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ABSTRACT

OUT OF THE BOX OPTIMIZATION USING THE PARAMETER-LESS POPULATION
PYRAMID

By

Brian W. Goldman

The Parameter-less Population Pyramid (P3) is a recently introduced method for per-

forming evolutionary optimization without requiring any user-specified parameters. P3’s

primary innovation is to replace the generational model with a pyramid of multiple pop-

ulations that are iteratively created and expanded. In combination with local search and

advanced crossover, P3 scales to problem difficulty, exploiting previously learned information

before adding more diversity.

Across seven problems, each tested using on average 18 problem sizes, P3 outperformed all

five advanced comparison algorithms. This improvement includes requiring fewer evaluations

to find the global optimum and better fitness when using the same number of evaluations.

Using both algorithm analysis and comparison we show P3’s effectiveness is due to its ability

to properly maintain, add, and exploit diversity.

Unlike the best comparison algorithms, P3 was able to achieve this quality without any

problem-specific tuning. Thus, unlike previous parameter-less methods, P3 does not sacrifice

quality for applicability. Therefore we conclude that P3 is an efficient, general, parameter-

less approach to black-box optimization that is more effective than existing state-of-the-art

techniques.

Furthermore, P3 can be specialized for gray-box problems, which have known, limited,

non-linear relationships between variables. Gray-Box P3 leverages the Hamming-Ball Hill

Climber, an exceptionally efficient form of local search, as well as a novel method for per-

forming crossover using the known variable interactions. In doing so Gray-Box P3 is able to

find the global optimum of large problems in seconds, improving over Black-Box P3 by up

to two orders of magnitude.
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Chapter 1

Introduction

A primary purpose of evolutionary optimization is to efficiently find good solutions

to challenging real-world problems with minimal prior knowledge about the problem itself.

This driving goal has created search algorithms that can escape user bias to create truly

novel results, sometimes publishable or patentable in their own right [18]. While it is not

possible for any algorithm to do better than random search across all possible problems [38],

effectiveness can be achieved by assuming the search landscape has structure and then biasing

the algorithm toward exploiting that structure.

In evolutionary optimization, and genetic algorithms (GAs) in particular, search is often

biased through parameters. This can be beneficial as it allows practitioners to inject their

knowledge about the shape of the search landscape into the algorithm. However, the quality

of solutions found, and the speed at which they are found, is strongly tied to setting these

parameters correctly [8]. As such, either expert knowledge or expensive parameter tuning [13]

are required to leverage this feature to its fullest potential. Furthermore, parameters such

as population size, mutation rate, crossover rate, tournament size, etc. usually have no clear

relationship to the problem being solved, meaning even domain experts may not understand

how the parameters will interact with the problem or with each other. To further complicate

matters, there is mounting evidence that parameter values should change during search [11,

19].

There have been periodic efforts to reduce or remove the need for parameter tuning.
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[27] introduced self-adaptive parameters, in which parameter values were included in each

solution’s genome and themselves underwent evolution. This allowed the search process itself

to optimize some of its own parameters, resulting in a reduced need for expert tuning. [15]

was able to design an entirely parameter-less GA by leveraging schema theory and parallel

populations. Unfortunately these methods were provably less efficient than directly setting

the parameters to optimal values [24].

One area that has been effective at reducing the number of algorithm parameters is

model based search. [22]’s Hierarchical Bayesian Optimization Algorithm (hBOA) and [33]’s

Linkage Tree Genetic Algorithm (LTGA) both require only a single parameter: population

size. [25] leveraged model building to create a fully parameter-less algorithm, but it is

restricted to only order-k, fully decomposable, noiseless problems.

Most recently we introduced the Parameter-less Population Pyramid (P3) [9]. This

method uses a pyramid structure of populations to combine model based search with local

search to achieve parameter-less optimization. Initial results suggest that, unlike previous

parameter-less methods, P3 is more efficient than current state-of-the-art parameterized

search algorithms. In this work we shall: extend these results to cover more comparison al-

gorithms; compare both efficiency in reaching the global optimum and intermediate fitnesses;

analyze algorithm complexity; and provide more in depth analysis of P3 itself.
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Chapter 2

Comparison Optimizers

In order to fully understand the effectiveness of P3, we compare it with five advanced

algorithms that have related features to P3. The Random Restart Hill Climber defined by [9]

was chosen as an efficient form of repeated local search. As P3 combines this hill climber with

crossover, comparing with local search alone shows the advantages of P3’s overall approach.

The (1 + (λ, λ)) algorithm [5] is the current best theory supported simple genetic algorithm

and its method of crossover is in some sense a macro-mutation just as in P3. hBOA and

Parameter-less hBOA are advanced model building search techniques that are effective at

learning complex problem structure, designed to achieve similar goals as P3’s linkage learning

but using very different methods. Finally LTGA represents the current state-of-the-art in

black-box search and is the origin of P3’s linkage learning and crossover methods.

Only hBOA and LTGA require any parameters, with each of these only requiring a

population size. This makes knowing the optimal behavior of these algorithms much more

tractable. All of the algorithms are also gene order independent, fitness scale invariant, and

unbiased. This means, for any problem, the order in which problem variables appear in the

genome can be changed without changing the behavior of the search. The fitness can also

be manipulated in any fashion as long as the rank ordering of solutions is unchanged. These

algorithms are also unaffected by the meaning assigned to each bit, such that inverting a

predetermined random subset of genes before evaluation will not impact search efficiency.

Our implementations of all of these algorithms as well as all of the population size
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1: procedure Hill-Climber

2: options← [0 . . .N − 1]
3: tried← ∅
4: while |tried| < |options| do
5: for all index ∈ shuffled(options) do
6: if index /∈ tried then

7: Flip bit index in solution
8: if solution’s fitness increased then

9: tried← ∅
10: else

11: Revert change
12: end if

13: tried← tried ∪ {index}
14: end if

15: end for

16: end while

17: end procedure

Figure 2.1: Hill climbing algorithm used to improve randomly generated solutions until no
single bit change results in a fitness improvement.

information, raw results, and processing scripts are available from our website.1

2.1 Random Restart Hill Climber

Perhaps the simplest black-box search heuristic is stochastic local search, also know as

hill climbing. This optimization technique focuses on improving a single solution until it

reaches a local optimum. Here we use the first-improvement hill climber defined by [9] and

given in Figure 2.1. This algorithm works by flipping each bit in a random order, keeping

modifications when fitness is improved, until single bit flips cannot result in further fitness

improvements.

The hill climber requires an amortized cost of O(1) operations per evaluation. In order

to terminate, at least one evaluation must be performed for each of the N bits in the solution.

As such any operation that happens only once per search can be amortized over at least N

evaluations, covering the initialization of options on Line 2. Line 6, which prevents wasted

1https://github.com/brianwgoldman/FastEfficientP3
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evaluations, can be called at most twice per evaluation: once to add index into tried and

once to prevent index from being unnecessarily evaluated again. The only way three or more

calls could happen is if no fitness improvement was made for the entire previous iteration,

which contradicts the loop invariant.

Due to its nature, this hill climber cannot escape basins of attraction. Once a solution

is reached such that none of the single bit neighbors are fitness improvements, search stops.

Thus this algorithm requires a restart mechanism to solve multimodal problems. We have

chosen here to näıvely restart search from a random solution whenever a local optima is

found. This ensures that on all landscapes there is always a non-zero probability of search

finding the global optimum.

2.2 (1 + (λ, λ))

[5] presented the first genetic algorithm to provably show the advantages of performing

crossover on the problem known as One Max. This comparatively simple algorithm maintains

only a single individual and a self-controlled parameter λ.

Each iteration, the number of bits to flip is chosen from the binomial distribution b ∼

B(N, λ
N
), where N is the number of bits in the genome. Next, ⌊λ⌋ offspring are produced

by flipping b bits. The best mutant then produces ⌊λ⌋ offspring via uniform crossover with

the original parent, such that each gene comes from the mutant with probability 1
λ
. In the

original algorithm the best offspring produced by crossover then replaces the original parent

if its fitness is no worse. The λ parameter, which is initialized to 1, is decreased if the

offspring replaced its parent and increased otherwise.

The original formulation was designed specifically for unimodal landscapes and as such

were not directly suitable for multimodal problems. [9] extended (1 + (λ, λ)) to include

random restarts. As search stagnates, the λ parameter increases in value. Eventually this

results in λ ≥ N causing mutation to always flip all bits of the individual. As this prevents

any future improvement, whenever λ ≥ N search is restarted from a random solution with

5



λ reset to 1.

A few other efficiency modifications were also made. If there is a tie in crossover offspring

fitness, whichever has a larger hamming distance from the parent is retained. This encourages

drifting across plateaus. The “mod” control strategy proposed by [5] was not used as it

conflicted with the random restart strategy. If a crossover individual is identical to either

of its parents, it is not evaluated. If mutation produces an offspring that is better than the

best crossover offspring, it is used to compare against the original parent.

2.3 Hierarchical Bayesian Optimization Algorithm

[22] used statistical principles in combination with a decision tree structure to create

the Hierarchical Bayesian Optimization Algorithm (hBOA). This method creates a model

of epistatic relationships between genes which is then used to stochastically generate new

solutions. Each generation a binary tournament with replacement is used to select µ solutions

from the population. These solutions are then used to build the model, which in turn is used

to generate µ new solutions. The new solutions are then integrated into the population using

restricted tournament replacement.

Conceptually, the model built by hBOA is trying to infer rules of the form “Given

that this subset of genes are set to these values, how frequently is gene xi set to value v?”

This can be represented using a directed acyclic decision forest, with each tree in the forest

representing one gene in the solution. In the decision tree Ti, which is used to set the value

of gene xi, each internal node represents previous decisions on how to set some other gene

xj , with the children of that node representing how the decision was made. The leaves of

each tree give the probability that xi should be set to one of the possible gene values.

The forest is constructed iteratively, with each tree initially containing a single leaf and

with each leaf storing a pointer for each selected solution. Each iteration the algorithm

considers all possible ways of splitting an existing leaf using another gene xj , such that

solutions in the leaf are moved to the newly created leaves based on their value for xj . The

6



general goal is to separate the solutions such that all solutions with xi = 0 move to one leaf

while solutions with xj = 1 move to the other.

This goal is formalized using model scoring from Bayesian statistics. In its raw form this

almost always creates near infinitesimal results, calculating fractions that include factorials of

µ and products over N . However, through algebraic manipulation discussed in Appendix 11,

we derived a simplified form shown in Equation 2.1. Here l is a leaf in tree i, with l′ and l′′

the results of splitting l. mi(l) is the number of solutions that reach l and mi(xi, l) is the

number of solutions that reach l with the given value for xi. If no proposed split satisfies

the inequality, iteration stops. If multiple splits do, whichever maximizes the right side is

chosen.

20.5log2µ <
(mi(l) + 1)!

mi(0, l)!mi(1, l)!
·
mi(0, l

′)!mi(1, l
′)!mi(0, l

′′)!mi(1, l
′′)!

(mi(l′) + 1)!(mi(l′′) + 1)!
(2.1)

Initially there are Θ(N2) possible ways to split existing leaves, as each of the N single

node trees can be split by any of the other N − 1 genes. Each iteration a new edge is added

to the decision forest, meaning some of the previously tested splits cannot be used. For

instance, if Ti, which is used to decide the value of xi, is split using the value of xj , Tj can no

longer be split using xi. As a split creates two new leaves, O(N) new potential splits must

also be tested. Equation 2.1 parses all solutions that reach a leaf to count gene frequencies,

requiring µ time. The number of total leaves created depends heavily on the problem and µ.

However, assuming no splits are accepted or that the cost of testing all future splits is less

than the initial Θ(N2), constructing the model requires Ω(µN2) time. Each model is used

to generate µ solutions, leading to a cost per evaluation of Ω(N2).

To generate a solution, the value of each gene xi is set using its corresponding decision

tree Ti. Because the forest is directed acyclic, there must be an ordering of Ti such that,

before Ti is executed, all xj it uses to make decisions have already been set. As such, previous

decisions made by other trees are used to follow each Ti until a leaf is reached. The value of

xi is then set based on the probability that other solutions reached that leaf with each value

7



of xi.

To perform replacement, hBOA uses restricted tournament replacement. After each

new solution is generated and evaluated, a set of w solutions are chosen at random from

the population, where w = min{N, µ
20
}. From this set the solution which is most genetically

similar to the offspring is chosen. If the offspring is at least as fit as the chosen solution, it

replaces the chosen solution in the population. Otherwise the offspring is discarded. This

method is designed to preserve genetic diversity as only genetically similar solutions compete

on fitness.

hBOA is designed to work with large population sizes, resulting in a large number

of evaluations per generation. As hBOA utilizes explicit diversity maintenance, standard

methods for determining convergence are not considered very accurate. Therefore the authors

suggest that an hBOA run should be terminated after performing generations equal to N .

Like other model based techniques, hBOA has few parameters. There is no mutation

or crossover, and modeling does not rely on any explicit parameters. Solution selection,

generation, and replacement are all derived from the population size, which must be set by

the user.

2.4 Parameter-less hBOA

Using the methods first introduced by [15] for the Parameter-less GA, [23] created

Parameter-less hBOA which automatically scales its population size to fit the problem. This

is done by maintaining a list of concurrent populations using exponentially scaled population

sizes.

A run of Parameter-less hBOA starts with a single population of size µ0, conventionally

set to µ0 = 10. After two generations are performed, a new population of size µ1 = 2µ0

is created and performs a generation. Evolution then continues with the µ0 population

performing two generations for each one performed by µ1. Each time population µi performs

its second generation a new population µi+1 = 2µi is created, which performs generations
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half as often as µi. In this way an infinite number of parallel population can be simulated,

with each population receiving the same number of total evaluations.

In all other aspects each population is identical to an hBOA population using a fixed

µ. No search information is shared among populations, and each search is independently

terminated. As such Parameter-less hBOA cannot perform better than hBOA using the

optimal population size for a given instance, as it must also spend evaluations on populations

of different sizes. This inefficiency is bounded by a log multiple of the total number of

evaluations [24].

2.5 Linkage Tree Genetic Algorithm

[33] introduced the Linkage Tree Genetic Algorithm (LTGA) which automatically de-

tects and exploits problem epistasis by examining pairwise gene entropy. Due to its enhanced

ability to preserve high fitness gene subsets, LTGA was able to outperform state-of-the-art

GAs across many benchmarks. Since its introduction, many variants of LTGA have been

proposed [34, 12] so for clarity we have chosen the version presented by [35] as our model.

LTGA’s effectiveness comes from its method of performing crossover. Instead of blindly

mixing genes between parents, LTGA attempts to preserve important interrelationships be-

tween genes. Before performing any crossovers in a generation, LTGA first builds a set of

hierarchical gene clusters that are then used to dictate how genes are mixed during crossover.

Figure 2.2 provides the agglomerative method LTGA uses to create gene clusters. This

algorithm creates a tree of sets using pairwise gene entropy, such that the leaves of the tree

contain a single gene and internal nodes are the union of their children’s sets. These sets

are then used by crossover to specify epistatic relationships that should be preserved. The

process begins by creating the set of sets unmerged that tracks all top-level clusters. Initially

unmerged contains single member sets for each gene. After each iteration the two sets with

the minimum average pairwise distance (given in Equation 2.2) are merged to create a single

cluster. This process is repeated until only a single set remains in unmerged which contains
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1: procedure Cluster-Creation

2: unmerged← {{0}, {1}, {2}, . . . , {N − 1}}
3: useful← unmerged
4: while |unmerged| > 1 do

5: Ci, Cj ← minCi,Cj∈unmergedD(Ci, Cj)
6: unmerged← unmerged− {Ci, Cj}+ {Ci ∪ Cj}
7: useful← useful + {Ci ∪ Cj}
8: if D(Ci, Cj) = 0 then

9: useful← useful− {Ci, Cj}
10: end if

11: end while

12: Order useful based on last merged first
13: Remove largest cluster from useful

return useful
14: end procedure

Figure 2.2: Algorithm describing how LTGA creates clusters using Equation 2.2 for a pop-
ulation. unmerged and useful are ordered sets of sets of gene loci.

all of the genes in the genome.

D(Ci, Cj) =
1

|Ci| · |Cj|

∑

ci∈Ci

∑

cj∈Cj

2−
H(ci) +H(cj)

H(ci ∪ cj)
(2.2)

H(c) = −
∑

s∈S

pc(s) log(pc(s)) (2.3)

Throughout this process useful tracks the set of all gene clusters that should be pre-

served for use by crossover. This set begins with all genes in separate clusters, and each time

a new cluster is created it is added to useful. However, not all clusters are necessarily worth

keeping. For instance, in all versions of LTGA the cluster containing all genes is removed

from useful as preserving all genes during crossover can only create clones. [35] extended

this removal to include any unsupported subsets. If the pairwise distance between two clus-

ters is 0, this means there are no individuals in the population that disrupt the relationships

between the two clusters. Therefore, when performing crossover, there is no reason to believe

a fitness improvement can be achieved by breaking the stored pattern. As such a cluster

is only kept if its direct superset has a non-zero distance. As a final step, Line 12 reorders

useful such that clusters appear in reversed order from which they were added to useful.
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1: procedure Cluster-Usage

2: for all Ci ∈ useful do
3: d← rand choice(P )
4: Copy d’s gene values for Ci into solution
5: if solution was changed then

6: if solution’s fitness decreased then

7: Revert changes
8: end if

9: end if

10: end for

11: end procedure

Figure 2.3: Algorithm describing how clusters are used to perform crossover.

Thus the most linked clusters and those containing single genes appear at the end of the

returned list.

[35]’s version of LTGA does not use the entire population when determining pairwise

entropy. Instead, binary tournament is used to select half of the population. This is done to

ensure the model is built using only high-quality solutions, even during the first generation.

In order to efficiently perform clustering, a pairwise gene frequency table is constructed

from the selected solutions. To calculate Equation 2.2, Equation 2.3 is called for each gene

(H(ci)) and pair of genes (H(ci ∪ cj)). Extracting this information requires O(µN2) time,

where µ is the population size and N is the genome size. The process of converting this

pairwise frequency information into clusters can be achieved in O(N2) using the bookkeeping

methods presented by [14]. This cost is performed only once per generation, and is then used

to perform approximately O(µN) crossover evaluations. As a result, the amortized cost of

LTGA’s model building is O(N).

Figure 2.3 describes how the identified clusters are used by crossover to preserve gene

linkage while still exploring the search space. Unlike more traditional crossover methods,

LTGA crosses each individual with the entire population. Also, to produce a single offspring,

multiple evaluations of the fitness function are performed.

During each generation, every individual in the population undergoes crossover. In a

single crossover event, each cluster of genes Ci in useful is applied as a crossover mask. A

11



random donor d is chosen from the entire population (not just the model selected population),

and d’s gene’s for Ci are copied into the working solution. If a modification is made, an

evaluation is then performed. If the crossover resulted in no worse fitness then the changes

are kept, which allows for neutral drift across plateaus. The resulting solution, which must

be at least as fit as its parent, is then copied into the next generation.

In total each individual can cause up to |useful| evaluations. If all clusters were kept,

even those deemed unhelpful, and all donations were evaluated, even those that did not

change any genes, then Cluster-Usage would perform exactly 2N−2 evaluations for each

of the µ solutions in the population. This provides the amortizing evaluations required to

make clustering only O(N) operations per evaluation. However, by skipping some evalua-

tions, it is possible that clustering may be super-linear.

LTGA has no explicit form of diversity control and has no method for introducing new

genetic information once the population has converged. Therefore an LTGA run is considered

converged when two consecutive populations contain the same unique solutions.

By design, LTGA only has a single parameter: population size. LTGA uses no mutation,

and crossover is defined in terms of the clustering algorithm. Selection between generations is

fully elitist and embedded in the crossover, with selection of model building solutions fixed to

a binary tournament. Neither Cluster-Creation nor Cluster-Usage rely on parameter

values. LTGA does not provide any method for controlling or setting the population size,

relying instead on a fixed user-specified size.

2.6 Comparison Algorithm Parameter Tuning

While four of the six algorithms in our experiments do not require any user-specified

parameters, hBOA and LTGA both use a population size parameter. To ensure these tech-

niques are not unfairly handicapped, we extensively tuned each using the bisection method

[29] to determine the optimal population size for each problem size. Extended by [12], this

method iteratively doubles the population size until some success criteria is met and then
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(b) Tuned Population Sizes for LTGA

Figure 2.4: Optimal population sizes found using bisection on each size for each problem.

performs bisection between the smallest successful and the largest unsuccessful sizes. In this

way the minimum population size that meets the success criteria is found. [9] proposed a

success criteria of performing r successful runs in a row, such that the expected failure rate

can be bounded above by 3
r+1

[17]. As P3 and the other three algorithms do not prema-

turely converge, we chose r = 100 to similarly ensure hBOA and LTGA almost never do. As

bisection can make infinitely large population sizes, any run that had not found the global

optimum after 100 million evaluations or 128 computing hours was considered unsuccessful.

Figure 2.4 shows the results from performing bisection on all problems to be used as

comparison benchmarks in Chapter 5. In general hBOA required population sizes that were

at least an order of magnitude larger than LTGA. Due to runtime and memory overhead,

finding the optimal value for hBOA was much less tractable than for LTGA on moderate to

large problem sizes. LTGA’s population size also grew significantly slower than hBOA’s as

problem size increased, especially on the two Trap problems and Rastrigin. Both algorithms

were ineffective on MAX-SAT, with neither able to tune to problems sizes over 60 bits. This
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is likely due to the fact that some randomly generated MAX-SAT landscapes are quite flat

and highly deceptive [26].

While not currently treated as a parameter, we also performed preliminary tests of

integrating hill climbing into LTGA and hBOA as this is the procedure used in P3. To

match P3, we applied first-improvement hill climbing to each algorithm’s initial population.

We then performed bisection on the modified algorithms for the largest problem sizes where

hBOA without hill climbing was effective. We found that in general both methods performed

worse when combined with hill climbing, in some cases up to an order of magnitude worse.

There were three exceptions: both improved on MAX-SAT and hBOA improved on Rastrigin.

In all cases the inclusion of hill climbing did not result in either algorithm outperforming P3 in

terms of evaluations required to reach the global optimum. As such, all further experiments

use the unmodified, published versions.
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Chapter 3

Parameter-less Population Pyramid

[9] introduced the Parameter-less Population Pyramid (P3) as a method for performing

optimization that does not require the user to provide any parameters. This is achieved

by combining efficient local search with the model building methods of LTGA using an

iteratively constructed hierarchy of populations.

The high level algorithm of P3 is presented in Figure 3.1. Unlike more traditional GAs,

P3 does not follow a generational model. Instead, it maintains an iteratively expanding

pyramid of expanding populations. Each iteration, a new random solution is generated.

This solution is brought to a local optimum using the hill climbing algorithm in Figure 2.1.

If that local optimum has not yet been added to any level of the pyramid, the solution is

added to the lowest population P0.

Next, the solution is iteratively improved by applying LTGA’s crossover algorithm (Fig-

ure 2.3) with each population Pi in the pyramid. If this process results in a strict fitness

improvement and has created a solution not yet stored in the pyramid, that new solution is

added to the next highest pyramid level Pi+1. If Pi+1 does not yet exist, it is created. In this

way populations in the pyramid expand over time, and the number of populations stored

increases over time. Initially the pyramid contains no solutions or populations, meaning the

user does not need to specify a population size.

To accommodate P3’s unique population structure, some of LTGA’s clustering proce-

dures were modified. In LTGA, clusters are identified at the start of each generation and are
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1: procedure Iterate-P3

2: Create random solution
3: Apply hill climber
4: if solution /∈ hashset then
5: Add solution to P0 and rebuild P0’s model
6: Add solution to hashset
7: end if

8: for all Pi ∈ pyramid do

9: Mix solution with Pi

10: if solution’s fitness has improved then

11: if solution /∈ hashset then
12: Add solution to Pi+1 and rebuild Pi+1’s model
13: Add solution to hashset
14: end if

15: end if

16: end for

17: end procedure

Figure 3.1: One iteration of P3 optimization. pyramid is an ordered set of populations and
hashset is a set of all solutions in pyramid.

used to create all offspring in that generation. As P3 does not perform serial generations,

P3 instead rebuilds the model each time a solution is added to a population. Furthermore,

unlike our chosen variant of LTGA, all solutions in the population are used to generate the

model, not just the winners of a binary tournament. We can do this because even the worst

solutions in the pyramid are already high quality due to the previous application of local

search. Using local search in LTGA was examined by [3] and found to provide no significant

improvement. A likely cause was that that study applied local search to every solution, not

just the initial population, resulting in significant overhead.

Beyond the changes in population structuring, P3 modifies LTGA’s version of Cluster-

Creation and Cluster-Usage. P3 changes Line 12 in Figure 2.2 from last merged first

ordering to smallest first ordering. This method applies gene clusters during crossover based

on how many genes are in each cluster,1 and not on how tightly linked those genes are. [12]

found that this alternative was better at preserving diversity, and therefore required smaller

populations.

1Ties are broken randomly.
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P3 also modified Line 3 in Figure 2.3. Instead of choosing a single genetic donor for each

cluster, P3 iterates over the population in a random order until a solution in the population

is found that has a least one gene different for that cluster of genes from the improving

solution. This process increases the likelihood of an evaluation being performed for every

cluster, and helps test rare gene patterns in the population.

In LTGA the cost of rebuilding the model is O(µN2) as it must collect pairwise gene

frequency information for all µ solutions in the population. P3 does not store a single

population, and it does not have a fixed µ size for any population. However, each time a

solution is added to the population, it requires O(N2) time to update the table of pairwise

frequencies and another O(N2) time to rebuild the linkage model. The model is then used

immediately to perform up to one evaluation for each of the up to 2N − 2 clusters. Just as

in LTGA, if no evaluation shortcuts were made, P3 has an amortized cost of O(N) modeling

cost per evaluation. While P3 does rebuild the model more frequently per solution in the

population, it also performs a number of local search evaluations that are quite efficient,

meaning theoretical comparisons of their speed are difficult to perform. As a final note, P3’s

repeated attempts to find a useful donation make it less likely than LTGA to skip evaluations,

but has an added cost to find these donations. Repeated donations could require as much as

O(µ) attempts per evaluation, but experimental evidence suggest that this operation actually

saves more overhead than it costs by increasing the number of evaluations per model rebuild.

Each of the pieces of the P3 algorithm were selected not just for their standalone efficacy,

but for the ways in which they interact. By using the hill climber to optimize randomly

generated solutions, the underlying pairwise relationships in the problem are exposed. As a

result, detecting clusters for use by crossover is much more effective. The crossover operator

is extremely elitist, as each gene donation must result in no fitness loss, and a solution must

strictly improve to be added to the next level of the pyramid. This is balanced by continual

integration of new randomly generated, then locally optimized, solutions. Furthermore, each

random restart decreases the probability of spurious linkages caused by shared ancestry. This
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diversity is further preserved by applying gene clusters in smallest first order during crossover

as this reduces the probability of genetic hitchhikers.

Other algorithms have proposed using multiple concurrent populations. [16] had a

hierarchy of populations with solutions periodically advancing upward. This allows for con-

tinuous integration of diversity as the lowest population is reseeded with random solutions.

However, this method resulted in increased parameterization as not only was a population

size required, but also new parameters for how frequently generations advanced between

levels and how many total levels to have. [15] used multiple independent populations of dif-

ferent sizes as a method for removing the population size parameter, but doing was provably

less efficient than using an optimal population size as no information is shared between the

populations.
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Chapter 4

Problem Descriptions

4.1 Single Instance Problems

Understanding how a stochastic search algorithm will behave on arbitrary and complex

search landscapes can be exceedingly difficult. Therefore a common practice for algorithm

understanding is to perform search on well defined, well understood landscapes. To be of

interest these landscapes need to represent interesting and important aspects of real-world

problems.

One such landscape is the Deceptive Trap problem [8]. In this landscape the genome

is broken up into k bit non-overlapping subproblems referred to as traps. Each subproblem

is scored using Equation 4.1, where t is the number of bits in the trap set to 1. The global

optimum in each trap is a string of all 1s, while all other solutions lead to a local optima

of all 0s. This problem tests an algorithm’s ability to overcome k sized deception and is

commonly used to determine how effective crossover is at preserving building blocks. Any

crossover event that mixes bits from different parents in the same trap will likely result in

that trap being optimized to the local optima. For our experiments we chose k = 7 to ensure

highly deceptive traps.

trap(t) =











k − 1− t, t < k

k, t = k
(4.1)
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[12] found that mixing local search with linkage learning rendered the Deceptive Trap

problem trivial. This is because local search is able to optimize each trap to one of the

two optima (all 1s or all 0s), providing linkage learning with perfect knowledge of gene

interactions. In order to make the problem more difficult, the authors proposed the Deceptive

Step Trap problem, given in Equation 4.2. This function modifies the results of Equation 4.1

to include plateaus of size s, introducing an exponential number of local optima in each trap.

With k = 7 and s = 2, as used in our experiments, all traps with 0, 1, 3, 5, and 7 bits set

are local optima. This means that half of all ways to set the trap are 1 bit local optima.

More generally, the number of local optima grows at Θ(2k−1). As a result, the Deceptive

Step Trap is much more challenging for linkage learning techniques, while still being highly

deceptive.

step trap(t) =

⌊

(k − s) (mod s) + trap(t)

s

⌋

(4.2)

Another challenging aspect of landscapes can be higher-order relationships. The Hier-

archical If and only If (HIFF) problem [36] is designed to capture the difficulties of this class

of problem. In HIFF the genome is broken up into a complete binary tree, such that each

gene appears in exactly one leaf and each internal node is the subset of genes contained in

its children. If all genes represented in a node of the tree are set to the same value, they

score equal to the size of the set. In this way small subsets lead toward solutions to larger

subsets. However, a node can score if all genes are either all 1s or all 0s, meaning that

to solve higher-order subproblems it is necessary to perform crossovers that preserve lower

order solutions. This problem is a natural fit for LTGA as the linkage tree can perfectly

duplicate the problem’s true relationships [35].

As a final class of well known problems, we have chosen to borrow the Rastrigin problem

from real valued optimization. This problem’s landscape, determined by Equation 4.3, is

highly multimodal caused by the oscillating cosine function. [9] proposed the Discretized

Rastrigin problem, such that each floating point xi in Equation 4.3 is encoded using a 10 bit
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gray code.

10n+

n
∑

i=1

[

x2
i − 10 cos(2πxi)

]

∀x ∈ [−5.12, 5.12] (4.3)

4.2 Randomly Generated Problem Classes

While well defined landscapes can provide specific insights into how an algorithm works,

their static nature can be misleading. Specifically, algorithm quality might be so fragile

that it is only effective at searching well behaved landscapes. A more realistic test of an

algorithm’s black-box effectiveness is to work with randomly generated instances drawn from

a problem class. When tested over a sufficiently large sample it is then possible to draw more

general conclusions about an algorithm’s effectiveness. The challenge with these landscapes

is determining the global optimum to gauge if an algorithm was successful.

Perhaps the most common model for generating random rugged landscapes is the NK

model. An NK Landscape determines the fitness of each gene based on epistatic relationships

with K other genes in the genome. This fitness is specified using a randomly generated table

of fitness values, were each possible combination of the K + 1 genes is mapped to some

floating point value [0 − 1]. In unrestricted NK landscapes the relationships between genes

are also randomly chosen and as a result finding the global optimum is NP -Hard for K > 1.

However, if epistasis is set such that each gene depends on the K directly following it in

the genome, the solution can be found in polynomial time [39]. These Nearest Neighbor NK

landscapes are therefore ideal for search algorithm testing. For all of our experiments using

Nearest Neighbor NK we fixed K = 5 to ensure highly rugged landscapes.

[30] presents a combinatorial benchmark problem derived from physics: Ising Spin

Glasses. A spin glass is defined by a weighted graph of interaction terms between ver-

tices. Each gene assigns a value to each vertex, with the fitness calculated by Equation 4.4.

In this equation, E is the set of all edges, eij is the edge weight connecting vertex i to vertex

j, and xi and xj are the gene values for vertex i and j. Optimal fitness is when this sum is
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minimized.
∑

eij∈E

xieijxj (4.4)

Similar to NK Landscapes, the general class is NP -Hard to optimize, but the 2D±J subset

of Ising Spin Glasses can be polynomially solved.1 In this subset the graph is restricted to be

a two-dimensional torus, edge weights are randomly set to either -1 or 1, and vertex values

must be -1 or 1.

As our final class of randomly generated problems we chose the Maximum Satisfiability

(MAX-SAT) problem. Related to the more common 3-SAT problem, a MAX-SAT instance is

defined by a set of three–term clauses. Each term is a randomly chosen variable, which may

also be negated. A clause scores if an and only if at least one term in the clause evaluates

to true. In order to make MAX-SAT instances with a known global optimum, [9] proposed

constructing clauses around a fixed solution. In this way the signs of the terms are set to

ensure the target solution satisfies the clause. To ensure each problem is challenging we

chose a clause-to-variable ratio of 4.27 [31].

1http://www.informatik.uni-koeln.de/spinglass/
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Chapter 5

Benchmarking P3

5.1 Finding the Global Optimum

Figure 5.1 shows the median number of evaluations required by each of the six algorithms

to find the global optimum for multiple sizes of each problem. Each data point in Figure 5.1

represents the median of 100 runs, where unsuccessful runs are treated as requiring more

evaluations than any successful run. If the median run was not successful no point is shown.

Medians are used as the data is not normally distributed, and because it allows for more

meaningful comparison between techniques with different success rates. For LTGA, the

maximum problem size used for each problem was set to be the largest, optimal problem

size we could feasibly determine. For HBOA, results on many large problems are not shown

due to the extreme computational cost required to optimally determine the population size.

5.1.1 Quantitative Comparison

Of the 130 tested configurations, P3 found the global optimum using the least median

evaluations on 114. The largest problem size for any problem where P3 was not the most

efficient has 49 bits, with P3 achieving the best results on all 92 larger configurations. hBOA,

LTGA, and Parameter-less hBOA only outperform P3 on the smallest 5, 4, and 1 Deceptive

Step Trap instances, respectively. Random Restart Hill Climbing outperforms P3 on the

smallest 3 Nearest Neighbor NK instances and the smallest Ising Spin Glass. (1+(λ, λ)) has
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Figure 5.1: Comparison of the median number of evaluations to reach the global optimum
for the six different optimization methods with respect to problem size. If the median run
did not reach the global optimum no data element is shown. Results given on a log-log scale.
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the most success outperforming P3, doing so on the smallest 5 Deceptive Traps, 3 smallest

Deceptive Step Traps, and 2 smallest Rastrigin. The likelihood that P3 would achieve these

pairwise results assuming its median result is actually worse is p < 10−15 according to the

binomial test. Pairwise comparison of LTGA and P3 on the largest problem size using the

Mann-Whitney U test results in p < 10−5 for all problems.

5.1.2 Local Search

The Random Restart Hill Climber and (1+ (λ, λ)) are both relatively effective on small

problem sizes. This is especially true for the three randomly generated problem classes.

These problems may contain relatively few local optima or just be exceptionally difficult for

the model-based algorithms. On Deceptive Trap and Deceptive Step Trap using 4 or fewer

traps, (1 + (λ, λ)) performs significantly better than any other algorithm. We believe this is

because (1 + (λ, λ)) is able to overcome deception by probabilistically flipping entire traps.

This ability also leads (1 + (λ, λ)) to outperform the Random Restart Hill Climber on all

problems except Nearest Neighbor NK.

On larger problem sizes, the ability for local search to reach the global optimum quickly

diminishes. Only on MAX-SAT are these optimizers competitive at larger tested problem

sizes. However, we believe this is because the largest tested MAX-SAT was an order of

magnitude smaller than the largest size tested for most other problems. As the problem size

increases the number of local optima increases exponentially, which explains why Random

Restart Hill Climbing was unable to scale. For larger problems it also becomes increasingly

unlikely for (1+(λ, λ)) to make the right combination of changes required to reach the global

optimum. This behavior causes high variance in success rate, as evident by the occasional

successes on large Deceptive Trap problems.
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5.1.3 Model Building

Only techniques that explicitly built models of gene epistasis were able to solve the

largest problem instances. On single-instance problems LTGA was more effective than

hBOA, with hBOA outperforming LTGA on Nearest Neighbor NK and Ising Spin Glasses.

This may be caused by the differences in modeling method: unlike the single-instance prob-

lems, gene epistasis in the randomly generated problem classes cannot be be perfectly rep-

resented with a linkage tree.

Considering how different hBOA and LTGA are in performing optimization, it is some-

what surprising how similar their results are on HIFF. However, both techniques rely on

populations large enough to support the diversity required to reach the global optimum and

to model epistasis. Both techniques also only rebuild models once per generation. As the

subproblems of HIFF are nested, it is unlikely that either technique can accurately model

higher-order epistasis before solving lower order subproblems. Therefore both methods re-

quire one generation per subproblem order.

5.1.4 P3

Unlike the other model-based methods, P3 generally outperforms both Random Restart

Hill Climber and (1 + (λ, λ)) even on small problem sizes. Unlike the other local search

methods, P3 outperforms LTGA and hBOA even on large problem sizes. This implies that

P3 is gaining the benefits of each, leveraging local search to solve easy problems and model

building to solve harder ones.

Furthermore, the interaction between these two optimization tools explains some of

the reason P3 outperforms each method alone. On Deceptive Trap P3’s use of hill climb-

ing ensures all traps are immediately optimized, allowing for perfect linkage detection and

high-quality donation. On HIFF local search solves all pairwise subproblems, saving P3

a generation over LTGA and hBOA. In comparison P3 is only a slight improvement on

Deceptive Step Trap, which is less amenable to local search.
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5.2 Fitness Over Time

For some applications, finding the global optimum is less important than finding good

solutions quickly. Therefore we examine this behavior in Figure 5.2. At regular intervals

during optimization Figure 5.2 shows the median of the best fitnesses found at that time

point of search across 100 runs. Figure 5.2 shows the largest problem size for which we

were able to successfully gather results for all six algorithms, but the trends shown are

representative of all larger problem sizes. The maximum reporting interval is set to include

the slowest P3 run to reach the global optimum.

5.2.1 Quantitative Comparison

Of 181 sample points, P3 had the highest median fitness in 121. In pairwise competition,

(1 + (λ, λ)) was the most likely to outperform P3, doing so on 50 sample points. LTGA,

hBOA, and Parameter-less hBOA were the next best, outperforming P3 on 27, 20, and 18

sample points, respectively. Random Restart Hill Climbing almost never outperformed P3,

doing so only 9 times. The likelihood that P3 would achieve these pairwise results assuming

its median result is actually worse is p < 10−9 according to the binomial test.

5.2.2 Local Search

Perhaps the most striking result is the quality of (1 + (λ, λ)). Until quite far into

search this method performs better than both LTGA and hBOA. Given sufficient evaluations

(1 + (λ, λ)) also outperforms Random Restart Hill Climbing on all 7 problems. For brief

periods in the middle of search it performs the best of all techniques on: Deceptive Trap;

Deceptive Step Trap; HIFF; Ising Spin Glass; and MAX-SAT problems. (1+(λ, λ))’s ability

to efficiently incorporate gene modifications of larger than one bit allows it to overcome

the deception and plateaus in Deceptive Trap and Deceptive Step Trap, solve medium-sized

subproblems in HIFF, flip the signs on multiple adjacent bits in Ising Spin Glass, and cross

plateaus in MAX-SAT. However, this method is slow in reaching the global optima in many of
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these problems which causes it to eventually be overtaken by the model building techniques.

5.2.3 Model Building

Both hBOA and LTGA are marked by periods of little improvement followed by rapid

improvement. In hBOA this is taken to the extreme, with all fitness improvement made at

the very end of search. In both cases this is caused by model building. Before the model is

accurate little improvement is made. Once it is accurate, fitness improves dramatically.

At 58% of the recording intervals hBOA has the worst fitness of any solver. Most of the

exceptions occur when hBOA is still evaluating its initial population, allowing this random

search to temporarily surpass the local search methods. After N evaluations, however, hBOA

and LTGA both fall behind until their models begin to improve. Parameter-less hBOA

reaches intermediate fitnesses faster than hBOA, doing so on 62% of intervals, as its models

begin to optimize earlier than hBOA. However, this trend is reversed after a sufficient number

of evaluations, most clearly on Deceptive Step Trap and Ising Spin Glasses, as hBOA’s tuned

population overtakes Parameter-less hBOA’s parallel populations.

On every problem LTGA has five distinct periods: fitness plateau, near instantaneous

improvement, fitness plateau, and improvement to global optimum. The early period corre-

sponds with initialization of the population, with the first fitness gain achieved immediately

upon completing the first generation. When using an inaccurate model, LTGA’s mixing

strategy performs a sort of less effective local search. Subsequent generations then make

only minor fitness improvements. Once the model becomes accurate and the probability of

a crossover using high-quality genetic material increases sufficiently, LTGA enters a second

period of rapid improvement.

5.2.4 P3

The integration of hill climbing into P3 makes it strictly better than using hill climbing

alone. Early in optimization P3 and the Random Restart Hill Climber have effectively
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identical quality. This is because P3 performs the same evaluations as the Hill Climber for

the first two restarts. Once P3 begins performing crossover it immediately improves over

the Hill Climber. In 95% of intervals P3 had a fitness at least as high as Hill Climbing. As

such P3 is better than a simple hill climber regardless of how long each technique is run and

irrespective of how high quality the solution found has to be.

Unlike the model-based methods, which struggle until model accuracy improves, P3’s

iterative solution integration allows it to improve much more quickly. This behavior exists

in most problems, but is easiest to understand on Deceptive Trap. On this problem, P3

immediately brings all traps to local optima, equaled only by the Random Restart Hill

Climber in quality. In comparison LTGA must evaluate the entire population and perform

multiple generations to reach similar quality. P3 is able to immediately integrate optimal

versions of each trap into a single individual as they are found by local search, resulting in

smoother fitness improvement than LTGA.

5.3 Computational Expenses

While it is common in evolutionary computation to assume the evaluation function will

dominate algorithm complexity, in some domains this will not be true. Model-based methods

are especially likely to violate this norm. Therefore, in order to assess P3’s quality in solving

problems with efficient fitness functions, we provide data on both its algorithmic complexity

and wall clock time.

5.3.1 Operation Counting

When discussing the asymptotic complexity of P3 in Chapter 3, two aspects eluded

precise analysis: how expensive is model rebuilding and how many gene donations are made.

Figure 5.3 provides some insight into how often these two aspects of the algorithm are

utilized.

Figure 5.3a reports in an algorithmic sense how expensive model rebuilding is for search.
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Figure 5.3: Estimated computation costs incurred by model rebuilding (Figure 5.3a) and
repeated donations (Figure 5.3b) per evaluation as problem size increases.

In order to calculate this value we recorded how many times search rebuilt the model during

each run. Figure 5.3a shows the estimated ratio of model rebuilding cost (N2 per rebuild)

over evaluation cost (N per evaluation). If the cost of model building scaled linearly with

evaluations, the relationship plotted for each problem should be asymptotically constant.

For Nearest Neighbor NK, Ising Spin Glasses, and Rastrigin this is the case. For both Trap

problems and HIFF there is slow growth in the ratio. The problem sizes used for MAX-SAT

were not sufficient to accurately gauge the asymptotic behavior. Together this suggests that

while the cost of building the model is almost linear per evaluation, it can grow slowly.

However, even in the worst case (HIFF) this growth was no more than twice the algorithmic

cost of an evaluation even using 2048 bits.

When applying a crossover subset, P3 tries random donors from the population until one

is found with at least one bit different from the improving solution. In theory this can result

in up to O(µ) operations. Figure 5.3b examines the observed average number of donations
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per evaluation performed. Ising Spin Glass, HIFF, and Rastrigin all achieve effectively

constant behavior here, implying repeated donation does not impact the asymptotic runtime

of P3. Both Trap functions and Nearest Neighbor NK all increase in number of donations as

problem size increases, potentially increasing algorithmic costs. An important note is that

each donation may range in size from a single bit up to N − 1. However, repeated donation

attempts are far more likely to happen with smaller clusters. As such this may cause some

super-linear growth in P3, but it is unlikely to be very high.

5.3.2 Wall Clock Performance

To assess wall clock performance we provide Figure 5.4. Similar to Figure 5.1, each point

represents the median of 100 runs, with unsuccessful runs treated as slower than successful

runs. These results were collected using 2.5GHz Intel Xeon E5-2670v2 processors.

5.3.2.1 Model Building

hBOA and Parameter-less hBOA perform much worse when using wall clock time as

the unit of comparison than when using evaluations. This makes sense as hBOA’s model

building requires Ω(N2) time per evaluation while, under reasonable assumptions, P3 and

LTGA require O(N) time per evaluation. This penalty is most clear on Ising Spin Glass

where hBOA goes from being slightly more efficient than LTGA in terms of evaluations to

three orders of magnitude worse in terms of seconds. As P3 and LTGA require a similar

asymptotic complexity per evaluation as the Hill Climber and (1+ (λ, λ)), no similar change

in ordering occurs.

5.3.2.2 P3

When LTGA is optimally tuned to a single-instance problem with an efficient evaluation

function it can find the global optimum faster than P3 in terms of wall clock time. However,

on randomly generated problem classes P3’s efficient use of evaluations is enough to overtake

LTGA.
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On the four single-instance problems LTGA not only finds the global optimum using less

wall clock time, the factor speedup increases as problem length does. Näıvely this suggests

LTGA is achieving a lower order of complexity. However, for these experiments LTGA is

growing at sub-linear time per evaluation, which is not asymptotically stable due to (at

minimum) the time required to perform an evaluation. We suspect that the true cause is

that N is small enough to be overshadowed by lower order polynomial terms. For example,

LTGA requires O(N/µ) time per evaluation to rebuild the linkage model from the frequency

table. As a result, for small µ model building, and not extracting pairwise frequency, can

dominate runtime.

When applied to randomly generated problem classes, the differences in P3 and LTGA’s

evaluation complexity dominates runtime complexity. Similar to with Figure 5.1, the amount

of speedup P3 achieves over LTGA increases with problem size on Nearest Neighbor NK,

Ising Spin Glasses, and MAX-SAT.

Across both types of problems we find that P3’s time per evaluation grows approximately

linearly. As such, we conclude that P3 requires asymptotically similar amounts of time per

evaluation as the other efficient techniques.
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Chapter 6

Internal Workings

6.1 Population Sizing

A major advantage to P3 is that it does not require the user to set a population size

parameter. Beyond making P3 easier to apply, this also conveys two additional advantages:

diversity scaled to initialization and no need to sacrifice intermediate fitness for eventual

optimality.

Figure 6.1a shows how the number of total solutions stored in the pyramid changes as

problem size increases, similar to Figure 2.4 for hBOA and LTGA’s tuned population sizes.

As expected, the number of concurrently stored solutions increases as problem difficult in-

creases, with the exact behavior dependent on the problem landscape. Figure 6.1b examines

how the number of solutions stored is distributed on the largest problem sizes. Here we see

that the behavior depends on the type of problem. On single-instance problems P3’s stored

variance is relatively low, and generally higher than optimally tuned LTGA’s population size.

On randomly generated problem classes P3 has a much higher variance in stored solutions,

but in general requires smaller sizes than LTGA.

6.1.1 Problem Instance versus Problem Class

Our procedure for tuning LTGA and hBOA outlined in Section 2.6 involved finding the

optimal population size for each class of problem. For real-world black-box optimization this
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(b) Largest problem size

Figure 6.1: The total number of solutions stored by P3 when the global optimum is found.
In Figure 6.1b the red “+” indicates LTGA’s tuned population size.

is realistically the best either algorithm could hope for as tuning to a problem instance or

population initialization involves repeatedly solving the problem being tuned. This limitation

does not exist in parameter-less methods, which scale their diversity based on the problem

instance without needing to solve that instance repeatedly.

To achieve high success rates on randomly generated problem classes, LTGA and hBOA

must use a population which is large enough to solve the hardest instances in that class.

Therefore these methods will have population sizes larger than necessary to solve easier in-

stances in the class. Even on single-instance problems, both methods will require population

sizes large enough to ensure the worst random initialization is diverse enough to solve the

problem, which may be much larger than the best random initialization.

Figure 6.2 highlights how this can effect the required number of evaluations to reach

the global optimum, showing the distribution of results when solving the largest size of

each problem. On each problem except Ising Spin Glass and MAX-SAT, LTGA has a much
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Figure 6.2: Distribution of evaluations required to reach the global optimum for P3 and
LTGA on the largest size of each problem.
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smaller difference between its best and worst runs. This makes sense as LTGA uses the same

population size regardless of instance and because its search progresses generationally. In

contrast P3 has a much higher split, with many runs finishing very quickly. On all problems

except Deceptive Step Trap, P3’s upper quartile is lower than LTGA’s lower quartile. Fur-

thermore, on Deceptive Trap, HIFF, and Ising Spin Glasses, P3’s worst run is better than

LTGA’s best run. For Nearest Neighbor NK, most of P3’s runs finish much faster than the

fastest LTGA runs. However, some of P3’s outliers take approximately as long as LTGA’s

tuned performance. This supports the hypothesis that P3 is able to scale its diversity not just

to the problem class, but to the problem instance or even problem initialization, something

wholly infeasible for tuned population sizing to do.

This tuning distinction is also apparent when comparing Parameter-less hBOA with

hBOA in Figure 5.1. While generally performing worse than hBOA, the difference between

the two algorithms is smallest on randomly generated problem classes. On MAX-SAT,

Parameter-less hBOA actually outperformed both hBOA and LTGA, likely due to its ability

to scale diversity to the problem instance instead of the entire problem class.

6.1.2 Fast versus Optimal

In Section 5.2 we examined intermediate fitness qualities of LTGA and hBOA when us-

ing population sizes tuned to reach the global optimum. As a result, both were exceptionally

ineffective at quickly reaching high-quality solutions. This is because unlike P3, these meth-

ods have an explicit trade off between optimal performance and intermediate performance

caused by their population size parameter.

Figure 6.3 examines the effect of population size on LTGA’s intermediate fitness by re-

ducing LTGA’s population size to one tenth of the tuned value. The two problems shown are

representative of the behavior of using a smaller population size on the other five problems.

Reducing the population size caused LTGA to improve earlier but plateau at lower fitnesses.

This caused LTGA’s success rate to drop from 100 to 0 on Deceptive Step Trap and from 98
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Figure 6.3: Comparison of how reducing LTGA’s population size affects the median best
fitness reached during search.

to 68 on Nearest Neighbor NK. Even when using a reduced population size for LTGA, P3

still achieved a fitness at least as high as LTGA at 80% of intervals. The likelihood that P3

would achieve these pairwise results assuming its median result is actually worse is p < 10−15

according to the binomial test.

6.2 Inner Workings Specific to P3

While analysis of optimization speed is useful from a practitioner standpoint, doing so

provides little insight into algorithm behavior. To better understand how P3 works in detail

we present here a look at some internal features specific to P3.

6.2.1 Crossover

Figure 6.4a shows the proportion of evaluations P3 spends on crossover, as opposed to

hill climbing, and Figure 6.4b shows what percentage of crossover evaluations resulted in a
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(b) Crossover Success

Figure 6.4: For each problem Figure 6.4a shows the proportion of P3 evaluations spend on
crossovers and Figure 6.4b shows the percentage of fitness-improving crossover evaluations.

fitness improvement. Together these figures provide some insight into the role of crossover

within P3. The behavior for each is clearly problem dependent and generally asymptotically

stable as problem size increases.

When solving problems where epistasis can be effectively detected and represented by a

linkage tree, P3 tends to spend fewer evaluations performing crossover and each crossover is

more likely to be successful. Deceptive Trap and Rastrigin are the easiest problems to capture

epistasis, with local search quickly reducing pairwise entropy in each. These are also the

problems where P3 uses the least evaluations on crossover and has the highest success rates

for crossover. At the other extreme are Nearest Neighbor NK and Ising Spin Glasses, which

both have overlapping linkage not representable by a linkage tree. These problems have the

highest crossover usage and lowest crossover success of any problem except Deceptive Step

Trap. While Deceptive Step Trap’s epistasis can be accurately modeled by a linkage tree,

the exponential number of plateaus makes detecting gene linkage very challenging.
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P3’s crossover success rates are lower than LTGA’s, but both produce the same ordering

of the problems when using crossover success such that Nearest Neighbor NK is the least

successful and Deceptive Trap is the most successful problem. Counterintuitively, the use of

hill climbing on the initial population reduces P3’s crossover success, not because it reduces

model quality or the donation pool, but because it is much more challenging to improve

locally optimal solutions than randomly generated ones. LTGA’s crossover benefits from ap-

plication to unoptimized solutions, which makes its aggregate crossover success incomparable

to P3’s.

Even when crossover success rates are quite low, such as Nearest Neighbor NK’s 0.007%

success, the results from Section 5.1 and Section 5.2 show how critical this small percentage

is to optimization. Without crossover, P3’s performance would be identical to the Random

Restart Hill Climber, which was unable to solve even moderately-sized problems and quickly

fell behind P3 in intermediate fitness quality. Therefore even infrequently successful crossover

donations are critical to success. This does, however, suggest a potential avenue for future

improvement by using more successful modeling and donation algorithms.

6.2.2 Pyramid

Another feature unique to P3 is the shape and size of the population pyramid con-

structed for each problem. Figure 6.5a shows the number of solutions stored at each level of

the pyramid for the largest tested problem sizes. Each point is the median size across 100

runs. If a run did not store any solutions at a level it is treated as 0. No point is drawn if the

median run had 0 solutions stored at that level. While pyramid size is affected by problem

size, the overall shape is not. As such the behavior shown in Figure 6.5a is representative of

that for all other tested problem sizes.

With the exception of the dip in Deceptive Step Trap, all of the pyramids show a

monotonic reduction in size as the level increases. This is because a solution must be a strict

fitness improvement over its previous version to be added to a higher level, which becomes
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Figure 6.5: For each problem Figure 6.5a shows the number of solutions stored in each
level of the pyramid and Figure 6.5b shows the percentage of fitness-improving crossover
evaluations at each level.

less likely each time the solution improves. [20] found theoretical evidence and [11] found

empirical evidence that the optimal population size decreases each generation of traditional

evolutionary search. By decreasing in size, P3 implicitly stores more diversity in low levels

and focuses search around high-quality solutions at higher levels. In comparison, LTGA and

hBOA suboptimally use a fixed population size at each generation.

Figure 6.5b examines how crossover success changes at different levels of the pyramid.

At low levels, success gets progressively lower as solution quality increases faster than the

model’s ability to improve solutions. At higher levels modeling becomes more accurate and

donations contain higher frequencies of high-quality building blocks, resulting in increased

crossover success. The highest level of most problems has a low crossover success rate, as

solutions crossing with that level have already been improved by previous operations to the

point where the only improvement would be to create the global optimum, which can only

happen once.
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6.2.2.1 Deceptive Step Trap

The number of solutions stored at the fourth level of Deceptive Step Trap is significantly

lower than that of the third or fifth levels, breaking the decreasing trend of the other six

problems. Figure 6.5b has a similar aberration, with crossover success dropping to 0.0004%

before rebounding and following the more common trajectory. This behavior exists in all

other problem sizes tested, with the dips occurring at exactly the same level.

This behavior is rooted in the peculiar nature of this landscape. After local search, all

traps in all solutions have a total number of 1 bits equal to either 0, 1, 3, 5, or 7 as these

correspond to the local optima when using k = 7 and s = 2. Crossover easily overcomes

the two-bit plateaus, and as a result solutions in the second level generally do not contain

the lowest fitness local optima (5 bits set) and the third level has few traps set to the next

worst local optima (3 bits set). As a result, solutions that reach the third level can only

be improved by replacing the deceptive local optima (0 and 1 bits set) with the global

optimum (7 bits set). The global optimum is rare in the population, and with 8 ways to

represent local optima linkage learning is inaccurate. Therefore it is unlikely for crossover

to be successful, meaning few solutions will be added to the fourth level. Solutions that do

improve by definition must have a higher frequency of optimal trap settings, meaning level

four’s model will be more accurate and donations are more likely to contain optimal trap

values. Thus the level size and crossover success rates increase after contracting around level

four.
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Chapter 7

New Problem Domain: Gray-Box

Optimization

All of the work presented so far has focused on the black-box optimization domain.

These problems are characterized by a complete lack of available problem-specific informa-

tion. A black-box algorithm can only propose a solution and measure the quality of that

solution, using only that information to inform its search. Optimizers that are successful

in this domain generalize well as there are minimal requirements to apply them to a new

problem.

However, for many real-world applications there is potentially more information avail-

able. The other end of the spectrum is white-box optimization, in which the algorithm knows

the exact problem class it is trying to solve. This domain is dominated by problem-specific

search heuristics [6, 32, 39] that leverage all aspects of the problem to achieve efficiency.

This makes such algorithms very specific, such that outside of their target domain they ei-

ther cannot be applied or their application has no guarantee of search quality. As such, each

must also be designed by hand for each new problem class, requiring deep understanding of

the problem and the time to develop the algorithm.

In between those two domains there is another domain: gray-box optimization. In

this domain some features general to multiple problem classes are exploited, beyond just

an evaluation function. The goal is to create optimization methods that benefit from these
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features without those methods becoming specialized to a small set of problem classes.

In addition to the black-box evaluation function, we add in two more exploitable features

accessible to search algorithms: known variable epistasis and partial function evaluation.

7.1 Problems in this domain

To understand the types of problems in this domain, let us first examine a simple

artificial problem we’ll call 3-Equal. The quality of a solution is determined by how often

three consecutive bits are set to the same value. As a result, the maximum fitness is N (all

zero or all one) and the minimum fitness is 0.

The 3-Equal problem has both known epistasis and partial function evaluation. From

the definition we know that each bit is epistatically linked to the two variables that precede

it and the two that follow it. There are no other non-linear relationships with that bit. This

also means it is possible to evaluate the fitness contribution of that bit only knowing the

value of at most four others, regardless of the size of N . As we’ll discuss in Section 7.3 this

has enormous implications on search efficiency.

Every problem discussed in Chapter 4 except HIFF fits into this domain. Deceptive

Trap and Deceptive Step Trap both can have known epistasis (which bits are in which traps)

and partial reevaluation (score a single trap), the same as Rastrigin (separable). All NK

problems where K ≪ N have a knowable epistasis table and the fitness contribution of each

subfunction is calculable without evaluating the entire string. Similarly, MAX-SAT’s clause

list specifies epistasis, with each clause independently evaluable. Ising Spin Glasses are even

simpler, with each edge in the graph evaluable using only two problem variables.

Beyond MAX-SAT and Ising Spin Glasses, which are interesting real-world problems

unto themselves, many NP -Hard real-world problems can be expressed in these two require-

ments. This is especially true of graph problems.

• Dominating set: Find a minimum vertex set such that all vertices are either in the

set or adjacent to something in the set. The fitness of a vertex is determined by if it is
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in the set (add to set size) and if it is dominated (add to undominated size). Epistasis

is the adjacency set for each vertex, plus itself. Used in wireless sensor networks [40].

• Vertex Cover: Find a minimum vertex set such that all edges are incident on at

least one vertex in the set. Epistasis and fitness are calculated using each vertex (add

to set size) and each edge (add to uncovered size), independently. Used in network

security [28].

• Max-Cut: Find the set of vertices that maximize the number of edges incident on

exactly one vertex in the set. Epistasis and fitness are calculated using each edge

independently. Used in VLSI design [7].

• Set Cover: Given a universe of elements and a set of subsets of that universe, find

a minimum set of subsets whose union recreates the entire universe. Each element

in the universe is epistatically linked with subsets that contain that element (add to

uncovered size) and each subset also contributes directly to fitness (add to set size).

Used in computational biology [21].

• Zero-One Linear Programming: Given a set of constraints, maximize an objective

function, all of which are linear combinations of variables. Each constraint creates an

epistatic relationship between the variables in that constraint, and fitness is a linear

combination of variables allowing for partial evaluation. Used in power systems [1].

7.2 Formal Requirements

In order to draw conclusions about search efficiency, it is necessary to make the features

of the target problem domain more explicit.

The overall quality of a solution must be equal to the sum of applying all subfunctions to

that solution, where a subfunction can be any mapping from a subset of problem variables to

a measure of quality. As a consequence each subfunction must be independently evaluable.
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The mapping of variables to subfunctions (epistasis) must also be known, and the maximum

number of variables participating in each subfunction is represented by the variable k. To

achieve maximum efficiency k should be constant in regards to problem size. The cost of

evaluating a subfunction should also be bounded by some function b(k). For example, on

MAX-SAT k is the clause size, with b(k) linear in clause size, and the fitness equal to the

sum of all clause terms. On NK, k = K+1 as each subfunction in NK depends on a variable

and K others.

As the mapping of variables to subfunctions is known, it is also possible to calculate c,

which is the maximum number of subfunctions any variable participates in. Algorithms are

most efficient when c is constant with respect to problem size. For example for all Nearest

Neighbor NK landscapes all variables participate in exactly c = k = K + 1 subfunctions.

Randomly generated MAX-SAT instances have no guarantee that c is constant, but the

expected number of subfunctions in which a variable appears is equal to the clause-to-variable

ratio times the clause size, or 12.81. Assuming that all subfunctions use k variables and each

variable appears in c subfunctions provides a bound on the total number of subfunctions cN
k
.

7.3 Efficient Local Search

Section 2.1 presented an efficient method for performing local search for the black-box

domain. Each potential bit flip, referred to here as a move, requires the entire solution to

be reevaluated taking Ω(N) time. Furthermore, each time a fitness-improving move is made

all previously tested moves must be tested again. As a result, improving a random solution

to be a local optimum using this algorithm requires between Ω(N2) and O(IN2), where I

is the number of improving moves. The lower bound is achieved when the while loop in

Figure 2.1 runs a constant number of times. For instance, on One Max, Deceptive Trap,

Deceptive Step Trap, and HIFF all possible single bit improvements are found during the

first pass through the loop. The worst case is when each loop is expected to only make a

single improving move, which causes all N moves to be reevaluated once per improvement,
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1: procedure InitializeDelta(solution)
2: fitness← 0
3: ∀mdelta[m]← 0
4: for all s ∈ subfunctions do

5: pre move← fs(solution)
6: fitness← fitness + pre move
7: for all m ∈ affected moves(s) do
8: post move← fs(solution⊕m)
9: delta[m]← delta[m] + (post move− pre move)
10: end for

11: end for

12: end procedure

Figure 7.1: Algorithm used to efficiently determine the change in fitness associated with each
potential move from a given solution.

such as on the Leading Ones problem.

Local search in the gray-box domain can be significantly more efficient [37]. This is due

to two consequences of the domain: the fitness effect of making a move can be calculated in

O(1) time, not O(N), and the number of moves that must be reevaluated per improvement

is O(1), not O(N). This results in local search requiring O(N + I) time. If I is within a

constant factor of N , this means generating random local optima is at most a constant factor

slower than generating random solutions in the search space.

To achieve this performance, this local search technique begins by determining the

change in fitness caused by making each potential move m, denoted as delta[m]. Figure 7.1

calculates the delta for each m starting at a given solution, as well as the fitness of the

solution. Here, fs evaluates the subfunction s on the given solution, and solution⊕m is the

result of making move m on solution. For each of the cN
k

subfunctions InitializeDelta

must determine the fitness of that subfunction before and after making each of k moves that

overlap that subfunction. Combined, this results in less than cN2b(k) operations, which is

O(N) assuming c and b(k) do not grow with N . Also, this procedure calls fs only k + 1

times more than is required to find the fitness of the solution itself.

When performing hill climbing, only moves m such that delta[m] > 0 are fitness-
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1: procedure MakeMove(m)
2: fitness← fitness+ delta[m]
3: for all s ∈ affected subfunctions(m) do
4: pre both← fs(solution)
5: just m← fs(solution⊕m)
6: for all m′ ∈ affected moves(s) do
7: just m′ ← fs(solution⊕m′)
8: post both← fs(solution⊕m⊕m′)
9: delta[m′]← delta[m′]− (just m′ − pre both) + (post both− just m)
10: open(m′)
11: end for

12: end for

13: close(m)
14: solution← solution⊕m
15: end procedure

Figure 7.2: Algorithm for updating stored information related to a solution when making a
move.

improving moves. Initially all moves are considered open, meaning that they could po-

tentially be fitness improvements. During each iteration a random move m is chosen from

open, and delta[m] is checked. If m is a fitness-improving move, MakeMove(m), shown in

Figure 7.2, is called.

MakeMove updates the fitness and delta values to reflect the change in the solution.

The fitness of the solution after making the move does not require any calls to fs as delta[m]

already stores the change in fitness. This process requires updating all of the delta values for

the k moves that interact with each of the c subfunctions affected by m. This update replaces

outdated information that used the original solution (just m′ − pre both) with how much

the move improves over the new solution (post both − just m). As delta[m′] has updated,

m′ could potentially become a fitness-improving move and is therefore added into open. As

m was just flipped, it cannot be a fitness improvement and is therefore removed from open.

In total this requires less than ck4b(k) time, which is O(1) assuming c, k, and b(k) do not

scale with N .

Each time an improving move is found at most ck additional moves are added to open.

If open ever becomes empty a local optimum has been reached. Therefore the number of
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times delta[m] is checked is no more than N + Ick. As a result the total cost of improving

a random solution until it reaches a global optimum is only O(N + I).

As an interesting addition, this method can actually be used to efficiently perform

approximate steepest ascent hill climbing [37]. Instead of choosing moves from open at

random, the moves are binned using their delta values. Moves are then chosen randomly

from the highest quality non-empty bin, and changes in delta can cause moves to change bins.

Assuming the total number of bins does not increase with N , both steps can be done in O(1)

time. However, at least for MAX-SAT, there is evidence that when used in combination with

subsequent search heuristics the less greedy, first-improvement algorithm was more effective.

7.4 Efficient Hamming Ball Search

Another consequence of the gray-box domain is that increasing the hamming-ball radius

of local search becomes more tractable [4]. A hamming ball is the collection of all solutions

within a given hamming distance, or radius, from a given solution. Instead of improving

solutions until no single bit flip is a fitness improvement, the Hamming-Ball Hill Climber

(HBHC) finds solutions which cannot be improved by flipping r or fewer bits.

In a black-box setting, verifying that no r-bit flip can improve a solution requires testing

all
(

n
r

)

neighbors. This quickly becomes intractable as r increases. However, in the gray-

box domain not all combinations need to be tested. Consider that if two variables do not

participate in the same subfunction, the relationship between their effects is, by definition,

additive. As such there is no way for flipping both together to be a fitness improvement

without flipping one of them being a fitness improvement. Therefore it is not necessary to

try all possible r-sized subsets of the solution.

Consider the 3-Equal problem. If there are at least two loci between xi and xj then they

do not share a common subfunction. Therefore, the change in fitness resulting from flipping

both is equal to delta[xi]+delta[xj ]. If delta[xi] ≤ 0 and delta[xj ] ≤ 0 then delta[xi, xj] ≤ 0.

Now consider a solution such that the first half is set to 0 and the second half is set to 1.
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1: procedure ConnectedInducedSubgraphs

2: closed← ∅
3: found← [ ]
4: for all v ∈ V do

5: closed← closed ∪ {v}
6: found← found+CISG(v, ∅, closed, ∅)
7: end for

8: return found
9: end procedure

10: procedure CISG(v, subset, closed, open)
11: subset′ ← subset ∪ {v}
12: found← [subset′]
13: if |subset′| ≥ r then return found
14: end if

15: closed here← ∅
16: open′ ← open ∪ adjacent(v)
17: for all v′ ∈ open′ such that v′ /∈ closed do

18: closed here← closed here ∪ {v′}
19: closed← closed ∪ {v′}
20: recurse←CISG(v′, subset′, closed, open′)
21: found← found+ recurse
22: end for

23: closed← closed− closed here
24: return found
25: end procedure

Figure 7.3: Algorithm to recursively find all connected induced subgraphs of size r or fewer.

Even though c = 3 there is no way to improve this solution without simultaneously flipping

all 0’s to 1’s or vice versa. Any smaller flip will not be a fitness improvement.

To determine which of the
(

n
r

)

flips that must be checked, consider a graph where each

vertex is a variable in the solution. An edge exists between two vertices if and only if the

corresponding variables participate in at least one subfunction together. Restated, there is

only an edge if the two variables have a direct, non-linear relationship. The maximum degree

of a vertex in this graph is c(k − 1), making it sparse for sufficiently large N . If a subset of

vertices is connected then it is possible that flipping all of those variables together will result

in a fitness improvement even when flipping any subset of the subset will not. However, if

the subset is not connected then each component of the subset can be tested independently.
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In order to determine which moves in the hamming ball must be evaluated, we developed

ConnectedInducedSubgraphs given in Figure 7.3. CISG is a recursive helper function

that finds all subgraphs that contain a given subset and a given vertex v, while excluding any

other vertices added to closed. To find all subgraphs, CISG is called once for each vertex in

the graph, such that closed contains all previously searched vertices, and subset = open = ∅.

In the initial call all desired subgraphs that contain v are found, which is why v remains in

closed to prevent duplicate subgraphs from being returned.

At each recursive level CISG expands open to include any vertices adjacent to v in the

graph. By construction this means that open′ contains all possible ways of adding a single

vertex to the current subset′. As each v′ is tested it is temporarily added to closed to prevent

recursive calls from adding it again to subset′.

When applied to the sparse graphs inherent in the gray-box domain, this algorithm

requires O(r!(ck)rN) time, which reduces to O(N). The time spent in each call is dominated

by the loop over open′. In the worst case, open′ increases in size by the full adjacency of

v, which is bounded by ck. This creates a worse-case complexity for a single top-level call

of
∏r

i ick = r!(ck)r. This must be called once for each of the N variables resulting in

O(r!(ck)rN).

As this algorithm finds all connected subsets in O(N) time for a fixed r, the number of

moves that must be tested to determine if a solution is an r-bit local optimum is O(N). This

means that while on Nearest Neighbor NK with N = 8000, K = 5, and r = 3 the black-box

method would require 85 billion checks, the gray-box method requires only 248,000. Even

when allowing connections to be completely random, which results in c increasing with N ,

the gray-box method still only requires approximately 375 million checks, two-and-a-half

orders of magnitude less than assuming a black-box.

From these conclusions it is possible to modify the hill climber presented in Section 7.3

to efficiently find r-bit local optima [4]. The only change is that instead of having a move

and delta for each bit, there must be a move and delta for each connected induced subgraph
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1: procedure Iterate-TUX

2: Create random solution
3: Hamming-Ball Hill Climb solution
4: for all Ti ∈ T do

5: if Ti is empty then

6: Ti ← solution
7: return

8: end if

9: Cross solution with Ti to create 2i+1 offspring
10: Hamming-Ball Hill Climb each offspring
11: solution← best of offspring, solution, and Ti

12: Ti ← empty
13: end for

14: Add solution to end of T
15: end procedure

Figure 7.4: One iteration of TUX optimization. T is an ordered list of solutions, each position
of which could be empty, awaiting a crossover partner.

of r or fewer bits. The efficiency analysis is unchanged with the exception that the constant

increases exponentially with r as the number of delta values that must be updated each

move increases. Still, with c, r, and k constant with respect to N , it is possible to find r-bit

hamming ball local optima in O(N + I) time.

7.5 Tournament Uniform Crossover: TUX

Hamming-Ball Hill Climbing is not sufficient to efficiently find the global optimum

on problems with even moderate epistasis [4]. This is because, like all random restart

hill climbers, it relies on random initialization to fall inside the global optimum’s basin

of attraction.

To remedy this limitation, we set out to develop a minimally complex memetic al-

gorithm to help increase this probability. Figure 7.4 presents the Tournament Uniform

Crossover (TUX) algorithm, which combines simplistic selection with equal probability uni-

form crossover, the most basic unbiased crossover, to generate starting solutions likely to be

in the global optima’s basin of attraction.
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Conceptually TUX iteratively builds a structure similar to a single-elimination bracket

for solutions. Each “match” in the tournament takes in two candidate solutions, produces

offspring via uniform crossover, applies hill climbing to each offspring, with the “winner”

being the best of all those solutions. The tournament “bracket” is constructed iteratively,

storing an initially empty list of solutions T , such that |T | is equal to the height of the

tournament. Iterative construction is possible because, when a sub-bracket is complete, only

a single solution emerges and solutions only need to be stored until their partner is found.

TUX is fully elitist but does not prematurely converge. This is because search continuously

integrates new randomly generated solutions through other parts of the bracket. Whenever

the top of the current bracket is reached, TUX doubles the size of the virtual tournament.

When crossing solutions at Ti, TUX produces 2i+1 offspring. This relationship ensures

that in total all levels of the tournament, including random initialization, perform the same

number of hill climbing steps. It also shifts the focus of search toward areas expected to be

of higher fitness. The expectation is also that it becomes progressively harder to improve

solutions the higher up the tournament you advance, so more attempts are necessary to

create new useful solutions.

The primary advantages of TUX are that it does not introduce any new parameters

(though it still requires an r for the hill climber) and is relatively simple to implement. Even

so it allows for learning from previous local optima and, as Section 9 will show, it is quite

effective at optimization.
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Chapter 8

Gray-Box P3

P3 represents a natural method for integrating the HBHC into a global optimization

algorithm as P3 already utilizes local search. While HBHC’s inclusion adds a parame-

ter, Section 9.1 and Section 9.2 provide evidence that r can be fixed to 1, preserving the

parameter-less nature of P3. Beyond using HBHC, there are also a number of ways in which

P3 can be made more efficient by leveraging the additional information available in the

gray-box domain.

First and foremost, linkage learning is no longer necessary. By definition the direct non-

linear relationships between variables are known. As a result, Gray-Box P3 does not need

to store the pairwise frequency information, reducing its required memory from O(N2) to

O(N). Instead, we have developed a method for creating a linkage tree that learns clusters

from the same dependency graph defined in Section 7.4. The goal is for each cluster to be

a connected induced subgraph, with the size of clusters mirroring those produced by the

agglomerative linkage learning process normally used with P3. To form a single cluster, a

random graph search is performed from a random starting vertex until a desired number of

unique vertices have been explored. Cluster sizes are set recursively. For each cluster of size

l > 1 a cluster of size a and a cluster of size l − a are also created, with a chosen uniformly

from the range [1..l− 1]. This recursive process begins by initializing l = N and splitting to

form the first two clusters.

This linking algorithm has a number of useful properties. First, it creates exactly 2N−2
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clusters, distributed in size similarly to the black-box clustering algorithm. Performing a

random graph search to find l unique vertices requires O(lck) time, meaning cluster creation

is optimally efficient. The cluster splitting process has identical properties to random pivot

quicksort, meaning the sum of cluster sizes is O(N logN) in the average case. This efficiency

allows new clusters to be created before every mixing event, unlike Black-Box P3 where they

are created only when new solutions are added to the population. For simplicity the clusters

are shuffled after they are created, not sorted on size like in Black-Box P3.

Beyond efficiency, there are good reasons to believe these clusters will be useful for

search. The closer two variables are in the dependency graph, the more likely they are to

appear in the same cluster. All variables on average are expected to appear in at least one

cluster, but variables that are central in the graph will appear in more clusters than those

on the periphery. The more paths of a given length between two variables, the higher the

probability of them being in the same cluster. Unlike Black-Box P3, this linkage tree does

not require clusters to be nested, allowing more diversity in the types of clusters appearing

in a single tree.

In effect the clusters are sampling moves that the HBHC would make if r ≥ l. For any

solution in the search space that is not globally optimal, there must exist some move that will

improve its quality. However, this move may be arbitrarily large and it is intractable to test

all possible moves of even moderate size. By sampling from all possible large moves, we can

maintain tractability while gaining a potentially non-zero probability of improvement. As

clusters are used to donate values between solutions, these moves are always in the direction

of previously found high-quality solutions. This assumes that the density of high-quality

solutions is higher than average between good solutions.

Another efficiency gain is that each time a donation is made, only the affected part of the

solution’s fitness needs to be recalculated. As a result, the number of subfunction evaluations

required to determine the change in fitness is only O(l). This also allows for Gray-Box P3

to efficiently reapply hill climbing after each donation as only affected moves need to be
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rechecked. As a result, a donation and its resulting modifications from hill climbing are kept

only if the new local optimum is at least as fit as the solution before the donation occurred.

All combined, a single donation plus returning to a local optimum requires O(l + I) time,

while just the donation in Black-Box P3 requires O(N).
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Chapter 9

Benchmarking Gray-Box P3

To compare these gray-box optimization techniques we have chosen NKq-Landscapes [4]

and Ising Spin Glasses [30]. NKq-Landscapes create a collection of randomly generated prob-

lem instances given a higher-level problem class description. Each instance is described by a

series of N subfunctions, each corresponding to a variable in the solution. This subfunction

uses its variable and K other variables in the solution to calculate a fitness value. Fitness

values are represented as a randomly generated lookup table, such that table entries are

integers in the range [0..q − 1]. As each subfunction reads K + 1 variables, the table’s size

and q are set to 2K+1. The quality of a solution is equal to the sum of the values returned

by these subfunctions.

In this work we consider two methods for choosing the K variables each subfunction

depends on: Nearest Neighbor NKq and Unrestricted NKq. In Nearest Neighbor NKq

each variable depends on the K variables that sequentially follow it in the solution, with

dependencies wrapping around the end of the solution. Landscapes of this form can be solved

in polynomial time [39], allowing comparisons of how quickly each optimization algorithm

can find a global optima. Nearest Neighbor NKq also ensures that c = k = K + 1 and that

both c and k do not increase as N increases, meaning the efficiency conclusions made in

Section 7.4 are applicable.

Unrestricted NKq landscapes draw theK dependencies at random without replacement.

For K > 1 it is NP-Hard to find the global optimum of these landscapes. This also means
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that while k remains fixed, the maximum number of subfunctions a variable appears in (c)

can increase as N increases. As a result, some of the efficiency claims in Section 7.4 may not

be applicable.

Ising Spin Glasses are a type of MAX-CUT problem relevant in statistical physics. Each

spin glass encodes spins (vertices) and their relationships (edges) with the goal of assigning

each spin a direction that minimizes relationship energy. Just as with NKq-Landscapes, Ising

Spin Glasses as a whole are NP-Hard, but the 2D± J subset is polynomially solvable [30]1.

In this subset the graph is a 2D toroidal grid, with edge weights of ±1. In gray-box terms,

problems of this subset have k = 2 and c = 4 regardless of N .

For each problem class tested, we generated 50 instances. Extreme problem sizes were

chosen to stress each algorithm. Each method was run once on each instance, and limited

to 3 hours of computation and 4 GB of memory. Runs were performed on 2.5GHz Intel

Xeon E5-2670v2 processors using the C++11 code available from our website.2 Each time

the run achieved a new best fitness we recorded the current amount of processing time used.

Timing includes the discovery of subgraphs to allow for comparison between different radius

values. When reporting the “best” fitness for an instance we mean the best fitness found by

any method before the time limit is reached. On all Nearest Neighbor NKq instances the

“best” fitness is also the global optimum, verified using dynamic programming. For Ising

Spin Glass the “best” fitness was the global optimum 44 out of 50 times.

All figures report the median, upper and lower quartiles for either percentage error or

seconds to reach the best. A run’s percentage error is equal to the difference between its

fitness and the best, divided by the best. When reporting seconds to reach the best fitness,

any run that did not find the best fitness is treated as slower than any run that did. If the

median run was unsuccessful, no data point is drawn.

1http://www.informatik.uni-koeln.de/spinglass/
2https://github.com/brianwgoldman/GrayBoxOptimization/releases
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Figure 9.1: Comparison of how radius affects solution quality at termination. For NKq-
Landscapes N = 6, 000 and K = 4 and for Ising Spin Glasses N = 6, 084. Range of radius
values limited by memory constraints.

9.1 The Effect of Radius

The only algorithm parameter in the HBHC, TUX, and Gray-Box P3 is the radius of

the hamming ball. Therefore our first experiments are designed to determine the effect of

this parameter on solution quality.

Figure 9.1 shows the effect on final solution fitness as r increases. As expected from [4],

the HBHC obtains higher quality as r increases, with the magnitude of the improvement

decreasing. TUX has a similar relationship and outperforms HBHC on all three problems

for all r values. Regardless of r, Gray-Box P3 outperforms both, with almost all r values

reaching the same best fitness. For Nearest Neighbor NKq, Gray-Box P3 finds the global

optimum in every run for r < 4, with only a single unsuccessful run at r = 4.

To further examine the effect of r on Gray-Box-P3, Figure 9.2 shows the number of

seconds required to reach the global optimum. Setting r = 1 was the most efficient configu-

ration for all K > 1, supporting the trend that Gray-Box P3 works best with small r values.

With K = 1, the landscape is smooth enough that with a sufficiently high r the HBHC is

able to find the global optimum.
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Figure 9.2: Time required for Gray-Box P3 to reach the global optimum of Nearest Neighbor
NKq instances with N = 6, 000.

9.2 Fitness Over Time

Reaching high-quality solutions quickly can sometimes be more important than reaching

the global optimum eventually. Figure 9.3 shows how solution quality progresses for each

algorithm. HBHC and TUX have significant early delays caused by their high r values.

Larger r’s require a large amount of initial partial evaluation before performing hill climbing.

After one full iteration HBHC effectively stalls, with TUX continuing to improve. Both are

eclipsed by Gray-Box P3, which quickly descends to the global optimum, outperforming

HBHC and TUX at every time point.

Figure 9.4 further illustrates the effect of r on Gray-Box P3. On both Nearest Neighbor

NKq and Ising Spin Glasses, increasing r does not change the shape of the curve. Instead,

the quality reached is simply time shifted, such that given more time higher r values will

reach the same quality. As a result, for these problems we conclude that higher r values

simply add more expense for no overall gain. On Unrestricted NKq this relationship is less

certain, with r = 1 potentially having a different, and worse, shape than r > 1. However,
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Figure 9.3: Comparison of solution quality during optimization on a log-log scale for different
algorithms. For NKq-Landscapes N = 6, 000 and K = 4 and for Ising Spin Glasses N =
6, 084. Each algorithm uses its best-found r value.

due to memory and time restrictions it is difficult to know if this trend continues.

9.3 Scalability

Perhaps the most critical test of an optimization algorithm’s quality is how it scales

as problem difficulty increases. To test this behavior, we ran all three algorithms using the

optimal r values determined experimentally in Section 9.1, varying N from 200 to 10,000

for NKq and 196 to 6,084 for Ising Spin Glass. In these plots we also include the black-box

version of P3 to show the efficiency gains available for using gray-box information.

Figure 9.5 and Figure 9.6 show how long each algorithm required to reach the best overall

quality found on Nearest Neighbor NKq and Ising Spin Glasses, respectively. For Nearest

Neighbor NKq the best found is the global optimum for all runs of all lengths, while for Ising

Spin Glasses the best quality found by any method was worse than the global optimum in

7 runs of N = 4, 096 and 21 runs of N = 6, 084. The median run of the HBHC was unable

to reach the best fitness for any problems tested using more than 200 bits. TUX performed

somewhat better, reaching the best fitness more than half of the time on problem sizes up to

N = 800 and N = 625 for Nearest Neighbor NKq and Ising Spin Glass, respectively. Black-
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Figure 9.4: Comparison of Gray-Box P3’s solution quality during optimization on a log-log
scale for different r values. For NKq-Landscapes N = 6, 000 and K = 4 and for Ising Spin
Glasses N = 6, 084.

Box P3, which does not utilize partial reevaluation or the HBHC, was able to consistently

reach the best fitness until it it hit the memory limit on N = 2, 000 for NKq and N = 2, 916

for Ising Spin Glass. This limitation is due to Black-Box P3’s O(N2) memory requirements.

For all sizes of both problems, Gray-Box P3 was the fastest to reach the best fitness. On

Nearest Neighbor NKq the improvement is substantial, with no alternative finishing within

two orders of magnitude. On its largest successful problem size, the mean time to completion

for Black-Box P3 was 375 times slower than Gray-Box P3. Using the Mann-Whitney test

to compare their run times results in p < 10−16. This is especially impressive considering

previous work has shown Black-Box P3 is faster to reach the global optimum than other

leading black-box methods [10]. Applying regression, we estimate that Black-Box P3’s time

to global optimum on Nearest Neighbor NKq is O(N2.75) while Gray-Box P3’s is O(N1.98).

The results on Ising Spin Glass are similar, with a less extreme difference between Black-

Box P3 and Gray-Box P3. In general, Gray-Box is the fastest technique to find the global

optimum by an order of magnitude, with Black-Box P3’s mean run finishing 4.6 times slower

than Gray-Box on N = 2, 025. Using the Mann-Whitney test to compare their run times

results in p < 10−14. The regression line suggests that while Gray-Box P3 scales at O(N3.35),
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Figure 9.7: Relative qualities of each method as problem size increases on Unrestricted NKq
with K = 4.

Black-Box P3 scales at O(N3.05).

As Unrestricted NKq does not have a known global optimum, and the different algo-

rithms rarely found the same best fitness, Figure 9.7 compares the error for each technique

at termination. Gray-Box P3 in general finds the best fitness, with TUX occasionally per-

forming better. When N > 2, 000, Gray-Box P3 finds better quality solutions than all other

methods for every instance. Using the Mann-Whitney test to compare the fitness of Gray-

Box P3 and TUX when N = 10, 000 results in p < 10−16. HBHC and Black-Box P3 only

reach similar qualities as TUX and Gray-Box P3 when N = 200, doing so in 4 and 7 runs,

respectively. As the problem size increase TUX begins to fall behind Gray-Box P3, with the

HBHC stabilizing at about 2.5% worse than the best found. Here Black-Box P3 performs

worse than the other techniques, falling further behind as the problem size increases.

9.4 Discussion

In line with previous work, we have found that HBHC cannot effectively find global

optima on problems with even moderate epistasis. In general, it also obtains almost no
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improvement in fitness after only a few restarts. We designed TUX as a simplistic way

of choosing restart locations based on previously found local optima. Unlike HBHC alone,

TUX was able to continue improving given more time, finding global optima on problems

three times as large.

TUX’s effectiveness is likely due to the HBHC acting as a super repair operator for uni-

form crossover. Given a sufficiently large r the HBHC can return sections of the crossover

offspring to either parent’s original version of a given subfunction. The HBHC is elitist

meaning there is a bias toward returning to the better of the two parents’ versions. Further-

more, by being so disruptive, uniform crossover potentially allows for the HBHC to also find

unrelated improvements.

While TUX improves over plain HBHC, Gray-Box P3 is required to perform truly

successful global optimization. Gray-Box P3 replaces näıve local search with the HBHC

and utilizes known non-linear relationships instead of statistical linkage learning. On NKq-

Landscapes this drastically improves search effectiveness. A major source of this improve-

ment is likely how difficult it is for Black-Box P3 to learn linkage relationships on these

landscapes. Furthermore, Gray-Box P3 can perform partial reevaluation and efficient hill

climbing during the mixing phase.

Gray-Box P3’s success is less dramatic on Ising Spin Glasses. While it still outperformed

all competitors, Black-Box P3 may actually scale better to larger problems. One explanation

for this deviation is that Ising Spin Glasses require more exploration of equal fitness plateaus.

For instance, in Figure 9.3 and Figure 9.4 there is a significant pause in improvement when

Gray-Box P3 reaches the second-best fitness in the landscape. Nothing in its design suggests

that Gray-Box P3 should be more effective at neutral drift. Another potential issue is that on

these landscapes the importance of each non-linear relationship may be detectably unequal.

As a result, Black-Box linkage learning may better cluster variables that have meaningful

impact on fitness while Gray-Box assumes all are equally important. A useful direction for

future work would be to explore methods of performing efficient learning on top of the known
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variable interactions.

Somewhat surprising is the difference in behavior between the polynomially solvable

problems and Unrestricted NKq. While Black-Box P3 performed well in the former, it was

the least successful in the latter. The optimal radius for Gray-Box P3 also shifted from 1

to 2. A potential explanation is that in both Ising Spin Glass and Nearest Neighbor NKq

the number of unique variables within a given radius from a given variable is significantly

lower than in the worst case. This explains why on Unrestricted NKq even moderately high r

values hit our memory limit. For Black-Box P3 this may also be causing increased difficulty in

linkage learning as variables become indirectly dependent on much larger sets. Furthermore,

Black-Box P3 may be benefiting from an increased rate of duplicate dependencies on Nearest

Neighbor NKq not present in Unrestricted NKq.

While the inclusion of HBHC into Gray-Box P3 introduces a parameter, it requires triv-

ial configuration. In the worst case there may be a handful of r values to test. Furthermore,

our evidence suggests setting r = 1 is quite powerful, with higher values likely to be only a

time shift in quality. This is in contrast to r’s role in HBHC, where low r values are never

expected to reach the same quality as higher r values. Therefore we conclude that Gray-

Box P3 maintains the out-of-the-box quality of Black-Box P3, while drastically improving

efficiency for this new domain of problems.
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Chapter 10

Understanding When P3 Excels

The ruggedness and high dimensionality of most interesting landscapes makes them

challenging to visualize or otherwise analyze. However, doing so can be helpful in quantifying

the difficulty of a problem, and how to best design algorithms to deal with those difficulties.

Similarly, knowing which characteristics favor a particular algorithm can help researchers

choose the algorithm most likely to perform well on their problem. To further this end,

we explore the landscapes used in previous sections to understand what makes a landscape

suited for P3 optimization.

10.1 Big Valley

One method for visualizing the global structure of a landscape is to examine the re-

lationship between local optima [2]. In its original form, this process involves generating

thousands of random solutions and then applying local search to each. This information is

then displayed in two-dimensional plots: distance from the nearest global optimum and fit-

ness difference from the global optima. For a number of interesting problems, a “Big Valley”

of local optima exists, such that the higher a solution’s fitness is, the closer it is in represen-

tation space to the global optimum. This result suggests that focusing search around known

high-quality solutions increases the likelihood of finding even higher-quality solutions. This

relationship is an underlying assumption of all evolutionary-based search methods, including
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Figure 10.1: Example change of enumeration ordering. The gray loci represent all depen-
dencies for some move mi. By reordering, mi’s lowest index dependency improves from 2 to
4.

P3.

We have set out to extend this method of landscape visualization by considering not just

a sample of local optima, but all local and global optima in the landscape. When considered

as a black-box, finding all local optima requires each solution to be enumerated and all

of its neighbors to be checked for fitness improvements. This enumeration is prohibitively

expensive for even trivial landscapes, requiring Ω(N2N ) operations. However, by leveraging

the gray-box domain, some efficiency improvements can be made.

10.1.1 Quickly Finding All Local Optima

For gray-box problems, we can determine the set of all fitness-improving moves from a

given solution in O(N) time and this set can be updated in O(1) time when flipping a single

bit. Therefore, checking if each new solution is locally optimal requires O(1) time and the

overall enumeration process requires O(2N).

Due to the limited non-linearity of the gray-box domain, it is possible to exclude large

parts of the search space without missing any local optima. Consider the representation

presented in the top of Figure 10.1. In a black-box domain, enumeration would progress

as a binary counter, treating index zero (symbol A in the genome) as the least significant

bit. This ensures that before changing index i, all possible settings of index 0 through

i− 1 have been tested. The gray-box domain makes it possible to skip combinations which
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cannot be local optima. In Figure 10.1 there exists a move mi which is a fitness improvement

when enumeration starts (all variables set to 0). Due to the known relationships between

variables, we know that the quality of mi only depends on variables C, E, F , and H .

Therefore, until one of those four variables are modified, the solution cannot be a local

optimum. As a result, solutions 00000000, 10000000, 01000000, and 11000000 cannot be

local optima and can therefore be skipped during enumeration. More generally, if at any

point during enumeration there exists a fitness-improving move, no local optima can exist

until at least one dependency of that move is modified.

This knowledge can be effectively exploited to skip parts of the enumeration, as shown

in Figure 10.2. Before starting, each move is put into a table move bin based on that move’s

lowest index dependency. This is the first index which can be modified by enumeration

to change the fitness effect of making that move. In order to determine how much of the

enumeration can be skipped, we must find the highest index in move bin which contains a

fitness-improving move, as done by FindNextIndex. If no move is fitness-improving, then

a local optimum has been found.

The AllLocalOptima algorithm in Figure 10.2 works by repeatedly calling Find-

NextIndex and adding 1 to the resulting index position’s value. Initially AllLocalOp-

tima uses FindNextIndex to check all moves (initializes index to N − 1). If at any point

FindNextIndex returns -1 then no move is fitness-improving and the current solution is

added to the list of local optima found. AllLocalOptima then adds a 1 to the index

returned by FindNextIndex using the loop on Line 11 to perform carry operations and

Line 16 to create the new 1 value. Iteration stops when the carry exceeds the solution length.

When performing subsequent checks, not all moves need to be retested for improvement.

Instead, the highest index bin that must be tested is the highest index flipped by the previous

iteration. This simplification is possible because the previous iteration has verified that all

moves in higher index bins are not fitness-improving, and no action performed during that

iteration can make them fitness-improving. Furthermore, no 1s can exist in lower index
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1: procedure AllLocalOptima

2: solution← {0}N

3: found← [ ]
4: index← N − 1
5: while index < N do

6: index←FindNextIndex(index)
7: if index = −1 then

8: found← found+ [solution]
9: index← 0
10: end if

11: while index < N and solution[index] = 1 do

12: MakeMove(index)
13: index← index+ 1
14: end while

15: if index < N then

16: MakeMove(index)
17: end if

18: end while

19: return found
20: end procedure

21: procedure FindNextIndex(index)
22: while index ≥ 0 do

23: for all m ∈ move bin[index] do
24: if delta[m] ≥ 0 then return index
25: end if

26: end for

27: index← index− 1
28: end while

29: return −1
30: end procedure

Figure 10.2: Algorithm to find all local optima of a given gray-box problem. MakeMove,
described in Figure 7.2, flips bit index and updates the fitness effect delta of making all
moves dependent on index. move bin stores moves based on their lowest index dependency.
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positions, meaning iteration can continue immediately from the found index.

As a final efficiency, the order in which variables in the solution are indexed can be

remapped. When a move is fitness-improving, the amount of search space that is skipped

depends on how high its lowest index dependency is. Therefore, by rearranging the order to

make its lowest index dependency higher, more search space can be skipped. We perform this

remapping in a greedy fashion, such that the move with the least-unmapped dependencies

has all of its remaining dependencies mapped to the most significant remaining positions.

Figure 10.1 shows how changing the index order of variables improves mi’s lowest index

dependency from 2 to 4. Now whenever mi is a fitness improvement, FindNextIndex

skips 4 times as much search space.

All together, these optimizations result in substantial efficiency improvements for some

landscapes. For example, when applied to the OneMax problem (each bit scores one if

set to 1, zero otherwise) this method finds all local optima in O(N) time. Deceptive Trap,

regardless of how the bits are arranged, requires O(2k2N/k) time to find all 2N/k local optima.

This means a 60-bit Deceptive Trap problem with trap size of 4 requires 524,288 operations

when using gray-box, but 1,152,921,504,606,846,976 with black-box.

As a final note, these methods extend to finding only r-bit local optima for all gray-box

problems. However, the cost trade-off of doing so is unclear. By searching for only r-bit

local optima, it is more likely that a fitness-improving move will exist, allowing more of the

landscape to be skipped. Yet the increase in total number of moves means each time a bit

is flipped more computation must be performed. Therefore, the runtime effect of increasing

r depends on the specific problem.

10.1.2 Looking at Problems

In comparison to the randomly generated problem instances of Nearest Neighbor NKq

and Ising Spin Glass, Deceptive Trap and Deceptive Step Trap have comprehensible land-

scapes. Therefore, these problems represent a good place to begin understanding what “big
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Figure 10.3: Location and quality of local optima in comparison to the global optimum with
N = 30 and k = 5.

valley” plots are showing. Figure 10.3 shows how the local optima in each of these problems

are distributed.

The Deceptive Trap problem has few local optima, each of which actually provides little

deception in terms of “big valley” properties. Given any two local optima, the one closer

to the global optimum in fitness is also always closer to the global optimum in representa-

tion space. This makes sense as the worst local optimum contains all 0s, and each fitness

improvement beyond that involves converting an entire trap to 1s, with the global optimum

being all 1s. As a result, we should expect P3’s method of elitist mixing to produce solutions

that are progressively more and more similar to the global optimum until it is finally found.

Deceptive Step Trap’s inclusion of fitness plateaus creates an enormous number of local

optima. In total there are 24 million local optima on this problem, representing 2.2% of the

entire search space. In comparison, Deceptive Trap using the same size has only 64 local

optima. These additional local optima create a somewhat deceptive landscape, as selecting

on fitness between two local optima can result in an increased genetic distance to the global

optimum. Figure 10.3b with r = 2 shows how examining only 2-bit local optima causes

Deceptive Step Trap using a step size of 2 to effectively revert to Deceptive Trap. This is

because the hill climber can overcome all of the plateaus, leaving each trap either at the
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Figure 10.4: Location and quality of local optima in comparison to the global optima for a
representative Nearest Neighbor NKq problem with N = 60 and k = 2.
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Figure 10.5: Location and quality of local optima in comparison to the global optima for a
representative Unrestricted NKq problem with N = 60 and k = 2.

global optimum of all 1s or the local optimal value of all 0s or exactly one 1. Selection then

becomes a nearly perfect predictor of distance to the global optimum.

Figure 10.4 shows how the local optima are distributed for Nearest Neighbor NKq.

Unlike the trap problems, Nearest Neighbor NKq exhibits a traditional big valley shape.

Increasing the radius of the local optima significantly reduces the total number of local

optima, with those optima generally more similar to the global optima in both representation

space and quality. Together this suggests that Nearest Neighbor NKq is a good candidate for

selection-based methods like P3. Also, due to the general regularity and frequency of local

optima, it may not be necessary to increase the radius in order to quickly find the global

optimum.

While visually somewhat similar, Unrestricted NKq shown in Figure 10.4 suggests selec-
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Figure 10.6: Location and quality of local optima in comparison to the global optima for a
representative Ising Spin Glass problem with N = 36.

tion may be misleading. Consider the shape of the bottom of r = 1. At a distance of about

15 bits there is a slight hump, such that high-quality solutions are more frequent both closer

and further from the global optimum than at the same distance. If search finds points in the

area over 15 bits away from the global optimum, small modifications and elitist selection are

more likely to lead away from the global optimum than toward it. At higher radius values

this issue becomes more apparent, with optima flattening out away from the global optima

in representation space. For many of these points, the only way to improve would require

flipping over 15 bits correctly.

The Ising Spin Glass instance shown in Figure 10.4 provide some insight into the stalled

behavior of Gray-Box P3 when solving that problem. In this landscape there are many

local optima that have the second best fitness, but are very different from the nearest global

optima. From a search perspective this means selection can only get you within a certain

distance of a global optima, and then it becomes unhelpful. This issue is not improved by

increasing the local optima radius, as even with r = 4 there are hundreds of local optima

with the second best fitness that are over 10 bits different (of 36) from the nearest global

optima.

Similar to Unrestricted NKq, the MAXSAT instance shown in Figure 10.7 suggests

selection can be misleading. There is almost a negative correlation between fitness difference

from the global optimum and representation distance from the global optimum. As before,
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Figure 10.7: Location and quality of local optima in comparison to the global optima for a
representative MAX-SAT problem with N = 36.

this problem is not solved by increasing the radius of the local optima. This may explain why

methods like LTGA and hBOA, which extensively rely on selection, scale so poorly when

tested on this problem. P3’s comparative success may therefore be the result of the random

restart hill climber eventually finding a solution in the correct area of the search space, with

crossover finding the global optimum mostly by chance.

10.2 Pyramid Levels

One method for understanding how P3 performs search is to examine the types of

solutions being stored at each level of the pyramid. By comparing each solution with the

nearest best-found solution, we can create plots similar to the “big valley” plots in the

previous section, even for problems too large and complex to find all possible global optima.

This also provides a look at how the different levels of the pyramid focus search on different

areas of the landscape.

Gray-Box P3’s progression on Deceptive Step Trap, shown in Figure 10.8, follows di-

rectly from our expectations. The local optima found using only hill climbing and stored in

level 0 are quite poor and far from the global optimum. The first application of crossover

dramatically improves their quality. However, this improvement is likely just overcoming
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Figure 10.8: Distribution of local optima stored at each level of Gray-Box P3 in relation to
the global optimum on the Deceptive Step Trap problem N = 6000 and traps of size 5.

the fitness plateaus, as solutions are actually being moved away from the global optimum.

Subsequent levels store solutions that are generally closer to the global optimum in both

fitness and representation space. This change means that at higher levels the frequency of

traps being set to their values in the global optimum increases, resulting in better model

building and better donation quality.

Nearest Neighbor NKq, shown in Figure 10.9, provides a landscape almost as free of

higher-order deception as the Deceptive Step Trap problem. Shown with a logarithmic y-

axis, stored solutions exhibit a near-perfect relationship between fitness and representational

distance. Again, using only hill climbing creates local optima that are significantly worse

and further away than even after a single application of crossover. While increasing the

radius of the hill climber improves the quality of those initial solutions, even r = 3 is only

able to equal a single crossover application. As before the higher level a solution is stored,

generally the closer it is to a global optima in both fitness and representational distance.
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Figure 10.9: Distribution of local optima stored at each level of Gray-Box P3 in relation to
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Figure 10.11: Distribution of local optima stored at each level of Gray-Box P3 in relation to
the best found by the run on an Ising Spin Glass N = 6084.

Figure 10.10 gives insight into how different Unrestricted NKq is from Nearest Neighbor

NKq. In this landscape Gray-Box P3, regardless of radius, appears to explore deceptive

local optima that offer fitness improvements without moving closer to a global optima in

representation space. In this problem there is a gap of over 1000 bits between the deceptive

local optima and those likely to lead to the best-found solution. An interesting behavior on

this problem is that the branch between the two groups always seems to begin with a single

solution in level 1. This suggests that the stored solutions near the best found may all be

similar due to sharing a common ancestor.

Gray-Box P3’s progression on Ising Spin Glass, shown in Figure 10.11, is much more well

behaved than on Unrestricted NKq. As has been typical, each application of crossover results

in improved fitness, with the largest gains between the first few levels. When approaching

higher qualities these improvements also begin to translate into increased representational

similarity to the global optimum. However, as discussed previously for this problem, we

again see evidence for a large number of diverse solutions with the second best fitness. These

solutions can be over 1000 bits different from the eventual best-found solution. Increasing

the radius of the hill climber does not seem to significantly overcome this issue.

Figure 10.12 shows that Gray-Box P3 acts more similarly on MAX-SAT to Unrestricted
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Figure 10.12: Distribution of local optima stored at each level of Gray-Box P3 in relation to
the best found by the run on a MAX-SAT problem N = 6000.

NKq than on any of the other problems. Again there appear to be deceptive local optima

between 500 and 1000 bits away from the nearest improving solution. Again a single solution

appears to be the ancestor of all of the solutions near the best found. This suggests that

similar to its performance on Unrestricted NKq, Gray-Box P3 will have a hard time finding

the global optimum on MAX-SAT.

In general it appears that the problems that have polynomial-time solutions (Deceptive

Step Trap, Nearest Neighbor NKq, 2D Ising Spin Glass) share a similar behavior of selec-

tion leading to the global optimum. However, the NP-Hard problems (Unrestricted NKq,

MAX-SAT) seem to contain large amounts of higher-order deception, making them challeng-

ing for selection-based methods. This relationship warrants further investigation into other

NP-Hard problems to determine if the repeated selection found in P3 and other evolution-

ary computation methods are able to overcome this deception. One potential avenue for

improvement to P3 may also be a method for dealing with this issue. For instance, it may

be beneficial to explicitly partition solutions when this deceptive behavior is observed.
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Chapter 11

Conclusions and Future Work

The Parameter-less Population Pyramid (P3) is a recently introduced method for per-

forming black-box optimization. P3’s primary innovation is the replacement of the gen-

erational model with a pyramid of populations. This pyramid is constructed iteratively,

with both the number of levels and the number of solutions stored at each level growing as

search progresses. P3 uses a model based crossover method that learns a linkage tree from

gene epistasis. Combined with a simple hill climber, P3’s design contains many synergistic

features.

Across a large number of problems and problem sizes P3 required fewer evaluations

to reach the global optimum than optimally tuned state-of-the-art competitors. On single-

instance problems P3’s improvement was by a constant factor, while for the three randomly

generated problem classes P3’s improvement increased with problem size. This quality ex-

tends to intermediate points during evolution, with P3 generally reaching at least as high a

fitness as the competitive techniques when using the same number of evaluations. While P3

does require modeling overhead, the expense of this overhead is approximately linear with

respect to genome size. There is some evidence that even when compared on wall clock

time, P3 performs on par with the best comparison techniques. All of these achievements

are made without any problem-specific parameter tuning, making P3 easier to apply to new

domains than its two closest competitors in quality.

P3’s quality is due to a number of desirable traits. First, mixing local search with
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model based crossover lets search focus on properly mixing high-quality solutions. Second,

by adding diversity only as necessary P3 tends to use the minimal amount of random ini-

tialization, unlike other techniques that must overcompensate with larger population sizes

on single-instance problems and consider the worst instance when solving problem classes.

Third, by heavily exploiting existing diversity before adding more P3 is able to reach high-

quality intermediate fitnesses quickly without prematurely converging. Fourth, the nature

of the pyramid’s shape allows search to preserve a desirable proportion of diversity at each

fitness level, similar to a generational model using a decreasing population size.

When leveraging features of the new domain, Gray-Box P3 can obtain substantial im-

provement over Black-Box P3. This comes from the integration of the Hamming-Ball Hill

Climber (HBHC) and a novel method for deriving linkage clusters from the known problem

epistasis, both of which result in a factor N speedup over their black-box counterparts. Fur-

thermore, Gray-Box P3 can perform partial reevaluation and efficient hill climbing during

the mixing phase without significant overhead. In specializing, Gray-Box P3 is able to find

global optima orders of magnitude faster than Black-Box P3.

There are a number of meaningful avenues for future P3 experimentation. Perhaps the

most pressing for practitioner acceptance is to apply P3 to real-world problems and compare

its results with other black-box or even problem-specific heuristics. While parameter-less, P3

is currently limited to discrete, fixed-length genomes evaluated using single-objective fitness.

These limitations can be relaxed with future work to make P3 more widely applicable. While

asymptotically linear in problem size, Black-Box P3’s modeling techniques and local search

methods are likely going to be prohibitively expensive for genome sizes in the hundreds of

thousands or millions of genes, and the inability of the model to capture overlapping linkage

may be hindering search efficiency. Overcoming these limitations by using a new modeling

technique may allow the pyramid model even greater flexibility. Similarly, while P3 is able

to overcome low-order deception via linkage learning, the iterative improvement method by

which crossovers are made may mislead search on landscapes with higher-order deception.
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This appears to be especially important on NP-Hard problems, where high-quality solutions

may be very distant from the global optimum in representation space.

While empirically effective, we believe it is possible to derive theoretical foundations for

Gray-Box P3. Specifically, this may be possible by considering the nature of crossover in

terms similar to those used for finding r-bit local optima with HBHC. Consider that for any

two parents the non-linear effects of crossover are constrained by where they contain different

bit values. As a result, subsets of their differences can become linearly separable, allowing

for each to be considered independently of all others. Furthermore, these conclusions about

effective crossover in gray-box can likely be translated into a black-box setting to help explain

the effectiveness of Black-Box P3.

However, even without these improvements our results show P3 is highly efficient at

finding global optima on both black-box and gray-box problems without any problem-specific

tuning.
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APPENDIX
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hBOA Simplification

To measure the quality of a decision forest, hBOA applies Equation 1. To favor compact

models, Equation 1 is scaled by Equation 2, which provides increased cost for more total

leaves. This quality is used for two purposes: comparison of potential changes from the

existing model and comparison of that change with the existing model. The basis for our

simplication is to rearrange p(B)BDe(B) < p(B′)BDe(B′) to be p(B)
p(B′)

< BDe(B′)
BDe(B)

.

BDe(B) =

N
∏

i=0

∏

l∈Li

Γ(m′
i(l))

Γ(mi(l) +m′
i(l))

∏

xi

Γ(mi(xi, l) +m′
i(xi, l))

Γ(m′
i(xi, l))

(1)

p(B) = c2−0.5(
∑

i |Li|)log2µ (2)

The outermost product of Equation 1 iterates over all trees in the forest. However, each

split can modify only one of the trees and therefore the contribution of all others can be

canceled. The middle product is across all leaves in the tree. Again since only one leaf can

be changed, all other terms can be canceled. By convention hBOA uses uninformed Bayesian

priors of m′
i(l) = 2 and m′

i(xi, l) = 1 for binary alphabets. As Γ(a) = (a−1)! this means the

top term in the middle product and the bottom term in the third product reduce to 1. The

only remaining terms are then mi(l) and mi(xi, l) which represent the number of solutions

that reached leaf l and the number of solutions that reached leaf l with a specific value for

xi, respectively.

Equation 2 can also be simplified when doing comparisons. If model B′ has exactly one

more leaf than model B then the ratio p(B)
p(B′)

simplifies to 20.5log2µ regardless of total model
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size.

The resulting simplifications create Equation 2.1, where B′ is different from B by exactly

1 split, such that l was split to create l′ and l′′. The best split is whichever maximizes its

improvement over B, which is equal to the right side of the inequality. Note that these

factorials can still be exceedingly large and therefore it is imperative that implementations

avoid rounding errors and overflows.
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