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ABSTRACT
ON GRAPHS WITH LARGE NUMBERS OF SPANNING TREES
By
Andrew Chen

Communication network topology designs modeled by graphs with a large number
of spanning trees tend towards higher reliability. Given the number of vertices n and
the number of edges m, we have studied graphs with a large number of spanning trees
and have characterized (n,m) graphs that have maximum number of spanning trees.
We studied (n,n + 4) graphs, a formerly open case of this problem, as well as other
aspects of this problem.

Let ¢(G) denote the number of labeled spanning trees of a connected graph G.
Given G, it is known how to compute ¢{(G). However, little is known about the
extremal version of the problem, that is, given the number of vertices n and the
number of edges m, find a connected (n,m) graph G such that ¢{(G) > t(H), where
H is any other (n,m) connected graph. Such a graph G is called a t-optimal graph.
We present a summary of the known results on ¢-optimal graphs and we present some
new results for the case of (n,n+4) t-optimal graphs and begin to develop techniques
for exploring (n, m) graphs in general.

Let t(n,m) be the number of spanning trees that a t-optimal (n,m) graph has.
We present (obtained through using a software called nauty) the values of ¢(n, m) for
n < 12. We also present histograms of ¢(G) for G € (n,n+4) for n < 14. Additionally

we present information about the few non-isomorphic t-optimal graphs that we have



encountered.

The Feussman formula provides a well-known recursive relationship for the number
of spanning trees of a graph G in terms of the deletion and contraction of an edge e,
namely, t(G) = t(G — e) + t(G-€). A common technique for finding the number of
spanning trees of a graph is finding the minor of a matrix form of a graph. However,
the impact of relatively simple changes to a graph (such as edge contraction or edge
deletion) is not readily visible when the technique of finding the minor of a matrix
form of a graph is used.

We show a technique for computing the number of spanning trees of a graph which
clearly shows the impact of graph operations such as edge deletion, subdivision, and
contraction on the number of spanning trees of a graph. Additionally we extend
that result to include edge addition. Our technique makes use of reductions of the
graph by repeatedly contracting cycles, and is demonstrated to be advantageous to
the current techniques for the computation of ¢(G) when the modeling of such graph

operations is desired.
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Chapter 1

Introduction

Communication network topology designs modeled by graphs with a large number of
spanning trees tend towards higher reliability [2]. Graphs with the most trees give
the best topology when the edges are sufficiently unreliable [3]. This makes intuitive
sense due to the fact that the number of spanning trees is the number of ways we can
have a maximal number of link failures in the network while preserving connectivity.

A network can be modeled by a graph G = (V, E), where V is the vertex set and
E is the edge set!. A tree is a connected graph that would become disconnected if
any edge were removed. A spanning tree of a graph is a subgraph of G which is a
tree and includes all vertices of G.

We are addressing the problem of finding graphs with maximum number of span-
ning trees. Given a graph, we know how to find the number of spanning trees of that
graph. Given a number of vertices and a number of edges, what graph has those num-
bers and has the maximum number of spanning trees? This question is the problem

we are addressing.

1 An edge is often thought of as “connecting” two vertices. We are describing undirected edges
and we are allowing multiple edges between the same two vertices - also known as parallel edges.
We are also allowing multiple edges between the same vertex - also known as loops. If a graph has
no parallel edges or loops the graph is known as a simple graph. Technically speaking, E, the set of
edges, is a multi-set of unordered subsets of size 2 of V.

Sometimes graphs that are not simple are called multigraphs. In our work we are looking for ¢t-
optimal simple graphs, with the realization that certain graph operations may result in multi-graphs.

1






For graph G = (V, E), G is called dense if m = O(n?), and sparse if m = O(n),
where m = |E| and n = |V|. Much work has been done ([4], [5], [6], [7], and [8])
regarding dense cases, but little work has been done regarding most sparse cases. We
have focused on the sparsest case which had not been done prior to our work, and we

continue to investigate alternative aspects of this problem.

1.1 Problem Statement

Let t(G) be the number of possible labeled spanning trees in a connected graph G.
A graph with n vertices and m edges is called an (n,m) graph. An (n,m) graph G
is said to be t-optimal if and only if ¢(G) > t(H) where H is any other (n,m) graph.
We study the problem of finding t-optimal (n, m) graphs, The case of m < n+ 3 has
been previously studied; we studied (n,n + 4) graphs, a formerly open case of this
problem, as well as other aspects of this problem.

As part of our studying of this problem, we provide a summary of known results,
. including many known conjectures. This problem is one for which there are a variety
of long-standing conjectures, consideration of which are useful for illuminating the
search for solutions.

We sought to determine if, for every (n,m), there is one and only one non-
isomorphic ¢t-optimal graph. We also sought to determine the impact of simple oper-
ations such as edge deletion, subdivision, contraction, and addition upon the number
of spanning trees and the possible preservation of the property of t-optimality. These

questions and many more we seek to answer herein.

1.2 Definitions And Notations

We will use S(n, m) to denote the the set of all t-optimal (n,m) graphs. The number

of spanning trees of graphs in S(n, m) will be denoted by t(n, m).
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To contract an edge is to replace an edge and its end vertices with a single new
vertex, and any other edges that were incident to either of those two vertices will
be changed to instead be incident with the new vertex. The graph obtained by
contracting the edge e in G is denoted by G-e.

To subdivide an edge uv in a graph G is to create a new graph G’ by replacing
the edge uv with the path ¥ — w — v, where w is a new vertex. Contraction may be
thought of as the inverse of subdivision.

A loop is an edge with identical end vertices. Potentially after a contraction of an
edge, a loop may be produced.

Edges that share the same end vertices are called parallel edges. Potentially after
a contraction, parallel edges may be produced.

To contract a cycle is to contract all the edges in the cycle. We denote the contrac-
tion of cycle c in graph G as G- c. For our purposes, loops count as cycles, as does a
single pair of parallel edges. A formal definition of how we use the term cycle is as fol-
lows: A cycle is a sequence of edges and their incident vertices {eg, vo, €1,v1, . - -, €n, Un}
such that e; is incident to v;_; and vi, eq is incident to vy and v,, and no vertex occurs
in the sequence more than once. Thus, a loop is a cycle because it is a single edge
and a single vertex, whereas a single pair of parallel edges is a cycle because it is two
edges and two vertices that can be arranged in such a sequence. Figure 4.3(b) is an
example of Figure 4.3(a) with the cycle ABE contracted.

A chain in a graph G is a path in G in which every internal vertex in the path has
degree exactly 2 and the two end vertices of the path have degree strictly greater than
two ([9]). An example of a graph with some chains can be found in Figure 1.1(a).
One chain in that graph is ¢ — a — b; another is g — f — e. An example of a path in
that graph that is not a chain is a — b— ¢ — e because b is not a vertex of degree 2 and
a is not a vertex of degree greater than 2. Another example of a path in that graph

that is not a chain is e — d because d is not a vertex of degree greater than 2. An
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(b) An example of a graph that
is not the distillation of Figure
1.1(a)

Figure 1.1: Examples of graphs that are not distillations

edge whose end vertices are of degree three or greater is a trivial chain, an example
of which is b — e. If two edge-disjoint chains share the same end vertices then they
are parallel chains. The length of a chain is the number of edges in it.

For a graph G, the distillation D(G) of G is the result of repeatedly contracting
any edge incident to a vertex of degree 2 until there are no vertices of degree two
([9]). An example of the distillation of the graph in Figure 1.2(a) can be found in
Figure 1.2(b).

The distillation of a graph can be seen as replacing every chain with a single edge.
Figure 1.1(b) is not a distillation of Figure 1.1(a) because vertex c has degree 2. The
distillation of Figure 1.1(a) would have two parallel trivial chains between b and e
and no other chains between b and e.

If we take the distillation of a graph, we can subdivide some number of edges
some number of times to recreate the original graph. When we do this, we are merely
changing the lengths of the chains.

The cyclespace C(G) of a graph G is the set of all cycles that are subgraphs of G.

If B is a basis for the cyclespace of G then B is a least sized set of cycles such that



(a) An example of a graph (b) An example of a graph
with a non-trivial chain with only trivial chains, and
the distillation of Figure 1.2(a)

Figure 1.2: Examples of trivial and non-trivial chains

every cycle in C(G) can be generated by the symmetric difference of some subset of
B. The dimension of a cyclespace is the size of B. The dimension of the cyclespace
of a graph G is sometimes called the cycle rank of G. The cycle rank [10] of an (n,m)
graph G is m — n + w where w is the number of components in G. Thus the cycle
rank of a connected (n,m) graph G is m — n + 1 as there is only one component.

A common technique for finding ¢(G) is finding the minor of a matrix form of
G, known as the Kirchoff matriz. (The minor of a matrix is the determinant of the
matrix after the removal of a row and a column.) In other literature, the Kirchoff
matriz is sometimes referred to as the Laplacian or admittance matriz, as found in
[8]. An example of a Kirchoff matrix can be found in Figure 4.7.

In [9], several useful theorems are provided, including a reference to the Feussner
formula [11] which is

t(G) =t(G —e)+t(G-e)

where e is any edge in G which is not a loop. This formula makes intuitive sense: it
is the sum of those spanning trees that do not include e with those that do include

e. If e is a loop then t(G) = t(G — e) = ¢(G- e) because e can not be in a spanning



tree if it is a loop.

A multipartite graph has its vertex set partitioned into p subsets called partitions.
There are no edges joining vertices within a partition. A complete multipartite graph
is one in which there is always an edge between any two vertices in different partitions.

A complete r-regular multipartite graph can be completely described by two num-
bers, namely k and p, where k is the number of vertices in a partition, and p is the
number of partitions. There is an edge between any two vertices not in the same
partition, and there are no edges between vertices in the same partition. We have

n=kp, r=k(p—1), and
m = n(r/2) = k? (2),

where r is the degree of a vertex. If we consider m — n, we get
m—n=(n/2)(r—2).

If r is 2, we have the case of the single cycle (m =n). If r is n — 1 then

and we have the complete graph. So, different values of r cover a variety of ranges
of possible values of m and n, but not all. In fact, the values of m and n which are
not covered are those values for which no complete regular multipartite graph exists.
Figure A.1 is an example of a complete regular graph. Figure A.2 and Figure A.3 are
examples of complete regular multipartite graphs.

The degree of a vertex is the number of incident edges. Amongst all the vertices
in a graph, the degree of the vertex of greatest degree is referred to as A(G), and the
degree of the vertex of least degree is referred to as 6(G).

An almost regular graph is a graph for which the degrees of no two vertices differ by



more than one, alternately phrased as A(G)—6(g) < 1. Thus, a complete multipartite
almost regular graph is a graph with p partitions, no edges within a partition, edges
between any two vertices in different partitions, and vertex degrees differing by at
most one. Note that this is equivalent to being a complete multipartite graph in
which partition sizes differ by at most one. An example of a complete multipartite

almost regular graph can be found in Figure A 4.

1.3 Executive Summary of Contributions

In our study of this problem we have accomplished many things, including: summa-
rizing the known results on ¢-optimal graphs, finding some new results for the case of
(n,n +4) t-optimal graphs, and beginning to develop techniques for exploring (n, m)
graphs in general.

In our investigation of the problem we obtained, with the help of a software called
nauty, the values of ¢{(n,m) for n < 12 and histograms of ¢(G), G € (n,n + 4) for
n < 14. We have found a few non-isomorphic t-optimal graphs.

For every distillation there is an expression for the number of spanning trees in
terms of the chain lengths, this we have proven. We describe how to find these expres-
sions and the advantages of working with them as opposed to the matrix technique
for finding the number of spanning trees.

It is known that for each k, such that k < 3 and k < 2, all graphs in S(n,n +k)
have the same distillation ([12],(13], [9] and [14]). This yields a method of finding
(n,n + k) t-optimal graphs when k < 3, by taking a “seed” graph (dependent on
k) and subdividing its edges in a specific order. We have formulated the problem of
finding t-optimal (n,n + k) graphs as a polynomial integer optimization problem.

Using the method of subdividing edges of a “seed” and the polynomial integer

optimization formulation, we have found a “seed” graph that gives an infinite number






of members of S(n,n +4). It has been conjectured [15] that all graphs in S(n,n + k)
have the same distillation for k < 2. Within that range we also present a heuristic for
generating graphs that tend to have large number of spanning trees. As a consequence
of some of our work, we also prove that t-optimal graphs do not have distillations in
which there is an edge whose removal results in a graph that is not biconnected.
The impact of relatively simple changes to a graph (such as edge contraction or
edge deletion) is not readily visible when the technique of finding the minor of a
matrix form of a graph is used. The expression for the number of spanning trees, in
terms of the chain lengths, provides us with a technique for computing the number
of spanning trees of a graph which shows clearly the impact of graph operations such
as edge deletion, subdivision, and contraction on the number of spanning trees of
a graph. We then extended that result to include edge addition. We make use of

reductions of the graph by repeatedly contracting cycles in this technique.

1.4 Overview

This chapter (Chapter 1) serves as an introduction to the problem (Section 1.1),
provides some definitions and notations that are used throughout the remainder of
this work (Section 1.2), provides an executive summary of the contributions found
in this work (Section 1.3), and provides an overview of the other chapters (Section
1.4). The next chapter (Chapter 2) provides an overview of the previous work that
has been done by others on this problem. Following that we have Chapter 3 which
describes some of the preliminary results that had been obtained as of the time we
formally proposed pursuing this avenue of research. The newest results can be found

in Chapter 4. Some avenues to continue pursuit of this problem are mentioned in

Chapter 5.






Chapter 2

Previous Work

In this section we outline some of the previous work that others have done on this
problem. This problem is one for which there are a variety of long-standing con-
jectures, consideration of which are useful for illuminating the search for solutions.
Section 2.1 provides some known results including many of the longstanding conjec-
tures pertaining to this problem. Section 2.2 focuses on results pertaining to dense
graphs and Section 2.3 focuses on results pertaining to sparse graphs. A simple
overview of some of ranges for which this problem has been solved can be found in

Section 2.4.

2.1 General Theorems

We have an upper bound for ¢{(n,m) in terms of the number of vertices (Cayley’s
Theorem [16] for complete graphs) which is n"~2. Since a spanning tree consists
of n — 1 edges, ([™,) is an upper bound as well. If m = n — 1 we can have at
most one spanning tree, a.xid hence that number is the maximum number of spanning
trees. If m = n then considering the (™ ) upper bound, we see that we have n as
an upper bound for t(n,n). A simple cycle achieves this upper bound because the

removal of any edge creates a spanning tree and thus n = t(n,n). When n is fixed,

9






increasing m can only increase the number of spanning trees. Thus we have bounds
n<t(n,m)<n"2if m>n.

The Feussner formula was used substantially in the contributions of Boesch et. al.
in “On the existence of uniformly optimally reliable networks” [9]; those contributions
are fundamental to the approach we take. They prove that for any t-optimal (n,m)
graph G, if m > n > 3 then G is biconnected [9] where by biconnected we mean
that between any two vertices there are at least two vertex-disjoint paths. In that
same work Boesch et. al. also prove that if an (n,m) graph G is t-optimal and
m > n+2 > 6 and G has two parallel chains then both chains are trivial [9].

The Kirchoff matriz technique has been applied most successfully to specific
classes of graphs with known structure. The square of a graph G is defined as follows:
H is the square of a graph G if V(H) = V(G) and E(H) = {e = wv|d(u,v) < 2}
where d(u,v) is the length of a shortest path between u and v in G. In [17] the
technique of the Kirchoff matriz is applied to the square of a cycle to determine that
the number of spanning trees in the square of a cycle is nF,? (where F, is the nth
Fibonacci number). Presumably this technique could be applied to other graphs that
have the same kind of symmetry as the square of a cycle does, for example as in [18].
Hitherto, the sort of symmetry for which this technique is easily applicable has been
eiusive.

We can get more precise bounds by concentrating on the dense or the sparse
cases. Gilbert and Myrvold in [15] have a recent summary of research done on both
the sparse and dense cases, and they have Conjecture 1, Conjecture 2, and Conjecture

3 as follows.
Conjecture 1 t-optimal graphs are almost regular

Conjecture 2 t-optimal graphs do not have multiple edges as long as

< ()

10



Conjecture 3 t-optimal graphs with mazimum degree three and the same number of
vertices of degree three have the same distillation

Some statistics work done in the field of design of experiments by Cheng in [19] was
re-interpreted for graph theory in [20]. The relevant result is all complete r-regular
multi-partite graphs are t-optimal.

Petingi et. al. [21] prove that Conjecture 1 is asymptotically true. Petingi et. al.
(8] also prove that complete multipartite almost regular graphs are t-optimal.

2.2 The Case of Dense Graphs

If m is () then t(n,m) = n"~2 . If m is in the range

(5)-5=<(})

then the graph G with maximum number of spanning trees has, as a complement, a
set of independent edges ([4] and also in [5]).

Petingi et. al. have done a number of other dense cases ([6] and [7]) extending
the cases all the way through (3) — n. Gilbert and Myrvold in [15] extend the range
of dense graphs covered, subject to Conjecture 1.

For values of n above a certain constant, Petingi et. al. [8] handle the range

() -=ms(5)-»

So in summary, the range



has been covered, largely by Petingi et. al., and for all but a finite number of values

of n, for simple graphs.

2.3 The Case of Sparse Graphs

The sparse cases have crept along. The m = n — 1 and m = n cases have been
described in Section 2.1. If m = n + 1 the graph with the maximum number of
spanning trees is a connected graph with two vertices of degree three, and all other
vertices of degree two (looks like a @ ) as described in [12]. The m = n + 2 case was
handled in [13] and the solution is when the graph is a particular subdivision of Kj.
In [9] the m = n+3 case is stated as solvable via an outlined technique, but the paper
doesn’t actually prove the case using the technique - instead the paper illustrates the
technique on the m = n+2 case. The m = n+ 3 case was proven in [14]. These cases

can be found summarized in Table 2.1.

2.4 Literature Review Summary

We have compiled in Table 2.2 a summary of known results on ¢-optimal graphs.
In Table 2.1 we have compiled a summary of known results on t-optimal (n.n + k)

graphs.
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k distillation |chains|| equation
<-1 |N/A N/A |0
-1 any tree N/A 1
0 a simple cycle N/A [m
0 (3)°
1
1 3 (25 mg2)
2
This is known (mily2(m=2)
as a 6 graph. 3 3
3
0 2%
1
2!m—1!2!m+2!
27
2
2!m+1!3§m—2!
2 6 7
D 32%-%
4
S
5 .
2!m+lmm—2!
77
3 9 We determine this - see Ta-
ble 4.1
4 Previously unknown N/A Previously unknown
5 Previously unknown N/A Previously unknown

Table 2.1: Summary of some values of k = m — n for t-optimal (n, m) graphs and
their current status as of this writing.
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0 <m < n-—2: For t-optimal graphs, ¢(G) =0
n—1<m<n-1: For t-optimal graphs, t(G) =1
n <m < n : For t-optimal graphs, t(G) =n

n+1<m<n+1: The structure of t-optimal graphs is known. Formula
is known [12] and derivable, but is piecewise by the remainder upon
dividing m by 3

n+2<m < n+2 : The structure of t-optimal graphs is known. Formula is
known [13], but is piecewise by the remainder upon dividing m by 6

n+ 3 <m < n+ 3 : Thestructure of t-optimal graphs is known {14]. Formula
is piecewise by the remainder upon dividing m by 9. See Table 4.1.

n+4<m<n+4 : The structure of t-optimal graphs previously unknown
or unpublished except for when n < 5

n+5<m< 21"2—"—12 - %‘ : The structure of t-optimal graphs is unknown ex-
cept when G is a complete regular [20] or almost regular [8] multi-partite
graph or certain other cases. A formula for ¢t(G) is known for some cases,
but not in terms of m and n, except for certain cases such as bipartite

graphs.

ngn;q _ 3?11 <m< "1—-2“2"1 : The structure of ¢-optimal graphs is known, with

explicit closed formulas for the extremely dense cases being derivable in
some cases.

Table 2.2: Summary of ranges and and their current status as of this writing
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Chapter 3

Preliminary Observations And

Findings

In this chapter we describe some of the preliminary research that had been done prior
to formally proposing pursuing this avenue of research. Section 3.1 explains some
observations upon considering some of the already existing conjectures. Section 3.2
describes some of the experimental data we had obtained as of the original proposal
of pursuit of this avenue of research. Reasons to further consider these conjectures
can be found in Section 3.3. The previous sections are utilized to make some new
conjectures in Section 3.4. Section 3.5 describes an observation on the average number

of spanning trees when we contract or delete an edge.

3.1 Previous Conjectures Revisited

In this section we consider the implications of some of the conjectures mentioned in

Section 2.1. Specifically, Conjecture 1 and Conjecture 3 are used to determine the

properties of the degree sequences of t-optimal graphs if those conjectures hold.
Conjecture 1 states that all graphs with maximum number of spanning trees are

almost regular. Let us explore the consequences of Conjecture 1 on the degree se-
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quence of a (n,m) almost regular graph G. If G is almost regular then there are k
vertices with degree r and n — k vertices with degree r + 1. Since the sum of the

degrees of the vertices is twice the number of edges, we have
2m=kr+(n—k)r+1l)=kr+nr—kr+n—k=nr+n—-k=n(r+1) -k

From this and the fact that k < n we can see that integers k and r are uniquely
determined by m and n. If k = n this is an r-regular graph and if £ = 0 this is an
T + 1 regular graph. In all other cases, 0 < k < n. That is, r + 1 is the ceiling upon
dividing 2m by n and k is n(r + 1) — 2m. The degree sequence is thus completely
determined by m and n.

For example, if we consider only graphs in the range

3n
< —_—
n<m< >

then, we are considering graphs for which the following inequality holds:

n(r+1)—k<3_n

< .
n= 2 2

With some algebra we can see that
k
2<(r+1)- - <3

and thus that

k
1+E$r<2+——.
n n

We now have two cases to consider. If this graph is regular, k = n or k = 0, and thus
the graph is r regular or r + 1 regular, respectively. If this graph is not regular, since

r is an integer and 0 < k < n we can see that 2 < r < 3, and thus r = 2. For specific
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values of m and n the degree sequence is completely specified. If Conjecture 1 is true
then t-optimal graphs where m is in the range n < m < 3—;‘- have maximum degree 3
and have minimum degree 2.

Let s be the number of vertices of degree 3 and k be the number of vertices of
degree 2 in a t-optimal graph where m is in the range n < m < 3. Thus Conjecture
1 means that

2m =2k +33=2(n—s)+3s=2n+s

and thus that s = 2(m — n) from which we can see how we can determine what the
number of vertices of degree 3 would be given m and n. We can also see what the
number of vertices of degree 2 would be.

Conjecture 3 states that among graphs satistfying n < m < 3—2'1, all graphs with
the same number of vertices of degree 3 have the same distillation. Conjecture 3
affects the structure of this graph. Conjecture 3 means that once we know what the
distillation of any ¢-optimal graph with s being the number of vertices of degree 3, we
need only determine what the chain lengths must be for any other ¢-optimal graph
with that same value of s, if m is in the range n < m < 3.

The conjectures mentioned in this section are provided purely to inform us of the
direction we might take in our investigation of this problem. Their correctness is in

no way assumed nor proven in the results we have obtained as of this writing.

3.2 Experimental Data

Using a piece of software called nauty ([1]}) we have conducted a brute force analysis
of all simple graphs with n < 12 to find the maximum number of spanning trees.

(We conducted this analysis via increasing order by number of vertices, and within

1The use of nauty was very beneficial - by considering just unlabeled graphs instead of labeled
graphs, we were able to do analysis on a much larger set of graphs than we otherwise would have
been able to. nauty is the fastest known software for generating unlabeled simple graphs.
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each vertex case, with increasing order by number of edges.) This data can be found
summarized in Table B.1 and in Table B.2.

The analysis of the {-optimal simple (n,n + 4) graphs for successive values of
8 < n <13, has been conducted over the span of years and the (n,n + 4) results are
found in Figures A.6, A.7, A.8, A.9, A.10, and A.11.

An artifact of the technique whereby we are determining the maximum number
of spanning trees for a given n, m pair is that we are finding the number of spanning
trees of all non-isomorphic simple (n, m) graphs. Since we were especially concerned
with the sparsest unsolved case (n,n + 4) prior to our work, we present histogram
data for that case, for values of n in the range 8 < n < 11, in figures A.12, A.13,
A.14, and A.15 . Figure A.12, Figure A.13, Figure A.14, and Figure A.15 are some
histograms that we’ve constructed that show, for (n, m) graphs, what the number of
graphs are that have a particular number of spanning trees. For those figures, the
z axis is the number of spanning trees. The y axis is the number of non-isomorphic
graphs with that number of spanning trees. One trend that can be observed is that
for (n,n + 4) graphs, as n increases, the result gets sharper - that is, it increasingly
becomes the case that the greater the number of spanning trees, the less the number
of non-isomorphic graphs that has that number of spanning trees.

We have noticed that amongst all graphs encountered so far, the t-optimal (n,m)
graphs are always unique up to isomorphism except in a few isolated cases. Figures
A.16(a), A.16(b), A.17(a), A.17(b), A.18(a), and A.18(Db) illustrate these cases. Note
that Figure A.16(b) is not isomorphic to Figure A.16(a) because the vertices of degree
5 are in a cycle, Figure A.17(b) is not isomorphic to Figure A.17(a) because the
vertices of degree 5 are in a cycle, and Figure A.18(b) is not isomorphic to Figure
A.18(a) because there is no vertex of degree 3 that is incident to only two vertices of
degree 4. Since finding those three paris of non-isomorphic ¢-optimal graphs, we have

found some more such pairs. See section 4.5 for those.
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Figure 3.1: A cube with two parallel edges swapped. This graph is isomorphic to
Figure A.6.

3.3 Motivation for Pursuing Previous Conjectures

With the advent of modern computers as well as a piece of software called nauty [1]
we were able to do brute force analyses of all graphs with 8 vertices and 12 edges
to ascertain which graphs are t-optimal. We found only one t-optimal (8, 12) graph
and that graph is shown in Figure 3.1 and is known as the twisted 3-cube [22]. That
graph is three regular. If Conjecture 1 and Conjecture 3 hold true, then we claim
this graph is the distillation of all ¢(n,n + 4) graphs with n > 8. Note that n > 8
forces m in the range n < m < ¥ for ¢(n,n + 4). The reasoning found in Section
3.1 applies when m is in that range and we thus (by Conjecture 1) have 2(m — n)
number of vertices of degree 3, which is 8, and all other vertices are of degree 2. Thus
t(n,n + 4) graphs with n > 8 have the same number of vertices of degree 3 and so (if
Conjecture 1 applies) Conjecture 3 applies.

The brute force analysis of the next several graphs that have 4 more edges than
vertices has been conducted and so far all (n,n + 4) graphs that have been analyzed
(up through 13 vertices) abide by the conjectures mentioned in [15]. They can be
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a4,7:11

a3,8:10

Figure 3.2: An embedding of the t-optimal graph with 8 vertices and 12 edges. The
edges are labeled in the form av,, v, : e, where v; and v, are the numbers correspond-
ing to the adjacent vertices and e is the number associated with that edge.

found in figures A.6, A.7, A.8, A.9, A.10, and A.11.

As you can tell, inferring characteristics of the graphs given in figures A.6, A.7,
A.8, A9, A.10, and A.11 when using those embeddings is not exactly straightforward.
Fortunately, we can embed the graph found in Figure 3.1 as in Figure 3.2. This
embedding has a few advantages. The first advantage is that the graph has a small
crossing number. Another advantage that will be important to us later is that we
can see that the edges form two different classes : “spokes” and “cycle-edges”. The

advantage which is of the greatest concern to us right now is that for the cases with the
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number of vertices ranging from 8 through 13, we can easily see the same underlying
structure. Here’s how: if we represent the length of the chains (where chains are as
described in Section 1.2), as given in Figure 3.2 as a twelve tuple (one chain per edge

in the distillation) then the t-optimal graphs for those cases can be found in Table

3.1.
(1,1,1,1,1,1,1,1, 1,1, 1, 1) corresponds to the chain lengths of Figure A.6.
(2,1,1,1,1,1,1,1, 1,1, 1, 1) corresponds to the chain lengths of Figure A.7.
(2,1,1,1,1,1,2,1, 1, 1, 1, 1) corresponds to the chain lengths of Figure A.8.
(2,1,2,1,1,1,2,1,1, 1, 1, 1) corresponds to the chain lengths of Figure A.9.
(2,1,2,1,2,1,2,1, 1, 1, 1, 1) corresponds to the chain lengths of Figure
A.10.
(2,22 1,2,1,2,1, 1, 1, 1, 1) corresponds to the chain lengths of Figure
A.11.

Table 3.1: Tuples of chain lengths for t-optimal graphs with distillation and labeling
as found in Figure 3.2. Each position in the 12-tuple is the length of a chain that corre-
sponds to a labelled edge in Figure 3.2 as per ((al,2:0),(a2,3:1),(a3,4:2),(a4,1:3),...).
The sum of the entries in the tuple is the number of edges.

This representation in terms of chain lengths also works for representing the (n, n+
3), (n,n+2), and (n,n+1) cases, which have tuples of length 9, 6, and 3, respectively.
As they have periodic subdivisions, those cases can be more concisely represented via
the order of the chains in which the subdivisions occur. Diagrams of those cases can
be found in Table 2.1 and the order in which the edges should be subdivided are
alphabetical by edge label as found in the figures in the table.

The conjectures mentioned in this section are provided purely to inform us of the
direction we might take in our investigation of this problem. Their correctness is in

no way assumed nor proven in the results we have obtained as of this writing.
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3.4 Consequences of Conjectures

Conjectures 1, 2, and 3 hold for all graphs that have m < n + 4. In all such graphs,
by considering each chain in turn, we may find the graph with the maximum number
of spanning trees ([15] provides a summary, but the proofs and some formulas for the
number of trees are actually found in [12],[13], [9] and [14]). A summary of those
cases and others can be found in Table 2.1.

When we consider each chain of an (n,m) graph in turn, as can be done in
the m < n + 3 cases to find the t-optimal graphs, we consider what the number of
spanning trees would be if we were to increase the length of that chain by one, that is,
subdividing an edge in the chain. By choosing the chain whose length, if increased by
one, would give us the maximum number of spanning trees, we then have a technique
that will give us the next graph with the same number of excess edges (relative to
vertices). This technique will provide us with t-optimal graphs, for the m < n + 3
cases. This technique can be found summarized in Algorithm 1, and is known to be
correct for m < n + 3 because it corresponds to the previously published solutions

for those cases as found in {12],[13], [9] and [14].

Algorithm 1 Pseudocode for a technique to obtain graphs with mazimum number of

spanning trees. Known to be correct form <n+3
1. Consider a t-optimal graph G withn <m < 3¢
2. Let marimumSoFar =0
3. Let bestGraphSoFar =G
4. For each chain c in the distillation of G :

(a) Consider G' which is G with the length of c increased by 1.

(b) If t(G’) > mazimumSoFar set marimumSoFar = t(G') and set

bestGraphSoFar = G’
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5. bestGraphSoFar now contains the next graph that this algorithm produces

Lemma 1 Algorithm 1, for all graphs with m < n + 3, has a periodic pattern con-
sisting of all of the chains. For each chain in the sequence, we increase the length of

the chain, and go on to the next chain in the sequence. (Proved in [12],[13], [9] and
[14])) O

Lemma 1 is true for all graphs with m < n+ 3. This gives us reason to conjecture
that it is true whenever started from a t-optimal graph for which m < %’l, and thus

we make the following conjecture:

Conjecture 4 Algorithm 1 always generates graphs with mazrimum number of span-

ning trees.

On a per distillation basis, a formula for ¢(G) in terms of the chain lengths of G
can be found by considering that for every tree in a graph, there is a corresponding
tree in the distillation of the graph. If all of the edges in a chain ¢ are in a spanning
tree T of the graph G then the edge e in the distillation D(G) that corresponds to
c is in the corresponding (to T") spanning tree in the distillation D(G). Likewise, if
any edge in the chain is not in that spanning tree of the graph (there can be only one
such edge per chain or else the “spanning tree” would be disconnected and hence not
a spanning tree), then the edge in the distillation that corresponds to that chain is
not in the spanning tree in the distillation. Thus, the formula for ¢(G) has a number
of terms equal to the number of trees in the distillation, and each term is the product
of the chain lengths of the chains that correspond to edges not in the tree in the
distillation.

Using Algorithm 1 results in a linear operation to find the (n, n+4) graph (because
the number of chains has a constant upper bound, namely 12 in this case). Without

the realization that subdividing any edge in the chain increases the size of the chain,
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we would need to consider every edge instead of every chain, and thus, since the
number of edges (m) grows, finding a t-optimal graph would be order m?, a polynomial
time operation. There are certain conditions necessary to ensure that this realization
works for finding t-optimal graphs. Those conditions are that all (n,n + k) graphs
have the same distillation and are such that for any n, the chain length tuples for n
and n + 1 differ in only one chain. Those conditions are true for the simpler cases
(m <n+3).

When we consider Lemma 1, we are naturally led to consider what happens for
(n,n + 4) graphs when Algorithm 1 is applied. We find the sequence of chains is
non-periodic.

Consider the set of permutations that are graph automorphisms. We say two
edges are in the same class if and only if there exists some graph automorphism
permutation that maps from one edge to the other. Let m; c(e) denote the edge that
edge e of graph G is mapped onto using automorphism i. Let Mg(e) denote the set
of m; g(e) for all possible i that map edges on to one another. Including the identity
permutation, Mg(e) defines a class of edges to which e belongs, and the application
of M to any edge in a class will result in the same class.

If we apply this way of finding classes of edges to the distillation of a graph,
because each edge in the distillation corresponds to a chain, we then find classes of
chains in the graph. Let dg(c) represent the edge in the distillation D(G) of G that
the chain ¢ of G corresponds to. Thus, we can find classes of chains in the graph G
by considering the classes of edges of D(G) and then applying the inverse of d¢(c)
to each element of these classes. In all the simpler cases (m < n + 3), all edges in
the distillation were part of the same class. But in the (n,n + 4) case there are two
classes instead of one. These are the classes of chains mentioned in Section 3.3.

Knowing that we have two classes of chains, we can investigate how they should

relate to each other. Knowing that all the graphs (m < n + 3) have chains being
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about the same in length, we make the following conjecture (Conjecture 5):

Conjecture 5 In a t-optimal graph, all chains in the same class will have lengths
that differ by no more than 1.

We have discovered via brute force that ¢(8, 12) has 2 and only 2 classes of chains.
By using the formula for the number of spanning trees in terms of the chain lengths,
which is unique for each distillation, and the fact that the sum of the chain lengths
is the number of edges, and Conjecture 5, we created a system of equations, two
equations, two unknowns, and so we solved and optimized for the number of spanning
trees. When we optimized for the number of spanning trees given the equations, we
found that the optimal ratio of the number of edges in these different classes is an
irrational number, namely v/5 — v/2. This finding would explain why we do not have
the same kind of periodically repeating ordered progression as found in the m < n+3
cases.

The set S(10,15) contains one graph which is the Petersen graph. It has one
class and thus, by Conjecture 5, ought to have a periodic progression when we apply
Algorithm 1. When we apply the algorithm, we get the results found in Table B.3,
expressed in terms of chain lengths. From this we can see that we have such a periodic
progression (not shown in the table for the sake of brevity, but the progression does

repeat periodically). The periodic progression is the following:

1,9,15,2,10,12, 3,6, 14,4,7,11,5,8,13

The labeling of the edges of the Petersen graph is as found in Figure A.5 and
follows the same convention as in Figure 3.2.

In summary, we conjecture that chains in the same class have lengths that differ
by no more than one (Conjecture 5). We also conjecture that the technique described

in Algorithm 1 always gives a t-optimal graph if started from a t-optimal graph with
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maximum degree of 3 (Conjecture 4). These conjectures are not necessary for the

results we obtain.

3.5 The Average Number of Spanning Trees upon
Deletion Or Contraction

If we consider a graph and construct a matrix with every spanning tree of the graph,
one per column, and every edge, one per row, then we can count the edges in each
tree by summing up each column separately and we get (n — 1)¢(G). If we sum up
each row separately we get the sum over every edge of the number of spanning trees
containing this edge. If we use t(G - €) to represent the average number of trees upon

contracting an edge e, then we get the equality
(n — DG) = (m)t(G - ©).

Similarly if we count the number of edges that aren’t in the tree and we use t(G — €)

to represent the average value thereof, we get
(m — (n - N(G) = (m)(G —e).

These two equations can both be rewritten as

n—1

and
(m)t(G —€)

HG) = m-(n—-1)
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Putting these equations together, we get

t(Ge) n-—-1
t(G-¢) m-—(n-1)

This equation can be useful when considering the Feussner equation mentioned in
Section 1.2 [11]. Note that there may be no graph that has ¢t(G — €) or ¢(G - €)
spanning trees, but as an average we know there is at least one graph with number
of spanning trees greater than or equal to it and that there is also at least one graph
with number of spanning trees less than or equal to it. By applying these equations

we may be able to construct bounds on extremal values of ¢(G).
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Chapter 4

Further Results

With the advent of modern computers as well as a piece of software called nauty
[1] we were able to do analyses of a large number of graphs. Some of the data we
accumulated from that can be found in [23]. The data and analyses thereof help to
inform some of the following few sections. In Section 4.1 we prove an important lemma
concerning distillations. We share some observations concerning classes of chains in
Section 4.2. In Section 4.3 we describe our technique for proving the formula for
t(n,n + 3). We present, with proof, our results for the (n,n + 4) case, in Section
4.4. The more recent results of our empirical analysis are presented in Section 4.5.
In Section 4.6 we begin to lay a possible groundwork for being easily able to extend
some of our results beyond the (n,n + 4) case.

We might wonder if the removal of an edge from a t-optimal (n,m) graph will
always produce a t-optimal graph. We do not always get a t-optimal graph under
such circumstances as it depends on which graph we are removing the edge from. For
example, any t-optimal 6 graph (a 8 graph is a biconnected graph with two vertices of
degree three and all other vertices of degree two) for which n > 5 has the property that
removing a single edge will result in a graph with a vertex of degree one. However,

graphs with a vertex of degree one cannot be t-optimal because t-optimal graphs are
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biconnected [9]. On the other hand, complete graphs are t-optimal and removing any
single edge from one of them results in a ¢-optimal graph.

Similarly, we might wonder if the addition of an edge to a t-optimal graph always
results in a ¢-optimal graph. Clearly we would want to add the edge in the right
“spot”. We might also wonder if there is always a “right spot” to add the edge.
There is not always such a “right spot”. Again, if we have a cycle, which is a ¢-
optimal graph, and we add an edge connecting any two non-adjacent vertices, we
get a 6 graph, but if the cycle is larger than size 4, the resulting graph will not be
t-optimal. However, sometimes adding any non-parallel edge will give us a t-optimal

graph, as in the case of (n, (3) — 1) graphs.

4.1 A Lemma Concerning Distillations

The concept of the distillation, described earlier and in [9] is useful to us. We can
categorize all biconnected graphs of interest to us in terms of their distillations. The
following lemma helps us do that, and from there we are able to explore the conse-

quences of a graph having a particular distillation.

Lemma 2 For any biconnected (n,n + k) graph there is a corresponding (2k, 3k)

graph with the same distillation.

Proof: A biconnected graph has no vertices of degree zero or one. The distil-
lation process results in a graph with no vertices of degree 2 by definition. Thus,
distillations of biconnected graphs have a minimum degree of 3. We prove Lemma 2

by contradiction and thus assume n # 2k and consider two cases.

Case 1 : Assume n > 2k, and consider biconnected (n,n + k) graphs with more
than 2k vertices. Suppose h = n — 2k. Thus we should consider biconnected
(2k + h,3k + h) graphs. Of these biconnected graphs, there must be at least
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h vertices of degree 2. Suppose not, and we only have h — 1 vertices of degree
2. Since all the other vertices are of degree 3 or greater we would have at least
3k+h+% edges, which is greater than 3k +h. Thus there are at least h vertices
of degree 2. Thus we can contract an edge incident to each of them and get a

(2k, 3k) graph with the same distillation.

Case 2 : Assume n < 2k, and consider biconnected (n,n + k) graphs with less than
2k vertices. Suppose h = 2k —n. Thus we consider biconnected (2k — h, 3k — h)
graphs. If we consider an edge and subdivide it, we get a (2k — h + 1,3k —
h + 1) graph. If we repeat this h times, we get a (2k, 3k) graph with that same
distillation.

So, in either case, for any (n,n + k) graph there is a (2k, 3k) graph with the same
distillation. (O

4.2 Chain Classes

We have found the techniques that were used to prove the optimal solutions for the
(n,n + k) cases when k < 3 to be difficult to apply to the (n,n + 4) case. We
believe this difficulty is due to an important difference between the (n,n + 4) case
and the other cases; this difference can be seen by considering equivalence classes
under isomorphic mappings of edges on the edges in the distillation, and thus the
chains in the undistilled graph (as described in Section 3.4).

By drawing the graph found in Figure 3.1 as in Figure 3.2 we can see that the
edges form two different classes : “spokes” and “cycle-edges” as mentioned in Section
3.3. For the cases with the number of vertices ranging from 8 through 13 (that is,
Figures A.6, A.7, A.8, A.9, A.10, and A.11 ), we easily see the same distillation by

representing the length of the chains, as given in Figure 3.2, as a twelve tuple (one
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chain per edge in the distillation). Thus the t-optimal graphs for those cases are
found in Table 3.1.

For an (n,n + k) graph G, if k > % then by necessity G will be forced to have a
vertex of degree greater than 3. Algorithm 1 will not be able to remedy this if the
optimal distillation has vertices of degree 3 only. Thus, to ensure that Algorithm 1 is
started from a graph that could have vertices of degree 3 only, we only start it when
k<3

If we start with the graph found in Figure 3.2 and iterate Algorithm 1 a few
times, then Table 3.1 contains the chain length tuple values. Between each tuple,
the changed element is the one whose value is increased and so is the element whose
increase was what was maximum.

For a particular distillation, we only need to concern ourselves with chain length
value assignments in the attempt to find a t-optimal graph with that distillation.
This is due to the formula mentioned in Section 3.4. Using Algorithm 1 to determine
these chain length value assignments results in a linear operation to find the (n,n+k)
graph (because the number of chains has an upper bound of 3k when m < 3—24 which
follows from Lemma 2).

As mentioned: we conjecture that chains in the same class have lengths that
differ by no more than one (Conjecture 5). Everything mentioned in this section

would support, but not prove, that conjecture.

4.3 The Formula for t(n,n + 3)

Given the formula mentioned at the beginning of Section 3.4 and a repeating ordered
progression of all chains in a graph we can see that increasing the lengths of the
chains in accordance with the repeating ordered progression will result in polynomial

expressions for each remainder upon division of the number of edges by the length
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of the period. Furthermore, that formula also enables us to see that the maximum
degree of a term in these polynomial expressions is 1+k = 1+ (m — n). This insight
is consistent with previously published formulas for ¢(n,m) in the m < n + 2 cases.
While the distillation for the optimal (n,n+ 3) case has been shown in previous work
[14], as far as we know, no formula has been previously published for t(n,n + 3).
Thus, we can use this insight to determine a formula for t(n,n + 3) when n > 6.

Let r be the remainder upon dividing m by the number of chains ¢ in an (n,m)
graph. When the pattern of edge subdivision as described in Algorithm 1 periodically
repeats and the length of the period is ¢, then for two graphs with m values my and
m,, if they differ by exactly c, then they will be the same except the larger will have
had an edge from every chain subdivided with respect to the smaller. For this reason,
as found in the m = n+ 3 case, it is convenient to represent the formula for ¢(n, n+k)
as a piecewise function depending on the value of r.

Given the algorithm for the m = n + 3 case [14], and the information in the
previous paragraph, we now have the formula for t(n,n + 3) (obtained by iterating
Algorithm 1, looking at the result, and determining the polynomial from the result),
as found in Table 4.1.

4.4 Theoretical Results

In this section we utilize our observations in terms of chain length tuples and per
distillation expressions. We determine that the expression for the number of spanning
trees in terms of the chain lengths has an optimization solution equation that is a
polynomial whose local maximum is also the global maximum. We also determine that
the optimal integer valued solution will be within decreasing bounds of the optimal
continuous valued solution which is expressible in terms of per distillation fixed chain
length ratios. Altogether, this enables us to state that Algorithm 1, applied to the
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Number of spanning trees | remainder upon division of n — 6 by 9

4 4nd 2n? 4
R e ik 0

n4 4nd 16n3 80n 16
81+27+27+81+27 1

nt 4nd 5n2 58n 8
81+27+ 9 +81 +27

nt 4nd 5n2 2n
81 + 27 + 9 + 3

n 4nd 14n2 38n 4
81 + 27 + 27 + 81 (27)

nt |, 4nd 14n? 52n 7
81+ 27 + 27 + 81 +27

nd | 4n3 |, 14n?2 |, 4n
sttt 5

nt 4nd 5n2 50n
81 + 27 + 9 + 81

00 |3 | O O | || N

4 3 3
nt 4n 16n 64n
81 + 27 + 27 + 81

Table 4.1: The piecewise formula for the number of spanning trees of ¢-optimal (n,n+
3) graphs. The left column is the formula, and the right is the remainder upon division
of n —6 by 9.
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correct distillation, will always result in an optimal assignment of values to chain
lengths eventually.

There are some properties of optimal chain length value assignments that we would
like to know. A chain length value assignment local maximum is a global maximum,;

this is important because it helps us determine some of those properties.

Lemma 3 Consider the set of all vectors V of length v, the sum of whose elements

is a constant T, that is,

-
V = {vfvi = (i1, Ti2s -, Tiy) A Za:,-,j =7}
j=1

where z; ; € R.

Under such conditions, V is a conver set.

Proof: The sum of the average is the average of the sum, because the denom-
inators in computing the average (the length of the vector, which is fixed) are all
the same, and because addition is commutative and division is left distributive over
addition. Therefore the average of the vectors will have the same sum as the vectors
themselves have and thus will be in the same set. Thus the definition of convex set

applies. [J

Lemma 4 Consider the set of all vectors V of length -y, the sum of whose elements

is a constant 7, that is,

v
V = {’U,‘I’U,- = (275)1,1',"2, e ,17,"-7) A in’j = T}
i=1

where Zi,j € R.
Let us further add the restriction that z;; > 0.

Consider the set of functions F on vectors v € V such that
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F= {flf(xl, T2yeeny I‘Y) = Z afdﬂzejz}

jeP())
where ay; € {0,1}; [7] is the set of all the z; for 1 < i < v, and P(s) is the power
set of set s.

Under these situations, every such function f € F is a concave function.

Proof: Each term in the sum is greater than or equal to the average of the

corresponding terms as shown by a proof by induction on the length of the vector:

1 They are equal because they are the same.

2 f(gzlymzzgzz,zﬂ) 2 [le,w);ﬁxz@)

=4
Szl+$22§g1+y22 > Z1y1+T2y2
2 = 2
=
Sy txy+x1y2+2y2 > 1y t+zayz
2 - 2
=4
:c2m+:cwg > 0

And thus we are done since z;, y;, Z2, y» are all > 0

Inductive step The induction hypothesis is true for n elements in the vector.

Now suppose we have n+ 1 elements and j is element n+ 1. Factor the elements
in a manner similar to how the base case 2 step was done. Observe that we will
have all the terms on the right on the left, as well as terms on the left involving

the product of a j with elements that were not in the same vector as that j.

Thus Lemma 4 is proven. []
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A concave function on a convex set has the property that the local maximum is
global maximum. That fact is useful to is. Lemma 3 and Lemma 4, together mean
that we can apply that fact to the problem of determining values for chain lengths,

Let Gy(g)(u) be the graph with distillation g and chain length tuple u. Imagine,
for a given distillation g, we have a contour plot of ¢(G4(4)()), where the dimensions
are the chain lengths and with contour lines drawn at the integer values (that is a
way to visualize this with only two variables). If we look at the subspace defined by
any straight line, we see that the values on the contour plot that the line intersects
form a parabola due to the fact that we have two variables, let us call them z and
y and, since the line defines values for all the variables other than z and y and the
sum of the variables is constant (that is the restriction that makes this a convex
set), we have a + br + cy + dry over t = z + y, where ¢ is the constant (after
the values for all the other variables have been fixed to determine a, b, ¢, and d).
So if we express a + bz + cy + dzy in terms of z and ¢ (with no y) then we have
a+bz+c(t—z)+dz(t—1) = a+br+ct—cr+dtz—dz? = (a+ct)+(b+dt—c)r—dz>.
Clearly this is, expressed in terms of z, a parabola, with the local maximum being
the global maximum. This should give us a more intuitive understanding of the
consequences of, and rationale for, understanding that V' (as mentioned in Lemma 3)

is a convex set.

Lemma 5 For a graph with a specific distillation, the optimal assignment of continu-
ous values to chain lengths is ezpressible in terms of fized ratios between chain length

values.

Before we prove Lemma 5, let us consider an example. The @ graph is a graph with
3 chains. Consider the (n, m) graph found in Figure 4.1. Let a, b, and c represent the
lengths of chains A, B, and C, respectively. One way of getting a spanning tree would
be to remove edge uv from chain A and edge wz from chain C. That way of getting

a spanning tree is just a special case of removing any edge from chain A and any

36






Q

ONONO
Q O ™

Q1010
O

Figure 4.1: A 8 graph

Figure 4.2: In a 8 graph, possible ways to have two chains with one edge removed.
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edge from chain C. This can be found depicted in Figure 4.2(b). There are ac such
possible spanning trees. Similarly, for chain pairs B,C and A, B this yields bc and
ab spanning trees as well, respectively, as depicted in Figures 4.2(a) and 4.2(c). For
each set of chains which must have edges removed, the number of possible spanning
trees is the product of the chain lengths, and thus we add up for each set and get

ab + bc + ac

which we want to maximize subject to a + b + ¢ = m. Thus, clearly in this case, the
optimal continuous solution ratio of chain length values to m is %

Proof: First observe that, since the expression for the number of spanning trees in
terms of the chain lengths is a polynomial, that which uniquely optimizes the leading
coefficient optimizes the solution.

We induct on the number of variables (which is the number of chains).

Base cases When there is one chain the ratio between the chain length and the
number of edges will be a ratio of 1, by definition. See the argument given
in the “more intuitive understanding” discussion after Lemma 3 regarding the

two-dimensional case being a parabola.

Inductive step Assume for n, prove for n + 1

Amongst the n + 1 chains, take an arbitrary chain (call it k) and fix the length
of it. Applying the induction hypothesis, solve for the other n chains. The
optimal value for that is thus expressed in terms of k and the total {. The
optimal value of k can be found symbolically because of the nature of the
expression: the expression is fo(t — k) + fi(t — k)k, fo and fi are increasing
polynomial functions; let the degree of the leading term of fy be d, and d is
one greater than the degree of the leading term of f,. Let a be the leading
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coefficient of fo and b be the leading coefficient of f;. Bear in mind that a and
b are independent of ¢ and k.

Now we determine the k that maximizes a(t — k)¢ + b(t — k)?" k.
a(t — k)¢ + b(t — k) 1k = (t — k)Y (a(t — k) + bk)

=

a(t — k) + bk = at + (b — a)k

So we take (t — k)4~*(at + (b — a)k) and differentiate it with respect to k& and
set it equal to zero and solve for k in terms of ¢. The solution is

_ .od-b
k=t2=

which clearly indicates that the value of k has a fixed ratio with respect to t,
as d is fixed and a and b are the values of fixed ratios with respect to ¢t due to

the induction hypothesis.

Thus, since we have proven it for the inductive step, the induction proof is complete

and we have proven Lemma 5. O

Lemma 6 Let z,, be the length of a chain in an (n,m) graph produced by Algorithm
1. Let x4, be the length of the same chain when the number of edges is m + 1, that

is, after one iteration of Algorithm 1. Then

Tm $m+l|<
m m+1 ~

1
m

Proof: When applying a step in Algorithm 1, z,,,,; is either z,, or z,, + 1 and

thus respectively either the difference is ;"(fg;—ll), which is clearly less than L for all

positive m because z, is less than m, or the difference is —Zn-s — ——7 Which is less

than % because z,, is less than m and an integer strictly greater than zero. [J
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Let the chain length tuple a be given by Algorithm 1, starting with the distillation,
and let chain length tuple (3 be a least integer unique optimal solution such that for

all elements in a, the corresponding element in 3 is greater or equal.

Define dis(a, 3) as \/Ziel(lal=lﬁl)l(ﬂ" - o)?

Lemma 7 Given a chain length tuple ag such that a is oy with one iteration of

Algorithm 1 applied to it, Algorithm 1 will choose an edge that minimizes dis(c, 3).

Proof: Since all possible edge choices are equidistant in the chain length tuple
space, and Algorithm 1 chooses the one with the greatest number of spanning trees,
and [ is optimized, it chooses the one that minimizes dis(a,3) (if not, then the

solution space is not convex). [

Lemma 8 The edge that minimizes dis(a, 3) is the edge that, after the subdivision

causes (3; — a;)? to have the greatest value.

Proof: Any other edge, besides the one that minimizes dis(a, 3) won’t reduce

dis(a, B) as much as the one that has the greatest (3; — o;)? value. O

Lemma 9 Let the chain length tuple a be given by Algorithm 1, starting with the
distillation, and let chain length tuple 3 be a least integer unique optimal solution
such that for all elements in a, the corresponding element in (3 is greater or equal.

Applying Algorithm 1 to chain length tuple o will eventually yield 3.

Proof: We prove this by induction on the sum of the differences between the

elements of 8 and a.

Base case The sum of the differences is 1. This case follows from the definition of

optimal and the greedy nature of Algorithm 1.

Inductive step Since the lemma holds for n as per the induction hypothesis, that

means that the induction hypothesis works for o/ which is a after one algorithm
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iteration has been applied to a, as long as the edge added in that iteration is
in one of the chains for which the chain length in 3 is greater than in a.

If we see this as a multi-dimensional space, then Algorithm 1 always chooses
the point that “climbs the mountain” the fastest. If we were to increase the
length of some chain that wouldn’t lead us to the optimal, it would have to be
because of a “curve in the mountain” which cannot exist because it is a convex

set (Lemma 3).
This can more formally be seen as a consequence of Lemma 7 and Lemma 8.

Thus Algorithm 1 will choose a chain for which the number of edges in (3 is

greater than the number of edges in a.
Thus Lemma 9 is proven. [J

Corollary 1 For each chain z, the ratio 7= will converge to the continuous optimal

solution as limit,, ., where x,, is as defined in Lemma 6.
Proof: The convergence is a consequence of Lemma 9 and Lemma 6. [J

Lemma 10 Zero is the optimal ratio of the length of a chain x in a graph G to the
number of edges in G if and only if removal of the edge e (the edge in the distillation
D(G) that corresponds to the chain = in G) results in a graph that is not biconnected.

Proof: Removal of an edge e in the distillation results in a connected graph G —e
that is not biconnected. Since G — e is not biconnected, but G was, G — e must be
connected and it must have a cut vertex v. Let A be the part of G — e on one side of
the cut vertex (and containing one of the end vertices of e) and let B be the part of
G — e on the other side of the cut vertex (and containing the other end vertex of e).

t(G) = t(A)U(B)z + t22,0(A)U(B) + t220(B)E(A)
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where t5, ,,(H) is the number of two-component forests of H where y is in one
component and w is in another.

Without loss of generality, let |E(A)| — |V (A)| = |E(B)| — |V(B)|. Let us rewrite
the above equation, but reflecting that A is a function of the number of edges that it
is allowed:

tH(G) = t{(A(u))t(B)Z + t2.2,0(A(w))t(B) + t2.2,0(B)t(A(u))

The optimal ratio having the value zero is the same as

t(A(u+1))t(B)(z—1)+t2z,0(A(u+1))t(B) +t22(B)t(A(u+1)) > t(A(u))t(B)z+
ta.eu( AW)H(B) + tazu(B)H(A(w))

<~

(t(A(u+1))—t(A(u))¢(B)(—1)+t(A(u))H(B)+(t2.2,0(A(ut1)) —t2.z0(A(u))H(B)+
t2.20(B)(t(A(u + 1)) — t(A(u))) > 0

The latter is clearly true as t(A(z)) and t3,,(A(y)) must be increasing functions

and since z > 1 (otherwise it is zero and the proof is finished either way). O

Corollary 2 t-optimal graphs do not have distillations in which there is an edge

whose removal results in a graph that is not biconnected. (]

We will now resume a series of proofs and corollaries relating to how Algorithm 1
and the (optimal) chain length ratios interplay with one another.

As before, let the chain length tuple a be given by Algorithm 1, starting with the
distillation, and let chain length tuple 3 be a least integer unique optimal solution
such that for all elements in «a, the corresponding element in 3 is greater or equal.
Lemma 5 and Lemma 9 mean that Algorithm 1 is “self-correcting” - that is for every
a there exists some § and thus after some finite number of iterations applied to any
o, we will have an optimal solution 3. |

From Lemma 9 we have the following corollary:

Corollary 3 If Algorithm 1 is applied to a graph whose integer chain length tuple
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value assignments are optimal then Algorithm 1 enables us to retain the property of
having optimal integer chain length value assignments if there is a repeating and peri-
odic sequence of chains that are to be subdivided. Even if there is not such sequence,
the greediness of the algorithm combined with the converity of the space means Algo-
rithm 1 will produce a sequence of graphs whose number of spanning trees will, subject
to integer restrictions, be asymptotic to a polynomial with the same leading coefficient

as the not-necessarily-integer optimal solution.

Corollary 4 After some number of iterations, for a chain ¢ which Algorithm 1 would
choose to increment in length, assuming Algorithm 1 was initially started with a
distillation, prior to any series of incrementations of c, the ratio of the length of ¢
to the overall number of edges is, within bounds of Lemma 6, a lower bound on the

optimal ratio.

Proof: Corollary 4 follows from Lemma 7 and Lemma 8. (]
Similar to Corollary 4, we can infer from Lemma 7 and Lemma 8 a technique for

finding an upper bound as well.

Corollary 5 For a chain which Algorithm 1 has finished incrementing the value of its
length (that is, the next iteration wouldn’t increment the same chain length as well),
an upper bound on the optimal ratio can be determined, within the range specified by
Lemma 6. O

By using this upper bound (from Corollary 5) in the equation, we can infer an
upper bound on the leading coefficient (similarly for a lower bound as well, using
Corollary 4). Thus, for a given distillation, from Corollary 4 and from Corollary 5
we can determine lower and upper bounds on the leading coefficient for an optimal
assignment of values to chain lengths.

Given a particular distillation, and that the local solution is the global solution

in the continuous case, we can use the Algorithm 1 sequence to determine bounds
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on the leading coefficient of the continuous optimal solution polynomial expression.
Given those bounds, if the lower bound of one application to a particular distillation
is greater than the upper bound of all the others, then that is the optimal distillation.

We ran enough iterations for the lower bound of one distillation to be greater than
the upper bound of all the other possible distillations of (n,n + 4) graphs, excluding
the cases described in Lemma 10 and Corollary 2. That one distillation is the twisted
3-cube. Thus, by applying Algorithm 1 to the twisted 3-cube, we either get the
optimal solution or by Corollary 3 something very close.

The sequence of chains is not periodic when Algorithm 1 is applied to the twisted
3-cube. We endeavor to consider the consequences of this. First we will consider
when the sequence of chains might be periodic, and then we will be better able to
discuss why the sequence of chains is not periodic when Algorithm 1 is applied to the
twisted 3-cube.

Given that we have two classes of chains, we can further investigate the conjecture
that chains in the same class differ in length by no more than 1. Given that all the
previous t-optimal (n,m) graphs (m < n+3) have chains about the same length, the

following lemmas make sense:

Lemma 11 If optimal ratios of chain lengths for a particular distillation are rational
values then continuous optimal chain lengths are integer values for some infinite subset

of the optimal solution (usually at least one piece of a piecewise function).

Proof: The least common multiple of the denominators of the ratios, when ex-
pressed as smallest possible fractions, will, by definition, be an integer such that, for
every multiple thereof that is a number of edges, the chain lengths will have integer

values that are optimal ratios. [J

Lemma 12 If optimal ratios of chain lengths for a particular distillation are rational

values then there is a periodic progression of chains to subdivide.
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Proof: The least common multiple of the denominators of the ratios, when ex-
pressed as smallest possible fractions, will, by definition, be an integer that, for every
multiple thereof that is a number of edges, the chain lengths will have the same ratios.
Thus, the progression of chains to subdivide will be periodic with the period being

that least common multiple. []

Lemma 13 If, in a t-optimal graph, there is a periodic progression of chains to
subdivide, then all chains in the same class have lengths that differ by no more than

1.

Proof: The period will not repeat until all the chains have been incremented at
least once (every chain must be represented due to Lemma 10 as Corollary 1 means
that if a chain is not represented in the period then its optimal ratio would be zero
which doesn’t happen). Corollary 1 also means that the periodic progression will
dominate the determination of the ratio over time. [J

Optimal ratios being rational values, along with the fact that, as stated earlier,
Lemma 3 and Lemma 4 together mean that since we can apply the fact that a concave
function on a convex set has the property that the local maximum is global maximum
to the problem of determining values for chain lengths, Lemma 13 holds under those
circumstances.

Now that we have established that rational optimal chain length ratios in the
continuous solution mean a periodic progression of chain length subdivisions, we can
explore why we do not see this in the (n,n + 4) case. Restating from Section 3.4, by
using the equation for ¢(G) in terms of the chain lengths of G, which is unique for each
distillation up to isomorphism, and the conjecture that all chain lengths in the same
class are about the same length! and the fact that the sum of the chain lengths is the
number of edges, we can create a system of equations, to be specific, two equations,

two unknowns, and thus solve and optimize for ¢(G) (as mentioned in Section 3.4).

lwhich is shown to be true for certain cases such as in Lemma 13
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When we, given the equations, optimize for ¢(G), the optimal ratio of the number
of edges in these different classes is an irrational number, namely v/5 — v/2. This
suggests why we do not have the same kind of periodic progression of chain lengths
to increase as found in the m < n + 3 cases?. Thus, all we can work with is Corollary
3 in the (n,n + 4) case.

As mentioned in Section 3.4, we have considered the (n,n + 5) case and do have a
conjecture as to the distillation (the Petersen graph) and orderly periodic subdivision
progression. However, we do not have a proof of this as of yet via the same means
as we obtained for the (n,n + 4) case. Specifically, application of Corollary 4 and
Corollary 5 to the (n,n + 5) case is problematic because of the vastly larger number

of possible distillations to consider.

4.5 Empirical Results

We used nauty to do analyses of as many graphs as we could to find which ones were
t-optimal. Our data for the values of ¢(n, m) can be found in Tables B.1 and B.2.

During our investigation using that technique, we determined that t-optimal
graphs are not unique; see Section 3.2 for some of the earlier results we obtained
regarding this. Since then we have found some additional pairs of non-isomorphic
t-optimal graphs, as found in Figure A.19 and Figure A.20. Alternatively this can
be viewed as considering |S(n,n + k)| to determine how unique the ¢-optimal graphs
are. Our results are listed in greatest detail in [24]. As you can see, for most n,n +k,
|S(n,n + k)| = 1. Reiterating from before, the five cases encountered so far where
|S(n,n+k)| > 1 can be found in Figure A.16, Figure A.17, Figure A.18, Figure A.19,
and Figure A.20.

2It also means that Lemma 13 does not necessarily apply to the (n, n+4) case as the subdivisions
are not in a periodic pattern, one of the conditions for that lemma to apply.
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4.6 The Impact of Edge Addition

In this section, we propose some techniques to help model the impact of edge addition
on t(G). As demonstrated in Corollary 3, we have a way of finding the seed graph,
if one exists, for any k. If there exists a technique to find a seed for k + 1 based on a
seed for k, it would seem natural to contemplate the addition of an edge.

We generalize the notion of a spanning tree to include some other structures as
follows: Given a graph G, a k-dispasugra® is a spanning subgraph of G whose
cyclespace has dimension k. Thus, a spanning tree is a 0-dispasugra. Any spanning
cycle is a 1-dispasugra, but the converse is not true. Consider a 1-dispasugra with
cycle c. It is clear that by removing any edge from ¢ we can obtain a 0-dispasugra. In
fact, this observation generalizes - for any k-dispasugra, removing any edge from any
cycle results in a (k — 1)-dispasugra due to the fact that the cyclespace dimension
of a connected graph is m — n + 1 [10] and removing any edge from any cycle in a
k-dispasugra will result in a subgraph that is still connected and spanning.

Let tx(G) represent the number of k-dispasugras of a graph G. By definition,
to(G) = t(G), the number of spanning trees of G. Let Si(G) represent the set of
k-dispasugras of a graph G. Let C(G) be the set of all cycles of G and let E(C(G))
be the union of the edge sets of the cycles of C(G). The number of cycles that an
edge is in is C(e, G). As a reminder from Section 1.2, to contract a cycle c in a graph
G is to contract all the edges in the cycle ¢, which we denote with G-c. Thus, the
number of k-dispasugra that result from the contraction of cycle ¢ is tx(G- c).

Consider an (n, m) graph G with edge set E = E(G) and let T be a spanning tree
of G. For each edge e € E — E(T), the graph T + e is a 1-dispasugra. Thus, for each
spanning tree of G there are m — (n — 1) ways to get a 1-dispasugra. We can extend

this notion. Thus, for k-dispasugra p, for each edge e € E — E(p), the graph p+eisa

3The word k-dispasugra is a made up word that is a shortened form of k-dimension-spanning-
subgraph.
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(k+1)-dispasugra. A k-dispasugra p has (n—1)+k edges by definition. Thus, there
are m— (n—1) —k elements in E — E(p), implying that there are m — (n—1) — k ways
we can add an edge to a k-dispasugra to get a (k + 1)-dispasugra. This observation
leads to the following equation:

(m-n+1-kt(G)= Y |E(C(H)) (4)
HESk41(G)

The left-hand side of Equation 4.1 is the number of (k-dispasugra, additional
edge) pairs in G. The right-hand side is the number of ((k + 1)-dispasugra, edge
from a cycle in the dispasugra) pairs in G. The right-hand side is the same as the
left-hand side because any edge e from G not in a k-dispasugra p that is added to
that p will be result in a (k + 1)-dispasugra u and that edge e will also be in a cycle
in p.

As a reminder, we use C(e, G) to represent the set of cycles of G containing the
edge e. Thus, we have }_ . p(c(q)) [C(e, G)| = 3 cc(q) Il because each cycle contains
|c| edges. For each e € E(C(G)), ¢ € C(e,G) pair, find (G- c) and add them up.
Thus we get the following equation:

Y. leltu(G-9= Y Y (G- (42)

ceC(G) e€E(C(G)) ceC(e,G)

The left-hand side of Equation 4.2 is the number of (cycle, edge from cycle, k-
dispasugra) triples which is the same as the number of (edge in a cycle, cycles con-
taining that edge, k-dispasugra) triples, which is the right-hand side.

The following equation is a form of double-counting the number of (edge e, (k+1)-
dispasugra involving edge e) tuples (on the left, the edge first and then the dispasugra,
and on the right, for every such dispasugra, all the edges).
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Y. tnaGe= Y |ECH) (43)

ecE(C(G)) HESk11(G)
The following equation is a consequence of the fact that every edge that is in a
cycle in a (k + 1)-dispasugra is in a cycle, and that the contraction of every such

cycle results in some k-dispasugra.

Vecec@)) : te+1(G-€) = Z t(G-¢) (4.4)
ceC(e,G)

The following equation is merely the summation of the above equation over all

the e € E(C(G)).

Y tnlGe= Y, Y t(Go (4.5)

e€E(C(G)) ¢€E(C(G)) c€C(e,G)
The following equation is the result of applying Equation 4.1, Equation 4.2, Equa-

tion 4.3, and Equation 4.5 together.

(m=-n+1-k)t(G) = Y lclte(G-¢) (4.6)
ceC(G)

By a cycle reduction of a connected graph G we mean recursively contracting
cycles (or loops or parallel edges), in some order, until we get a single vertex (or a
tree if G is not biconnected). Note that the contraction of a cycle may result in loops
or parallel edges, and that for our purposes, loops count as cycles as does a single pair
of parallel edges. An ordered list of cycles which renders a cycle reduction of G will
be referred to by 3. Each cycle being contracted in a cycle reduction process is a cycle
at the time it is contracted, but not necessarily prior to that. Note that not every list
of cycles will result in a cycle reduction of G. When we contract a cycle, the label for
the vertices that were part of the cycle are now all synonymous with the vertex that is

the result of the contraction. We will use the notation CRs(G) to represent the cycle
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(a) Graph G (b) G1 = Go- B(1) (c) G2 =G1-B(2)

Figure 4.3: An example of two cycle contractions of a graph.

reduction of G with respect to a particular 8 where CRg(G) = {Go,Gy,...,Gjg}
such that Gy is G and G; is G;_; with the ith element (cycle) of 3 having been
contracted - that is, G; = G;_1- §;. Note that what is a cycle ¢ in G; may not be a
cycle in G; (where j < 1) as it may involve two edges that are incident in G; only
because the vertex that they are both incident to is the result of the contraction of
a previous cycle and that prior to such a contraction those edges were incident to
different vertices.

Consider the graph G as found in Figure 4.3(a). An example 3 for G would be
the ordered list {ABE, DEC, L1, L2}, where L1 and L2 are as in Figure 4.3(c). In
CRs3(G), Go = G which is Figure 4.3(a). First, cycle ABE would be contracted,
which yields graph G, in Figure 4.3(b). Then cycle DEC would be contracted, which
yields graph G; in Figure 4.3(c). After that, cycle L1 (as found in Figure 4.3(c))
would be contracted resulting in a graph with a single vertex and loop for G3, and
finally cycle L2 (which also can be found in Figure 4.3(c)) would be contracted so
that we result in a single vertex for G4. The order in which the loops L1 and L2 are
contracted matters as they are different cycles (as we are defining the notion of cycle)

and a f is an ordering of these cycles, so order matters.
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It can be shown that neither does an ordered basis of the cyclespace necessarily
define a (3 nor does a (3 necessarily define an ordered basis of the cyclespace. Showing
this is left as an exercise for the reader.

Let 7(G) be the set of all possible 3 for G. We can apply Equation 4.6 iteratively,
contracting cycles along the way, until there are no more cycles (or loops) left in G.
Since we contract all cycles, in all possible orders, we do this duplication of Equation
4.6 for all B in 7(G). For each 3, we multiply the sizes of the cycles since, Equation
4.6, for each cycle contraction, results in the multiplication of that cycle’s size. The
factor on the left-hand side of Equation 4.6 is divided by on both sides and so brought
over to the right-hand side to form the |3|! found in the denominator in the resulting

closed form which follows:

HG) =t(C) = Y n‘[;‘?,'cl (4.7)
BET(G) ’

Consider Equation 4.7. If we rewrite the cycle sizes as sums of chain lengths and
then expand, we can see that this expression is the same as the formula in terms
of chain lengths. The numerator will have every term in the chain length formula
in every possible ordering and the denominator will have the number of possible
orderings which will cancel out the fact that all possible orderings are represented.

Define a set of partial chains of a graph to be an edge disjoint set of paths such
that every chain of the graph is expressible as a combination of some number of

partial chains.
Lemma 14 Equation 4.7 can be rewritten in terms of sums of partial chains. O

Lemma 14 is true by definition of partial chains. To do so, just replace every chain

with the sum of its partial chains.
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4.6.1 The Impact of Cojoining Vertices

We can cojoin two vertices of degree two that are end vertices of partial chains. This
has an interpretation with respect to Lemma 14 as follows:

For each term in an expression in Lemma 14, the two vertices u and v to be
cojoined will always be in the same cycle after the contraction of all the cycles prior
to the last cycle y that contains both vertices to be cojoined as distinct vertices that
have not already been contracted together. This is because each contraction of a
cycle c involving a vertex v puts that vertex v into any cycle that had involved any of
the other vertices on that cycle c¢. That last cycle will thus then be forced, due to the
cojoining, to no longer be a cycle as both v and the vertex u that it is being cojoined
with will be in the cycle, but cycles cannot have repeated vertices, and u and v are
the same vertex after cojoining. If u and v are not both on y after the contraction
of all cycles prior to y then, after the contraction of y, there is still a cycle which
contains u and v as distinct vertices which contradicts the definition of y as the last
cycle that contains u and v as distinct vertices.

Since u and v are in the same cycle after contraction of the prior cycles, the cycle
can be split into two smaller cycles. As order matters (by the definition of 3), there
will be two new terms (one for each arrangement of the two smaller cycles), each of
which will have a greater degree (a greater number of cycles). The two vertices to
be cojoined will not be contracted into being the same vertex after the contraction
of the prior cycles - if they were, then that means that they’re both in a prior cycle
¢ (after the contraction of the cycles prior to cycle ¢,) and thus that is the factor in
the term that should be affected.

So that we may keep track of which partial chains go into which cycle, when we
express a cycle as a sum of partial chains, we always arrange the terms in order such
that any two adjacent partial chain terms are next to each other in the algebraic

expression. To facilitate finding out which terms involve which vertices, we subscript
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F B
F B
AD
E C
D E C
(a) K4 with two subdivisions (b) A and D cojoined in Figure
4.4(a).

Figure 4.4: An example of the cojoining of two vertices.

every partial chain term with labels for the end vertices of that partial chain.

For example, the graph in Figure 4.4(a) has the terms found in Figure 4.5 in its
expression for the number of spanning trees, using the previously described labeling
notation, with the terms in lexicographic order. You will notice that only the first
two terms have vertices A and D in the same cycle.

Now, if we cojoin vertices A and D as found in Figure 4.4(b) then we have Figure
4.6 as per the previous description of how to adjust the expression. Note that the
expressions found in Figure 4.5 and Figure 4.6 are both expressions in terms of partial
chain lengths. Thus, the determination of the number of spanning trees for a given
distillation is the evaluation of the expression and is largely irrespective of the number
of vertices or edges (as long as it is a graph that has that distillation).

For enough partial chains of sufficient length, the computation of the number
of spanning trees through the Kirchoff matrix technique will be substantially more

complex. The computational complexity for finding the determinant of a matrix is
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-17(27,4,3 + zpc + Tcp + Ip.E + TeF + TFA)(TBE) (T F) +
-y(l'A,B +2Zpc +Tcp +ZpEe+ZeF +Tra)(TcF)(TBE) +
31(TaB +ZBc + TcF + TFa)(Zcp + Tp e+ TBE)(TEF) +
3(Ta,B+ TBc + Tcr + TFA)(TB.E + TEF)(Tc,p + ZDE) +
31(Ta,B + T + Tor + Tra)(Zcp + ZpE + TEF)(TBE) +
(a8 +TBE+ TEF + ZFA)(TBC + ZCF)(Zep + TpE) +
§7($A,B +zp e+ ZeF + Tra)(Tcp + IpE+ I F)(TBC) +
3(zaB+ZBE+TEF + ZTFA)(TBC + ZTep + TpE)(ToF) +
3i(TB,c + Tcr + TeF + ZBE)(TF A+ TaB)(ZTD,E + TeD) +
si(Tec +Zcr +2eF + 2B E)(ZD,E+ Tep)(TFA + TaB) +
3i(TBc +Tcp +Zpe + TBE)(ToF + ZEF)(TaB + TFA) +
si(ZBc +Tcp +TpE+ TBE)(TA B+ TFA+ToF)(TEF) +
si(TBc +Zcp+Tpe+TBE)(TaB +TFa+ TEF) (ToF) +
si(Tep+TpE+ZEF + TcF)(TBE + TBC)(TA B+ TFA) +
3i(Te.p + TpE + ZTer + ZoF)(TBE + Ta + TFA)(TBC) +
3i(Tc.p + TpE + ZeF + ZcF)(TBc + TaB + TFA)(ZB.E)

Figure 4.5: An expression for the number of trees of Figure 4.4(a) where z; ; is the
length of the partial chain from vertex ¢ to vertex j.

at least order n? (and is typically closer to n®). The number of arithmetic operations
needed for the evaluation of the expression in Figure 4.6 is less than 300. Thus, if the
partial chains were to be all of length three or greater, then clearly evaluation of the
expressions found in Figure 4.5 and Figure 4.6 would be more efficient than utilizing
the Kirchoff matrix technique. Utilization of the Kirchoff matrix technique would
result in a matrix of larger than 20 by 20 and thus definitely take more computations
than the technique described here. See such a matrix in Figure 4.7.

Consider the chain form of the Feussman formula:

t(G) = t(G — ¢)|c| + t(G- )

where c is a chain. This chain form of the formula is easily verified from the
original Feussman formula ( t(G) = t(G — e) + t(G-€) ) and it is easy to see that it
is applicable to partial chains as well.

If we have a graph H and an edge e = uv which is not in E(H) and G =H + e

then G- e is H with the vertices u and v cojoined. We will denote the cojoining of
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1(xap+zBc +zcp)(@pE + TEF + TFa)(Z8.E)(ZTCF) +
(T, + TEF + TFA)(TAB + TBC + Zcp)(TBE)(TCF) +
7{,(@4,3 + zpc + Zc,p)(Tp.E + TEF + TF4)(Zc,F)(ZB,E) +
#(zp.e+ TeF + TFA)(TaB + TBc + Top)(Tor)(TBE) +
i(TaB+2BC +ZCF + Tra)(Tep + TpE + TBE)(ZTEF) +
¥(33A,B + zpc + ZcF + Tra)(ZBE + ZEF)(Ze,p)(ZD.E) +
1i(zaB +2zBC +ToF + Tra)(ZBE + TEF)(2D.E)(TCD) +
:iT(IA,B +zp,c + zcF + zr4)(zc,p)(ZD,E + TEF)(TBE) +
1(TaB+zBCc + ZcF + TFa)(Tp E + ZEF)(ZC,p)(TB,E) +
4i(Zas+ZE +2ZeF +TF4)(TBC + Zc,F)(To,p)(TD,E) +
;?(1'.4,8 + zBE + TeF + ZF4)(ZB,c + 2o, ) (Zp,E)(Tc,D) +
i(zaB+TBE + TEF + ZTra)(ZTep)(ZTp,E + ToF)(TBC) +
:f;(ch,B +zBE +ZgF + ZF4)(ZD,E + Tc,F)(ZTe,p)(ZB,C) +
5i(taB+zBE+ZEF + TFA)(ZBCc + Top)(ZD,E)(TCF) +
#(TaB+TBE+ ZEF + 2 A)(ZD,E)(ZTBC + Ze,p)(TcF) +
si(zBc +Tcr + T F + 2B E)(TFA+ ZaB)(ZD,E)(Zc,D) +
i(TBc +ZcF+TEF + TBE)(TFA+ TAB)(Zc,p)(TD,E) +
i(zBc+ToF +zEF +TBE)(TDE+ Te,p)(TFA)(TaB) +
4i(zBc +xcF +2EF + TBE)(TD E + Tc,p)(TAB)(TFA4) +
2(ZBc +Zc,p +ZpE + 2B E)ZCF + TEF)(TA,B)(ZF4) +
¥($B,c +Zc,p + Tp e+ TBE)(Tc,F + ZEF)(TFa)(TaB) +
a@Bc +zcp +2pE+TBE)(TaB)(ZTFA+ ZcF)(TEF) +
i(ZBCc +Tcp +TpE+ T8 E)(TF A+ TcF)(ZTaB)(TEF) +
—!(l‘B,c +Zc,p + Zp,e+ TB,e)(TAB)(TFA + TEF)(TcF) +
#(@Bc +Zcp +Zp e+ TE)(TrA+ ZEF)(TaB)(ToF) +
5i(Tep +Zpe+ TEF + Zor) (T E + TBc)(TAB)(TFA) +
w(Te.p +Tp e+ TEF + ToF)(ZBE + TBC)(TFa)(TaB) +
i(xep +zpe+ TEF + ZToF) (T E +TaB)(ZTFa)(TBC) +
1(zc.p + zp,e + e F + ToF)(TF4)(ZTB,E + TaB)(TBC) +
1(Tcp+Tp e+ TeF + 2o r)(Tc + TaB)(TFA)(TBE) +
#(zep +zZpE+ zTEF +ToF)(TFa)(TBe + Ta,8)(TBE)

Figure 4.6: An expression for the number of trees of Figure 4.4(b) where z;; is the
length of the partial chain from vertex i to vertex j.
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Figure 4.7: A matrix

vertices u and v of H via H-uv. Cojoining can be thought of as the contraction of a
non-existent edge.

Thus, we can think of adding a chain c to a graph G as the following:

#(G) = (G — ¢)|c| + (G- ¢)

We can apply the above regardless of whether or not ¢ is a chain in G or not -
if not, the internal vertices of the chain (if any) must be new vertices and the end
vertices must be vertices that already exist in G. The G- c represents the cojoining.
The t(G — c)|c| represents the unaffected terms, which means the chain c is a cycle
after the contraction of all other edges.

Thus, we can use the cycle contraction formula and the Feussman formula to find
a new chain form of the formula. There is a way we can use the cycle contraction
formula and the Feussman formula to obtain a cycle contraction formula (without

needing to factor the chain form of the formula) and we describe it next.
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4.6.2 The Reverse Application of The Feussman Formula to

A Cycle Contraction Formula

Every chain and every edge is represented in every (3, since every [ results in the
contraction of every cycle - if a chain or edge were not contracted then 8 would not
reduce the graph down to a single vertex.

Consider the application of Equation 4.7 to Equation 4.6.

(m—n+1-ktG) = > Id Y Heeslc] (4.8)

{
ceC(G) PBer(G-c) lﬁ |'

This shows that we can factor out any cycle. For every 3, there is a cycle € that
contains partial chain ¢. Let us factor out that cycle €. For every such ¢ containing
€ factored 3, we may apply the Feussman formula with regard to ¢. This use of the
Feussman formula in the context of a cycle contraction formula is something that,
similar to the addition of a chain to a chain length formula to find a new chain length
formula, can be applied in reverse, with the caveat that every new 8 must be a valid
(B and that no (8 be overlooked.

To ensure that every new £ is a valid g it suffices to ensure that ¢ only be added to
terms for which it is part of that corresponding cycle, which may include previously
empty cycles (previously empty terms). By “previously empty cycle”, we mean a
cycle ¢ containing the end vertices of this new chain, (but not the edges of the new
chain) all of whose (c’s) edges have been contracted in prior cycles in the G.

To ensure that no (3 is overlooked, it suffices to show that consideration of the
addition of ¢ to all terms (including the empty ones implicit between all other terms)
will cover all possible 5. This is clearly the case as every ¢ is either in a term by itself
(an empty term) or not (an already existant term).

Thus, for a given cycle contraction formula for a graph G, we can add a chain

between any two vertices that are partial chain endpoints and get a new cycle con-
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traction formula. Thus, we have a way to model the impact of chain addition on the
expression for the number of spanning trees in terms of chain lengths when in the

cycle contraction formula form.
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Chapter 5

Future Work

In the future, we would like to prove or at least further examine many of the con-
jectures mentioned. Amongst those conjectures would be those found in Section 3.4
and this section. We would also like to further investigate the lower bounds possible
through the techniques described in Section 3.5.

Previous algorithms for finding t-optimal (n,m) graphs when m < n + 3 have
been published, as have formulas for ¢(n, m) when m < n + 2. We have an algorithm
that is accurate within certain bounds, when m < 2 and & > 2, for (n, n+ k), which
provides us with polynomial formulas in some cases and bounds on leading coefficients
of these polynomials on all others. This not only gives us an explicit formula for the
(n,n + 3) case and the distillation of the (n,n + 4) case, but, up to computational
feasibility of algorithm execution, all m < %’1 cases.

We also have another conjecture, which all observed (n,n + k) follow, namely,

Conjecture 6.

Conjecture 8 A technique to create 3-regular graphs with large numbers of spanning

trees:
e Find an optimal (n,n + k) graph for some n (where n > 2k).
e Find the distillation and then iterate Algorithm 1 twice.
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Figure 5.1: The t-optimal (12, 18) graph
e There will be two non-adjacent vertices of degree 2; join them with a new edge.

e You now have the distillation of a t-optimal (n,n + k + 1) graph.

Conjecture 6 holds for those cases we have seen so far, such as the simple cycle, 6
graph, K4, K33, and twisted 3-cube. Based on this conjecture, the optimal distilla-
tions for (n,n +5) and (n,n+ 6) are the following!, respectively: the Petersen graph,
and then the (12, 18) graph found in Figure 5.1.

In addition to Conjecture 6 and the other conjectures that we’ve mentioned earlier,
we also conjecture that all ¢-optimal (n,m) graphs with m > 3—;‘- can be found by
taking a three-regular ¢-optimal graph and contracting a certain spanning forest in
which the tree sizes differ by no more than one.

As we now have a means to better, more efficiently, and more concisely understand
the impact of edge operations such as addition, deletion, subdivision, and contrac-
tion on the number of spanning trees of a graph, we now plan on more thoroughly

investigating some of these conjectures, specifically Conjecture 6.

1The distillations are t-optimal graphs, we have verified this through the use of brute force already.
It remains to be seen if they are the distillations of all t-optimal (n,n + k) graphs with the same k
where k > 3.
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Appendix A

Figures
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Figure A.1: A complete 5-regular 1-partite graph.

A

D

C

Figure A.2: A complete 3-regular 2-partite graph.
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Figure A.3: A complete 4-regular 3-partite graph. Note how every vertex is connected
to any vertex not in the same partition.

Figure A.4: A complete 4 — 5 regular 4-partite graph.
This graph is K 1,22
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1 a7,10:14

al,211

" ad,514 a2,3:2 -
a8,10:15 47,9113

a6,9%:12 a6,8:11

a3,4:3

Figure A.5: The Petersen graph, a t-optimal graph with 10 vertices and 15 edges.
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Figure A.6: A spring embedding of the t-optimal graph with 8 vertices and 12 edges.
This graph is more commonly drawn as in Figure 3.1.

Figure A.7: An embedding of the t-optimal graph with 9 vertices and 13 edges
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Figure A.8: An embedding of the t-optimal graph with 10 vertices and 14 edges

<

7

/_____—«

Figure A.9: An embedding of the t-optimal graph with 11 vertices and 15 edges






4

Figure A.10: An embedding of the t-optimal graph with 12 vertices and 16 edges

Figure A.11: An embedding of the t-optimal graph with 13 vertices and 17 edges
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Figure A.12: A histogram of non-isomorphic graphs and their number of spanning
trees with 8 vertices and 12 edges. The z axis is the number of spanning trees. The
y axis is the number of non-isomorphic graphs with that number of spanning trees
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Figure A.13: A histogram of non-isomorphic graphs and their number of spanning
trees with 9 vertices and 13 edges. The z axis is the number of spanning trees. The
y axis is the number of non-isomorphic graphs with that number of spanning trees
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Figure A.14: A histogram of non-isomorphic graphs and their number of spanning
trees with 10 vertices and 14 edges. The z axis is the number of spanning trees. The
y axis is the number of non-isomorphic graphs with that number of spanning trees
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Figure A.15: A histogram of non-isomorphic graphs and their number of spanning
trees with 11 vertices and 15 edges. The z axis is the number of spanning trees. The
y axis is the number of non-isomorphic graphs with that number of spanning trees
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A4

(a) A t-optimal (8,18) (b) Another t-optimal
graph (8,18) graph

Figure A.16: t-optimal (8, 18) graphs

(8) A  t-optimal (b) Another t-optimal
(10,27) graph (10,27) graph

Figure A.17: t-optimal (10,27) graphs

(a) A t-optimal (b) Another t-optimal
(11,18) graph (11,18) graph

Figure A.18: t-optimal (11, 18) graphs
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(a) A t-optimal (b) Another t-optimal
(11,42) graph (11,42) graph

Figure A.19: t-optimal (11,42) graphs

(a) A  t-optimal (b) Another t-optimal
(12,22) graph (12,22) graph

Figure A.20: t-optimal (12,22) graphs
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1 u7,}9tll

T ak, 80
48,1015

26,9112

a3, 413

Figure A.21: The result of applying Algorithm 1 0 times to the Petersen graph.

1 a7,10:14

T ek, 5ee
8,10118

a6,9:12

a3,4:3

Figure A.22: The result of applying Algorithm 1 1 times to the Petersen graph.

1 a7,10:14

T ad, st e
28,1018 27,9113

26,9112

a3, 413

Figure A.23: The result of applying Algorithm 1 2 times to the Petersen graph.
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1 a?7,10114

T kL84 az,312  ee
a8,10418 47,9413

26,9112 a6,08:s11

a3,4:3

Figure A.24: The result of applying Algorithm 1 3 times to the Petersen graph.

1 a7,10:14

a7,9:13

a3,41)

Figure A.25: The result of applying Algorithm 1 4 times to the Petersen graph.

1 a7,10¢14

S a8
a8,10115

26,9112

a3,443

Figure A.26: The result of applying Algorithm 1 5 times to the Petersen graph.
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1 a7,10:14

T aa, 50
a8,10118 a7,9113

a6,9112

a3, 413

Figure A.27: The result of applying Algorithm 1 6 times to the Petersen graph.

1 A7,§0:14

T aeg B4
a8,10:18 a7,9:13

a6,9:12

a3,4:3

Figure A.28: The result of applying Algorithm 1 7 times to the Petersen graph.

1 27,1014

T ek, 504

a8,10¢18 a7,9:13

a6,9:12

a3,4:3

Figure A.29: The result of applying Algorithm 1 8 times to the Petersen graph.
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1 a7,10114

T K17
a8,10118

a6,9112

Figure A.30: The result of applying Algorithm 1 9 times to the Petersen graph.

1 a7,10314

a8,10:15

a6,9112

Figure A.31: The result of applying Algorithm 1 10 times to the Petersen graph.

1 87,1014

6,10:15

a6,9112

Figure A.32: The result of applying Algorithm 1 11 times to the Petersen graph.
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1 l7,;°tl‘

(81,211

a8,10:18

a6,9112

Figure A.33: The result of applying Algorithm 1 12 times to the Petersen graph.

1 a7,10¢14

a8,10:18

46,9112

a8,10:15 a7,9:13

a6,9:12

Figure A.35: The result of applying Algorithm 1 14 times to the Petersen graph.
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1 a7,1011¢

a8,10:18

a6,9112

Figure A.36: The result of applying Algorithm 1 15 times to the Petersen graph.
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Appendix B

Tables

m|n=3|4]| 5 6 7 8 9 10 11 12

3 3

4 4

5 8] 5

6 16 | 12 6

7 24 | 16 7

8 45 | 36 21 8

9 75 | 81 51 27 9

10 125 | 135 | 117 72 33 10

11 225 | 231 168 96 40 11

12 384 | 432 392 240 128 48 12
13 976 | 720 720 560 328 160 56
14 864 | 1200 | 1280 | 1200 | 800 448 200
15 1296 | 1840 | 2304 | 2223 | 2000 | 1120 | 600
16 2800 | 4096 | 4032 | 3672 | 2800 | 1568
17 4200 | 6144 | 7168 | 7000 | 6020 | 3920
18 6125 | 9216 | 12480 | 12584 | 11760 | 9800
19 8575 | 13825 | 19760 | 22720 | 21952 | 19208
20 12005 | 21025 | 32000 | 40960 | 40365 | 37632

Table B.1: A table of some of the results we obtained. (I)
The entries are the values of t(n, m).
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m|in=7{n=8 n=9 n=10 n=11 n=12
21 | 16807 | 30000 | 48000 64125 72657 68992
22 42000 72000 101250 130691 127764
23 58800 | 105000 159375 208320 233037
24 82044 | 148625 250000 332800

25 110592 | 210125 390625 521284

26 147456 | 295488 546875 810000

27 196608 | 419904 765625 1260000

28 262144 | 559872 1071875 1878000

29 746496 1500625 2740500

30 1000188 | 2116800 4050000

31 1333584 | 2861568 5670000

32 1750329 | 3852576 7938000

33 2250423 | 5186160 11113200

34 2893401 | 6914880 14929920

35 3720087 | 9219840 20030976

36 4782969 | 11908960 | 26873856

37 15366400 | 35831808

38 19756800 | 48185669

39 25401600 | 63518455

40 32768000 | 82824896

41 40960000 | 106489152

42 51200000 | 136914624

43 64000000 | 176046080

44 80000000 | 227127296

45 100000000 | 285474816

46 356843520

47 446054400

48 558892224

49 698615280

50 864536409

51 1056655611

52 1291467969

53 1578460851

54 1929229929

55 1937019605

Table B.2: A table of some of the results we obtained. (II)
The entries are the values of t(n,m).

79







Q

el I Gl ol el F=d R e R (= Y (=2 IR [ v o
ERRIRII[IFSIERBR BB |BBB
.nnAAAAAAAAAAAAAAAA

— | o |00 |en =1

o %%%808961&%32@%
LEIRBFIF 2RISR L 2(&IR
SRS IS ISIRXRIRH BB [E(0 (SN
e N R R SR ISR I R SR SN [N (R (R (S R (SR (S R [ R (]
ol B R e N R o N R R (S N SR () (SR R (N
mlllllllllllllllz
e B e LN N BN IS R S R IS R IR (R [ (B [
Tt frmd |t ot ot ot ot ot ot ot ot et | [N [ | N
= e L R R B S R S A IR (R (R IR [ [ TN [ [
e i I D A A A S S S R S R S R R S R 2 R La]
OO0 Jor=t {v=d vt |t [yt {omeed [t |md {omd Jvof J=ef Jved | =d = |O\} | O\
B ot ot fomt fod Jrd | [ [t |t et [t O[OV ION OV | ON
RO {red |t fr=t |t |r=t |t o=t o=t O |CN |ON {ON OV OV OV IOV
MY [r=t fot Jrd [t Jrt v [t fed foed et [t | =t =t O\ O O
|t ot |t et [t et f et e et e (OO [ON OOV O
) | vt ot | vt Jomd | =t Jr=t =t O O QN OV OV [ON [N OV [N
NI e I R S S S S S N N R S R R R S RS R S N
—
.m1222222222222222

Table B.3: Tuples of chain lengths, number of spanning trees, and diagram figures

for t-optimal graphs with distillation and labeling as found in Figure A.5.
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