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ABSTRACT

INFERRING REFERENCE CONDITIONS TO ASSESS THE BIOLOGICAL
INTEGRITY OF STREAMS AND RIVERS

By

Scott Lyle Rollins

Inference models are often necessary to quantify the
effects of human disturbance on aquatic ecosystems and to
assess the current biological integrity of these systems.
In my dissertation, I apply modern computational modeling
approaches to to infer expected conditions in streams and
rivers if human disturbance were minimized.

Autecological characteristics of diatom species can be
used to infer environmental conditions when they cannot be
measured directly. I evaluated standard methods and
applied new methods to model diatom species responses to
total nitrogen (TN), total phosphorus (TP), and pH, and to
infer environmental conditions from diatom species
composition. Current methods were relatively effective at
describing species distributions along resource gradients,
but failed to adequately reflect species responses to pH.
Modern methods did not significantly improve standard
inference models for any of the environmental variables.

Linear discriminant analysis (LDA) has been used to
predict the expected taxonomic composition in the absence

of human disturbance to assess biological integrity.



However, many biological responses to ecological gradients
are nonlinear. A hybrid approach combining LDA with
nonlinear predictions was applied using a Bayesian
methodology. Diatom assemblages were used to classify
minimally-disturbed sites throughout the western United
States. Predictive models for the classes were then
developed using LDA, recursive partitioning, and the new
hybrid method. The hybrid method outperformed both LDA and
recursive partitioning, suggesting that nonlinear
determinants of diatom assemblages are important and that
the hybrid method will improve our ability to assess the
biological integrity of streams.

In the final chapter, I apply Bayesian statistical
methods to inform the development of nutrient water quality
criteria. The United States Environmental Protection
Agency suggests using prior research, reference-based
approaches, and stressor-response relationships to develop
regulatory levels for nutrients in streams and rivers;
however, a framework for integrating sources of information
and endpoints is lacking. I provide a framework that
integrates this information, explicitly acknowlédges model
uncertainty, and is easily communicated using measures of

relative risk.
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CHAPTER ONE

INTRODUCTION



Ecology has a long history of applying mathematics in
theoretical settings. Population growth models (Caswell
2001, Malthus 1798), competition models (Tilman 1982), and
predator-prey models (Lotka 1925, Volterra 1926) are well
known examples of theoretical applications of mathematics
in ecology. Theoretical models provide a useful way to
describe generalizable ecological processes or mechanisms
and to explore patterns in a simplified and easily
tractable system. Theoretical models, however, often
operate under many assumptions that do not hold in natural
systems, which can limit their ability to predict natural
patterns. This difficulty scaling from simple to complex
systems can burden the application of theoretical and
experimental results to real-world problems (Clark 2005,
Carpenter 1996, Levin 1992).

Phenomenological models are also commonly used in
ecology. These empirical models describe patterns without
explicitly representing the underlying mechanisms. The
complex nature of ecosystems often necessitates the use of
phenomenologiéal approaches when informed decisions need to
be made but mechanisms are not fully understood, data for
some variables are not available, or data are at a
different resolution than the mechanisms leading to
patterns. Much of the data available for predicting the

effects of environmental change on ecosystems have these



problems (Clark et al. 2001), making it difficult to apply
process-based models. Therefore, phenomenological models
are often applied. However, statistical models are
sometimes selected for convenience without regard for
theory or whether a model is appropriate for the patterns
being described (Austin 1980, 1999). A pragmatic approach
that combines theory and phenomenology is likely to be the
most effective method for informing management decisions
(Clark 2005, Carpenter 2002), yet data limitations are
likely to limit the ability to effectively incorporate
processes-based predictions (Clark et al. 2001).
Quantifying the effects of human activities on
biological systems has recently received significant
attention with respect to forecasting future ecosystem
states (e.g., Clark 2003, Pielke and Conant 2003, Peterson
et al. 2003, Clark et al. 2001). Policy makers and
environmental managers also require retrospective
ecological predictions and much of the discussion focused
on forecasting applies to retrospective analysis.
Bicassessment retrospectively examines the effects that
anthropogenic activities have on the biological attributes
of ecosystems, providing an appraisal of existing ecosystem
damage. Retrospective assessments have been distinguished
from predictive assessments that attempt to forecast the

effects of management actions on ecosystems (Cairns and



Niederlehner 1995). However, determining whether a system
is currently impaired requires inferring what it would look
like, absent of the activities potentially causing
impairment. These conditions are commonly called reference
conditions in biocassessment. Predictive models provide a
way to quantify reference conditions and their associated
uncertainty. Predictive models facilitate both prospective
and retrospective assessments by inferring how a system
would look if anthropogenic activities differed from their
current state.

Complex ecological models have become more accessible
due to improved performance of desktop computers and
advancements in computational statistics (Clark 2005). It
is now possible to evaluate standard modeling approaches to
determine whether they are consistent with observed
patterns or inconsistent with theory. It is also possible
to apply more complex predictive modeling approaches that
account for uncertainty and/or incorporate processes-based
components (Clark 2005). In my dissertation, I apply
modern computational modeling approaches to evaluate
current methods, improve predictions, and quantify
uncertainty when inferring reference conditions for the
retrospective assessment of stream and river health. In
the second chapter, the assumptions of current models being

used to describe diatom species' responses along



environment gradients and to infer historical environmental
conditions are evaluated. These models assume that species
respond in a Gaussian function (i.e., symmetrical and bell-
shaped) to environmental variables such as pH. Parameters
derived from these individual species models are used to
infer environmental conditions when the environmental data
cannot be effectively measured directly. One well known
application of this method in paleolimnology is the
historical reconstruction of lake chemistry (e.g., Birks et
al. 1990).

Ecologists have argued that there is little theoretical
justification for expecting universal Gaussian species'
responses to all types of environmental gradients (Oksanen
and Minchin 2002). Researchers have shown that Gaussian
models often fail to effectively describe the presence of
terrestrial plants along environmental gradients (Austin
1976, 1980, 1999, 2002; Oksanen and Minchin 2002). Despite
this research, Gaussian models are continually applied to
describe the presence of diatom species along environmental
gradients of various types, with little acknowledgment of
the assumptions involved, both statistically and with
respect to ecological theory. Using generalized additive
models (GAM), I evaluate whether Gaussian assumptions are
appropriate for diatom responses to total phosphorus, total

nitrogen, and pH in Mid-Atlantic Highlands streams.



Furthermore, I compare the ability of GAM inference models
and Gaussian inference models to predict observed
concentrations of phosphorus, nitrogen, and pH.

In the third chapter, a new method is presented to
infer reference conditions for diatom assemblages using
geology, hydrology, and climate variables. The current
trend in the United States is to use minimally-disturbed or
least-disturbed sites within a region to establish
reference conditions for other sites within the region. If
a site differs significantly from reference conditions, it
indicates that the site has been affected by anthropogenic
activities. Research suggests, however, that
regionalizations are an ineffective way to classify sites
(Hawkins et al. 2000), calling into question the usefulness
of this method for establishing reference conditions. A
different approach being applied in the United Kingdom and
Australia creates stream classes using biological data, and
then predicts class membership for new sites using geology,
hydrology, and climate variables (Norris and Norris 1995,
Clarke et al. 2003). The method used in these countries
applies linear discriminant analysis (LDA), for which
ecological data can be problematic (Williams 1983). A
hybrid modelling approach that integrates linear (LDA) and
non-linear (classification tree) model predictions is

developed and applied to predict diatom genus composition



in minimally-disturbed reference streams throughout the
western United States.

In the final chapter, statistical models are applied to
aide in the development of site-specific nutrient criteria
for streams and rivers in Michigan. Water quality criteria
are established by States and tribes to protect attributes
valued by the public. Developing nutrient criteria
involves evaluating previous research, establishing
expected conditions (i.e., reference conditions), and
determining the effects of nutrients on valued ecological
attributes (USEPA 2000). Expected conditions can be
established using models that predict nutrient
concentrations at minimal levels of human disturbance
(Dodds and Oakes 2004). The relationship between nutrients
and valued ecological attributes can be determined using a
combination of previous research and quantitative patterns
observed in available data (USEPA 2000). Thresholds, or
large changes in valued ecological attributes over a narrow
range of nutrients, are particularly useful for
establishing water quality criteria because they can
indicate benchmark nutrient concentrations that separate
acceptable and unacceptable conditions in aquatic
ecosystems (Stevenson et al. 2004, Qian et al. 2004, King
and Richardson 2003). An effective method for integrating

these steps is lacking. I describe a framework that



integrates these steps and summarizes the risk of exceeding
environmental thresholds, relativé to the risk of exceeding
the threshold at lower levels of human disturbance. This
framework uses Bayesian statistical models to infer
expected levels of phosphorus when human disturbance is
minimized and to'quantify environmental thresholds. The
framework is unique because 1) it explicitly integrates the
findings of previous research, 2) it accounts for
uncertainty, and 3) it reduces effects-based endpoints and
inferred reference conditions to a single value, relative

risk, which is easily communicated.
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CHAPTER TWO

DIATOM SPECIES' RESPONSES TO STRESSORS AND RESOURCES:

ARE THEY GAUSSIAN AND DOES IT INFLUENCE ENVIRONMENTAL

INFERENCE MODELS?
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INTRODUCTION

Diatom autecological data can be used to infer past
environmental conditions (Charles and Smol 1988). These
historic reconstructions can be used for environmental
assessment to establish expected environmental conditions
by estimating the state of an ecosystem prior to
disturbance by human activities (Dixit et al. 1992,
Battarbee and Charles 1987). Such inference models, or
transfer functions, are commonly used to reconstruct
historic environmental conditions in lakes and play a
dominant role in the field of paleolimnology (Birks 1998).

One of the basic assumptions of these models is that
the niche of a species can be adequately represented by a
bell-shaped function. Niche theory, as generally depicted
in text bookS (e.g., Ricklefs 1997, Krebs 1994) and applied
in statistical models (e.g., Salden 1978, ter Braak and
Looman 1986), suggests that species exhibit symmetrical,
bell-shaped responses along environmental gradients (Figure
1). These “Gaussian” response curves describe the
probability of occurrence, the proportional abundance, or
density of a species as a function of some independent
environmental variable. The value along the environmental
gradient at which the function peaks is the maximum

likelihood estimate and describes the species' optimum.
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Probability of Occurrence

Environmental Gradient

Figure 1. Gaussian curve commonly used to model species
responses along environmental gradients. The species'
optimum is the value of the environmental variable at which
the probability of occurrence is maximized (solid vertical
line, 0 ). Dashed vertical lines indicate the tolerance
range ( 0—& to 0+6 ). The tolerance value is usually
indicated by the estimated standard deviation ( ¢ ).
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Measures of spread in the function describe the species'
tolerance. Typically, the standard deviation is used as
the measure of tolerance (Jongman and ter Braak 1995), but
the variance, intraquartile range, or other measures of
spread could also be used. Standard deviation and variance
are probably most convenient because standard approaches
allow them to be derived easily from Gaussian functions
(e.g., Equation 1).

Under some circumstances, Gaussian parameters can be
derived relatively easily using simple averaging techniques
(Charles 1985). Using this approach, species optima are
calculated by averaging values of the environmental
variable at sites where a species occurs (Salden 1978) or,
alternatively, these environmental values can be averaged
after weighting by species' abundances. However, if
samples are not evenly distributed along the environmental
gradient in which a species is found, if species' ranges
are not limited to the edges of the environmental gradient,
or if species are rare, weighted averaging may provide
inaccurate estimates of optima and tolerance values (ter
Braak and Looman 1986). Therefore, Gaussian logistic
regression has been promoted for estimating optima and
tolerance values for species exhibiting bell-shaped
responses along environmental gradients (ter Braak and

Looman 1986) .
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Gaussian logistic regression fits polynomial curves
using link functions (transformations of the dependent
variable) that prevent negative values in the function
while maintaining the variance homogeneity assumptions of
linear regression. The quadratic function that is used to

describe species' responses is

2 a—0.5(x—6)>
gr=— (1)
2
o

p(x) \_
ln(ﬁx—))—bo‘*'bl x+b

where 6 is the species optimum, and o is the species
tolerance (ter Braak and Looman 1986).

The problem with this approach is that Gaussian models
lack a strong theoretical foundation and may be inadequate
for describing the response of a species to environmental
conditions. Analyses of terrestrial plant populations
suggest that Gaussian models often do an inadequate job of
describing realized niches along environmental gradients
(Austin 1976, 1980, 1999, 2002; Oksanen and Minchin 2002).
These authors have argued that there is little
justification for the universal application of the Gaussian
function to describe species responses along environmental
gradients.

If Gaussian models inadequately describe the

environmental affinity of individual species, parameters
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derived from Gaussian models may cause problems when used
in environmental inference modeis. Inference models are
used to estimate environmental conditions by averaging
individual optima for species that are present at a site.
Optima are generally derived from a calibration dataset in
which species and environmental data are both available.
The inference models are then used to estimate
environmental conditions from diatom species composition.
The ability to infer environmental conditions from species
data is useful in fossil reconstructions of historic
environmental conditions or other situations where
environmental data are not available. Similar models have
also been applied to infer conditions when environmental
data are less reliable than desired, such as one time
measurements of nutrients that are temporally variable
(Stevenson, in preparation). If inaccurate parameters are
used in these models, inaccurate or imprecise estimates of
environmental conditions may result.

This study attempts to evaluate the ability of Gaussian
models to accurately depict diatom species responses along
gradients of pH, total phosphorus (TP), and total nitrogen
(TN) by comparing Gaussian curves with flexible generalized
additive models (GAM), which more closely track species'
responses along these environmental gradients. This

approach has been used in the past to evaluate parametric
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model assumptions for a small number of terrestrial plant
species (Oksanen énd Minchin 2002), but this is the first
extensive assessment of the Gaussian approach for diatom
species, which are still commonly modeled using the
Gaussian approach.

Additionally, inference models using optima and
tolerance values derived from Gaussian models are compared
with inference models using optima and tolerance values
derived from GAM species' responses. Because GAMs include
smoothed predictor variables, they track species responses
more effectively than parametric Gaussian models.
Therefore, inferences using GAM derived optima and
tolerance values are expected to perform better than
environmental inference models using Gaussian optima and
tolerance values.

Mechanistic differences in the way that species respond
to environmental stressors and resources (Grime 1973, 1977)
may affect the ability of the Gaussian approach to model
species responses to pH, TN, and TP. Thus, the
effectiveness of the Gaussian approach is expected to
differ between the three environmental gradients,
particularly between pH and the two nutrient variables.
Austin (1980) suggests that nutrient responses are likely
to show complex shapes because the processes operating are

likely to differ along the gradient. At the low end,
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exploitative competition is likely to dominate, while at
the ﬁpper end, a different resource may become limiting.
If other resources remain sufficiently high, species
responses might increase exponentially along the gradient
until nutrients become toxic. Apparent competition may
also result in the decline of a species at the high end of
the nutrient gradient if increased grazer abundance is
supported (Holt 1977). Provided that the gradient is long
enough, species responses to pH are likely the result of
optimal enzyme functioning. Therefore, species were
expected to respond in a Gaussian fashion to pH, but not
necessarily to nutrients, where one clear pattern was not

expected to describe the responses of all species.
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METHODS

Data

Diatom and environmental data used in this analysis
came from streams in the Mid-Atlantic Highlands region of
the eastern United States (Figure 2). Data were collected
a part of the U.S. Environmental Protection Agency's
Environmental Monitoring and Assessment Program between
1993 and 1996. In several cases, stream reaches were
sampled more than once. When this occurred, data for the
site was pooled and environmental measurements were
averaged across time to alleviate problems with repeated
measures. This yielded a final set of 576 sites.

Algae samples were originally processed and identified
in our lab and the data are now publicly available through
the USEPA. Details regarding sampling, processing, and
identification of diatom samples have been published
elsewhere (Pan et al. 1996, 1999). A total of 628 diatom
taxa were observed in the dataset; however, only those taxa
observed at 10 or more sites were included in the
assessment of Gaussian response curves, reducing the number
of taxa to 204. Diatom taxa were generally identified at

the resolution of species or variety.
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Figure 2. Stream sites sampled in the Mid-Atlantic
Highlands region of the eastern United States as part of the
United States Environmental Protection Agency's
Environmental Monitoring and Assessment Program.
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Total phosphorus and total nitrogen were measured using
the persulfate oxidation and colorimetry method. Closed
headspace measurements of pH were made within 72 hours of
collection in air-tight syringes. Details regarding
methods for chemical analysis is available through the

USEPA (1987). Total phosphorus ranged from values below
detection limit to 694 pg/L, with a mean of 25 pg/L. Total
nitrogen ranged from 27 to 21730 pug/L and averaged 916

pg/L. Stream pH had a minimum of 3.00 and a maximum of
8.82, averaging 7.58. Correlation between the chemistry
values used in these analyses were statistically greater
than zero in all cases, but none were high enough to cause
concern when comparing the effectiveness of the Gaussian
model between environmental gradients. The greatest

correlation was 0.34 and existed between TN and TP.

Species Response Models and Evaluation

Binomial responses for each diatom taxon were modeled
along environmental gradients of pH and natural-log-
transformed TN and TP using generalized linear models (GLM)
and GAM using a logit link function (Equation 1). Binomial
responses were used in order to follow previous work
described by ter Braak and Looman (1986) and Heegard
(2002). Binomial responses are also easily interpreted as

the probability that a species will be detected at a site
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and are less sensitive to temporal fluctuations than
absolute density or relative abundance. Gaussian model
effectiveness was evaluated in three ways. First, if GLM
predictions drifted outside of the GAM 95% confidence
inferval, the Gaussian models was considered a poor
representation of the species' response (Figures 3a, 3b).
Second, the Gaussian model was deemed inappropriate for
deriving optima and tolerance levels if it was U-shaped
(Figure 3b). In these cases, the method for deriving the
mode of the Gaussian response places the environmental
optimum at the least probable environmental condition to
observe a species, rather than the most probable. Finally,
if the predicted optimum fell outside of the range of
observed environmental values (Figure 3c), the model was
considered inappropriate because its parameters were
outside of the observed universe of the dataset. If the
Gaussian model for a species failed any of these three
tests, the model was considered poor and if it passed all
three tests (Figure 3d), it was considered effective at
modeling the species response along a given environmental
gradient.

A bootstrapping method was applied to determine whether
failure rates of the Gaussian approach for a given
environmental gradient were unacceptably high. The sample

population of 204 species for each environmental variable

23



Figure 3. Example diatom species response curves. Solid
lines represent the Gaussian response curve estimated by
GLM. Dashed lines represent GAM response curves and
associated 95% confidence intervals. (a) Example of a GLM
that failed because it was not contained within the 95%
confidence interval of the GAM. (b) Example of a GLM that
failed because it was U-shaped and because it was not
contained within the 95% confidence interval of the GAM
(c) Example of a GLM that failed because the predicted
optimum is outside of the observed range of the
environmental variable. (d) Example of a GLM model that
passed all evaluation criteria.
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was re-sampled with replacement 10000 times to estimate
sample variance of the failuré rate. Rejection rate of the
Gaussian method was determined at the 95% confidence level
for arbitrarily chosen acceptable failure rates of 0.05 and
0.1. Therefore, if >95% of bootstrapped samples had
failure rates below 0.1, the the Gaussian approach was
deemed appropriate. If, however, <95% of bootstrapped
samples had failure rates below 0.1, it could not be said
with 95% confidence that the failure rate was below 0.1 and
the Gaussian approach would not be considered appropriate.
To determine whether Gaussian failure rates differed
significantly between the environmental gradients, paired
differences in bootstrapped failure rates were calculated.
If fewer than 5% of the paired differences were equal to
0+0.05, Gaussian failure rates between the two
environmental parameters were considered significantly

different.

Inference Models

Environmental conditions for each stream were inferred
using the estimated optima and tolerance values of diatom
taxa. Tolerance weighted estimates of environmental

conditions were estimated as follows:
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where fi is the estimated environmental variable (pH, TN, or

TP) for site 1, Yik is the proportional abundance of

A

species k at site i, 9k is the mode of the GLM or GAM

species response curve (i.e., the estimated optimum) for

species k of m total species, and Yk is the estimated range

of species k. The range is a measure of environmental
amplitude and represents the span of conditions in which a
species is expected to occur. It is calculated here
following Heegaard (2002) as the difference between the
upper and lower central borders of the species responée

curve (Figure 4). For binomial models using a logarithmic
link function, the response value at the optimum, E(g|x=8),

is the mode, ¢, and the response value at the central

borders is E(gh:=éio):ch—05. For a normal Gaussian curve,

the difference between the upper and lower central border

is equivalent to 2X0} , where 0} is the estimated

standard deviation for species k.
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Figure 4. Examples of GLM (above) and GAM (below) response
curves with estimated central borders (vertical dashed
lines) from which species' tolerance ranges were calculated.
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Inference models contain nested averages, biasing
predictions toward the median of the observed range of
environmental variables. This “shrinkage” of the
environmental gradient is generally corrected using one of
two deshrinking methods, classical deshrinking or inverse
deshrinking. In both methods, deshrinking parameters, a
constant (a) and a slope (b), are calculated by regressing
observed and initial model predictions. In classical
deshrinking, the initial estimates are regressed against
the observed values to derive a and b (Equation 3a), while
inverse deshrinking parameters are derived by regressing
observed values on initial estimates (Equation 4a).
Deshrinking corrected environmental estimates are

calculated as follows, using these parameters:

jnitial X =a+bx +¢€_,

initia xi a xi Ei (3a)
final J?i=(im'tia1 x; —a)lb (3b)
for classical deshrinking, and

A= x. . . ~

xi a+b mztzalxi+£i, (4a)
ﬁnalfi=a+bxinitialxi (4b)

for inverse deshrinking.

The classical method deshrinks more than the inverse
method, making it more effective at inferring values at the
extreme ends of the environmental gradient (Birks et al.

1990). Due to the potential negative effects of
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acidification and eutrophication on ecosystems, acurate
prediction at low pH and high nutrient values are of
particular interest. Therefore, classical desrinking was
used in this study.

Root mean squared error (RMSE) and correlation between
observed and inferred values were used to assess fit and to
compare models. The simpler approach assuming Gaussian
species responses was considered better, unless inference
models using GAM derived parameters showed more than a 5%
increase in correlation and greater than 10% reduction in

RMSE.
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RESULTS

Evaluation of the Gaussian Model

At an acceptable failure rate of 5%, the Gaussian model
inadequately described species responses along all three
environmental gradients. Thirteen of the 204 models failed

to adequately describe a species' response along the TP

I

gradient (failure rate 0.064) and had a bootstrapped
failure probability of 0.7545. Total nitrogen models had a
failure rate of 0.069, with a bootstrapped failure
probability of 0.8386. The Gaussian model was also
inadequate for pH, having a failure rate of 0.1863 and a
bootstrapped failure probability of 1.0.

When the acceptable failure rate was increased to 10%,
the Gaussian model passed for both TP and TN, which had
bootstrapped probabilities of failure equal to 0.0226 and

0.0457, respectively. The Gaussian model failed for pH,

even with the more liberal failure criteria of 10%

(Pr[failure]boot = 1.0).

Comparison of TP, TN, and pH Failure Rates

Failure rates for the two resource gradients, TP and
TN, were not significantly different. Ninety-six percent
of bootstrapped differences in failure rates were 010.05.

When TP and TN failure rates were compared with pH,
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however, each was significantly different. Ninety-nine
percent of bootstrapped differences in failure rate between
TP and pH were not equal to zero (+x0.05), while 98% of
bootstrapped differences in failure rate between TN and pH

were not equal to zero (x0.095).

Performance of Inference Models

Models using the standard parameters derived from
Gaussian GLM (Figures 5, 7, and 9) performed well when
compared to inference using GAM derived parameters (Figures
6, 8, and 10). Inference using GAM parameters for TP and
TN showed slight improvement over models using GLM
parameters (Table 1). The magnitude of increase, however,
was not significant enough to justify using the GAM
parameters. The pH inference model actually performed
worse using GAM parameters than when using GLM parameters,
showing roughly a 3% decline in correlation and a 17%

increase in prediction error.
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Figure 5. Observed vs. diatom-inferred ‘total phosphorus in
Mid-Atlantic Highlands streams. Generalized linear modeling
(GLM) was used to derive species' optima and tolerance
values used in the transfer function.
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Figure 6. Observed vs. diatom-inferred total phosphorus in
Mid-Atlantic Highlands streams. Generalized additive
modeling (GAM) was used to derive species' optima and
tolerance values used in the transfer function.
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Figure 7. Observed vs. diatom-inferred total nitrogen in
Mid-Atlantic Highlands streams. Generalized linear modeling
(GLM) was used to derive species' optima and tolerance
values used in the transfer function.
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Figure 8. Observed vs. diatom-inferred total nitrogen in
Mid-Atlantic Highlands streams. Generalized additive
modeling (GAM) was used to derive species' optima and
tolerance values used in the transfer function.
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Figure 9. Observed vs. diatom-inferred pH in Mid-Atlantic
Highlands streams. Generalized linear modeling (GLM) was
used to derive species' optima and tolerance values used in
the transfer function.
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Figure 10. Observed vs. diatom-inferred pH in Mid-Atlantic
Highlands streams. Generalized additive modeling (GAM) was
used to derive species' optima and tolerance values used in
the transfer function.
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Table 1. Comparison of inference models using GLM and GAM
derived parameters. A 5% increase in correlation and 10%

decrease in RMSE was considered a significant improvement by
using the GAM inference model.

GLM GAM Percent Change
Correlation RMSE Correlation RMSE Correlation RMSE
TP 0.6505 297.9 0.6702 267.8 3.03% -10.10%
TN 0.6117 291.4 0.6530 284.0 6.75% -2.54%
pH 0.8405 126.9 0.8159 149.1 -2.93% 17.49%
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DISCUSSION

The most common models used to infer environmental
conditions with species autecological data make the
assumption that species respond to environmental gradients
in a Gaussian, bell-shaped, function. Although researchers
have shown that the universal application of this model is
inappropriate for many terrestrial plant species, it
continues to be applied in paleolimnology and environmental
assessment. The research described herein has attempted to
1) determine whether the Gaussian model is appropriate for
benthic diatom species; 2) evaluate differences in species
response functions along resource and stressor gradients,
which mechanistically might be expected to differ; and 3)
determine whether environmental inference models using
parameters derived from smoothed response curves (GAM)
perform significantly better than inference models that use
parameters derived from Gaussian functions.

Counter to expectations, the results suggest that the
standard generalized linear modeling approach may not work
well for describing species' responses to pH, but that the
Gaussian approach may work sufficiently well for TP and TN.
When examining individual species' responses to the pH
gradient, the Gaussian approach did a poor job of

describing species' responses; Gaussian models failed for
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nearly 20% of the diatom species examined. For nutrients,
the Gaussian model performed better, failing for just over
6% of the diatom species examined.

Benthic diatom species appear to respond in a
symmetric, Gaussian fashion along environmental gradients
more often than other taxonomic groups that have been
examined. In a study of terrestrial plant species, Oksanen
and Minchin (2002) found that 45% of the species examined
exhibited symmetric, bell-shaped responses along an
altitude gradient. Their modeling approach used beta,
rather than standard quadratic functions, but they suggest
that symmetrical beta functions are likely to be modeled
adequately by Gaussian models. Similarly, Minchin (1989)
found that only 45 of 100 plant species' responses
exhibited symmetric, unimodal responses along an altitude
gradient. In a study of wetland and aquatic plant species,
Bio et al. (1998) used stepwise multiple logistic
regression to model species responses to several
environmental variables simultaneously. They found that
smoothed predictors (i.e., GAM) were included in 77% of 156
models; the Gaussian response curve fitted, on average,
only 18% of responses. In another study of vascular
plants, only 20% of species exhibited Gaussian responses
along a pH gradient (Ejrnaes 2000). So, even along the pH

gradient, which had the highest failure rate for diatom
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species (19%), Gaussian models appear to be much more
effective at describing species' responses for diatoms than
for vascular plants.

Inference models using Gaussian response parameters
also worked effectively for diatoms. Improvement in
inference models for TP and TN using GAM derived optima and
tolerance values was probably not large enough to justify
the use of GAM over more traditional methods which are more
easily computed. Interestingly, despite the poor
performance of the Gaussian model for describing individual
species' responses to pH, the inference model for pH using
GAM derived parameters performed substantially worse than
the model using Gaussian optima and tolerance values. The
reason for this is not clear, but differences between
observed and inferred values increased at the lower end of
the gradient when GAM optima and tolerance values were used
(Figures 10 and 11). These results suggest that standard
methods for constructing inference models can be used
effectively, despite potential flaws in the derivation of
individual optima and tolerance values.

Failure rates between the pH stressor gradient and the
nutrient resource gradients were significantly different.
The Gaussian model was more effective at describing
species' responses to resources than to the stressor.

Mechanistically, such a difference in species responses to
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stressors and to resources may be expected (Grime 1973,
1977). Stressors put physiological constrainfs on species,
such as the ability of enzymes to function normally.
Resources on the other hand should not have this effect
until they reach toxic concentrations. At the low end of
resources levels, competition is more likely to influence a
species' ability to persist. Competition may lead to
displacement of a species' optimum or even bimodal
responses (Austin and Smith 1989). Therefore, diatom
responses to nutrients and pH were expected to differ.
Austin, one of the most vocal opponents to the
universal application of the Gaussian response curve, has
suggests that there are three types of environmental
gradients: indirect, direct, and resource gradients (Austin
1980) and that species responses along these types of
gradients will differ. 1Indirect gradients do not 