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ABSTRACT

INFERRING REFERENCE CONDITIONS TO ASSESS THE BIOLOGICAL

INTEGRITY OF STREAMS AND RIVERS

By

Scott Lyle Rollins

Inference models are often necessary to quantify the

effects of human disturbance on aquatic ecosystems and to

assess the current biological integrity of these systems.

In my dissertation, I apply modern computational modeling

approaches to to infer expected conditions in streams and

rivers if human disturbance were minimized.

Autecological characteristics of diatom species can be

used to infer environmental conditions when they cannot be

measured directly. I evaluated standard methods and

applied new methods to model diatom species responses to

total nitrogen (TN), total phosphorus (TP), and pH, and to

infer environmental conditions from diatom species

composition. Current methods were relatively effective at

describing species distributions along resource gradients,

but failed to adequately reflect species responses to pH.

Modern methods did not significantly improve standard

inference models for any of the environmental variables.

Linear discriminant analysis (LDA) has been used to

predict the expected taxonomic composition in the absence

of human disturbance to assess biological integrity.



However, many biological responses to ecological gradients

are nonlinear. A hybrid approach combining LDA with

nonlinear predictions was applied using a Bayesian

methodology. Diatom assemblages were used to classify

minimally-disturbed sites throughout the western United

States. Predictive models for the classes were then

developed using LDA, recursive partitioning, and the new

hybrid method. The hybrid method outperformed both LDA and

recursive partitioning, suggesting that nonlinear

determinants of diatom assemblages are important and that

the hybrid method will improve our ability to assess the

biological integrity of streams.

In the final chapter, I apply Bayesian statistical

methods to inform the development of nutrient water quality

criteria. The United States Environmental Protection

Agency suggests using prior research, reference—based

approaches, and stressor-response relationships to develop

regulatory levels for nutrients in streams and rivers;

however, a framework for integrating sources of information

and endpoints is lacking. I provide a framework that

integrates this information, explicitly acknowledges model

uncertainty, and is easily communicated using measures of

relative risk.
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CHAPTER ONE

INTRODUCTION



Ecology has a long history of applying mathematics in

theoretical settings. Population growth models (Caswell

2001, Malthus 1798), competition models (Tilman 1982), and

predator-prey models (Lotka 1925, Volterra 1926) are well

known examples of theoretical applications of mathematics

in ecology. Theoretical models provide a useful way to

describe generalizable ecological processes or mechanisms

and to explore patterns in a simplified and easily

tractable system. Theoretical models, however, often

operate under many assumptions that do not hold in natural

systems, which can limit their ability to predict natural

patterns. This difficulty scaling from simple to complex

systems can burden the application of theoretical and

experimental results to real—world problems (Clark 2005,

Carpenter 1996, Levin 1992).

Phenomenological models are also commonly used in

ecology. These empirical models describe patterns without

explicitly representing the underlying mechanisms. The

complex nature of ecosystems often necessitates the use of

phenomenological approaches when informed decisions need to

be made but mechanisms are not fully understood, data for

some variables are not available, or data are at a

different resolution than the mechanisms leading to

patterns. Much of the data available for predicting the

effects of environmental change on ecosystems have these



problems (Clark et al. 2001), making it difficult to apply

process-based models. Therefore, phenomenological models

are often applied. However, statistical models are

sometimes selected for convenience without regard for

theory or whether a model is appropriate for the patterns

being described (Austin 1980, 1999). A pragmatic approach

that combines theory and phenomenology is likely to be the

most effective method for informing management decisions

(Clark 2005, Carpenter 2002), yet data limitations are

likely to limit the ability to effectively incorporate

processes—based predictions (Clark et al. 2001).

Quantifying the effects of human activities on

biological systems has recently received significant

attention with respect to forecasting future ecosystem

states (e.g., Clark 2003, Pielke and Conant 2003, Peterson

et al. 2003, Clark et al. 2001). Policy makers and

environmental managers also require retrospective

ecological predictions and much of the discussion focused

on forecasting applies to retrospective analysis.

Bioassessment retrospectively examines the effects that

anthropogenic activities have on the biological attributes

of ecosystems, providing an appraisal of existing ecosystem

damage. Retrospective assessments have been distinguished

from predictive assessments that attempt to forecast the

effects of management actions on ecosystems (Cairns and



Niederlehner 1995). However, determining whether a system

is currently impaired requires inferring what it would look

like, absent of the activities potentially causing

impairment. These conditions are commonly called reference

conditions in bioassessment. Predictive models provide a

way to quantify reference conditions and their associated

uncertainty. Predictive models facilitate both prospective

and retrospective assessments by inferring how a system

would look if anthropogenic activities differed from their

current state.

Complex ecological models have become more accessible

due to improved performance of desktop computers and

advancements in computational statistics (Clark 2005). It

is now possible to evaluate standard modeling approaches to

determine whether they are consistent with observed

patterns or inconsistent with theory. It is also possible

to apply more complex predictive modeling approaches that

account for uncertainty and/or incorporate processes-based

components (Clark 2005). In my dissertation, I apply

modern computational modeling approaches to evaluate

current methods, improve predictions, and quantify

uncertainty when inferring reference conditions for the

retrospective assessment of stream and river health. In

the second chapter, the assumptions of current models being

used to describe diatom species' responses along



environment gradients and to infer historical environmental

conditions are evaluated. These models assume that species

respond in a Gaussian function (i.e., symmetrical and bell-

shaped) to environmental variables such as pH. Parameters

derived from these individual species models are used to

infer environmental conditions when the environmental data

cannot be effectively measured directly. One well known

application of this method in paleolimnology is the

historical reconstruction of lake chemistry (e.g., Birks et

a1. 1990).

Ecologists have argued that there is little theoretical

justification for expecting universal Gaussian species'

responses to all types of environmental gradients (Oksanen

and Minchin 2002). Researchers have shown that Gaussian

models often fail to effectively describe the presence of

terrestrial plants along environmental gradients (Austin

1976, 1980, 1999, 2002; Oksanen and Minchin 2002). Despite

this research, Gaussian models are continually applied to

describe the presence of diatom species along environmental

gradients of various types, with little acknowledgment of

the assumptions involved, both statistically and with

respect to ecological theory. Using generalized additive

models (GAM), I evaluate whether Gaussian assumptions are

appropriate for diatom responses to total phosphorus, total

nitrogen, and pH in Mid—Atlantic Highlands streams.



Furthermore, I compare the ability of GAM inference models

and Gaussian inference models to predict observed

concentrations of phosphorus, nitrogen, and pH.

In the third chapter, a new method is presented to

infer reference conditions for diatom assemblages using

geology, hydrology, and climate variables. The current

trend in the United States is to use minimally-disturbed or

least-disturbed sites within a region to establish

reference conditions for other sites within the region. If

a site differs significantly from reference conditions, it

indicates that the site has been affected by anthropogenic

activities. Research suggests, however, that

regionalizations are an ineffective way to classify sites

(Hawkins et al. 2000), calling into question the usefulness

of this method for establishing reference conditions. A

different approach being applied in the United Kingdom and

Australia creates stream classes using biological data, and

then predicts class membership for new sites using geology,

hydrology, and climate variables (Norris and Norris 1995,

Clarke et al. 2003). The method used in these countries

applies linear discriminant analysis (LDA), for which

ecological data can be problematic (Williams 1983). A

hybrid modelling approach that integrates linear (LDA) and

non-linear (classification tree) model predictions is

developed and applied to predict diatom genus composition



in minimally-disturbed reference streams throughout the

western United States.

In the final chapter, statistical models are applied to

aide in the development of site-specific nutrient criteria

for streams and rivers in Michigan. Water quality criteria

are established by States and tribes to protect attributes

valued by the public. Developing nutrient criteria

involves evaluating previous research, establishing

expected conditions (i.e., reference conditions), and

determining the effects of nutrients on valued ecological

attributes (USEPA 2000). Expected conditions can be

established using models that predict nutrient

concentrations at minimal levels of human disturbance

(Dodds and Oakes 2004). The relationship between nutrients

and valued ecological attributes can be determined using a

combination of previous research and quantitative patterns

observed in available data (USEPA 2000). Thresholds, or

large changes in valued ecological attributes over a narrow

range of nutrients, are particularly useful for

establishing water quality criteria because they can

indicate benchmark nutrient concentrations that separate

acceptable and unacceptable conditions in aquatic

ecosystems (Stevenson et al. 2004, Qian et al. 2004, King

and Richardson 2003). An effective method for integrating

these steps is lacking. I describe a framework that



integrates these steps and summarizes the risk of exceeding

environmental thresholds, relative to the risk of exceeding

the threshold at lower levels of human disturbance. This

framework uses Bayesian statistical models to infer

expected levels of phosphorus when human disturbance is

minimized and to quantify environmental thresholds. The

framework is unique because 1) it explicitly integrates the

findings of previous research, 2) it accounts for

uncertainty, and 3) it reduces effects—based endpoints and

inferred reference conditions to a single value, relative

risk, whiCh is easily communicated.
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INTRODUCTION

Diatom autecological data can be used to infer past

environmental conditions (Charles and Smol 1988). These

historic reconstructions can be used for environmental

assessment to establish expected environmental conditions

by estimating the state of an ecosystem prior to

disturbance by human activities (Dixit et al. 1992,

Battarbee and Charles 1987). Such inference models, or

transfer functions, are commonly used to reconstruct

historic environmental conditions in lakes and play a

dominant role in the field of paleolimnology (Birks 1998).

One of the basic assumptions of these models is that

the niche of a species can be adequately represented by a

bell-shaped function. Niche theory, as generally depicted

in text books (e.g., Ricklefs 1997, Krebs 1994) and applied

in statistical models (e.g., Salden 1978, ter Braak and

Looman 1986), suggests that species exhibit symmetrical,

bell—shaped responses along environmental gradients (Figure

1). These “Gaussian” response curves describe the

probability of occurrence, the proportional abundance, or

density of a species as a function of some independent

environmental variable. The value along the environmental

gradient at which the function peaks is the maximum

likelihood estimate and describes the species' optimum.
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Figure 1. Gaussian curve commonly used to model species

responses along environmental gradients. The species'

optimum is the value of the environmental variable at which

the probability of occurrence is maximized (solid vertical

line, 3 ). Dashed vertical lines indicate the tolerance

range ( 9—6-mpé+6-). The tolerance value is usually

indicated by the estimated standard deviation ( d ).
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Measures of spread in the function deScribe the species'

tolerance. Typically, the standard deviation is used as

the measure of tolerance (Jongman and ter Braak 1995), but

the variance, intraquartile range, or other measures of

spread could also be used. Standard deviation and variance

are probably most convenient because standard approaches

allow them to be derived easily from Gaussian functions

(e.g., Equation 1).

Under some circumstances, Gaussian parameters can be

derived relatively easily using simple averaging techniques

(Charles 1985). Using this approach, species optima are

calculated by averaging values of the environmental

variable at sites where a species occurs (Salden 1978) or,

alternatively, these environmental values can be averaged

after weighting by species' abundances. However, if

samples are not evenly distributed along the environmental

gradient in which a species is found, if species' ranges

are not limited to the edges of the environmental gradient,

or if species are rare, weighted averaging may provide

inaccurate estimates of optima and tolerance values (ter

Braak and Looman 1986). Therefore, Gaussian logistic

regression has been promoted for estimating optima and

tolerance values for species exhibiting bell-shaped

responses along environmental gradients (ter Braak and

Looman 1986).
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Gaussian logistic regression fits polynomial curves

using link functions (transformations of the dependent

variable) that prevent negative values in the function

while maintaining the variance homogeneity assumptions of

linear regression. The quadratic function that is used to

describe species' responses is

_ __ 2

1n(-1—E(—x—)—)=b +b x+b xzza 050‘ 9) , (1) 

0 1 2 2

0‘

where 6 is the species optimum, and 0 is the species

tolerance (ter Braak and Looman 1986).

The problem with this approach is that Gaussian models

lack a strong theoretical foundation and may be inadequate

for describing the response of a species to environmental

conditions. Analyses of terrestrial plant populations

suggest that Gaussian models often do an inadequate job of

describing realized niches along environmental gradients

(Austin 1976, 1980, 1999, 2002; Oksanen and Minchin 2002).

These authors have argued that there is little

justification for the universal application of the Gaussian

function to describe species responses along environmental

gradients.

If Gaussian models inadequately describe the

environmental affinity of individual species, parameters

16



derived from Gaussian models may cause problems when used

in environmental inference models. Inference models are

used to estimate environmental conditions by averaging

individual optima for species that are present at a site.

Optima are generally derived from a calibration dataset in

which species and environmental data are both available.

The inference models are then used to estimate

environmental conditions from diatom species composition.

The ability to infer environmental conditions from species

data is useful in fossil reconstructions of historic

environmental conditions or other situations where

environmental data are not available. Similar models have

also been applied to infer conditions when environmental

data are less reliable than desired, such as one time

measurements of nutrients that are temporally variable

(Stevenson, in preparation). If inaccurate parameters are

used in these models, inaccurate or imprecise estimates of

environmental conditions may result.

This study attempts to evaluate the ability of Gaussian

models to accurately depict diatom species responses along

gradients of pH, total phosphorus (TP), and total nitrogen

(TN) by comparing Gaussian curves with flexible generalized

additive models (GAM), which more closely track species'

responses along these environmental gradients. This

approach has been used in the past to evaluate parametric
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model assumptions for a small number of terrestrial plant

species (Oksanen and Minchin 2002), but this is the first

extensive assessment of the Gaussian approach for diatom

species, which are still commonly modeled using the

Gaussian approach.

Additionally, inference models using optima and

tolerance values derived from Gaussian models are compared

with inference models using optima and tolerance values

derived from GAM species' responses. Because GAMs include

smoothed predictor variables, they track species responses

more effectively than parametric Gaussian models.

Therefore, inferences using GAM derived optima and

tolerance values are expected to perform better than

environmental inference models using Gaussian optima and

tolerance values.

Mechanistic differences in the way that species respond

to environmental stressors and resources (Grime 1973, 1977)

may affect the ability of the Gaussian approach to model

species responses to pH, TN, and TP. Thus, the

effectiveness of the Gaussian approach is expected to

differ between the three environmental gradients,

particularly between pH and the two nutrient variables.

Austin (1980) suggests that nutrient responses are likely

to show complex shapes because the processes operating are

likely to differ along the gradient. At the low end,
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exploitative competition is likely to dominate, while at

the upper end, a different resource may become limiting.

If other resources remain sufficiently high, species

responses might increase exponentially along the gradient

until nutrients become toxic. Apparent competition may

also result in the decline of a species at the high end of

the nutrient gradient if increased grazer abundance is

supported (Holt 1977). Provided that the gradient is long

enough, species responses to pH are likely the result of

optimal enzyme functioning. Therefore, species were

expected to respond in a Gaussian fashion to pH, but not

necessarily to nutrients, where one clear pattern was not

expected to describe the responses of all species.
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METHODS

Data

Diatom and environmental data used in this analysis

came from streams in the Mid—Atlantic Highlands region of

the eastern United States (Figure 2). Data were collected

a part of the U.S. Environmental Protection Agency's

Environmental Monitoring and Assessment Program between

1993 and 1996. In several cases, stream reaches were

sampled more than once. When this occurred, data for the

site was pooled and environmental measurements were

averaged across time to alleviate problems with repeated

measures. This yielded a final set of 576 sites.

Algae samples were originally processed and identified

in our lab and the data are now publicly available through

the USEPA. Details regarding sampling, processing, and

identification of diatom samples have been published

elsewhere (Pan et al. 1996, 1999). A total of 628 diatom

taxa were observed in the dataset; however, only those taxa

observed at 10 or more sites were included in the

assessment of Gaussian response curves, reducing the number

of taxa to 204. Diatom taxa were generally identified at

the resolution of species or variety.

20



 

 

Stream sites sampled in the Mid-AtlanticFigure 2.

Highlands region of the eastern United States as part of the

United States Environmental Protection Agency's

Environmental Monitoring and Assessment Program.
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Total phosphorus and total nitrogen were measured using

the persulfate oxidation and colorimetry method. Closed

headspace measurements of pH were made within 72 hours of

collection in air-tight syringes. Details regarding

methods for chemical analysis is available through the

USEPA (1987). Total phosphorus ranged from values below

detection limit to 694 ug/L, with a mean of 25 ug/L. Total

nitrogen ranged from 27 to 21730 ug/L and averaged 916

ug/L. Stream pH had a minimum of 3.00 and a maximum of

8.82, averaging 7.58. Correlation between the chemistry

values used in these analyses were statistically greater

than zero in all cases, but none were high enough to cause

concern when comparing the effectiveness of the Gaussian

model between environmental gradients. The greatest

correlation was 0.34 and existed between TN and TP.

Species Response MOdels and Evaluation

Binomial responses for each diatom taxon were modeled

along environmental gradients of pH and natural-log-

transformed TN and TP using generalized linear models (GLM)

and GAM using a logit link function (Equation 1). Binomial

responses were used in order to follow previous work

described by ter Braak and Looman (1986) and Heegard

(2002). Binomial responses are also easily interpreted as

the probability that a species will be detected at a site
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and are less sensitive to temporal fluctuations than

absolute density or relative abundance. Gaussian model

effectiveness was evaluated in three ways. First, if GLM

predictions drifted outside of the GAM 95% confidence

interval, the Gaussian models was considered a poor

representation of the species' response (Figures 3a, 3b).

Second, the Gaussian model was deemed inappropriate for

deriving optima and tolerance levels if it was U-shaped

(Figure 3b). In these cases, the method for deriving the

mode of the Gaussian response places the environmental

optimum at the least probable environmental condition to

observe a species, rather than the most probable. Finally,

if the predicted optimum fell outside of the range of

observed environmental values (Figure 3c), the model was

considered inappropriate because its parameters were

outside of the observed universe of the dataset. If the

Gaussian model for a species failed any of these three

tests, the model was considered poor and if it passed all

three tests (Figure 3d), it was considered effective at

modeling the species response along a given environmental

gradient.

A bootstrapping method was applied to determine whether

failure rates of the Gaussian approach for a given

environmental gradient were unacceptably high. The sample

population of 204 species for each environmental variable

23



Figure 3. Example diatom species response curves. Solid

lines represent the Gaussian response curve estimated by

GLM. Dashed lines represent GAM response curves and

associated 95% confidence intervals. (a) Example of a GLM

that failed because it was not contained within the 95%

confidence interval of the GAM. (b) Example of a GLM that

failed because it was U-shaped and because it was not

contained within the 95% confidence interval of the GAM

(C) Example of a GLM that failed because the predicted

optimum is outside of the observed range of the

environmental variable. (d) Example of a GLM model that

passed all evaluation criteria.
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was re-sampled with replacement 10000 times to estimate

sample variance of the failure rate. Rejection rate of the

Gaussian method was determined at the 95% confidence level

for arbitrarily chosen acceptable failure rates of 0.05 and

0.1. Therefore, if >95% of bootstrapped samples had

failure rates below 0.1, the the Gaussian approach was

deemed appropriate. If, however, <95% of bootstrapped

samples had failure rates below 0.1, it could not be said

with 95% confidence that the failure rate was below 0.1 and

the Gaussian approach would not be considered appropriate.

To determine whether Gaussian failure rates differed

significantly between the environmental gradients, paired

differences in bootstrapped failure rates were calculated.

If fewer than 5% of the paired differences were equal to

0i0.05, Gaussian failure rates between the two

environmental parameters were considered significantly

different.

Inference.MOdels

Environmental conditions for each stream were inferred

using the estimated optima and tolerance values of diatom

taxa. Tolerance weighted estimates of environmental

conditions were estimated as follows:
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where f- is the estimated environmental variable (pH, TN, or
1

TP) for site i, yik is the proportional abundance of

A

species k at site i, 9k is the mode of the GLM or GAM

species response curve (i.e., the estimated optimum) for

species k of m total species, and Y} is the estimated range

of species k. The range is a measure of environmental

amplitude and represents the span of conditions in which a

species is expected to occur. It is calculated here

following Heegaard (2002) as the difference between the

upper and lower central borders of the species response

curve (Figure 4). For binomial models using a logarithmic

link function, the response value at the optimum, E(gh=%n,

is the mode, c, and the response value at the central

borders is E(g|x=8:a)=ch—O'5. For a normal Gaussian curve,

the difference between the upper and lower central border

is equivalent to 2X0} , where d} is the estimated

standard deviation for species k.
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Figure 4. Examples of GLM (above) and GAM (below) response
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lines) from which species' tolerance ranges were calculated.
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Inference models contain nested averages, biasing

predictions toward the median of the observed range of

environmental variables. This “shrinkage” of the

environmental gradient is generally corrected using one of

two deshrinking methods, classical deshrinking or inverse

deshrinking. In both methods, deshrinking parameters, a

constant (a) and a slope (b), are calculated by regressing

observed and initial model predictions. In classical

deshrinking, the initial estimates are regressed against

the observed values to derive a and b (Equation 3a), while

inverse deshrinking parameters are derived by regressing

observed values on initial estimates (Equation 4a).

Deshrinking corrected environmental estimates are

calculated as follows, using these parameters:

‘ 't‘ I“ : +b + ,1m 10 xi a xi 61.
(3a)

final £i=(initial x1. —a)/b (3b)

for classical deshrinking, and

A = X. 't' l A + ,xi a+b 1m 1a xi £1. (4a)

final£i=a+bx initialxi (4b)

for inverse deshrinking.

The classical method deshrinks more than the inverse

method, making it more effective at inferring values at the

extreme ends of the environmental gradient (Birks et al.

1990). Due to the potential negative effects of
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acidification and eutrophication on ecosystems, acurate

prediction at low pH and high nutrient values are of

particular interest. Therefore, classical desrinking was

used in this study.

Root mean squared error (RMSE) and correlation between

observed and inferred values were used to assess fit and to

compare models. The simpler approach assuming Gaussian

species responses was considered better, unless inference

models using GAM derived parameters showed more than a 5%

increase in correlation and greater than 10% reduction in

RMSE.
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RESULTS

Evaluation of the Gaussian Model

At an acceptable failure rate of 5%, the Gaussian model

inadequately described species responses along all three

environmental gradients. Thirteen of the 204 models failed

to adequately describe a species' response along the TP

gradient (failure rate 0.064) and had a bootstrapped

failure probability of 0.7545. Total nitrogen models had a

failure rate of 0.069, with a bootstrapped failure

probability of 0.8386. The Gaussian model was also

inadequate for pH, having a failure rate of 0.1863 and a

bootstrapped failure probability of 1.0.

When the acceptable failure rate was increased to 10%,

the Gaussian model passed for both TP and TN, which had

bootstrapped probabilities of failure equal to 0.0226 and

0.0457, respectively. The Gaussian model failed for pH,

even with the more liberal failure criteria of 10%

(Pr[failure]boot = 1.0).

Comparison of TP, TN, and pH Failure Rates

Failure rates for the two resource gradients, TP and

TN, were not significantly different. Ninety-six percent

of bootstrapped differences in failure rates were 0i0.05.

When TP and TN failure rates were compared with pH,
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however, each was significantly different. Ninety-nine

percent of bootstrapped differences in failure rate between

TP and pH were not equal to zero (i0.05), while 98% of

bootstrapped differences in failure rate between TN and pH

were not equal to zero (i0.05).

Performance of Inference MOdels

Models using the standard parameters derived from

Gaussian GLM (Figures 5, 7, and 9) performed well when

compared to inference using GAM derived parameters (Figures

6, 8, and 10). Inference using GAM parameters for TP and

TN showed slight improvement over models using GLM

parameters (Table 1). The magnitude of increase, however,

was not significant enough to justify using the GAM

parameters. The pH inference model actually performed

worse using GAM parameters than when using GLM parameters,

showing roughly a 3% decline in correlation and a 17%

increase in prediction error.
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Mid-Atlantic Highlands streams. Generalized linear modeling

(GLM) was used to derive species' optima and tolerance

values used in the transfer function.
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Mid-Atlantic Highlands streams. Generalized additive

modeling (GAM) was used to derive species' optima and
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Figure 7. Observed vs. diatom—inferred total nitrogen in

Mid-Atlantic Highlands streams. Generalized linear modeling

(GLM) was used to derive species' optima and tolerance

values used in the transfer function.
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Figure 10. Observed vs. diatom-inferred pH in Mid—Atlantic

Highlands streams. Generalized additive modeling (GAM) was

used to derive species' optima and tolerance values used in

the transfer function.
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Table 1. Comparison of inference models using GLM and GAM

derived parameters. A 5% increase in correlation and 10%

decrease in RMSE was considered a significant improvement by

using the GAM inference model.

 

 

 

GLM GAM ~ Percent Change

Correlation RMSE Correlation RMSE Correlation RMSE

TP 0.6505 297.9 0.6702 267.8 3.03% -10.10%

TN 0.6117 291.4 0.6530 284.0 6.75% -2.54%

pH 0.8405 126.9 0.8159 149.1 —2.93% 17.49%
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DISCUSSION

The most common models used to infer environmental

conditions with species autecological data make the

assumption that species respond to environmental gradients

in a Gaussian, bell-shaped, function. Although researchers

have shown that the universal application of this model is

inappropriate for many terrestrial plant species, it

continues to be applied in paleolimnology and environmental

assessment. The research described herein has attempted to

1) determine whether the Gaussian model is appropriate for

benthic diatom species; 2) evaluate differences in species

response functions along resource and stressor gradients,

which mechanistically might be expected to differ; and 3)

determine whether environmental inference models using

parameters derived from smoothed response curves (GAM)

perform significantly better than inference models that use

parameters derived from Gaussian functions.

Counter to expectations, the results suggest that the

standard generalized linear modeling approach may not work

well for describing species' responses to pH, but that the

Gaussian approach may work sufficiently well for TP and TN.

When examining individual species' responses to the pH

gradient, the Gaussian approach did a poor job of

describing species' responses; Gaussian models failed for
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nearly 20% of the diatom species examined. For nutrients,

the Gaussian model performed better, failing for just over

% of the diatom species examined.

Benthic diatom species appear to respond in a

symmetric, Gaussian fashion along environmental gradients

more often than other taxonomic groups that have been

examined. In a study of terrestrial plant species, Oksanen

and Minchin (2002) found that 45% of the species examined

exhibited symmetric, bell—shaped responses along an

altitude gradient. Their modeling approach used beta,

rather than standard quadratic functions, but they suggest

that symmetrical beta functions are likely to be modeled

adequately by Gaussian models. Similarly, Minchin (1989)

found that only 45 of 100 plant species' responses

exhibited symmetric, unimodal responses along an altitude

gradient. In a study of wetland and aquatic plant species,

Bio et al. (1998) used stepwise multiple logistic

regression to model species responses to several

environmental variables simultaneously. They found that

smoothed predictors (i.e., GAM) were included in 77% of 156

models; the Gaussian response curve fitted, on average,

only 18% of responses. In another study of vascular

plants, only 20% of species exhibited Gaussian responses

along a pH gradient (Ejrnaes 2000). So, even along the pH

gradient, which had the highest failure rate for diatom
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species (19%), Gaussian models appear to be much more

effective at describing species' responses for diatoms than

for vascular plants.

Inference models using Gaussian response parameters

also worked effectively for diatoms. Improvement in

inference models for TP and TN using GAM derived optima and

tolerance values was probably not large enough to justify

the use of GAM over more traditional methods which are more

easily computed. Interestingly, despite the poor

performance of the Gaussian model for describing individual

species' responses to pH, the inference model for pH using

GAM derived parameters performed substantially worse than

the model using Gaussian optima and tolerance values. The

reason for this is not clear, but differences between

observed and inferred values increased at the lower end of

the gradient when GAM optima and tolerance values were used

(Figures 10 and 11). These results suggest that standard

methods for constructing inference models can be used

effectively, despite potential flaws in the derivation of

individual optima and tolerance values.

Failure rates between the pH stressor gradient and the

nutrient resource gradients were significantly different.

The Gaussian model was more effective at describing

species' responses to resources than to the stressor.

Mechanistically, such a difference in species responses to
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stressors and to resources may be expected (Grime 1973,

1977). Stressors put physiological constraints on species,

such as the ability of enzymes to function normally.

Resources on the other hand should not have this effect

until they reach toxic concentrations. At the low end of

resources levels, competition is more likely to influence a

species' ability to persist. Competition may lead to

displacement of a species' optimum or even bimodal

responses (Austin and Smith 1989). Therefore, diatom

responses to nutrients and pH were expected to differ.

Austin, one of the most vocal opponents to the

universal application of the Gaussian response curve, has

suggests that there are three types of environmental

gradients: indirect, direct, and resource gradients (Austin

1980) and that species responses along these types of

gradients will differ. Indirect gradients do not have a

direct effect on species performance. Indirect variables

may correlate well with species performance in some areas,

but not in others due to the presence of important

covariates. Without accounting for these covariates,

models constructed along indirect gradients are likely to

be specific to one region. On the other hand, direct

gradients such as pH have a direct physiological influence

and may transfer well to other regions. Finally, resource

gradients such as nutrients used by plants are either
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sufficient or deficient, and the ability of a species to

utilize low levels of a resource are unlikely to be

correlated with the effects of oversupply. So, species'

response are likely to be asymmetrical and the

characteristics of the response curve will be sensitive to

other species present in the community. Austin's theory

regarding resource gradients suggests that Gaussian

patterns might be expected along stressor gradients and

non-Gaussian patterns might be expected for resource

gradients. In this study, diatom species responded

opposite to these expectations. Symmetrical, unimodal

responses to TP and TN were observed, but pH optima were

often predicted outside the range of observed values.

Diatom species' responses to pH may have differed from

expectations due to indirect effects that exist in aquatic

environments but are lacking from Austin's environmental

gradients. Terrestrial plants are affected directly by

soil pH, whereas aquatic producers may also be strongly

affected indirectly by pH. Grazers are know to influence

the abundance of algal species (Steinman 1996), and are

also affected physiologically by pH (Baker and Christensen

1990). Furthermore, pH can influence resource availability

(Fairchild and Sherman 1990). Therefore, non-Gaussian

responses to pH may have been driven by indirect effects

that are not expected for pH in terrestrial environments.
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Despite their inadequate description of many species'

responses to pH and several species' responses to TP and

TN, the Gaussian function described diatom species'

responses substantially better than it has for other

taxonomic groups. Furthermore, environmental inference

models using Gaussian species' response parameters

performed nearly as well or better than inference models

using GAM derived parameters. The ability of seemingly

over simplistic inference models to effectively predict

environmental conditions has been noted in the past (Birks

1998). Here it seems that more accurate descriptions of

species' responses can even lead to less effective

inference models. At this time, there appears to be little

reason to abandon Gaussian approaches for modeling diatom

species' responses, even though the universal application

of this model lacks a strong theoretical foundation.
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CHAPTER THREE

PREDICTING DIATOM ASSEMBLAGES IN MINIMALLY DISTURBED

STREAMS USING A NEW HYBRID MODELLING APPROACH

49



INTRODUCTION

Determining whether the ecological integrity of a

stream reach has been affected by human activities requires

establishing reference conditions as a “control”. Because

historical data are rarely available, the traditional

approach is to compare the ecological conditions of a

stream reach to a site upstream of the suspected cause of

impairment (Lowe and Pan 1996, Hansmann and Phinney 1973).

The weakness of this approach is the lack of independence

between samples (Hurlbert 1984), lack of replication to

account for uncertainty, potential lack of adequate

reference sites upstream, and difficulty addressing

problems associated with non-pointsource pollutants.

In an attempt to address several of these problems,

many agencies in the United States are evaluating or have

adopted a regionalization approach (Barbour et al. 1996,

DeShon 1995, Yoder and Rankin 1995, Ohio EPA 1987). In

this approach, streams within a spatially contiguous region

are expected to be similar in the absence of human

disturbance. Reference sites with minimal human

disturbance are then chosen within each region. Test sites

(sites being evaluated for impairment) are then compared to

reference sites within the region to determine whether

conditions are significantly different than expected.
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While improving problems associated with replication,

sample independence, and non-pointsource pollutants, the

regionalization approach can have weaknesses associated

with assumed site homogeneity within the regionalization

classes. Hydrogeologically heterogeneous regions like

those found in the western United States can lead to

substantial variation in biological conditions within a

region, even with minimal human disturbance.

An approach applied in the United Kingdom (Clarke et

al. 2003) and Australia (Norris and Norris 1995) attempts

to overcome this problem by classifying streams according

to their biology, and does not assume spatial continuity

within classes. In RIVPACS-type models (River InVertebrate

Prediction And Classification System, Moss et al. 1987),

reference sites are chosen a priori and biological

assemblages are sampled in these reference sites.

Multivariate statistical clustering techniques are then

used to classify streams according to the biological data.

Inference models are then developed to predict site

membership using hydrologic, geologic, geographic, and

'climate variables that are relatively independent of human

activities at the regional or subcontinental scale. The

observed biological community at a test site is then

compared to the inferred biological community predicted to

exist at the site.
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Linear discriminant analysis (LDA; a.k.a. multiple

discriminant analysis, MDA, discriminant functions

analysis, DFA, or discriminant analysis, DA) has been used

to build RIVPACS—type models to predict expected conditions

at a site using environmental predictor variables. Linear

discriminant analysis attempts to discriminate between

predefined, discrete categories of sampling units,

maximizing the among-to—within group variation using linear

combinations of variables (McCune and Grace 2002).

The application of LDA in ecological assessment poses

several potential problems related to the assumptions of

this technique. Linear discriminant analysis assumes

within-group variance homogeneity, multivariate normality,

and linear relationships between variables (McCune and

Grace 2002). Furthermore, LDA lacks an effective way to

handle missing data. Ecological and environmental data

often fail to meet these assumptions. Chemical

concentrations and species abundances are often left-

censored (i.e., below detection limits), many ecological

patterns are known to be non-linear, and missing data are

common in the large datasets used to develop predictive

models. Thus, the assumptions of LDA, combined with the

attributes of ecological data, may result in imprecise or

inaccurate predictive models (Williams 1983).

One alternative to LDA when predicting group membership
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for new observations is recursive partitioning (a.k.a.

classification and regression trees or CART; Breiman et al.

1984). Recursive partitioning alleviates many of the

problems associated with LDA because it allows for many

data types, including continuous and categorical predictor

variables; it is insensitive to non—normal variance

distributions of the variables; and it models relationships

in a non-linear and hierarchical fashion. While LDA seeks

to maximize among—to-within group variation using linear

combinations of variables, CART seeks to split data into

increasingly homogeneous groups by repeatedly splitting

data using a single value of one predictor variable that

minimizes impurity within each of the resulting groups.

For classification trees (i.e., trees with categorical

responses), impurity in the resulting groups may be

evaluated using one of several possible indices, the most

common being the information index, the Gini index, and the

twoing index (Breiman et al. 1984). Each node containing a

set of observations is recursively split into binary child

nodes until a stopping rule is reached (e.g., a predefined

minimum improvement in the variance explained or a minimum

number of observations within each of the terminal nodes).

Thus, CART finds changepoints rather than linear patterns

and approaches pattern recognition in a hierarchical rather

than an additive manner. Despite its effective handling of
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many problematic forms of environmental data, CART has its

limitations. Recursive partitioning is inefficient at

modeling linear relationships when they do exist.

Approaches combining LDA and CART may help exploit the

advantages of each technique, while minimizing the effects

of their weaknesses. Such approaches have been

demonstrated for characterizing species' traits related to

invasion success and in assessing the risk of invasion by

these species (Rejmanek and Richardson 1996, Reichard and

Hamilton 1997, Kolar and Lodge 2002). These approaches,

however, have synthesized LDA and CART model predictions in

an informal, qualitative way. For example, a species might

be considered an invasion threat if both LDA and CART

predict the species to be a threat, regardless of the

probabilities associated with those classifications.

Perhaps more importantly, these approaches provide little

guidance regarding the interpretation of results when the

two model predictions disagree.

In this paper, an inference model for predicting diatom

species composition under minimally disturbed conditions in

streams throughout the western United States is presented.

The inference model uses a new method that formally

integrates the predictions of LDA and CART using Bayes'

theorem. Misclassification rates and the ratio of correct-

to-incorrect predictions weighted by classification
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probabilities are compared for LDA, CART, and the new

hybrid approach.
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METHODS

Data

The data used in these analyses were collected from

reference sites throughout the western United States

(Figure 11). We sampled reference sites that were

generally minimally disturbed by human activities and often

nearly pristine. Including streams that were

representative of most wadable stream types within a region

sometimes required sampling streams that Were the best

available. Site selection prior to sampling was based on

best professional judgment of local aquatic scientists and

by landscape features. Posterior elimination of sites from

the reference dataset occurred when field crews noted

significant anthropogenic degradation of a site, relative

to similar stream types.

Physical, chemical, and biological data were collected

at each site. To minimize the confounding of spatial and

temporal patterns in the data, sites were not sampled in a

spatially systematic fashion and five field crews were sent

to separate locations throughout the western United States.

Full descriptions of collection protocols are available

through the Western Center for Monitoring and Assessment of

Freshwater Ecosystems (http://www.cnr.usu.edu/wmc/) and are

forthcoming in publications elsewhere. For brevity, only a
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Figure 11. Location of stream reaches sampled throughout

the western United States.
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subset of the protocols are described here, with emphasis

on periphyton collection. Sampling reaches were composed

of four fast-water habitats (i.e., riffle, run, or rapid)

at a study site. Within each of the 4 fast—water habitats,

4 rocks were collected, and periphyton was scraped from a

delimited area of roughly 15 cm2. On rare occasions, rocks

were not available and other substrata were sampled,

prioritized from bedrock/boulder, to sand and silt.

Periphyton from all substrata were composited, subsampled,

and preserved with formalin.

In the lab, I homogenized periphyton samples and

digested subsamples in hot nitric acid toclear diatom

frustules of organic matter. A subsample of cleaned diatom

frustules were then permanently mounted on slides in

Naphrax(R) and I identified individual diatom valves within

transects to the lowest reasonable taxonomic level using

1000x total magnification. Generally diatoms were

identified to the species or variety level.

Computationally, a random subsample of 500 valves for each

site was selected to ensure an equal sample size across

sites.

We sampled a total of 408 sites that were included in

this analysis during the summers of 2001 and 2002.

Predictor variables were chosen to be relatively

independent of human influence and included both field-
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based and GIS-derived data. These variables included a

hydrologic retention index determined from the difference

in time between the leading and trailing edges of a

fluorescent dye release along 50 m to 100 m stretch of the

sampling reach (7.87 1 29.53, mean 1 standard deviation),

percent canopy cover (45% i 33%), percent stream slope (4%

i 4%), stream velocity (0.36 i 0.29 m/s), Julian date (from

day 135 to day 254), percent of substrata >128 mm in

diameter (23% i 19%), average high values of bulk soil

density within the basin (1.44 i 0.14 g/cm3), latitude

(40.8002 i 4.3348 degrees north), longitude (-1l3.0856 1

6.3249 degrees west), elevation (1638 i 786 m), watershed

area (777 i 3574 km2), average high values of organic

o
\
°

matter content in basin soils (2% i 1 w/w), average high

values of basin soil permeability (12.4 i 9.0 cm/h), mean

monthly precipitation (917 i 575 mm), average relative

humidity (56.3 i 8.5), average high values of depth to

bedrock (46.3 i 9.9 m), mean annual maximum monthly

temperature (12.6 i 4.4°C), mean annual monthly temperature

(5.7 i 4.1°C), mean annual minimum monthly temperature

(-1.2 i 4.0°C), average number of days with measurable

precipitation (97 i 37 days), and the ratio of minimum mean

monthly flow to maximum mean monthly flow interpolated from

USGS gaging stations as an index of hydrologic stability

(0.03 i 0.04).
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Clustering Sites by Taxonomic Composition

Various clustering techniques have been applied by

researchers using RIVPACS—type models. Some have found

success using two—way indicator species analysis (TWINSPAN,

Hill 1979; Clarke et al. 2003, Moss et al. 1987), while

others have preferred agglomerative hierarchical clustering

methods (Ostermiller and Hawkins 2004, Hawkins et al.

2000). An artificial neural network technique called a

self-organizing map (SOM) has been used by others to

classify stream sites using diatom assemblages (Gevrey et

al. 2004). While any of these clustering methods will work

with the predictive modeling technique described below, SOM

was used in this study to classify sites using diatom genus

composition. Preliminary analyses suggested that clusters

were more homogeneous when taxonomic resolution was reduced

to the genus level, so sites were classified using diatom

genus composition. Self-organizing maps were chosen

because of their previous application to diatom assemblages

(Gevrey et al. 2004) and the proven ability of artificial

neural networks to handle complex non—linear data found in

ecological data (Lek et al. 1999, Recknagel et a1. 1997).

Sites were clustered by genera using the som package in R

(R Development Core Team 2005). Multidimensional genus

data was mapped onto a 5x4 hexagonal grid following natural

log plus one transformation of genus counts. Each SOM cell
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was treated as a discrete class.

Predicting Class Membership

Initially, two predictive models, one using LDA and the

other using CART, were developed to predict site membership

using environmental variables. Linear discriminant

analysis was performed using the lda function in the the

MASS library for R. In the LDA model, predictor variables

were centered and scaled by their standard deviation.

Sites with missing variables were dropped when building the

LDA model. Sites were probabilistically assigned to each

SOM class. In cases where sites were dropped due to

missing variables, prior probabilities of class membership

were used. A prior class probability was determined from

the proportion of all 408 sites that belonged to the class.

Probabilistic classifications for the LDA model were

calculated using a leave—one—out jack—knifing procedure to

prevent overestimation of probabilities that may result

from resubstitution of the training set.

A classification tree was developed using the same

predictors that were used in the LDA model. However, this

is not a requirement of the hybrid method described below

and was only done here for the purpose of comparing LDA,

CART, and the hybrid models. In application, the best

predictors should be selected for each model. It is likely
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that these predictors will differ between LDA and CART

because the best variables for LDA should be linear, while

the best variables for CART should result in strong

breakpoints. The rpart library of R was used to grow and

select the classification tree. Split impurity was

evaluated using the Gini index. VHfold cross—validation

(V510) was used to select the appropriate tree size. In

this method, the data are split into V sub—groups of

approximately equal size. Each group is then removed, one

group at a time, and the remaining data is used to

construct the model. The model is then used to predict

class membership for sites in the removed sub-group. The

relative error is calculated for every possible tree size

for each of the V models. The relative error for each tree

size is then summed across all V models and the tree size

with the smallest total relative error is chosen (Breiman

et al. 1984).

Bayes' rule can be used to combine the LDA and CART

model predictions. For each new observation } classified

by the LDA and CART models, there exists a vector of

probabilities that the observation belongs to each of the k

possible classes. The maximum likelihood approach

classifies } in the group that has the greatest

probability of membership. The classification probability

vectors resulting from LDA and CART are easily combined
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using Bayes' rule, which provides a framework to integrate

LDA and CART predictions in a formal way. Bayes' rule

states the probability of a new observation, } , belonging

to class k, conditional on the data at hand, y, is

proportional to the likelihood of the data, ITLWIl) , times

the prior probability, [YIFkI . This value is then divided

by a normalization constant equal to the sum of all k

products of the likelihood and the prior, bringing the sum

of all fYIfkbd to one (Equation 5).

Pr(yI)7k)><Pr(y”k)

k
(5)

Z PrIyIrk)><Pr(y~k)
k=1

 

Pr(J7kIy)=

Thus, multiplying the probability vectors output by LDA and

CART leads to posterior probabilities that incorporate the

predictions of both models. The sum of all probable

outcomes for some event must equal one. The denominator of

Equation 1 accomplishes this for the updated probabilities,

dividing each of them by the sum of all products for that

observation.

In this approach, either the LDA or the CART

predictions represent the prior, while predictions of the

other model represent the likelihood and the two are

interchangeable,
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Pr(yly"k)><Pr()7k) Pr()7k)><Pr(y|y”k)

Pr(ykly)= k : k

[331 Pr(yly“k)><Pr(y*k) 121 Pr(y"k)><Pr(ny”k)

 

The two sets of prediction probabilities are different,

however, in the way they were derived and, in practice,

they probably differ in the variables used to create them.

Maximum likelihood estimates of the hybrid, LDA, and

CART modeling approaches were then compared using the

percent of misclassified observations and a confidence

weighted ratio which takes into account the predicted

probability of membership for correctly and incorrectly

classified observations. A standard method for evaluating

these types of predictive classification models is to

resubstitute the observations used to create the model and

to quantify the percent of misclassified observations

(Moss, 2000). One problem with this evaluation approach is

that it does not take into account the amount of confidence

the model has placed in each classification. Conceivably,

an observation in a model with 20 categories could be

placed into a category having a probability 0.051, if all

other categories have probabilities $0.05. It is very

likely that the site is misclassified. Confidence in the

prediction is quite low, but this is not taken into account

using misclassification rates. Therefore, model

predictions were also compared using a confidence-weighted
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ratio (CWR) of correct to incorrect classifications

n

2 max ( Pri)|c0rrect

CWR= ’=1 . <7) 

max ( Pri )I incorrect

1
M
:

where max(£d3|correct) is the value of the maximum

probability for observation i, given that the

classification was correct. Likewise, max(E&1|incorrect) is

the value of the maximum probability for observation i,

given that the classification was incorrect.
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RESULTS

Clustering of Sites

The self-organizing map resulted in 19 of 20 possible

classes. Most classes contained 8 or more observations,

but several contained fewer due to unique diatom

assemblages (Table 2). Smaller grid dimensions were tried,

but this led to excessive lumping of larger classes and did

little to incorporate smaller classes into larger ones.

One cell in the 5x4 map (C21) did not contain any sites. A

small number of genera were common to at least one site

within every class. These genera included Achnanthidium,

Amphora, Cocconeis, Diatoma, Fragilaria, Navicula,

Nitzschia, Planothidium, and Staurosirella. More commonly,

genera were unique to only a small number of classes (Table

3).

LDA MOdel Summary

The first linear discriminant axis accounted for 49.2%

of the variation, while axes 2 and 3 accounted for just

over 10% each. Temperature-related variables were the most

important for discriminating among diatom genus classes

using linear combinations of variables. Mean annual

monthly temperature was positively associated with the

first discriminant axis, while minimum and maximum annual
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Table 2. Self-organizing map classification summary,

including the number of sites place in each class (N)

the associated mean squared error of each class

 

 

Class N MSE

C00 82 7.04

C01 4 6.2

C02 27 6.25

C03 55 6.29

C10 8 6.81

C11 2 7.08

C12 2 7.74

C13 28 6.22

C20 13 7.25

C22 2 5.09

C23 30 6.8

C30 14 6.88

C31 1 7.43

C32 3 6.15

C33 19 6.74

C40 28 7.1

C41 35 6.92

C42 2 5.9
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Table 3. Proportion of sites within each class in which

diatom genera were observed.

 

Proportion of Sites Per Class
 

 

Genus C00 C01 C02 C03 C10 C11 C12 C13 C20 C22

Achnanthidium 0.8 1 0.98 1 1 1 1 1

Achnanthes 0.05 0.5 0.19 0.16 0.5 0.14 0.23 0.5

Actinocyclus '0.02

Adlafia 0.1 0.25 0.22 0.56 0.13 0.5 .54 0.15

Amphipleura 0.2 0.07 0.04 0.13 0.15 0.5

Amphora 0.89 1 0.81 0.71 1 .5 0.5 .79 0.77

Aneumastus

Anomoeoneis

Asterionella 0.04 0.02 .04

Aulacoseira 0.16 0.25 0.15 0.11 0.13 0.5 .18

Bacillaria 0.06 0.02

Biremis 0.06

Brachysira 0.02

caloneis 0.4 0.33 0.18 0.5 .04 0.31

campylodiscus

Cavinula 0.04 0.02 .07

Chamaepinnularia 0.04 0.04 0.02

Cocconeis 0.98 1 1 1 l 1 1 0.92 1

Craticula 0.32 0.5 0.33 0.38 0.5 .32 0.23 0.5

Ctenophora 0.02

Cyclostephanos 0.1

Cyclotella 0.48 0.22 0.15 0.13 .5 .18 0.31

cymatqpleura 0.01 0.02 0.5

cymbella 0.24 0.75 0.22 0.31 0.5 1. .39 0.62 1

Denticula 0.1 0.38 0.15

Desmogonium 0.01

Diadesmis 0.25 0.15 0.24 .11

Diatomella 0.04 0.05 .04

Diatoma 0.29 0.75 0.44 0.67 0.63 1 0.5 .93 0.31 0.5

Didymosphenia 0.01 0.04

Diploneis 0.26 0.15 0.13 .5 .11 0.31

Encyonema 0.35 0.56 0.76 0.38 .96 0.69 1

Encyonqpsis 0.13 0.5 0.15 0.15 0.63 .11 0.23

Entomoneis
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Table 3 (con't)

 

Proportion of Sites Per Class
 

 

Genus C23 C30 C31 C32 C33 C40 C41 C42 C43

Achnanthidium 1 1 1 1 1 1 l

Achnanthes 0.2 0.29 0.26 0.25 0.6 0.62

Actinocyclus

Adlafia 0.37 0.14 l 0.67 0.42 0.14 0.14 1 0.36

Amphipleura 0.03 0.21 0.05 0.18 0.03 0.04

Amphora 0.6 1 1 1 0.53 0.82 0.31 1 0.49

Aneumastus 0.07

Anomoeoneis 0.03 0.02

Asterionella 0.05 0.04 0.03 0.08

Aulacoseira 0.23 0.21 0.29 0.42

Bacillaria

Biremis

Brachysira 0.07 0.14 0.11 0.11 0.17 0.06

caloneis 0.17 0.5 0.05 0.43 0.06 0.21

Campylodiscus 0.07

Cavinula 0.08

Chamaepinnularia 0.07 0.04

Cocconeis 1 1 1 1 0.84 0.79 0.71 1 0.92

Craticula 0.13 0.14 0.32 0.03 0.06

Ctenqphora 0.04 0.02

Cyclostephanos

cyclotella 0.07 0.33 0.05 0.11 0.09 .5 0.06

cymatqpleura

cymbella 0.17 0.79 1 0.67 0.37 0.75 0.51 .5 0.45

Denticula 0.14 0.21 0.02

Desmogonium

Diadesmis 0.2 0.16 0.04 0.13

Diatomella 0.03

Diatoma 0.8 0.57 1 0.67 0.84 0.5 0.49 1 0.83

Didymosphenia 0.33 0.05 0.04 0.03 0.08

Diploneis 0.07 0.14 0.25 0.03

Encyonema 0.73 0.86 1 1 0.84 0.75 0.71 1 0.98

Encyonqpsis 0.1 0.57 1 0.05 0.79 0.37 0.13

Entomoneis 0.04
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Table 3 (con't)

Proportion of Sites Per Class

Genus C00 C01 C02 C03 C10 C11 C12 C13 C20 C22

Eunotia 0.13 0.07 0.15 0.21

Fallacia 0.04 0.25 0.05 0.13 0.08

Fragilaria 0.68 l 0.81 0.87 0.5 0.5 0. 0.93 0.77

Fragilariforma 0.02

Frustulia 0.11 0.15 0.13 0. 0.25 0.08

Geissleria 0.29 0.5 0.74 0.75 0 5 0.5 0.61 0.54

Gbmphosphenia 0.01 0.04 0.04 0. 0.11

Gbmphoneis 0.16 0.22 0.27 0.29 0.15

GOmphonema 0.93 0.75 1 0.98 1 1 1 0.85

Gyrosigma 0.04 0.04 0.04 0.15

Hannaea 0.04 0.25 0.29 0.57 0.08

Hantzschia 0.04 0.15 0.11 0.07 0.08

Hippodonta 0.17 0.04 0.04 0 25 0 5 0.04

Karayevia 0.1 0.19 0.16 0.38 0. 0.07 0.23

KOlbesia 0.01 0.04 0.2 0. 0.14

Lemnicola 0.02 0.04 0.13 0.04

Luticola 0.02 0.07 0.11 0.04

Martyana 0.01

Mastogloia 0.01

Mayamaea 0.34 0.5 0.63 0.65 0.38 0 5 0.5 0.15

Melosira 0.22 0.25 0.15 0.15 0.25 0. 0.18 0.15

Mbridion 0.17 0.25 0.19 0.4 0.25 1 0.5 0.15

.Microcostatus 0.04

Navicula 1 1 1 0.98 1 1 0.96 1

Neidium 0.04 0.02 0.13 0.04

Nitzschia 0.99 1 1 0.98 l 1 1 0.92

Nupela 0.2 O. 0.04

Qpephora 0.01 0.25 0.11 0.04 0.04

Orthoseira

Parlibellus

Pinnularia 0.07 0.25 0.15 0.18 0.18 0.08

Placoneis 0.02 0.04 0.04
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Table 3 (con't)

Proportion of Sites Per Class

Genus C23 C30 C31 C32 C33 C40 C41 C42 C43

Eunotia 0.27 0.16 0.04 0.4 0.32

Fallacia 0.29 0.14

Fragilaria 0.93 0.5 1 0.67 0.95 0.64 0.77 0. 0.94

Fragilarifbrma 0.05

Frustulia 0.17 0.21 0.04 0.2 0.17

Geissleria 0.67 0.43 1 1 0.42 0.32 0.11 0.4

Gomphosphenia 0.1 0.09 0.13

Gbmphoneis 0.4 0.07 0.33 0.37 0.07 0.06 0. 0.19

Gomphonema 0.97 1 1 1 0.82 0.89 1

Gyrosigma 0.14 0.07

Hannaea 0.63 1 0.68 0.14 0.51 0. 0.87

Hantzschia 0.07 0.04 0.06

Hippodonta

Karayevia 0.07 1 0.05 0.11 0. 0.13

Kblbesia 0.5 0.33 0.37 0.17 0.28

Lemnicola

Luticola 0.03 0.16 0.04 0.03 0.02

Martyana

Mastogloia 0.07

Mayamaea 0.5 0.21 0.67 0.53 0.04 0.09 0.17

Nelosira 0.27 0.07 0.11 0.06 0.17

.Meridion 0.4 0.36 0.42 0.14 0.26 0.55

.Microcostatus

Navicula 0.97 1 1 1 1 0.96 0.63 0.87

Neidium 0.03 0.07 0.04 0.03

Nitzschia 0.97 1 1 1 0.89 0.93 0.6 0.81

NUpela 0.13 0.33 0.21 0.06 0.15

Opephora 0.07 0.03 0.06

Orthoseira 0.02

Parlibellus 0.02

Pinnularia 0.13 0.07 0.05 0.04 0.06 0.13

Placoneis 0.07 0.05



 

 

 

Table 3 (con't)

Proportion of Sites Per Class

Genus C00 C01 C02 C03 C10 C13 C20 C22

Pseudostaurosira 0.17 0.15 0.18 0.38 0.29 0.15

Punctastriata

Reimeria 0.5 1 0.81 0.91 0.88 1 0.89 0.46

Rhoicosphenia 0.88 1 1 0.96 0.5 1 0.96 0.54

Rhopalodia 0.39 0.15 0.05 0.13 .5 0.04 0.15

Rossithidium 0.02 0.07 0.07

Sellaphora 0.23 0.75 0.37 0.31 0.5 .5 0.21 0.08

SimonSenia 0.2 0.25 0.11 0.23 0.5

Staurosirella 0.2 1 0.59 0.55 0.38 1 0.54 0.62 0.5

Stauroneis 0.04 0.04 0.22 0.13 0.07 0.15

Stauroforma 0.05 0.04

Staurosira 0.38 0.25 0.33 0.35 0.38 1 0.36 0.31 0.5

Stephanodiscus 0.12 0.02

Surirella 0.18 0.25 0.15 0.2 0.13 0.18 0.38 1
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Table 3 (con't)

 

Proportion of Sites Per Class
 

 

Genus C23 C30 C32 C33 C40 C41 C42 C43

Ebeudostaurosira 0.13 0.14 1 0.67 0.05 0.04 0.06 0.21

Punctastriata 0.03

Reimeria 0.73 0.71 1 1 0.68 0.71 0.57 0.85

Rhoicosphenia 0.8 0.43 0.33 0.79 0.29 0.37 0.49

Rhopalodia 0.14 0.07 0.08

Rossithidium 0.13 0.07 0.05 0.2 0.19

Sellaphora 0.2 0.29 0.16 0.07 0.03 0.13

Simonsenia 0.03 0.21 0.14 0.02

Staurosirella 0.33 0.79 1 0.67 0.32 0.36 0.31 0.51

Stauroneis 0.2 0.14 0.07 0.04

Stauroforma 0.03

Staurosira 0.3 0.36 0.33 0.32 0.11 0.14 0.49

Stephanodiscus 0.03 0.02

Surirella 0.2 0.29 0 11 0.11 0.09 0.09
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monthly temperatures were negatively related to this axis.

These variables also had large coefficients for the second

and third axes. Elevation was also an important factor in

the second discriminant axis.

CART.MOdel Summary

A classification tree with 16 terminal nodes was

selected because it had the smallest cross—validated

relative error (Figure 12). Hydrologic stability and

average annual precipitation were the two splits that

explained the most variation in the data. Sites with a

minimum mean monthly stream flow less than 0.25% of the

maximum mean monthly stream flow were likely to belong to

class C00; 70% of observations in this terminal node

belonged to C00. Within streams that were more

hydrologically stable, streams with less than 689.2 mm of

average annual precipitation were different from those that

had more precipitation. Streams with less precipitation

were more likely to belong to C00 than those with more

precipitation, which were more likely to belong to class

C43. A fair amount of variation remained in these nodes,

however. Streams with less than 689.2 mm of precipitation

could be split into more homogeneous groups using percent

canopy cover, maximum annual temperature, soil depth,

longitude, and hydrologic stability. Streams with more
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Figure 12. Classification tree (CART) for predicting diatom

class membership using environmental variables. Decision

rules at each split indicate which branch to take. Terminal

nodes indicate predicted class membership. Decision rules

that did not fit neatly onto the figure are indicated by

circled numbers at the node and are as follows: 1) longitude

2-109.4 to the left, longitude <-109.4 to the right; 2)

maximum temperature 213.23 to the left, maximum temperature

<13.23 to the right; 3) hydrologic stability 20.09905 to the

left, hydrologic stability <0.09905 to the right; 4) bedrock

depth 246.54 to the left; bedrock depth <46.54 to the right;

5) number of wet days <98.7 to the left, number of wet days

298.7 to the right; 6) soil organic matter <1.038 to the

left, soil organic matter 21.038 to the right; 7) dominant

geology granitic, mixed, sedimentary, or volcanic to the

left, dominant geology gneiss or ultra-mafic to the right;

8) percent canopy cover 262.34 to the left, percent canopy

cover <62.34 to the right. Several variables are described

in more detail in the text.
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than 689.2 mm of precipitation could be split into more

homogeneous groups using relative humidity, soil

permeability, stream velocity, percent of substrata larger

than 128 mm in diameter, dominant catchment geology,

percent canopy cover, average number of days with

measurable precipitation, and soil organic matter content.

In total, the 15 splits in the tree explained roughly 36.5%

of variation in the data, estimated following cross-

validation.

.Model Performance

The hybrid modeling approach outperformed LDA and CART

models used independently (Table 4). The hybrid modeling

approach correctly classified 216 sites, while LDA and CART

correctly classified 179 and 201 sites, respectively. When

factoring in probabilities associated with maximum

likelihood estimates, improvement using the hybrid method

was even more substantial. Within classes, LDA

misclassifications ranged from 0% to 100% (Table 5). Low

and high misclassification rates were most common in small

classes. For classes that had more than 20 sites, LDA

correctly classified anywhere from 18% to 76% of sites.

The CART model often misclassified 100% of sites in small

classes (Table 6). This is because little improvement in

the model occurs by splitting these small groups from a
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Table 4. Performance of linear discriminant analysis

(LDA), recursive partitioning (CART), and the Bayesian

hybrid predictive classification models with respect to

misclassification rates, the odds of correctly classifying

a site relative to the null model (random assignment to a

class) and confidence-weighted ratios (CWR) of correct-to-

incorrect classifications.

 

LDA CART Hybrid

Percent Misclassified 56.17% 50.74% 47.06%

Odds > Chance 8.34 9.36 10.06

CWR 1.05 1.15 1.39
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larger group. Sites in larger classes were correctly

classified between 11% and 89% of the time. Improvements

in correct classification rates by CART over LDA were due

to lower rates of misclassification in larger classes. The

hybrid method was unable to eliminate problems associated

with misclassification in small classes (Table 7).

Misclassification rates for these small classes ranged from

% to 100%, with 0% being far more common. Sites in larger

classes were correctly classified between 29% and 88% of

the time. Overall model performance with respect to the

indices used here was highest for the hybrid method and

lowest for the standard LDA method, while CART performance

was intermediate.
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DISCUSSION

Predictive models are valuable tools that are

increasingly being applied in ecological assessment and

environmental risk assessment (Cété and Reynolds 2002).

Current methods being used in predictive classification

have different strengths and weaknesses. The Bayesian

approach presented here provides a formal method to

integrate the predictions of linear and nonlinear

predictive classification models. Linear discriminant

analysis and recursive partitioning provide alternative

methods for developing predictive classification models.

Each method has its own benefits and problems but the two

methods can be used in a complimentary way using Bayes'

theorem as described.

The hybrid approach used here resulted in lower

misclassification rates than those observed for either LDA

or CART alone. Furthermore, the CWR suggested that

improvement in inference using the hybrid method was even

higher than suggested by misclassification rate. In

RIVPACS—type models, probabilistic classifications are used

rather than maximum likelihood. Therefore, metrics such as

the CWR which incorporate classification probabilities are

more representative of the improvement likely to be

observed by combining linear and nonlinear models in a
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formal way. The hybrid method resulted in increased

classification probabilities when LDA and CART both

suggested that a site had a high probability of belonging

to a given class. When the two modeling approaches

exhibited significant differences in classification

probabilities, the hybrid method provided a quantitative

intermediate to these predictions, which can be important

when the true class of a given observation is not known.

In fact, if the true class membership were known, there

would be no need for these types of predictive models in

environmental assessment. Previous qualitative syntheses

of modeling results give equal weight to each maximum

likelihood prediction, despite the knowledge that one of

these predictions is wrong.

In addition to improved inference, using a combination

of linear and nonlinear models can provide more complete

insight to ecological patterns because both linear and

nonlinear patterns are likely in ecological systems.

Linear discriminant analysis suggested that temperature was

the most important factor for discriminating stream classes

based on diatom genus composition. While this analysis is

observational in nature, thereby making cause—and-effect

relationships difficult to conclusively establish, previous

research does suggest that temperature may be an important

factor regulating the composition of algal communities in
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streams. Many studies have shown observational

relationships between temperature and algal taxonomic

composition in streams (Pan et al. 1999, Lamberti and Resh

1985, Wilde 1982, Squires et al. 1979), but experiments

establishing causal relationships are rare (Wilde and Tilly

1981). In general, these studies show a shift in

periphyton composition from diatoms at low temperatures, to

chlorophytes and xanthophytes at intermediate temperatures,

and cyanobacteria at higher temperatures. Diatom

assemblages themselves also change along temperature

gradients (Potapova and Charles 2002, Vinson and Rushforth

1989, Squires et al. 1979, Klarer and Hickman 1975, Patrick

1971), with increases in the genus Cocconeis commonly

observed. While causal relationships with temperature may,

in part, be responsible for the observed patterns in diatom

genus composition, unobserved covariates are possible when

observing patterns at such large spatial scales.

The most important nonlinear patterns observed in the

CART model were hydrological in nature. The variable

explaining most of the variability in diatom genus class

was the hydrologic stability index. The first split in the

tree isolated a significant proportion of streams in the

diatom class C00. This was the largest class, containing

20% of all sites. This split separated a group of sites

characterized by an annual minimum monthly discharge that
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was just a fraction of the annual maximum monthly

discharge. These streams appear to be characterized by

small baseflow and large event flow; in other words, these

streams are not maintained by persistent sources such as

ground-water circulation and have months of high input such

as that supplied by snow melt. In fact, many of the

streams in this class were found in North Dakota and South

Dakota where snowfall is high and significant aquifer input

is unlikely (McGuinness 1963). Others have found that

these hydrologic characteristics can influence water

chemistry during the summer, which may have an influence on

stream periphyton (Andersen et al. 2005, Peterson et al.

2001). This class of streams was characterized by higher

conductivity and total phosphorus than streams at the

opposite side of the SOM, suggesting that hydrologic

regulation of water chemistry may be regulating diatom

genus composition.

Recent applications of predictive classification models

such as RIVPACS attempt to quantify the expected biological

community at a given site in the absence (or minimization)

of anthropogenic disturbance (Moss et al. 1987) in order to

assess the biological integrity of the stream. Significant

differences between observed and expected assemblages

indicate ecological impairment. One potential problem with

current RIVPACS—type models is the sole use of LDA to
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develop predictive classification models. Ecological data

often violate several of the assumptions of LDA and missing

data are common in most bioassessment surveys. The hybrid

approach presented here will result in more reliable

predictive classification models for RIVPACS—type

assessments and may improve inference in other ecological

classification problems, such as species profiling for

invasiveness risk.
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CHAPTER FOUR

A RELATIVE RISK FRAMEWORK FOR DEVELOPING NUTRIENT WATER

QUALITY CRITERIA BY INFERRING REFERENCE CONDITIONS AND THE

PROBABILITY OF LOSING VALUED ECOLOGICAL ATTRIBUTES
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INTRODUCTION

Cultural eutrophication is one of the most widespread

threats to water quality in the United States. According

to a report by the United States Environmental Protection

Agency (USEPA), 40% of surveyed streams and rivers in the

nation are impaired due to nitrogen and phosphorus

enrichment (USEPA 1996). As a result, the Clean Water

Action Plan was released (USEPA 1998), directing the USEPA

to develop and publish nutrient criteria guidance to assist

states and tribes in developing water quality standards.

In 2000, the USEPA published nutrient criteria guidance for

streams and rivers (USEPA 2000) prescribing a combination,

of approaches including classification, stressor-response

relationships, establishing reference conditions, and using

published research.

Developing water quality criteria for nutrients is

particularly challenging because nutrients are naturally

present in streams and rivers, nutrient concentrations

vary across stream types, and nutrients are necessary for

the normal functioning of biological systems. Effective

nutrient criteria must account for this natural variability

in stream nutrient concentrations, while protecting

biological integrity. USEPA guidance recommends

classifying streams to help account for variation in
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nutrient concentrations due to natural factors such as

geology, hydrology, and climate. In the development of its

nutrient criteria recommendations, the USEPA applies an

ecoregion approach to account for natural variation in N

and P. The problem with this regionalization approach is

that it assumes all streams within an ecoregion are similar

and it can be confounded with differences in human

disturbance among regions. This can lead to artificially

high nutrient criteria in developed regions or artificially

low criteria for streams with naturally high nutrient

concentrations due to geology. Alternative approaches

presented in the guidance document include classifications

by stream order, geomorphology, and geology. One important

aspect of classification that is absent from USEPA

recommendations is that classifications should be

relatively independent of human activities to avoid

potentially confounding sources of natural variation in

nutrients.

Reference site approaches have been advocated as a way

to establish water quality criteria by characterizing

background levels in nitrogen and phosphorus. This

approach generally uses a sample of streams with minimal

human disturbance to characterize what streams should look

like under minimally disturbed conditions. This approach

to characterizing expected conditions can be difficult
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because human activities have affected nutrient

concentrations in most streams and rivers, leaving

relatively few minimally disturbed sites or restricting

reference sites to a limited geographic region.

Predictive models have recently been applied to

overcome a lack of adequate reference sites. These models

infer nutrient concentrations in the absence of human

disturbance (Dodds and Oakes 2004, Smith et al. 2003) by

constructing statistical models that predict nutrient

concentrations using natural and anthropogenic variables;

anthropogenic factors are then removed and nutrient

concentrations in the absence of human disturbance can be

inferred. Smith et al. (2003) used this approach to

correct for atmospheric deposition of nutrients at

reference sites, while Dodds and Oakes (2004) applied this

approach to remove the effects of agricultural and urban

land use in a set of sites varying in human disturbance.

In addition to potential difficulties finding adequate

sites with minimal human disturbance, the reference-based

approach has also been criticized because reference-derived

nutrient criteria may be over-protective and

unrepresentative of societal values (Reckhow et al. 2005).

Water quality criteria are established to protect

designated uses and should therefore be good surrogates for

the attainment of those designated uses. Therefore,
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Reckhow and others advocate an effects—based approach that

uses the probability of attaining designated uses as the

endpoint. Case studies presented by Reckhow et al. rely

heavily on best professional judgment and are restricted to

single water bodies; however, they envision regional

application of the method, as well as incorporating user

response surveys to quantify the probability of attaining

designated uses more rigorously.

Effects-based criteria have also been suggested by

others, although biological attributes are generally

suggested as endpoints, rather than designated use

attainment. This approach is often used for toxic

chemicals. Generally, criteria for toxic chemicals are

established at a level well below a threshold above which

individual organisms are likely to die in laboratory tests.

This individual-based dose—response approach has been

criticized by those in favor of more ecologically relevant

endpoints (Cairns and Pratt 1986, Cairns 1983). Others

have proposed stressor—response thresholds in more

realistic systems may be useful for establishing water

quality criteria (Stevenson et al. 2004, King and

Richardson 2003). These thresholds can be good indicators

that human activities have affected water quality in

aquatic ecosystems and can be used to establish benchmarks

for nutrient criteria.
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Reference-based approaches and stressor-response

relationships address separate questions in the development

of nutrient criteria. These questions include (1) at what

concentration does a nutrient have undesired effects on

valued biological characteristics of a stream? (2) what

should a system look like in the absence of human

disturbance or at an acceptable level of human disturbance?

(3) assuming that a stream is in reference condition, what

is the probability that a given valued biological

characteristic would be supported?

Reference approaches and stressor-response thresholds

are generally presented as alternative ways in which water

quality criteria can be developed (Stevenson et al. 2004,

USEPA 2000). Although both approaches are recommended for

informing nutrient criteria development, little guidance

exists for integrating the results of these two approaches.

Currently, an effective framework for nutrient criteria

development that integrates reference-based approaches,

effects-based approaches, and societal goals is lacking.

In this paper, I present a relative risk (RR) framework for

setting site-specific benchmarks representing candidate

nutrient criteria. This framework formally incorporates

findings of previous research, effects-based endpoints, and

a reference-based approach meant to reflect societal goals

for water quality standards using Bayesian statistical
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methods. The approach is applied to Michigan streams with

emphasis on total phosphorus (mg/L TP) and its effects on

water column chlorophyll (mg/L fluorometric, phaeopigment-

corrected chlorophyll a) using data from the National

Nutrient Database which is available through the USEPA

(www.epa.gov/waterscience/criteria/nutrient/). For the

state of Michigan, the database is primarily populated by

sites sampled by the Michigan Department of Environmental

Quality (MDEQ) and the United States Geological Survey.

The data include information from streams and rivers;

impoundments are commonly classified as lakes by MDEQ,

which were excluded from this analysis.

Bayesian inference is well suited for integrating

multiple sources of information for environmental decision-

making under a risk framework. Several authors have

highlighted the advantages of Bayesian approaches for

addressing environmental problems and in communicating

results (Carpenter 2002, Wade 2000, Ellison 1996, Reckhow

1990). Among the benefits of Bayesian statistics is the

ability to incorporate information from previous research.

Unlike classical statistics, specification of prior

parameter estimates is fundamental to the Bayesian

approach. Another benefit of the Bayesian method is the

explicit quantification and propagation of uncertainty in

complex models. Environmental management involves
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decision—making under conditions of uncertainty.

Downplaying or failing to present this uncertainty in an

easily interpretable manner can lead to poor management

decisions (Peterson et al. 2003, Pielke and Conant 2003).

The need to incorporate uncertainty in ecological

prediction is increasingly voiced by ecologists (Brewer and

Gross 2003, Clark 2003, Pielke and Conant 2003, Carpenter

2002).

I apply a Bayesian approach to inform nutrient criteria

development, integrating prior information and explicitly

incorporating prediction uncertainty. Stressor-response

relationships, inferred reference conditions with minimal

human disturbance, and relationships published in the

literature are combined using a series of models. Bayesian

methods are used to quantify the threshold relationship

between total phosphorus and chlorophyll observed in

Michigan streams and rivers and to infer expected levels of

total phosphorus if human disturbance were minimized.

Finally, benchmarks for TP criteria are determined using a

relative risk approach that balances the current risk of

exceeding the TP—chlorophyll threshold with the risk of

surpassing the threshold at minimal levels of human

disturbance. The steps involved in this framework are,

outlined in Figure 13, which precedes a more detailed

descriptions of framework in the methods.
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Figure 13. Steps involved in developing candidate nutrient

criteria using the relative risk framework presented in

this document. Prior information boxes represent

understanding of a given relationship prior to analyzing

the data. Priors include an estimate of central tendency,

as well as uncertainty associated with the prior

information. Posterior inference boxes represent the

results of Bayesian analysis that integrates prior

information and data.
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METHODS

Environmental Thresholds

Thresholds along the total phosphorus gradient that

resulted in significant changes in water column chlorophyll

were quantified using a hierarchical Bayesian changepoint

method described by Qian et al. (2003). Chlorophyll

concentrations may change in mean and/or variance along a

TP gradient. A threshold or changepoint is a value of TP

along the ordered gradient that separates chlorophyll

measurements into the two groups with the greatest

difference in mean and/or variance. Under the Bayesian

method, y1,...,y represents the sequence of observed
I1

chlorophyll concentrations along a sequence of ordered TP

concentrations, x1,...xn at n sites. Observed chlorophyll

concentration Yi is assumed to be drawn from a log—normal

distribution, Yi' An environmental threshold at r, where 1

S r S n, separates two groups of chlorophyll variables:

Y1,...,Yr and Yr+1,...,Yh such that

Iog-Normal(p ,02),i=1,...,r
Y,~ l l (8)

‘ 2
log-Normal(u2, 02), i=r+1,. n
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where #1 and of are the mean and variance,

respectively, of chlorophyll concentration below the TP

threshold; “2 and a; are the mean and variance,

respectively, of chlorophyll concentration above the TP

threshold. Therefore, the TP threshold is a function of

the mean and variance of chlorophyll observed above and

below the threshold.

Bayesian analysis incorporates prior information into

the analysis, making it unique from classical statistics

which attempts “objectivity" by assuming no prior

information (e.g., null hypothesis testing). Bayesian

analysis acknowledges and utilizes prior information. Prior

information is incorporated in an analysis using Bayes'

theorem. The Bayesian approach results in a posterior

model that combines the probability of prior information

(the prior) and the probability of any set of random data

given a specific model (the likelihood). The likelihood

treats model parameters as fixed values and data as random,

while the posterior treats model parameters as random and

data are fixed. In other words, Bayesian analysis

acknowledges uncertainty associated with the parameters and

assumes the data are known. As a result, Bayesian model

parameters such as slopes and intercepts in regression

models are distributions, rather than fixed values.
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Slightly more detailed treatments of Bayesian statistics

accessible to ecologists are available (Bolstad 2004,

Gotelli and Ellison 2004) and mathematical details for the

Bayesian changepoint analysis applied in ecology has been

described elsewhere (Qian et al. 2003). Because Bayesian

analyses requires that prior information about a model be

specified in a probabilistic way (i.e., the central

tendency along with associated uncertainty), distributions

for prior information on the chlorophyll means, variances,

and changepoint need to be specified. The prior

distribution for the changepoint was assumed to take a

gamma distribution, with a mean of 0.030 mg/L TP and a

variance of 300 by setting the shape parameter, a, equal to

3 and the scale parameter, 8, equal to 10. The gamma, much

like the normal, is a function describing the central

tendency and variance of a variable. The gamma

distribution can accommodate skew and cannot take values

less than zero. The mean for the changepoint prior was

chosen following the results of Dodds et al. (2002), who

reported a parametric breakpoint for chlorophyll along a TP

gradient at 0.031 mg/L TP and a non—parametric breakpoint

at 0.029 mg/L TP. The variance was chosen such that the

prior would be relatively broad, but not completely

uninformative. Published data on water column chlorophyll

in streams is somewhat limited. Prior means were
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determined using approximations modeled from median TP

values from the data, above and below the mean of the prior

threshold (0.010 mg/L and 0.080 mg/L TP, respectively)

using a model published by Van Nieuwenhuyse and Jones (1996)

logChl=—1.65+1.99(log TP)—O.28(log TP)2 . <9)

s=0.32, R2=0.67, F=291, p<0.001, and n=292, where

chlorophyll and TP concentrations are both in pg/L. This

approach suggested a mean chlorophyll concentration below

the threshold of approximately 0.0012 mg/L and a mean above

the threshold of approximately 0.0133 mg/L. One hundred

was used as the variance for the prior chlorophyll

distribution below the threshold and 1000 was used for the

variance above the threshold, making the prior

distributions weak and only somewhat informative.

Complex Bayesian models can be difficult or even

impossible to calculate analytically. Recent improvements

in computers have made computationally intensive methods

available that are capable of providing estimates for

integrals of high—dimensional probability distributions.

Markov Chain Monte Carlo (MCMC) is now commonly applied in

Bayesian analyses (Gilks et al. 1996). Several programs

are available for conducting MCMC, including the free

software WinBUGS, developed as part of the BUGS (Bayesian
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inference Using Gibbs Sampling) project (Spiegelhalter et

al. 2004). WinBUGS implements one type of MCMC algorithm

called the Gibbs sampler. A Gibbs sampling algorithm was

used for both the changepoint analysis and the predictive

model described in the next session.

Predictive.MOdels

Predictive models were constructed to infer TP

concentrations if human disturbance were minimized. Total

phosphorus was modeled using Bayesian multiple linear

 

regression. Predictor variables were selected from a

variety of stream characteristics including channel length,

sinuosity, and gradient, as well as watershed

characteristics such as precipitation, slope, urban and

crop land use. The Julian day on which samples were

collected was also evaluated as a potential variable.

These variables were selected following removal of

redundant, highly correlated, and/or sparse variables from

a larger set potential variables. The best subset of

remaining variables was then chosen using stepwise forward

and backward selection based on Akaike's Information

Criterion (AIC; Akaike 1973, 1985). AIC is an optimization

metric that is minimized when the likelihood of the data,

given the model, is maximized and the number of parameters

is minimized. AIC adds a greater penalty to models that
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use more parameters. The best model has the lowest AIC.

The final set of predictor variables included in the model

were natural log-transformed channel length (i.e., a

hydrologically similar stream reach, such as that found

between two points of confluence or between a lake and a

point of confluence), natural log—transformed

precipitation, percent urban land use, and percent crop

land use.

Normal distributions were used to describe priors for

the regression slope parameters. Diffuse, uninformative

priors were used for channel length and precipitation

parameters. The means for these priors were set to zero

and variances of 1000 were used. Informed priors were used

for the percent urban and percent crop parameters. These

priors were defined using the model published by Dodds and

Oakes (2004). The percent crop prior was centered at

0.00668 with a standard error of 0.001097. The prior for

the percent urban slope parameter was given a mean of

0.01465 and a standard error of 0.003280. The conditional

error variance was given a diffuse inverse-gamma prior with

shape and rate parameters set to 0.001. Details for semi—

conjugate priors in regression models can be found

elsewhere (e.g., Gelman et al. 1995).

Posterior inference using Bayesian regression models

incorporates uncertainty in the model, as well as sampling
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error. The posterior variance is equal to the variance of

the model plus the error variance. Predictive

distributions for an unobserved response, y , given a new

set of observations, X', can be simulated by repeatedly

drawing from the joint posterior distribution of the model

parameters, inputing X’ to the equation, and adding random

draws from a normal distribution with a mean of zero and a

variance equal to a random draw from the posterior error

variance distribution. Using this simulation method,

retrospective predictions of reference TP and its

uncertainty can be estimated using the channel length and

watershed precipitation for a site, and the percent of

urban and crop land use consistent with the definition of

reference conditions described in the next section. These

four variables are the elements of X’

Defining Reference Conditions

Reference conditions reflective of designated use

attainment can be established using logistic regression

models that predict the probability of designated use

attainment as functions of agricultural and urban land use.

However, logistic regression has a fixed parametric form

that can distort the land use-attainment relationship if

the data do not take this form. This was the case with the

Michigan data, where observations in the middle and upper
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range of land use values caused obvious underestimates in

attainment probabilities at the low end of the gradient.

This was particularly evident in the urban gradient shown

in Figure 14a. The logistic model provided a poor fit to

these data and suggested the probability of non-attainment

at zero urbanization was greater than 20%.

Locally weighted regression (LOESS) can also be used to

depict land use-attainment relationships. The LOESS

smoother predicts values for the response variable using

weighted least squares of the predictor variable and k%

nearest-neighbors, with higher weights given to closer

neighbors (Hastie and Tibshirani 1990). Using this method,

attainment probabilities can be modelled across the land

use gradient providing better local predictions when

logistic models are ineffective at explaining patterns in

the data. Graphical model presentation can then be used to

estimate percents of urban and crop land use at which

attainment probability is high (Figure 14).

Establishing Benchmarks Using Relative Risk

Relative risk measures the influence of a risk factor

on a specified outcome. Relative risk is a concept

commonly applied in epidemiology as the ratio of the

incidence rate of a disease among individuals exposed to a

risk factor to the incidence rate of individuals not
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Figure 14. Probability of not attaining Category 2 status

from the Michigan Department of Environmental Quality

305(b) report as a function of percent urban (above) and

percent crop (below) land use in the wathershed. Curves

represent LOESS fits (solid line) and pointwise 95%

confidence intervals (dashed lines). Figure 1b is

equivalent to figure 1a, with the exception of a log—

transformed x-axis to improve resolution at the low end of

the gradient.
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exposed to the risk factor. For example, the probability

of lung cancer for a smoker divided by the probability of

lung cancer for a non—smoker represents the relative risk

of lung cancer for smokers. The relative risk concept can

be applied to environmental management to compare the

likely causes of an undesired outcome, such as population

decline in fish (Landis et al. 2004). The relative risk

model might also be used to compare the probability of some

adverse event under different management options. Here I

use RR to (1) examine the probability of exceeding the TP

threshold at current TP levels, relative to the probability

of exceeding the threshold at inferred reference levels,

and (2) set benchmarks that provide candidate TP criteria.

The former task is accomplished by determining the TP

concentration at which RR=1. Alternative levels of RR

might be chosen based on acceptable levels of risk. At

RR=1, the probability of exceeding the threshold at the TP

benchmark is equal to the probability that inferred

reference conditions exceed the threshold. The probability

that reference conditions exceed the threshold is equal to

the joint probability of inferred reference TP and

threshold TP (Figure 15, page 113). The probability that

the current nutrient concentration exceeds the stressor—

response threshold is equal to the proportion of the

stressor response distribution that is below the current
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nutrient concentration (Figure 15, page 114). _The relative

risk of current conditions over inferred reference

conditions is equal to the probability that current

nutrient concentrations exceed the threshold divided by the

probability that inferred reference concentrations exceed

the threshold. A site—specific nutrient benchmark value

can be calculated at a RR=1, which represents a F7

concentration at which risk of exceeding the threshold is

equal to the risk under reference conditions. I present

detailed results of this analysis for a site on the Cass

 

 

River in Saginaw County, Michigan, USA, that has

chlorophyll concentrations at the higher end of those

observed in the dataset, 0.050 mg/L chlorophyll.

Characteristics of this site include a channel length of

4086 m, watershed precipitation of 758.8 mm, 4% urban land

use in the watershed, 56% crop land use in the watershed,

and 0.090 mg/L TP.

In some cases, the probability that inferred reference

nutrient concentrations are higher than the TP threshold

may approach one. In these cases it is probably

unreasonable to expect a site to support the valued

biological attribute being considered and less sensitive

endpoints should be evaluated. A threshold separating two

states of water column chlorophyll concentrations in

streams is the endpoint considered here. Some streams may
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have inferred reference TP higher than the threshold. It

would not make sense to set TP criteria for the site at a

level intended to protect an attribute that has a low

probability of existence to begin with. Rather, thresholds

based on indirect effects such as invertebrate metrics,

fish metrics, or dissolved oxygen might be used.

112

 

 



113

U
n
c
e
r
t
a
i
n
t
y
a
b
o
u
t

i
n
f
e
r
r
e
d
r
e
f
e
r
e
n
c
e

n
u
t
r
i
e
n
t

c
o
n
c
e
n
t
r
a
t
l
o
n
w

U
n
c
e
r
t
a
i
n
t
y
a
b
o
u
t

s
t
r
e
s
s
o
r
-
r
e
s
p
o
n
s
e

t
h
r
e
s
h
o
l
d

 
 
 
 
 

 

 
 

F
i
g
u
r
e

1
5
.

G
r
a
p
h
i
c
a
l

r
e
p
r
e
s
e
n
t
a
t
i
o
n

f
o
r

c
a
l
c
u
l
a
t
i
n
g

t
h
e

p
r
o
b
a
b
i
l
i
t
y

t
h
a
t

i
n
f
e
r
r
e
d

r
e
f
e
r
e
n
c
e

n
u
t
r
i
e
n
t

c
o
n
c
e
n
t
r
a
t
i
o
n
s

a
r
e

h
i
g
h
e
r

t
h
a
n

t
h
e

s
t
r
e
s
s
o
r
-
r
e
s
p
o
n
s
e

t
h
r
e
s
h
o
l
d

a
n
d

t
h
e

p
r
o
b
a
b
i
l
i
t
y

t
h
a
t

t
h
e

c
u
r
r
e
n
t

n
u
t
r
i
e
n
t

c
o
n
c
e
n
t
r
a
t
i
o
n

e
x
c
e
e
d
s

t
h
e

s
t
r
e
s
s
o
r
-
r
e
s
p
o
n
s
e

t
h
r
e
s
h
o
l
d

(
n
e
x
t

p
a
g
e
)
.



Figure 15 (con't)

    

 

   

   

  

Current nutrient

concentration

Uncertainty about stresso

response threshold

Pr(Current nutrient

concentration =

exceeds threshold)

114



RESULTS

The posterior TP changepoint distribution separating

groups of streams characterized by low mean chlorophyll

levels and streams characterized by high mean chlorophyll

levels was concentrated in the region between 0.040 and

 
0.055 mg/L TP, with a median at 0.044 mg/L TP. Ninety-five

0
I
f
?

percent of the posterior mean chlorophyll density below the

threshold was between 0.0010 and 0.0017 mg/L chlorophyll a.

Mean chlorophyll above the threshold was roughly 6 times  

I
t
“

-
I

'
3

higher than chlorophyll below the threshold.

Likelihood functions had a stronger influence on the TP

changepoint and mean chlorophyll posterior distributions

than the prior distributions, but the combination of prior

information and the data decreased uncertainty in the

parameter distributions. The posterior resulted in a

higher changepoint than suggested by prior information and

the width of the distribution was narrower than suggested

by the likelihood distribution (Figure 16). Substantial

improvement in posterior inference over the likelihoods,

(even with relatively weak prior information, was observed

:for mean chlorophyll below (Figure 17) and above (Figure

'18) the changepoint.

Posterior estimates of the predictive model parameters

mediated percent urban and crop parameters suggested by
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Figure 16. Total phosphorus—water column chlorophyll

threshold. Cumulative frequency distributions of the prior

changepoint (dashed line) and posterior changepoint (solid

line) densities indicate risk of exceeding the changepoint

separating a state of low mean chlorophyll and high mean

chlorophyll.
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Figure 17. Prior, likelihood, and posterior densities of

natural-log-transformed chlorophyll (mg/L) below the total

phosphorus threshold.
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Figure 18. Prior, likelihood, and posterior densities of

natural-log-transformed chlorophyll (mg/L) above the total

phosphorus threshold.
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priors and the data. Uncertainty in the priors and the

likelihoods for both of these parameters were similar, so

the density of the posterior distributions was located

roughly half way between the means of the prior and

likelihood distributions (Figures 19 and 20). Prior

estimates were lower than likelihoods for each of the land

use parameters, so posterior estimates were higher than

those suggested by prior information. Priors for channel

length, precipitation, and the constant were uninformative,

centered on zero and with exceptionally wide distributions;

therefore, the posteriors for these parameters were

dominated by the data. Land use parameters were positively

related to TP concentrations, while channel length and

precipitation were negatively related to TP (Table 8).

At the Cass River site, the mean posterior inferred

reference TP was 0.020 mg/L with a standard deviation of

0.00789. Inferred reference TP was based on 0.5% land use

for both urban and crop gradients because this level was

sufficient to prevent the probability of non-attainment

from becoming significantly higher than 10% (Figure 14).

The probability that the inferred reference TP was greater

than the stressor-response threshold based on their

posterior distributions was 0.0116. Therefore, the

benchmark TP concentration based on RR=1 is the TP

concentration that represents the 1.16% quantile of the
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Figure 19. Prior, likelihood, and posterior densities of

the predictive model parameter for percent urban land use

in the watershed.
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threshold distribution. This resulted in a benchmark of

0.034 mg/L TP (Figure 21). The estimated risk of exceeding

the threshold at the current concentration of 0.090 mg/L TP

was 1.0000, 86 times higher than at inferred reference

conditions.

Current TP concentrations in the Michigan data average

0.059 mg/L TP. The mean inferred reference TP using mean

parameter estimates (i.e., discounting uncertainty) was

0.015 mg/L TP. Roughly 70% of sites were above their

predicted TP using this estimation approach, with a mean

difference between current levels and mean inferred levels

of 0.045 mg/L; most sites, however, are within 0.020 mg/L

of predicted reference levels of TP. Approximately 60% of

sites are currently below the median posterior threshold

value from the stressor-response relationship, whereas all

mean posterior inferred TP concentrations were below this

value.
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Figure 21. Detailed presentation of the Cass River site

analysis, showing posterior densities in predicted

reference total phosphorus and the changepoint separating

sites characterized by low mean chlorophyll from sites

characterized by high mean chlorophyll. Current total

phosphorus and the associated relative risk (RR) at that

level is shown, along with the TP benchmark determined at a

relative risk of one.
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DISCUSSION

One of the difficulties in developing nutrient criteria

is making sense of different types of information. Two

alternative methods for developing candidate nutrient

criteria are reference-based approaches and effects-based

approaches (i.e., stressor-response). The reference-based

approach defines expected conditions by inferring what a

site would look like with minimal human disturbance, while

the effects—based approach defines expected conditions

below some nutrient level that is likely to cause an

undesirable change in a valued attribute of the ecosystem.

Published research can also support nutrient criteria

development, better informing but further complicating the

decision making process. I have presented a framework for

combining these sources of information to assist in the

development of candidate nutrient criteria.

Both reference-based and effects-based methods can

result in criteria that are over— or under-protective, and

provide an incomplete picture when used alone. The widely

applied definition of a reference site is one with minimal

human disturbance, characteristic of pre-European

conditions. The reference approach applied in this way may

be over-protective of societal goals for water quality. On

the other hand, if the best available sites in a region are
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used to define reference conditions, criteria may be under-

protective if similar streams in the region are only

represented by disturbed systems. These are the common

critiques of the reference-based approach.

Effects-based approaches are presented as an

alternative for establishing benchmarks. This method is

sensitive to the endpoints selected, which are restricted

to available data. Effects based criteria can also be

over-protective if valued ecological attributes for which a

criterion is intended to protect is not supported under

minimally disturbed conditions. Therefore, inferring

reference conditions is recommended, even when criteria are

set using benchmarks from effects-based approaches. The

relative risk framework provides an easy-to-interpret

summary of this information.

In this analysis I examined the response of water

column chlorophyll a (mg/L) to TP. Chlorophyll was chosen

as an endpoint because these data were available for many

sites in the National Nutrient Database for the State of

Michigan, there is a known causal relationship with TP,

and chlorophyll has direct potential aesthetic impacts on

stream use. In application, many endpoints that are

representative of designated uses should be explored.

Additional endpoints may include changes in algal species

composition, presence of filamentous benthic algae, or the
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presence of nuisance plants. Indirect effects of nutrient

enrichment such as decreases in dissolved oxygen, loss of

invertebrate taxa, changes in invertebrate metrics, loss of

fish, or decreased perception of usability from public

surveys may also be used as endpoints. Similarly, nitrogen

should also be examined as a potential cause of cultural

eutrophication. Dodds and Welch (2000) note that a survey

of 158 bioassays found 13% showed stimulation by N alone,

18% by P alone, 44% by both N and P, and 25% by neither

nutrient.

The TP—chlorophyll stressor-response relationship was

empirically derived, rather than experimental. This

approach has benefits and drawbacks. Causality can not be

established definitively in the observed relationship,

however, increased algal production resulting from

increased phosphorus in experimental settings has been

observed in several studies (Rier and Stevenson, submitted;

Hillebrand 2002; Bothwell 1988, 1989). King and Richardson

(2003) present an approach for developing nutrient water-

quality criteria that uses mesocosm experiments to support

thresholds found in observational relationships. This is a

useful approach if mesocosms provide a relatively realistic

representation of the natural system. Within the framework

presented here, these data could be used as prior

information in the Bayesian threshold analysis.
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Experiments examining phosphorus-algal biomass

relationships in experimental stream settings at several

levels of phosphorus are rare. Preliminary evaluation of

experimental results that were available (Rier and

Stevenson, submitted; Bothwell 1988, 1989) suggested that

they were inappropriate for characterizing threshold in

natural settings. In all cases, the most obvious threshold

took place between the control and the lowest phosphorus

treatment, which ranged from 0.0001-0.002 mg P/L. This is

well below the threshold likely to exist in natural systems

due to human disturbance, as natural levels of TP are

probably several times greater.

Although general patterns for total phosphorus in

Michigan streams relative to inferred reference conditions

are summarized for the full dataset in the results section,

these data should be interpreted with caution because they

do not adequately account for uncertainty. Although TP at

many sites is above the mean predicted reference

concentration for the site, many sites are probably within

the 95% prediction interval for the site. Uncertainty

involved in inference of reference TP and the TP threshold

warrant examination of sites individually, rather than as a

population. The Cass River analysis provides an example

for this approach.

Well-informed environmental management decisions should
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make use of relevant and available information, including

the uncertainty in predictive models. The Bayesian

approach presented here uses prior information and attempts

to quantify uncertainty in the inference of reference

conditions and ecological thresholds. Uncertainty may

still be underestimated here, in part because within-site

sources of variation are not accounted for in this

approach. These sources of variation include temporal

fluctuations in TP and chlorophyll, uncertainty associated

with the precision of analytical methods for measuring TP

and chlorophyll, and with the accuracy of the measurements

related to sample handling. Hierarchical Bayesian methods

can help address sources of variation occurring within

sampling units (Clark 2003) and could improve the approach

shown here. Additionally, the land use-attainment

relationships for defining reference conditions under-

estimate uncertainty. Category 2 attainment in Michigan's

305(b) list means that a site is attaining for all

attributes tested. Ideally, category 1 attainment would be

used. Category 1 attainment means that a site is attaining

all designated uses. No sites have been evaluated at this

level in Michigan. The approach presented here does,

however, make significant strides toward quantifying

uncertainty and provides a formal method for integrating

reference—base and effects-based approaches for water
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quality criteria development. The relative risk approach

provides a useful way to communicate site-specific results,

while incorporating various sources of uncertainty in a

complex set of models.
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