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ABSTRACT

Methods for Neural Signal Processing and Analysis

By

Yasir Suhail

High-density microelectrode arrays offer indispensable tools for neuroscience re-

search and potential benefits for neuroprosthetic applications at the micro and nano

scales. Advances in microfabrication and microelectronics have enabled integration

of large number of electrodes on a single device with modest signal processing capa-

bilities, which in turn triggered many new scientific discoveries in the neuroscience

community. From a system viewpoint, these rapid developments present numerous

challenges to the associated data processing and analysis stages. In this work, we

present algorithms and performance analyses of a neural interface system designed

for large scale processing of the neural data obtained. We evaluate the performance

and tradeoffs of the system’s computational complexity versus data precision and

signal fidelity during real-time telemetry transmission. We also evaluate perfor-

mance tradeoffs between single and multiple channel signal detection techniques.

On the data mining aspect, we present a new multiscale processing and clustering

technique to infer functional interdependency between populations of neurons from

the recorded mixture to ease the identification of local and global biological neural

circuits.
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CHAPTER 1

Wavelet Transform Block for

Implantable Neural Interfaces

1 . 1 Introduction

Electrical recordings from neural tissue give direct observations of the neural activ-

ity. Compared to Electroencephelogram (EEG) recordings recordings or chemical

detection of neurotransmitters and neuromodulators, invasive recordings from elec-

trodes placed inside the neural tissue provide data with high temporal (of the order

of 30 kHz) and spatial (micron range) resolution. Cellular recordings from neurons

have been used to study the neural systems such as the motor, somatosensory, and

visual cortical areas of the brain.

With the advances in micro fabrication, it is possible to manufacture dense



arrays of microeletrodes[1]. These arrays can record from a large number of neu-

rons and provide high volumes of data for further analysis. For artificially grown

neural tissue, it is possible to have relatively long term cellular recordings from

individual neurons through techniques such as patch clamping[2] and directed neu-

ral growth[3]. ln-situ recordings from animals, however is more complicated for

various reasons. The recorded data is corrupted to a large extent with noise from

the neighboring tissue, and the signal conditions evolve over time. Another prob-

lem is the actual transmission and processing of this information. The traditional

technique relies on amplifiers situated on the recording probe relaying the recorded

signals over wires to a bank of filters, analog to digital converters, and a computer

for signal processing. This complicates things for experiments in live, freely behav-

ing animals. It is not always possible to have bulky wired connections to a large

data processing system. The opportunities for clinical neural prosthetic devices

also present similar challenges. These devices have the potential to help patients

with motor disorders and spinal cord injuries lead more normal lives.

Our motivation is the development of on-chip signal processing and wireless data

transmission for high density, implantable neural recording probes. Researchers

have tried to move towards wireless telemetry[4] to make the neural probes less

obtrusive and suitable for both long term behavior experiments and prosthetic

devices. It is clear that complex signal processing is required on this data for

compression, detection of action potentials and local field potentials, separation of

neural sources, and decoding the neural signals. Passive probes transmitting all the



data wirelessly face a deluge of data. A modestly sized array with 96 electrodes

recording at a sampling rate of 25kHz per channel to a precision of 12bits/sample,

required bit rate would be 29 Mbps. Further complicating this problem is that the

biological environment places stringent limits on the size and power availability for

such devices.

We focus on the development of on-chip signal processing prior to data trans-

mission to extract some valuable information and reduce the telemetry bandwidth

requirements. Studies have shown that on-chip processing may reduce the data

throughput to approximately 75% for bursting activity and 85-90% for spontaneous

activity and reasonable bit rates are achieved for a 32 channel device sampling at

25 kHz, with 8 bit sample quantization[5]. This technique relied heavily on the

Discrete Wavelet Transform (DWT) [6]

The Discrete Wavelet Transform is also the basis of many algorithms for spike

detection[7], noise reduction[8], spike sorting[9] of multichannel microelectrode

recordings, including those presented in this thesis. On-chip DWT computation

of the recorded data will be an essential component of any implantable electrode

recording array with intelligent wireless transmission of data. With the stringent

power and ares limitations imposed on the system, a suitable implementation of

the DWT is paramount. The use of the lifting technique for DWT computation

results in considerable savings in computational hardware, memory, and bandwidth

requirements.



1 .2 Theory

The compaction property of the wavelet transform, which expresses the signal in

a few larger coefficients while expressing the noise in many small coefficients is

used in most of the algorithms for neural signal processing. Discarding the smaller

coefficients results in denoising[8]. Also, the fact that the signal of interest (neural

spikes) occupy a small number of coefficients is beneficial for compression strategies.

1.2.1 The Traditional Mallat’s Algorithm

The traditional Mallat’s algorithm[10] for evaluating the wavelet transform of a

given signal involves recursively convolving the signal through two decomposition

filters h and g, and decimating the result to obtain the approximation and detail

coefficients at every decomposition level j as illustrated in Fig.1.1.

These filters l and h are the low pass scaling function and high pass wavelet

functions respectively. The approximation and detail coefficients at any arbitrary

level are given by

. K-1 .

a-7(z') = Z aJ—1(2z' — km,

k=0

K—l

dj(i) = Z aj_1(2z’— k)hk (1.1)

1:20

where K is the length of the filters, also known as the support of the wavelet
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Figure 1.1. The basic analysis block of the pyramidal algorithm proposed by Mallat

for 3 decomposition levels.

function.

1.2.2 The Lifting Approach

From the computational standpoint, the lifting scheme for DWT computation has

shown numerous benefits over traditional DWT computation[11]. It is a fast and

efficient mechanism for implementing the DWT. For asymptotically long filters, the

computational cost of the lifting algorithm is one half of the cost of the standard

algorithm, and it requires only iii-place computations. It can also be adapted to

a lossless integer—to—integer transform which does not require any floating point

computations. The lifting scheme relies on factorizing the l and h filters to obtain



the filters SN and TN as

hit/E) + law—7) W?) + M?) '
 

2

hffi) - h(\/:E)

2

l(x/E) - INT-3)
 

_ 2
p

K 0

0 K 0 

I SN(Z) I

2

0

I TN(z) 1

d

1

 d

(1.2)

l 0

T1(Z) 1

In this scheme, there is no need to compute the two different discrete convolu-

tions for the whole data record. The memory required is the same as that required

to store the data, while Mallat’s algorithm requires twice as much memory as the

initial data to compute the wavelet transform. In addition to these savings, an

integer approximation of the data and quantization of the filter coefficients further

reduces the computational load.
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Figure 1.2. Lifting scheme for computing a single level of DWT decomposition.

The lifting scheme of Fig.1.2 replaces one stage of the Mallat’s algorithm shown



in Fig.1.1. It is based on three steps: splitting the data into even and odd samples,

predicting the odd samples from the even samples, and updating the even samples

to obtain the approximation coefficients.

For our hardware implementation with strict power and area constraints, we con-

sider an integer to integer wavelet transform[12]. Here, the first factor in Eq. (1.3)

is discarded, and the realized transform is in fact a scaled version of the original

wavelet and scaling functions. The symmleM wavelet basis has been found suitable

for processing of neural recordings[9]. Factoring the scaling and wavelet functions

for this basis results in the following steps to be used in the scheme of Fig.1.2.

stepl: gilt]: lgolil+01folill

step2= filil = [folil+C2gilil+C3glli+1lJ

step3= 92M = lgilil +C4f1lil +05f1li-1ll (13)

steel: alil = lfllil+0692lil+0792li-lll

step5 : d[i] = [g2[i] + Cga[i + 1]]

where the input registers go[i] and f0[i], are the pair of even and odd samples of the

signal, a[i] and d[i] are a pair of approximation and detail coefficients computed,

and [.j denotes the floor function. Note that we truncate the result at every stage,

since we wish to implement the integer version of the transform.

The constants 01,02, ..., C8, which are the coefficients of the filters Tn(z) and



Table 1.1. Update and Prediction filter coefficients for symmlct 4.

 

 

 

Coefficient Value Coefficient. Value

C1 0.39114 C5 0.16203

Cg -0.12439 CG 0.43128

C3 -0.33924 C7 0.43128

C4 -1.41951 C8 -1.04925    
 

571(2) are given given in Table 1.1.

1.2.3 Integer Lifting DWT

The data recorded at any channel is scaled and quantized to obtain data sam-

ples within a 1—bit integer precision. The DWT is then computed using the lift-

ing scheme described in Eq. (1.3) to the required number of decomposition levels.

The last step (of the corresponding floating point lifting) of multiplication by the

constants K and K‘1 (in Eq 1.3) is omitted. Hence, the dynamic range of the

transform at each level will change by K.

1.2.4 Quantization of the Filter Coefficients

The filter coefficients C1 through C8 have real values given in Table 1.1. However,

since we are working with 10-bit integer data, we wish to remove all the floating

point operations from the DWT computation strategy. The filter coefficients are

therefore quantized to a fixed number of bits. We have experimented with 4, 6,

8, 10, and 12-bit precision of the lifting factorized coefficients. Quantization to a



small number of bits results in a significant reduction in the number of additions

and shift operations required for each multiplication in Eq. (1.3).

1.2.5 Wavelet Thresholding

The DWT representation of neural signals is suited for noise reduction as the sig-

nal components are compactly represented by few large amplitude coefficients be-

cause of the inherent similarity between the wavelet basis functions and the spike

waveforms[13], and the noise is spread across all decomposition levels in many small

amplitude coefficients. This allows thresholding[14] the small coefficients to take

place and simultaneously reduces the number of coefficients to code for extracuta—

neous transmission. The coefficients that are thresholded can be run-length encoded

to give significant savings in bandwidth[5].

We formulate a measures to quantitatively assess the performance of our DWT

module for typical neural signal processing problems. The Signal to Noise Ratio of

the recorded data at any stage of processing is defined as

Average Spike Peak to Peak Amplitude

SNR (dB) = 20109.10 Noise RMS

 (1.4)

This definition of the SNR is relevant for spike detection in noisy data as dis-

cussed in Chapter 2.

We also wish to evaluate a measure of neural source separability in multiunit



array recordings. The wavelet based MASSIT algorithm[9] for spike sorting relies on

the invariance of the signal subspace in the “best” subbands of the DWT expansion.

The approximations performed in the DWT module design should not compromise

the accuracy of the spike sorting stage.

To compute the eigenvectors for the MASSIT spike sorter, we model the ob-

served spike waveform across multiple channels as

Y=X+Z am

where Y E ERMXN denotes the observed spike in the interval [1, . . .,N] across

an array of M channels, X = apsg is the noise free observed spike across the

array such that the column vector ap E ERMXI describes the array response to

the spike waveform Sp 6 RNX1 elicited by neuron p, and Z 6 giMXN denotes a

zero mean additive noise component with a non-diagonal spatial covariance matrix

RzéiliMXM.

The column vector ap spans the same subspace as the first eigenvector "1 of the

spatial covariance matrix of Y, computed as

M

Ry = E[YYT] = UYDYU$ = Z amumug (1.6)

m=1

Therefore, a qualitative assessment of the neural source separability is a distance

metric between the eigenvector obtained with floating-point standard Mallat DWT

10



algorithm and the eigenvector obtained using fixed-point integer lifting DWT com-

putation. The distance between both vectors, in a mean square sense is computed

as

dp = ”111 - at”2 (1.7)

where [III is the Euclidean norm.

This distance metric computed after thresholding in the Integer Lifting DWT

module, and the regular DWT module provides a qualitative measure of the per-

formance in spike sorting.

The distortion in the reconstructed spike waveform due to the quantization and

approximation errors in the DWT module is also considered. Faithful reconstruc-

tion of the spike waveform is essential for all spike sorting algorithms, whether for

single channel[15] or array data[9]. We compute the distortion as

xxT

(X — Yr)(x — Yr)?”

 Distortion SNR (dB) 2 10log10 (1.8)

where Yr 6 §R1XN is the reconstructed signal after wavelet thresholding for the

DWT module, and X E ili‘lXN is the true neural signal for any single channel.

This distortion metric can be evaluated for the Integer Lifting DWT module

with arbitrary data and filter quantization, and compared to the “ideal” distortion

obtained with the traditional floating point DWT module.

11



1.2.6 Computation and Data Rate Savings

The lifting scheme for DWT computation requires less computation than the tra-

ditional Mallat’s algorithm, even without any data or filter quantization. For the

symmleU, orthogonal wavelet with a filter length of eight (Ihl = 8, [II = 8), the

number of floating point operations (flops) required for the standard algorithm is

34, while the lifting algorithm requires only 20 flops [11].

Further, the quantization of the data and filter coefficients C1, C2, ..., C8 reduce

the complexity of the multipliers used in the lifting scheme computations (Eq. (1 ..3))

If the data is quantized to Nd bits and the lifting filter coefficients are quantized

to Nf bits, the product will be truncated to Nd bits. Hence, we estimate the total

number of 1-bit addition steps required for one multiplication in the lifting module

to be Nd x Nf. The required precision of the data is directly proportional to the

data rate needed for transmission or storage on on-chip buffers.

1.3 Methodology

A template spike waveform from a single neural source was used to generate a

simulated spike train across a four channel array. The inter-spike interval times

were realizations of an exponentially distributed random process. Experimental

neural noise from a closely spaced array recording was superimposed on the spike

train. The noise level was varied to obtain carious SNR conditions.



To evaluate the expected performance in source separation, we used Monte Carlo

simulations for various choices of mixing matrices for different single units. The

dominant eigenvectors were computed from the denoised data and their distance

metric was evaluated from the original mixing matrix A. The distortion in the

spike waveform in an individual channel as a function of the multiplier complexity

and transmission data rate are also plotted

1.4 Results

Figure 1.3(a) illustrates the noisy signal, and its denoised versions using the tra-

ditional floating point DWT, Integer Lifting DWT with 10-bit filter coefficients,

and Integer Lifting DWT with 4-bit filter coefficients. Figure 1.4 illustrates the de-

noising performance comparison of the floating point DWT, Integer Lifting DWT

with 10—bit and 4-bit filter coefficients on 10-bit data. The interesting result here

is that the performance of the Integer Lifting DWT module with 4-bit filter coeffi-

cients is close to that of the 10-bit DWT module, which translates into tremendous

computational and memory savings.

The performance of the source separation distance metric was evaluated and

illustrated in Figure 1.6. The plot indicates that the signal subspace is maintained

when replacing the floating point DWT to the Integer to Integer Lifting based DWT.

Figure 1.7 shows that the reconstructed waveform after denoising for the different

cases is very similar. We can locate an optimal operating point for minimum

13
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Figure 1.3. Comparison of denoising performance for various precisions of filter

coefficients for a sample channel of a 4-channel array with the data quantized to 10

bits.

computational complexity while giving good signal fidelity from Figure 1.8. We see

that using 10-bits to represent the data, and constructing the DWT module with

4-bit filter coeflicients gives very little waveform distortion, while huge savings on

the hardware are obtained.

14
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Figure 1.7. Example spike waveforms obtained with DWT computation with dif-

ferent filter coefficient bit widths.
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Figure 1.8. Effect of round off and quantization errors on the signal fidelity as a

function of multiplier complexity.

1 .5 Conclusion

A robust, computationally simple module with anticipated major reduction in chip

area and power consumption for implementing the DWT has been demonstrated.

The proposed design was motivated by the need to efficiently process neural record-

ings from high—density implantable neural interface modules in the nervous system.

The ability of the DWT to preserve the signal characteristics in the temporal,

spectral and spatial domains intuitively makes it a desirable signal processing tool

to pipeline the neural data with reduced bandwidth in any associated telemetry

system. The anticipated reduction in chip area and power consumption without re-

ducing the performance to a noticeable degree strongly suggests that the proposed
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module design can be a key processing stage in the next generation of neuropros—

thetic devices.

A circuit design and simulation of the proposed module has indeed confirmed

the savings in chip area and power requirements in addition to the versatility of

the design for real-time and streaming data processing[16].

18



CHAPTER 2

Spike Detection

2.1 Introduction

Spike Detection refers to the detection of action potentials generated at the mem-

brane of neurons from electrical signals recorded from neural electrodes. There is

generally a noise process from the surrounding neural tissue corrupting the recorded

signal. The neural spikes or action potentials are transient signals of small duration

that appear as local voltage surges. The wavelet transform appears as a natural

way to represent data containing transient signals due to its localization properties

in both time and frequency. We have demonstrated use of the wavelet transform to

do low level processing on the recorded data for denoising[17] and compression[18].

Therefore, the wavelet transform computations would need to be performed in our

framework of a modular design of the prosthetic devices, with the detection algo—

rithms adding very little overhead.

19



The algorithms presented here detect the spikes through the peaks in signal

amplitude occurring at any point over its waveform. For wavelet bases which might

be correlated with the signal waveform to some extent, the ratio of the signal peaks

associated with the spike to the noise variance increases in some wavelet subbands.

The wavelet transform essentially gives a higher SNR for detection in the relevant

subbands

The waveform of spikes generated by a neuron may change over time, and in

general cannot be assumed known. For chronic experiments or neural prosthetic

devices, active neurons whose action potentials are observed at the electrodes may

appear and go due to electrode movement, and changes in neural tissue. For these

reasons we assume no knowledge of the spike waveform or amplitude. Nenadic[19]

also gives a wavelet based method for spike detection heavily based on Oweiss[20].

However, Nenadic’s method implicitly assumes knowledge of the spike waveform by

choosing the wavelet function and decomposition levels which are highly correlated

with the spike waveform. Further, the estimation of signal strength and signal

probability makes the detection susceptible to changes in signal conditions. These

assumptions and estimations will run into more problems when action potentials

from more than one neural source are to be detected, and the problem becomes cou-

pled with that of estimating the number of sources. Nenadic’s approach also relies

on a continuous wavelet transform which is highly computationally expensive. Our

emphasis is evaluating approaches for a very blind signal detection scenario with

very little assumptions about the signal and noise conditions. The work presented
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here uses algorithms for single electrode channel and array observations similar to

those presented in [20] and derives results for performance in different cases.

2.2 Data model

We assume the following data model for the an M electrode array (Eq. (2.1)).

Y = AS+Z

= x+z (2.1)

where S E §RPXN is the neural signal, A E §RMXP is the mixing matrix,

Z E meN is the noise and Y E ERMXN is the observed data, N being the

number of time samples, and P being the number of neurons.

For simplicity, we assume stationarity and iid distributions at each time sample.

Hence, for any time snapshot we get Eq. (2.2).

y = As+z

: x + z (2.2)
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where s E mel is the neural signal, 2 E ERMXI is the noise and y E ERMXI is

the observed data.

z ~ N(O, R) (2.3)

We assume the noise (Eq. (2.3)) to be temporally white Gaussian, with the

spatial correlation structure given by R 6 RMXM .

2.3 Wavelet domain detection

The compaction property of the wavelet transform condenses the energy of the

signal into a few coefficients, while the noise (assumed white) is distributed across

all the nodes. Hence, it should be easier to detect the signals in the wavelet domain.

Our approach is to perform a multi level stationary wavelet packet decomposition of

the observed data. The stationary (or undecimated) wavelet transform is performed

because the truncated wavelet transform reduces the number of samples at each

subsequent level by half. Though it takes less memory or registers, the truncated

wavelet transform reduces the temporal resolution for transient signal detection.

The wavelet packet tree decomposes both the approximations and details at each

level, as opposed to decomposing only the approximations as in a wavelet tree.
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2.3.1 The Stationary Wavelet Packet Tree

The Stationary Wavelet Transform seeks to represent the signal in a redundant,

shift-invariant basis with uniform time-scale tiling. To aid the understanding of the

transform as a matrix operation, consider the following definition of a translation

operator[21].

Definition 2.1 Suppose z is a vector. Define (Rk2)n = zn_k. Rk is a translation

operator.

If the low pass filter function (also called the father wavelet) be designated

as u E gile, and the high pass filter function (also called the mother wavelet)

designated v 6 Elile, where f is the length of the filters (compact support of the

wavelet), then the matrices for the approximations and detail decomposition of a

signal of length N at any level can be written as in Eq. (2.4) and Eq. (2.5).

Wa = [Rlu R211 RNu] (2.4)

W(1 = [Rlv Rgv RNV] (2.5)
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Here, Wa E meN is the transformation matrix for the approximations, and

Wd 6 iliNx N is the transformation matrix for the details. The approximations

sa 6 mlxN and details sd 6 ERUN for the signal s E ililxN can be obtained as

in Eq. (2.6).

s8 = sWa

sd = SWd (2.6)

Note that at every level of decomposition the amount of data (or memory re-

quirement) is doubled for a stationary wavelet packet tree. The multilevel Station-

ary Wavelet Packet Tree can be represented as in Fig.2.1.

The node 1 in this tree corresponds to the un-processed time domain signal.

We can therefore write the transformation matrix for obtaining the signal at any

node as a product of Wa and Wd. For example, to obtain the wavelet transformed

signal at the node 5 we have,



4 5 5 7

W W” w W“ wa dea wd

8 9 10 11 12 13 14 15

Figure 2.1. The Stationary Wavelet Packet Tree.

=> W(5) = wawd. (2.7)

Looking back at the data model for the observations, we formulate the wavelet

transform equations for the array data

25



Y = AS+Z

= x+z

y(.i) : yw(j)

Y0) : xw(j)+zw(j)

3(0) 2 x(j)+zfj) (2.8)

where YO) E iIiMXN is the wavelet transform in the jth node of the observations

YERMXN.

The observations are assumed to be sampled at 20kHz, and since the spike

waveforms are usually concentrated at bandwidths less than 10kHz, the first level

details (labelled Node 3 in Fig.2.1) and its offspring do not include data of interest.

Hence, to save computations the complete wavelet tree is not computed. Rather,

only Node 2 and its children are computed. The detection tests are run only on

these subbands.

Similar to Eq. (2.2), we describe a snapshot of the data at a single time sample

351

,0) 2 x0) + 20'), (2.9)
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Here, yo.) 6 ERMxl is simply one column of the Y matrix, corresponding to the

time instant of interest. The algorithms considered in this work operate on single

time snapshots. The spike detection tests are carried out independently across all

the wavelet sub-bands and the decisions are logically OR’ed. For convenience and

reducing visual clutter, the subscript corresponding to the node (subband) of the

Wavelet Packet Tree will be dropped, and all the data will be understood to be

from a particular wavelet subband.

It is shown in the sections on detection performance evaluation, that the

detection performance is a function of the Signal to Noise Ratio of a channel.

The wavelet transform helps in the detection performance because neural spike

waveform, being localized in time would be correlated to some extent with the

wavelet functions. This in effect, increases the equivalent SNR at some wavelet

subbands. Previous work[8],[17] has shown the symmlet 4 to be a good wavelet

basis for neural spike signals, and this is the wavelet basis used in this study. As an

illustration, we have plotted the signal in various nodes of the Stationary Wavelet

Packet Tree for a single channel of data containing 4 spikes in Fig.2.2. The red

dots denote the instant of the largest absolute peak for a spike, which is to be

detected. As we can see, some of the nodes, for example Nodes 8 and 17 are well

tuned for capturing the spike energy. The SNR’s in the different SWPT nodes for

this example are tabulated in Table 2.1.

27



A
m
p
l
i
t
u
d
e

A
m
p
l
l
t
u
d
e

A
m
p
l
l
t
u
d
e

A
m
p
l
l
t
u
d
e

A
m
p
l
l
t
u
d
e

A
m
p
l
l
t
u
d
e

A
m
p
l
i
t
u
d
e

A
m
p
l
i
t
u
d
e

500

0

-500

500

0

-500

500

0

-500

200

0

500

-500

200

0

-200

200

0

-200

200

0

-200

MiinMM
200

 

NE Node1 ‘

   

 

 

 
 

 

W

kmwl
llMW

W"0
601

M

WWW
MMM

WN

itill-iiiMilliit'lltilifiiilll
100

   

 

 

 

 

 

 

300

Time Samples

MillMM,1M

500

 

WWW?til”willI“'l'l‘l'IW

Ellill ,,h‘1WV1.,lillI‘IlIIlIIillIIIIIIIII‘II”#11leWill}

WWW

WWW‘ltll'illilii

r1,13,11,ng111‘111,“Will"iI'l 12011“.th

100

 

 

 

 

  

 

 

 

 

 

 

 
 

 

Time Samples

Figure 2.2. A single channel represented in different SWPT nodes.
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Table 2.1. Signal to Noise Ratio in the different SWPT nodes.

 

 

 

SWPT Node Signal to Noise Ratio

1 10.4799

2 13.3108

4 14.8127

5 6.1543

8 15.5377

9 13.8415

10 3.3308

11 7.2197

16 11.9609

17 16.7398

18 5.9863

19 14.3290

20 4.1822

21 1.2984

22 3.0082

23 6.4636   
2.4 Analysis of the Bayesian Tests for Spike De-

tection

2.4.1 Likelihood Ratio Test for the known signal case

For simplicity, we consider a single neural source impinging on an array. In this

case, we have a binary hypothesis. Under hypothesis H0, no signal is present and

s = 0. Under the alternative hypothesis H1, the signal (spike) is present and

As=x=p..
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The LRT then becomes,

—<y — u)TR‘1(y — u)
 

1
 

 

 

e 2

—N 2
v27r|R| / TR_1 §g371 (2.10)

‘y y
1 _

e

v27rlR|_N/2

where N is the number of electrode channels and 17 is the detection threshold.

This reduces to

_ H u
yTR 1p. §H(1) logn + L__ E 7 (2.11)

We therefore define the Sufficient Statistic T for the array spike detection with

Eq. (2.12). For a vector case, this reduces to a matched filter.

T = yTR_1 p. (2.12)
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To compute this Sufficient Statistic, we require the noise covariance R. In the

absence of any information about the noise structure (the case in real spike detec-

tion applications), it will be estimated from the data. This is simply the sample

covariance of the observations (Eq. (2.13)). We will assume this noise covariance

estimate for all subsequent expressions.

R = -—YYT (2.13)

Since the Sufficient Statistic T is a linear function of a Gaussian random

variable Y, it is also a Gaussian. We can determine the pdf of the Sufficient

Statistic T for the two hypothesis in terms of the means and variances.

H0 = EIT] = E[yTR"1ul = 0

E[(T - T32} = E[(yTR‘1u)T(yTR”IM)l = ”TR—1M

H1 I ElTl = ElyTR_1ul = ”TR—ll!

E[(T — W] = uTR‘lu

(2.14)
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Therefore, we can evaluate the performance of the detection in terms of these

numbers.

 

 PF = PHO(T > A) = g [1— Q(I£TR31M\/§)] (2.15)

Correspondingly, we have similar expressions for single channel spike detection

too.

 

.2 ‘
21-”

1 a]-

PD =PH1(T>/\)=-2- l-Q ”.2

- 03' fl _  

J

 

1 A

PF =PHO(T>/\)=-2- l—Q ”.2

U'zfi

- .7

(2.16)

  

Hence, for a Gaussian distributed Sufficient Statistic T, the distance metric

between the hypotheses is simply “TR-1p. For a single channel case, this is

simply the energy of the signal divided by the variance of the noise.
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To compare the performance of the array detection vs. the single channel de-

tection, we observe the distance measure between the hypotheses in the two sce-

narios. The array processing will give better performance if the following condition

(Eq. (2.17)) holds true.

0

”TR—1p. > El??- (2.17)

0]-

where pj is the strength of the signal at the the channel j where we are detecting

the signal, and aj is the variance of the noise at that channel.

Hence, we can describe “TR—1p, as an equivalent Signal to Noise Ratio for

the array case. The observations (array or channel) with a better Signal to Noise

Ratio give better detection performance.

Performance Comparison for Spatially Uncorrelated Noise

If we assume the noise covariance to be diagonal (Eq. (2.18)), we can get results

on the equivalent SNR’S for a single channel and the array data. Eq. (2.19) shows

that the equivalent SNR, and hence the performance of a detector using the array

data will be better than that working on any single channel.
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012 0 0 0

0 022 0 0
R:

(2.18)

L 0 0 0 0M2

01—2 0

#TR_1#=#T u

1 0 ”NI—2-

M #2

=25» —:—:Vie{1,2.. M} (2.19)

1210i

Performance Comparison for Spatially Correlated Noise

In this case, the noise covariance R is not diagonal. Since we have already have

the expressions for the detection performance in various cases, our purpose here

is simply to qualitatively describe the effect of the correlation. For mathematical

simplicity, we assume a two channel array. The signal and noise covariances are

described in Eq. (2.20).
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#1
’1’:

H2

2

01 0102/)
R: (2.20)

0102/) 012

An inequality condition (Eq. (2.21)) can be derived for the array and channel

SNRs. By symmetry, a similar condition holds for channel 2. Hence, we conclude

that the array performance is better than a single channel performance.

 

 

T -1 it? 031% -- 2H1H20102P + #30? it?

" R f‘ ‘ _2 = 2 2 2 - ‘2
01 0102 — (0102p) 01

2

(#2002 (1- £323)

— “2 1 > 0 (2.21)

clog (1 - p2)

We can also try to understand the effect of the noise correlation on the per-

formance. For some fixed signal conditions, and fixed channel noise variances, the

array SNR performance improves with the noise correlation coefficient opposite in

sign to the signal correlation, and deteriorates when the noise correlation coefficient

is of the same sign as the signal.



2.4.2 Likelihood Ratio Test for the unknown signal case

Here, we construct the generalized likelihood ratio test because we do not know

the signal waveform or strength. The generalized estimate for the signal therefore

is the observed data itself.

-(y - y)TR"1(Y - y)
 

 

 

 

1
e 2

,f‘zn'IRl-Nfl H1
T _1 §H 77 (2.22)

1 -y R y 0

, e

«mm-M?

This reduces to

_ H
yTR 1y §Hé2logn (2.23)

This is essentially a blind energy detector. We therefore define the Sufficient

Statistic T for the array spike detection with Eq. (2.24).

T = yTR-ly (2.24)

The Sufficient Statistic in this case is X2 distributed with degrees of freedom

equal to the dimension of y. The X2 statistics can be proven if we consider the

singular value decomposition of the noise covariance (Eq. (2.25)).
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R = UDUT (2.25)

The Sufficient Statistic can thus be expressed as the norm of the whitened

observations y.

T = {IR—13'

= yT(UDUT)_1y

: (D’1/2U‘1y)T(D’1/2U‘1y)

= 9% (2.26)

Now, 57 = D—l/zU—ly, being a linear relation on a Gaussian Random variable

y, is also Gaussian. The norm of a multidimensional Gaussian is X2 distributed,

and hence the Sufficient Statistic (Eq. (2.26)) for unknown signal detection in an

array is X2 distributed. We can calculate some statistics for the two hypotheses

(Eq. (2.27)) in terms of the whitened observations.
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= 0

E[(y— “Xi—WT] =1

'9'” = 0T0 = 0

(2.27)

H1 2 = E121 = E [D—l/zU‘ly]

= D—1/2U—1M

E [(9 —m - W] = 1

if? = (D”1/2U‘IM)T(D_1/2U‘1u) = ”TR—III

A

Therefore, we can construct the probability density functions and cumulative

distribution functions for the Sufficient Statistic T in terms of the non-central X2

distribution functions.

 

Tn/2-le—T/2

H : T = n T,0 =0 p( ) p( ) I‘(%n)2n/2

F(T) = F(T|n, 0) (2.28)
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H1 : p<T> = pn(T,uTR‘1u) = MT, 1)

_ T(n/2—1)e—(T+/\)/2 00 (ATV:

_ 2n/2 k=0 22kk!r(k + $72.)

P(T) : firm, A) (2.29)

  

where F(Tln, A) is the cumulative distribution function of a non-central X2 dis-

tributed random variable with 17. degrees of freedom and non-centrality parameter )1.

These statistics (Eq. (2.28), Eq. (2.29)) can help us calculate the performance

of the detection as follows.

PD 2 P(T > 2logn|H1)=1— FH1(2logn)

=1— F(2 log nln, A)

= 1 — F(2logn|n,pTR“1p)

PF 2 P(T > 2log77|H0) =1— FH0(2logn)

= 1 — F(2 log nln,0) (2.30)

where PD is the probability of detection, and PF is the probability of false alarm.

To compare the performance of the array detection with that of the single

channel detection, we write the corresponding probabilities of detection and false
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alarm for the single channel case.

2fl.

PD =1-FH1(210g77)=1-F(210gn|1,fi)

.7

PF =1—FH0(2logn)=1—F(2logn|1,0) (2.31)

where 113- is the mean of the signal at the channel j where we are detecting the

signal.

In this case of unknown signal detection, we do not have one expression

similar to Eq. (2.17) to compare the performance of array and single channel

detection. However, it is possible to compare the performance in different cases nu-

merically using the tabulated values of various X2 cumulative distribution functions.

Let us consider an example of a three channel electrode array. Assume the

signal strength at the 3 electrodes in the presence of a spike given by Eq. (2.32),

and the noise covariance given by Eq. (2.33).

2.2

As : z = p = 2 (2.32)

1.8  
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1 0.4 0.3

R: 0.4 1 0.2 (2-33)

0.3 0.2 1  

The detection performance in terms of the Receiver Operating Characteristics

are plotted for this case in Fig.2.3.
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Figure 2.3. Receiver operating Characteristics for Array and singe channel detec-

tion.

It is seen that in this case, spike detection using the array data gives better

performance.
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Let us now consider a slightly different case with the same noise covari-

ance(Eq. (2.33)), but the signal strengths given by Eq. (2.34).

2.48

As=x=u= 2.1 (2-34)

1.8  

The detection performance in terms of the Receiver Operating Characteristics

are plotted for this case in Fig.2.4.

On close examination, it is revealed that for low values of Probability of False

Alarm, Channel 1 detection gives better performance compared to detection with

the Array data. The situation is reversed for higher values of Probability of False

Alarm. We thus observe that for the generalized likelihood ratio detection, we can

not derive a Uniformly Most Powerful property for array vs. channel detection.

It will be worthwhile to calculate the values of the Signal to Noise Ratio at

channel 1, and the equivalent array Signal to Noise Ratio we had derived in the

known signal detection case (Eq. (2.35)).
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Figure 2.4. Receiver operating Characteristics for Array and singe channel detec-

tion.

2

Channell SNR = 1010g10 (5%) = 7.889 dB
(7

1

Equivalent Array SNR = lologlo (pTR_1p) = 9.3516 dB (235)

Channel 1 data and the Array data give comparable detection performance in

this case. However, if we had known the signal (and applied the test of Eq. (2.10),

the performance of the Array detection would have been much better due to its
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higher equivalent SNR. Thus, we can conclude that the performance gain in array

detection is more pronounced in the case of known signals.

2.5 Results

we run Monte Carlo simulations for spike detection of unknown signals for single

channel and array observations at various SNR conditions. The performance

of spike detection in the time domain and multiresolution (wavelet) domain is

compared.

Fig.2.5 shows the performance of detection for single channel detection in

multiresolution and time domain for an SNR of 7.6024. As we can see, the

multiresoltion detection performs much better than the time domain detection.

Figs.2.6 and 2.7 also show similar improvements in detection performance due to

the multiresolution analysis.

Figs.2.8, 2.9, and 2.10 Show ROC curves for multiresolution and time domain

detection at various SNR conditions. An example of the noisy data and the real

locations of spikes for an SNR of 8.117 is shown in Figs.2.11 and 2.12.

At these noise levels, the spikes are well masked by the noise so as to make

detection by visual inspection quite difficult. The level of masking can be seen in
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Figure 2.5. ROC curves for Multiresoution and Time domain detection for a single

channel data at an SNR of 7.6024.
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Figure 2.6. ROC curves for Multiresoution and Time domain detection for a single

channel data at an SNR of 8.7623.
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Figure 2.8. ROC curves for Multiresoution and Time domain detection for a two

channel array at an SNR of 8.1177.
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Figure 2.9. ROC curves for Multiresoution and Time domain detection for a two

channel array at an SNR of 6.9579.
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channel array at an SNR of 10.2124
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Figure 2.11. Noisy data on one channel used to detect spikes.

 
Clean Data (channel 1)

 300 400 500

fine (ms)

Figure 2.12. The clean spike data to be detected.
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the spike which is shown in detail in Fig.2.13.
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Figure 2.13. A clean and noisy spike example.

2.6 Conclusions

We have described Bayesian detection tests for spike detection in single electrode

and array data. Analytical results for the Receiver Operating Characteristics have

been derived for the known and unknown signal cases. Detection using the multi-

electrode array data gives potentially better performance than single channel spike

detection. A Uniformly Most Powerful property for the array detection versus the

single channel detection is proved for the known signal case in terms of an “equiva-
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lent array SNR”. The effect of the spatial correlation of the noise on the performance

of the array detection is also investigated. In the case of an unknown signal case,

the array detection gives better performance than the single channel detection for

certain signal and noise cases, but it may not be Uniformly Most Powerful. We

have concentrated on the unknown signal case, as we assume spike detection to

occur in the preliminary stages of the neural signal processing before any signal

conditions are estimated. Transforming the data in a multi-resolution space like

the wavelet transform and running the tests on the various time scales improves

detection because the wavelet compresses the signal energy in a small number of

coefficients. The performance gain in wavelet domain detection has been experi-

mentally verified for various Signal to Noise Ratio conditions in single channel and

array cases.
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CHAPTER 3

Clustering Neural Spike Trains

3.1 Introduction

Ensemble coding of stimuli[22], motor commands[23], and memory[24] has been

demonstrated by neuroscientists and is a subject of contemporary research. We

consider high dimensional electrode arrays recording from subthalamic regions

of the central nervous system. After the preliminary signal processing stages of

compression, telemetry, spike detection, and spike sorting, we obtain spike trains

of individual neurons. The recorded data usually comprise spike trains of a large

number of neurons. While such neural yield presents rich data sets for understand-

ing complex neural circuits and coding mechanisms, it makes inferring relationships

between neurons quite a formidable task. However, not all the recorded neurons

might be responding to a common stimulus under study. Our goal here is to cluster

the data into groups of neurons which have correlated neural activity. This re-
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duces the data dimensions for any secondary processing of the recorded spike trains.

3. 1 .1 Background

The spike trains, which are a series of action potentials, are characterized as

discrete-event random processes. The exact statistical characteristics of the spike

trains is still a research topic in the neuroscience community, with most studies sub-

scribing to either a rate coding or temporal coding mechanism in the neural system.

The Poisson process has been traditionally used to model the arrival times of

spike events. Alternatively, the inter spike interval generally obeys an exponential

density. If the spike train is modelled as a homogenous Poisson process, it will

be described completely by its mean firing rate. However, a homogenous Poisson

assumption implies stationarity. Since neural signals encode time varying stimuli,

commands, and higher brain functions, inhomogenous Poisson processes appear as

a more natural way of modelling spike trains. An inhomogenous Poisson process

is completely characterized by a time varying rate function. The rate function

describes the probability of an action potential in a unit time interval, as a function

of time. In this study we assume all neural spike trains to be inhomogenous spike

trains. Various methods exist to characterize a spike train’s Poisson rate function.

The simplest way to do so is to count the number of spikes occurring in a time
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window of some duration 6T. This is known as binning the data with a bin width

of size 6T.

Inferring relationships between neural spike trains is an integral part of any

multi unit spike train analysis[25]. Presently a number of methods exist to

analyze these associations. The cross-corellogram is the cross variance of two

spike trains calculated for different time lags. Cross-intensity is a similar relation

that characterizes the firing rate of one neuron as a function of the firing time of

the other neuron. These methods can be characterized as time domain methods[26].

Another widely used approach is the characterization of the firing activity of

two or more neurons after the presentation of a stimulus. The Joint Peri-Stimulus

Time Histogram (JPSTH) for two neurons is a matrix of the firing rate of one

neuron at a time t1 after the application of the stimulus, and firing rate of the

other neuron at a time t2 after the application of the stimulus. Computing the

JPSTH requires repeatedly recording the same neurons under repetetive controlled

application of the stimulus.

Analogous to these time domain methods, there are various frequency domain

methods that infer relationships between spike trains. Computing the correlation

between the Fourier transforms of spike trains leads to measures of coherence.
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Operating in the frequency domain, these methods are not bin size dependent but

assume stationarity on the data. Spectrograms and coherograms can be seen as

the frequency domain counterparts of the JPSTH as they characterize the joint

frequency domain firing rates of neurons in the presence of stimuli[27].

Multiple spike trains can also be modelled as jointly random discrete event

processes. The joint probability functions can thus be characterized by a number

of parameters, depending on the form of the probability function assumed.

Standard statistical techniques can be used to estimate these parameters like

maximum likelihood[28] and minimum errors. However, this method requires a

priori knowledge of the parametric form of the multidimensional point process

probability function, and sufficient data to estimate the parameters.

3.2 Simulation Method

Our simulation consists of 120 spike trains with 4 groups of 30 neurons each having

related firing rates within the group, and independent of neurons outside the group.

Every group of neurons had a basic firing rate function. For example, the kth group

Sk is associated with a firing rate function fk E 3?le sampled at N points in time.

A basic firing rate function was selected independently for each of the four groups.
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For each group Sk, firing rate functions fm E 3?le were generated for all

neurons m, m E Sk with linear and delay relations as in Eq. (3.1).

fm[n] =afk[n—T] +5 (3.1)

where a and B are randomly generated parameters for a linear relation, 7' is a

randomly generated delay parameter.

For each neural firing rate fm, a spike train sm is obtained as a realization

of an in—homogenous Poisson process.‘ Spike trains were thus generated for 30

neurons m1, m2, - ~ ,m30 based on the basic firing rate function of each group k,

where m1,m2, - -- ,m30 E Sk. For 4 groups k = {1,2, 3, 4}, a total of 120 spike

trains are thus generated. Our aim is to cluster these 120 neuronal spike trains

into the 4 natural clusters.

3.2.1 Proposed Technique

. In order to overcome the difficulties in predetermining the bin size in time domain

methods, the stationarity assumptions in frequency domain methods, and the data

requirements of the the parametric methods, we rely on a novel method to cluster

these spike trains.

A discrete wavelet transform representation of the spike train is obtained to 8



levels. The correlations among the neuronal spike trains in different time scales are

calculated and plotted in Fig.3.4. For visual clarity, each group of related neural

spike train is numbered consecutively. Hence, a cluster appears as a continuous

band of 30 neurons. We see that different clusters appear with different strengths

in different time scales.

Graph theoretic and k-means clustering results with features extracted by

Principal Component Analysis are reported.

3.3 Multi-resolution Approach

We assume that functionally interdependent neurons due to synaptic connections

or shared stimuli will have related firing rates. The relations in the firing rate can

be characterized in the pair-wise correlations of the estimated firing rates.

We have indicated that time domain methods like cross-corellograms require

a fixed bin width depending on the assumed frequency content of the signal.

Increasing the bin width gives a more efficient estimate of the firing rate in the

sense of a smaller variance of the estimate. However, the temporal resolution in the

estimation of a varying firing rate would degrade with larger bin widths. Therefore,
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this results in a variance-resolution trade off in the firing rate estimation. The

optimal bin width will depend on the firing rate, its rate of variation, and its

relation to the stimulus or signal being encoded by the neural signals. Frequency

domain methods are not bin-size dependent but assume stationarity on the signals.

Multi-resolution estimation of the firing rates resolves these problems by de-

composing the spike trains with a wavelet transform (Fig.3.3). We propose the use

of the Haar wavelet basis to represent the observed spike trains. The use of the

Haar is well-suited for the spike trains because the wavelet coefficient at each level

3' of the wavelet tree can be related to the firing rate computed at a certain bin

width Zj . The Haar basis approximation u[n] and detail v[n] functions are shown

in Figs.3.1, and 3.2.
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Figure 3.1. The Haar basis approximation function u[n].
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Figure 3.2. The Haar basis detail function v[n].

At any level j, the details coefficients d[n] of a signal s[n] in the wavelet

transform are obtained as din] = $(v[2j(r — n)]s[r]), and the approximations

coefficients a[n] by a[n] = Eli-(2423.0 — n)]s[r]). The Haar basis functions have

compact support, and the constant absolute magnitude within the support does

not scale the data as in the case of any higher order basis function. With the

wavelet functions for the Haar basis, the details coefficient d[n] is simply the

change in the firing rate at the nth bin of size 2j_1. The approximation coefficient

a[n] is the firing rate at the nth of size 2j .

A wavelet representation of the neural spike trains to characterize processes

as Poisson or non-Poisson has been reported by Cao[29] for decoding neural

spike trains in neural prosthetic devices. However, our purpose here is to have a

convenient representation for the neural spike train firing rate for inferring clusters

of neurons with correlated activity.
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Figure 3.3. The Wavelet Tree representation to 5 levels.

The wavelet transformation at level j can be represented as a lumped matrix

W0) E ifffl xN where N is the length of the spike train being decomposed[21]. We

initially aszshme the spike trains to be binned to a very small bin width 6T where

within 6T no more than one event can occur. The spike train expressing the neural

activity during a duration N6T will be a vector of length N. Therefore, the wavelet

details of the mth spike train sm at level j can be computed as in Eq. (3.2).

53m = W(j)sm (3.2)

where S‘' 6 ER is the representation of sJ at node j.
m 97.. x1 m
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The representation of the M spike trains S E ERNXM at node j of the wavelet

tree is given by Sj 6 RN xM (Eq. (3.3)).

2.7

sj = SW“) = [9'1 s1; 55M] (3.3)

We can assume the spike train vector at bin width 6T to be a noisy estimate

of its underlying firing rate fm = [fm[1] fm [2] fm [N]]T sampled at intervals of

6T. Hence, for a neuron m with firing rate given by fm E 9?le (sampled at N

intervals 6T time apart), the spike train data can be represented as in Eq. (3.4).

where qm is expresses a random process associated with the uncertainty due to

using a single realization of the random process (spike train Sm) to estimate the

parameter (firing rate fm). Note that we chose 6T small enough so that not more

than a single spike can occur in one bin (due to the refractory period). This implies

We can derive some properties of the ”noise” term qm. At a particular instance

of the discrete time, p, the probability of observing n spikes due to its Poisson

nature, is given by Eq. (3.5).
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._. (fmipiérw
e-(fmipia

zr)

PlSmlpl = ni n, (3.5)

We thus observe that qm[p], at any time instance 19 is given by Eq. (3.6).

Writing out its probability distribution function(Eq. (3.7)), we observe that it is a

zero mean, non-stationary, temporally white process which is uncorrelated across

neurons(Eq. (3.8)).

Qmipl : Smlpl " fmlPl5T (3-6)

_ (fm[p]6T)(m+fm[Pl5T)e-(fm[p]6T)
 

Pllepl = ml (m + fmlplciT)! ’ (3-7)

Vm -— fm[p]6T E {..., —-1,0, 1,2, ...}

ElQmiPll = 0

Ei(qmlpl)zl = fmlplé‘T —<fmip16T)2 (3.8)

Elmnlpilqimlpzll = 0

13(qu [PlQm2 [Pl] = 0

The property of the noise process being white across neurons is because we had

assumed neurons in the same group to have related firing rates but no second

probabilistic dependence. This ma or may not hold in practice depending on the

biological mechanism producing the correlated firing activity. Note that this ap-
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proximation (Eq. (3.4)) of the binned spike train eases further analysis. We assume

each of the M neurons as belonging to any one of the K groups (51 $2 Sk ...SK)

with some related firing rate. We assume the underlying basic firing rate function

of the kth group of neurons to be fk. Within group 5k it is assumed that mk

neuronal firing rates are linearly related by

K

k=1

where amk are coefficients describing the degree of belongingness of neurons to the

different groups with amk = OVm ¢ SR, and amk 74 OVm E Sk-

The wavelet representation at level j of the spike train can thus be expressed as

sin = amkW0)fk6T + W(5)qm, Vm e (8),) (3.10)

To infer relations between neural spike trains, a classical technique is to compute

the correlation of the estimated firing rates at a certain bin width[30]. By taking

the discrete wavelet transform of the spike trains the multiple resolutions obtained

correspond to multiple bin widths. We now compute the sample cross-correlation

between different neurons at the wavelet subband j as

. . . N . .

Cffii,m2 :- %5Jm1T5]m2 : % Z SJmlinlsfnglnl

=0

2 E [3%, [1113152 [71]] (3.11)
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The complete correlation matrix at level j, CO) 6 ERMxM will have as its

(3')
elements cm1 1m2 .

If we assume the underlying basic firing rates fk, k = 1, - - - K of the different

neural groups (SI - - - SK) to be independent, we can derive the following relations

on the expectation of the correlation.

_ 1 . T .

E [6913712] = FE [3,1111 SJmZ]

1 . . T ° '= NE [(amlkW(J)fk6T + W(J)qm1) (amsz0)fk5T + W0)Qm2)]

T
K K

1 ' ' 2

Z N Zamrkwmfk ZWU)fkam2k (6T)
k=1 k=1

= 0 le E Sk1,m2 E Sk2,k1 # kg

1 . T . -

= NamlkamgkfkTWO) W(J)fk(6T)2 = amlkamgkefc vm11m2 E Sk(3-12)

- . T .

where 6']: = %fkTW(-l) W(~l)fk((5T)2 represents the energy of the kth groups

firing rate fk at time scale 3'.

This is interpreted as the expectation of the correlation between neurons ml
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and m2 at any time scale j being zero if the neurons do not have correlated firing

Within that chorce of bin w1dth. The expectation of the correlatlon is am1 kamzkek,

with 6]: being a scaling coefficient describing the spectral content of the firing rate

of the neural group k at time scale j, and amk, being some unknown relations on

the firing rates with amk 7e 0 describing the membership of neuron m in the group k.
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Figure 3.4. Correlations in different subbands.
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3.4 A Principal Components Approach for

Multi—scale Clustering

Eq. (3.11) hints that some clusters can be identified in certain time scales with

different strengths 6%. Correlated neural activity at time scale 3' appears as

non zero correlation among the neurons at that time scale. Consider a cluster

correlation A(k) E meM for every cluster k = 1,... K with the m1,m2th

element being A(k)[m1,m2] = am1kamzk- The cluster correlations A(k) can be

K

thought of as the essential features making up the correlation CO) = Z A0045";c

at any arbitrary time scale 3'. Therefore, Principal Component Analysifgll] should

resolve the cluster energies in the first few dominant principal components, with the

noise energy distributed among the smaller principal components. The correlation

profiles in different principal components are given in Fig.3.5. Figures in this

thesis appear in color. The dominant principal components express the energy of

the correlated firing rates in them, while the independent noise occupy the less

dominant principal components. The eigenvalues associated with the principal

components are tabulated in Table 3.1. The first four principal components capture

75.5% of the energy, and we assume these to capture the required information

for all the clusters. We form a fused matrix from the principal components to be

used for clustering the neurons. The entries of this matrix D are calculated as in

Eq. (3.13) using the 4 most dominant principal components.
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Table 3.1. Eigenvalues associated with the Principal Components

 

Principal Component Eigenvalue

1 0.2537

0.1926

0.1739

0.1349

0.1136

0.0598

0.0326

0.0226

0.0162
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dm1,m2 = Z laiiiimglAm (3'13)

. p=1

(p)
where cm m is the correlation between the neurons m and m in rincipal com-

11 2 1 2 p

h
ponent p, and A(p) is the eigenvalue associated with the pt principal component.

This resulting matrix has a profile plotted in Fig.3.6. As we can see, all the four

natural clusters are well represented and distinctly visible in this matrix.

3.5 Graph Theoretic Clustering

A graph theoretic clustering approach[32] is needed in our application because

the neurons to be clustered are related through pair-wise similarity measures
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rather than a low dimensional vector associated with each neuron as required

in vector clustering algorithms[33]. The true clusters of neurons are plotted in

the space of two components resolved from the edge weight matrix of Eq. (3.13)

are plotted in Fig.3.7. While our choice of the edge weights computed from the

principal components of the correlation matrices in different subbands offers a

good representation of the clusters, the data cannot be satisfactorily clustered with

any of the classical “vector data” algorithms like k—means or k-Nearest Neighbors.

The neural spike trains are represented as the vertices of an undirected graph.

The weight, or capacity of an edge connecting any two neurons m1 and m2 is a

measure of correlation among the neurons. The weights of the edges are assigned

from the D matrix, with the edge weight between neurons m1 and m2 given by

Eq. (3.13).

We use a minimum cut type of algorithm on our graph representation to

separate the neurons in clusters. Probabilistic clustering, with “sof ” member-

ship functions to characterize the membership of a neuron in a cluster is used.

Probabilistic clustering is a technique to reduce the computational complexity

of an otherwise NP-hard clustering problem[34]. We wish to find clusters that

have maximum edge weights between neurons within a cluster, and minimum

edge weights between neurons in two different clusters, or across a cut. With the

pm”; denoting the membership of neuron ml in cluster k, we form an objective
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function[35] described by Eq. (3.14). We note that intuitively, we want pch to

have a high value if amk is statistically non-zero.

MM

2Z Pi,kpj,kdz',j

K i=13=1
i: Z (3.14) 

Maximizing the objective function 1 attempts to minimize the edge weights

(which are measures of correlated firing) across cuts separating the clusters. Finally,

crisp decisions on the cluster memberships are calculated by assigning the neuron

to the cluster in which it has the highest probabilistic membership.

3.6 Clustering Results

To compare the performance of our probabilistic graph clustering with traditional

methods, we tried to use the first few resolved components from the fused matrix

D to perform clustering with the k-means algorithm. As we can see in Fig.3.7,

neural groups 1 and 3 are well mixed, and can not be linearly separated in the first

two component space. Fig.3.8 shows a k-means result for the first two principal

components of the fused matrix. As expected, this gives quite a significant clus-

tering error of 32.5% We define the clustering error as the number of incorrectly
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Table 3.2. Clustering Errors obtained in the k-means algorithm

 

 

No. of Principal Components Clustering Error

2 33.21%

3 27.49%

4 14.61%

5 16.87%

6 16.93%

7 17.57%

15 16.41%    

classified neurons as a fraction of the total number of neurons. Since the results

of the k-means algorithm depend on the initial guess of cluster centers, we run

the k-means in 1000 iterations and compute the mean error. Table 3.2 shows the

mean clustering errors for the k-means algorithms applied to different numbers of

principal components. As we see, the clustering error does not decrease uniformly

by increasing the number of principal components. Though increasing the number

of principal components captures more useful information, it also adds statistical

noise to the data. This shows that the performance of the k—means algorithm is

limited due to the inherent nature of the pair-wise similarity measures in our prob—

lem, which lends itself better to a graph theoretic representation.

Probabilistic clustering with the edge weights of Eq. (3.13) gave a clustering

error of 2.5% z'.e.,only 3 neurons out of the 120 being classified in the wrong cluster.
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3.7 Conclusions

We have demonstrated the use of a novel multi-scale clustering algorithm for par-

titioning a large set of neural spike trains into groups with correlated firing. A

multi-scale or wavelet domain representation of the neural spike train eliminates

the need of fixing a bin width and assuming stationarity, which are the limita-

tions of traditional time domain and frequency domain methods respectively. We

have demonstrated that the probabilistic graph theoretic clustering approach out-

performs traditional algorithms like k-means for our application. We believe that

this algorithm can go a long way in enabling neuroscientists to analyze large scale

neural recordings and give a better systems understanding of neural activities. In

future, we need to test this approach on data sets generated from a more biologically

faithful representation of neural circuits or on real large scale data sets.
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