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ABSTRACT

SOME INFERENCE PROBLEMS FOR INTERVAL

CENSORED DATA

By

Tingting Yi

This thesis consists of two parts. The first part studies asymptotically
efficient estimation of the baseline hazard parameters in a modified Cox
model where covariate effects are nonparametric when data are interval
censored. These estimators are obtained by maximizing the log-likelihood
function with respect to both the finite dimensional and infinite dimen-
sional nuisance parameters using method of sieves. The sequence of these
estimators is shown to be consistent, asymptotically normal, with the

asymptotic variance achieving the semiparametric lower bound.

The second part of the thesis pertains to constructing tests for fitting a
class of parametric regression models to the regression function of the log
of the event occurrence time variable when the data are interval censored
case I and when the error distribution is known. These tests are based
on certain martingale innovations of a marked empirical process. They
are asymptotically distribution free in the sense that their asymptotic null
distributions depend on neither the null model nor the covariate and the

inspection time distributions.
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Chapter 1

Introduction

In an interval censoring set up one only knows that an event time X lies in a random
interval. In the case I interval censoring model, the event time X is known to be
either to the left of the observation time T or to its right. This type of data is also
known as the current status data. In the case II interval censoring set up, there are
two observation times T and U with 0 < T < U, and one knows that either X < T,
orT<X<UorX>U.

Interval censored data occur frequently in clinical trials and longitudinal studies.
For example, in a long-term follow up study, the subjects are given yearly screening
to detect cancer. Cancer onset can only be known to occur between screenings. Hoel
and Walburg (1972), Finkelstein and Wolfe (1985), Finkelstein (1986), Diamond et
al. (1986), Diamond and McDonald (1991), Keiding (1991), among others, contain
several examples of interval censoring data sets from clinical, tumorigenicity and
demographic studies. The recent review article by Jewell and van der Laan (2004)
contains some additional applications to health related studies.

The first part of the thesis studies asymptotically efficient estimation of the base-



line hazard parameters in a modified Cox model where covariate effects are nonpara-
metric when data are interval censored.

The Cox’s regression model is widely used in survival analysis. In this model often
the baseline hazard is assumed to be nonparametric while the covariate effects are
modelled parametrically. In many applications the shape of the baseline hazard is
thought to be well understood but the covariate effect is rarely specified precisely. For
example, in insurance problems the Gompertz-Makeham hazard has a long tradition
of successful application, [Jordan (1975), page 21]. Meshalkin and Kagan (1972)
claimed that the logarithm of the baseline hazard is approximately linear for a number
of chronic diseases. As an alternative to Cox’s regression model, Nielsen, Linton and
Bickel (1998) studied a model where the baseline hazard rate belongs to a parametric
class of hazard functions but the effect of covariates is nonparametric. They obtained
an asymptotically efficient estimator of the underlying parameter by profile maximum
likelihood method when the data are randomly right censored.

The estimator of the baseline hazard parameter, called sieve mazimum likelihood
estimator, is obtained by maximizing the log-likelihood function with respect to both
the finite dimensional and infinite dimensional nuisance parameters while the infinite
dimensional nuisance parameter is constrained to a subset of the parameter space
which increases with the increase in the sample size. The sequence of these estima-
tors is shown to be consistent, asymptotically normal, with the asymptotic variance
achieving the semiparametric lower bound. This work thus generalizes the work of
Lu (2000) from the current status data case to the general interval censoring case.

The nonparametric and semiparametric models for interval censored data have

been studied in the literature. The monograph of Groeneboom and Wellner (1992)



provides some basic results about the information bounds and nonparametric maxi-
mum likelihood estimators of a distribution function with current status and case 11
interval censored data. Huang and Wellner (1995) and Huang (1996) study NPMLE
of the linear functionals and underlying parameters in Cox’s proportional hazards
model with interval censored data. Klein and Spady (1993) use the profile maximum
likelihood method to derive estimators of the regression parameters that achieve the
semiparametric lower bound. Li and Zhang (1998) derive an asymptotical efficient
M-estimator of the regression parameters in a linear regression model with interval
censored data. Rossini and Tsiatis (1996) use the sieve method to obtain asymptoti-
cally efficient estimators of the regression parameters in a semiparametric proportional
odds regression model with current status data.

The second part of the thesis pertains to constructing the lack-of-fit tests of a para-
metric regression model when the response variables is subject to interval censoring
case 1. The proposed tests are based on certain martingale innovations of a marked
empirical process developed by Stute (1997) and Stute, Thies and Zhu (1998). These
two papers study the marked empirical process and its innovation martingale trans-
formation for a general regression model. Our work extends the methodology to the
interval censored case I data while the inspection time and covariate distributions are
unknown but the error distribution is known. The tests are shown to be asymptoti-
cally distribution free in the sense that their asymptotic null distributions depend on
neither the null model nor the covariate and the inspection time distributions.

Several other papers deal with model checking problems under censorship. Nikaba-
dze and Stute (1997) use the Kaplan-Meier process to test the null hypothesis that

the unknown distribution function of the true survival time is from a parametric



family of distributions when the data are right censored. The Kapan-Meier process
in their paper has also been transformed to be asymptotically distribution free. Stute
(2000) constructs the tests based on the empirical process of the regressors marked
by the residuals for model checking in right censored regression. The process in this
paper is attached with the Kaplan-Meier weight and the weak limit of this process is a
Gaussian process with a covariate function depending on the null model. Rabinowitz,
Tsiatis and Aragon (1995) propose a class of score statistics that may be used for
estimation and confidence procedures of an acceleration failure time model for interval
censored data.

Simulations are conducted for both parts of the thesis. To study the behavior of
the sieve MLE, a finite sample simulation shows a very desirable behavior in terms
of bias and standard error. For the second part of the thesis, the simulation studies
assessing some finite sample level and power behavior of the proposed tests for small

and moderate sample sizes are also given.



Chapter 2

Sieve Estimation

2.1 The model

Let (X,T,U, Z) be a random vector, where X represents the survival or event time,
T and U are the monitoring variables and Z the covariate which could be a vector.
Assume that, conditional on Z, T'and U are independent of X, with a joint continuous
distribution function H such that T < U with probability one.

In Cox’s regression model, the conditional cumulative hazard rate function of X,

given Z, has the form
Ao(:c)eﬁ 'z ,

where A, with unspecified form, is called the baseline cumulative hazard function, and
B is a vector of regression parameters. Nielsen, Linton, and Bickel (1998) proposed
an alternative model with Ay depending only on some parameter 6, and the covariate

effect is of an unspecified form. More specifically, the conditional cumulative hazard



rate function of X, given Z, is of the form
(2.1.1) A(z,80)9(2),

where A(z, 6p) is a known function with an unknown parameter 6, and g is an unknown
function. Here 6, belong to ©, a subset of R? for some d > 1. They discussed the
estimation of 6y and g under the right censoring.

Lu (2000) discusses the estimation of 6 and g based on the interval censoring case
I data. In this paper we discuss the estimation of 6, and g based on interval censoring
case II data, where one observes independent random vectors ( Ty, U;,d;,7;, Z;), with
0; = I(XiSTi)’ Y = I(Ti<xisui)’ 1=1,2,...,n.

A consequence of (2.1.1) is that the conditional distribution of X, given Z, now
depends on 6y. Let F(z, Z,6p) denote this conditional distribution function. Assum-
ing that the baseline cumulative hazard rate function A(z, ) is continuous in z, we

obtain

F(I,Z,eo) =1- e(L‘p(—A(I, 60)g(Z))

For the convenience and the transparency of the exposition we shall assume in the
following sections that 6, is a scalar. For the case when 6, is a higher dimensional
vector, similar results can be obtained. Because of the curse of dimensionality, we

shall also assume that Z is a scalar variable.

2.2 Estimation

The goal is to estimate 6 efficiently, with a(z) = logg(z) as an infinite dimensional

nuisance parameter. The conditional log-likelihood of # and a given Z; based on



(Ti,Ui,d,i,’yi,Zi),i =1,2,...,n1s
l n
Ln(d.a) = — '21 {8i10g F(T;, Z;.0,0)
1=
+ v log [F(Ui, Zi= 0,a) — F(Tz‘, Zi’ 0, a)]
+(1-68; — ;) log (1 - F(U;, Z;, e,a))}

n Z
- - > {51' log(l—e_A(Tive)ea( i)
i1

T, 0)e*(Zi) _ e—A(Ui,())e”(Zz')]

)

+ v; log [e_A(
(2.2.1) —(1-6- 7i)A(Ui,0)ea(Zi)}.
Here
F(t,z,8,0)=1- e—A("")ea(z), F(t,2,0,a) =1 - F(t,2,6,a).

To maximize the log-likelihood over all possible § and a, we should set a(Z;)
to be positive infinite if ; = 1, and negative infinite if 4; = 0 and ~; = 0. Hence a
meaningful maximum likelihood estimator over all possible functions a does not exist.
The log-likelihood function is maximized as a varies over a small set of functions which
depends on the sample size. More specifically, we approximate a by a sequence of
step function with known jump points and maximize the log-likelihood as a varies
over these step functions. As the number of steps increases along with the sample
size, the bias from the approximation disappears. Assume that the covariate lies in a
bounded interval. Without loss of generality, it will be taken to be an interval [0, 1].
To construct the step function, define a partition 0 = zy < 2; < --- < zx = 1, where k
depends on n and increases with the increase of n. The step function is then defined
as

k
(2.2.2) an(z) = Y apjilj(z),
j=1

7



where Ij(z) is the indicator function for the jth interval, defined by I j(z) =1if
zj_1 <z < zj and zcro otherwise. For the fixed partition, the step function is
completely specified by the parameters (a1, - , a;,;)- Hence from here on, ap will
denote either the function an, given by (2.2.2) or, equivalently, the vector a, depending
on the context.

The estimate (é, Gp) is obtained by maximizing the approximate likelihood formed
by substituting (2.2.2) for a in (2.2.1). Since k& is an increasing integer-valued function
of n, written as k(n), an will tend to a. The next section show that when k(n) =
O(n") with 0 < r < 1/2, (8, &n) is consistent.

Now define a step function, aon, of the form (2.2.2) as an approximation to ag.

Precisely,
k(n)

(2.2.3) aon(2) = Y ao(2;)1(2).
i=1

Let
ﬁ’n = (0) (0775 KRl 1ank)7 ﬁon = (007 O[)(Z]), e ’QO(Zk))v
Bo = (90,00), Bn = (é,&n),
and

Fﬂo(t,z) = F(t, 2,6y, ap), F3n(t,z) = F(t,z,0,an),

(224)  Fg (t2) = F(t, 2,60, aon), FBn(t,z)zF(t,z,é,(in).

We shall be assuming A(t, §) to be twice differentiable with respect to 6, for all ¢. Let
A(t,0), A(t,8) denote the first and second derivatives of A(t,8) with respect to 6.
The first and second partial derivatives of the log-likclihood are used to generate

the estimates and their variance. In view of (2.2.1), the first derivative with respect

8



to @ is

Sn, 00, an)

aLn(O,Gn)
B 6
1 < 6i_Fﬂn(n’Zi)- on(Z;)
= = AT;, 6)e®n
"i;{ Fo(Tnz) oD
i i — (Fp, (Ui Z3) — Fg, (Th, Z;)]
N [oi_Fﬁ"(Ti’ZiH Fg, (Ui, Z;) - Fg, (T3, Z;) Fon(Tir 22)
(2.25)  x [A(U;,0) - A(Ti,ﬁ)]ean(zi)}
and that with respect to ap; is
Sn, ](G,an)
6Ln(9,an)
8anj
- Fg (T;,Z;)
= ﬁn v an(Z;)
= - A(T;,0)e" ™M\ 1 5(Z;
121{ Fg, (T3, Z)) T, 0)e 1)
- [Fg, (U}, Z;) - Fg, (T3, Z;)]
Oz—EBn(Ti,Zi)+ Fg, s, Z;) - Fg, (T3, Z;) Fg 7,2
(226)  x [A(U;,6) — A(T;, 0)]en(Zi) Zi)} j=1,2,-- k.

The score vector is defined as

( Sn, 0(0, an) \

- S 1(9» aTl)
Sn(9, On) = s

\ Sn, (0, an) /

The estimates (6, an) are defined to be a solution to the score equation

(227) Sn(o, an) =0.



The derivative of Sy, with respect to (8, an) is called the Hessian matrix and related

to the obscrved information. This is defined as

65'7,(0, an)

Hn(0, an) = 9000,

which is the (k + 1) x (k + 1) matrix of partial derivatives with respect to § and an

of the elements of Sp (6, an). Then the elements of Hy, are defined by

aSn, O(Ga an)
06

1 & 5i—Fﬁn(Ti’Zi) . an(Z;)
= - A(T;,0)e"n
nz§1{ Fg, Ty, Zy) (T, B

% = P, (Ui Z3) — Fg, (T3 Z0)] -
Fﬁn(?ji’zi) - Fﬂn(%‘, Z;) Fﬂn(n’Zi)

x[}&( - i (T- ) ]ea"(zi)}

n Z { ” Z) A WL

'Y'LF,B’I'I( 2 Z)Fﬁn( R 1,)
(Fp,, (s, Z;) — Fg, (T3, Z;))?

ho(0,an) =

52 - Fﬂn(Ti’Zi) +

(T3, 8)e*2n(Z3)

(2:2.8) (A(U;,0) - A(T;, 9)]2e2an(zi)},
BSn’ 0(9, an)
aaj

1 « Ji"Fﬂn( ) an(Z:
= - Z{ Py (T 2) AT, 00 Z) 1 (z;)

i=1

o % [F, Uy Zg) - F (T Z)]_ ‘
+[‘5z Fg, (T3 2;) + Fy Uy, Z;) - Fg (T, ;) Fa, (T, Z;)
x[A(;.0) - AT 0))e i) 1y 2))}

n o 6Fy (Ty Z;) |
= {%A(Ti,9)A(T¢,o>e2"”(zz)1j(zi>
= ,
%Fﬂn( Zi)pﬂn(Uini)
[F@n( Z;) - Fg (T}, Z;)?

(2.2.9) x[A(U;,0) — A(T;,0)][A(U;, 0) — A(T; T;, 0))een (2 (Z)}

hoj (97 an) =

10



0S,, ;(0.an)
hjj(f),an) - Ny

Ba-
1 - Fﬁn( ) an(Z;:
) ;ligl{ Fg,(T; Z;) AT 0)e ( )I( %)
v = [Fg, Ui, Z;) - Fg, (T;, Z;)] _
% Eon T+ Fg, (Ui, Z;) — Fﬁn(%” Z;) Fon(To Zi)]
x[A(U;,0) - A(T;, 0))e®nZ) 1(Z;)}
8 Fp (T}, Z;) .
T Z { gTLT Z) A (Ti’e)el)an(zl)lj(zi)
7zFBn( z’Zz)Fﬂ (U; -
(2.2.10) +[Fﬂn(Ui’Zi)_Fﬁ @ Z)P[A — ATy, 0)Peronl )Ij(z,-)}
j = 1,. . ,k’
hij(6,an) = 0, i#5=12--- k.

In the above expressions the expectation is taken with respect to the true parameters

(6o, cxg).

2.3 Consistency and Asymptotic Normality

In order to have the consistency and asymptotic normality of the estimator, we use
some assumptions. We call the following assumptions Condition A.

(1) The real parameter 6y is an interior point of ©.

(2) Let 7, U and Z be the support of T, U and Z, respectively, where Z is a closed
interval of R. A(z,0) is bounded away from 0 and oo over z € T, or z € U, and
6 € Ny, where N} = {0 : |6 — 6,| < A} for some 0 < A < oo. The density of (T, Z)
and (U, Z) are bounded on 7 x Z and U x Z, Lipschitz continuous in z, uniformly
forteT and u € Y.

(3) The first and second derivative of A(z, ) with respect to 6, A(z,6) and A(z,6)

11



exist, are bounded for £ € T or x € U and 8 € N;, and continuous in #, for any fixed
z.
(4) ap(z) is Lipschitz continuous on Z.

For any function b(z) defined on Z, let ||b]|o = sup,cz|b(z)| and ||b]| = /E(b(Z))?
be sup-norm and L,-norm respectively.

Theorem (2.3.1) below states the existence of at least one consistent (in sup-norm)
estimator, é, which is a solution of the score equation.

First, let’s define

Doo(T, U, 2, 907(1071) =

Fﬁon(T’Z)'z Fﬂ (T,Z)Fﬁ U,2)
[_Fﬂon(T’Z)A (T, 00) + =—2 on

“ " Fg,, U, 2) = Fg, (T, 2)
x[A(U, 60) — A(T, 00)]2] e2aon(Z),

Fﬁon (T, Z)Fﬁon v, 2)
Fg (U,2) - Fg_(T,Z)

x[A(U, ) — A(T, 80)[A(V, 60) — A(T, )] 20n(2),

DOI (T’ U7 Zv 007 Oton) = A(T, HO)A(T, 90) +

[Fﬂon (T,2)
FynT2)

Fg (T,2) Fs (T, Z2)Fs (U, Z2)
,8071, 2 /BOTZ :8071
D T’ U1 Zv 0 1 ——_—A T, 9
ud 0: @on) [Fﬁon(T, ™ o)+ Fg,.(U,Z) - Fg (T, Z)
(2.3.1) X[A(U, 00) — A(T, 00)]2] e2aon(Z)’

where Fﬁ(m(T, Z) is defined in (2.2.4).

Theorem 2.3.1 Assume that the Condition A holds, and the number of intervals is

increasing at a rate k(n) = n", with 0 < r < 1/2. Assume that
(232)  PF(U,Z.8,a)— F(T,Z,6,a)>c)=1, Y 0€0O.q,

for some 0 < ¢ < 0o. Assume also that for all k and agn with ||aon — aolle < Ao for
some positive and finite number Ay, there erists a 0 < C < 00, not depending on n,

such that

(233) P([;(2)=1)=0(1), kP(;j(Z2)=1)>C, j=12,-k

12



and

k  E[Do(T,U, Z, 8, con)L;(2))?
2.34)E[Dw(T,U, Z,6,, - L J > C.
(2.3.4) E[Doo 'Oam”jE%EWMﬂMZ%MMQwH

Then, there is at least one consistent (in sup-norm) solution to (2.2.7), i.e. there

ezists one (0, ép) such that
|6 — 65] + ||&n — aolloo = 0p(1).

Theorem 2.3.2 Assume that the conditions in Theorem 2.8.1 hold. Assume also
k(n) =n", with1/4 <r < 1/2, and

(E[Da(T, U, Z, 6o, 0)))?

(23.5) E[DOO(T’ U7 Z? 90’00)] - E[DII(T, U-, Z, 007 ao)]

> 0.

Then the estimator (6, &n) in Theorem (2.8.1) has the following convergence rate
|6 — 60| = op(n™'/%),  |lén — ollee = op(n™%).

Theorem 2.3.3 Assume that the conditions of Theorem 2.3.2 hold, and o? defined
below is finite. Assume also the third derivative of A(t,8) with respect to 6 ezists for

8 in a neighborhood of Ay, and is continuous at y. Then
V(0 - 6p) = N(0,0%),

where the asymptotic variance is given by

(E(Dn(T\U, Z, 00,00)|Z))2)] -1 |

2.3.6 02:[ED T, U, Z, 6« —E(
(2:3.6) (Doof 0: @) E(Dyy(T, U, Z, 65, 0)| Z)

2.4 Information bound for 6,

The true model has two parameters: 8, a finite dimensional, and ¢, an infinite dimen-

sional functional parameter. The semi-parametric information bound for estimating

13



6 is based on the maximum of the asymptotic variance bounds of regular estimators
for 6 obtained using parametric sub-models of o (Bickel et al. 1993). It is shown in
this section that the above asymptotic variance o? achieves this bound. Projection
method is used to find the efficient score for the semi-parametric model and hence
the variance bound.

The conditional log-likelihood of § and a. given Z based on (T, U, 4§, v, Z) is given
by

dlog (1 — C—A(T’ g)ea(Z)) + vlog [e—A(T, O)ea(Z) _ e_A(U’ e)ea(Z)]

(24.1) —(1 =6 — 7)A(U, 6)e(2).

Consider a general parametric sub-model with a = a,, specified by 7 (a real number)

where £ a,(z)|-=0 = a(2) for some function a(z) with Ea*(Z) < oo. Take derivatives

of (2.4.1) with respect to 6 and 7 at (o = ag, 7 = 0) to obtain the scores

S()(T, U, Z,5,’y,90.a0)
§—Fq (T, 2) .
_ Bo ao(Z)
- 57 A(T, 8)e®

F5,(U, 2) - Fg (T, Z)

+ (8- Fy (T,2) + Fy (T, 2)

(2.4.2) % [A(U, 8) — A(T, 6)]e®0(2),

Sa(T,U,Z,fs,’)’,eo-,ao)
§—Fa (T, Z)
_ 3 o(Z), (7
= R0 A(T, 85)e™(Z)q(2)
v = [Fg,(U, 2) - Fg (T, Z)] _
Fa (T
Fy (U, 2) - Fy (T, 2) 3% (T)

+|0-F3(T.2)+

(2.4.3) x A(U, 8p) — A(T, 6)]e®(Z)a(2).

14



To find the information bound, project Sy to the linear span formed from all square
integrable Sp’s. This projection is denoted by S,+ and is computed by solving the

following equation, for all Sg’s,
(2.4.4) E(S0Sa) = E(S,*Sa)-
Note that

E(S|T,U, 2)

Fy, (T, 2),
E(7|T)U)Z) = FﬁO(U,Z)‘—FIBO(T,Z),

Var(§|T,U, 2)

Fg (T, 2)Fg (T, 2),
Var(y|T,U,Z) = [FﬁO(U,Z)—Fﬂo(T,Z)] x [1—(FﬁO(U,Z)—FﬁO(T,Z))],
(24.5E(v8|T,U,Z) = 0.

Substituting (2.4.2), (2.4.3) for Sp and S, in (2.4.4), taking conditional expectation

given (T,U, Z) first, and then taking expectation with respect to (T, U, Z), we obtain
E(DOI (T1 (11 Z» 001 (YO)G(Z)) = E(Dll(T1 U': Z’ 00’ ao)a‘(Z)a(Z)))

where Dy, and D), were defined in (2.3.1). Taking conditional expectation given Z

first, and then expectation with respect to Z, we obtain
(246) E[E(Dm(T, U, Z, 00, ao)]Z)a(Z)] = E[E(D“(T, U, Z, 00, QO)IZ)(I'(Z)G(Z)]

It can be verified that

E(Dy (T, U, Z, 6. )| Z)
E(Dll(Ta Ua Z) 00100)|Z)

(2.4.7) a*(2) =

solves (2.4.6) and hence also solves (2.4.4).

Therefore, the efficient score is given by

15



SO(T7 U7 Za 6: s 00) aO) - Sa‘ (T) U) Z1 6: Y 00) aO)

§— Fo (T, Z) .
_ B @ _ E(Do(T, U, Z, 6. )| Z)
- Fgo(’},Z) £@0(2) (A(T,OO) AT 00 5 b T 7 o 2) Z)
~ [Fg,(U, Z) - Fg (T, 2)]

Fp, (U, Z) - Fg, (T, Z)

N
+ |6~ Fg (T, Z) + Fo(T, Z)} e®0(2)

([A U,60) — A(T, 60)] — [A(U, 80) — A(T, 6)] E(Dy(T,U, Z, 90=00)|Z)>

E(Dll(Tv Ua Z1 00, aO)IZ)

The semiparametric information bound is equal to the variance of the cfficient score:
E[So T U Z 6 ’7,00,00) (T U Z (5 ’)‘,00,&0)]

and the asymptotic variance bound is the inverse of the information bound. Take the
conditional expectation of the square of the efficient score, given (T, U, Z) first, and

then expectation with respect to (T, U, Z) to obtain

E[So(T, U, Z,8,7, 80, a0) = Sg*(T, U, Z, 8,7, 80, 20)]* = E[S] + S24 — 250S,,+]

(E(Dm (T,U, Z, 0o, )| Z))?

= T,U,Z,6 -
E | Doo(T,U. Z, o, o) E(Du(T,U, Z,8, )| Z)

In view of (2.3.6), it follows that o2, the asymptotic variance of  achieves the as-

ymptotic variance bound.

2.5 An Extension

In this section, we will extend the above results to multiple interval censoring case.
Let (X, T, Z) be a random vector, where X still represents the survival time, Z the
covariate, and T = (T1,Ta,--- ,Tp), are the vector of monitoring times with P(0 <
Ty <T, <--- <Tp <o) =1. As before, T and X are conditionally independent,
given Z. Let A = (d,,0,,---,dp) where 0 —I(T 1<X<T; ) j=1,---,p. Set
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Suppose we observe n i.i.d. copies (Tj,44,2;) i=1,---,nof (T, A, Z), where
Ty = G Tip) Ay = 0108 p)and & 5 = I(T; 51 < X; <
Ti,j),j= 1,---,p, and Ti,0=0’ Ti,p+1 =ooforanyi=1,---,n

Then the conditional log-likelihood of (6, ) based on (Tj, A;), given Z;,1 =

1,---,n, is

n p+l

Ln(6,a) = -Z > 6 jlog (F(T; j,2;,6,0) = F(T;, j _ 1,Z;,6,0))

1-11_1

Z.
- —Z{zllogu—e AT O, 5 AT e

AT - o(Z;)  _ a(Z;)
+ Z 5i,jlog[e ATy, 5 —1,0)e™ ™ —e AT, 5, 9)et ]}
j=2
Here 52p+1—1 2]_1 i, 7 1=1,---,n.

The first and second derivatives of this log-likelihood with respect to (8, an) are
Sp,0(0.an)
aLn(e, Qn)

o0
_ IS~ an(zy) g5 EnT 1% .
N n;e : {61,117,3 ( ’L l,Z)A( ) 53’p+1A(T2’p,0)

P S0, T 3 ZAT: J’e)_Fﬂn(n,j—l’Zi)A(n,j—1’9)}
& .. . )
= Fg, (T3, 5. 2;) = Fg (T; 5 — 1, Z;)
Sn,s(eaan)
_ 6Ln(0,an)
a dans

_ 1 ~ & (Z;) 5 /Jn( 5,1 %)
= n;e n\4g IS‘(Z){ 1, lFﬁ (Tz,l’Zz)

N ivz_": 5 F3 (T; 5. Z)NT; 5,6) — Fg (T; 5 — 1, Z)A( 11—1~9)}
PR Fonllsy 20— Pty - 120 ’
s=1,---,k

A(T; 1,0) = b p + 1A(T; . 6)
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hoo(8, an)
BSn, 0(9, C!n)

oo
18 n@)fy 1) i
=A@, 1 F 1,2 T 10 ip+ 14T, )

j=p Fﬁn( ; ],Z)A( G, o 6) — Fﬁn(Ti,j—lei)A(n,j—l’o)}

+ 6;
Jz=:2 hI Fg(Ti, 5 20) = Fgy (Ti j — 1, Z3)
1< 7. Fﬁ (T i, 1» )
S URY; rw ALIURID

Fﬂn( z]aZ)Fﬂn( 2]—1’Z)

Jj=p
+ 6;
]2;21'7Mbn(117 Z;) = Fp, (T j -1, )

ATy, 5,6) - AT, 5~ 1,001},

hos(‘), Gn)
asn, 0 (07 an)
OJansg

= ;Zean( Z)IS(Zi){Ji,IWA(Ti,LQ)_5i,p+lA(Tin’0)

i=r Fﬁn( z]vZ)A( 1,5 0) — Fﬂn( 11_1’Z)A( »7_1’0)}

5:
+j§2 i, j Fo (T; 11 2) - Fg (T 1 — 1. 2)
ly n(Z; ﬂ (T, 1, I’Zz)
_E§e2a ( z)Is(Z){5z lfén(TﬁjA( )A(Ti,lve)
- Fg (T; 5.Z;)Fg (T; i _1,%;)
Bn'\ti, g On\ti,5—1
+ 5;
j2=22 "I Figo (T 51 Z) = By (T 5~ 1. Z0)F
x [M(T;, 5,0) = ATy, 5 — 1, O)AT;, ,0) — A(T; 5 — 1,0)]},
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hss(6, an)
6Sn’0(9,an)
a6 _
F, (T I’Z)
= —Zean IS Z){ i, 1%1\(7’@1,9) —6i,p+1A(Ti,p’9)
+§6. ’Fﬁn(z]vZ)A(z]’) Fﬁ( ]—le)A(z]—l’o)}
= Fon (T, 52 Zi) = Fp, (Ty, 5 — 1:.24)

j=2
1 n ) F ( i’ I’ZZ)

n
1=1
Fﬂ ( z])Z)Fﬁn(Tz]—l’Z)

Jj=p
+ 3¢
12—22”[% (T4, 52 Zi) = Fpp (T, j — 1, Z)P?

AT, 5,0) - ATy, j — 1.0},

where s =1,--- ,k, and Fﬂn(T’ Z) is defined in (2.2.4).

Under the assumptions similar to Condition A, we can prove analog of Theorem
(2.3.1) to (2.3.3) for this multiple interval censoring case. Note that the bold T is the
random vector while T is its ith coordinate.

First we need to define
Fp (Th,2) . P F (T; VZ)Fg (T; _1,2)
Bon "1 2 Bon Bon'“j—1
DOO(Ty Z! 00, C'O'n) = —A (Tl1 00) +
[Fﬂon(Tn,Z) j§2 Fg..\Tj,2) — Fg (Tj _1,2)

x[A(T}, 00) - A(T} _ 1,00)]2] 200n(2)

F (T[,Z) . Ld F ( )F ( -1 )
_ .60 ﬂon 50n 1
Doy(T, Z,68,00n) = [_—_Fﬁo:(Tlv Z)A(T,oo)A(T,ao)+j2_:2 Fﬂon(Tj 7= Fﬂon( " 1.2)

% [A(T;,00) = A(Tj _ 1, 80)[A(Ty, 60) — A(T; _ 1,60)]|e220n ()
P

F 1,2 F (Tv )F ( - vZ)
_ ¥ 2 Bon " Bon !
Du(T, Z,60,0n) = [Fﬂn T Z)A (1, 6o) +jz—:2 Fg (T-34,Z) - Fﬂon(T -1.2)

X[A(Tj‘oo) - A(Tj _ 1,00)]2] 320071(2)’

where Fgon (T, Z) is defined in (2.2.4).

The consistency of the sieve MLE can be proved similarly as Theorem (2.3.1)
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when we change the assumption (2.3.2) to
P(F(Tj,Z,B,a) —F(Tj_ 1.2.0,0)>c)=1, j=1,---,p+1, VO€EO.q,

and the assumption (2.3.4) to

E[DOI(T; Z~: 901 aOﬂ)Is(Z)]2 C
E[Dy(T, Z, 0o, con)1,(Z)) -

k
E[DOQ(T, Z, 003 Oon)] - Z
s=1

The consistency rate of the sieve MLE is still op(n='/%). The proof is analogous
to that in Theorem (2.3.2) except that we need to change the assumption (2.3.5) in

Theorem (2.3.2) to be

(E[Do\(T, Z, 60, )])*

E[Dw(T, Z, 65, a0)] -
[Doo(T, 2. 60 0)] = ~prp "7 00 a0)]

> 0.

The proof of the asymptotic normality is similar to that of Theorem (2.3.3). The

asymptotic variance now is

(E(Doy(T, Z, 6o, ao)lZ))2>} -1 |

2 T, Z, 60, a0)) —
0" = | EDu(T, 2,6, a0)) E( E(Dyy(T, Z, 80, 0)|2)

and this asymptotic variance also achieves the information bound.

2.6 Simulation

A simulation is presented before we go to the proofs of the stated asymptotic prop-
erties of the estimator.
Assume the conditional distribution function of X given Z is the Weibull distrib-
ution
L e_zﬁoeao(z)’
where ao(z) = log(z). Also assume that U and T are uniformly distributed on the

upper triangle of [1,2] x [1,2] and Z is uniformly distributed on ({0.2,1.2], and true

parameter 6y = 2.
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For each fixed sample size (n=30, 60, 100, 200 respectively) and appropriate k’s,
k is the number of jumps in the step function and increases with the increase of
the sample size n. 100 replications of the estimate of 6, based on the sieve maxi-
mum likelihood estimator are obtained. The means and standard deviations of these

estimators thus computed are reported in the following table.

Table 2.1: Simulation results for the Sieve MLE

n=30 n=60 n=100 n=200

mean std mean std mean std mean std

k=1 |1.9855 0.2673 | 1.8380 0.3417 | 2.0189 0.3150 | 1.9880 0.2565

=212.0357 0.3969 | 1.9430 0.2608 | 1.8871 0.3106 | 1.8022 0.1886

k=3 12.0975 0.4351 | 2.0002 0.1892 | 1.8456 0.2399 | 1.7890 0.1522

k=42.0529 0.2704 | 1.8907 0.2638 | 1.8676 0.2185 | 1.7865 0.1633

k=5 2.0067 0.3790 | 1.8841 0.1979 | 1.7821 0.1715
k=6 1.9103 0.3303 | 1.9250 0.2121 | 1.9425 0.2278
k=7 1.9241 0.1781 | 1.9200 0.1571

From the above table we can see that the mean is around the true value for all the
sample sizes and the standard deviations decreases with the increase of the sample

size n and k.
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2.7 Proofs

Beforc we go through the proofs, first we need some notation. If a is a vector with

elements aj ,1<j <m, then
laleo = max lajl.

1<y <

If A is an m x m matrix whose (4, j)th element is denoted by a;; o then

Al = (,Z laml>

Proof of Theorem (2.3.1)

Recall the definition of apn in (2.2.3). The Lipschitz continuity of aq implies that
(2.7.1) llaon = aolleo = O(k(n)71).

Note that S'n(ﬁn) = 0 is equivalent to

( Sn. 0(Bn) \
(2.7.2) Sn(Bn) = Kn, .1(’3") =0.
\kSn’ k(8n) )
The derivative of Sn(fn) with respect to G is
[ haoBn)  ha(n) o hog(Bn)
(273) Ho () = khoi(8n) khiu(8n) 0 0
0 0

\ khok(3n) 0 0 khyk(3n) )
where h is defined in (2.2.8), (2.2.9) and (2.2.10). The lower-right k& x k sub-matrix

is a diagonal matrix.
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Let
w(Bn) = ESn(Bn),

and

F3(T.2) ~ F3, (T 2) 1 (2)
Fg (T.2Z) € :

WI(T1 Uv Z, ,Bn) =

Wa(T,U, Z,Bn) = |Fg, (T, 2) - F, (T, 2)
Fay(V,2) - Fy (T, 2) - (Fp, (U, 2) - F,, (T, 2))
+ Fg (U,2) - Fp, (T, 2) Bn
F3,(T, 2)Fg, (T, Z)ezan(Z)

(7, 2)|een2),

W3(Ta U1 Z’ ﬂn) = Fén(T, Z)
VAT, U2, n) = = F3, (U, 2) - Fg, (T, 2)? o),
(2.7.4)

where Fﬂo(T’ Z) and Fﬁn(T’ Z) is defined in (2.2.4). Then by (2.7.2), (2.2.5), (2.2.6)
and by (2.4.5) we obtain

( E(W\(T,U, Z, Bn)A(T, 6) + Wa(T, U, Z, Bn)[A(U, 6) — A(T,6)]) )
(Bn) kE(WA(T,U, Z, Bn)A(T, 0)11(Z) + Wa(T, U, Z, Bn)[A(U, 8) — A(T, 0)]1,(2))
,_t —
\ KEWA(T,U. Z, Bn)A(T, 0)1k(Z) + Wa(T, U, Z, Bn)[A(U, 0) — A(T, 6)|1k(2)) ),
(2.7.5)

By the Condition A, F(T,Z,6,a) is Lipschitz in 6, «, uniformly for (t,2) € T x
Z. It is easy to check that p(3) = 0 and ||u(Bn)llec = o(1) if ||3n — Sonlle =
O(k™!) and P(Ij(Z) =1)=o0(1) for j=1,---,k.

Let ¥(3n) = EHn(8n). By (2.7.3) and the definition of hij(ﬂn), 0<14,5<k,
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( boo(Bn)  bor(Bn) -+ byr(8n) \
kbor(Bn) kbu(Bn) O 0
0 0

\ Kbok(Bn) 0 0 b(Bn)

2(»’371) =

where

boo(Bn) = E(WA(T,U, Z, B2)A(T, 6) + Wa(T U, Z, Bn)[A(U, 6) — A(T, 0)]

~ Wa(T, U, Z, B)AX(T, 9) - Wa(T, U, Z, Bn)[A(U, 6) - A(T, )%),
boj (Bn) = E([WA(T,U, Z, Bn)A(T, 6) + Wa(T, U, Z, 6)[A(U, 6) — A(T, )]

— W3(T,U, Z, Bn) x A(T,0)A(T,0) — W4(T, U, Z, Bn)[A(U, 6) — AT, 6)]

x [A(U,0) - A(T.6))|1;(2)),
bj;(8n) = E([WA(T,U, Z, B)A(T, 6) + Wa(T, U, Z, 60)| AU, 6) — A(T, 6)]

~ Wi(T, U, Z, n)AX(T, 0) = Wa(T, U, Z, n) A(U, 6) = A(T, )| 1;(2)),
bij(6n) = 0 i#j=1,k,
with W; to Wy as in (2.7.4).

The inverse of X(n) is

g0 k7'qor
(2.7.6) T (Bn) = ,
a0 K lqn
where
k p2. -
0J
= | by — 9 ,
doo 00 Z b
Qo1 is a row vector with its jth element
b
0 .
_qonb—]’ ]:1’2’..-7k’
2J
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and gi; is a k x k matrix with its (¢, 7)th element

boibo s
) ) —l 0—2 0J ) = cee

Since p(3) = 0 by (2.7.5), and by Condition A , u(Bn) is continuous in 3p, by

(2.7.1),

(2.7.7) ll11(30n)lloo = o(1).

Since X(3n) is continuous in Bn, by Condition A, £~!(3on) exists and ||Z~!(8on)|lco <
c for large n by (2.3.2), (2.3.3) and (2.3.4), it follows from (2.7.7) and the inverse func-
tion theorem (IFT) with sup-norm (Lemma 1 of Rossini and Tsiatis (1996), which is
stated in the following lemma) that there exists Bn = (é, én), with an of the form

(2.2.2), such that

(2.7.8) w(Bn) =0,
and
(2.7.9) 130 = Bonllee = o(1).

Next, suppose that there exists some finite constant ¢ such that

(2.7.10) 1S (Bn) | = op(1)

(2.7.11) P(IHz (n)lle <€) — 1,

then by IFT again, with probability tending to 1, there exists solution ﬁn = (é,dn)

of the equation Sn(8n) = 0 such that

”377, - 571”00 = Op(l)
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This, (2.7.9), (2.7.1), and the triangle inequality imply that
18n = Bolloo = op(1)-

This completes the proof of the theorem as soon as we verify (2.7.10) and (2.7.11).
Next, we shall prove (2.7.10) and (2.7.11). To prove (2.7.10), fix a € > 0, from the

definition of Sp(Bn) in (2.7.2), we observe that

(2.7.12)
P(ISn(Bn)lleo > €) < P (1Sp, 0(Bn)| > ) + P ( sup_kSp, j(Bn)] > g) .
1<j<k
Rewrite

nOﬁn) ZAzn
z—l

where {Ai, n}1<i<n is the ith summand in the r.h.s. of (2.2.5) with 3y, replaced by Gn.
By the Condition A and (2.3.2), there exists a constant C such that supy < j < p|4; pl <

C for all n. And by (2.7.8) we observe that
EA; p(8n) = ESy o(Bn) =0V i=1,-,n

Then Chebyschev’s inequality implies that

- € 4C*?
(2.7.13) P (lSn, NESTE 5) <=5
The second term in the upper bound of (2.7.12) converges to zero by Bernstein’s
inequality:
- € - €
2714) P sup |kS, :(Bn)>c|<k sup P (|kSn (Bn)| > _) :
'J 2 1<j<k "J 2

Here rewrite



where {Bz-’ nh<i<n is the ith summand in the r.h.s. of (2.2.6). Similarly, by the
Condition A and (2.3.2), there exists a constant C' such that sup; < ; < p|B; p| < C

for all n, we also have
EBz?,n=02<C2, ElB’i”nIpSCp-zp!EBg,n V i:l’-.. ’n’v pzz'

By (2.7.8),
EB; pn(Bn)=ESp j(Bn) =0V i=1,-- ,n.

Apply Bernstein’s inequality to obtain:

P(IkSp, ;B >5) = P (I > Bj, nlBn)l > %)

1=1

(2.7.15)

IA

P
*P\ T 16k%0? + 4Cke )

This together with (2.7.14), we obtain

- £ n52
(2.7.16) P sup |kS, ;(3n)| > =] < 2kexp (——) .
1S]Sk n,Jj 2 16k202 + 4Cke

Combine (2.7.12), (2.7.13) and (2.7.16) to obtain:

PllSn(n)l > €) = O (% + kexp(~ 1))

This proves (2.7.10) upon taking k = O(n”") for some 0 < v < 1/2.

Now we shall prove (2.7.11). Since

hoo(Bn)  ho(Bn) - hop(Bn) )
. khoy(Bn)  khi (3 0 0
Hn(in) o= | ) KaPn) ,

\ khop(n) 0 0 khy(Bn) )
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the inverse of Hp(3n) is

- ao(Bn) k'aoi(Bn)

(2.7.17) Hy'(Bn) = ] L
agy(Bn) k'an(8n)
where )
k hg
aoo(Jn) = hoo(ﬁn) - Z E_J(ﬁn) )
j=1"7
ao1(Bn) is a row vector with its jth element
. hoj -
—aoo(ﬁn)—(ﬂn), J= 1a21 vk’
hjj

and au([}n) is a k x k matrix with its (z, j)th element

(ﬂn)+aoo(3n) ‘” (Bn), §i=1,2,---,k

I/
( ’L'L ]]

i=)h

By the dcfinitions of h; (ﬁn) and b; (ﬁn),O < 1,7 < k, and the law of large

numbers for triangle arrays, we obtain

|hoo(Bn) = boo(Bn)| == 0 |hy;(Bn) = byj(Br)l =20 |hj;(Bn) = bj;(Bn)l = 0

0 < j < k. Together with the definitions of ag, ao1, a;; and goo, go1, q11, We get

(2.7.18) laoo(3n) — goo(3n)| == 0
llao1(Bn) — go1(Bn)|| == 0

IIau(Bn) - (Iu(Bn)H Z0.

By the facts that £~!(3p) is continuous, |~ (8on)lle < ¢, and ||3n — Bonlls = o(1),
we obtain ||£71(3n)|ls < ¢, this together with (2.7.6) , (2.7.17) and (2.7.18), we

proved ||H;;(5n)|ls < ¢ with probability approaching 1.
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Lemma 2.7.1 (Inverse Function Theorem with Sup-norm). Let A(z) be a contin-
uous differentiable mapping from R™ to R™ in a neighborhood of zy. Define the
Jacobian as the m x m matriz H(z) = 0A(z) (derivatives of the elements of H with

respect to the elements of x). If there exists constant C and 6* such that
IH (zo)l|o0 < C

and

sup [|H(z) — H(zo)|lw < (2C)71,
z: ||z — Zo||oo < 0*

then for d < 6*/(4C) and all y such that ||y — A(zo)|| < d, there ezists a unique
inverse value T in the §* neighborhood of zo such that A(z) = y and ||z — zo|| <

4Cd.(Rossini and Tsiatis 1996)

Proof of Theorem (2.3.2)

We are going to use some general results on the convergence rate of sieve esti-
mations. The following lemma is a part of Theorem 1 of Shen and Wong (1994).
To state the lemma, we introduce some general notation. Let Y;,---,Yn be a se-
quence of independent random variables (or possible vectors) distributed according
to a density po(y) with respect to a o-finite measure p on a measurable space (), B)
and let © be a parameter space of the parameter 3. Let £: © x Y — R be a suitably
chosen function. We are interested in the properties of an estimator 3 over a sub-
set ©n of © by maximizing the empirical criterion Cn(3) = 13", £(8.Y;), that is,
Cn(ﬁn) = mazTseo,Cn(3). Here On is an approximation to © in the sense that for
any 3 € ©, there exists mp/3 € Op such that for an appropriate pseudo-distance p,
p(mnB,8) — 0 as n — oo. The following additional assumptions are needed for the

lemma.
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CO0. ¢ is bounded.

C1. For a given 3y, 3 constants A; > 0 and a > 0, such that for all small ¢ > 0,

inf E(€(Bo,Y) — £(3,Y)) > 24,620,
p(ﬂ’ﬁf)) > 6713 € en ’ ) )) a

C2. For a given 3y, 3 constants A, > 0 and b > 0, such that for all small ¢ > 0,

inf Var(€(Bo,Y) — £(3,Y)) < 2A9e?.
p(B,5) <e€,0€0n

C3. Let On = {¢4(3,-) — €(mnBo,") : B € On}. For some constant ry < 1/2 and
A3 >0,
H(e,Qn) < Agnwolog(%) for all small € > 0.
where H (e, Qn) is the Lo-metric entropy of the space Qn, i.e. exp(H(e, Qn)) is

the smallest number of e-balls in the L.,-metric needed to cover the space Qn.
Lemma 2.7.2 Suppose Assumptions C0O to C3 hold. Then
P, ) = Op(max(n™, p(wnfho, o), K 2 (o, o))
where K (mnfo, (o) = E(€(5,Y) — €(mnfo,Y)) and
ia——_%r%, if b<a.

From the proof of Theorem 1 of Shen and Wong (1994), it is noted that the global

T =

maximizer could be replaced by a local maximizer around the real parameter and the
convergence rate is still true for the local maximizer. In this situation, the sieve Oy, is
a sequence of shrinking neighborhoods of the real parameter §;. To apply the above
Lemma (2.7.2) to our case, let Y = (T, U,Z.4,v), B =(0,«), mn3 = (0, an) where

anp is of the form (2.2.2) with anj = a(zj). Also let

On = {(8,0n) : 10 — bo| < an,|lan — &l < bn},
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where ap, and 3p are chosen such that, with probability approaching 1, the MLE

(é, ap) is in ©p. Define the metric as follows

(2.7.19) p(3,B0) = 16 = bo| + [la — aollo,
and let
(p,Y) = {stog1-e AT 0™ @) L 1og AT 02D _ AU, 0)e*(2),
—(1=68 - y)A(U, 0)ea(Z)}.
We shall now verify the conditions CO - C3 of Lemma (2.7.2) for this £. Note that in

the proof below we always denote C' as some finite and positive number. Under our

assumptions, CO holds. Note that

E(B,Y)

— E{(l _ e—A(T, eo)eao(z)) —A(T, B)ea(z))

log (1 —e
1 AT 00)eZ) _ AU, 80)e*(E)) 1 ~AT,0)e2E) _ U, 0)e(2),
AU, 80)e?(D) 1y ().

The Taylor expansion of ¢(3,Y) with respect to 6 and a around (6y, o), and the

fact that the expectation of the first derivative of ¢(3,Y) w.r.t 8 vanishes at 3y and

the matrix of the sccond derivatives is negative definite by (2.3.5), we obtain
(2.7.20) E(¢(Bo,Y) = €(B,Y)) > cp*(B. o),

for some finite and positive number c. Hence the condition C1 is satisfied with a = 1.

Note that the Condition A implies that for all y
(2.7.21) 1€(Bo,y) = (B, y)| < C(16 = b0 + |l = 0] o)

Hence
Var(€(8o,Y) —€(3,Y)) < E(¢(3,Y) — f(ﬁ,Y))2 < sz(,S’,,;”}o).
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Thus the condition C2 holds with b = 1.

By (2.7.21), we also have
(2.7.22) H(e,Qn) < H(e/C,On),

where H(1),©n) is the metric entropy of the space ©n with respect to the norm |6 —
6| + ||a — apl|o- Since O, is a sequence of shrinking neighborhoods of 3y = (6o, a9),
there exists a positive and finite number Cy such that |§| < Cp and ||an|| < Co,
(6,an) € On, and an is of the form (2.2.2). For any 1 > 0, divide the interval [0, Co)
into small intervals, with length at most 1/2, such that the number of intervals is less
than or equal to 2Cy/n + 1. Then it is easy to see that

(27.23)  H(n.0n) < log ((2—5" + 1) (2700 + 1) k(n)) < Ck(n)log (%) ,

as 7 is small enough. Hence, by (2.7.22) and (2.7.23), for all small ¢ > 0,

€ €
Therefore C3 is satisfied with vy = 2.

Thus lemma (2.7.2) is applicable to this £, which in turn yields that

(2.7.24) p(Bn. Bo) = Op(max(n™", p(mnfBo. Bo), K'*(nbo, 5))),

where
1-v loglogn
T = - .
2 2logn

Note that, for large n, 1/4 < v < 1/2 implies that 1/4 < 7 < 3/8. Since G =
(60, @), mnBo = (6o, on), where agn is of the form (2.2.2), by (2.7.19) and (4) of
the Condition A, we obtain that

p*(tn o, Bo) = |laon — ao|* < Ck(n)™? = Cn™™.
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Thus

(2.7.25) p(mndo, Bo) < Cn7".

The same argument as that leading to (2.7.20) gives that,

(2.7.26) K(mnBo. %) = E(€(Bo,Y) = £(mnfBo,Y)) < Cllaon — agl)* = Cn~?,

which is of order between o(n"'/2) and o(n™!) for 1/4 < v < 1/2. It follows then

from (2.7.24), (2.7.25) and (2.7.26) that for 1/4 < vy < 1/2,

P(,Bna 60) = Op(n—l/4)!

thereby complete proving Theorem (2.3.2).
Proof of Theorem (2.3.3)
Recall the definition of S, ((6, @) from (2.2.5). Furthermore let a be a measurable

function on Z with Ea?(Z) < oo,
L& (6 - FalTiz) .
Sn((),a)[a] = ; zgl {WA(TPG)(ZQ( l)a(Zl)
i = [FglU;, Z;) = Fg(Ty, Z;))
F(U, Z;) - F3(T;, Z;)
x [A(U;,0) — A(Ti,O)]ea(Zi)a(Zi)}

+ |0; - Fg(T;, ;) + F3(T;, Z;)

where Fﬁ(t, z) is defined in (2.2.4).
Denote the expectation of S, (6, @) and Sp(8.a)[a] by (6, a) and u(. a)lal

respectively. By (2.4.5), we obtain

Fs (T, Z) - Fa(T, Z) .
f3 B VA
; F(T,Z) AT, e2(?)

po(0, a) = E{

+ |Fa(T.2) - Fy(1.2)

Fﬂ (UvZ) - FB (T’Z) - [FB(U’Z) - FS(Ta Z)] _
" Fy(0,2) = Fy(T.2) Fy(T. 2)
(2.7.27) x [A(U,8) — A(T, o)]ea(Z)}

33



and

Fg (T, Z) - F4(T, Z)

p(6,0)[a] = E{ AT, 9)e¥Z)q(2)

+ [FﬂO(T, 7) - Fy(T,2)
F (U, Z) ~ F4 (T, Z) - [F4(U, Z) ~ F4(T, 2)]
F3(U,2) - Fy(T, 2)

AT, Z)]
(2.7.28) x [A(U,6) — A(T, 8)]e(Z )a(Z)},

where Fﬂo(t,z) and Fﬂ(t,z) are defined in (2.2.4).
The method used here is similar to that described in Huang (1996). From Lemma

(2.7.3) below, we obtain the following stochastic equi-continuity results, for every

0<C <00,V awith Fa?(Z) < oo,

sup ISn, 0(6, a) = po(8, @) — (Sp, 0(fo, @) — 10(6o, o))
6-80]<Cn 1/4,
|la=ap]|<Cn-1/4
= oi)(n_l/z)
sup |Sn(8, a)[a] — u(8, a)a] = (Sn(bo. @o)[a] — p(fo. ao)a])|
|6—6p|<Cn~—1/4,
[la—ap||<Cn—1/4
= o;)(n_m).

This and Theorem (2.3.2) yields

(2.7.29) Sn, O(é Gn) = “0(9"3'1) - (Sn, 0(fo. @) — po(bo, o)) = Op("_m)y

(2730) Sn(é,&n)[(l‘] — ,U(é, dn)[(l*] — (571(00,(‘10)[(1.] — u(@oyao)[a']) = 0])(71—1/2),

where a* is defined in (2.4.7).
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By the definition of § and an, Sy, (6, dn) = 0. Also note that (6o, ao) = 0 by

(2.7.27). It thus follows from (2.7.29) that

(2.7.31) po(6, én) = ~Sn, 0(6o, @) + op(n~'/?).

For the another part, we do not have Sn(é, én)[a*] = 0, but we will show that
(2.7.32) Sn(8, an)la’] = op(n~/?).

Together with p(6y, ap)(a*] = 0 by (2.7.28), we obtain from (2.7.30) that
(2.7.33) u(6. én)[a’] = —Sn(bo, o) [a’] + op(n~*72).

By the Condition A and that the third derivative of A(t,6) with respect to 8 exists
and is continuous, the Taylor expansion of po(é,&n) up to the second order with

respect to 6 and ap, together with (2.7.31) and (2.7.27) yields that

—E[Doo(T, U, Z, 86, a))(6 — 60) — E[Do(T, U, Z, 66, ) (é6n(Z) — ao(Z))

(2734) =Sy (6. 0) + Op(l6 — 8ol + llin — all2) + op(n™1/2)
Similarly we can obtain from (2.7.33) and (2.7.28) that

—E[Dy, (T, U, Z, 66, ag)a* (Z))(6 — 8y) — E[Dy1(T,U, Z, 8, 0)a*(Z)](6n(Z) — ag(Z))

(2.7.35) = —5Sn(60,@0)[a’] + Op(18 = 6> + llan — aoll%) + op(n™"/%).
By Theorem (2.3.2),

10 = 60 + lldn — ol %, = op(n™"/?).
Subtracting (2.7.34) from (2.7.35) and noticing the definition of a*, we obtain

E[Doo(T-, U, Z.0, 00) - D01(T» U, Z. 90,0(0)(1'(2)](‘é - 90)
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= Sn, 0(6o, @) — Sn (6o, ao)[a*] + op(n—l/2).

The theorem follows from the central limit theorem and the calculation of the

variance is straightforward.

Now we prove (2.7.32). Let

k
a(z)= 3 a'(z)I(2)
j=1
Condition A implies that
(2.7.36) llan, — a’llo = O(1/k(n)).

By the definition of (é, én), that is, it solves (2.7.2), we obtain
Sn(8, &n)lay] = 0.
Thus to prove (2.7.32), it suffices to show
Sn(6,én)la”] — Sn(8, an)a}] = o(n~12).

The left hand side of above equation is

Lo 8- Fy (T, 2)

Pn b (Z) i e
n AT, 6)en4y 7 — gt (2
o P (T3 )™ 00 a"(Z4) = an(Zy)]
Ly i~ [, U0 20) — B (T2 2]
n %= P, T2 + 0 L F: (T; 2

x o [MU;, 8) — A(T;, 0)en(Z)a*(2;) - ap(2)]

“ oy,

where
1 G Fy T2
n = Fp, T2

ATy, ) 2D (0" (2;) - a3 (25)),
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Y [F;gn(U Z) th(Tl’Zl)]

3. _
1 = - T,,Z;) + F. (T;, Z;
nzz_:l ! Fﬁn(Ul’dz)_F/én(Ti’Zi) On 2

x[A(U;,0) A(Ti,éne“"@i)[a'(zi) A

Rewrite I as
—Fs (T 2Z;) .~ .,
T %Zl Fa [30 T;, Z;) AT, 8)en %) (a*(2;) - a3 (2;)]
n ( 1 Zi) ~ Fy (T3, Z)) )
1 o NN (Z )7\ _ e (7
2 F[;n(T,,Zi) AT;, )ebn(ZD(a(Z;) - ap(2,)).

By (2.7.36), Theorem (2.3.2) and the Lipschitz continuity of F with respect to 6 and
a by Condition A, the second term is op(n=1/2) . For the first term, by Theorem

(2.3.2) and Condition A, we can write it as
6; — Fp, (T3, Z;) Fg, (T}, Z;)

1
8; — Fg (T, Z;) ) .
= & 30 e (14 0plld - fol +lfdn — ool)) (AT 00) +Op(1d - to)

= Fs(Ti 2
(702D + Op(licin — oll)) [a°(Z;) - ai(Z)))

- AT, 0)e5n(Zi)(a (2;) - 0y (2;)]
1

3 |I.M=

This is op(n~'/?) by Central Limit Theorem, Theorem (2.3.2) and (2.7.36). A similar

argument yields that II is also o(n='/2). This complete the proof of (2.7.32).

Lemma 2.7.3 Under the condition of Theorem (2.3.3), for any positive and finite

number C, and for function a on Z with Ea*(Z) < oo,
sup [Vn(Sp, 0(6, ) = po(6, @) = v(Sy, ¢(80, @) — po(bo. o))l

|8—6o|<Cn-1/4
|jx—exg||<Cn-1/4

O;)(l)v
sup N |vVn(Sn(0. @)[a] — po(8, @)[a]) = vVn(Sn (0, ao)la] — p1o(o, o)[a])]
leoli< -1/
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Proof We shall only prove the first part since the second one can be proved similarly.

Note that v/n(Sy, (6, ) — po(8, @) — vn(Sy, (6o, @) — po(bo, @o)) is an empirical
processes indexed by functions belong to the class

d — Fg(t,z2) .

c = {f(&,'y,t.u,z,a,a) = —Fﬁg,_z)—ZA(t’o)ea(Z) -
v - [Fﬂ(u, z) - Fﬁ(t,z)]
Fﬁ(u, z) — Fﬂ(t, z)

7 = [Fy(u, 2) = Fpo (8, 2)] , ,

Fg,(u,2) — Fg(t,2) Figo(t,2)] x [A(u,60) - A(t,oo)le"f’(’f) :

(2738) 19— 60l < Cn~V4, Jla - aol < Cn 4},

d— Fﬁo(t,z)

Fg(t,2) A(t, p)e0(2)

+[6 — Fy(t,2) + Fa(t,2)] x [A(u,0) — A(t, 0)]e™(?)

-[6- Fg,(t,2) +

that is, by the functional notation used in van der Vaart and Wellner (1996) for the

empirical processes,

\/E(Sn, 0(6,a) = ko(8,a)) = vn(Sp 0(60, a0) — o(6o, @0))

(2.7.39) = n(Pp — P)f(8,7,t,u,z2,0,a),

where Pp is the empirical measure based on (;,7v;,T;,U;, Z;),i = 1,--- ,nand P is
the probability measure of (4,v, T, U, Z) with respect to the real parameters (g, ).

Note that under Condition A, functions in C are uniformly bounded for large n, and
(2740) |f(6a Y t) u,z, 01 a) - f((sv T t) u, 23907 00)' S CO(IO - 00] + ”a - 00“30)1

for some finite and positive number Cy. Therefore, C is a set of functions which are

Lipschitz in parameter (6, «) € D, where
D= {(f —fy.cr — xg) : v is of form (2.2.2),]0 — | < Cn~ Y4 |l — o] < Cn'l/"}

and the norm in L, (D) is ||(01, a1) — (02, @2)||» = |01 — 0] +]|@1 — @2|| . By Theorem

2.7.11 of van der Vaart and Wellner (1996), the metric entropy of C with bracketing
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with respect to L,(P) norm
H; (e,C,L2(P)) < H(e/c,D, L),

for some finite and positive number c. When we prove Theorem (2.3.2), we already
obtained

H(e,D,Ly) < Clk(n)log(%),
for some finite and positive number C;. Hence

1
Hp y(e,C,Ly(P)) £ Cgk(n)log(z),
for some finite and positive number C;. It follows that for any ¢ > 0, there exists

0 < C3 < 0o, not depending on n, such that

Ji 1(e,C, Lo(P) %/ /(: \ﬁ+ Hy (t,C, Ly(P))dt < Csk(n)/2e!=", for any 7 > 0.

This and the fact that k(n) = n?, with 0 < v < 1/2, in turns imply that
(2.7.41) Ji j(Cn~Y4.C, Ly(P)) = o(1).
Note that f(4,v,t. u, 2,6, a0) = 0 by (2.7.38). This fact and (2.7.40) imply that, for
any f € C,
(2.7.42) P(f*(3,7,t,u,2,0,a)) < Cyn~ /2
for some finite and positive number Cy.

Apply Lemma 3.4.2 of van der Vaart and Wellner (1996), which is stated in the
following Lemma (2.7.4). Let Y; = (4;,7;,T;,U;,Z;),i = 1,--- ,n,F = C and € =
Cn~'4. By (2.7.42) and f is bounded, f € C, the conditions of the lemma hold. It

follows from the lemma and (2.7.41) that

VRE*( sup |(Pn = P)f]) = o3(1).
fec

In view of (2.7.39), we obtain (2.7.37). The lemma is proved.
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Lemma 2.7.4 LetY,,Ys, -+ ,Yn be i.i.d. random variables (or possible vectors) with
distribution P and let Pp be the empirical measure of these random variables. De-
note Gp = \/n(Pn — P) and ||Gnl|r = SUpf ¢ F |Gn f| for any measurable class of

functions F. Denote

Ji }(e,]-',Lg(P))=/0( \/1+H[ (&, F, Lo(P))dt.

Let F be a uniformly bounded class of measurable functions. Then

» J[ ](fwf)L2(P))
BlGnllr < 01 (e, La(P)) (14 T2,

if every f in F satisfies Pf?, €2 and ||f|lc < M. Here E* means outer expectation

with respect to P.
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Chapter 3

Model Check

3.1 Introduction and Main Results

The purpose of this chapter is to develop tests of lack-of-fit of a regression model when
the response variable is subject to interval censoring case 1. Now let Y° denote the
times of the onset of an event and T° the time of inspection. Suppose, additionally,
one is interested in assessing the effect of a covariate Z on the time of the onset of
the event, for example one may wish to asses the effect of the age of a patient on the
time of onset of a disease in the patient. One way to proceed is to use the classical
regression analysis where one regresses Y := log Y? on Z but one observes only (4, T)
with T = log 7°. But then the question of which regression model to chose from a
possible class of models becomes relevant.

More precisely, assume Y has finite expectation and let u(z) := E(Y|Z = z) de-
note the regression function. Let M = {my(z) : z € R,0 € O} be a given parametric
family of functions, where © is a subset of the g-dimensional Euclidean space R?. This

class of functions represents a possible class of regression models and the problem of
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interest is to test the hypothesis
Hy: p(2) = mgo(z), for some 6, € ©, Vz €R,

based on n ii.d. observations X; = (§;,7;,Z;),1 < i < n on (6,T,Z), where
0 = I(Y < T). The alternative of interest is that Hp is not true.
In the case Y;’s are fully observable tests for the lack-of-fit hypothesis Hy have

been based on the marked residual empirical process

(3.1.1) VR Z )1(2 <z), z€R,

where 0y, is y/n-consistent estimator of 6y under the null hypothesis, and sé(z) is the
conditional variance of Y —mg(Z), given Z = z, under Hy, cf., An and Cheng (1991),
Stute (1997), and Stute, Thies and Zhu (1998), among others. The last paper showed
that the tests based on its innovation martingale transforms are asymptotically dis-
tribution free.

Our focus here is to develop an analog of this transformation for the current status
response data when the error distribution is known. Since the Y;’s are not observable,

we need to replace them in (3.1.1) by )71', a copy of
(3.1.2) Y = E(Y|6,T,Z)=6E(Y|8,T.Z)+ (1 -8 EY|sT,Z).
To proceed further, let F' denote the d.f. of the error € := Y — u(Z). Assume that

(3.1.3) F is continuous, 0 < F(y) <1, forall y € R, Ee =0, Ec? < oo.

€ is conditionally independent of T, given Z, and T is independent of Z.
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Then, with F:= 1 — F, we obtain,

Jhy dF(y - u(z)
F(z ; 1(z))

Jio FEy ar(y)
= TFReoae) MO
Sy dF (y — p(2))

1-F(t - p(z))

ft—u(z)y dF(y)

F(t - u(2))

(3.14) E(Y|§ =1,T = t,Z = 2)

E(Y|§=0T=t2Z=2) =

+ pu(z), t,z e R
Let
z
R(0,t,2) = EY|0,T=1t2=2z2) - p(z), v(z) = / y dF(y)

a*(2) := Var(R(,T, 2)|Z = 2), t,zeR.

From (3.1.2), (3.1.4) and the fact v(oco0) = 0, we obtain

oM yape) T v dFW)
R(6,t,2) = ¢ ) +(1- ——F(t—[t(z))
1) 1-4

=t ONF @) ~ Fa=p@)
(t = p(2)l6 - F(t - p(2)]
Fli— w2 Fl—p(2)

By the conditional independence of € and T, given Z, E{R(8.T,Z)|T,Z} = 0 and

(3.15) 0<o%(z) = E{ T ((T)F’E;) e }<oo VzeR,

Eo*(Z) < oo, by the assumption Ec? < oo.
The entities R(6;,T;,Z;)/0(Z;) play the role of the standardized residuals in the
current status data.
To test the simple hypothesis H : ju(z) = pio(2), z € R, where 19 is a known
function, the analogue of the process (3.1.1) suitable here would be

1 & Ro(6;. T}, Z;)
VO(z) = —————————IZ <z), z€R,
n \/_Z Zl) ( 1 )
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where Ry, o are the above R, o functions with yu replaced by uo.
Let H and G denote the d.f.’s of T and Z, respectively, and B denote the standard
Brownian motion on [0,00). Using an argument similar to one used in Stute (1997),

it can be verified that under (3.1.3),
V)= BoG,  D[-00,00], in uniform metric.

Thus, for example the test that would reject H whenever Kp, := sup, ¢ R VA(z)] >
ba, where b, is 100(1 —a)th percentile of the distribution of supg < ¢ < 1 |B(t)| would
have the asymptotic size a.

To discuss the more interesting problem of testing Hy, we proceed as follows. For
convenience, let Py denote the joint distribution of (6,T,Z) when u = my, and Ey
and Vary denote the corresponding mean and variance operations. Let Ry, g stand
for R, o when ;1 = mg and 0y, denote a v/n-consistent estimator of 6y, under Hy, based
on (6;,T;,Z;);1 < i < n. Tests of Hy will be based on the process Vn(z) := Vn(z,6n),

where

9(6;,T;, Z;)

(z < bee.
Va(z,6) \/_Z oo(Z) I(Z;<z), z€Rbe

To analyze asymptotic behavior of V;,, we need to make the following assumptions.
(316)  Vallon — b0l = Op(1), (Py)
(3.1.7)  The d.f. F has a continuous density f and my is differentiable in a
neighborhood of 8y with its ¢ x 1 vector of derivative Th()o, so that there exists

a family of ¢ x 1 vectors of functions geo(t. 2,0), z€ R, t € R, 6 € ©9, which is

Rp(t,z, 0
the derivative of % with respect to 6 at # = 6y, such that V0 < b < 00
0
Ry(T;, Z;,6; Ry (T;,Z;,6;)
. sup Vn o(T; Z?. i) _ 00( AR’ _(g—eo)geo(Ti,Zi,éi) = op(1),
VRlI0-6ol1<b, 99(Z;) 96,(Z;)
1<i1<n
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(3.1.8) Eg 199, (T3 23, 6)1I* < oo.

Let v(z) denote the derivative of v(x) with respect to z € R and R9 denote the vector

of the first derivatives of Ry with respect to #. Direct calculations show that with

2=t - mg(2)
At = [P FEN 0] s SO=20)
Let
hy(z) = #(AZ)E(,RO(M,Z),
o) - £(MIEmIENT ) g e

Use a conditioning argument and the independence of € and T, given Z, to obtain

. . 7’n90(z)
E00R90(6, T, z)= fao(z,H)mgo(z), hgo(z) = Eeo(z,H) o9 @
o
Next, let
Ry(8,T, 2)
= —_— <z .
Dy(2) E(,{ s 1z < )}, 2€ER,0€O

Note that the independence of T and Z enables one to write
(3.1.9) Dy, (z) = / hg, (u) dG(u), z€eR.

Arguing as in Stute (1997), which uses a standard Taylor expansion, a Glivenko-
Cantelli type of an argument and a weak convergence argument, we obtain the fol-

lowing

Theorem 3.1.1. Under the assumptions (3.1.3), (3.1.6) - (3.1.8), we obtain that

uniformly in z € R, under Py,

V; ( ) ‘/n( 00) + n (an - 90)’D90(Z) + Op(].)
Moreover, Vp(-,6y) => B(G(-)), in D[—oc, 00|, with respect to the uniform metric.
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Next, we develop an analog of the linear transformation of Stute, Thies and Zhu

(1998). Let

Ag,(2) = /Z mhgo(u)heo(u)’dG(u),

/ 82 m90 (u)mg0 (u)
0() (u)

dG(u), = z€R

Note that this is a nonnegative definite ¢ X g-matrix. But we shall assume that

Ago(z) is nonsingular for all z < oo and define the linear functional transform

2z 00
@) = o= [ g agie | [ g detasn) 6, zer
- 1

When we apply @) to Brownian motion BoG, the inner integral needs to be interpreted
as a stochastic integral.

Observe that (3.1.9) readily implies
Q(D,QOU ) =0, for any random vector U.

Arguing as in STZ, one can also verify that @ maps B o G to B o G. Consequently,

we have
Q(BoG+DyU)=Q(BoG)=BoG, forany random vector U.

These observations together with Theorem 3.1.1. suggest that under Hp, QVn
would also converge weakly to B o G. But the transformation @ depends on the
unknown parameters 6y, H and G. Let hp, A, and opn denote the h00’ Af)o and %9,
after 6y, H and G are replaced by 65, and the empirical d.f.’s Hy and Gp, respectively,
in there. Define an estimate of @ to be

z %
(@ne)(z) = ¢(z) - /_oo hn(z1) Ap'(21) [/21 hn(Zz)sﬂ(dzz)] dGn/(z1).
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To verify the weak convergence of @Qn Vi we need the following additional smooth-
ness condition on hy(z). For some ¢ x ¢ square matrix izgo(z) and a non-negative

function Kjy(z), both measurable, the following holds:
E|lhg (Z)|V Ko(z) < 00, Ellhg (2)lllhg,(Z)I <00,  j=0,1,
and Ve > 0, there exists a § > 0 such that ||§ — 6y|| < § implies
llhg(2) = hy,(2) = hy (2)(8 = 8o)]| < eKo(2)]8 = boll,
for almost all 2(G).

Using the methods of proof of STZ or Koul and Stute (1999), one can verify

that under the above assumed conditions and under H,, QnVn = B oG. Hence,

under Ho, sup, ¢ g |QnVn(z)] = supg <u<1I|B), [([@nVn(2)]?dGn(z) =

fol B?(u)du, and the corresponding tests are asymptotically distribution free.

3.2 Estimation of 6

In order to apply the above results, it is important to have an estimator 6 of 6, under
H, satisfying all the assumptions. Li and Zhang (1998) constructed an asymptotical
efficient M-estimator of the regression coefficients in a linear regression model with
interval censored data and when the error d.f. F' is unknown. Since here F' is assumed
to be known and since their estimator is computational much more involved, we shall
instead use the conditional least square estimator defined by
" 2
6 = argming ¢ g Z [62‘. - F(T; = mg(Z;))] -

1=1

Assume that F has a continuously differentiable density f and

S, = E(f2(T - 77190(2))m90(2)m90(2)')
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is positive definite. In addition assume that ry is continuously differentiable with the
matrix of derivatives 7'7’100(z) satisfying ||m0 (D)l < Mg, (), with [ MG 2)dG(z) <

0o. Then using the classical Cramér type of argument one can verify that

n'/(6 - 6)

= Zyin7l/? > 16 = F(T; — mg (Z))f(T; — mg,(Z3))rig, (Z3) + op(1),  (Pg,)-
i=1
Consequently, under Hy,

n'2(6 — 6p) => Ny(0,Q%),  Qp:= Eé;MOEé;,

My = E{(FF‘ )T~ mg (2)) mgo(Z)rheo(Z)’}.

See, e.g., Liese and Vajda (2004) for a general method of proving asymptotic normality

in nonlinear regression models.

3.3 A Simulation

Here we shall exhibit results of a finite sample simulation. For simplicity we took M

to be simple linear regression model. Thus ¢ =1 and Let
M ={m(-,0) : m(z,0) = 0z}.

In this case then several entities simplify as follows. Let Z;) < Z3) < --- < Zn)
denote the ordered Z;’s and T{;)’s, d(;)’s denote the corresponding T;’s and 4;’s. Also,
let €n5(2) = €9, (Z0), Hn), Bnj = Ry, (84), T0), Z»)s nj = on(Z(y), and Ap;
An(Z()), where now

n
1 2(Z0)
An(z) = = nA2(i) (2, > z).
n(z) 'l.gloﬁlm Z5H1(Z; > 2)
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n n
- 1 Zilni 1 5 Zy)lnjBnj
= Vn(z) - -T; A 'onz' 12 2‘]’ J I(Z(j) ANz 2> Z(,'))
i=1 n-ne ] =1 nj

N ZoZinl, b, R. .
= -5 ) {I(Z(j) <z)-- '%MI(ZU) Nz 2> Z(i))}ﬂ
nes s N, =1 “ni%ni%nj 9nj

To test the hypotheses H and H,, we consider the following two tests based on
process V;0(z) and Qn Vi, (z) where

Kni= sup [V3(z)  Kn:= sup |QnVn(2).
z€R zeR

We reject H (Ho) whenever Ky, > b, (Kn, > bs), where b, is the 100(1—a) percentile

of the distribution of supy < ¢ < 1 |B(t)|- Note that

J
Ro(Sy, Ty, Z
Ky = & max 3 6 (0> Tiwy (k))’
\/ﬁlgkgnizl Uo(Z(k))
kAj
Kn = -~  max zk: [1_1 ZJ Z<f>Z<j>fnifnj]an
" vart<ks<nal & U ny

i=1 Am'"nianj Inj

Next, we examine the finite sample performance of the test statistic Kp and

Kn through some simulations. We generate the covariate Z;’s from the uniform

distribution on the interval [0, 1], and Y;’s according to

2 .
Yi=3Zi+aZi+€i 1<i1<n,
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while €;’s are simulated independently from the following distributions.

I: logistic(0,8): logistic distribution with location parameter 0 and scale
parameter 3.
II:  Normal(0,0?).
IIT: DE(0,3): double exponential distribution with location parameter 0 and

scale parameter 3.

We also generate the censoring time variable T;’s from the uniform distribution on
the interval [0, 3]. Hence H : p = 3Z, Hy : m € M hold with 6, = 3 if and only if
a=0. .

We compute the empirical sizes and powers for different values of a and different
error distributions. The results represent the Monte Carlo levels when a = 0 and the
Monte Carlo powers when a # 0. The sample sizes used in the simulation are n=100,

200 and 400, each replicated 1000 times.
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Table 3.1: Empirical sizes and powers of Kn, test, € ~ logistic (0, 5)

a=0.1 a=0.05 a=0.01

a B|n=100 n=200|n=100 n=200|n=100 n =200

1 0.088 0.095 0.043 0.043 0.022 0.021
0 2| 0.092 0.098 0.046 0.048 0.021 0.022
3| 0.101 0.079 0.047 0.040 0.021 0.021

1] 0.262 0.488 0.162 0.348 0.108 0.252
1 2| 0134 0.237 0.090 0.150 0.054 0.104

3| 0131 0.149 0.077 0.085 0.045 0.052

1| 0.641 0.922 0.527 0.869 0.406 0.784
2 2| 0327 0.568 0.221 0.455 0.146 0.341

3| 0.209 0.348 0.130 0.242 0.083 0.166
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Table 3.2: Empirical sizes and powers of Kn, test, € ~ Normal (0, 0?)

a=0.1 a=0.05 a=0.01

a o0(n=100 n=200|n=100 n=200|n=100 =n =200

1| 0.105 0.100 0.057 0.045 0.034 0.018
0 2| 0.089 0.091 0.043 0.040 0.017 0.019

3| 0.095 0.086 0.045 0.044 0.026 0.019

1] 0.416 0.742 0.313 0.630 0.233 0.053
1 2| 0.208 0.385 0.135 0.270 0.089 0.187

3| 0.155 0.260 0.085 0.173 0.045 0.107

11 0.890 0.987 0.808 0.976 0.722 0.964
2 2| 0.581 0.870 0.472 0.782 0.363 0.686

3| 0.363 0.639 0.265 0.528 0.186 0.423
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Table 3.3: Empirical sizes and powers of Kn test, € ~ Normal (0,02)

a=0.1 a=0.05 a=0.01

a 0[n=200 n=400 | n=200 n=40|n=200 n =400

1] 0.066 0.092 0.031 0.031 0.012 0.014
0 2| 0.058 0.093 0.022 0.035 | 0.005 0.016

3| 0.083 0.156 0.035 0.075 0.019 0.037

1] 0.058 0.107 0.022  0.048 | 0.008 0.017
1 2| 0127 0.171 0.065 0.093 | 0.028 0.057
3| 0.119 0.229 0.052 0.123 | 0.026 0.077

1| 0.225 0.509 0.124 0.344 0.056 0.204
3 2| 0211 0.472 0.122 0.290 0.064 0.195

3( 0.195 0.344 0.113 0.219 0.056 0.124

1| 0.305 0.619 0.169 0.448 0.087 0.302
5 2| 0288 0.541 0.019 0.414 0.110 0.291

3| 0.243 0.396 0.157  0.279 0.091 0.192
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Table 3.4: Empuirical sizes and powers of Kn test, e ~ DE (0, 3)

a=0.1 a=0.05 a =0.01

a B|n=100 n=200{n=100 n=200 | n=100 n =200

1] 0.088 0.089 0.040 0.045 0.025 0.020
0 2| 0078 0.099 0.041 0.045 0.022 0.020
3| 0.102 0.080 0.045 0.049 0.023 0.027

1] 0.350 0.574 0.231 0.433 0.147 0.340
1 2] 0.205 0.342 0.135 0.246 0.075 0.172

3| 0.146 0.242 0.082 0.170 0.046 0.102

1] 0.747 0.968 0.644 0.939 0.537 0.904

2 2| 0.508 0.792 0.388 0.691 0.264 0.591

31 0345 0.576 0.241 0.458 0.159 0.349
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Table 3.5: Empirical sizes and powers of Kn test, e ~ DE (0,3)

a=0.1 a=0.05 a=0.01

a f|n=200 n=400|n=200 n=40|n=200 n=400J

1| 0.102 0.083 0.058 0.038 0.030 0.019
0 2| 0.083 0.089 0.047 0.041 0.025 0.025

3| 0.086 0.093 0.042 0.042 0.014 0.019

1| 0.106 0.169 0.051 0.089 0.017 0.050
1 2| 0.080 0.135 0.040 0.067 0.019 0.040

3| 0.081 0.122 0.042 0.058 0.021 0.025

1 0177 0.477 0.091 0.301 0.042 0.171
3 2| 0191 0.355 0.098 0.233 0.050 0.144

3| 0.161 0.286 0.082 0.175 0.042 0.109

1{ 0.217 0.534 0.090 0.343 0.042 0.217
5 2| 0274 0.548 0.165 0.401 0.082 0.263

3| 0.231 0.470 0.135 0.323 0.080 0.203




From the above tables, we can see the empirical sizes are close to the nominal
level when sample size is large. Under the alternatives, the power decreases as (3 or

o increases, while it increases as a increases and sample size increases.
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