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ABSTRACT

PREDICTING RELATIVE WORKLOAD DURING CONSTRUCTION

ACTIVITIES USING MULTIPLE REGRESSION TECHNIQUES

By

Lili Xi

In this thesis, the method developed by Abdelhamid (1999) to predict relative

workload from in-situ collected sub—maximal oxygen uptake data is redeveloped for

100 experimental subjects from Michigan State University. A relative workload

prediction equation (RWP equation) is developed. The standard error of prediction for

"/oVOZmax and V02max are i7.6% and i065 liter- min’l, respectively.

In an effort to improve the predictive accuracy of the RWP equation, a number of

factors were considered in constructing a multiple linear regression (MLR) model.

The prediction capability was best when the Energy of Green‘s function, relative heart

rate, and body surface area were used as predictors. Using the regression model that

combined these predictors, the standard error ofprediction for "/oVOzmax and V02max was

14.9% and $0.53 liter - min“, respectively.

All regression models have been validated using non-steady state oxygen uptake

and heart rate data measured for 100 validation subjects. The MLR model provides a

robust, efficient and reliable statistical methodology capable of predicting relative

workloads from submaximal exercises data collected in-situ. The prediction

technique would be critical to the success of many field studies and would greatly

enhance work study and exposure/risk assessment methods.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Construction work is physically demanding work. The culture of the

construction industry has evolved such that contractors rely heavily on hand labor with

small, relatively inexpensive and multipurpose tools. This reliance on hand labor may

explain why, in the Jobs Rated Almanac ranking of 250 jobs for physical demands,

construction trades account for 18 of the worst 50 jobs in the United States (Krantz

2000). The situation is not much different in other parts of the world. In the

early ’905, "3K", derived from "Kitsui" (physically hard work), "Kiken" (hazardous)

and "Kitanai" (dirty), became a fashionable term in Japan to describe the construction

industry (Everett and Saito 1996). Apparently, the construction industry has resigned

itself to the notion that a high level of physical effort is an inherent part of doing the

work.

A known fact about physically demanding work is that it leads to physical fatigue

that may lead to decreased productivity and motivation, inattentiveness, poor judgment,

poor quality work, job dissatisfaction, accidents, and injuries (Brouha 1967, Janaro

1982, Injury Facts 2003). Many investigators, dating back to Frederick W. Taylor (the

father of Scientific Management) in the early 19005, have argued that since physical

fatigue affects performance, performance can be improved by either identifying and



eliminating the causes of physical fatigue or by at least finding ways in which to

combat its effects (Aquilano 1968 and Janaro 1982).

Consequently, understanding the physical demands of construction work is of

paramount importance in protecting the workforce’s safety and health, and to improve

productivity. As suggested by Brouha (1967), such understanding is the key to the

solution ofwhat a man can do safely.

The most common methods of measuring physical demand are those of

measuring the oxygen consumption or oxygen uptake, V02 (usually measured in liters

of oxygen per minute), during work or exercise, and/or recording the heart rate HR

(measured in beats per minute) associated with the performance of an activity.

Measured VOz has also been used to indirectly estimate energy costs of performing

various human activities, which in turn is used to assess potential for physical fatigue.

Earlier studies on the physical demands of construction activities date back to the

19503 and 19605. These studies were based on work physiology, and energy

expenditure values were collected for various trades. These investigations concluded

that accurate assessment of construction activities’ physiological demands is

particularly difficult. This difficulty was attributed to the variety of individual

operations involved in one activity, and to the lack of consistency among construction

workers in adopting a technique to carry out an activity, let alone its individual

operations (Astrand and Rodahl 2003).

Unfortunately, work physiology has been neglected in most contemporary

construction workforce research. Abdelhamid and Everett (1999) reversed this

situation and demonstrated the feasibility of measuring in-situ physical demands of



construction activities for a concrete placing and finishing operation, using work

physiology techniques.

Encouraged by these results, a larger study was conducted on construction sites to

measure the level of physiological effort at which construction workers work and to

evaluate if the effort exceeded physiologically-based standards and limits. Oxygen

uptake (V02) and heart rate (HR) data for 100 construction workers from 12 different

construction trades were collected. Data was collected over a period of 18 months.

The trades tested are Asbestos Workers, Bricklayers, Carpenters, Carpet Installers,

Cement Finishers, Drywall Installers, Electricians, Glaziers, Ironworkers, Laborers,

Pipe Fitters, and Sheet Metal Workers. The results of this study have been published

in Abdelhamid and Everett (2002).

The research findings of Abdelhamid and Everett (2002) indicated that the use of

any one physiological measurement does not present the entire story regarding the

physical workload affecting an individual worker. Wide differences were noted

among individual workers’ responses to strenuous work. Abdelhamid and Everett

(2002) concluded that:

“Future research should investigate not only the absolute energy expenditure,

oxygen uptake, or heart rate for individual workers, but how these values relate to the

individuals’ maximum values for each measure. Maximum values are difficult, if not

dangerous, to measure, but would lead to a better prediction of physical fatigue.”

This research is motivated by the need to better understand the physical demands

of construction work based on subject-specific measurements. Prior to accomplishing

this need, a technique that enables the assessment of subject-specific physical demands

needs to be developed.



1.2 Need Statement

Many work physiologists recommend expressing measured oxygen uptake as a

percentage of maximum oxygen uptake (VOZmax), commonly known as relative

workload (%V02ma, = VOmg/VOzmax), because it provides a subject-specific workload

(Astrand and Rodahl, Bonjer 1971, Rohmert 1973, Kamon 1979, Tomlinson and

Manenica 1977). In addition to accounting for individual differences in physiological

capacities among workers, relative workload also enables more accurate assessment of

potentials of physical fatigue.

As the expression for relative workload indicates, once a subject’s V02max is

known, the determination of %VO;Jnalx is arithmetically simple. Individuals vary

greatly in their respective V02max values beCause it can be greatly influenced by genetic

factors of age, gender and body dimension, as well as by other factors such as tobacco,

alcohol, caffeine usage, climate, and psychological factors. In general, determining

V03max is accomplished through the use of direct (exact) measurement or prediction

techniques. Exact measurement of V02max is impractical for applied research due to

its intensive and intricate laboratory procedures as well as the risks it poses for unfit

subjects. Prediction techniques offer an attractive alternative with numerous linear

and non-linear regression techniques available.

Abdelhamid (1999) developed a new method capable of such prediction. This

new prediction methodology was based on the hypothesis that oxygen uptake data are

serially dependent, and that by exploiting this dependence, using time series analysis

techniques, a regression model between relative workload (%V02max) and a statistical

characteristic of collected oxygen uptake data can be developed.



In Abdelhamid (1999), a time series-based metric called the Energy of Green’s

function (E(;) was found to be strongly linearly correlated to relative workload

(%V03max). Based on this finding, a simple linear regression model was developed

using data from 20 subjects. The regression model had a standard error in predicting

%VOzmax and V02max ofi 3.4% and i 0.5 liter - min", respectively.

Using data from five validation subjects, the standard error in predicting

‘VoVOZmax and V02max was i3.3% and i043 liter-min", respectively. The closeness

of these errors to those of the regression model indicated that the mean square error of

the regression equation is not seriously biased and that it provided an appropriate

indication of the predictive capability of the developed regression model.

These initial results are quite promising and establish a starting point for further

investigations. A few of the questions that could be explored include the following:

I Is this prediction method suitable for a larger pool of subjects?

I How will adding a subject’s height, weight, age, gender, and heart rate

affect the accuracy of the regression model?

Answers to the above questions will be very helpful in developing a non~invasive

technique for understanding the physical demands of construction work. Therefore,

these questions will be further investigated in this research.

[.3 Research Goal and Objectives

This research is motivated by the need to learn more about physical fatigue

resulting from work, and how to effectively reduce fatigue and improve work

productivity. In order to achieve this, it was clear that a measurement technique had



to be developed first. Hence, the goal of this research is to develop a technique for

predicting relative workload from sub-maximal physiological data collected in-situ.

The following are the primary objectives of this thesis:

I Validate the simple linear regression model developed in Abdelhamid

(1999) for 100 subjects performing a specified exercise regimen.

I Develop and validate a multiple linear regression model to predict the

relative workload from sub-maximal oxygen uptake (V02).

[.4 Research Scope

This research is an extension of previous work by Abdelhamid (1999) that was

aimed at developing a prediction technique for relative workload from in-situ collected

data. The primary aim of this research is to improve the accuracy of the simple linear

regression model developed by Abdelhamid (1999) through the development of a

multiple linear regression model. This research will use data collected from 200

subjects at Michigan State University.

[.5 Thesis Guide

This thesis is divided into five chapters. Chapter 1 presents the motivation behind

this research and the importance of measuring the physical demands of construction

work. A need statement is formulated and research goals and objectives are presented

along with the scope of the research.

Chapter 11 presents a background of work physiology and prior research on the

physical demands of construction work. Methods of measuring physiological

demands by measuring oxygen uptake and/or heart rate are also discussed. The chapter



then reviews earlier researches on the methods of predicting relative workload and

maximum oxygen uptake.

Chapter III outlines the methodology adopted to accomplish the research goal

through a detailed discussion of action items undertaken to achieve the two research

objectives. This chapter discusses in more detail the relative workload prediction

model developed in Abdelhamid (1999). It also discusses the development of

multiple regression models through a hypothetical multiple linear regression model,

used to demonstrate the research methodology and the expected results. Lastly, it

explains the method used to validate the regression models developed in this research.

Chapter IV presents results of redeveloping the simple regression model on a

larger pool of subjects. Development of the multiple linear regression (MLR) models,

with age, height, weight, and heart rate factors is also presented. Statistical properties

of the developed regression models are derived and analyzed against the basic

assumption upon which the models were constructed. The chapter concludes with a

validation of all the regression models on 100 validation subjects. The validation

results were used to find the best-fit MLR model.

Finally, Chapter V summarizes the conclusions and contributions of the thesis

work. It presents recommendations for future work which will improve accuracy of

the MLR model, especially its applicability for construction work. Appendix A

discusses time series analysis and serves as a foundation for understanding the

conceptual ideas and methods presented in Chapter III and 1V. Appendix B provides

the raw data for all measurements made in this research. Appendix C describes the

experimental protocol setup for data collection during the development and validation



experiments in this research.



CHAPTER II

LITERATURE REVIEW

11.1 Energy Expenditure in Humans

Humans typically expend energy through metabolic processing of foodstuffs

involving a complicated chain of chemical reactions that take place in various muscle

and body tissues. These metabolic processes are central in providing body

homeostasis and physical work. Body homeostasis refers to a state of physiological

equilibrium produced by maintaining vital functions of various body systems and

chemical composition of the human body. Body homeostasis must be maintained

regardless of being at rest or at work. At rest, the metabolic processes that guarantee

body homeostasis are termed in the literature “basic metabolism” (Astrand and Rodahl

2003). During work, body homeostasis is disturbed and various physiological

functions respond to maintain homeostasis and provide the musculoskeletal system

with the necessary energy to “operate”.

Measuring the energy expended by humans at rest or during work is very

important and is the cornerstone ofmany disciplines branching from human physiology

(e.g., exercise physiology and work physiology). The kilocalorie (kcal) is the unit

used for measuring energy and it is defined as the quantity of heat necessary to raise

the temperature of 1 kilogram (1 liter) of water 1° centigrade (McArdle, Katch, and

Katch 1996). It is familiar to dieters as the Calorie, and is equal to about 4 BTUs,

1.162 Watt-hours, or 4186 Joules. There are two main ways to measure the energy

humans expend: direct and indirect calorimetry.



11.1.1 Measuring Physiological Demands

Given that metabolic processes that take place in humans result in a production of

heat, the metabolic rate is indicated by the rate of heat production. This is the basic

idea behind measuring energy expended by humans through directly measuring the

heat produced from the metabolic processes. This measuring procedure is therefore

termed “direct calorimetry”.

Direct calorimetry can only be performed in a human calorimeter, which is an

airtight and thermally insulated chamber. A person can literally live in this chamber,

while the heat produced from metabolic processes can be accurately measured during

rest or work periods. The produced heat is measured by utilizing a heat-measuring

device. Many heat-measuring devices for human calorimeters have been developed

over the years and are based on different operating principles (McArdle, Katch and

Katch 1996).

Measuring energy expenditure using direct calorimetry is extremely accurate.

However, human calorimeters are very expensive to build and operate and are

obviously not portable. These limitations restrict the use of direct calorimetry to

academic research performed in laboratory settings.

Earlier research has demonstrated that the total energy expended by a human can

be estimated by measuring the amount of oxygen consumed before, during, and after

performance of work or exercise activities. Because oxygen is used and carbon

dioxide is produced during energy-yielding reactions, the exhaled air contains less

oxygen and more carbon dioxide than the inhaled air. The difference in composition

between the inspired and expired air volumes reflects the body’s release of energy

10



through aerobic metabolic reactions (McArdle et a1. 1996). This technique is referred

to as “indirect calorimetry”. Indirect calorimetry provides a reasonably accurate,

portable, and relatively inexpensive method of measuring energy expenditure

compared to direct calorimetry.

Research has shown that for every liter of oxygen consumed 4.83 Kilocalories of

energy, on average, are produced. Thus, collected oxygen uptake data may be

converted to corresponding energy expenditure by multiplying it by 4.83 kcal per liter

of oxygen (Rodahl et a1. 1974, McArdle et a1. 1971, Astrand and Rodahl 1986). It

should be noted that the conversion multiplier varies slightly depending on a

physiological attribute termed the “Respiratory Quotient” (McArdle, Katch and Katch

1996)

11.1.2 Oxygen Uptake (VOz) and Heart Rate Measurements

Previous research showed that measuring heart rate (measured in beats per minute)

associated with the performance of an activity is another common method for

measuring physiological demands. Determining target exercise intensities by heart

rate is practical and useful, because it is easily and noninvasively obtained with heart

rate monitors during exercise. Many researchers, such as Wyndham et a1. (1962),

Poulsen and Asmussen (1962), McArdle et a1. (1971), Rodehl et a1, (1974) have used

this approach.

Researchers have found a linear relationship between heart rate and oxygen

uptake. As the body performs exercise. there is an increased demand for oxygen to be

delivered to the exercising muscles, and this demand is accompanied by an increase in

lung and heart function.

11



In the 19903, the validity of using this linear heart rate-oxygen uptake relation has

been called into question for non-dynamic and discontinuous exertions. Many argued,

for example, that a myriad of variables would affect the measured heart rate values and

the linear relation obtained for heart rate and oxygen uptake. It has been shown that

factors other than work or exercise may lead to increased heart rates. For example,

environmental conditions, emotions, fear, previous food intake, body position, muscle

groups used, continuity of the work, and whether muscles are acting statically or

dynamically (Mass et al. 1989), may all have an effect. Moreover, heart rates vary

greatly with individual characteristics such as age and weight. In addition, oxygen

consumption is dependent on the intensity of exercise, as well as age, gender, exercise

history or habits, hereditary factors and current health status (Lear et al 1999).

These examples indicate that inferences based on the linear relation between heart

rate and oxygen consumption may provide an inaccurate measure of metabolic stress

on the body. Despite criticism concerning the linear oxygen uptake heart rate relation

to predict energy expenditure for various activities, Astrand and Rodahl (2003) have

suggested, based on actual experimentation, that:

“In most cases, the reliability of the conversion is adequate for all practical

purposes of field investigation”... “It appears that the use of the recorded heart rate as a

basis for the estimation of work load may be acceptable even in many work situation

involving arm work or the use of small muscle groups.”

The reliability of indirect assessment of V02 by measuring HR has mainly been

limited to steady-state exercise. It would be a useful technique if it could be found

valid for non-steady-state activities, especially for understanding the physical demands

of construction work, and assist in developing prediction methods for relative workload

measurements.
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Bot and Hollander (2000) studied the validity of using heart rate responses to

estimate oxygen uptake during varying non-steady activities, such as those found in

construction tasks. Dynamic and static exercises engaging large and small muscle

masses, and combinations of different muscle groups were conducted in four different

experiments. The individual regression equations disclosed significant linear

relationships between HR and V0; during dynamic, non-steady state arm and leg

exercises. Also, during non—steady state activities with different muscle groups

significant correlation coefficients (r) were established for all subjects. While the r

values were less compared to those in the steady state conditions, it can still be

concluded that estimation of V0; by measuring the HR is not limited to steady-state

exercise. This conclusion by Bot and Hollander (2000) is encouraging because in

most construction activities, the intensity varies constantly and no steady state is

reached.

11.1.3 Maximum Oxygen Uptake

The amount of oxygen supplied to a muscle is not unlimited and the limit varies

greatly between individuals due to the varying efficiency of peripheral and central

processes that occur in our bodies. The maximum supply of oxygen (and of energy)

has been reported in terms of the maximum oxygen utilization an individual can

achieve and has been termed as maximum oxygen uptake (McArdle et a1. 1996).

Maximum oxygen uptake or V02max is defined as the highest oxygen uptake per minute

that can be measured during dynamic exercise with large muscle groups.

Another common definition for VOZmax (maximal oxygen uptake, maximal

aerobic power) is that it’s the rate at which oxygen can be used by the body during

13



maximal work. VO;max is directly related to the capacity of the heart to deliver blood

to the muscles and is considered a good index of cardio-respiratory fitness and a good

predictor of performance capability in aerobic events such as distance running, cycling,

cross-country skiing, and swimming.

In general, V02max is accepted as one of the best single indicators of an

individual’s aerobic fitness. Aerobic fitness is frequently considered the most

important aspect of physical fitness. Shephard ( 1977) defined aerobic fitness as the:

“ability to maintain the various processes in metabolic exchange as close to the

resting state as is mutually possible during the performance of a strenuous and fully

learnt task for a moderate time, with a capacity to reach a higher steady rate of working

than the unfit and to restore promptly after exercise all equilibrium which were

disturbed.”

It should be noted, however, that VOZ.1m is only a predisposition for physical

performance. A high V02max does not guarantee good physical performance, since

technique and psychological factors may have influenced performance either positively

or negatively (Verma 1994).

Research has also shown that this measure is dependent on individual factors (e.g.,

sex, age, body dimensions, inheritance), environmental factors (e.g., intensity, duration,

and technique of exercise), and adaptation through training (Jorgensen 1985).

Astrand (2003) et al., showed in their research on direct measurement of maximal

oxygen uptake in 350 individuals ranging in age from 4 to 65 years of age, that there is

in both sexes a peak in maximal oxygen uptake at 18 to 20 years of age, followed by a

gradual decline. At the age of 65, the mean value is about 70% of what it is for a 25

year-old individual. Maximal oxygen uptake for the average 65-year old man is the

same as for a typical 25-year old woman.
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Changes in tissue and organ function due to age may explain the decline. As

people age, the decline in maximal heart rate is quite evident, and this lower heart rate,

coupled with other effects of age, may reduce the individual's maximal cardiac output

and hence the oxygen-transporting ability (Astrand and Rodahl 2003).

A study by Astrand (1967b) on 33 building workers (bricklayer, carpenters and

laborers) from 30 to 70 years of age showed that the mean heart rate during

occupational activity was correlated with the individual’s maximal heart rate. For

younger subjects, with a maximal heart rate of 185 beats/min, the mean heart rate

during occupational activity was 1 10, while those with a maximum of 150 had a mean

of 90 beats/min. Maximal oxygen uptake ranged from 2.2 to 3.6L/min. In general,

irrespective of maximal oxygen uptake, each worker used the same percentage of

his/her maximum in work operations. In other words, older workers with lower

maximal aerobic power kept a slower work tempo than younger ones, but relative load

was the same, about 40%. The person with a high maximal heart rate can do a day’s

work at a higher mean heart rate than a person with a lower maximum, but the relative

strain may be the same on the two persons.

Another factor that is important to consider for the determination of maximum

oxygen uptake is body fat. Fatty tissue is metabolically fairly inert, but because it can

constitute a large proportion of the body weight, it may be important to exclude fatty

tissue when evaluating oxygen-transporting capacity (Astrand and Rodahl 2003).

This is especially important considering that women's body fat percentage and body

dimensions are different from those of men. For example, according to Wilmore

(1979), the average North American female at full maturity is approximately 13 cm.



shorter than the average male, 15 to 18 kg lighter in total weight, 18 to 23 kg lighter in

lean body weight and considerably fatter, i.e., 25% vs. 15% relative body fat. Hence,

it is not surprising that a woman's maximal oxygen uptake per kilogram of gross body

weight is a better expression of her potential to move her body than is the maximum

related to lean body weight.

11.1.4 Measurement of Maximum Oxygen Uptake

When does a person reach the maximum aerobic power level? If an individual

increases the intensity level of exercise, a corresponding increase occurs in heart rate,

respiration and oxygen intake, as well as in the activity levels of other parts of the

aerobic systems. At some point, however, oxygen intake cannot increase beyond a

specific level, even though more work is being performed. At this point, the individual

has reached a level that is commonly referred to as maximal oxygen uptake (VOzmax).

This measure is considered to be the best single indicator of aerobic fitness, because it

involves the optimal ability of three major systems of the body (pulmonary,

cardiovascular and muscular) to take in, transport and utilize oxygen. The higher an

individual's level of maximal oxygen uptake is, the greater the level of physical work

that can be performed (Bryant and Peterson 1997).

In the field of exercise physiology, when limiting factors for V02max are discussed,

it is usually with reference to human subjects, without metabolic disease, undergoing

maximal whole-body exercise, at sea level. Under these conditions, it is the ability of

the cardio-respiratory system (i.e. heart, lungs, and blood) to transport 0; to the

muscles, that limits VOan, not the ability of muscle mitochondria to consume 0;

(Bassett et a1. 2000).
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Exact techniques for the determination of V03max require rigid and standardized

criteria to ensure that a true maximum has been reached. These techniques are

commonly performed on treadmills or cycle ergometers (CE) using an exercise

protocol that involves a gradual increase in the workload until the subject reaches

complete exhaustion and can no longer perform the exercise. Excellent discussions

on exact techniques to determine V02max can be found in Astrand and Rodahl (2003),

Kilbom (1995), and McArdle et a1. (1996).

But exact measurement of VOZmax requires well—equipped laboratory settings and

special equipment, and may be dangerous for unfit or untrained subjects. The

limitations of exact measurement have inspired the development of prediction

techniques to determine V03,” Examples of widely used prediction techniques are

the walking test (Cooper 1968, Kline et a1. 1987), endurance runs (Cooper 1968, Verrna

1994), the step test (as referenced in McArdle, Katch, and Katch 1996), nomograms

(Astrand 1960, Astrand and Rodahl 2003), and linear and non-linear regression

equations (Venna 1994).

Most of these prediction techniques use submaximal exercise tests to predict

maximal oxygen uptake (VOan) from an individual’s heart rate at a certain

submaximal workload. Maximal oxygen uptake is then predicted using an established

regression equation (Astrand 1956, ; Asmussen and Molbeck 1959, Maritz et a1. 1961,

and Margaria et a1. 1965). The submaximal tests are useful for estimating aerobic

fitness without undue stress to the subjects, and are more suited to the elderly or

individuals with known diseases. Submaximal tests are also more easily,

inexpensively and rapidly administered to larger numbers of subjects (ACSM 1995).
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However, some researchers (Davies 1968, Glassford et a1. 1965, Rowell et a1.

1964, McArdle et a1 1996) have pointed out serious limitations in the predictive

accuracy of using heart rate during submaximal work to evaluate VOzmax. The

percentage error in prediction values has been reported to be between 15-20%.

As summed in the classic textbook of work physiology by Astrand and Rodahl

(2003) the reliability of predicting maximal oxygen uptake from the submaximal heart

rate response to a given rate of exercise has to be studied in more detail.

One method of predicting an individual’s maximal oxygen uptake by use of

nomogram (P.O.Astrand and Ryhming 1954) has been critically studied over the years.

The standard error of this method for predicting maximal oxygen uptake from

submaximal exercise tests was 10% in individuals of the same age, but up to 15% in

subjects of different ages when the age correction factor of maximal oxygen uptake

was applied.

The validity of the nomogram has also been tested in other laboratories. In

some cases, there has been good agreement with other methods, but in other cases, it

has resulted in underestimations. Therefore it is suggested by Astrand and Rodahl

(2003) that an evaluation of the maximal effect of the oxygen uptake based on studies

at submaximal work rates or oxygen uptake should be done with great caution,

especially when persons of different age groups are considered.

To increase the accuracy of prediction, attempts have been made by Hermiston

and Faulkner (1971) and Mastropaolo (1970) to include more physiological variables in

the prediction equation. Predictive accuracy was further improved by Venna et a1.

(1977) by using a non-linear formula for estimating VOzmax from cardio-respiratory
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strains. Jessup et a1. (1974) made an attempt to predict VOZmax from some

physiological as well as anthropometrical variables, and obtained a high multiple

correlation between observed and estimated VOZmax. Verrna et a1. (1980) suggested a

multiple linear regression equation for predicting VOzmax from anthropometric

variables. The equation has been considered a simple approach for predicting V02max

based on anthropometrics variables only.

Although some of the methods based on physiological variables have achieved

maximum precision for predicting VOzmax, these may not be of practical use in a field

situation for selecting personnel suitable for certain kinds of service and industrial

work, and for sports. This is due to the laborious and time-consuming procedures

required for measuring the physiological variables involved in the predictions. In

addition, the external validity of these techniques has been a topic of debate, i.e.,

whether the maximum oxygen uptake obtained from these techniques will be similar to

that during the actual activity under evaluation.

Wertheim et a1. (2002) performed a study on the measurement ofmaximal oxygen

uptake in moving environments. The study pointed out that in previous studies on

physical fatigue during simulated ship movements, the apparent exhaustion of subjects

after experimentation suggested that oxygen consumption, the traditional index of

physical workload, expressed as a percentage of peak oxygen consumption (VOZmax),

and measured in a separate graded exercise test (GXT), underestimates workload in a

moving environment.

They mentioned that the GXT tests were carried out in a stationary environment,

as is standard practice. To explain the underestimation, they hypothesized that V02max

l9



might have been less if the GXT had been carried out in a moving environment. Their

study employed three experimental tests of this hypothesis, performed with a ship

motion simulator aboard a ship at sea. In all three experiments, V02max was indeed

significantly reduced, the difference being between 6 and 10%, when the GXT was

carried out in a moving environment. Theoretical reasons for this phenomenon are

discussed and investigated, but a clear explanation is still lacking.

Though an explanation of the motion-induced decrease of V03amx was not given

by Wertheim et 31., their research on maximum oxygen uptake under a moving

environment advanced research technologies for simulating a real dynamic situation for

measurement of V02...” lt addressed the issue of how to measure or predict V03max

from an angle closer to real world conditions.

In sum, most of the methods for measuring or predicting VOan are generally

non-invasive and provide quick results, but are not necessarily the most accurate.

Some provide highly accurate results, but require the presence of a well-equipped

laboratory and trained personnel. Hereinafter some of these methods of predicting

V02max are reviewed in more detail.

A. HR-VO; Lir_rear Relationship

The most popular method for predicting V02max is the HR-VOZ linear relationship.

With an assumption of maximum heart rate, a corresponding value of oxygen uptake,

using the linear relationship, is developed between the two. This value is assumed to

be the VOZmax. The linear relationship has been explained in more detail in section

11.1.2. Therefore only some different views about this method will be mentioned here.
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Several researchers argued that this method has an error of up to 8 percent

(McArdle et a1. 1996). The ACSM (1995) have reported variability of HRmax of up to

10—12 beats per minute in normal subjects when using the popular formula: HRmax =

220 — age. This suggests that HR may not be a valid measure of VOZmax,

Researchers have also argued that this method is only accurate for light to moderate

workloads, because at heavier workloads there is a larger than expected increase in the

V02 per unit increase in HR.

B. Time Series Agalysis

As previously mentioned, Abdelhamid (1999) developed a method capable of

directly predicting relative workload from in-situ collected sub-maximal oxygen uptake

data without the need to determine maximum oxygen uptake. A statistical analysis

technique called time series analysis was used to model oxygen uptake data. The

methodology is based on the hypothesis that oxygen uptake data are serially dependent,

and that by using time series analysis techniques, a regression model between relative

workload and statistical characteristics of collected oxygen uptake data can be

developed.

The result is a special kind of regression model, termed AutoRegressive Moving

Average model, ARMA(p,q). After arriving at an adequate ARMA(p,q) for the

observed time series, the Green’s function “Gj” was derived and used to make

inferences about the system that produced the data — the human body, in this case.

The Green’s function “Gj” was the strongest candidate because, by definition, it

quantitatively summarized how a system responded to disturbances and described the

system’s resistance to changes from a state of equilibrium.
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Using the time series analysis package ITSM 2000 version 7.0 (Brockwell and

Davis 1996) on the data collected from subjects doing exercises on a treadmill, values

of the Green’s function were obtained and the value of the energy of the Green’s

Function, E6, was determined (based on the sum of squares of the individual G,- values).

The relationship between EG and %VOzmfllx exhibited a strong correlation. It was

analyzed using linear regression techniques to formally characterize this relationship,

and resulted in a simple regression model.

This research will utilize the mentioned time series analysis technique, along with

factors such as age, body dimensions and heart rate, to develop a multi-regression

model capable of predicting relative workloads.

C. Otthredictigr Methods and Linear/non linear Regression Models

Many researchers focus on different angles and methods of measuring VOZmax.

Except for direct measurement, most methods are based on linear or non-linear

regression models to predict VO;max values. These methods usually use data collected

from treadmill exercises.

Table 11.1 lists other researchers’ prediction methods, and equations currently

used for maximum oxygen uptake measurements. These equations use different

variables and different linear/non linear regression models to predict VOZmax_ The

characteristics of each equation, and some of the advantages and limitations, are

discussed further below. Jones’ equation is especially applied in the next chapters of

this thesis for validation purposes.

In 1973, Fox presented a prediction method based on a linear equation relating

VOZmax to submaximal heart rate during the 5th min of bicycle exercises at 150W. The
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standard error of estimate (SEE‘) was i7.246ml/min (17.8% ofthe mean VOzmax) and

correlation coefficients (r2) was ($0.76). Though his method uses the submaximal

heart rate as a basis for the prediction of maximal aerobic power, it differs from the

previously mentioned HR-VOZ linear relationship in that it depends only on the

relationship that exists on a single submaximal heart rate determination. Whether or

not there is a linear increase in heart rate with oxygen consumption and workload is

 

 

 

inconsequential.

Fox VOZmaX (mL/min)== 6300- 19.26 x HR

(recorded at the 5th min of exercise @1 50W. b/min))

Jones V02max (L/min) = (0.046 x Ht (cm)) - (0.021 x age

(yrs)) — (0.62 x Sex) — 4.31 where for sex, men = 0,

women = 1 '

Storer V02max (mL/min) = (9.39 x max Watts) + (7.7 x BW

(Kg))- (5.88 x age (yrs) +136.7

Astrand-Rhyming V02max (L/min) = V025ubmax x ((220-age(yrs) —

bicycle ergometer 72/HRsubmax -72))

test where VOZSmeax (L/min) = (Power (watts) x 0.012)+ 0.3

Dobeln et al. _ L -0.00884 T where L is load in
VOZmax —I.29 We ’

 

 

kilo-pound-meters per minute at submaximal work, H is

heart rate after 5-6 mins at load L, and T is age in years.

Womack et a1. VOzpcak (mL/kg/min) = (0.00872 * maximal

claudication pain time [sec]) + (0.02839 * maximal

heart rate [b/min]) - (0.12034 * BMI) + 10.11411

Table 11.1 Equations used to predict V02...“ (Lynn A and Roberta L 1999)

 

    
Jones (1985) presented an equation that was derived from one hundred healthy

subjects (50 male and 50 female), selected to provide an even distribution of ages (15

 

' SEE: Standard Error of Estimation to measure of the accuracy of predictions.

2 r: called "Pearson's r”. It reflects the degree of linear relationship between two variables. 1t ranges from

+1 to - 1. A correlation of +1 means that there is a perfect positive linear relationship between variables.
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to 71 yr) and heights (165 to 194 cm in males and 152 to 176 cm in females). These

subjects underwent a progressively incremental (100 kpm/min each min) exercise test

up to a symptom-limited maximum. Measurements were made of 02 intake and C02

output, ventilation and breathing pattern, heart rate and blood pressure, and rating of

perceived exertion. See Table 11.1 for the equation. (SEE: 0.458; r: 0.869). Maximal

heart rate (HR) declined as a function of age: HRmax = 202 - 0.72 (Age) beats/min

(SEE: 10.3; r: 0.72). The researcher found that the V02 increased linearly with power

throughout the test. The one important aspect of this equation lies in that it showed a

possibility that, in an individual subject, the intercept of this relationship was positively

influenced by weight and height.

In 1990, Storer developed an equation based on the duration (an analog of

maximal work rate, Wmax) of a cycle ergometry3 (CE), hypothesizing that CE V02...“

could be accurately predicted due to its more direct relationship with work rate (W).

Thus, healthy, sedentary males (N = 115) and females (N = 116), aged 20-70 yr, were

given a 15 W - min" CE graded exercise test (GXT). His testing method results were

developed into a multiple linear regression equation which predicted V02max (ml-min")

from the independent variables of Wm. (W), body weight (kg), and age (yr) derived

from subjects:

Males: Y = 10.51 (W) + 6.35 (kg) - 10.49 (yr) + 519.3 ml-min'l

(SEE: 103 ml-min"; r: 0.939)

Females: Y = 9.39 (W) + 7.7 (kg) - 5.88 (yr) + 136.7 ml-min’l

(SEE: 147 ml-min"; r: 0.932)

 

3 Ergometry: Any method of measuring the amount of work done by an organism, usually during exertion.

Ergometry also includes measures of power.
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Using the 95% confidence limits as examples of the worst-case errors, Storer’s

equations predict V02max to within 10% of its true value. lntemal (double

cross-validation) and external cross-validation analyses yielded r values ranging

between 0.920 and 0.950 for the male and female regression equations. These results

indicate that use of the equations generated in this study for a 15 W-min'l CE GXT

provides accurate estimates of V02nm.

The Astrand-Rhyming submaximal cycle ergometer test is designed to predict

V02max from a 6-minute exercise period. It is one of the most widely used

submaximal exercise tests. The testing procedure requires a steady heart rate at an

appropriately selected submaximal work rate (kpm/min or watts). This information,

together with a predicted maximal heart rate and an age correction factor, is used to

predict the subjects' V02m. (Astrand & Rodahl, 2003).

The main assumptions associated with this test are as follows (referred by Adams

1998):

I Subjects resting and maximum heart rates (RHR & MHR) may be

estimated according to age.

I MHR decreases by approximately 10 beats-min'l per decade after 30.

I A linear rise in HR up to MHR exists.

I V02max and work rate have a linear relationship.

I V02max occurs at the same work rate at which MHR occurs.

A number of researchers have referred to the errors associated with this and

similar submaximal tests in attempting to predict V02max. Some suggested that

regression equations derived from direct V02max data obtained from random samples of
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specific populations should be used in the application of the Astrand test. It is

probably correct that the Astrand test tends to underestimate V02max in the unfit

subjects and to overestimate it in trained subjects.

Von Dobeln et a1. (1967) also developed a multiple regression method to predict

V02...“ Eighty-four male construction workers aged 30-70 years were tested once at

submaximal and maximal loads on a bicycle ergometer. Submaximal and maximal

heart rates and maximal oxygen uptake were measured. The prediction of V02max

from the other variables was analyzed by a fitting procedure using a modified

least-square criterion. The best equation gave an SEE of 8.4%. In this method, the

other variables such as body size (height and weight) were added to the regression

equation for the prediction ofV02mam on the bicycle ergometer.

Womack et a1. (1998) developed a formula to predict peak oxygen consumption

using 157 patients with intermittent claudication, to estimate V02peak in peripheral

arterial occlusive disease (PAOD) patients and to determine independent predictors of

V02peak in this population. Medical history, height, weight, body mass index (BMI),

age, gender, smoking status, resting and post-exercise ankle/brachial systolic pressure

index (AB1), and time to maximal claudication pain and maximal heart rate from an

incremental graded exercise test (GXT) were used as potential independent predictors

of V02peak. Time to onset of maximal claudication pain, maximal heart rate, and

BMI were all independently associated with V02pwk. These variables were used to

estimate V02pcak. The r = 0.71, r2 = 0.50 for the developed formula and standard

error of estimate = 2.02 mL/kg/min, p < 0.0001. The coefficient of variation

between estimated and actual V02pea)< in this group was 18.3%. Results of this study
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suggest that a multiple regression equation can be used to estimate V02pw)< in patients

with intermittent claudication by measuring time to maximal claudication pain and

maximal heart rate from a GXT and by measuring BMI.

The Womack et a1. (1998) research presents a good example of the multiple linear

regression model based on multiple independent variables to predict V02pcak, though

the test is done on a certain type of patient. The acceptable standard error level for

prediction results provides a promising method for this research; the concept of an

MLR model, which is promoted in this thesis for the prediction of physiological

demands of construction work.

Except for the above discussed equations or models on the prediction of V02nm

based on the data collected from exercises, George et a1. (1997) sought to develop a

maximal oxygen consumption (V02nm) regression model derived strictly from

self-reported non-exercise (N-EX) predictor variables. The V02max (mean +/- SD;

44.05 +/- 6.6 ml-kg’l-min'l) of 100 physically active college students (50 females, 50

males), aged 18 to 29 years, was measured using a treadmill protocol and open circuit

calorimetry. Questionnaire-based predictor variables used in the N-EX regression

model included (a) the subject's perceived functional ability (PFA) to walk, jog, or run

given distances, (b) habitual physical activity (PA-R) data, (c) body mass index (BMI),

and ((1) gender. BMI (kg - m'z) was computed from self-reported body weight in pounds

and self-reported body height in feet and inches.

The questionnaire-based N-EX regression model (SEE = 3.44 ml - kg'1 - min", r =

0.85) developed in this study exceeded the accuracy of previously developed N-EX

regression models and is comparable to many exercise-based regression models in the

27



literature. Cross-validation using PRESS (predicted residual sum of squares) statistics

demonstrated minimal shrinkage (SEE = 3.60 ml - kg’1 -min”, r= 0.84,) of the present

regression model. The PFA data were useful in explaining observed V02"... variance

(squared partial r2 = 0.155, p < 0.0001) and enhanced the ability of the N-EX

regression model to accurately predict criterion V02max.

These results suggest that a questionnaire-based N-EX regression model provides

a valid and convenient method for predicting V02max in physically active college

students. And this method provides potentials for using non-exercise physical data

such as BMI, and habitual physical activity data, to develop a regression model to

predict V02max and challenges current research methods that rely on data collected

from real exercise.

Hermiston and Faulkner (1971) have used a stepwise multiple-regression

technique to develop equations for predicting maximal oxygen uptake of physically

active and physically inactive men, from data collected during a submaximal treadmill

walk. The most accurate prediction for physically active men was obtained from a

regression equation which included the subject’s age, lean weight, heart rate, factor of

carbon dioxide in expired gas, and tidal volume at a submaximum work level, in

addition to the rate of change in respiratory exchange ratio. For physically inactive

men, the equation included age, lean weight, respiratory exchange ratio, and tidal

volume at a submaximum work level. The coefficient of correlation was 0.91

between predicted maximal oxygen upake measure on two different occasions and 0.90

between the observed and predicted maximal oxygen uptake. The multiple regression

equations are as follows:
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Active:

V02max =“ 2966-0031 (age) + 0.026 (FFW)-0.0l3(HR) +25.4(FEC02) + 0.330(V13)-8.77(AR)

Inactive:

V02max : 3.619 5 0.(.)22(age)-0.033(FFW) ~ 2.587 (R) +0.253(VT9)

where V02max is in liters per minute; age is in years; FFW is fat-free (lean) weight; HR

is the heart rate in beats per minute at the end of the 8% grade, FEco2 is the fraction of

expired carbon dioxide during the 8-9 min. gas collection; V12 is the tidal volume

during the 0% grade gas collection period; AR is the rate of change per minute of the

respiratory exchange ratio between the gas collection periods of 1-2 min and 8-9 min;

R is the respiratory exchange ratio during the 8-9 min gas collection; and VT.) is the

tidal volume during the 8% grade gas collection period.

The regression equations use a number of independent measures of physiological

responses at submaximal workloads. The equations presented above are appropriate

for the prediction of V02max from data collected on adult men during the lSt and 91" min

of a treadmill walk. The equations account for age, habitual level of physical activity,

and fat-free weight factors, etc. The technique of stepwise multiple-regression allows

inclusion of additional independent determinants if a more precise estimate of V02max

is required.

Astorino et a1. (2000) did research to better clarify the V02 response to exercise at

the V02max level by comparing data derived from different time averaging intervals and

exercise protocols. Sixteen active subjects completed three different VOZmax tests on a

cycle ergometer (a 25 Watt/min ramp protocol (R), a 75 Watt/3 min step protocol (S),

and a 25 Watt/min ramp protocol (H) under hypoxic conditions (F102 = 15 %, PB = 635
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mm Hg) on separate days. All breath-by-breath data were smoothed using an

ll-breath moving average. These data were then time-averaged into 15-, 30-, and

60-second sampling intervals.

From their research, data of the change in V02 between VOzmax and the closest

neighboring data point revealed that variability was greatest for the longer

time-averaged data. This response was similar for each protocol. They conclude

that shorter sampling intervals (breath-by-breath and 15 s) are most suitable for the

detection of the V02 plateau during progressive exercise to V02nm. In addition, ramp

and step protocols produce similar results, and acute normobaric hypoxia does not

decrease the incidence of a V02 plateau at VOzmax using 11 breath or 15 s time

averaging procedures. Their research suggested a recommendation on the exercise

protocols to detect V02 plateau.

11.1.5 Correlation Between Laboratory Test and Actual Output

It is of great interest, both theoretically and practically, whether a correlation

exists between an individual's physiological working capacity as measured in the

laboratory on a bicycle, ergometer or treadmill, and actual work output in heavy

industry. It is also very important to know whether aerobic work capacity as

measured in the laboratory conforms to the occupational workload level on heart rate,

oxygen uptake and relative workload measurements. Several studies have been done

in this area, among which Astrand (1967) presented some explanations more closely

related to the construction industry.

In Astrand (1967), a definite relationship was established between aerobic work

capacity as measured in the laboratory and the occupational workload level voluntarily
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chosen by the individual. It stated that such a correlation does exist among lumber

jacks, where a worker with a high work production also has a high physical capacity

for bicycling; that is, a large oxygen uptake capacity (Hansson 1965). In the

construction industry, information is unavailable on an individual’s specific production

(output) because most tasks are completed by teams of workers. If a correlation exists

between the laboratory test results and actual work output, measurements obtained in

the laboratory test could be used at least as an estimate of the workload.

11.1.6 Relative Workload

As mentioned in CH 1, numerous work physiologists advocate the use of relative

workloads to evaluate potentials of physical fatigue (Bonjer 1971, Bink et a1. 1961,

Michael et a1. 1961, Petrofsky and Lind 1978, and Jorgensen 1985). After mean

oxygen uptake is determined for a particular task, relative workload is obtained by

expressing mean V02 as a fraction, or percentage, of the maximal (actual or predicted)

oxygen uptake (Kamon 1979).

Practical experience has shown that one cannot tax more than some 30% to 40%

of maximal aerobic power during an 8-hour working day without developing subjective

or objective symptoms of fatigue (Astrand and Rodahl 2003).

The percentage of relative workload is especially important for occupations with

intense physical demands and various demographic groups (old, young, male, and

female workers) such as construction and agriculture. If the burden placed on the

worker is too high in relation to the person’s capacity for sustained physical work,

fatigue invariably will develop. Christensen (1962) has concisely summarized the

importance of this percentage as follows:
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“The determination of oxygen uptake or caloric output and a parallel

determination of maximal oxygen uptake of the worker can be valuable tools in our

effort to avoid overstrain of the worker at a given job.”

To ensure safety and health in the workplace, Brody (1945) first proposed that a

suitable safety margin would perhaps be needed in physically demanding jobs.

Several research results (e.g. Michael et al. 1961, Bink 1962, Lehmann 1962, Ilmarinen

1992) suggested that 33% of the individual’s maximum aerobic capacity (V02nm)

should be used as the acceptable standard workload for a general 8-hour physical work

shift. Jurgensen (1985) also proposed that the general upper tolerance limit over an

8-hour workday, consisting of mixed physical work including manual—handling

operations, was 30-35%V02nm (based on bicycle legwork and treadmill testing).

11.1.7 Other Measurements of Physiological Demands

Although oxygen uptake and heart rate can be used to assess the physiological

demands of muscular work in general, sometimes we need to investigate the load on

single muscles as well as groups of muscles. For example, in construction, many

tasks require workers to change position. climb, lift, and bear heavy loads at certain

times. As Hanson and Jones (1970) pointed out, the recording of heart rate is a quite

sensitive index of muscular force and even responds significantly to minor changes in

posture. Currently, electromyographic recordings can perform load measurements on

single muscles, as well as on groups of muscles. A major advantage of this recording

methodology is that it can be used to visualize the effects of practical working

procedures on loads imposed on the involved muscles.

Some research has been performed to assess the level of stress imposed on a

worker by a given work situation (physical as well as psychological), which is
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generally reflected by nervous and hormonal reactions, more or less proportional to the

degree of stress. Any stressful situation may trigger increases in heart rate and cardiac

output, increasing the oxygen uptake and the oxygen delivery to muscles. A lot of

research has also been done to observe hormonal and nervous responses and the

relationship between heart rate and stress reaction.

11.2 Physical Performance

To achieve top performance, the physiological demands of the event must be

perfectly matched to the individual ’5 capabilities. Some common factors can serve as

a frame of reference for demands versus individual capabilities. Undoubtedly an

individual's genetic factors play an important role in performance capability.

Sometimes the environment and geographic location are also important. This is very

typical for the construction industry, which is greatly influenced by weather, location,

and time. The intensity and duration of work activities also affect oxygen uptake. The

recovery time needed before oxygen uptake and rate of aerobic metabolism return to

pre-exercise levels differs too. In most of the exercises, oxygen uptake increases

roughly linearly with an increase in the rate of exercise.

Physical performance is affected not only by genes, age and sex, but also by

biological rhythms, sleep, nutrition, environment, and a number of other factors such as

use of alcohol and various drugs. Figure 11.1 is a schematic presentation of factors

influencing physical performance ability. The effects of the nature of exercise, sex,

age and body dimension on oxygen uptake and energy consumption have been

explored earlier. In this section, respiration as a limiting factor and the influence of

tobacco, alcohol and caffeine use will be discussed. Exploring these factors and their
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effects on work performance will help us to better understand the physiological

performance ability of each worker.
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Figure 11.1 Factors influencing physical performance ability (Astrand 2003)

11.2.1 Respiration as a Limiting Factor in Exercise

Since oxygen uptake and energy expenditure have a close relationship with the

respiratory system of human beings, it is necessary in order to better understand

physical fatigue to explore prior research on the human body's mechanical system of

respiration, the relationship between physical fatigue and oxygen uptake, and

limitations of the respiration process during exercise.

Table “.2 presents data on lung volumes, in liters, obtained from fairly

well-trained physical education students about 24 years old (Astrand 1952), who were

reinvestigated 21 and 32 years later (I.Astand, P.-0.Astrand et al. 1973;Vi1janen 1982).
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From the table we can see that the lung volumes are about 10% smaller in women than

in men of the same age and size. The ratio of RV/TLC in the young individual is

about 20%, but for the 50 to 60 year-old individual, this ratio increases to about 30%,

an increase that can be accounted for almost entirely by changes in lung elasticity with

age (Viljanen 1982).

 

 

Females Males

Function 1949 1970 1982 1949 1970 1982

Vital capacity4 4.26 4.25 4.05 5.55 5.39 4.92

Residual volume 1.1 1.71 1.64 1.45 2.04 2.12

Total lung capacity 5.36 5.96 5.69 7.00 7.43 7.04

RV/TLC 20.52% 28.69% 28.82% 20.71% 27.46% 30.11%

Maximal tidal volume 2.24 2.26 2.23 3.38 3.31 3.23

Table 11.2 Lung volumes from well-trained physical education students (Astrand 2003)

 

From the Table 11.2, it can be inferred that effects of age and sex on the

respiratory system are visible and associated with a reduced vital capacity. Sex and

age factors differentiate individuals' capacity for respiration, which may affect the

ability of the person to deal with physical fatigue.

According to the research of Astrand and Rodahl (2003) in a group of about 190

individuals 7 to 30 years of age, a significant correlation was found between vital

capacity (VC) and maximal oxygen uptake. Individuals with a VC of approximately

4L may have a maximal oxygen uptake of about 2.0 to 3.5 L/min, and vital capacities

of 6.0 L/min. are associated with oxygen uptake capacities varying from about 3.5 to

 

4 The maximal volume of gas that can be expelled from the lungs following a maximal inspiration is called

the vital capacity (VC). When the respiratory muscles are relaxed, there is air still left in the lungs. This

air volume is the functional residual capacity (RV). The volume of gas moved during each respiratory

cycle is the tidal volume
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5.5 L/min. This example shows that one function can appear closely related to

another if the data are derived from persons of greatly different size.

Additionally, pulmonary ventilation at rest and during exercise is totally different.

Pulmonary ventilation is the mass movement of gas in and out of the lungs. It is

regulated mainly to provide the gaseous exchange required for aerobic energy

metabolism. According to Astrand and Rodahl (2003), if pulmonary ventilation is

expressed in relation to the magnitude of oxygen uptake, it is 20 to 25 ml per liter of

oxygen at rest and during moderately heavy exercise, but it increases to 30 to 40 ml per

liter of oxygen during maximal exercise. Also in different age groups, the lower

ventilation in older individuals is associated with a reduced maximal oxygen uptake.

At rest, the respiratory muscles require from 0.5 to 1.0 m1 of oxygen per liter of

ventilation. During exercise, the oxygen cost per unit ventilation increases markedly.

11.2.2 Smoke, Alcohol, Caffeine and Performance

Smoke contains up to 4% by volume of carbon monoxide, which reduces the

oxygen-transporting capacity of the blood. This contributes to the reduced maximal

aerobic power and exercise perfomrance following smoking. The term “passive

smoking” is used when a person breathes air contaminated by tobacco smoke.

Long-term exposure to this environmental tobacco smoke increases the risk of lung

cancer and heart diseases.

The effect of cigarette smoking on work capacity is well known. Juurup and

Muiro (1946) demonstrated that during submaximal cycle exercise at a fixed oxygen

uptake, the heart rate was 10 to 20 beats/min higher when the work test was preceded

by smoking one or two cigarettes. Also, the higher the work rate the greater the
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difference in heart rate between smokers and nonsmokers, as nicotine affects the

cardiovascular system.

Since smoking is a really common phenomenon in the construction industry, it is

meaningful to look at the metabolic effects of smoking. Wahren et al. (1983)

examined the metabolic response to tobacco smoking in 11 healthy, habitual smokers.

The consumption of three cigarettes increased oxygen uptake by 11%, which was

sustained for more than an hour. In one subject who smoked 20 cigarettes during 11

hours, his energy expenditure was found to be 14% greater than on the following day

when he did not smoke. Food intake and physical activity were the same. Wahren et

a1. (1983) concluded that smoking significantly raises energy expenditure. So tobacco

smoking can contribute to earlier fatigue in smokers, compared with nonsmokers who

exercise at the same level. Similar effects on exercise tolerance are noted in those

who inhale environmental tobacco smoke (McDonough and Moffatt 1999). Women

who quit smoking and undergo a vigorous exercise training program demonstrate

improved exercise performance over those who continue to smoke.

The American College of Sports Medicine (1982), after conducting a

comprehensive analysis of alcohol and exercise, concludes the following:

1. Excessive ingestion of alcohol has a deleterious effect on many psychomotor

skills.

2. Alcohol consumption does not substantially influence physiological

functions crucial to physical performance.

3. Alcohol ingestion will not improve muscular work capacity and can decrease

performance levels.

4. Alcohol consumption can impair temperature regulation during prolonged

exercise in a cold environment.
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Caffeine is a central nervous system stimulant and is known to have the most

apparent effects on cognitive functions of the fatigued subjects, by increasing alertness

and repelling drowsiness (Astrand and Rodahl 2003). There are a lot of arguments

about the effects of caffeine on perfromance. Moderate doses of caffeine (200-300

mg) may elevate mood and improve psychomotor and intellectual performance, while

larger doses can produce symptoms such as headache, irritability, tremors, etc. It may

be an effective short-temr ergogenic aid, but of the several studies that have been

conducted, most have failed to show any ergogenic effects of caffeine on muscle

strength and fatigue, work output and speed.

11.3 Physical Fatigue

Measuring the physiological demands of work is only one side of the story, the

other important side is evaluation. Astrand and Rodahl outlined the basic tasks in

measuring physiological demands as follows:

“A basic task for the work physiologist must be that of measuring the rate at

which the work is being done, i.e. the workload and matching this rate with the

worker’s ability to perform the wor .”

Evaluation of measured physiological demand of work and potential for physical

fatigue and the limitations it may have on worker productivity has attracted

physiologists for many years. The decrease in performance due to fatigue is widely

accepted, but no agreement has been reached in trying to quantify this decrease or in

setting acceptable limits for it (Christensen 1960; Oglesby, Parker, and Howell 1989).

As Astrand and Rodahl (2003) said, the main object of work physiology is to

make it possible for individuals to perform their work tasks without objectively or

subjectively developing feelings of physical fatigue.
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The discussion in this chapter suggests that physical fatigue is closely associated

with oxygen uptake and could be greatly influenced by factors of age, gender and

cycles of work and rest. In the past thirty years, numerous evaluation techniques of

measuring physiological demands have been proposed such as classification of work

severity based on published tables for oxygen uptake and heart rate. Other techniques

evaluate physiological demands for potentials of physical fatigue using established

physiological limits.

Humans and animals can be viewed as machines that develop and store energy

from food, burn it with oxygen to sustain life and, on demand, create movement and

power through muscular contractions (Oglesby, Parker, Howell 1989). However,

factors such as physical dimensions and condition, weight and age impose limitations

on the body’s ability to perform certain tasks. Prolonged activity eventually leads to

the onset of physical fatigue, a decrease in performance and productivity, as well as the

potential for accidents and injuries (Kalsbeek 1971).

Studies of heart rates made over 50 years ago by EA. Muller (1950) have shown

that the heart rate of a worker is a very sensitive and reliable indicator of overexertion

and fatigue. Muller reported that in general, an hourly increase of six pulses

(heartbeats) per minute is a signal that a person is overexerting on a long-term basis.

Physical fatigue can also be assessed by measuring oxygen uptake and then

converting it produced energy (For every liter of oxygen used, 5 kilocalories of energy

are produced). Researchers have found that the average young male adult, 5 feet 8

inches tall, weighing 160 pounds and in good physical condition, can develop energy

over several hours at an average rate of about 5 kilocalories per minute. The energy
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required to sustain life processes requires about 1 kilocalorie per minute. It follows

that occupations with energy demands less than 5 kilocalories per minute can be carried

on continually for an 8-hour shift or more, without being subject to human physical

limitation. However, if the energy expenditure is greater than this, intermittent rest is

required to recoup the energy taken from storage in the body and prevent the

development of physical fatigue (Oglesby et al 1989).

An acceptable workload requires a balance between physical workload and cardio

respiratory capacity during 8 hours of work (Aminoff et a1. 1998). When this balance

is maintained, V02 and HR will remain at steady-state with a constant work output.

After working a very prolonged time, an accumulation of lactic acid in the blood puts

an additional load on the cardiovascular system and causes a sudden increase in HR.

Thus, toward the end of a work shift, a markedly higher HR (about 10 beats/min. above

steady-state), as compared with the steady-state HR observed during the initial hours of

work, is a clear sign of fatigue. This criterion has been applied to determine the

acceptable workload for an 8-hour workday (Saha et a1. 1979).

With advanced technology, extremely heavy work can be eliminated quite easily.

Therefore the more important factor for workers is the manner in which the work is

performed, flexibility to govern one’s own job, the safety and general atmosphere of

the working environment, and the arrangement of work shifts. As summed by

Astrand and Rodahl (2003), a workload taxing 30% to 40% of the individual’s maximal

oxygen uptake is a reasonable average upper limit for physical work performed

regularly over an 8-h working day. No more than 40% of maximal muscle strength

should be applied in repetitious muscular work.
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11.3 - 1 Classification of Work

Based on the measurement of oxygen uptake and heart rate, different direct

measurements or indirect prediction techniques, and all the other assessments on

somatic factors of age. sex, body dimension, psychic factors of stress, motivation,

tObacco, alcohol, caffeine usage, and environmental factors of heat cold, etc.,

prolonged physical work can be classified as to severity of workload and to

Cardiovascular response.

Table II.3a is a general guideline for identifying categories of prolonged physical

work. These figures refer to average individuals, 20 to 30 years of age. Table 11.3b

(adapted from Christensen 1983) provides a guide to classify work severity based on

peak oxygen uptake and heart rate values.

 

 

Workload Oxygen uptake, L/min Heart rate, beats/min

Light work up to 0.5 up to 90

Moderate work 0.5-1.0 90-110

Heavy work 1.0-1.5 110-130

Very heavy work 1.5-2.0 130-150

Extremely heavy work over 2.0 150—170

 

Table 11.3a Prolonged physical work classification

 

 

Peak Oxygen uptake, Peak Heart rate

Workload L/min beats/min

Very light work Up to 0.5 Up to 75

Light work 0.5 - 1.0 75 — 100

Moderate work 1.0 - 1.5 100 — 125

Heavy work 1.5 - 2.0 125 — 150

Very heavy work 2.0 - 2.5 150 — 175

Extremely heavy work Over 2.5 Over 175

 

Table 11.3b Work classification based on peak responses during manual work
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11.3-2 Dealing with Physical Fatigue

As shown in Figure 11.1, the performance of physical work depends on the ability

of the muscle cell to transform chemical energy in the food into mechanical energy for

muscular work. This in turn depends on the capacity of the bodily functions that

deliver fuel and oxygen to the working muscle. That is, on the nutritional quality of

the food ingested; frequency of meals; oxygen uptake, including pulmonary ventilation,

Cardiac output and oxygen extraction; and the nervous and hormonal mechanisms that

regulate these function (Astrand 2003).

Additionally, many of these functions are influenced by age, gender, body

dimensions and health situation. At the same time, performance is influenced to a

great extent by motivation and attitude toward work. And from the previous section,

we know that alcohol also has a negative effect on performance.

Understandably, most studies of measurement of human fatigue are performed in

laboratory settings, which may vary greatly from situations encountered in real life.

And physical fatigue may include both muscle fatigue and fatigue caused by

non-biomechanical muscle activities. The challenge is, therefore, to relate the various

factors contributing to experimental fatigue to the fatigue encountered in the

workplace.

Literature on physical fatigue suggests several ways of improving these work

conditions. With the development of mechanization, automation, and many kinds of

labor-saving equipment, modern technology has eliminated much heavy physical work.

But the construction industry is still a typically labor-intensive industry, and some

heavy physical work is still obligatory. Also, sometimes the greatest problems in the
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work environment are not the physical loads but rather mental stress and unfavorable

working conditions. Therefore, in order to reduce physical fatigue, the supervisor

making work assignments should plan to mix heavy and light work, schedule rest

periods, and match workloads to the worker’s ability to perform the task.

In sum, to deal with physical fatigue occurring during work cycles in different

industries, all the above factors have to be included, to find effective ways of

improving work conditions and performance. The major objective of the work

physiologist is to enable working individuals to accomplish their tasks without undue

fatigue, so that at the end of the working day they are left with sufficient vigor to enjoy

their leisure time (Astrand and Rodahl 2003).

11.4 Physical Demands of Construction Work

Physiological workload research has been well developed in industries such as

automobile manufacturing, where work is labor-intensive and workers often perform

their tasks repetitively and in poor working postures due to constrained work places.

One study (Min, K, Chung et a1. 1999) evaluated physiological workload during screw

driving tasks in the automobile assembly line.

The effects of load and work postures on heart rate, oxygen consumption during a

screw driving task with varying loads, leg postures (standing an squatting) and trunk

postures were studied, using nine male subjects. The effects of load, leg and trunk

posture were found to be significant on heart rate and oxygen consumption. Heart

rate, oxygen consumption and subjective discomfort rating all showed a significant

increase for heavy loads and for bent and twisted trunk postures, and a redesign of

work methods for screw driving was highly recommended.
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These research studies document the necessity of exploring the physiological

demands of different types of work, the need to correctly measure these demands, and

to develop ergonomically designed work tools and methods of completing work tasks

efficiently. This certainly is true for construction work where it is known that workers

consume large amounts of energy in performing their work tasks. The high physical

demands of construction work can easily cause physical fatigue among workers. In

order for work physiology to achieve the target of eliminating physical fatigue and

improving worksite conditions, the physiological demands of work must be measured

and evaluated.

0.042

. 0

0. 9

Electrician 0.041

Glazi .045

0.04

0.055

. 3

0.04

Table 11.4 Average energy expenditure by construction trade (Abdelhamid and Everett 2002)

 
To illustrate the use of Table 11.4, assume that a person weighing 100 kg is

considering Bricklaying as a vocation. According to Table 11.4, this person should

expect to have average energy expenditures at 4.2 kcal/min (0.042 kcal/kg/minxlOOkg

= 4.2 kcal/min). Similarly, if this person is considering working as a Laborer, then

he/she should expect to have an energy expenditure of 5.5 kcal/min.

Data such as those in Table 11.4 are at a best a guide in assessing human ability to

carry out strenuous work tasks with or without intermittent rest. Among those of a

given age for the same trade, there are variations in overall body lean and fat weights,
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lung capacity and blood-circulation rates. With age, heart-stroke volume and rate of

beating decrease and the oxygen transport system operates less effectively, reducing the

rate of oxygen intake by 20-25 percent between the ages of 25 and 60.

Also, nowadays more and more women work in trades and the construction

industry. On the average, women consume less energy in maintaining basic body

functions and expend less residual energy in performing heavy tasks. Compared with

males, the average female has less muscular strength. Measurements have shown that

on the average, women have 20 percent less body mass, 33 percent less lean body

(muscle) mass, and 14 percent more body fat. Body surface area for females averages

18 percent less than for males. These factors, coupled with a lower blood circulation

rate, explain why women on the average have more difficulty than do men in carrying

out heavy tasks and why they are less able to adjust to heat and cold but have more

endurance.

Measuring energy expenditure figures, such as the 4.2 and 5.5 kcal/min shown

above, only represent one side of the story. The other side is the evaluation of these

measurements for the potential of physical fatigue. A widely used rule of thumb is

that activities requiring less than 5 kcal per min can be performed continually for a

work shift without overly taxing the worker. An activity requiring more than 5 kcal

per min can be performed for a limited time before the worker needs rest to recoup

energy from stores within the body.

A more accurate assessment of physical fatigue potential is to express the

measured energy expenditure as a percentage of the maximum energy expenditure that

a person is capable of, which is affected by gender, age, height, weight, conditioning,
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inheritance, and environmental factors. To illustrate this, let’s assume that two

different workers may be performing the same activity and expending energy at the

same rate of 4 kcal/min. If these two workers respectively have a 10 kcal/min and 15

kcal/min maximum energy expenditure, then the first is working at 40% (4/ 10) of

his/her max while the other is working at 27% (4/15) of his/her max. Clearly, the two

workers are taxing their bodies differently. Therefore, expressing the workloads as a

percentage, also known as “relative workload," is the only way to take into account

individual differences in physiological capacities among workers.

As mentioned previously, determining maximum energy expenditure values

requires actual testing procedures, which involve complicated and lengthy laboratory

procedures, and could even be dangerous for unfit construction workers. The specific

aim of this research is to develop a practical method to predict relative workload from

energy expenditure data collected during actual work activities. Another aim of this

research is to include factors of individual variability, such as variations in age, gender,

weight, etc., in the model for the prediction of relative workloads for the construction

industry.

For construction workers, a wide variety of tools and equipment are required in

carrying out construction tasks. Failure to have tools of the right kind in sufficient

quantity available at the workplace can be a major cause of lower productivity and

physical fatigue. To enable efficient use of tools, physical fatigue, awkward positioning

of the body, limbs, hands or fingers, and strenuous muscular movements, which may be

required to use the tools, have to be factored into the design of those tools, for

efficiency and to match them to the tasks and the workers’ needs.
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11.5 Conclusion

This chapter provided a brief discussion of the literature relevant to this research,

regarding what is available and how to deal with and evaluate physical fatigue. Genetic

factors such as age, sex, body dimensions, psychic factors of stress and motivation,

tobacco and alcohol use, and external environment factors related to physical fatigue

and assessment of work performance are discussed as well, along with the

classification of work as to severity of workload.

The physical demands of construction work are briefly reviewed, followed by a

focus on several methods of measuring maximum oxygen uptake and relative

workloads to determine the physiological demands of work. Different equations for

V02max prediction have been discussed. And several factors such as age, gender,

weight, height and heart rate have been factored into the prediction techniques

developed by different researchers in linear/non linear multiple regression models.

All of these previous efforts provided a great resource for this ongoing research to

develop a multi-regression model to predict and measure the physical demands of

construction work based on the simple regression model developed in Abdelhamid

(1999). The next chapter describes the methodology used to achieve the goal of this

research.
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CHAPTER III

METHODOLOGY

As mentioned previously, this research project is an extension of methods

developed in Abdelhamid (1999) to predict relative workload from in-situ collected

data. This method has been under validation as part of a grant from the National

Institute of Occupational Safety and Health (NIOSH). It is also expected that a

multiple linear regression model will increase the overall prediction accuracy of

relative workload because, as discussed in Chapter 11, factors such as age, gender,

hereditary factors, health condition, and exercise history have an established influence

on the maximal oxygen uptake (V02max) value that is central to the prediction method

developed in Abdelhamid (1999). The following sections will explain the

methodology that was adopted in this research.

11].] Relation the Between Green’s Function and %VO2.m

Figure 111.1 is a graph showing oxygen uptake data for two different subjects

while they were performing one of the treadmill exercise protocols used in Abdelhamid

(1999f. The two subjects were performing the same exercise protocol, and they were,

respectively, exercising at 36% and 64% of their individual maximum oxygen uptakes.

As Figure 111.1 shows, there is a clear difference between the two subjects in terms of

the recorded oxygen uptake data.

 

5 Details of the experimental protocol can be found in Abdelhamid (1999) and Appendix C of this thesis.

Data series for the whole plots in Figure 111.1 and 111.2 are listed in Table 8.1 in Appendix B.
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Figure 111.1 Oxygen uptake data for subject 78 and 98 (session 3)

The data in Figure 111.] was shown in Abdelhamid (1999) to have

auto-dependence or auto-correlation. This property was firrther exploited using a

statistical technique called time series analysis wherein data are auto-regressed to find a

linear statistical model that describes one observation in terms of earlier ones. Once

an adequate model is found, typically termed an Auto-Regresseive Moving Average

model [ARMA(p,q)], numerous statistical, and sometime physical, characteristics can

be derived regarding the system that produced the observed data.

Abdelhamid (1999) verified that the time series derived characteristic called the

Green’s function is positively correlated to %VO2max. Figure 111.2 shows a typical

plot of the Green’s function for the data shown in Figure 111.1. It should be noted that

the horizontal axis represents a time unit equal to the sampling interval at which

observations are measured, and the vertical axis is Gj, which is the value of the Green’s

function at a particular time unit j. To properly quantify the Green’s Function profile
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and given its asymptotically limited property, the concept of ‘mathematical’ energy is

used, wherein the sum of squares for all individual data points is determined".

+Sibj ect 78- sessi on3
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Figure 111.2 Green’s function for subject 78 and 97 oxygen uptake data (session 3)

Despite being subjected to the same exercise intensity, Figure 111.2 shows that the

two subjects have drastically different responses to the exercise. Recall that subjects

78 and 97 are, respectively, exercising at 36% and 64% of their individual maximum

oxygen uptakes. The value of the energy of the Green’s function (E0) was calculated

for the two subjects and found to be 4.79 and 14.16 for subjects 78 and 97, respectively.

Clearly, for these two different subjects under the same external effort level, the

difference in response is well captured using the Energy of Green’s function.

As mentioned in Chapter 11, time series analysis was used in Abdelhamid (1999)

to develop a simple linear regression model based on the relationship between

 

6 The Green’s function falls under non-periodic signals and is quantified using the concept of “energy”

(Abdelhamid 1999).
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%VO2max and E0 on 20 subjects. Therefore in order to achieve the first objective of

this thesis, which is to verify the linear regression model on a larger pool of subjects,

the same treadmill experimental protocols and analytical procedures that were

performed in Abdelhamid (1999) were conducted for a pool of 100 subjects.

111.2 Research Methods

The goal of this research is to develop a multiple linear regression model to

predict the physiological demands of construction work. The model will incorporate

factors such as age, gender, and heart rate in addition to the factor established in the

simple linear regression model developed in Abdelhamid (1999).

To attain this goal the following objectives were established and accomplished:

I Validate the simple linear regression model developed in Abdelhamid

(1999) for 100 subjects performing a specified exercise regimen.

I Develop and validate a multiple linear regression model to predict the

relative workload from sub-maximal oxygen uptake (V02).

111.2.1 Objective 1

For the first objective, measurements will be conducted on subjects performing

the same treadmill experiment protocol that was performed in Abdelhamid (1999).

One hundred ‘development’ subjects will be tested. For each subject, oxygen uptake

and heart rate were measured during three different sessions requiring different levels

of effort. In addition, the maximum oxygen uptake was determined for each subject

using an exact technique termed the Harbor protocol (McArdle et a1 1996). Hence,

the exact relative workload for each subject could be determined at each level of effort.
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Time series analysis was then performed for each data set collected to arrive at an

adequate ARMA(p,q) model from which the energy of the Green’s function was

obtained and related to the relative workload through regression analysis.

The V02000 Portable Metabolic System was used to measure oxygen uptake.

With this system, the subject wore a face mask and breathed ambient air. The subject

also wore a chest vest on which the measuring device was mounted. The Polar

Vantage XL was also used to measure heart rate.

A 4-session experiment was designed to investigate the E0 and %VO2max relation.

The experiment was designed such that all subjects were required to perform at the

same work intensity. During all sessions, oxygen uptake and heart rate data were

collected at lO-second intervals, the lowest possible setting by the V02000 Portable

Metabolic System. The following is a description of the 4-session experiment that

was performed on the 100 development subjects:

Session 1; Resting

The subject was instructed to assume a supine position for 20 minutes prior to

which the last food intake had at least been two hours.

Session 2; Treadmill walking (0% grade):

The subject was instructed to walk on the treadmill for twenty minutes at a speed

of 3 miles/hr (4.8 km/hr) and level grade. During the first two minutes, the speed was

gradually increased from 1.5 mile/hr to 3 miles/hr (2.4 km/hr to 4.8 km/hr). This

served both as a warm up period and a familiarization period. After finishing the

exercise, the subject was allowed to rest until oxygen uptake and heart rate values
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returned to pre-exercise values (resting values). Data measurement was stopped after

this recovery period.

Session 3', Treadmill walking (1 2% grade):

The subject was instructed to walk on the treadmill for twelve minutes at a speed

of 3 miles/hr (4.8 km/hr) and 12% grade. The exercise started at 1.5 miles/hr (2.4

km/hr) and 0% grade, and during the first minute speed and grade were gradually

increased to 3 miles/hr (4.8 km/hr) and to 12% grade, respectively. After finishing the

exercise, the subject was allowed to rest until oxygen uptake and heart rate values

returned to pre-exercise values (resting values). Data measurement was stopped after

this recovery period.

Session 4; Harbor protocol for V02max measurement:  

This session was performed to determine the exact value of maximum oxygen

uptake using the Harbor protocol. The subject was instructed to walk on the treadmill

for three minutes at a speed of 3.3 miles/hr (5.3 km/hr) and level grade. Then, the

grade was increased 2% every following minute. If the subject reached the 15% grade,

and was still able to continue, the speed was increased 0.5 miles/hr every following

minute. The exercise continued until the subject was unable to continue

walking/running. After finishing the exercise, the subject was allowed to rest until

oxygen uptake and heart rate values returned to pre-exercise values (resting values).

Data measurement was stopped after this recovery period. In order to determine if a

true V02max was achieved, a “peaking-over” in oxygen uptake was used as criteria

(McArdle et a1 1996).
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The collected data from the 100 development subjects was used to examine the

validity of the single linear regression model developed in Abdelhamid (1999).

[11.2.2 Objective 11

The second objective will be achieved by these following steps:

Conduct a literature review to understand contemporary methods of

predicting physiological demands of work.

Develop a multiple linear regression model to reflect the variables that

may affect the prediction of relative workload, such as body

dimensions (height and weight), age, gender and heart rate.

Assess the performance of the multiple linear regression model on a

pool of validation subjects performing random exercises, or working at

intensities ranging from light to heavy, as well as performing a

maximum oxygen uptake test to determine the actual %V02.,m at

which each subject was exercising/working.

Evaluate the predictive capability of the regression model by

predicting the %V02max from the validation subjects and comparing

results with the actual values.

111.3 Hypothetical Multiple Linear Regression Model

Building on the relation between Green’s function and %VO2max discussed in

section 111.1, this research will develop a multiple linear regression model to predict

and measure the physiological demands of physical work, such as construction work.
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This research will focus on heart rate, age, body dimensions, and gender as the factors

that may affect the simple linear regression method and develop a multiple linear

regression model accordingly. Inclusion of these factors accounts for the inherent

inter-subject variability in terms of physical capacity and the type and length of the

activity performed.

The reason other factors, such as age and heart rate, need to be taken into account

is that inter-individual variability in terms of physical capacity exists in the real world,

especially in construction work. In addition, every worker is unique, and performs

different and sometimes unique work, due to variability of location, time and amount of

work. Also, as Christensen (1962) suggested, “we have to decide if the load of a

given job is reasonable or unreasonable for a given worker." Therefore, as many

relevant factors as possible should be incorporated in regression models used for

prediction of physiological demands.

To fit measured data to a certain model, one has to decide upon the form of the

model. For the prediction of relative workload, i.e. %V02nm, it is possible to make

an educated guess regarding the form of the model, rather than conducting a laborious

search process for the correct one. It has been well established that %VO2max can be

expressed linearly as a function of E0 as developed earlier by Abdelhamid (1999). It

has also been established by other researches that %VO2max has a linear relationship

with heart rate, weight, height, age, gender, and working power. So the basic multiple

linear regression model that will be investigated in this research will be generically

expressed in the following form:

%V02max = f (E3, HR, age, gender, height, weight) (Eq 3.1)
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A hypothetical multi-regression model may take the following form:

%V02max = “1E6 + aZHR + a3Age + a4Height + asWeight + C (Eq 3.2)

where a1, a2, a3, a4 and a5 are the parameters of the model and C is a constant.

It is possible to combine the height and weight of a person using the Body Mass Index

(BMI) or the Body Surface Area(BSA). BMI is expressed as follows: BMI = [Weight

(kg) / Height2 (m)] while BSA is most commonly expressed as (Mosteller 1987): BSA

= ([Height (in) x Weight (lbs)]/ 3131) V’. As shown, either expression combines both

height and weight, which is an advantage when constructing the mathematical model.

So the Eq.3.2 may change to the following:

%VO2mam = alEG + azHR + aBAge + a4BMI(0rBSA) + C (Eq 3.3)

This equation of the model can be analyzed by the methods of multiple linear

regression (MLR) to estimate the parameters a), a2,..., an by minimizing the sum of

squared errors: minZgz , where g,- = y. _ y. and y. is the i-th predicted value and

. 1 1 l

l

y. is the i-th observed value. This is method is called the least squared errors and is

the method used in this research. It should be noted that using linear programming

may provide a better model because the actual deviations are minimized rather than the

square of the deviations.

The statistical properties of the model such as the standard error of estimation

(SEE), coefficient of determination (r2), and inferences about prediction of V02max will

be determined and analyzed. The effects of multi-collinearity will also be

investigated.
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The developed multiple regression model will be verified on data collected for

100 subjects exercising/working during the validation sessions. The subjects were

instructed to perform random exercise or work at intensities ranging from light to heavy.

Subjects were allowed to choose the exercise equipment or the type of work at their

own discretion. These conditions were intended to match the random nature of work

that dominates real-world work situations. Maximum oxygen uptake was determined

for each subject using the Harbor protocol, as was done for the 100 development

subjects. The same time series analysis technique was applied to the validation

subjects’ oxygen uptake data sets to obtain the Green’s function and its energy. The

predictive capability of the multiple linear regression model will be evaluated by

calculating the mean squared prediction error.

111.4 Summary

The construction industry differs from other industries in many unique ways.

An ever-changing job site under varying weather conditions and job demands are all

factors that make it critical to find a reliable technique for the accurate evaluation of

physical demands, and identify and eliminate potential causes of physical fatigue.

It is expected that the proposed multi-regression model will improve the accuracy

of relative workload predictions from sub-maximal oxygen uptake data collected

in-situ. The multi-regression model will include both the promising time series

analysis technique developed by Abdelhamid (1999) and other factors that affect

oxygen uptake such as age, body dimensions, heart rate, gender, etc.

If successful, the multiple linear regression model developed in this research will

be of great importance in better understanding physical demands on today’s workers.
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This prediction method will be safer for unfit subjects and easier to use in general,

compared to maximal testing protocols and restrictive lab requirements. This

methodology will have widespread application in identifying excessively demanding

tasks so they can be better matched to the abilities of subjects. Women, older workers,

and workers who are partially disabled now can be placed in jobs according to their

capabilities.
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CHAPTER IV

RESULTS

1V.l Introduction

The literature review in Chapter II reveals that typical influential factors in the

prediction of relative workload (%V02max) are heart rate, age, weight, height, and

gender. Combining these factors with the Energy of the Green’s function, as found in

Abdelhamid (1999), is expected to yield more accurate predictions of relative workload

from sub-maximal oxygen uptake and heart rate data collected in-situ. The current

research is limited to incorporating the factors of weight, height, age, and heart rate in

the development of a multiple linear regression model of %VO2,,m.

In this research, the same experimental protocol performed in Abdelhamid (1999)

was used on 100 subjects. The resulting data were analyzed to develop and validate a

simple linear regression model between %V02max and the Energy of the Green’s

function. In addition, multiple linear regression models were developed to include the

other influential variables discussed earlier. Validation of the multiple regression

models was undertaken on an additional 100 validation subjects. Comparison of the

multiple regression models with the simple linear regression model was performed and

the result revealed a significant improvement in the accuracy of prediction in %V02max

and the V02max, respectively.

This chapter presents the results of redeveloping the simple regression model on

the larger pool of subjects and the development of the multiple linear regression (MLR)
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models, with age, height, weight, and heart rate factors. The statistical properties of

the developed regression models are derived and analyzed against the basic

assumptions upon which the models were constructed. The chapter concludes with a

presentation of the validation results for all the developed regression models.

IV.2 Participants

The study details were announced to students, staff and faculty from Michigan

State University. The target number of participants was 200, respectively divided into

100 development and 100 validation subjects. As the title implies, the data collected

for the development subjects were used to build the regression models, both simple and

multiple. Data collected for the validation subjects were used to verify the simple and

multiple linear regression models’ predictive accuracy. The validation compares

actual values observed for the validation subjects to predicted values for the same

subjects, using the developed regression equations.

Descriptive physical data and exercise data for the 200 experimental and

validation subjects are presented in Table IV.17. The age variable, with a range of 19

years for experimental subjects and 24 years for the validation subjects, seems to show

the least degree of variation among the other variables. Around 80% of the subjects

are 24-32 years old. The values for V02”, V02nm, %VO2max, HRavg, HRmax and

RHR are also very close for these two groups of subjects. HRmax is calculated by the

formula HRmax = 220-age.

 

7 The whole data series are listed in Appendix B Table 8.2 and B.3.
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Development Subjects
 

 

 

 

 

Variable Mean SE Mean StDev Min Max Range

Height(inch) 681980.342 3.506 57.5 76.75 19.25

Weight(lb) 156.592.35 24.04 105.6 231 125.4

BSA( m2) 184340.017 0.1744 1.45 2.36 0.91

Age(yr) 24.438 0.45 4.614 18 37 19

VO2avg(liter/min) 1.0355 0.043 0.441 0.2758 2.0803 1.8045

VOzmax(liter/min) 3399100754 0.7728 1.98 5.06 3.08

%VO2max 0.3095 0.0124 0.1272 0.1249 0.6578 0.5329

HRavg(Beat/min) 109.492.28 23.41 69.27 173.67 104.4

HRmax(Beat/min) 195.560.45 4.61 183 202 19

RHR 0.5599 0.0116 0.119 0.36 0.9 0.54

Validation Subjects

Variable Mean SE Mean StDev Min Max Range

Height(inch) 68.867 0.338 3.888 60.5 80.5 20

Weight(lb) 165.06 2.4 27.52 111 239 128

BSA(m’) 1.8928 0.0181 0.2085 1.47 2.39 0.92

Age(yr) 25.773 0.449 5.155 19 43 24

V02avg(liter/min) 1.7137 0.0436 0.5014 0.84 2.87 2.03

VOzmainter/min) 3.5471 0.0761 0.8747 1,52 5.93 4.41

%V02max 0.49098 0.00919 0.10563 0.26 0.67 0.41

HRavg(Beat/min) 136.84 1.48 16.98 100.71 172.35 71.64

HRmax(BeaI/m1n) 194.23 0.449 5.15 177 201 24

RHR 0.705 0.00768 0.0882 0.52 0.89 0.37
 

Note: V02max=maximal oxygen uptake, obtained from Harbor protocol for

V02max measurement; HRmax =maximal heart rate=220-age; %VO2max =

VO2avg/V02max; RHR=HRa,g/HRmax; BSA(m2)=([Height(in) x Weight(lbs) ]/

3131 )‘e (The Mosteller formula)
 

Table 1V.1 Descriptive Statistics and maximal exercise data for experimental/validation subjects

IV.3 Models Analysis

The models analysis is divided into three parts.

the single linear regression model is performed using the data from the 100

development subjects.
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between the Energy of the Green’s function and relative workload (%V02max), which is

the method advocated by Abdelhamid (1999). Statistical properties of the simple

linear regression model are derived and illustrated. Part B discusses the motivation

for developing the multiple linear regression models and how the MLR models are set

up, with the accompanying statistical analysis to verify the suitability of the multiple

regression models. A comparison of a number of multiple linear regression models is

conducted to determine the best fit multiple linear regression model. Part C verifies

the simple linear and multiple linear regression models on the 100 validation subjects

for the appropriate applications.

1V 1 Part A: im 1e Linear Re r ssi n M (1 1D vel men

IV.3.1.1 SLR Model Setup

The simple linear regression model using the relationship between the Energy of

the Green’s function and %V02max is developed by Abdelhamid (1999). However, in

that research, the relation was developed based on data for 20 subjects and validated on

5 (Abdelhamid 1999). Therefore, this research begins with redeveloping this simple

linear regression relationship on 100 experimental subjects. This is also the part of

the research that involves the NIOSH project.

As explained in Ch 111, this research uses the same time series method to obtain

the Green’s function for each experimental subject on the treadmill exercises.

Because Session 1 exercise is a resting cycle, subjects are under less demanding

exertions. As a result, the Energy of the Green’s function doesn’t change significantly

for each subject. The trend is entirely different for Sessions 2 and 3, wherein

significant differences are observed in the values of the Energy of the Green’s function.
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Values of the Energy of the Green’s function and %V02max for each experimental

subject are plotted in Fig.1V.1. As shown, the relation between the Energy of the

Green’s function and relative workload are strongly correlated. The solid line in

Figure IV.1 represents the best-fit curve (logarithmic) between the Energy of the

Green’s firnction and V02avg/V02max. This verifies that a non-linear relation exists

between the two variables for a larger pool of subjects.

   

 

Green's function VS %VO2nmx
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Figure 1V.1 Energy of the Green’s function and VOZavg/VOZmax

To allow using linear regression, the Energy of the Green’s function is

transformed using the natural logarithm (Ln). The result is shown in Figure IV.28.

Table IV.2 presents the running output from the Minitab software9 for the

regression of %V02max based on the Energy of the Green’s function. From the results,

 

8 All data plotted in Figure 1V.1 are listed in Appendix B Table 3.4.

9 In order to avoid exhausting calculations on the data, this thesis uses the software of Minitab, Excel and

SPSS for linear regression model running outputs.
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we can also see the same linear regression equation between these two variables

derived from Figure IV.2.

Transformed Green's function VS %V02max
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Figure IV.2 Transformed Energy of the Green’s function and vo,,,,,/vom,

 

lRegression Analysis: %VO2m,x versus Ln(E(;)

%VO2,mlx = 0.224 + 0.160 Ln(Eg)

S = 0.0760997 R-Sq = 64.6%

 

 

 

     
 

 

 

 

  

Predictor Coef SE Coef 11’ P

onstant 0.224405 0.00968 23.1 8 1)

1.11050) 0.1603 0.0117 13.7 0

Analysis of Variance

Source DF SS MS F P

Regression 1 1.0868 1.0868 187.66 0

Residual Error 103 0.5965 00058

Total 104 1.6833       
 

Table IV.2 Regression output for the %VOZ,,,,, by Minitab

Therefore, the following single linear regression model results:

%v02m,, = 0.224 + 0.160 Ln(EG) + 6 (Eq N1)
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The intercept and slope for the linear regression model are estimated as 0.224 and 0.160

respectively, with a standard deviationo, or standard error of estimation (SEE), of

i0.076.

IV.3.1.2 Normality and Independence of Error Terms of SLR Model

Several inferences from the SLR model in Eq IV.1 such as the standard deviation,

and normality and independence of the error terms have to be validated to ensure the

developed model can be considered appropriate for its application.10

A. Star_rdard Deviation

In statistical theory, the deviations 8 in a simple linear regression model are

assumed to be independent and normally distributed random variables with mean 0 and

standard deviation 0' orx/MSE (MSE stands for mean squared error). For a simple

linear regression model, the 0, which measures the variation of the dependent variable,

in this case the %V02max, about the re ression line can be determined from:g

(Eq IV.2)

 

The sum is averaged by dividing over n-2 to make 5 an unbiased estimate of o.

The quantity n-2 is known as the degree of freedom for s. From the Minitab running

output (see Table IV.2), the estimated standard deviation ‘3 ' for the regression model to

analyze the relationship between %V02mu( and Ln(EG) is calculated as $0.076 or

 

'0 In order to make the illustration clear and easy to understand, some statistical background terminologies

are included in the analysis. For more detailed information regarding single and multiple linear regression

models, please refer to the referenced statistical textbooks.
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17.60% for all the experimental subjects. This demonstrates that the standard error of

prediction for relative workload, i.e., %V02max, using the Eq 1V] is i7.60%.

B. Normality and Independence of Error Terng

The SLR model consists of the predicted mean of %V02max and deviations of the

data from the line of means, 8. As mentioned earlier, normality and independence of

the error terms have to be verified such that the developed model Equation IV.1 using

linear regression is considered appropriate for its intended application.

The normality is verified using a normal probability plot of the residuals. A

normal probability plot is a plot of ordered residuals against their respective expected

values, which are assumed to follow a normal distribution. Figure IV.3 shows a plot

of the ordered residuals versus their expected value under normality by using the

Minitab software. The nearly linear plot indicates agreement with normality. i.e., the

distribution of the error terms can reasonably be assumed to be normal.

 

99.

99.

 
 

   , E (ei)
 

Fig IV.3 Normal probability plot for residuals
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In linear regression, it is assumed that the residuals are independent of (not

correlated with) one another. If the independence assumption is violated, some model

fitting results may be questionable. The independence for the residuals e. was tested

using Minitab. The method used in Minitab involves graphing residuals versus the

ordered data. Once constructed, the graph provides a visual depiction of the residuals’

independence. A positive correlation is indicated by a clustering of residuals with the

same sign. A negative correlation is indicated by rapid changes in the signs of

consecutive residuals.

Figure IV.4 shows the plots of residuals versus ordered data for the single linear

regression Equation IV.1. From the plot, it is indicated that there are rapid changes in

the signs of consecutive residuals and there is no visible clustering of residuals with the

same sign. Therefore, there is no evidence of serial dependence in the observed

residual data, indicating independence of the residuals e1.

Residuals Versus the Order of the Data

(rsporse ls %V02max)
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Figure IV.4 Minitab residuals versus order chart

Residual analysis is not complete without considering whether there is a

possibility of residual outliers. Fig. IV.5 is a standardized residual plot generated by
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the Minitab program. It reflects the relation of standardized residuals (8170') and the

independent variable X, in this case the Energy of the Green’s function.

  

l Residals Versus the Fitted Values

. (response is %V02max)
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Figure IV.5 Minitab standardized residual plot

For a standardized residuals plot, outliers are considered as points, which are four

or more standard deviations from zero. Fig 1V.5 shows that most of the residuals are

scattered within a band of i2 standard deviations from zero. Therefore, there is not

sufficient evidence that outliers exist.

In sum, both the normality and independence of error terms have been checked

and they verify that the single linear regression model using the Energy of the Green’s

function to predict relative workload (%V02nm) is valid, and the linear relation

between the Energy of the Green’s function and %VO2max exists, even with a larger

pool of subjects. The developed equation using linear regression is considered

appropriate for the application.

The next step for the validation of the single linear regression model is to check

the statistical properties of the model equation to see how this model reflects the
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capability of predicting %VO2max and how accurate is the model’s prediction of relative

workload.

IV.3.1.3 Statistical Properties of the SLR Model

A. Correlation coefficient, T value and P value

Table IV.2 indicates that the coefficient of determination for the regression

Equation IV] is r2=0.646 and the coefficient of correlation is r=0.80. In general,

values of r can range from -1 to +1, and fall between 0 (no correlation) and 1 (perfect

correlation). On the one hand, a positive value indicates that two variables tend to

increase together. On the other hand, a negative value indicates that one variable

tends to increase as the other decreases. In this model, an r-value of 0.8 indicates that

EU and %VO2max are highly correlated. In addition, an r2 value of 0.646 means that

around 64.6% variation in relative workload (%V02max) can be explained by Ln(E(-;).

However, the interpretation of r2 as the proportion of the total variation of

%VO2max explained by EU is frequently taken literally. A value of r2 close to l is not

an indication of perfect inference of %V02ma_, from EC, using the estimated regression

model. The usefulness of a regression model in predicting %VO2max from E0 depends

upon the width of the confidence or prediction intervals, which will be investigated

next

In order to check the significance of the predictors in the model, two other

reference values can be checked: t-value (T) and p-value (P). The t-value for testing

the regression coefficients is obtained by dividing the estimates by their standard errors.

The bigger the absolute value of the t-value, the more likely the predictor is significant.
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The p-value is used in hypothesis testing to help decide whether to reject a null

hypothesis. The p-value is the probability of obtaining a test statistic that is at least as

extreme as the actual calculated value, if the null hypothesis is true. That is, the

p-value represents the probability of rejecting the null hypothesis when it is actually

true. The smaller the p-value, the smaller'the probability that rejecting the null

hypothesis would be a mistake. A commonly used cut-off value for the p-value is

0.05. The null hypothesis in this case would be that H0: ,6, =0, i.e., that there is no

straight-line relationship between EU and %VO2max and that linear regression of

%VO2max on E0 is of no value in prediction.

For the relation depicted here, between EU and %V02max, the t-value for the ,6,

is 13.70 (see Table IV.3), indicating that the significance of the predictor Ln(E(;). In

addition, Table IV.3 also shows that the p-value is equal to zero for Ho: ,6, =0, which

indicates that H0 is rejected. This verifies that the correlation between the Energy of

the Green’s function and relative workload exists and is valuable.
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Coefficients Standard Error t Stat P-value Lower 95% Upper 95%

'30 0.224405 0.009679691 23.18305 1.14E-42 0.205207 0.243602

[3‘ 0.1603 0.011701705 13.69886 6.08E-25 0.137092 0.183508   
 

Table IV.3 Regression output from Excel for regression slope and Intercept

B. Inferences about ,8, and predicm of %V02M

In statistical analysis, a confidence interval refers to the range in which the

estimated mean response for a given set of predictor values is expected to fall. The

interval is defined by lower and upper limits, which Minitab calculates from the

confidence level selected and the standard error of the fitted values.
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interval refers to the range in which the predicted response for a new observation is

expected to fall. The interval is defined by lower and upper limits, which Minitab

calculates from the confidence level selected and a calculated standard error of

prediction. The prediction interval is always wider than the confidence interval

because of the added uncertainty involved in predicting a single response versus the

mean response. In this research, 95% intervals are considered appropriate.

From Table IV.3, the 95% confidence interval for ,8, is (0.137,0.184). It means

we estimate with 95% confidence that an increase of 1 in the logarithm of the Eg is

associated with an increase of between 0.137 and 0.184 times of %V02max,

The fitted line plot for the predicted relative workload with 95% prediction

interval is illustrated in Figure IV.6 by Minitab software. Using the regression model

to predict %V02max, it is indicated from the chart that nearly all of the plots are falling

within the prediction intervals. In other words, using the simple linear regression

model is expected to have a reasonable prediction accuracy of %V02max.

 

Fitted Line Plot

%V02max = 0.2244 + 0.1603 Ln(Eg)
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Figure IV.6. confidence interval & prediction intervals plot (Minitab)
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Table IV.4 displays a sample Minitab confidence and prediction interval analysis

for specific values of Ln(E(,;). For example, for a subject with Ln(E(,)=0.06, the

predicted mean %VO2max is 0.23442 (practically 23%) with a standard error of 0.00923

(approximately 1%). The 95% confidence interval is (0.21612, 0.25272). In other

words, for this subject, we are 95% confident that the %V02max falls between 21.6%

and 25.3%. And if Ln(E(;) is 0.06, it is predicted with 95% confidence that the

%VO2.,m would fall between 8.24% and 38.65% for a new observation. Clearly, the

prediction interval is quite wide, underscoring the need to consider a multiple

regression approach.

 

 

 

 

 

       

ew

Obs Ln(Eo) Fit SE Fit 95% C1 95% PI

1 0.06 0.23442 0.00923 (0.21612, 0.25272) (0.08239, 0.38645)

2 0.09 0.23852 0.00905 (0.22056, 0.25647) (0.08653, 0.39051)

3 0.11 0.24218 0.0089 (0.22452, 0.25984) (0.09022, 0.39413)

4 0.21 0.25821 0.00832 (024172027470) (0.10639, 0.41004)
 

Table IV.4 Sample of Minitab Output on C1 &PI for four value of Ln(EG)

-m'g
 

As mentioned earlier, %V02m;,x = ; hence V02nm can be calculated easily.

amax

Table IV.5 lists sample results for the actual %V02ma(. V02max and predicted %V02max

and V02nm and their eis H respectively. Either using the equation

Ze.’ (Y, 41V . . . . .
of s: ——2—: ——————2—— , or usrng Mrnrtab, we can easrly get the estimated

n— n—

standard en°or of prediction, ordMSE for maximum oxygen uptake (V02mm) for all

experimental subjects, which is estimated at i0.6523 liter-min'I (Recall that the

standard error of prediction, for %VO2max was i 7.60%).

 

H See Appendix B- Table 8.6 for all data ofTable IV.5.
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%V02max 0/0V()2max VOZmax VOZmax

exact predicted exact predicted B} [1-2] E.~2 [3-4]

0.214608 0.2339952 2.56 2.34791141 0.0003759 0.0449816

0.245296 0.2417408 2.35 2.38453749 1.264E-05 0.0011928

0.240882 0.2244656 2.8 3.00478113 0.0002695 0.0419353

0.229237 0.240296 2.84 2.70928355 0.0001223 0.0170868

0.169172 0.2380848 4.24 3.01275008 0.004749 1.5061424

0.204126 0.257744 3.19 252638277 0.0028749 0.4403878

0.197736 0.243864 3.61 2.92716432 0.0021278 0.4662646

0.211912 0.27412 3.31 2.55884284 0.0038698 0.5642371

.263785 0.2352752 3.21 3.59897686 0.0008128 0.151303

Table 1V.5 Sample data for regression analysis results

 

      
 

 
IV.3.1.4 Summary

In this section, time series analysis techniques are used to determine the Green’s

function values, from which the Energy of the Green’s function is calculated as the sum

of squared values of individual Green’s function values. A linear regression equation

is constructed between the Energy of the Green’s function and relative workload

(%V02max). The standard error of prediction for %VO2max and V02"),x are i7.6% and

350.6523 liter-min", respectively. In Abdelhamid (1999), this equation was termed

Relative Workload Prediction equation - RWP equation. In this thesis, this term RWP

will still be used hereafter to refer to Equation IV]. The statistical properties of the

equation have been analyzed and the results indicate that the regression model has

merit in predicting relative workload from sub-maximal oxygen uptake data.

Further steps taken to develop a multiple regression model that improves the

accuracy of the prediction as well as validating all models are discussed in the

following sections, Parts B and C.
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1V .2 P rt B: Multi 1e R ressi 11 Models

This section focuses on the development of a multiple regression model (MLR) to

predict relative workload from sub-maximal oxygen uptake (V02), which is the second

objective of this thesis. The section begins with a discussion of the motivation behind

developing the MLR and the factors to include in the MLR model. Then the section

focuses on the model setup and statistical properties analysis, and concludes with a

comparison of the MLR model to the SLR model developed in Part A.

1V.3.2.1 Factors for MLR Models

The analysis performed in Part A indicates that using the RWP equation has a

standard error of prediction for relative workload (%V02max) equal to i7.60%. This is

higher than the 25.0% of value reported’in Abdelhamid (1999), which was based on 20

development subjects. This difference indicates the need to consider other factors in

addition to the Energy of the Green’s function, which could potentially improve

predictive accuracy.

In the RWP equation, there is only one predictor—the Energy of the Green’s

function. As discussed in Chapter 11, several researchers have investigated the

development of multiple regression models to include predictors of V02max such as

heart rate, age, gender, physical dimension, and work duration. The inclusion of such

factors along with the Energy of the Green’s function in a multiple regression model

was investigated in this research. This was expected to increase predictive accuracy

for relative workload derived from sub-maximal oxygen uptake data.
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A. Heart Rate

In many types of exercise, heart rate increases linearly with exercise intensity.

In most test procedures, the evaluation, from submaximal rates of exercise, of an

individual’s maximal oxygen uptake or capacity to perform work involves measuring

the heart rate during steady state and then extrapolating to a fixed heart rate or to an

assumed maximal heart rate. As mentioned in Chapter 11, there are many pitfalls with

this method of predicting V02max from HR.

Despite criticism concerning the linear oxygen uptake/heart rate relationship,

heart rate still remains a very important factor in reflecting the feeling of strain during

an exercise. While the use of submaximal heart rate as a basis for the prediction of

maximal oxygen uptake is not new, this factor will be used in developing the multiple

linear regression (MLR) model. This is possible to investigate because the treadmill

tests have recorded the heart rate for both the experimental and validation subjects in

- -1
beats-mm .

B. Age

Jones (1985) and Von Dobeln et a1. (1967) all considered the age factor in their

V02max prediction equations. This is primarily because of the typical effect of the

aging process on various body functions, such as circulatory and pulmonary capacity in

older individuals (Astrand and Rodahl 2003). Thus, age will be included in the MLR

models to verify its influence on the prediction accuracy of the models.

C. Body Surface Area (BSA)

As mentioned earlier in chapter 111, Body Surface Area (BSA) is the total surface

area of the human body. Jones (1985) developed a prediction equation for V02max
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that accounts for this factor. Differences in body size are as important as age in

V02max prediction because of the effects on the circulatory capacity, heart rate, stroke

volume, and cardiac output. It is especially important to consider the influence of the

body size factor in construction fieldwork where many tasks require workers to lift,

rotate, climb up and down, and walk, etc. In this research, the BSA factor is

considered as a candidate for the MLR model.

In sum, based on the simple linear regression model developed in the previous

section, this part of the thesis will focus on developing a multi-regression model that

incorporates the Energy of the Green’s function, heart rate, age, and BSA for the

prediction of %V02max. The independent and combined effects of heart rate, age, and

BSA will be investigated in terms of their contribution to the accuracy of predicting

%VO2max. Statistical properties of the developed models, such as the coefficient of

determination and prediction accuracy, will be presented.

IV.3.2.2 MLR Model Development

For single regression models, it is assumed that there is a linear relationship

between a response variable Y and a single explanatory variable X. With multiple

linear regression, more than one explanatory variable explains or predicts a single

response variable. The introduction of more explanatory variables may lead to a more

complicated situation, with many additional factors. As with single linear regression,

multiple-regression can be utilized for forecasting purposes.

In multiple regression, the response Y depends on X1, X2,..., Xk explanatory

variables, which will be denoted by Xk. The statistical model for multiple linear

regression is
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Y,=,BO+,B,X“+,63X,.,+...,B,X,, (quV.S)

for i=1, 2, ...,.n The mean response Y is a linear function of the explanatory

variables:

Y 2,60 + ,8le + AA”, + “,6ka (Eq IV.6)

The deviation 8.- is assumed to be an independent and normally distributed random

variable with mean 0 and standard deviation (5. The coefficients of the model are [30,

[11, B2,..., 131-, and o. It implies that the mean response Y can be predicted from

estimates of the coefficients [3. To the extent that this model is accurate, it is a useful

tool for describing how Y varies with the Xk’s.

For the simple linear regression, the least square method is used to obtain

estimates of the intercept and slope of the regression model. The multiple linear

regression model uses a similar method but details are more complicated. Assume b0,

17., b2, bk denote the estimators of the coefficients BO, 131, B2, ..., 131,. The predicted

response for the ith observation is:

Y“, = b, +b,X, +b,X, +...b,x,, (Eq IV.7)

The ith residual or the difference between the observed and predicted response is

calculated by:

g,=11—19,=Y,—bO—h,x,,—b,X,,—...—h,,X,.p (EqIV.8)

For the least square method, the values of b’s are obtained by minimizing the sum

of the squares of the residuals, i.e., the coefficients [70, h), [22, bk by minimizing the

quantity: Z(Y1 “b0 ‘ban -b2X1'2 _"‘_ka1'/()2
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The Minitab program performs these calculations based on the least square

method. In a similar fashion to simple linear regression, the parameter 02, which

measures the variation of the responses about the regression model, is estimated by an

average of the squared residuals as,

e.2 Y—f’. 2

52 = Z ’ =Z(’ ‘) (Eq 1V.9)

n—k—l n-k—l

where n—k—l is the degrees of freedom related with 52. The degrees of freedom

are equal to the sample size n minus the number of [3’s used to fit the model. When

k=l , the multiple regression model is reduced to the single regression one.

For simple linear regression, the coefficient of determination r2 is equal to the

ratio of SSM (model sum of squared errors) to SST (SST = SSE +SSM — where SSE is

the sum of squared errors) and is interpreted as the proportion of variation in Y

explained by X. A similar calculation is applicable for multiple regression models and

is calculated as follows:

2-172
r2=SSM=Z(’ _), (EqIV.10)

SST 207—1”)-

In the case of multiple regression. r2 is interpreted as the proportion of the

variation observed in the response Y that is explained by the dependent variables X1,

X2, ..., Xp. Usually, r2 is multiplied by 100 and expressed as a percent. It is also

called multiple correlation coefficient and is the correlation between the observation Y,

A

and the predicted Y, .

In this research, a series of physiological data and subject characteristics were

collected for 100 experimental and 100 validation subjects during specified as well as
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random exercise protocols. This data and the four factors discussed earlier (Energy of

the Green’s function, HR, Age, and BMI) were analyzed using multiple regression to

develop a number of multiple-regression models. The three best models are presented

next.

To enable easy comparisons between all of these models, the RWP model and the

three best MLR models are listed together. With the help of Minitab, the standard

deviation or VMSE and coefficient of correlation r2 for each equation has been

calculated and presented as well.

 

%voz..,,, = 0.224 + 0.160 Ln(E(;)

(s = 0.076 r2 = 64.46%) (RWP)

%V02m., = - 0.0891 + 0.0832 Ln(EG) + 0.633 RHR

(s = 0.0503065 r2 = 84.7%) (Model A)

%voz...., = - 0.0879 + 0.0831 Ln(E(;) + 0.633 RHR - 0.00005 Age

(3 = 0.0505543 r2: 84.7%) (Model B)

%voz.,,,, = - 0.232 + 0.0792 Ln(EG) + 0.662 RHR + 0.0699 BSA

(8 = 0.049086 r2: 85.5%) (Model C)  
 

A detailed description of each model is explained separately in the following

sections. Independent variables (IVs) considered for possible inclusion in the multiple

regression models A, B, and C include the combination of factors of the Energy of the

Green’s function, age, body surface area (BSA), and heart rate.

The Pearson Product Moment correlation values (r) are computed between

observed and predicted %VO2max. In addition, paired t-test, MSE, and analysis of
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variance are considered in the analysis. A comparison between the four models is

performed to evaluate the predictive ability of each model and the contribution of each

predictor. Based on the results, the final best fit MLR model that provides the most

accurate predictions of the relative workload is selected and verified on the 100

validation subjects.

Model A: Ln(EQLand Heart Rate (RHR)

Model A uses the E0 and heart rate to predict %V02 max. Because heart rate

responses to the same exercise or work vary individually, using it as a predictor

requires expressing it as a percentage of maximum heart rate, or as termed here, RHR,

Relative Heart Rate. RHR is calculated as RHR = HRan/HRmat. where Hng is the

average heart rate and HR,“ax is maximum heart rate which is calculated by using the

formula HRma, = (220-age). Minitab is used to construct the MLR equation,

determine its properties, and conduct the necessary statistical analysis. The model

takes the following form:

%VO2max = - 0.0891 + 0.0832 Ln(EG) + 0.633 RHR (HRavg/HRmax);

(Eq IV.11)r2: 84.7%; SD: 20050;

Other results are tabulated in Table IV.6.
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[Regression Analysis: %VO2m,, versus Ln(EG), RHR

/oV02m;,x = - 0.0891 + 0.0832 Ln(E(;) + 0.633 RHR

S= 0.0503065 R-Sq = 84.7%

Predictor Coef SE Coef T P VIF

Constant -0.08914 0.02786 -3.2 0.002

Ln(Ec,) 0.08316 0.01022 8.14 0 1.7

RHR 0.6331 0.05475 11.56 0 1.7

Analysis of Variance

Source DF SS MS F P

Regression 2 1.42512 0.71256 281.56 0

Residual Error 102 0.25814 0.00253

Total 104 1.68325   
 

s
e
n
—
u
-
-
r
—
—

'
9

 ‘_

Table IV.6 Minitab regression output for model A

In model A, the response variable is the %V02max. The explanatory variables

are the Ln(Eg) and RHR. The first step in analyzing this model is to carefully

Means, standard deviation and minimum andexamine each of the variables.

maximum values appear in Table IV.7.

 

 

 

 

 

       

ariable Mean SE Mean StDev Minimum aximum Range

11ng 109.49 2.28 23.41 69.27 173.67 104.4

HRm,x 195.56 0.45 4.61 183 202 19

RHR 0.5599 0.0116 0.119 0.36 0.9 0.54

LN(EG) 0.5305 0.0622 0.6377 0.00018 2.7654 2.7652 
 

 
Table IV.7 Descriptive statistics for the experimental subjects HR and Ln(Ec) by Minitab

The heart rate data shows that the average and standard deviation for the three

variables HRavg, HRmax, and RHR are 109.49 i23.4l (beat-min"), 195.56 3: 4.61

(beat - min"), and 0.5599 i 0.119, respectively. The minimum value for the Ln(EG)

variable appears to be rather extreme with a minimum value of 0.00018 and maximum

value of 2.7654, range =2.7652. The mean of Ln(E(-;)=0.5305:0.6377. The big

standard deviation value may be caused by the wide range of the Ln(EG) data. As
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mentioned earlier, the Green’s function reflects the system’s response to a change until

it returns to equilibrium. It is inferred here that each subject’s response to the

treadmill exercise varied greatly.

The second step in the analysis is to assess the correlation between the dependent

and individual independent variables. This can be accomplished by applying the

Pearson Correlation Coefficient (r) to each independent variable, which would indicate

how much of the change in dependent variable can be explained by the change in the

independent one. Those independent variables with a high r2 should then be used for

multiple regression. The same correlation coefficient can be applied to multiple

independent variables to ascertain how much of the change in dependent variables can

be explained by changes in all the independent variables.

The correlations matrix using Minitab software appears in Table IV.8. The

output includes the p-value resulting from testing the null hypothesis that the

population correlation is 0 versus the two-sided alternative for each pair. Thus, the

correlation between %VO2max and RHR is 0.8643 with a p-value of 0, whereas the

correlation between %V02mam and Ln(E(-;) is 0.80351 with a p-value of 0 too. From

the output we can infer that both are statistically significant and the RHR and Ln(EG)

are useful predictors for the MLR model A.

 

 

 

 

 

Correlations: %V02max, RHR, Ln(EG)

P Value %V02max RHR Ln(Gj)

%V02max 1 0.8643 0.80351

0 0 0

HRavg/HRmax 0. 8643 1 0.65311

0 0 0

Ln(Gj) 0.80351 0.65311 1

0 b 0      
 

Table IV.8 Minitab matrix of correlation between variables for model A
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The relationship between the independent variables Ln(E(;) and RHR and the

dependent variable %VO2max is explored in the next sections.

A. Standard Deviation_

Table IV.6 indicates that the standard error of prediction for relative workload

using the model A is i 5%. Compared with the standard error of prediction of the

RWP equation, with a value of i 7.60%, the new MLR model A provides a significant

improvement in the prediction of %V02max. In addition, the estimated standard error

of prediction, orJMSE , for maximum oxygen uptake (V02max) for model A is i050

litert min". Again, compared with the RWP model, this standard error of prediction

value is smaller, which indicates an improvement in accuracy of the prediction method

ofmodel A.

B. Correlation Coefficient, t-value and_p-valu_e

From Table IV.6, the coefficient of determination r2 is 0.847 (r=0.92). That is,

84.7% of the observed variation in the %V02max is explained by the linear regression

with Ln(EG) and RHR. In other words, model A is better than the RWP equation,

which had a coefficient of correlation F 0.80, in showing how closely %V02nm is

related to the variables. Hence, by adding the RHR as a predictor, the MLR model A

has improved the prediction ability of %VO2max from submaximal data.

For model A, the t-value for Ln(EG) and RHR are 8.14 and 11.56, respectively.

The p-value for both was equal to zero. Therefore, the null hypothesis: H0: 6. =

,6, = 0 can be rejected, indicating that the regression coefficients for Ln(E(;) and RHR

achieves statistical significance. This result gives confidence that %V02max, Ln(E(,),

and RHR are indeed correlated.
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C. Normality and independenrce of error terms

Similar to simple linear regression, the residuals should always be examined as

aids to determining whether the multiple regression model is appropriate. Because

there are several explanatory variables, several residual plots must be examined. It is

typical to plot the residuals versus the predicted value and also versus each of the

independent variables, and to look for outliers, influential observations, evidence of a

curved (rather than linear) relation and anything else unusual. Again, Minitab is used

to generate these plots.

Using the same analysis methods used with the RWP equation, Figure IV.7

illustrates the residual plot for MLR Model A. The plot indicates that most of the

residuals are scattered within a band of i2 standard deviations from zero. Hence,

there is not sufficient evidence of outliers or serial dependence in the observed residual

data. which means that the residuals ei can be considered normally distributed.

 _.__ _ _—

Residual Plots for %V02max

 
 

 

      

  

      
   

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values
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Figure IV.7 Minitab outputs for residual plots for %V02m,
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From the preceding normality and residual analysis, it is inferred that the multiple

linear regression model using the Energy of the Green’s function and relative heart rate

(RHR) to predict the relative workload (%VOgnm) is valid and the linear relation

between the predictors and the dependence variable exists. In other words, the

developed equation using linear regression is considered appropriate for the prediction.

D. Inferefles about_ ,6, and predictionLof %VO;Em

The confidence intervals and significance tests for each of the regression

coefficients ,31’5 are performed similar to how it is performed in simple linear

regression. The standard errors of the ,6 {5 have more complicated formulas, but all

are multiples of the overall model standard deviation. Again, the calculations are

performed using Minitab, which in this case allows performing these rather complex

calculations without an intimate knowledge of all of the computational details.

Basically, the same commands to construct confidence and prediction intervals for

simple linear regression are also used for multiple linear regression models. The only

difference is that a list of explanatory variables is specified rather than just a single

variable.

Table 1V.9 shows a sample output from Minitab running output for model A for

three subjects. For example, for subject 2 the predicted mean %VOZmax is 0.37049

with a standard error of $000555. The 95% confidence interval for this predicted

mean is (0.35947,0.38150), i.e., it is estimated with 95% confidence that %V02max lies

between 35.95% and 38.15%. The 95% prediction interval of (0.27010, 0.47088) is

interpreted in a very similar manner to the confidence interval. The fitted line plot for
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the predicted relative workload using model A with the 95% prediction interval is

shown in Figure IV.8.

95% (‘1 95% PI

38] 10 47088)

47 45

 

12 19 1 18480

Table 1V.9 Sample of Minitab running output for 95%CI and 95%PI

 

 

   

 

  
 

Fiuied Line Plot

%V02max (actual) = 0.02687 + 0.9619 °/ci/02max (Model A)
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Figure IV.8. Minitab confidence Interval & prediction intervals plot for model A

E. Main Effects Plots for %V02max

The main effects plot chart of Ln(E1;) and RHR have been displayed in the 2-D

and 3-D surface in Figure 1V.9. The plots provide visual evidence that using both

variables in Model A as predictors of %VOan is better compared to the RWP model.

For example, the 2-D chart shown in Figure 1V.9(a), indicates that both RHR and

Ln(EG) have a positive relation with %VOZmM, i.e., an increase in Ln(Eg) and RHR is

associated with an increase in %V02max. This trend is expected because of the nature
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of the two variables. On the one hand, E1; reflects the system’s response from

excitation back to the state of equilibrium, hence, a high value of EC, is expected to

reflect a high value of VOan. On the other hand, high values of RHR will be

associated with high values of VOzmax, and vice versa, because of the

increased/decreased demands that are placed on the cardio-vascular system. Figure

IV.9(b) is a 3-D plot showing again the positive relationship between the predictors and

response variable.

1 Main Effects Plot (data means) for %V02max

131(9)) l'Ravg/i-RMax
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Figure lV.9 Main effects plot of predictors for %V02max
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Figure lV.9 Main effects plot of predictors for %V02max
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To sum it all, the regression model A has a standard error of prediction of i 5%

and i0.5 liter- min‘1 for %VOZmax and VOZmax, respectively. Compared to the RWP

equation, model A generates better results for the prediction of %VO;max and V02max

from the two predictors Ln(EG) and RHR as derived and measured from sub-maximal

V02 and HR data.

Model B: Ln(Eg). RHR and Age_

As previously discussed, the age of an individual typically has an effect on

maximum oxygen uptake. The effect of this factor on the prediction of %V02max, and

subsequently VOan, is investigated using multiple regression in a manner similar to

how model A was developed and analyzed. The following model results:

%vom. = - 0.0879 + 0.0831 LN(gi)l + 0.633 RHR - 0.00005 Age (Eq 4.12)

Table IV. 1 0 shows the Minitab outputs for model B. As shown, r2 for this model

is 84.7% and the standard deviation, 0, is estimated at i 0.05%. Compared with the

previous running outputs of model A, the value of r2 has not considerably changed. In

other words, adding the age factor to the model resulted in almost no change to the

explanatory/prediction power of the model. The measurements of variation about the

fitted equation are also nearly identical between model B and model A. The p-value

for the individual regression coefficients indicate that Ln(Eo) and RHR are still

significant with p=0. However, the regression coefficient for age is 0.00005, which is

a very small figure, with no statistical significance for the prediction of %VOzmax

(p-value =0.96l ).

88



 

1Regression Analysis: %VOZmn versus Ln(Eg), RHR and Age

%VOZmax = - 0.0879 + 0.0831 Ln(EG) + 0.633 RHR - 0.00005 Age

 

 

 

 

 

     

S=0.050554 R-Sq = 84.7%

Predictor Kioef SE Coef T P VIF

Constant 10.08788 0.03805 ~23] 0.023

Ln(Eg) 0.08312 0.01029 8.08 0 1.8

RHR 0.63318 0.05505 11.5 0 1.7

Age —5.3OE-05 0.001077 ~0.05 0.961 1
 

Analysis of Variance
 

 

 

   
Source DP ss Ms F P

Regression 3 1.42512 0.47504 185.87 0

Residual Error 101 0.25813 0.00256

Total 104 1.68325      
Table lV.10 Minitab Regression output of %V02max for Model B

The results of model B indicate that age does not contribute in any significant

way in the prediction of %V02max. However, V02max and heart rate will decrease with

age and some researchers have developed MLR models that incorporate age as a

variable. The insignificant effect of age on the prediction of %V02max is primarily an

artifact of the subject population used in this research. Recall that the subjects in this

research are recruited from the student and staff population at Michigan State

University. While the range of subjects participating in the study is between the ages

of 19 and 43, approximately 80% of the subjects were in the age group 28-32. Clearly,

inclusion of this important factor requires the involvement of more subjects over a

wider age group. Such an effort is outside both the research scope and available funds.

In sum, for the subject population included in this research, age doesn’t show a

significant effect on the prediction of %V02max,
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Model C: Ln(EQLRHR and BSA

Body Surface Area (BSA) is combined with Ln(Eg) and RHR to form the

multiple regression model C. The following model is created:

%V02max = - 0.232 + 0.0792 Ln(EG) + 0.662 RHR + 0.0699 BSA (Eq 4.13)

Table IV.11 shows the Minitab outputs for model C. r2 for this model is 85.5% and

the standard deviation, 0‘, is estimated at i 0.049%. The estimated standard error of

prediction of model C is :4.9% and i0.5 liter-min‘l for %V02max and VOZmax,

respectively. By adding BSA to Model A, a change is observed in the regression

coefficients of the variables and the intercept. This phenomenon occurs generally in

multiple regression. Individual regression coefficients, their standard errors, and

significance tests are meaningful only when interpreted in the context of the other

explanatory variables in the model. By adding the BSA as a predictor, the MLR

model achieves a slight improvement over mode1 A.

 

 

 

 

 

 

      

 

 

 

 

ilTegression Analysis: %VOZM,‘ versus Ln(EG), RHR and BSA

%VOZmax = - 0.232 + 0.0792 Ln(EG) + 0.662 RHR + 0.0699 BSA

S= 0.049087 R-Sq = 85.5%

Predictor Coef SE Coef T P VIF

Constant -0.232 0.0638 -3.64 0

LN(gj) 0.0792 0.0101 7.84 0 1.8

HRavg/HRMax 0.6617 0.0547 12.11 0 1.8

BSA 0.07 0.0282 2.48 0.015 1

Analysis of variance

Source F SS MS F 1’

Regression 3 1.4399 0.48 199.2 0

Residual Error 101 0.2434 0.0024

Total 104 1.6833      
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Table lV.11 Regression output for Model C

 



The correlations matrix, as calculated in Minitab, is shown in Table IV.12. The

matrix indicates that the individual regression coefficients for Ln(EG) and RHR are still

significant with p=0. The individual regression coefficient of BSA with its response

variable %VOZmax (p-value:0.144>0.05) does not achieve statistical significance,

similar to what is found with the age factor.

 

 

 

 

 

 

  

Correlations:%V02max, RHR, Ln(EG, and BSA

P Value %V02max RHR Ln(Gj) BSA

%V02max 1 0.864 0.8041 0.017

0 0 0 0.862

HRavg/HRmax 0.8643 1 0.65311 -0.143

0 0 0 0.144

Ln(Gj) 0.80351 0.65311 1 0.025

0 0 0 0.798

BSA 0.017 , -0.143 0.025 1

0.862 0.144 0.798 0     
Table IV.12 Minitab output of correlation between variables for model C

As discussed above, adding BSA as a predictor for %VOZmam was only expected

to have a slight increase in the accuracy of the model. This finding is in agreement

with that of Von Dobeln et a1. (1967). The most likely explanation for this is that the

relationship between body surface area and %V02max is accounted for in both the V0;

and HR data. It is worth noting that the Body Mass Index (BMI), which is a more

common body dimension measurement, was considered but yielded an r2: 84.8%.

Hence, the BSA measurement was used instead.

lV.3.2.3 MLR Models Comparison

The main effects of Ln(Ea) and RHR, Age, BSA on the prediction of %VOZmax

are plotted as shown in Figure IV.10. Careful examination of the plots indicates that

BSA has a slight influence on the prediction of %V02max, with age having hardly any

impact.
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Table IV.13 lists all the attempted regression models, with the resulting r2 and 5,

based on the variables Ln(E11). RHR, Age. and BSA. The results show a significant

improvement of r2 and s when Ln(E1;) and RHR are incorporated in any of the models.

The precision is reduced when BSA is omitted. Age had no significant association

with %V02max. The results from Figure 1V.9 and Table IV.13 indicate that the most

accurate prediction of%VOghm is achieved when Ln(Eg), RHR, and BSA are used.
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Figure IV.10 Main effects plot of predictors for %V02mam

Variables Regression Model for %V02max r2 R S

Ln(EG) %VOan 0.224 1 (1 I60 Ln(E(;) 64.60% 0.8037 0.0761

Ln(EU), Age %VOgnm ; 0.217 1 0 I60 Ln(E(;)+ 0.00032 Age 64.60% 0.8037 0.0766

Ln(E(,~), BSA VbVOgmu‘ : 0.229 + 0 I60 Ln(E1,)-O.0023BSA 64.6 "/11 0.8037 0.0765

RHR VoVOgnm * -0.208 1 0.924 RHR 74.70% 0.8643 0.0643

RHR. Age "NO:max 7* - 0.192 + 0.924 RHR - 0.00065 Age 74.80% 0.8649 0.0645

RHR. BSA 0/0V03mu\ '~' - 0.414 + 0.946 RHR + 0.105 BSA 76.70% 0.8758 0.062

 

Ln(EG). RHR %vom. : -0.0891 ~ 0.633 RHR +0.0832 Ln(EG) 84.70% 0.9203 .0503

Ln(EG),RHR. yovognm , . 0,0879 1 0.633 RHR + 0.0831 Ln(EG) -

 
  

84.7 % 0.9203 0.0506

 

Age 0.00005 Age

.RHR, . -. - _ 1 _ ,Ln(EG) /0V02mdx 0 232 0 662 RHR + O 0792 Ln(EG) +85.SO% 019247 0049]

BSA 0.0699 BSA       
 

Table IV.13 Minitab MLR Model running output for different variables to prediction of %VOZmH
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While model C appears to be the clear favorite in terms of prediction accuracy,

the model development assumes the independence of the model variables, namely,

Ln(E1-,), RHR, and BSA. If this assumption does not hold, i.e., the independent

variables are highly correlated themselves, then this will lead to high variance in the

estimation of the model 01’s. This problem is known as “Multi-colinearity” of the

multiple regression model, which significantly compromises the forecasting power of

the developed model. In addition, extremely high correlations can terminate the

model development procedure altogether. For this reason, the independence of the

variables Ln(EG) ,RHR and BSA was investigated.

Multi-colinearity can be checked by finding the r2 between the independent

variables. As a rule-of-thumb, r-values higher than 0.5 between the two variables

being tested indicate that some level of dependence exists. Another measure of

multi-colinearity is known as the Variance Inflation Factor (VIF), which measures how

much the variance of an estimated regression coefficient increases if the predictors are

correlated. A VIF = 1 indicates no relation among predictors, a VIF > 1 indicates that

the predictors are correlated, and a VIF> 5 indicates that the regression coefficients are

poorly estimated.

The values of VIF for model C are listed in Table [VI 1. As shown, the VIFs for

Ln(Eg), RHR and BSA are 1.8, 1.7 and 1, respectively. The results indicate that there

is no correlation between BSA and the other two independent variables. However, the

VIF values indicate that a correlation exists between Ln(Eg) and RHR. This means

that using both of these predictors in a multiple regression equation may undermine the
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prediction accuracy of the resulting model. Therefore, the effect of this correlation on

the prediction accuracy of the model must be further investigated.

The basic idea is to enter Ln(E(;) and also the component ofRHR that is unrelated

to Ln(EU) into the MLR regression model as predictors. The component of RHR that

is unrelated to Ln(EG) is derived by creating a multiple regression model, where RHR

is the dependent variable and Ln(E1;) is the independent variable. From the running

output, the “unstandardized residuals” can be obtained. These residuals form the

component of RHR that is unrelated to Ln(EG). Consequently, these residuals are

used with Ln(Eg) to form the multiple regression model with RHR as the dependent

variable. The analysis results are listed in Table IV.14.

 

 

 

 

 

     
 

 

 

 

 

egression Analysis: %VOZmam versus Ln(EG),Unstandardresidue

%V02mam = - 0.224405 + 0.1603 Ln(Eg) + 0.6331unstandardresidue

S: 0.0503063 R-Sq = 84.7%

Predictor Coef SE Coef T P VIF

Constant 0.224405 0.006399 35.07 0

LN(gj) 0.1603 0.007736 20.72 0 l

Unstandardresidue 0.6331 0.05475 11.56 0 1

Analysis of Variance

Source DF SS MS F P

Regression 2 1.42512 0.71256 281.56 0

Residual Error 102 0.25813 0.00253

Total 104 1.68325        
 

Table IV.14 Minitab outputs for MLR using unstandardized residual and Ln(Ec)

The VIF values shown in Table IV.14 indicate that all the independent variables

for the multiple regression model using Ln(EG) and the “unstandardized residuals” are

not correlated. Comparing Table IV.16 results with those in Table IV.5 for model A, it

becomes evident that the r2 and s for the prediction of %VOZmax are almost the same.
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Therefore, it can be concluded that the degree of correlation between Ln(EG) and RHR

does not undermine the prediction ability of model C. In other words, the

multicolinearity between Ln(EG) and RHR can be ignored.

In sum, the MLR prediction model C generated based on the variables of Ln(EG),

RHR and BSA is valid for the prediction of relative workload and maximum oxygen

uptake. The estimated standard error of prediction of model C is i4.9% and i0.5

liter- min"1 for %VOZmax and volnm, respectively. The next step is to validate this

model against the results of 100 validation subjects who performed random exercise

protocols as described before in Chapter III.

IV Part ' R res i n Models Validation

Validation of the regression modelswas performed through the collection of new

oxygen uptake data for 100 validation subjects, including a limited number of

construction workers. The subjects were instructed to perform random exercise or

work at intensities ranging from light to heavy. Maximum oxygen uptake was

determined for each subject using the same Harbor protocol used for the development

subjects. The time series analysis techniques discussed in Chapter III and IV are used

to calculate the Energy of the Green’s function (E11). The RHR and BSA for each

validation subject were also determined. The final step is to use this data, i.e., EU,

RHR, age and BSA to predict the %VOgmax and V02max for each subject using the

regression model C”.

 

'2 See Appendix B-Table B.5 for all the data.
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For comparison purposes, the validation of RWP equation and multiple linear

regression models A and C is combined. For a limited number of subjects”, actual

and predicted values for %V02max and V02max have been tabulated in Table IV.15,.

Jones’s equation (referred to as J in the table) is also applied on the validation subjects

for reference to predict %V02max and VOZmax.

 

  

o/oVOZmax VOZmax

# (actual) RWP A C J (actual) RWPA C J

l 0.38 ' 0.33 0.36 0.35 0.44 3.22 3.73 3.42 3.53 2.8

2 0.3 0.41 0.4 0.38 0.29 3.06 2.2 2.29 2.37 3.14

3 0.43 0.4 0.35 0.34 0.38 2.52 2.75 3.1 3.2 2.9

4 0.35 0.4 0.38 0.4 0.38 4.52 3.92 4.15 3.91 4.07

8 0.5 0.35 0.41 0.39 0.36 2.09 2.99 2.56 2.66 2.86

10 0.4 0.39 0.36 0.39 0.53 4.96 5.11 5.54 5.14 3.79

11 0.56 0.49 0.53 0.55 0.58 3.35 3.89 3.54 3.42 3.23

12 0.57 0.42 0.49 0.48 0.45 2.27 3.14 2.67 2.7 2.9

13 0.38 0.51 0.48 0.47 0.36 2.75 2.07 2.19 2.23 2.92

14 0.42 0.53 0.46 0.45 0.39 2.86 2.26 2.63 2.67 3.09

15 0.26 0.35 0.34 0.35 0.37 5.04 3.77 3.81 3.75 3.58

Table IV.15 Sample for MSPR check and Jones’ equation comparison on validation subjects

     
A}MSPR Check

For the validation process, the prediction capability of a regression model is

measured by calculating the mean squared prediction error, denoted as MSPR, and

calculated as follows (Neter et a1. 1990):

Z<Y _ Y,“ [)2

MSPR = "=' (Eq 4.14)
”3|:

 

where Y1 is the value of the response variable in the ith validation case, 1’. is the
l

predicted value for the ith validation case based on the original model, and n* is the

 

'3 See Appendix B-Table B.6 for all the data.
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number of cases in the validation data set. After MSPR is calculated, it is then

compared to the MSE value from the original regression model. If the two are close,

then MSE is not seriously biased and gives an appropriate indication of the predictive

capability of the selected regression model. If MSPR is much larger than MSE, the

MSPR should be used as an indicator of the prediction capability of the original model

and not its MSE (Neter et al.1990).

Using the data available for the validation subjects, the MSPR for %V02max and

V02max can be readily derived from Eq IV.14 for each regression model, i.e., the RWP

equation, and Model A and C. The MSE values for these models were given earlier in

this Chapter. Table IV.16 lists the MSE and MSRP values for relative workload

%V02max and V02max for available validation subjects’ data.

 

 

 

  

MOdCI , %V02max VOZmax

Equation

Type MSE MSRP MSE MSRP

RWP %V02ma(=0.224+0.160 Ln(EG) 0.58 0.69 0.43 0.44

%VOZma. = - 0.0891 + 0.0832

A Ln(E(;)+0.633 RHR 0.25 0.37 0.25 0.25

%VOznw, = - 0.232 + 0.0792

C Ln(Eo) + 0.662 RHR + 0.0699

BSA 0.24% 0.35% 0.28 0.22

VOan (L/min) = (0.046 x Ht

Jone’s (cm)) - (0.021 x age (yrs)) — (0.62

it Sex) ~ 4.31 where for sex, men

1=0,women=1 N/A 1.3% N/A 0.56     
 

Table IV.16 MSE and MSRP for %VOZm“ and VOzm,‘ for validation subjects

The MSE and MSRP values listed in Table IV. 16 indicate that both of these errors

are close. For the %VOgmax figures, the difference is within the range of 0.1 and for

the absolute V02max value, the gap is around 0.01. It would, therefore, appear that the

MSE for each respective model is providing an appropriate indication of how well the
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model can predict %V02max and VOZmax. It is also clear that Model C provides the

least MSE and MSRP values compared to the other models, which confirms the

expectation that Model C would outperform the other models in the prediction of

%V02max and VOZmax. While the the MSE value for Jones’s model for the original

model is not available, the MSRP for the validation subjects was calculated as 1.3% for

%V02max and 0.56 for V02max value, respectively. Compared to the values from the

RWP and MLR models, it is clear that the MLR model provides better prediction.

Figure IV.11 shows the individual value plot of %V02max for both the actual

values and predictions from Model C. From the displayed plots, it is visibly clear that

no significant difference exists between the predicted values and the actual

 

 

 

  
 

measurements.
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Figure IV.11 Individual value plot of %V02max for Model C (actual VS prediction)

B. p-valge Validation

To complete the analysis, it is imperative to determine the statistical significance

of the prediction produced by model C, i.e., whether the difference between the MSE
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and the MSRP of Model C is statistically significant. The p-value for the application

at hand involves the use of the 2-sample t-test, with the null and alternative hypotheses

being the following:

0 H0: %V02max (MLR) ~ %VOgnm (Actual) = 0

. Ha: O/OVOZmax (MLR) T 0/0V02max (ACtual) ¢ 0

Here, the %VOZmax (MLR) means the predicted %VOZmax value obtained from

Model C and %V02max_ (Actual) means the actual value measured for the validation

subjects. The null hypothesis means that there is no significant difference between

the predicted value and the actual value (note that HU is rejected when P-value S a).

Table IV.17 shows the paired t-test results from Minitab.

 

Two-sample T for %V02max (actual) vs %V02max (Model C)

 

 

 

N Mean StDev SE Mean

%vozmax (actual) 132 0.491 0.106 0.0092

%V02max (MOdel C) 132 0.486 0.0897 0.0078    
 

Difference = mu (%V02max (actual)) - mu (%V02max (Model C))

Estimate for difference: 0.004937

95% CI for difference: (-0.018821, 0.028694)

T-Test of difference = 0 (vs not =): T—Value = 0.41 P-Value = 0.683 DF = 255  
 

Table IV.17 Paired T-test and P value for %VOzmam

The paired t-test results in a t-value and a p-value of 0.41 and 0.683, respectively.

Consequently, the null-hypothesis cannot be rejected (p-value >0.05), indicating that

there is no significant difference in the actual and predicted values of %VOgmax for the

validation subjects.
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A similar t-test was perfomied for the V02max values. The test reveled a t-value of

—0.08, and a p-value of 0.938. Again, the p-value > 0.05, indicates that the null

hypothesis cannot be rejected. Hence, it can be concluded that there is no significant

difference in the prediction value and actual measurements of V02max for the validation

subjects.

 

Two-sample T for VOZmax (actual) vs VOZmax (Model C)
 

N Mean StDev SE Mean
 

VOZmax (actual) 132 3.547 0.875 0.076
 

VOZmax (Model C) 132 3.556 0.893 0.078    
 

Difference : ’4 (VOZmax (actual)) " ll (VOZmax (Model C))

Estimate for difference: -0.008423

95% CI for difference: (-0.222630, 0.205784)

T—Test of difference = 0 (vs not =): T-Value = -0.08 P-Value = 0.938

DF = 261   
 

Table IV.18 Paired T-test and P value for VON,“

The validation results indicate that the multiple regression model C produces

acceptable prediction values for both relative and maximum oxygen uptake values. It

also greatly improves the accuracy of the prediction results compared to the model

described by the RWP equation.
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CHAPTER V

CONCLUSION AND FUTURE WORK

V.l Conclusion

This research introduced a methodology for predicting relative workload from

sub-maximal oxygen uptake data collected in-situ, using multiple linear regression

models and without the need to determine maximum oxygen uptake. In this research,

the method developed by Abdelhamid (1999) to predict relative workload from in-situ

collected sub-maximal oxygen uptake data was reconstructed for 100 experimental

subjects from Michigan State University. As in the original technique, a strong linear

relation was found between the Energy of the Green’s fimction and relative workload

(%V02max). A relative workload prediction equation (RWP equation) was developed

based on the collected data. The standard error ofprediction for %VOZmax and V02max

was estimated at ”57.6% and $0.65 liter - min", respectively.

In an effort to improve the accuracy of predictions using the RWP equation,

multiple linear regression modeling was considered. This led to the development of a

number of regression models, which incorporated the Energy of the Green’s function,

relative heart rate, body surface area, and age as explanatory variables. A statistical

comparison between the different MLR models indicated that the best prediction results

would be attained when the Energy of the Green’s function, relative heart rate, and

body surface area were used as predictors. Using multiple regression methods to

combine these predictors resulted in a model with a standard error of prediction for

%VO;max and VOzmalx equal to i4.9% and i053 liter- min], respectively.
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All regression models have been validated using non-steady state oxygen uptake

and heart rate data measured for 100 validation subjects. No significant differences

between measured and predicted %VOZmax (or VOW, ) are found. The validation

results indicated that the multiple regression model developed in this research produced

acceptable prediction values for both relative and maximum oxygen uptake values and

greatly improves the accuracy of the prediction results compared to the single

regression model developed by Abdelhamid (1999).

V.2 Thesis Contribution

This thesis makes the following important contributions:

1. Validating the time series analysis technique developed by Abdelhamid (1999)

on a larger pool of subjects.

2. Improving the accuracy of the technique developed by Abdelhamid (1999)

through the development and validation of a multiple regression model that

includes heart rates and body dimensions.

3. Preserving the benefits of the single regression model advanced by

Abdelhamid (1999), such as subject safety and ease of application.

4. Developing a model that provides acceptable prediction values in comparison

with other quantitative prediction methods.

5. Providing a robust, efficient and reliable statistical methodology capable of

predicting relative workloads from submaximal oxygen uptake and heart rate

data collected in-situ.
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V.2.l Contributions to Construction

Construction work is physically demanding work. The construction industry has

assumed that a high level of physical effort is an inherent part of doing the work. In

fact, the culture of the construction industry has evolved such that contractors rely

heavily on hand labor with small, relatively inexpensive, multipurpose tools.

Contractors seldom consider the physical demands of work or a worker’s physical

qualifications to perform a given task.

Understanding the physical demands of construction work is of great importance

in protecting the workforce’s safety, health. and productivity. It is key to solving the

problem of designing jobs that workers can safely perform. Improvements in

performance can be attained when the workload is matched to the abilities of the

individual worker, because this matching prevents the development of physical fatigue.

By using the methods developed and results advanced in this research and by

promoting and applying concepts of work physiology at the workplace, many

improvements will find their way to the occupational health and safety of the

construction workforce. The methods described in this research will be critical to the

success of many field studies focusing on:

1) Reliable evaluation of workloads to which workers are subjected, so that

engineering or administrative interventions may be more effectively

implemented by management to reduce workloads and injuries.

2) Expanding job opportunities for women, older workers, and workers who are

partially disabled, by placing them in jobs according to their capabilities.
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3) Evaluation of the effectiveness of rehabilitation programs for construction

workers who previously suffered overexertion injuries.

V.3 Limitations and Future Work

Maximum oxygen uptake values are difficult, if not dangerous, to measure, but

would lead to a better assessment of physical fatigue. Much research is needed to

arrive at simple and reliable ways to achieve such measurements. The multiple

regression model developed in this research proved promising in predicting relative

workload. However, the model has some limitations which are worth noting. Firstly,

the model was developed for a relatively homogeneous college-age group of

predominantly white males. The effects of a wider range of ages, different racial

backgrounds, and gender on the accuracy of the developed regression model need to be

investigated. Secondly, many factors such as general health conditions, smoking

habits, alcohol intake, and conditioning are explanatory variables that may increase the

accuracy of the prediction.

Thirdly, because real construction environments and tasks were quite difficult to

simulate in the lab, the results and findings of this study lose ecological (external)

validity. Hence, the higher or lower limits of the prediction intervals as estimated by

the model should not be respectively used to justify critical decisions regarding a

worker’s suitability for a particular work activity.

Additional development of the model presented in this research will be of great

importance in better understanding the physical demands on today’s workforce doing

today’s work. It will have widespread application in identifying excessively demanding
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tasks so they can be better matched to the abilities of subjects. Future research efforts

should consider the following:

' Investigating the effects of gender, age, racial background, and overall health

condition (smoking, fitness, stress, etc) on the model's accuracy.

I Validating the model on subjects from construction trades while performing

various types of construction work.

' Investigating the use of other techniques/models to predict relative workload.
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APPENDIX A

TIME SERIES ANALYSIS

A.l Introduction14

When a sequence of data is observed with respect to time and space, the collected

data is called a time series. In statistical theory, an observed time series is considered

as one possible realization of a stochastic process (Pandit and Wu 1993, Anderson

1971). An observed stochastic process or time series is called strictly stationary when

the probability distribution and all of its moments, i.e., mean, variance, etc., are

independent of the origin. However, when the first and second moments are only

assumed to be independent of the origin, the series is called wide sense stationary.

Series that do not satisfy the mentioned conditions are considered to be non-stationary

and are caused by trends or seasonalities in the data (Anderson 1971, Brockwell and

Davis 1996).

The basic idea of time series analysis is to find a regression model that can

represent an observation in time t, denoted as X, as the sum of two uncorrelated and

independent parts: one dependent on preceding observed data and the other an

independent sequence of unmeasured inputs (Pandit and Wu 1993).

A.2 Fitting and Finding Adequate ARMA(p,q) Models

Discrete or continuous Autoregressive Moving Average models, denoted as

ARMA(p,q) models, are the family of regression models that can be fitted to time

series data. The variables p and q describe the order of the ARMA(p,q) model to be

 

'4 Most content of this appendix is from Abdelhamid (1999).

106



used. The value of p represents how many preceding observations Xl depends on, and

the value of q represents how many preceding disturbances affect X.

A general discrete Autoregressive Moving Average model, ARMA(p,q), has a

linear stochastic difference equation of the form:

X1-¢1X1_1-(p2X1-2 - ...-(prt-p = 211-91814 ~9231-2 - 0an (A.l) Th6

left-hand side of Al is the autoregressive part, and the right hand side is the moving

average part. The basic assumptions of the ARMA(p,q) model represented by (Al)

are as follows: 31 = NID (0,032).i.e. at are normally and identically distributed random

variables, i.e., a1 is independent of app, a,-p_1,. . ..and of X1-p-1, X1-p-2. . ..

Given that ARMA(p,q) models are considered as conditional regression models,

the parameterstpl, (pzmtpp and01, 02,,,,,0q can be estimated using the methods of least

squares. Minimizing the nonlinear function S is performed in a stepwise fashion.

Initial values of the parameters obtained through rough algorithms are used to compute

at’s recursively and to obtain the value of S. The direction along which S will be

smaller is then found by methods of linearization and/or steepest descent. The new

values of parameters with this smaller S are then taken as initial values and the routine

continues until the minimum S is obtained (Pandit and Wu 1993).

A.3 Time Series Analysis

For each subject in this research, ARMA(p,q) models were fitted to oxygen

uptake data collected during sessions 1,2 and 3, and the random sessions using the time

series analysis packages ITSM 2000 version 7.0 (Brockwell and Davis 1996). Final

model parameters were obtained using maximum likelihood methods of estimation.
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After the adequate model was chosen, values of the Green’s function were obtained.

From the Green’s function, the value of E1; was determined by sum the square of the

Green’s function.

A.4 Interpretation of the Green’s Function

When a system is affected by disturbances a, it is important to understand how

the system response or output at time t is affected by or depends on previous values of

these disturbances. The Green’s function summarizes the dependence or memory of an

observed value X on previous a1’s. In essence, the Green’s function characterizes how

long a disturbance that affected the system at time t will be “remembered” by the

system; or equivalently, how much time would the system require to “forget” the

disturbance that affected it at time t. The shorter the time, the better the system is in

coping with the disturbance and the more resistant it is to change. Therefore, by

plotting the Green’s function, an understanding of the “memory dynamics” or

resistance to change from equilibrium in the system will be more easily visualized and

quantified.
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APPENDIX B

PHYSIOLOGICAL DATA FOR ALL SUBJECTS

The Green’s function G1 and oxygen uptake data collected for subject 78 and 97

during the exercise session 3 discussed in Figure 111.1 and 1112 are shown in Table B1

The Energy of the Green’s function is to sum the square of all the G1 for each subject.

 

 

     

Subject 78 Subject 97 Subject 78 Subject 97

V02 (L/min) VOz (L/min) Gj"2 Gj"2

0.16 0.1 5 1 .000000 1.000000

0.57 0.24 0.232247 0.929412

0.88 0.44 0.382493 0.863 803

1.07 0.46' 0.488573 0.802816

1.27 0.61 0.533104 0.746133

1.3 0.73 0.518083 0.693473

1.59 1.04 0.457341 0.644520

1.88 1.31 0.369688 0.599014

1.7 1.16 0.273560 0.556725

1.75 1.23 0.183724 0.517421

1.77 1.28 0.109700 0.480901

1.98 1.44 0.055734 0.446946

1.53 1.52 0.021744 0.415393

1.75 1.38 0.004683 0.386076

1.69 1.42 0.000001 0.358813

1.16 1.44 0.002878 0.333483

2 1.4 0.009092 0.309948

1.73 1.38 0.015500 0.288068

1.81 1.4 0.020181 0.267734

1.6 1.38 0.022308 0.248831

1.85 1.39 0.021901 0.231265

1.8 1.5 0.019505 0.214934

1.53 1.35 0.015901 0.199764

1.55 1.22 0.011870 0.185658
 

Table 8.] Subject 78 and 97 raw data on V0; and G1
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Subject 97

   

  

Subject 78 Subject 97 Subject 78

V02 (L/min) VOz (L/min) Gj"2 Gj"2

1.66 1.31 0.008053 0.172557

1.78 1.5 0.004871 0.160376

1.6 1.49 0.002522 0.149050

1.65 1.45 0.001018 0.138533

1.6 1.37 0.000240 0.128752

1.8 1.48 0.000002 0.119661

1.69 1.56 0.000100 0.111216

1.69 1.56 0.000354 0.103362

1.87 1.43 0.000627 0.096069

1.63 1.41 0.000832 0.089281

1.59 1.31 0.000933 0.082979

1.5 1.52 0.000925 0.077123

1.59 1.46 0.000831 0.071679

1.74 1.52 0.000683 0.066621

1.78 1.45 0.000515 0.061916

1.73 1.39 0.000353 0.057547

1.51 1.46 0.000216 0.053481

1.48 1.46 0.000114 0.049707

1.75 1.45 0.000047 0.046199

1.64 1.4 0.000012 0.042936

1.71 1.51 0.000000 0.039904

1.58 1.49 0.000003 0.037087

1.5 1.51 0.000014 0.034470

1.57 1.53 0.000025 0.032037

1 .66 1.62 0.000034 0.029774

1.7 1.49 0.000039 0.027672

1.51 1.51 0.000023 0.025719

1.68 1.2 0.000026 0.023904

1.57 1.4 0.000015 0.022216

1.82 1.62 0.000017 0.020647

1.62 1.51 0.000010 0.019191

1.59 1.53 0.000011 0.017836

1.61 1.47 0.000006 0.016577

1.73 1.52 0.000007 0.015406

1.48 1.42 0.000004 0.014319

1.64 1.58 0.000005 0.013308

1.56 1.5 0.000003 0.012368    
Table 3.] Subject 78 and 97 raw data on V0; and G,- (continued)
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Subject 78 Subject 97 Subject 78 Subject 97

V02 (L/min) V02 (L/min) Gj"2 Gj"2

1.66 1.39 0.000003 0.011496

1.61 1.55 0.000002 0.010683

1.8 1.65 0.000002 0.009930

1.64 1.54 0.000001 0.009229

1.44 1.55 0.000001 0.008577

1.57 1.49 0.000001 0.007971

1.68 1.46 0.000001 0.007410

1.64 1.49 0.000001 0.006886

1.4 1.5 0.000001 0.006400

1.71 1.53 0.005947

1.6 1.6 0.005528

1.83 1.52 0.005138

1.73 1.46 0.004775

1.69 1.47 0.004438

1.55 1.54 0.004124

1.7 1.41 0.003834

1.5 1.36 0.003563

1.67 1.37 0.003311

1.6 1.69 0.003078

1.24 1.66 0.002860

1.38 1.61 0.002658

1.69 1.62 0.002471

1.64 1 .49 0.002296

1.72 1.46 0.002134

1.51 1.31 0.001984

1.85 1.42 0.001844

1.47 1.55 0.001713

1.51 1.57 0.001593

1.57 1.45 0.001480

1.64 1.45 0.001376

1.62 1.33 0.001279

VOzavg 1.5758696 1.404915

VOzmax 4.46 2.18

%V02max 0.353334 0.644457

E5 4.79 14.16
 

Table B.1 Subject 78 and 97 raw data on V0; and G, (continued)
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actual oxygen uptake data collected in Session 2, 3 for the 100 experimental subjects

The physiological data including height, weight, BSA, age, heart rate, and

discussed in Chapter IV Table IV] are shown in Table B.2.15

 

 

 

            

Section 2 Section 3

%

I-[R V02 HR V02 V02 HR V02 %V02

Sub H W BSA Age max max avg avg max 1avg avg max

5 68 129 1.7 20 200 2.56 110.96 0.55 0.21 N/A N/A N/A

6 63 135 1.64 19 201 2.35 88.47 0.58 0.25 N/A N/A N/A

7 68.5 137 1.75 20 200 2.8 88.26 0.67 0.24 133.8 1.33 0.47

9 66.5 162 1.84 18 202 2.84 101.26 0.65 0.23 N/A N/A N/A

10 65.5 146 1.74 24 196 4.24 81.83 0.72 0.17 110.63 1.49 0.35

12 61.5 105.6 1.45 21 199 2.36 N/A N/A N/A 159.1 0.89 0.38

13 65 126 1.63 20 200 2.91 N/A N/A N/A 139.6 1.29 0.44

14 68 147 1.79 32 188 3.19 83.04 0.65 0.2 N/A N/A N/A

15 70.5 150.7 1.86 29 191 3.61 83.45 0.71 0.2 137.77 1.42 0.39

16 67 160 1.84 28 192 3.31 101.29 0.7 0.21 N/A N/A N/A

18 71.25 176.66 2.01 18 202 13.21 98.21 0.85 0.26 138.26 1.92 0.6

22 70.5 181.06 2.01 20 200 2.63 99.01 0.57 0.22 N/A N/A N/A

23 74 212 2.23 18 202 4.87 99.99 0.99 0.2 114.05 2.08 0.43

26 69 131 1.73 l 199 3.05 97.71 0.58 0.19 146.45 1.32 0.43

27 67.25 160 1.84 37 183 2.74 101.35 0.77 0.28 N/A N/A N/A

28 62.5 123 1.56 22 198 2.4 92.62 0.52 0.22 N/A N/A N/A

30 65.5 154 1.78 20 200 3.31 92.6 0.74 0.22 N/A N/A N/A

31 67.25 125 1.66 23 197 2.61 95.98 0.61 0.23 141.78 1.32 0.51

33 68 175 1.93 25 195 3.51 109.61 0.74 0.21 N/A N/A N/A

36 67 126 1.66 21 199 2.22 N/A N/A N/A 152.22 1.29 0.58

38 71.25 176.5 2 90 200 4.73 76.47 0.85 0.18 110.27 1.67 0.35

39 67 142.78 1.75 24 196 2.32 101.9 0.48 0.21 N/A N/A N/A

40 64.5 121 1.59 19 201 2.89 92.65 0.53 0.18 N/A N/A N/A

41 67.5 133 1.71 20 200 2.95 87.79 0.64 0.22 N/A N/A N/A

42 70 147 1.83 21 199 1.98 95.04 0.28 0.14 N/A 1N/A N/A  
Table B.2 Physiological data for 100 experimental subjects

 

'5 The table does not include subjects’ with missing data due to experimental errors or machine

malfunctions.
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Section 2 Section 3

% %

HR V02 HR V02 V02 HR V02 V02

Sub H NV BSA Age max max avg avg max avg avg max

44 71.75 160 1.93 20 200 4.6 94.25 .83 0.18 128.65 1.68 0.37

45 67 163 1.85 32 188 4.1 80.18 0.71 0.17 N/A N/A N/A

46 62.5 141 1.66 20 200 2.22 99.34 0.53 0.24 N/A N/A N/A

48 63 126 1.59 19 201 2.16 108.32 0.62 0.29 N/A N/A N/A

H9 76.75 214 2.3 22 198 4.07 N/A N/A N/A 121.5 1.99 0.49

50 68.5 187 2 23 197 4.11 92.59 11.91 0.22 131.78 1.77 0.43

51 72.5 157.7 1.94 20 200 5.06 93.5 0.63 0.12 125.36 1.41 0.28

52 69.5 150 1.84 25 195 3.86 N/A N/A N/A 108.93 1.3 0.34

53 68 167 1.89 21 199 2.42 118.11 0.71 0.29 157.85 1.59 0.66

54 69.25 176 1.96 21 199 2.78 108.4 0.8 0.29 148.47 1.65 0.59

56 76 231 2.36 28 192 4.67 90.7 0.96 0.21 N/A N/A N/A

57 65 133 1.66 21 199 2.78 98.78 0.55 0.2 N/A N/A N/A

58 69 163 1.89 19 201 3.75 98.71 0.81 0.22 N/A N/A N/A

60 74 192 2.14 30 190 4.74 69.27 0.7 0.15 95.14 1.69 0.36

62 69 203 2.08 27 193 4 79.86 0.86 0.21 N/A N/A N/A

63 66 145 1.74 28 192 3.21 92.36 0.68 0.21 125.54 1.39 0.43

66 69.25 176 1.96 21 199 4.27 108.4 0.85 0.2 N/A N/A N/A

67 57.5 140 1.56 2 198 2.9 98.45 0.69 0.24 N/A N/A N/A

69 66 172 1.88 20 200 3.31 113.01 0.9 0.27 147.48 1.65 p5

70 68.5 147 1.8 21 199 4.15 89.2 0.71 0.17 121.07 1.52 0.37

72 63 140 1.66 28 192 2.61 108.88 0.6 0.23 173.67 1.45 0.56

73 66.5 165 1.85 27 193 3.33 99.96 0.73 0.22 132.55 1.62 0.49

74 68.25 198 2.04 25 195 3.92 81.74 1.01 0.26 124.91 1.93 0.49

76 73 161 1.96 24 196 3.49 138.86 1.6 0.46 140.89 1.59 0.46

77 64.5 118 1.57 26 194 3.07 78.69 0.6 0.2 110.44 1.21 0.39

78 73.5 176 2.05 27 193 4.46 78.91 0.82 0.18 95.61 1.59 0.36

79 62.5 127 1.59 28 192 2.65 97.26 0.68 0.26 142.01 1.29 0.49

80 64 155 1.76 34 186 2.99 95.24 0.65 0.22 152.71 1.46 0.49

81 72.5 168 1.99 34 186 3.98 74.97 0.88 0.22 101.69 1.51 0.38

82 64 141 1.69 27 193 2.67 99.07 0.7 0.26 127.95 1.19 0.44

83 67 135 1.71 25 195 2.47 88.06 0.56 0.23 137.42 1.35 9.55

84 73.5 199 2.16 26 194 3.86 90.58 0.79 0.2 124.37 1.71 0.44

85 65 139 1.69 34 186 3 85.6 0.61 0.2 N/A N/A N/A

88 69 134 1.74 24 196 3.37 101.91 0.61 0.18 140.83 1.4 0.42  
Table B.2 Physiological data for 100 experimental subjects (Continued)
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Section 2 Section 3

% %

HR V02 HR V02 V02 HR V02 V02

Sub H W BSA Age max max Iavg vag max iavg vag max

89 69.5 142 1.8 25 195 3.81 99.27 0.75 0.2 93.55 1.44 0.38

90 66 149 1.76 24 196 2.71 103.13 0.75 0.28 N/A N/A N/A

91 72 167 1.97 22 198 4.36 90.33 0.77 0.18 121.98 1.57 0.36

93 70.5 163 1.92 24 196 3.42 106.14 0.77 0.22 155.36 1.43 0.4

94 64.5 137 1.67 24 196 4.02 l81.96 0.64 0.16 142.89 1.72 0.5

95 69 150 1.83 27 193 2.86 110.37 0.7 0.24 162.43 1.46 0.51

96 66.5 158 1.82 25 195 3.4 l81.51 0.9 0.27 N/A N/A N/A

97 69 150 1.83 37 183 2.18 101.33 0.6 0.27 N/A N/A N/A

98 67.5 162 1.86 37 183 3.36 8.03 0.75 0.22 N/A N/A N/A

100 68.5 171 1.92 25 195 3.9 E536 0.99 0.25 128.96 1.84 0.47  
Table B.2 Physiological data for 100 experimental subjects (Continued)
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The physiological data including height, weight, BSA, age, heart rate, and

actual oxygen uptake data for the 100 validation subjects discussed in Chapter IV Table

IV.1 are shown in Table B.3”.

 

Random exercise

test V02max test

% %

HR V02 HR V02 V02 HR V02 V02

SubH W BSA Age max max Iavg avg max .avg avg max

1 65 1341.67 23 197 3.22 122.9 1.24 0.38 N/A N/A N/A

2 67.75 1241.66 22 198 3.06 121.25 0.91 0.3 143.371.62 0.53

3 68.5 1321.72 38 182 2.52 100.711.09 0.43 N/A N/A N/A

4 75.5 1942.18 21 199 4.52 117.961.57 0.35 149.94 2.6 0.57

5

8

 

 

71.5 155 1.9 24 196 3.52 N/A N/A N/A 136.37 1.72 0.49

65.5 116 1.58 23 197 2.09 134.281.04 0.5 152.58 1.27 0.61

10 74 200 2.26 26 194 4.96 111.26 1.99 0.4 143.52 2.8 0.56

11 70.5 195 2.08 33 187 3.35 143.971.89 0.56 140.29 1.94 0.58

12 65.5 140 1.71 21 199 2.27 150.4213 0.57 145.6 1.45 0.64

13 68 139 1.75 34 186 2.75 123.571.05 0.38 N/A N/A N/A

14 66.75 155 1.81 19 201 2.86 122.1 1.2 0.42 127.66 1.64 0.57

15 71.5 161 1.93 22 198 5.04 115.22 1.31 0.26 151.86 2.58 0.51

16 64 125 1.6 23 197 3.11 140.141.07 0.34 166.35 1.67 0.54

17 73 188 2.1 23 197 4.23 118.15 1.69 0.4 158.39 2.52 0.6

18 70 145 1.82 25 195 3 134.131.28 0.43 156.43 1.73 0.58

23 67 185 1.96 24 196 4.05 147.471.79 0.44 155.63 2.32 0.57

24 63 140 1.66 27 193 2.27 159.661.06 0.47 N/A N/A N/A

25 68 142 1.77 21 199 4.07 N/A N/A N/A 166.71 2.21 0.54

26 67 166 1.87 22 198 3.05 156.491.55 0.51 153.35 1.75 0.57

28 70 152 1.86 22 198 4.24 110.24 1.2 0.28 143.28 2.15 0.51

29 80.5 209 2.35 21 199 4.64 119.81 1.64 0.35 144.85 2.58 0.56

30 73 182 2.07 26 194 4.01 112.97 1.46 0.37 147.83 2.35 0.59

31 68 160 1.86 22 198 4.32 N/A N/A N/A 139.47 2.31 0.54

33 68.5 152 1.83 27 193 239 136.471.08 0.45 139.7 1.45 0.61

34 69.5 174 1.96 21 199 5.05 107.661.55 0.31 141.51 2.78 0.55

35 66.5 150 1.78 30 190 3.01 121.3 1.36 0.45 147.86 1.93 0.64

Table B.3 Physiological data for 100 validation subjects

               
 

'6 Same as notes 14.
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Random exercise

test V02"...x test

% %

HR V02 HR V02 V02 HR V02 V02

Sub H W BSA Age max max avg avg max Iavg avg max

36 64 112 1.53 31 189 2.54 127.82 0.84 0.33 137.9 1.27 0.5

39 73 204 2.17 24 196 4.16 114.9 1.47 0.35 137.812.29 0.55

40 72 175 2.01 23 197 3.78 109.75 1.42 0.38 131.03 2.02 0.54

41 65.5 152 1.77 20 200 3.75 121.24 1.24 0.33 143.27 2.11 0.56

42 72.5 222 2.24 26 194 3.23 128.31 1.65 0.51 135.44 2.04 0.63

44 76 204 1.58 22 198 2.78 121.91 0.97 0.35 141 1.43 0.52

45 63 125 2.05 28 192 4.23 125.18 1.4 0.33 N/A N/A N/A

46 61 111 1.47 23 197 1.69 151.22 0.93 0.55 154.65 1.11 0.66

47 64 126 1.61 35 185 2.75 111.09 1.06 0.38 N/A N/A N/A

48 62 146 1.67 21 199 2.95 130.05 1.34 0.45 134.36 1.66 0.56

49 68 157 1.48 31 189 3.98 126.461.16 11.29 147.6 2.1 0.53

50 68 149 1.8 21 199 5.93 N/A N/A N/A 140.95 2.67 0.45

51 71.5 155 1.9 24 196 3.76 124.17 1.43 0.38 146.06 2.21 0.59

52 69 179 1.97 36 184 4.95 100.94 1.55 0.31 141.12 2.78 0.56

53 72 173 2 27 193 4.24 109.4 1.49 0.35 140.24 2.41 0.57

54 72 170 1.99 22 198 4.12 132.79 1.55 0.38 158.55 2.47 0.6

55 64 148 1.72 20 200 1.74 N/A N/A N/A 161.72 1.17 0.67

56 63 130 1.63 23 197 2.71 122.39 1.02 0.38 144.14 1.55 0.57

57 72 182 2.05 23 197 4.31 N/A N/A N/A 167.71 2.47 0.57

58 71.5 183 2.04 27 193 3.92 133.37 1.54 0.39 161.87 2.38 0.61

59 66.5 136 1.71 29 191 2.77 127.2 0.98 0.35 146.49 1.69 0.61

60 67 180 1.93 37 183 3.23 122.67 1.52 0.47 151.54 1.93 0.6

62 76 239 2.39 34 186 4.68 124.99 1.99 0.43 154.77 2.87 0.61

64 67.5 154 1.91 43 177 2.38 142.22 1.56 0.66 N/A N/A N/A

65 66 180 1.75 39 181 2.64 117.96 1.26 0.48 128.83 1.62 0.61

66 70 173 1.96 25 195 3.64 138.461.94 0.53 165.6 2.19 0.6

67 71 192.5 2.07 28 192 2.9 151.9 1.64 0.57 164.2 1.87 0.64

68 67.5 166 1.88 32 188 3.42 127.67 1.4 0.41 140.99 1.95 0.57

69 70.25 151 1.86 25 195 3.55 121.7 1.05 0.3 145.8 1.91 0.54

70 69 200 2.07 28 192 3.85 120.05 1.81 0.47 N/A N/A N/A

71 60.5 133 1.58 35 185 1.52 159.84 0.94 0.62 156.25 0.92 0.61

72 66 156 1.8 23 197 3.42 129.05 1.31 0.38 145.96 1.87 0.55

74 71 177 2 21 199 3.83 109.13 1.39 0.36 128.91 2.08 0.54

76 70 166 1.93 24 196 4.19 N/A N/A N/A 127.84 2.38 0.57  
Table B.3 Physiological data for 100 validation subjects (Continued)
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Random exercise

test V02max test
 

% %

HR V02 HR V02 V02 HR V02 V02

Sub H W BSA Age max max Iavg avg max lan avg max
 

77 72 216 2.2 21 199 4.21 103.612.03 0.48 N/A N/A N/A

78 65.5 1451.74 19 201 2.72 138.351.26 0.46 153.061.55 0.57

82 77 205 2.26 31 189 4.25 124.3415 0.35 N/A N/A N/A

83 67 1491.78 24 196 2.73 137.881.27 0.46 150.661.66 0.61

5 695166192 22 198 3.98 111.1316 0.4 141.78 2.3 0.58

6 70.5 202 2.11 28 192 4.37 107.091.73 0.4 141.73 2.69 0.62

8 71 1842.04 29 191 2.58 N/A N/A N/A 129.181.72 0.67

89 68 1821.96 34 186 3.31 134.921.31 0.4 144.881.93 0.58

90 71 1912.07 26 194 5.11 109.881.39 0.27 146.95 2.87 0.56

91 73.5194 2.13 22 198 4.49 104.691.78 0.4 133.54 2.52 0.56

94 73 1912.11 21 199 4.18 124.781.37 0.33 149.65 2.28 0.55

95 63 1541.73 30 190 8.33 N/A N/A N/A 168.581.69 0.51

96 66 1341.69 24 196 2.89 N/A N/A N/A 163.891.61 0.56

97 70.51541.88 27 193 3.97 N/A 151/A N/A 172.35 2.12 0.53

98 65 1711.85 29 191 3.55 143.531.57 p.44 157.412 0.56

100 69 1671.91 0 200 3.93 111.911.32 0.34 146.44 2.15 0.55

 

              
 

Table B.3 Physiological data for 100 validation subjects (Continued)
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Table 34 lists the data used to depict Figure IV.1 between EG and %V02max,

and to generate the RWP and Model A and C based on the predictors of E5, RHR and

BSA from the experimental subjects, and the predicted %V02max and V02max values

based on these models. Table B.4 (a) refers to section 2 exercise and (b) to section 3.

 

/..V02 %V02 l%vo2 %voz vo2 vo2 v02

RH max max max max max max max

Sub [E(G) Ln(EG)BSA R (actual) (RWP) (A) (C) (RWP) (A) (C)

1.06 0.06 1.7 0.55 0.21 0.23 0.26 0.26 2.35 2.08 2.15

1.12 0.11 1.64 0.44 0.25 0.24 0.20 0.18 2.38 2.90 3.16

7 1.00 0.00 1.75 0.44 0.24 0.22 0.19 0.18 3.00 3.56 3.71

1.11 0.10 1.84 0.5 0.23 0.24 0.24 0.24 2.71 2.76 2.76

10 1.09 0.09 1.74 0.42 0.17 0.24 0.18 0.17 3.01 3.90 4.11

14 1.23 0.21 1.79 0.44 0.20 0.26 0.21 0.20 2.53 3.15 3.24

15 1.13 0.12 1.86 0.44 0.20 0.24 0.20 0.20 2.93 3.57 3.58

16 1.37 0.31 1.84 0.53 0.21 0.27 0.27 0.27 2.56 2.57 2.58

18 1.07 0.07 2.01 0.49 0.26 0.24 0.23 0.24 3.60 3.73 3.55

22 1.02 0.02 2.01 0.5 0.22 0.23 0.23 0.24 2.51 2.49 2.37

23 1.13 0.13 2.23 0.5 0.20 0.24 0.24 0.26 4.07 4.18 3.76

26 1.10 0.09 1.73 0.49 0.19 0.24 11.23 0.22 2.45 2.56 2.65

27 1.00 0.00 1.84 0.55 0.28 0.22 0.26 0.26 3.45 2.98 2.97

28 1.57 0.45 1.56 0.47 0.22 0.30 0.25 0.22 1.77 2.13 2.33

30 1.28 0.25 1.78 0.46 0.22 0.26 0.22 0.22 2.80 3.31 3.40

31 1.00 0.00 1.66 0.49 0.23 0.22 0.22 0.21 2.73 2.76 2.93

33 1.12 0.12 1.93 0.56 0.21 0.24 0.27 0.28 3.05 2.69 .62

38 1.22 0.20 2 0.38 0.18 0.26 0.17 0.18 3.33 5.07 4.87

39 1.01 0.01 1.75 0.52 0.21 0.23 0.24 0.24 2.14 2.01 2.05

40 1.18 0.17 1.59 0.46 0.18 0.25 0.22 0.20 2.11 2.44 2.68

41 1.30 0.26 1.71 0.44 0.22 0.27 0.21 0.20 2.39 3.01 3.19

42 1.11 0.11 1.83 0.48 0.14 0.24 0.22 0.22 1.14 1.23 1.24

44 1.74 0.55 1.93 0.47 0.18 0.31 0.25 0.26 267 3.28 3.23

45 1.37 0.31 1.85 0.43 0.17 0.27 0.21 0.21 2.58 3.38 3.42

46 1.69 0.53 1.66 0.5 0.24 0.31 0.27 0.26 1.71 1.94 2.05

48 1.40 0.34 1.59 0.54 0.29 0.28 0.28 0.26 2.23 2.20 2.35

50 2.96 1.08 2 0.47 0.22 0.40 0.30 0.30 2.28 3.04 2.98

51 1.04 0.04 1.94 0.47 0.12 0.23 0.21 0.22 2.75 2.99 2.90

53 1.18 0.17 1.89 0.59 0.29 0.25 0.30 0.30 2.83 2.38 2.34

Table 3.4 (a) Actual/predicted values for %VOZm“ & VOZmax for experimental subjects
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%vo2 I0/ovo2 lo/..vo2 l%VO2 vo2 vo2 vo2

max max max max max max max

Sub 113(0) Ln(EG) BSA RHR (actual) (RWP) (A) (C) (RWP) (A) (C)

54 1.14 0.14 1.96 0.54 0.29 0.25 0.26 0.27 3.25 3.02 2.92

56 1.09 0.08 2.36 0.47 0.21 0.24 0.22 0.25 4.05 4.47 3.84

57 1.14 0.13 1.66 0.5 0.20 0.25 0.24 0.23 2.25 231 2.44

58 1.26 0.23 1.89 0.49 0.22 0.26 0.24 0.24 3.13 [3.39 3.36

60 1.17 0.16 2.14 0.36 0.15 0.25 0.15 0.17 2.79 4.58 4.13

62 1.25 0.22 2.08 0.41 0.21 0.26 0.19 0.20 3.30 4.53 4.23

63 1.04 0.04 1.74 0.48 0.21 0.23 0.22 0.21 2.96 3.13 3.24

66 1.63 0.49 1.96 0.54 0.20 0.30 0.29 0.30 2.81 2.89 2.82

67 1.07 0.07 1.56 0.5 0.24 0.24 0.23 0.21 2.93 2.96 8.23

159 1.13 0.12 1.88 0.57 0.27 0.24 0.28 0.29 3.69 3.19 3.14

70 1.01 0.01 1.8 0.45 0.17 0.23 0.20 0.19 3.13 3.60 3.67

72 1.27 0.24 1.66 0.57 0.23 0.26 0.29 0.28 2.30 2.06 2.15

73 1.54 0.43 1.85 0.52 0.22 0.29 0.28 0.28 2.50 2.65 2.65

74 1.03 0.03 2.04 0.42 0.26 0.23 0.18 0.19 4.43 5.65 5.30

76 1.89 0.63 1.96 0.71 0.46 0.33 0.41 0.43 4.90 3.86 3.75

77 1.11 0.11 1.57 0.41 0.20 0.24 0.18 0.16 2.50 3.36 3.82

78 1.12 0.11 2.05 0.41 0.18 0.24 0.18 0.19 3.40 4.57 4.29

79 1.17 0.16 1.59 0.51 0.26 0.25 0.25 0.23 2.73 2.76 .97

80 1.01 0.01 1.76 0.51 0.22 0.23 0.23 0.23 2.85 2.75 2.81

81 1.07 0.07 1.99 0.4 0.22 0.23 0.17 0.18 3.76 5.21 4.98

82 1.01 0.01 1.69 0.51 0.26 0.22 0.23 0.22 3.10 2.98 3.11

83 1.18 0.16 1.71 0.45 0.23 0.25 0.21 0.20 2.25 2.68 2.83

84 1.21 0.19 2.16 0.47 0.20 0.25 0.22 0.25 3.08 3.50 3.20

85 1.11 0.11 1.69 0.46 0.20 0.24 0.21 0.20 .53 2.89 3.06

88 1.42 0.35 1.74 0.52 0.18 0.28 0.27 0.26 2.18 2.26 2.33

89 1.21 0.19 1.8 0.51 0.20 0.25 0.25 0.25 2.94 3.00 3.03

90 1.38 0.32 1.76 0.53 0.28 0.28 0.27 0.27 2.73 2.75 2.81

91 1.19 0.17 1.97 0.46 0.18 0.25 0.22 0.22 3.04 3.54 3.42

93 1.01 0.01 1.92 0.54 0.22 0.23 0.25 0.26 3.40 3.03 2.95

94 1.56 0.44 1.67 0.42 0.16 0.29 0.21 0.20 2.17 3.00 3.24

95 1.07 0.07 1.83 0.57 0.24 0.24 0.28 0.28 2.96 2.51 2.50

96 1.02 0.02 1.82 0.42 .27 0.23 0.18 0.17 3.98 5.07 5.17

97 1.19 0.17 1.83 0.55 0.27 .25 0.27 0.27 2.36 2.18 2.17

8 1.11 0.10 1.86 0.48 0.22 .24 0.22 0.22 3.10 3.34 .33

100 1.17 0.16 1.92 0.49 0.25 0.25 0.23 0.24 3.95 4.21 4.12  
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Table 3.4 (a) Actual/predicted values for %V02max & VOzm“ for experimental subjects (continued)

 

 



 

'%V02 [0/0V02 %V02 %voz v02 vo2 vo2

max max max max max max max

Sub 13(0) Ln(EG) BSA RHR (actual) (RWP) (A) (C) (RWP) (A) (C)

7 1.79 0.58 1.75 0.67 0.47 0.32 0.38 0.38 4.18 3.46 3.49

10 1.22 0.20 1.74 0.56 0.35 0.26 0.28 0.28 5.81 5.28 5.39

12 1.86 0.62 1.45 0.8 0.38 0.32 0.47 0.45 2.77 1.91 2.00

13 2.02 0.70 1.63 0.7 0.44 0.34 0.41 0.40 3.83 3.12 3.21

15 1.35 0.30 1.86 0.72 0.39 0.27 0.39 040 5.22 3.63 3.57

18 6.65 1.89 2.01 0.68 0.60 0.53 0.50 0.51 3.65 3.86 3.78

23 1.60 0.47 2.23 0.56 0.43 0.30 0.30 0.33 6.95 6.83 6.27

26 1.65 0.50 1.73 0.74 0.43 0.30 0.42 0.42 4.33 3.13 3.14

31 4.55 1.51 1.66 0.72 0.51 0.47 0.49 0.48 284 2.68 2.75

36 7.47 2.01 1.66 0.76 0.58 0.55 0.56 0.55 2.36 2.30 2.35

38 1.41 0.35 2 0.55 0.35 0.28 0.29 0.30 5.96 5.79 5.57

44 4.01 1.39 1.93 0.64 0.37 0.45 0.43 0.44 3.77 3.90 3.86

49 6.44 1.86 2.3 0.61 0.49 0.52 0.45 0.48 3.81 4.40 4.14

50 1.23 0.20 2 0.67 0.43 0.26 0.35 0.37 6.90 5.03 4.82

51 1.18 0.17 1.94 0.63 0.28 0.25 0.32 0.33 5.64 4.37 4.24

52 1.84 0.61 1.84 0.56 0.34 0.32 0.32 0.32 4.04 4.11 4.12

53 15.89 2.77 1.89 0.79 0.66 0.67 0.64 0.64 2.39 2.48 2.48

54 9.78 2.28 1.96 0.75 0.59 0.59 0.58 0.58 2.80 2.87 2.83

69 2.02 0.70 2.14 0.5 0.36 0.34 0.29 0.30 5.03 5.92 5.57

63 2.65 0.98 1.74 0.65 0.43 0.38 0.40 0.40 3.67 3.45 3.51

69 4.76 1.56 1.88 0.74 0.50 0.47 0.51 0.51 3.49 3.25 B22

70 1.50 0.40 1.8 0.61 0.37 0.29 0.33 0.33 5.27 4.60 4.62

72 6.61 1.89 1.66 0.9 0.56 0.53 0.64 0.63 2.76 2.28 2.31

73 3.78 1.33 1.85 0.69 0.49 11.44 0.46 0.46 3.71 3.53 3.52

74 5.53 1.71 2.04 0.64 0.49 0.50 0.46 0.47 3.87 4.20 4.10

76 1.89 0.63 1.96 0.72 0.46 033 0.42 0.43 4.90 3.80 3.69

77 251 0.92 1.57 0.57 0.39 0.37 0.35 0.33 3.25 3.46 3.68

78 4.79 1.57 2.05 0.5 0.36 0.47 0.36 0.37 3.36 4.45 4.35

79 12.31 2.51 1.59 0.74 0.49 0.63 0.59 0.57 2.06 2.19 2.27

80 3.15 1.15 1.76 0.82 0.49 0.41 0.53 0.52 3.57 2.77 2.77

81 1.07 0.07 1.99 0.55 0.38 0.23 0.26 0.28 6.43 5.70 5.46

82 1.37 0.31 1.69 0.66 0.44 0.27 0.35 0.35 4.33 3.35 3.41

83 4.58 1.52 1.71 0.7 0.55 0.47 0.48 0.47 2.89 2.81 2.87

84 2.05 11.72 2.16 0.64 0.44 0.34 0.38 0.40 5.04 4.55 4.28

Table B.4 (b) Actual/predicted values for %V02mu & V02...“ for experimental subjects (continued)
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V02 V02 V02 V02 02 02 02

G actual WP A WP A

.25 .22 .74 .72 .42 .26 .39 .38 .4 .64 .65

.96 .78 .8 .48 .38 .51 .36 .35 .83 .97 .09

.46 .38 .97 .62 .36 .29 .34 .35 .51 .69 .53

45 .90 .69 .83 .40 .37 .51 .51 .90 .80 .83

48 .91 .92 .73 .50 .37 .45 .46 .66 .84 .77

.70 .55 .83 .84 .51 .47 .57 .57 .10 .56 5

00 .53 .71 1.92 .66 .47 .50 .47 .47 .70 .91 .88

Table B.4 (b) Actual/predicted values for %V02max & VOzmu for experimental subjects (continued)
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Table 85 lists the actual %V02max and the predictecd %V02max and absolute

V02max values of validation subjects using the developed RWP and MLR model A and

C. Table B.5 (a) refers to validation subjects doing the random exercise test and (b)

refers to the V02max test.

 

I%voz %V02 %V02 %voz vo2 vo2 v02

max max max max max max max

Sub 13(0) Ln(Eg)BSARHR(actua1)I(RWP) (A) (C) (RWP) (A) (C)

1.96 0.67 1.67 0.62 0.38 0.33 0.36 0.35 3.73 3.42 3.53

3.30 1.19 1.66 0.61 0.30 0.41 0.40 0.38 2.20 229 2.37

.95 1.08 1.72 0.55 0.43 0.40 0.35 0.34 2.75 13.10 3.20

3.00 1.10 2.18 0.59 0.35 0.40 0.38 0.40 3.92 4.15 3.91

2.17 0.77 1.58 0.68 0.50 0.35 0.41 0.39 2.99 2.56 2.66

10 2.82 1.04 2.26 0.57 0.40 0.39 .36 0.39 5.11 5.54 5.14

11 6.12 1.63 2.08 0.77 0.56 0.49 0.53 0.55 3.89 3.54 3.42

12 3.31 1.20 1.71 0.76 0.57 0.42 0.49 0.48 3.14 2.67 2.70

13 5.89 1.77 1.75 0.66 0.38 0.51 0.48 0.47 2.07 2.19 2.23

14 6.86 1.93 1.81 0.61 0.42 0.53 0.46 0.45 2.26 2.63 2.67

15 2.16 0.77 1.93 0.58 0.26 0.35 0.34 0.35 3.77 3.81 3.75

16 3.06 1.12 1.60 0.71 0.34 0.40 0.45 0.44 2.66 2.36 2.44

17 2.48 0.91 2.10 0.60 0.40 0.37 0.37 0.38 4.58 4.62 4.41

18 2.29 0.83 1.82 0.69 0.43 0.36 0.42 0.42 3.60 3.09 3.09

23 .48 1.25 1.96 0.75 0.44 0.42 0.49 0.50 4.22 3.64 3.56

24 2.73 1.00 1.66 0.83 0.47 0.38 0.52 p.51 2.76 2.05 2.08

26 5.79 1.76 1.87 0.79 0.51 0.50 0.56 0.56 3.08 2.79 2.77

28 2.86 1.05 1.86 0.56 0.28 0.39 0.35 0.35 3.06 3.42 3.43

29 2.73 1.00 235 0.60 0.35 0.38 0.38 0.41 4.28 4.38 .01

30 1.63 0.49 2.07 0.58 0.37 0.30 0.32 0.34 4.85 4.57 4.35

33 2.44 0.89 1.83 0.71 0.45 0.37 0.43 0.43 2.94 2.49 2.48

34 1.77 0.57 1.96 0.54 0.31 0.31 0.30 0.31 4.92 5.16 6.03

35 3.26 1.18 1.78 0.64 0.45 0.41 0.41 0.41 3.28 B.28 3.32

36 4.59 1.52 1.53 0.68 0.33 0.47 0.47 0.44 1.80 1.81 1.90

39 5.70 1.74 2.17 0.59 0.35 0.50 0.43 0,45 2.92 3.44 3.30

40 2.12 0.75 2.01 0.56 0.38 0.34 0.33 0.34 4.12 4.36 4.22

41 1.88 0.63 1.77 0.61 0.33 0.33 0.35 0.34 3.82 3.58 3.62

Table 13.5 (a) Actual/predicted values for %VOZmu & V02"...ll for validation subjects
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Sub E(G) Ln BSA RHR %V02 %V02 %V02 %V02 V02 V02 V02

(EG) max max max max max max max

(actual) (RWP) (A) (C) (RWP) (A) (C)

42 4.48 1.50 2.24 0.66 0.51 0.46 0.45 0.48 3.56 3.63 3.43

44 5.96 1.79 1.58 0.62 0.35 0.51 0.45 0.43 1.91 2.17 2.28

45 1.94 0.66 2.05 0.65 0.33 0.33 0.38 0.40 4.24 3.69 3.54

46 6.64 1.89 1.47 0.77 0.55 0.53 0.55 0.53 1.77 1.68 1.77

47 1.75 0.56 1.61 0.60 0.38 0.31 0.34 0.32 3.37 3.13 3.28

48 5.68 1.74 1.67 0.65 0.45 0.50 0.47 0.46 2.66 2.85 2.94

49 2.30 0.83 1.48 0.67 0.29 0.36 0.40 0.38 3.25 2.88 3.05

51 1.49 0.40 1.90 0.63 0.38 0.29 0.35 0.35 4.97 4.15 4.07

52 1.68 0.52 1.97 0.55 0.31 0.31 0.30 0.31 5.06 5.16 5.01

53 2.03 0.71 2.00 0.57 0.35 0.34 0.33 0.34 4.41 4.53 4.39

54 4.30 1.46 1.99 0.67 0.38 0.46 0.46 0.47 3.38 3.38 3.31

56 6.07 1.80 1.63 0.62 0.38 0.51 0.45 0.44 1.99 2.25 2.34

58 2.86 1.05 2.04 0.69 0.39 0.39 0.44 0.45 3.92 3.52 3.40

59 2.31 0.84 1.71 0.67 0.35 0.36 0.40 0.39 2.74 2.44 2.48

60 4.86 1.58 1.93 0.67 0.47 0.48 0.47 0.47 3.19 3.26 3.23

62 1.67 0.51 2.39 0.67 0.43 0.31 0.38 0.42 6.51 5.25 4.73

64 6.10 1.81 1.91 0.80 0.66 0.51 0.57 0.58 3.04 2.74 2.71

65 3.92 1.37 1.75 0.65 0.48 0.44 0.44 0.43 2.85 2.88 2.93

66 3.45 1.24 1.96 0.71 0.53 0.42 0.46 0.47 4.59 4.18 4.09

67 4.73 1.55 2.07 0.79 0.57 0.47 0.54 0.56 3.47 3.03 2.93

68 6.66 1.90 1.88 0.68 0.41 0.53 0.50 0.50 2.65 2.81 2.80

69 2.77 1.02 1.86 0.62 0.30 0.39 0.39 0.39 2.72 2.70 2.69

70 4.35 1.47 2.07 0.63 0.47 0.46 0.43 0.44 3.93 4.21 4.07

71 3.57 1.27 1.58 0.86 0.62 0.43 0.56 0.55 2.21 1.67 1.71

72 7.39 2.00 1.80 0.66 0.38 0.54 0.49 0.49 2.40 2.66 2.69

74 2.25 0.81 2.00 0.55 0.36 0.35 0.33 0.34 3.92 4.26 4.14

77 3.73 1.32 2.20 0.52 0.48 0.43 0.35 0.37 4.66 5.79 5.47

78 2.92 1.07 1.74 0.69 0.46 0.40 0.44 0.43 3.19 2.90 2.94

82 2.45 0.90 2.26 0.66 0.35 0.37 0.40 0.43 4.07 3.72 3.46

83 2.06 0.72 1.78 0.70 0.46 0.34 0.42 0.42 3.73 3.04 3.05

85 2.07 0.73 1.92 0.56 0.40 0.34 0.33 0.33 4.71 4.91 4.84

86 1.70 0.53 2.11 0.56 0.40 0.31 0.31 0.33 5.62 5.63 5.31

89 2.52 0.93 1.96 0.73 0.40 0.37 0.45 0.46 3.53 2.94 2.86

90 2.31 0.84 2.07 0.57 0.27 0.36 0.34 0.35 3.88 4.09 3.92
 

Table B.5 (a) Actual/predicted values for %V0;..,., & V02...“ for validation subjects (Continued)
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Sub E(G) Ln BSA RHR %V02 %V02 %V02 %V02 V02 V02 V02

(E0) max max max max max max max

(actual) (RWP (A) (C) (RWP (A) (C)

) )

91 1.95 0.67 2.13 0.53 0.4 0.33 0.3 0.32 5.37 5.9 5.55

94 2.60 0.96 2.11 0.63 0.33 0.38 0.39 0.41 3.64 3.54 3.38

98 1.38 0.32 1.85 0.75 0.44 0.28 0.41 0.42 5.70 3.80 3.73

100 1.69 0.53 1.91 0.56 0.34 0.31 0.31 0.31 4.30 4.29 4.22
 

Table 3.5 (a) Actual/predicted values for %VOZmu & V02...“ for validation subjects (Continued)
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Sub 13(6) L11 BSA RHR %V02 %V02 %V02 %V02 V02 V02 V02

(EG) max max max max max max max

(actual) (RWP) (A) (C) (RWP) (A) (C)

2 2.95 1.08 1.66 0.72 0.53 0.40 0.46 0.45 4.08 3.53 3.61

4 10.88 2.39 2.18 0.75 0.57 0.61 0.59 0.61 4.29 4.43 4.27

5 3.00 1.10 1.90 0.70 0.49 0.40 0.44 0.45 4.31 3.89 3.84

8 4.41 1.48 1.58 0.77 0.61 0.46 0.52 0.51 2.74 2.41 2.49

10 7.73 2.05 2.26 0.74 0.56 0.55 0.55 0.58 5.07 5.09 4.84

11 6.27 1.84 2.08 0.75 0.58 0.52 0.54 0.56 3.75 3.61 3.50

12 7.71 2.04 1.74 0.73 0.64 0.55 0.54 0.54 2.64 2.67 2.72

14 12.96 2.56 1.81 0.64 0.57 0.63 0.53 0.52 2.59 3.12 3.17

15 7.15 1.97 1.93 0.77 0.51 0.54 0.56 0.57 4.78 4.60 4.55

16 8.61 2.15 1.60 0.84 0.54 0.57 0.62 0.61 2.94 2.68 2.75

17 5.66 1.73 2.10 0.80 0.60 0.50 0.56 0.58 5.02 4.46 4.31

18 5.32 1.67 1.82 0.80 0.58 0.49 0.56 0.56 3.52 3.11 3.10

23 5.81 1.76 1.96 0.79 0.57 0.51 0.56 0.57 4.60 4.15 4.08

25 6.83 1.92 1.77 0.84 0.54 0.53 0.60 0.60 4.15 3.67 3.68

26 5.16 1.64 1.87 0.77 0.57 0.49 0.54 0.54 3.59 3.25 3.23

27 6.85 1.92 1.81 0.82 0.50 0.53 0.59 0.59 3.81 3.42 3.42

28 5.07 1.62 1.86 0.72 0.51 0.48 0.50 0.51 4.44 4.27 4.25

29 8.03 2.08 2.35 0.73 0.56 0.56 0.54 0.58 4.63 4.73 4.45

30 12.35 2.51 2.07 0.76 0.59 0.63 0.60 0.62 3.76 3.91 3.82

31 10.84 2.38 1.86 0.70 0.54 0.61 0.56 0.55 3.82 4.17 4.18

33 6.56 1.88 1.83 0.72 0.61 0.52 0.53 0.52 2.77 2.76 2.77

34 4.96 1.60 1.96 0.71 0.55 0.48 0.49 0.50 5.78 5.62 5.53

35 5.63 1.73 1.78 0.78 0.64 0.50 0.55 0.54 3.85 3.52 3.54

36 5.24 1.66 1.53 0.73 0.50 0.49 0.51 0.49 2.59 2.48 2.59

39 4.96 1.60 2.17 0.70 0.55 0.48 0.49 0.51 4.76 4.67 4.47

40 6.59 1.89 2.01 0.67 0.54 0.53 0.49 0.50 3.85 4.14 4.06

41 6.77 1.91 1.77 0.72 0.56 0.53 0.52 0.52 3.99 4.03 4.08

42 12.39 2.52 2.24 0.70 0.63 0.63 0.56 0.59 3.25 3.62 3.48

44 6.47 1.87 1.58 0.71 0.52 0.52 0.52 0.50 2.74 2.77 2.88

46 12.35 2.51 1.47 0.79 0.66 0.63 0.62 0.59 1.77 1.80 1.88

48 7.57 2.02 1.67 0.68 0.56 0.55 0.51 0.49 3.03 3.27 3.37

49 6.65 1.90 1.48 0.78 0.53 0.53 0.56 0.54 3.99 3.74 3.91

50 5.25 1.66 1.80 0.71 0.45 0.49 0.50 0.49 5.45 5.36 5.40

51 6.93 1.94 1.90 0.75 0.59 0.53 0.54 0.55 4.15 4.07 4.04            
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Table 8.5 (b) Actual/predicted values for %V02mx & VOZmu for validation subjects

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

Sub 13(0) Ln BSA RHR %V02 %V02 %V02 %V02 V02 V02 V02

(EG) max max max max max max max

(actual) (RWP) (A) (C) (RWP) (A) (C)

52 9.79 2.28 1.97 0.77 0.56 0.59 0.59 0.59 4.73 4.75 4.69

53 9.58 2.26 2.00 0.73 0.57 0.59 0.56 0.57 4.11 4.30 4.24

54 4.86 1.58 1.99 0.80 0.60 0.48 0.55 0.56 5.17 4.49 4.39

55 7.15 1.97 1.72 0.81 0.67 0.54 0.59 0.58 2.17 1.99 2.02

56 12.41 2.52 1.63 0.73 0.57 0.63 0.58 0.57 2.47 2.66 2.74

57 5.54 1.71 2.05 0.85 0.57 0.50 0.59 0.61 4.96 4.17 4.05

58 10.64 2.36 2.04 0.84 0.61 0.60 0.64 0.65 3.95 3.73 3.64

59 6.04 1.80 1.71 0.77 0.61 0.51 0.55 0.54 3.31 3.10 3.15

60 5.30 1.67 1.93 0.83 0.60 0.49 0.57 0.58 3.93 3.36 3.30

62 8.27 2.11 2.39 0.83 0.61 0.56 0.61 0.65 5.10 4.67 4.39

65 6.68 1.90 1.75 0.71 0.61 0.53 0.52 0.51 3.07 3.12 3.17

66 12.70 2.54 1.96 0.85 0.60 0.63 0.66 0.67 3.48 3.32 3.28

67 4.08 1.40 2.07 0.86 0.64 0.45 0.57 0.59 4.16 3.28 3.16

68 12.08 2.49 1.88 0.75 0.57 0.62 0.59 0.59 3.12 3.28 3.28

69 10.30 2.33 1.86 0.75 0.54 0.60 0.58 0.58 3.20 3.30 3.30

71 5.90 1.77 1.58 0.84 0.61 0.51 0.59 0.58 1.81 1.55 1.59

72 10.82 2.38 1.80 0.74 0.55 0.60 0.58 0.57 3.08 3.23 3.26

74 5.68 1.74 2.00 0.65 0.54 0.50 0.47 0.47 4.15 4.48 4.40

76 6.00 1.79 1.93 0.65 0.57 0.51 0.47 0.48 4.66 5.03 4.99

78 4.05 1.40 1.74 0.76 0.57 0.45 0.51 0.50 3.45 3.04 3.07

83 4.78 1.57 1.78 0.77 0.61 0.47 0.53 0.53 3.51 3.15 3.17

85 10.65 2.37 1.92 0.72 0.58 0.60 0.56 0.56 3.82 4.10 4.08

86 3.15 1.15 2.11 0.74 0.62 0.41 0.47 0.50 6.60 5.68 5.43

88 12.93 2.56 2.04 0.68 0.67 0.63 0.55 0.56 2.72 3.12 3.07

89 4.17 1.43 1.96 0.78 0.58 0.45 0.52 0.53 4.27 3.70 3.62

90 4.07 1.40 2.07 0.76 0.56 0.45 0.51 0.53 6.40 5.66 5.47

91 4.42 1.49 2.13 0.67 0.56 0.46 0.46 0.48 5.47 5.47 5.25

94 7.59 2.03 2.11 0.75 0.55 0.55 0.56 0.57 4.17 4.11 3.98

95 3.50 1.25 1.73 0.89 0.51 0.42 0.58 0.58 3.98 2.93 2.93

96 5.85 1.77 1.69 0.84 0.56 0.51 0.59 0.58 3.19 2.75 2.78

97 4.44 1.49 1.88 0.89 0.53 0.46 0.60 0.61 4.59 3.54 3.49

98 4.74 1.56 1.85 0.82 0.56 0.47 0.56 0.57 4.23 3.56 3.53

100 8.82 2.18 1.91 0.73 0.55 0.57 0.56 0.56 3.76 3.87 3.85
 

Table 8.5 (b)Actua1/predicted values for %V02max & V02...“ for validation subjects (Continued)
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l0/..vo2 v02

max max

(actual)RWP A C J (actual) RWP A C J

0.38 0.33 0.36 0.35 0.44 3.22 3.73 3.42 3.53 2.80

0.30 0.41 0.40 0.38 0.29 3.06 2.20 2.29 2.37 3.14

0.43 0.40 0.35 0.34 0.38 2.52 2.75 3.10 3.20 2.90

0.35 0.40 0.38 0.40 0.38 4.52 3.92 4.15 3.91 4.07

8 0.50 0.35 O.410.390.362.09 2.99 2.56 2.66 2.86

10 0.40 0.39 0.36 0.390.53 4.96 5.11 5.54 5.14 3.79

11 0.56 0.49 0.53 0.55 0.58 3.35 3.89 3.54 3.42 3.23

12 0.57 0.42 0.49 0.48 0.45 2.27 3.14 2.67 2.70 2.90

13 0.38 0.51 0.48 0.47 0.36 2.75 2.07 2.19 2.23 2.92

14 0.42 0.53 0.46 0.45 0.39 2.86 2.26 2.63 2.67 3.09

15 0.26 0.35 0.34 0.35 0.37 5.04 3.77 3.81 3.75 3.58

16 0.34 0.40 0.45 0.44 0.40 3.11 2.66 2.36 2.44 2.68

17 0.40 0.37 0.37 0.38 0.45 4.23 4.58 4.62 4.41 3.74

18 0.43 0.36 0.42 0.42 0.38 3.00 3.60 3.09 3.09 3.34

23 0.44 0.42 0.49 0.50 0.59 4.05 4.22 3.64 3.56 3.01

24 0.47 0.38 0.52 0.51 0.43 2.27 2.76 2.05 2.08 2.48

26 0.51 0.50 0.56 0.56 0.51 3.05 3.08 2.79 2.77 3.06

28 0.28 0.39 0.35 0.35 0.35 4.24 3.06 3.42 3.43 3.41

29 0.35 0.38 0.38 0.41 0.35 4.64 4.28 4.38 4.01 4.65

30 0.37 0.30 0.32 0.34 0.40 4.01 4.85 4.57 4.35 3.67

33 0.45 0.37 0.43 0.43 0.34 2.39 2.94 2.49 2.48 3.13

34 0.31 0.31 0.30 0.31 0.46 5.05 4.92 5.16 5.03 3.37

35 0.45 0.41 0.41 0.41 0.483.01 3.28 3.28 3.32 2.83

36 0.33 0.47 0.47 0.44 0.33 2.54 1.80 1.81 1.90 2.52

39 0.35 0.50 0.43 0.45 0.40 4.16 2.92 3.44 3.30 3.72

40 0.38 0.34 0.33 0.34 0.39 3.78 4.12 4.36 4.22 3.62

41 0.33 0.33 0.35 0.34 0.43 3.75 3.82 3.58 3.62 2.92

42 0.51 0.46 0.45 0.48 0.46 3.23 3.56 3.63 3.43 3.61

44 0.35 0.51 0.45 0.43 0.24 2.78 1.91 2.17 2.28 4.11

45 0.33 0.33 0.38 0.40 0.57 4.23 4.24 3.69 3.54 2.46

46 0.55 0.53 0.55 0.53 0.401.69 1.77 1.68 1.77 2.33

Table 13.6 (11)" MSPR check and Jones’ equation comparison on validation subjects
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'7 Table B.6 (a) refers to the random exercise test and (b) refers to VOzmax test for all validation subjects.
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12

13

14

15

16

17

18

23

24

26

28

29

30

33

34

35

36

39

4O

41

42

44

45

46 

0.00

0.01

0.00

0.00

0.02

0.00

001

0.02

0.02

0.01

0.01

0.00

0.00

0.01

0.00

0.01

0.00

0.01

0.00

0.00

0.01

0.00

0.00

0.02

0.02

(1.00

0.00

0.00

0.03

0.00 0.00

0.00 0.00 0.00

0.01 0.01 0.00

0.01 0.01 0.00

0.00 0.00 0.00

0.01 0.01 0.02

0.00 0.00 0.02

0.00 0.00 0.00

0.01 0.01 0.01

0.01 0.01 0.00

0.00 0.00 0.00

0.01 0.01 0.01

0.01 0.01 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.02

0.00 0.00 0.00

0.00 0.00 0.00

0.01 0.00 0.01

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.01

0.00 0.00 0.02

0.00 0.00 0.00

0.02 0.01 0.00

0.01 0.01 0.00

0.00 0.00 0.00

0.00 0.00 0.01

0.00 0.00 0.00

0.01 0.01 0.01

0.00 0.00 0.06

0.00 0.00 0.02

0.26

0.75

0.05

0.37

0.81

0.02

0.29

0.76

0.47

0.37

1.62

0.21

0.12

0.36

0.03

0.24

0.00

1.40

0.13

0.70

0.30

0.02

0.07

0.55

1.53

0.12

0.01

0.11

0.76

0.00 0.01

0.04 0.10

0.59 0.47

0.34 0.47

0.14 0.37

0.22 0.32

0.33 0.03

0.03 0.00

0.16 0.19

0.31 0.27

0.05 0.04

1.51 1.67

0.57 0.45

0.16 0.03

0.01 0.01

0.17 0.24

0.05 0.04

0.07 0.08

0.68 0.66

0.07 0.40

0.32 0.11

0.01 0.01

0.01 0.00

0.07 0.10

0.54 0.41

0.52 0.75

0.33 0.19

0.03 0.02

0.16 0.04

0.38 0.25

0.29 0.48

0.00 0.01

0.18

0.01

0.14

0.20

0.59

1.37

0.01

0.40

0.03

0.05

2.13

0.18

0.24

0.12

1.07

0.05

0.00

0.69

0.00

0.11

0.54

2.82

0.03

0.00

0.20

0.03

0.68

0.15

1.76

3.12

0.42
 

Table 3.6 (a) MSPR check and Jones’ equation comparison on validation subjects (Continued)
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%V02 V02

max max

# (actual)RWP A C J (actual) RWP A C J

47 0.38 0.31 0.34 0.32 0.43 2.75 3.37 3.13 3.28 2.43

48 0.45 0.50 0.47 0.46 0.54 2.95 2.66 2.85 2.94 2.49

49 0.29 0.36 0.40 0.38 0.39 3.98 3.25 2.88 3.05 2.98

51 0.38 0.29 0.35 0.35 0.40 3.76 4.97 4.15 4.07 3.54

52 0.31 0.31 0.300.310.524.95 5.06 5.165.01 3.00

53 0.35 0.34 0.33 0.34 0.42 4.24 4.41 4.53 4.39 3.54

54 0.38 0.46 0.46 0.47 0.42 4.12 3.38 3.38 3.31 3.64

56 0.38 0.51 0.45 0.44 0.40 2.71 1.99 2.25 2.34 2.57

58 0.39 0.39 0.44 0.45 0.44 3.92 3.92 3.52 3.40 3.48

59 0.35 0.36 0.40 0.39 0.34 2.77 2.74 2.44 2.48 2.85

60 0.47 0.48 0.47 0.47 0.56 3.23 3.19 3.26 3.23 2.74

62 0.43 0.31 0.38 0.42 0.52 4.68 6.51 5.25 4.73 3.86

64 0.66 0.51 0.57 0.58 0.58 2.38 3.04 2.74 2.71 2.67

65 0.48 0.44 0.44 0.43 0.49 2.64 2.85 2.88 2.93 2.58

66 0.53 0.42 0.46 0.47 0.58 3.64 4.59 4.18 4.09 3.34

67 0.57 0.47 0.54 0.56 0.48 2.90 3.47 3.03 2.93 3.40

68 0.41 0.53 0.50 0.50 0.48 3.42 2.65 2.81 2.80 2.90

69 0.30 0.39 0.390.390.313.55 2.72 2.70 2.69 3.37

70 0.47 0.46 0.43 0.44 0.57 3.85 3.93 4.21 4.07 3.16

71 0.62 0.43 0.56 0.55 0.47 1.52 2.21 1.67 1.71 2.02

72 0.38 0.54 0.49 0.49 0.45 3.42 2.40 2.66 2.69 2.92

74 0.36 0.35 0.33 0.34 0.39 3.83 3.92 4.26 4.14 3.54

77 0.48 0.43 0.35 0.37 0.55 4.21 4.66 5.79 5.47 3.66

78 0.46 0.40 0.44 0.43 0.43 2.72 3.19 2.90 2.94 2.94

82 0.35 0.37 0.40 0.43 0.37 4.25 4.07 3.72 3.46 4.04

83 0.46 0.34 0.42 0.42 0.42 2.73 3.73 3.04 3.05 3.01

85 0.40 0.34 0.33 0.33 0.48 3.98 4.71 4.91 4.84 3.35

86 0.40 0.31 0.31 0.33 0.52 4.37 5.62 5.63 5.31 3.34

89 0.40 0.37 0.45 0.46 0.45 3.31 3.53 2.94 2.86 2.92

90 0.27 0.36 0.34 0.35 0.40 5.11 3.88 4.09 3.92 3.44

91 0.40 0.33 0.30 0.32 0.47 4.49 5.37 5.90 5.55 3.82

94 0.33 0.38 0.390.410.364.18 3.64 3.543.38 3.78

98 0.44 0.28 0.41 0.42 0.59 3.55 5.70 3.80 3.73 2.68

100 0.34 0.31 0.31 0.31 0.40 3.93 4.30 4.29 4.22 3.33

Table 13.6 (a) MSPR check and Jones’ equation comparison on validation subjects (continued)
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612(0/0) 61
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RWPACJ RWPA C J
 

47

48

49

51

52

53

54

56

58

59

60

62

64

65

66

67

68

69

7O

71

72

74

77

78

82

83

85

86

89

90

91

94

98

100 

0.00

0.00

0.00

0.01

0.00

0.00

0.01

0.02

0.00

0.00

0.00

0.02

0.02

0.00

0.01

0.01

0.01

0.01

0.00

0.04

0.03

0.00

0.00

0.00

0.00

0.01

0.00

0.01

0.00

0.01

0.00

0.00

0.03

0.00 

0.00 0.00 0.00

0.00 0.00 0.01

0.01 0.01 0.01

0.00 0.00 0.00

0.00 0.00 0.04

0.00 0.00 0.01

0.01 0.01 0.00

0.01 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.01

0.00 0.00 0.01

0.01 0.01 0.01

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.01

0.01 0.01 0.01

0.01 0.01 0.00

0.00 0.00 0.01

0.00 0.00 0.02

0.01 0.01 0.00

0.00 0.00 0.00

0.02 0.01 0.01

0.00 0.00 0.00

0.00 0.01 0.00

0.00 0.00 0.00

0.01 0.00 0.01

0.01 0.01 0.01

0.00 0.00 0.00

0.00 0.01 0.02

0.01 0.01 0.00

0.00 0.01 0.00

0.00 0.00 0.02

0.00 0.00 0.00

0.38

0.08

0.53

1.47

0.01

0.03

0.55

0.51

0.00

0.00

0.00

13.33

0.44

0.04

0.90

0.33

0.59

0.68

0.01

0.47

1.04

0.01

0.20

0.22

0.03

0.99

0.53

1.55

0.05

1.52

0.77

0.29

4.61

0.13 

0.15

0.01

1.22

0.15

0.28

0.00

0.86

0.10

0.04 0.00

0.08

0.54

0.21

0.16

0.11

0.00

0.33

0.13

0.06

0.29

0.02

0.37

0.73

0.13

0.02

0.02

0.65

0.14

0.27

0.08

0.00

0.00

0.11

0.08

0.20

0.00

0.38

0.74

0.05

0.04

0.59 0.54

0.19 0.10

2.49 1.58

0.03 0.05

0.28 0.63

0.10 0.10

0.86 0.74

1.59 0.88

0.14 0.20

1.04 1.41

1.98 1.13

0.41 0.64

0.06 0.03

0.13 0.09

0.10

0.21

0.99

0.05

3.82

0.50

0.23

0.02

0.20

0.01

0.24

0.68

0.09

0.00

0.09

0.25

0.27

0.03

0.47

0.25

0.25

0.08

0.30

0.05

0.05

0.08

0.40

1.06

0.15

2.79

0.45

0.16

0.76

0.36
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Table 8.6 (a) MSPR check and Jones’ equation comparison on validation subjects (continued)

 



 

V02

%V02 max

max (actua

(actual)RWP A C J l) RWP A C J
 

#

2 0.53 0.40 0.46 0.45 0.52 3.06 4.08 3.53 3.61 3.14

4 0.57 0.61 0.59 0.61 0.644.52 4.29 4.43 4.27 4.07

6 0.49 0.40 0.44 0.45 0.49 3.52 4.31 3.89 3.84 3.54

8 0.61 0.46 0.52 0.51 0.442.09 2.74 2.41 2.49 2.86

10 0.56 0.55 0.55 0.58 0.74 4.96 5.07 5.09 4.84 3.79

11 0.58 0.52 0.54 0.56 0.60 3.35 3.75 3.61 3.50 3.23

12 0.64 0.55 0.54 0.54 0.50 2.27 2.64 2.67 2.72 2.90

14 0.57 0.63 0.53 0.52 0.53 2.86 2.59 3.12 3.17 3.09

15 0.51 0.54 0.56 0.57 0.725.04 4.78 4.60 4.55 3.58

16 0.54 0.57 0.62 0.61 0.623.11 2.94 2.68 2.75 2.68

17 0.60 0.50 0.56 0.58 0.67 .23 5.02 4.46 4.31 3.74

18 0.58 0.49 0.56 0.56 0.52200 3.52 3.11 3.10 3.34

23 0.57 0.51 0.56 0.57 0.774.05 4.60 4.15 4.08 3.01

25 0.54 0.53 0.60 0.60 0.694.07 4.15 3.67 3.68 3.19

26 0.57 0.49 0.54 0.54 0.573.05 3.59 3.25 3.23 3.06

27 0.50 0.53 0.59 0.59 0.614.02 3.81 3.42 3.42 3.31

28 0.51 0.48 0.50 0.51 0.63 4.24 4.44 4.27 4.25 3.41

29 0.56 0.56 0.54 0.58 0.55 4.64 4.63 4.73 4.45 4.65

30 0.59 0.63 0.60 0.62 0.64 4.01 3.76 3.91 3.82 3.67

31 0.54 0.61 0.56 0.55 0.73 4.32 3.82 4.17 4.18 3.17

33 0.61 0.52 0.53 0.52 0.46 2.39 2.77 2.76 2.77 3.13

34 0.55 0.48 0.49 0.50 0.82 5.05 5.78 5.62 5.53 3.37

35 0.64 0.50 0.55 0.54 0.68 3.01 3.85 3.52 3.54 2.83

36 0.50 0.49 0.510.49 0.50 2.54 2.59 2.48 2.59 2.52

39 0.55 0.48 0.49 0.51 0.62 4.16 4.76 4.67 4.47 3.72

40 0.54 0.53 0.49 0.50 0.563.78 3.85 4.14 4.06 3.62

41 0.56 0.53 0.52 0.52 0.723.75 3.99 4.03 4.08 2.92

42 0.63 0.63 0.56 0.59 0.563.23 3.25 3.62 3.48 3.61

44 0.52 0.52 0.52 0.50 0.55 2.78 2.74 2.77 2.88 2.59

46 0.66 0.63 0.62 0.59 0.471.69 1.77 1.80 1.88 2.33

48 0.56 0.55 0.510.49 0.66 2.95 3.03 3.27 3.37 2.49

49 0.53 0.53 0.56 0.54 0.703.98 3.99 3.74 3.91 2.98

50 0.45 0.49 0.50 0.49 0.83 5.93 5.45 5.36 5.40 3.19

51 0.59 0.53 0.54 0.55 0.62 3.76 4.15 4.07 4.04 3.54   

 

  
Table 3.6 (b) MSPR check and Jones’ equation comparison on validation subjects
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8

10

11

12

14

15

16

17

18

23

25

26

27

28

29

30

31

33

34

35

36

39

40

41

42

44

46

48

49

50

51 

0.02

0.00

0.01

0.02

0.00

0.00

0.01

0.00

0.00

0.00

0.01

0.01

0.00

0.00

0.01

0.00

0.00

0.00

0.00

0.00

0.01

0.00

0.02

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00 0.00

0.00 0.01 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.01 0.01 0.03

0.00 0.00 0.03

0.00 0.00 0.00

0.01 0.01 0.02

0.00 0.00 0.00

0.00 0.00 0.04

0.01 0.00 0.01

0.00 0.00 0.01

0.00 0.00 0.00

0.00 0.00 0.04

0.00 0.00 0.02

0.00 0.00 0.00

0.01 0.01 0.01

0.00 0.00 0.01

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.04

0.01 0.01 0.02

0.00 0.00 0.08

0.01 0.01 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.03

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.03

0.00 0.00 0.01

0.00 0.00 0.03

0.00 0.00 0.15

0.00 0.00 0.00

1.05 0.22 0.31 0.01

0.05 0.01 0.06 0.20

0.62 0.14 0.10 0.00

0.43 0.10 0.16 0.59

0.01 0.02 0.01 1.37

0.16 0.07 0.02 0.01

0.14 0.16 0.20 0.40

0.07 0.07 0.10 0.05

0.07 0.19 0.24 2.13

0.03 0.18 0.13 0.18

0.63 0.05 0.01 0.24

0.28 0.01 0.01 0.12

0.30 0.01 0.00 1.07

0.01 0.16 0.15 0.77

0.30 0.04 0.03 0.00

0.04 0.36 0.35 0.50

0.04 0.00 0.00 0.69

0.00 0.01 0.03 0.00

0.06 0.01 0.04 0.11

0.25 0.02 0.02 1.32

0.14 0.14 0.15 0.54

0.54 0.32 0.23 2.82

0.70 0.26 0.28 0.03

0.00 0.00 0.00 0.00

0.36 0.26 0.09 0.20

0.00 0.13 0.08 0.03

0.06 0.08 0.11 0.68

0.00 0.16 0.06 0.15

0.00 0.00 0.01 0.04

0.01 0.01 0.04 0.42

0.01 0.10 0.18 0.21

0.00 0.06 0.01 0.99

0.23 0.32 0.28 7.49 0.15 0.10 0.08 0.05
 

Table 3.6 (b) MSPR check and Jones’ equation comparison on validation subjects (continued)

132

 

 



 

l%voz vo2

max max

# (actual) RWP A C J (actual) RWP A C J

52 0.56 0.59 059059093495 4.73 4.754.69 3.00

53 0.57 0.59 0.560.570.68424 4.11 4.304.24 3.54

55 0.67 0.54 0.590.580.431.74 2.17 1.992.02 2.75

56 0.57 0.63 058057060271 2.47 2.662.74 2.57

57 0.57 0.50 0.59061068431 4.96 4.174.05 3.62

58 0.61 0.60 064065068392 3.95 3.733.64 3.48

59 0.61 0.51 055054059277 3.31 3.103.15 2.85

60 0.60 0.49 0.570.580.70323 3.93 3.363.30 2.74

62 0.61 0.56 061065074468 5.10 4674.39 3.86

65 0.61 0.53 052051063264 3.07 3.123.17 2.58

66 0.60 0.63 066067066364 3.48 3.323.28 3.34

67 0.64 0.45 0.570.590.55290 4.16 3.283.16 3.40

68 0.57 0.62 0.590.590.67342 3.12 3.283.28 2.90

69 0.54 0.60 0.580.580.57355 3.20 3.303.30 3.37

71 0.61 0.51 059058045152 1.81 1.551.59 2.02

72 0.55 0.60 0580.57064342 3.08 3.233.26 2.92

74 0.54 0.50 0.470.470.59383 4.15 4.48440 3.54

76 0.57 0.51 O.470.480.714.19 4.66 5,034.99 3.36

78 0.57 0.45 0.510.500.53272 3.45 3.043.07 2.94

83 0.61 0.47 0.530.530.55273 3.51 3.153.17 3.01

85 0.58 0.60 0.560.560.69398 3.82 4.104.08 3.35

86 0.62 0.41 0.470.500.814.37 6.60 5685.43 3.34

88 0.67 0.63 055056051258 2.72 3.123.07 3.38

89 0.58 0.45 0.520.530.66331 4.27 3.70362 2.92

90 0.56 0.45 0.510.530.845.11 6.40 5665.47 3.44

91 0.56 0.46 0.460.480.664.49 5.47 5.47525 3.82

94 0.55 0.55 0.560.570.604.18 4.17 4.113.98 3.78

95 0.51 0.42 058058070333 3.98 2.932.93 2.42

96 0.56 0.51 0.590.580.562.89 3.19 2.752.78 2.90

97 0.53 0.46 0.600.610.633.97 4.59 3.54349 3.36

98 0.56 0.47 056057075355 4.23 3563.53 2.68

1000.55 0.57 056056065393 3.76 3.87385 3.33

Table 3.6 (b) MSPR check and Jones’ equation comparison on validation subjects (continued)
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Ci2(°/o) eiz

# RWP A C J RWP A C J

52 0.00 0.00 0.00 0.14 0.05 0.04 0.07 3.82

53 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.50

54 0.02 0.00 0.00 0.01 1.11 0.14 0.07 0.23

55 0.02 0.01 0.01 0.06 0.19 0.06 0.08 1.02

56 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.02

57 0.01 0.00 0.00 0.01 0.43 0.02 0.07 0.48

58 0.00 0.00 0.00 0.01 0.00 0.04 0.08 0.20

59 0.01 0.00 0.01 0.00 0.29 0.11 0.15 0.01

60 0.01 0.00 0.00 0.01 0.49 0.02 0.01 0.24

62 0.00 0.00 0.00 0.02 0.18 0.00 0.09 0.68

65 0.01 0.01 0.01 0.00 0.19 0.23 0.28 0.00

66 0.00 0.00 0.00 0.00 0.03 0.10 0.13 0.09

67 0.04 0.01 0.00 0.01 1.59 0.15 0.07 0.25

68 0.00 0.00 0.00 0.01 0.09 0.02 0.02 0.27

69 0.00 0.00 0.00 0.00 0.13 0.06 0.06 0.03

71 0.01 0.00 0.00 0.02 0.09 0.00 0.01 0.25

72 0.00 0.00 0.00 0.01 0.11 0.04 0.03 0.25

74 0.00 0.01 0.00 0.00 0.11 0.42 0.32 0.08

76 0.00 0.01 0.01 0.02 0.22 0.71 0.65 0.68

78 0.01 0.00 0.00 0.00 0.54 0.10 0.12 0.05

83 0.02 0.01 0.01 0.00 0.61 0.18 0.19 0.08

85 0.00 0.00 0.00 0.01 0.03 0.01 0.01 0.40

86 0.05 0.02 0.02 0.03 4.97 1.71 1.13 1.06

88 0.00 0.01 0.01 0.03 0.02 0.29 0.24 0.63

89 0.02 0.00 0.00 0.01 0.92 0.15 0.10 0.15

90 0.01 0.00 0.00 0.08 1.67 0.31 0.13 2.79

91 0.01 0.01 0.01 0.01 0.95 0.96 0.57 0.45

94 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.16

95 0.01 0.00 0.00 0.03 0.42 0.16 0.16 0.83

96 0.00 0.00 0.00 0.00 0.09 0.02 0.01 0.00

97 0.00 0.00 0.01 0.01 0.38 0.19 0.23 0.37

98 0.01 0.00 0.00 0.04 0.46 0.00 0.00 0.76

100 0.00 0.00 0.00 0.01 0.03 0.00 0.01 0.36

28.9

>: 0.91 0.49 0.46 1.71 57.90 32.81 6 73.36

[MSRP 0.69% 037% 0.35% 1.30% 0.44 0.25 0.22 0.56

Table 3.6 (b) MSPR check and Jones’ equation comparison on validation subjects (continued)
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