· · · · · · · · · · · · · · · · · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				•
SO3494 $0.38 (\pm 0.06)$ transcriptional regulator, TetR familySOA0041 $0.38 (\pm 0.03)$ transcriptional regulator, PemK familySO3254flgM $0.37 (\pm 0.10)$ negative regulator of flagellin synthesis FlgMSO0402 $0.33 (\pm 0.07)$ transcriptional regulator, LysR familySO0989 $0.33 (\pm 0.11)$ transcriptional regulator, LysR familySO1626glnD $0.29 (\pm 0.07)$ protein-P-II uridylyltransferaseSO0433rsd $0.28 (\pm 0.10)$ regulator of sigma DSO1265 $0.27 (\pm 0.09)$ transcriptional regulator, putativeSO1603 $0.25 (\pm 0.10)$ transcriptional regulator, putativeSO4326 $0.24 (\pm 0.06)$ transcriptional regulator, TetR familySO1343rseA $0.23 (\pm 0.05)$ sigma-E factor negative regulatory proteinSO2847 $0.23 (\pm 0.11)$ transcriptional regulator, LysR familySO3799asnC $0.22 (\pm 0.09)$ regulatory protein AsnCSO2282 $0.22 (\pm 0.03)$ transcriptional regulator, GntR familySO1898 $0.20 (\pm 0.08)$ transcriptional regulator, putativeSO1669tyrR $0.17 (\pm 0.04)$ transcriptional regulatory protein TyrR			•	• • • • • • • • • • • • • • • • • • • •
SOA0041 $0.38 (\pm 0.03)$ transcriptional regulator, PemK familySO3254flgM $0.37 (\pm 0.10)$ negative regulator of flagellin synthesis FlgMSO0402 $0.33 (\pm 0.07)$ transcriptional regulator, LysR familySO0989 $0.33 (\pm 0.11)$ transcriptional regulator, LysR familySO1626glnD $0.29 (\pm 0.07)$ protein-P-II uridylyltransferaseSO0433rsd $0.28 (\pm 0.10)$ regulator of sigma DSO1265 $0.27 (\pm 0.09)$ transcriptional regulator, putativeSO1603 $0.25 (\pm 0.10)$ transcriptional regulator, putativeSO4326 $0.24 (\pm 0.06)$ sigma-E factor negative regulatory proteinSO1343rseA $0.23 (\pm 0.05)$ sigma-E factor negative regulatory proteinSO2847 $0.23 (\pm 0.11)$ transcriptional regulator, LysR familySO3799asnC $0.22 (\pm 0.09)$ regulatory protein AsnCSO2282 $0.22 (\pm 0.03)$ transcriptional regulator, GntR familySO1898 $0.20 (\pm 0.08)$ transcriptional regulator, putativeSO1669tyrR $0.17 (\pm 0.04)$ transcriptional regulatory protein TyrR				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SO3494		$0.38 (\pm 0.06)$	•
SO0402 $0.33 (\pm 0.07)$ transcriptional regulator, LysR familySO0989 $0.33(\pm 0.11)$ transcriptional regulator, LysR familySO1626glnD $0.29 (\pm 0.07)$ protein-P-II uridylyltransferaseSO0433rsd $0.28 (\pm 0.10)$ regulator of sigma DSO1265 $0.27 (\pm 0.09)$ transcriptional regulator, putativeSO1603 $0.25 (\pm 0.10)$ transcriptional regulator, putativeSO4326 $0.24 (\pm 0.06)$ transcriptional regulator, TetR familySO1343rseA $0.23 (\pm 0.05)$ sigma-E factor negative regulatory proteinSO2847 $0.23 (\pm 0.11)$ transcriptional regulator, LysR familySO3799asnC $0.22 (\pm 0.09)$ regulatory protein AsnCSO2282 $0.22 (\pm 0.03)$ transcriptional regulator, GntR familySO1898 $0.20 (\pm 0.08)$ transcriptional regulator, putativeSO1669tyrR $0.17 (\pm 0.04)$ transcriptional regulatory protein TyrR	SOA0041		0.38 (± 0.03)	•
SO0989 $0.33(\pm 0.11)$ transcriptional regulator, LysR familySO1626glnD $0.29 (\pm 0.07)$ protein-P-II uridylyltransferaseSO0433rsd $0.28 (\pm 0.10)$ regulator of sigma DSO1265 $0.27 (\pm 0.09)$ transcriptional regulator, putativeSO1603 $0.25 (\pm 0.10)$ transcriptional regulator, putativeSO4326 $0.24 (\pm 0.06)$ transcriptional regulator, TetR familySO1343rseA $0.23 (\pm 0.05)$ sigma-E factor negative regulatory proteinSO2847 $0.23 (\pm 0.11)$ transcriptional regulator, LysR familySO3799asnC $0.22 (\pm 0.09)$ regulatory protein AsnCSO2282 $0.22 (\pm 0.03)$ transcriptional regulator, GntR familySO1898 $0.20 (\pm 0.08)$ transcriptional regulator, putativeSO1669tyrR $0.17 (\pm 0.04)$ transcriptional regulatory protein TyrR	SO3254	flgM	0.37 (± 0.10)	
SO1626 glnD $0.29 (\pm 0.07)$ protein-P-II uridylyltransferase SO0433 rsd $0.28 (\pm 0.10)$ regulator of sigma D SO1265 $0.27 (\pm 0.09)$ transcriptional regulator, putative SO1603 $0.25 (\pm 0.10)$ transcriptional regulator, putative SO4326 $0.24 (\pm 0.06)$ transcriptional regulator, TetR family SO1343 rseA $0.23 (\pm 0.05)$ sigma-E factor negative regulatory protein SO2847 $0.23 (\pm 0.11)$ transcriptional regulator, LysR family SO3799 asnC $0.22 (\pm 0.09)$ regulatory protein AsnC SO2282 $0.22 (\pm 0.03)$ transcriptional regulator, GntR family SO1898 $0.20 (\pm 0.08)$ transcriptional regulator, putative SO1669 tyrR $0.17 (\pm 0.04)$ transcriptional regulatory protein TyrR	SO0402		0.33 (± 0.07)	transcriptional regulator, LysR family
SO0433 rsd $0.28 (\pm 0.10)$ regulator of sigma D SO1265 $0.27 (\pm 0.09)$ transcriptional regulator, putative SO1603 $0.25 (\pm 0.10)$ transcriptional regulator, putative SO4326 $0.24 (\pm 0.06)$ transcriptional regulator, TetR family SO1343 rseA $0.23 (\pm 0.05)$ sigma-E factor negative regulatory protein SO2847 $0.23 (\pm 0.11)$ transcriptional regulator, LysR family SO3799 asnC $0.22 (\pm 0.09)$ regulatory protein AsnC SO2282 $0.22 (\pm 0.03)$ transcriptional regulator, GntR family SO1898 $0.20 (\pm 0.08)$ transcriptional regulator, putative SO1669 tyrR $0.17 (\pm 0.04)$ transcriptional regulatory protein TyrR	SO0989		0.33(± 0.11)	transcriptional regulator, LysR family
SO1265 0.27 (± 0.09) transcriptional regulator, putative SO1603 0.25 (± 0.10) transcriptional regulator, putative SO4326 0.24 (± 0.06) transcriptional regulator, TetR family SO1343 rseA 0.23 (± 0.05) sigma-E factor negative regulatory protein SO2847 0.23 (± 0.11) transcriptional regulator, LysR family SO3799 asnC 0.22 (± 0.09) regulatory protein AsnC SO2282 0.22 (± 0.03) transcriptional regulator, GntR family SO1898 0.20 (± 0.08) transcriptional regulator, putative SO1669 tyrR 0.17 (± 0.04) transcriptional regulatory protein TyrR	SO1626	glnD	0.29 (± 0.07)	protein-P-II uridylyltransferase
SO1603 0.25 (\pm 0.10) transcriptional regulator, putative SO4326 0.24 (\pm 0.06) transcriptional regulator, TetR family SO1343 rseA 0.23 (\pm 0.05) sigma-E factor negative regulatory protein SO2847 0.23 (\pm 0.11) transcriptional regulator, LysR family SO3799 asnC 0.22 (\pm 0.09) regulatory protein AsnC SO2282 0.22 (\pm 0.03) transcriptional regulator, GntR family SO1898 0.20 (\pm 0.08) transcriptional regulator, putative SO1669 tyrR 0.17 (\pm 0.04) transcriptional regulatory protein TyrR	SO0433	rsd	0.28 (± 0.10)	regulator of sigma D
SO4326 0.24 (\pm 0.06) transcriptional regulator, TetR family SO1343 rseA 0.23 (\pm 0.05) sigma-E factor negative regulatory protein SO2847 0.23 (\pm 0.11) transcriptional regulator, LysR family SO3799 asnC 0.22 (\pm 0.09) regulatory protein AsnC SO2282 0.22 (\pm 0.03) transcriptional regulator, GntR family SO1898 0.20 (\pm 0.08) transcriptional regulator, putative SO1669 tyrR 0.17 (\pm 0.04) transcriptional regulatory protein TyrR	SO1265		0.27 (± 0.09)	transcriptional regulator, putative
SO1343 rseA 0.23 (\pm 0.05) sigma-E factor negative regulatory protein SO2847 0.23 (\pm 0.11) transcriptional regulator, LysR family SO3799 asnC 0.22 (\pm 0.09) regulatory protein AsnC SO2282 0.22 (\pm 0.03) transcriptional regulator, GntR family SO1898 0.20 (\pm 0.08) transcriptional regulator, putative SO1669 tyrR 0.17 (\pm 0.04) transcriptional regulatory protein TyrR	SO1603		0.25 (± 0.10)	transcriptional regulator, putative
SO2847 0.23 (\pm 0.11) transcriptional regulator, LysR family SO3799 asnC 0.22 (\pm 0.09) regulatory protein AsnC SO2282 0.22 (\pm 0.03) transcriptional regulator, GntR family SO1898 0.20 (\pm 0.08) transcriptional regulator, putative SO1669 tyrR 0.17 (\pm 0.04) transcriptional regulatory protein TyrR	SO4326		0.24 (± 0.06)	transcriptional regulator, TetR family
SO2847 0.23 (\pm 0.11) transcriptional regulator, LysR family SO3799 asnC 0.22 (\pm 0.09) regulatory protein AsnC SO2282 0.22 (\pm 0.03) transcriptional regulator, GntR family SO1898 0.20 (\pm 0.08) transcriptional regulator, putative SO1669 tyrR 0.17 (\pm 0.04) transcriptional regulatory protein TyrR	SO1343	rseA	0.23 (± 0.05)	sigma-E factor negative regulatory protein
SO3799 asnC $0.22 (\pm 0.09)$ regulatory protein AsnC SO2282 $0.22 (\pm 0.03)$ transcriptional regulator, GntR family SO1898 $0.20 (\pm 0.08)$ transcriptional regulator, putative SO1669 tyrR $0.17 (\pm 0.04)$ transcriptional regulatory protein TyrR				•
SO2282 $0.22 (\pm 0.03)$ transcriptional regulator, GntR family SO1898 $0.20 (\pm 0.08)$ transcriptional regulator, putative SO1669 tyrR $0.17 (\pm 0.04)$ transcriptional regulatory protein TyrR		asnC		
SO1898 0.20 (\pm 0.08) transcriptional regulator, putative SO1669 tyrR 0.17 (\pm 0.04) transcriptional regulatory protein TyrR				-
SO1669 tyrR 0.17 (± 0.04) transcriptional regulatory protein TyrR				
		tyrR		
		•	,	• • • • •

TABLE 3.3. (Cont'd) Genes repressed in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO₃.

	Gene	Relative	
Gene ID	name	expression*	COG Annotation
SO1607		0.16 (± 0.04)	transcriptional regulator, LysR family
SO2046		0.15 (± 0.04)	transcriptional regulator, MarR family
SO3684		0.15 (± 0.02)	transcriptional regulator, TetR family
SO3488		0.14 (± 0.02)	transcriptional regulator, AraC/XylS family
SO3660		0.13 (± 0.02)	sigma-54 dependent transcriptional regulator/sensory box protein
SO4312		0.09 (± 0.06)	adenylate cyclase CyaA, putative
SO0443		0.06 (± 0.03)	transcriptional regulator, MerR family
5) Transpo	ort and Bin	ding Proteins	
SO3802		0.20 (± 0.06)	ABC transporter, ATP-binding protein
SO0139	ftn	0.19 (± 0.07)	ferritin
SO4598		0.17 (± 0.07)	heavy metal efflux pump, CzcA family
SO2045		0.11 (± 0.04)	cation efflux family protein
SO0857		$0.08 (\pm 0.03)$	ABC transporter, ATP-binding protein
6) Unknow	n Function	n	
SO2849		0.20 (± 0.03)	acetyltransferase, GNAT family
SO3715		$0.18 (\pm 0.12)$	oxygen-insensitive NAD(P)H nitroreductase
SO0911		$0.15 (\pm 0.14)$	ParA family protein, degenerate
SO2228		0.14 (± 0.07)	CBS domain protein
SO1609	syd	0.14 (± 0.16)	syd protein
SO3382	·	$0.12 (\pm 0.31)$	oxidoreductase, short-chain dehydrogenase/reductase family
SO0698	fsxA	0.12 (± 0.19)	fxsA protein
SO3586		0.12 (± 0.04)	glyoxalase family protein
SO2850		0.11 (± 0.05)	acetyltransferase, GNAT family
7) Protein	Fate	• ,	•
SO4699	prlC	0.20 (± 0.05)	oligopeptidase A
SO2447	•	0.17 (± 0.04)	channel protein, hemolysin III family subfamily
SO3577	clpB	$0.12 (\pm 0.02)$	clpB protein
SO1126	dnaK	0.07 (± 0.02)	chaperone protein DnaK
SO2277	ibpA	$0.03 (\pm 0.03)$	16 kDa heat shock protein A
8) Cellular	-	, ,	·
SO4170		$0.18 (\pm 0.04)$	C-factor, putative
SO3585		0.17 (± 0.06)	azoreductase, putative
SO2754	motY	$0.17 (\pm 0.07)$	sodium-type flagellar protein MotY, authentic frameshift
SO3349		0.13 (± 0.79)	glutathione peroxidase, putative
SO0956	ahpF	0.09 (± 0.05)	alkyl hydroperoxide reductase, F subunit
SO0958	ahpC	$0.08 (\pm 0.05)$	alkyl hydroperoxide reductase, C subunit
SO1158	•	0.07 (± 0.75)	Dps family protein
SO1070	katB	0.05 (± 0.05)	catalase
9) DNA M			
SO3866		0.20 (± 0.04)	site-specific recombinase, phage integrase family
SO3384	phrB	$0.07 (\pm 0.05)$	deoxyribodipyrimidine photolyase
	•	•	etic groups and carriers
SO3348	hemH-2	0.05 (± 0.06)	ferrochelatase

^a The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures of MR-1 grown at 40 mM KNO₃ to that of the anaerobically grown at 1 mM KNO₃ (reference).

The standard deviation was calculated from six data points, which included three independent biological

samples and two technical samples for each biological sample.

DISCUSSION

This study demonstrates that NapA is the sole nitrate reductase in *Shewanella* oneidensis MR-1. The gene content derived from the complete genome sequence of MR-1, the gene expression analyses, and the deletion of the napA gene are all consistent in establishing that this periplasmic nitrate reductase is in fact responsible for the first step in the nitrate reduction pathway of *Shewanella oneidensis* MR-1. The inability of the MR-1 $\Delta napA$ mutant to grow when nitrate was the only electron acceptor demonstrated its role as the sole enzyme responsible for the reduction of nitrate into nitrite in this microorganism.

We observed an increase in the expression of *napA* and *nrfA* with increasing concentrations of nitrate until a plateau was reached. This was also confirmed in the DNA microarray analyses where *napADGH* expression was induced at high concentrations of nitrate (40 mM KNO₃). Expression of *nrfA* did not change under these two conditions as was previously observed in the Q-RT-PCR analysis where its expression reached a maximum at 1 mM nitrate and its level remained constant at higher concentrations. These results indicate that MR-1 does not posses an alternative nitrate/nitrite reductase system for high concentrations of nitrate as is observed in *E. coli* (39). Gene expression studies of *napA* and *narG* in *E. coli* have demonstrated an increase in the expression of *napA* but not *narG* when nitrate is present in concentrations below 1 mM and a repression of *napA* and induction of *narG* when nitrate concentrations are higher than 1 mM nitrate (39). This trend was also observed for the nitrite reductases NrfA and NirB (40). In this case *nrfA* is expressed at low concentrations and repressed at high concentrations of nitrate whilst *nirB* is expressed at high concentrations of nitrate.

Moreover, in E. coli there are two different two-component regulatory systems for the regulation of the expression of nap and nar genes, NarP/NarQ and NarL/NarX. NarP and NarQ activate the expression of the nap and nrf genes when the concentrations of nitrate are below 1 mM (33, 39, 40). When the concentration of nitrate exceeds 1 mM, NarL and NarX repress the *nap* and *nrf* operons and induce the *nar* and *nir* genes. In contrast to E. coli, Shewanella oneidensis MR-1 possesses only homologs for narP and narQ, which explains the expression pattern observed for the nap and nrfA genes in this organism. This is also true for the human pathogen *Haemophilus influenzae*, which colonizes many human body fluids (35). Compared to H. influenzae, Shewanella oneidensis MR-1 has been found in more diverse environments such as sediments, water columns as well as an opportunistic pathogen in humans and aquatic animals (11, 37, 38). These environments, including bodily fluids, are scarce in nitrate, therefore it is advantageous for MR-1 and for any other organism that lives in such habitats to posses a nitrate scavenging system to generate energy for growth. This is a good survival strategy for MR-1 since this microorganism seems to prefer microaerophilic conditions. In aerobic conditions MR-1 cultures form clumps of cells that keep the cultures in a microaerophilic space (38). Since NapA has a very high affinity for nitrate and is much more active in anaerobic conditions, its presence in MR-1 is vital.

The gene expression profile of MR-1 growth at 1 mM nitrate when compared to that at 40 mM nitrate changed dramatically. A high percentage of up-regulated genes belong to the "protein synthesis" functional category, while the number of down-regulated genes in this category is considerably low. This might indicate that there is an increase in the expression of genes necessary for the synthesis of the proteins when the

concentrations of nitrate increase. It might also indicate that at higher concentrations the synthesis of more proteins is necessary. "Transport and binding proteins" and "energy metabolism" are also categories with a high percentage of induced genes. These three categories contain genes that are important for growth and energy generation. Induction of these genes represents an increase in metabolic activity in the cell. Many of the genes in the "transport and binding proteins" category belong to the ABC transporter system which has been associated with the transport of nitrate, sulfate, copper and molybdenum that are important molecules involved in cell growth and energy generation. Changes in the expression of these genes in response to nitrate reduction have been reported previously in bacteria, including MR-1 (3, 5). Genes encoding sulfate transporters and enzymes involved in sulfate metabolism were highly induced. This indicates a need for sulfate due to the increase in metabolic activity, especially in protein synthesis. Genes that belong to the "energy metabolism" category that were up-regulated at 40 mM KNO₃ include genes involved in glycolysis, nitrate reduction, electron transport and synthesis of ATP. This up-regulation suggests that an increase in nitrate reduction by NapA promotes growth and energy generation in MR-1. Induction of genes involved in purine, pyrimidine, nucleoside, nucleotide and amino acid biosynthesis was also observed. This not only indicates an increase in metabolic activity but also might suggest nitrate assimilation in MR-1. Nitrate assimilation has been reported in organisms which possess an assimilatory nitrate reductase, which reduces nitrate into ammonium in the cytoplasm. This ammonium is a precursor for amino acid and nucleotide biosynthesis. Enzymes involved in the conversion of ammonium into organic material present in MR-1 include carbamoyl-phosphate and glutamine synthases. Induction of the genes that encode the

small and the large subunit of the carbamoyl-phosphate synthase were observed at 40 mM nitrate. Repression of the gene encoding glutamine synthase and of other genes involved in its transcription activation glnD, glnB-2, ntrB and ntrC was observed at high concentrations of nitrate. This repression may be caused by the accumulation of some of the metabolites in the synthesis of amino acids. The transcription of the genes encoding the glutamine synthase is halted at high concentrations of glutamine by feedback inhibition. Glutamine is the product of the ATP-dependent amidation reaction of glutamate, which is catalyzed by glutamine synthase. High concentrations of ammonium also inhibit the activation of this enzyme. Nitrate assimilation is an ATP consuming process, which is carefully regulated to avoid unnecessary energy expenditure. In cultures of MR-1 examine in this study, nitrite gets reduced into ammonium, which accumulates in the medium. Similar to Rhodobacter capsulatus, which is capable of assimilating nitrate (5), growth curves of MR-1 in which nitrate, nitrite and ammonium were monitored over time indicated a start of ammonium consumption late in the growth curve. In Rhodobacter capsulatus, when hydroxylamine was supplied to the medium, ammonium assimilation did not occur until hydroxylamine was completely reduced and ammonium accumulated in the medium.

The reduction of nitrate produces intermediates that are highly toxic to the cell.

Nitrite, nitric oxide, hydroxylamine and even ammonium cause cytotoxic effects in many organisms (5, 30). One of the important queries in MR-1 is, how does this microorganism grow on such high concentrations of nitrate? Nitrite, an oxidative-stress causing agent, is produced following the reduction of nitrate. Nitric oxide and hydroxylamine are intermediates that are generated in the reduction of nitrite into ammonium. These

intermediates are generated within the nitrite reductase and remain trapped during the reaction. Studies in bacteria suggest that when high concentrations of these intermediates are generated they are release from the enzyme (30, 31). However, some bacteria posses an enzyme called prismane that reduces hydroxylamine into ammonium detoxifying and reducing oxidative stress in the cell. This enzyme is encoded by the *hcp* gene (SO1363) in MR-1, which is significantly induced at high concentrations of nitrate. There are also a number of up-regulated genes that have been associated with oxidative stress response in MR-1 as well as in other microorganisms (24). In our study there is a shift in the oxidative stress responses when there is an increase in the concentrations of nitrate. Some genes are down-regulated (dmaA-1, dmaB-1, trxAC, katB, hemH-2, phrB, ahpCF, sodB, ohr) and others up-regulated (katG-2, dsbB, uvrA, uvrD) in response to a higher nitrate concentration. The products of these genes protect the cell from DNA damage or convert some of the toxic intermediates in less toxic forms. There is also induction of 15 genes that are involved in the activation of prophage LambdaSo, which is one of the three prophages described in MR-1. Activation of LambdaSo has been previously described in MR-1 when subjected to oxidative stress conditions (24). This prophage can cause lysis, affecting cell growth. In cultures of MR-1 where the concentrations of nitrate exceeded 5 mM, growth rate decreased and reached a plateau with increasing nitrate concentrations. The oxidative stress and the activation of this prophage might be causing an inhibitory effect on cell growth.

This study provides a better understanding of the nitrate reduction pathway of MR-1 and also gives a global profile of its genetic expression in response to an increase in nitrate concentration. We conclude that NapA is the sole enzyme responsible for

nitrate reduction in MR-1. Even though NapA is a periplasmic protein, our study suggests that there is energy generation in this process. Since CymA is associated with the membrane and it is required for nitrate and nitrite reduction, it is possible that it can be generating a membrane potential that provides energy for the cell (28, 29). Also, MR-1 has the largest number of cytochromes among bacteria, which play a key role in electron transport in various anaerobic processes. This might also be a very important mechanism in MR-1 to generate energy from many other processes since many of the reductases (including the metal reductases) present are periplasmic. We also suggest that nitrate might be assimilated, however more studies on this subject need to be performed. There are also striking similarities in the genetic machinery and nitrate reduction pathway of MR-1 when compared to some pathogenic bacteria. These make MR-1 a very good model to study and understand the mechanisms of these microorganisms to survive in their natural environments.

REFERENCES

- 1. Alexeyev, M.F. 1999. The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques. 26:824-6, 828.
- 2. Bedzyk, L., T. Wang, and R. W. Ye. 1999. The periplasmic nitrate reductase in *Pseudomonas* sp. Strain G-179 catalyzes the first step of denitrification. J. Bacteriol. 181:2802-2806.
- 3. Beliaev, A.S., D.K. Thompson, T. Khare, H. Lim, C. C. Brandt, G. Li, A.E. Murray, J.F. Heidelberg, C.S. Giometti, J. YatesIII, K.H. Nealson, J.M. Tiedje, and J. Zhou. 2002. Gene and protein expression profiles of *Shewanella oneidensis* during anaerobic growth with different electron acceptors. OMICS 6:39-60.
- 4. **Bustin, S.A.** 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. **25:**169-93.
- Cabello, P., C. Pino, M.F. Olmo-Mira, F. Castillo, M.D. Roldán, and C. Moreno-Vivián. 2004. Hydroxylamine Assimilation by Rhodobacter capsulatus E1F1. J. Biol. Chem. 279:45485-45494.
- 6. Cole, J.E. 1996. Nitrate reduction to ammonium by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol. Lett. 136:1-11.
- 7. **De Windt, W., N. Boon, S.D. Siciliano, and W. Verstraete.** 2003. Cell density related H₂ consumption in relation to anoxic Fe(0) corrosion and precipitation of corrosion products by *Shewanella oneidensis* MR-1. Environ. Microbiol. **5:**1192-1202.
- 8. **Dehio, C., and M. Meyer.** 1997. Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in *Bartonella henselae* following conjugal plasmid transfer from *Escherichia coli*. J. Bacteriol. 179:538-540.
- 9. Gao, H., Y. Wang, X. Liu, T. Yan, L. Wu, E. Alm, A. Arkin, D.K. Thompson, and J. Zhou. 2004. Global transcriptome analysis of the heat shock response of Shewanella oneidensis. J. Bacteriol. 186:7796-803.
- 10. Hedge, P., R. Qi, K. Abernathy, C. Gay, S. Dharap, R. Gaspard, J. Earlehughes, E. Snesrud, N. Lee, and J. Quackenbush. 2000. A concise guide to cDNA microarray analysis. BioTechniques. 29:548-562.

- 11. Heidelberg, J.F., I.T. Paulsen, K.E. Nelson, E.J. Gaidos, W.C. Nelson, T.D. Read, J.A. Eisen, R. Seshadri, N. Ward, B. Methe, R.A. Clayton, T. Meyer, A. Tsapin, J. Scott, M Beanan, L. Brinkac, S. Daugherty, R.T. DeBoy, R.J. Dodson, A.S. Durkin, D.H. Haft, J.F. Kolonay, R. Madupu, J.D. Peterson, L.A. Umayam, O. White, A.M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T.R. Utterback, L.A. McDonald, T.V. Feldblyum, H.O. Smith, J.C. Venter, K.H. Nealson, and C.M. Fraser. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis MR-1. Nat. Biotechnol. 20:1118-1123.
- 12. Holden, M., S. Bentley, M. Sebaihia, N. Thomson, A. Cerdeño-Tárraga, and J. Parkhill. 2003. The magnificent seven. Trends Microbiol. 11:12-4.
- 13. Krause, B. and K.H. Nealson. 1997. Physiology and enzymology involved in denitrification by *Shewanella putrefaciens*. Appl. Environ. Microbiol. 63:2613-2618.
- 14. Marx, C.J., and M.E. Lidstrom. 2002. Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques. 33:1062-1067.
- 15. Murray, A.E., D. Lies, G. Li, K.H. Nealson, J. Zhou, and J.M. Tiedje. 2001. DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc. Natl. Acad. Sci. 98:9853-9858.
- 16. Myers, C.R., and K.H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319-1321.
- 17. Myers, C.R., and K.H. Nealson. 1990. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in *Shewanella putrefaciens* MR-1. J. Bacteriol. 172:6232-6238.
- 18. Myers, C.R., and J.M. Myers. 1997. Cloning and sequencing of cymA, a gene encoding a tetraheme cytochrome c required for reduction of Iron (III), fumarate, and nitrate by Shewanella oneidensis MR-1. J. Bacteriol. 179:1143-1152.
- 19. Myers, J.M., and C.R. Myers. 2000. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of *Shewanella putrefaciens* MR-1 with normal levels of menaquinone. J. Bacteriol. 182:67-75.
- 20. Nelson, D.W. 1983. Determination of ammonium in KCl extracts of soils by the salicylate method. Commun. In Soil Sci. Plant Anal. 14:1051-1062.

- 21. Potter, L.C., and J.E. Cole. 1999. Essential roles for the products of the napABCD genes, but not napFGH, in periplasmic nitrate reduction by Escherichia coli K-12. J. Biochem. 344:69-76.
- 22. Potter, L.C., P. Millington, L. Griffiths, G.H. Thomas, and J.E. Cole. 1999. Competition between *Escherichia coli* strains expressing either a periplasmic nitrate reductase or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth? J. Biochem. 344:77-84.
- 23. Potter, L., H. Angove, D. Richardson, and J. Cole. 2001. Nitrate reduction in the periplasm of gram-negative bacteria. Adv. Microb. Physiol. 45:51-112.
- 24. Qiu, X., G.W. Sundin, L. Wu, J. Zhou and J.M. Tiedje. 2005. Comparative analysis of differentially expressed genes in *Shewanella oneidensis* MR-1 following exposure to UVC, UVB and UVA radiation. J. Bacetriol. 187:3556-3564.
- 25. Roldán, M.D., F. Reyes, C. Moreno-Vivián, and F. Castillo. 1994. Chlorate and nitrate reduction in the phototrophic bacteria *Rhodobacter capsulatus* and *Rhodobacter sphaeroides*. Curr. Microbiol. 29: 241-245.
- 26. Sambrook, J., and D.W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Press, Cold Spring Harbor, NY.
- 27. Schroeder, R.G., L.M. Peterson, and R.D. Fleischmann. 2002. Improved quantitation and reproducibility in *Mycobacterium tuberculosis* DNA microarrays. J. Mol. Microbiol. Biotechnol. 4:123-126.
- 28. Schwalb, C., S.K. Chapman, and G.A. Reid. 2002. The membrane-bound tetrahaem c-type cytochrome CymA interacts directly with the soluble fumarate reductase in *Shewanella*. Biochem, Soc. Trans. 30:658-662.
- 29. Schwalb, C., S.K. Chapman, and G.A. Reid. 2003. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in *Shewanella oneidensis*. Biochemistry. 42:9491-9497.
- 30. Simon, J. 2002. Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS. Microbiol. Rev. 26:285-309.
- 31. Simon, J., O. Einsle, P.M. Kroneck, and W.G. Zumft. 2004. The unprecedented nos gene cluster of *Wolinella succinogenes* encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS. Lett. 569:7-12.

- 32. Stewart, V., Y. Lu, and A.J. Darwin. 2002. Periplasmic nitrate reductase (NapABC enzyme) supports anaerobic respiration by *Escherichia coli* K-12. J. Bacteriol. 184:1314-1323.
- 33. Stewart, V., P.J. Bledsoe, and S.B. Williams. 2003. Dual overlapping promoters control *napF* (periplasmic nitrate reductase) operon expression in *Escherichia coli* K-12. J. Bacteriol. **185**:5862-70.
- 34. Stolz, J.F., and P. Basu. 2002. Evolution of nitrate reductase: molecular and structural variations on a common function. Chembiochem. 3:198-206.
- 35. Tatusov, R.L., A.R. Mushegian, P. Bork, N.P. Brown, W.S. Hayes, M. Borodovsky, K.E. Rudd, and E.V. Koonin. 1996. Metabolism and evolution of *Haemophilus influenzae* deduced from a whole-genome comparison with *Escherichia coli*. Curr. Biol. 6:279-91.
- 36. Thormann, K.M., R.M. Saville, S. Shukla, and A.M. Spormann. 2005. Induction of rapid detachment in *Shewanella oneidensis* MR-1 biofilms. J. Bacteriol. 187:1014-21.
- 37. **Tiedje, J.M.** 2002. *Shewanella*-the environmentally versatile genome. Nat. Biotechnol. **20:**1093-4.
- 38. Venkateswaran, K., D.P. Moser, M.E. Dollhopf, D.P. Lies, D.A. Saffarini, B.J. MacGregor, D.B. Ringelberg, D.C. White, M. Nishijima, H. Sano, J. Burghardt, E. Stackebrandt, and K.H. Nealson. 1999. Polyphasic taxonomy of the genus *Shewanella* and description of *Shewanella oneidensis* sp. Nov. Intl. J. Syst. Bacteriol. 49:705-724.
- 39. Wang, H., C.-P. Tseng, and R.P. Gunsalus. 1999. The *napF* and *napG* nitrate reductase operons in *Escherichia coli* are differently expressed in response to submicromolar concentrations of nitrate but not nitrite. J. Bacteriol. 181:5303-5308.
- 40. Wang, H., and R.P. Gonsalus. 2000. The *nrfA* and *nirB* nitrite reductase operons in *Escherichia coli* are expressed differently in response to nitrate than to nitrite. J. Bacteriol. 182:5813-5822.
- 41. Wolin, E.A., M.J. Wolin, and R.S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238:2882-6.

CHAPTER IV

Role of EtrA in the Regulation of the Nitrate Reduction Pathway in Shewanella oneidensis MR-1

ABSTRACT

EtrA is an Escherichia coli Fnr homolog, which has been identified as a possible global regulator of the anaerobic metabolism of MR-1. EtrA shares 50.8% and 73.6% amino acid sequence identity with the oxygen-sensing regulator in E. coli, Fnr, and with the Anr (anaerobic regulator of arginine deaminase and nitrate reductase regulator) protein of *Pseudomonas aeruginosa*, respectively. This similarity suggests an oxygen sensing regulatory role for EtrA in MR-1. Physiological and genetic expression analyses of a S. oneidensis MR-1 etrA knockout strain (EtrA7-1) indicates a regulatory role of EtrA in the expression of genes likely involved in nitrate reduction, specifically the nap genes, nrfA, cymA and hcp, and in other anaerobic metabolism processes. This was concluded after detecting a significant decrease in the expression of these genes in EtrA7-1 relative to the wild type. However, the nitrate reduction activity was not shut down in the mutant, suggesting the existence of other regulator(s) involved in the regulation of this process. Evidence for negative regulation of putative genes related to aerobic metabolism was also obtained. A starvation genetic response was observed for this mutant and the effects on its growth were examined. A significant decrease in the growth of the mutant was observed when compared to that of the wild type. During this period, the cells entered a state of prophage activation possibly in response to stressful growth conditions (starvation and oxidative stress) as a result of absence of EtrA.

INTRODUCTION

The regulatory mechanisms that control the bacterial anaerobic metabolism have been of interest in Shewanella oneidensis MR-1 and other microorganisms (3, 26, 37, 38, 45, 47). In Escherichia coli, for example, the transition from aerobic to anaerobic conditions is mainly regulated by Fnr (fumarate-nitrate reduction regulatory protein) and by the two-component regulatory system ArcAB (aerobic respiratory control) (39, 44). This regulation occurs at the transcriptional level. Recently a genetic expression study in E. coli K12 indicated that one-third of its 4,290 genes were differentially expressed during aerobic versus anaerobic growth. Among the differentially expressed genes, 712 (49%) genes were directly or indirectly affected by Fnr. Fnr possesses a [4Fe-4S]²⁺ cluster that acts as a sensory domain for oxygen (8). When oxygen levels increase, a twostep reaction transformation occurs where O₂ reacts with the cluster and transforms it into a [3Fe-4S]¹⁺ cluster. The second step is a non-redox reaction in which the [3Fe-4S]¹⁺ is converted into a [2Fe-2S]²⁺ cluster. This transformation apparently changes the conformation of the protein impeding its binding to DNA, which in turns affects the transcription of the genes it regulates.

The regulation of the *nap* and *nrf* genes has been studied in detailed in *Escherichia coli* (7, 9, 10, 25, 39, 45). Mutational studies have revealed the direct participation of Fnr and of two additional two-component regulatory systems NarL/NarX and NarP/NarQ in the regulation of the expression of the *nap* and *nrf* genes. In *S. oneidensis* MR-1, there are homologues for *narQ* and *narP* but not for *narX* or *narL*. In *E. coli*, NarP enhances the expression of the *nap* and *nrf* genes, while NarL acts as a negative regulator at high concentrations of nitrate (45).

In contrast to E. coli, the regulation of the nitrate reduction pathway of MR-1 has not been studied in depth. Mutational studies in MR-1 have identified two possible regulators for the nitrate reduction pathway, EtrA (electron transport regulator protein) and CRP (cyclic AMP receptor protein) (37, 38). EtrA is an Fnr homolog that shares 50.8% and 73.6% of amino acid sequence identity with Fnr (fumarate-nitrate reduction regulatory protein) in Escherichia coli and Anr (anaerobic regulator of arginine deaminase and nitrate reductase) in *Pseudomonas aeruginosa*, respectively. This high degree of similarity suggests a potential for EtrA to regulate metabolic activities by sensing oxygen-limiting conditions. Despite the lack of physiological evidence to support a regulatory role of EtrA in the anaerobic metabolism of MR-1 (26), a genetic expression study using a partial S. oneidensis MR-1 DNA microarray suggested an involvement of EtrA in the regulation of proteins associated in aerobic and anaerobic metabolism (3). This study compared the growth of Shewanella oneidensis MR-1 DSP10 strain (a rifampicin spontaneous mutant) with a DSP10 etrA deletion mutant. The results suggested a negative regulation in the expression of genes related to aerobic metabolism and a positive regulation in the expression of genes associated with anaerobic metabolism by EtrA, as it has been observed for Fnr in E. coli (39).

The study of Shewanella oneidensis MR-1 has recently increased due to its potential as a bioremediator (19, 20, 46), which also motivated support for a genomic sequencing effort. Bioremediation is a challenging but cost-effective procedure. A variety of strategies have been developed to enhance the effectiveness of the inocula in the environment and starvation is one of these. It has been observed that cells that have been exposed to long periods of nutrient and energy limitation express proteins that protect

them against stressful growth conditions. Thus, these cells are pre-adapted to survive the harsh conditions in the environment (16). Starvation has been studied in a few species of the *Shewanella* genus (2, 6, 16), however to our knowledge there is not much information regarding the cultivation of *S. oneidensis* MR-1 in starvation conditions.

To demonstrate the function of EtrA, we generated a gene-deletion mutant in a wild type background. Previous experimentation in *etrA* mutant strains are complicated by rifampicin resistance in the host strain which modifies the electron transport function of the cell membrane. In this study, genetic expression of an *etrA* knockout strain (EtrA7-1) under anaerobic conditions with nitrate as the sole electron acceptor was compared with that of the wild type using a complete *S. oneidensis* MR-1 genome array. The genetic expression pattern of the anaerobic growth of the EtrA7-1 was also examined at a high and a low concentration of nitrate. The genetic expression profile of EtrA7-1 indicates a dramatic starvation response at the transcriptional level. The physiological and genetic analyses of EtrA7-1 suggest an involvement of EtrA in the regulation of the expression of the *nap* operon, the *cymA* and the *nrfA* genes. Regulation of other genes associated with energy metabolism is suggested and these results were compared with the previous findings of Beliaev et al., 2002 done in the DSP10 host.

MATERIAL AND METHODS

Bacterial strains and growth conditions. The bacterial strains, plasmids and primers used in this study are presented in TABLE 4.1. Cultures of Shewanella oneidensis MR-1, Shewanella oneidensis MR-1 ΔetrA, Shewanella oneidensis MR-1 ΔetrA complement

TABLE 4.1. Bacteria, plasmids, and primers used in this study.

Strain, plasmid, primer or probe	Description or nucleotide sequence ^{a,b}	Source, reference or relative position of primer or probe
Bacterial Strains		
E. coli β2155	Diaminopimelic acid auxothroph used for cloning and conjugation	12
S. oneidensis		
MR-1	Lake Oneida, N.Y., sediment	33
EtrA7-1	etrA gene deletion derived from MR-1	This study
EtrA7-1 complement	etrA deletion mutant complemented with the etrA gene cloned into pCM62	This study
EtrA7-1 with pCM62	etrA deletion mutant transformed with the pCM62 as a negative control for complementation	This study
Plasmids		
pCM62	Cloning vector	28
pCM157	Broad-host-range cre expression vector	27
pCM184	Broad-host-range allelic exchange vector	27
pCCG195	pCM184 with etrA upstream flank	This study
pCCG196	pCCG195 with etrA downstream flank	This study
pKNOCK-Gm	Broad-host-range allelic exchange vector	1
pCCG02	pKNOCK-Gm with etrA flanking regions separated by two loxP sites flanking a kanamycin resistance gene	This study
pCCG02c	pCM62 with MR-1 putative etrA gene	This study
Primers ^c		
etrAN Fwd	GCCGCGGTCATGTCGGTTCTCAAGT	CAT Start codon
etrAN Rev	C <u>GAGCTC</u> CGACAGCTATCTGTTAGTCT	503 nt upstream ^d the start codon
etrAC Fwd	C <u>GAATTC</u> AAATCACCGCTTTTAACTTG	493 nt downstream the stop codon
etrAC Rev	GCATATGCCAGATAAATCACACCTTTT	TAA Stop codon
etrAScreenout Fwd	AATTCTTCAGGCATTTGACTCG	1188 nt downstream the stop codon
etrAScreenout	GGCCGTATCTTGAGTTATACCC	559 nt upstream start
Rev		codon
etrAcomp Fwd	GGATCC AGGTGTGAT TTA TCTGGCG	TTA Stop codon
etrAcomp Rev	<u>GAATTC</u> CCGACATGACAATAGAGCAGA	ATG Start codon

^a The sequence for the primers is written from the 5'end to the 3'end.

b Primers were designed using putative gene sequences of S. oneidensis MR-1.

^c For primer sequences, the restriction sites incorporated are underlined. CATATG, NdeI; GAATTC, EcoRI; GAGCTC, SacI; CCGCGG, SacII; GGATCC, BamHI.

d Even though the etrA gene is in the opposite direction in the genome, the sequence at the right end of the start codon will be denominated as upstream and the one at the left side of the stop codon as downstream.

and Shewanella oneidensis MR-1 harboring pCM62 (as the negative control for complementation) were incubated at 30°C after inoculation in Modified M1 minimal medium (32) with no NH₄Cl to avoid interference with chemical analyses. HEPES (pH 7.2) was added to buffer the medium at a 50 mM final concentration. The medium was supplemented with 20 mM lactate. KNO₃ was added as the electron acceptor in concentrations specified below. The medium prepared for the RNA extractions was degassed by boiling, purged with helium and transferred to 250 ml serum bottles. The cultures used for growth curve determinations were performed in 30 ml Balch tubes. The serum bottles and tubes were closed with butyl black stoppers to avoid oxygenation of the medium. The medium was autoclaved and 0.1 ml of Wolfe's vitamin solution (52) was added by injection with a sterile syringe. The medium was inoculated by injection with a 1% inoculum from a 12 h aerobic culture in M1 medium, which originated from an overnight starting culture in aerobic M1 medium, as well. Incubation was performed at 30°C without shaking. Negative controls (i) without inoculation and (ii) medium without the electron acceptors but inoculated, were run in parallel with all growth and gene expression experiments.

Cultures of *Escherichia coli* β2155 (auxotroph of diaminopimelic acid) were grown in Luria-Bertani (LB) medium supplemented with 100 ug/ml of diaminopimelic acid (DAP). These cultures were incubated at 37°C. *Shewanella oneidensis* MR-1 was cultivated in LB medium and incubated at 30°C during the mutagenesis process. Antibiotics for *E.coli* were prepared and added as described elsewhere (40). The antibiotics used for the selection of MR-1 positive transformants were added in the

following concentrations: 25 ug/ml of kanamycin, 7.5 ug/ml of gentamycin, and 10 ug/ml tetracycline.

RNA extractions. To compare the gene expression profile of the wild type with that of the EtrA7-1, total RNA was extracted from cultures of S. oneidensis MR-1 (OD600 nm 0.03-0.05) and EtrA7-1 (OD_{600 nm} 0.012-0.015) grown in triplicate as described above. The wild type was grown at 2 mM KNO₃, while EtrA7-1 was inoculated in 1, 2 and 40 mM KNO₃ media. Cells were collected at mid-log phase and concentrated by centrifuging at 4°C for 30 min at 7,500 rpm. The pellets were washed with 1 ml of an icecold 1X DEPC-treated PBS solution (40). The RNA was extracted with The RNAwiz Solution following the instructions of the manufacturer (Ambion, Inc.). The RNA extraction was followed by an isopropanol precipitation (40) and its resuspension in the RNA storage solution (Ambion, Inc.). These samples were treated with RNase-free DNaseI (Roche) to eliminate residual DNA. The samples were purified by phenol, phenol:chloroform (1:1) and chloroform extractions, and stored in ethanol at -80°C until ready for use. Quality of the RNA was observed using the RNA 6000 Pico LabChip kit and the 2100 Bioanalyzer (Agilent Technologies). The RNA concentration was determined with OD measurements at 260 nm using a Varian Cary 50 BIO UV-Vis spectrophotometer (Varian, Zug, Switzerland).

etrA deletion mutagenesis. Molecular procedures such as genomic and plasmid purifications, restriction digestions, sticky ends repair, ligations and electroporations were performed as previously described (40). Primers for PCR reactions (TABLE 4.1) were

designed using the Vector NTI® software (InforMax, Inc.) and synthesized at Integrated DNA Technologies (www.idtdna.com).

a) etrA allelic exchange vector generation. The MR-1 etrA flanking regions were cloned into the broad-host-range vector pCM184. This vector was used to replace the etrA gene in MR-1 with a kanamycin cassette by homologous recombination. The kanamycin cassette in pCM184 is flanked by two loxP sites, which are in turn were flanked by two multiple cloning sites (MCS) (27). The primers etrAN Fwd (SacII) and etrAN Rev (SacI) were used to amplify the region upstream of the etrA gene start codon while the etrAC Fwd (EcoRI) and napAC Rev (NdeI) amplified the region downstream of the stop codon. The product of these reactions was approximately 500 bp each, to ensure good efficiency of recombination (27). Each primer had a restriction site linker at the 5'end for an enzyme that was chosen using the pCM184 MCS as a reference for directional cloning of the fragments. These two fragments were cloned individually into pCM184 and transformed into E. coli B2155 electrocompetent cells by electroporation. The positive transformants were selected by inoculating on LB agar supplemented with kanamycin and DAP. The colonies were screened using the primers used to amplify each fragment.

The pCCG196 vector (pCM184 with the *etr*A flanking regions) was replicating independently in MR-1 due to the presence of a ColE1 origin present in pCM184, and therefore in pCCG196. To generate a suicide vector for MR-1, pCCG196 was digested with EcoRI and SacI. This reaction excises the kanamycin cassette with the *loxP* sites and the N and C fragments (a fragment of approximately 2.5 kbp) to further clone it into pKNOCK-Gm (1) for the generation of pCCG02. The pKNOCK-Gm broad-host-range

vector has a gentamycin resistance gene and a R6K origin, which needs a π protein in order to be propagated. Since this protein is not present in MR-1, this plasmid made a good suicide vector. To clone the fragment excised from pCCG186 into pKNOCK-Gm, this vector was digested with SmaI, which is a blunt end cutter and the plasmid was dephosphorylated with calf intestinal phosphatase to avoid self-ligation. The sticky ends product of the digestion of the insert with EcoRI and SacI were repaired using T4 DNA polymerase. These reactions were gel purified and a vector:insert ratio of 1:16 was used for the ligation reaction. Electroporation and screening of the transformants was performed as described above.

b) etrA allelic exchange vector transfer into Shewanella oneidensis MR-1.

pCCG02 was transformed into MR-1 by conjugation (protocol from Margie Romine,
Pacific Northwest National Laboratory). The E. coli β2155 harboring pCCG02 was
inoculated in LB liquid media supplemented with 100 ug/ml of DAP and 50 ug/ml of
kanamycin. Overnight cultures of MR-1 and E. coli β2155 harboring pCCG02 were
mixed in ratios of 1:2. This mixture was then concentrated by centrifugation and the
supernatant was discarded. The conjugation mixtures were spotted on an LB plate with
DAP and incubated at room temperature for 12 to 16 h. Controls were spotted on
individual plates. After incubation, the spotted cultures were scrapped and resuspended in
1 mL of 1X Phosphate-Saline Buffer (PBS) (40). Two 10-fold serial dilutions were
prepared and plated on LB plates with 25 ug/mL of kanamycin and no DAP to avoid
growth of the E.coli β2155. Selection of positive transformants was performed by
screening on LB plates with kanamycin and LB plates with kanamycin and gentamycin.
Positive MR-1 etrA deletion mutants were expected to be resistant to kanamycin and

susceptible to gentamycin. Colonies with this phenotype were screened by PCR using etrAScreenout Fwd and etrAScreenout Rev which anneal approximately 700 bp downstream and 56 bp upstream from the *etrA* flanking regions included in pCCG02, respectively. This screening ensures that the recombination occurred in the targeted area.

- c) Removal of kanamycin cassette. The two *loxP* sites flanking the kanamycin cassette are recognition sites for Cre recombinase. This recombinase excises the region inside the *loxP* sites by recombination leaving one of the *loxP* sites. pCM157 is a *cre* gene expression vector (27) which was electroporated into *E.coli* β2155. This vector was transformed into *Shewanella oneidensis* MR-1 Δ*etrA* Kan^r by conjugation as described above. Colonies susceptible to kanamycin and resistant to tetracycline were selected as positive transformants. These were screened by PCR using etrAScreenout primers to confirm the loss of the kanamycin cassette.
- d) pCM157 curation from S. oneidensis MR-1 ΔetrA. Cultures of MR-1 ΔetrA (Tet Kans) were transferred three times on LB liquid media with no antibiotics and then screened for tetracycline susceptibility on LB agar. This phenotype indicates the loss of the pCM157 plasmid. Colonies were transferred and screened until the correct phenotype was obtained. Colonies susceptible to kanamycin and tetracycline were diagnosed by PCR with the etrAScreenout primers and using primers targeting the inside region of the MR-1 etrA gene (etrAcomp Fwd and etrAcomp Rev). DNA sequencing performed at the Genomics Technical Support Facility at Michigan State University confirmed the deletion. The etrAC Fwd was used to sequence the upstream region from the loxP site and the etrAN Rev for the sequence downstream. These two sequences were assembled into one sequence using Vector NTI Suite 8.0 software.

AetrA complement construct. Plasmid pCM62 was used as the vector for the expression of the etrA gene in one of the etrA knockout strains obtained called EtrA7-1. The etrA expression vector was called pCCG02c. The etrA gene was amplified from S. oneidensis MR-1 genomic DNA using the etrAcomp Fwd and etrAcomp Rev. The amplicon was double digested with BamHI and EcoRI, which were the restriction sites linked to the 5'end of etrAcomp Fwd and etrAcomp Rev, respectively. The pCM62 plasmid was also double digested with BamHI and EcoRI. The products of these digestion reactions were gel purified and the vector:insert ratio was 1:3. Ligation, electroporation into E.coli β2155 and conjugation into MR-1 was performed as described above. The vector pCM62 was transferred to MR-1 by conjugation. This strain was used as a control for the complementation analyses to check for any effects caused due to its presence. Antibiotic selection of positive transformants was performed by streaking on LB plates with tetracycline. Tetracycline-resistant colonies were diagnosed by PCR using the etrAcomp primers and subsequently sequenced to verify the deletion.

Growth comparisons of Shewanella oneidensis MR-1 and EtrA7-1. Cultures of the wild type, EtrA7-1, EtrA7-1 complement and EtrA7-1 harboring pCM62 were grown anaerobically with 3 mM KNO₃ in M1 minimal medium as described above. Growth was monitored constantly by OD measurements at 600 nm. Samples from each culture were collected throughout the incubation period for determination of nitrate, nitrite and ammonium concentrations by a Lachat QuickChem Automated Flow Injection Ion Analyzer following the Copperized Cadmium Reduction Method as in QuickChem Method No. 10-107-04-1-A (Lachat Instruments, 1988) at the Soil Testing Lab at

Michigan State University. The ammonium analysis was performed by the salicylate colorimetric method (34).

Gene expression analyses of EtrA7-1. A Shewanella oneidensis MR-1 complete genome microarray containing a total of 4197 PCR amplicons and 451 oligonucleotides representing individual open reading frames (15) was used to examine the global genetic expression of EtrA7-1 under different growth conditions. Gene expression profiles of anaerobic cultures of the wild type S. oneidensis MR-1 and EtrA7-1 grown at 2 mM nitrate were compared. Also, the gene expression pattern of MR-1 $\Delta etrA$ grown at a low (1 mM KNO₃) concentration of nitrate was compared to that at a high (40 mM KNO₃) concentration. cDNA preparation and labeling were performed as previously described (41) using a 2:3 ratio of 5-(3-aminoallyl)-dUTP and dTTP. Hybridization and posthybridization washes were done as described elsewhere (18). Three biological replicates per treatment were used for the hybridization of six microarray slides including technical duplicates (dye-swap) per experiment. The slides were scanned using an Axon 4000B scanner (Axon Instruments, Inc.). The data analysis was performed using the GeneSpring 6.0 software (Silicon Genetics). The data was normalized per chip and per gene (Lowess Normalization) and the spots with less than 55% of pixels greater than background plus two standard deviations were eliminated from the analyses (30). The data was filtered using the Benjamini and Hochberg false discovery rate with 95% confidence and only those genes with a >2-fold change in magnitude were considered significant.

RESULTS

etrA deletion mutants were diagnosed by two different PCR reactions (FIG. 4.1). The primers used for the first reaction targeted the inside region of the gene and as expected, no amplification was observed when using the DNA from the MR-1 etrA deletion mutants as a template (FIG. 4.1; lanes 1-6). In lane 8, where the DNA of the wild type was the template, there was amplification of a band of approximately 750bp (expected size for the PCR product using the etrAcomp primers). The second diagnostic reaction included the etrAScreenout primers that should generate PCR products of approximately 1.75 kb and 2.5 kb when the DNA of the MR-1 Δ etrA and the wild type are used as the templates, respectively. This is shown in lanes 9-14 for the MR-1 Δ etrA mutants and lane 16 for the wild type. The product of this last reaction was used as the template for sequencing using the etrAC Fwd and the etrAN Rev primers (FIG. 4.2). This sequence shows the replacement of the gene with the loxP site residual and confirms the complete deletion of the etrA gene from S. oneidensis MR-1 genome.

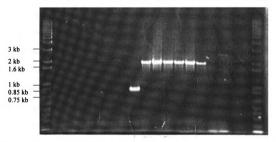


FIG. 4.1. etrA gene deletion confirmation by PCR. This is a 1% agarose gel 1X TAE which has the PCR reactions to confirm the MR-1 AetrA mutants. Lanes labeled as M are for 1 Kb plus DNA ladder (Invitrogen Life Technologies). Lanes 1-8 correspond to PCR screening with the etrAcomp primers. Lanes 9-16 correspond to PCR screening with the etrAScreenout primers. Sample order: lanes 1 and 9, EtrA7-1; lanes 2 and 10, EtrA14-1; lanes 3 and 11, EtrA15-1; lanes 4 and 12, EtrA15-2; lanes 5 and 13, EtrA55-3; lanes 6 and 14, EtrA55-7; lanes 7 and 15, negative controls (no DNA); lanes 8 and 16, MR-1 wild type.

- 1 caategeatg gttaacaatg ettteaaaeg gaegattatg eeaaatgaet tgagtateaa 61 tgttgagtcc taggtgattg taggggggga gtagatcttg gatccacgcc acacgctgat 121 caatcacace ttggcgcate gettegeget ettggetega taaaattgaa gteattteat 181 aggagaagte aaatattgag agaaacacag teacatggge gttactttta etggeeaagg 241 taacageteg ggegagagea acetgatttt etgtegtggg ategacaact aceagtattt 301 tttgataatc cttcatagca tgttccttta gtcgtaggct catgtttatc atgagccttt 361 ggcaattagc tgtattgttc tagatcaaaa ctcttttcaa aaccgatgcc tagcgtaaag 421 cataaacgct aaaaggtgtg atttatctgg catatggcgg ccgcataact tcgtatagca 481 tacattatac gaagttatgg atccagctta tcgataccgc ggtcatgtcg gttctcaagt 541 taatccactg cagccatgtt aaaccaattc attcgcttgg gctagtttag ctgcgacagg 601 gcgatatata aagtttggcc accaaagacg attaatagta agcccactca ataatctaac 661 ggttttttgt tgtacccaat tggctaaacg ctttgctgcc acacgccagc actaagtagc 721 geogggagag tecetaaace aaaggegage ataateaagg egeettgget ggeagaacet 781 geogecacag accaagttaa ggtgetatat accagteeac agggeageca tecceatate 841 aatccagcgg tgatggcttg cattggcgtg gtgatcggca caagacgctg ggctatgggt 901 tttaaataac gccacaacac ttggccgagg cgttcaattt gtactattcc gacccaaatt 961 ttagcaatgt ataaacctgt cgcgatcatc atgat
- FIG. 4.2. DNA sequence of the *etrA* deletion in MR-1. This sequence was assembled using vector NTI Suite 8.0 software. The assembly included the sequence upstream the *etrA* gene and the one downstream using primers etrAScreenout Fwd and etrAScreenout Rev, respectively. The sequences underlined represent the stop (left side) and the start codon sequences of the *etrA* gene. The sequence in boldface corresponds to the *loxP* residual.

Growth comparisons of Shewanella oneidensis MR-1 and EtrA7-1. A growth curve comparing the wild type with EtrA7-1 (the MR-1 $\Delta etrA$ mutant chosen at random) was conducted (FIG. 4.3). The growth curves of EtrA7-1 complemented with the etrA gene (this complement harbors pCCG02c) and the EtrA7-1 harboring the pCM62 were also included. The growth of EtrA7-1 is approximately 20% of that of the wild type. The EtrA7-1 complement grew slower than the wild type but after 23 h of incubation it reached an optical density similar to that of the wild type. The EtrA7-1 harboring the pCM62 was used to account for any differences observed due to the presence of the vector and not caused by the complementation. There are no differences between the growth of the mutant and this control indicating that the presence of pCM62 in the mutant does not affect its growth. After 10 h incubation, all samples show reduction of nitrate (FIG. 4.4). The MR-1 $\Delta etrA$ complement samples present less accumulation of nitrite when compared to the wild type, which explains the delay in growth observed. This is reasonable since the gene has not been transcribed using its natural promoter, which can cause a delay in expression and differences in protein concentration. However, samples taken after 23 h incubation showed concentrations in the complement similar to those in the wild type (FIG. 4.5). EtrA7-1 and the control harboring pCM62 grew similarly. In both cultures, there is reduction of most of the nitrate and nitrite accumulation. Ammonium production is limited. In these cases, nitrate reduction hardly improved growth (FIG.4. 3).

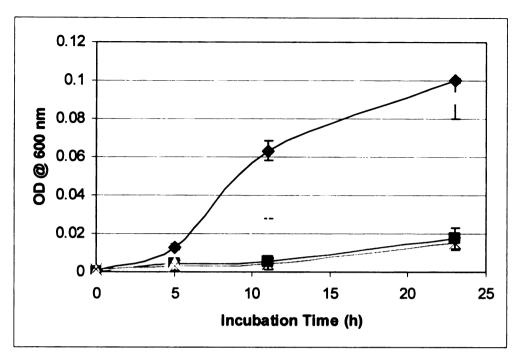


FIG. 4.3. Growth of Shewanella oneidensis MR-1 wild type (*), EtrA7-1 (•), EtrA7-1 complement (), and EtrA7-1 harboring pCM62 (*) under anaerobic conditions with 3 mM KNO₃. Each time point is an average of three biological replicates.

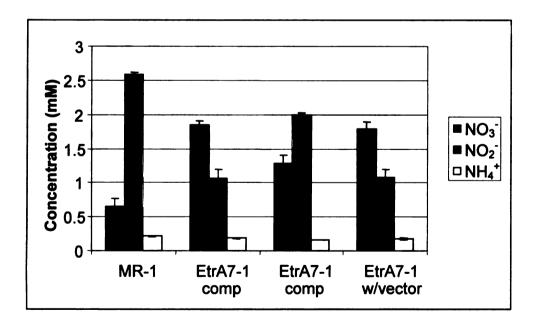


FIG. 4.4. Concentrations of nitrate, nitrite and ammonium in cultures of *Shewanella oneidensis* MR-1 wild type, EtrA 7-1, Etra7-1 complement (harboring pCCG02c) and EtrA7-1 harboring pCM62 during growth curve after 10 h incubation period. Each measurement is an average of three biological replicates.

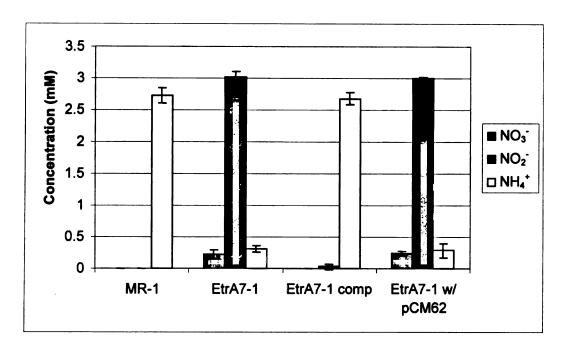


FIG. 4.5. Concentrations of nitrate, nitrite and ammonium in cultures of *Shewanella oneidensis* MR-1 wild type, EtrA 7-1, Etra7-1 complement (harboring pCCG02c) and EtrA7-1 harboring pCM62 during growth curve after 23 h incubation period. Each measurement is an average of three biological replicates.

Gene expression profile of wild type versus EtrA7-1. The global expression pattern of EtrA7-1 was compared to that of the wild type when grown anaerobically with 2 mM KNO₃. Out of 627 differentially expressed genes in EtrA7-1 relative to the wild type, there are 302 up-regulated and 325 down-regulated genes. The differentially expressed genes were classified in 20 functional "TIGR Role" categories (FIG. 4.6). "Conserved hypothetical proteins" was the predominant category in both up-regulated (17.8%) and down-regulated genes (15.9%). Other categories under the up-regulated genes include "hypothetical" (14.2%), "protein synthesis" (9.9%), "energy metabolism" (8.6%) and "unknown function" (7.6%). Many of the up-regulated genes that are grouped in the "energy metabolism" category include genes that encode a formate dehydrogenase (SO4509-4511), a cytochrome c oxidase *ccoPQN* (SO2361-2362, SO2364), NADH:ubiquinone oxidoreductases nqrA-2, nqrB-2, nqrC-2, nqrD-2, nqrE-2, nqrF-2 (SO1103-1108), genes of proteins involved in gluconeogenesis like pck4 (SO0162) and in glycogen synthesis like glgX, glgC and glgA (SO1495, SO1498-1499). In this group there was also activation of the succinate dehydrogenase gene sdhC (SO1927), the succinyl-CoA synthase operon sucABCD (SO1930-1933) and the acetate CoAtransferase, synthase (SO1891-1892) (TABLE 4.2). A complete list of all the genes induced two-fold or higher is provided (SUPPLEMENTAL TABLE B.3).

The category "transport and binding proteins" contained 6.3% of the up-regulated genes. In this category there are genes encoding heavy metal efflux pumps and systems (SO0520, SO4597-4598, SOA0153), and ABC transporters (SO1690), especially those specific for phosphate transport (SO1560, SO1723-1724), *pstB-1* (SO1725), *pstB-2*

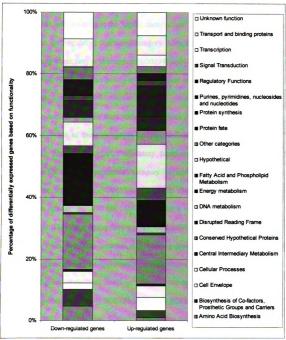


FIG. 4.6. Distribution of differentially expressed genes (> 2-fold change) grouped in 20 functional categories in anaerobic cultures of EtrA7-1 with 2 mM KNO₃ as the sole electron acceptor relative to the wild type (reference strain). The total of genes downregulated is 325 and the up-regulated is 302.

(SO4289) and *pstA* (SO4290). There was up-regulation of genes encoding the *pho* regulon, which regulates these phosphate transporters genes, such as *phoB* (SO1558), *phoR* (SO1559), which belong to the "signal transduction" category and *phoU* (SO1726) that belongs to the "regulatory functions" category. Also, the genes encoding proteins involved in long-chain fatty acid transport (SO3099) and HlyD family secretion proteins (SO1925 and SO4319) that also belong to the "transport and binding proteins" category were activated.

The induction of genes from various categories in response to stress conditions was observed. Some of these categories include "cellular processes", "cell envelope", "protein fate", "other categories", "regulatory functions", "transcription" and "DNA metabolism". The "cellular processes" category include a stringent starvation protein encoded by the sspAB genes (SO0611-0612), a cold shock protein (SO1648), a phage shock protein operon pspABC (SO1807-1809), and a virulence regulator encoded by bipA (SO4408). There was up-regulation of the RTX toxin operon (SO4317-4320), which codes for the toxin, the toxin secretion ATP-binding protein, the HlyD family secretion protein (mentioned above), an agglutination protein (aggA) and an OmpA family protein. Up-regulated genes in the "cell envelope" category are mostly involved in the synthesis of structural proteins (SO0004, SO0300, dacA-1 or SO1164, SO1166, rodA or SO1167, SO1245, SO3933, SO4321, and SO4377). There was also induction of genes encoding transferases (SO3172 and SO3176) as well as the mrdA gene (SO1168) that codes for a penicillin-binding protein 2. In the "fatty acid and phospholipid metabolism" induction of genes fabF-1 (SO2774), fabD (SO2777), fabH-1 (SO2778), fabB (SO3072), fabG-2 (SO4382), and fabF-2 (SO4383) involved in the synthesis of membrane components was

detected. In the "protein fate" category there was up-regulation of genes *lepB* (SO1347), *dsdB* (SO1887) and of the *hslO* gene that code for a chaperone (SO0163) and the export protein genes *secD*-1 and *secF*-1(SO1193-1194). Other up-regulated genes involved in stress response include *rpoD* (SO1284), *era* (SO1349), *recO* (SO1350), *cinA* (SO0272) and a gene that encodes a site-specific recombinase (SOA0086). Another stress response observed was the induction of genes involved in the activation of the MR-1 prophages. There was induction of 25 genes of the LambdaSo phage (SO2940-2974) and 2 of the late genes of the MuSo1 (SO0674-0675) and MuSo2 (SO2684-2685) phages. There is induction of host genes that are also required for activation of the LambdaSo phage such as *nusA* (SO0219) and *nusG* (SO0219).

The down-regulated genes show a different pattern (FIG. 6). "Energy metabolism" associated proteins are the second largest category (16.9%) of down-regulated genes. In this category there are down-regulated genes involved in anaerobic metabolism such as the *napBHGAD* operon (SO0845-0849), the *cymA* (SO4591) and the *nrfA* (SO3980) genes, the fumarate reductase genes *frdAB* (SO0398-0399), the *nqrB*-1, *C*-1, *D*-1, *E*-1 and *F*-1 operon (SO0903-0907), the *nuoECDB* operon (SO1018-1020), the *cydAB* genes (SO3285-3286), the outer membrane protein genes *mtrAB* (SO1776-1777) and *omcAB* (SO1778-1779), the prismane protein *hcp* gene (SO1363), and the alcohol dehydrogenease genes *adhB* (SO1490), and *adhE* (SO2136)(TABLE 4.3). The genes that encode the anaerobic dimethyl sulfoxide reductase *dmaA*-1 (SO1429) and *dmsB*-1 (SO1430) as well as genes of a quinine-reactive Ni/Fe hydrogenase the *hydC*, *hyaB*, and *hoxK* (SO2097-2099) are down-regulated. Other down-regulated genes in this category ("energy metabolism") include some electron transfer flavoproteins (*etfA* or SO3144,

SO4453), a formate dehydrogenase (SO4513 and SO4515), as well as genes involved in metabolism of carbon containing compounds such as the *pflAB* (SO2912-2913), *ackA* (SO2915), *pta* (SO2916) and the *ppc* (SO0274) genes. Another category with a high percentage of down-regulated genes is the "transport and binding proteins" which contain genes that code for ABC transporters (*cydCD* or SO3285-3286), *nosF* or SO0487, SO0821, SO4446-4448), TonB-dependent receptors (*nosA* or SO0630), and two L-lactate permeases (*lldP*, SO1522). Genes that encode secretion proteins such as the HlyD family secretion protein (SO0820, SO3483), as well as efflux proteins (SO0822, SO2045, SO4475) and transporters such as the formate transporter (SO2911), an ammonium transporter (SO3820), and an outer membrane porin (SO3896) were also down-regulated. In the "regulatory functions" category there is down-regulation of *etrA* (as expected since it was deleted), and repression of the LambdaSo phage transcriptional regulator of the Cro/CI family (SO2990) was also apparent (ratio of 0.43). A complete list of all the genes repressed two-fold or higher is provided (SUPPLEMENTAL TABLE B.4).

TABLE 4.2. Genes induced in anaerobic cultures of EtrA7-1 relative to the wild type (reference strain).

	Gene	Relative	
Gene ID	name	expression*	COG Annotation
1) Energy	meta bolism		
SO0162	pckA	$2.21 (\pm 0.48)^{b}$	phosphoenolpyruvate carboxykinase (ATP)
SO0747	fpr	2.17 (± 1.01)	ferredoxinNADP reductase
			NADH:ubiquinone oxidoreductase, Na translocating, alpha
SO1103	nqrA-2	$2.25 (\pm 0.54)$	subunit
001104		2.70 (. 1.01)	NADH: ubiquinone oxidoreductase, Na translocating,
SO1104	nqrB-2	2.70 (± 1.01)	hydrophobic membrane protein NqrB
SO1105	ngrC-2	3.15 (± .080)	NADH: ubiquinone oxidoreductase, Na translocating, gamma subunit
001103	nqi C-2	3.13 (± .000)	NADH: ubiquinone oxidoreductase, Na translocating,
SO1106	nqrD-2	4.65 (± 2.07)	hydrophobic membrane protein NqrD
	•	` ,	NADH:ubiquinone oxidoreductase, Na translocating,
SO1107	nqrE-2	3.63 (± 1.61)	hydrophobic membrane protein NqrE
			NADH: ubiquinone oxidoreductase, Na translocating, beta
SO1108	nqrF-2	4.21 (± 2.05)	subunit
SO1495	glgX	2.03 (± 0.50)	glycogen operon protein
SO1498	glgC	6.86 (± 4.90)	glucose-1-phosphate adenylyltransferase
SO1499	glgA	5.42 (± 5.26)	glycogen synthase
SO1891	. 5	3.77 (± 1.80)	3-oxoadipate CoA-succinyl transferase, beta subunit
SO1892	atoD	3.21 (± 2.14)	acetate CoA-transferase, subunit A
SO1927	sdhC	2.47 (± 1.26)	succinate dehydrogenase, cytochrome b556 subunit
SO1930	sucA	3.02 (± 1.22)	2-oxoglutarate dehydrogenase, E1 component 2-oxoglutarate dehydrogenase, E2 component,
SO1931	sucB	3.60 (± 1.58)	dihydrolipoamide succinyltransferase
SO1931	sucC	3.29 (± 0.98)	succinyl-CoA synthase, beta subunit
SO1933	sucD	3.28 (± 1.24)	succinyl-CoA synthase, alpha subunit
SO2361	ccoP	2.30 (± 0.92)	cytochrome c oxidase, cbb3-type, subunit III
SO2362	ccoQ	3.44 (± 1.16)	cytochrome c oxidase, cbb3-type, CcoQ subunit
SO2364	ccoN	2.76 (± 1.07)	cytochrome c oxidase, cbb3-type, subunit I
SO4509	00011	2.33 (± 0.56)	formate dehydrogenase, alpha subunit
SO4510	fdhB-1	4.03 (± 1.57)	formate dehydrogenase, iron-sulfur subunit
SO4511		2.53 (± 0.31)	formate dehydrogenase, C subunit, putative
	rt and hind	ing proteins	
SO1723		7.86 (± 3.75)	phosphate ABC transporter, permease protein, putative
SO4319		6.21 (± 1.58)	HlyD family secretion protein
SO1724		4.75 (± 2.78)	phosphate ABC transporter, permease protein, putative
SO1560		4.51 (± 3.45)	phosphate-binding protein
SO1725	pstB-1	3.56 (± 2.74)	phosphate ABC transporter, ATP-binding protein
SO2750	tolR	2.95 (± 1.06)	tolr protein
504598	-	2.82 (± 1.85)	heavy metal efflux pump, CzcA family
501925		2.68 (± 1.43)	HlyD family secretion protein
SO4597		2.47 (± 1.55)	heavy metal efflux system protein, putative
SOA0153		2.20 (± 0.65)	heavy metal efflux pump, CzcA family
SO0520		2.08 (± 0.34)	heavy metal efflux pump, CzcA family
SO4289	pstB-2	2.08 (± 1.02)	phosphate ABC transporter, ATP-binding protein
SO4290	pstA	2.04 (± 1.06)	phosphate ABC transporter, permease protein
	-	, ,	(Continue

112

TABLE 4.2. (Cont'd) Genes induced in anaerobic cultures with nitrate of EtrA7-1 relative to the wild type (reference strain).

	Gene	Relative	
Gene ID	name	expression*	COG Annotation
3) Cellular p	rocesses		
SO0611	sspA	2.60 (± 0.58)	stringent starvation protein a
SO0612	sspB	2.09 (± 0.32)	stringent starvation protein b
SO1648		2.46 (± 1.75)	cold shock domain family protein
SO1807	pspA	3.11 (± 1.64)	phage shock protein A
SO1808	pspB	3.49 (± 0.42)	phage shock protein B
SO1809	pspC	3.45 (± 1.84)	phage shock protein C
SO2355		2.30 (± 0.31)	universal stress protein family
SO3582		2.95 (± 0.52)	methyl-accepting chemotaxis protein
SO4317		2.55 (± 0.63)	RTX toxin, putative
SO4320	aggA	7.18 (± 2.36)	agglutination protein
SO4408	bipA	2.45 (± 0.38)	virulence regulator BipA
4) Cell envel	ope	•	-
SO4321	_	7.10 (± 1.77)	OmpA family protein
SO1245		5.26 (± 0.92)	membrane protein, putative
SO1164	dacA-1	2.67 (± 0.69)	D-alanyl-D-alanine carboxypeptidase
SO1166		2.03 (± 0.92)	membrane-bound lytic transglycosylase, putative
SO1167	rodA	2.93 (± 0.69)	rod shape-determining protein RodA
SO1168	mrdA	2.94 (± 1.02)	penicillin-binding protein 2
5) Fatty acid	and phod	oholipid metabo	olism
SO2774	fabF-1	3.07 (± 0.27)	3-oxoacyl-(acyl-carrier-protein) synthase II
SO2777	fabD	3.35 (± 0.61)	malonyl CoA-acyl carrier protein transacylase
SO2778	fabH-1	2.14 (± 0.29)	3-oxoacyl-(acyl-carrier-protein) synthase III
SO3072	fabB	2.44 (± 0.88)	3-oxoacyl-(acyl-carrier-protein) synthase I
SO4382	fabG-2	2.13 (± 0.51)	3-oxoacyl-(acyl-carrier-protein) reductase
SO4383	fabF-2	2.09 (± 0.99)	3-oxoacyl-(acyl-carrier-protein) synthase II
6) Protein Fa	ate		
SO1193	secD-1	6.40 (± 2.28)	protein-export membrane protein SecD
SO1194	secF-1	6.25 (± 0.91)	protein-export membrane protein SecF
SO2964		6.17 (± 0.85)	ClpP protease family protein ^c
SO2887	dsbB	6.14 (± 3.76)	disulfide bond formation protein b
SO0218	secE	3.31 (± 1.04)	preprotein translocase, SecE subunit
SO0163	hslO	2.82 (± 0.45)	chaperonin HslO
7) Biosynthe	sis of co-fac	ctors, prosthetic	groups and carriers
SO1109	apbE	•	thiamin biosynthesis lipoprotein ApbE
8) Signal tra	nsduction		· · · · · · · · · · · · · · · · · · ·
SO1558	phoB	5.22 (± 2.59)	phosphate regulon response regulator PhoB
SO1559	phoR	3.68 (± 1.86)	phosphate regulon sensor protein PhoR
9) Regulator			·
SO1726	phoU	2.59 (± 1.77)	phosphate transport system regulatory protein PhoU
SO1349	Era	2.70 (± 0.51)	GTP-binding protein Era
SO4312		2.11 (± 0.69)	adenylate cyclase CyaA, putative
			(Continued)

TABLE 4.2. (Cont'd) Genes induced in anaerobic cultures with nitrate of EtrA7-1 relative to the wild type

(reference strain).

(reference str		Deletions	
Como ID	Gene	Relative	COC Ammedelian
Gene ID	name	expression*	COG Annotation
10) Transc	•		
SO0219	nusG	2.09 (± 0.64)	transcription antitermination protein NusG
SO1203	nusA	$2.50 (\pm 0.36)$	N utilization substance protein A
SO1284	rpoD	2.70 (± 1.22)	RNA polymerase sigma-70 factor
SO1348	rnc	$3.02 (\pm 0.88)$	ribonuclease III
11) DNA m	etabolism		
SO1350	recO	5.00 (± 1.76)	DNA repair protein RecO
SOA0086		3.00 (± 0.94)	site-specific recombinase, resolvase family
SO0272	cinA	$2.11 (\pm 0.77)$	competence/damage-inducible protein CinA
12) Conser	ved hypothe	tical and hypoth	netical proteins
SO4322		7.24 (± 2.46)	conserved hypothetical protein
SO0005		7.00 (± 3.12)	conserved hypothetical protein TIGR00278
SO2967		6.01 (± 0.69)	conserved hypothetical protein
SO2972		5.31 (± 1.67)	hypothetical protein
13) Other o	athegories		
SO0674		1.89 (± 0.92)	prophage MuSo1, protein Gp32, putative
SO0675		2.06 (± 0.82)	prophage MuSo1, major head subunit, putative
SO2684		2.54 (± 0.30)	prophage MuSo2, protein Gp32, putative
SO2685		2.23 (± 0.63)	prophage MuSo2, major head subunit, putative
SO2940		3.58 (± 1.10)	prophage LambdaSo, host specificity protein J, putative
SO2941		2.70 (± 0.72)	prophage LambdaSo, tail assembly protein I
SO2948		2.53 (± 0.44)	prophage LambdaSo, tail assembly protein K, putative
SO2953	Н	3.61 (± 1.02)	prophage LambdaSo, tail length tape meausure protein
SO2956		2.67 (± 1.47)	prophage LambdaSo, major tail protein V, putative
SO2963		4.57 (± 0.65)	prophage LambdaSo, major capsid protein, HK97 family
SO2965		7.02 (± 0.93)	prophage LambdaSo, portal protein, HK97 family
SO2969		5.60 (± 1.27)	prophage LambdaSo, holin, putative
SO2973		4.43 (± 0.93)	prophage LambdaSo, lysozyme, putative
9			

^a The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures with 2 mM KNO₃ of EtrA7-1 to that of MR-1 (reference).

^b The standard deviation was calculated from six data points, which included three independent biological

samples and two technical samples for each biological sample.

^cThese genes are of prophage origin.

TABLE 4.3. Genes repressed in anaerobic cultures with nitrate of EtrA7-1 relative to the wild type (reference strain).

Gene	Gene	Relative	
ID	name	expression*	COG Annotation
1) Energy	Metabolism (
SO0398	frdA	$0.30 (\pm 0.16)^{b}$	fumarate reductase flavoprotein subunit
SO0399	frdB	$0.39 (\pm 0.06)$	fumarate reductase iron-sulfur protein
SO0274	ppc	0.48 (± 0.19)	phosphoenolpyruvate carboxylase
SO0845	napB	$0.15 (\pm 0.04)$	cytochrome c-type protein NapB
SO0846	napH	$0.18 (\pm 0.11)$	iron-sulfur cluster-binding protein napH
SO0847	napG	0.14 (± 0.07)	iron-sulfur cluster-binding protein NapG
SO0848	napA	0.18 (± 0.13)	periplasmic nitrate reductase
SO0849	napD	$0.30 (\pm 0.04)$	napD protein
			NADH: ubiquinone oxidoreductase, Na translocating, hydrophobic
SO0903	nqrB-1	$0.34 (\pm 0.15)$	membrane protein NqrB
			NADH: ubiquinone oxidoreductase, Na translocating, gamma
SO0904	nqrC-1	$0.28 (\pm 0.09)$	subunit
COMME	D 1	0.27 (1.0.14)	NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic
SO0905	nqrD-1	0.27 (± 0.14)	membrane protein NqrD NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic
SO0906	ngrE-1	0.23 (± 0.07)	membrane protein NqrE
SO0907	nqrF-1	$0.23 (\pm 0.07)$ $0.23 (\pm 0.08)$	NADH: ubiquinone oxidoreductase, Na translocating, beta subunit
SO0970	nqir-i	$0.23 (\pm 0.03)$ $0.31 (\pm 0.17)$	fumarate reductase flavoprotein subunit precursor
SO1018	nuoE	0.44 (± 0.17)	NADH dehydrogenase I, E subunit
SO1019	nuoCD	$0.35 (\pm 0.13)$	NADH dehydrogenase I, C/D subunits
SO1017 SO1020	nuoED	$0.40 (\pm 0.10)$	NADH dehydrogenase I, B subunit
SO1020 SO1363	hcp	$0.40 (\pm 0.10)$ $0.13 (\pm 0.08)$	prismane protein
SO1364	пер	$0.13 (\pm 0.08)$ $0.12 (\pm 0.07)$	iron-sulfur cluster-binding protein
SO1304 SO1429	dmaA-1	$0.12 (\pm 0.07)$ $0.43 (\pm 0.09)$	anaerobic dimethyl sulfoxide reductase, A subunit
SO1429 SO1430	dmsB-1	$0.43 (\pm 0.03)$ $0.29 (\pm 0.04)$	anaerobic dimethyl sulfoxide reductase, A subunit
SO1430 SO1490	adhB	$0.29 (\pm 0.04)$ $0.28 (\pm 0.12)$	alcohol dehydrogenase II
SO1490 SO1776	mtrB	$0.28 (\pm 0.12)$ $0.22 (\pm 0.04)$	outer membrane protein precursor MtrB
SO1770 SO1777	mtrA	$0.22 (\pm 0.04)$ $0.25 (\pm 0.06)$	decaheme cytochrome c MtrA
SO1777	omcB	$0.23 (\pm 0.00)$ $0.30 (\pm 0.09)$	decaheme cytochrome c
SO1778 SO1779	omcA	$0.30 (\pm 0.05)$ $0.30 (\pm 0.05)$	decaheme cytochrome c
SO2097	hydC	$0.30 (\pm 0.03)$ $0.07 (\pm 0.04)$	quinone-reactive Ni/Fe hydrogenase, cytochrome b subunit
SO2097 SO2098	hyaB	` ,	quinone-reactive Ni/Fe hydrogenase, cytochrome b subunit
SO2098 SO2099	-	0.11 (± 0.10) 0.07 (± 0.11)	quinone-reactive Ni/Fe hydrogenase, small subunit precursor
	hoxK adhE	$0.07 (\pm 0.11)$ $0.40 (\pm 0.10)$	aldehyde-alcohol dehydrogenase
SO2136 SO2727	aune	$0.40 (\pm 0.10)$ $0.32 (\pm 0.23)$	cytochrome c3
	AD	` ,	· ·
SO2912	pflB	$0.18 (\pm 0.11)$	formate acetyltransferase pyruvate formate-lyase 1 activating enzyme
SO2913	pflA	0.20 (± 0.13)	acetate kinase
SO2915	ackA	0.23 (±0.16) 0.23 (± 0.14)	
SO2916	pta	$0.23 (\pm 0.14)$ $0.41 (\pm 0.11)$	phosphate acetyltransferase
SO3117	a+fA	,	thioredoxin, putative electron transfer flavoprotein, alpha subunit
SO3144	etfA	0.36 (± 0.13)	• • • •
SO3285	cydB	0.21 (± 0.06)	cytochrome d ubiquinol oxidase, subunit II
SO3286	cydA	0.22 (± 0.10)	cytochrome d ubiquinol oxidase, subunit I
SO3980 SO4453	nrfA	0.18 (± 0.06) 0.40 (± 0.13)	cytochrome c552 nitrite reductase electron transfer flavoprotein-ubiquinone oxidoreductase, putative

TABLE 4.3. (Cont'd) Genes repressed in anaerobic cultures with nitrate EtrA7-1 relative to the wild type (reference strain).

(reference su	Gene	Relative	
Gene ID	name	expression*	COG Annotation
SO4513		0.06 (± 0.02)	formate dehydrogenase, alpha subunit
SO4515		$0.07 (\pm 0.01)$	formate dehydrogenase, C subunit, putative
SO4591	cymA	0.39 (± 0.27)	tetraheme cytochrome c
2) Transpo	•	ling proteins	·
SO0487	nosF	0.28 (± 0.05)	copper ABC transporter, ATP-binding protein
SO0630	nosA	$0.30 (\pm 0.06)$	TonB-dependent receptor
SO0820		0.20 (± 0.05)	HlyD family secretion protein
SO0821		$0.14 (\pm 0.05)$	ABC transporter, ATP-binding/permease protein
SO0822		$0.10 (\pm 0.04)$	outer membrane efflux family protein
SO0827	lldP	$0.31 (\pm 0.07)$	L-lactate permease
SO1522		0.47 (± 0.07)	L-lactate permease, putative
SO2045		$0.45 (\pm 0.08)$	cation efflux family protein
SO2911		0.40 (± 0.20)	formate transporter, putative
SO3483		$0.22 (\pm 0.08)$	HlyD family secretion protein
SO3779	cydC	0.44 (± 0.12)	ABC transporter, ATP-binding protein CydC
SO3780	cydD	0.32 (± 0.08)	ABC transporter, ATP-binding protein CydD
SO3820		0.16 (± 0.26)	ammonium transporter, degenerate
SO3896		0.26 (± 0.17)	outer membrane porin, putative
SO4446		0.24 (± 0.12)	molybdenum ABC transporter, ATP-binding protein
SO4447		0.32 (± 0.20)	molybdenum ABC transporter, permease protein
			molybdenum ABC transporter, periplasmic molybdenum-binding
SO4448		$0.35 (\pm 0.17)$	protein
SO4475		$0.30 (\pm 0.10)$	cation efflux family protein
ORF3506		$0.19 (\pm 0.06)$	ammonium transporter (tpt)
	ory function		
SO2356	etrA	$0.05 (\pm 0.01)$	electron transport regulator A
SO2990		$0.43 (\pm 0.16)$	prophage LambdaSo, transcriptional regulator, Cro/CI family
SO4603	lexA	0.47 (± 0.12)	LexA repressor
4) Cellular	processes		
SO4226	ftsL	$0.48 (\pm 0.06)$	cell division protein FtsL
SO4299	cat	$0.50 (\pm 0.06)$	chloramphenicol acetyltransferase
SO4405	katG-2	$0.31 (\pm 0.09)$	catalase/peroxidase HPI
5) Signal tı	ransduction		
SO4477	cpxR	0.32 (± 0.10)	transcriptional regulatory protein CpxR
SO4478	срхА	• •	sensor protein CpxA
SO4633	ompR	$0.38 (\pm 0.19)$	transcriptional regulatory protein OmpR
SO4634	envZ	0.33 (± 0.20)	osmolarity sensor protein EnvZ

^a The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures with 2 mM KNO₃ of EtrA7-1 to that of MR-1 (reference).

^bThe standard deviation was calculated from six data points, which included three independent biological samples and two technical samples for each biological sample.

(5

Comparison of the gene expression profile of anaerobic cultures of EtrA7-1 grown at 1 mM KNO₃ and at 40 mM KNO₃. A total of 358 genes were differentially expressed when anaerobic growth of EtrA7-1 at a low nitrate concentration was compared to that at a high concentration. This total was divided in two groups, 154 genes up-regulated (TABLE 4.4) and 204 genes down-regulated (TABLE 4.5). A complete list of all the genes induced and repressed two-fold or higher is provided (SUPPLEMENTAL TABLES B.5 and B.6). Among the up-regulated genes there are genes involved in energy metabolism, specifically in the regeneration of acetyl CoA, the pyruvate dehydrogenase multi-enzyme complex E1, E2 and E3 (SO0424-0426). In addition, the formate acetyltransferase operon (SO2912-2916) is up-regulated, which is involved in the conversion of acetyl CoA and formate into CoA and pyruvate. There is also induction of genes involved in carbohydrate metabolism such as ppc (SO0274), tkt (SO0930), malQ (SO1493), glgB (SO1494), glgA (SO1499), eda (SO2486), edd (SO2487), pgl (SO2488), zwf (SO2489), and glmS (SO4741) genes. Also genes involved in anaerobic metabolism are up-regulated such as the narB-1, C-1, D-1, F-1 operon (SO0903-0907), and the genes encoding cytochromes scyA (SO0264), and cydB (SO3285). There is also activation of genes involved in amino acid scavenging and biosynthesis such as glnB-1, glnA, ntrB, and ntrC. Induction of the amt (SO0760) and tpt gene (ORF03506), which encode two ammonium transporters, was detected.

The down-regulated genes include ABC transporters (SO0821, S01042-1044, and SO1959), genes involved in oxidative stress response *katG*-1 (SO0725), *katB* (SO1070), *dnaK* (SO1126), and *dmaA*-1 (SO1429) and the phage shock protein genes *pspABC* (SO1807-1809). Also, the *ilvADMGC* operon (SO4344-4349) is highly down-regulated.

TABLE 4.4. Genes induced in anaerobic cultures of EtrA7-1 at 1 mM (reference) versus 40 mM KNO₃.

1 ADLE 4.4.	Gene Relative TABLE 4.4. Genes induced in anaerobic cultures of EtrA7-1 at 1 mM (reference) versus 40 mM KNO ₃ .					
Gene ID	Gene name	expression ^a	COG Annotation			
1) Energy n		CAPI ESSIUII	COG AHIDUATION			
SO0264	scyA	$2.35 (\pm 0.74)^{b}$	cytochrome c			
SO0204 SO0274	•	4.17 (± 1.61)	•			
300274	ppc	4.17 (± 1.01)	phosphoenolpyruvate carboxylase pyruvate dehydrogenase complex E1, pyruvate			
SO0424	aceE	2.72 (± 0.88)	dehydrogenase complex E1, pyruvate			
300424	aceL	2.72 (± 0.66)	pyruvate dehydrogenase complex E2, dihydrolipoamide			
SO0425	aceF	2.68 (± 0.44)	acetyltransferase			
000.20		2.00 (= 0.11)	pyruvate dehydrogenase complex E3, lipoamide			
SO0426	lpdA	1.99 (± 0.34)	dehydrogenase			
	•	` ,	NADH: ubiquinone oxidoreductase, Na translocating,			
SO0903	nqrB-1	2.05 (± 0.31)	hydrophobic membrane protein NqrB			
			NADH:ubiquinone oxidoreductase, Na translocating, gamma			
SO0904	nqrC-1	2.39 (± 1.05)	subunit			
			NADH: ubiquinone oxidoreductase, Na translocating,			
SO0906	nqrE-1	2.61 (± 1.29)	hydrophobic membrane protein NqrE			
600007	- P 1	2 (2 (+ 1 0 ()	NADH:ubiquinone oxidoreductase, Na translocating, beta			
SO0907	nqrF-1	2.62 (± 1.06)	subunit			
SO1493	malQ	6.56 (± 8.84)	4-alpha-glucanotransferase			
SO1494	glgB	6.28 (± 8.81)	1,4-alpha-glucan branching enzyme			
SO1499	glgA	6.54 (± 9.60)	glycogen synthase			
502496	ada	2.45 (1.0.06)	2-deydro-3-deoxyphosphogluconate aldolase/4-hydroxy-2-			
SO2486	eda	3.45 (± 0.96)	oxoglutarate aldolase			
SO2487	edd	4.01 (± 0.77)	6-phosphogluconate dehydratase			
SO2488	pgl	3.30 (± 1.00)	6-phosphogluconolactonase			
SO2489	zwf	2.60 (± 0.44)	glucose-6-phosphate 1-dehydrogenase			
SO2912	pflB	2.59 (± 0.80)	formate acetyltransferase			
SO2913	pflA	3.14 (± 1.01)	pyruvate formate-lyase 1 activating enzyme			
SO2915	ackA	3.28 (± 1.35)	acetate kinase			
SO2916	pta	2.36 (± 1.12)	phosphate acetyltransferase			
SO3285	cydB	2.68 (± 1.41)	cytochrome d ubiquinol oxidase, subunit II			
SO4509		2.69 (± 1.19)	formate dehydrogenase, alpha subunit			
SO4511		2.45 (± 1.49)	formate dehydrogenase, C subunit, putative			
SO4741	glmS	3.44 (± 0.87)	glucosaminefructose-6-phosphate aminotransferase			
•	cid biosynthes					
SO4410	glnA	6.18 (± 3.91)	• • • • • • • • • • • • • • • • • • • •			
SO1121	proB	2.26 (± 0.57)	glutamate 5-kinase			
SO1122	proA	2.50 (± 0.42)	gamma-glutamyl phosphate reductase			
3) Regulato	ry functions					
SO0761	glnB-1	$3.37 (\pm 3.05)$	nitrogen regulatory protein P-II 1			
4) Signal tra	ansduction					
SO4471	ntrB	2.89 (± 1.40)	nitrogen regulation protein			
SO4472	ntrC	2.76 (± 1.37)	nitrogen regulation protein NR(I)			
5) Transport and binding proteins						
ORF03506	•	3.38 (± 1.44)	ammonium transporter (tpt)			
SO0760	amt	7.79 (± 6.39)	• • • •			
			entic of the due intensity of the appearable sultures of Etr A.7.1			

^a The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures of EtrA7-1 grown at 40 mM KNO₃ to that of the anaerobically grown at 1 mM KNO₃ (reference). The standard deviation was calculated from six data points, which included three independent biological

samples and two technical samples for each biological sample.

TABLE 4.5. Genes repressed in anaerobic cultures of EtrA7-1 at 1 mM (reference) versus 40 mM KNO₃.

	TABLE 4.5. Genes repressed in anaerobic cultures of EtrA7-1 at 1 mM (reference) versus 40 mM KNO ₃ .					
Gene ID	Gene	Relative expression ^a	COG Annotation			
1) Energy Metabolism COG Annotation						
SO1427	y MEGROOM	o.35(± 0.12) ^b	decaheme cytochrome c			
SO1427	dmaA-1	$0.47 (\pm 0.24)$	anaerobic dimethyl sulfoxide reductase, A subunit			
SO4513	ullian-i	$0.47 (\pm 0.24)$ $0.26 (\pm 0.34)$	formate dehydrogenase, alpha subunit			
SO4515		$0.20 (\pm 0.34)$ $0.29 (\pm 0.26)$	formate dehydrogenase, C subunit, putative			
	ar processe	•	formate denydrogenase, C subunit, putative			
SO0725	katG-1	0.24 (± 0.10)	catalase/peroxidase HPI			
SO1070	katB	$0.24 (\pm 0.10)$ $0.22 (\pm 0.21)$	catalase			
SO1807	pspA	$0.22 (\pm 0.21)$ $0.18 (\pm 0.07)$	phage shock protein A			
SO1807		$0.18 (\pm 0.07)$ $0.12 (\pm 0.05)$	phage shock protein B			
SO1808	pspB	$0.12 (\pm 0.05)$ $0.14 (\pm 0.05)$	phage shock protein C			
	pspC	0.14 (± 0.03)	phage shock protein C			
3) Cell en SO0150	ivelope	0.29 (± 0.11)	linearotain mutativa			
SO2194		$0.28 (\pm 0.11)$	lipoprotein, putative			
SO2194 SO4334		$0.02 (\pm 0.00)$	OmpA family protein			
		0.03 (± 0.01)	inner membrane protein, putative			
4) 1 ransp SO0519	port and bi	0.34 (± 0.10)	cation efflux protein, putative			
SO0319 SO0822		$0.54 (\pm 0.10)$ $0.52 (\pm 0.22)$	outer membrane efflux family protein			
SO1042		$0.32 (\pm 0.22)$ $0.42 (\pm 0.09)$	amino acid ABC transporter, ATP-binding protein			
SO1042 SO1043		$0.42 (\pm 0.09)$ $0.37 (\pm 0.07)$	amino acid ABC transporter, permease protein			
SO1043		$0.37 (\pm 0.07)$ $0.20 (\pm 0.07)$	amino acid ABC transporter, perinease protein amino acid ABC transporter, periplasmic amino acid-binding protein			
SO1044 SO1557		$0.20 (\pm 0.07)$ $0.30 (\pm 0.09)$	outer membrane porin, putative			
SO1557		$0.30 (\pm 0.04)$ $0.10 (\pm 0.04)$	phosphate-binding protein			
SO1500 SO1689		$0.10 (\pm 0.04)$ $0.32 (\pm 0.21)$	cation transport ATPase, E1-E2 family			
SO1723		$0.32 (\pm 0.21)$ $0.12 (\pm 0.05)$	phosphate ABC transporter, permease protein, putative			
SO1723		$0.12 (\pm 0.03)$ $0.45 (\pm 0.14)$	phosphate ABC transporter, permease protein, putative			
SO1724 SO1925		$0.43 (\pm 0.14)$ $0.17 (\pm 0.08)$	HlyD family secretion protein			
	n fata	0.17 (± 0.08)	Hiyb failing secretion protein			
5) Protein SO1126	dnaK	0.47 (± 0.26)	chaperone protein DnaK			
	acid biosy	, ,	chaperone protein Dhak			
SO4344	ilvA	0.16 (± 0.05)	threonine dehydratase			
SO4344 SO4345	ilvD	$0.10 (\pm 0.05)$ $0.23 (\pm 0.05)$	dihydroxy-acid dehydratase			
SO4346	ilvM	0.26 (± 0.09)	acetolactate synthase II, small subunit			
SO4347	ilvG	$0.20 (\pm 0.03)$ $0.27 (\pm 0.08)$	acetolactate synthase II, large subunit			
SO4347	ilvC	$0.27 (\pm 0.08)$ $0.18 (\pm 0.10)$	ketol-acid reductoisomerase			
	Transduct	, ,	Retor-acid reductorsomerase			
SO1558	phoB	0.11 (± 0.04)	phosphate regulon response regulator PhoB			
SO1938	phoQ	$0.41 (\pm 0.10)$	sensor protein PhoQ			
SO1943	phoP	$0.41 (\pm 0.10)$ $0.34 (\pm 0.10)$	transcriptional regulatory protein PhoP			
SO4477	cpxR	$0.34 (\pm 0.10)$ $0.33 (\pm 0.12)$	transcriptional regulatory protein CpxR			
SO4477	срхА	0.49 (± 0.17)	sensor protein CpxA			
8) Regulatory proteins						
SO1937	fur		ferric untake regulation protein			
301937	ıuı	0.38 (± 1.14)	ferric uptake regulation protein			

^a The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures of EtrA7-1 grown at 40 mM KNO₃ to that of the anaerobically grown at 1 mM KNO₃ (reference). The standard deviation was calculated from six data points, which included three independent biological

samples and two technical samples for each biological sample.

DISCUSSION

This study shows a genetic stress response caused by the deletion of the *etrA* gene in *Shewanella oneidensis* MR-1. The MR-1 $\Delta etrA$ mutant (EtrA7-1) was confirmed using PCR diagnostic techniques, DNA sequencing and expression analysis. As it has been observed previously for various *etrA* mutants in MR-1, EtrA7-1 retained its ability to reduce nitrate, however, the anaerobic growth when nitrate was the only electron acceptor was significantly lower than that of the wild type.

The inability of EtrA7-1 to grow despite its ability to reduce nitrate could be due to stress factors caused or enhanced by the mutation. The genetic expression pattern of EtrA7-1 when compared to that of the wild type after anaerobic cultivation with nitrate revealed the expressin of various genes that have been previously reported to respond to stressful conditions (i.e. starvation). Among these genes there is up-regulation of the sspAB genes that encode the stringent starvation protein. This protein in E. coli is highly expressed during nutrient starvation conditions and the SspA protein has been found to be required for the transcription of bacterial phage late genes (17). Up-regulation of the pspABC operon was also detected. These genes encode the phage shock protein, which in E. coli is secreted to the periplasm and maintains the proton motive force under stress conditions provoked by filamentous phage infection (23). There was induction of a virulence factor (bipA) found in various E. coli enteric pathogens. This protein is a chaperone and it has been associated with rearrangements in the cytoskeleton of the infected host cells, in regulation of cell motility by flagellae and in the regulation of the expression of capsular genes (29). In addition, there is up-regulation of the genes involved in activation of the S. oneidensis MR-1 prophage LambdaSo as well as two

genes that encode late genes of MuSo1 and MuSo2, suggesting activation of their lytic cycle. There is also induction of bacterial genes (nusA and nusG) that are required to stabilize the Lambda protein antitermination complex in E. coli (4, 48) as well as a membrane-bound lytic transglycosylase (SO1166) that has the potential to help the process of lyses. Conversely, there is repression of the LambdaSo transcription regulator Cro/CI family, which represses the transcription of the Lambda genes in E. coli (49). This expression pattern supports the activation of the lytic cycle of these phages. Induction of these prophages by stressful conditions, specifically irradiation exposure, has been previously reported in S. oneidensis MR-1 (36). In this study induction of the early genes was observed for cells collected after a short incubation period of 5-20 min, whilst activation of late genes was observed when cells were incubated for a longer time (60 min). I also reported previously induction of some of these prophage genes in response to accumulation of nitrite and of other probable intermediaries of the nitrate reduction pathway, which could cause oxidative stress and DNA damage to the cell (Chapter 3). Moreover, it is known that starvation can activate the lytic cycle of prophages in other bacteria (49).

The induction of these genes suggests that the lytic cycle of these phages is compromising the survival of this organism under starvation conditions created by the absence of *etrA*. The EtrA protein is a global regulator that activates the expression of various genes involved in metabolism when oxygen is not present. In this study the growth conditions were optimal for normal growth, however, despite the availability of sufficient nutrient concentrations in the growth medium the bacterium was not able to use them, generating a starvation response. Another piece of evidence for the "internal

starvation condition" is the significant induction observed for the *pho* genes. The *pho* regulon (*phoBRU*), which has been very well studied in *E. coli*, activates and induces the expression of other genes when the cell experiences phosphate starvation (21, 50, 51). In *E. coli*, this regulator system induces the expression of genes that encode transport proteins for inorganic phosphate and other phosphorus sources, and of genes involved in phosphorus utilization. In this study there is induction of a variety of genes involved in the transport and metabolism of phosphate indicating phosphate starvation conditions in EtrA7-1. There are also genes induced such as *era*, which regulates the TCA cycle and responds to starvation (34), and *recO* that is involved in repair of DNA damage (36).

Among the physical starvation responses described in bacteria, there is the reduction of cellular size and biofilm dissolution. Cell size reduction has been observed for some bacteria of the *Shewanella* genus (2, 6, 16). This particular response has been of interest in the study of *S. algae* since it has been observed that when bacteria are inoculated in contaminated sites, its transport is limited to the surroundings of the injection wells and very low bacterial numbers travel downstream the plume (6). Thus, if cells are cultivated in starvation conditions, the culture is more resistant to the harsh environmental conditions and the size of the cells is small enough enabling the inocula to penetrate deeper and travel further. The results presented herein show a significant percentage of genes up-regulated that belong to the "cell envelope" and to the "fatty acid and phospholipid metabolism" categories. These categories include genes involved in cell membrane composition, and shape determination (*rodA*), which can be involved in rearranging the cell membrane composition and in reducing the cellular size, which in

turn conserves energy. A rearrangement in the cell membrane composition can also increase the membrane permeability to the substrates needed.

Detachment of bacteria has been observed for biofilms exposed to long periods of starvation (47). In the EtrA7-1 cultures examined there is down-regulation of genes associated with biofilm formation such as the cpxAB genes that in E. coli are described as part of a signal transduction pathway for the adherence process (13). In addition to these proteins, E. coli possesses a second signal transduction pathway, the EnvZ-OmpR twocomponent system, which operates the same process. In EtrA7-1 these genes (envZ and ompR) are down-regulated as well. Repression of these genes in the mutant suggests an impediment to biofilm formation, which represents a starvation response. However, in studies of MR-1 induction of biofilm detachment was associated with oxygen limiting conditions (47). To determine the regulators involved in this process, genes encoding possible regulators such as etrA, crp, and arcA were deleted. The MR-1 \(\Delta etrA \) mutant was reported to be defective in its detachment response (47) but to a lesser extent when compared to the other regulators examined (Crp and ArcA). The authors suggested an EtrA involvement in the regulation of biofilm detachment in MR-1, however a direct linkage of these regulators with detachment of biofilms could not be concluded. In EtrA7-1, high induction levels of a gene annotated as aggA were detected. This gene encodes an agglutination protein, which is involved in the fimbrial biogenesis system of pathogenic gram-negative bacteria (22). The fimbriae mediate the aggregation of cells adhered to the epithelial host cells. In MR-1, this agglutination protein has been associated with biofilm formation since it was the most up-regulated protein in MR-1 biofilm forming cells (11). Therefore, our results suggest an involvement of EtrA in the

repression of aggA during anaerobic conditions, which might trigger an activation of detachment in MR-1. Conversely, the repression of the cpxAB genes might be due to starvation conditions and not to regulation by EtrA, however the lack of these transcripts can induced detachment in the mutant. This response might counteract the effects of AggA in adherence, which might explain the variable detachment phenotype observed for the MR-1 $\Delta etrA$ mutant by Thormann et al. (47).

Accumulation of nitrite is another stressful situation observed in the cultures of EtrA7-1. Nitrite can trigger a stress response since, as previously discussed, high concentrations are toxic to the cell. This type of stress can be responsible for the upregulation of genes that help alleviate the damage associated with it. Among these genes, there is hslO that encodes a chaperone that assist the cells in the folding of proteins and repair, and rpoD, which codes for the sigma factor 70 that regulates many of these genes including those regulated by the pho regulon (24). There are also genes that encode export proteins and efflux systems that can help the cell in detoxification. It is also important to mention that other genes that encode for proteins that protect the cell against oxidative damage are down-regulated such as the uvrC, recC, hemB-1, hemB-2, hemH-1, katG-2, parE and lexA (36). The cause of down-regulation in these genes is unclear.

Induction of various genes that are involved in carbon metabolism was detected. This suggests a regulatory role of EtrA in their expression. Some of these genes are involved in the TCA cycle and in some aerobic metabolism processes. In *E. coli*, Fnr not only induces the expression of genes necessary for anaerobic metabolism but also represses genes involved in the TCA cycle and some other genes involved in aerobic metabolism (39). Since EtrA is structurally similar to Fnr and since it has been associated

with oxygen sensing and regulation of anaerobic metabolism it is possible that EtrA is repressing the expression of some of these genes in MR-1 in the absence of oxygen. These results were observed previously in experiments performed in an MR-1 etrA mutant (3). In addition, some of these genes and even a higher number of up-regulated genes in this category were observed when the growth of the mutant (EtrA7-1) was compared under two nitrate concentrations (1 mM versus 40 mM KNO₃). Various global regulators control the expression of these genes, thus this regulation cannot be expected to be an ON/OFF expression regulation. Therefore, if there is an increase in the induction factor it is reasonable to expect an increase in the genetic expression response. In this case, at higher nitrate concentrations there is an increase in the expression of these genes.

Down-regulation in the expression of some genes in EtrA7-1 in response to anaerobic conditions on nitrate might represent an involvement of EtrA in their regulation. Among these, the ones of greater interest in this study were those involved in the nitrate reduction pathway. Those include the genes in the *nap* operon (*napBHGAD*), the *cymA* gene (*napC* homolog), and the *nrfA* gene, which encodes the cytochrome c552 nitrite reductase. Down-regulation of other genes that has been associated with the nitrate reduction pathway includes the *hcp* gene, which encodes the prismane protein associated in other bacteria with the reduction of hydroxylamine (5, 14). Among the down-regulated genes, there are genes that encode proteins necessary for anaerobic processes other than nitrate reduction. These genes include the fumarate reductase (*frdAB*), the anaerobic dimethyl sulfoxide reductase genes *dmaA*-1 and *dmsB*-1 and the quinone—reactive Ni/Fe hydrogenase genes the *hydC*, *hyaB*, and *hoxK*. These genes have been considered candidates for EtrA regulation (3, 26, 37, 38), and these results are consistent with those

observed by Beliaev, et al. (3). Moreover, the latter identified possible recognition sites of EtrA for some of these genes including *napDAHGB*, *nrfA*, *frdAB*, *hcp*, and *hydC*.

The genetic expression differences observed for EtrA7-1 when its growth was compared anaerobically at a low versus a high nitrate concentration showed the downregulation of genes that are oxidative stress inducible as well as down-regulation of the pspABC operon (mentioned previously). In addition, down-regulation in the expression of the pho genes (phoBPQ) was detected. Up-regulation was observed for genes involved in the transport and metabolism of carbohydrate such as the TCA cycle as mentioned previously. In addition, there was induction of genes involved in ammonium assimilation (glnB-1, glnA, and ntrBC) as well as two ammonium transporters, amt (SO0760) and tpt (ORF03506) and the glutamate kinase proAB (SO1121-1122). These genes are activated in amino acid starvation conditions. This ammonium starvation condition might be created by an imbalance in the utilization of the carbon source versus the low levels of ammonium produced. The reduction of nitrite into ammonium occurs very slowly in the mutant due to the low levels of nitrite reductase. This creates a deficiency of ammonium and subsequently of amino acids, which in turn activate the expression of these genes. The same occurs with the activation of the pho genes. Since the reduction of nitrite into ammonium, which is the one that gives more energy to the cell (compare with the reduction of nitrate into nitrite), is slowed down to a minimum, a deficiency of phosphate (ATP) is generated. Moreover, genes involved in storage of carbohydrates such as the glycogen synthase gene glgAC (SO1498-1499) and glgX (SO1495) are up-regulated. This was also observed when the genetic expression pattern of the mutant was compared to that of the wild type. These genes are activated in response to high concentrations of glucose indicating an excess of carbon in the cell relative to the concentration of ammonium, which was limited in EtrA7-1.

EtrA is a global regulator that might be acting in cooperation with other proteins to control various anaerobic metabolism processes in MR-1 (3, 26, 38). Therefore, the expression of these genes cannot be expected to be under an "all or none" regulation mechanism but rather, it is regulated in a gradual fashion that depends on many factors that accumulate to increase or decrease its expression. In this study there is a decrease in the rate of nitrate and nitrite reduction. Nevertheless, the activity is not halted indicating that even when EtrA is not present there are other regulators stimulating the expression of the genes involved in this pathway such as the genes that encode the only nitrate reductase in MR-1, NapA. In *E. coli* the *nap* and *nrf* genes are positively regulated by Fnr and NarP. MR-1 possesses the genes for a homolog of the two-component regulatory system in E. coli NarQ/NarP (SO3981-3982). This can explain the decrease in the expression of these genes rather than a complete shut down. A double mutant defective in NarP and EtrA will determine whether these regulators act jointly to control the expression of these genes.

A positive regulatory role of EtrA in the expression of the *napBGHAD* genes, the *nrfA* and the *cymA* genes is suggested. In studies where the *cymA* gene was deleted in S. *oneidensis* MR-1, researchers observed that nitrate reduction, among other anaerobic processes, was abolished indicating a requirement for *cymA* in this process (42, 43). CymA is a homologue of the NapC (one of the components of the NapABC multi-enzyme complex) of *E. coli*. This protein, CymA, has been suggested to be part of the electron transport complex of the nitrate reduction pathway in MR-1 (31, 42, 43).

Even though, this study was not designed to investigate starvation in MR-1, the deletion of the *etrA* gene in this organism stimulated a massive starvation response. However, the results obtained suggest that even when MR-1 can activate genes in response to starvation to increase its survival, the activation of the lytic cycle of three prophages may provoke an aggressive infection. This multiple infection compromises the cell survival efforts under these circumstances. It is important to point out though that these results would not be expected to reflect the starvation response of MR-1 under normal starvation conditions, since this was a product of a primary perturbation (*etrA* gene deletion). This investigation not only helps to understand the regulatory systems present in MR-1 but also its protection mechanisms and the obstacles these might experience to reduce the chances of survive under stressful conditions.

REFERENCES

- 1. Alexeyev, M.F. 1999. The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques. 26:824-828.
- 2. Bagge, D., M. Hjelm, C. Johansen, I. Huber, and L. Gram. 2001. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces. Appl. Environ. Microbiol. 67:2319-2325.
- 3. Beliaev, A.S., D.K. Thompson, M.W. Fields, L. Wu, D.P. Lies, K.H. Nealson, and J. Zhou. 2002. Microarray transcription profiling of a *Shewanella oneidensis etrA* mutant. J. Bacteriol. 184:4612-4616.
- 4. Bonin, I., R. Muhlberger, G.P. Bourenkov, R. Huber, A. Bacher, G. Richter, and M.C. Wahl. 2004. Structural basis for the interaction of *Escherichia coli* NusA with protein N of phage lambda. Proc. Natl. Acad. Sci. U S A. 101:13762-13767.
- 5. Cabello, P., C. Pino, M.F. Olmo-Mira, F. Castillo, M.D. Roldán, and C. Moreno-Vivián. 2004. Hydroxylamine Assimilation by *Rhodobacter capsulatus* E1F1. J. Biol. Chem. 279:45485-45494.
- 6. Caccavo, Jr., F., N.B. Ramsing, and J.W. Costerton. 1996. Morphological and metabolic responses to starvation by the dissimilatory metal-reducing bacterium *Shewanella alga* BrY. Appl. Environ. Microbiol. 62:4678-4682.
- 7. Choe, M., and W.S. Reznikoff. 1991. Anaerobically expressed *Escherichia coli* genes identified by operon fusion techniques. J. Bacteriol. 173:6139-6146.
- 8. Crack, J., J. Green, and A.J. Thomson. 2004. Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J. Biol. Chem. 279:9278-9286.
- 9. Darwin, A.J., and V. Stewart. 1997. Nitrate and nitrite regulation of the Fnr-dependent *aeg-46.5* promoter of *E. coli* K-12 is mediated by competition between homologous response regulators (NarL and NarP) for a common DNA-binding site. J. Mol. Biol. 251:15-29.
- 10. Darwin, A.J., E.C. Ziegelhoffer, P.J. Kiley, and V. Stewart. 1998. Fnr, NarP, and NarL regulation of *E. coli* K-12 *napF* (periplasmic nitrate reductase) operon transcription in vitro. J. Bacteriol. 180:4192-4198.
- 11. De Vriendt, K. S. Theunissen, W. Carpentier, L. De Smet, B. Devreese, and J. V. Beeumen. 2005. Proteomics of Shewanella oneidensis MR-1 biofilm reveals

- differentially expressed proteins, including AggA and RibB. Proteomics 5:1308-1316.
- 12. **Dehio, C., and M. Meyer.** 1997. Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in *Bartonella henselae* following conjugal plasmid transfer from *Escherichia coli*. J. Bacteriol. **179:**538-540.
- 13. Dorel, C., O. Vidal, C. Pringent-Combaret, I. Vallet, and P. Lejeune. 1999. Involvement of the CpX signal transduction pathway of *E. coli* in biofilm formation. FEMS Microbiol. Lett. 178:169-175.
- 14. Filenko, N.A., D.F. Browning, and J.A. Cole. 2005. Transcriptional regulation of a hybrid cluster (prismane) protein. Biochem. Soc. Trans. 33:195-197.
- 15. Gao, H., Y. Wang, X. Liu, T. Yan, L. Wu, E. Alm, A. Arkin, D.K. Thompson, and J. Zhou. 2004. Global transcriptome analysis of the heat shock response of *Shewanella oneidensis*. J. Bacteriol. 186:7796-7803.
- 16. Gram, L., A. Bundvad, J. Melchiorsen, C. Johansen, and B. Fonnesbech Vogel_1999. Occurrence of *Shewanella algae* in Danish coastal water and effects of water temperature and culture conditions on its survival. Appl. Environ. Microbiol. 65:3896-3900.
- 17. Hansen, A.M., Y. Gu, M. Li, M. Andrykovitch, D.S. Waugh, D.J. Jin, and X. Ji. 2005. Structural basis for the function of stringent starvation protein a as a transcription factor. J Biol Chem. 280:17380-17391.
- 18. Hedge, P., R. Qi, K. Abernathy, C. Gay, S. Dharap, R. Gaspard, J. Earlehughes, E. Snesrud, N. Lee, and J. Quackenbush. 2000. A concise guide to cDNA microarray analysis. BioTechniques. 29:548-562.
- Heidelberg, J.F., I.T. Paulsen, K.E. Nelson, E.J. Gaidos, W.C. Nelson, T.D. Read, J.A. Eisen, R. Seshadri, N. Ward, B. Methe, R.A. Clayton, T. Meyer, A. Tsapin, J. Scott, M Beanan, L. Brinkac, S. Daugherty, R.T. DeBoy, R.J. Dodson, A.S. Durkin, D.H. Haft, J.F. Kolonay, R. Madupu, J.D. Peterson, L.A. Umayam, O. White, A.M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T.R. Utterback, L.A. McDonald, T.V. Feldblyum, H.O. Smith, J.C. Venter, K.H. Nealson, and C.M. Fraser. 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis MR-1. Nat. Biotechnol. 20:1118-1123.
- 20. Holden, M., S. Bentley, M. Sebaihia, N. Thompson, A. Cerdeño-Tárraga, and J. Parkhill. 2003. The magnificent seven. Trends Microbiol. 11:12-14.

- 21. Jiang, W., W.W. Metcalf, K.S. Lee, and B.L. Wanner. 1995. Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2. J. Bacteriol. 177:6411-6421.
- 22. Jiang, Z.D., D. Greenberg, J.P. Natarro, R. Stephen, and H.L. DuPont. 2002. Rate of occurrence and pathogenic effect of enteroaggregative *Escherichia coli* virulence factors in international travelers. J. Clin. Microbiol. 40:4185-4190.
- 23. Jovanovic, G., L. Weiner, and P. Model. 1996. Identification, nucleotide sequence, and characterization of PspF, the transcriptional activator of the *Escherichia coli* stress-induced *psp* operon. J. Bacteriol. 178:1936-1945.
- 24. Kim, S.K, K. Makino, M. Amemura, A. Nakata, and H. Shinagawa. 1995. Mutational analysis of the role of the first helix of region 4.2 of the sigma 70 subunit of *Escherichia coli* RNA polymerase in transcriptional activation by activator protein PhoB. Mol. Gen. Genet. 248:1-8.
- 25. Lund, K., and J.A. DeMoss. 1976. Association-dissociation behavior and subunit structure of heat-released nitrate reductase from *Escherichia coli*. J. Biol. Chem. 251:2207-2216.
- 26. Maier, T.M., and C.R. Myers. 2001. Isolation and characterization of a Shewanella putrefaciens MR-1 electron transport regulator etrA mutant: reassessment of the role of EtrA. J. Bacteriol. 183:4918-4926.
- 27. Marx, C.J., and M.E. Lidstrom. 2002. Broad-host-range cre-lox system for antibiotic marker recycling in gram-negative bacteria. Biotechniques. 33:1062-1067.
- 28. Marx, C. J., and L. Chistoserdova. 2001. Development of versatile broad-host-range vectors for use in methylotrophs and other gram-negative bacteria. Microbiology 147:2065-2075.
- 29. Moller, A.K., M.P. Leatham, T. Conway. P.J. Nuijten, L.A. de Haan, K.A. Krogfelt, and P.S. Cohen. 2003. An Escherichia coli MG1655 lipopolysaccharide deep-rough core mutant grows and survives in mouse cecal mucus but fails to colonize the mouse large intestine. Infect. Immun.71:2142-2152.
- 30. Murray, A.E., D. Lies, G. Li, K.H. Nealson, J. Zhou, and J.M. Tiedje. 2001. DNA/DNA hybridization to microarrays reveals gene-specific differences between closely related microbial genomes. Proc. Natl. Acad. Sci. 98:9853-9858.

- 31. Myers, C.R., and J.M. Myers. 1997. Cloning and sequencing of cymA, a gene encoding a tetraheme cytochrome c required for reduction of Iron (III), fumarate, and nitrate by Shewanella oneidensis MR-1. J. Bacteriol. 179:1143-1152.
- 32. Myers, C.R., and K.H. Nealson. 1990. Respiration-linked proton translocation coupled to anaerobic reduction of manganese(IV) and iron(III) in *Shewanella putrefaciens* MR-1. J. Bacteriol. 172:6232-6238
- 33. Myers, C.R., and K.H. Nealson. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319-1321.
- 34. Nelson, D.W. 1983. Determination of ammonium in KCl extracts of soils by the salicylate method. Commun. In Soil Sci. Plant Anal. 14:1051-1062.
- 35. Pillutla, R.C., J. Ahnn, and M. Inouye. 1996. Deletion of the putative effector region of Era, an essential GTP-binding protein in Escherichia coli, causes a dominant-negative phenotype. FEMS Microbiol. Lett. 143:47-55.
- 36. Qiu, X., G.W. Sundin, L. Wu, J. Zhou, and J.M. Tiedje. 2005. Comparative analysis of differentially expressed genes in Shewanella oneidensis MR-1 following exposure to UVC, UVB, and UVA radiation. J. Bacteriol. 187:3556-3564.
- 37. Saffarini, D.A., R. Schultz, and A. Beliaev. 2003. Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. J. Bacteriol. 185:3668-3671.
- 38. Saffarini, D.A., and K.H. Nealson. 1993. Sequence and genetic characterization of etrA, an fnr analog that regulates anaerobic respiration in Shewanella putrefaciens MR-1. J. Bacteriol. 175:7938-7944.
- 39. Salmon, K., S.P. Hung, K. Mekjian, P. Baldi, G.W. Hatfield, and R.P. Gunsalus. 2003. Global gene expression profiling in *Escherichia coli* K12. The effects of oxygen availability and FNR. J. Biol. Chem. **278**:29837-29855.
- 40. Sambrook, J., and D.W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Press, Cold Spring Harbor, NY.
- 41. Schroeder, R.G., L.M. Peterson, and R.D. Fleischmann. 2002. Improved quantitation and reproducibility in *Mycobacterium tuberculosis* DNA microarrays. J. Mol. Microbiol. Biotechnol. 4:123-126.

- 42. Schwalb, C., S.K. Chapman, and G.A. Reid. 2002. The membrane-bound tetrahaem c-type cytochrome CymA interacts directly with the soluble fumarate reductase in *Shewanella*. Biochem, Soc. Trans. 30:658-662.
- 43. Schwalb, C., S.K. Chapman, and G.A. Reid. 2003. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis. Biochemistry. 42:9491-9497.
- 44. Shalel-Levanon, S, K.Y. San, and G.N. Bennett. 2005. Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnol. Bioeng. In press.
- 45. Stewart, V., P.J. Bledsoe, and S.B. Williams. 2003. Dual overlapping promoters control *napF* (periplasmic nitrate reductase) operon expression in *Escherichia coli* K-12. J. Bacteriol. 185:5862-5870.
- 46. **Tiedje, J.M**. 2002. *Shewanella*-the environmentally versatile genome. Nat. Biotechnol. **20**:1093-1094.
- 47. Thormann, K.M., R.M. Saville, S. Shukla, and A.M. Spormann. 2005. Induction of rapid detachment in *Shewanella oneidensis* MR-1 biofilms. J. Bacteriol. 187:1014-21.
- 48. Torres, M., J.M. Balada, M. Zellars, C. Squires, and C.L. Squires. 2004. In vivo effect of NusB and NusG on rRNA transcription antitermination. J. Bacteriol. 186:1304-1310.
- 49. Voyles, B.A. 1993. The biology of viruses. Mosby-Year Book, Inc., St. Louis, MO.
- 50. White, A.K., and W.W. Metcalf. 2004. The htx and ptx operons of Pseudomonas stutzeri WM88 are new members of the pho regulon. J. Bacteriol. 186:5876-5882.
- 51. White, A.K., and W.W. Metcalf. 2002. Isolation and biochemical characterization of hypophosphite/2-oxoglutarate dioxygenase. A novel phosphorus-oxidizing enzyme from *Psuedomonas stutzeri* WM88. J. Biol. Chem. 277:38262-38271.
- 52. Wolin, E.A., M.J. Wolin, and R.S. Wolfe. 1963. Formation of methane by bacterial extracts. J. Biol. Chem. 238:2882-2886.

CHAPTER V

Summary and Future Research

SUMMARY

The goal of this study was to clarify and examine the nitrate reduction pathway in Shewanella oneidensis MR-1. This was performed by combining classical microbiology approaches with innovative molecular biotechnology. Physiological and stoichiometric analyses indicated that nitrate is reduced to nitrite and nitrite is completely reduced to ammonium. This concludes that DNRA is the nitrate reduction pathway in MR-1 and not denitrification. MR-1 demonstrated greater cytotoxicity to nitrite as compared to nitrate. Even though nitrate concentrations higher than 2 mM were proven to be toxic, the growth rate of MR-1 remained steady beyond 2 mM. Gene expression analyses in MR-1 indicated an oxidative stress response to high nitrate concentrations. Also, induction of prophage related genes was observed. Oxidative stress and activation of the prophage lytic cycle are potential causes of growth inhibition at high nitrate concentrations. On the other hand, up-regulation of genes encoding transport and efflux systems as well as enzymes and proteins that metabolize toxic intermediates was observed. These proteins and other stress response chaperones protect the cell against oxidative damage and help in its survival and its internal stability. This in turns might decrease the expression of the prophage related genes giving the bacterium a chance to live in these environmental conditions. In MR-1, tolerance to nitrite is also obtained via a higher rate of consumption of nitrite as compared to the reduction of nitrate. This was observed in physiological experiments and could be inferred from the nrfA expression analyses. The transcription of the *nrfA* gene reached a plateau at a lower nitrate concentration as compared to *napA*, which might be a strategy in MR-1 to immediately reduce the nitrite in the cell for detoxification purposes.

Expression studies for *napA* and *nrfA* genes demonstrated that increasing nitrate concentrations do not cause repression in their expression as occurs in *E. coli*. This implies that there is no alternative mechanism for the reduction of nitrate in MR-1. Further experiments where the *napA* gene was completely deleted from the genome of MR-1 concluded that NapA is the only nitrate reductase and therefore responsible for nitrate reduction pathway in MR-1. In addition, gene expression studies in MR-1 where nitrate was supplied as the only electron acceptor and ammonium was not added suggested nitrate assimilation in MR-1. Since nitrate assimilation was beyond the scope of this study, this needs further investigation.

Regulation of the nitrate reduction pathway was examined by mutational analyses. Studies with a MR-1 $\Delta etrA$ deletion mutant indicated a decrease in biomass and in the rate of nitrate reduction when compared to the wild type. Since reduction of nitrate was not abolished, this suggests a partial but not absolute regulatory role of EtrA in the nitrate reduction pathway of MR-1. This has been observed in *E. coli* where Fnr and the two-component regulatory system NarP/NarQ regulate the expression of *napA* and *nrfA*. As stated in Chapter III, MR-1 possesses homologues for the *narP* and *narQ* genes, which increases the chances in MR-1 to have a similar regulatory mechanism controlling this pathway.

A starvation stress response was suggested by the gene expression analyses of the *etrA* mutant. In addition, induction of the prophage related genes was detected. However, in this case, contrary to the induction observed in response to a high nitrate concentration, the up-regulation of the prophage related genes was massive including genes for all three prophages described in MR-1. This implies a more aggressive phage infection which

could have caused the low biomass observed in MR-1 $\Delta etrA$ deletion mutant. This indicates that starvation stress is more detrimental to MR-1 than the oxidative stress caused by high concentrations of nitrate. The cell response is similar to that observed for MR-1 after exposure to radiation (6). This is the first time starvation has been examined in MR-1.

This study not only shed light to the nitrate reduction pathway of this organism but it also advances the understanding of the internal response to stress conditions and its degree of tolerance. MR-1 has the potential to be an excellent bioremediator with a very unique anaerobic metabolism. However, its sensitivity to environmental stress might limit its performance in the field. Understanding its biology and its genetic machinery will help increase its chances as a bioremediator. This work also demonstrates the potential of the microarray technology in the formulation of hypotheses and as a screening method to identified and examine genes of unknown function that can help us explain some of the cellular processes.

FUTURE RESEARCH

Future studies in the area should focus on the examination of nitrate assimilation in MR-1. Assimilation of nitrate is defined as the reduction of nitrate to ammonium, which is subsequently incorporated into cell material for the synthesis of nucleic acids and proteins (4). This process does not occur in all bacteria although it is widely spread among different species. Since NapA is the only nitrate reductase in *Shewanella oneidensis* MR-1, nitrate assimilation will be a product of the activity of NapA. The aim

of this study was not to evaluate nitrate assimilation, thus this was not examined. However, if this process indeed takes place in MR-1, this will be the first time a role in nitrate assimilation is attributed to NapA. This will denote that MR-1 is even more powerful than it is known and other bacteria that posses NapA and similar genetic capabilities might also be able to assimilate nitrate. Nitrate assimilation could be address via nitrogen isotopic fractionation (3).

Starvation in Shewanella oneidensis MR-1 has not been directly investigated. More studies to better understand its effects in MR-1 will help elucidate ways to counteract some of the obstacles it might encountered as bioremediator. Starvation is a critical stress often experienced by bacteria when applied as a bioremediator in contaminated sites. Tolerance and survival mechanisms to this kind of stress increase the potential of a bacterium as a bioremediator. MR-1 has been proven to grow and effectively consumed nitrate at high concentrations (this study) as well as other harmful compounds (8), however, its survival is threatened by other type of stresses such as radiation exposure and possibly starvation (6). These types of stresses are well known to cause activation of the lytic cycle of prophages in MR-1 and in other bacteria (9), which compromise its survival. This is a significant obstacle in the effective performance of MR-1 as a bioremediator. However, bacteria that posses the metabolic machinery but that as MR-1 are susceptible to other stresses could be genetically manipulated to improve their capabilities in such harsh conditions. Therefore, studies to examine the regulation of the transcription of the prophage related genes in MR-1 are crucial to improve its performance. Mutation analyses to investigate the regulation of genes such as the LambdaSo prophage Cro/CI repressor family should be undertaken. A homologue of this gene in E. coli is known to repress the expression of the prophage genes required to initialize activation of the Lambda prophage lytic cycle in E. coli. Also, point mutation of enzyme recognition sites and deletion of key genes will help in the development of a free-phage strain.

Unfortunately, little is known about the prophage related genes in MR-1. Therefore, research should focus in studying the biology and more specific, its genome. The majority of these genes are conserved hypothetical or hypothetical proteins. Once the function of these genes is characterized, genetic engineering approaches can be undertaken to repress transcription. The same is true for many of the genes differentially expressed in response to high concentrations of nitrate. A dramatic genetic expression difference was observed when the growth of MR-1 was compared on a low versus a high nitrate concentration. Many of these genes belong to the conserved hypothetical and hypothetical proteins category, which have not been characterized (its function is unknown). The elucidation of the role of these genes in the cell will explain the tolerance of MR-1 to some of this toxic metabolites and its unique metabolic versatility.

This study also identified genes that are directly or indirectly regulated by EtrA. Several studies have attempted to elucidate the role of EtrA in MR-1, however, since it does not act alone, its study is more complicated (1, 5, 7). Therefore, none of these studies prove direct regulation of EtrA on some of these genes. This can be achieved by cloning the promoter region of the candidate genes into a *lacZ* expression vector (2). This vector can be transformed in MR-1 wild type and in the MR-1 *etrA*- mutant. Expression of *lacZ* can then be compared to determine whether or not EtrA will bind the promoter affecting the transcription of this gene. An increase in the concentration of *lacZ*

transcripts in the strain lacking EtrA as compared to the wild type will indicate a repression role by EtrA for the gene regulated by the operon under examination. Whilst, increasing concentration of *lacZ* transcripts in the wild type as compared to the *etrA* mutant will represent an induction role by EtrA. Also, generation of double mutants defective in EtrA and NarP will determined the regulatory mechanism of the expression of the genes associated to the nitrate reduction pathway.

REFERENCES

- 1. Beliaev, A.S., D.K. Thompson, M.W. Fields, L. Wu, D.P. Lies, K.H. Nealson, and J. Zhou. 2002. Microarray transcription profiling of a *Shewanella oneidensis etrA* mutant. J. Bacteriol. 184:4612-4616.
- 2. **Boston, T. and T. Atlung.** 2003. FNR-mediated oxygen-responsive regulation to the *nrdDG* operon of *Escherichia coli*. J. Bact. 185:5310-5313.
- 3. Cadish, G., M. Espana, R. Causey, M. Ritcher, E. Shaw, J.A. Morgan, C. Rahn, and G.D. Bending. 2005. Technical considerations for the use of 15N-DNA stable-isotope probing for functional microbial activity in soils. Rapid Commun Mass Spectrom. 19:1424-1428.
- 4. Lin, J. T., and V. Stewart. 1998. Nitrate assimilation by bacteria. Adv. Microb. Physiol. 39: 1-30.
- 5. Maier, T.M., and C.R. Myers. 2001. Isolation and characterization of a Shewanella putrefaciens MR-1 electron transport regulator etrA mutant: reassessment of the role of EtrA. J. Bacteriol. 183:4918-26.
- 6. Qiu, X., G.W. Sundin, L. Wu, J. Zhou, and J.M. Tiedje. 2005. Comparative analysis of differentially expressed genes in *Shewanella oneidensis* MR-1 following exposure to UVC, UVB, and UVA radiation. J. Bacteriol. 187:3556-64.
- 7. Saffarini, D.A., and K.H. Nealson. 1993. Sequence and genetic characterization of etrA, an fnr analog that regulates anaerobic respiration in Shewanella putrefaciens MR-1. J. Bacteriol. 175:7938-7944.
- 8. Tiedje, J.M. 2002. Shewanella-the environmentally versatile genome. Nat. Biotechnol. 20:1093-1094.
- 9. Voyles, B.A. 1993. The biology of viruses. Mosby-Year Book, Inc., St. Louis, MO.

APPENDIX A

Shewanella oneidensis MR-1 deletion mutants

Additional MR-1 deletion mutants

I encountered several obstacles in the generation of the deletion mutants presented in this work but fortunately I was able to solve them. Due to time limitations, I could not complete the final steps of construction of the ones described in this appendix. These mutations were generated as described in Chapters III and IV and the primer sequences used are provided (TABLE A.1).

Some of the difficulties encountered included non-specific insertion of the construct in the genome, replication of the suicide vector in MR-1 and contamination of the mutant with the wild type. To select the colonies with the insertion in the correct location in the genome, primers for PCR targeting the sequences upstream and downstream of the construct were designed. The size of the product of this reaction will indicate whether or not the construct replaced the gene of interest. To solve the replication of the suicide vector in MR-1 it was necessary to transfer the constructs to a plasmid that possessed a different origin. MR-1 can replicate plasmids that possess origins from pUC plasmids, which were present in the pCM184. The constructs were transferred to the pKNOCK-Gm plasmid as described in Chapters III and IV, which has an R6K origin that requires a π protein that is not present in MR-1. This vector worked as a suicide vector in MR-1. Once the constructs were introduced by conjugation in MR-1, candidate colonies for the deletion were screened by PCR. The PCR reaction revealed two fragments, one that showed removal of the gene and a band of the size of the wild type phenotype. Furthermore, sequencing attempts showed mixed product. These results indicated that the mutant colony was contaminated with the wild type. This could be due to the excessive production of exopolysaccharide (EPS), which has been described in

MR-1 as a protection against oxygen toxicity. The EPS protects the wild type from the antibiotic selection and it makes its elimination difficult. After many, many attempts to dilute out the wild type by serial liquid growth and plating, I could not succeed in recovering only the mutant. The mutants presented in this appendix were left at this point (TABLE A7.1). To solve this, these cultures need to be transfer three times on LB agar and screened by PCR. If no clean colonies (free of wild type) are selected, a colony needs to be transfer to LB broth, incubated overnight and then transfer three times on LB agar. These steps need to be repeated until a clean mutant can be selected. To prevent further undesirable mutations it is important that the colonies are transfer only three times on agar and then in LB broth. One idea to reduce EPS production might be to grow the mutant under microaerophilic conditions.

These mutants are located in the -80°C freezer in Rm545 of the Plant and Soil Sciences Building. The box is labeled as *Shewanella oneidensis* MR-1 deletion mutants.

SUPPLEMENTAL TABLE A.1. Shewanella oneidensis MR-1 deletion mutants and primer sequences.

	Frimers used 10r construct	or construct
MR-1 Mutant (Gene ID)	N fragment forward primer	N fragment reverse primer
MR-1 ΔnarP (SO3982)	CGAATTCAGATTAACCATCAAGGAACC	GCATATGATGTGTAGGCTCCTGTTG
MR-1 ΔnarQ (SO3981)	CGAATTCATACATGTGGCCACGAGG	GCATATGTATGTCGAATACCTTGTG
MR-1 \(\rightarrow\)rt (SO3980)	GCCGCGGCATCTCCAGCGCCAAAGT	CGAGCTCGCGTGTTTTCAAACTCGG
MR-1 ΔnapA/ΔnrfA (SO0848)/(SO3980)	GCCGCGGCATCTCCAGCGCCAAAGT	CGAGCTCGCGTGTTTTCAAACTCGG
	C fragment forward primer	C fragment reverse primer
MR-1 <i>AnarP</i> (SO3982)	GCCGCGGAATTAATGCTTAATACGTTAAC	CGAGCTCTCAAGCAAGTTATGATGAA
MR-1 ΔnarQ (SO3981)	GCCGCGGGGGTAAACCTTATTCAGTT	CGAGCTCCTATTGCTTAAGCCTTCC
MR-1 Δ <i>nrfA</i> (SO3980)	CGAATTCGGCTTTTCTGCCGCGTTATCGT	GCATATGGTAATCATCCTTGAAGAT
MR-1 AnapA/AnrfA (SO0848)/(SO3980)	CGAATTCGGCTTTTCTGCCGCGTTATCGT	GCATATGGTAATCATCCTTGAAGAT

^a Primer sequences are written from the 5'end to the 3' end. Underlined sequences represent restriction enzymes recognition sites: GAATTC, EcoRI; CATATG, NdeI; GAATTC, SacI; CCGCGG, SacII.

^b The MR-1 ΔnapA/ΔnrfA double mutant was generated by deleting the nrfA gene in the MR-1 ΔnapA deletion mutant reported in ChapterIII.

APPENDIX B

Supplemental Tables

SUPPLEMENTAL TABLE B.1. Genes induced in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO₃.

Gene Relative

	Possible Function	Transport and binding proteins	Hypothetical proteins	Cell envelope	Energy metabolism			Transport and binding proteins	Unknown function	Energy metabolism	Energy metabolism	ì	Central intermediary metabolism		Energy metabolism	Hypothetical proteins	Hypothetical proteins	Hypothetical proteins	Energy metabolism	Unknown function	Biosynthesis of cofactors, prosthetic groups, and carriers	Regulatory functions	:	Central intermediary metabolism	Transport and binding proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	Transport and binding proteins	Transport and binding proteins	Transport and binding proteins	Hypothetical proteins	Hypothetical proteins	
	COG Annotation	L-lactate permease	conserved hypothetical protein	OmpA family protein	napD protein	inter-alpha-trypsin inhibitor domain protein	sulfate ABC transporter, periplasmic sulfate-	binding protein	Rrf2 family protein	prismane protein	citrate synthase	sulfite reductase (NADPH) flavoprotein	alpha-component	NADH:ubiquinone oxidoreductase, Na	translocating, alpha subunit	conserved hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	aldehyde-alcohol dehydrogenase	GGDEF family protein	uroporphyrin-III C-methyltransferase	transcriptional regulator, TetR family	S-adenosylmethionine decarboxylase	proenzyme, putative	L-lactate permease	cysteine desulfurase	sulfate ABC transporter, permease protein	sulfate permease family protein	transporter, putative	conserved hypothetical protein	conserved hypothetical protein	
	STD	11.00	12.00	6.85	80.6	5.41		8.56	10.84	4.04	5.58		3.94		5.33	4.92	6.13	3.19	3.13	2.97	3.58	3.81	,	6.92	11.00	2.15	2.89	2.32	2.23	2.98	3.25	,
	expression*	22.48	21.56	21.33	18.8	18.56		18.15	17.26	15.57	14.24		13.93		13.64	13.57	13.16	12.73	12.51	12.05	11.88	11.18	,	11.13	22.48	10.95	10.07	9.97	9.90	9.54	9.45	31.0
Gene	name	JIAP			napD			dqs		hcp	gltA		cysJ		nqrA-1				adhE		cobA				IIdP	iscS	cysW-2					ב
	Gene ID	SO0827	SO4302	SO2194	SO0849	SO2195		SO4652	SO2263	SO1363	SO1926		SO3738		SO0902	SO0944	SO2821	SO3542	SO2136	SO1646	SO3728	SO1415		SO1871	SO0827	S02264	SO4654	SO3553	SO4150	SO4504	SO1287	367000

Cellular processes	Biosynthesis of cofactors, prosthetic groups, and carriers	Energy metabolism	Hypothetical proteins	Energy metabolism	Cell envelope	Protein fate	Unknown function	Amino acid biosynthesis	Central intermediary metabolism	Unknown function		Transport and binding proteins	Regulatory functions	Protein fate	Disrupted reading frame	Protein synthesis			Hypothetical proteins		Cellular processes	Central intermediary metabolism	Hypothetical proteins		Central intermediary metabolism	Unknown function	Protein synthesis	Hypothetical proteins		Purines, pyrimidines, nucleosides, and nucleotides	Unknown function
flagellar basal-body rod protein FlgF oxygen-independent coproporphyrinogen []]	oxidase	iron-sulfur cluster-binding protein	conserved hypothetical protein	periplasmic nitrate reductase	inner membrane protein, putative	LPXTG-site transpeptidase family protein	HesB/YadR/YfhF family protein	ornithine carbamoyltransferase	sulfate adenylyltransferase, subunit 2	NifU family protein	hypothetical protein	sulfate ABC transporter, permease protein	lacZ expression regulator	co-chaperone Hsc20	transposase, IS110 family, degenerate	ribosomal protein S10	hypothetical protein	hypothetical protein	conserved hypothetical protein	Hagellar nook-basal body complex protein	FliE	sulfate adenylyltransferase, subunit 1	conserved hypothetical protein	hypothetical protein	component (cysl)	dsrE-related protein	ribosome modulation factor	conserved hypothetical protein	hypothetical protein	thymidine phosphorylase	extragenic suppressor protein SuhB
2.30	3.51	2.22	2.79	4.86	3.64	1.45	3.23	1.39	3.00	2.53	2.09	1.79	3.12	3.31	2.21	2.33	2.84	2.36	1.11		1.13	1.87	4.93	2.75	1.53	1.23	3.00	1.14	2.38	1.45	1.78
60.6	9.00	8.71	8.70	8.62	8.61	8.50	8.44	8.37	8.33	8.32	8.25	8.15	7.95	7.89	77.7	7.62	7.59	7.55	7.53		7.49	7.3	7.14	7.05	7.01	7.01	96.9	6.88	6.87	6.85	6.79
flgF	hemN			napA				argF	cysD			cysT-2	icc	hscB		rpsJ					fliE	cysN			cysl	•	rmf			deoA	suhB
SO3245	SO4730	SO1364	SO4505	SO0848	SO4334	SO2196	SO2266	SO0277	SO3727	SO2265	SO0941	SO4653	SO3901	SO2267	SO2820	SO0230	SO4656	SO0581	SO0449		SO3229	SO3726	SO3891	ORF03631	SO3737	SO0325	SO1855	SO3507	SOA0157	SO1218	SO2260

Transport and binding proteins Cellular processes	Hypothetical proteins Hypothetical proteins		Energy metabolism	Energy metabolism	Protein synthesis	Transport and binding proteins		Unknown function	Protein synthesis	Regulatory functions	Hypothetical proteins	Biosynthesis of cofactors, prosthetic groups, and carriers		Protein synthesis	Unknown function	Amino acid biosynthesis	Signal transduction		Energy metabolism	Protein synthesis	Protein synthesis	Unknown function		Regulatory functions	Protein synthesis		Energy metabolism		Biosynthesis of cofactors, prosthetic groups, and carriers	Protein fate
TonB-dependent receptor, putative beta-lactamase, putative	conserved hypothetical protein conserved hypothetical protein NADH uhiguinone oxidoreductase. Na	translocating, hydrophobic membrane protein	NqrB	acetyl-coenzyme A synthetase	ribosomal protein L34	sodium/solute symporter family protein	oxidoreductase, short chain	dehydrogenase/reductase family	ribosomal protein S21	transcriptional regulator, TetR family	conserved hypothetical protein	glutamate-1-semialdehyde-2,1-aminomutase	RNA methyltransferase, TrmH family, group	1	transcriptional regulator-related protein	cysteine synthase A	DNA-binding response regulator	hypothetical protein	cytochrome d ubiquinol oxidase, subunit I	ribosomal protein L13	ribosomal protein S16	yhgl protein	formate hydrogenlyase transcriptional	activator, putative	ribosomal protein L14	hypothetical protein	formate dehydrogenase, alpha subunit	3,4-dihydroxy-2-butanone 4-phosphate	synthase	peptidase, U32 family
1.30	1.88		1.93	1.54	2.58	1.71		2.38	1.08	2.77	5.86	1.36		1.03	1.28	2.23	3.22	1.01	1.37	1.86	1.81	1.31		0.90	1.32	1.16	2.30		<u>4</u>	1.02
6.74	6.68		6.49	6.44	6.42	6.33		6.27	6.22	6.19	6.12	6.05		6.03	5.95	5.94	5.93	5.91	5.87	5.86	5.86	5.80		5.78	2.67	5.63	5.61		5.59	5.58
			nqrB-1	acs	Hmdı				rpsU			hemL				cysK			cydA	rplM	rpsP	yhgI			Nlq				ribB	
SO4077 SO0837	SO1657 SO0324		SO0903	SO2743	SO0007	SO2857		SO1911	SO1288	SO3627	SO4651	SO1300		SO2261	SO0940	SO2903	SO2193	SO1947	SO3286	SO3940	SO1357	SO4619		SO3059	SO0241	SO1658	SO4509		SO0142	SO1252

Protein synthesis		Protein fate	Cellular processes	Transcription	Purines, pyrimidines, nucleosides, and nucleotides	Transcription	Protein synthesis		Protein synthesis	Hypothetical proteins	Purines, pyrimidines, nucleosides, and nucleotides	Protein synthesis	Purines, pyrimidines, nucleosides, and nucleotides	Regulatory functions	Regulatory functions	Hypothetical proteins	Protein synthesis		Hypothetical proteins	Protein synthesis	Signal transduction	Regulatory functions		Transport and binding proteins		Transcription	Hypothetical proteins		Amino acid biosynthesis	Hypothetical proteins	Energy metabolism		Energy metabolism
tRNA (guanine-N1)-methyltransferase	hypothetical protein	preprotein translocase, SecE subunit	flagellar basal-body rod protein FlgB	16S rRNA processing protein RimM	cytidine deaminase	ribonuclease P protein component	ribosomal protein L3	hypothetical protein	ribosomal protein S1	conserved hypothetical protein	cytidylate kinase	ribosomal protein S9	aspartate carbamoyltransferase	leucine-responsive regulatory protein	transcriptional regulator, LysR family	conserved domain protein	ribosomal protein L24	hypothetical protein	conserved hypothetical protein	ribosomal protein L5	sensor histidine kinase	psp operon transcriptional activator	hypothetical protein	TonB-dependent receptor, putative	hypothetical protein	ribonuclease E	conserved hypothetical protein	hypothetical protein	acetylglutamate kinase	conserved hypothetical protein	formate dehydrogenase, iron-sulfur subunit	cytochrome c oxidase, cbb3-type, CcoQ	subunit
1.39	1.27	1.27	6.74	1.73	1.39	1.76	1.44	2.44	2.07	1.09	1.39	1.91	1.73	1.63	1.40	2.76	99.0	1.51	0.95	1.83	3.03	1.18	1.20	0.59	1.24	1.03	1.02	0.68	0.62	0.98	2.08		0.75
5.54	5.50	5.48	5.46	5.45	5.45	5.43	5.38	5.35	5.30	5.29	5.29	5.28	5.17	5.16	5.15	5.15	5.15	5.13	80.8	5.05	4.99	4.98	4.93	4.89	4.88	4.88	4.81	4.80	4.80	4.77	4.75		4.74
trmD		secE	flgB	rimM	cdd	mpA	тыС		трѕА		cmk	rpsI	pyrB	ф			трIX			rplE		pspF				шe			argB		fdhB-1		Ç000
SO1359	SO4701	SO0218	SO3250	SO1358	SO2791	9000OS	SO0231	SO1516	SO2402	SO3720	SO2403	SO3939	SO1301	SO2305	SO0843	SO3085	SO0242	SOA0158	SO4131	SO0243	SO2192	SO1806	SO0439	SO2427	SO2632	SO2785	SO4708	SO0975	SO0276	SO3047	SO4510		SO2362

Unknown function Energy metabolism Transport and binding proteins SO2962 SO3739	Unknown function Transcription	Protein fate Hypothetical proteins Hypothetical proteins	Energy metabolism Amino acid biosynthesis	Protein fate	Cellular processes	Protein synthesis Unknown function	Protein synthesis Hypothetical proteins	Energy metabolism	DNA metabolism	Protein synthesis Hypothetical proteins	Transport and binding proteins Protein synthesis	Other categories Hypothetical proteins
PAP2 family protein cytochrome c oxidase, cbb3-type, subunit II cytochrome c oxidase, cbb3-type, subunit II phosphate-binding protein hypothetical protein hypothetical protein oxidoreductase, short chain	dehydrogenase/reductase family ATP-dependent RNA helicase DeaD	chaperone protein HscA conserved hypothetical protein conserved hypothetical protein	iron-sulfur cluster-binding protein argininosuccinate lyase hypothetical protein	peptidyl-prolyl cis-trans isomerase SlyD hypothetical protein	catalase/peroxidase HPI hypothetical protein	ribosomal protein L4 expression activator-related protein	ribosomal protein L19 conserved hypothetical protein	polysaccharide deacetylase family protein hypothetical protein	integrase/recombinase XerC hypothetical protein	ribosomal protein L21 conserved hypothetical protein TIGR01033	proton/glutamate symporter ribosomal protein L11	propriage Lamodaso, major capsid protein, HK97 family conserved hypothetical protein hypothetical protein
1.11 0.69 0.78 0.02 0.81	1.56	1.12	1.08 0.64 1.02	1.12	1.06	1.04 0.85	0.95	0.74	1.70	1.60	0.92	0.95 2.08 0.85
4.74 4.73 4.69 4.69	4.63	4.60 4.60 4.59	4.55 4.53 4.51	4.50	4.44	4.41 4.40	4.38	4.32	4.29 4.28	4.27	4.23	4.22 4.22 4.21
Occo	deaD	nscA	argH	slyD	katG-2	Пф	Slq		xerC	Uldı	трIК	
SO4195 SO2363 SO1560 SO2962 SO3739	SO0438 SO4034	SO2268 SO2792 SO3888	SO4506 SO0279 SOA0058	SO3417 SO0448	SO4405 SO4700	SO0232 SO3629	SO1360 SO1758	SO4151 SO3725	SO4306 SO3395	SO3652 SO2432	SO0157 SO0220	SO2963 SO3258 SO0748

Transcription Cell envelope		Purines, pyrimidines, nucleosides, and nucleotides	Cellular processes	Amino acid biosynthesis		Fatty acid and phospholipid metabolism	Biosynthesis of cofactors, prosthetic groups, and carriers		Energy metabolism	ì	Purines, pyrimidines, nucleosides, and nucleotides	Hypothetical proteins	Transport and binding proteins		Energy metabolism		Hypothetical proteins	Purines, pyrimidines, nucleosides, and nucleotides		Central intermediary metabolism	Hypothetical proteins	Hypothetical proteins	Energy metabolism	Unknown function	Protein synthesis		Purines, pyrimidines, nucleosides, and nucleotides	Protein synthesis	Protein synthesis	Hypothetical proteins	Tong of and hinding and only	I ransport and binding proteins
transcription antitermination protein NusG outer membrane protein Omp W. putative	phosphoribosylaminoimidazole-	succinocarboxamide synthase, putative	metnyl-accepting cnemotaxis protein, authentic point mutation	tryptophan synthase, alpha subunit	enoyl-CoA hydratase/isomerase family	protein	glutamyl-tRNA reductase	hypothetical protein	cytochrome c oxidase, cbb3-type, subunit III	phosphoribosylaminoimidazole carboxylase,	catalytic subunit	conserved hypothetical protein	sodium:alanine symporter family protein	hypothetical protein	formate dehydrogenase, C subunit, putative	hypothetical protein	conserved hypothetical protein	phosphopentomutase	hypothetical protein	phosphoadenosine phosphosulfate reductase	conserved hypothetical protein TIGR00246	conserved hypothetical protein TIGR00427	iron-sulfur cluster-binding protein NapG	acetyltransferase, GNAT family	phenylalanyl-tRNA synthetase, alpha subunit	inosine-uridine preferring nucleoside	hydrolase family protein	ribosomal protein S14	ribosomal protein L1	tRNA-i(6)A37 modification enzyme MiaB	proton-dependent oligopeptide transporter	(POI) ramily protein
1.33		0.51	0.80	1.73		0.94	96.0	0.54	0.45		0.73	0.74	1.03	3.77	1.51	0.70	0.74	0.39	86.0	0.59	0.67	0.80	1.28	1.09	0.50		3.25	0.74	1.05	0.47	9	0.83
4.20		4.18	4.16	4.16		4.15	4.15	4.15	4.13		4.13	4.13	4.12	4.12	4.10	4.10	4.08	4.07	4.06	4.06	4.06	4.06	4.05	4.05	4.02		4.01	4	3.99	3.98	3 03	3.97
Dsnu				trpA	•		hemA		ccoP		purE							deoB		cysH			napG		pheS			rpsN	rplA	miaB		
SO0219 SO1673) ; ;	SO4066	SO3046	SO3024		SO1680	SO3834	SO2972	SO2361		SO3554	SO2806	SO0858	SO3724	SO4511	SO2876	SO4650	SO1219	SO1628	SO3736	SO1169	SO2137	SO0847	SO1049	SO2085		SO0811	SO0244	SO0221	SO1181	20103	201711

Cellular processes	Protein synthesis	Protein synthesis	Transport and binding proteins	Protein fate	Hypothetical proteins	Transport and binding proteins	Hypothetical proteins	Signal transduction	Transport and binding proteins	Protein synthesis	Purines, pyrimidines, nucleosides, and nucleotides	Transport and binding proteins	Transport and binding proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	Signal transduction	Hypothetical proteins	Protein synthesis	Hypothetical proteins	Protein synthesis	Energy metabolism		Unknown function	Biosynthesis of cofactors, prosthetic groups, and carriers	Energy metabolism		Biosynthesis of cofactors, prosthetic groups, and carriers	Central intermediary metabolism	Protein synthesis		Hypothetical proteins	Cellular processes	
virulence regulator BipA	ribosomal protein S8	ribosomal protein L23	outer membrane porin, putative Sec-independent periplasmic protein	translocation protein TatC	conserved hypothetical protein	sulfate ABC transporter, ATP-binding protein	conserved hypothetical protein	DNA-binding response regulator	ABC transporter, permease protein	peptide chain release factor 1	uridine phosphorylase	TonB-dependent receptor, putative	serine transporter, putative	delta-aminolevulinic acid dehydratase	DNA-binding response regulator	conserved hypothetical protein	queuine tRNA-ribosyltransferase	conserved hypothetical protein	tRNA-(MS[2]IO[6]A)-hydroxylase	ATP synthase protein I	methyl-accepting chemotaxis protein	oxidoreductase, molybdopterin-binding	molybdenum cofactor biosynthesis protein A	aldehyde dehydrogenase	oxygen-independent coproporphyrinogen III	oxidase, putative	glutathione S-transferase family protein	ribosomal protein L27	hypothetical protein	conserved hypothetical protein	methyl-accepting chemotaxis protein	hypothetical protein
1.11	0.72	1.03	0.67	0.88	0.40	69.0	0.90	1.15	1.46	1.03	1.06	0.75	0.50	1.05	0.85	0.88	0.55	1.10	0.70	1.14	0.44	1.41	1.56	0.53		0.57	0.65	1.4	1.58	89.0	0.55	1.09
3.96	3.96	3.95	3.92	3.92	3.92	3.91	3.90	3.87	3.87	3.86	3.85	3.84	3.84	3.83	3.83	3.82	3.81	3.77	3.77	3.77	3.72	3.69	3.68	3.66		3.63	3.62	3.62	3.61	3.59	3.57	3.56
bipA	Hsdı	wlqr		tatC		cysA-2				prfA	dpn			hemB-1			tgt		miaE	atpl			moaA	aldA				rpmA				
SO4408	SO0245	SO0233	SO3896	SO4204	SO1789	SO4655	SO2832	SO4157	SO4720	SO3833	SO4133	SO0719	SO0919	SO2587	SO1416	SO0728	SO3113	SO3000	SO1788	SO4754	ORF04429	SO0715	SO4452	SO4480		SO4520	SO1576	SO3651	SO1128	SO1075	SO3404	SOA0156

Signal transduction	Energy metabolism	Cell envelope	Purines, pyrimidines, nucleosides, and nucleotides	Protein fate	Hypothetical proteins	Transport and binding proteins	Central intermediary metabolism	Amino acid biosynthesis	DNA metabolism		Purines, pyrimidines, nucleosides, and nucleotides	Unknown function	Protein synthesis			Amino acid biosynthesis		Other categories	Biosynthesis of cofactors, prosthetic groups, and carriers	Hypothetical proteins	Hypothetical proteins		Unknown function		Biosynthesis of cofactors, prosthetic groups, and carriers		Signal transduction	Central intermediary metabolism	Protein synthesis	Protein synthesis	Energy metabolism	Signal transduction	Cellular processes
sensor histidine kinase	ATP synthase F0, A subunit	rare lipoprotein B	dihydroorotate dehydrogenase	ClpP protease family protein	conserved hypothetical protein	proton/glutamate symporter, putative	adenylylsulfate kinase	aspartokinase III, lysine-sensitive	site-specific recombinase, resolvase family	anaerobic ribonucleoside-triphosphate	reductase	iojap domain protein	ribosomal protein L25	hypothetical protein	hypothetical protein		prophage LambdaSo, portal protein, HK97	family	molybdenum cofactor biosynthesis protein C	conserved hypothetical protein TIGR00011	conserved hypothetical protein	hypothetical protein	decarboxylase, pyridoxal-dependent	3-methyl-2-oxobutanoate	hydroxymethyltransferase	hypothetical protein	flagellar regulatory protein B	exopolyphosphatase	ribosomal protein L6	ribosomal protein L10	cytochrome c oxidase, cbb3-type, subunit I	DNA-binding response regulator	O-methyltransferase, putative
98.0	0.75	0.61	0.44	0.94	0.78	69.0	1.11	89.0	0.49		1.17	0.65	1.19	1.10	0.57	0.56		0.99	0.47	1.21	0.79	1.48	0.48		0.83	1.00	89.0	0.54	0.61	0.91	0.74	1.13	0.44
3.56	3.55	3.53	3.53	3.51	3.51	3.50	3.45	3.45	3.44		3.44	3.44	3.44	3.43	3.42	3.42		3.41	3.41	3.41	3.40	3.40	3.39		3.36	3.36	3.35	3.34	3.34	3.34	3.33	3.33	3.32
	atpB		pyrD				cysC	lysC			nrdD		трIY			trpB			moaC						panB		flrB	xdd	rplF	Udı	CCON		
SO4155	SO4753	SO1173	SO2592	SO2964	SO0331	SO3562	SO3723	SO3986	SOA0086		SO2834	SO1170	SO2112	SO2947	SO0403	SO3023		SO2965	SO4451	SO1124	SO3900	SO4508	SO4136		SO0870	SO1517	SO3231	SO2185	SO0246	SO0222	SO2364	SO4623	SO2905

Biosynthesis of cofactors, prosthetic groups, and carriers	Hypothetical proteins	Protein synthesis	yltransferase Cell envelope	lgC Cellular processes		I ransport and binding proteins	Fatty acid and phospholipid metabolism	Hypothetical proteins	Protein synthesis	protein PIsX Fatty acid and phospholipid metabolism	unit Protein fate		point	Energy metabolism	Protein synthesis		Protein synthesis	orotein V,	Other categories	Hypothetical proteins	tein Cellular processes		Energy metabolism		Unknown function	protein CorA Transport and binding proteins	Cell envelope	Transport and binding proteins	Hypothetical proteins	Cell envelope	Hypothetical proteins		Energy metabolism	Protein synthesis
GTP cyclohydrolase II	conserved hypothetical protein	ribosomal protein S15	UTP-glucose-1-phosphate uridylyltransferase	flagellar basal-body rod protein FlgC	copper ABC transporter, periplasmic copper-	binding protein	acyl-CoA thioesterase II	conserved hypothetical protein	ribosomal protein S7	fatty acid/phospholipid synthesis protein PlsX	preprotein translocase, YajC subunit	phosphate binding protein	alanine dehydrogenase, authentic point	mutation	translation elongation factor G	tRNA (5-methylaminomethyl-2-	thiouridylate)-methyltransferase	prophage LambdaSo, major tail protein V,	putative	conserved domain protein	methyl-accepting chemotaxis protein	quinone-reactive Ni/Fe hydrogenase, small	subunit precursor	hypothetical protein	HDIG domain protein	magnesium and cobalt transport protein CorA	lipoprotein, putative	Na+/H+ antiporter	conserved hypothetical protein	penicillin-binding protein 2	conserved hypothetical protein	formate dehydrogenase accessory protein	FdhD, putative	threonyl-tRNA synthetase
0.61	0.90	99.0	89.0	0.30	į	0.71	0.26	96.0	0.87	0.58	0.37	09.0		0.70	0.75		0.55		0.77	1.08	0.63		0.70	0.38	0.45	98.0	0.37	0.72	0.92	69.0	0.43		0.43	69.0
3.31	3.28	3.28	3.28	3.28	•	3.27	3.25	3.24	3.23	3.21	3.21	3.21		3.20	3.19		3.19		3.19	3.18	3.17		3.16	3.15	3.14	3.14	3.13	3.13	3.12	3.11	3.11		3.11	3.11
ribA		Osda	galU	flgC	•	nosD	tesB		rpsG	Xsld	yajC			ald	fusA-1		trmU						hoxK			corA		nhaD		mrdA				thrS
S02831	SO4138	SO1207	SO1665	SO3249	7000	SC0486	SO1912	SO2781	SO0227	SO2779	SO3112	ORF02714		SO2304	SO0228		SO2633		SO2956	SO0505	SO4053		SO2099	SO4303	SO1942	SO1941	SO0150	SO0935	SO2846	SO1168	SO0527		SO4503	SO2299

•	Protein fate		Protein synthesis	Hypothetical proteins	Transport and binding proteins	Energy metabolism	Unknown function	Disrupted reading frame	Hypothetical proteins	Purines, pyrimidines, nucleosides, and nucleotides	Protein synthesis	Energy metabolism	Energy metabolism	Hypothetical proteins	Transcription	Protein synthesis	Cellular processes	Transport and binding proteins	Unknown function	Purines, pyrimidines, nucleosides, and nucleotides	Purines, pyrimidines, nucleosides, and nucleotides	Energy metabolism	Transport and binding proteins	Transport and binding proteins	DNA metabolism		Energy metabolism		Protein synthesis		Protein fate	Unknown function	Purines, pyrimidines, nucleosides, and nucleotides
Sec-independent protein translocase protein	TatB	hypothetical protein	aspartyl-tRNA synthetase	conserved hypothetical protein	tyrosine-specific transport protein	formate acetyltransferase	rhodanese domain protein	siderophore receptor, putative, degenerate	conserved hypothetical protein TIGR00278	inosine-5-monophosphate dehydrogenase	glycyl-tRNA synthetase, alpha subunit	ferredoxin, 4Fe-4S	iron-sulfur cluster-binding protein napH	conserved hypothetical protein	polyA polymerase	arginyl-tRNA synthetase	methyl-accepting chemotaxis protein	potassium uptake protein TrkH	smtA protein	dihydroorotase, homodimeric type	ribose-phosphate pyrophosphokinase	ferredoxin, 2Fe-2S	ferrous iron transport protein A	TonB-dependent receptor	integration host factor, beta subunit	hypothetical protein	tetraheme cytochrome c, putative	hypothetical protein	ribosomal protein S12	hypothetical protein	serine protease, subtilase family	fibronectin type III domain protein	carbamoyl-phosphate synthase, small subunit
;	0. 2	0.61	1.30	0.47	0.78	0.88	92.0	0.43	0.43	0.97	0.30	0.71	1.09	99.0	0.67	0.55	1.02	0.44	0.74	0.49	0.78	0.99	0.50	2.18	0.57	1.18	1.09	0.51	0.95	1.03	0.29	0.67	0.29
•	3.09	3.09	3.08	3.07	3.07	3.06	3.05	3.05	3.05	3.04	3.04	3.03	3.03	3.02	3.02	3.02	3.01	3.00	3	2.99	2.99	2.96	2.96	2.96	2.94	2.94	2.94	2.93	2.92	2.92	2.91	2.90	2.90
ļ	tatB		aspS		tyrP	pflB				guaB	glyQ		napH		bcnB	argS		trkH-2	smtA	pyrC	prsA		feoA	nosA	ihfB				rpsL				carA
	SO4203	SO1247	SO2433	SO4512	SO2065	SO2912	SO2290	SO4422	SO0005	SO3293	SO0015	SO1251	SO0846	SO0265	SO0872	SO4123	SO4466	SO0028	SO0558	SO3695	SO3837	SO2269	SO1783	SO0630	SO2401	SO4026	SO1413	SO1944	SO0226	SO1220	SO1915	SO0189	SO1141

Cellular processes	Biosynthesis of cofactors, prosthetic groups, and carriers	Transport and binding proteins	Energy metabolism		Cellular processes	DNA metabolism	Hypothetical proteins	Transport and binding proteins	Unknown function	Hypothetical proteins	Unknown function		DNA metabolism	Hypothetical proteins	Unknown function	Protein fate		Transport and binding proteins		Regulatory functions		Purines, pyrimidines, nucleosides, and nucleotides		Energy metabolism	Protein synthesis		Protein fate	Hypothetical proteins	Protein synthesis		Cellular processes
methyl-accepting chemotaxis protein	biosynthesis protein amino acid ABC transporter. ATP-binding	protein	cytochrome c family protein	DNA internalization-related competence	protein ComEC/Rec2	primosomal replication protein n	conserved hypothetical protein	uracil permease	acetyltransferase, GNAT family	conserved hypothetical protein	hydrolase, TatD family	hypothetical protein	excinuclease ABC, A subunit	conserved hypothetical protein	Rrf2 family protein	general secretion pathway protein C	molybdenum ABC transporter, permease	protein	uracil phosphoribosyltransferase	transcriptional regulator, LysR family	hypothetical protein	carbamoyl-phosphate synthase, large subunit	hypothetical protein	pyruvate formate-lyase 1 activating enzyme	translation elongation factor G	Sec-independent protein translocase protein	TatA	conserved hypothetical protein	ribosomal protein S6	hypothetical protein	4 chemotaxis protein CheV
0.95	0.71	0.32	0.37		1.56	1.66	0.89	1.31	1.18	0.36	69.0	69.0	0.61	0.38	0.84	0.43		0.61	0.33	0.34	1.15	1.09	1.69	0.95	0.87		0.34	0.61	0.42	0.65	0.74
2.89	2.89	2.89	2.86		2.86	2.85	2.85	2.85	2.85	2.85	2.84	2.84	2.83	2.83	2.83	2.82		2.81	2.81	2.80	2.80	2.79	2.79	2.79	2.79		2.78	2.78	2.78	2.78	2.77
	mobA					priB		uraA					uvrA			gsbC			ddn			carB		pflA	fusA-2		tatA		rpsF		cheV-1
SO0500	SO4722	SO1042	SO4047		SO2803	SO3929	SO0768	SO2879	SO1883	SO2634	SO2610	SO0595	SO4030	SO4200	SO0045	SO0165		S04447	SO2759	SO1916	SO3590	SO1142	SO3307	SO2913	SO0842		SO4202	SO4719	SO3930	SO0447	SO1989

Energy metabolism Disrupted reading frame Hypothetical proteins Protein fate Hypothetical proteins	Protein synthesis Protein synthesis Other categories Energy metabolism	Biosynthesis of cofactors, prosthetic groups, and carriers Regulatory functions Protein synthesis	Protein synthesis Cellular processes Energy metabolism Hynothetical proteins			rany acid and phospholipid metabolism Biosynthesis of cofactors, prosthetic groups, and carriers Energy metabolism Fatty acid and phospholipid metabolism Hypothetical proteins
ATP synthase F0, C subunit processing protease, putative peptidase, M16 family, degenerate conserved hypothetical protein protease, putative conserved hypothetical protein	ribosomal protein L7/L12 ribosomal protein S18 transposase, putative TorA specific chaperone, putative	porphobilinogen deaminase transcriptional regulator, RpiR family ribosomal protein L18	frameshift cell division protein FtsN, putative fumarate reductase cytochrome B subunit conserved hypothetical protein	protein-export membrane protein SecD ribosomal protein L30 ribosomal protein L2 conserved hypothetical protein peptidase, putative conserved hypothetical protein hypothetical protein hypothetical protein	methlytransferase UbiE conserved hypothetical protein (3R)-hydroxymyristoyl-(acyl-carrier-protein)	uroporphyrinogen-III synthase alcohol dehydrogenase II phosphatidylglycerophosphatase B, putative conserved hypothetical protein
		0.40 0.62 0.31	0.50 0.90 0.23	0.59 0.91 0.62 1.32 1.81 0.71	0.67	0.43 0.85 0.81 1.16
2.77 2.77 2.76 2.75 2.75 2.75	2.74 2.73 2.72	2.72 2.71 2.71	2.70 2.70 2.70 2.70	2.70 2.70 2.68 2.68 2.68 2.68	2.67	2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 4 4 4 4
афЕ	ரி! ரைR	hemC rpIR	prfC frdC	secD-2 rpmD	ubiE	hemD adhB
SO4752 ORF02653 SO4538 SO0394 SO2724 SO2451	SO0223 SO3928 SO2129 SO4507	SO4313 SO2490 SO0247	SO1211 SO4124 SO0396 SO2840	SO3111 SO0249 SO0234 SO2858 SO2223 SO3722	SO4199 SO4304	SO4314 SO1490 SO4335 SO2176

Hypothetical proteins	Purines, pyrimidines, nucleosides, and nucleotides	Protein fate	Hypothetical proteins		Unknown function	Unknown function		Fatty acid and phospholipid metabolism			Protein synthesis	Energy metabolism	Protein synthesis		Purines, pyrimidines, nucleosides, and nucleotides	Transcription		Protein synthesis	Other categories	Biosynthesis of cofactors, prosthetic groups, and carriers	Transport and binding proteins	Transport and binding proteins	Protein synthesis		Cell envelope		Disrupted reading frame	Hypothetical proteins	Hypothetical proteins			DNA metabolism
hypothetical protein conserved hypothetical protein	adenylosuccinate lyase	preprotein translocase, SecY subunit	conserved hypothetical protein	hypothetical protein	conserved hypothetical protein	acetyltransferase, GNAT family	3-oxoacyl-(acyl-carrier-protein) reductase,	putative	hypothetical protein	hypothetical protein	ribosomal protein L32	cytochrome d ubiquinol oxidase, subunit II	glycyl-tRNA synthetase, beta subunit	anaerobic ribonucleoside-triphosphate	reductase activating protein	DNA-directed RNA polymerase, beta subunit	hypothetical protein	translation elongation factor P	prophage LambdaSo, holin, putative	protoporphyrinogen oxidase, putative	ABC transporter, ATP-binding protein	sulfate ABC transporter, permease protein	tRNA pseudouridine synthase A	acyl-(acyl-carrier-protein)UDP-N-	acetylglucosamine O-acyltransferase	hypothetical protein	surface protein, putative, truncation	conserved hypothetical protein	conserved hypothetical protein	hypothetical protein	hypothetical protein	DNA gyrase, A subunit
1.31	0.41	0.57	0.31	1.98	0.82	1.19		0.32	0.61	1.03	1.55	0.56	0.40		90.0	0.81	0.51	99.0	0.61	0.62	0.70	0.49	0.31		0.68	0.48	0. 8	0.53	0.77	1.58	1.03	1.32
2.63	2.62	2.62	2.62	2.62	2.62	2.61		2.61	2.61	2.6	2.60	2.60	2.60		2.58	2.57	2.57	2.57	2.57	2.56	2.56	2.56	2.56		2.56	2.56	2.55	2.55	2.54	2.53	2.51	2.51
	purB	secY									rpmF	cydB	glyS		nrdG	rpoB		efp				cysT-1	truA		lpxA							gyrA
SO1696 SO2636	SO2635	SO0251	SO2043	SO0729	SO2469	SO0526		SO1683	SO3892	SO3719	SO2780	SO3285	SO0014		SO2833	SO0224	ORF00995	SO2328	SO2969	SO0027	SO4721	SO3600	SO3068		SO1641	SO3008	SO2461	SO3931	SO3902	SO3009	SO1934	SO2411

Cell envelope IF Energy metabolism	Purines, pyrimidines, nucleosides, and nucleotides	DNA metabolism	Protein synthesis	Cellular processes		Other categories	Hypothetical proteins	•	Transport and binding proteins		D Biosynthesis of cofactors, prosthetic groups, and carriers	Regulatory functions	Transport and binding proteins	Biosynthesis of cofactors, prosthetic groups, and carriers		Cellular processes	Protein fate	Hypothetical proteins	Hypothetical proteins	Energy metabolism	Signal transduction		Regulatory functions	Regulatory functions	Biosynthesis of cofactors, prosthetic groups, and carriers	Energy metabolism	Protein synthesis	Hypothetical proteins	Protein fate	
penicillin-binding protein 4 cytochrome c-type biogenesis protein CcmF hypoxanthine-guanine	phosphoribosyltransferase chromosomal replication initiator protein	DnaA	ribosomal protein S5	flagellin	hypothetical protein	prophage LambdaSo, lysozyme, putative MiaB-like putative RNA modifying enzyme	YliG	anaerobic C4-dicarboxylate membrane	transporter	hypothetical protein	molybdenum cofactor biosynthesis protein D	transcriptional regulator HlyU	proton/glutamate symporter	geranyltranstransferase	hydrogenase assembly chaperone hypC/hupF	flagellar basal-body rod protein FlgG	peptidyl-prolyl cis-trans isomerase B	conserved hypothetical protein	conserved hypothetical protein	3-hydroxyisobutyrate dehydrogenase	sensor histidine kinase	hypothetical protein	DNA-binding protein Fis	DNA-binding protein Fis	pantoatebeta-alanine ligase	histidine ammonia-lyase	ribosomal protein L9	conserved hypothetical protein	protease, putative	•
0.28	0.73	0.27	0.56	0.90	0.61	0.95	0.24		0.67	0.78	0.57	0.42	0.37	0.40	0.83	0. 4	0.26	0.43	0.95	0.55	69.0	0.38	0.34	0.34	0.74	0.38	0.28	0.49	0.34	
2.50	2.50	2.49	2.48	2.48	2.47	2.47	2.47		2.47	2.46	2.46	2.46	2.46	2.45	2.45	2.44	2.44	2.43	2.43	2.43	2.43	2.42	2.42	74.7	2.40	2.40	2.40	2.39	2.39	
dacB ccmF-1	hpt-1	dnaA	rpsE				yliG		dcuB		тоа	hlyU		ispA	hypC	flgG	ppiB-1			mmsB			fis	SII	panC	hutH	Ild			
SO2394 SO0266	SO0807	80000S	SO0248	SO3237	SO3733	SO2973	SO4072		SO4417	SO0090	SO4450	SO3538	SO0922	SO1526	SO2092	SO3244	SO1790	SO2805	SO1518	SO1682	SO4622	SO2179	SO0393	300393	800869	SO0098	SO3927	SO0152	SO3411	

putative Other categories Hypothetical proteins		subunit DNA metabolism	ynthase III Fatty acid and phospholipid metabolism		subunit Energy metabolism	Hypothetical proteins	Protein synthesis		Purines, pyrimidines, nucleosides, and nucleotides		Energy metabolism	ive Transport and binding proteins	Purines, pyrimidines, nucleosides, and nucleotides		Hypothetical proteins	Hypothetical proteins			Transport and binding proteins		otein Transport and binding proteins		Transport and binding proteins	Biosynthesis of cofactors, prosthetic groups, and car		Fatty acid and phospholipid metabolism		Hypothetical proteins	mily Regulatory functions	Protein synthesis	TP-binding
prophage MuSo2, protein Gp32, putative conserved domain protein	von Willebrand factor type A domain protein	exodeoxyribonuclease VII, small subunit	3-oxoacyl-(acyl-carrier-protein) synthase III	hypothetical protein	NAD(P) transhydrogenase, alpha subunit	conserved hypothetical protein	ribosomal protein L33	hypothetical protein	orotate phosphoribosyltransferase	ribosomal protein L15	cytochrome c family protein	ABC transporter, permease, putative	purine nucleoside phosphorylase	hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	hypothetical protein	glutamyl-tRNA synthetase (gltX)	tolr protein	hypothetical protein	ABC transporter, ATP-binding protein	transposase, IS110 family, degenerate	MATE efflux family protein	GTP cyclohydrolase I	1-acyl-sn-glycerol-3-phosphate	acyltransferase	hypothetical protein	conserved hypothetical protein	transcriptional regulator, LysR family	ribosomal protein L20	molybdenum ABC transporter, ATP-binding
0.82	0.42	0.56	0.45	0.37	09.0	0.42	0.67	0.36	0.38	0.33	0.31	0.47	0.40	0.91	92.0	0.24	0.71	0.43	0.46	0.30	0.17	0.31	0.21	0.53		0.23	0.63	0.77	0.46	0.73	
2.39	2.38	2.38	2.38	2.37	2.37	2.36	2.36	2.36	2.35	2.35	2.35	2.33	2.33	2.33	2.33	2.33	2.33	2.32	2.32	2.32	2.32	2.32	2.32	2.31		2.31	2.31	2.30	2.3	2.3	6
		xseB	fabH-1		pntA		rpmG		pyrE	Oldr			deoD-2						tolR					folE		plsC				rpIT	
SO2684 SO4412	SO4385	1527	SO2778	00514	03740	02332	04246	04205	04255	00250	04048	02926	01221	00515	04194	03014	00553	RF04321	02750	03699	00885	OA0126	02295	04254		00567	SO2502	02008	01328	02302	

Purines, pyrimidines, nucleosides, and nucleotides Hypothetical proteins Unknown function	Hypothetical proteins Transport and binding proteins	Hypothetical proteins	Transport and binding proteins	Hypothetical proteins		Fatty acid and phospholipid metabolism	Hypothetical proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	Transport and binding proteins	Se,	Biosynthesis of cofactors, prosthetic groups, and carriers		Cell envelope	Hypothetical proteins	DNA metabolism	Protein fate	Unknown function		Regulatory functions	Hypothetical proteins		DNA metabolism				Purines, pyrimidines, nucleosides, and nucleotides	Energy metabolism	Biosynthesis of cofactors, prosthetic groups, and carriers
2,3-cyclic-nucleotide 2-phosphodiesterase conserved hypothetical protein sulfatase	conserved hypothetical protein AcrB/AcrD/AcrF family protein	conserved hypothetical protein	transporter, LysE family	conserved hypothetical protein	hypothetical protein CDP-diacylglycerolserine O-	phosphatidyltransferase	conserved domain protein	gamma-glutamyltranspeptidase	L-lactate permease, putative	menaquinone-specific isochorismate synthase,	putative	UDP-3-O-(3-hydroxymyristoyl) glucosamine	n-acyltransferase	conserved hypothetical protein	DNA helicase II	cold-active serine alkaline protease	hemK family protein	hypothetical protein	transcriptional regulator, LysR family	conserved hypothetical protein TIGR01033	prophage LambdaSo, type II DNA modification methyltransferase, putative.	truncation	hypothetical protein	hypothetical protein	hypothetical protein	adenine phosphoribosyltransferase	decaheme cytochrome c MtrA	ubiquinone biosynthesis protein AarF
0.41 0.44 0.35	0.53	0.51	0.33	89.0	0.54	0.39	0.43	0.43	0.47		0.56		0.33	0.33	0.32	0.79	0.74	0.32	0.61	0.47		0.36	0.34	0.47	1.23	0.28	0.35	0.17
2.30 2.30 2.30	2.29	2.28	2.28	2.28	2.28	2.27	2.26	2.25	2.25		2.25		2.25	2.25	2.25	2.24	2.23	2.23	2.23	2.22		2.22	2.22	2.22	2.21	2.21	2.21	2.21
cpdB						PssA		ggt-1					IpxD		uvrD	aprE										apt	mtrA	aarF
SO3565 SO4413 SO4628	SO1867 SO1882	SO1202	SO3657	SO2884	SOA0007	SO2390	SO4502	SO0741	SO1522		SO4713		SO1639	SO3694	SO0467	SO3106	SO3832	SO4353	SO3874	SO3401		SO2993	SO1303	SO2830	SO3001	SO2012	SO1777	SO4201

SO3067	folC	2.21	0.35	FolC bifunctional protein	Biosynthesis of cofactors, prosthetic groups, and carriers
,				DNA-directed RNA polymerase, omega	
00360	троZ	2.20	0.58	subunit	Transcription
SO4134		2.20	0.93	conserved hypothetical protein	Hypothetical proteins
				1,4-dihydroxy-2-naphthoate	
01610		2.20	0.47	octaprenyltransferase, putative	Biosynthesis of cofactors, prosthetic groups, and carriers
02218	asnS	2.19	0.64	asparaginyl-tRNA synthetase	Protein synthesis
03230	fic	2.19	0.30	flagellar regulatory protein C	Signal transduction
03613	purT	2.19	0.48	phosphoribosylglycinamide formyltransferase	Purines, pyrimidines, nucleosides, and nucleotides
00301		2.19	0.27	conserved hypothetical protein TIGR00096	Hypothetical proteins
02251		2.19	0.40	conserved hypothetical protein	Hypothetical proteins
SO4296		2.18	0.54	NupC family protein	Transport and binding proteins
00287	aroB	2.18	0.22	3-dehydroquinate synthase	Amino acid biosynthesis
04418		2.17	0.56	trypanothione synthetase domain protein	Unknown function
01642	lpxB	2.17	0.40	lipid A disaccharide synthase	Cell envelope
01687		2.17	0.57	transcriptional regulator, MerR family	Regulatory functions
02883		2.17	0.79	conserved hypothetical protein	Hypothetical proteins
				component of sodium-driven polar flagellar	
ORF04796		2.17	0.51	motor (motY)	
				phospho-2-dehydro-3-deoxyheptonate	
01361	aroF	2.17	0.40	aldolase, tyr-sensitive	Amino acid biosynthesis
SO2467		2.17	0.51	adhesion-related protein	Unknown function
				NADH:ubiquinone oxidoreductase, Na	
SO0904	nqrC-1	2.16	0.50	translocating, gamma subunit	Energy metabolism
01053		2.16	0.48	conserved hypothetical protein	Hypothetical proteins
				molybdenum ABC transporter, periplasmic	
SO4448		2.16	0.26	molybdenum-binding protein	Transport and binding proteins
00235	rpsS	2.16	0.99	ribosomal protein S19	Protein synthesis
				quinone-reactive Ni/Fe hydrogenase, large	
SO2098	hyaB	2.15	0.72	subunit	Energy metabolism
				prophage MuSo2, transcriptional regulator,	•
02652		2.15	0.30	Cro/CI family	Regulatory functions
SO1769		2.15	0.41	glutamate decarboxylase, putative	Central intermediary metabolism
01648		2.15	0.62	cold shock domain family protein	Cellular processes
302755	Ħ	2.14	0.59	ribonuclease T	Transcription

Amino acid biosynthesis Regulatory functions Hypothetical proteins Unknown function	Protein synthesis Hypothetical proteins Transport and binding proteins		Cell envelope Amino acid biosynthesis Protein synthesis	Transport and binding proteins Transport and binding proteins Protein fate		Protein fate Amino acid biosynthesis Transcription Energy metabolism Cellular processes	Cellular processes Transport and binding proteins Hypothetical proteins Protein synthesis
phosphoserine phosphatase transcriptional regulator, LysR family conserved hypothetical protein damX domain protein	prolyl-tRNA synthetase conserved hypothetical protein peptide ABC transporter. ATP-binding protein	conserved hypothetical protein trigger factor	oacterial surface antigen shikimate kinase tyrosyl-tRNA synthetase ABC fransporter ATP-hinding protein.	putative ion transporter peptidase, M23/M37 family transposse for insertion sequence element	is 904 (orfB) hypothetical protein phosphatidylserine decarboxylase, authentic frameshift hypothetical protein	peptidyl-dipeptidase Dcp serine acetyltransferase ribonuclease HII ATP synthase F0, B subunit flagellar basal-body P-ring formation protein FleA, putative	guanosine-3,5-bis(diphosphate) 3- pyrophosphohydrolase sulfate ABC transporter, permease protein conserved hypothetical protein ribosomal protein L36
0.76 0.33 0.60 0.30	0.38 0.48 0.39	0.24	0.46 0.46 0.45	0.31 0.34 0.64	0.27 1.59 0.29 0.41	0.66 0.27 0.41 0.61	60.61 p 0.48 s 0.32 c 0.88 r
2.13 2.13 2.13	2.13 2.13 2.13	2.13	2.12 2.10 2.10	2.10 2.09 2.09	2.09 2.09 2.09 2.08	2.08 2.08 2.08 2.08	2.07 2.07 2.07 2.06
serB	proS sabD	t ig	aroK tyrS		psd	dcp-1 cysE mhB atpF	spoT cysW-1 rpmJ
SO1223 SO3460 SO0046 SO0288	SO3154 SO0330 SO1802	SO0564 SO1793	SO1837 SO0286 SO1315	SO3954 SO3768 SO2842	ORF02163 SO2060 SO0590 ORF00969	SO3142 SO2262 SO1643 SO4751	SO0359 SO3601 SO4178 SO0252

	Hypothetical proteins	Protein synthesis	Cell envelope	Transport and binding proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	Hypothetical proteins	Protein synthesis	Cell envelope	Transport and binding proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	Hypothetical proteins	Protein synthesis	Cell envelope	Transport and binding proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	Hypothetical proteins	Protein synthesis	Cell envelope	Transport and binding proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	Hypothetical proteins	Protein synthesis	Cell envelope	Transport and binding proteins	Biosynthesis of cofactors, prosthetic groups, and carriers		Protein synthesis	Protein fate	Cellular processes	Energy metabolism	Cellular processes	Unknown function
hypothetical protein	conserved hypothetical protein	ribosomal protein L28	glutamate racemase	copper ABC transporter, ATP-binding protein	riboflavin biosynthesis protein RibF	conserved hypothetical protein	ribosomal protein L28	glutamate racemase	copper ABC transporter, ATP-binding protein	riboflavin biosynthesis protein RibF	conserved hypothetical protein	ribosomal protein L28	glutamate racemase	copper ABC transporter, ATP-binding protein	riboflavin biosynthesis protein RibF	conserved hypothetical protein	ribosomal protein L28	glutamate racemase	copper ABC transporter, ATP-binding protein	riboflavin biosynthesis protein RibF	conserved hypothetical protein	ribosomal protein L28	glutamate racemase	copper ABC transporter, ATP-binding protein	riboflavin biosynthesis protein RibF	hypothetical protein	peptidyl-tRNA hydrolase	peptidase, M16 family, authentic frameshift	ParB family protein	pyruvate kinase II	methyl-accepting chemotaxis protein	ROK family protein
0.58	0.24	0.00	0.29	0.31	0.43	0.24	0.90	0.29	0.31	0.43	0.24	0.90	0.29	0.31	0.43	0.24	0.90	0.29	0.31	0.43	0.24	0.90	0.29	0.31	0.43	0.51	0.39	0.29	0.40	0.36	0.42	0.64
2.06	2.06	2.06	2.06	2.05	2.05	2.06	2.06	2.06	2.05	2.05	2.06	2.06	2.06	2.05	2.05	2.06	2.06	2.06	2.05	2.05	2.06	2.06	2.06	2.05	2.05	2.05	2.05	2.05	2.04	2.04	2.04	2.03
		rpmB	murl	nosF	ribF		rpmB	murI	nosF	ribF		rpmB	murI	nosF	ribF		rpmB	murl	nosF	ribF		rpmB	murI	nosF	ribF		pth			pykA		
SO1544	SO3025	SO4247	SO0207	SO0487	SO3533	SO3025	SO4247	SO0207	SO0487	SO3533	SO3025	SO4247	SO0207	SO0487	SO3533	SO3025	SO4247	SO0207	SO0487	SO3533	SO3025	SO4247	SO0207	SO0487	SO3533	SOA0117	SO1184	SO3750	SO4755	SO2491	SO3282	SO1389

Protein synthesis	Energy metabolism	Unknown function		Unknown function	Biosynthesis of cofactors, prosthetic groups, and carriers	Transport and binding proteins	Cell envelope	Unknown function		Energy metabolism			Amino acid biosynthesis		Protein fate	Protein synthesis	
cysteinyl-tRNA synthetase NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic membrane protein	NqrE	HesB/YadR/YfhF family protein	hypothetical protein	ATP-dependent helicase HrpB	phosphoribosyltransferase	low-affinity inorganic phosphate transporter	type IV pilus biogenesis protein PilE	CBS domain protein	cytochrome oxidase assembly protein,	putative	indole-3-glycerol phosphate	synthase/phosphoribosylanthranilate	isomerase	hypothetical protein	disulfide bond formation protein b	ribosomal protein L35	
0.63	0.30	0.30	0.42	0.88	0.39	0.51	0.17	1.00		0.25			0.71	0.25	0.65	0.63	
2.03	2.03	2.03	2.03	2.02	2.02	2.01	2.01	2.01		2.01			2.00	2.00	2.00	2.00	
cysS	nqrE-2			hrpB	cobT	pit	pilE						trpC/F		dsbB	rpmI	
SO1791	SO1107	SO1304	SO2998	SO0632	SO1035	SO1052	SO3524	SO2856		SO4613			SO3022	SO1940	SO2887	SO2301	

The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures of MR-1 grown at 40 mM KNO3 to that of the anaerobically grown at 1 mM KNO3 (reference).

The standard deviation was calculated from six data points, which included three independent biological samples and two technical samples for each biological

sample.

SUPPLEMENTAL TABLE B.2. Genes repressed in anaerobic cultures of MR-1 at 1 mM (reference) versus 40 mM KNO₃.

Gene Relative

	Possible Function	Protein fate	Biosynthesis of cofactors, prosthetic groups, and carriers		Hypothetical proteins	Amino acid biosynthesis		Cellular processes	Hypothetical proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	Regulatory functions	Protein fate	Hypothetical proteins	Energy metabolism	Cellular processes	DNA metabolism	Cellular processes			Hypothetical proteins	Hypothetical proteins	Regulatory functions	Hypothetical proteins		Transport and binding proteins	Cell envelope	Energy metabolism	Hypothetical proteins
	COG Annotation	16 kDa heat shock protein A	2-dehydropantoate 2-reductase	hypothetical protein	conserved hypothetical protein	ketol-acid reductoisomerase	hypothetical protein	catalase	conserved hypothetical protein	ferrochelatase	transcriptional regulator, MerR family	chaperone protein DnaK	conserved hypothetical protein	coniferyl aldehyde dehydrogenase	Dps family protein	deoxyribodipyrimidine photolyase	alkyl hydroperoxide reductase, C subunit	hypothetical protein	hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	transcriptional regulator, MerR family	conserved hypothetical protein	hypothetical protein	ABC transporter, ATP-binding protein	outer membrane protein, putative	thioredoxin 1	conserved hypothetical protein
•	STD			0.05				0.05	90.0	90.0	0.03	0.02	0.10	0.01	0.75	0.05	0.05	0.03	0.02	0.03	0.05	0.34	0.03	0.03	0.03	90.0	0.05	0.03
Kelative	expression*	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.05	0.05	90.0	0.07	0.07	0.07	0.07	0.07	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	0.08	60.0	60.0	0.00
Cene	name	IbpA	panE			ilvC		katB		hemH-2		dnaK				phrB	ahbC										trxA	
	Gene ID	SO2277	SO3817	SO1590	SO0367	SO4349	SO1592	SO1070	SO3381	SO3348	SO0443	SO1126	SO4169	SO3683	SO1158	SO3384	SO0958	SO1589	SO3787	SO3343	SO0886	SO3385	SO3101	SO1588	SO0857	SO4473	SO0406	SO0771

Hypothetical proteins Cellular processes Regulatory functions Hypothetical proteins	Biosynthesis of cofactors, prosthetic groups, and carriers Energy metabolism Fatty acid and phospholipid metabolism	Transport and binding proteins Unknown function	Unknown function Protein fate	Hypothetical proteins Unknown function	Hypothetical proteins Hypothetical proteins	Unknown function Regulatory functions Cellular processes Protein synthesis	Regulatory functions Unknown function Unknown function
alkyl hydroperoxide reductase, F subunit adenylate cyclase CyaA, putative hypothetical protein conserved hypothetical protein pterin-4-alpha-carbinolamine dehydratase	thioredoxin 2 cytosolic long-chain acyl-CoA thioester hydrolase family protein cation efflux family protein	acetyltransferase, GNAT family hypothetical protein glyoxalase family protein	clpB protein hypothetical protein hypothetical protein conserved hypothetical protein	fxsA protein hypothetical protein conserved hypothetical protein	hypothetical protein conserved hypothetical protein oxidoreductase, short-chain dehydrogenase/reductase family sigma-54 dependent transcriptional	regulator/sensory box protein glutathione peroxidase, putative glutaminyl-tRNA synthetase hypothetical protein	hypothetical protein transcriptional regulator, AraC/XylS family syd protein CBS domain protein hypothetical protein
0.05 0.06 0.05 0.03 0.01	0.05	0.05 0.20 0.04	0.02 0.07 0.05 0.05	0.19	0.02	0.02 0.79 0.04 0.07	0.06 0.02 0.16 0.07 0.04
0.09 0.09 0.09 0.10	0.11 0.11 0.11	0.11 0.11 0.12	0.12 0.12 0.12 0.12	0.12	0.12 0.12 0.12	0.13 0.13 0.13 0.13	0.14 0.14 0.14 0.14
ahpF	trxC		clpB	fsxA		Sulg	pśs
S00956 S04312 S00753 S01274 S01667	SO0452 SO2772 SO2045	SO2850 SO2773 SO3586	SO3577 SO0957 SO4348 SO4740	SO0698 SO0444 SO1264	SO3786 SO1899 SO3382	SO3660 SO3349 SO1786 SO0554	SO0322 SO3488 SO1609 SO2228 SO4280

conserved hypothetical protein	· ·	transcriptional regulator, TetR family Regulatory functions	transcriptional regulator, MarR family Regulatory functions	DNA-binding response regulator Signal transduction	transcriptional regulator-related protein Unknown function	transcriptional regulator, LysR family Regulatory functions	conserved hypothetical proteins		channel protein, hemolysin III family	ly Protein fate	transcriptional regulatory protein TyrR Regulatory functions	be flagellar protein MotY, authentic	ift Cellular processes	hypothetical protein	conserved hypothetical proteins	phosphoenolpyruvate carboxylase Energy metabolism	heavy metal efflux pump, CzcA family Transport and binding proteins	azoreductase, putative Cellular processes	hypothetical protein	C-factor, putative Cellular processes	hypothetical protein	ribosomal subunit interface protein	oxygen-insensitive NAD(P)H nitroreductase Unknown function	anthranilate synthase component I Amino acid biosynthesis	hypothetical protein	hypothetical protein	hypothetical protein	Transport and binding proteins	conserved hypothetical proteins	ABC transporter, ATP-binding protein Transport and binding proteins		Protein fate
conserv	ParA fa	transcri	transcri	DNA-b	transcri	transcri	conserv	glutami	channel	subfamily	transcri	sodium	frameshift	hypothe	conserv	phospho	heavy n	azoredu	hypothe	C-facto	hypothe	riboson	oxygen	anthran	hypothe	hypothe	hypothe	ferritin	conserv	ABC tra	SsrA-bi	oligope
0.03	0.14	0.02	0.04	0.04	0.70	0.04	0.03	0.03		0. 8	0.04		0.07	90.0	0.05	0.04	0.05	90.0	0.05	0.04	0.07	0.05	0.12	0.05	0.04	0.0	0.07	0.07	0.03	0.05	0.08	0.05
_	0.14	0.15	0.15	0.15	0.16	0.16	0.16	0.17		0.17	0.17		0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.18	0.18	0.18	0.18	0.18	0.19	0.19	0.19	0.19	0.19	0.20	0.20	0.20
0.14																																
0.14											tyrR		motY			bbc						yfiA-1		trpE				Æ			smpB	prlC

0.20		conserved hypothetical protein conserved hypothetical protein conserved hypothetical protein transcriptional regulator, putativa	Hypothetical proteins Hypothetical proteins Hypothetical proteins Remistory functions
0.20		transcriptional regulator, putative pirin family protein	Regulatory functions Unknown function
0.20		oxidoreductase, aldo/keto reductase family	Unknown function
0.20	90.0	HlyD family secretion protein site-specific recombinase, phage integrase	Transport and binding proteins
0.20	0.04	family	DNA metabolism
0.21	1 0.07	conserved hypothetical protein	Hypothetical proteins
0.21	0.04	conserved hypothetical protein	Hypothetical proteins
0.21	1 0.05	conserved hypothetical protein	Hypothetical proteins
0.2	1 0.07	protein-export protein SecB	Protein fate
0.21		fatty oxidation complex, beta subunit	Fatty acid and phospholipid metabolism
0.21	1 0.04	hypothetical protein	
0.21	0.06	hypothetical protein	
0.22	2 0.20	ATP-dependent protease HsIV	Protein fate
0.22	0.10	hypothetical protein	
0.22	0.00	potassium uptake protein KtrA, putative	Transport and binding proteins
0.22	0.06	heat shock protein GrpE	Protein fate
		Hoosoiliai MAA laige suomiil	
0.22		methyltransferase J	Protein synthesis
0.22	2 0.03	transcriptional regulator, GntR family	Regulatory functions
ć		All acpointed process to (EOI) comming	
0.77		protein	Protein fate
0.22	0.00	regulatory protein AsnC	Regulatory functions
0.22	2 0.05	HlyD family secretion domain protein	Unknown function
0.23	2 0.08	hypothetical protein	
0.23	3 0.11	transcriptional regulator, LysR family	Regulatory functions
0.23		heavy metal efflux pump, CzcA family	Transport and binding proteins
0.23	3 0.03	glutamate synthase, small subunit	Amino acid biosynthesis
0.23	3 0.05	sigma-E factor negative regulatory protein	Regulatory functions
0.23	3 0.05	conserved hypothetical protein	Hypothetical proteins
0.23	3 0.04	response regulator	Signal transduction

Energy metabolism	Energy metabolism	Energy metabolism	rrypometical proteins					Central intermediary metabolism		Transport and binding proteins	Protein fate	Regulatory functions			Regulatory functions	Unknown function	Hypothetical proteins	Protein fate			Hypothetical proteins	Hypothetical proteins	DNA metabolism	Transcription	Unknown function	Unknown function	Hypothetical proteins	Hypothetical proteins	Unknown function		Hypothetical proteins
NADH dehydrogenase I, A subunit formate dehydrogenase, nitrate inducible.	alpha subunit, selenocysteine-containing	aldenyde denydrogenase	conserved hypothetical protein hymothetical protein	hypothetical protein	hypothetical protein	hypothetical protein	hypothetical protein	4-aminobutyrate aminotransferase	phosphate ABC transporter, periplasmic	phosphate-binding protein	ATP-dependent protease, putative	transcriptional regulator, TetR family	hypothetical protein	hypothetical protein	transcriptional regulator, putative	AcrA/AcrE family protein	conserved hypothetical protein	prolidase	hypothetical protein	hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	type II restriction endonuclease, putative	RNA polymerase sigma-32 factor	PhoH family protein	bacterioferritin comigratory protein	conserved hypothetical protein TIGR00103	conserved hypothetical protein	oxidoreductase, FMN-binding	hypothetical protein	conserved hypothetical protein
0.15	0.13	9.0	0.00	9.9	90.0	0.04	0.07	90.0		0.0 20.0	0.07	90.0	0.03	0.04	0.10	0.04	0.05	90.0	0.02	0.07	0.05	0.05	0.05	0.10	0.08	0.14	0.07	0.03	0.07	0.12	0.08
0.23	0.23	0.23	0.23	0.24	0.24	0.24	0.24	0.24		0.24	0.24	0.24	0.24	0.24	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26	0.26
V onu	fdnG							gabT		pstS								pepQ						нод		pcb					
SO1021	SO0101	503496	SO4462	SO4738	SO2975	SO1748	SO4646	SO1276		SO4292	SO3391	SO4326	SO3276	ORF00299	SO1603	SO3102	SOA0072	SO0022	SO4365	SO0088	SO1392	SO0335	SOA0003	SO4583	SO0576	SO1877	SO2014	SO2645	SO3392	SO4168	SO4322

Amino acid biosynthesis	Energy metabolism	Hypothetical proteins	Other categories		DNA metabolism		Regulatory functions	Biosynthesis of cofactors, prosthetic groups, and carriers	Energy metabolism	Regulatory functions	Hypothetical proteins	Transport and binding proteins	Unknown function		Biosynthesis of cofactors, prosthetic groups, and carriers		Hypothetical proteins	Regulatory functions	Cellular processes	Protein fate		Signal transduction			Unknown function	Regulatory functions	Signal transduction	Hypothetical proteins	Energy metabolism	Unknown function		Unknown function
5,10-methylenetetrahydrofolate reductase	anaerobic dimemyi suiloxide reductase, B subunit	conserved hypothetical protein	partitioning protein A	site-specific recombinase, phage integrase	family	hypothetical protein	transcriptional regulator, putative	dethiobiotin synthase	cytochrome c oxidase, subunit II	transcriptional regulator, TetR family	conserved hypothetical protein	cysZ protein	von Willebrand factor type A domain protein	D-erythro-7,8-dihydroneopterin triphosphate	epimerase	hypothetical protein	conserved hypothetical protein	regulator of sigma D	cytochrome c551 peroxidase	serine protease inhibitor, ecotin	capsular synthesis regulator component B,	putative	hypothetical protein	hypothetical protein	AMP-binding protein	protein-P-II uridylyltransferase	nitrogen regulation protein	conserved hypothetical protein	isocitrate dehydrogenase, NAD-dependent	OmpA-like transmembrane domain protein	hypothetical protein	alpha amylase domain protein
0.04	9.0	0.07	0.05		0.08	0.02	0.09	0.07	0.04	0.05	0.00	0.0	0.0 4		90.0	0.03	0.10	0.10	90.0	90.0		0.07	0.18	0.10	0.04	0.07	0.05	0.13	0.04	0.03	0.03	0.0
0.26	0.26	0.27	0.27		0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.27	0.28		0.28	0.28	0.28	0.28	0.28	0.28		0.28	0.28	0.28	0.28	0.29	0.29	0.29	0.29	0.29	0.29	0.29
metF	dmsB-1							bioD				cysZ			YloJ			rsd	ccpA							glnD	ntrB					
SO4054	SO1430	SO2484	SOA0095		SO1471	SO3581	SO1265	SO2737	SO4606	SO3277	SO2672	SO2899	SO3552		SO2921	SO0573	SO0551	SO0433	SO2178	SO2312		S04444	SOA0057	SO0868	SO0355	SO1626	SO4471	SO1597	SO1538	SO3810	SO0124	SO3268

	Hypothetical proteins		Signal transduction		Central intermediary metabolism	Amino acid biosynthesis	Unknown function	Cell envelope		Unknown function	Cell envelope	Hypothetical proteins	Hypothetical proteins							Energy metabolism	Hypothetical proteins	Transport and binding proteins	Cellular processes	Other categories		Energy metabolism	Energy metabolism	Energy metabolism	Regulatory functions		Amino acid biosynthesis	Regulatory functions	Unknown function
hypothetical protein	conserved hypothetical protein	hypothetical protein	DNA-binding response regulator	glucosaminefructose-6-phosphate	aminotransferase (isomerizing)	acetylornithine aminotransferase	aminotransferase, class III	membrane protein, putative	HAD-superfamily hydrolase, subfamily IA,	variant 1 family protein	lipoprotein, putative	conserved hypothetical protein	conserved hypothetical protein	L-serine dehydratase 1	conserved hypothetical protein	ABC transporter, permease protein	methyl-accepting chemotaxis protein	proteic killer suppressor protein	hypothetical protein	acetoin utilization protein AcuB, putative	glutaredoxin	malate oxidoreductase	transcriptional regulator, LysR family	hypothetical protein	homoserine kinase	transcriptional regulator, LysR family	metallo-beta-lactamase family protein						
0.12	0.10	0.04	0.02		0.05	0.05	0.08	90.0		0.05	90.0	0.0	0.05	0.08	0.15	0.23	0.05	0.04	0.0	90.0	0.08	0.10	0.05	0.10	0.12	90.0	0.26	0.07	0.11	0.30	0.07	0.07	9.0
0.29	0.29	0.29	0.29		0.30	0.30	0.30	0.30		0.30	0.30	0.30	0.30	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.31	0.32	0.32	0.32	0.32	0.32	0.33	0.33	0.33	0.33	0.33
					Smlg	argD														sdaA				higA				sfcA			thrB		
SO0178	SO2470	SO1246	SO4428		SO4741	SO0617	SO3497	SO2375		SO0084	SO3150	SO3274	SO2763	SO4341	SO1984	SO2892	SO3994	SO0653	SO1532	SO2248	SO1431	SO3801	SO1385	SOA0023	SO4161	SO1237	SO2745	SO3855	SO0989	SO0543	SO3414	SO0402	SO0541

Unknown function	DNA metabolism	Unknown function	Cellular processes	Hypothetical proteins	Amino acid biosynthesis		DNA metabolism	Hypothetical proteins	Hypothetical proteins	Hypothetical proteins	Unknown function		Cellular processes	Hypothetical proteins	Protein fate	Hypothetical proteins		Energy metabolism	Transport and binding proteins	Unknown function	Unknown function	Hypothetical proteins			Unknown function	Energy metabolism		Fatty acid and phospholipid metabolism		Disrupted reading frame	Hypothetical proteins	Cell envelope	Energy metabolism
acetyltransferase, GNAT family site-specific recombinase, phage integrase	family	GGDEF family protein	superoxide dismutase, Fe	conserved hypothetical protein	threonine synthase	site-specific recombinase, phage integrase	family, authentic frameshift	conserved hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	OsmC/Ohr family protein	heat shock protein HsIVU, ATPase subunit	HslU	conserved hypothetical protein	signal peptidase I family protein	conserved hypothetical protein	anaerobic dimethyl sulfoxide reductase, A	subunit	heavy metal efflux system protein, putative	exopolysaccharide synthesis protein, putative	phospholipase/carboxylesterase family protein	conserved hypothetical protein	formate dehydrogenase-o, major subunit	(tdnG)""	smg protein	malate dehydrogenase	hypothetical protein	3-oxoacyl-(acyl-carrier-protein) synthase I	methylmalonic acid semialdehyde	dehydrogenase, interruption	conserved hypothetical protein	membrane protein, putative	electron transfer flavoprotein, beta subunit
0.05	0.07	0.04	90.0	0.08	0.04		0.15	0.12	0.07	0.04	90.0		0.10	0.05	0.07	90.0		0.05	0.10	0.05	90.0	0.03	•	0.0	0.07	0.08	0.0	0.03		9.0	0.0	0.10	0.02
0.33	0.33	0.33	0.33	0.33	0.33		0.34	0.34	0.34	0.34	0.34		0.34	0.34	0.34	0.34		0.34	0.34	0.34	0.34	0.34		0.34	0.34	0.35	0.35	0.35		0.35	0.35	0.35	0.35
			sodB		thrC								hslU					dmaA-1							smg	mdh		fabB					ettB
SO0183	SO0388	SO4407	SO2881	SO2893	SO3413		SO4271	SO4470	SO1957	SO3808	SO3409		SO4163	SO0789	SO2924	SOA0032		SO1429	SO4597	SO4288	SO1999	SO3758		ORF02277	SO0035	SO0770	SO0971	SO3072		SO3498	SO0114	SO2048	SO3145

SO1983	, T. 1.	0.35	0.09	hypothetical protein	
SO4346	M	0.35	0.12	acetolactate synthase II, small subunit	Amino acid biosynthesis
SOA0055		0.36	0.09	hypothetical protein	
SO1432		0.36	90.0	hypothetical protein	
SO1342	rpoE	0.36	90.0	RNA polymerase sigma-24 factor	Transcription
SO3333		0.36	0.04	transporter, putative	Transport and binding proteins
SO1960		0.36	0.07	conserved hypothetical protein	Hypothetical proteins
SO2794		0.36	0.07	conserved hypothetical protein	Hypothetical proteins
SO2546		0.36	0.08	conserved hypothetical protein	Hypothetical proteins
SO0783		0.36	90.0	hypothetical protein	
SO3973		0.36	0.0	RIO1/ZK632.3/MJ0444 family, putative	Unknown function
SO4725		0.36	0.00	conserved hypothetical protein	Hypothetical proteins
				AcrB/AcrD/AcrF family protein, authentic	
SO4328		0.36	0.0	frameshift	Cellular processes
SO3020	trpG	0.36	0.10	glutamine amido-transferase	Amino acid biosynthesis
SO4558		0.36	90.0	hypothetical protein	
SO0512	aroQ	0.37	0.04	3-dehydroquinate dehydratase, type II	Amino acid biosynthesis
SO0616		0.37	0.05	esterase, putative	Central intermediary metabolism
SO4344	ilvA	0.37	90.0	threonine dehydratase	Amino acid biosynthesis
SO1225		0.37	0.10	conserved hypothetical protein	Hypothetical proteins
SO3254	flgM	0.37	0.10	negative regulator of flagellin synthesis FlgM	Regulatory functions
SO1956		0.37	0.14	conserved hypothetical protein	Hypothetical proteins
SO3815		0.37	0.15	conserved hypothetical protein	Hypothetical proteins
SO4679		0.37	90.0	glycosyl transferase, group 1 family protein	Cell envelope
SO4191		0.37	0.11	DedA family protein	Unknown function
SO0758		0.37	0.0	hypothetical protein	
SO2230		0.38	90.0	hypothetical protein	
SOA0041		0.38	90.0	transcriptional regulator, PemK family	Regulatory functions
SO0694	galK	0.38	0.05	galactokinase	Energy metabolism
SO3494		0.38	0.03	transcriptional regulator, TetR family	Regulatory functions
SO0307		0.38	0.15	hypothetical protein	
SO4535		0.38	0.21	hypothetical protein	
SO3262	ilvB	0.38	0.05	acetolactate synthase isozyme I, large subunit	Amino acid biosynthesis
SO4492		0.38	0.10	conserved hypothetical protein	Hypothetical proteins

Protein fate	Unknown function			Biosynthesis of cofactors, prosthetic groups, and carriers		Regulatory functions	Hypothetical proteins	•	DNA metabolism	Cellular processes	•	Energy metabolism				Protein fate	Hypothetical proteins	Transport and binding proteins	Cellular processes	Cellular processes		Cellular processes	Transport and binding proteins	Unknown function	Disrupted reading frame	Hypothetical proteins	Disrupted reading frame	Hypothetical proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	Cell envelope	Regulatory functions	Hypothetical proteins	Transport and binding proteins
DnaJ domain protein	acyltransferase family protein	hypothetical protein	1-deoxy-D-xylulose 5-phosphate	reductoisomerase	hypothetical protein	transcriptional regulator, LysR family	conserved hypothetical protein	site-specific recombinase, phage integrase	family	pmba protein	electron transfer flavoprotein-ubiquinone	oxidoreductase, putative	hypothetical protein	hypothetical protein	peptidyl-prolyl cis-trans isomerase, FKBP-	type	conserved hypothetical protein	outer membrane efflux protein	maltose O-acetyltransferase	autoinducer-2 production protein LuxS	hypothetical protein	cell division protein FtsH	ABC transporter, ATP-binding protein	polysaccharide biosynthesis related-protein	nagD protein, degenerate	conserved hypothetical protein	ISSo5, transposase, interruption	conserved hypothetical protein	3-demethylubiquinone-9 3-methyltransferase	type IV pilin, putative	transcriptional regulator, LysR family	conserved hypothetical protein	outer membrane porin, putative
0.12	0.05	0.08		0.14	0.13	0.07	0.16		0.04	0.0		90.0	0.07	80.0		0.08	0.08	90.0	90.0	0.22	0.11	0.07	90.0	0.05	0.10	0.05	0.15	0.05	0.07	0.08	0.07	0.11	0.12
0.38	0.38	0.38	,	0.38	0.38	0.38	0.38		0.38	0.38		0.38	0.38	0.38		0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.40	0.40	0.40	0.40	0.40
			•	dxr						pmbA	•								maa	InxS		ftsH							ubiG				
SO3716	SO0194	SO4644		SO1635	SOA0056	SO0295	SO1890		SO4258	SO4078		SO4453	SO1317	SO1513		SO1390	SO1224	SO4090	SO1961	SO1101	SO2917	SO1197	SO0726	SO3261	SO2764	SO0304	SO3823	SO0113	SO2413	SO0854	SO2455	SO3584	SO1557

Hypothetical proteins	Energy metabolism		Regulatory functions	Energy metabolism	Hypothetical proteins		Transport and binding proteins	Hypothetical proteins		Signal transduction	Hypothetical proteins	Regulatory functions	Cellular processes	Amino acid biosynthesis	Cellular processes		Regulatory functions		Amino acid biosynthesis		Signal transduction	Hypothetical proteins	Transport and binding proteins	Protein fate	Unknown function	Signal transduction		Hypothetical proteins	Cell envelope	Hypothetical proteins	
conserved hypothetical protein	arginine N-succinyltransferase	hypothetical protein	transcriptional regulator, LysR family	methylisocitrate lyase	conserved hypothetical protein	hypothetical protein	HlyD family secretion protein	conserved hypothetical protein	DNA-binding response regulator, LuxR	family	conserved hypothetical protein	transcriptional regulator, AsnC family	flagellar protein FliL, putative 3-phosphoshikimate 1-	carboxyvinyltransferase	methyl-accepting chemotaxis protein	hypothetical protein	phosphohistidine phosphatase SixA	aspartokinase II/homoserine dehydrogenase,	methionine-sensitive	hypothetical protein	DNA-binding response regulator	conserved hypothetical protein	HlyD family secretion protein	renal dipeptidase family protein	acetyltransferase, GNAT family	nitrogen regulation protein NR(I)	hypothetical protein	conserved hypothetical protein	D-alanineD-alanine ligase	conserved hypothetical protein	hypothetical protein
0.05	90.0	0.10	90.0	0.08	0.05	0.05	0.0	0.13		0.11	0.13	0.11	0.07	0.04	90.0	0.12	0.0		0.08	0.10	0.07	0.08	0.07	0.0	0.05	0.08	0.07	0.02	0.08	0.11	0.18
0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40		0.40	0.41	0.41	0.41	0.41	0.41	0.41	0.41		0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.41	0.42	0.42
	astA			prpB										aroA			sixA		metL							ntrC			ddlA		
SO3073	0618	1814	A0165	0345	10220	4710	74148)0542		33305)0637	SO4567	00132)2404	3838)1222	SO3082		SO4055)2637	0622	80910)4089	3791	3831	24472	20199)1254	22217	0960OS	21152

osphate Purines, pyrimidines, nucleosides, and nucleotides	Signal transduction	Poussium-critics system Transport and binding proteins		al protein Hypothetical proteins	se regulator, LuxR	Signal transduction	Unknown function	se regulator YgiX,	Signal transduction	family 1 Fatty acid and phospholipid metabolism	al protein Hypothetical proteins	n Unknown function	conserved hypothetical protein TIGR00250 Hypothetical proteins	Ifurtransferase Central intermediary metabolism	Signal transduction	transcriptional regulator, AraC/XylS family Regulatory functions	protein Unknown function		Signal transduction		N Disrupted reading frame	aspartokinase I/homoserine dehydrogenase,		al protein Hypothetical proteins	rotein DNA metabolism	al protein Hypothetical proteins	al protein Hypothetical proteins	al protein Hypothetical proteins	drolase, subfamily IA,	· · · · · · · · · · · · · · · · · · ·	ily Unknown function
deoxyguanosinetriphosphate triphosphohydrolase, putative	response regulator	protein KefC, putative	transcriptional regulator, TetR family	conserved hypothetical protein	DNA-binding response regulator, LuxR	family	helicase	DNA-binding response regulator YgiX,	putative	fatty acid desaturase, family 1	conserved hypothetical protein	HDIG domain protein	conserved hypothetica	mercaptopyruvate sulfurtransferase	response regulator	transcriptional regulat	AMP-binding family protein	hypothetical protein	response regulator	site-specific recombinase, phage integrase	family, interruption-N	aspartokinase I/homo	threonine-sensitive	conserved hypothetical protein	MutT/nudix family protein	conserved hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	HAD-superfamily hydrolase, subfamily IA,		variant 3 protein family
90:0	0.08	0.08	80.0	60.0		0.13	0.16		0.15	0.04	0.08	0.07	0.25	0.28	0.08	0.07	0.05	0.13	90.0		0.16	,	90.0	0.02	0.12	0.11		0.12	,	400	20.0
0.42	0.42	0.42	0.42	0.42		0.42	0.42		0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.43		0.43	!	0.43	0.43	0.43	0.43	0.43	0.43	;	77	5.5
																							thrA								
SO2485	SO2366	SO0695	SO2493	2650		SO2648	SO0368		SO2104	0197	1440	2862	S03347	1261	SO2547	1762	11971	6077	4003		SO1439		SO3415	3571	1979	3355	S02239	3278	1		11000

Energy metabolism	Unknown function	Energy metabolism	Cell envelope	Hypothetical proteins	Protein fate	:	Disrupted reading frame		Hypothetical proteins	Hypothetical proteins	Cell envelope	Hypothetical proteins	Amino acid biosynthesis	Protein fate	Disrupted reading frame	Protein fate	Hypothetical proteins	Regulatory functions		Hypothetical proteins		Unknown function	Hypothetical proteins		Fatty acid and phospholipid metabolism	Hypothetical proteins		Signal transduction		Regulatory functions		Hypothetical proteins	Unknown function
isovaleryl-CoA dehydrogenase	dksA-type zinc finger protein	imidazolonepropionase	UDP-glucose 6-dehydrogenase	conserved hypothetical protein	peptidyl-prolyl cis-trans isomerase C	site-specific recombinase, phage integrase	family, truncation	hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	lipoprotein, putative	conserved hypothetical protein	acetolactate synthase II, large subunit	peptidase, M16 family	glycerate dehydrogenase, degenerate	methionine aminopeptidase, type I	conserved hypothetical protein	transcriptional regulator. GntR family	hypothetical protein	conserved hypothetical protein	TonB-dependent receptor C-terminal domain	protein	conserved hypothetical protein	hypothetical protein	beta-ketoacyl synthase	conserved hypothetical protein	hypothetical protein	sensor histidine kinase, putative	hypothetical protein	transcriptional regulator, LysR family	hypothetical protein	conserved hypothetical protein	cyay protein
90.0	0.11	0.05	0.07	0.13	0.38		0.10	0.11	0.17	0.07	90.0	90.0	90.0	0.12	0.10	0.07	0.04	0.0	0.18	0.07		90.0	0.19	0.10	0.23	0.14	0.10	0.08	90.0	0.17	0.00	0.10	0.13
0.43	0.43	0.43	0.43	0.43	0.43	9	0.43	0.43	0.43	0.43	0.43	0.43	0.44	0.44	0.44	0.44	0. 44.0	0.44	0.44	0.44		0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44
jvd		hutl	pgn		ppiC-1								ilvG			map																	cyaY
SO1897	SO2005	SO0095	SO4687	SO1306	SO0635		5003/3	SO3344	SO4242	SO0823	SO0297	SO1151	SO4347	SO3083	SO3628	SO1627	SO3679	SO0346	SO3841	SO1094		SO0815	SO4189	SO0306	SO1599	SO0964	SO0755	SO0352	SO3848	SO1259	SO4310	SO1260	SO4311

SO3088		0.45	0.11	fatty oxidation complex, alpha subunit	Fatty acid and phospholipid metabolism
SO2827		0.45	0.08	conserved hypothetical protein	Hypothetical proteins
SO1062	def-2	0.45	0.0	polypeptide deformylase	Protein fate
SO2540		0.45	90.0	response regulator	Signal transduction
SO0934		0.45	0.07	conserved hypothetical protein	Hypothetical proteins
SO1233	torC	0.45	0.16	tetraheme cytochrome c	Energy metabolism
SO2064		0.45	0.12	conserved domain protein	Hypothetical proteins
SO3418		0.45	0.12	hypothetical protein	
SO3796		0.45	0.08	conserved hypothetical protein	Hypothetical proteins
ORF02915		0.45	0.18	multidrug resistance protein, putative""	Hypothetical proteins
SO0501		0.45	0.07	conserved hypothetical protein	
SO1489		0.45	0.13	hypothetical protein	Transcription
				RNA polymerase sigma-70 factor, ECF	•
S03551		0.45	0.07	subfamily	Disrupted reading frame
				molybdenum-pterin-binding-protein,	
SO1799		0.45	0.10	truncation	Hypothetical proteins
SO2039		0.45	0.19	conserved domain protein	Cell envelope
SO2799		0.46	0.05	lipoprotein, putative	Signal transduction
SO4477	cpxR	0.46	0.08	transcriptional regulatory protein CpxR	Hypothetical proteins
ORF02531		0.46	0.16	hypothetical protein	
SO1331		0.46	0.08	MutT/nudix family protein	DNA metabolism
SO2446		0.46	0.0	hypothetical protein	
SO3942		0.46	0.07	serine protease, HtrA/DegQ/DegS family	Protein fate
SO2495		0.46	0.10	Smr domain protein	Unknown function
SO4283		0.46	0.0	apbE family protein	Cell envelope
				ribosomal small subunit pseudouridine	
SO3583	rsuA-1	0.46	0.09	synthase A	Protein synthesis
SO0296		0.46	0.18	integral membrane domain protein	Unknown function
SO3550		0.46	0.08	hypothetical protein	
SO2063		0.46	0.05	hypothetical protein	
SO1629	трѕВ	0.46	90.0	ribosomal protein S2	Protein synthesis
				oxidoreductase, short chain	•
SO2813		0.46	90.0	dehydrogenase/reductase family	Unknown function
SO3767		0.46	0.21	hypothetical protein	

,	•				
SO0529	Igh T	0.46	0.12	trpba operon transcriptional activator	Regulatory functions
SO4092		0.46	0.08	hydrolase, carbon-nitrogen family	Unknown function
SO4152		0.46	0.13	hypothetical protein	Hypothetical proteins
SO3794		0.47	0.13	conserved domain protein	Hypothetical proteins
SO4465		0.47	0.11	conserved domain protein	Hypothetical proteins
SO1998		0.47	0.07	conserved hypothetical protein	Energy metabolism
SO2347	gapA-3	0.47	0.11	glyceraldehyde 3-phosphate dehydrogenase	
SO4013		0.47	90.0	hypothetical protein	Cell envelope
6660OS	ppbG	0.47	0.14	D-alanyl-D-alanine endopeptidase	Hypothetical proteins
SO2542		0.47	0.10	conserved hypothetical protein	Hypothetical proteins
SO0555		0.47	0.20	conserved hypothetical protein	
SO1262		0.47	90.0	hypothetical protein	Cellular processes
SO2898		0.47	0.21	SMC family protein	Energy metabolism
SO0878	prkB	0.47	0.07	phosphoribulokinase	Unknown function
SO2153	moxR	0.47	0.08	MoxR protein	Unknown function
SO4039		0.47	0.08	hydrolase, haloacid dehalogenase-like family	Hypothetical proteins
SO0775		0.47	0.13	conserved hypothetical protein	Hypothetical proteins
SO2062		0.47	90.0	conserved hypothetical protein	
SO0147		0.47	0.11	hypothetical protein	Hypothetical proteins
SO3997		0.47	0.10	conserved hypothetical protein TIGR00645	•
SO1700		0.47	0.12	hypothetical protein	Energy metabolism
				glycerol-3-phosphate dehydrogenase	}
SO0053	gpsA	0.47	0.10	(NAD(P)+)	Hypothetical proteins
SO2769		0.47	0.11	conserved hypothetical protein	Hypothetical proteins
SO1585		0.47	0.13	fumarylacetoacetate hydrolase family protein	Unknown function
SO2533		0.47	0.05	conserved hypothetical protein	Hypothetical proteins
SO0389		0.47	0.11	hypothetical protein	
SO2355		0.47	0.07	universal stress protein family	Cellular processes
SOA0137		0.48	0.11	conserved domain protein	Hypothetical proteins
SO2851		0.48	0.25	histidinol phosphatase domain protein	Unknown function
SO1764		0.48	0.16	conserved hypothetical protein	Hypothetical proteins
SO4515		0.48	0.07	formate dehydrogenase, C subunit, putative	Energy metabolism
SO1441		0.48	0.10	hypothetical protein	
SO0615		0.48	0.11	hypothetical protein	

Protein fate	Amino acid biosynthesis	Hypothetical proteins	Transport and binding proteins	Unknown function	Hypothetical proteins	DNA metabolism	Unknown function	Hypothetical proteins		Hypothetical proteins	Hypothetical proteins	Hypothetical proteins	Cellular processes	Unknown function	Hypothetical proteins			Energy metabolism	Hypothetical proteins	Unknown function	Energy metabolism	Protein fate		Protein synthesis	Unknown function		Hypothetical proteins		Unknown function			Biosynthesis of cofactors, prosthetic groups, and carriers	Unknown function
carboxypeptidase	pyrroline-5-carboxylate reductase	conserved hypothetical protein	ABC transporter, ATP-binding protein	glpE protein	conserved hypothetical protein	formamidopyrimidine-DNA glycosylase	CBS domain protein	conserved hypothetical protein	hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	lipid A biosynthesis lauroyl acyltransferase	hydrolase, alpha/beta fold family	conserved hypothetical protein	hypothetical protein	carboxymuconolactone decarboxylase family	protein	conserved hypothetical protein	GGDEF domain protein	phosphoglycolate phosphatase, putative	peptidase HtpX	tKNA delta(2)-isopentenylpyrophosphate	transferase	hemK family protein	hypothetical protein	conserved hypothetical protein	hypothetical protein	AMP-binding family protein	hypothetical protein	hypothetical protein	hemX protein	GGDEF domain protein
0.11	0.0	0.10	0.10	0.08	0.18	90.0	0.07	0.11	0.21	90.0	0.08	0.08	0.08	0.12	0.10	0.36		0.08	0.11	0.05	0.10	0.11		0.18	0.0	0.17	0.12	0.13	0.14	0.07	0.0	0.08	0.0
0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.49		0.49	0.49	0.49	0.49	0.49		0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49
	proC			glpE		mutM							htrB									htpX		miaA								hemX	
SO1375	SO3354	SO2622	SO1853	SO4672	SO0856	SO4726	SO0805	SO4732	SO4355	SO0795	SO1256	SO0273	SO3746	SO2333	SO4727	SO0700		SO0083	SOA0122	SO3489	SO2414	SO2728		SO0602	SO3080	800699	SO3907	SO1159	SO0075	SO2249	SO4665	SO4315	SO1208

		Cellular processes	Energy metabolism	Protein synthesis	Energy metabolism	Regulatory functions	Unknown function	Cell envelope	Signal transduction		Hypothetical proteins	Regulatory functions		Regulatory functions	Energy metabolism	Regulatory functions	Regulatory functions	Hypothetical proteins		Hypothetical proteins	
		Cellu	Energ	Prote	Energ	Regu	Unka	Cell	Signa		Hypo	Regu		Regu	Energ	Regu	Regu	Hypo		Hypo	
hypothetical protein	hypothetical protein	DNA processing protein DprA, putative	phenylalanine-4-hydroxylase	ribosomal-protein-alanine acetyltransferase	malate oxidoreductase, putative	nitrogen regulatory protein P-II 1	LysM domain protein	lipoprotein	sensor histidine kinase	hypothetical protein	conserved hypothetical protein TIGR00251	transcriptional regulator, TetR family	prophage LambdaSo, transcriptional regulator,	Cro/CI family	glycogen phosphorylase family protein	transcriptional regulator, ArsR family	met repressor	conserved hypothetical protein	hypothetical protein	conserved hypothetical protein	
0.14	0.27	0.09	0.14	0.13	0.10	0.14	0.08	0.07	90.0	0.13	0.13	0.12		0.08	0.0	0.14	0.17	0.11	0.11	0.10	
0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.50	0.50	0.50	0.50	0.50		0.50	0.50	0.50	0.50	0.50	0.50	0.50	
			phhA	rimI		glnB-2											metJ				
SO1572	SO3785	SO0034	SO1666	SO1160	SO4118	SO3519	SO0033	SO3163	SO4648	SO3766	SO3356	SO1393		SO2990	SO1496	SO0026	SO4057	SO3256	SO0182	SO0568	

The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures of MR-1 grown at 40 mM KNO3 to that of the anaerobically grown at 1 mM KNO3 (reference).

The standard deviation was calculated from six data points, which included three independent biological samples and two technical samples for each biological sample.

E .
<u>.</u>
S
잉
티
اة.
5
汃
ଧ
2
흳
₹
일
퓠
3
2
ᇤ
न
4
ا≥
띫
4
တ္တ
밁
릐
리
robic
윙
อี
밁
8
크
힑
ᆁ
3
S
ᆲ
ၓ၂
٠.
Ξ.
BLE
2
TA
ار
Z
Z
自
끡
JPPL.
SUPPLEN
S
•

	Possible Function		Protein fate	Transport and binding proteins	DNA metabolism	Protein synthesis	Signal transduction	Cell envelope	Unknown function	Hypothetical proteins	Energy metabolism		Cell envelope	Protein fate		Protein synthesis	Central intermediary metabolism	Transport and binding proteins		Regulatory functions	Unknown function	Protein synthesis		Other categories	Energy metabolism	Hypothetical proteins	Protein synthesis	Transcription		:	Transport and binding proteins
	Poss		Prote	Tran	DNA	Prote	Sign	Cell	Unk	Hyp	Ener		ဗ္ဗ	Prote		Prote	Cent	Tran		Regu	C R	Prot		Othe	Ener	Hyp	Prot	Tran			Lan
	COG Annotation	hypothetical protein	radical activating enzyme	TonB-dependent receptor	DnaK suppressor protein	ribosomal protein L4	sensor histidine kinase	glycosyl transferase, group 1 family protein	decarboxylase, pyridoxal-dependent	conserved hypothetical protein	glycogen operon protein	membrane-bound lytic transglycosylase,	putative	peptidase, M13 family	RNA methyltransferase, TrmH family, group		4-aminobutyrate aminotransferase	phosphate ABC transporter, permease protein	hypothetical protein	transcriptional regulator, putative	LysM domain protein	ribosomal protein L32	prophage MuSo1, major head subunit,	putative	3-hydroxyisobutyrate dehydrogenase	conserved hypothetical protein	ribosomal protein S4	16S rRNA processing protein RimM	hypothetical protein	phosphate ABC transporter, ATP-binding	protein
	STD	96.0	0.45	0.58	1.12	0.62	0.48	0.88	0.60	0 .44	0.50		0.92	0.27		0.50	0.88	1.07	0.57	0.87	0.48	<u>4.</u>		0.82	0.91	0.93	0.75	0.38	0.34		1.02
	expression.	1.97	1.98	1.98	1.98	2.00	2.01	2.01	2.01	2.02	2.03		2.03	2.03		2.04	2.04	2.04	2.04	2.04	2.05	2.05		2.06	2.06	2.06	2.07	2.08	2.08	6	2.08
Cene	name				dksA	Old					glgX						gabT	pstA				rpmF			mmsB		rpsD	rimM		Ģ	pstB-2
	Gene ID	SO0466	SO2501	SO2715	SO0874	SO0232	SO4427	SO3176	SO4136	SO1202	SO1495		SO1166	SO0491		SO2261	SO1276	SO4290	SO2687	SO1265	SO3748	SO2780		SO0675	SO1682	SO4371	SO0255	SO1358	SO4186		SO4289

	Transport and binding proteins	Cellular processes	Transcription	Fatty acid and phospholipid metabolism		Fatty acid and phospholipid metabolism	Unknown function	Cell envelope	Regulatory functions		DNA metabolism	Biosynthesis of cofactors, prosthetic groups, and carriers	Purines, pyrimidines, nucleosides, and nucleotides		Fatty acid and phospholipid metabolism		Purines, pyrimidines, nucleosides, and nucleotides	Fatty acid and phospholipid metabolism	Protein synthesis		Fatty acid and phospholipid metabolism	Central intermediary metabolism	Unknown function	Hypothetical proteins	Purines, pyrimidines, nucleosides, and nucleotides	Protein synthesis	Energy metabolism	Transport and binding proteins	Purines, pyrimidines, nucleosides, and nucleotides	Energy metabolism
hypothetical protein	heavy metal efflux pump, CzcA family	stringent starvation protein b	transcription antitermination protein NusG	3-oxoacyl-(acyl-carrier-protein) synthase II	hypothetical protein	thioester dehydrase family protein	formyl transferase domain protein	membrane protein, putative	adenylate cyclase CyaA, putative	hypothetical protein	competence/damage-inducible protein CinA	 1-deoxy-D-xylulose 5-phosphate reductoisomerase E phosphoribosylaminoimidazolecarboxamide 	formyltransferase/IMP cyclohydrolase	phosphatidylserine decarboxylase, authentic	frameshift	hypothetical protein	guanylate kinase	3-oxoacyl-(acyl-carrier-protein) reductase	translation initiation factor IF-3	hypothetical protein	3-oxoacyl-(acyl-carrier-protein) synthase III	formatetetrahydrofolate ligase	iojap domain protein	conserved hypothetical protein	inosine-5-monophosphate dehydrogenase	ribosomal protein L23	ubiquinol-cytochrome c reductase, cytochrome cl sodium/hydrogen exchanger family/TrkA domain	protein	adenine phosphoribosyltransferase	ferredoxinNADP reductase
0.52	0.34	0.33	0.64	0.99	0.82	0.59	0.79	92.0	69.0	0.35	0.77	0.57	0.38		0.59	0.70	0.44	0.51	0.99	0.85	0.29	0.46	1.00	0.29	0.55	0.67	1.17	0.58	0.36	1.02
2.08	2.08	5.09	5.09	2.09	2.10	2.10	2.10	2.11	2.11	2.11	2.11	2.12	2.12		2.12	2.13	2.13	2.13	2.14	2.14	2.14	2.14	2.14	2.14	2.15	2.15	2.16	2.16	2.17	2.17
		sspB	Dsnu	fabF-2							cinA	dxr	burH	1	psd		gmk	fapG-2	infC		fabH-1	fhs			guaB	Wldr	petC		apt	fþr
SO1854	SO0520	SO0612	SO0219	SO4383	SO2974	SO4372	SO3177	SO3933	SO4312	SO4008	SO0272	SO1635	SO0442		SO0590	SO1337	SO0361	SO4382	SO2300	SO2002	SO2778	SO0560	SO1170	SO4561	SO3293	SO0233	SO0610	SO3747	SO2012	SO0747

Protein synthesis	Hypothetical proteins	Hypothetical proteins	Protein synthesis			Protein synthesis	Protein synthesis	Transport and binding proteins	Hypothetical proteins		Hypothetical proteins	Amino acid biosynthesis	Energy metabolism	Unknown function	Hypothetical proteins	Other categories	Hypothetical proteins	;	Energy metabolism	Hypothetical proteins		Unknown function	Hypothetical proteins	Unknown function	Protein synthesis	Fatty acid and phospholipid metabolism	Protein synthesis		Cellular processes	Energy metabolism	Cell envelope	Unknown function
ribosomal protein L6	conserved hypothetical protein	conserved hypothetical protein	ribosomal protein S18	hypothetical protein	hypothetical protein	ribosomal protein L19	ribosomal protein L15	heavy metal efflux pump, CzcA family	conserved hypothetical protein	hypothetical protein	conserved hypothetical protein	shikimate kinase	phosphoenolpyruvate carboxykinase (ATP)	GTP-binding protein EngA	conserved hypothetical protein	prophage MuSo2, major head subunit, putative	conserved hypothetical protein	NADH:ubiquinone oxidoreductase, Na	translocating, alpha subunit	conserved hypothetical protein	hypothetical protein	GTP-binding protein, GTP1/Obg family	conserved hypothetical protein	Sua5/YciO/YrdC/YwlC family protein	ribosomal protein L25	phosphatidate cytidylyltransferase	ribosomal protein L30	hypothetical protein	universal stress protein family	cytochrome c oxidase, cbb3-type, subunit III	galactosyl transferase	thioester dehydrase family protein
0.38	98.0	0.90	0.65	0.93	0.90	0.25	0.57	0.65	0.54	1.32	0.50	0.48	0.48	9.64	0.27	0.64	0.61	;	0.54	0.61	1.01	1.09	0.54	0.38	1.56	0.49	0.84	0.53	0.31	0.92	9.65	0.98
2.18	2.18	2.18	2.18	2.19	2.19	2.19	2.19	2.20	2.20	2.20	2.21	2.21	2.21	2.22	2.23	2.23	2.24	1	2.25	2.26	2.26	2.26	2.27	2.27	2.28	2.29	2.29	2.30	2.30	2.30	2.31	2.31
rplF			rpsR			rplS	Oldı					aroK	pckA	engA				,	nqrA-2						rplY	cdsA	TpmD			ccoP		
SO0246	SO1619	SO1536	SO3928	SO3178	SO0258	SO1360	SO0250	SOA0153	SO1831	SO2954	SO0311	SO0286	SO0162	SO3308	SO3829	SO2685	SO1163		SO1103	SO3985	SO4508	SO3649	SO2378	SO0037	SO2112	SO1634	SO0249	SO1424	SO2355	SO2361	SO3172	SO4381
	rplF 2.18 0.38 ribosomal protein L6	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein rpsR 2.18 0.65 ribosomal protein S18	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein rpsR 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein rpsR 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein rpsR 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein rplS 2.19 0.25 ribosomal protein L19	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein rpsR 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein rplS 2.19 0.25 ribosomal protein L19 rplO 2.19 0.57 ribosomal protein L15	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein rplS 2.19 0.25 ribosomal protein L19 rplO 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein rplS 2.19 0.25 ribosomal protein L19 rplO 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein 2.19 0.25 ribosomal protein L19 rplO 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.20 1.32 hypothetical protein	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein 2.19 0.25 ribosomal protein L19 rplO 2.19 0.25 ribosomal protein L15 2.20 0.57 ribosomal protein L15 2.20 0.54 conserved hypothetical protein 2.20 1.32 hypothetical protein 2.21 0.50 conserved hypothetical protein	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein 2.19 0.25 ribosomal protein L19 rplO 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.20 1.32 hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.54 shikimate kinase	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein 2.19 0.25 ribosomal protein L19 rplO 2.19 0.57 ribosomal protein L15 2.20 0.54 conserved hypothetical protein 2.20 0.54 conserved hypothetical protein 2.20 1.32 hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.50 hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.50 conserved hypothetical protein 3.21 0.48 shikimate kinase	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein 2.19 0.25 ribosomal protein L19 rplO 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.54 shikimate kinase pckA 2.21 0.48 shikimate kinase engA 2.22 0.64 GTP-binding protein EngA	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein 2.19 0.25 ribosomal protein L19 rplO 2.19 0.25 ribosomal protein L15 2.20 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.20 1.32 hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.54 shikimate kinase pckA 2.21 0.48 shikimate kinase pckA 2.22 0.64 GTP-binding protein EngA 2.23 0.27 conserved hypothetical protein	 τρΙF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.60 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.90 hypothetical protein 2.19 0.91 hypothetical protein 2.19 0.25 ribosomal protein L19 τρΙΟ 2.19 0.57 ribosomal protein L19 τρΙΟ 2.20 0.57 ribosomal protein L15 2.20 0.54 conserved hypothetical protein 2.20 1.32 hypothetical protein 2.21 0.50 conserved hypothetical protein 2.22 0.64 GTP-binding protein EngA 2.23 0.27 conserved hypothetical protein 	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein 2.19 0.25 ribosomal protein L19 rplO 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.50 conserved hypothetical protein 2.22 0.64 GTP-binding protein EngA 2.23 0.27 conserved hypothetical protein 2.24 0.61 conserved hypothetical protein 2.25 0.64 prophage MuSo2, major head subunit, putative 2.26 0.61 conserved hypothetical protein	rpIF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.95 ribosomal protein 2.19 0.25 ribosomal protein L19 rpIO 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.20 1.32 hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.48 shikimate kinase pckA 2.21 0.48 shikimate kinase 2.23 0.64 GTP-binding protein EngA 2.23 0.64 GTP-binding protein EngA 2.24 0.61 conserved hypothetical protein 2.25 0.64 GTP-binding protein EngA 2.27 0.64 GTP-binding protein EngA 2.28 0.69 prophage MuSo2, major head subunit, putative 2.29 0.61 conserved hypothetical protein 2.29 0.61 conserved hypothetical protein 3.20 0.64 prophage MuSo2, major head subunit, putative 3.24 0.61 conserved hypothetical protein	rpIF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.90 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.25 ribosomal protein L19 rpIO 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.20 1.32 hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.50 conserved hypothetical protein 2.21 0.48 shikimate kinase pckA 2.21 0.48 shikimate kinase 2.23 0.64 GTP-binding protein EngA 2.23 0.64 GTP-binding protein EngA 2.24 0.61 conserved hypothetical protein 2.25 0.64 translocating, alpha subunit 2.26 0.54 translocating, alpha subunit	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein 19 0.25 ribosomal protein L19 19 0.27 ribosomal protein L19 19 0.27 ribosomal protein L15 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.64 conserved hypothetical protein 2.21 0.48 shikimate kinase pckA 2.21 0.64 GTP-binding protein 2.23 0.64	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein 2.19 0.25 ribosomal protein L19 rplO 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.20 1.32 hypothetical protein 2.21 0.50 conserved hypothetical protein 2.22 0.48 shikimate kinase pckA 2.21 0.48 shikimate kinase pckA 2.21 0.48 phosphoenolpyruvate carboxykinase (ATP) engA 2.22 0.64 GTP-binding protein EngA 2.23 0.27 conserved hypothetical protein 2.24 0.61 conserved hypothetical protein NADH:ubiquinone oxidoreductase, Na nqrA-2 2.25 0.54 translocating, alpha subunit 2.26 0.61 conserved hypothetical protein 2.27 0.61 hypothetical protein	rplF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.97 ribosomal protein L19 rplO 2.19 0.57 ribosomal protein L15 2.20 0.54 conserved hypothetical protein 2.20 0.54 conserved hypothetical protein 2.21 0.50 conserved hypothetical protein 2.22 0.54 conserved hypothetical protein 2.20 1.32 hypothetical protein 2.21 0.50 conserved hypothetical protein 2.22 0.64 GTP-binding protein EngA 2.23 0.64 prophage MuSo2, major head subunit, putative 2.24 0.61 conserved hypothetical protein 2.25 0.54 translocating, alpha subunit 2.26 0.61 conserved hypothetical protein 2.26 0.61 conserved hypothetical protein 2.27 0.61 conserved hypothetical protein 2.28 0.61 conserved hypothetical protein 2.29 0.61 conserved hypothetical protein 2.20 0.61 conserved hypothetical protein	τρΙF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.60 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.25 ribosomal protein L19 τρΙΟ 2.19 0.57 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.21 0.57 ribosomal protein 2.21 0.54 conserved hypothetical protein arok 2.21 0.48 shikimate kinase pckA 2.21 0.48 shikimate kinase pckA 2.21 0.48 shikimate kinase angA 2.22 0.64 GTP-binding protein EngA 2.23 0.64 GTP-binding protein 2.24 0.61 conserved hypothetical protein 2.25 0.54 translocating, alpha subunit 2.26 0.61 conserved hy	τρΙF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.25 ribosomal protein L19 τρΙΟ 2.19 0.57 τρΙΟ 2.19 0.57 τριο 0.65 heavy metal efflux pump, CzcA family 2.20 0.65 heavy metal efflux pump, CzcA family 2.21 0.65 heavy metal efflux pump, CzcA family 2.22 0.64 conserved hypothetical protein 2.23 0.64 GTP-binding protein Eng A 2.23 0.64 prophage MuSo2, major head subunit, putative 2.24 0.64 prophage MuSo2, major head subunit, putative 2.25 0.64 prophage MuSo2,	τρΙF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.65 ribosomal protein S18 2.19 0.93 hypothetical protein 2.19 0.90 hypothetical protein 2.19 0.25 ribosomal protein L19 τρΙΟ 2.19 0.57 τριος ribosomal protein L15 2.20 τριος conserved hypothetical protein 2.21 τριος ribosomal protein EngA 2.21 τριος ribosomal protein EngA 2.22 τριος ribosomal protein EngA 2.23 τριος ribosomal protein coxidoreductase, Na τριος ribosomal protein 2.24 τριος ribosomal protein 2.25 τριος ribosomal protein 2.27 τριος ribosomal protein L25	τρΙF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein τρΙΟ 2.19 0.27 τίδοsomal protein L19 τρΙΟ 2.19 τρΙΟ 2.19 0.57 τίδοsomal protein L15 2.20 0.65 τίδοsomal protein L15 2.20 0.64 conserved hypothetical protein 2.20 0.57 ribosomal protein Eng 2.21 0.48 shikimate kinase pckA 2.22 0.64 GTP-binding protein pckA 2.23	τρΙΓ 2.18 0.38 ribosomal protein L6 2.18 0.36 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.21 hypothetical protein τρΙΟ 2.19 0.25 ribosomal protein L19 τρΙΟ 2.19 0.57 ribosomal protein L19 τρΙΟ 2.19 0.57 ribosomal protein 2.20 0.65 heavy metal efflux pump, CzcA family 2.20 0.57 ribosomal protein 2.21 0.57 ribosomal protein arok 2.21 0.54 conserved hypothetical protein arok 2.21 0.48 shikimate kinase pock 2.21 0.48 shikimate kinase pok 0.50 conserved hypothetical protein 2.22 0.64 GTP-binding protein EngA 2.23 0.64 GTP-binding protein 2.24 0.61 prophage MuSo2, major head subunit	τρΙΓ 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.25 ribosomal protein L15 τρΙΟ 2.19 0.05 1.20 0.57 ribosomal protein τρΙΟ 2.19 0.05 1.20 0.57 ribosomal protein 2.19 0.57 ribosomal protein 2.19 0.57 ribosomal protein 2.19 0.57 ribosomal protein 2.20 0.54 conserved hypothetical protein 2.21 0.48 shikimate kinase engA 2.21 0.48 shikimate kinase engA 2.21 0.48 shikimate kinase engA 2.22 0.64 GTP-binding protein 2.23 0.64 GTP-binding protein 2.24 0.61 p	plF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.25 ribosomal protein L15 pplO 2.21 0.57 ribosomal protein 2.19 0.57 ribosomal protein L15 pplO 0.57 ribosomal protein L16 pplO 0.57 ribosomal protein L17 pplO 0.57 ribosomal protein L18 ppk 0.57 ribosomal protein Protein arok 2.21 0.48 shikimate kinase ppkA 2.21 0.48 shikimate kinase ppkA 2.22 0.64 GTP-binding protein ppkA 2.22 0.64 GTP-binding protein ppkA 2.23 0.64 protein	plF 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.57 ribosomal protein L15 2.20 0.65 heavy metal efflux pump, CzcA family 2.21 0.65 heavy metal efflux pump, CzcA family 2.22 0.64 Shikimate kinase pckA 2.21 0.48 shikimate kinase pckA 2.21 0.48 shikimate kinase pckA 2.22 0.64 GTP-binding protein 2.23 0.64 prophage MuSo2, major head subunit 2.24	 2.18 0.38 ribosomal protein L6 2.18 0.86 conserved hypothetical protein 2.18 0.90 conserved hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.93 hypothetical protein 2.19 0.25 ribosomal protein L19 2.19 0.25 ribosomal protein L15 2.20 0.54 conserved hypothetical protein 2.21 0.55 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.21 0.56 heavy metal efflux pump, CzcA family 2.20 0.54 conserved hypothetical protein 2.21 0.56 conserved hypothetical protein 2.22 0.56 GTP-binding protein Eng.A 2.23 0.64 GTP-binding protein Eng.A 2.24 0.61 conserved hypothetical protein 2.25 0.54 translocating, alpha subunit 2.26 0.61 conserved hypothetical protein 2.27 0.54 translocating, alpha subunit 2.28 0.61 conserved hypothetical protein 2.26 0.91 hypothetical protein 2.27 0.93 Sua5/YciO/YrdC/YwlC family protein 2.28 0.94 phosphatidate cytidylytransferase 2.29 0.94 phosphatical protein 2.30 0.53 hypothetical protein 2.30 0.53 hypothetical protein 2.30 0.53 hypothetical protein 2.30 0.53 hypothetical protein 2.31 0.55 galactosyl transferase

SO4213		2.33	1.07	conserved hypothetical protein	Hypothetical proteins
SO0718		2.33	1.13	conserved hypothetical protein	Hypothetical proteins
SO4509		2.33	0.56	formate dehydrogenase, alpha subunit	Energy metabolism
SO0245	rpsH	2.35	0.46	ribosomal protein S8	Protein synthesis
SO0394		2.35	09.0	conserved hypothetical protein	Hypothetical proteins
SO4120	rpmE	2.35	0.60	ribosomal protein L31	Protein synthesis
SO2006		2.36	0.50	NifR3/Smm1 family protein	Unknown function
SO1128		2.36	0.93	hypothetical protein	
SO4376		2.36	0.94	hypothetical protein	
SO3909		2.37	1.11	conserved hypothetical protein	Hypothetical proteins
SO0225	троС	2.37	1.24	DNA-directed RNA polymerase, beta subunit	Transcription
SO4343		2.38	1.78	aminotransferase, class V	Unknown function
SO4728		2.38	0.83	conserved hypothetical protein	Hypothetical proteins
SO4596		2.39	1.35	copper-transporting ATPase domain protein	Unknown function
SO2951		2.41	0.77	hypothetical protein	
SO1357	rpsP	2.41	96.0	ribosomal protein S16	Protein synthesis
SO0715		2.42	1.74	oxidoreductase, molybdopterin-binding	Unknown function
SO2786		2.43	0.99	sulfate permease family protein, truncation	Disrupted reading frame
SO3072	fabB	2.44	0.88	3-oxoacyl-(acyl-carrier-protein) synthase I	Fatty acid and phospholipid metab
SO3650		2.44	0.26	hypothetical protein	
SO2610		2.44	0.62	hydrolase, TatD family	Unknown function
SO4408	bipA	2.45	0.38	virulence regulator BipA	Cellular processes
SO1648		2.46	1.75	cold shock domain family protein	Cellular processes
SO0197		2.47	0.95	fatty acid desaturase, family 1	Fatty acid and phospholipid metab
SO4597		2.47	1.56	heavy metal efflux system protein, putative	Transport and binding proteins
				succinate dehydrogenase, cytochrome b556	
SO1927	sdhC	2.47	1.27	subunit	Energy metabolism
SO0241	Nlg	2.48	0.49	ribosomal protein L14	Protein synthesis
SO2944		2.49	1.25	hypothetical protein	
SO1982		2.49	1.06	hypothetical protein	
SO1203	NasA	2.50	0.36	N utilization substance protein A	Transcription
SO4034	deaD	2.51	0.36	ATP-dependent RNA helicase DeaD	Transcription
SO0337		2.51	0.50	conserved hypothetical protein	Hypothetical proteins
SO1466		2.51	0.37	hypothetical protein	

	Other categories	Transport and binding proteins	Energy metabolism	Other categories		Transcription	Cellular processes	Cell envelope	Signal transduction	Amino acid biosynthesis		Hypothetical proteins		Regulatory functions		Protein fate	Cellular processes	Protein synthesis	Fatty acid and phospholipid metabolism	Hypothetical proteins		Cell envelope	Protein synthesis	Hypothetical proteins	Regulatory functions	Protein synthesis	Protein synthesis	Protein synthesis	Unknown function		Other categories	Cell envelope	Transport and binding proteins
prophage LambdaSo, tail assembly protein K,	putative	AcrB/AcrF family protein	formate dehydrogenase, C subunit, putative	prophage MuSo2, protein Gp32, putative	hypothetical protein	ATP-dependent RNA helicase, DEAD box family	RTX toxin, putative	membrane protein, putative	sensory box histidine kinase	threonine dehydratase	hypothetical protein	conserved hypothetical protein TIGR00157	phosphate transport system regulatory protein	PhoU	membrane-associated zinc metalloprotease,	putative	stringent starvation protein a	ribosomal protein S14	1-acyl-sn-glycerol-3-phosphate acyltransferase	conserved hypothetical protein	lipopolysaccharide biosynthesis polymerase,	putative	ribosomal protein L33	conserved hypothetical protein	DNA-binding protein Fis	selenide, water dikinase	ribosome recycling factor	ribosomal protein S10	FAD-binding protein	hypothetical protein	prophage LambdaSo, major tail protein V, putative	D-alanyl-D-alanine carboxypeptidase	HlyD family secretion protein
	0.44	1.27	0.32	0.30	1.22	0.94	0.63	0.89	0.53	0.59	1.20	0.90		1.77		0.28	0.58	0.45	0.55	0.56		1.66	1.54	0.57	1.03	0.57	0.46	0.43	1.51	0.97	1.47	69.0	1.43
	2.53	2.53	2.53	2.54	2.54	2.55	2.55	2.56	2.57	2.57	2.58	2.58		2.59		2.60	2.60	2.61	2.63	2.63		2.63	2.63	2.64	2.64	2.64	2.64	2.65	2.65	7.66	2.67	2.67	2.68
										ilvA				Dohq			sspA	Nsd	plsC				pmG		fis	selD	Ħ	rpsJ				dacA-1	
	SO2948	SO1924	SO4511	SO2684	SO0531	SO3783	SO4317	SO4377	SO2889	SO4344	SO3395	SO0591		SO1726		SO1636	SO0611	SO0244	SO0567	SO2636		SO3179	SO4246	SO2961	SO0393	SO0196	SO1632	SO0230	SO4378	SO4490	SO2956	SO1164	SO1925

Hypothetical proteins Transcription Regulatory functions	Energy metabolism	Outer categories Protein synthesis		Hypothetical proteins	DNA metabolism	Energy metabolism	Hypothetical proteins	Biosynthesis of cofactors, prosthetic groups, and carriers		Fatty acid and phospholipid metabolism	Biosynthesis of cofactors, prosthetic groups, and carriers	Transport and binding proteins	Protein fate	Protein synthesis	Amino acid biosynthesis		Protein fate		Unknown function	Protein synthesis	Protein synthesis		Cell envelope	Unknown function	Cell envelope	Transport and binding proteins
conserved hypothetical protein TIGR00048 RNA polymerase sigma-70 factor GTP-binding protein Era hypothetical protein hypothetical protein NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic membrane protein	NqrB	propriage Lamodaso, tan assembly protein i ribosomal protein L21	hypothetical protein	conserved hypothetical protein	DNA primase	cytochrome c oxidase, cbb3-type, subunit I	conserved hypothetical protein	GTP cyclohydrolase I	3-oxoacyl-(acyl-carrier-protein) synthase II,	putative	undecaprenyl diphosphate synthase	heavy metal efflux pump, CzcA family	chaperonin HslO	ribosomal protein S15	aspartokinase III, lysine-sensitive	hypothetical protein	prolyl oligopeptidase family protein	hypothetical protein	MaoC domain protein	tRNA modification GTPase TrmE	ribosomal protein L24	hypothetical protein	rod shape-determining protein RodA	GGDEF family protein	penicillin-binding protein 2	tolr protein
0.46 1.23 0.51 0.27 0.74	1.02	1.02	0.58	1.58	1.06	1.08	0.89	0.55		1.20	0.59	1.86	0.45	1.53	1.00					1.59	0.59	1.17	69.0	1.65	1.02	1.07
2.68 2.70 2.70 2.70 2.70	2.70	2.71	2.71	2.75	2.75	2.76	2.76	2.77		2.77	2.81	2.82	2.82	2.83	2.86	2.87	2.88	2.88	2.89	2.89	2.89	2.93	2.93	2.94	2.94	2.95
rpoD era	nqrB-2	Ular	•		dnaG	CCON		folE			Sddn		hslO	Osdı	lysC					trmE	TpIX		rodA		mrdA	tolR
SO3315 SO1284 SO1349 SO3645 SOA0058	SO1104	SO3652	SO2199	SO4011	SO1286	SO2364	SO3830	SO4254		SO4380	SO1633	SO4598	SO0163	SO1207	SO3986	SO4384	SO1686	SO2946	SO0559	SO0003	SO0242	SO1628	SO1167	SO4425	SO1168	SO2750

SO1169		3.37	0.26	conserved hypothetical protein TIGR00246	Hypothetical proteins
SO2198		3.38	1.65	conserved hypothetical protein	Hypothetical proteins
SO2362	Çooo	3.44	1.16	cytochrome c oxidase, cbb3-type, CcoQ subunit	Energy metabolism
SO1809	bspC	3.45	1.84	phage shock protein C	Cellular processes
SO1347	lepB	3.47	0.36	signal peptidase I	Protein fate
SO1808	pspB	3.49	1.42	phage shock protein B	Cellular processes
SO2960		3.51	0.63	conserved hypothetical protein	Hypothetical proteins
SO3934		3.53	1.47	RNA methyltransferase, TrmH family, group 3	Protein synthesis
SO1725	pstB-1	3.56	2.75	phosphate ABC transporter, ATP-binding protein	Transport and binding proteins
SO2971		3.56	0.85	conserved hypothetical protein	Hypothetical proteins
				prophage LambdaSo, host specificity protein J,	
SO2940		3.58	1.09	putative	Other categories
				2-oxoglutarate dehydrogenase, E2 component,	
SO1931	sncB	3.60	1.59	dihydrolipoamide succinyltransferase	Energy metabolism
				prophage LambdaSo, tail length tape meausure	
SO2953	Н	3.61	1.02	protein	Other categories
SO1288	Usdı	3.63	2.82	ribosomal protein S21	Protein synthesis
				NADH:ubiquinone oxidoreductase, Na	
				translocating, hydrophobic membrane protein	
SO1107	nqrE-2	3.63	1.62	NqrE	Energy metabolism
SO1559	phoR	3.68	1.86	phosphate regulon sensor protein PhoR	Signal transduction
SO3364		3.68	1.63	conserved hypothetical protein	Hypothetical proteins
SO2957		3.69	1.27	conserved hypothetical protein	Hypothetical proteins
SO3590		3.71	1.75	hypothetical protein	
SO4489		3.76	0.91	acetyltransferase, GNAT family	Unknown function
SO0110		3.77	1.56	conserved hypothetical protein	Hypothetical proteins
				3-oxoadipate CoA-succinyl transferase, beta	
SO1891		3.77	1.80	subunit	Energy metabolism
SO2955		3.81	0.84	conserved hypothetical protein	Hypothetical proteins
SO0252	Lmdı	3.82	1.59	ribosomal protein L36	Protein synthesis
SO1383		3.84	1.44	ATP-dependent RNA helicase, DEAD box family	Transcription
SO4729		3.84	1.91	conserved hypothetical protein	Hypothetical proteins
SO0004		3.88	0.64	inner membrane protein, 60 kDa	Cell envelope
SO2958		3.90	1.30	conserved hypothetical protein	Hypothetical proteins

Cell envelope Biosynthesis of cofactors, prosthetic groups, and carriers Energy metabolism	Biosynthesis of cofactors, prosthetic groups, and carriers Hypothetical proteins Hypothetical proteins	Protein fate Unknown function	Energy metabolism Transcription Hymothetical proteins	Biosynthesis of cofactors, prosthetic groups, and carriers Other categories	Transport and binding proteins Hypothetical proteins	Transport and binding proteins	Ouiei categories	Energy metabolism Transport and binding proteins		DNA metabolism Protein synthesis Hypothetical proteins Signal franchiction	oighai uansaachon
lipoprotein, putative pyridoxal phosphate biosynthetic protein PdxJ formate dehydrogenase, iron-sulfur subunit hypothetical protein hypothetical protein	dihydrofolate reductase conserved hypothetical protein conserved hypothetical protein	toxin secretion ATP-binding protein TIM-barrel protein, yjbN family NADH:ubiquinone oxidoreductase. Na	translocating, beta subunit ribosome-binding factor A	bioH protein processes Ivsozyme, putative	long-chain fatty acid transport protein, putative conserved hypothetical protein	phosphate-binding protein prophage LambdaSo, major capsid protein, HK97	hammy hypothetical protein NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic membrane protein	NqrD phosphate ABC transporter, permease protein hypothetical protein	nypotnetical protein hypothetical protein hypothetical protein	DNA repair protein RecO ribosomal protein L34 conserved hypothetical protein	pilospilate reguion response regulator r mod
1.82 0.75 1.57 1.43	1.47	1.31	2.05	1.43	1.24	3.46	1.96	2.07 2.78 0.97	1.23	2.90	4.37
3.93 3.96 4.03 4.04	4.06 4.13	4.16	4.21 4.34 4.38	4.42	4.43	4.51	6.4 49.4	4.65	4.96 4.96 4.96	5.00 5.03 5.06 5.06	77.0
pdxJ fdhB-1	folA	тхВ	nqrF-2 rbfA	bioH				nqrD-2		recO rpmH	מטווע
SO0300 SO1351 SO4510 SO1984 SO0748	SO3646 SO2110 SO3648	SO4318 SO3912	SO1108 SO1205 SO2068	SO4626 SO2973	SO3099 SO3647	SO1560 SO2063	SO2888	SO1106 SO1724 SO2962	SO2970 SO4035 SO1983	SO1350 SO0007 SO0768	900100

SO4628		5.25	1.66	5 sulfatase	Unknown function
SO1245		5.26	0.92	membrane protein, putative	Cell envelope
SO2972		5.31	1.67	hypothetical protein	
SO1499	glgA	5.42	5.26	glycogen synthase	Energy metabolism
8O0769	argR	5.58	2.90	arginine repressor	Regulatory functions
SO2969		9.60	1.27	prophage LambdaSo, holin, putative	Other categories
SO2967		6.01	69.0	conserved hypothetical protein	Hypothetical proteins
SO2887	dsbB	6.14	3.76	disulfide bond formation protein b	Protein fate
SO2964		6.17	0.95	ClpP protease family protein	Protein fate
SO4319		6.21	1.58	HlyD family secretion protein	Transport and binding proteins
SO1194	secF-1	6.25	0.91	protein-export membrane protein SecF	
SO1193	secD-1	6.40	2.28	protein-export membrane protein SecD	Protein fate
SO1109	apbE	6.44	2.17	thiamin biosynthesis lipoprotein ApbE	Biosynthesis of cofactors, prosthetic groups, and carriers
9000OS	mpA	6.77	2.78	ribonuclease P protein component	-
SO1498	glgC	98.9	4.90	glucose-1-phosphate adenylyltransferase	Energy metabolism
SO4323		6.91	2.29	GGDEF domain protein	Unknown function
SO0005		7.00	3.12	conserved hypothetical protein TIGR00278	Hypothetical proteins
SO2965		7.02	0.93	prophage LambdaSo, portal protein, HK97family	Other categories
SO4321		7.10	1.77	OmpA family protein	Cell envelope
SO4320	aggA	7.18	2.36	agglutination protein	Cellular processes
SO4322		7.24	2.46	conserved hypothetical protein	Hypothetical proteins
SO1723		7.86	3.76	phosphate ABC transporter, permease protein	Transport and binding proteins

^a The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures with 2 mM KNO₃ of EtrA7-1 to that of MR-1 (reference).

^bThe standard deviation was calculated from six data points, which included three independent biological samples and two technical samples for each biological sample.

SUPPLEMENTAL TABLE B.4. Genes repressed in anaerobic cultures with nitrate of EtrA7-1 relative to the wild type (reference strain).

Gene Relative

Doseible Gunetion	France match liem	Charles attaching	Omer categories	Unknown function	Unknown function	Hypothetical proteins	Transport and binding proteins			Energy metabolism	Amino acid biosynthesis		Energy metabolism	Amino acid biosynthesis			Energy metabolism	Fatty acid and phospholipid metabolism	Energy metabolism	Amino acid biosynthesis		Energy metabolism	Other categories	Unknown function	Unknown function	Hypothetical proteins	Transport and binding proteins		Energy metabolism		Amino acid biosynthesis	
COC Annotation	true II DNA modification mathyltransferace		type II restriction endonuclease, putative	replication protein RepA	electron transport regulator A	ornithine decarboxylase, inducible	formate dehydrogenase, alpha subunit	formate dehydrogenase, C subunit, putative	quinone-reactive Ni/Fe hydrogenase, small	subunit precursor	site-specific recombinase, resolvase family	quinone-reactive Ni/Fe hydrogenase,	cytochrome b subunit	parA protein, putative	oxidoreductase, acyl-CoA dehydrogenase	family	acetyltransferase, GNAT family	conserved hypothetical protein	outer membrane efflux family protein	hypothetical protein	quinone-reactive Ni/Fe hydrogenase, large	subunit	anthranilate phosphoribosyltransferase	iron-sulfur cluster-binding protein	glutamine amido-transferase	hypothetical protein	prismane protein	acyl-CoA dehydrogenase family protein	iron-sulfur cluster-binding protein NapG	indole-3-glycerol phosphate synthase/nhosnhoribosylanthranilate	isomerase	
CTD	200	70.0	0.0	0.01	0.01	90.0	0.05	0.01		0.11	0.03		0.0	0.05		0.0	0.02	0.02	0.04	0.0		0.10	0.0	0.07	0.0 2	0.05	0.08	0.03	0.08		90.0	
relative erpression	1.	20.0	0.03	0.03	0.05	90.0	90.0	0.07		0.07	0.07		0.07	0.08		0.00	0.10	0.10	0.10	0.11		0.11	0.12	0.12	0.12	0.12	0.13	0.13	0.14		0.14	
Cene	пашс				епА	speF				hoxK			hydC									hyaB	Odt Ddt		trpG		hcp		napG		trpC/F	
Cone ID	SOADON	1000 V Cu	SOAMO	SOA0001	SO2356	SO0314	SO4513	SO4515		SO2099	SOA0172		SO2097	SOA0061		SO2492	SOA0060	SO4512	SO0822	SO2095		SO2098	SO3021	SO1364	SO3020	SO1365	SO1363	SO2395	SO0847		SO3022	

	Transport and binding proteins	Regulatory functions	Disrupted reading frame	Unknown function	Cell envelope	Fatty acid and phospholipid metabolism	Energy metabolism	Energy metabolism	Transport and binding proteins	Fatty acid and phospholipid metabolism	Transport and binding proteins	Transport and binding proteins	Amino acid biosynthesis		Unknown function	Fatty acid and phospholipid metabolism		Energy metabolism	Energy metabolism	Energy metabolism	Energy metabolism	Transport and binding proteins	Protein fate	Unknown function	Hypothetical proteins		Energy metabolism	Transport and binding proteins	Hypothetical proteins		Energy metabolism	Hypothetical proteins
ABC transporter, ATP-binding/permease	protein	transcriptional regulator, TetR family	transposase, IS110 family, degenerate	spheroplast protein y precursor, putative	lipoprotein, putative	fatty oxidation complex, beta subunit	iron-sulfur cluster-binding protein	cytochrome c-type protein NapB	ammonium transporter, degenerate	fatty oxidation complex, alpha subunit	AcrB/AcrD/AcrF family protein	sodium/hydrogen exchanger family protein	anthranilate synthase component I	oxidoreductase, acyl-CoA dehydrogenase	family	2,4-dienoyl-CoA reductase, putative	hypothetical protein	cytochrome c552 nitrite reductase	formate acetyltransferase	iron-sulfur cluster-binding protein napH	periplasmic nitrate reductase	Na+/H+ antiporter	hydrogenase maturation protein HypF	CBS domain protein	ammonium transporter (tpt)	conserved hypothetical protein	hypothetical protein	pyruvate formate-lyase 1 activating enzyme	HlyD family secretion protein	conserved hypothetical protein	hypothetical protein	cytochrome d ubiquinol oxidase, subunit II
	0.05	0.03	0.04	0.10	90.0	0.05	90.0	0.0	0.26	0.04	0.07	0.02	0.10		90.0	0.05	0.11	90.0	0.11	0.11	0.13	0.11	0.0	0.03	90.0	0.11	0.03	0.13	0.05	0.07	90.0	90.0
	0.14	0.14	0.14	0.14	0.15	0.15	0.15	0.15	0.16	0.16	0.16	0.16	0.17		0.17	0.17	0.18	0.18	0.18	0.18	0.18	0.18	0.19	0.19	0.19	0.20	0.20	0.20	0.20	0.21	0.21	0.21
						fadA		napB		fadB			trpE						pflB	napH	napA	nhaD	hypF					pflA				cydB
	SO0821	SO2493	SO2820	SO4476	SO2570	SO0020	SO1519	SO0845	SO3820	SO0021	SO3484	SO1366	SO3019		SO2536	SO2419	SO1517	SO3980	SO2912	SO0846	SO0848	SO0935	SO2094	SO2228	ORF03506	SO3891	SO4474	SO2913	SO0820	SO1518	SO0403	SO3285

Hypothetical proteins	Energy metabolism	Energy metabolism	Regulatory functions	Amino acid biosynthesis	Hypothetical proteins	Transport and binding proteins	Hypothetical proteins	Energy metabolism			Energy metabolism		Unknown function	Energy metabolism	Cell envelope	Energy metabolism	Energy metabolism	Hypothetical proteins	Cellular processes	Transport and binding proteins		Energy metabolism	Unknown function				Biosynthesis of cofactors, prosthetic groups, and carriers	Hypothetical proteins	Protein fate	Hypothetical proteins	Hypothetical proteins	Amino acid biosynthesis	Transport and binding proteins
processing protease, putative	conserved hypothetical protein	outer membrane protein precursor MtrB	cytochrome d ubiquinol oxidase, subunit I	transcriptional regulator	tryptophan synthase, beta subunit	conserved hypothetical protein	HlyD family secretion protein	conserved hypothetical protein	NADH:ubiquinone oxidoreductase, Na	translocating, hydrophobic membrane protein	NqrE	NADH:ubiquinone oxidoreductase, Na	translocating, beta subunit	oxidoreductase, Gfo/Idh/MocA family	phosphate acetyltransferase	membrane protein, putative	acetate kinase	iron-sulfur cluster-binding protein	conserved hypothetical protein	cytochrome c551 peroxidase	molybdenum ABC transporter, ATP-binding	protein	decaheme cytochrome c MtrA	oxidoreductase, short chain	dehydrogenase/reductase family	hypothetical protein	hypothetical protein	gamma-glutamyltranspeptidase	conserved hypothetical protein	protease, putative	conserved hypothetical protein	conserved hypothetical protein	tryptophan synthase, alpha subunit
0.09	0.16	0.04	0.10	90.0	0.05	0.13	0.08	0.05			0.07		0.09	0.13	0.14	0.02	0.16	0.10	0.04	0.10		0.12	90.0		0.17	0.07	0.07	0.11	0.07	0.15	0.14	0.11	0.08
0.21	0.21	0.22	0.22	0.22	0.22	0.22	0.22	0.22			0.23		0.23	0.23	0.23	0.23	0.24	0.24	0.24	0.24		0.24	0.25		0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.26	0.26
		mtrB	cydA		trpB						nqrE-1		nqrF-1		pta		ackA			ccpA			mtrA					ggt-1					ф
ORF02653	SO2821	SO1776	SO3286	SO0936	SO3023	SO2914	SO3483	SO3284			9060OS		SO0907	SO3120	SO2916	SO1048	SO2915	SO4404	SO4714	SO2178		SO4446	SO1777		SO1911	SO0404	SO1432	SO0741	SO1520	SO3411	SO4302	SO3149	SO3024

Protein fate	Hypothetical proteins	Transport and binding proteins	Fatty acid and phospholipid metabolism	Transport and binding proteins	Transport and binding proteins	Energy metabolism			Hypothetical proteins	Hypothetical proteins	Disrupted reading frame	Signal transduction	Regulatory functions	Purines, pyrimidines, nucleosides, and nucleotides	Energy metabolism		Hypothetical proteins	Cell envelope	Energy metabolism	Transport and binding proteins		DNA metabolism		Energy metabolism		Hypothetical proteins	Cellular processes	Transport and binding proteins	Protein fate		Biosynthesis of cofactors, prosthetic groups, and carriers	Transport and binding proteins	Energy metabolism
AcrB/AcrF family protein	peptidyl-dipeptidase Dcp	conserved hypothetical protein	outer membrane porin, putative	fatty oxidation complex, beta subunit	Na+/H+ antiporter	sulfate permease family protein	NADH:ubiquinone oxidoreductase, Na	translocating, hydrophobic membrane protein	NgrD	conserved hypothetical protein	conserved hypothetical protein	peptidase, M16 family, degenerate	sensor histidine kinase	transcriptional regulator	uracil phosphoribosyltransferase	NADH:ubiquinone oxidoreductase, Na	translocating, gamma subunit	outer membrane protein Omp W, putative	alcohol dehydrogenase II	copper ABC transporter, ATP-binding protein	hypothetical protein	excinuclease ABC, C subunit	anaerooic dimeniyi suiloxide reductase, B	subunit	hypothetical protein	conserved hypothetical protein	beta-lactamase, putative	bicyclomycin resistance protein	peptidase, M13 family	molybdenum cofactor biosynthesis protein A,	putative	TonB-dependent receptor	decaheme cytochrome c
0.12	0.17	0.03	0.17	0.05	0.08	0.14			0.14	0.14	0.04	0.15	0.19	0.14	0.14		0.0	0.08	0.12	90.0	0.11	90.0		0 .0	0.07	0.11	0.11	0.12	0.13		0.02	90.0	0.05
0.26	0.26	0.26	0.26	0.26	0.27	0.27			0.27	0.27	0.27	0.28	0.28	0.28	0.28		0.28	0.28	0.28	0.28	0.29	0.29		0.29	0.29	0.29	0.29	0.29	0.29		0.30	0.30	0.30
	dcp-2				nhaB				nqrD-1						ddn		nqrC-1		adhB	nosF		uvrC		dmsB-1								nosA	omcA
SO1882	SO3564	SO2806	SO3896	SO3089	SO2886	SO3553			SO0905	SO1075	SO1047	SO4538	SO2192	SO0490	SO2759		SO0904	SO1673	SO1490	SO0487	SOA0157	SO1861		SO1430	SO0439	SO3148	SO0837	SO2280	SO0429		SO4724	SO0630	SO1779

Hypothetical proteins	Energy metabolism	Energy metabolism	Transport and binding proteins	Energy metabolism	Hypothetical proteins	Cellular processes	Hypothetical proteins	•	Energy metabolism	Transport and binding proteins	Regulatory functions	Cell envelope	Biosynthesis of cofactors, prosthetic groups, and carriers	Energy metabolism	Protein fate	Other categories		Transport and binding proteins		Unknown function		Energy metabolism	Hypothetical proteins	Unknown function	Fatty acid and phospholipid metabolism	Energy metabolism	Signal transduction	Unknown function	Hypothetical proteins	Protein fate		Protein fate	Transport and binding proteins
conserved hypothetical protein	decaheme cytochrome c	napD protein	cation efflux family protein	fumarate reductase flavoprotein subunit	conserved hypothetical protein	catalase/peroxidase HPI	conserved domain protein	fumarate reductase flavoprotein subunit	precursor	L-lactate permease	transcriptional regulator, TetR family	outer membrane protein	molybdenum cofactor biosynthesis protein C	2-hydroxy-3-oxopropionate reductase	peptidase, putative	TnSon1, resolvase	molybdenum ABC transporter, permease	protein	oxidoreductase, FAD-binding, UbiH/Coq6	family	hypothetical protein	cytochrome c	conserved domain protein	inter-alpha-trypsin inhibitor domain protein	fatty oxidation complex, alpha subunit	cytochrome c3	transcriptional regulatory protein CpxR	TonB-dependent receptor domain protein	conserved hypothetical protein	signal peptide peptidase SppA, 67K type	hydrogenase expression/formation protein	HypE	ABC transporter, ATP-binding protein CydD
0.16	0.0	0.04	0.10	0.16	0.24	0.0	0.13		0.17	0.07	0.24	0.05	0.08	0.08	0.19	0.07		0.20		0.11	0.07	0.14	0.11	0.16	0.18	0.23	0.10	0.13	0.05	0.05		90.0	0.08
0.30	0.30	0.30	0.30	0.30	0.30	0.31	0.31		0.31	0.31	0.31	0.31	0.31	0.31	0.32	0.32		0.32		0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.32		0.32	0.32
	omcB	napD		frdA		katG-2				IIdP			moaC	garR													cpxR			sppA		hypE	cydD
SO3900	SO1778	SO0849	SO4475	SO0398	SO3542	SO4405	8060OS		SO0970	SO0827	SO3684	SO1428	SO4451	SO2771	SO4537	SOA0019		SO4447		SO0778	SO0581	SO3420	SO2943	SO2195	SO3088	SO2727	SO4477	SO2907	SO1431	SO2420		SO2090	SO3780

Unknown function	Fatty acid and phospholipid metabolism	Protein fate	Hypothetical proteins	Signal transduction	Amino acid biosynthesis	Amino acid biosynthesis	Unknown function	Signal transduction	Hypothetical proteins	Hypothetical proteins	Protein fate	Hypothetical proteins	Energy metabolism		Regulatory functions	Regulatory functions		Biosynthesis of cofactors, prosthetic groups, and carriers		Unknown function	Biosynthesis of cofactors, prosthetic groups, and carriers		Regulatory functions	Transport and binding proteins		Hypothetical proteins	Protein fate	Energy metabolism	Biosynthesis of cofactors, prosthetic groups, and carriers	Unknown function	Energy metabolism	Biosynthesis of cofactors, prosthetic groups, and carriers
conserved hypothetical protein	prpE protein, putative	hydrogenase accessory protein HypB	conserved hypothetical protein	osmolarity sensor protein EnvZ	ketol-acid reductoisomerase	gamma-glutamyl phosphate reductase	SM-20 domain protein	hypothetical protein	sensor protein CpxA	CBS domain protein	conserved hypothetical protein	peptidase B	conserved hypothetical protein	translocating, hydrophobic membrane protein	NgrB	transcriptional regulatory protein TyrR	formate hydrogenlyase transcriptional	activator, putative	menaquinone-specific isochorismate synthase,	putative	acetyltransferase, GNAT family	S-adenosylmethionine:2-	demethylmenaquinone methyltransferase	adenylate cyclase CyaB, putative	molybdenum ABC transporter, periplasmic	molybdenum-binding protein	conserved hypothetical protein	peptidase, M1 family	NADH dehydrogenase I, C/D subunits	molybdenum cofactor biosynthesis protein E	HlyD family-related protein	electron transfer flavoprotein, alpha subunit
90.0	0.08	0.15	0.16	0.20	0.22	0.08	0.11	0.05	0.15	0.14	0.18	0.10	0.11		0.15	0.13		0.18		0.14	0.09		0.02	0.08	,	0.17	0.07	0.22	0.13	0.20	0.07	0.13
0.32	0.32	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.34	0.34	0.34	0.34	0.34		0.34	0.34		0.34		0.34	0.34		0.34	0.35	1	0.35	0.35	0.35	0.35	0.35	0.35	0.36
		hypB		envZ	ilvC	proA			cpxA			bepB			nqrB-1	tyrR							menG-1						nnoCD	moaE		etfA
SO2469	SO1900	SO2093	SO3678	SO4634	SO4349	SO1122	SO3563	SO0941	SO4478	SO2815	SO3361	SO0876	SO0856		SO0903	SO1669		SO3059		SO4713	SO4716		SO2567	SO3778		SO4448	SO0944	SO1561	801019	SO4449	SO1881	SO3144

				cobinamide kinase/cobinamide phosphate	
SO1037	cobU	0.36	0.05	guanylyltransferase	Unknown function
				D-alanyl-D-alanine carboxypeptidase-related	
SO2472		0.36	0.05	protein	Biosynthesis of cofactors, prosthetic groups, and carriers
				molybdopterin biosynthesis MoeA protein,	
SO4723		0.36	90.0	putative	Hypothetical proteins
SO0883		0.36	90.0	conserved hypothetical protein	Biosynthesis of cofactors, prosthetic groups, and carriers
SO2587	hemB-1	0.36	0.20	delta-aminolevulinic acid dehydratase	Protein fate
SO3142	dcp-1	0.36	0.21	peptidyl-dipeptidase Dcp	Amino acid biosynthesis
SO1676	metA	0.36	0.13	homoserine O-succinyltransferase	Unknown function
SO0940		0.36	0.08	transcriptional regulator-related protein	Protein fate
SO3083		0.37	0.15	peptidase, M16 family	Fatty acid and phospholipid metabolism
SO2768		0.37	0.07	acyl-CoA dehydrogenase family protein	
SO0975		0.37	90.0	hypothetical protein	Unknown function
SO0882		0.37	0.12	oxidoreductase, GMC family	Cellular processes
SO1278		0.37	0.0	methyl-accepting chemotaxis protein	Cell envelope
SO2103		0.37	0.14	apbE family protein	Cell envelope
SO2194		0.37	0.23	OmpA family protein	Hypothetical proteins
SO2251		0.37	0.10	conserved hypothetical protein	Hypothetical proteins
SO2796		0.37	0.13	conserved hypothetical protein	Unknown function
SO2473		0.38	0.08	hydrolase, alpha/beta fold family	Hypothetical proteins
SO0154		0.38	0.0	conserved hypothetical protein	Regulatory functions
SO0141		0.38	0.08	sensory box protein	Purines, pyrimidines, nucleosides, and nucleotides
SO1221	deoD-2	0.38	0.26	purine nucleoside phosphorylase	Purines, pyrimidines, nucleosides, and nucleotides
SO2791	cdd	0.38	0.12	cytidine deaminase	Signal transduction
SO4633	ompR	0.38	0.19	transcriptional regulatory protein OmpR	Signal transduction
SO1997		0.38	0.15	peptidase, M1 family	Protein fate
SO1695		0.39	0.32	sensory box/GGDEF family protein	Regulatory functions
SO2109		0.39	0.08	conserved hypothetical protein	Hypothetical proteins
SO0399	frdB	0.39	90.0	fumarate reductase iron-sulfur protein	Energy metabolism
SO0584		0.39	0.11	methyl-accepting chemotaxis protein	Cellular processes
SO2601		0.39	0.0	carboxyl-terminal protease	Protein fate
SO4591	cymA	0.39	0.27	tetraheme cytochrome c	Energy metabolism
ORF04299		0.39	0.10	conserved hypothetical protein	

SO0438 SO3677	0.39		oxidoreductase, short chain dehydrogenase/reductase family hypothetical protein	Unknown function
SO2504	0.40	90.0	conserved hypothetical protein	Hypothetical proteins
SO2911	0.40		formate transporter, putative	Transport and binding proteins
			hypothetical protein	
SO0694 galK			galactokinase	Energy metabolism
ORF04298	0.40		conserved hypothetical protein	
SO3121	0.40		conserved hypothetical protein	Hypothetical proteins
02538	0.40		response regulator	Signal transduction
SO2883	0.40		conserved hypothetical protein	Hypothetical proteins
J3151	0.40		conserved hypothetical protein	Hypothetical proteins
O1020 nuoB			NADH dehydrogenase I, B subunit	Energy metabolism
			electron transfer flavoprotein-ubiquinone	:
			oxidoreductase, putative	Energy metabolism
)2136 adhE			aldehyde-alcohol dehydrogenase	Energy metabolism
SO0765	0.41	0.05	threonine efflux protein, putative	Transport and binding proteins
)2823	0.41		response regulator	Signal transduction
			3,4-dihydroxy-2-butanone 4-phosphate	
SO0142 ribB	0.41	0.11	synthase	Biosynthesis of cofactors, prosthetic groups, and carriers
			chemotaxis protein CheY/response regulator	
74001	0.41		receiver domain protein	Cellular processes
SO3117	0.41	0.11	thioredoxin, putative	Energy metabolism
04400	0.41		proline iminopeptidase, putative	Protein fate
			glucose/galactose transporter, authentic	
)2214 gluP			frameshift	Transport and binding proteins
24385	0.41		von Willebrand factor type A domain protein	Unknown function
O2019 hemH-1			ferrochelatase	Biosynthesis of cofactors, prosthetic groups, and carriers
20350	0.41		hypothetical protein	
SO1860	0.41	0.10	DNA-binding response regulator, LuxRfamily	Signal transduction
22569	0.41		hypothetical protein	
20582 tpm	0.42		thiopurine S-methyltransferase	Cellular processes
J2043	0.42		conserved hypothetical protein	Hypothetical proteins
			acetyltransferase, CysE/LacA/LpxA/NodL	
S03152	0.42	9.0	family	Unknown function

Regulatory functions Signal transduction	Hypothetical proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	rotein Central intermediary metabolism	Biosynthesis of cofactors, prosthetic groups, and carriers		Unknown function		Amino acid biosynthesis	Hypothetical proteins	Hypothetical proteins	Amino acid biosynthesis	Signal transduction	regulator,	Regulatory functions	se, A	Energy metabolism		Energy metabolism	e Biosynthesis of cofactors, prosthetic groups, and carriers	Hypothetical proteins	Other categories	xR	Signal transduction	Other categories	Hypothetical proteins		in CydC Transport and binding proteins		Hypothetical proteins		Energy metabolism
sensory box protein response regulator	conserved hypothetical protein	cysteine desulfurase	copper ABC transporter, permease pro-	cobalamin 5-phosphate synthase	methyl-accepting chemotaxis protein	helicase, putative	hypothetical protein	glutamate 5-kinase	conserved hypothetical protein	conserved hypothetical protein	cystathionine beta-lyase	response regulator	prophage LambdaSo, transcriptional re	Cro/CI family	anaerobic dimethyl sulfoxide reductase	subunit	hypothetical protein	oligo-1,6-glucosidase	delta-aminolevulinic acid dehydratase	conserved hypothetical protein	ISSo4, transposase	DNA-binding response regulator, Lux!	family	transposase, mutator family	conserved hypothetical protein	hypothetical protein	ABC transporter, ATP-binding protein	hypothetical protein	conserved hypothetical protein		NADH dehydrogenase I, E subunit
0.11	0.10	0.27	0.20	0.05	0.13	0.14	0.22	0.12	0.13	0.05	0.11	0.10		0.16		0.00	0.31	0.10	0.15	0.12	0.07		0.08	90.0	0.14	0.24	0.12	0.18	0.14		0.17
0.42	0.42	0.42	0.42	0.42	0.42	0.42	0.43	0.43	0.43	0.43	0.43	0.43		0.43		0.43	0.43	0.43	0.44	0.44	0.44		0.44	0.44	0.44	0.44	0.44	0.44	0.44		0.44 4
		iscS	nosY	copS				proB			metC					dmaA-1			hemB-2								cydC			ב	nnoE
SO3389 SO2366	SO2042	SO2264	SO0488	SO1036	ORF04429	SO1408	SO3119	SO1121	SO2497	SO0706	SO2191	SO2539		SO2990		SO1429	SO3993	SO2213	SO4208	SO1899	SO1875		SO0351	SO0708	SO3025	SO4038	SO3779	SOA0158	SO3069		801018

Hypothetical proteins	Cellular processes		Signal transduction	Amino acid biosynthesis	Amino acid biosynthesis	Regulatory functions	Hypothetical proteins	Hypothetical proteins		Amino acid biosynthesis	Energy metabolism		Transport and binding proteins	Hypothetical proteins	Transport and binding proteins	Unknown function	Energy metabolism	Regulatory functions	Unknown function	Amino acid biosynthesis	Signal transduction		DNA metabolism	Regulatory functions	Protein fate		Protein fate	Biosynthesis of cofactors, prosthetic groups, and carr	Regulatory functions	Regulatory functions	Cellular processes	Unknown function	Purines, pyrimidines, nucleosides, and nucleotides
conserved hypothetical protein	O-methyltransferase, putative	sensory box histidine kinase/response	regulator	acetolactate synthase II, large subunit	succinyl-diaminopimelate desuccinylase	lacZ expression regulator	conserved hypothetical protein	conserved hypothetical protein	aspartokinase II/homoserine dehydrogenase,	methionine-sensitive	UDP-glucose 4-epimerase	proton-dependent oligopeptide transporter	(POT) family protein	conserved hypothetical protein	cation efflux family protein	TPR domain protein	L-sorbosone dehydrogenase, putative	transcriptional regulator, LysR family	MoxR protein	aspartate aminotransferase	sensory transduction histidine kinase	type I restriction-modification system, M	subunit, putative	transcriptional regulator, MarR family	proline permease (putP)	LPXTG-site transpeptidase family protein	hypothetical protein	heat shock protein HtpG	2-octaprenyl-6-methoxyphenol hydroxylase	transcriptional regulator, TetR family	LexA repressor	methyl-accepting chemotaxis protein	asmA protein
0.26	0.10		0.15	0.20	0.0	0.26	0.11	0.08		0.10	0.15		0.29	0.10	0.08	0.17	0.10	0.11	0.07	0.13	0.11		0.0	0.11	0.13	0.24	0.14	0.17	0.11	0.13	0.12	0.13	0.12
0.45	0.45		0.45	0.45	0.45	0.45	0.45	0.45		0.45	0.45		0.45	0.45	0.45	0.46	0.46	0.46	0.46	0.46	0.46		0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.47	0.47	0.47
				ilvG	dapE	icc				metL	galE								moxR	aspC-1								htpG	Hiqn		lexA		asmA
SO2017	SO2905		SO0859	SO4347	SO2471	SO3901	SO2114	SO0884		SO4055	SO1664		SO1277	SO1888	SO2045	SO3094	SO3898	SO0839	SO2153	SO2350	SO4002		SO1457	SO2046	ORF04361	SO2196	SO3375	SO2016	SO0777	SO4468	SO4603	SOA0106	SO2566

Transport and binding proteins	Unknown function	Hypothetical proteins	Biosynthesis of cofactors, prosthetic groups, and carriers			Transport and binding proteins	Hypothetical proteins	Energy metabolism	Hypothetical proteins	Cellular processes	Hypothetical proteins	Hypothetical proteins		DNA metabolism	Hypothetical proteins	Cell envelope	Hypothetical proteins	Hypothetical proteins	DNA metabolism	Hypothetical proteins	Cellular processes	Energy metabolism	Biosynthesis of cofactors, prosthetic groups, and carriers		Cellular processes	Protein fate	Protein fate	Unknown function		Transcription	Purines, pyrimidines, nucleosides, and nucleotides	Energy metabolism
deoxyguanosinetriphosphate triphosphohydrolase, putative	cysZ protein	acetyltransferase, GNAT family	conserved hypothetical protein	molybdopterin-guanine dinucleotide	biosynthesis protein	hypothetical protein	L-lactate permease, putative	conserved hypothetical protein	phosphoenolpyruvate carboxylase	conserved hypothetical protein	cell division protein FtsL	conserved hypothetical protein	conserved hypothetical protein	hypothetical protein	DNA topoisomerase IV, B subunit	conserved domain protein	polysaccharide biosynthesis protein	conserved hypothetical protein	conserved hypothetical protein	exodeoxyribonuclease V, gamma subunit	conserved hypothetical protein	chloramphenicol acetyltransferase	imidazolonepropionase	cobyric acid synthase CobQ	hypothetical protein	SMC family protein	ATP-dependent protease, putative	metallo-beta-lactamase family protein	RNA polymerase sigma-70 factor, ECF	subfamily	thymidine phosphorylase	thioredoxin, putative
0.12	0.13	0.13	0.11		0.07	0.24	0.07	0.16	0.19	0.10	90.0	0.08	0.14	0.10	0.08	0.18	0.00	0.19	0.22	90.0	0.05	90.0	0.14	0.19	0.17	0.0	0.00	0.14		0.14	0.22	0.27
0.47	0.47	0.47	0.47		0.47	0.47	0.47	0.47	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.49	0.49	0.49	0.49	0.49	0.50	0.50	0.50	0.50	0.50	0.50	0.50	6	0.50	0.51	0.51
	cysZ				mobA				bbc		ftsL				parE					recC		cat	hutI	copd							deoA	
SO2485	SO2899	SO1049	SO0119		SO4722	SO0458	SO1522	SO3888	SO0274	SO2792	SO4226	SO2542	SO2882	SO1135	SO3899	SOA0123	SO3270	SO0449	SO0324	SO2149	SO3776	SO4299	SO0095	SO1038	SO2639	SO2898	SO3391	SO0541	70000	SO3096	SO1218	SO0269

Hypothetical proteins Fnerov metabolism		Hypothetical proteins		Hypothetical proteins	Biosynthesis of cofactors, prosthetic groups, and carriers	Unknown function	Hypothetical proteins	O CONTRACTOR OF THE PROPERTY O
0.51 0.12 conserved hypothetical protein H	siroheme synthase, N-terminal component,	putative	hypothetical protein	conserved hypothetical protein	molybdenum cofactor biosynthesis protein A	GGDEF domain protein	conserved domain protein	
0.12		0.0	0.28	0.18	0.21	0.26	0.29	
0.51		0.51	0.52	0.52	0.53	0.54	0.54	
not B					moaA			
SO1539 SO3741		SO3108	SO4205	SO3792	SO4452	SO4207	SO4559	

*The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures with 2 mM KNO₃ of EtrA7-1 to that of MR-1 (reference).

The standard deviation was calculated from six data points, which included three independent biological samples and two technical samples for each biological sample.

SUPPLEMENTAL TABLE B.5. Genes induced in anaerobic cultures of EtrA7-1 at 1 mM (reference) versus 40 mM KNO₃.

oc) votams to that the oc	Possible Function	Hypothetical proteins	Purines, pyrimidines, nucleosides, and nucleotides	Transport and binding proteins	Transport and binding proteins	Transport and binding proteins	Transport and binding proteins	Amino acid biosynthesis	Hypothetical proteins		Energy metabolism	Drawn matakaliam		Transport and binding proteins	Purines, pyrimidines, nucleosides, and nucleotides		Biosynthesis of cofactors, prosthetic groups, and carriers	Protein fate	Cell envelope			Energy metabolism	DNA metabolism	Purines, pyrimidines, nucleosides, and nucleotides	Protein synthesis	Biosynthesis of cofactors, prosthetic groups, and carriers	Biosynthesis of cofactors, prosthetic groups, and carriers	Unknown function	Hypothetical proteins	Regulatory functions		Disrupted reading frame
in minor contracts of Entry 1 at 1 mm (restricted) versus 40 mm and cy	COG Annotation	conserved hypothetical protein	adenylosuccinate synthetase, putative	transporter, putative	outer membrane porin, putative	ABC transporter, ATP-binding protein	magnesium and cobalt efflux protein CorC	aspartate aminotransferase	conserved hypothetical protein	pyruvate dehydrogenase complex, E3	component, lipoamide dehydrogenase	Ionnate denymogenase accessory protein	ruine, purante	ABC transporter, ATP-binding protein	uridine phosphorylase	molybdopterin biosynthesis MoeA protein,	putative	proline iminopeptidase, putative	membrane protein, putative	NADH:ubiquinone oxidoreductase, Na	translocating, hydrophobic membrane protein	NqrB	DNA polymerase III, delta subunit	phosphoribosylamineglycine ligase	asparaginyl-tRNA synthetase	dethiobiotin synthase	8-amino-7-oxononanoate synthase	acetyltransferase, GNAT family	conserved hypothetical protein	sensory box protein	hypothetical protein	siderophore receptor, putative, degenerate
Toring managed in	STD	0.61	0.64	0.41	0.33	0.58	0.31	0.35	0.46		0.34	70 0	0.20	0.31	0.31		0.73	0.55	0.51			0.31	0.72	0.44	0.52	0.34	0.29	0.45	0.36	0.51	0.74	0.48
Deleti	•_	١.	1.86	1.89	1.90	1.93	1.95	1.99	1.99		1.99	001	6.5	2.00	2.03		2.03	2.03	2.04			2.05	2.05	2.05	2.08	2.08	2.12	2.13	2.13	2.13	2.14	2.17
Cene	name						corC	aspC-1			V pdl				dpn							nqrB-1	holA	purD	asnS	bioD	bioF					
SOLI ELIMEIM	Gene ID	SO4714	SO1258	SO4150	SO1821	SO2525	SO1178	SO2350	SO2796		SO0426	204803	504203	SO1750	SO4133		SO4723	SO4400	SO3708			SO0903	SO1172	SO0441	SO2218	SO2737	SO2739	SO4716	SO0883	SO1500	SO3993	SO4422

SO4201 SO1932	BALF sucC	2.17	0.30	ubiquinone biosynthesis protein AarF	Biosynthesis of cofactors, prosthetic groups, and carriers Energy metabolism
200		2.18	0.54	TonB-dependent receptor domain protein	Unknown function
868		2.18	0.33	L-sorbosone dehydrogenase, putative	Energy metabolism
738	bioC	2.18	0.35	biotin synthesis protein BioC	Biosynthesis of cofactors, prosthetic groups, and carriers
601		2.18	0.70	OsmC/Ohr family protein	Unknown function
417		2.19	0.70	iron-sulfur cluster-binding protein	Energy metabolism
901	icc	2.20	0.43	lacZ expression regulator	Regulatory functions
				polyamine ABC transporter, periplasmic	
270		2.21	69.0	polyamine-binding protein	Transport and binding proteins
864		2.21	99.0	hypothetical protein	
SO4742		2.22	0.48	transcriptional regulator, DeoR family	Regulatory functions
į		0	0	D-alanyi-D-alanine carboxypeptidase-related	•
472		2.22	0.30	protein	Unknown function
855		2.23	0.31	conserved hypothetical protein	Hypothetical proteins
502		2.23	0.57	conserved domain protein	Hypothetical proteins
10058		2.24	<u>2</u> .	hypothetical protein	
006		2.25	0.43	conserved hypothetical protein	Hypothetical proteins
246	rimK-1	2.25	0.79	ribosomal protein S6 modification protein	Protein synthesis
SO3740	pntA	2.25	0.72	NAD(P) transhydrogenase, alpha subunit	Energy metabolism
				oxidoreductase, FAD-binding, UbitH/Codo	
778		2.25	0.60	family	Unknown function
SO1121	proB	2.27	0.57	glutamate 5-kinase	Amino acid biosynthesis
0251				Bacterial extracellular solute-binding proteins,	
		2.30	0.49	family 3, putative	
509		2.31	0.78	conserved hypothetical protein	Hypothetical proteins
423		2.32	0.92	hypothetical protein	
SO3540		2.32	0.93	conserved hypothetical protein	Hypothetical proteins
828	tonB2	2.33	09.0	TonB2 protein	Transport and binding proteins
				MotA/TolQ/ExbB proton channel family	
825		2.34	0.35	protein	Transport and binding proteins
473		2.34	0.62	hydrolase, alpha/beta fold family	Unknown function
S00264	scyA	2.35	0.74	cytochrome c	Energy metabolism

DNA metabolism		Hypothetical proteins	Energy metabolism	Energy metabolism	Hypothetical proteins	Energy metabolism	Hypothetical proteins		Energy metabolism	Transport and binding proteins	Transport and binding proteins	Unknown function		Protein fate	0	Cellular processes	Energy metabolism	Hypothetical proteins		re Energy metabolism	Hypothetical proteins	Energy metabolism			Amino acid biosynthesis		Hypothetical proteins		Signal transduction	Hypothetical proteins	Energy metabolism	T. c.
excinuclease ABC, C subunit sulfite reductase (NADPH) hemoprotein heta-	component (cysI)	conserved hypothetical protein	phosphate acetyltransferase	transketolase	conserved hypothetical protein	iron-sulfur cluster-binding protein	conserved hypothetical protein	NADH:ubiquinone oxidoreductase, Na	translocating, gamma subunit	TonB system transport protein ExbD2	L-lactate permease, putative	zinc carboxypeptidase domain protein	Sec-independent periplasmic protein	translocation protein TatC	AcrB/AcrD/AcrF family protein, authentic	frameshift	methylcitrate synthase	conserved hypothetical protein	O-acetylhomoserine (thiol)-lyase, putative	formate dehydrogenase, C subunit, putative	conserved hypothetical protein	TorA specific chaperone, putative	hypothetical protein	hypothetical protein	gamma-glutamyl phosphate reductase	phosphate binding protein	conserved hypothetical protein	hypothetical protein	sensor histidine kinase/response regulator	conserved hypothetical protein	formate acetyltransferase	alinga A-phoenhate 1-dehydrogenase
0.31	1.09	0.56	1.12	0.58	0.36	0.48	09.0		1.05	0.48	0.41	0.64		0.48		0.33	0.33	0.37	0.71	1.49	0.45	0.58	0.75	0.48	0.42	0.51	0.47	1.03	0.91	0.50	0.80	0 44
2.35	2.36	2.36	2.36	2.36	2.37	2.38	2.38		2.39	2.39	2.40	2.42		2.42		2.42	2.43	2.43	2.44	2.45	2.46	2.46	2.48	2.49	2.50	2.53	2.53	2.54	2.56	2.56	2.59	2 60
uvrC	cysI		pta	tkt					nqrC-1	exbD2				tatC			prpC								proA						pflB	, vvf
SO1861	SO3737	SO4504	SO2916	SO0930	SO4200	SO4506	SO1075		SO0904	SO1827	SO1522	SO2424		SO4204		SO4328	SO0344	SO4505	SO1095	SO4511	SO1824	SO4507	SO1517	SO4205	SO1122	ORF02714	SO1520	SO0403	SO2544	SO1518	SO2912	SO2480

	Energy metabolism	Energy metabolism	Purines, pyrimidines, nucleosides, and nucleotides	Transport and binding proteins		Energy metabolism	Transport and binding proteins		Energy metabolism	Transport and binding proteins		Energy metabolism	Energy metabolism	Energy metabolism	Energy metabolism		Energy metabolism			Energy metabolism	Hypothetical proteins	Transport and binding proteins	Unknown function	Energy metabolism	Signal transduction	Hypothetical proteins	Transport and binding proteins	Central intermediary metabolism	Transport and binding proteins	Transport and binding proteins
NADH:ubiquinone oxidoreductase, Na translocating, hydrophobic membrane protein	NqrE NADH:ubiquinone oxidoreductase, Na	translocating, beta subunit phosphoribosylaminoimidazole-	succinocarboxamide synthase, putative	TonB system transport protein ExbB2	hypothetical protein	NAD(P) transhydrogenase, beta subunit	ferrous iron transport protein B	hypothetical protein	iron-sulfur cluster-binding protein	sulfate ABC transporter, ATP-binding protein	pyruvate dehydrogenase complex, E2 component, dihydrolipoamide	acetyltransferase	cytochrome d ubiquinol oxidase, subunit II	formate dehydrogenase, alpha subunit	aconitate hydratase 1	alanine dehydrogenase, authentic point	mutation	hypothetical protein	pyruvate dehydrogenase complex, E1	component, pyruvate dehydrogenase	conserved hypothetical protein	polyamine ABC transporter, permease protein	TPR domain protein	iron-sulfur cluster-binding protein	nitrogen regulation protein NR(I)	conserved hypothetical protein	TonB-dependent receptor, putative	phosphoadenosine phosphosulfate reductase	outer membrane porin, putative	L-lactate permease
	1.29	1.06	0.33	0.47	0.97	0.82	0.51	0.59	0.85	0.63		0.44	1.41	1.19	0.68		0.48	1.28		0.88	1.03	1.02	0.74	0.68	1.37	0.93	1.96	0.79	0.85	1.10
	2.61	2.62	2.62	2.63	2.64	2.65	2.65	2.65	2.66	2.68		2.68	2.68	2.69	2.71		2.71	2.71		2.72	2.73	2.74	2.74	2.75	2.76	2.77	2.79	2.79	2.80	2.80
	nqrE-1	nqrF-1		exbB2		pntB	feoB			cysA-2		aceF	cydB		acnA		ald			aceE					ntrC			cysH		IIdP
	9060OS	SO0907	SO4066	SO1826	SO0758	SO3741	SO1784	SO4210	SO1521	SO4655		SO0425	SO3285	SO4509	SO0343		SO2304	SO4508		SO0424	SO3407	SO1273	SO0757	SO1519	SO4472	SO3722	SO3914	SO3736	SO3896	SO0827

Transport and binding proteins		Signal transduction	Unknown function	Hypothetical proteins		Biosynthesis of cofactors, prosthetic groups, and carriers		Transport and binding proteins		Transport and binding proteins	Energy metabolism	Transport and binding proteins		Amino acid biosynthesis	Amino acid biosynthesis	Unknown function		Hypothetical proteins	Transport and binding proteins	Energy metabolism	Energy metabolism		Biosynthesis of cofactors, prosthetic groups, and carriers	Hypothetical proteins	Regulatory functions	Transport and binding proteins	Central intermediary metabolism		Energy metabolism		Energy metabolism	Energy metabolism	Hypothetical proteins	Hypothetical proteins
major facilitator family protein	hypothetical protein	nitrogen regulation protein	hydrolase, TatD family	conserved hypothetical protein	molybdopterin-guanine dinucleotide	biosynthesis protein	polyamine ABC transporter, ATP-binding	protein	hypothetical protein	polyamine ABC transporter, permease protein	pyruvate formate-lyase 1 activating enzyme	ABC transporter, ATP-binding protein	aspartokinase II/homoserine dehydrogenase,	methionine-sensitive	D-3-phosphoglycerate dehydrogenase	RIO1/ZK632.3/MJ0444 family, putative	ferric aerobactin receptor, putative""	conserved hypothetical protein	ammonium transporter, degenerate	acetate kinase	6-phosphogluconolactonase	molybdenum cofactor biosynthesis protein A,	putative	conserved hypothetical protein	nitrogen regulatory protein P-II 1	ammonium transporter (tpt)	ABC transporter, permease protein	glucosaminefructose-6-phosphate	aminotransferase (isomerizing)	2-deydro-3-deoxyphosphogluconate	aldolase/4-hydroxy-2-oxoglutarate aldolase	monoheme cytochrome c, putative	monoheme cytochrome c	conserved hypothetical protein
0.48	1.06	1.40	0.46	0.83		0.28		0.54	0.83	0.75	1.01	0.36		0.81	0.68	2.28	1.28	1.91	1.77	1.36	1.01		0.47	0.77	3.05	1.44	0.43		0.87		96.0	1.22	1.05	1.14
2.84	2.86	2.89	2.89	2.96		2.96		3.00	3.03	3.06	3.14	3.14		3.14	3.16	3.16	3.20	3.25	3.26	3.28	3.30		3.33	3.34	3.37	3.38	3.42		3.44		3.45	3.61	3.66	3.88
		ntrB				mobA					pflA			metL	serA					ackA	pgl				glnB-1	9			glmS		eqa			
SO0450	SO4656	SO4471	SO4206	SO0718		SO4722		SO1271	SO0782	SO1272	SO2913	SO4721		SO4055	SO0862	SO3973	ORF02801	SO0273	SO3820	S02915	SO2488		SO4724	SO2914	SO0761	ORF03506	SO4720		SO4741		SO2486	SO0716	SO0717	SO4719

Transport and binding proteins	Fatty acid and phospholipid metabolism	Energy metabolism	Energy metabolism	Unknown function	Transport and binding proteins	Amino acid biosynthesis	Energy metabolism	Energy metabolism	Energy metabolism	Hypothetical proteins	Transport and binding proteins	Transport and binding proteins	
1.91 conserved hypothetical protein sulfate ABC transporter, periplasmic sulfate-		hydrolase family protein	6-phosphogluconate dehydratase	phosphoenolpyruvate carboxylase	oxidoreductase, molybdopterin-binding	TonB-dependent receptor, putative	glutamine synthetase, type I	1,4-alpha-glucan branching enzyme	9.60 glycogen synthase	4-alpha-glucanotransferase	5.54 conserved hypothetical protein	6.40 ammonium transporter	
1.91	0.61	2.18	0.77	1.61	0.65	1.33	3.91	8.81	9.60	8.84	5.54	6.40	
3.88	3.93		4.01	4.17	4.36	4.53	6.18	6.28	6.54	6.56	7.45		
	dqs		edd	bbc			glnA	glgB	glgA	MalQ		amt	
SO0449	SO4652	SO1486	SO2487	SO0274	SO0715	SO2427	SO4410	SO1494	SO1499	SO1493	SO0547	SO0760	

The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures of EtrA7-1 grown at 40 mM KNO, to that of the anaerobically grown at 1 mM KNO, (reference).

The standard deviation was calculated from six data points, which included three independent biological samples and two technical samples for each biological sample.

Fatty acid and phospholipid metabolism Transport and binding proteins Transport and binding proteins Transport and binding proteins SUPPLEMENTAL TABLE B.6. Genes repressed in anaerobic cultures of EtrA7-1 at 1 mM (reference) versus 40 mM KNO3 Hypothetical proteins Regulatory functions Regulatory functions Signal transduction Signal transduction Signal transduction Signal transduction Unknown function Unknown function Unknown function Possible Function Unknown function Cellular processes Cellular processes Cellular processes Cellular processes Cell envelope Cell envelope Protein fate hosphate ABC transporter, permease protein, shosphatidylglycerophosphatase B, putative nter-alpha-trypsin inhibitor domain protein shosphate regulon response regulator PhoB PXTG-site transpeptidase family protein ranscriptional regulator, MarR family ranscriptional regulator, LysR family nner membrane protein, putative lydrolase, alpha/beta fold family **ONA-binding response regulator JNA-binding response regulator** AcrB/AcrD/AcrF family protein conserved hypothetical protein hosphate-binding protein veta-lactamase, putative 3GDEF family protein ensor histidine kinase hage shock protein B hage shock protein C OmpA family protein sypothetical protein sypothetical protein ypothetical protein nypothetical protein Rrf2 family protein ps family protein COG Annotation utative 0.0 0.03 9.0 0.05 90.0 0.02 0.03 0.05 0.01 0.03 0.02 0.02 0.02 9.0 0.03 0.03 9.0 90.0 0.02 STD 0.01 0.01 0.01 0.01 0.01 0.08 0.08 0.09 0.12 0.13 0.13 0.03 0.03 0.03 0.03 9.0 0.05 90.0 0.07 0.10 0.12 0.13 0.11 0.11 0.11 0.11 0.11 expression* Relative name Gene phoB pspC pspB Gene ID SO1808 S04647 SO0839 SO1976 300838 **SO1158** SO1809 **SO4335** SO3846 SO1970 301924 301560 301558 302263 302192 501723 304646 **SO2197** SO2194 SO2195 SO4645 SO0837 SO2196 SO4334 SO2193 SO4052

Cellular processes

azoreductase, putative

SO3585

Unknown function	Regulatory functions	Amino acid biosynthesis		Unknown function	Biosynthesis of cofactors, prosthetic groups, and carriers	Transport and binding proteins	Hypothetical proteins		Transcription	Hypothetical proteins	Amino acid biosynthesis	Cellular processes	Amino acid biosynthesis	Transport and binding proteins		Transport and binding proteins	Protein fate	Unknown function	Signal transduction	Unknown function	Cellular processes		Regulatory functions	Hypothetical proteins	Amino acid biosynthesis		Cellular processes	Transport and binding proteins			Transport and binding proteins	Hypothetical proteins
iron-containing alcohol dehydrogenase	transcriptional regulator, AsnC family	threonine dehydratase	hypothetical protein	glyoxalase family protein	cysteine desulfurase	HlyD family secretion protein	conserved hypothetical protein	RNA polymerase sigma-70 factor, ECF	subfamily	conserved hypothetical protein	ketol-acid reductoisomerase	phage shock protein A	cystathionine beta-lyase	HlyD family secretion protein	amino acid ABC transporter, periplasmic	amino acid-binding protein	serine protease, HtrA/DegQ/DegS family	von Willebrand factor type A domain protein	DNA-binding response regulator	AMP-binding family protein	catalase	hypothetical protein	transcriptional regulator, MerR family	conserved hypothetical protein	dihydroxy-acid dehydratase	hypothetical protein	catalase/peroxidase HPI	AcrB/AcrD/AcrF family protein	hypothetical protein	extracellular solute-binding proteins, family 3	protein	conserved hypothetical protein
0.05	0.02	90.0	0.02	0.07	0.11	0.08	90.0		0.03	0.05	0.11	0.07	0.04	0.05		0.07	0.03	0.07	0.05	0.05	0.21	0.03	90.0	0.07	0.05	0.04	0.10	0.04	0.11		0.09	0.02
0.14	0.15	0.16	0.16	0.17	0.17	0.17	0.17		0.17	0.18	0.18	0.18	0.19	0.19		0.20	0.20	0.21	0.21	0.21	0.22	0.22	0.23	0.23	0.23	0.23	0.24	0.24	0.24		0.25	0.26
		ilvA			iscS						ilvC	pspA	metC								katB				ilvD		katG-1					
SOA0164	SO4337	SO4344	SO3841	SO3586	S02264	SO1925	SO3364		SO3840	SO3909	SO4349	SO1807	SO2191	SO4051		SO1044	SO3942	SO3552	SO4428	SO1971	SO1070	SO4429	SO0443	SO1047	SO4345	SO0552	SO0725	SO1923	SO3587		SO3412	SO0112

SO4346	ilvM	0.26	0.09	acetolactate synthase II, small subunit	Amino acid biosynthesis
SO4513		0.26	0.34	formate dehydrogenase, alpha subunit	Energy metabolism
SO2265		0.27	0.19	NifU family protein	Unknown function
				enoyl-CoA hydratase/isomerase family	
SO3908		0.27	0.02	protein	Fatty acid and phospholipid metabolism
8O0769	argR	0.27	0.12	arginine repressor	Regulatory functions
SO4347	ilvG	0.27	0.08	acetolactate synthase II, large subunit	Amino acid biosynthesis
SO0946		0.27	0.0	conserved hypothetical protein	Hypothetical proteins
SO1983		0.28	0.0	hypothetical protein	
SO3410		0.28	0.0	hypothetical protein	
				proline dehydrogenase/delta-1-pyrroline-5-	
SO3774		0.28	0.05	carboxylate dehydrogenase, putative	Energy metabolism
SO3588		0.28	0.12	gpr1/fun34/yaaH family protein	Cell envelope
SO0150		0.28	0.11	lipoprotein, putative	Cell envelope
SO1984		0.28	0.09	hypothetical protein	
SO0554		0.29	0.07	hypothetical protein	
SO4515		0.29	0.26	formate dehydrogenase, C subunit, putative	Energy metabolism
SOA0161		0.29	0.0	zinc-binding dehydrogenase	Unknown function
SO4649		0.30	0.0	conserved hypothetical protein	Hypothetical proteins
SO1557		0.30	0.09	outer membrane porin, putative	Transport and binding proteins
				phosphate ABC transporter, periplasmic	
SO4292	pstS	0.30	0.10	phosphate-binding protein	Transport and binding proteins
SOA0160		0.30	90.0	esterase, putative	Unknown function
SO3823		0.31	0.10	ISSo5, transposase, interruption	Disrupted reading frame
SO4427		0.31	0.05	sensor histidine kinase	Signal transduction
SO3422	yfiA-2	0.31	0.12	ribosomal subunit interface protein	Protein synthesis
SO1682	mmsB	0.31	0.18	3-hydroxyisobutyrate dehydrogenase	Energy metabolism
SO1428		0.31	0.19	outer membrane protein	Cell envelope
SO1810		0.31	90.0	conserved hypothetical protein	Hypothetical proteins
SO0551		0.32	0.09	conserved hypothetical protein	Hypothetical proteins
SO0276	argB	0.32	0.15	acetylglutamate kinase	Amino acid biosynthesis
SO1689		0.32	0.21	cation transport ATPase, E1-E2 family	Transport and binding proteins
SO1681		0.32	0.05	enoyi-CoA nyuratase/isomerase tanniy protein	Fatty acid and phospholipid metabolism

Transport and binding proteins	•	Hypothetical proteins		Hypothetical proteins	Hypothetical proteins	Hypothetical proteins	Transcription	Unknown function	Regulatory functions	Amino acid biosynthesis	Unknown function		Hypothetical proteins	Hypothetical proteins	Protein fate		Transport and binding proteins		Fatty acid and phospholipid metabolism				Fatty acid and phospholipid metabolism		Signal transduction	Disrupted reading frame	Hypothetical proteins	Regulatory functions		Hypothetical proteins		Hypothetical proteins	Cell envelope
HesB/YadR/YfhF family protein	amino acid ABC transporter, permease protein	RNA polymerase sigma-32 factor	conserved hypothetical protein	hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	ribosome-binding factor A	aminotransferase, class V	ferric uptake regulation protein	threonine synthase	spheroplast protein y precursor, putative	hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	thiol:disulfide interchange protein, putative	hypothetical protein	ABC transporter, periplasmic substrate-	binding protein, putative	acetyl-CoA carboxylase multifunctional	enzyme accADC, carboxyl transferase subunit	alpha/carboxyl transferase subunit beta/biotin	carboxylase	enoyl-CoA hydratase/isomerase family	protein	sensor protein PhoQ	conserved hypothetical protein, degenerate	conserved hypothetical protein	formate hydrogenlyase transcriptional	activator, putative	hypothetical protein	conserved hypothetical protein	lipoprotein Blc
0.29	0.04	0.16	0.07	0.10	0.11	0.08	0.02	0.11	0.16	0.14	0.18	0.16	0.20	0.0	90.0	0.10	0.22		0.10				0.11		0.10	0.10	0.0	0.05		0.19	0.11	0.08	0.33
0.37	0.37	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.39	0.39	0.39	0.40	0.40	0.40		0.40				0.41		0.41	0.41	0.41	0.41		0.41	0.42	0.42	0.42
		Ноф						rbfA		fur	thrC															Ooyd							blc
SO2266	SO1043	SO4583	SO2893	SO0322	SO3343	SO1064	SO0768	SO1205	SO4343	SO1937	SO3413	SO4476	SO1982	SO4145	SO3842	SO3659	SO4348		SO1959				SO0840		SO1895	SO1945	SOA0163	SO0113		SO3059	SO4490	SO2597	SO1691

Hypothetical proteins	Transport and binding proteins			Protein fate	Unknown function	Protein fate	Transport and binding proteins		Energy metabolism	Protein synthesis		Fatty acid and phospholipid metabolism		Transport and binding proteins	Transport and binding proteins		Transport and binding proteins		Unknown function			Hypothetical proteins	Hypothetical proteins	Transport and binding proteins	Hypothetical proteins	Hypothetical proteins	Hypothetical proteins	Transport and binding proteins	Protein synthesis	Hypothetical proteins	•	Amino acid biosynthesis
conserved hypothetical protein	protein	hypothetical protein	hypothetical protein	serine protease inhibitor, ecotin	AcrA/AcrE family protein	clpB protein	chitin-binding protein, putative	carboxymuconolactone decarboxylase family	protein	tRNA pseudouridine synthase B	hypothetical protein	acyl-CoA dehydrogenase family protein	ABC transporter, ATP-binding/permease	protein	transporter, putative	hypothetical protein	transporter, putative	hypothetical protein	yhgI protein	hypothetical protein	hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	sodium:alanine symporter family protein	conserved hypothetical protein	conserved hypothetical protein	conserved hypothetical protein	phosphate ABC transporter, permease protein	RNA pseudouridylate synthase family protein	conserved hypothetical protein	aspartokinase I/homoserine dehydrogenase,	threonine-sensitive
0.15	0.0	0.23	0.16	0.09	0.11	0.11	0.00		0.18	90.0	0.16	0.13		0.19	0.00	0.12	0.10	0.26	0.10	0.26	0.12	0.10	0.04	0.10	0.12	0.08	0.28	0.14	0.10	0.0		0.23
0.42	0.45	0.42	0.43	0.43	0.43	0.43	0.43		0.43	0.43	0.44	0.44		0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.46	0.46	,	0.46
						clpB				truB									yhgI													thrA
SO1326	SO1042	SO4592	SO4036	SO2312	SO3102	SO3577	SO1072		SO0083	SO1206	SO4558	SO1679		SO0821	SO3461	SO2446	SO2713	SO4593	SO4619	SO4342	SOA0109	SO3584	SO4302	SO3063	SO2201	SO2891	SO0335	SO1724	SO4426	SO2720		SO3415

Protein synthesis	Hypothetical proteins	Regulatory functions	Hypothetical proteins		Energy metabolism	Unknown function	Transport and binding proteins	Unknown function	Protein fate		Unknown function	Purines, pyrimidines, nucleosides, and nucleotides	Hypothetical proteins		Protein synthesis	Hypothetical proteins	Signal transduction	Unknown function	Signal transduction	Hypothetical proteins	Purines, pyrimidines, nucleosides, and nucleotides	Transcription	Hypothetical proteins	Transport and binding proteins	Protein synthesis	Transport and binding proteins	Transport and binding proteins	Energy metabolism	SO2509 0.57 0.17 iron-sulfur cluster-binding protein Energy metabolism
RNA methyltransferase, TrmH family, group3	conserved hypothetical protein	transcriptional regulator, MarR family	conserved hypothetical protein	anaerobic dimethyl sulfoxide reductase, A	subunit	methylase, putative	HlyD family secretion protein	oxygen-insensitive NAD(P)H nitroreductase	chaperone protein DnaK	hypothetical protein	sulfatase	purine nucleoside phosphorylase	conserved hypothetical protein	ribosomal small subunit pseudouridine	synthase A	conserved hypothetical protein	sensor protein CpxA	acetyltransferase, GNAT family	DNA-binding response regulator	conserved hypothetical protein	5-nucleotidase	ribonuclease R	conserved hypothetical protein	AcrB/AcrD/AcrF family protein	translation initiation factor IF-2	outer membrane efflux family protein	AcrB/AcrD/AcrF family protein	RnfAE/NqrDE family protein	iron-sulfur cluster-binding protein
0.07	0.11	0.12	0.21	,	0.24	0.08	0.14	90.0	0.26	0.13	0.25	0.14	0.02		0.14	0.15	0.17	0.15	0.08	0.13	0.08	0.11	0.0	0.21	0.16	0.22	0.11	0.14	0.17
0.46	0.46	0.47	0.47	!	0.47	0.47	0.47	0.47	0.47	0.48	0.48	0.48	0.48		0.48	0.48	0.49	0.49	0.49	0.50	0.50	0.51	0.51	0.51	0.51	0.52	0.52	0.53	0.57
				,	dmaA-1				dnaK			deoD-3			rsuA-1		cpxA				nshA	vacB			infB				
SO3934	SO2198	200977	SO1835		SO1429	SO1478	SO3483	SO3715	SO1126	SO1944	SO4628	SO2719	SO2596		SO3583	SO1836	SO4478	SO4489	SO4487	SO4070	SO2001	SO3935	SOA0059	SO3484	SO1204	SO0822	SO3103	SO2508	SO2509

⁴ The relative expression is presented as the ratio of the dye intensity of the anaerobic cultures of EtrA7-1 grown at 40 mM KNO₃ to that of the anaerobically grown at 1 mM KNO₃ (reference).

The standard deviation was calculated from six data points, which included three independent biological samples and two technical samples for each biological

sample.

