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ABSTRACT

ANALYZING BIOLOGICAL COMPLEXITY WITH DIGITAL ORGANISMS
By

Wei Huang

We define an organism’s biological complexity to be the amount of information
contained in that organism’s genome about its environment. Not only is this an intu-
itive definition of complexity, but it also allows us to treat the subject in a rigorously
mathematical fashion. As such, we have designed a method to measure biological
complexity based on the principle of mutation-selection balance from population ge-
netics. Our method approximates the total information in a genome as the sum of
the information at each position. The information content of a given position is cal-
culated by testing all of the possible mutations for that position and calculating the
expected frequencies of potential genomes at the equilibrium state.

We use our definition of biological complexity to analyze the evolution of complex
traits in digital organisms. To many, the seemingly sudden appearance of new traits
seems to contradict the gradual evolutionary processes of mutation, selection, and
drift despite previous work that illustrates how complex organismal features can arise
if simpler traits that can be used as building blocks are selected for. Our analysis
shows that the underlying information associated with any trait evolves gradually
and often results from a combination of reusing and extending information associated
with simpler traits. Specifically, we demonstrate that the majority of the genomic
information associated with a trait is primarily correlated with pre-existing traits, or
is co-opted from traits that were lost in conjunction with the appearance of the new
trait.

Next, we extend the concept of complexity to the community level where we quan-

titatively measure the distinct information stored anywhere in a whole community



about its environment. Community complexity is a new concept that is different from
the traditionally studied community diversity. We developed a measure that provides
a useful approximation of community complexity, which we plan to further refine in
the future. Our current measure accurately reflects that community complexity in-
creases due to information gain, even when diversity is unaffected. It also shows that
the community complexity of a multi-niche environment is only slightly higher than it
in a single-niche environment when the organismal traits are identical. In such a case,
the individual organisms in the single-niche environment have higher complexity, but
many more species exist in the multi-niche environment. We systematically test this
concept across many environment types and demonstrate its robustness.

Finally, knowing how information is stored in different organisms also tells us
about the relationships among them. When new information enters a population, it
is transmitted over time from parent to child. When information is shared among
organisms in the final population, those organisms are likely related. Inspired by this
fact, we designed a character weighting technique to improve phylogeny reconstruction
accuracy. In this method, sites are weighted based on the portion of the tree being
reconstructed. We target new information that is likely to have arisen at the branching
point we are trying to reconstruct as the basis to weight characters. This approach

lays the groundwork for a new class of top-down phylogeny reconstruction algorithms.
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Chapter 1

INTRODUCTION

1.1 Overview

Biological complexity has long been a contentious topic. Most people accept that com-
plexity generally increases through the process of evolution but few give an explicit
definition and method of measurement. My interest is to understand the relationship
between biological complexity and evolution. Is there a pervasive trend of complexity
change through evolution? Is it always an uphill climb? How does new complexity
arise? Is there a relationship between the complexity of an organism and its fitness
in the environment? Can we measure the complexity of a whole community? Are
there any applications to studying complexity? The answer to each of these ques-
tions depends on the nature of the complexity definition. Many definitions have been
proposed in the past, but each of them has serious flaws, and few use a rigorously
mathematical approach.

This chapter provides a review of the biological complexity measures that others
have used, and explores the limitations of each. The discussion following details
the concept of physical complexity previously developed by Adami and Cerf [2000]
and refined by Adami, Ofria, and Collier [2000]. To facilitate this discussion, I will
also review some concepts from Shannon Information Theory and briefly describe the
Avida digital life platform, the system we will be using to examine the complexity
measures discussed.

Our new approach to estimating complexity is described in chapter 2. It is based
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on Adami et al.’s “physical complexity” [Adami and Cerf, 2000], which defines biologi-
cal complexity as the genetic information that an organism has about its environment.
We approximate the total information in a genome as the sum of the information at
each position. The information content of a position is calculated by testing all the
possible mutations for that position and calculating the expected frequencies of po-
tential genomes at the equilibrium state. We discuss how this method reveals the
way information is embedded in an organism during the evolutionary process, the
advantages of our method, and the initial results from applying this approach.

In chapter 3, I examine how new complexity first arises in a population. Evolution-
ary theory explains the origin of complex organismal features through a combination
of reusing and extending information from less-complex traits. While the appear-
ance of a new trait may seem sudden, the underlying information associated with
that trait must evolve gradually. We study this process within evolving digital pop-
ulations. We show that when a new complex trait first appears in the population,
its proper function requires the coordinated operation of many genomic positions.
However, the total information stored in the genome only increases marginally. We
demonstrate that the majority of the information associated with an emerging trait
is primarily correlated with pre-existing traits or is co-opted from traits that were
lost in conjunction with the appearance of the new trait.

Next, in chapter 4, we extend the concept of biological complexity to the commu-
nity level. We define community complexity as the sum of all distinct information
contained in the community about its environment; if multiple organisms all contain
the same information, we only count that information once. We developed a measure
that provides a useful approximation of community complexity, which we plan to
further refine in the future. Community complexity is a new concept that is different
from the traditionally studied community diversity. I reviewed two popular diversity

measurements: The Shannon and Simpson diversity indices. We analyzed the com-



plexity changes during evolution from the information perspective and compared it
with diversity measurements. We designed five environments that allow us to explore
environmental impact on community complexity.

Next we examine applications of understanding organism complexity. Measuring
the information content of different organisms allows us to better understand the rela-
tionship between them. When new information enters a population, it is transmitted
to subsequent generations and could help indicate relationships among organisms in
that population. Inspired by this fact, we designed a character weighting technique
to improve phylogeny reconstruction accuracy, which I present in Chapter 5.

Phylogeny reconstruction seeks to find evolutionary relationships among taxo-
nomic groups. We observe that sites where two distinct symbols are both highly
represented are more likely to provide useful information for reconstructing deep bi-
furcations in the tree. Both symbols may originate from adaptive events at earlier
stages of evolution. Giving high weight to these sites will decrease our uncertainty
about the root branch. We demonstrate that the neighbor joining algorithm is signif-
icantly improved in reconstructing deep bifurcations if more weight is given to these
sites. We further show the robustness of this technique with sustained reconstruction
improvements as we vary a number of characteristics about the trees, including the
number of leaves, the alphabet size used in the sequences, and the tree symmetry.

Finally in Chapter 6 I discuss further plans for refining and extending this work.
For the technique of measuring the organismal complexity, I will consider epistasis and
estimate the information in two or more sites together. For the community complexity,
I will show the candidate methods that could help more accurately calculate the
unique information in each organism. For the character-weighting technique, I will
try to convert it to a fully functional algorithm to build a whole tree, not just deep

bifurcations.



1.2 Background

1.2.1 Biological Complexity

KCS (Kolmogorov-Chaitin-Solomonoff) complexity is the most widely used complex-
ity definition. It defines the complexity of a sequence as the shortest possible program
that can generate that sequence [Li and Vitanyi, 1997). This definition works in many
intuitive cases, but has some serious problems: some apparently complex structures
can be coded in short programs such as fractals and cellular automata [Goertzel,
1993], while a long sequence with no pattern, and no meaning (effectively random)
would need a long program to generate it; one that just lists the entire sequence.

A related complexity definition is “logical depth”. Bennett [1988] defines the logi-
cal depth of a sequence by the running time of the shortest program that computes it.
Thus, while it overcomes some of the problems with KCS complexity because more
complex structures will typically take a while to generate, there are still problems
when it comes to random sequences with no actual meaning behind them. Addition-
ally, it cannot answer questions such as, “What is the shortest program to generate a
DNA sequence?” or “What is the running time for that program?” and thus is still
not an easily quantifiable definition for a biologist to use in measuring complexity.

A count of the number of “parts” in an organism is perhaps the simplest definition
of complexity, as suggested by Hinegardner and Engelberg [1983]. This, of course,
depends on what we recognize as parts. Hinegardner and Engelberg suggest that
at root, organisms are composed of molecules, but they do not take the differences
in the complexity of those molecules into account. This definition may provide a
useful approximation of complexity, but it neglects any complexity inherent in gene
regulation or other connections between DNA, RNA, and proteins. Many different
proteins may be synthesized from the same mRNA molecule due to manipulations

on the mRNA and in the context of translation. In fact, over the last several hun-



dred million years, most evolution has occurred only in the form of gene regulation
even though most biologists agree that there has been a huge increase in the overall
complexity of organisms.

Adami and Cerf [2000] developed physical complexity as a method to calculate the
complexity of symbolic strings. Ofria and Collier then worked with Adami [2000] to
translate this concept more directly to the study the evolution of biological complex-
ity. In their definition, the biological complexity of an organism is the information
physically stored in the genome about the environment in which it lives. In chap-
ter 2 I talk about their initial method to measure physical complexity (biological

complexity) before detailing my new, refined approach.

1.2.2 Avida Digital Evolution Platform

It is a commonly held belief that the complexity of species always increases during
evolution. However, evolution by natural selection is a unique process in the biolog-
ical world—we only have one example of it—and all known life has a genetic basis
consisting of strings of nucleotides and is all believed to share a single common ances-
tor. We don’t know the evolutionary principles for other forms of life which scientists
may discover later. The eminent biologist John Maynard Smith [1992] declared that
the only way out of this quandary was to build a new form of life ourselves. “We
badly need a comparative biology,” he wrote. “So far, we have been able to study
only one evolving system, and we cannot wait for interstellar flight to provide us with
a second. If we want to discover generalizations about evolving systems, we will have
to look at artificial ones.”

Having a well controlled artificial system allows us to explore the importance
of many historically contingent events in evolution. Random chance is believed to
have played a large role in this evolutionary process, as Gould hypothesized with his

thought experiment of “replaying life’s tape” [Gould, 1989]. He states: “Any replay



of the tape would lead evolution down a pathway radically different from the road
actually taken ... Each step proceeds for cause, but no finale can be specified at
the start, and none would ever occur a second time in the same way, because any
pathway proceeds through thousands of improbable stages. Alter any early event,
ever so slightly and without apparent importance at the time, and evolution cascades
into a radically different channel.” This means that there might be many different
ways a species could have adapted to its environment; we only see one end result.
To answer whether complexity always increases down all of these pathways, we must
have an experimental system in which to test it.

Avida [Ofria and Wilke, 2004] is a software platform used to perform experiments
in evolutionary biology. The Avida system creates an artificial environment that
maintains a population of self-replicating computer programs. These populations
are subject to mutations and are in environments with limited space and resources
(sources of energy) for which they must compete, therefore the organisms evolve by
natural selection. A population in Avida adapts in a manner analogous to biological
systems, both to maximize its replication rate and to beneficially interact with its
environment. When an individual program attempts to replicate, it is subjected to
random mutations that change instructions within its memory. Mutations are classi-
fied in a strictly Darwinian sense: any mutation that results in an increased ability
to reproduce in a given environment is considered beneficial. Mutations causing the
organism to fail to reproduce successfully are considered lethal. Neutral mutations
cause no change in reproductive success.

Each organism (Figure 1.1) in an Avida population consists of a memory initialized
to the genomic program, three 32-bit registers, two stacks, and input and output
buffers for organisms to receive operands and return results to the environment. The
genome of an organism is composed of a Turing-complete programming language; that

is, they can perform any computable mathematical function—no explicit limitations



are imposed on what can be evolved. Indeed, we have witnessed a wide variety of

unexpected and seemingly clever adaptations arise through evolution in Avida.

Genome
.

AX:00110010
BX:10010011

CX:00000001

Figure 1.1: Structure of virtual CPU in Avida. Images in this thesis/dissertation are
presented in color.

The phenotype of an organism corresponds to the set of computations an or-
ganism performs and related parameters such as how quickly it can perform each
computation. Depending on the environment, an organism receives an energy bonus
for performing specific computations. The fitness of the organism is then its total
energy divided by its gestation time. Each update (the unit of time used in Avida)
organisms receive a number of CPU cycles proportional to their energy. All organ-
isms have their CPU cycles scheduled to execute their genomes in an order as close

to parallel as possible.



Avida provides us with a system where the population dynamics can easily be
explored and where we can trivially access the genome for any individual. Since
the evolution in Avida is real, as opposed to a mere simulation, complex traits can
arise on their own. Since the system also allows us to perform tests of genomes in
isolation, it is a perfect choice for systematic studies of complexity, and we will revisit

it throughout this thesis.

1.2.3 Shannon Information Theory

Information Theory [Shannon, 1948; Cover and Thomas, 1991] uses quantitative
mathematics to formally define measures of disorder and uncertainty, which are then
used, in turn, to define the information content of a message as the reduction of
uncertainty attributed to the other message.

Information theory defines uncertainty (or entropy) as the number of bits needed
to fully specify a situation, given a set of probabilities. Let X be a discrete random
variable with alphabet X and probability mass function p(z) = Pr(X =z), z € X.

Thus, uncertainty of the random variable X is defined as:

H(X)=—- Y p(z)logs p(z) (1.1)
T€EX

Uncertainty is maximized when all probabilities are equal, that is, we have no idea
about what the outcome will be. On the other hand, uncertainty is minimized when
the probability of one symbol in alphabet X is 1 and the probabilities of each of the
other symbols is 0.

Conditional entropy of one random variable given another is defined as the ex-

pected value of the entropies of the conditional probabilities, averaged over the con-



ditional random variable. Specifically:

HX|Y)= Y HX|Y =y)= Y p(y) Y p(z|y)logy p(zly) (1.2)
yey yey T€X

In Information Theory, the reduction in uncertainty of one random variable due to
the knowledge of another random variable is called the mutual information between

variables (also sometimes called mutual entropy).
I(X:Y)=H(X)- HX|Y) (1.3)

The mutual information I(X : Y) is a measure of the dependence between two random
variables. If variables X and Y are independent from each other, knowledge of Y
won'’t decrease our uncertainty about variable X. In other words, uncertainty about
X given Y (H(X|Y)) remains same as the uncertainty about X without knowing
anything else, so the mutual information between X and Y is zero. Two variables
can have a non-zero mutual information only if there is some correlation between
them. The metric of mutual information is symmetric in X and Y, that is, I(X : Y)
is equal to I(Y : X). Additionally, mutual information between a pair of variables is
always non-negative, that is, knowledge of one variable can never, on average, increase
our uncertainty about the other.

For a binary symmetric channel shown in Figure 1.2, the binary signal source
inputs 0 or 1 with equal probability. The channel’s output is equal to the input with
the probability 3/4. On the other hand, with the probability of 1/4, a ‘0’ is received
when ‘1’ is the input, and vice versa.

In this case, the entropy about the input X is:

1. 1 1, 1
H(X) = —5loga5 — Slogy 5 =

5logz 5 — 5 1 (1.4)



3/4

3/4

Figure 1.2: A symmetric binary channel.

Assume we received the output Y from the channel, the conditional entropy about

input X is calculated as:

1, 3. 3 1
H(X]Y) = 5(=7 logg ; — 7 log

1. 1 3 3 1 1

The reduction of entropy due to the output Y is the mutual information between

input X and output Y, which is
I(X:Y)=H(X)-H(X|Y)=1-0.8113 =0.1887 (1.6)

Originally, information theory was used exclusively in telecommunications to max-
imize information transmission over a noisy channel. It is now used more frequently
across many fields including biology [Schneider, 2000; Adami et al., 2000]. In evo-
lutionary biology, the replication from parent to offspring is thought of as an infor-
mation transmission process. The information contained within a genome is about
its environment and determines how the organism behaves in that environment; in
particular, it determines whether or not the organism can replicate and how well it
is able to survive. Mutations are responsible for the noise during the replication,
and the quality of the resulting message will determine if a mutation is detrimental,

neutral, or occasionally even beneficial.
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Chapter 2

MEASURING COMPLEXITY
WITH DIGITAL ORGANISMS

Adami, Ofria, and Collier [2000] put forth an elegant definition of biological complex-
ity of an organism: the genetic information that an organism has about its environ-
ment. This builds upon Adami and Cerf’s definition of the physical complexity of a
symbolic string [2000] as well as Shannon Information Theory.

Adami, Ofria, and Collier developed a population-based method to measure bio-
logical complexity. They approximate the total information in a genome as the sum
of the information at each locus. The information content of a locus is measured
using information theoretic techniques on a population of organisms with the same
phenotype. This population-based method for measuring the information content of
a locus has inherent limitations such as requiring a full population at equilibrium, for
genomes to be fixed-length, and for the environment to have only a single niche.

We have de