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ABSTRACT

Local Regularization for the Autoconvolution Problem

By

Zhewei Das

We develop a local regularization theory for the nonlinear autoconvolution prob-
lem. Unlike the classic regularization techniques such as Tikhonov regularization,
this theory provides regularization methods that preserve the causal nature of the
autoconvolution problem, allowing for fast sequential numerical solution. We prove
the convergence of the regularized solutions to the true solution as the noise level in
the data shrinks to zero, with a certain convergence rate. We propose several regu-
larization methods and provide theoretic basis for their convergence. Our numerical
results confirm effectiveness of the methods, suggesting superiority of our methods

over the existing ones, especially in recovering sharp features in the solution.
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Introduction

Linear and nonlinear Volterra integral equations arise in various applications, for
example, in recovering a space curve from its curvature and torsion, in the theory of
industrial inventory problems, and in nuclear reactor kinetics [23].

In this paper, we will study the solution of a nonlinear Volterra problem. We

consider the autoconvolution problem of finding z € L,(0, T) solving
G(z)(t) = f(t), ae.te]0,T], (1)
where G is the nonlinear Volterra operator given by

G(x)(t) =/0 x(t — s)x(s)ds, a.e. te][0,T), (2)

and f € Range(G) C Ly(0,T).
Before turning to this problem, we first give some background information on the
linear counterpart to this problem. Let us consider a linear first-kind Volterra integral

equation of the form

Au = f, (3)

where A is a bounded linear operator on L,(0,T) defined by

Au(t) = /Ot k(t — s)u(s)ds, ae.te[0,T], (4)



with the kernel function k € L,(0,T). Here, f is in the range of .4 and our objective
is to find @ € L,(0,T) that satisfies equation (4).

A classic example of such equation is the Inverse Heat Conduction Problem
(IHCP). If we apply heat at the end of a semi-infinite bar where we call location
z = 0, and measure the temperature f(t) as a function of time ¢t somewhere away
from the heat source at location z = 1, then the problem of recovering the tempera-

ture u(t) at the heat source is to solve equation (4), with the kernel given by

k(1) = 37 expl—;) (5)

Unfortunately, such problems are ill-posed because solutions do not have a con-

tinuous dependence on data: very small errors in the measured data can lead to large

errors in the solution. Since the available data in practice always contain uncertainty,
regularization methods should be employed to stabilize the problem.

One of the most well-known regularization methods is Tikhonov regularization.

Instead of solving for u that satisfies Au = f¢, we solve the following constrained

minimization problem

min || Au — f°||* + | Lu||?, (6)

where f° is the measured noisy data, and a > 0 is the regularization parameter.
Here L is a closed linear operator often picked as either the identity operator or the
derivative operator. The role of L then is to penalize highly oscillatory solutions, thus
stabilize the problem.

The Tikhonov theory states that there is a choice of @ = a(d) such that as the

noise level § — 0,
e a(f) 0,

e and the corresponding Tikhonov solution u§ to (6) converges to the true .



Classical regularization methods such as Tikhonov regularization have inherent
disadvantages in solving Volterra problems. Volterra problems are causal in the sense
that the solution u at a given time ¢t does not affect the data f on the interval
[0,t). Therefore, it makes sense to use future data f on the interval [t,T] only in
reconstructing u(¢). Tikhonov regularization however replaces the original causal
problem by a “full domain” problem. It uses all values of data in the whole domain
[0,T] in reconstructing the solution u at any given time ¢. This becomes apparent

when we consider the necessary condition for the minimization problem (6):
(A*A+ aL*L)u = A*f?,

where A*A is a non-causal operator even with a Volterra operator A.

In the late 1960’s, J. V. Beck developed a regularization scheme for the discretized
IHCP which retains the causal nature of the problem [2]. The numerical implemen-
tation of the Beck method is also more efficient than those of classical regularization
methods, because of its sequential nature. It was not until mid-1990’s that P. K.
Lamm established the theoretical basis for the convergence of the sequential local
regularization method, and Beck’s approach was generalized to a wide class of linear
first-kind Volterra problems [13][14][15]. While Beck’s method was an approach devel-
oped to handle a finite dimensional problem, the current theory of local regularization
methods can be placed in both finite and infinite dimensional settings.

To motivate the sequential local regularization method for linear Volterra prob-
lems, we let R > 0 be a small fixed constant and assume that equation (4) holds on

an extended interval [0,T + R] for 0 < R < R. Then (t) solves

[0 pk(t +p—s)u(s)ds = f(t+ p), t €[0,T], p € [0, R)].



Split the integral at ¢, then change the variable of integration, we get

/tk(t+p—s)u(s)ds+/pk(p—s)u(t+s)ds=f(t+p) te[0,T],p€[0,R].
0 0

We integrate both sides of the equation with respect to a suitable Borel measure

n = nr(p) (which we will clarify later) on [0, R], then

// (t+p— ) dnr(p ds+// p— s)ult + ) ds dna(p)

:/0 f(t+p)dnr(p), te[0,T]. (7)

Note that we still have an equation that @ satisfies exactly.

In reality, we often only have access to some perturbed f° € C[0,T + R] such that
If = fllw <6  forsome &> 0. (8)

Some regularization method needs to be employed.

We motivate the regularization method by considering what would happen if, for
fixed ¢, we momentarily held u constant on a small local interval [t,t + R]. This
motivates us to replace u(t + s) by u(t) in the second term of equation (7). Here, the
length R of the local interval becomes the regularization parameter. We then obtain

the regularized equation in u valid for all ¢ € [0, T},

agu(t) +/0 kr(t — s)u(s)ds = f5(t), 9)



where

: R

Falt) = / Kt + p) dni(p), (10)
-~ OR

F3(t) = /0 F5(¢ + p) dnr(p), (11)
ar = / /opk(P—S)denR(P)- (12)

The existing theory for the local regularization of linear Volterra problems requires

the assumption that the convolution kernel & in equation (4) is v-smoothing, i.e.,

k € C*[0,T] such that k(0)=k'(0)=---=k""%(0)=0 and k“7'(0) #0.

It is well-known that the degree of ill-posedness of problem (4) is characterized by the
the degree of smoothness of the kernel k£ and the behavior of k at 0: the ill-posedness
increases as v increases. For example, the Inverse Heat Conduction Problem is
severely ill-posed since the heat kernel (5) is infinitely smoothing, i.e., kP (0) = 0
forp=0,1,---.

Let the Borel measure 7z (p) on [0, R] satisfy the following three conditions:

1. For: =0,1,...,v, there is some u € R and ¢; = ¢;(1) € R independent of R

such that
R
/ p'dnr(p) = R (c; + O(R)), as R—0, (13)
0
with ¢, # 0.
2. The parameters ¢;, ¢ = 0,1,...,v, satisfy the condition that all roots of the

polynomial p,()) defined by

v Cu—1 v—1 C1 Co
J() = o Gt L+l
PN =X+ oY et oA



have negative real parts.

3. There exists a C > 0 independent of R such that

R
/0 9(p) an(p)‘ < CllgllR*,

for all g € C[0, R] and all R > 0 sufficiently small.

It is worth noting that the Borel measures 7y satisfying these conditions are not
necessarily positive. Therefore, a signed Borel measure is allowed. It was shown in
(18] that under the above three conditions on 7g(p), we have ag # 0 for all R > 0
sufficiently small and all v-smoothing k, where v = 1,2,3,.... Therefore (9) is a
well-posed second-kind Volterra equation, with solutions depending continuously on
data f%. We summarize the convergence theory loosely in the following Theorem, for

a more precise version and information about convergence rate, we refer to [18].

Theorem 0.1 Let 4 denote the solution of equation () given ‘true’ data f €
C[0,T + R]. Assume k is v-smoothing and that ng is a family of signed Borel mea-
sures satisfying hypotheses (1)-(3) for all R € [0,R]. Then for all t € [0,T] and
f® € C[0,T + R] satisfying (8), there is a choice of R = R(8) such that R(6) — 0 as
0 — 0 and

ug(t) = a(t) as § -0,
where u’, is the solution to the reqularized equation (9).

Even though the full convergence of the sequential local regularization method
for linear first-kind Volterra equations is obtained by allowing signed Borel measures,
we would like to point out that convergence was also obtained using positive Borel
measures for v-smoothing Volterra problems, where v = 1,2, 3,4. There is to date no

convergence theory for positive Borel measures except in those cases. For details, see

[13], [15] and [25).



Different variations of the local regularization methods for linear ill-posed prob-
lems were developed over the last decade [3][4][5][14][16][17][20][21][22]. For example,
in [3] and [4], the motivation for the regularization equation is to consider using a
polynomial function to fit the data on the local interval instead of a constant function.
In [16], [21] and [22], a variable regularization parameter R(t) is used instead of a sin-
gle constant R. This technique allows for more or less smoothing at different parts of
the domain, and it enforces another advantage of local regularization over Tikhonov
regularization in the ability of recovering sharp features of the solution. The methods
were even extended to Fredholm (non-Volterra) problems in [5] and [17], where the
solution is obtained by iteratively solving many small localized problems.

While the theory for the local regularization methods of linear Volterra problems
is rather complete, the nonlinear theory is largely absent. It was only recently that

local regularization theory was extended to the nonlinear Hammerstein equation:

/0 k(t,s)g(u(s),s)ds = f(t) fort € [0,T].

Notice the Hammerstein equation composes the desired solution u with another arbi-
trary function g. Based on the linear convergence theory, the key issue here becomes
how we can stably recover u from inverting the function g. We have shown in [19]
that local regularization of this problem is successful under certain conditions on this
external function g. It is not surprising that the proof utilizes the linear theory.

In this paper, we develop a local regularization theory for the nonlinear autocon-
volution problem of finding £ € Ly(0,1) solving equation (1) with G given by (2). We
will use the underlying ideas of local regularization to formulate the regularization
equation for the autoconvolution problem. However, due to its nonlinearity, we ex-
pect the convergence theory to be fundamentally different from what is in the linear

case.



CHAPTER 1

Properties of the Autoconvolution

Equation

Autoconvolution has been of interest to scientists for decades because of its appli-
cations in various fields. It arises in stochastics where the density function of a
continuous random variable V' is reconstructed after observing the density function
of the random variable S = V}+ 15, where V] and V5 are identically and independently
distributed random variables of V. For more details, see [10]. Another application
of autoconvolution occurs in spectroscopy. Baumeister presents in [1] a reference list
of physically motivated papers concerning this class of problems. He also discusses
in detail the mathematical model of deconvolution of “appearance potential”’ (AP)
spectra to investigate electronic properties of solids in their surface region. In this
context, the density of unoccupied states in the surface region of a solid is recovered
from the measured AP-spectrum data.

In this chapter, we will summarize the properties of the autoconvolution equation.
For details of these results, we refer to [7] [8] [9] [10]. We will also mention some

existing regularization methods towards the end the chapter.



1.1 Continuity and Compactness

In the linear case, the inverse problem (3) is ill-posed when the operator A is compact.
As we will show in this section, the autoconvolution operator is continuous in L,(0, 1),
but fails to be compact in Ly(0,1).

Recall the autoconvolution operator G : L,(0,1) — Ly(0,1) defined as

G(z)(t) = fotx(t —s)z(s)ds = f(t), ae.te€]0,1]. (1.1)

More generally, G : D(G) C B; — B; where B, and B, are Banach spaces containing

real functions on [0, 1], with properties to be specified below.

Proposition 1.1 [10] If = € L,(0,1), then G(z) € C[0,1] and [G(z)](0) = O.

Moreover, G : Ly(0,1) — C[0, 1] is a continuous nonlinear integral operator with

NG ()| 12001) S NG(2)llcpo,n) < Hl'H'ng(o,l)-

Note that the continuity of G : D(G) C B; — B, remains true if B, has a stronger

norm than L,(0, 1) or if the norm of B, is weaker compared to that of C[0, 1].

Definition 1.1 We call a linear or nonlinear operator A : D(A) C B, — B, compact
if the range RA(S) = {y € By, y = A(x),x € S} is a relatively compact subset of B,
whenever S is a By-bounded subset of D(A).

Proposition 1.2 [10] The autoconvolution operator G : L,(0,1) — Ly(0,1) is not
a compact operator. On the other hand, the Fréchet derivative G'(z) : Ly(0,1) —

L,(0,1) defined by
G'(z)(h)(t) = 2/t;r(t — s)h(s) ds, t €[0,1], h e Ly(0,1),
0

1s a compact bounded linear operator for all x € L,(0,1).

9



As an example of noncompactness of G, we consider an infinite sequence

zo(t) =sin(nt), 0<t<1l,n=1,2,...,

then,
_ _ _tcos(nt)  sin(nt)
n(®) = [Glaa)() = =25 4+ T,
for 0 <t <1landn = 1,2,---. Note that zo(t) = 0 andyo(t) = [G(z0)](t) = 0

for t € [0,1]. Evidently, the sequence {z,} is bounded in L;(0,1), but we don’t
have strong convergence of y, — yo = 0 since ||ynllz,001) — %—26 # 0. Therefore,
the autoconvolution operator G doesn’t take every bounded subset in L,(0,1) into a
relatively compact subset in Ly(0,1).

Even though the operator G is not compact in the general setting where G :
L5(0,1) = L,(0,1), compactness of G can be obtained by restricting its domain D(G)
to a relatively compact subset of L;(0,1) due to the continuity of G. For example,

if D(G) only contains equibounded monotone functions, then G : D(G) — L(0,1)

becomes a compact operator.

1.2 Weak Closedness and Injectivity

In the following, we restrict the domain of the autoconvolution problem to
D(G) = {z € Ly(0,1), z(t) > 0 for a.e. t € [0,1]}. (1.2)

To apply the classical Tikhonov regularization theory to nonlinear inverse
problems|[6], it is required that the nonlinear operator be weakly closed. We can

ensure the weak-closedness of the autoconvolution operator G if using the restricted

domain D(G) as defined in (1.2).

10



Definition 1.2 A linear or nonlinear operator A : D(A) C B, — B, (where B, and
B, are Hilbert spaces) is weakly sequentially closed if, for any sequence {z,}32, C
D(A), weak convergence z, — zo in B, and A(z,) — yo imply 2o € D(A) and

A(zo) = yo.

Proposition 1.3 The autoconvolution operator G : D(G) C L2(0,1) — L,(0,1) is
weakly continuous, D(G) is weakly closed in L,(0,1), therefore G is weakly sequen-

tially closed.

We can also prove the injectivity of the autoconvolution operator using the Titch-

marsh’s Lemma.

Lemma 1.1 For f,g € Ly(0,1), let there exist a value v (0 < v < 1) such that

/Otf(t—s)g(s)ds=0 ©0<t<w).

Then there exist numbers o, 8 € [0,1) witha+ B8 > v, f(t) =0 a.e. int € [0,a] and

g(t) =0 a.e. inte€|0,p]

Then it follows:

Theorem 1.1 If we define for any x € Ly(0,1),
e(z) =sup{0<e<1: z(t) =0a.e on[0,el},

then the autoconvolution equation (1.1) subject to the domain (1.2) has a unique
solution if and only if f(t) > 0 a.e. t € [0,1] and e(f) = 0. If 2* is the uniquely

determined solution, then it fulfills the condition £(z*) = 0.

11



1.3 Local Ill-posedness

Let us first consider a general operator equation
F(z) =y, (1.3)

where the operator F': D(F) C X — Y maps between Hilbert spaces X and Y. We
denote the norms in X and Y by || - ||x and || - ||y. If F is nonlinear, we will focus
our attention to a solution point z* € D(F’) of equation (1.3) and a family of closed

balls centered at z* with radius r, i.e., B(z*,7) = {z € X, ||z — z*||x < r}.

Definition 1.3 We call the equation (1.8) locally ill-posed in =* if, for arbitrary small

r > 0, there is an infinite sequence {z,} € D(F) N B(z*,r) with
|F(zn) = F(z*)|ly =0, but |lr,—z*||x »0 as n — oo.

Otherwise the equation is called locally well-posed in x*.

In linear inverse problems, ill-posedness typically occurs when the operator F' is
compact; in particular, if F is linear and compact, then the problem is unstable if and
only if the range of F' is infinitely dimensional. However, ill-posedness can also occur
when F fails to be compact, and the autoconvolution problem represents a nonlinear

example of this case.

Proposition 1.4 For the D(G) defined in (1.2), the inverse autoconvolution operator
G! is discontinuous at every point y = G(z) € Ly(0,1), z € D(G) C L,(0,1), i.e.,

the autoconvolution equation is locally ill-posed at every point x € D(G) C L,(0,1).

Various degrees of ill-posedness for the autoconvolution equation are discussed in

[8] and [10]. In short, we expect a correlation between the degree of ill-posedness and

12



boththe smoothness of the solution z and the behavior of z at 0. It is not surprising
that the same kind of dependence exists in the linear problems except that the role
of the kernel function k is now taken over by the solution z: the global smoothness
of k is replaced by the local smoothness of z. Furthermore, the main difficulty of
the autoconvolution problem is associated with values of the solution z with small ¢,
particularly at z(0).

Various regularization methods have been studied for the autoconvolution equa-
tion. We can utilize Tikhonov regularization theory for nonlinear inverse problems
since the autoconvolution operator G : D(G) C L,(0,1) — L»(0,1) is continuous and
weakly closed, and G has a compact Fréchet derivative at any £ € L,(0, 1) that satis-
fies the assumptions to guarantee stability in the Tikhonov theory [6] [10]. However,
the drawbacks of Tikhonov regularization (e.g., loss of causality of the Volterra prob-
lem) still exist here, and because of the nonlinearity of the problem, the numerical
implementation becomes even more expensive.

The ill-posed autoconvolution problem (1.1) can be changed into a well-posed one
by imposing appropriate a prior restrictions z € Q. If Q is a relatively compact
subset of Ly(0,1) and G is injective on @, then the inverse operator G~! exists
and is continuous by Tikhonov lemma. In [9], the domain of the autoconvolution
equation is restricted to a subset B of D(G) (as defined in (1.2)), where B contains
solutions z that are uniformly bounded below and above by positive constants, and
with a prescribed upper bound c for the total variation. Here, c is the regularization
parameter.

The most recent approach of which we are aware, to regularize the autoconvolution
problem, was studied by Janno in [12]. Lavrent’ev regularization method was applied
to the autoconvolution equation and convergence was obtained. The advantage of
Lavrent’ev method is that it preserves the causal nature of Volterra problems and

therefore leads to a fast sequential method. The major drawback for the method is

13



that it requires and depends on an initial guess of the true solution. When the initial
guess is far away from the true solution, the method appears less able to recover the
true solution.

In the next chapter, we develop a local regularization method for the autocon-
volution equation. A convergence theorem is proved, and we provide an effective
regularization method which preserves the casual nature of the problem for the most

part without having to introduce an initial guess.

14



CHAPTER 2

Convergence of Local

Regularization

2.1 Formulation of the Regularized Equation

Recall that we are considering the problem of finding r € L,(0,1) satisfying the

autoconvolution equation
G(r)(t) = f(t), ae. te€][0,1], (2.1)
where G is the nonlinear Volterra operator given by

G(x)(t) = /0 z(t —s)x(s)ds ae.t€][0,1], (2.2)

and f € Range(G) C L,(0,1). Note that without loss of generality, we have assumed
that T = 1.

Suppose 0 < 7 € C'[0,1] is the true solution of equation (2.1). As in the local
regularization approach described in the Introduction for the linear Volterra problems,

we extend equation (2.1) slightly into the future, i.e., let R > 0 be a small fixed

15



constant such that R < 1 and assume that equation (2.1) holds on an extended

interval [0,1 + R] for 0 < R < R. Then Z(t) solves

/pr(t+p— s)z(s)ds = f(t + p), te0,1], p € [0, R].
0

Split the integral at p and ¢, then change the variable of integration, we get

2/# z(t+p—s) z(s) ds+/tx(t+p—s)z(s)ds = f(t+p), te€[0,1], p€[0,R]. (2.3)
0 p

In order to consolidate the local future information introduced by the variable p, we
integrate both sides of the equation (2.3) with respect to a suitable Borel measure

n = n(p) > 0 (which we will clarify later) on [0, R], then

R pp R t
2/0 /0 z(t + p — s) x(s) dsdn(p) +/0 /p z(t + p — s) z(s) dsdn(p)

R
= [ s ndne), e @

Note that T still satisfies equation (2.4) exactly.
In reality, instead of having the exact data f, we always only have access to some

approximation f¢ € C[0,1 + R], such that
If® = fllo <8  for some & > 0. (2.5)

So, instead of solving Gz = f, we need to solve Gz = f°. As discussed in Chapter
1, this latter problem is locally ill-posed in L,(0, 1) in the sense that § — 0 does not
guarantee the convergence of the solution to Z, i.e., the solution of the equation does
not depend continuously on the right hand side. Thus a regularization method is
needed.

As in the linear case, we motivate the regularization method by momentarily

16



holding z constant on a small local interval [t,t + R]. Therefore, we replace z(t + p)
by z(t) for p € [0, R] in the first term of equation (2.4). Here, the length of this local
interval R serves as the regularization parameter. We then obtain the regularization

equation

ar(z)z + Fr(z) = fz, (2.6)

where for t € [0, 1],

ap(r) = / / s)dsdn(p

Fa(z)(t) A [ £(t + p — 5) 2(s) ds dn(p),

R
/0 FP(t+ p)dn(p). (2.7)

fr(t)

We will first study the class of the Borel measures we use. If n(p) > 0 is a

continuous Borel measure on [0, R] of the form

R R
Agwmm=lgmmmm

where w(p) € Lo[0, R], such that 0 < w; < w(p) < w, < 00, p € [0, R], for constants

wy,wy > 0, then for any real numbers m and n,

Jo P dn(p) _ [y p"w(p) dp L w Jo Pmdp _ wy(n+1)
Jordn(p) [ erw(p)dp T wi [ prdp  wi(m+1)

If n(p) > 0 is a discrete Borel measure on [0, R] of the form

R
/0 g(p) dn(p) =Y _ g(p:) @,

where fori = 1,--- ,k, 0 < @ < w; < @ < 00,p; = C;R for C; € [0,1] and there

17



exists at least some C; for 1 < ¢ < k such that C; # 0, then

k
S emdn(p) ,Z: (GRy™ @ wok m—n
R ~ k — n
n d @, min C]
Jo P dn(p) $(CR) i,

Therefore, a reasonable general assumption for our generic Borel measure 7 is that

for any real numbers m and n, there exists a constant C(m, n,7n) > 0, such that

< C(m,n,n)R™™". (2.8)

Our main convergence result is stated below. It follows as a corollary to Theorem

2.2 of the next section.

Theorem 2.1 Assume the perturbed data f° satisfies |f(t) — fO(t)] < & fort €
[0,1 + R], and that the Borel measure n > 0 satisfies (2.8). Then there erists C >
0 and ky > 0 independent of R such that if the true solution T € C'[0,1] of the

autoconvolution equation is positive and satisfies

£(0) > C |7’

then for R = R(J) > 0 selected satisfying

)
— <
R(6) - 0 and () < ki

as 6 — 0, it follows that the solution .IR of the regularization equation (2.6) asso-
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ciated with data f? satisfies
12k = ZllLa0) = O(6'2)

as 6 — 0.

The proof of this result will take the remainder of this section and involves intro-
ducing some additional spaces and norms. To begin, we rewrite equation (2.4) using

similar notation as in equation (2.6), then Z satisfies
OR(f)f-l'FR(.’f) =fR+€R, (29)

where for t € [0, 1],

an(z) = / / 5) ds dn(p

Fa(i)(t) = /0 / £t + p - 5)i(s) dsdn(p),

R
fult) / £(t+ p) dn(p),

//It ) —Z(t+ p—s))T(s)dsdn(p). (2.10)

€R

Let us define a new R-dependent topology on L,(0,1):

1
(T, Y)or R (T, ¥)Lg0.R) + (T, Y)L3(0.0)

1

R 1
C_(R_)/O e “x(t)y(t)(1t+/oe Tt (t) y(t) dt,

where 0 > 0 and C(R) > 0, with conditions on o and C(R) to be specified later.

19



Note that the weighted inner product

T
(T, )30, =/ e 2tz (t) y(t) dt for T>0
0

induces a weighted norm

T 1/2
||$||Lg(O,T) = (/ e“2¢7tI2(t) dt) ,
0

which is equivalent to the L, norm since

e+

L01) < llegor) < - lleaom)

for T > 0.
Throughout this chapter, we will couple the L,(0, 1) space with the newly defined
R-dependent topology and denote it as L‘z"R(O, 1). We then denote a closed ball

centered at zy with radius r under this new topology by
B(zo,7) = {z € Ly*(0,1), ]|z — zo|lo.r < 7}, (2.11)

where

1 1/2
Il = { g Bsomo + 1 B |

Note that if z € L3(0,1), then z € L3(0,1) and |0,z € L3(0,R) and thus the

norms || - ||zg(0,1) and Il - Il(0,r) still have meaning for such z.

Lemma 2.1 The operator Fr : L7%(0,1) — L5%(0,1) as defined in (2.7) is Fréchet
differentiable and Fy, is uniformly Lipschitz in Lg‘R(O, 1), i.e., there ezists some con-

stant k > 0, such that foroc >1/2 and R< 1,

1 Fr(z1) = Fr(z2)ll < kllzy = z2llo.r
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for zy,z5 € L5R(0,1), where || - || denotes the usual L(L3R(0,1)) operator norm.

Proof: For any z,h € L37(0,1) and t € [0, 1], we calculate

Fr(z + h)(t) — Fr(z)(t)

= // (t+p—s)z (s)dsdr)(p)+/0‘R/ptm(t+p—s)h(s)dsdn(p)

+ /0 /,, h(t + p - 5) h(s) ds dn(p)

R gt R [t
= 2/0 /pr(t+p-—3)h(s)dsdn(p)+/o /ph(t-!-p—-s)h(s)dsdn(p).

For fixed t € [0,1], p€ [0, R], let T =t + p — s, then

< ([ rers-nw)” ([ ow)”
([t ([ omiirs)”

2 2
<e” ”hHL;(o,ly

/th(t+p—s)h(s)ds

Therefore,

/0”/p‘h(t+,,_s) h(s) ds dn(p) dn(p)

7

R
< e ”hnig(o,l)/(; dn(p)

/ (t+p—s)h(s)ds

and

R
< ligan [ ) 1o

R o
/0 / h(- + p — s) h(s) ds di(p)

L3(0,1)

R
< hligon [ e (212
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for o > 1/2. Here we have used the fact that

! 12 ) a1
_ —20t _
lgon = ([ e*at) = (*5—) <1

for o > 1/2.

Similarly, we can show for o > 1/2,

R o
/0 / h(- + p — s) h(s) ds dn(p)

L3(0.R)

Combining inequalities (2.12) and (2.13), we get

2

[ (4 p— 5) h(s) ds dn()
[ c,

/R/'h(-+p—s)h(s)dsdn
0 Jp
1
TCm)
r R 2 R
Wtz [ dn<p>] b [ 1Al 0 | dn(p)]

- R 2
e [ anto
L 0
2

r R
o [ dn(p)] 112 o IR g
L 0

R
(p)

2
L3(0,1)

2

IA

IN

1
A0 (1050000 + s 1Mo

IN

Therefore,

R -
/0 / h(- + p — s) h(s) dsdn(p)

a,R

R
S€2a||h||ig<o,1z)/0 dn(p).

[ R+ p— s)his) dsdn(o)
[

R
< e /0 dn(o) 1Al &

(2.13)

2
L3(0,R)

Hence, Fg is Fréchet differentiable at = € L3®(0,1) with Fj(z) € L£(L5®(0,1))

given by
R [t
Fr(z)(h)(t) = 2/0 / x(t + p — s) h(s) dsdn(p)

22
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for any h € L3(0,1) and ¢ € [0, 1].
To show the Lipschitz condition, we will first consider ||[Fg(z1) — Fg(z2)ll13(0,1),

for ,,z5 € Lg’R(O, 1). For fixed t € [0,1],p € [0, R], let T =t + p — s, we have

/ (z1(t+p—3s) —z2(t+ p—35)) h(s)ds

< (/pt(zl(t +p—5)— Tt +p— S))2d3)1/2 (/pt h?(s) ds) ;

t 1/2 ¢ 1/2
= (/ 62”6’2‘”(11(7')—:rg(r))zdr) (/ 62‘”6"2“h2(s)ds)
p p
< e¥lzr = 22l 500y 1Rl 2g 0,0,
therefore,
R t
[ [t o9 - ante+ o= 9)ne) dsanto)
0
g R t
< [|[f @it o= s) =zt + o 5)) o) ds| dnto)
0
g R
< e llar = zallgon lligan [ dnto)
Hence,
| Fr(z1)(hR) - F;i(I2)(h)||1,g(0,1)
R o,
- |2/ [ @+ p=5) = aa(e +p = 5)) his) ds )
o Jo L3(0,1)
R
< 262”||Il—$2||Lg(0,1)1|h||Lg(0,1)/ dn(p) 111l r5(0.1)
0
R
< 26”1 = mll g g [ dnto)
0
for o > 1/2.
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Similarly, we can get

|1 Fr(z1)(h) = Fr(z2) (W)l 0,r)

R
< 2~ nallgphlison [ dile)

R
< 2620”131-$2I|Lg(o,1)”h||L°2’(0,R)/ dn(p)
0

foro > 1/2.
Therefore, for any h € L3(0,1),

| Fa(z1)(h) — Fr(z2)(W)I2 5

= [|Fr(z)(h) = Fa(z2)(M)ll7g 0, + (1 )IIF' R(@)(R) = Fr(z2) (Wl250,)

IN

R 2
2 ["anto) s - aaligion] [0 + 05 M|

R 2
2 [ s =l ] 1002
0

IA

Hence,

R
IEL(r1) — Fhza)l| < 2¢% / dn(p) llz1 — 22, 5

0
for any z,,z5 € Lg‘R(O, 1),i.e., F is uniformly Lipschitz in L3®(0,1) with Lipschitz

constant k = 2% fOR dn(p). O

The following Lemma follows immediately from Lemma 2.1.

Lemma 2.2 Let v,vy,v, € B(0,7) € L3®(0,1) and z € L5F(0,1) , then the remain-

der

Rr(z,v) = Fr(z + v) — Fr(z) — Fi(x)v (2.15)

24



of the Fréchet derivative Fy(z) satisfies

R
IRe(z,v)l, 5 < € / dn(o) oIl s (2.16)

R
[Rr(z,v1) — Re(z,v1)ll, 5 < 262"f dn(p) max{||villo,z, l[v2llo.r} [lv1 — v2llo,r-
0

(2.17)

Proof: We can write
1
Rr(z,v) = / (Fp(z + tv) — Fg(z)) vdt, (2.18)
0
then

IRe(z,v)l, o < /O |(Faz + tv) — Fi(z)) vl dt

1
< / (IFh(x + tv) — Fa(@)| lolloe) dt
0

1 R
S/ (2e2"/ dn(p) Htvllo,RllvHa.R) dt
0 0

R 1 .
< 9e / dn(p) I1e]2 1 f tdt
0 0

R
_ o / dn(p) o2 .
0

Similarly, we can write

1
Rr(z,v1) = Rr(z,v3) = / (Fr(z + tvy + (1 = t)vy) — Fg(x))(vy — vyp) dt,
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then,

IRRr(z,v1) — RR(z,v2) “a,R

1
< / 1(Fa(z + tor + (1 = t)va) — Fi(2)) (01 — va)llo.m dt
0
1
< / (1P + tvr + (1 — £)vs) — Fa(@)ll o1 = valloe) dt
0
1 R
< [ (2e2” / d’l(P)”tvl"*'(l—t)U2||a,R||U1‘v2||a.R) dt
0 0
R 1
< 2e% / dn(p) l1vs = vallowe max{[[vr lo.rs vt} / 1dt
0 0

R
= 2 [ dn(p) 1o = valoe max{(lolleg 01lon):
0

O
For h € Lg’R(O, 1), t € [0,1], we define
R pt
Bgr(z)(R)(t) = 2/ / Z(t+ p — s) h(s) dsdn(p), (2.19)
0 op
Da@m)(®) = 2 [ ["a(t+p-9)his)dsdn(o) (2.20)
o Jo
then
Fr(z)(h)(t) = Br(T)(h)(t) — Dr(z)(h)(t). (2.21)
Note that both Bg(i) and Dg(Z) are bounded linear operators in L5%(0, 1).
Expand Fg(z) in equation (2.6) using the Fréchet derivative Fy(Z), we get
ap(r)r + Fr(T) + FR(Z)(z — ) + Rer(F,z — 7) = f},. (2.22)

After combining equation (2.9), (2.21) with equation (2.22) and some simple al-
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gebra, we obtain

(OR(.’TZ)I + BR(i))(x - .’i‘) = ffz — fR — €R — RR(.’f,l‘ - .’f?)

+ Dp(Z)(z — Z) + (ar(Z) — ar(z))z, (2.23)

where I is the identity operator on L3®(0,1).

Let us further denote for v € L3F(0,1),

ER(j‘, ’U) = DR(.’f)(’U) — aR(v) .‘f, (224)

where we note that v — FEg(Z,v) is linear. Then equation(2.23) becomes

(ar(2)I + Br(3))(x — ) = fh — fr — €r — Rr(Z,z — I)

+ Er(z,x — T) + (ar(z) — ar(z))(z — ). (2.25)

In order to be able to invert (ag(z)I + Br(Z)) € L(LT%(0,1)), we need the

following lemma.

Lemma 2.3 If Z(t) > 0 for t € [0,1 + R] and £ € W?*(0,1 + R), then for positive
Borel measure n(p), there ezists og > 0 independent of R > 0, such that the operator

Bg(Z) is accretive in LY®(0,1) for o > oy; i.e.,

(Br(z)v,v)e.r >0 for any v e LF(0,1).
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Proof: Recall that for h € L3(0,1), t € [0,1],

R t
Br(z)(h)(t) = 2 [ / £(t + p — 5) h(s) ds dn(p)

=/0t <2/(;R:E(t+p—s) dn(p)) h(s) ds.

Let us denote for ¢ € [0, 1],

R
ar(t) = 2 / £(t + p) dn(p),

then

Br(2)(h)(t) = /0 ar(t — $)h(s) ds. (2.26)

We will first show Bg(Z) is accretive in L§(0,1),1i.

/l et (/taR(t - b)l/(S)ds) v(t) dt
/ / r(t —s)e " v(s)dse "'v(t)dt >0

for any v € L(0,1). This is equivalent to the following condition

// 7 ap(t - s)v(s) dsv(t)dt > 0

for any v € L(0,1), i.e., the operator B (&) is accretive under (-,-),—o (the regular

bl

L, norm) where Bf(T) is defined as in (2.26) except that the kernel ag(t) for Bp is
replaced by ag[o](t) = e ?'ag(t). In what follows, we will show accretivity of B%(z)
in L,(0,1) for all o sufficiently large.

Let us define

Ao = min_z(t) >0, Av = 12 < 0,14 A} Ay = |7 (0.1 +R):
te(0,1+R)
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then

R
i t)>2A d:
:re'fé,’haﬂ( ) >2A0 /; 1n(p),
R
lla%kllLoofo,1) < 2A1/ dn(p),
0

R
llakll Lopo,1) < 2-42/ dn(p).
0

Consider ag[o](t) = e"“'ag(t), we have for a.e. t € [0, 1],

arlel) 2 = (20 [ )

R
aglo](t) = e % (—oar(t) + ax(t)) < e ' 2(—cAy + Al)/o dn(p),

apo](t) = e " (o%ar(t) — 20ax(t) + ag(t)) > e "' 2 (02 Ay — 204, — Ay) /OR dn(p).

Since fOR dn(p) > 0, we can take

o At VATF A
pe ‘40 b

0o (independent of R)

then for o > 0y, we have

aglo](t) 20, aglo]'(t) <0, aglo]"(t) 2 0

for a.e. ¢t €[0,1].

Therefore, the kernel ag[o] is nonnegative, nonincreasing and convex. According
to Lemma 2 of [12], for 0 > 0y, we have B%(Z) accretive on L,(0,1), from which
it follows that Br(Z) is accretive in L3(0,1). Similarly, we can verify that Bg(Z) is

accretive in L} (0, R) for 0 > 0y, where the o0y is the same as in Lj(0, 1) case.
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Hence, for any v € Ly%(0,1),0 > oy,

1

(Br(Z)v,v)o,r = W(BR(:E)U’ v)r3(0,R) + (Br(Z)v,v)1g(0,1)
1
>——70+4+0=0
we then have Bg(Z) accretive with respect to (-,-), g for o > 0y. a

Consequently, (ag(z)I + Br(z))™' € L£(L3%(0,1)) and we have the following

estimates (see [24]):

for o > o0y, where oy > 0 is independent of R.

We are now ready to formularize our regularized equation as
x=Hgz, (2.27)

where

HR.’II = (OR(.’i‘)I + BR(j))_l[f;sl — fR — €R — RR(.’i',I — 1_)

+ Er(z,x — ) + (ar(z) — ar(?))(z — )]+ Z. (2.28)

2.2 Convergence of the Regularized Equation

In this section, we are going to prove that the regularized equation (2.27) has a unique

solution, and this solution converges to the true solution  as the noise level in the

30



data 6 — 0. In the following lemmas, we bound the right hand side of equation (2.28)

term by term.

Lemma 2.4 If |f%(t) — f(t)| <6 for t €[0,1+ R] and 0 > 1/2, then

R 2
1£8 = Fllom < 8 fo dn(p) \/ 1+ 5%8%2. (2.29)

Proof: Since

1
Ifr = frlls.r = C—(Rr)llf}’z ~ frllisom + IIfr = frlligom,

we first consider

Ife - frllLgo.p) <

/ £+ p) = £+ )] dn(p)
L3(0,R)

/ ddn(p < 5/ dn(p) 115 0,r)
L3(0,R) 0

35/0 dn()(/o "2"‘dt) —5/ dn(p) \) ——— e "

—-20R

Taylor expansion of e around R = 0 gives

e 2" =1-20R + O(R?).

Thus,

R
% — frllzo.r) < 5/ dn(p) VR + O(R?).
0
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Similarly, we consider

R 1
154~ Falligon <3 [ dnto) ( [ e dt)
0 0

= /0 ’ a1 <6 fo " ano)

for 0 > 1/2. The lemma then follows. O

1/2

Lemma 2.5 If z(t) € C'[0,1] and 0 > 1/2, then eg defined in (2.10) satisfies

V3 3 C(R)
(2.30)

R R 2
legllo.r < [m||f'||oof(0) | ano) + 22 e, | dn(p)] \/ 14+ BHOR)
0 0

Proof : For fixed t € [0, 1], p € [0, R], we have

[0 -zt 5= st

< ( JACCEEGYEREY " ([ 2 ds)w.

Since Z(t) € C'(0, 1], there exist &, &, € [0, 1], such that for 0 < s < p < R,

Ht+p—s)—2(1) =F(E)p—s),  (s) = F(0) + 7 (&)s,
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then

/Op(i(t) —F(t+p—5)) Z(s)ds

s (/0” (Z'(&) (p = 5))° dS) " (/0,, (2(0) + Z'(&) 5)? ds) 2
< W ([ ra) (2 [ 0200 2 [ weoras)

, p3/2 Y o pa 1/2
< 1l 22V (2070 + 1712 5)

Now consider

lerllzz o = Hz / ' / (@) = 2+ p = 9)) 2(s) ds dn(p)

L3(0,1)

IA

dn(p)

R p
/ (2() = 2(-+ p — 5)) 2(s) ds
0 Lg(0,1)

0
R 2 p3 1/2
2 [ Weleyf207 (2070 + 191 2) " o) bz

IN

1/2 p*?
< / nrnw\ﬁ ( (0) !/ +||f'||oo73—) dn(p) Iz
23
< 2200050 / P dnp) Iligon + 222 171 / 5 dn(o) 11|50,
f A A

Similarly,we have

2v2 R
lerllzso.m < 7|1| < £(0) / 2 dn(o) 10
zf
V2, / 7 dn(o) 1Lz

As seen in the proof of the previous lemma,

1-— 820
20

Il 50.1) = <1 for 0>1/2,
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and

I1llLg0,) = VR + O(R?).

Therefore, the lemma follows. O

Lemma 2.6 If z(t) € C'[0,1] and for 0 > 1/2, then Egr(%,z — Z) defined in (2.24)

satisfies

R+ O(R?)

cm @3

R
IIER(i,x—i)Ila,R<f||£ lloo €”* llz— xlIoR/O ps/zdn(p)\/1+

Proof: For fixed t € [0,1], p € [0, R], we have

| Ex(#,7 — 2)(1)] = |D(@)(x - 2)(t) — (ar(z) — ar(z))2(?)|
<2//lrf+p—b)—z()||r()—r(b)ldsdn()
<2||z||oo// ~ 5 I(a(s) — 2(s))] dsdn(p).

Consider, for fixed p > 0,

/0 "(0 = 9) l(x(s) - 2(s))] ds

= (/op(p — o) ds) ; (/0” e* e (z(s) — 7(s))? ds) v

Pk

V3

< e’ ||lx — Z||Lg(0,1)-

Therefore, for fixed t and p,

. . 2 o . R
|Er(Z,z - T)(1)] < 7 12" lls0e”® |2 = Zll 2501 / P> dn(p).
0
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It is now not hard to see that

R
IER(Z,z — Z)||501) € —= 1Z ]l €”F [l — Z| 5 0,1) / p*2 dn(p) 111|301y,
0

\/_

and
2 R Y
— — - —
|Er(Z, = — Z)llL50.R) < 7 12'll €7 |l — Z|| 23 (0.1) / p** dn(p) |11ll250.R)-
0
Combine the above two inequalities with the fact that
lz = ZllLg0,0) < llz = Zlloyr,

we obtain the lemma. ad

Lemma 2.7 Assume the Borel measure 1 > 0 satisfies (2.8), if further I(t) €
C'[0,1], then for R > 0 sufficiently small,

1 1
ag(T) . z(0) fodev)(p)'

(2.32)

Proof: We can write for some &(s) € [0, R],

= // s)dsdn(p
// ) + 5 2'(€(5))) ds dn(p)

21',(0)/0 pdn(p) [1+ g(R)],

Il
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where

1 L L
o) = /0 /0 s (€(s)) ds dn(p).

Since

1 LY 1l €2, 1,m)

lg(R)| < 20 Epdns) |z Iloo/O 5 dn(p) < 22(0) R,

then

g(R)=0O(R) >0 as R—0.
Thus,

1 1 1
ap(z) 27(0) fOden(p) 1+ g(R)
1

= -1 R) + O(R?)],
220) [Fpanpy TR FOR

where |g(R) + O(R?)| < CR for R sufficiently small and some constant C. Therefore,

1 1 1
— < - (1+O(R)) <
ar(Z) = 22(0) f" pdn(p) (0) f;" pdn(p)
for R > 0 sufficiently small. O

Lemma 2.8 For z,z € L37(0,1), we have

R
lan(z) — ar(®)] < 2¢7F / P2 dy(p) - CR) - & — Flog.  (2.33)

0
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Proof: For fixed p € [0, R], we have

JACORECIEEE ( JACCE f(s))zds) - ( [ ds) "

12

< eFllz - zll30m) - P

Therefore,

jn(z) - an(@ |—’ // )) ds dn(p )‘

<2 / [o (2(s) — Z(s)) ds| dn(p)
R
<2 / ez - | L3 (0.R) - p'*dn(p)
0
R
=2¢R ||z - illL;(o,R)/ p'2dn(p).
0

R
< 9eoR / P2 dn(p) - JER) - ||z = Fllos.
0

We are now ready to state our main convergence theorem.

Theorem 2.2 Assume the autoconvolution problem (2.4) has a positive solution T €
C'(0,1 + R] satisfying
7(0) > 962 €% - || ']l oo (2.34)

for o = max{ao, %} and b = max {C(0,1,7), C(2,1,n)}. Assume further that the
Borel measure 1(p) > 0 satisfies (2.8). Then there ezist constants k; > 0, ko # 0,
and C > 0, all independent of R, such that if

If(t) — f(t)] < 6 < kiR, te 0,1+ R], (2.35)
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then the regularized equation (2.27) has a unique solution z%, satisfying
g R

ELTI & _ = A2 p2
k%R“xR - 37”%3(0,1{) + |l — 55“25(0,1) < C°R°.

Proof: We will apply the contraction mapping principle to the regularized equation
(2.27) in the ball B(z,CR).
Let C(R) = k2 R, we have

R+ O(R?) _ R+O(R*) _ [K+1
\/”_c(zz—) ‘\/1+ gr |\ g VIHoR

k3 +1

Let k3 =
EE

then k3 > 1 and

Jw%}g{) — k3 (1+ O(R)) = k3 + O(R).
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Combining the results of the previous lemmas in this chapter, we have

Han — Zllor

)Ilfn Frllon + (l)neaum 5 IRR(@z = Dloe
L s oz lar(z) — ar(z )|$_j
+ a(:i) ”ER( ’ )”¢7,R+ C!R(f) ” ”a,R
5
< WC(o,l,nm l(ks + O(R))

\/— 2\/_||57'||oo 2

20

(0) C(O 1 7’) -1 ”.Z' - ‘T’Hg,R

2|70 e”® 3
V3%(0) ¢
2¢°®\/C(R) , 1

C(=.1 -1/2 — 7|2
j‘(O) (21 ’")R ”I ‘T”a,R

1,n) R (k3 + O(R)) llz = Zlo,r

1
for 0 > max{oy, 5}

Since ||z — Z||o.r < CR and assumptions (2.35), we have

IHrT = Z{lo,r

allat O (0,1, R + 22 |2 C(2.1, )0 + OLRIR
L 2V2lIZlI5 e’ A2
=50 = 3L (ks + O(R) R + 25 C0,1,m) C* R
2|7’ || oe”® 3 n (k. A pl 27"k C(3:1,m) 22 1o
V32(0) C(2,1, 1 (ks + O(R))C R2 + 7(0) C*R?.

Therefore, for sufficiently small R, to have ||Hgz — Z||sr < CR for some C > 0, a

sufficient condition is

22 %

——bkl 3 + el —7= 1200 b k3 + Z(0) <C. (2.36)

z(0)
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Let us pick k; such that

3 2V2Y\ 0 -
ky = (2 - 7—3—) 1’|l Z(0),

equation (2.36) then becomes

e?.ab .

L(C) = Z00) C?—C +2bks ||| < O. (2.37)

It is not hard to see L(C) = 0 has two distinct positive solutions by assumption
(2.34) when k3 € (1,9/8]. Let us denote these two solutions by C, and C, such
that 0 < C; < C,. Then for C satisfying C, < C < C,, we have L(C') < 0, thus
|Hrz — ||o.r < CR for R sufficiently small.

To further demonstrate that Hy is a contraction on B(i,é’R), we let r,15 €

B(z,CR), then

|Hrxy — Hp 3|0k
= |(ar(2)I + Br(x)) " {Rr(Z,22 — T) — Rr(Z,21 — %) + Er(Z, 2, — 72)

= [(ar(xr) — ar(Z)) (21 = T) = (ar(z2) — ar(Z))(r2 = Z)]}Hlor

1 1

< ES IRRr(Z, 22 — ) = Re(Z, 11 — Z)|lor + m”ER(j’Il = 29)|lo.r
+ 1‘» (ar(x1) = ar(r))(x) — ) = (ar(x2) — ar(Z))(z2 — I)|lo.r-
agr(T)
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Since

5 @n(m) - anle))@ - )  (@n(z) - anl2))(@2 - Dllen
= —a:(j) l(@r(z1) = ar(z2))(z1 — Z) + (ar(z2) — ar())(z1 — 22)llor

lar(z1) — agr(z,) lar(z2) — ar(Z)]

o
—_ a(a—:) ”‘EI I”U,R + a(j) ”Il x?”ﬂ'.R
2¢°R [¥ p3 dn(p) - /C(R)
< {0 R ( ( {llz1 = T2|lo,rllZ1 = Tllor + lz2 — Zllo,r |21 — x2||a,R}
z(0) Jy pdn(p)
4e’Rky,C(4, 1,n)éR” |
—_ :Z‘(O) xl x? O’,R)

then

Haz: - Hazalon < [ 220D ] o - 2l
’ [% C(g’ 1,7) (ks + O(R)) R* + 1k i((g)’ LI lz1 = z2llo.r-
Thus,
C < ;e(?(i)b = C < M"L(O()),ln) (2.38)

and for R > 0 sufficiently small this leads to

|Hrzy — HRT2|lor < g |71 — T2||0r

for any z,,x, € B(i,C'R) with some ¢ < 1.

o1+ C 7(0
Notice further that G ;CZ = 22(2")b’ therefore our regularized equation (2.27)
has a unique solution in B(&, CR) for C that satisfies C; < C < 216(2(‘)’)6 O

Remark 2.2.1 The usual convergence result is stated using the regularization para-

meter as a function of the noise level § in the the data. In this case, the results of
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Theorem 2.2 indicate that we need R = R(6) so that

R(6) -0 and <k

9
R2(6) —
as 6 = 0.

Remark 2.2.2 The local convergence rate obtained by Theorem 2.2 is O (6'/?), i.e.,

lz% — Z|lo.r ~ O (6"%) as 6 0.

2.3 Alternate Methods on [0, R]

As we will show in the next chapter, if we use a piecewise function to approximate the
solution z, and recover z using the standard collocation on the interval [0, 1] of the
regularization equation (2.6), we have a sequential numerical method for recovering
z(t) for R < t < 1. Unfortunately, for the = values on the interval 0 < ¢t < R, we
have to solve a nonlinear system of equations which can be numerically expensive.
This disadvantage motivates us to look for cheaper alternatives to recover z on the
interval 0 < ¢t < R. In this section, we will propose some alternative methods and
give theoretical basis for them.

In what follows we will show that for any function zz sufficiently close to Z on

[0, R), we may find a unique 24 € L,(0,1) for which
#R(t) = zr(t), te0,R],

and such that z% satisfies equation (2.6) on the restricted interval (R,1]. That is,

i% € Ly(0,1) satisfies

ar(x) 2(t) + Fr(x)(t) = f4(1), te (R.1). (2.39)
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Further, we will see that under suitable conditions on the true solution Z and the
choice of R = R(J), the function %4 is a good approximation of Z for § small. The
advantage to this new approach is that we are free to find easier ways of determining
an approximation zy to Z on [0, R] than that obtained by solving equation (2.6) on

the interval [0, R].

Theorem 2.3 Assume the autoconvolution problem (2.4) has a positive solution T €
C'(0,1 + R] satisfying
z(0) > 9b%€* - |7 |loo (2.40)

for 0 = max {0y, %} and b = max {C(0,1,n), C(2,1,n)}. Assume further that the
Borel measure 1(p) > 0 satisfies (2.8), and that {Tr} ge(o,r) 15 any family of Lo(0, 1)
functions satisfying

sup |za(t) — Z(t)| < CR?, (2.41)
te(0,R]

for some C>0 and p > 1. Then there exist constants ky > 0, ko > 0, and C > 0, all

independent of R, such that if
1f3(t) - f(t)| <6< kR?,  te[0,1+R] (2.42)

there erists an unique i% € Ly(0,1) with #% = zg(t), t € (0, R], such that &% satisfies

equation (2.6) for t € (R, 1] and for which

L s 2
@”13 - I”Lg(o,n) +

-5 _ A
|TR — 37”2Lg(0.1) < C*R%.

43



z(0)
2e20 }h

Proof: To begin, let C < and define a new ball around Z by

~

Bg(z) = {z € Ly*(0,1) : z| 10,5 = Z&| 0,8, || — Z||o,r < CR}. (2.43)

In what follows we will use the fact that Bg(z) C B(Z, CR), where B(Z,CR) was
fundamental to the proof of Theorem 2.2. We claim that the ball Bg(Z) is not empty.
Indeed, if & € L3®(0,1) is defined as

IR(t) ifte [0, R]

=
Bl
il

z(t) ifte(R,1],
then, for C(R) = k2R,

. _ 1 2 . _
lir -2l 5 = m”rR — ll750.m) + 2R = Zll 750,

1 - R - R
< —C?R¥ / et dt + C?R / et dy
C(R) 0 0

- 1

< 2 2p

<C°R (1+—k§R)R
C?R?

= —kf

(1+k3R) (2.44)

< C’R?

for R sufficiently small and p > 1, i.e., Zg € Bk(i).

Let us further define an new operator Hg such that

_ z(t) if t € [0, R
Hpg(z)(t) =
Hgz(t) ifte (R 1].

We will show that the operator Hz(z) has a fixed point in the ball Br(Z) by contrac-
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tion mapping theorem.

We let z,,z, € Bg(Z), then

||1:IR($1) - 1_13(172)“3,3
1
~ C(R)

1
—0+ / et (A1) (t) — Hr(z)(t)) dt

|Hr(z:) — HR(—’Cz)”%g(o,R) + |Hr(z1) - HR(Iz)”ig(o,l)

1
- /R "2t (Hp(:)(t) — Ha(z) (1)) dt

< ||Hg(zy) - HR(I2)l|2Lg(o,1)

< ||Hr(z1) — Hr(x2)||2 -

Therefore the same condition (2.38) as in Theorem 2.2 is needed for Hp to be a
contraction in the ball B (7).

We now consider ||Hg(z) — Z||4.r for z € Bg(%). Note that

1

|Hp(z) — 2||2 5 = m”ﬁn(f) - 57'“%;(0.1{) + |Hr(z) — 5‘”?,3(0,1),

where

R
() = Sz = [ e Gonlt) = 2(0))*
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and

| Hr(z) - j”2Lg[0,1]
1

/ Re—%R (Hr(z)(t) — £(t)) dt + / e 2R (Hp(z)(t) - 2(t))?dt

R

I

R 1
- / 2R (za(t) — 2(1)) dt + [ 2R (Ha(x)(t) — £(t))? dt
0 R

1 - e—2aR

< ~2 p2p
<C*‘R 75

+ ||Hr(z) - i”i;(o,l)-
We therefore have

— _ _ - 1-— 6—20R 1
IIHR(z) - I”i,R S ||HR($) - IH%;(Q,I) + 02 R2p —-—2—0—— (1 + m)

<||HR(I)—a‘rH2R+C2R"”’1—_—8——21’i L4
- > 20 C(R))’

or,

_ - — '—QGR
|Hr(z) — Z|lo.r < ||Hr(x) = Z||or + CR”\/1 260 (1 + Cl )

If we let M = 3, then
ko

\/1 —;:M (1+ C(IR)) = \/[R+O(R2)] (1+I—c§_R_)

~ +O(R) <M

_k.'f

for R sufficiently small. Thus

|Hr(x) = Zls.r < |Hr(2) = Z||o.r + CM RP. (2.45)

Notice that if p > 1, the corollary now follows from the proof of Theorem 2.2 under

the exact same conditions. (]
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This theorem suggests that as long as we have a higher than O(R) approximation
for Z on the interval [0, R] and still use equation (2.6) to recover a new solution on
the interval (R, 1], convergence is guaranteed under the same conditions of Theorem

2.2. For example, if we have access to 7(0) and z’(0), then the function

zg(t) = z(0) + Z'(0)¢ (2.46)

for t € [0, R] satisfies (2.41) for p = 2. Therefore, it is theoretically justified that we
can utilize this linear approximation in recovering the solution on the interval [0, R)].

Unfortunately, we do not always have access to z'(0), or to Z(0) for that matter,
despite the fact that a full convergence theory for other prominent regularization
methods cannot be established unless the value of 7(0) is actually made an explicit
part of these methods. Indeed, convergence rates for Tikhonov regularization (6] and
the Levrent’ev regularization method [12] (another method preserving the causality
of the Volterra problem) cannot be obtained unless an auxiliary function z, is used

in an essential way in these methods; here, xg is assumed to satisfy

o =7+ G'(T)w

for suitable w. From the form of G’(Z) we see that x¢(0) = z(0), so that z(0) actually
must be used as part of these methods. Thus, if we too make the assumption that
z(0) is known, then by letting

zr(t) = 7(0) (2.47)

for t € [0, R|, we only have an O(R) approximation of Z(t) for t € [0, R]. We will
show in the following theorem that the convergence can still be obtained in the case

of p = 1 under a slightly tighter condition on the true solution Z and a restriction on
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C in (2.41).

Theorem 2.4 Assume the autoconvolution problem (2.4) has a positive solution T €
C'[0,1 + R] satisfying

£(0) > 13b%e* - ||7'||oo (2.48)

for 0 = max {0o,1} and b = max{C(0,1,7), C(2,1,n)}. Assume further that the
Borel measure n(p) > 0 satisfies (2.8), and that {zTr}ge(o,r) i any family of L(0,1)
functions satisfying

sup |zg(t) — Z(t)| < CR?, (2.49)
te[0,R)

where p = 1 and some C > 0. Then there exist constants k; > 0, ks > 0, and C > 0,

all independent of R, such that if for V u > 0 fized,

- Ck,
< . 2.
¢s 1+p (2.50)
and
IF8(t) - ()| <6< kR, te[0,1+R] (2.51)

then there exists an unique 3% € L,(0,1) with % = zg(t), t € (0, R), such that 74

satisfies equation (2.6) for t € (R, 1] and for which

1 ~0 =112 X =112 ~2 P2
z,%—R”% = Z||ig0,n) + 12k — Zll7g00,) < C°R".

We are not going to repeat the proof since it follows the same procedure as the proof

of Corollary 2.3. The following changes need to be made to adapt the smaller p

(p=1).
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e To guarantee the ball Bg(Z) is nonempty, we need the extra condition (2.50).

This can be easily seen from inequality (2.44).

e We cannot immediately use Theorem 2.2 after (2.45) is obtained. Instead, we
argue that for sufficiently small R, a sufficient condition for | Hrz —Z||,r < CR

is that

2V2, e’
Tlleobk
12w bbs + 25

= 1
MC+ ——=bki ks +

2ve 2 A
=0 7 bC2 < C. (2.52)

As in the proof of Theorem 2.2, we may still pick k; such that

B 2V2\ | . -
ky = (2 - 7—3—) 1Z'[| 0 Z(0),

and it is also convenient to add a second condition on C, namely

bks 17"l bko k3 [17']]

5 |
Cs M - 2 (2.53)
Then inequality (2.52) is true if
. eZab “ . _
L(C) = 0) C*-C+3bk;||7'|le0 <O. (2.54)

It is not hard to see L(C) = 0 has two distinct positive solutions by assumption
(2.48) when k3 € (1,13/12]). Let us denote these two solutions by (:3'1 and ég
such that 0 < Cl < C:'2. Then for C satisfying C:'l <C< C:'Q, we have i(C’) <0,

thus ||[Hgx — i|ls.r < CR for R sufficiently small.

e Notice that we have imposed two conditions on C so far, and we need to show

that they are compatible, i.e., if C satisfies (2.53), it also satisfies (2.50). This
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implies that we need to show

bz ks |2l _ Ck,
2 T 144

or

&z Vol ) 2.55)

We note that the C’s allowed by the corollary satisfy

2 - él+éz_f(0)
Gl =gamp

(2.56)

where 0 < C:'1 < 62'2 are the two solutions of L(C) = 0. Combining (2.55) and

(2.56), to ensure the existence of C, all we need is that

bk (14 4) _ 20)
2 2e29p’

which is equivalent to

£(0) > (1 + 1) b% €* k3|17l oo- (2.57)

We point out further that u could be taken small when R is sufficiently small,
therefore the condition (2.57) is ensured by the assumption (2.48) of the corol-

lary.

Remark 2.3.1 The results of Corollary 2.8 and Corollary 2.4 indicate that we need
R = R(9) so that

as § — 0 to obtain convergence.

Remark 2.3.2 The local convergence rates obtained by Corollary 2.3 and Corollary
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2.4 are O (6'/?), the same as Theorem 2.2; i.e.,
2% = Zllor ~ O (62) as § = 0.

As mentioned earlier, Theorem 2.3 and 2.4 provide us the freedom of finding easier
ways of determining the approximation zg to Z on [0, R] than that obtained by solving
equation (2.6) on the interval [0, R]. We have seen so far two possible zz’s we can
use: a constant function on [0, R] as defined in (2.47) or a linear function on [0, R] as
defined in (2.46), both of which require the value Z(0), which is not always available.
We also notice a waste of data when using those two zg’s since the collected data
values f%(t) for t € [0, R] are not utilized at all in recovering the solution.

After investigating the numerical solution of the autoconvolution equation (2.1)
(with f replaced by f%) after a standard collocation on the interval [0, 1], we notice
that the calculated solution recovers Z quite well for small ¢, even though it does
substantially worse as ¢ increases. Note that no special regularization method is used
other than changing an infinite-dimensional problem into a finite dimensional problem
in the course of discretization. The increasingly worse solution on the interval [0, 1] is
not surprising since the error in the earlier part of the solution can propagate through
the rest of the interval and due to the ill-posedness of the problem. But it does not
prevent us from hoping that if we only solve the unregularized equation (2.1) on the
small interval [0, R], this solution xg will be close to Z on the interval [0, R] for R
sufficiently small.

We first discretize the autoconvolution equation

G(x)(t) = /Otr(t ~ s)x(s)ds = f%(t), te€[0,R), (2.58)

with [fo(t)— f(t)] < 6 for t € [0, R]. Let K = K(R) > 1 be an integer (we will specify



later), we partition the interval [0, R] into K equal-length subintervals; i.e., let

At = R/K,

t; =1:At, 1=0,1,--- K.

Fori = 2,3,--- , K, let x;(t) be the indicator function on the interval (¢,_;,¢;]. Let
x1(t) be the indicator function on the interval [to,?,]. We further denote an ap-
proximation space of piecewise constant functions on [0, R] as Sk = span{ x;, ¢ =
1,2,---,K}.

A standard discretization of equation (2.58) involves finding zp € Sk, i.e., zg of

the form
K
za(t) =) zxl(t), (2.59)
1=1
where the constants z; € R, [ = 1,2,--- | K, are determined by requiring z to solve

the collocation equations

ie.,

/li r(t; — 8)x(s)ds = f(t;), i=1,2,---,K. (2.60)
0

Therefore,

i o, [ K K
Z/ [Z.r, xi(t; — s)jl [ZIP x,,(s)] ds = f%(¢t;), i=1,2,---,K.
y=1Yty-1 | =) p=1

Note that for s € (t,-1,t,], xi(ti —s) =1iff t, = t, =t;_,1.e,l =i — v +1; and for
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s € (ty-1,t), xp(s) = 1 iff p=~. Thus the collocation equations become

it
Z/ Tioyn1Tyds = fO(t), i=1,2,--- K,
y=1 ty-1

i.e.,

1 P ti
in_ﬁlx.,:lz, i=12,--- K. (2.61)
po At

The collocation equations (2.61) allow us to explicitly solve for z;, ¢ = 1,2,--- , K,

provided that f°(t;) > 0. Namely,

fo(t)
= ) 2.62
I At ( )
and if z;,- -+, z;_; have been found already, z; is determined by
s
ti
fA( ) _ (Tic1T2 + -+ - + T2Ti1)
z; = 2t , (2.63)
2.’1]1
therefore, r,, x3, -+ ,rx can be found uniquely and sequentially.

So far, we have shown that there is a unique solution xg to the discrete autocon-
volution equation (2.60), and zx(t) = Z,";l z; xu(t) for t € [0, R] with constants z,’s
specifically given by (2.62) and (2.63). We will show in the following claim that this

zg is a close approximation of Z on the interval [0, R] for R sufficiently small.

Corollary 2.1 Assume the autoconvolution problem (2.1) has a positive solution T €
C'[0,1]. Let zg = ixl xi(t) be the unique solution of the discrete autoconvolution
equation (2.60) on ltjtle interval [0,R], where the constants z;, i = 1,2,--- K, are
specified in (2.62) and (2.63) and K = K(R) > 1 is an integer. Then if there ezists

a constant M > 0, such that K = K(R) < M uniformly in R, and

£ - F(Ol = 16(t) <6< kB2, te[0,1], (2.64)
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convergence of Tgr(t) to the true solution Z(t) for t € [0, R] occurs at the collocation

points as R — 0, t.e.,
ll‘R(t,‘) - IL_‘(t,‘)I ~ O(R), fOTi - 1,2, o ,K, (265)

for R sufficiently small. Further, we have a constant C depending on T but indepen-
dent of R such that
lzr(t) — 2(t)]| < CR (2.66)

for R sufficiently small and all t € [0, R]. Thus if T is such that C satisfies (2.50),
we obtain the conclusions of Theorem 2.4 if we use the family {xR}Re(O,R] where g

is defined by (2.59), (2.62) and (2.63).

Proof: The true solution I solves the autoconvolution equation (2.1) for any ¢ € [0, 1],

T then solves more specifically the following collocation equations.

or
Z/ it — s)E(s)ds = f(t;), i=1,2--- K.

Since z € C'(0, 1], then for 0 < t,_; < s < t, < R, there exist (;(s),G.1(s) € [0, R]

such that

Tt = 8) = T(tieqs1) + (i = 8 = tiys1) T'(Ga(9)) = Z(tiy 1) + O(AY),

and
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Therefore, we have

Z/t ’ (Z(ticys1) Z(ty) + O(AL)) ds = f(t;), 1=1,2,--- K,

y=1 -1

i.e., ‘
ALY (Z(tioys1) Z(ty) + O(AL) = f(t:), i=1,2,-+-,K,
=1
or
Z tiors1) fg—) + gi(At), (2.67)

where |g;(At)| < kAt for i =1,2,--- , K and k > 0 constant independent of K, R, 4.
The collocation equations (2.67) allow us to solve for z(¢;) for i = 1,2,--- K. To

simplify the notation, we will denote Z(t;) as Z; from now on. Then we have

\/ f(t) (2.68)

and if 7,,---,Z;_, have been found already, Z; is determined by

L/(t—l) +9i(A1) = (Tia T2 + - - + ToTicy)

7, = —At _ , (2.69)
2.’L‘1

therefore, 7,,73,- -+ ,Tx can be found using equation (2.69).

We will now prove by induction that

I.T,‘—.’i','lNO(R), fori=1,2,~--,K,

for R sufficiently small.

For : = 1, we have
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therefore

(& 1
T, —I, = (—A—t—gl(At)) Tt E

where §; = f3(t;) — f(t;) for i = 1,2,--- , N. Notice that

\/f(t1)+51 +\/f(t1)+At9(At)
At

I +I) = Al
1
= o (VI@)+5 + Vi) + 8t9(a)
since |§;| < 6 < kyR? fori=1,2,---, N, we have

V() +6 =+ f(t1) (1+ O(R))
VI(t) + Atg(At) = /f(t1) (1 + O(R)).

Therefore, for At = R/K and R sufficiently small, we have

xl—f1|§5+Atgl(At)- 1 (1+O(R))

vat 2V f(t)
< (b K'? R + kK2 RY?) .
- 2

1
f(t1)

(1+ O(R)),

obviously, 1 < K = K(R) < M guarantees |z, — Z,| to be at least O(R). Let there
exist a constant ¢, such that z; — 7; = q\ R.

Assume that for 1 < j < i —1 and R sufficiently small, |z; — z,| = C;(R)R for
some constant C;(R) > 0 uniformly bounded independent of R, then there exist a

constant g = ¢»(z, R) > 0 such that

|(ic1xp + -+ + Toxim1) — (TiciTo + -+ + T2Ti-1)| € @2R,

where ¢;(z, R) depends on C;j’s for j = 1,--- ;7 — 1 and g¢2(¢, R) uniformly bounded
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independent of R. Let us denote

Ai = fot) = (Tic1T2 + -+ + Tomi),
t

A,‘ = fé;) + g,(At) - (f,’_li'z +---+ .’IIQ.’Ei_l),
then
P A A, _ A — 1A
! e 21‘1 2.’?:1 N 2.’1?1.i'1
1A= (3 + aR)A; < A — A, a1 RA;
- 21,7, — | 2 20,3y |
Note that
A 0 L o
A — Ay = At Gi(At) — [(xicixe + -+ + Toxicy) — (Fisi T+ -+ + I'ﬂi—l)]i
ktR* _R
< —— 4+ k= -
<S R/K + A, + QgR

R >
< (kK + R + ¢2)R,

and A,— = I; - 2T, is a positive constant, then for 1 < K = K(R) < M uniformly in
R, we have

|zi — Zi| ~ O(R)

for R sufficiently small. Therefore, (2.65) is true.

It follows immediately that for t € [0, R],

~ O(R)

k
> ) — ()
=1

for R sufficiently small, since for ¢t,_; <t < t;, #(t) = Z(t;) + O(R) for R sufficiently

small. a



We have shown in Corollary 2.1 that the unique solution zg(t) = zk:xl xi(t) to the
discrete autoconvolution equation (2.60) for t € [0, R] is an O(R) al;;;roximation of
Z(t) on the interval [0, R]. By Theorem 2.4, this could provide us another alternative
for constructing a convergent regularized solution #%. Namely, we solve the discrete
autoconvolution equation (2.60) for ¢t € [0, R], and then the regularized equation (2.6)
for t € R, 1]. This approach allows us to fully utilize the measured data (f°(t) for all
t € [0,1]) and the measured data only (no Z value required) in recovering the solution.
Note that the size of C depends on the true solution Z, so that the verification of
the condition (2.50) depends on the problem. However, as we will show in the next

chapter, the numerical results suggest the success of this approach.
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CHAPTER 3

Discretization and Numerical

Results

To solve the autoconvolution equation (2.1) on the interval [0, 1] numerically without
any special regularization, the same kind of discretization approach as described in
Section 2.3 can be utilized on the interval [0,1]. Due to the causal nature of the
problem, the discretized version of equation (2.1) can be sequentially, thus efficiently
solved. However, the inherent instability of the problem remains prominent in the
solution. In this chapter, we will consider a discretized version of the regularized
equation (2.6), which leads to a stable method on the interval [0, 1] that is sequential
for the majority of the interval. We will then summarize the approaches motivated
by Theorem 2.3 and 2.4, all of which are sequential on the interval [0,1]. We also

include the numerical results for all discussed methods.




3.1 Discretization of the Regularized Equation

Recall the regularized equation (2.6) of finding z € L,(0, 1) satisfying

// 5)ds dn(p ()+[OR/ptx(t+p—s)()dsdn /f"t+p)dn()

(3.1)
for t € [0,1]. In this section, we will discretize this regularized equation through

standard collocation on the interval [0,1]. For simplicity, we will assume that

R R
/ 9(p) dn(p) = f 9(p) dp. (3.2)
0 0

Note that the simple Borel measure 7(p) used in (3.2) satisfies the general condition
as required in (2.8).
Let N =1,2,3,---, We partition the interval [0, 1] into N equal-length subinter-

vals; i.e., let

At = 1/N,

=1At, 1=0,1,---, V.

For ¢ = 2,3,---, N, let x;(t) be the indicator function on the interval (¢,_,t;]. Let
x1(t) be the indicator function on the interval [to,¢;]. We further denote an ap-
proximation space of piecewise constant functions on [0,1] as Sy = span{x;, ¢ =
1,2,---,N}.

A standard discretization of equation (3.1) involves finding = € Sy, i.e., z of the

form
N
x(t) = Zcp Xp(t), (3.3)
p=1
where the constants ¢, € R, p=1,2,---, N, are determined by requiring z to solve
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the collocation equations

/ / s)dsdpx(t; / / z(ti+p—3s)z (s)dsdp:ARfa(ti+p)dp (3.4)

fori =1,2,--- ,N. We will further assume R = rAt, where r € {1,2,---,N} is

fixed, and we will use the apporximation
R T
/ g9(p)dp~ At-) g(t;-).

We will now study equation (3.4) term by term for fixed ¢ = 1,2,--- , N. First, we

consider the right hand side of equation (3.4), and we have
R r—-1
| oo = M)+ £t ot St = BT Fo ()
0 =0

The first term on the left hand side of equation (3.4) becomes

// $)dsdp - (t,)
_mt(/o ()d6+/0h.t(s)ds+---+/0¢r_]ur(s)ds)~c,~

=2At [0+ At + (a1 + )AL+ -+ (1 + e+ -+ o)At - ¢

r—-1
= 2(At)?- (E > cm) - i

=1 m=1

where we notice that the coefficient of ¢; involves only ¢, ¢y, -+ ,¢.—;. The second
term of the left hand side is more complicated, and, depending on the value of :
in relation to 7, we come to different forms for the term. In general, for any fixed

1=1,2,---,N, we have

/OR/p"z(t,-+p—s) s)dsdp = ._\tZ/ tiy; — 8)x(s)ds. (3.5)




Further investigation of equation (3.5) leads us to the following cases.

e Ifi<r—1, then

AR/ptiz(ti+p—s)x(s)dsdp

= (A {[(crci + -+ cicr) + (o + -+ cica) + -+ + e

= [cis1€i41 + (Cig1€Cip2 + Ci+2Ci+1) + -+ (Cig1Gro1 + -+ Crm1Ci)]}

_S_ E Cl Ciym—1 — E E ClCit1+m—1

m=1 l=m m=i+1l=i+1

= (At)?-

which is nonlinear in ¢; and involves values beyond c¢;; more specifically, it

involves all values of ¢;,¢p,- -+ ,cr_1.

e Ifi=r—1, then

// (s + p— 5)2(5) ds dp

= (At)?[(cr6i + -+ - + cicy) + (caci + -+ + cicy) + - - + ¢icy]

i
= (At)?. Z Z Ct Ciym-—1;

m=1 l=m
which is also nonlinear in ¢; and involves all values of ¢, ¢, - - -

yCr—1-

e If i > r, then

R ot
/ / z(t; + p—s)z(s)dsdp
0 Jp

= (A2 [0+ (crci + -+ cic)) + (coci + - -+ cica) + -+ + (crCi + -+ + €icy))

= (At)?- Z E Cl Citrm—1s (3.6)

m=1 l=m

With this result, we notice that specifically for : = r, (3.6) is quadratic in ¢,

once ¢y, ¢y, -+ ,c,— are found. Even better, for ¢ > r, (3.6) is linear in ¢; once
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c1,C2, -+ ,C are found.

Therefore, to determine the values for ¢; where s = 1,2,--- | N, we solve the following

N equations.

e Fori=1,2,---,r — 2, we have the first r — 2 equations.

r—-1 m
E E G Ciym—1 — E E ClCit1+m—I

m=1 l=m m=i+1l=i+1
r+1

= At ) ftig).
q=0

=1 m=1

(2 (At)?- "; Z cm) -ci+(At)?

Note that all values of ¢y, ¢y, - - - , c,_; are involved in any of these r—2 equations.

e For i = r — 1, we have the (r — 1)-th equation.

r—-1 I r+1
(2(At)2'zzcm)'ci ZZCICWml—At Zfé H—q

=1 m=1 m=1 l=m

Note that all values of ¢, ¢, - - - , ¢, are also involved in this (r—1)-th equation.

Since we now have r — 1 equations with r — 1 unknowns, we are ready to solve

c1,C9,++ ,cr—1. We would expect this procedure numerically expensive since we
are basically solving a system of nonlinear equations for ¢, cs,- - ,¢,—1.
e Once ¢y, cy, -+ ,c.— are found, we can solve for ¢, - - - ,cy sequentially by
r—-1 I r+1
2 Z Z Z Z 6
2 (At) : Cm | Ci + CGCitm-1 = = At - f 1+q
=1 m=1 m=1 [=m
fori=r,7+1,---,N. As noted before, we still have to solve a nonlinear equa-
tion for ¢, since the r-th equation is quadratic in ¢,. However, once ¢, ¢y, - , ¢,

have already been determined, the remaining N — r equations can be sequen-

tially solved quickly since the ith equation is linear in ¢; for z > 7.
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We have described so far a collocation scheme on the local regularization equa-
tion (2.6) for finding a step function that satisfies the equation (2.6) at N discrete
points. This method (hereafter referred to as Method 1) leads to a nonlinear system
of equations in recovering z(t) for t € [0, R], even though it is sequential and linear
in recovering z(t) for t € (R, 1]. Several cheaper and effective alternative methods to
recover z(t) on the interval [0,R] are presented below; their convergence was guaran-
teed by the two theorems in Section 2.3. While using equation (2.6) to recover z(t)
on the interval (R, 1], these methods obtain z(t) on the interval [0, R] much more

efficiently.
e Method 2: let z(t) = z(0) for t € [0, R).
e Method 3: let z(t) = £(0) + Z'(0)t for t € [0, R).

e Method 4: let z(t) be the unique solution to the discretized autoconvolution
equation (2.60) on the interval [0, R], where no special regularization is used.

For details, we refer to Section 2.3.

3.2 Numerical Results

The examples in this section provide evidence of the effectiveness of the local regular-
ization methods on the autoconovolution equation. The local regularization methods
are also superior to the existing methods in that they don’t necessarily require the
value of Z(0) and they maintain the causal nature of the problem at least for the
majority of the domain. In order for easy comparison with the results of existing
methods [9] [12] , we try to recover a continuous Z and a discontinuous one. We
select our true solution T ahead of time, then generate the data function f by in-
t

tegration, f(t) = [J &(t — s)7(s)ds, for t € [0,1]. The perturbed data f° was then

produced by adding uniformly distributed noise from the interval [-df(t),d8f(t)] to
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the discrete values of f(t) for ¢t = t;, where : = 1,2,--- , N. In each of the examples,
we show the recovered solution against the true solution Zz, first without any regu-
larization, and then with regularization using Methods 1, 2, 3 and 4. In all figures
presented below, the true solution Z is plotted as a dashed line, while the solid line

expresses the approximate solution computed according to the specified method.

3.2.1 Example with continuous Z function

The true solution in this example is a continuous function

T(t)=1-3(t—-1/2)* 0<t<l1,

with the true data then given by

3 3 1
—t5——t4+t3+§t2+—t, 0<t<1.

) =3t 3 4 T 16

For Figures 3.1-3.5, we use relative noise level 6 = 1073, N = 100 and r = 4 for the
regularized problems. All sample solutions shown use exactly the same noisy data. In
Figure 3.1, we show the solution without any special regularization. As we can see,
the recovered solution contains strong oscillation, especially for ¢ large in the domain
[0,1]. Figures 3.2-3.5 show the regularized solution using Methods 1-4 as introduced
in the last section. All four methods are effective in producing stable solutions that
are very close to the true solution Z. It is worth noting in Figure 3.3 that, even after
the poor start in approximating Z (as dictated by the method), the solution was able

to come back on track.
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Figure 3.1. Solution without regularization, § = 1073, N = 100

Figure 3.2. Solution obtained by Method 1, § = 1073, N =100, r = 4
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Figure 3.3. Solution obtained by Method 2, § = 1073, N = 100, r = 4

Figure 3.4. Solution obtained by Method 3, = 1073, N = 100, r = 4

67




Figure 3.5. Solution obtained by Method 4, § = 1073, N =100, r = 4

For Figures 3.6-3.10, we use a bigger relative noise level § = 1072, N = 100. In
Figure 3.6, we show the solution without any special regularization. Figures 3.7-3.10
show the regularized solution using Methods 1-4. We use r = 4 for Method 1 and
r = 6 for Methods 2 4. We can observe the same effectiveness in the regularization

methods as in the case of noise level § = 1073.
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Figure 3.7. Solution obtained by Method 1, § = 1072, N = 100, r = 4
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Figure 3.8. Solution obtained by Method 2, § = 1072, N =100, r = 6

Figure 3.9. Solution obtained by Method 3, § = 1072, N = 100, r = 6

70



Figure 3.10. Solution obtained by Method 4, § = 1072, N =100, r =6

3.2.2 Example with discontinuous z function

In this example, we will use a step function as our true solution

(

0.5 if t€[0,0.5]

x(t) = J 0.25 if t € (0.5,0.8]

0.75 if t € (0.8,1],
\

the true data f is then given by

7

0.25¢ if ¢t € [0,0.5)

f(t)=140.125 if ¢t € (0.5,0.8]

0.5t —0.275 if t € (0.8,1].
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For all the figures shown in this example, we use relative noise level § = 1073, N = 200
and r = 4 for the regularized problem. Again, all sample solutions shown use the
same noisy data. In Figure 3.11, we show the solution without any special regular-
ization. As we can see, the recovered solution contains increasingly strong oscillation
as t increases in the domain [0,1]. Figures 3.12-3.15 show the regularized solution
using Methods 1-4. All four methods effectively produce stable solutions, where the
location of jumps are determined quite precisely. We note in this example that all
four regularization methods produce nearly identical solutions. The reason is that our
four methods differ only in how they handle the interval [0, R], and our discontinuous
Z is constant on that interval, and all methods are reasonably good at reconstructing
the constant. These results are much better than that were presented in [9] [12].
It is worth noting that the true solution Z here does not satisfy the assumptions of
Theorem 2.2. We point out that the assumptions in Theorem 2.2 are only sufficient
conditions for convergence, and convergence may also exist for the Z’s that don’t

satisfy those assumptions.
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Figure 3.11. Solution without regularization, § = 1073, N = 200

Figure 3.12. Solution obtained by Method 1, § = 1073, N = 200, r = 4
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Figure 3.14. Solution obtained by Method 3, § = 1073, N =200, r = 4
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Figure 3.15. Solution obtained by Method 4, § = 1073, N = 200, r = 4

=~
(1]



CHAPTER 4

Summary and Future Work

In this paper, we developed a local regularization theory for the autoconvolution
equation, a nonlinear Volterra problem. Several local regularization methods have
been established, all of which provide stable solutions for the autoconvolution prob-
lem. The methods also preserve the causal nature of the autoconvolution equation,
allowing for numerically fast sequential solution.

Using the underlying idea of local regularization, we formulated the local regu-
larized equation for the autoconvolution problem. We proved the convergence of the
solution produced by this regularized equation to the true solution of the autoconvo-
lution equation as the noise level in the data shrinks to zero. The convergence rate
we obtained is the same as that of the classic Tikhonov regularization and Lavrent’ev
regularization.

Simple collocation of the regularized equation leads to a sequential method over
the majority of the domain, i.e., on the interval (R,1]; and a nonlinear system of
equations for ¢t € [0, R]. This motivates us to look for other alternatives in seeking
the solution on the interval [0, R], while still maintaining the same regularized equa-
tion on the interval (R, 1]. We proved two theorems, which provided the convergence
of two alternative methods. However, both of those two methods require some knowl-

edge of the true solution Z(t) at ¢t = 0. In practice, we do not always have access to
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the true solution. A fourth method was then presented, where we simply solve the
unregularized discrete autoconvolution equation on the interval [0, R]. We demon-
strated also the convergence of this method which result from using this piecewise
constant function on [0, R].

Finally, we have shown numerical results which provide evidence that the local
regularization methods developed in this work are superior to the other existing reg-
ularization methods, especially in capturing sharp features in the solution. In fact,
the numerical results confirm the effectiveness of these local regularization methods,
even in cases not completely falling under the assumptions of the general theory we
developed here. It is our hope that, through further study, we will be able to weaken
the conditions imposed on the true solution Z in Theorem 2.2 and Corollary 2.3 and
24.

One of the most commonly asked question with regard to the local regularization
methods is how one picks the regularization parameter r. It is currently an open
question for linear problems, and we are also seeking answers in the case of the
nonlinear autoconvolution equation.

The Discrepancy Principle is one of the most successful criteria in determining
the regularization parameter o in the Tikhonov regularization. To summarize the
Discrepancy Principle, we assume that the perturbed data f° has an absolute noise
level 4, i.e., || ¢ — f|| < 4. The Tikhonov theory states that for every choice of a > 0,

the Tikhonov problem (6) has a unique solution u’, and that the discrepancy
8q = || Aug — £l
is monotone in a. The discrepancy principle picks a such that
8g =10
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with 7 > 1 some constant. In practice, 7 is often picked as v/2.

In the following, we use the discrepancy principle in picking our best r for a given
relative noise level § and fixed discretization parameter N. Method 4 is used for all
numerical experiments that follow. We first investigate the example of the continuous
Z as presented in Section 3.2.1. Note that exactly the same noisy data is used for
results within the same table. In Table 4.1- 4.3, we present a comparison of the values
of discrepancy 44 and the absolute data noise 6 for different values of r at various
relative noise levels. Unlike the Tikhonov regularization, the discrepancy 44 is not
exactly a monotone increasing function of the regularization parameter . Therefore,
we predict a good 7 is such that the discrepancy d, first exceeds the absolute data
noise 5. The Discrepancy Principle then suggests r = 13 for § = 1072, r = 9
for 6 = 5x 1073, and r = 5 for § = 1073, as highlighted in the tables. It is a
satisfying observation that the suggested r decreases as the relative noise level in the
data decreases, since, naturally, less regularization is needed for less noisy data. To
further demonstrate the Discrepancy Principle does work in this case, we included
in Figure 4.1 the numerical result using the predicted » = 13 at relative noise level
6 = .01. We can see a significant improvement in recovering the true Z than that in
Figure 3.10, where r = 6 was used. In fact, the relative root-mean-square (rms) error
of the reconstructed z is 0.0258251 with r = 13, which is just about half of the rms

error (0.0502236) using r = 6, when the same set of noisy data is used.
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r (5 5,1
8 |.0249610 | .0188627
9 |.0236252 | .0182476
10 | .0231554 | .0194804
11 | .0226741 | .0197377
12 | .0226101 | .0211548
e 13 | .0219453 | .0228909
14 | .0219144 | .0182378

Table 4.1. Relative noise level § = 1072, N = 100, continuous Z

~

T 1) Jd

7 1.0130590 | .0112185

8 |.0124805 | .0117506
e9 | .0118126 | .0123196

10 | .0115777 | .0140569

Table 4.2. Relative noise level § = 5 x 1073, N = 100, continuous

A

) 0d
.00270788 | .00265035
00269173 | .00371632
.00262241 | .00508314
.00261181 | .00663777
.00249610 | .00821011

0~ O Ut =3

Table 4.3. Relative noise level § = 1073, N = 100, continuous Z
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Figure 4.1. Solution obtained by Method 4, § = 1072, N = 100, r = 13

We conduct a similar analysis in the case of a discontinuous Z, using the T pre-
sented in Section 3.2.2, and the effectiveness of the Discrepancy Principle is further
confirmed. As highlighted in the tables, we can see the best r’s predicted are r =9
for § =1072,r =6 for § =5x1073 and r = 3 for § = 10~3. In Figure 4.2, we show
the reconstructed solution using the predicted r = 3 at § = 10~3. While Figure 4.2
looks quite similar to Figure 3.15 where r = 4 was used, we can quantitively conclude
r = 3 is a better choice since the relative rms error is 0.072, which is slightly better
than the rms error (0.086) in the case of 7 = 4 when the same set of noisy data is

used.
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)

da

5 ©00No U W

Table 4.4. Relative noise level § = 1072, N = 200, discontinuous Z

0.013285
0.0131227
0.0127907
0.0126117

0.012555
0.0125535
0.0122756
0.0120137

~

)

0.00754975
0.00831738
0.00890927
0.00966738
0.010586
0.0117132
0.0128592
0.0142196

dd

N O Ut W

Table 4.5. Relative noise level § =5 x 1073, N = 200, discontinuous

r |

0.00664252
0.00656133
0.00639536
0.00630583
0.00627752

5

0.0040549
0.00482411
0.00568239
0.00675673
0.00801038

0a

2
o3
4

Table 4.6. Relative noise level § = 1073, N = 200, discontinuous

0.00133155
0.0013285
0.00131227

81

0.00113062
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Figure 4.2. Solution obtained by Method 4, § = 1073, N = 200, r = 3

We also conducted some numerical experiments to shed light on the question of
picking r for various values of V. In Figure 4.3, we have used Method 4 to reconstruct
the continuous function used in Section 3.2.1 with the relative noise level § = 1073,
The relative rms error of the reconstructed z is plotted as a function of N, for several
values of r. As expected, as N increases, the ideal choice of 7 increases as well. For a
given choice of r, generally, as N increases, the rms error decreases until an optimum
N, and then increases again. Each value of 7 thus has a “sweet spot,” where the rms
error is lower than for any other value of . In this figure, for this function, we see
that 7 = 2 is optimal for 25 < N < 40, while r = 3 is optimal for 45 < N < 60, and

so on. We plan to study this question further.
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Figure 4.3. Relative error of numerical solution, for various values of N and r

Even though this study is the first time in our knowledge that local regulariza-
tion is extended to real nonlinear Volterra problems, it is applied to a very specific
nonlinear Volterra problem, the autoconvolution equation. We would like to extend

the nonlinear theory to a more general class of nonlinear Volterra problems.
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