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ABSTRACT

THE ASYMPTOTIC DISTRIBUTION OF AN IRT MEASURE FOR

ITEM FIT BASED ON PSEUDOCOUNTS

By

Deping Li

Item fit measure Q‘DM is formed based on the posterior distribution (or pseudocounts)

of proficiency instead of the proficiency estimates. The reference distribution of Q‘DM

is not x2 but a quadratic function of normal variates. A consistent estimator of

the covariance matrix of pseudocounts is found for the approximation of the true

asymptotic distribution of Qbm- The data-based estimate of the covariance matrix

of pseudocounts depicts the interrelations among pseudocounts and show reasonably

good agreement with the true covariance matrix among pseudocounts for sample size

as large as 1000. Results from simulation studies show that the method based on

pseudocounts has adequate power for detecting item misfit and low type I error rates.

The method is robust over the underlying ability distribution and number of quadra-

ture points. Real data applications suggest that the method provide more helpful

information on assessing model-data fit even when sample size is large compared to

x2 test.
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Chapter 1

Introduction to IRT Measures of

Item Fit

1.1 Item Fit in General Context of Assessing the

Fit of the IRT models

Item response theory (IRT) is becoming an important tool for educational and psy-

chological tests, one of the most important tools for both test design and test data

analysis. IRT provides a philosophical framework for test design and many other ap-

plications (e.g., differential item functioning, test equating, computer adaptive test-

ing, etc.). The advantages of IRT may not be fully realized if the test data do not

adequately fit the item response models. Assessing model-data fit is fundamental in

psychometrics and has always been an issue of enormous interests. The model-data fit

issue should be a primary concern when applying IRT models to test data. However,

there is no unanimous consensus upon the diagnostic tools for model-data fit.

There are other aspects of model-data fit (e.g., person fit analysis and analysis of

other type of misfit including violation of local independence and unidimensionality

by Hambleton & Swanminathan (pp. 151-195), 1985; Embreston 8:: Reise (pp. 238-



246), 2000; Glas & Meijer, 2003, Hoijtink 2001; and Sinharay and Johnson 2003), but

this research is limited to item fit only. In IRT, there is no need to fit a set of data

with the same model for all items because a test can be a combination of different

types of items (e.g., dichotomous, polytomous, or constructed response items). Even

if items with the same type of responses are available, they may be represented by

different mathematical models, and separate IRT models may be used for adequate

fit. Therefore, attention should be paid to the fit of IRT model on an item-by-item

basis.

Item fit analysis should also play an important role in decisions about the reten-

tion of items in the assessment pool. Poorly fitting items undermine the validity of

decisions based on measurement results. In this chapter, various measures of item fit

and the corresponding statistical approaches for testing goodness-of-fit at the item

level will be reviewed.

Generally speaking, there are two basic approaches to assessing item fit—graphical

(or heuristic) and statistical test procedures. Graphical procedures are intuitive but

more subjective in deciding the adequacy of model-data fit. Statistical tests of good-

ness of fit (e.g., X2 or likelihood ratio test) are probably the most widely used in

current operational research.

In graphical procedures, the adequacy of item fit is typically evaluated on the basis

of a comparison between an empirical item response function and a hypothetical item

response function. The empirical function is obtained from the sample of test data.

Detailed descriptions of graphical procedures can be found in most IRT literature



dwelling on model-data fit (e.g., Hambleton & Swaninathan, 1985; p234, Embreston &

Reise, 2000). The plots of the empirical and hypothetical item response functions can

reveal areas along the proficiency continuum where there are discrepancies between

these two functions. The discrepancies indicate the degree of item misfit.

1.2 Item Fit Analysis Based on Ability Estimates

Much research on analysis of item fit has been conducted via significance tests. This

section reviews Wright and Panchapakesan’s (1969) x2 test, Bock’s (1972) x2 test,

likelihood ratio test, and standardized residuals test.

The procedure advocated by Wright and Panchapakesan (1969) is a commonly

used statistical test. The procedure defines a standardized variable yij =

.._E ..

(Jae—7%) , where f”- represents the frequency of examines at the ith ability

(11‘ ij

G

level answering the jth item correctly. Then the measure of item fit X2 = 29:1 y?)-

. Wright and his colleagues assume this measure to have a chi-square distribution.

The Bock (1972) chi-square index is defined as

G

N9(0ig - Ei )2

Ei9(1 " Eig) ,

 

2

XBock

9=1

where 0,9 is observed proportion-correct on item 2' for interval group 9, E,g is the

expected proportion correct based on the hypothetical item response function at the

within interval median proficiency level estimate, and N9 is the number of exami-

nees with ability estimates falling within proficiency interval 9 that comes from the

classification of the proficiency estimates. This index is assumed to distribute asymp-



totically as a x2 variable with degree of freedom equal to G — m, where m represents

the number of item parameters to be estimated. High value of the item fit index

indicate that the data may not have a reasonable with fit the hypothetical model on

the item.

The Wright and Mead (1977) statistic is based on number-correct grouping ap-

proach for Rasch model. The statistic is given by

mi Ng(0ig - Eigl2

9:1. Eig(1 — Eig) — 533',

where Szj—— Nlzkej(P-( —,°Ej)2, Pi(9k) is the proportion correctly answering

item 2' in score group It. The degrees of freedom are G, the number of intervals for

the proficiency estimates, minus the number of parameters estimated.

Yen’s (1981) Q1 statistic uses the mean proficiency within each proficiency cat-

egory to obtain the predicted item response function. Furthermore, Yen fixes 10

categories of proficiency in calculating the Q1 index, which is assumed approximately

distributed as X2 with the number of categories minus the number of parameters as

the degree of freedom.

The likelihood ratio C2 is implemented in the BILOG-3 (Mislevy and Bock, 1990)

and BILOG-MG (Zimowski, Muraki, Mislevy, and Bock, 1996). 02 is computed by

comparing the observed frequencies with those predicted from the hypothetical model.

2 _
R‘

R:GBILOG - 22(31-‘09NWm» +(N‘_ R‘)logN.-(1—P(0m)))°

 

This test of item fit was designed from a long test (e.g., more than 20 items). In

4



this test, EAP estimate of proficiency for each examines is computed based on the

item parameter estimates, then is assigned to proficiency intervals. The summation is

performed over G ability scale 6 groups, R,- is the proportion correct within group i,

and N is the number of examinees in group 2'. This 6'2 is also assumed to distributed

as x2 with the degrees of freedom equal to the number of proficiency groups.

Standardized residuals are used to assess the item fit in the Rasch model context

(e.g., Masters & Wrights, 1996). In this procedure, the expected response EX”- for a

particular person s responding to item 2' is described by EX,,~ = {=11 It'll-(0,). The

variance of X,,- can be calculated by Var(X,,-) = 2,23%]: - EX,,-)2P,-(0,). Let Z”-

denote the standardized residual, then Z32' = ML . A mean square fit

‘/ Var(X3,-)

2
n Z .

statistic, i.e., E i=1 -;:1, can then be computed as an item fit measure. The

summation is performed over the n items in the test.

The above measures of item fit and corresponding statistical tests are open to

criticisms. The most common criticism is that these item fit measures and the corre-

sponding significance tests often require parameter estimation (i.e., item and ability

estimates) and are often viewed as inconclusive evidence of adequate fit. The most

commonly used measures of item fit (e.g., Bock, 1972; Yen, 1981) use model—based es-

timates (e.g., maximum likelihood estimate (MLE), or expectation a posterior (BAP)

of the latent proficiency of examinees. In computing these fit measures, the pro-

ficiency estimates are generally treated as point estimates containing no error—an

obviously false assumption. That is, even if there is perfect fit of the model to the

data, the proficiency estimate for an individual is hardly ever equal to the true value

5



due to estimation errors. This problem is especially pronounced for short tests where

proficiency estimates have larger error. In addition, the proficiency estimates are

then grouped into intervals that serve as the basis of a contingency table measure of

fit. Due to the uncertainties in the proficiency estimation, the proficiency estimates

are subject to errors of classification, thus making the use of the chi-square reference

distribution questionable. Several studies (e.g., Reise, 1980; Rogers and Hattie, 1987;

Mckinley and Mills, 1985) have indicated that the sampling distributions of these

measures are not x2 distributed. Moreover in some contexts, researchers point out

that the X2 statistic for a single item is insensitive to certain type of misfit (e.g.,

Vander Wollenberg, 1982; Drasgow et al 1995).

1.3 Item Fit Analysis Based on Raw Scores

Because of the shortcomings of measures based on point estimates of ability, alterna-

tive measures have been developed. In the past 10 years, two main approaches have

been put forth. The first approach was suggested by Orlando and Thissen (2000,

2003). Their approaches compute IRT-based expected values for each level of total

score on the test, raw score or number correct score. They then use the observed

frequencies for the total scores, and compute a fit measure (likelihood ratio 02 or

Pearson X2). The item fit statistics for item 11 suggested by Orlando and Thissen



(2000) are of the form

 

2 H (pile — iEkl2

3" Xi = gNkEEik(1 _ Em)

and

I- 1

8— Gf-- QENklpzkl09(—) + (1— pik)l09('11—__’_3)],

with k standing for raw score category as k = 0, 1, 2, . -- ,1, N. for the number of

examinees on score k, pit and E“, respectively representing the observed and expected

correct scores for item 2' in raw score group 1:. Orlando and Thissen then compare the

statistic to a chi-square distribution (the two statistics are assumed to have asymptotic

x2(I - 4) distributions under the null hypothesis that the fitted model is true). Unfor-

tunately, their statistic is not distributed exactly as chi-square when item parameters

are estimated from MMLE (Donoghue, McClellan, and Oranje, 2004; Sinharay, 2005).

However, the departure from x2 appears to be relatively small, a result supported by

several simulation studies (e.g., Orlando and Thissen, 2000; Stone and Zhang, 2002);

the departure of the distribution of S - x2 and S — G’2 from the referred X2(I — 4)

distribution may be severe for a short test.

Glas and Suarez-Falcon (2003) suggest an item fit statistic based on the lagrange

multiplier test (or equivalent efficient score test) and uses number correct score on

examinee groups. For item 2', the statistic is used to test the null hypothesis H, (e.g.,



the 3PL model is correct) versus the alternative hypothesis, in which the model is

defined as

1

1 + e—ai(9—bi-fits)’

 

p('u.,-|l9, at: bi, Cttflts, 3) = Ci + (1 — Ci)

where 3 indicates the raw score group an examinee belongs to, a,, b,, c,- describe the

parameters for item 2', and 6,, adjusts the item difficulty I),- from the score group 3. The

test statistics, which is defined as h;2hi, has an asymptotic x2(S,- — 1) distribution.

In computing the test statistic, ha is a vector of differences between the observed

proportion correct and its posterior expectation for a raw score group computed

based on MMLE, and E,- is the estimated matrix of hi. Even though this test statistic

appears to have a strong theoretic basis, Glas and Suarez-Falcon (2003, p.97) found

that overall characteristics of their test statistic is worse then that of S -- x2 and

G — X2. Researchers (e.g., Sinharay, 2005) points out that assessing item fit using

number correct score on examinee groups is not entirely satisfactory and there is a

substantial scope of further research in this area.

Recently, Sinharay (2005) from a Bayesian perspective suggested uses of the )8-

type and GZ-type test statistics of Orlando and Thissen (2000) as a summary measure

of discrepancy, but computed the posterior predictive distributions as the reference

distributions. The resulting Bayesian p-values provide probability statements about

the fit of the data with the model on the items. This method also has strong the-

oretic basis. However, the posterior predictive model checking methods are heavily

dependent on the resampling methods and are using the MCMC algorithm and hence

8



are computationally intensive.

1.4 Item Fit Analysis Based on Pseudocounts

The second approach of a fit measure called Q‘DM, is proposed by Donoghue and Mc-

Clellan (e.g., 2004, 2003b, 2003a, 2001b, 2001a, 1999). In this approach, the asymp-

totic distribution of an alternative IRT measure of item fit, referred to as QDM, is

derived and well justified as asymptotically quadratic form of normal variables. QLM

is based on pseudocounts as opposed to counting the number of examinees falling

within a proficiency interval on'the basis of proficiency estimates. It is a natural by-

product of the MML—EM estimation (Bock and Lieberman, 1970; Bock and Aitkin,

1981) used by most IRT calibration programs. This measure has generated much

study (e.g., Stone, 2000; Stone, Ankerman, Lane, and Liu, 1993; Stone and Hansen,

2000; Stone, Mislevy and Mazzeo, 1994; Stone and Zhang, 2002 Donoghue and [sham

1998; and Donoghue and Hombo, 1999, 2001ab, 2003ab; Hombo and Donoghue, 1999,

2000, 2001; Hombo, Donoghue and Oranje, 2003). Simulation studies (Hombo and

Donoghue, 1999, 2000) have found that the asymptotic distribution functioned ex-

tremely well, even with samples as small as 1000 examinees. Both Q — Q plots and

Type I error rates indicated very good agreement between the asymptotic distribu-

tion and the observed values. Moreover, the measure has good power to detect misfit

when it was present in items (Hombo and Donoghue, 2001).

The difference between the second approach and the first one is that QBM is based

on the distribution of ability, at each quadrature point. The term “pseudocount” by



Donoghue, McClellan and Orange(e.g., 2004) refers to the fact that real counts of

the number of examinee proficiency estimates falling with an interval on the scale

are not used. Rather, counts are estimated from the sum of posterior distributions.

Peudocounts are the basic building blocks for the item fit measure QBM. Pseudocounts

of examinees at a given quadrature point are computed by summing over the posterior

expectation (pseudocounts) of an M-category item for score level Is and proficiency 0

level q. Then QBM is defined as

QM

Q}... =229%. (u)
q=l k=0

Here 0 represents the observed response counts and E represents the expected re-

sponse counts. Assuming that item parameters are known, QbM has been shown to be

asymptotically distributed as a quadrature form of normal variables (Donoghue and

Hombo, 1999). This distribution is represented as the sum of independent x?” vari-

ates (e.g., Johnson and Kotz, 1970). QbM ~ 2;, Agxfl) , where A,,Vi = 1,2, - -- ,m,

are the non-zero eigenvalues of matrix L'EL, L is a special form of matrix with di-

mension 2Q x Q (Q is the number of quadrature point used in the computation) for

dichotomous items, and E is the covariance matrix of the pseudocounts (Donoghue,

McClellan, and Oranje, 2004). A routine by Davies (1980) can be used to evaluate

this probability.

However, further work is needed to establish the utility of the result in practical

testing situations. Hombo and Donoghue (1999, 2000) examined some possible lim-

iting factors, including potentially prohibitive sample size requirements to achieving

sampling distribution properties approaching those of the asymptotic distribution. A

10



major limitation to practical application of the findings is the computational burden

required to compute the asymptotic distribution QDM. The computation requires

the evaluation of all possible item response patterns—2’ for a test of J dichotomous

items, for example. For short-moderate length tests (10 — 15 items) the number for

patterns (1024-32768) is manageable. For tests of 20 items, the evaluation of slightly

over one million response patterns per item begins to become burdensome.

1.5 Approximation by Observed Covariance Among

Pseudocounts

The work for the asymptotic distribution for the item fit measure QBM represents a

major advance along this line of research. To avoid evaluating all possible response

patterns for calculating the covariance matrix of pseudocounts and thus making ap-

plications possible to operational research, Donoghue, McClellan, and Oranje (2004)

propose a consistent estimator S for the covariance matrix 2 and the true asymp-

totical distribution is approximated by the observed matrix of interrelations among

pseudocounts. To understand and construct the matrix S, consider the joint probabil-

ity consisting of positive values p(U = u,, 0,,) and 0 for p(U # u,-, 0Q) for dichotomous

item 2' and given response u,- and any quadrature point 0,], Vq = 1,2, - -- ,Q, and

i = 1, 2, - - - , J + 1. Then S can be seen as a simple covariance matrix with every ex-

aminee contributing to all of the 2Q quadrature points. The matrix S is a consistent

estimator of 2. Therefore, a natural idea is to use the data-based estimatorL'SL in

place ofL'EL. Because QDM is an asymptotic result, for very large N (approaching

11



infinity) is arbitrarily close to 2 and intuitively should yield the correct estimate of

QDM-

Indeed, the use of the observed matrix of interrelation among pseudocounts yields

the hoped-for accuracy and simplicity on computation, and the approximation of QDM

based on the observed matrix of interrelations among the pseudocounts opens up the

possibility of operationally feasible and theoretically defensible statistical test of item

misfit. Results from Li, Donoghue, and McClellan (2005) demonstrate how accurate

the approximation is in relative to the asymptotic distributions across three different

sample sizes. The results from simulation studies show that the approximation works

extremely well for many situations. The cumulative probability, mean, and variance

are very close between the true and approximation values. These results can also

be generalized to the case of polytomous items, as in Donoghue and Hombo (2001a)

when item parameters are known constrants.

However, the asymptotic distribution of QBM was derived under the assumption

that the item parameters are fixed and known. When the item parameters are data-

based estimates, the theoretic results of Donoghue and Hombo (1999) do not hold.

Several studies (Donoghue and Isham, 1998; Hombo and Donoghue, 1999; Donoghue

and Hombo, 2001ab; Stone and Zhang, 2002) have repeatedly found that, when item

parameters are data-based estimates, Type I error rates from QDM are much too

conservative, and that distribution of the Q‘DM statistic is stochastically smaller than

Q0M. This study is an attempt to overcome the disadvantage of working with the

item parameters by reformulating the measure of item fit based on pseudocounts.

12



1.6 Reformulating the Item Fit Measure QBM

The form of QbM defined as in 1.1 is a Person-type measure for goodness-of-fit.

Donoghue and Hombo (e.g., 1999) suggest that the expectation of the pseudocounts

can be found through binomial approXimation. That is, the expectation of pseudo—

counts is a product of total pseudocounts and the hypothetical item response function

at certain levels of quadrature points (please refer to the first section of Chapter 2).

The asymptotic distribution of Q7», can be shown through a Taylor expansion of the

fit statistic. As sample size increases, the asymptotic distribution for the second order

Taylor expansion of Q'bM converges to the true asymptotic distribution of Q‘DM.

The idea of reformulating QbM is to simply replace the expectation of pseudo-

counts by its theoretic expectation under null hypothesis. The reformulated version

of the statistic QbM allows researchers to derive the true asymptotic reference distri-

bution for QBM and to extend the results for data-based item parameter estimates.

13



Chapter 2

Item Fit Analysis Based on

Pseudocounts

The item fit measure .QbM by Donoghue and McClellan (e.g., 2004, 2003b, 2003a,

2001b, 2001a, 1999) is similar in form to a Pearson X2. However, as noted before,

the distribution of Q‘DM is not X2, but a quadratic function of normal variates. This

chapter first introduces the basic concept of pseudocounts, on which the measures

of item fit (i.e., QbM) are based. Next the reformulation of DEM will be discussed

with the help of the fundamental concept of pseudocounts. Then the asymptotic

distribution of the reformulated measure of item fit will be derived in a different way.

Finally, the observed interrelations among pseudocounts are examined to obtain a

consistent estimator of the true covariance matrix among pseudocounts.

2.1 Definitions and Notations

Let 9,, be the discrete proficiency at quadrature point q, w(0q) = 21),, be the density of

6, i.e., P(0 = 09) = wq. The prior w will often be chosen to approximate a continuous

distribution, such as N([1,02). Denote U as a random variable representing the

14



response for dichotomously scored studied item. In study of item level model fit,

test items are classified into two groups—the studied item (only one item) and the

remaining items (containing J items). Thus the total number of items in the test is

J + 1.

Let fql = f(0,11) be the item response function for the studied item, i.e., P(U =

1|0 = 6,,). Let N be the sample size or number of examinees, and t index patterns

of responses to the remaining J items Y on a test. For the dichotomous items,

t = 1, - - - , T = 2J. Let nu, be the number of examinees who got score pattern (U =

k, Y = yt). Suppose 7‘r is the vector of observed proportions for the sample response

pattern (U = k,Y = y). Then fr”, = ntk/N, and (,9 = P(Y = yt|0 = 0,,), where It

represents the category for the studied items (e.g., for dichotomous case, k = 0,1),

and ltq is the likelihood function of the remaining item response pattern (Y = yt)

at quadrature point q. Denote 7r", the model-based prediction of the probability of

response pattern (U = k,Y = K), or the marginal probability of (U = k,Y = Yt).

For dichotomous case (i.e., k = 0, 1), it is easy to see that

7M = P(U=1,Y=y¢)

Q

= Z wqfqlltq-

q=l

Similarly, «to = 2;, wq(1 — fq1)ltq. Let pfq be the posterior of 6 at quadrature point

0 = 0,, given response pattern (U = k, Y = y,). Then,

pf, = P(0 = (9qu = k,Y = y.)

wqqultq

7TH:
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In dichotomous case, the posterior distribution for 6 = 6q given the response pattern

0 _ wq(1-fq1)ltq

tq — 7rt0

_ _ . 1 __ wqfqlltq
(U — 1,Y — yt) 1S ptq — m , and p

 

given response

pattern (U = 0,Y = yt)- The posterior distributions provide the best information

about the distribution of examinees’_ proficiency levels. Thus, it is the posterior

distribution of proficiency rather than the proficiency point estimates that are used

for assessing model-data fit on the item level in this regard.

Define pseudocount, sql, to response U for the studied item at quadrature point

6q as the sum of the posteriors over all response patterns P(6 = 6qu, Y = yt),Vt =

1, 2, - -- ,T. For example, the pseudocount to the correct response for the studied

item at quadrature point 6,,.

T

31 = :17. pl
9 t1 tq

t=l

T

E : ntlltq

t=l 77:1

 

Here T is the number of all possible response patterns for the remaining items in the

T I

test. In a similar fashion, define sqo as Sqo = wq(1 — flq) t=l WTOtotg. Denote

5,, = sql + sqo. 3,, is the total pseudocount at quadrature point 6,,, Vq = 1, 2, - -- ,Q.

Q is the total number of quadrature points (designated in the study, in this case 41,

ranging from -4 to 4).

Now consider the following vectors in the dichotomous case:

T _

n - (n11,n21,-~ ,nT1,n10,n20,”' ,nTO),

AT — A A A A A A _

7T -(7T11,7T21,"° ,WT1,W10,W20,"',7TT0)— n/N,

7rT = (7r11,7r21, . « - ,7r7~1,1r10, n20, ...,7r7~0), the model-based probabilities,

16



sT = (311, 321, ..., SQ], 810, 320, Sq»), observed pseudocounts,

§T= (5132,” ,sQ).

The vector n describes the frequencies of all possible patterns of the response

data for J + 1 items in a test. That is, 11 contains the frequencies of the mutually

exclusive response patterns from the sample data. If N examinees are available,

then 23;, (nu + 7140) = N. The model4based probability of the tth pattern of the

remaining items and correct response on the studied item (i.e., (U = 1,Y = yt))

is 7r” = P(U = 1,Y = Y,),Vt = 1,2, ...,T. Similarly, the probability of observing

response (U = 0,Y = y,) is 7r“) = P(U = 0,Y = yt),Vt=1,2,...,T.

For the convenience of studying the statistical properties of pseudocounts, two

posterior matrices P and l3 are constructed. P is a matrix consisting of all posterior

and having dimension of 2T by 2Q. That is,

  

  

p11 p12 piq 0 0 0 \

ph 1052 pig 0 0 0

P2Tx2Q= T1 T2 T0 0 0 0

0 0 0 P61 P12 P1Q

0 0 0 P21 P32 P30

\0 0 0 P91 P9? P90)

The matrix P is a 2T x Q matrix defined as

{I’ll Piz Pic) \

P21 P22 P20

1 1 1
~ p p no. p

P= :1 z? :0
P51 pt? 1’10

P21 P22 ng

“9119072 qu/
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With the matrix notation, the pesudocount vector 5 can be expressed as s = Pu

and s = P'n. The matrix P can be written as column form P = (P11, P21, - - - ,

P5,P10,P§, - -- ,Pg), where Fifi/q =1,2,--- ,Q and j = 1,0, denotes the column in

the matrix P corresponding to the posteriors at quadrature point 0,, with response

U = j for the studied item. Then sq,- = Png. Similarly, write the matrix P as

P = (131,132, - -- ,PQ), where R, represents the qth column in the matrix P,Vq =

1,2,--- ,Q. Then sq = Pin.

The pseudocount vector s or s can be considered as a random vector since it is a

linear function of the frequency vector n, which follows multinomial distribution with

probability vector 1r, denoted as n ~ M2T(N, 7r) with 23:1(7rt1 + mo) = 1.

To establish the results regarding the asymptotic distribution of the pseudo-counts

vector 5, the following two vectors are useful:

vT_ (nu—NW“ Tim—NW2] 1211—er13] nJQ—erm 7129—er29

— \/N7r11 ’ \/N7r21 ’°"’ N/NWTI ’ \/N7r10 ’ \/N7r20 ’

nIQ—NWIQ)

)
.., mfl—TO

(PT : (V ”11) V 713211'": V WTI) V 7T101V W20) "'1 V 77.70)-

The object is to study the properties regarding the pseudocounts, which are a linear

combination of the observed frequency vector 11 of response patterns.

2.2 Asymptotic Distributions of Pseudocounts

Before showing the theorems regarding the pseudocounts, define a matrix B with

1 1

fixed elements, B = D} P, where P is the matrix of posteriors defined as before, D7?

is a diagonal matrix with square root of the model-based prediction vector 1r as its
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diagonal entries.

  

( 7T1] 0 0 \

0 V721 0

13% = O \W’TTI O 0

1r 0 0 ‘/7l'10 0 0

0 0 0 ‘/7l’20 0

If item parameters are all known constants, so are each component in the poste-

rior matrix P and each element in the diagonal matrix Dé. Simply put, the product

matrix B has entries of fixed values. Denote each column of B as bf, or b2,Vq =

1,2, - -- ,Q. Then B can be expressed as B = (bib; ...,blq,b‘1’,bg,--- ,bg). b}l or

1 .1.

b2 is a fixed vector with dimension of 2T, and b}, = D}; R}, or b: = DfiPé).

theorem 2.2.1 (Marginal Distribution of Pseudocounts) The asymptotic distribu-

tion of WC}; — Png) for each element sq,- in the pseudocount vector 8 defined as

above is normal with mean 0 and variance Pg'(Dfl — 7r1r')Pg,Vq = 1,2, - -- ,Q and

j=0,1.

Proof: Let the vectors v, b‘ll or b2, Vq = 1,2, - - - ,Q be defined as above. Then

the asymptotic distribution of the linear function of bav or bgv is normal with mean

0 and variance bah}; - (haw): = bg(I - cpcp')b}‘, or bgbg' — (bggo)2 = bg'(I — <p<p’)bg,
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respectively (p383, Rao, 1973). Therefore,

'I 1 -[ ...1.

1 -T

= —P’ n— N7r

W q ( )

. T , .

= 71—]? 20%qu — Nfltjplq)

T
s .

= m 7271 '— Zl’fltjpgq)

t:

= WW3; — Png’).

Var(b{;v) = PgTDé (I — tpcp’)Pg = P,{"(D,r — 1r7r')Pg. Hence the theorem.

The expectation and variance of pseudocounts, Esq,- and Var(sqj) respectively,

can be found easily by Equ = EPng = NPgTvr = N'wqfql and Var(sqj) =

PgT,var(n)Pg = NPgT(D,, — m’)Pg),vq = 1,2,.-. ,Q and j = 1,0. It can be

seen from the theorem that each pseudocount is a random variable and asymptot-

ically distributed as normal. Or the sequence of the pseudocounts 311, @919 —

PllTrr) ~ N(0, P11'(D,r — mr')P,‘) asymptotically as N —-» 00, where vector P,1 can

be written as P11, = (p1,,p;,,---, p§~1,0,0,--- ,0). And E'(sn) = Nz;lnt1p31,and

Va?"(311) = N(Z;1Pl1271t1 - (Zilphmiy).

In the same way, it can be shown that the marginal distribution of the total pseu-

docount 5, at the quadrature point 00 is also asymptotically normally distributed

with mean 0 and variance 15,;(D, — 1r1r')Pq, i.e., WC} —- Pan') ~ N(0,13,;(D,r —

1r1r')Pq),Vq = 1, 2, - - - , Q, where P4 is the qth column in the matrix P. Note that the

expectation of sq is Esq = NEW = Nwq. Interestingly, notice that Esq does not de-

pend on the hypothetical models. E5, only depends on the quadrature approximation
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wq.

theorem 2.2.2 Joint Distribution of Pseudocounts The asymptotic distribution of

VN(fi — P’1r) for the pseudocounts vector 8 is multivariate normal with mean vector

0 and dispersion matrix P'(D,r -— 7r7r')P, where P, D,” and 7r, are defined as above.

Proof: The asymptotic distribution of the 262 linear functions B'v-, where B is 3

2T by 2Q matrix of rank 2Q — 2 defined as above, is multivariate normal with mean .

vector zero and dispersion matrix B'(I — cpcp')B (p383, Rao, 1973). It is easy to see

that

Bv = (b},b§,--- ,blq,b2,bg,-~ ,bg)Tv

S ,

—-\/NB .r—N 97

After a little algebra, it can be shown that the pseudocounts vector is asymp-

totically multivariate normal distribution with mean vector 0 and covariance matrix

B'(I—tp<,o')B, i.e., m(-,'\—,—P’1r) ~ N3Q(O,P'(D,,—1r7r')P) asymptotically as N —-> 00.

Similarly, the asymptotical distribution of W(% — Plfl')for total pseudocounts

vector s is NQ(o,1”>’(D,. — 7r7r')P) as N —» 00.

Now one can see why pseudocounts contain essential information for assessing the

degree of item fit. They are the sum of posterior distributions across all possible

response patterns and over all examinees. The posterior probability of proficiency,

instead of the count of grouped proficiency estimates themselves, provide the best

information for evaluating the degree of model-data fit. The proportions of pseudo-

counts 8 over the total number of examinees N can give empirical values that can be
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compared to IRT model predicted values. A measure of the correspondences between

the empirical and predicted values represents the degree of adequacy of model-data

fit at the item level. However, it is often difficult or impossible to judge from the plots

whether the differences between the empirical values based on pseudocounts and the

model based predicted values A statistical significance test is very desirable. The

following section is to reformulate QBM and find out its reference distribution based

on pseudocounts.

2.3 The Asymptotic Distribution of the Item Fit

Measure Q};M '

The statistic Q‘DM suggested by Donoghue and McClellan (e.g., 2003) is defined

through binomial approximating the expectation of pseudocounts as

QbM ((Sql - Esq1)2 + (Sqo - ESquz)

E391 Esqo

M
e
M
e

((3:11 — fqlsqlz + (Sqo — qusqlz)

q=1 fqlsq _ fqosq

Q

(Sql - fqlsql2

(12:; fql(1- fallsq.

Donoghue and Hombo (2003b) expand the above expression of Q‘DM about fr = 7r as

a Taylor series to derive the that the asymptotic distribution of the measure QBM is

asymptotically a quadratic form of normal variables:

QDMUfl = mg? - 7r)'C(7“r — 70m + 0(N‘l‘)
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The matrix C is the same as that in Donoghue, McClellan, and Oranje (2004, p 10).

That is,

 

Q ‘ . $

(Vql’ " fqlvq2)(vq1 ’ fqlqul
C =

gwq fql(1" fqll ,

 

l l ' l

whereV* ’— (fqllq fquq M 0 ,0 ,andva2lz

  
 

‘11 W11 ’ W21 ’ ’ WT1 ’ ’

fqlllq fqll2q . . . fqlng (l-fqllllq (l-fqlll2q . . . (l—fqllng

W11 ’ W21 ’ ’ WT1 ’ W10 ’ W20 ’ ’ WTo ’ °

2.3.1 Reformulated QBM and Its Asymptotic distribution

In this study, also define QLM as Pearson Xz-like statistic. That is,

QIDM : 20: ((3q1 - Esqil2 + (5:10 - Esqolz) .

Esq] Esqo

  

q=l

As previously defined, 391 or sqo is the pseudocount at quadrature point 0g,\7’q =

1,2, - -- ,Q. Esql or Esqo denote the corresponding expectations. First simplify

the expression of the expectation of 3,71 and sqo,\'/q = 1,2, - -- ,Q. Notice that the

expectation of the pseudocount Esq]- = Nngr for j = 0, 1 can be expressed as

 

T

fr-l

Esqj = E(ququz 72.”)

t=l ‘1

T

= ququzltq

t=l

= ququ.

That is, Esql = qufql, and Esqo = qufqo = qu(1 — fql). Therefore, the

expectation of the pseudocounts vector 5 is Es = N(w1f11, W2f21, . - - ,waQI,

w1f10,w2f20, - ~ ,wqu0)T. The expression of Es is the same as that derived from

the theorem on joint distribution of the pseudocounts vector.
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Now turn to look at the asymptotic distribution of the reformulated Q‘DM. Let

DES be a diagonal matrix with the expectation of the pseudocounts as its diagonal

-1 -1 -1

elements. Obviously, D5; is a 2Q by 2Q matrix, and DE; = DE; DE; , where DE;

can be expressed as

  

1
( m o o \

'6 III 711.? II. '6 I. '6
DES—% = _1__ wa01 l

m 0 0 m (1) 0

0 0 O m 0

'6 II III I. II '6 7...?
K wofoo )

With the matrix DES—i, the QbM can be further simplified by

Q

. __ (Sql — Esql)2 (Sqo - Eswlz)

QDM _ Z ( Esql + Esqo

= "rams-w

  

q=l

= (s — Es)’DE,-1(s — Es)

= (P'n — Np’n)'DEs-1(P’n — NP'vr)

= (n — Nr)'PD;3:P'(n — er)

= We} — 1r)'NPDg§P'\/N(7‘r — 7r).

As it is known, W03 — 7r) are asymptotically distributed as multivariate normal

variates with mean vector 0 and covariance matrix G = D,r — 7r7rI (e.g., p470, Bishop,

Fienberg, and Holland, 1975). Thus, QBM is asymptotically a quadratic function

of normal variables. Obviously, the matrix NPDszéPI is nonnegative definite since

all of the diagonal components in the matrix DES are nonnegative. Following Sta-
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pleton’s (1995, p65) expression for quadratic form by denoting y = mm — 1r) ~

N3T(0,G), and the nonnegative definite matrix A = NPDgéP', let G% be the

unique symmetric square root of G, and let G“% be its inverse. Thus QBM = .

(yG-%)(G%AG%)(G-%y) = z’Cz, where z = G-iy and c = GiAci. Then

Var(z) = G‘aGG'% is an identity matrix of 2T x 2T, so that 2 ~ N3T(0, I).

Let C = TAT’ be the spectral decomposition of C. Then A is the diagonal ma-

trix of eigenvalues of C, and T is the 2T x 2T matrix whose columns are the

corresponding eigenvectors of C, and T is an orthogonal matrix. Hence, QBM =

z'TAT’z = (T’z)’A(T’z) = Lo’Aw 'for w = T’z. Var(w) = T’IT = 1313‘”, and

w ~ N3T(0, I). Denoting the eigenvalues of C by A1, A2, - - - ,AgT, QBM = 2:1 Aiwf,

where w’ = (w1,w2, - -- ,ng). Therefore, QBM is alinear combination with coefficients

A1, A2, - -- ,/\2T of independent x? random variables. The coefficients A1, A2, - -- , AgT

are the eigenvalues of NG’iPDgsP’G’%, and also the eigenvalues of NPDgéP'G or

of NGPDgéP’. By theorem 2.2.1 (Stapletone, 1995, p51), the expectation of QbM

is E(QbM) = trace(AG) = trace(NPDg§P’G).

The asymptotic distribution of QbM can further be simplified as the reduced

sum of independent Xf1) variates (e.g., Johnson and Kotz, 1970). That is, Q‘D)" ~

2;, Aixf, where A, are the m non-zero eigenvalues of the 2Tx2T matrix NPDESP'G.

The non-zero eigenvalues from matrix NPDgéP’G is equivalent to the non-zero eigen-

values from matrix L’GL = NDQEPXD, — m’)PD;,§ for L = P’Dgé. It can be

easily seen by letting u be a non-zero vector (with dimension of 2(2) and scalar

A. Then by defining equation NPDgéP'Gu = Au, NLL'GV = AV. This implies
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that NL’GV = ALlu, where Ll represents the generalized inverse of matrix L. And

NL’GL(Llu) = A(Llu). Hence the result. A routine by Davies (1980) can be used

to evaluate this probability distribution. Now state this result about the asymptotic

distribution of QLM in the following theorem.

theorem 2.3.1 Asymptotic Distribution of QBM The Pearson xz-like measure of

item fit QBM defined as above is a quadratic function of random variables with mean

. . I

vector 0 and covariance matrix D, — 1r7r .

Take a close look at the covariance matrix ND:-P’(D, — 7r7r’)PD;3§. Denote this

matrix product as A (i.e., A = ND:P’(D, — 1r1r’)PD;3§). Let the set of distinct

eigenvalues of A( the spectrum of A) denote as o(A). The maximum magnitude

of eigenvalues, denoted as p(A) = max|A|,V)\ 6 o(A) has p(A) S “A” for every

matrix norm (Meyer, 2000, p497), i.e., IA] 3 “A” for all A E o(A). Since all the

components in the matrices DigiP, and D, — 1r7r’ are regarding probabilities, the

maximum absolute values of the components in the product for A is less than or

equal to 1. Thus the maximum eigenvalue of the matrix A is equal to 1.

2.3.2 Asymptotic Distribution of Q

The statistical distance between the observed pseudocounts and their expectations

(the external and fixed values) also represent the degree of model-data fit. If the

distance is defined by Q = (s — E§)B‘l(§ — E§)', and it is seen from theorem 2.3.1

and theorem 2.3.2 that the asymptotic distribution of the sequence «17(73- — P’7r) for

5 is Nq(0, P’(D, — 1r7r’)P) with a nonsingular covariance matrix. As it is easy to see,
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the expectation and covariance of s is E5 = P’rr and Var(§) = NP'(D,-1r7r’)P. Since

33$?) = x/JVGV — P’7r), the following states the result for the asymptotic distribution

of Q (e.g., p163, Johnson and Wichern, 2002).

theorem 2.3.2 Asymptotic Distribution of Q The asymptotic distribution of item

fit measure defined as Q = (s — E§)53‘1(§ — Es)’ is X2 with degree of freedom Q and

the covariance matrix 2 is NP'(D, — 1r7r')P.

Let 2 denote the 2Q x 2Q covariance matrix of the pseudocounts vector 8, i.e.,

2 = NP, (D, — rrrr')P. Then the covariance matrix over the total pseudocounts

vector 5, f], is NP'(D, — rrrr')P. The following section will introduce a consistent

estimator of 2 and f}.

2.4 The Observed Covariance Matrix of Interrela-

tions among Pseudocounts

Although the covariance matrix of pseudocounts E = P'(D, — 7r7r')P has dimension

of 2Q x 2Q and the dimension of f3 = P'(D, — 7r7r')P is Q x Q, the estimation

of E and )5 involves evaluating the 2T x 2Q matrix P, the 2T x Q matrix of P,

and the 2T x 2T matrix of D, — 7r7r'. Note that T indicates all possible response

patterns for the remaining J items. In dichotomous case, T = 2J . For a long test, the

numerical computation of 23 seems impractical for most Operational work. To reduce

the computation complexity, 2 is estimated from the observed covariance matrix

S of interrelations among pseudocounts s, and f) is estimated from the observed

covariance matrix S of interrelations among pseudocounts s. As is known that n ~
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M2T(N, it), a multinomial distribution with 2T —- 1 parameters and covariance matrix

N(D, — 7r1r’). P},- is a uniformly minimum variance unbiased estimator (UMVU) of

rr,,~,Vt = 1, 2, - - - ,T, and j = 0,1 (e.g., Lehmann and Casella, 1998, p106; Bickel and

Docksum, 2001, p187). It is natural to think of the matrix D15 — PP’ as estimate of

the matrix D, — 7rrr'.

Let the vector. xi indicate the posterior contribution of the ith examinee on

the studied item across the array of Q quadrature points given the response pat-

tern (U,Y = y,),Vi = 1,2,--- ,N. Then X, is a 2Q dimensional vector as x, =

(X11, X,12,- ~ - ,X-1 ,X3, X3, ~ - -, XPQ). The value of each component in the vector X,-
1 1

is X.’
lq’
vq=1,2,--- ,Q,i=1,2,--- ,N,andj=1,0. Or

x}. = UP<o=o.w= 1.1/=11,

x}; = (1—U)P(0=6,|U=0,Y=y,~).

Therefore, a N by 2Q matrix representing the contributions of each examinee to the

posteriors at Q quadrature points given the observed test data is available. If all of

the item parameters are known constants, then each posterior can be thought of as

a fixed value. And therefore, each component X-j Vq = 1,2, - -- ,Q,i = 1,2, ~ u ,N,
:q’

and j = 1,0 can be viewed as a random variable, because U is a Bernoulli random

variable. Clearly, these 2Q random variables are not independent. The realization

of each component X3, constitutes a N by 2Q matrix, a much smaller and more

manageable matrix for computation, which can then be used to estimate the covari-

ance matrix among pseudocounts. It can be shown that the sum over all examinee’s
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posteriors (or a row vector in the N by 2Q matrix) is actually the pseudocounts

vector 5. In this sense, the vector x, can be regarded as the unit pseudocount, and

for Vi = 1,2, - ~ ,N, 2:,- can be viewed as the ith realization of the random vector

x = (X11,X21,- -- ,X5,X?,X§, - -- ,Xg). The N by 2Q matrix contains all informa-

.tion for each examinee’ unit pseudocount on each quadrature point.

The observed covariance matrix of the vector x from sample data depicts the

covariance S of interrelation of pseudocounts. The following section states the inter-

relations between the variance of the unit pseudocount Xg and overall pseudocounts

sqj,Vq = 1,2, . -- ,Q and j = 1,0. By definition, the sample variance of X3 is given

by

' 1 N ,- qu 2
var(xg) = HEMP?) .

i=1

Denote r,, = if} = 2;, p.,-P,{,, forj = 1, 0, then

N . 2

var(Xg) = — (X? —§q—’)

When the item parameters are all known constants, the posterior P; is also known

and fixed, Vt = 1,2,... ,T, and q = 1,2,~- ,Q. The difference between the vari-

ance for the unit pseudocount Var(X;) and the average sample variance of the
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total pseudocounts fiVar(sq1) is Var(X;) — 71‘7Var(sq1) = 221(131 — «MB? -

(2;,(Pu — rrn)P,{,) (2;,(1‘311 + 7rtl)P,f,). Since the sample proportion Pu is a con-

sistent estimator for the parameter 7r”, Pu -—» 7n,- in probability as N —+ 00. Thus,

as the sample size N goes to infinity, Var(X;) —+ fiVar(sq1) in probability. That is,

Var(X:) is consistent for estimating fiVar(sq1),\/q = 1,2, - -- ,Q. Similarly, it can

be shown that the Var(X3) is a consistent estimator of fiVar(Sqo), Vq = 1, 2, - - - ,Q.

Now consider the relations between the covariance Cov(Xg, Xg: ) and the covari-

ance Cov(sqj,sq:,-I),Vq,q’ = 1,2,--- ,Q, and j,j’ = 1,0. First express Cov(sq,-,sq:J-I)

as

T T

Cov(sqj,sqrjr) = Cov(Zn¢jPé,Zn¢jint;,)

t=1 t=1

= Cov(Pan,n'P£.)
q

'T , -I

= NP; (D, — 7rrr )P’,.
q

The vectors P3 and P3,, are two columns in the matrix P with row q, q’ and column

j, 1", respectively.

Next, study the covariance Cov(Xg, X3:) By definition,

‘ 303' " Sq’j’

(qu — W‘Xqur — N)

Z
I
H

.
M
z

Cov(Xg,Xg,') =

1"

ll

1:" J'-__j’-_ -.-,
(Xini’q’ _ Xiqr‘I'J' Xiq’TQJ) + TQJTQ'J'

ll

2
|
“

M
2

1

= pimp; — PgTsp’ij

1'

Again, it is seen that Cov(Xg, Xgl) —> fiCov(sqj, sq'jr). It is not hard to find that
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Cov(§q,§;) = NPqT(D, — 7rrr')Pq:, Vq,q’ = 1,2,--- ,Q. Form the N x Q posterior

matrix X with each row vector i,,Vi = 1, 2, - - - ,N representing the ith examinee’s

and number of Q posteriors, then x,- = (X,1,X,-2, - -- ,X,Q),Vi = 1,2, - u ,N, where

X, = ((P‘l)U(P-‘l)1'”, (13112)"(1’3ll’uv - ~ ,(Rblum‘EY’UI1 3

In the same way, the vector i, is one realization of the vector i = (X1 , X2, - - - , XQ).

Let the covariance of the vector 5': denote S = Cov(x). It can be seen that Cov(Xq, qu) =

PflDp - emit

In a summary, the observed covariance matrix S of the interrelation among pseu-

docounts is a consistent estimator of the average covariance of pseudocounts vector s.

S can be arbitrarily close to 71?): when the sample size N is large enough. Similarly,

the observed matrix S is a consistent estimator of #2. The noticeable computational

simplicity can be obtained using S, which is a constructed N by 2Q matrix of poste-

riors. The simplification of the computational complexity for the covariance matrix

among pseudocounts make the hypothesis testing of goodness of fit at the item level

feasible using the measure of item fit Q‘DM.

2.5 Estimation of the Asymptotic Distribution for

:1:

QDM

The true asymptotic distribution of Q‘DM is a function of the covariance matrix 2

of pseudocounts. The relations of the asymptotic distribution with the covariance E

rely on the non-zero eigenvalues A’s from the matrix 2. The asymptotic distribution

of Q‘DM can be written as 21:, Avg“) and the nonzero coefficients A’s comes from
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the matrices 2. Denote the non-zero eigenvalues from the observed covariance S as

:\’s. Then the differences between the true asymptotic distribution and the estimated

asymptotic distribution is 2210‘,- — A,)x?(l). It is easy to see that the estimated

distribution is arbitrarily close to the. true asymptotical distribution as long as the

:\’s are arbitrarily close to the true A’s. Obviously, as N —» 00, due to the consistency

of 23 to E, A, is arbitraily close to A,, Vi = 1, 2, . .. ,m.

For the estimate of the asymptotic distribution of Q, replace the covariance ma-

trix )5 in the middle of (s -— E§)f‘_.'1(§ —— Es)’ with its consistent estimator. Then

asymptotic distribution of the estimate is arbitrarily close to its true asymptotic dis-

tribution. Therefore, the asymptotic distribution of the fit measures QBM and Q

,with true covariance matrix among pseudocounts are the same as the asymptotic dis-

tributions of fit measures QbM and Q, respectively, with observed covariance matrix

of interrelations among pseudocounts as their corresponding consistent estimators of

the true covariance matrix.

Assuming item parameters known constants is not realistic in many applications.

This section will investigate the relations between the item parameter estimates and

asymptotic distribution of the reformulated item fit measure QLM for data-based

item parameter estimates.

Since item response function 1),, are continuous function of item parameters given

each quadrature point 0,,Vq = 1, 2, - ~ ,Q andj = 0, 1, qu(&,, b,, 6,, 9g) ——r qu(a, b, c, 0,)

in probability as n —r 00, in short, f,,- ——> qu, if both item and ability parameters are

consistent estimates (e.g., p124,Rao, 1976; p74, 8.4, Lehmann, and Casella, 1998). It-
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is also not hard to demonstrate that lg, -+ 1;, in probability, in, —» 7n,- in probability,

sq,- _. sq,- in probability, and Er, —» E'sqj in probability, Vq = 1, 2, . -. ,Q, j = 0,1,

and Vt = 1,2, - -- ,T. In the same way, the estimates of QBM and Q tend to true

QbM and Q, respectively in probability. Moreover, by convergence together theo-

rem (e.g., p122, Rao, 1976; p91, Durret, 1996), the estimates of qu, QbM, and Q

have the same asymptotic distribution as those of 3,], Q‘DM, and Q, correspondingly,

Vq = 1,2, - -- ,Q, j = 0,1. Therefore, suppose the consistent estimates of item pa-

rameters are available, the results on the item fit measure QbM and its corresponding

asymptotic distribution can be extended to the situation in which item parameters

are data-based estimates in theory.
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Chapter 3

Simulation Studies on Item Fit

Several simulation studies on the item fit measure QbM are presented in this chap-

ter. One important purpose for the simulation studies is to examine how large the

additional errors might be induced by the approximation for the asymptotic distribu-

tion based on the observed covariance compared to the true asymptotic distribution,

and to find out what conditions can make the approximation practically useful. To

investigate the accuracy of the approximation, a test consisting of 15 items is simu-

lated. Such a short test is chosen because most personal computers can handle the

computation involving all possible response patterns of 15 items, which is required for

computing the true asymptotic probability. For dichotomously scored responses, there

are 215 = 32678 possible response patterns in all. Thus, the true asymptotic distri-

bution, the approximation of the true asymptotic distribution based on the observed

covariance matrix of interrelations among pseudocounts, and the approximation on

the basis of data-based item parameter estimates can be compared to each other. For

a longer test (e.g., a 30-item test), the possible response patterns may be too huge

(e.g., 1073741824 for a 30-item test) tocompute the true asymptotic probabilities.
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Without the true asymptotic probabilities, it is difficult to have an intuitive sense of

how good is the approximation. The comparison of the true parameters and param-

eter estimates (e.g., the true covariance among pseudocounts versus the covariance

estimate, the true asymptotic probability versus the approximation, the true eigen-

values versus the estimated eigenvalues from the observed covariance matrix, the true

item parameters versus the item parameter estimates) is viewed as an oracle analysis.

In applications, there is no need to compute all possible response patterns for the

sake of the true covariance matrix among pseudocounts, if the approximation is suffi-

ciently close to the true value or the induced errors are negligible for practical use. To

compute the true covariance matrix among pseudocounts here and the true asymp-

totic distribution for a given QBM is merely for the convenience of the comparison to

which one can see how good the approximation can be. According to this asymptotic

method and approximation approach, there should be no practical concerns on the

computation of item fit analysis for longer tests. Therefore, the method is not limited

to short tests only. It can be applied to longer tests as long as the sample size is large

enough so that the approximation work well.

Three different sample sizes are chosen for this study to determine how large

the sample sizes are sufficient for this asymptotic method, and attempt to provide a

guideline on how large sample size is sufficient for the method to work well. The 15

item parameters are also generated from computers. Discriminating power parame-

ters are simulated from uniform distribution ranging from .6 ~ 2.6, i.e., U(.6,2.6),

difficulty parameters are generated from standard normal distribution N(0, 1), and
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Table 3.1: ’Irue Item Parameters for the Test of 15 Items

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item Discrimination a Difficulty b Asymptote c

1 .672 1.410 .177

2 1.652 1.493 .013

3 .747 .935 .005

4 1.486 . 1.706 .165

5 1.286 .967 .080

6 1.357 .820 .086

7 1.140 -.411 .159

8 1.107 1.060 .083

9 1.465 .388 .085

10 .920 1.643 .145

1 1 ..740 -.668 .173

12 .803 1.125 .040

13 1.407 -.451 .067

14 .662 .077 .124

15 1.845 1.166 .148       
the asymptote parameters are from uniform U(0, .25). Table 3.1 contains all of the

true parameter values for the 15 items.

Three groups of examinees are generated from N(0, 1) with sample sizes 500, 1000,

and 5000, which represent small, medium, and large samples, respectively. For each

sample, dichotomous response data are simulated from 3PL IRT models. To account

for the randomness from the response data, replications (1000) for each sample size

will be conducted. More specifically, the 15—item test will be administrated to 1000

groups of examinees with sample size 500 each from N(0, 1), and 1000 with sample size

1000, and 1000 with sample size 5000. Combined with the sample size and replication

conditions, there are in all 3000 data sets yielded for the simulation studies.
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3.1 Type I Error Rates

To allow comparisons, the true asymptotic distribution,the approximation of the true

asymptotic distribution based on the observed covariance matrix of interrelations

among pseudocounts, and the estimated asymptotic distribution on the basis of item

parameter estimates as well are computed alone with the corresponding item fit mea-

sure QbM. Type I error rates are calculated and compared across different sample

sizes (e.g., 500, 1000, and 5000). Under the null hypothesis that the simulated re-

sponse data from the 3PL model fit the hypothetical 3PL model (in this example,

the same form of mathematic model is assumed for all items in the short test—

3PL model), the observed item fit measure QBM is asymptotically distributed as a

quadratic form of normal variables, which is addressed in Chapter 2. For a given

observed item fit statistic QbM, the asymptotic probability of observing such a value

or greater can be evaluated through the routine by Davies (1980). For each item

and each replication, count the number of times for the hypothetic item model being

rejected. If the number is greater than 50 over 1000 replications (i.e., the type I error

rate is greater than .05), it is said the type I error is greater than what is expected.

Otherwise, the type I error rate would be acceptable. Table 3.2-3.4 shows type I error

rates for each item in the test over 1000 replications across three different sample

sizes (e.g., 500, 1000, and 5000).

A good model-data fit test requires low type I error rate. The lower the type I

error rate, the less mistakes that would be made when to accept a correct hypothesis.

37



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 3.2: Type I Error Rate for Sample Size 500

Item Type I Error RMSE

True(Full) True(Appr.) Item Esti. a b c

1 .026 .023 .000 .187 .254 .040

2 .029 .029 .006 .401 .190 .019

3 .016 .017, .002 .254 .257 .089

4 .020 .023 .001 .506 .276 .023

5 .011 .013 .000 .228 .153 .030

6 .016 .019 .000 .234 .135 .030

7 .023 .024 .002 .169 .093 .035

8 .018 .020 .001 .200 .178 .033

9 .011 .014 .001 .231 .108 .040

10 .026 .031 .000 .221 .247 .026

11 .023 .025 .003 .115 .136 .036

12 .017 .013 .000 .233 .224 .062

13 .017 .018 .008 .630 .112 .092

14 .031 .035 .001 .148 .243 .081

15 .019 .020 .000 1.148 .152 .023      
 

Table 3.3: Type I Error Rate for Sample Size 1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item Type I Error RMSE

True(Full) True(Appr.) Item Esti. a b c

1 .027 .023 .000 .162 .174 .035

2 .012 .012 .000 .292 .092 .012

3 .012 .012 .000 .208 .180 .070

4 .014 .012 .000 .303 .146 .018

5 .016 .013 .000 .192 .098 .022

6 .019 .017 . .000 .203 .092 .022

7 .024 .020 .003 .123 .082 .032

8 .010 .010 .000 .184 .105 .025

9 .011 .010 .000 .179 .089 .030

10 .033 .029 .000 .199 .148 .022

11 .020 .020 .001 .087 .122 .037

12 .020 .016 .000 .192 .146 .046

13 .018 .013 .003 .193 .113 .075

14 .025 .023 .000 .118 .211 .070

15 .020 .019 .000 .317 .085 .018       
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Table 3.4: Type I Error Rate for Sample Size 5000
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item Type I Error RMSE

True(Full) TruaAppr.) Item Esti. a b c

1 .054 .045 .000 .079 .083 .023

2 .020 .019 .000 .130 .043 .004

3 .049 .045 .001 .099 .093 .035

4 .040 .034 .000 .175 .061 .008

5 .039 .036 .000 .093 .046 .01 1

6 .037 .032 .000 .096 .042 .011

7 .036 .033 .000 .070 .062 .035

8 .045 .038 .000 .084 .051 .012

9 .029 .026 .000 .090 .042 .014

10 .050 .040 .000 .099 .072 .013

11 .047 .043 .000 .047 .097 .037

12 .035 .032 .000 .077 .065 .019

13 .020 .020 .001 .095 .067 .034

14 .044 .039 .000 .056 .114 .038

15 .026 .024 .000 .176 .042 .009          
To examine the type error rates for item fit test, the data are generated from the

particular mathematic models (e.g., the 3PL model) and fit back into the same item

model—an obvious known fact or correct hypothesis. Therefore, the item fit test, if

it is right, should provide useful information to accept the correct hypothesis except

some acceptable level of errors (Type I error) due to randomness; or the item fit test

is simply employed to verify the known fact. The type I error rates in the tables

are calculated based on 1000 replications for each sample size. Table 3.2 through

3.4 give the type I error rates when item parameters are known (denoted as “Full”

and “Appr.”) and type I error error rates when item parameters are estimated from

the response data (denoted as “Item Esti.”) along with the root mean square errors

(denoted as “RMSE”) for each item parameter estimates.
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It can be seen from the three tables (table 3.2, 3.3, and 3.4) that the type I error

rates across different sample sizes are basically very low, lower than .05, the level of

significance. Only one item (the first item in the 5000 case in table 3.4) has type

error rate .054, a little bit bigger than the significant level, on the true asymptotic

distribution.

One major feature of the type I error rates in the tables is when item parameters

are known constants, the type I error rate based on the true asymptotic distribution is

close to their counterpart from the approximation by the observed covariance matrix.

However, the type I error rates from the data-based item parameter estimates are

in general less than those from the true item parameters and are very conservative

regardless of the sample sizes. - It can be seen from these tables that most of the items

the type I error rates are near to zero.

As seen in any estimation programs in IRT, item parameter estimates contain

estimation errors even if the data adequately fit the mathematical models used for

the estimation. To examine the conservative performance of QBM under the circum-

stances of the item parameter estimates, root mean square errors (RMSE) of the item

parameter estimates are calculated from the data sets. RMSE is defined as the square

root of the mean squared difference between the item parameter estimates and the

true item parameters over r replications (r in this example is 1000). Let 17 denote as

the item parameter (e.g., discriminating power parameter a, or difficulty parameter

b, or asymptote parameter c) and r”; as the item parameter estimates. Then RMSE
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can be calculated by

 

 

RMSE provides a summary index of assessing the accuracy of item parameter esti-

mates. Apparently, the larger RMSE of the item parameter estimates, the worse of

the estimation. For a simulation study, an adequate fit of model and data is assumed,

and thus the difference in the item parameter estimates may depend on the estimation

procedures and some other factors (e.g., sample size of examinees).

Table 3.2 through 3.4 also contain the RMSE over 1000 replications for each item

parameter in the test. The estimation procedure used in this study for BILOG-MG3 is

Bayesian MML with default item prior distributions. That is, for all item parameters,

(1 ~ lognormal(0, 0.5), b ~ N(O, 2),c ~ beta(5, 17). It shows from these three tables

that the RMSE decreases as the sample size increases, indicting that better item

parameter estimates are obtained, which is expected. In general, the RMSE for the

sample size equal to 500 is the largest and for 5000 the RMSE is the smallest. For the

same sample size, the RMSE for discriminating power parameter is in general larger

than that of difficulty and asymptote parameters.

3.2 Coeflicients for the Asymptotic Distributions

Since the asymptotic distribution depends on the coefficients in the linear combi-

nation, i.e., the eigenvalues extracted from the covariance among pseudocounts, it

is important-to compare the coefficients from the true covariance matrix (the full

covariance matrix that comes from evaluating all possible response patterns for a
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given test), approximation of the covariance matrix, and estimated covariance ma-

O

trix on the data-based item parameters estimates across different sample sizes. The

purfiose of comparing those coefficients is to examine how much additional error is

induced through the coefficients of the asymptotic distribution. Table 3.5 through

table 3.11 include 20 ordered positive eigenvalues extracted from the true covariance

matrix (i.e., Table 3.5) and from the approximated covariance matrix of the observed

covariance among pseudocounts as well (Table 3.6 through table 38 show the 20

ordered epositive eigenvalues from the true item parameters; table 3.9 through table

3.11 from the data-based item parameter estimates), In these tables, the rows rep-

resent the 20 pbsitive eigenvalues and the columns indicate the 15 items in the test.

The other extracted eigenvalues are omitted and not used for calculating the asymp-

totic probabilities due‘to their trivial magnitudes. Note the values in these tables

are from one replication. Similar results can be obtained from other 999 replications

and hence are not reported here. The 20 ordered positive eigenvalues from the true

covariance matrix, which depends only on the number of items, are used to compute

true asymptotic distributions; the 20 ordered positive eigenvalues extracted from the

observed covariance matrix of interrelations among pseudocounts from true item pa-

rameters are used to compute the approximation of the asymptotic probabilities; the

20 ordered positive eigenvalues from the observed covariance matrix of interrelations

among pseudocunts based on the item parameter estimates are the coefficients for

computing the estimated asymptotic probabilities.

It ,can be shown from these tables that for each sample size the 20 eigenvalues

I
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Table 3.5: The 20 Positive from True Covariance Matrix

1 2 3 4 5 6 9 10 11 1 13 l 15

0

0

     

10 12 14

0
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Table 3.7: 20 Eigenvalues for Me Item Parameters (N = 1000)

2 7 9 10 11 1 13 14 15

0

 
from the estimated covariance matrix across three different sample sizes are very

close to their counterparts from the true covariance matrix no matter whether the

item parameters are true constants or data-based estimates. These values are the

estimated coefficients for the linear combination of x? random variables, which are

eventually used to calculate the asymptotic probabilities. Except for the 20 values

from the true covariance matrix in Table 3.5, the coefficients in Table 3.6 through

Table 3.11, which are from observed covariance matrices of pseudocounts, are data-

based estimates and vary as data change. And so do the resulting approximation

of true asymptotic probabilities. For example, over 1000 replications of the 15—item

test with 500 examinees, there are 1000 different observed covariance matrices of
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Table 3.8: 20 Eigenvalues for True Item Parameters (N = 5000)

8 9 10 11 12 13 14 15

 
pseudocounts, and correspondingly the 20 ordered positive eigenvalues extracted from

these matrices vary across data sets. However, it is found that for the 20 ordered

positive eigenvalues extracted from each observed covariance matrix of pseudocounts,

the differences between their true counterparts are so small that the approximation

of the distribution is close to the true asymptotic distribution even for small sample

size of 500. Similar results are also found for the case of the sample size 1000 and

5000. In addition, as the sample size increases, the the observed covariance matrix of

pseudocounts become closer to the true covariance matrix of pseudocounts, and hence

the approximation of the asymptotic distribution gets closer to its true asymptotic

distribution.
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Table 3.9: 20 Eigenvalues for Item Parameter Estimates (N = 500)

2 4 5 1 11 1 1 14

 
3.3 Item Misfit and Power with Known Item Pa-

rameters

A good significance test also requires higher power for detecting model-data misfit.

The higher the power for a hypothesis test, the higher the probability to reject the

null hypothesis when it is actually incorrect. In this section, power is not computed

analytically for the hypothesis testing, but is estimated empirically through simulated

data. To estimate the power, ‘for instance, the 3PL model is used to generate dichoto—

mous response data, then fit the data generated by the 3PL model with the 2PL or

the 1PL models, respectively. The Type I error rate is expected be low when fitting

the data back with the 3PL model, but the power is expected high when fitting with
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Table 3.10: 20 Eigenvalues for Item Parameter Estimates (N = 1000)

2 1 11 1 l

 
the data with the 2PL or 1PL models over 1000 replications. Similarly, low type I

error rates are expected when fitting the dichotomous response data generated by the

2PL model with the hypothetical 2PL model over 1000 replications, whereas power

is expected high when fitting with the data with the hypothetical 1PL model. Table

3.12 through 3.14 show the power for all items at nominal level in the test for different

sample sizes provided all item parameters are known constants.

Horn table 3.12, it can be seen easily that fitting the data generated by the

3PL model with the hypothetical 2PL or 1PL model is not adequate given the item

parameters are known. Most times over 1000 replications the incorrect hypothesis is

rejected, which makes the correction decision on the model-data misfit tests. Horn
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Table 3.11: 20 Eigenvalues for Item Parameter Estimates (N = 5000)

9 10 11

 
Table 3.12: The Power for Test Data Generated by 3PL Model with 'Irue Item

Parameters

1

l

1

1

1

1

1

1 
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Table 3.13: The Power for Test Data Generated by 2PL Model with True Item

Parameters

 

Table 3.14: The Power for Test Data Generated by 1PL Model with 'Irue Item

Parameters

= 1000

1

l
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the perspective of hypothesis testing, it can be explained as that the testing of the

null hypothesis (e.g., Ho here is the data fit the hypothetical 2PL or 1PL model)

is being rejected almost all the times over the 1000 replications when the data are

actually generated by the 3PL model. under the condition of true item parameters.

The rejection rate of 1 means the incorrect hypothesis is correctly rejected for each

replication across three sample size conditions (500, 1000, and 5000), or the hypothesis

tests for model-data misfit have perfect power.

Similarly, table 3.13 shows higher power for testing the hypothesis of fitting the

data generated by the 2PL model with the 3PL model, and table 3.14 shows adequate

power for testing the hypothesis of fitting the data generated by the 1PL model with

the 3PL model regardless of the sample size provided item parameters are known

constants.

As is known that power is a function of the sample size. As the sample size

increases, power would also increase. This feature is apparent in table 3.13 and 3.14

by comparing the same hypothesis testing across three different sample sizes (e.g.,

500, 1000, and 5000). For example in table 3.13 for testing the hypothesis that the

item model for item 10 is the 1PL model using the data that are actually generated

by the 2PL model, the power at sample 500 is .005, .117 when the sample size is 1000,

and .986 when sample the size increases to 5000.

However, the power for each item is found not homogenously high, in particular

for sample size of 500 case, when testing the hypothesis that the correct model is

the 1PL model using the data generated by the 2PL model provided that the item
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parameters are known constants. For example in the third column on table 3.13,

item 3 through item 14 have very lower power for the sample size at 500. In fact, the

power varies as the values of a parameter changes from item to item.

The results from table 3.13 and 3.14 also support that when fitting the data

to models with more parameters than the number of item parameters for the data

generating model (e.g., in table 3.13 fitting the data with the 3PL model using the

data generated by the 2PL model, and in table 3.14 fitting the data generated by the

1PL model with the 3PL or 2PL model), the power is generally high provided the

item parameters are known constants (except item 8 and item 10 in table 3.14).

3.4 Item Misfit and Power with Item Parameter

Estimates '

The simulation study in this section is similar to the above on power estimates with

exception that the item parameters are not known constants but data-based estimates.

When the response data are generated by the 3PL model (this is a known fact for

the simulation study), then fit back the response data with the 3PL, 2PL, and 1PL

models, respectively, on the basis of item parameter estimates. Lower type I error

rates over 1000 replications would be expected for testing the hypothesis that the data

fit the 3PL model meanwhile using the 3PL model to estimate the response data, or

higher rejection rates or power would be expected when testing the hypothesis with

other models (the 2PL or 1PL) meanwhile estimating the data with the 2PL or 1PL

model. In addition, as seen in the above section, the power would also be expected to
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Table 3.15: The Power for Test Data Generated by 3PL Model with Item Parameter

Estimates .

 
increase as sample size increases. Table 3.15 through table 3.17 show the power on the

basis of item parameter estimates under three different data generating conditions.

One apparent characteristic in the three tables (table 3.15 through table 3.17) is

that the power increases as the sample size increases. For example, when the sample

size increases to 5000, the power reaches 1 at nominal level for testing the hypothesis

of the 2PL or 1PL model using the data generated by the 3PL model (table 3.15),

or for testing the hypothesis of the 1PL model using the data generated by the 2PL

model (table 3.16). Another expected feature is that the power is generally greater

when testing the hypothesis of the 2PL model (i.e., Ho: the correct model is 2PL)

than the one when testing the hypothesis of the 1PL (i.e., Ho: the correct model is

1PL) given the same sample size (column 1 versus column 2 for the sample size of

500; column 3 versus column 4 for the sample size of 1000). For the sample size of
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Table 3.16: The Power for Test Data Generated by 2PL Model with Item Parameter

Estimates

 H
H
H
H
H
H
H
H
l
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‘
H
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H

Table 3.17: The Power, for Test Data Generated by 1PL Model with Item Parameter

Estimates

= 5000
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500, there is not enough power for testing the hypothesis of the 2PL and the 1PL

using the data generated by the 3PL model except a small number of items (e.g., in

testing hypothesis of the 1PL model, item 1, item 2, item 4, and item 10 seem to

have adequate power that is greater or close to .80). When the sample size increases

to 1000, testing both hypothesis (i.e., Ho: the correct model is the 2PL model or Ho:

the correct model is the 1PL model) have power reached about .90 or greater except

item 3, item 11, and item 12 when testing the hypothesis that the correct model is

the 1PL model.

In table 3.16, the power for testing the hypothesis that the correct model is the

1PL model using the data generated by the 2PL model is less than .5 when sample

size is 500, and there are 8 items (item 4 through item 8, item 10, item 12 anditem

13) having power less .5 for testing the same hypothesis even when the sample size

increases to 1000. In general, there is not enough power for testing the hypothesis

of the 1PL model using the data generated by the 2PL model when item parameters

are data-based estimates, in particular for the condition in which a parameters in the

2PL model are close to 1.

As is expected, the power is low for testing the hypothesis of the correct model with

more item parameters than the number of item parameters for the data generating

model. For example in table 3.16, the power would be low when the hypothesis is

Ho: the correct model is the 3PL as compared to the 2PL data generating model no

matter what the sample size is. That is to say, the item fit analysis does not have

enough power to reject the test for the hypothesis that the data generated the 2PL
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model fit with the 3PL model most times over 1000 replications. Similarly, table

3.17 demonstrates the item fit analysis results does have enough power to reject the

hypothesis that the correct model is the 3PL or 2PL model using the data generated

by the 1PL model when item parameters are data-based estimates.

3.5 True Asymptotic Distribution Versus the Ap-

proximation

The plot of the true asymptotic probabilities based on the full covariance matrix

versus the approximation of the probabilities based on the observed covariance matrix

among pseudocounts is very intuitive on how well the approximation works across

sample sizes, with plots along the reference line y = :1: indicating the small difference

between the true and approximated values. The plots over different sample sizes may

provide practical recommendations as to how large the sample size is required for an

adequate approximation. For example, the following three figures (figure 3.1 through

figure 3.3) are the plots of the true asymptotic probabilities and the approximation of

the true asymptotic probabilities for item 1, item 3, item 5, and item 7 in the 15-item

test over 1000 replications across three different sample sizes (500, 1000, and 5000).

Similarly, the plots for other items can be displayed over 1000 replications, but are

omitted here since the results on the plots are very close to these items.

As it can be seen from the three figures (figure 3.1 through figure 3.3), the plots

spread wide along the middle of the reference line for the sample size of 500, getting

narrower for the sample size of 1000, and becoming almost a straight line when the
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Figure 3.1: True Asymptotic Probabilities Versus Approximation (N = 500)
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Figure 3.2: True Asymptotic Probabilities Versus Approximation (N = 1000)
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Figure 3.3: True Asymptotic Probabilities Versus Approximation (N = 5000)
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sample size increases to 5000. Obviously, the approximation based on the observed

covariance matrix of interrelations among pseudocounts works well for sample size

1000 and 5000 cases. The results on the plots are a bit dispersed for 500 examinees.

In the case of a short test with small the sample size (e.g., 500), it is advised to use

the true asymptotic probability instead of the approximated one.

3.6 Sensitivity Analysis

3.6.1 Non-normal Proficiency Populations

Psychometrician will be interested in finding out the applicability of one method

developed in certain contexts to various other psychological and educational testing

contexts. For example, in the the above studies, the group of examinees is assumed

coming from a standard normal population (i.e., N(0, 1)), which is typically seen in
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simulation studies. How does the method work with a non—normal population? This

is an interesting practical issue of many tests, in which examinees do not have the

exact standard normal distribution. This study is to examine the effects of the ability

population distribution on the asymptotic method developed in Chapter 2.

To investigate the potential effects of the underlying ability distribution, the pop-

ulation is chosen as four-parameter Beta distribution ranging from -4 to 4. One

reason for choosing the four-parameter Beta distribution as compared to the stan-

dard normal distribution is that it is relatively convenient to manipulate the shape

and range of the distribution. The following section will briefly introduce the expecta-

tion, variance, probability density function of the distribution. The type I error rates

will be examined for the above 15—item test but with a non-normal population—four

parameter Beta distribution.

Four-parameter Beta distribution, denoted as B(a, B, L, U), is determined by two

shape parameters (afi) and two range parameters (lower limit L and upper limit

U of the distribution). Let :r be a random variable from B(a,B,L, U), i.e., 2: ~

B(a,fl, L, U), L < :r < U. Then the density is given by

1

f(:r) = (U — L)°+3‘lBeta(a, ,6) (1r _ L)°"1(U — (”fl-1’

 

where Beta(a, fl) is the Beta function defined for a > 0, H > 0 by

1

Beta(a,fi) = / u°"1(1 — u)B-1du.

o
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The expectation and variance of :r can be expressed as

 

E, 1 M
0+6

_ 2

Var(:r) = (U L)aB

(a+B)2(a+fi+1)'

If a = fl, then 2: has a symmetric distribution within its lower and upper limits. For

a > fl > 0, :r is a positively skewed distribution; for ,8 > a > O, a: is a negatively

skewed distribution. For L = 0, U = 1, the four-parameter Beta distribution reduces

to the regular Beta distribution that is often presented in basic statistics text books.

In particular for a = fl = 1 and L = 0, U = 1, 2: degenerates as a uniform distribution

within 0 and 1.

Figure 3.4 is to compare four-parameter Beta distribution with the standard nor-

mal distribution. One can find that B(4,4,-4,4) and the standard normal are symmet-

ric but obliviously have different probability distributions. The shoulder of B(4,4,-

4,4) is more wide and short than that of N(0, 1). Also as it is known, the range of

standard normal distribution is not only restricted from -4 and 4. One can see in the

figure that B(2, 4, —4, 4) is positively skewed distribution and B(4, 2, —4, 4) negatively

skewed distribution. In this study, assume the examinees coming from B(4, 4, —4, 4)

as compared with N(O, 1) to see if the ability distribution has substantial effects on

the results of the item fit analysis.

Table 3.18 shows that even if the underlying ability distribution is not normal,

the item fit test still has low type I error rates, which is also conservative as seen

in the case of the standard normal population. Again, the Bayesian procedure with
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Figure 3.4: Beta Distribution versus Standard Normal Distribution
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Table 3.18: Type I Error Rates for Non-normal Ability Population and Data-Based

Item Parameter Estimates
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Tern N=500 N=1000 N=5000

1 .000 .000 .000

2 .004 .000 .002

3 .004 .001 .040

4 .002 .000 .001

5 .000 .000 .000

6 .001 .001 .002

7 .003 .000 .000

8 .000 .000 .001

9 .000 .001 .001

10 .000 .000' .001

11 .001 .001 .000

12 .003 .001 .002

13 .010 .005 .004

14 .000 .001 .002

15 .003 .000 .000       
MML is used to calibrate all item parameters with default item prior distributions

when calibrating the item parameters with the 3PL model using the data generated

by the 3PL model. It can be seen from table 3.18 that when the underlying abil-

ity distribution is different from the standard normal distribution, the method still

provides low type I error rates, which in some sense are also viewed too conserva-

tive. The results show that the method is robust regarding the underlying ability

distribution, although the item parameter estimates contains large errors in the case

of the non-normal ability population. Further evidences can easily found from the

RMSE for each item parameter estimate in table 3.19. The RMSE for each item in

the test on three different sample sizes (N = 500,N = 1000, and N = 5000) over

1000 replications are generally larger than those RMSE in the case of the standard
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Table 3.19: RMSE for Non-normal Ability Population
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

Item RMSE N = 500 RMSE N = 1000 RMSE N --§ 5000

a b c a b c a b c

1 .3 .374 .032 .276 .365 .03 .175 .377 .025

' 2 .692 .357 .017 .699 .374 .009 .488 .375 .003

3 .487 .156 .066 .47 .155 .047 .313 .207 .021

4 .4 .423 .024 .359 .428 .018 .319 .416 .009

5 .553 .241 .024 .559 .237 .016 .393 .259 .009

6 .565 .208 .024 .6 .193 .016 .437 .224 .01

7 .873 .116 .029 .493 .174 .035 .384 .089 .034

8 .476 .259 .025 .473 .259 .017 .337 .278 .009

9 .618 .101 .03 .682 .073 .019 .504 .116 ,012

10 .343 .413 .025 .323 .417 .022 .218 .403 .014

11 .326 .211 .03 .325 .257 .039 .247 .147 .04

12 .448 .236 .044 .426 .242 .028 .272 .28 .009

13 .667 .174 .06 .751 .234 .052 .565 .134 .024

14 .345 .124 .054 .34 .125 .048 .228 .068 .026

15 .512 .317 .023 .61 .311 .017 .508 .31 .008
  

normal ability distribution. The RMSE for each item parameter from the sample

size N = 500 are indicated in the first three columns in table 3.19 corresponding to

discriminating, difficulty, and asymptote item parameters, respectively. Similarly, the

RMSE in the second three columns in table 3.19 for the sample size 1000, and the

last three column are the RMSE for sample size 5000. One can see from the study

that the effects of the ability distribution on the results of the item fit analysis are

confounded with the item parameter estimation. The conservative type I error rates

show that the population distribution itself should not be a factor on the results on

item fit analysis, but that it can severely influence the item parameter estimates, as

are represented by the large RMSE in table 3.19.
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3.6.2 The Number of Quadrature Points and Item Fit

The item fit measure QBM or the corresponding asymptotic distribution relies on the

discrete underlying ability distribution, (i.e., p(0 = 6,) = w, for q = 1,2, - -~ ,Q),

which is used to approximate a continuous distribution N(O, 1). Here Q represents

the number of quadrature points. How the item fit diagnostic procedure depends

on the number of quadrature points Q is an important practical issue regarding the

stability of the method. As is known, for a large number of quadrature points,

the approximation for the distribution of the discrete proficiency gets closer to the

' continuous proficiency distribution. For the previous simulation studies, the number

of quadrature points Q was chosen as 41 ranging within -4 and 4. To compare the

stability of the results between different numbers of quadrature points, 21 and 81

quadrature points are selected within the range of -4 and 4, with similar results for

the same data indicating the method is stable regarding the number of quadrature

points. In this simulation study, a test of 30 items are simulated and administrated

to a sample of 1000 examinees from a standard normal population. The dichotomous

response data are simulated using the 3PL model. For a given data set and a stable

method in which the number of quadrature points does not have substantial effects

on the item fit analysis, each item fit statistic and its corresponding asymptotic

probability would not expect to have a big difference as the number of quadrature

points changes from 21, 41, to 81. Similarly, the type I errors rates at nominal level

over 1000 replications would also not be expected to differentiate as the number of the

quadrature points vary. Table 3.20 shows the true item parameters in the first three
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columns of the table and the RMSE in the second three columns and type I error

rates in the last three columns when Q = 41, Q = 21, and Q = 81, respectively. The

item parameter estimates are MML estimates using the 3PL model in BILOG-MG3.

The true item parameters in this study have a wide variety values, which intends

to simulate more general practical contexts for the test items. The discrimmating

power parameter ranges from the smallest of .139 to the highest of 2.67; the difficulty

parameters are ranging from -1.821 to 2.233; most of the asymptote parameters are

around .2 with the highest of .29.

Figure 3.5 through figure 3.8 show the results on the three different numbers of

quadrature points (e.g., Q=21,41, and 81). It can be seen from these figures that

the plots of both the item fit statistics (i.e., Q1314) and the corresponding asymptotic

probabilities on the four items (e.g., Item 1, Item 3, Item 5, and Item 7) over 1000

replications are closely around the reference lines y = 2:, indicating these values are

very close to each other no matter what the number of quadrature points is. However,

with careful examination, one can find that some places are a bit messy on the plots

of Q = 21 versus Q = 41, implying that some large differences occur. Similar results

are also obtained from other items in the same test but not listed and plotted here.

These results show the item fit analysis based upon psedocounts approach developed

in Chapter 2 is not overly sensitive to the number of quadrature points, indicating a

stable and robust results achieved. From these nearly interchangeable results on item

fit statistics and the corresponding asymptotic probabilities, one can conclude that

the number of quadrature points, practically, is not a factor that affect the results
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Table 3.20: Type I Error Rates for Three Numbers of Quadrature Point
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

           

Item 'Irue RMSE Type I Errors

a b c a b c 41 21 81

1 1.899 -.054 .24 .254 .077 .036 .000 .000 .000

2 1.411 1.107 .243 .235 .097 .026 .000 .000 .000

3 2.656 -1.326 .255 .520 .136 .077 .002 .002 .002

4 2.159 1.083 .057 .279 .062 .011 .001 .001 .001

5 1.545 .735 .048 .178 .063 .018 .000 .000 .000

6 2.605 .619 .273 .415 .064 .026 .000 .000 .000

7 .771 .416 .016 .159 .162 .071 .007 .006 .007

8 2.474 1.18 .085 .362 .065 .011 .000 .000 .000

9 .941 .096 .022 .159 .137 .067 .004 .004 .004

10 2.423 .708 .246 .383 .065 .023 .000 .000 .000

11 .653 .35 .129 .119 .170 .056 .000 .000 .000

12 1.543 -.088 .226 .195 .084 .039 .003 .003 .003

13 1.832 .559 .239 .259 .072 .027 .000 .000 .000

14 1.959 .536 .096 .226 .056 .018 .001 .001 .001

15 2.587 -1.821 .096 .506 .109 .088 .002 .002 .002

16 .241 .135 .115 .166 .872 .170 .001 .003 .001

17 2.117 .838 .146 .286 .061 .018 .001 .001 .001

18 1.045 -.19 .037 .158 .128 .068 .012 .012 .012

19 .139 .211 .286 .113 .459 .048 .023 .023 .023

20 .474 1.879 .164 .178 .219 .045 .000 .001 .000

21 1.39 1.522 .222 .269 .121 .022 .000 .000 .000

22 1.972 -.963 .028 .316 .097 .082 .025 .023 .025

23 1.635 .558 .233 .229 .076 .028 .001 .001 .001

24 .381 .877 .29 .126 .312 .058 .003 .003 .003

25 .795 -.329 .197 .108 .138 .048 .002 .002 .002

26 .174 2.233 .078 .293 .439 .193 .009 .009 .009

27 1.69 2.211 .014 .297 .166 .006 .000 .000 .000

28 2.195 1.435 .066 .340 .078 .010 .002 .002 .002

29 1.268 -.331 .077 .151 .095 .050 .008 .007 .008

30 2.675 -.139 .094 .331 .052 .023 .002 .002 .002
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on item fit analysis. Further evidence for this conclusion can be seen from the type I

error rates at nominal level over 1000 replications in table 3.20. The largest difference

of type I error rates at nominal level is .002 on item 22 (i.e., the type I error rates

is .025 for Q=41 and Q=81, and .023 for Q=21), which can be attributable to the

random errors of the sample data. One can use the results in this simulation study

to reduce the computational complexity for a large data set since computing QBM

based on Q=81 takes less time than the computation when Q=41. However, it is not

advised to using a smaller number of quadrature points (e.g., Q = 21) in applications

since, in a small number of cases, large disturbances occur when Q getting smaller.

When Q greater or equal to 41, Figure 3.7 and Figure 3.8 show stable results on both

Q7», and its asymptotic probabilities. Therefore, Q = 41 is generally recommended

for computing item fit in applications.

3.7 Computing Time and Programs

Several C++ programs have been implemented for the simulation studies. Three

parts of C++ programs are coded for simulating response data, computing the item

fit measure QBM for each item in a test, and evaluating the asymptotic probabilities

through Davies routine (1980). The computing time, of course, depends on both the

sample size and the test length. Longer tests or large sample of examinees take more

time for computing item fit measure statistics. The computing time also depends

on the computer equipment. The computer that is used for this simulation study is

equipped with Pentium IV processor of CPU 2.39 GHZ speed and 512 MB RAM.
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Figure 3.5: Item Fit Statistics Q’DM and Number of Quadrature Points
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Figure 3.6: Asymptotic Probabilities and Number of Quadrature Points
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Figure 3.7: Item Fit Statistics QBM and Number of Quadrature Points
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The time to compute the item fit statistics (QbM) for each item in the test of 15

items administrated to 500 examinees takes a quarter of one minute; the time for the

same test administered to 1000 examinees takes around one third of a minute; and

the time for 5000 examinees takes about one and half minutes. The time to compute

the test of 30 items for 1000 examinees takes around one minute. The computing

time for the item fit statistics is on the basis of the number of quadrature points

equal to 41. In fact, the number of quadrature points is also a factor that affects the

computation time. Generally speaking, the method is robust regarding the number

of quadrature points as seen in section 3.6.2. However, it takes less time for the same

data set when smaller number of quadrature points is chosen. For the computation

of the asymptotic probabilities, the computing time is within a second for each data

set. In all the computation is efficient and applicable to most applications.
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Chapter 4

Real Data Applications

One advantage of doing a simulation study on item fit analysis is that information

is available about whether or not the test data fit the hypothetical IRT models. For

real test data, item fit analysis is often confounded with parameter estimation (in

particular for item parameter estimates) and thus make the decisions on whether or

not the test data fit the hypothetical models much more complex.

4.1 Assumptions

Before doing the real data analysis, some conditions should be assumed for the sake of

reasonable interpretations on the analysis results. Several assumptions that may be

involved in the item fit analysis on real data. One assumption is that the parameter

estimation is accurate and reliable. That is, both item and ability parameters are

correctly estimated. To satisfy this condition, the standard procedures (e.g., MML for

item parameter estimation and EAP for ability estimates recommended in BILOG-

MG3) in most of the IRT softwares are used to estimate the parameters for the real

data in this chapter. As is known, the parameter estimation is often confounded with
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model-data fit issues. Poor parameter estimates may be caused by inadequate model-

data fit or some other factors, for example, insufficient sample size and test length,

and dimensionality or local independence conditions. Therefore, the big assumption

here for real data analysis is that when testing the hypothesis that the test data fit

with a hypothetical model, the parameter estimates using this hypothetical model

are assumed to have no errors. For example, if one is to test the hypothesis that the

observed ‘data fit with a 3PL model, then both the item and ability parameters are

correctly estimated using this 3PL model. If the parameter estimates are incorrect,

the only explanation is that the test data have not adequate fit with the hypothetical

3PL model, instead of the estimation procedure itself. Other assumptions that apply

to the item response theory are also all assumed here. For example, unidimensionality

and local independence are assumed for the analysis in this chapter.

4.2 Two Approaches on Item Fit Analysis for Real

Data

In this section for real data applications, two data sets are from Michigan Educa-

tional Achievement Program (MEAP) anonymous 2000 Fall high school science and

math tests. The MEAP science data set used for this example only consists of the

dichotomous responses for 19 items and 7088 examinees; the MEAP math data set

here also only contains 19 dichotomous items and 6857 examinees.

In this chapter, both science and math data will be fitted in the 3PL, 2PL, and

1PL models, respectively. The item parameters will be estimated using MML method
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in BILOG-MG3. The results of item fit analysis in BILOG-MG3 will be compared

with the results of item fit (Q1314) based on pseudocounts, with 10 ability groups and

30 quadrature points in the program BILOG-MG3 for x2 test.

Table 4.1 and table 4.2 are the item parameter estimates for the science data

(table 4.1) and math data (table 4.2) corresponding to fitting the data with the 3PL

model. Since the two sample sizes are large, the item fit x2 tests in BILOG-MG3 show

that all items have statistically significant deviations between the test data and the

model predictions in both science and mathematics tests (i.e., their p-values all less

than .05), which are indicated by the large value of x2 statistics and the low p-values

in table 4.1 and 4.2. As it is known, X2 test is sensitive to examinee sample size.

Almost any departure in the data from the item model under consideration (even

if the practical significance of a departure is trivial) leads to rejection of the null

hypothesis of model-data fit if sample size is sufficiently large. On the other hand, for

small sample size, even large discrepancies between model-data cannot be detected

due to the lower power. Hambleton and Rogers (in Educational Measurement, 3rd

edition, edited by Linn, (1993, p.173), “principles and selected applications of item

response theory” by Hambleton) suggest that

“statistical tests of model fit do appear to have some value. Because

they are sensitive to sample size and because they are not uniformly pow-

erful, the use of any of these statistics as the sole indicator of model fit

is clearly inadvisable. But two situations can be identified in which these

tests may lead to relatively clear interpretations. When sample size are

small and the statistics indicate model misfit, or when sample size are

large and model fit is obtained, the researcher may have reasonable con-

fidence that, in the first case, the model does misfit the data, and in the

second, that the model fits the data. These possibilities make it worth-

while to employ statistical tests of fit despite the alternate possibility of
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Table 4.1: MEAP 2000 Fall High School Science Test Items with the 3PL Model (N

= 7088)

 

Item a b c QbM p‘ X2 p

1 .416 -2.742 .000 8.387 .064 53.5 .000

1.455 2.047 .343 2.585 .772 20.7 .023

.462 -1.187 .000 7.626 .093 55.8 .000

.598 -.181 .018 5.776 .228 64.0 .000

.240 -2.112 .000 3.76 .530 22.9 .011

.824 -.048 .198 2.681 .752 63.1 .000

.752 -.173 .315 2.352 .818 39.6 .000

.514 -1.733 .000 3.38 .606 56.1 .000

.556 -.664 .500 12.097 .009 37.2 .000

10 .808 .943 .256 2.411 .806 33.1 .000

11 1.048 1.255 .317 2.462 .796 31.3 .000

12 .641 -1.368 .000 4.294 .431 90.2 .000

13 .621 —1.027 .000 1.065 .796 92.5 .000

14 .635 .330 .422 3.259 .631 29.2 .001

15 .973 .588 .091 2.331 .822 107.6 .000

16 .722 .125 .325 2.548 .779 31.0 .000

17 .936 .752 .269 2.616 .765 48.8 .000

18 .747 -1.035 .000 2.888 .709 121.1 .000

19 .465 -1.783 .000 4.350 .422 68.1 .000
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equivocal results.”

According to the above guideline by Hambleton and Rogers, the item fit analysis

results from BILOG-MG3 might not provide useful information that can lead to

“relatively clear interpretation” due to the use of large sample of examinees in both

tests. Or for these two examples, it is difficult for one to evaluate whether the test data

on the science and math tests fit the hypothetical 3PL model if the only information

available is from the results on x2 tests in BILOG—MG3.

Look at the results of item fit analysis for both science and math test data on the
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Table 4.2: MEAP 2000 Fall High School Mathematics (N = 6857)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Item 5 a b c QbM p“ x2 p

1 .524 -2.638 .000 4.079 .530 43.9 .000

2 .704 .074 .122 3.387 .663 38.9 .000

3 .851 1.326 ,172 4.072 .531 40.3 .000

4 .771 .340 .228 3.431 .654 27.5 .002

5 .541 -2.883 .000 4.981 .379 48.6 .000

6 .912 -.173 .098 3.019 .735 58.0 .000

7 .571 -.165 .158 3.284 .683 43.0 .000

8 1.171 .559 .104 5.589 .296 57.9 .000

9 1.390 -.657 .223 3.844 .574 78.2 .000

10 .900 -.980 .198 2.849 .768 49.9 .000

11 .582 -.254 .138 3.135 .712 26.8 .003

12 1.135 -.808 .212 3.174 .705 60.4 .000

13 1.236 -.135 .226 3.400 .660 35.7 .000

14 1.329 .529 .153 4.581 .442 32.6 .000

15 .713 -1125 .000 4.924 .387 68.0 .000

16 .414 -.620 .000 6.464 .202 49.1 .000

17 .455 -2.189 .000 8.672 .072 70.6 .000

18 .611 -.840 .500 7.110 .151 25.5 .004

19 .104 -6.671 .000 24.252 .000 77.4 .000
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basis of pseudocounts. The item fit measure (QBM) and its corresponding asymptotic

probabilities are computed using the data-based item parameters (e.g., the standard

item parameter estimation procedure MML) for the science and math tests, which

are the listed in table 4.1 and 4.2, respectively. It shows that item 9 in the science

test and item 19 in the math test have significant deviations between the test data

and the hypothetical 3PL model (i.e., p-value less than .05). Data from other items in

both science and math tests are consistent with predictions based on the hypothetical

3PL model. One can also see that when the hypothetical model is being rejected,

the corresponding fit statistics QBM is relatively larger than other items in the two

tests. According to Hambleton and Roger’s guideline, the test data (except item

9 for science test and item 19 for math test) have observed adequate fit with the

hypothetical 3PL in both tests for such a large sample of examinees and should lead

to “relative clear interpretation”.

One apparently attractive property of this example of real data applications is that

the item fit analysis approach based on pseudocounts (i.e., Q‘DM) is able to reveal item

fit test information even for the sample size as large as 7000 in this example. If both

the science and math test data are fitted with the 2PL or 1PL models, then results

show that all hypothesis tests for item fit analysis (Q‘DM) based on pseducounts are

rejected (table 4.3, 4.4). That is, the test data in both science and math test do not

have adequate fit with the 2PL or 1PL models. However, different results for testing

these two hypothesis are obtained from BILOG-MG3. The X2 tests from BILOG-

MG3 shows that the test data for three items (e.g., item 1, item 5, and item 11) in
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Table 4.3: MEAP 2000 Fall High School Science Items (N = 7088)

1

11

1.4

. . 14.54

.5 -1. 1 .18 
math test have reasonable fit to the 2PL model and that three items (i.e., item 1,

item 11, and item 17) also in math test have reasonable fit to the 1PL model (table

4.4). Interestingly, note that in the math test the same three items (e.g., item 1,

item 5, and item 11) shows reasonable fit with the 2PL model but inadequate fit with

the 3PL model, which might be hard to make sense. Similarly, it is also difficult to

consider a situation that the data from the same three items (item 1, item 11, and

item 17) in the math test have reasonable fit with the 1PL model but fail to support

the fit with the 3PL models. These results seem conflict with the general principles

that the more parameters in the model the better fit may be achieved merely from

the model-data fit perspective.
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Table 4.4: MEAP 2000 Fall High School Mathematics Items (N = 6857)

1

 
4.3 Graphic Approach

One more interesting question is what other evidence one can havelto further sup-

port the assessment decisions on the apparently different results from the above two

approaches (i.e., x2 test and Qle on item fit analysis. One alternative approach—

graphic approach—might provide some intuitive sense to help assess on whether or

not the test data from MEAP science and math tests fit the hypothetical IRT models.

Figure 4.1 through'figure 4.5 are the plots of the hypothetical 3PL model item

response function (denoted as solid curve in the graph) with the observed empirical

item response curve (denoted as dot in the graph) for the 19 items in the science test.

One can see from these plots that most of the items do have reasonable fit with the
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3PL model, assuming the estimation is correct and other assumptions for IRT (e.g.,

local independence and unidimensionality) are satisfied. Item 9 is diagnosed to have

significant deviation between the data and the 3PL model, which can be seen in the

first plot on figure 11 with large discrepancy (i.e., more .5 deviation) between the

hypothetical IRF and the emprical IRF at the lower end of ability scale. In fact, it

can be seen that there are other items (item 1, item 3, item 5, item 8, and item 19)

that also show large discrepancies at the lower end of the ability scale but result in

reasonable fit. One possible explanation to this finding is that there may have large

errors for the ability estimates, which lead misclassifications for examinee groups.

The reason for the possible large errors for ability estimation, in particular for the

ability estimates at the two ends on the ability scale, may be attributable to the small

number of test items in the science test (i.e., a 19-item test can consider to be a short

test). That is the part of the reasons why BILOG-MG recommends using x2 test for

a test with more than 20 items. Combined with the plots diagnose and results on

item fit analysis, one can conclude that the QBM test provides helpful information

on assessing model-data fit. Moreover, the Q'bM test for item fit can apply to short

tests and large sample of examinees, which broaden the settings for item fit analysis.
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Figure 4.1: Empirical versus Hypothetical Item Response Emotions for MEAP 2000

High School Science Items (1-4)
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Figure 4.2: Empirical versus Hypothetical Item Response Functions for MEAP 2000

High School Science Items (5-8)
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Figure 4.3: Empirical versus Hypothetical Item Response Functions for MEAP 2000

High School Science Items(9-12)
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Figure 4.4: Empirical versus Hypothetical Item Response Functions for MEAP 2000

High School Science Items(13-16)
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Figure 4.5: Empirical versus Hypothetical Item Response Functions for MEAP 2000

High School Science Items(17-19)
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Chapter 5

Concluding Remarks and Future

Research Directions

The simulation studies in Chapter 3 demonstrate that the approach to detect item fit

or misfit is reliable and promising. The approach achieves the expected computational

efficiency by approximating the true asymptotic probabilities based on the observed

covariance matrix of interrelations among pseudocounts (e.g., Figure 1), thus making

the approach applicable to most operational research. The approximation not only

brings computational simplification, but also produces accurate results on assessing

item fit from the oracle analysis in Chapter 3. When other sources of errors are

controlled, for example in the condition if item parameters are known, the item fit

test statistic QBM, the coeflicients of the asymptotic distribution (table 3.5 through

table 3.11), the asymptotic probabilities (Figure 1 to 3), type I error rates (table 3.2,

3.3, 3.4), and the decisions on whether the test data fit the hypothetical models have

good agreement on the basis of the approximation. However, it is a fact that the

approximation based on the observed covariance matrix among pseudocounts brings

additional errors for assessing item fit, and the error may be large in the situation
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when the test is long and only a small number of examinees is available.

The utility of this approach is not limited to test length. For short tests, for

example, a test with 10 items or less, one can directly use the true asymptotic distri-

bution rather than its approximation to evaluate whether or not the test data fit the

hypothetical model, because computing the true asymptotic distribution only needs

to evaluate 1024 possible response patterns no matter how large the sample size is.

However, it is advised to use a sample at least as large as 1000 to achieve better

approximation. It can be seen from Figure 1 that the approximation looks a bit

dispersed when sample size is 500, but is improved when the sample size increases to

1000.

This approach has strong theoretical basis, because the fundamental concept of

this approach is “pseudocounts,” or the posterior of ability distribution instead of

ability estimates, which is believed to provide better information on assessing item

fit. One direct theoretic advantage of using ”pseudocounts” rather than “ability

estimates” to evaluate item fit is that this approach is able to avoid additional sources

of errors that are confounded with ability estimation in item fit analysis, in particular

for short tests. For a short test, the ability scale might not be well defined, and thus

the large errors induced by ability estimates and classification errors by grouping

examinees make the results from the X2 item fit test questionable, as is the case for

the example on Chapter 4 real data applications. But this is not a problem on the

approach based on pseudocounts because the observed counts from ability estimates

are not required for the analysis. The following is the summary on other advantages
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and limitations.

First of all, the approach of detecting item fit has reasonable type I error rates

(table 3.2, 3.3, 3.4, 3.18, 3.20). In table 3.2, 3.3, and 3.4, when the item parameters

are known constants, one can see that the type I error rates ranges from 0 to .05

with most items having type I errors rates around .02, which is acceptable. However,

when the item parameters are data-based estimates, almost all items have conser-

vative type I error rates no matter what the sample size is and how good the item

parameter estimates are in the analysis. The too conservative type I error rates when

item parameters are estimated are resulted from the under estimates of the item fit

statistics Q'bM, which also lead to under estimates of the corresponding asymptotic

probabilities. In Chapter 2, it is addressed that the asymptotic distribution can be

expressed as a linear combination of the independent x2 variables. The coefficients

on the basis of item parameter estimates for the linear combination on each item are

arbitrarily close to those from the true item parameters (see table 3.5 though 3.11).

One interpretation to the conservative type I error rates for the data-based item

parameter estimates can be attributable to the estimation errors (e.g., errors for

estimating the covariance matrix, errors for estimating the eigenvalues, and errors for

estimating item parameters), which result in under estimates of the item fit statistic

(Q’DM) and its asymptotic probability. Since the eigenvalues seem well estimated by

table 3.5 through table 3.11, the conservative type I error rates could resulted from

the under estimates of the item fit statistic due to the errors for estimating item

parameters. Note that the extension of the results on item fit analysis to the context
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of item parameter estimates relies on the availability of consistent estimates for item

parameters. Although the RMSE for item parameter estimates when the sample size

is 5000 are much smaller than those when the sample size is 500 and 1000 (see table

3.2 through 3.4), the estimates of item parameters contain a large amount of errors

for each item. If the item parameters would not contain estimation errors, one could

expect the similar type I error rates to those when the item parameters are known

constants. It is possible that poorly recovered item parameters from observed data

I cause the poor item fit results in the simulation studies. Therefore, it is necessary

to discern if poor item fit is resulted from that the test data really inadequately

fit the item models or from the item parameters that are poorly estimated possibly

due to bad estimation procedures. That is, although the item fit analysis on the

situation when the item parameters are data—based estimates does not rely on ability

estimates, detecting item fit or misfit based on pseudocounts requires item parameter

estimates, which inevitably confounds the model-data fit issues with the estimation

issues. Poorly recovered item parameters lead to questionable model-data fit analysis.

It is also true that inadequate model-data fit will result in questionable item parameter

estimates. Further research work is still needed to investigate the effects of item

parameter estimates on the model-data fit analysis. For example, further efforts are

needed to examine what cause the under estimates of the item fit statistics and how

to correct the effects of item parameter estimates. One possible approach is found

in Donoghue & Hombo (2003) by explicitly examining the effect of item parameter

estimation and deepening the understanding of its effect on the distribution of item
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fit measure.

Secondly, the approach has adequate power to detect item misfit (table 3.12, 3.13,

3.14, 3.15, 3.16, 3.17) in the simulation studies. When item parameters are true

values, the power estimates for many items are around .9 even when the sample size

is as small as 1000 (see table 3.12 to 3.14). Item 5 through item 13 in table 3.13 and

item 8 and item 10 in table 3.14 show that the power less than .9 and varies across

these items as their discriminating power (0. parameters) get closer to 1, which can

be explained by the relations between their item response functions. In general, when

item parameters are true values, the more separation of the IRF between the true

model and the hypothetical model, the easier to detect item misfit, and the higher

power could be expected for even small sample size (e.g., 500). For example, the 3PL

model can be more likely to be separated from the 2PL or the 1PL model because

of the presence of the asymptote parameters. However, the 2PL and the 1PL model

can hardly be separated from each other in particular when the discriminating power

parameters are close to 1 and the 2PL model nearly reduce to the 1PL model, which

is also difficult to detect from test data. Therefore, to detect misfit on the 2PL or

1PL, the power should be a function of item discriminating power parameter and the

power curve over a parameter can be expected to look like a “U” shaped curve with

the lowest power associated with a parameters close to 1.

The item response function can provide information for diagnosing item fit testing

process. In the simulation process, it is the item response function that determines

the simulation of the dichotomous response data. In Chapter 2, it is also shown
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how an IRF influences the pseudocounts, the sum of the posteriors over all possible

response patterns for the rest items in a test, and how an IRF directly affects the

theoretic expectation of pseudocounts, and eventually how an IRF influences on the

item fit measure QBM and its corresponding asymptotic distribution.

If the two IRF are very close to each other, one can expect that the two models

would fit a data set equally well or would not have reasonable fit for the data at the

same time. Thus the power may be low in the situation when the two IRF are close,

and large sample size may be required to detect the misfit. For example, the 2PL

model and the 1PL model have the same asymptote value. When an IRF from a 2PL

model has very similar curve to an IRF from a 1PL IRT model (or the a parameter

for the 2PL model is close to 1), and if the data can reasonably fit the hypothetical

2PL model, the data can also be expected to fit well for the hypothetical 1PL model,

and vice versa. Look at the true item parameters in table 3.1, the discriminating

power parameter a’s starting from item 5 to item 13 are close to 1, in particular for

item 8 and item 10 with discriminating power parameters equal to 1.107 and .92,

respectively. If the asymptote parameter c is disregarded, then the 2PL and the 1PL

(treat all a’s value as 1) IRF should have a slight difference. Therefore, although the

data sets are generated from the 2PL model, the power should be low for rejecting

the 1PL model (see table 3.13) due to the fact that the two IRF are too close to each

other. Similarly, the power should also be low for item 8 and item 10 when fitting

the data generated by the 1PL model with the 2PL model, as reported in table 3.14.

Figures 5.1 shows the comparison of the 3PL, 2PL, and 1PL IRFs for item 1, item
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Figure 5.1: Item Response Functions for the 3PL, 2PL, and 1PL Model (Item 1, 8,

10, 15)
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8, item 10, and item 15. It is apparent that the 3PL, 2PL, and 1PL IRF for item 1

and item 15 are well separated and thus these two items have higher power even for

sample size 500. On the other hand, the 2PL and 1PL curves for item 8 and item 10

are too close to separate from each other, as seen in the figure, and thus have lower

power for the sample size as large as 1000. However, their IRF are well separated from

the 3PL model and these two items also observe higher power for detecting misfit of

the 3PL model. i

In a short, for detecting item misfit, an IRF from a 3PL model can be easily

separate from an IRF from other models (e.g., the 2PL and the 1PL). Therefore, this

is why higher power is observed when fitting a 2PL or 1PL model using the data
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generated by a 3PL model. However, when the test data are generated by a 2PL

model, if a hypothesis of fitting the data with a 1PL model and the two IRF are not

well separated, it is hard to expect adequate power unless a sufficiently large sample

size is available.

When item parameters are data-based estimates, the power for detecting misfit

(e.g., the 2PL or 1PL model) for most items is .9 or greater when data are generated

using the 3PL model and the sample size is large (1000), as seen in the third and

fourth column in table 3.15. The lowest power for three items (item 3, item 11, and

item 12) has power around .7. However, when data are generated from the 2PL

model, the test for fitting the data with the 1PL model shows very low power, which

can be seen in table 3.16, in particular for item 4 through item 13, whose IRF are

close to that of the 1PL model.

Next, the method is robust in terms the ability distribution, and is insensitive

to the change of the number of quadrature points. Although the results on type I

error rates in table 3.19 with non-normal ability population (i.e., Beta distribution

in the example) show that the method is robust over the underlying ability distri-

bution, too conservative type I error rates are observed with poorly recovered item

parameters, as can be seen from their root mean square errors. Here the problem

of non-normal ability population turns back to the discussions on the effects of item

parameter estimates on the item fit analysis. As is true that poorly recovered set of

item parameters cannot yield a correct decision on whether or not the test data fit the

hypothetical item models even in simulation studies, it is also true that the results
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on item fit analysis based upon the bad item parameter estimates may not support

that the test data fit the hypothetical model even though the data are generated

by the hypothetical model. That is, one can obtain unacceptably high type I error

rates using a set of bad item parameter estimates. The point is that how bad are

the item parameter estimates can be tolerated for the use of the results from item fit

analysis. The study of non-normal ability population only provides a general sense

of how the bad item parameter estimates can have effects on the item fit analysis in

terms of the root mean square errors. In the table 3.19 on RMSE for the non-normal

ability population across three different sample sizes (500, 1000, and 5000), one can

see that most of the RMSE for discriminating power parameters are greater than .5,

for difficulty parameters greater than .3, and for asymptote parameters greater than

.03. More research work is needed to study the tolerance of the item fit on the effects

of item parameter estimates.

As for the effects of the number of quadrature points on the results of item fit

analysis, it can be seen in table 3.20 and from Figure 3.5 through Figure 3.8, the

results based on Q = 21 and Q = 41 have slight differences. However, the results

based on Q = 41 and Q = 81 show extremely good consensus. Thus, it is advised

to compute item fit analysis using 41 quadrature points to have both computing

accuracy and efliciency.

Finally, although the method takes an asymptotic approach, it works extremely

well even for the sample size of 1000 and the test of item fit is not sensitive to the

number of examinee sample size. When the test has the sample size as large as
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5000, X2 test for item fit will tend to reject the hypothesis on most items, whereas

QBM statistic test will still provide useful information on diagnosing item fit, as is

evident in table 3.2 through table 3.4 and in the example of real data applications

in Chapter 4. The high school science and math MEAP data include large sample

of examinees, which makes it hard to diagnose whether or not the test data fit the

hypothetical 3PL model using X2» as shown in table 4.1 and table 4.2. Additional

evidence from the plots between the hypothetical IRF and the empirical IRF for each

item in the science test in Figure 4.1 through 4.5 show that the results from Q‘DM

analysis provide reliable information, which agree with the results obtained from the

graphic approach. One can conclude from the real data applications that the item

fit QbM diagnosing test is able to provide more helpful information on assessing the

model-data fit.

In a short, the reformulation of the Q)», seems not correct on the conservative

type I error rates when item parameters are data-based estimates. However, the

reformulation does provide a convenient theoretical framework for studying item fit

based on pseudocounts.
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