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Abstract

INTERACTIVE GROUND WATER (IGW): THEORY AND

ILLUSTRATIVE APPLICATIONS

By

Rebekah J. Stephenson

The software package Interactive Ground Water (IGW) forms a “new paradigm for

groundwater modeling”, in that; both visually and computationally the dynamics ofthe

real world are replicated. In hopes ofbridging the bottleneck ofthe computational

requirements for a 3-D model, we exploit the 2-D version ofthe software package IGW

using the “new paradigm”. The driving algorithms and mathematical theory used in IGW

are described and coupled with visual results. In particular, the iterative flow equation

and theory used in IGW are discussed in part to validate the software capabilities and use

ofthe "new paradigm." We show results for both deterministic and stochastic

hypothetical flow and contaminant transport through examples that are considered novel

in groundwater theory. In addition, we expand on the novel examples and show dynamic

examples in which the internal boundaries of a lake and seepage zone change over time.

We also study the Monte Carlo method and give an example in which the concentration

plume is non-Gaussian due to the internal boundary of a lake that is connected to the

aquifer.
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Introduction

For the past couple of decades, groundwater researchers have tried to bridge the gap

between theory and real-world applications. A new paradigm for groundwater modeling

has been established in the software package Interactive Ground Water (IGW). This

software package eliminates some ofthe inefficiencies present in the existing "old

paradigm" for groundwater modeling that is used in most commercial software programs

available. Under the new paradigm, a groundwater modeler is able to change a

parameter, and is not forced to go through all the “pre-steps” (i.e. building, interpolating

the data, etc). Also, the results are obtained using a "parallel computing" scheme, which

can be seen at the modeler’s choice oftime step for the duration ofthe simulation. We

refer to "parallel computing" not in its usual context, but as a way of "structuring

computation -one that allows seamless data routing and dynamic integration of

groundwater flow modeling, solute transport modeling, data processing, analyses,

mapping, and visualization [Li and Liu, 2004]." This allows the groundwater modeler to

establish whether or not the set of parameter values is reasonable. Whereas, in other

software programs, the visualization is seen offline after the model has completed the

desired simulation length. “Modeling under the new paradigm continually provides and

displays results that have been intelligently processed, organized, overlaid, and displayed.

It seamlessly and dynamically merges heterogeneous geospatial data into graphical

images-integrating related data to provide a more complete view ofcomplex

interrelationships. It provides a quick connection between modeling

concepts/assumptions and their significance/implications [Li and Liu, 2004]." We use

the software package Interactive Groundwater (IGW) as a visualization and



computational tool to bridge the two worlds oftheory and real-world applications. We

also show by innovative examples the advantages ofthis efficient visual software

package in relation to representing the porous medium, contaminant transport, and

associated parameter values. In this volume, we use IGW 3 for 2D and 2.5D modeling.

In the next volume, we will explore the capabilities ofthe 3D modeling version IGW 4

[Liu, 2003]. Images in this thesis are presented in color.

To summarize, we start with the basics of subsurface flow and the underlying

algorithms used to develop the physical processes. We consider the three different

modeling domains that IGW uses for each ofthe following different models: horizontal

model (xy-domain), vertical model (xz-domain), and the profile model or 2.5 D model

(coupling ofthe Jay-domain and the xz-domain). We then solve historically famous

problems in fluid dynamics and groundwater, namely, flow beneath a triangular dam and

Toth’s solution [Toth 1962, 1963]. We address issues such as groundwater seepage and

local, intermediate, and regional flow patterns. We then extend Toth’s results by using

the results from Freeze and Witherspoon, that is, the presence ofanisotropy and

heterogeneity in flow patterns [Freeze and Witherspoon, 1966].

As the computational cost has decreased with technological improvements, numerical

modeling has become indomitable. Numerical software programs such as MODFLOW

and MODFLOW-based software packages have become readily available. Many great

works have been produced in educating both researchers and practitioners about

groundwater numerical methods. But the efficiency was and is still lagging, particularly,

with the sequential solution of first modeling the flow, and then using the flow results to

obtain the transport. Moreover, defining the set-up of a real-world physical application is



done “cell by cell”. For example, a river/lake is assigned as “river cells”. The river

cannot expand or decrease without extensive external programming. Even though the

initial numerical set-up may be representative of a region at a particular time, the

transient physical dynamics are heavily restricted.

The elastic property ofthe medium is an ever-present dynamic that is easily

represented in IGW. The physical processes ofa surface water body contracting and

expanding in an aquifer are important when modeling regions, especially in places where

the watershed basin does not have a defined discharge point (i.e. glacial trough or closed

depression). Much ofthe elasticity ofthe medium is time dependent or transient.

Examples of such processes ofgreat importance are recharge, baseflow/streamflow

interactions, and evapotranspiration. This dynamical moving-boundary transient

behavior is captured in an expanding/contracting lake region and seepage area.

As we now have an extensive history of environmental disasters with pollution and

harmful waste practices, we introduce the theory ofcontaminant transport with hopes of

using numerical techniques to remedy the historical past. We first need to detect and

protect. The detection ofplume migration is very complex due to the heterogeneity of

the medium, internal boundary conditions, and the chemical properties ofthe plume. We

present the mathematical set-up ofthe full contaminant transport differential equation,

namely the advection-diffusion equation. We then look at different properties ofthe

media and the chemical properties ofthe plume by studying the effects ofthe decay

coefficient, partitioning coefficient, and longitudinal and transversal dispersivity in a well

field. We also show the results from using a "parallel computing" scheme of obtaining

the flow field and transport at desired time steps.



We also show an example using macrodispersivity with values calculated from the

Gelhar and Axness (1983) article based on spectral representation ofthe medium. We

use derived longitudinal and transversal macrodispersion coefficients and input these

values local dispersivity values. We also introduce a heterogeneous medium to compare

with the averaged macrodispersion values. The derived input values for the

macrodispersivity are used to create an equivalent heterogeneous medium with local

longitudinal and transversal values. Then we compare and contrast the two results.

The advection-diffusion equation is rather difficult to solve because ofthe advective

(sharp-front) process that is being modeled. We compare and contrast using visual

examples the random walk method and modified method of characteristics. Random

walk provides great insight into the problem, but is discrete by nature. The discrete

nature ofthe method allows one to transfer back and forth from particles to plume

throughout a single simulation. The restrictions (i.e. spatial dimension or many release

particles) for the different methods are the driving force behind the new conceptual

modeling tool ofhierarchical modeling used in IGW.

For stochastic flow theory, we first look at the governing flow equations, but with

random components. In other words, the hydraulic conductivity is represented as a

random field. The field or stochastic process replaces the average value parameter in the

original differential equation. We show examples ofheterogeneity and the need for

stochastically representing the porous medium. We use the multiple models feature of

IGW and show the effects of different variability on a migrating plume.

Next we show a waste pond example ofa stochastically represented heterogenous

medium with vertical fractures and sand lenses. The mathematical representation of flow



in the fractures is derived from the Darcy-Weisbach equation in fluid mechanics. The

fractures are modeled using the polyline feature ofIGW.

We give an example ofthe Monte Carlo method (statistical sampling). The Monte

Carlo method was developed in the late 18005 [Zhang, 2002] and then was briefly

introduced to groundwater applications during the early 1960s by Warren and Price

(1961) and then by Shvidler (1964). But it wasn’t till the work ofFreeze (1975) that the

Monte Carlo method became popular in groundwater theory. The Monte Carlo method is

based on probability distributions of multiple realizations. We start by discussing the

exploratory data analysis used with random sampling from a heterogenous field. The

random sample ofpoints is referred to as scatterpoints in IGW. The exploratory data

analysis ofthe scatterpoints gives the usual moment statistics (i.e. median, mode, mean,

covariance, standard deviation, skewness, etc.) and other statistical charts such as the

histogram, probability distribution function, cumulative density firnction, and h-

scatterplot. We then opt to have conditional Monte Carlo simulations. Conditional

simulations are dependent on the field data and honor the data at the given locations,

unlike unconditional simulations. The scatterpoints are then used to form the

experimental semivariogram. From the variogram we obtain the range or correlation

scale, and sill (or variance). Both are used to recover the corresponding covariance

function. The covariance structure is the controlling function that relates any two points

in the domain and is used to construct equivalent realizations in the Monte Carlo

simulation. We give a thorough description ofhow to generate statistically equivalent

conditional realizations using a matrix decomposition method (Cholesky decomposition),

spectral approach, and briefly introduce the turning-bands method. And we also give the



formulas (recursive and experimental) for the post processing ofthe statistics for all the

realizations (ensemble mean, variance, etc.)

We then return to the wellfield example used to show the different contaminant

transport effects, but this time model it using stochastic parameters. We also show the

effects of a nonstationary medium (i.e. drawdown, source/sink boundaries, etc.) with

different distributions that are associated with the logarithmic hydraulic conductivity, the

head, and the concentration. We investigate the assumption that the concentration can be

represented as a Gaussian distribution.

Finally, we summarize the results for the given examples and discuss the ultimate goal

ofbridging the gap between theory and real world applications. Through classroom

applications enabled to educate students and by presenting the theory associated with the

applications, we hope to bridge the gap in research literature as well as in traditional

groundwater curricula [Li and Liu, 2004]. We also emphasize the set-up of stochastic

representation for practitioners and the advantages of introducing probability-based

results. Moreover, we give insight into problems that can be considered two-dimensional

and allow us to decrease the computational time required for a three-dimensional model.

As the ultimate goal is to achieve solutions in a timely manner, we introduce future

work being done for later versions ofIGW that greatly reduces computational time.



l A New Paradigm for Groundwater Modeling

Computational groundwater modeling is based on numerical solutions to partial

differential equations. The numerical solution is obtained for the flow and the transport

equations. But, there are drastic differences in "how" this is accomplished in the different

software packages available. The major difference between the solutions is whether the

results are found sequentially or in a parallel-fashion. A sequential process refers to first

obtaining the solution to the flow equation and then obtaining the solution to the transport

equation. The sequential process, as used in the old paradigm, causes many delays in that

the modeler cannot readily observe the results ofthe model. The interplay between the

geology, hydrology, chemistry, and management decision-making is lost in the sequential

process. A parallel process, as used in IGW, does not refer to the usual definition of

”parallel computing", but that at each time step both the flow and the transport equations

are solved. At each time step the flow and transport can be viewed, which visually

empowers the user and distinguishes IGW from other software packages. In combination

with the parallel computing, the “new paradigm” also uses an object-oriented structure.

The combination allows for the modeler to incorporate conceptual changes throughout

the modeling process and to view the results ofthe numerical solution in considerably

less time.

1.1 Beyond the “Black Box”

The new paradigm allows the user to control or steer the computation. The modeler

can choose the solver, the contaminant transport method, the cell dimensions, the time-

step, tolerances for the convergence criterion, starting head value, and virtually any input

that is applied to the underlying structure. This is powerful in that the modeler has



control ofthe data processing. IGW invites scientists and engineers to use the different

computational “blocks” to build both a proper conceptual model and numerical model.

Allowing the user to take part in the computational choices also allows the user to

understand the processing ofthe data, which is usually described as the “black box”.

IGW has defaults for each ofthe inputs above and uses these different values to solve the

model, if not provided. In addition, IGW invites the user to manage program execution

including the integrating, overlaying, and visualizing data and results.

1.2 IGW In Action

Much ofthe work presented in this paper is a testimonial to both the programming

structure ofIGW and the visualization. We show with some examples considered novel

to civil engineering, the “new paradigm” for groundwater modeling in action. We show

throughout this work the underlying equations in order to incorporate the theory behind

the software package. We do this for completeness, but also to invite the modeler to go

beyond the “black box” and to see the benefits ofunderstanding the “behind the scenes”

mathematical explanations to groundwater theory. This paper is to assist in

understanding the “new paradigm”, but also to assist in the construction of real-time

models.



2 Introduction to Ground Water Flow

The most firndamental determination in groundwater movement is the flow pattern.

Even when considering contaminant transport, the results depend on the flow model. We

begin by showing the mathematical equations that the software package Interactive

Ground Water (IGW) uses to represent the physical characteristics ofthe porous medium

and the flow pattern. We then consider applications of such equations in IGW.

In groundwater modeling, it is customary to obtain the solution to the governing flow

equation and then use the general flow pattern to obtain the solution to the transport

equation. Although we give a sequential presentation, the software package IGW

actually uses a “parallel-computing” scheme. In other words, the flow and transport are

computed, analyzed, and visualized at each time step. We begin by discussing the

theoretical background ofthe governing flow equations and the IGW implementation.

2.0 Governing Equation

For saturated groundwater flow, we combine the conservation of mass and Darcy’s

equation to obtain the following three-dimensional partial differential equation

a}; a a};
SSE:c—3x—;[Kij5x7]+n xeD (2.0-1)

where S, = specific storage [U],

I; = hydraulic head [L]

x,- = spatial coordinate [L]

K1,: hydraulic conductivity tensor [L/l']

r7 = the source/sink term [l/T].



Here and in subsequent equations we use indicial notation, with summation implied

over repeated indices. In (2.0-1) the indices 1' andj range from "one" to the number of

spatial dimensions M]. We assume that the head equation applies over the Nd

dimensional spatial domain D [Li et al., 2003]. In this volume, we refer to IGW 3 for 2D

and 2.5D modeling. In the next volume, we will explore the capabilities ofthe 3D

modeling version IGW 4 [Liu, 2003].

2.1 IGW Horizontal Model

Many groundwater flow situations are described in terms offlow patterns and

variations over a hallo-dimensional horizontal plane. This is representative for flow along

an aquifer layer. So we next average equation (2.0—1) in the vertical direction across the

aquifer depth 210p to zbm assuming that flow is mostly horizontal within the aquifer and

obtain

2, ,. z,

[p S, 27"": = fiv - (KVii)+ niiz (2.1-1)

zbot zbot

Throughout this work we often refer to the x, y, and z coordinates with repeated

indices and use x1, x2, and x3, respectively. We will reference the horizontal plane with

either the x ory coordinate, and the vertical plane with the z coordinate. Since most

engineering curricula stresses the x, y, and 2 directions in problem set-ups as does the user

interface in IGW as shown in equation (2.1-1), we occasionally write the equations using

the x, y, and z notation. On the other hand, much research is acquainted to the vector

representation and repeated indices ofthe x1, x2, and x3 directions. For the mathematical
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derivations and the general equations we use this notation and also introduce the nabla (or

del) for gradient notation.

Equation 2.1-1 is a nonlinear partial differential equation, which can be written in the

IGW depth-averaged form as follows

Stagfihflmgjw (2.1-2)

where S(h) = storage coefficient [-]

Tyfh) = transmissivity [L2/T]

w = source/sink term [L/T]

h(x,y) = vertically averaged head [L].

We present a discussion for each ofthe different terms in (2.1-2). We first discuss the

storage term. Then we will discuss the transmissivity term and also provide an example

ofanisotropy. Finally, we discuss the sources and sinks.

2.1.1 Storage Coefficient

Specific storage for a saturated aquifer is defined as the volume ofwater that a unit

volume of aquifer releases from storage under a unit decline in hydraulic head [Freeze

and Cherry, 1979]. So, for a confined aquifer, when the hydraulic head is reduced the

aquifer is compacted (i.e. the skeleton compresses the aquifer) and the water expands due

to the decrease in pressure. This dynamic is often referred to as the elasticity ofthe

medium. In an unconfined aquifer, the release from storage is the actual dewatering of

the soil pores. For the same yield as a confined aquifer, an unconfined aquifer requires

less head change over less area.
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Depending on the head, IGW uses either the specific yield (unconfined aquifer) or the

specific storage (confined aquifer), as follows:

Sy, ['1 ifh<ztop

. 2.1-3

SS (zrop " zbot )a [’I if h 2 ztop ( )

502) = {

In the modeling domain, the aquifer type may vary. So, a built-in feature ofIGW,

allows one to enter values for both the specific yield and the specific storage. IGW will

then internally decide what value to pick depending on the head in the aquifer. Default

values are used for specific storage (0.00001 m'l) and/or the specific yield (0.1), if no

value is specified.

We can also use the following equation [Freeze and Cherry, 1979] to estimate the

specific storage

SS = pg(a + nefl) (2.1-4)

where p = the density ofthe water,

g = the acceleration ofgravity,

a = the compressibility ofthe aquifer skeleton,

ne = the effective porosity, and

,8 = the compressibility ofthe water (~ 4.6 x 10'10 m2/N).

This equation represents the physical properties ofboth the fluid and the porous medium.

Many books such as Freeze and Cherry (1979) and the IGW Online Help file also give

values for the specific storage and specific yield. In general, specific yield values are

orders of magnitude higher than specific storage. We can specify the storage coefficient

at known points throughout the domain, and allow IGW to interpolate between the points.

12



Any spatial parameter (i.e. storage coefficient, etc.) can be interpolated from known data

at given locations, which is usefirl when configuring the model with actual data points.

2.1.2 Transmissivity

Mathematically, we represent the transmissivity term as three different expressions as

follows

K,- (h — 2b,, ), [L2 /T] if h < 2,0,,

Ta- ('1) = Kij(zrop — 2b.). [L2 m if h 2 2,0, (2.1-5)

0 (aquifer locally dry) if h < 2,”,

We observe that the transmissivity is dependent on the hydraulic conductivity and the

aquifer thickness. We first discuss the hydraulic conductivity, and then we discuss the

aquifer thickness.

2.1.2.1 Conductivity

We define the conductivity matrix K as follows

K K

K=|: ‘1 12]. (2.1-6)

K21 K22

Ifthe medium is isotropic, then the principal conductivities K11 = K22 are the only

nonzero components ofthe matrix. IGW defines the tensor as follows

: Kil +Kiz +Kil “K'zz
 

 

K11 2 2 008(26), (2.1-7)

K' +K' K' —K'
K22 : 112 22 _ ll 2 22 005(26), (2.1-8)

and

K12 = K21: MSIIKZG) . (2.1-9)
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Here K{1 and K'22 are defined locally and are the principal values along the preferential

directions. The parameter 6 represents the orientation of anisotropy. We label these

parameters in the upcoming IGW example of anisotropy in different zones. It is not

uncommon to discover two dominant directions of hydraulic conductivity that are at a

certain angle to each other in field studies [Kresic, 1997].

2.1.2.2 Aquifer Thickness

Besides characterizing the hydraulic conductivity, we also discuss how IGW computes

the aquifer thickness. In IGW we input the elevation ofthe surface, the top ofthe

aquifer, and the bottom ofthe aquifer. Ifthe head is less than the assigned top ofthe

aquifer, then the aquifer is considered to be an unconfined aquifer. Then the thickness

ofthe aquifer is defined to be h—zbo,. Ofien, for an unconfined aquifer the top ofthe

aquifer is assigned the same value as the surface elevation initially. For a confined

aquifer, the assigned top ofthe aquifer is less than or equal to the head in the aquifer. In

this case, the thickness ofthe aquifer is defined to be zmp-zbot.

We observe that IGW uses three different cases that apply to this equation, namely,

the unconfined aquifer, confined aquifer, and the dry region. The thickness ofthe aquifer

is defined using the type of aquifer (confined or unconfined). As this equation is solved

across the domain, IGW allows the type of aquifer to vary. In other words, IGW can

model different transitional regions that can actually change over time and space. In the

case where the aquifer type is inactive (i.e. transmissivity equals zero), it is similar to

MODFLOW and the designation of "dry cells". IGW has a default "re-wetting" scheme

that is dependent on the head around the dry area. Ifthe head rises above the aquifer plus

an additional threshold, the "dry cells" are assigned a head value that is a fraction ofthe
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threshold (re-wetted). IGW has a default setting, in which the modeler is able to change

if needed.

Iterative Solution and Starting Head

For an unconfined aquifer, the governing equation is nonlinear. Thus, the head must

be solved iteratively as well as the transnrissivity. IGW uses an iterative form of

equation (2.1-2).

Form = 0,1,2,...

 

m+1 m+1

S(hm)ahaz = i[flj(hm)§L—]+w (2.1-10)

ax, 6x]-

where m = 0, is the starting head 11". We will discuss more about the starting head later in

this section.

Outer Iteration or Water Table Iteration

IGW uses an outer iteration or water table iteration, which is controlled by the

tolerances for the transmissivity values. It allows the user to choose the maximum

number of iterations and the relative error. Iterative solutions need an initial value and

since the iteration is dependent on the head value, a starting head value must be input into

the model. Ifwe know the initial starting head, then it can be used as the initial head

value. The choice of starting head is very important, for instance, if the starting head

value is chosen to be less than the bottom ofthe aquifer, the program will crash. IGW

provides "intelligen " default values for the starting head so the aquifer is always wet

initially. Note: Ifthe solution converges, it does not depend on the starting head value. If

the aquifer is initially described as "dry cells", then the solution will not converge. For a

steady-state solution, the default value for the starting head is the top ofthe aquifer, ho =

15



2,01,. For a transient solution (the initial head values are known) the default value for the

starting head is obtained from the previous time-step.

Inner Iteration or Matrix Solver

The inner iteration is a matrix equation that IGW internally solves for the head and is

based on the finite difference scheme. IGW has many different iterative methods

available that the user may choose from such as the Jacobi method, Gauss-Seidel method,

successive over relaxation method (SOR), nonstationary SOR, ADI, conjugate gradient,

algebraic multigrid (AMG), generalized minimum residual, etc. As seen before in the

transmissivity equation (2.1-5), there is three different classifications ofthe aquifer type

that are dependent on the resulting head values. This allows IGW to model extremely

complex situations with multiple aquifer types in a domain. IGW can model unconfined

and confined aquifers, transition regions and partially unconfined aquifers over space and

over time by this iterative scheme. The spatial parameters (i.e. conductivity, top, bottom,

surface elevation, etc.) can be interpolated from known data at given locations, which is

usefirl when configuring the model with actual data points.

2.1.2.3 Illustration: IGW Anisotropy

We now give an example of locally defined conductivity and anisotropy as modeled in

IGW. Anisotropy in the horizontal extent arises in groundwater modeling in a number of

places. For example, anisotropy is present when considering riverbeds and fi'actured

media. For the following two zone model, we entered a value of 50 m/day for K ’1 1, a

value of2 for the anisotropy ratio K ’1 1/K ’22, and 0 =30 degrees (see Figure 2.1). The

overall conductivity was set equal to 50 m/day. We set constant-head boundaries of
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0 meters and 5 meters on the left and right hand sides of the model, respectively, and no-

flow boundaries at the top and bottom.

l
l
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’4'--[ y .
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#
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336.0 504.0 
Steady Flow. Time Elapsed = 0 days (0.00 years)

Figure 2.1 We observe a change of flow direction with anisotropy.

2.1.3 Sources and Sinks

IGW has very strong capabilities in modeling sources/sinks, in particular, the tracking

ofinflow and outflow to the source/sink. In this section, we first present the different

sources and sinks represented as non-head-dependent fluxes and then we address the

head-dependent fluxes. The explicit fluxes or non-head-dependent fluxes, such as

pumping and recharge, are assigned flux values. The head-dependent fluxes are rivers,

lakes, wetlands, drains, surface seepage, and evapotranspiration. We consider these to be
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implicit fluxes in that the values are calculated based on the location of the hydraulic

head.

2.1.3.1 Explicit Flux: Non- Head-dependent

We now present the sources/sinks that are assigned explicit values and are not

dependent on the head.

Injection and Pumping Wells

IGW has the capability of modeling injection/pumping wells. The physical quantities

associated with a well are the magnitude of the pumping/injecting rate Qp, and the

location of the well. IGW uses a negative rate for pumping and a positive rate for

injecting. We use the Dirac delta function 5 , which has dimensions [l/L] to represent a

well as follows

W= Qp(t)5(x-xw)5(y-yw) (2.1-11)

Note that the location of the well is at (xw, yw). So, physically speaking, the well is on

when the Dirac delta frmction is O, which corresponds to the location of the well, and is

017 at any other location. Hence, IGW represents injection and pumping wells as point

sources or sinks. IGW allows the pumping/injecting rate Q, to be a general function of

time, periodic, or random (stochastic process over time).

Well screen in [GW

For the 2D model, the results do not depend on the well screen as long as the screen is

in the aquifer (i.e. located between 2,0,, and zbm). IGW allows for the screen interval b to

change based on the modeler’s input. The horizontal model uses a fully screened well, b

= 2,0,, - zbw. In the profile model of the 2.5 D solution, the default setting is the middle
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one-third of the aquifer. We will discuss this in more detail in Section 2.3 IGW Profile

Model-2V2 D Model.
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Figure 2.2 Pumping well located at (494.45, 361.43) with pumping rate 700 GPM.

Recharge

Recharge is the rate at which water infiltrates to the aquifer; it has units [L/T]. As

mentioned before, IGW has excellent capabilities in representing sources/sinks. Amongst

the other sources/sinks, the recharge parameter shows the versatility of IGW. Recharge

can be applied over any user-defined polygon. IGW requires the user to provide the

recharge values based on the user’s discretion. Recharge can be defined as a constant

value, random function over a polygon, interpolated scatterpoint data, and time-

dependently (transient description) depending on the data available. IGW allows the
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modeler to define the recharge as deterministic, piecewise, time-dependent, or as a

stochastic process. In addition, the user can also use the recharge to calibrate the model

and/or interpolate to known recharge scatterpoints in a specific polygon. The

mathematical representation for the recharge is

w = 6‘ (2.1-12)

We give an example of a steady-state solution for a large domain. In this case, the

domain size is 792,000 feet x 594,000 feet, which is approximately 150 miles long by

102 miles wide. The constant head boundaries on the east and west sides are set to —5

meters. The recharge rate is set to 2 in/year and the overall conductivity in the model is

set to 80 m/day. We obtain the following results (see Figure 2.3)
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Figure 2.3 Recharge zone assigned constant value of 2 in/yr (artificial recharge

value). (a) Shows conceptually the recharge basin. (b) Shows the horizontal model

set-up, K=60 m/day, East and West River with constant head values of-5 111.

2.1.3.2 Implicit Fluxes: Head-dependent Flux

The head-dependent flux arises for many of the different sources/sinks. We begin by

generally defining the head-dependent flux, and then we give a more specific definition

for each case. The head-dependent flux w is the product of the leakance L and the

difference between the head ho in the source and the head h immediately below or

adjacent to the source/sink.

w= L(h0 —h). (2.1.13)
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We define the leakance L to be

=— (2.1-14)

where K' is the vertical conductivity (or conductance) of the interface separating the

aquifer from the source, and d' is the thickness of the interface. When entering the

leakance in IGW, it should reflect how well the aquifer communicates or is connected

with the surface water body. Sometimes the surface water body does not have any effect

on the aquifer, and then there are cases where the surface water body is the main source.

The leakance can be constant, spatially dependent, and/or time-dependent. IGW allows

the user to enter both K ’ and d' separately, the ratio K'/ d ' , or only K' (d' is then

calculated by IGW).

We explore different cases in which the head-dependent flux is applied. IGW models

rivers, lakes, wetlands, drains, and surface seepage by the head-dependent flux.

Rivers and Lakes

IGW considers rivers and lakes to be surface water bodies. IGW uses the head in the

aquifer h versus the head in the surface water body ha and Darcy's Law across the

sediment interface for the head-dependent sources/sinks. In the following cases, we

explicitly write the leakance asK'/ d'. IGW has the following cases for sources/sinks:

Case 1: Stationg Surface Water Bodies

If the head in the aquifer is greater than the river bottom elevation Re (see Figure 2.4-

Figure 2.8) then we obtain

235% _h) ifthe (2.1-15)
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If the head in the aquifer is less than the river bottom elevation (see Figure 2.9 and

Figure 2.10), then we obtain

w=_K_(h0—Re) ifh<Re (2.1-16)

d'(X)

Notice that this equation is simply gravitational flow using Darcy's Law across the

medium.

In equation (2.1-15) if h > ho, then we will obtain a negative value. This represents

that the aquifer (see Figure 2.4 and Figure 2.5) is losing water to the surface water body

and thus, the surface water body is a sink. When the surface water body penetrates the

aquifer (see Figure 2.4, Figure 2.5, and Figure 2.7), then IGW usesK' as the vertical

conductivity of the sediments in the bottom ofthe source/sink, and d' is the thickness of

the sediments. If the surface water body does not penetrate the aquifer (see Figure 2.6

and Figure 2.8), then the user needs to provide the harmonic average ofthe conductivity

for the riverbed sediments and the medium (see Figure 2.6). We give the harmonic

average as follows:

, d'
K =————— (2.1-17)

d1 (12
_+___.

K1 K2

where d ' = (11 + d2 and the subscripts represent the riverbed sediments and the separating

medium, respectively. And in the case where d' varies (i.e. top/bottom of the aquifer

varies), IGW calculates the variable thickness (see Figure 2.8 and Figure 2.10).
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Figure 2.8 Confined variable thickness losing aquifer.
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Figure 2.9 Disconnected surface water body.

Confined with variable thickness

Profile Model 112

 

Figure 2.10 Disconnected surface water body.

Case 2: "Expanding" or "Contracting" Surface Water Bodies

Ifthe surface water body in the aquifer is time-dependent and the aquifer thickness

varies, then we obtain

w(x,t) = #02033) — h(x,t)) if h 2 Re (2.1-18)

d (x,t)

and

K' .
w(x,t)='—(h0(x,t)-Re) rfh <Re (2.1-19)

d (x)

for x e no) a {x : hort) 2 zsuyaceki.
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We observe that the head in the surface water body can vary in time, which creates a

moving boundary.

Special Modeling Features ofIGW

IGW has a special feature called scatterpoints that are assigned different elevations of

the river bottom. IGW also has a toggle button labeled "same as the surface" that assigns

the topographical surface to be used for the river bed elevations (assuming the surface

topography varies). IGW has the ability to model this complex dynamic by using the

toggle button labeled “transient” for the river/lake. This dynamic is very difficult to

represent, in that, we do not know the head until after seeing the solution. See Chapter 3

Section 3 Transient Lake Dynamics with a Moving Boundary for an example.

Drains

Drains are used to represent many different types of sinks i.e. wetlands, surface

seepage, and French drains. Drains are used to lower the water table and are used to

represent intermittent rivers, ephemeral streams, or surface water bodies with low

amounts ofwater (i.e. lakes with low water levels can be included). We have the

following three cases:

Else 1: Fixed Depth

If the head in the aquifer is less than or equal to the elevation head of the drain, then

we obtain

w = 0 if h < zdmm (2.1-19)

where dey'n is the elevation ofthe drain. Physically, this shows that no water is leaving

through the drain if the head is lower than the drain. We show a cross-section of a

rectangular curtain drain (see Figure 2.11).
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If the head in the aquifer is greater than the elevation head ofthe drain (see Figure

2.12), then we obtain

K' ,

W= 7, (h - zdrain) If h > 2.1mm (2.1—20)

where K'/ d' is the leakance defined by the separating layer of sediments. For a French

drain, the leakance represents how permeable the bedding and backfill would be in the

trench.

Equation (2.1-20) is the mathematical description for water leaving the aquifer

through the drain. We show an example of this below, where the drain elevation was set

to -2 m (see Figure 2.12).

 

 

Figure 2.11 Illustration of drain elevation placed above the water table. This figure

shows that no water is leaving the aquifer through the drain. There is no impact on

the flow system.
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Figure 2.12 Profile model of French drain (drain elevation = -2 m). This figure

shows conceptually the water leaving the aquifer and the lowering of the water

table.

ii

I

lil

504.0 
Figure 2.13 Shows the horizontal model set-up with the regional flow pattern

towards the drain.

Case 3: Variable Dgpth—Segps and Wetlands

Surface seepage and wetlands occur in locations that are not necessarily well defined.

It is often assumed that a wetland has a small depth so that the head in the wetland is

negligible.
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For surface seepage and wetlands, the head in the aquifer can be time-dependent. We

represent this process as follows

L
W = dr(x) (h(X,t) _ zdrain) if h > zdfflifl

, (2.1-20)

0 If h S zdrain

for x e on) .=_ {x : h(t) 2 zd,a,.,,(x)}.

The area extent is defined as the region that could potentially contain surface seepage or

wetlands. IGW automatically defines the seeps area or potentially wet area in this region.

Ifwe are modeling surface seepage, then we assign zdmm to the same as top elevation

and the surface becomes the drain and acts similar to the French drain (see Figure 2.13).

For wetlands, we assign 24mm to be a certain water level in the wetland (see Figure 2.14).

If the wetland is gaining or losing water from the aquifer, then the head is a function of

time and cannot be assumed to be constant. The leakance of the wetland is similar to the

leakance of surface water bodies, in that we consider the thickness of the wetland

sediments and conductivity through the sediments or separating medium. In the case of a

drain, IGW relies on the user to provide the proper value for the leakance.

We observe that the head can vary in time, which creates a moving boundary. Also

the sediment thickness may vary spatially. This dynamic is very difficult to represent, in

that, we do not know the head until after seeing the solution. In the case where we do not

know the boundary for the “drain”, we define a large region (sometimes the whole

domain) as a drain with the drain elevation set equal to the surface elevation. See

Chapter 3 Section 5: Transient Seepage Dynamics with a Moving Boundary for an

example.
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Figure 2.14 Profile model of wetland region delineated by using the drain feature in

IGW. We set the drain elevation equal to the surface elevation. This figure shows

conceptually the water leaving the aquifer through the wetland.

 
Figure 2.15 Shows the horizontal model set-up with the regional flow pattern

towards the wetland.

Evapotranspiration

(This feature is part ofIGW 4 and throughout this work we use IGW 3.)
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Evapotranspiration occurs when the water table goes through the root system ofplants.

IGW models this by the following

0 Ifh<zmin

W: E fl“;- r'z - <h<z (2.1-21)
t mrn max

Zmax-zmin

Et lfh>zmax

where E, is the evapotranspiration constant, h is the head in the aquifer, and 2mm is the

bottom of the root zone, and 2m is the top of the root zone.

 

rm
 

z(mirl)

 

Figure 2.16 Illustration of evapotranspiration zones.

We can also model evaporation by using a negative recharge value. But the above

evapotranspiration model is more physically-based because the system reflects the

dependence on the head.

2.1.4 Boundary Conditions

IGW allows no-flow (or flux), prescribed-head, and head-dependent boundary

conditions (also known as first, second, and third type boundary conditions).
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2.1.4.1 Mathematical Descriptions for IGW Boundary Conditions

The IGW default boundary condition is no-flow. We first look at the default set-up of

IGW and then describe the other boundary conditions later.

1. No-flow boundary condition.

The no-flow default boundary condition is given as

22.
an

0 (2.1-22)

where n is the normal vector to the direction of flow.

We first look at the default set-up ofIGW. When the user defines a polygon as the

modeling domain, IGW assigns a default boundary condition ofno-flow (see

Figure 2.17). The no-flow boundary condition is a flux condition and can be

represented mathematically as

- T95 = 0, (2.1-23)
an

where T is the transmissivity. In Figure 2.17 we observe that the no-flow boundary

and the equipotentials which are orthogonal at the boundary.
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Figure 2.17 No-fiow default boundary set for modeling domain in IGW.

Next, we show how different boundaries can be formed using the sources/sinks and

include the polyline feature. Even though the default boundary of the domain is no-flow,

IGW provides user-defined sources/sinks that can be imposed as boundaries (see Figure

2.18). This allows the user to define a regional flow pattern, and allows the user to

experiment with different boundary conditions in order to best fit the actual flow data.

The next type ofboundary condition that we discuss is the flux boundary condition.

2. Flux boundary condition.

The general form for the flux boundary condition is given as follows

:1? = my) (2.1—24)
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3.

where y is a constant rate ofthe inflow/outflow of the boundary. The no—flow

boundary condition is a special case of the flux boundary condition. This flux

condition can be implemented through a recharge zone along the boundary in

IGW. IGW also uses this boundary condition for recharge zones in the following

form

6h

—T——=c x,t -b 2.1-25an ( ) ( )

where e is the recharge (infiltration) rate [L/T], b is the width ofthe zone (see

Figure 2.18).

Mixed boundary condition.

The mixed boundary condition is the linear combination of the head-dependent

and the flux boundary condition.

ah

all 73 a 7 ( )

where a , fl , and 7 are constants.

IGW uses the following form of the general equation

6h K'
_ 725-T _ 71,0“) _ h) (2.1-27)

where K' / d' is defined as the leakance (see Section 2.1.3), b is the width of the

zone, and ho is the specified head or stage. The mixed boundary condition can be

implemented in IGW as a head-dependent flux zone along the boundary.

Prescribed-head boundary condition.

The general form assigns the head to a constant value

h = 7(x,t) (2.1-28)
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where y is a firnction of space and time. The prescribed-head boundary condition

can be implemented in IGW along a polyline.

IGW uses the following form of the general equation

h = ho (x,t) (2.1-29)

where ho is a specified head value.

The initial constant-head boundary can be used when adding stress far from the

boundary in the modeling domain. By using scattered data to delineate the head at the

boundary before adding internal stress such as pumping, the impact can be modeled so

the initial head is correct on the boundary. As a result, the flow pattern is different

internally.

We give an example where the different boundary conditions are placed around the

perimeter of the modeling domain (see Figure 2.18).
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Figure 2.18 Boundary conditions by sources and sinks and d represents the width

of the aquifer (i.e. for this case 40 meters (the default aquifer thickness».

We give the following table ofhow the boundary condition was formed (see

Table 2.1).

Condition IGW

stage -

leakance K'/d' =10

 

Table 2.1. Table of boundary conditions and IGW representations.
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2.2 IGW Vertical Model

The IGW 2D version model can be used to model certain vertical dynamics. In this

model set-up we are only interested in the results in the xz plane. This allows us to obtain

results in the vertical direction without creating a full three-dimensional model.

The governing equation for the IGW Vertical Model is equation (2.1-2), except we

are considering the x1x2 plane to represent the xz-plane, and b represents the thickness of

the vertical slice in which we are studying. We obtain the following governing equation

for a 2D vertical model

s. .,,6_h-_a_[K...b_a@_].w (22.1)
t 6x

where SS =specific storage[1/L],

K[j = conductivity tensor [L/T],

w = source/sink term [UT], and

b = 2,0 p - zbm, thickness of vertical slice [L].

Notice that thickness of the vertical slice is considered to be 2,0p-zbo,. In order for the

2D version model to use the same solution process as the horizontal model, we have to

make the vertical model set-up match the existing horizontal model set-up. The

horizontal model set-up has the following key components (see Figure 2.19):

A. The xy-plane is the modeling domain, we refer to this as the "model space".

E. The attached vertically averaged subsurface and associated parameters.

37



 

    

 

, r )VERTICALLY

,5 AVERAGED

CONFINE 0

AQUIFER Z . ,, *

x ‘ ‘ ‘ - .. " m0?)

Figure 2.19 Confined aquifer in the horizontal model corresponds with the vertical

model set-up.

In order to show that the vertical model has an equivalent set-up, we must show

equivalent components to A and B listed above. For A, we simply change the y-

coordinate to the z-coordinate. Just as the horizontal model has boundary conditions on

all sides ofthe model, the vertical model requires similar boundary conditions. The key

difference is the top boundary condition, which can be very complex. This boundary

condition must be added to form an equivalent domain (see Figure 2.20).

For B, we no longer have a vertically average subsurface when considering the y-

direction. So, we must provide an equivalent relation for the y-direction using the

existing horizontal aquifer parameters. The equivalent relation is that we can create a

uniform panel that will essentially "freeze" the y-direction, since we are only interested in

the xz dynamics. The uniform panel is created by using the "confined aquifer" settings

for the horizontal model, which gives us an equivalent relation to B. We create a uniform

"confined aquifer" in the y—direction by using the default IGW settings (if needed, the

user may change these). For a confined aquifer, we use the IGW default value for the
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specific storage 0.00001 m'l. For the aquifer thickness, the IGW default setting is the top

of aquifer, zmp, is set to —10 meters, and the bottom of the aquifer, zbm, is set to —50

meters.

But, in order to make sure that the numerical program always uses the "confined

aquifer" settings for the y-direction, 2,0,, must be assigned a value less than the minimum

water table elevation. The user must check that the water table elevation (known by the

user) is greater than the top of aquifer, zwp, which has a default of -1 0m. If the water

table elevation is less than 2,0,” the program thinks it is an "unconfined aquifer" and the

uniformity in the y—direction will not exist.

For example, in Figure 2.20 we show a water table that has a minimum elevation of 15

meters. So, this implies that z(top) must be set less than 15 meters.
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Figure 2.20 The vertical model set-up shows the unconfined aquifer from the

horizontal model “flipped” vertically to create a uniform panel. We then can model

both unconfined and confined aquifers in the vertical model explicitly. The vertical

dynamics will only be in the xz-plane.

2.2.1 Boundary Conditions

The 2D vertical model in IGW can have several different types ofboundary

conditions. The sides of the model and the bottom ofthe model can have all three types
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ofboundary conditions: constant-head, flux (no-flow), or mixed boundary conditions.

Refer to the horizontal model boundary conditions for example boundary conditions.

Similarly, the boundary condition(s) along the top of the model can vary. We consider

the confined aquifer and unconfined aquifer scenarios. Along the top of the model, we

can have a fixed variable boundary condition (unconfined aquifer) or we can specify

different conductivity zones and/or a flux boundary condition (confined aquifer). We

show illustrations for the confined and unconfined aquifers below in Figure 2.21 and

Figure 2.22. We refer the reader to Chapter 3: Illustrative Applications of Groundwater

Theory Sections 3.1 and 3.2.

In the unconfined case, the water table boundary condition differs fiom the boundary

conditions discussed previously. The water table boundary condition is as follows

h = Zwatertable (x) (2-2'2)

The Toth solution recreated in Chapter 3 Section 3.2 gives an example of a fimction

used for zwatertable(x) -
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Figure 2.21 Confined aquifer set-up for the vertical model showing different

boundary conditions and sources/sinks.
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Figure 2.22 Unconfined aquifer set-up for the vertical model showing different

boundary conditions and sources/sinks.

 

' For the leakance zone, one may use a prescribed head (as shown in the unconfined case) or may use a

mixed boundary condition (as shown in the confined case). Also one can just assign a different

conductivity value for that zone.
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2.2.2 Sources/Sinks

For the vertical model, the sources/sinks term is represented in the dynamics ofthe

flow under the water table. The sources/sinks are similar to the horizontal model, but

their application may differ.

2.2.2.1 Implicit Flux: Head-dependent

The head-dependent sources/sinks (i.e. river/lakes, drains, and evapotranspiration) can

be used in the vertical model as drains, for example. We show examples ofthe drains in

Figure 2.21 and

Figure 2.22. We also show an example of a leakance zone that can be modeled using

either a prescribed head, mixed boundary condition, or by using a different conductivity.

2.2.2.2 Explicit Flux: Non- Head-dependent

The non— head-dependent sources/sinks (i.e. recharge, pumping/injection wells) can

also be used in the vertical model.

For example, we can model horizontal wells by placing a well in the vertical section.

A real-world application ofhorizontal wells is for landfill analysis (see Figure 2.21 and

Figure 2.22). Mathematically, we have the following expression for the horizontal well

w = Qp6((x — xw)(z — zw)) (2.2-3)

where (xw, 2,.) is the location ofthe well, Qp is the magnitude ofthe pumping/injecting

well, and 6' is the Dirac delta function. The placement ofthe well needs to be located

sufficiently below the water table, so that the effect ofpumping/injecting will not impact

the water table (unconfined aquifer) or reduce the head substantially (confined aquifer).

The well operates similarly to the vertical well presented in the horizontal mode]

sources/sinks.
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2.2.3 Water Table Generation and Boundary Conditions

We use the IGW polyline feature to create the appropriate water table for the

unconfined aquifer. The modeling domain has a default no-flow boundary. In order to

change the default boundary conditions, different sources/sinks or the polyline feature

may be used to create the desired condition.

To summarize, the IGW vertical model is extremely valuable in capturing the vertical

dynamics that are not available in the horizontal model. The vertical model is limited, in

that; IGW cannot be used to predict free-surface. We just assume that we know the

water table for this case. But, we consider the free surface problem in the IGW Profile-

2‘/2 D Model.

2.3 IGW Profile Model-2V2 D Model

In order to provide results that, in general, can give some insight into a three-

dimensional model, we must be able to model a free surface as well as capture cross-flow

through the vertical model discussed above. Without forming a complete three-

dimensional model, IGW is able to give results for what is considered 2% D. A "2% D"

model obtains information for the cross-flow through the vertical model space from the

horizontal model, which uses a vertical average. Since the vertical dynamics are not

solved for explicitly, the model results are considered to be "2% D". IGW automatically

updates the vertical model and the results are seen in the "IGW Profile Model". In other

words, the IGW Profile Model internally couples the vertical model with the horizontal

model.

The user starts by developing a horizontal model and then slices the model to obtain

the desired cross-sectional vertical model. The water table in the vertical model is



automatically updated from the horizontal model at each time step. We are capable of

viewing the results in the IGW Profile Model at each time step.

The IGW Profile Model is different from the traditional MODFLOW profile model, in

that it does not assume that “all flow occurs parallel to and in the plane ofthe profile

[Anderson and Woessner, 1992].”

2.3.1 Governing Equation

We have the same two-dimensional horizontal governing equation (2.1-2). The profile

model (vertical model with cross-flow) is developed using the two-dimensional vertical

governing equation and boundary conditions. However, the cross-section does not have

to be aligned with the principal axes and the profile model allows for a variable water

table, unlike the vertical model.

The governing equation for the profile model is as follows:

5—62 =1 Ki]- -b—ah— + w (2.3-1)
at 561' 661'

where S = Syb specific storage coefficient [-] if the aquifer is confined,

K,-- = conductivity tensor [L/T],

w = is the net flux source/sink term and cross-flow [L/T],

b = thickness Of vertical slice (also referred to as the user-defined thickness DB in

this section) [L],

{I = direction along polyline [L], and

4‘2 = vertical direction [L].

Notice that the storage coefficient does not have the option ofbeing the "specific

yield". The profile model is constructed using the same approach as the vertical model,
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that is, creating a uniform panel (see Section 2.2). The key difference is that the water

table information comes directly fiom the horizontal model. In the horizontal model, the

aquifer type is determined and the specific storage or specific yield is chosen. The

storage coefficient is then part of the water table solution and automatically updated into

the profile model.

2.3.2 Sources/Sinks

The sources/sinks used in the profile model are directly related to the sources/sinks in

the horizontal model. IGW uses the same mathematical expressions as presented in

Section 2.1 Horizontal Model: Sources/Sinks section. Additionally, in the profile model,

IGW uses the source/sink term as part Of the mass balance. Since it is coupled with the

horizontal model, the source/sink term represents the inflows and outflows into the slice.

It is assumed that the inflow/outflow is uniform across the depth, since the horizontal

model uses a depth-averaged governing equation (2.1-2). IGW has a built-in feature,

which bounds the profile on each side. The user has the option ofdefining the thickness

ofthis slice DB, which is also used as b in the vertical and profile models (see Figure

2.23).
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Figure 2.23 Profile with IGW built-in bounds. This figure shows conceptually the

mass balance obtained from the cross-flow in the IGW profile model.

Traditional profile modeling only allows for variation in the profile plane. But as

mentioned earlier, the IGW Profile Model has an associated thickness and allows for flow

to not be aligned with the cross-section. Referring to Figure 2.23, IGW calculates the

cross-flow of the vertical slice. Since the flow is going into and perhaps, out of, the

vertical slice, it acts as a source or sink. The expression of the cross-flow source/sink is

the following

  who ”0 £ -
=K-}/hDIE/2 +K%DB/2 [T] (2'32)

where Ki1 is the conductivity at the squares in Figure 2.24, and h-l and h+1 are obtained

5

from the horizontal model. The head ho is the head in the profile model, which also

comes from the horizontal model.
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Figure 2.24 Two-dimensional horizontal model with profile model of the cross-flow

in the IGW Profile Model-2.5D Model. We observe the coupling between the IGW

horizontal model and vertical model in this figure.

We show two wells (singularities) in the above example. The flux into the profile

model about the well is not represented accurately by the lateral flux because the physical

dynamics ofthe well are considered "radial". Although the flux quantities may need

adjusting, the model still provides insight into the well dynamics.

2.3.3 Boundary Conditions

In addition to equation (2.3-1), we need boundary conditions for the profile model,

which is similar to the vertical model (see Figure 2.25). The left and right boundary

conditions are defined by IGW, but depend on the profile chosen. If the profile extends
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to the nO-flow default boundary, then the boundary is no-flow. If the right or left

boundary does not extend to the no-flow boundary, then it is considered a constant-head

boundary. The constant-head boundary is an approximation because vertical variability

cannot be determined fiom the depth-averaged horizontal model. The top boundary is

the water table obtained from the horizontal model if the aquifer is unconfined. If the

aquifer is confined, the top boundary is the top of the aquifer. The bottom boundary is

no-flow by default.

The boundary conditions including the water table itself are Obtained from the

horizontal model. The horizontal model automatically updates the profile model with

information pertaining to the water table. This, again, is done to model a free surface and

cross-flow in a vertical model.

No—Flow and Flux

The top boundary of the aquifer can be nO-flow if the aquifer is confined (see the right

side ofFigure 2.25). The mathematical expression for the nO-flow boundary condition is

xfl=o
On

We also see that the left side boundary condition is the default no-flow boundary

condition.

Constant-Head

In Figure 2.25, we observe that the water table and the right side ofthe profile are

constant-head (prescribed head) boundaries. The prescribed-head is used in the profile

model for the top boundary condition (water table) in the unconfined portion and has the

following mathematical representation

h : zwatertable (x) '
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The constant head boundary to the right has the following mathematical representation

h = 7

where 7 is the averaged value from the horizontal model. On the left hand side ofFigure

2.25, we see the constant-head zone obtained from the horizontal model. When placing a

constant-head boundary condition inside the no-flow default boundary, the boundary

condition for the model is considered to be the constant-head boundary condition and

would have the same mathematical expression as displayed above.

Mixed or Head-dependent

Similar to the vertical model, the leakance from a surface water body is considered to

be a mixed boundary condition (see Figure 2.25). The mixed boundary condition has the

following mathematical expression

ah K'
—K-—=—h—ha d’(0 )

Head-dependent or Ilixed
Wenondile from xy-model
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Constant head from

polyline (internal boundary)

Figure 2.25 Boundary conditions for the profile model corresponding to Figure

2.24.
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We previously discussed the boundary conditions in the horizontal model and the

vertical model. We now show the mathematical expressions for the boundary conditions

for the profile model. In Figure 2.25, we Observe that the riverbed is now aligned with

both principle axes. Since it now depends on two different directions because of the

coupling of the horizontal and vertical models, we use the head-dependent flux in both

directions. For example, the bottom ofthe riverbed would have the following boundary

condition

6h K'
-K _=_

262 d'

(h0 — h). (2.3.3)

The sides of the riverbed would have the following boundary conditions

6h K'

-K —=-—h -h. 2.3-4

Recall that K'/d' is the leakance defined for the riverbed sediments.

Note: The value for the leakance is not the same for the horizontal and vertical models.

In the horizontal model the leakance value will be less than in the profile model. IGW

has a correction factor that is used in the profile file to account for this difference. It

increases the leakance value to the corresponding value in the profile model.

2.3.4 Advantages and Limitations

In a sense, we have created another dimension by considering the inflows and

outflows of the slice. But there are some limitations in this approach. Previously, we

have mentioned that the vertical extent cannot include variability because it is Obtained

from the horizontal mode], which uses a depth-averaged equation. Moreover, the

boundary conditions are approximate and may be different from no-flow or constant-head

conditions. Finally, if there are singularities (i.e. wells) in the profile, then the solution
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will be inaccurate about the singularity. The solution is inaccurate because the model

uses the depth averaged Darcy's Law, which assumes uniform flow locally. The actual

physical dynamics close to the actual pumping ofthe well are not uniform and this

creates a discrepancy. Even though the solution is inaccurate, it still gives insight into the

problem.

The advantage of the profile model is that it gives a relative intuition into the vertical

dynamics while retaining the horizontal dynamics. The coupled horizontal and vertical

model domains form a pseudo three-dimensional model, but with far less computation

time than a three-dimensional model. In essence, we are exploiting the two-dimensional

modeling to accommodate the timely needs of solving groundwater problems.

2.4 Radially Symmetric Flow

The IGW 2D version can be used to model certain radially symmetric flow for either

confined or unconfined with a known water table (fiee surface is known). We are

capable ofmodeling this because the 3D governing equation reduces to a 2D equation

using radial symmetry. The model is in the rz-plane and we take advantage Ofthe radial

symmetry. We Obtain the pumping effect by defining the well screen region as a recharge

zone with a negative rate.

Before presenting the different results, we first show the mathematical derivation to

justify the use of the vertical model as the domain for the radially symmetric problem.

2.4.1 Mathematical Set-up.

We start with the governing flow equation written in the following form

v -(KVh) = S, % (2.4-1)
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where h =f(6, z, r). Additionally, we use boundary conditions to implement the

pumping.

2.4.1.1 Boundary Conditions

The flux boundary condition at the well casing is

ah Q

° 6: =#— for Zscreen _bot S Zw S zscreen _top (2°4'2)

W screen

where both rw and 2,, are within the cylindrical domain ofthe well (see Figure 2.26 and

Figure 2.27). Let bsmen represent the well screen thickness (see Figure 2.27).

The boundary condition at the influence radius (outer radius) is considered to be no-

flow (see Figure 2.26 and Figure 2.27) and has the following mathematical representation

 

K@- = O (2.4-3)

6r

NO-FLOW

Influence

1‘

Well Casing

FluBC I

PLANVIEW

Figure 2.26 Plan view of well section with boundary conditions.
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The top boundary condition for the well is similar to the vertical and profile model. If the

aquifer is confined, then we have a nO-flow condition for the top of aquifer. The

mathematical expression for this is

K -2 = 0 (2.4.4)

6n

If the aquifer is unconfined, then a prescribed-head boundary condition is used for the

fixed water table. The prescribed-head boundary condition has the following

mathematical expression

h = Zwatertable (r) (2-4'5)

2.4.1.2 Derivation of the 2D Radial Symmetric Equation

Expanding equation (2.4-1) with the divergence operator we Obtain the equation in

cylindrical coordinates

may .61:1 6 1 6

:‘5;[’(KVh)ri+;3§iKVhia+ 62 s at
(2.4-6)

We assume that the problem is radially symmetrical, which gives K=K(r,z) and h=h(r,z).

We next average about the 6 -direction or the circumference ofthe radial problem and

obtain

B-r 0-r

[ [lib-(Kw), ]+m+ w]d6l = [ Size (2.4-7)

0 r 6r 6z 0 6t

We set 61 and 02 equal to 0 and 6 - r , respectively, and then average over the entire

circumference of 1ength6 - r. So then (2.4-7) becomes

6r 6r 6r 62 62 6r
(2.4-8)

6 6h 6h

+—K 6r—=S —6r

62 ”z 62 Sat
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Next we let T; = Ki- b, where b = 6r, and Obtain

gaggrgéggéagssga (2.4-9)

We can simplify the equation further, in that, we only assume that the conductivity varies

in layers. In other words, we assume that the aquifer is isotropic in the horizontal

direction and that the principal axes are aligned with the flow direction. So, the off-

diagonal terms in the transmissivity tensor are zero, and so we obtain

grflg+érzg=gga (2.4-10)

Equation (2.4-10) is in the same form as that used in the horizontal model and vertical

model for the xz-plane, which justifies our choice of using a vertical model. There is a

slight variation in the physical set-up of this problem in that the “thickness”, b, is defined

by an are which increases with distance r from the well (see Figure 2.27). Thus, the

transmissivity increases with r, when r is not fixed. To account for this increase in

transmissivity, we use linear regression with scatterpoints to Obtain the following values

in the model. We show multiple layers in the depiction below to emphasize that the user

can model multiple scenarios. For example, the user can place two well screens in

different aquifer systems or layers.
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Figure 2.27 Depiction of the radial well problem set-up using IGW 2D model. We

define the thickness of the aquifer b as the arc length for a given radius location.

We also give sample boundary conditions
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3 Illustrative Applications of Groundwater Theory

We now introduce illustrative applications that directly apply to the theory discussed

in Chapter 2 for groundwater flow. The illustrative applications used throughout this

paper are to show both how the "new paradigm" applies to the IGW simulations and also

to provide guidance in defining a groundwater model. The illustrative applications for

groundwater flow show both the innovative structure ofIGW and they also validate the

software solutions by solving routine problems in groundwater (i.e. seepage beneath a

dam and Toth's solution for regional and localized flow).

3.1 Groundwater Flow beneath a Dam

We utilize the strong numerical component ofIGW to solve a very familiar problem in

fluid mechanics, namely, flow beneath a dam. This problem is notorious in engineering

problems in that it is important for the following reasons [Manna et al., 2003]:

(a) Determination ofrate of settlement of a saturated compressible soil layer.

(b) Calculation of seepage through the body ofdams and stability of slopes.

(c) Calculation of uplift pressures under hydraulic structure and their safety against

piping.

(d) Groundwater flow towards wells and drainage of soil.

We first consider the flow beneath the dam and then we add a sheetpile. Then, we

compare the seepage rate for each case. Definition sketches are provided for each case

(see Figure 3.1 and Figure 3.2). We provide a brief history ofthe type ofdam chosen to

validate the dimensions used in this model.
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Brief History of Triangular Dams

The design chosen predates the 1936 arch dams, and is representative ofdams in the

early 1900’s such as the Elephant Butte dam (1912-1916), Friant Dam (1939 -— 1942), the

Lower Crystal Springs Dam (1888), and the Grand Coulee Darn (1941). The design of

the triangular gravity dams is attributed to the French engineer J. Augustin Tortene de

Sazilly (1812-1852). Other triangular dams were noted earlier in Mexico, but the

designers are unknown [Polaha].

 

fl=o ax

5" 5” ‘°°' K-8.64 m/day

  — 1000 feet

@ = 0
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Figure 3.1 Conceptual drawing of the triangular dam set-up without sheetpile. This

figure shows the assumed boundary conditions and sources/sinks for the model.
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Figure 3.2 Conceptual drawing of the triangular darn set-up with a sheetpile. This

figure shows the assumed boundary conditions and sources/sinks for the model.

In this case, the dam has a structural height of 300 feet, hydraulic height of 200 feet, crest

width of 20 feet, and base width of 250 feet. The IGW default depth (y-direction) is 40

meters for the entire model base. Most crest lengths corresponding to similar dimensions

are approximately 1500 feet long, which is approximately 10 times greater than the 40

meters default. By assuming that the reservoir upstream from the dam has a sufficiently

large volume, we can assume that the change in volume is negligible. And by assuming

that the discharging river is at a predefined fixed depth, we assume that the heads h1 and

h2 are constant (see Figure 3.1). This implies a steady-state system. Additionally, we

assume that we have a saturated homogenous porous medium with laminar flow and that

both the water and soil is incompressible. From these assumptions, we are able to use
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Darcy’s Law. Another common assumption associated with the vertical model is that the

horizontal conductivity is approximately an order ofmagnitude greater than the vertical

conductivity. We account for this anisotropy by assigning the default ratio ofhorizontal

to vertical conductivity to 10. We Obtain the following 2-D steady-state homogenous

anisotropic equation

6 6h 6 6h 6 6h 6 6h

——K— —K— —K— —K—=O.3.1-1ax( llaxj+ax[ 1262]+az( zlaxjirai 2282i ( )

where the conductivities are determined from the full conductivity tensor.

For each case, we have a set ofboundary conditions. Due to the complexity ofthe set-

up we show the boundary conditions in the respective definition sketches (see Figure 3.1

and Figure 3.2). We assume that the porous medium consists primarily of clay or low

permeability material, which gives a conductivity of 10‘7 cm/s or 8.64 m/day [Freeze and

Cherry, 1979]. Often when installing a gravity dam the subsurface is grouted to ensure

that the medium has uniform low conductivity with no fiactures. This would yield a

heterogeneous medium.

The IGW numerical set-up for these problems was based on a modeling domain of

1000 x 1000 fiz. The domain was then discretized using a 100 x 100 grid. For

visualization, we utilize the feature of particle tracking via selected points within the

model domain to show the flow lines Of the simulation.

We Obtained the following flow solutions for the two cases (see Figure 3.3 and Figure

3.4). In order to see the actual change in volume ofthe seepage under the dam for

interval of time, we computed the mass balance for the porous medium (see Figure 3.4

and Figure 3.6). We found that the flux was approximately 10.2 m3/day for the first case.

With the sheetpile, we Obtained a flux of 8.6 m3/day. The results show a reduction in the
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volume of seepage for a given time period. Recall that this is the seepage rate for a

default thickness of40 m or 131 it. As mentioned before the average crest length is

approximately 1500 ft, we use a width of 1,310 ft for this size of this dam. So we need to

multiply the seepage rates by a factor of 10 to obtain the total seepage rate. The case

without a sheetpile yields a seepage rate of 102.0 ma/day, and the added sheetpile reduces

the seepage rate to 86.0 m3/day.

lllll
400.00 (fiat)

 
Figure 3.3 The numerical solution (flownet) to the seepage beneath the dam in IGW.

We use the IGW feature of particle tracking to view the flow lines beneath the dam.
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Figure 3.4 IGW calculates the water balance. The constant-head reservoir zone has

a negative flux (10.2 m3/day), which represents the seepage leaving the zone per the

default aquifer thickness (40 m). The constant-head stream zone has a positive flux

(10.2 m3/day), which represents the seepage entering the zone.

Illll
4001mm“)

4000 (an) 
Figure 3.5 The numerical solution (flownet) to the seepage beneath the dam with an

added sheetpile in IGW. We use the IGW feature of particle tracking to view the

flow lines beneath the dam. The sheetpile causes a longer flow path reducing the

seepage rate.
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Figure 3.6 IGW calculates the water balance with the added sheetpile. The

constant-head reservoir zone has a negative flux (8.6 m3/day), which represents the

seepage leaving the zone per the default aquifer thickness (40 m). The constant-

head stream zone has a positive flux (8.6 m3/day), which represents the seepage

entering the zone.

3.2 Toth Solution and Local, Intermediate, and Regional Flow Patterns.

The hierarchy of groundwater modeling starts with a regional flow model. The

regional model encompasses local models or models at a subscale. The flow patterns

obtained for these models are solutions to the elliptical partial differential equation or

Laplace’s equation. Toth (in 1962) derived the analytical solution to the boundary-value

problem representing steady-state flow in a vertical, two-dimensional, saturated,

homogenous, isotropic flow field with the water-table represented as a constant value

[Freeze and Cherry, 1979]. To obtain, the solution of the water table at a given incline,

he projected the solution from the constant case to the inclined water table. He also

considered the case where the water table is specified as a sine curve. And then similarly

to before, he extended the solution by projecting the equipotentials to a sine curve at a

certain angle of incline. The analytical solutions for the constant value water-table and

sine curve water-table configurations are given in the book Groundwater [Freeze and
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Cherry, 1979]. Freeze and Witherspoon then expanded the model to numerical solutions

that can handle anisotropy and nonhomogenous domains [Fetter, 2001]. We begin this

study by showing the numerical solution Ofpseudo-Toth’s analytical solution.

3.2.1 Toth’s Solution

Suppose that we have an unconfined aquifer with recharge zones in high topographical

regions and discharge zones in low topographical locations. Toth shows that for a

shallow groundwater basin, only local flow systems will form. But for deeper

groundwater basins, intermediate and regional flow systems are present. We show these

results using both a shallow aquifer and a deep aquifer using the sinusoidal form of the

water table that was used in the analytical derivation. We also show an example that has

a greater incline and amplitude ofthe sinusoidal undulations.

Mathematical set-up. For steady-state flow in a vertical, two-dimensional, saturated,

homogeneous, isotropic flow, we Obtain the following Laplace's equation

2 2

Lil= o (3.2-1)

6x2 622

3
‘

With the following boundary conditions and water table given as the following

g—xll(0,z) =gg(L,z) = 0

62k (x,0) = 0 (3.2-2)

h(x)|z=water table = 20 + ax + a sin bx

Where c = tan a, a = a'/cos a, andb = b'/cosa , a' being the amplitude of the sine curve

and b' being the fi‘equency [Freeze and Cherry, 1979]. In each case, we input the water

table equation in (2.1-3) into MATLAB to obtain a series ofpoints to input into IGW (see

Appendix B).
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For the shallow aquifer, we used an elevation of 1000 feet, amplitude of 50 feet, and a

frequency of 0.01. We obtain the following results from IGW (see Figure 3.7). For a

shallow aquifer we have a depth to length ratio of 1:20.

 

  

‘-111111
 

1‘4: 1 =:£
Emotions“); ; c

Figure 3.7 Local flow pattern in a shallow aquifer Obtained from Toth's solution.

       
 

For the deep aquifer, we used an elevation of 10,000 feet and the same amplitude and

frequency as the shallow aquifer. We now show the results for a deep aquifer, which has

depth to length ratio Of 1:2. We Observe the regional, intermediate, and local flow

patterns that arise in the deep aquifer.
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Figure 3.8 Regional flow pattern in a deep aquifer obtained from Toth's solution.

We use the IGW particle tracking feature to observe the regional flow lines. The

deep aquifer contains the local, intermediate, and regional flow patterns.

The next case shows the correlation between the depth ofthe local flow pattern and

the amplitude of the sinusoidal undulations. We use the same sinusoidal representation

ofthe water table with elevation 1000 feet, amplitude 200 feet, and frequency 0.01. In the

previous case, the local contours are more rounded. In this case, we see more “box-like”

flow lines that are slightly deeper than the previous case. In general, changes in the

topography with greater undulations cause different flow patterns.
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Figure 3.9 Toth's solution with extreme undulations. We see a more box-like flow

pattern with greater undulations in a shallow aquifer. The flow line at the 10,000

feet location is the best representation of the box-like flow line in this example.

3.2.2 Flow Patterns with Heterogeneity-Layering

Freeze and Witherspoon expanded Toth’s solution for cases Of anisotropy and

nonhomogenous domains. We begin by showing the flow in an isotropic system (K1,: K,

= 1) with no vertical exaggeration. We consider the medium to consist of clean sand/

silty sand, which gives a conductivity of 10 m/day. We refer to this case as the “base

’9

case .

3 20000 3

 

Figure 3.10 IGW numerical solution to the isotropic system considered by Freeze

and Witherspoon. We see how a slight elevation difference causes the flow lines to

extend vertically downward.
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In order to create an anisotropic medium, we set the horizontal to vertical conductivity

ratio to 10 or 10: 1. But, since the modeling domain is the xz-plane, we enter the ratio as

Kx':Ky' = 10. This implies that the general trend in the flow is horizontally.
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Figure 3.11 IGW numerical solution to the anisotropic system considered by Freeze

and Witherspoon. The flow lines are not orthogonal to the head contours.

In some regions, anisotropy may not be present to a large extent, for example,

studying the flow in a confined aquifer. But, heterogeneity is almost unavoidable at the

large-scale. So the next few cases, we study different nonhomogeneous configurations.

The upper layer has conductivity equal to l m/day, and the lower layer has conductivity

equal to 10 m/day.
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Figure 3.12 IGW numerical solution to the heterogeneous system considered by

Freeze and Witherspoon. The upper zone has a conductivity of 1 m/day and the

lower zone has a conductivity of 10 m/day.

The next case (see Figure 3.13), the upper layer has a conductivity of 100 m/day and

the lower layer has a conductivity of 1 m/day. We observe that the flow lines are parallel

to the low conductivity zone.
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Figure 3.13 IGW numerical solution to the heterogenous system considered by

Freeze and Witherspoon. The upper zone has a conductivity of 100 m/day and the

lower zone has a conductivity of 1 m/day.

69



In the next case (see Figure 3.14), we have an upper conductivity layer of 10 m/day

and a lower conductivity layer of 100 m/day. The flow lines proceed to the high

conductivity region very rapidly.

 

 
 

9;“ =-=~';.g

h‘ d‘s;- - s 3 5 a ______ : i
=‘“ ‘u ................. ".

‘i A ___ ___________ A . ; ; , , Q ...... ;

5. ~ :10000(m)~:-u;3“’§-t:2mnu;.f.?1::;;;;;;
‘ 5 ‘- - Q o w v - - - - - -    
 

Figure 3.14 IGW numerical solution to the heterogenous system considered by

Freeze and Witherspoon. The upper zone has a conductivity of 10 m/day and the

lower zone has a conductivity of 100 m/day.

Finally, we extend the heterogeneity to the horizontal direction by placing a low

conductivity zone in the middle oftwo high conductivity zones. The low conductivity

zone has a conductivity value of 10 m/day. The high conductivity zones each have a

conductivity of 100 m/day.
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Figure 3.15 IGW numerical solution to the heterogenous system considered by

Freeze and Witherspoon. The left zone and right zone have a high conductivity of

100 m/day, and the middle zone has a low conductivity of 10 m/day.

3.3 Moving-Boundary Time-Dependent Lake Dynamics

For the next example, we consider a lake placed in the center of a rectangular area

with no-flow boundaries. We assume that each of the no-flow boundaries is based on a

groundwater divide. As seasonal variations cause the river levels to rise and fall, we

encompass this variation into the modeling domain. In other words, the governing flow

equation is now time-dependent or transient. We add an average constant recharge to the

entire domain. We classify this problem as a 2.5-D problem which uses the governing

equation (2.3-1) presented before for the profile. Recall that a 2.5-D model couples the

horizontal model with a vertical or profile model. Since the two domains are coupled the

water table is no longer restricted to be fixed in the profile model, but is allowed to vary

based on the horizontal model.

3.3.1 Source/Sink: Transient Dynamics of the Lake

In this problem, we define the entire domain as a river/lake. The bottom of the lake is

defined to be the same as the surface elevation. By using the IGW "transient" feature, the
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stage in the lake is determined from the previous time-step. The lake boundary is

obtained by solving for the water table at the current time-step. This also delineates the

leakance area for the aquifer, where the sediment thickness d’ is dependent on the

location ofthe lake boundary. We also added constant recharge to the entire domain for

this example.

This set-up allows the actual boundary ofthe lake to change. Other software packages

such as MODFLOW assign “river cells” that well-define the lake a priori to running the

simulations that usually delineate the lake or river. In this case, we exploit the parallel-

computing feature of IGW, in which, it updates the model at each time step and defines

the lake boundary at each time step. This allows for a lake to expand and reduce with

seasonal fluctuations. We next explore how the boundary is delineated at each time-step.

3.3.2 Moving-boundary-IGW delineation

The capability ofIGW to update at each numerical step and each time step redefining

the lake boundary is novel of this sofiware package. The boundary ofthe lake is assigned

a mixed boundary condition that is solved for at each time step. Recall from Section

(2.1.4) 3 mixed boundary condition is mathematically given as

ah K’ .
— r5;- _ 712010 (x,t) — h(x,t)) (3.3-1)

for x e no) a {x : h0(f) 2 25,100, (x)},

where n is the normal component to the flow direction, K'/d ' is defined as leakance, b =

(h(x,t) - zbot) is the thickness of the unconfined aquifer at the boundary ofthe lake, ho is

the stage which is obtained fi'om the previous time-step ? , and h is the head in the aquifer
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solved at each time step. IGW determines the boundary of the internal lake at the current

time-step based on the location of the water table.

In this example, we define the entire domain as a river/lake with default leakance of

5 /day. The hydraulic conductivity throughout the region was assumed to be silty sand,

which is typical ofriverbed sediments and was given a corresponding value of 0.001

cm/sec. We added 10 in/year of recharge to the entire aquifer. We then set the bottom of

the river/lake as the surface. The surface terrain was created using scatterpoints

(conditional interpolation, the curve goes through the designated scatterpoints). In this

case, we used the following scatterpoints (see Table 3.1) given in the form (surface

elevation, top elevation, bottom elevation) from left to right to create the surface in an

overall domain size of 1000 m x 750 m. We discretized the model using a 100 x 75 grid,

which produced approximately 10 m x10 m cells.

 

 

 

 

 

 

 

  

Scatterpoint Surface Lin) Top (m) Bottom (m)

102 35 35 -50

103 45 45 -52

104 -15 -15 -45

105 2.5 2.5 -45

106 -8 -8 -42

107 25 25 -50

108 40 4O -55    
Table 3.1 Input scatterpoint values to form topography.

The transient behavior of the river was simulated using the default transient feature in

IGW. The sinusoidal variation has a period of 360 days, amplitude of2 m, and a random

fluctuation with correlation scale of 15 days and standard deviation of 1 m.

We provide three different flow solutions corresponding to the time of 10 days, 50

days, and 190 days (see Figure 3.16 to Figure 3.21). In the first set, we see that the

aquifer is discharging to the lake. We predict that at a later time the level of the lake

 



should rise. We also predict that the lake might be unified periodically. We display the

river depths throughout the simulation in the horizontal model.
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Figure 3.16 Transient lake profile view at 10 days. We have two lakes in the figure

because of the low stage. This figure corresponds to the horizontal plan view in

Figure 3.17.
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Figure 3.17 Transient lake plan view at 10 days. We observe two lakes using the

IGW feature of viewing the river/lake depth.

In the next set of figures (see Figure 3.18 and Figure 3.19), we observe that the stage

has increased. And as predicted we see the lakes merge together. We also note that the

groundwater is discharging to the lake causing a rise in the lake level.
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Figure 3.18 Transient lake profile view at 50 days. The stage has increased to form

one lake. This figure corresponds to the horizontal plan view in Figure 3.19.
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Figure 3.19 Transient lake plan view at 50 days. We observe one lake using the

IGW feature of viewing the river/lake depth.
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In the set of figures below (see Figure 3.20 and Figure 3.21), we see the seasonal

change ofthe lake by the head in the lake decreasing, which is typical of the dry season.

The lake starts to separate into two lakes, and there is a reduction in the aquifer discharge

to the lake.
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Figure 3.20 Transient lake profile view at 190 days. We start to see the lake level

decreasing almost forming two lakes. This figure corresponds to the horizontal plan

view in Figure 3.21.
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Figure 3.21 Transient lake plan view at 190 days. The stage has decreased almost

forming to separate lakes.

3.4 Moving-Boundary Time-Dependent Seepage

Often during the wet season the water table will rise and meet the surface. The

occurrence is known as groundwater seepage. Groundwater seepage happens in various

locations and is similar to a wetland. Similarly to the lake simulation, we delineated

seepage boundaries that are larger than the actual seepage areas to allow for seasonal

fluctuations. We created a hummocky topography that represents natural occurring low

spots in a region. This is very typical for a densely forested region at the toe of a slope.
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3.4.1 Source/Sink: Transient Dynamics of Seepage

In this problem, we define the entire domain as a drain with transient recharge. The

drain elevation is defined to be the same as the surface elevation. By using the IGW

"transien " recharge feature, we are able to model the temporal fluctuations in the water

table. The seepage boundaries are obtained by solving for the water table at the current

time-step. This also delineates the leakance area for the aquifer, where the sediment

thickness d' is dependent on the location of the seepage boundaries.

This set-up allows the actual boundary ofthe seepage areas to change. Other software

packages such as MODFLOW assign “drain cells” that well-define the seepage or

wetland area a priori to running the simulations that usually delineate seepage areas.

Similarly to the transient lake example, we exploit the parallel-computing feature of

IGW, in which, it updates the model at each time step and defines the seepage boundaries

at each time step. This allows for the seepage areas to expand and reduce with seasonal

fluctuations. We next explore how the boundary is delineated at each time-step.

3.4.2 Moving-boundary-IGW delineation

The capability ofIGW to update at each numerical step and each time step redefining

the seepage boundaries is novel of this software package. The boundaries of the seepage

areas are assigned a mixed boundary condition that is solved for at each time step. Recall

from Section (2.1.4) a mixed boundary condition is mathematically given as

612 K '

45;=7b(zdm..(x.y)—hIx,y,t)) (3.4-1)

for x e no) a {x : h(t) 2 zd,a,.,,(x)},

where n is the normal component to the flow direction, K'/d’ is defined as leakance, b =

(h(x,y,t) - 21,“) is the thickness of the unconfined aquifer at the boundary of the seepage
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areas, zdrain is the surface elevation which varies across the domain, and h is the head in

the aquifer solved at each time step. IGW determines the boundary ofthe internal

seepage areas at the current time-step based on the location of the water table.
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Figure 3.22 Seepage problem set-up, horizontal model of high water table causing

groundwater seepage. We use the IGW visualization feature of viewing the drain

locations.

The domain of this problem was set-up using the default of 1000 m x 750 m. The

scatterpoints used for this problem are given in Table 3.2 below. The hydraulic

conductivity is 0.01 cm/sec, which is considered clean sand. We added two profiles,
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which cross diagonally, northwest to southeast, and northeast to southwest. We use the

profile models throughout this section to observe the fluctuations in the water-table. For

the high water-table we observe many areas of seepage in Figure 3.22. The water-table

along the two profiles is given in Figure 3.23 and Figure 3.24.
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Figure 3.23 NE to SW Profile model of high water table causing groundwater

seepage.
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Scatterpoint Surface (m) Top (ml Bottom (m)

122 45 45 ~45

123 10 10 -50

124 15 15 -38

125 25 25 -32

126 45 45 ~35

127 6 6 -45

128 25 25 -35

129 -2 -2 -50

130 30 3O -55

131 50 50 -47

132 2 2 -55

133 40 40 -35

134 -4 -4 -45

135 35 35 -42

136 60 60 -45

137 60 60 -37

138 60 6O -36    
Table 3.2 Scatterpoints used in the model, row-wise, to create the topography.

In the first set of figures, we observed a very high water table. The rising of the water

table is very typical in the US. Northwest region that it is often referred to as the high

winter water table. The high water table yields seepage in all the corresponding low

spots ofthe topography. We next see the fluctuation of the water-table representative of

the dry season or summer season. In Figure 3.25 we observe that the number of seepage

areas has been reduced. Also, the diameter of the seepage area has greatly been reduced.
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Figure 3.26 NE to SW Profile model of lower water table causing reduced

groundwater seepage.
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Figure 3.27 NW to SE Profile model of lower water table showing reduced

groundwater seepage.

In the horizontal view, we observe that the equipotential lines are not interrupted by

the topography, since the water table is below the hummocky topography spots. The

effect ofthe water-table fluctuations is critical when representing the subsurface properly

as displayed in this example.
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3.5 Pumping Well

For this simulation we first used the Theis equation for pumping in a confined aquifer

[Freeze and Cherry, 1979] to obtain a head solution for a given set ofparameters. In this

case we set the well radius (area of impact) to be 26.25 feet (8 m). The well-casing was

assumed to have a 2 inch radius (0.05 m). The thickness ofthe confined aquifer was

assumed to be 5.9 feet (1.8 m). The specific storage varies radially. We assign a pumping

rate of -8.676 m3/day. In the vertical model we provide a negative recharge value of

-96.4 m/day for the area inside the middle layer of the well casing. We obtain the

following IGW program results (see Figure 3.28). We have chosen to show the well with

inactive layers so that the user is aware that this feature can also represent a multi-layered

well system. In the multi-layered system, certain zones can be used to represent different

layers in the aquifer or different layers in which to add contamination, for instance.
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Figure 3.28 Pumping well (radial symmetry) in a vertical model.

The boundary conditions for the IGW model simulation were no-flow boundaries at

the left and right, except where the well screen is located. The scatterpoints were used to

represent the radially symmetry of the pump. In this case, the thickness of the cylindrical

representation ofthe well radius was represented as scatterpoints. We then used linear

regression. We obtained a reasonable solution in that the head contours are denser

around the well casing and lessen as they extend further. In Appendix A, we show more

details ofhow the actual set-up of this problem was obtained.
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4 Introduction to Contaminant Transport

4.1 Governing Equation for Contaminant Transport

We start with the following the governing equation for 3-D transport of a single

chemical constituent in groundwater, considering advection, dispersion, fluid

sinks/sources, equilibrium-controlled sorption, and first-order irreversible rate reactions

[Zheng and Bennet, 1995]; is

ac“: 6 ac? a . . b_
R —=— D--+D*)-— —— .C+ C - C+—C 4.1-1
d at ax,[( ‘1 £3ij egg-(W ) q‘ 3 “i n, i ( )

where C = the solute concentration [M/L3],

B = the aquifer thickness [L],

22,. = the effective porosity H,

v, = seepage or average pore velocity in the x,- direction [L/T],

Dy- = the dispersion coefficient tensor [Lz/T],

D* = the effective diffusion coefficient [LZ/T]

xi = the Cartesian coordinate [L],

C— = the concentration of solute species adsorbed to solids [M/M],

pb = the bulk density ofthe solids [M/L3]I

w= the decay coefficient [l/T],

qs = the volume flow rate per unit volume of the source or sink [UT], and

Cs= the solute concentration in the source or sink fluid [M/L3].

The retardation factor is defined as
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(4.1-2)

For the IGW two-dimensional models, the transport is assumed to be primarily in the

horizontal direction and that there is no vertical dispersion (i.e. fully mixed in the z

direction). Dividing through by the retardation factor Rd in equation (4.1.1) we obtain

f39+i-3-(vié)= —1—a (D, +D*)a—é+ q—‘-—C,— Wan—’15 (4.1-3)
at Rd 6x,- Rdax—i 6x,- Rd Rd 11,

We then vertically average equation (4.1-3) as follows

L—(ngtBC)++R——(nerViC)—— 'R——16—6("88(Dij + D *)-:x—C] +

“'6" d x’ " (4.1—4)

—C, ——[n,BC+ pbBC]

+Rd

Then using the product rule and rearranging equation (4.1-4) we obtain the following

29+__a_€.= 1 i neB(Dy-+D*’6C _ qs+VmeB+Rd_1_a£ C+ qus

at Rd ax,- neBRd ax,- axj neBRd BRd at neBRd

 
 

(4.1-5)

The parameter descriptions are the same as in equation (4.1-l) except that q, is the

volumetric flow rate per unit area of the source sink [UT] and C is the averaged solute

concentration [M/L3]. Note that the thickness of the aquifer is time-dependent, which is

necessary for the unconfined aquifer.

4.2 Discussion of the Transport Equation Terms

Similar to the governing flow equation, we provide a mathematical summary of each

of the terms and process in the governing transport equation (4.1-4). We begin by
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discussing the processes of the transport equation, namely, advection, dispersion, decay,

and sources/sinks.

4.2.1 Advection

Advection is the movement of the particle or contaminant dependent only on the

velocity of the flow. IGW obtains the seepage velocity from the solution to the

governing flow equations at each time-step. Recall the seepage velocity is given as

K--

v,- = ——g-fl- for i,j = l, 2 (4.2-1)

)1, 6x,-

where h = hydraulic head [L],

x,- = the directional flow length [L],

72, = effective porosity [-], and

KI]: hydraulic conductivity tensor [L/T].

4.2.2 Diffusion

Diffusion in solutions is the process whereby ionic or molecular constituents move

under the influence of their kinetic activity in the direction of their concentration gradient

[Freeze and Cherry, 1979]. In porous media, we usually refer to the effective diffusion

coefficient, D“, which accounts for the longer paths of diffusion caused by the presence

of particles in the solid matrix and because of adsorption on the solids. The effective

diffusion coefficient becomes important for sufficiently small velocities (i.e. v << 1).

The major ions in groundwater (N3+, K+, Mg2+, Ca2+, Cl', HCO3', 8042‘) have

diffusion coefficients, Df, in the range for diffusion range 1 x 10'9 to 2 x 10'9 mz/s at
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25°C. For nonreactive chemical species the diffusion coefficient, Df, has values in the

range of l x 10'10 and 1 x 10'“. The effective diffusion coefficient is obtained by

13* = (on (4.2-2)

where D* = the effective diffusion coefficient [LZ/T]

a) = the empirical coefficient [-]

Df= the diffusion coefficient [Lz/T]

The process of diffusion is also sometimes referred to as selfldr'fi‘usion, molecular

difiitsion, or ionic diffusion.

4.2.3 Mechanical Dispersion

We now look at the mixing and spreading process that is dependent on the velocity.

The mixing process is referred to as dispersion. Hydrodynamic dispersion is defined by

both dispersion (mechanical dispersion) and diffusion (for low velocities). Since, we

have already discussed diffusion in Section 4.2.2, we now discuss mechanical dispersion.

Mechanical dispersion is dispersion caused entirely by the motion ofthe fluid. The

process by which solutes are transported by the bulk motion of the flowing groundwater

is known as advection. There are three mechanisms that cause mechanical dispersion:

varying velocities in a pore channel, the different pore sizes, and tortuosity, branching,

and fingering ofpore channels. In IGW the mechanical dispersion tensor [Bean 1972] is

defined by the following components

2

D11=(aL —aT)l:1vT+aT|v| (4.2-3)

2

D22 = (0L —a7~ )r—jl-i-GTIVI (4.2-4)
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1312 = 021 = (0L "057)ng (4-2-5)

where 0:1,: the longitudinal dispersivity [L],

aT= the transverse dispersivity [L],

v = the seepage velocity vector [UT], and

Iv] = (ivlz + v; the normalized velocity vector [L/T].

Spreading of the solute in the direction ofbulk flow is known as longitudinal

dispersion. Spreading in directions perpendicular to the flow is called transverse

dispersion [Freeze and Cherry, 1979]. Dispersivity is a characteristic ofthe porous

medium and is determined based on the pore sizes.

If the coordinate system coincides with the principal axes, then the dispersion tensor

reduces to

D11 = aL |v| (4.2-6)

1922 = aTlvl (4.2.7)

012 = D21 = 0 (42-8)

The dispersivity values (aL and aT) represent the variance in the flow direction due to

mechanical dispersion (mixing) within the soil matrix. The longitudinal dispersivity is

usually found to be at an order ofmagnitude higher than the transverse dispersivity.

When considering the vertical direction, the vertical dispersivity is considered to be

somewhat random. This is due to increased variance relative to distance.

4.2.4 Macrodispersion
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Macrodispersion is the dispersion caused at the field-scale due to heterogeneity.

Previously, we have been discussing the concept of dispersion and how to obtain the

corresponding values based on laboratory or local characterization of the porous medium.

The concept of macrodispersion is that additional dispersion can occur in the field due to

heterogeneity. The mathematical expression for the macrodispersion tensor is given as

follows (assume the coordinate system coincides with the principal axes)

011 = Alel (4.2.9)

022 = AT|v| (4.2-10)

012 = 1921: 0 (4.2-11)

where AL = the longitudinal macrodispersivity [L], and

A T = the transversal macrodispersivity [L].

In IGW, we can input the macrodispersivity A for each direction as seen in the above

equations (4.2-9 to 4.2-10) in place of the local dispersivity values in equations (4.2-6 to

4.2-8), in order to characterize macrodispersion in the model. The microscopic scale for

dispersivity is also known as the local dispersivity. And the macrodispersivity is

sometimes referred to as the global dispersivity.

There are different methods on determining the values for macrodispersivity. For

example, tracer studies conducted in the field are one method to obtain values for

macrodispersivity. We can also use analytical expressions for two-dimensional flow as

follows [Gelhar, 1986]

AL = a},1/ yz (4.2-12)
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2

0' aL

AT: f 2 (14.351) (4.2—13)
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where a; is the variance ofthe logarithmic conductivity (i.e.f=ln K), 2 is the statistical

value related to the size ofheterogeneity, y = q /J1K1 with q as the directional flux, JL as

the longitudinal gradient, and KL as the conductivity in the longitudinal direction. The

local dispersivities, aL and a7 , are also used in determining the macrodispersivity

values.

4.2.5 Radioactive Decay or Biodegradation

In the governing equation (4.1-4), we see the decay termg— [neBC + pbBC], which

d

represents the loss ofmass ofboth the dissolved phase (C) and the sorbed phase (C ). In

IGW we are only capable ofmodeling first order decay. IGW allows the modeler to

input the decay coefficient. The decay coefficient is usually given in terms of the half

life

1‘12— (4.2-14)

= t1/ 2

where 11/2 is the half-life of radioactive or biodegradable materials [Zheng, 1990].

4.2.6 Sorption

The process of sorption occurs on the surfaces of solids in which an electrical charge

is imbalanced and may be satisfied by adsorbing a charged ion. Some ofthe common

ions in groundwater were discussed in Section 4.2.2. The transfer by adsorption or other

chemical processes of contaminant mass from the pore water to the solid part ofthe
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porous medium, while flow occurs, causes the advance rate of the contaminant front to be

retarded [Freeze and Cherry, 1979].

In IGW we are capable ofmodeling equilibrium sorption characterized by the linear

isotherm as follows

C = KdC (4.2-15)

where C= mass of solute on the solid phase per unit mass of solid phase [M],

Kd= the partitioning coefficient for the solute with soil [L3/M], and

C= the concentration of solute in solution [M 2/L3].

The natural range of values for the partitioning coefficient is from near zero to 103 mL/g.

For Kd values that are orders ofmagnitude larger than 1, the solute is essentially

immobile [Freeze and Cherry, 1979]. The partitioning coefficient can be defined in a

variety of different ways. Most often the partitioning coefficient will be chosen to model

a particular species that has a corresponding empirical isotherm. The IGW Help file

provides different Kd values for selected elements and organic compounds.

4.2.7 Sources and Sinks

The source/sink term of the governing equation, quS, represents the solute mass

entering the model domain through sources or leaving the model domain through sinks

[Zheng, 1990]. For the IGW 2D model, contamination cannot enter the model through

sources/sinks (i.e. rivers/lakes, drains, etc.). The concentration source/sink must be

defined by initial conditions and/or boundary conditions. In essence for the IGW 2D

models, we can remove the qu, term from equation (4.1-4) and represent the

sources/sinks ofthe concentration through the initial and boundary conditions.
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4.2.7.1 Initial conditions

The initial condition is given as

C(x, y,O) = f(x, y) (4.2-l6)

This represents an instantaneous source. In IGW the user will define a concentration

polygon, which represents an instantaneous source with a given concentration.

4.2.7.2 Boundary conditions used as sources/sinks

IGW does not allow concentration to enter through the external boundary or

unsaturated zone. So at the boundary the concentration is zero

C(x,y,t) = 0 x e 6!) (4.2-17)

where 60 represents the boundary. However, IGW does allow for the concentration to

be defined by internal boundary conditions

C(x,y,t) = f(x,y,t) x,y 6 D1 ; D (4.2-l8)

where D1 is a designated portion (or sub-domain) contained within the domain D. In

IGW the user will define a concentration polygon, which represents a continuous source

with a given concentration.

4.2.7.3 3D IGW Sources/Sinks

The 3D version ofIGW allows for the contamination to enter the model via

sources/sinks. IGW allows for the contamination to enter the system by the following

processes:

1. Infiltration: the user provides the recharge and concentration values,

2. Surface water body: the user defines the bottom elevation, leakance, head and

concentration values,

3. Injection well: the user provides the injection rate and concentration value,
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4. Constant-head: the user provides a polygon with a prescribed-head and

concentration value,

5. Specified internal boundary condition: the user provides a polygon with a

prescribed concentration at a certain time.

6. Specified initial condition: the user provides a polygon with a prescribed

concentration as an initial condition.

4.3 Numerical Methods for the Contaminant Transport Equation

The solution ofthe transport partial differential equation will often not possess an

analytical solution, unless under major simplifying assumptions. This leads to a

numerical approach of solving the transport equation. Much research in computational

fluid dynamics has been completed for the notorious advection-dispersion equation. The

equation is rather difficult to solve in that the equation can be advective-dominant or

diffusion-dominant. The equation is such that for advective-dominant flow, we

encounter a sharp-flout process which is very difficult to solve accurately. We discuss a

couple ofthe different methods to obtain insight into the different options that are

available in IGW. IGW (2D and 2.5D modeling domains) is equipped with the following

methods: the modified method ofcharacteristics (MMOC), and the random walk method

(RW). IGW (2D and 2.5D) allows the user to choose between MMOC and RW as the

primary transport solver. We refer the reader to the MT3D manual for other schemes,

such as the TVD scheme, used in the 3D version ofIGW. In order to illustrate the

methodology, we use one-dimensional uniform flow. The methodology remains the

same in more complex cases.
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4.3.1 Finite Difference (First Order Upwinding scheme)

We show the explicit first-order upwinding scheme for solving the transport equation

because it is conceptually easy to understand. This method is not used in IGW, but we

use it to address problems with stability.

We first consider the following equation, which represents only the advection portion

ofthe advection-dispersion equation

LC = ...-IE (4.3-1)
at 6x

where V = 7;:— > 0,and C = C(x, t). Additionally, we have the initial condition

d

C(x,0) = F(x) . (4.3-2)

This is used to represent the initial size ofthe plume. Using the explicit first-order

upwinding scheme we obtain

."+1 _ .n c." _ {1

9.79. = 41(42711]. (4.3-3)

Collecting like terms and solving forC?“ , we obtain

Cpl = __"iA’ (C,-” _ (31.11 )+ C," (4.3-4)

This method is conditionally stable for the Courant (CFL) number, C, = VS: .<.. l. 

4.3.2 Stability

Rearranging equation (4.3-4), we obtain

C," +1 = C,C,"_1 + (1 - C,)C," (4.3-5)
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For C, = 1 , the truncation error is zero. In this case, we would recover the exact

solution. For C, at 1 and O S C, s 1, the numerical scheme averages the concentration

values at the previous time step to obtain the concentration at the next time step (see

Figure 4.1). In this case, the concentration (represented as the triangle in Figure 4.1)

would be obtained by linearly interpolating between nodes C."_1 and C,-". For C, > 1, the
1

concentration particle is located to the left of C."_1 in the figure below. As the first order
1

upwinding scheme only uses the nodal concentrations at i-1 and i, the concentration of a

particle to the left of the i-I node will be obtained using extrapolation (see Figure 4.2).

This causes instability and so we obtain that the Courant number must be less than or

equal to one. Ideally we would like a robust method that would not restrict the time-step

or spatial-step. Later in the chapter we look at other methods that do not require this

restriction.

 

n+1 o 0 El 0

i-2 i-l i i+l

  
 

Figure 4.1 Finite difference grid that shows the location of a concentration particle

that would provide a Courant number in the range 0 s C, 51. This causes the first

order upwinding scheme to interpolate to predict the concentration at the next time

step n+1.
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Figure 4.2 Finite difference grid that shows the location of a concentration particle

that would yield a Courant number in the range C, > 1. This causes the first order

upwinding scheme to extrapolate to predict the concentration at the next time step

n+1.

4.3.3 Modified Method of Characteristics (MMOC)

As mentioned before the user may choose to use the modified method of

characteristics (MMOC) as the primary transport solver in IGW. This method does not

have a stability criterion like the first order upwinding scheme and is considered to be

always stable.

Mathematical Set-up for MMOC

Let 6" be the location of the concentration particle at the previous time step. If .5 n is

located between the concentration nodes C1711 and C," , then we use the same equation as

the first order upwinding scheme as follows

C,” = C,C,"_1 + (1 — C, )C,-" for o s C, s 1. (4.3-6)

If 4‘" is located between two arbitrary nodes, we obtain
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1
C,"+ =C,Cl."_(m+1) +(1—C,)C,-”__,,, for C, >1 (4.3-7)

where m = LC,_] the floor of the Courant number. (The floor is the integer part of a

number, for example, [2.2] = 2 or [2.6] = 2)

The location of the concentration at the previous time-step is found by using backward

particle tracking. In the case of constant velocity backward particle tracking is

represented as follows

x,H = x" — u" (x, , y" )At (4.3-8)

y.-. = y. — V. (X.sy.)At (4-3-9)

where u" and v,, are the x and y velocity components at a particular location, and At is the

time-step.

In general IGW uses the fourth-order Runga-Kutta method. This technique calculates

four different velocities along the particle path (one initial, two in the middle, and one in

the final position) and then uses a weighted average ofthe four as the velocity in the

tracking calculation [Paulson, 2002]. For velocities at non-nodal locations, IGW uses a

bilinear interpolation scheme to determine these velocities [Paulson, 2002]. Once the

location is found, IGW uses equations (4.3-3) and (4.3-7) to determine the concentration

at the next time step.

4.3.4 Particle Tracking

We have already discussed backward particle tracking used to locate the concentration

particle at a previous time step for the MMOC method. Note: In Chapter 2 and Chapter 3

related to groundwaterflow, we used forward particle tracking to show the advection only

movement through the porous medium. Particle tracking can only model transport that is
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caused by advection. We can release a collection ofparticles and see plume

characteristics based on advection only. IGW uses the following mathematical

expressions for forward particle tracking as follows

xn+1 = x" +u,, (xmyn )At (4.3-10)

yn+1 = y" +vn (xn,y,,)At (4.3-11)

We extend the particle tracking equations with a random component to obtain the

mathematical expressions for the random walk method in solving the transport equation.

The random component allows us to model dispersion.

4.3.5 Random Walk

IGW uses the following mathematical expressions for tracking the particles using RW

xn+1 = x, + u, (x, ,yn )At + ,/2DLAt§cosI9 — ,/2DTAtgsinI9 (4.3-12)

yn+1 = y" + v, (x, ,y, )At + ‘/2DLAt§ sing + ,/2DTAtg cost? (4.3-13)

where 42DLAtét and ,/2DTAt§' are Gaussian random variables with dependency on

the time-step At , a normal random number 5 = N(0,1) or 4' = N(0,1) , and the

longitudinal and transversal dispersion coefficients DL and Dr, respectively. We obtain

0 by using the inverse tangent as follows

19 = tan‘1 h-

an

Also, notice that if the dispersion coefficients were set to zero, we would recover the

forward particle tracking equations (4.3-10) and (4.3-11).

We show an example ofrandom walk in a heterogeneous medium that was

constructed deterministically in Chapter 5. A disadvantage ofrandom walk is that it is

discrete rather than continuous by nature, which causes one to release many particles
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3(104) in order to replicate a concentration plume. A small amount ofparticles can be

used if the location ofthe plume is important rather than the concentration magnitude in

the plume. The amount ofparticles released should correspond to the concentration of

the plume. In other words, ifwe have a high concentration, then we should have a high

density ofparticles.

A couple of advantages ofrandom walk are that it gives perfect mass balance results

and is free ofnumerical dispersion. It allows the user to switch back and forth between

discrete particles and a concentration plume. It also preserves the tendency for the general

movement ofparticles to be fi'om high to low concentrations.

4.3.5.1 Comparison ofRW and MMOC in IGW

We give an illustration comparing RW and MMOC using a concentration plume over

time in a homogeneous medium (see Figure 4.3). The model was discretized using 100 x

100 cells, which gives a cell dimension of 10.1 m x 10.2 m. We use 10,000 particles to

obtain the initial concentration of 500 ppm in the rectangular region below for the

random walk method and we defined the plume to be instantaneous. We also assigned

dispersivity values of l m for the longitudinal dispersivity and 0.1 m for the transversal

dispersivity. Since, the concentration is derived at each time step from the number of

particles in a particular zone; we can actually change back and forth between a plume and

particles at different time steps for the RW method.
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Figure 4.3 Plume migration using Random Walk in a homogeneous medium versus

the plume migrating using MMOC.

In the first snapshot of 1120 days, we see how the RW particles form a distorted

plume with jagged edges. The jagged edges and even discontinuities are from the

Gaussian random motion ofthe particles. Also at 1120 days we see that numerical

dispersion is already present in the MMOC plume. At 4240 days we see the

concentration as a plume for the RW results, and for the MMOC results we see more

numerical dispersion.
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4.3.5.2 IGW Improved Methods for 3D Modeling Domains

In IGW (3D modeling), there are different methods that are to improve the accuracy of

the solution. These methods include the total variation diminishing method (TVD) and

the MT3D schemes (refer to the MT3D manual for further information): method of

characteristics (MOC), the modified method ofcharacteristics (MMOC), and the hybrid

method ofcharacteristics (HMOC).

4.3.6 IGW Hierarchical Modeling

Beyond the different numerical methods, IGW introduces a new innovative modeling

application to obtain efficient and accurate solutions to the transport equation. This

innovate application is called hierarchical modeling. Previously, we have seen that the

accuracy for each numerical method depends on spatial discretization. If the cell

dimensions are too big, the solution will be highly inaccurate, regardless of the stability

of the method. We now turn to hierarchical modeling to obtain more accurate and more

efficient solutions to the transport equation.

Hierarchical modeling is a process of forming submodels that are finely discretized.

For contaminant transport, very fine grids are ofkey importance. But, the entire domain

does not need to be finely discretized, only the regions that may contain heterogeneity or

transport. The process starts by forming a parent model that will be discretized (m x n

cells). Then children or regions of interest within the parent model will be discretized

more finely (i x k cells). The number of cells can actually be the same in the parent and

child model, but the child domain is a smaller area which creates a finer grid. This

process can continue until the actual boundaries (i.e. inside the well) restrict the domain.

We give a depiction ofthe process below (Figure 4.4).
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Figure 4.4 Hierarchical model with boundary conditions.

The children and grandchildren in the model assume boundary conditions from the

parent. If the boundary is not a constant-head boundary (i.e. uniform along the side of

the child domain), the boundary is linearly interpolated from the parent model or model

preceding the child in the hierarchical diagram. In this case, we let H1, H2, H3, and H4

denote the nodes from the parent model and we show the interpolation between nodes for

the boundary condition at each ofthe child nodes h1, h2, kg, and h.

hi = H2 '1' fiéjzxiz-(xi — x1) (4.3-22)

where h,- = h(x,~).
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5 Illustrative Applications of Contaminant Transport

The innovative applications of contaminant transport are numerical dispersion,

accuracy ofhierarchical modeling, and effects of decay, partitioning, and dispersivity.

IGW provides additional numerical techniques for the necessity ofminimizing truncation

error in a partial differential equation directly related to the grid resolution. It also is

novel in that the effects of different chemical properties of a pollutant can be studied in a

porous media.

5.1 Effects of decay, partitioning, and dispersion

We refer to the transport equation (4.1-4) and the terms related to the decay,

partitioning (part ofretardation factor), and the dispersion coefficient. We begin by

showing an example that is only dependent on the advective movement in the flow. We

then add decay, partitioning, and longitudinal and transversal dispersivity. Finally, we

compare static profiles ofthe different chemical properties. For each ofthe cases, we

discretized the domain using 100 x 77 cells of size 21.6 m x 21.7 m (so there is some

numerical dispersion in each ofthe plume geometries).

5.1.1 Advection only

We consider the flow between two rivers with a well field. The North and South

Rivers are constant head boundaries with stages of zero and five feet, respectively. The

Town Well located nearest to the North River has a pumping rate of 500 GPM. Rural

Well 1 and Rural Well 2 each have a pumping rate of 100 GPM, and Rural Well 3 has a

pumping rate of200 GPM. In this case, we have an overall hydraulic conductivity of 100

ft/day and effective porosity of 0.3. No chemical properties are associated with plume.
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Figure 5.1 Plume migration with no dispersivity, decay, or partitioning

5.1.2 Dispersion

In the next case (see Figure 5.2), we set the longitudinal dispersivity to be 100 m and

the transversal dispersivity to be 5 m. The values for local dispersivity are usually on the

order of centimeters. We used large dispersivity values to represent the macrodispersion

ofthe medium. We observe the plume extending further in the direction of flow than

perpendicular to the flow.
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Figure 5.2 Longitudinal dispersivity = 100 m and Transversal dispersivity = 5 m.

5.1.3 Decay

In the next case (see Figure 5.3), we set a decay rate of 0.005 l/day. In this case, we

observe the plume decaying and we expect that it will eventually be negligible. Note that

the legend significantly changes for this example. The red zone actually represents 116.7

ppm after 3 years, when we started with 500 ppm. In three years, the plume has already

decreased substantially.

The significance of this example is that we can model different remediation techniques

such as biodegradation or microbial remediation of a plume traveling with an associated

velocity.
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Figure 5.3 Decay with lambda = .005 1/day at 3 years

5.1.4 Partitioning

For the last case (see Figure 5.4), we set the partitioning coefficient to 1 mI/g. The

partitioning coefficient reduces the advective movement ofthe plume greatly. We see

that only about half ofthe plume moves advectively, while the other halfremains in the

original position. The partitioning or adsorption to the medium is having a substantial

effect on the plume migration. We observe that the concentration ofthe plume still has a

maximum of 500 ppm.
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Figure 5.5 Static profiles of different plume migration properties.

We observe the Gaussian distribution of the plume for the first case of advection only

(see Figure 5.5). When adding decay, we still obtain a Gaussian distribution, except the

peak concentration is greatly reduced over time. The partitioning (adsorption to the

medium) ofthe plume restricts the peak fiom migrating fi'orn the initial location and has a

non-Gaussian distribution. Some ofthe plume moves due to advection and is represented

above (see Figure 5.5). The static profile of dispersion shows that the peak is reduced

and moves further than the advective flow. This is due to the longitudinal dispersivity set

to an exaggerated 100 m. We observe that the profile related to dispersion yields a
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Gaussian-like plume that is shifted. But, the overall distribution is classified as non-

Gaussian.

To summarize, advection only and decay yield a Gaussian distribution. While the

partitioning and dispersion yield a non-Gaussian distribution.

5.2 Particle Tracking and Wellhead Protection Areas

In Chapter 2 and Chapter 3, we used particle tracking with continuous lines to visualize

the flow lines in the examples. In the examples, we used forward particle tracking.

Another feature ofparticle tracking is using backward particle tracking with continuous

lines to visualize wellhead protection areas (WI-IPA). In this case, we simply place

particles around the well and run the simulation backwards in time. We give an

illustration of this from an example that we will pursue in more detail in Chapter 4 (see

Figure 5.6). We have two rivers that differ in head such that the gradient is fi‘om the

South River to the North River. Then we added four pumping wells with varying

pumping rates. Notice that the simulation time is approximately 15 years. Different

jurisdictions (that have adopted a WHPA) require different lengths oftime for the

WHPA. Also, we can identify whether or not the plume will migrate into a well or wells

during this time. It appears that a portion ofthe plume will enter Rural Well 1 in 15 years

(see Figure 5.6).
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Chapter 6 and Chapter 7.

5.3 Numerical Dispersion
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Figure 5.6 Wellhead protection area using backward particle tracking.

encompasses the dispersion. Small-scale heterogeneities cause large-scale fluctuations

and in order to capture this phenomenon, we not only need to categorize the contaminants

appropriately but also the porous medium itself. We look at stochastic subsurface flow in

In Figure 5.7, we use hierarchical modeling to show that the grid resolution is directly

proportional to numerical dispersion. The parent model uses a grid of 100 x 77 cells with

each cell 21.6 m x 21.7 m. The child model uses a much finer grid of 100 x 120 cells



   

with each cell 4.5 m x 4.5 m. The parent model shows numerical dispersion around the

edge of the particles. But, in the child model, numerical dispersion is greatly reduced by

the finer grid (see Figure 5.8).
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Figure 5.7 Numerical dispersion directly related to grid resolution. We discretize

throughout the domain using a coarse grid. In hot spots of the domain (i.e.

contaminant transport areas), we discretize the submodel more finely.
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Figure 5.8 Numerical dispersion with very fine grid. We use the large model to

capture the boundary conditions of the child model. We then use the submodel to

model regions of detailed interest.

The concentration plume in Figure 5.7 does not preserve the same shape from the fine

grid to the coarse grid. Using a more finely discretized grid, we see some dispersion in

Figure 5.8, but the shape of the plume is preserved. In summary, the coarse grid parent

model shows significant error attributed to numerical dispersion. On the other hand, in

the more finely discretized child model, the plume resembles the shape of the particle

tracking solution. In general, when modeling contaminant transport, hierarchical

modeling is more accurate and more efficient than finely discretizing the entire domain

and solving.
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5.4 Recovery of Head Contours about a Well Using Hierarchical Modeling

The accuracy of the numerical model cannot always be observed by the output of the

parent model. In this case (see Figure 5.9), we pump at 50 GPM from Rural Well 1. The

contours from the drawdown curve are not seen in the parent model. So, we form a child

model around the well and then we obtain the contours from the drawdown. We form a

grandchild model (to the parent model), and we firrther improve the accuracy of the

model.

We visually are capable ofobserving the details in each ofthe models. From this, we

can see that the hierarchical models give a more accurate solution and depiction. It is

also computationally efficient, since only the areas of interest are finely discretized. As

mentioned before, we obtain the boundary conditions from the parent model of a

particular submodel.
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Figure 5.9 In the parent model the drawdown curves are not showing at all. By

using hierarchical modeling and forming a child model about the well, IGW is able

to visually recover the drawdown curves.



6 Stochastic Groundwater Modeling Using IGW

Stochastic groundwater theory is developed, in part, to account for the heterogeneous

nature ofthe porous medium. Within the porous medium, the conductivity alone can

vary by many orders ofmagnitude in a very small distance. Incorporating heterogeneity

into the modeling domain is important because the effects of small-scale variability cause

large-scale impacts on both flow and transport. In the following illustration (see Figure

6.1), we see that the plume migrates differently depending on magnitude of variability.

The variability increases clockwise starting in the upper left hand comer. We observe

that small changes in the variability ofthe medium creates noticeable differences in the

fate and transport ofcontaminants.

 

   
Steady Flow. Time Elapsed £1310 days (4.96 ......)

Figure 6.1 Clockwise from upper left corner, we have mean conductivity = 20 m/day

with in K variance 1, 2, 3, and 4.
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In IGW we investigate heterogeneity by the following:

1. Deterministic representation ofheterogeneity, and

2. Stochastic approach to modeling heterogeneity, which includes the Monte Carlo

method

6.1 Deterministic Representation of Heterogeneity

Deterministic representations ofheterogeneity are user defined features such as layers,

zones, polylines, or scatterpoints, which represent different materials. The direct input of

the features is considered "deteministic" in that the user explicitly represents a

preferential channel or material. This technique is useful for modeling features that

correspond to data such as conductivity values fiom pump tests, or developing

hypothetical situations such as fiactures beneath a waste pond.

Layers or zones are created by making polygons and assigning different conductivities

to each polygon. Polylines are used to model preferential channels and conductivities

along the line. In particular, polylines can be used to model a special type ofpreferential

channel, namely, fractures in IGW.

We give a brief overview ofhow IGW calculates the conductivity of an individual

fracture. Recall that the mere derivation of flow in a porous medium is based on

capillary flow. Since the capillary flow is the basis of flow through porous media, we

allow certain capillaries to represent fractures.

We assume that we have a stratified system, similar to that ofdifferent layers of

conductivity in the porous medium. But, the difference is that the conductivity in the

fracture is much greater than that in a stratified system with porous media for each of the
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layers. In this case, the expression for the conductivity along the direction ofthe polyline

or fiacture, K], has been derived fi'om flow through parallel plates and the cubic law is

b2

K, =k07. (6.1-1)

where 7 is the specific weight ofwater, b is the fracture width, and k9 is dependent on

the direction ofthe channel and gravitational constant.

We then substitute this conductivity into the mean flow equation and obtain

b2

§=kg——J (6.1-2)

7

where J is the flow gradient. IGW provides the option ofchoosing the fracture width, b.

The hydraulic conductivity of the fracture can also be specified. In IGW the conductivity

across the polyline (perpendicular to the preferential flow channel) is the same as the

conductivity matrix. Later in this chapter, we give an example ofa leaking waste pond.

Another feature that allows one to deterministically represent heterogeneity is

scatterpoints. Scatterpoints are used to input data or known values. Scatterpoints also

allow the user to create a continuous variation with the IGW interpolation schemes such

as inverse distance weighting, kriging, and regression

6.1.1 Layers, Zones, Polylines (preferential channels and fractures)

IGW has various features in order to input physical geometries. In this section we

present a couple of examples ofdeterministic heterogeneity modeled in IGW. We first

show an example ofzone-based heterogeneity and then we show an example of fractures

beneath a waste pond.

Example of Zone-based heterogeneity
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We present the models using the special feature of multiple models in IGW. Multiple

models are models that are exact copies ofone another. These copies are then changed

individually to compare different results.

We define regions with conductivity 0.1 rn/day and an overall conductivity of 20

m/day. The less conductive layers help in dispersing the contaminants.

A couple of deterministic ways in which the variability ofthe aquifer can be created is

in a fingering formation (top) or with lenses (bottom) (see Figure 6.2). We employ the

random walk transport solver for modeling the transport in this case. Recall that the

random walk method allows the user to view the migrating contaminants as a plume or

particles (as shown below).

 

 

 

   
Steady Flow, Time Elapsed = 5560 days (15.23 years)

Figure 6.2 Heterogeneity was formed deterministically by the fingering formation

and the lenses. We use the random walk transport solver to model the plume

migration. We see that the fingering and the lenses do tend to spread the

contamination.
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The top figure above shows the plume separating due to the contrast in the high

conductivity region. As the group ofparticles moves through the fingers, some particles

move fi'om the high conductivity zone into the low conductivity zone as observed at the

edges of the low conductivity zone. In the bottom figure we observe the plume moving

around the different lenses. Observing more carefully, we see that some ofthe particles

have entered into the low conductivity lenses.

Example of Polylines used to Model Heterogeneity

Clay lined waste ponds and landfills used to be very common in the 1960’s, especially

in areas with an abundance ofnatural clay as in northern Ohio. It was assumed to be

impermeable. But fractures can form, causing the waste or leachate to readily flow

through the medium, sometimes into aquifers. In the worst-case scenario, a waste pond

could potentially leak into an aquifer used for drinking water.

Due to the difficulty involved in modeling fractures or determining the actual location

ofthe fi‘actures, the subsurface is not usually modeled with a fractured medium.

Modeling fractures is critical when considering contaminant transport to the subsurface

especially since fractures are the main contributing pathway for flow in clay. In IGW,

the polyline feature represents the fractures explicitly.

In Figure 6.4, we give a hypothetical waste pond set-up and the assumed boundary

conditions. We introduce a stochastic or random medium for the general domain ofthe

model and will expand on this in later sections. We assign a value of 10'6 crn/sec (glacial

till) for the mean value in the random hydraulic conductivity field, and set the effective

porosity to 0.1 for the upper unconfined aquifer. The medium also has a correlation scale

ratio of 3:1 for vertical to horizontal. The bottom layer has a mean conductivity of
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0.0001 cm/sec with effective porosity 0.15, which is characteristic of a limestone bedrock

aquifer. The sand lenses have a conductivity of 0.1 cm/sec (clean sand) and porosity 0.3.

And we use a fracture width of 0.01 m to define each of the fiacmres.

We would also like to mention the importance of the water table in the vertical model.

In this case, if the water table was not present the concentration would rapidly flow out of

the surface (i.e. concentration travels from high concentration regions to low

concentration regions). So, we impose a natural water table that is linear between the

waste pond and the lake and is constant from the waste pond to the right no-flow

boundary. We assign a no-flow boundary at the right by assuming that a groundwater

divide exists at that location. The waste pond is modeled as a continuous concentration

zone beneath the water table. Continuous was chosen instead of instantaneous; by

assuming the waste pond is large enough that the volume will not change or that the

waste pond is being continually filled by more waste.
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Figure 6.3 Waste pond set-up with boundary conditions.
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We show the logarithmic hydraulic conductivity field with the fi‘actures below. Notice

that the fractures have high conductivity in comparison to the surrounding medium. The

sand lenses also show a similar high conductivity value. We expect waste to travel

through the fractures and then fill the sand lenses until other fractures are reached, and

then eventually enter the limestone bedrock aquifer.
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Figure 6.4 Hydraulic conductivity and illustration of correlation scales in the

media for the waste pond.
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Figure 6.5 Waste pond with leakage at 150 years.



We notice that the waste travels primarily through the fractures and the sand lenses.

' The pond leaks more on the west portion than on the east portion due to the water table.

The contours of the no-flow boundary ofthe water table can be seen in between the lake

and the waste pond as they are perpendicular with the water table. The water table

changes direction at the west comer ofthe waste pond and this creates an equipotential

that follows the contour ofthe pond relatively closely (unlike the east portion). So, even

though the medium has a very low mean conductivity, the flow pattern is affected by both

the fracture (in the direction offlow) and the flow being perpendicular to the

equipotentials.

Limitations

The deterministic approach is an averaged or smoothed version ofthe porous medium.

When applying different zones to create heterogeneity, the zones are averaged regions.

When using scatterpoints, the data is smoothed by inverse distance weighting, kriging, or

regression. In other words, the covering is averaged.

Besides averaging, there simply is not enough data to cover point to point variations.

Much ofmodeling is dependent on calibrating the numerical model with the experimental

data in a least squares sense. In other words, deterministic models are common from a

practitioner’s perspective because ofthe ability to calibrate the model with known values

from the field. But, this in itself is misleading, in that, one presumes that the model is

exactly replicating that of the real world. When, in fact, it does not represent the effect of

the variability.
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In order to represent the variability, we use random fields or stochastic processes. In

the next section we explain the stochastic approach to modeling heterogeneity. We also

introduce the Monte Carlo method.

6.2 Stochastic Approach to Modeling Heterogeneity

The need for a stochastic approach to modeling heterogeneity arose from the

limitations ofdata We cannot map heterogeneity uniquely because of the limitations of

data. The data itself is only adequate for producing the mean, variance, and correlations.

From this we can obtain information about trends and the statistical measure of

heterogeneity. Uncertainty in the model is caused by the data limitation used in

quantifying spatial variability. The spatial variability is important because it can cause

large-scale impacts. In order to capture the large-scale fluctuations caused by variability,

we need to first be able to somewhat replicate the variable medium. We consider the

small-scale variability of hydraulic properties as being random [Gelhar, 1993]. Since we

already have well-developed equations for fluids with a continuum description, the

probabilistic description must be able to update the previous equations. In order to do so,

we encounter stochastic processes or random fields. Due to the many orders of

magnitude present in the porous medium, we often use the logarthmic conductivity in

place of the usual conductivity when stochastically modeling the porous medium. In

addition, the statistical properties of In K are desirable for characterizing the medium.

We give a brief derivation of the natural dependency on In K in the 1-D groundwater

flow equation as follows.

The l-D steady-state groundwater flow equation (infinite domain) is as follows
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2—Kfl=0. (6.2-1)

6x 6x

Expanding the equation using the product rule we obtain

2

§_K_§_I.I_+Ka h...
-—— -— 0 . 6.2-2

6x 6x 6x2 ( )

We assume that the hydraulic conductivity is strictly greater than zero and divide through

by K as follows

2
iélifl+M = o. (6.2-3)
K 6x 6x 6x2

We then observe the dependency on In K as follows

6<1n1<>§2+a_zh__
6x 6x 6x2

 0. (6.2-4)

We usually refer tof= ln(K) (log conductivity) or sometimesf= 1n (T) (log

transmissivity) in the stochastic groundwater equations. IGW allows the user to display

the conductivity random field using the logarithmic hydraulic conductivity as we will

show later in this section.

We will discuss further the usage ofthe In K throughout this section. We first present

some ofthe basic components, terminology, and theory required to conceptualize a

stochastic groundwater model. At the very core of stochastic modeling is generation of a

random field or stochastic process.

6.2.1 Statistical Characterization

Using the sample data, we can obtain the mean, variance, and covariance. We now

give the mathematical representations for each ofthe sample statistics.
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6.2.1.1 Sample Statistics: Mean, Variance, Covariance

Mean

The sample mean is calculated as

)7 = % in (6.2-5)

i=1

Variance

The variance is calculated by

2 1 N -
0' = —Z(xj — X (6.2-6)

N i=1

Covariance

1 N N _ _

Cf(h)=-fi22(xi—X xj—X) (6.2.7)

where x,- —xj =|h|.

6.2.2 Random Field Representation of Heterogeneity

A stochastic process is defined as a collection ofrandom variables. A stochastic process

usually refers to time-dependent random variables. In particular, we refer to the

logarithmic hydraulic conductivity stochastic process (In K =1) as a spatially-dependent

collection ofrandom variables written as f(x) where it stands for (x1,x2 ,...,xd )T where

d is the dimensionality. A random field can be generated using different statistical

distributions. In this chapter, we assume that the random field is jointly Gaussian

N(,u, 0'2 ) , which is categorized uniquely by its mean and variance or first and second

moments. We also assume that the random field is stationary. Stationary implies that the

mean (or expectation), variance, and covariance are not spatially dependent. Ifboth
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these criterion are met; that is, the process is jointly Gaussian and is stationary, then the

process is considered to be ergodic. If the random field is ergodic, then the spatial

statistics from each realization are equivalent to the ensemble statistics (or statistics from

the collection of realizations). There are two types ofrandom fields that we further

investigate; that is, unconditional random fields and conditional random fields.

6.2.2.1 Unconditional Random Field

An unconditional random field uses the general statistics (i.e. mean, variance,

covariance), but does not actually honor the data values at the data point locations. We

first calculate the mean and variance and then show an arbitrary interpolation (or single

realization) between the data without honoring the data at each location. Then we use an

interpolating scheme such as kriging or inverse distance weighting to average between

the data points. We also account for the correlation scale about the data. We discuss this

firrther in Section 6.2.4 Generation of Different Realizations.

6.2.2.2 Conditional Random Field

Conditional simulation uses both the statistics of the data and the actual data points.

Hence, the statistics are “conditioned” on the data. The data is honored at each location

for a single realization. So when using the interpolating scheme, the realization will

actually match the data values at each data location. We also incorporate the correlation

scale into the data fitting scheme. Regions where data is lacking will be determined

randomly and will have the maximum variance. At the data point, we expect the variance

to be zero. We discuss this further in Section 6.2.4 Generation of Different Realizations.
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We later present three methods of generating realizations both unconditionally and

conditionally, namely, matrix decomposition, spectral methods, and the turning bands

method (see Section 6.2.4).

6.2.2.3 Example of Different Realization Models created with the Same Statistics

We next show an example of different realizations created for the logarithmic

conductivity field that are statistically equivalent. We created these in IGW using the

"random" selection for conductivity and assigning a mean value of20 m/day, variance of

4, and correlation scale of 30 meters. We observe that each realization shows a different

heterogeneous medium.

  
Figure 6.6 Each of the submodels have a mean conductivity value of 20 m/day, In K

variance of 4, and a correlation scale of 30 m. We observe each of the submodels

are different due to the "seed number" or random generator. Each of the

submodels are statistically equivalent.
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6.2.3 Characterizing Aquifer Heterogeneity using Data

For a given set ofdata (i.e. random sampling over a polygon, field data, etc.), IGW

allows the modeler to obtain the PDF, CDF, histogram, and h-scatterplot for the data.

The h-scatterplot is useful, in that, the modeler is able to see how many correlation pairs

exist for the data. If one or two pairs exist, then the analysis will not be accurate. The

separation distance or lag can be adjusted to obtain the maximum number of lags.

The modeler is also able to view the PDF and CDF, which is a guideline for

determining whether or not the process is Gaussian. If the process is not Gaussian, the

mean and variance may not be good measure to characterize the data. Note that the log

normal distribution that we use for the log conductivity is characterized by the mean and

the variance. We refer to the log conductivity field as log normal or Gaussian throughout

this work.

When we characterize an aquifer using data, there are many possible outcomes due to

spatial variations of the medium between data points. IGW uses a log-normal

distribution for generating the conductivity random field. If the distribution is not log-

norrnal, the generated random field will need to be modified. For example, developing

conductivity zones where the scatterpoint data is log-normal. In order to evaluate

whether or not the distribution is Gaussian, we look at the sample statistics fi'om the

exploratory data analysis (i.e. mean, median, mode, variance, and etc.) to help

characterize the data.
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6.2.3.1 Exploratory Data Analysis

IGW allows the user to obtain the general statistics for a set of data. This is useful in

gathering insight into the nature ofthe medium. For a given data set IGW uses the

following statistics:

Mean

The sample mean is calculated as

N

2x, (6.2-8)

Variance

The variance is calculated by

0'2 =—1-%(x - 4? (6.2-9)
N 1

Median

The sample median is defined so that it is larger than halfthe values and smaller than the

other half. That is,

x, where] = (n + 1) / 2, if n = odd

xm = , (6.2-10)

(x, +x1+1)/2 wherel=n/2, rfn=even

Mode

The mode of a probability distribution function p(x) is defined as

r2(x)lXmod = PMAX (6.2-11)
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This implicit equation is solved by finding the maximum value ofp(x,-) which gives

Xmod = xj , Xmod is the value ofx where the probability distribution is at its maximum

value.

Average Deviation

The average deviation is calculated by

1 N —
Avg. Dev.= Félxi - XI (6.2-12)

Skewness

The skewness is calculated by

l N (x- - A}?
Skew = _ __1

6.2-13N; a ( )

Kurtosis

The kurtosis is calculated by

N

Kurt——{i0ZL—x‘—————:):X}—3 (6.2-14)

N _
i—l

PDF

IGW uses the following procedure to calculate the PDF:

1. DefineXm to be equal to MAX(x,, x2, . . . ,xg, . . ., xN) where the MAX firnction

extracts the maximum value in the associated set.

2. DefineXm to be equal to M1N(x1, x2, . . . ,xi, . . .,x~) where the MIN function extracts

the minimum value in the associated set.

3. Calculate Axas
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Ax: Xmax -ern (6.2-15) 

where M is the number of intervals (user specified).

4. Sum the total number of data in each interval [xj,xj+/] wherej=1 , 2, . . .M. These

values are assigned to nj. Note that

M

in} =N (6.2-16)

F1

5. Calculate the PDF as

( ) "j (6 2 17)x . =_ _ -

p 1 N

CDF

The CDF is derived from the PDF through

x

C(x) jp(x)dx (6.2-18)

Xmin

which is calculated numerically in IGW as

j

C(xj) z m2p(x,-) (6.2-19)

i=1

Once the preliminary statistics have been calculated, we then try and categorize the

data. We categorize the data by fitting the data to a known variogram model or analytical

covariance fimction.

6.2.3.2 Variogram analysis

We investigate the experimental and theoretical variogram in this section. The

experimental variogram is obtained from the data points and then plotted using the
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variogram function. The theoretical variogram best fits the data with a known variogram

function such as the exponential, hole-type, or Gaussian variogram.

Experimental Variogram

The experimental variogram is the graph that is most commonly used in applied

geostatistics to explore spatial interdependence. It contains information about the scale

ofthe fluctuations of the variable [Kitanidis, 1997]. In geostatistics, we refer to this as

the variogram or semivariogram (the semivariogram is used throughout this paper and

since we are only discussing it in this context we interchangeably use “variogram”). The

variogram by itself should not be used as a form ofcomplete analysis. IGW uses the

following definition of the (semi-) variogram defined from the data as follows:

1 I I

70!) = 5E[(f(x. y) - f(x ,y ”2] (62-20)

wheref(x,y) andf( x', y') are the values at different locations ofthe random functionf,

and h = "x - x'" . We refer to h as the separation distance. Some ofthe spatial variable

quantities that are of interest are: porosity, chemical concentration, and precipitation

[Kitanidis, 1997]. We use the IGW variogram to obtain information about the following

characteristics [Kitanidis, 1997]:

1. The presence of variability at the scale ofthe sampling span. This depends on the

behavior ofthe experimental variogram near the origin, i.e., at small separation

distances.

2. The presence of variability at a scale comparable to the sampling domain. This

depends on the behavior ofthe experimental variogram at large distances.
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Theoretical Variogram

For now, we concentrate on the large-scale behavior ofthe system. The variogram at

distances comparable to the size of the domain determines whether the function is

stationary (wide-sense) or nonstationary. The graph ofthe variogram can easily

determine whether or not a certain parameter has a stationary or nonstationary behavior

(see Figure 6.7). In general, nonstationary behavior contains trends (or moving averages)

and is very prominent around sharp contrasts in the media (i.e. boundary conditions).

 

Stationary

$Hr———— —— 

 
Range

Nugget  
   

Figure 6.7 Variogram used to show the difference between a stationary and

nonstationary process. The figure also shows the sill, range, and nugget.
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In the above figure (see Figure 6.7), we have the terms sill, range, nugget, stationary

and nonstationary. A stationary random function is bounded by its variance or sill as the

separation distance tends to infinity. In general, any points within this separation

distance (in the above figure, it is three separation distances) are positively correlated

with each other and this distance is given as the range. The nugget is the measurement

uncertainty scale not resolved by the data. In other words, ifwe were to examine two

points (i.e. conductivity values) at the same location, there would be a certain amount of

error. This we associate with the nugget effect.

With nonstationary behavior, we see that a “sill” is never obtained. So the

nonstationary sill is defined as the scale at which two measurements ofthe variable

become practically uncorrelated [Kitanidis, 1997]. We obtain the correlation scale or

range, a , fi'om the horizontal axis at the point where the sill or variance ofthe process is

obtained.

From equation (6.2-20), we see that the variogram depends on the nature of the

random firnction. The spatial function can be defined in a variety ofways. In this case,

we look at functions that can be defined by a Fourier series or summation of sines and

cosines. The connection between the spatial functions being defined by a Fourier series,

the nature ofthe covariance function (which is the Fourier transform ofthe spectral

density used in effective parameters), and the relation between covariance functions to

the variogram (recall the variogram is obtained directly from the data), provides a bridge

from the theory to real-world applications.

The variogram has direct relation to the covariance R(h) as follows

702) = —R(h) + R(O) (6.2-21)
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The mean and covariance (first and second moments) of a random function are defined

by the following

m(x.y) =E[f(x.y)] (6.2-22)

R(h) = E[(f(x, y) — m(x.y)Xf(x'. y') — m(x',y')]

(6.2-23)

Note that for a separation distance ofh = 0, we obtain the variance from the covariance

function. We refer to Kitanidis (1997) for the details between the stationary model and

the intrinsic isotropic model. In this paper, we work with the stationary model for the

variogram, which requires the sill to equal the variance, 7(00) = R(O) = 02. (The isotropic

intrinsic model does not require the sill to be the limit ofthe variogram as h —) 00. So,

the intrinsic model is useful in classifying the nonstationary model.)

6.2.3.3 IGW covariance models

We now give a few different covariance firnctions and their associated variogram

[Kitanidis, 1997].

Gaussian Model

For the Gaussian model we have

2 1 “l
R(h) = 0' exp —-—2- (6.2-24)

L

2

7(h) = 0'2[1- exp[—fa] (6.2-25)

L

where 02 > 0 and L > O are the two parameters of this model. The range, a , is defined

as the distance at which the correlation is 0.05, i.e. a z 7L / 4

138



Exponential Model

For this model, the covariance and variogram are given by

R(h) = 02 exp(- 1;] (6.2-26)

7(h) = 02(1- exp[-gm (6.2-27)

where the parameters are the variance 0'2 > O and the length parameter (or integral

scale) l> O. The range is a z 31.

Spherical Model

For the spherical model,

02 1--§—}-1—+l—,i forO < h < a
R(h) = 2 a 2 a3 ’ - _ (6.2-28)

O, for h > a

2 3 h 1 h3
0' ————— , forOShSa

M) = 2 a 2 a3 , (6.2-29)

0' , forh>a

where the parameters are the variance 0'2 > O and the range a > 0.

Ofthe models mentioned thus far, the realizations ofthe random field for the Gaussian

model are the only realizations that are “smooth” enough to differentiate. The other

realizations are continuous, but not differentiable. The other noticeable difference

between the models is the exponential and spherical models each have a linear behavior

at the origin (as h —-> O, 7(h) at h). But the Gaussian model has parabolic behavior at the

origin (ash -+ 0,7(h) oc hz).
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6.2.4 Generation of Different Realizations

From the variogram, IGW obtains the necessary statistics for generating many

realizations that maintain the same statistical nature, namely, the variance, correlation

scale and covariance (obtained from the variogram). There are many methods of

generating the different realizations such as spectral methods, the Turning Bands method,

matrix decomposition (Cholesky decomposition), and Gaussian sequential simulation.

IGW allows the user to choose between the spectral algorithm, sequential Gaussian

simulation, and the turning bands algorithm. In addition, the simulation can be

considered unconditional or conditional. Unconditional simulation uses the statistics of

the data, but does not actually honor the data points. Conditional simulation uses both

the statistics of the data and the actual data points. Hence, the statistics are “conditioned”

on the data. We discuss four method of generating realizations, namely, matrix

decomposition, spectral method, turning bands method, and sequential Gaussian

simulation.

6.2.4.1 Basic Decomposition

The following mathematical derivation is taken from the SAS OnlineDoc Version 8

(1999). Additional comments and explanations have been provided for this mathematical

derivation. IGW does not use the matrix decomposition method. It is presented here in

its entirety because it is conceptually easy to understand.

Unconditional Simulation

We first generate a Gaussian random vector Z [n x1] with mean m and covariance C.

Let Z be represented as the following vector fixed at the locations s1, s2, . . ., S], and with

corresponding covariance matrix C
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PZ(51)- f C(O) C(Sr-Sz) C(Sr—Sk)\

Z= Z(f2) , and C: C(Sz‘Sl) C(O) C(S2-Sk) (6.2-30)

_Z(Sk)_ \C(Sk—Sl) C(Sk ‘32) C(O) )    

That is Z,- is a random variable, m,- is the mean of2,, and Cg- is the covariance of Z,- and Z]-

for i, j = 1, . . ., n. Then, we can obtain a realization ofthe vector fi'om the following

equation:

Z = m + Lu (6.2-31)

where u is an n x 1 vector of standard normal variates and L is an n x n matrix such that

LLT = C 6.2-32)

Then the lower triangular matrix L is obtained from the Cholesky decomposition.

The Cholesky decomposition is used only for positive definite symmetric matrices. Since

the correlation between Z,- and Z,- is the same as between 2,- and 2,, we have a symmetric

matrix. We know that the matrix is positive definite because the nature ofthe covariance

structure. That is, the matrix is diagonally dominant because the maximum correlation

value is between a point and itself. Since the matrix is diagonally dominant the

determinant is always positive. Ifthe matrix is not positive definite, then the method can

still be applied, but leads to a complex matrix L, which is impractical [Kreyszig, 1993].

For the given matrix equation

T

a11 0112 ‘113 "111 0 0 "'11 0 0

‘121 ‘122 023 = "121 "122 0 "'21 "122 0 , (6-2-33)

031 “32 033 "’31 "’32 ”'33 "’31 "'32 "’33

we obtain the following formulas for the Cholesky decomposition [Kreyszig, 1993] as

follows
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j-l

my =r/“jj-Zm3. j=z,-~.n
s=l

a .1 (6.2-34)

"111:; 1:2,” ,n

mll

k—l
l .

mjk =— ajk— E mjsmks j=k+1,---,n

mkk 3:1

Once the lower triangular matrix L is found it is then multiplied by the normal random

vector u and summed with the mean to generate another Z random vector that preserves

the mean and covariance structure. This is repeated N times, where N is the number of

realizations specified.

Conditional simrfirtion

For a conditional simulation, the distribution ofZ must be conditioned on the

observed data. The following explanation uses conditional distributions ofmultivariate

normal random variables.

Let X~Nm(m, 2), where

X m 2 2

x:[ l],m=l: 1],and2=[ “ ‘2]. (6.2-35)

2321 2322

The subvectoer is kxl,X2 is nxl, 211 is kxk, 222 is nxn,and 212 =25] is

k x n , with k + n = m. The fill] vector X is partitioned into two subvectors X1 and X2,

and E is similarly partitioned into covariances and cross covariances.

With this notation, the distribution of X1 conditioned on X2 = x2 is M, (iii, 73), with

61 = m + 21223 (X2 —m2). (6.2-36)

and
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i = 211—2122552121. (6.2-37)

Refer to [Sear1e, 1971] for details. The correspondence with the conditional spatial

simulation problem is as follows. Let the coordinates ofthe observed data points be

denoted 31,32 ,- - - , 3”,, , with values 21, 32 ,- - - , 5". Let Z denote the random vector

  

"1(31 )

Z = 262) (6.2-38)

.Z(’s”.. ).

The random vector Z corresponds to X2, while Z corresponds to X1. Then

(Z [Z = 'i)~ Nk (61,5) as in the previous distribution. The matrix

6 = C11 "Crzciiczr (62-39)

is again positive definite, so a Cholesky factorization can be performed. Similarly to the

unconditional case, we obtain a lower triangular matrix L from the Cholesky

factorization. We then multiply L by the random normal vector u. and add iii to the

transformed vector. This is repeated N times, where N is the value specified for the

number ofrealizations.

6.2.4.2 Turning-Bands

The turning-bands method (TBM) for simulation ofrandom fields was first presented by

Matheron (1973). Matheron named the method “turning-ban ” because of the

discretized segments (or bands) on each random line of the discrete character of the one-

dimensional generation [Bras and Rodriguez-Iturbe, 1985]. The lines turning also

correspond to the bands turning. We see applications ofthe method originating from the

Ecole des Mines de Paris (e.g., Joumel, 1974; Delhomme, 1979). The spectral method
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although better for larger domains than the matrix decomposition, is less advantageous

than TBM for large number ofpoints in the field. Instead of generating multiple fields

with equivalent statistical properties to a particular multidimensional field as done with

sampling fi'om the spectrum, TBM performs simulations along lines in space. Then for

each point in 91" , the corresponding weighted sum of values ofthe line process is

assigned.

We provide a brief introduction to the method as done by Bras and Rodriguez-Iturbe

(1985), which is taken fi'om Mantoglou and Wilson (1982).

Consider a multidimensional stationary and isotropic process that is denoted by Z(-) .

Assume that the random field has zero mean and is normally distributed. (If not, we must

first provide a transformation.) We show a similar figure given by Mantoglou and

Wilson, 1982 for the two-dimensional example (see Figure 6.8). In this example, the

lines are generated fiom an arbitrary origin. The sampling of lines occurs at different 0,-

directions that are uniformly distributed between 0 and 27: . We then generate the mean

and covariance function C165), a one-dimensional process, along each line. The points

on the line are then projected to the region in the two-dimensional domain that is of

interest. We generate the one-dimensional process Z,- (0) for the points along line 1'.

Figure 6.8 shows one point in space with location vector it”; its projected counterpoint on

line i is {M- and the value of the one-dimensional process at that point is Z,- (ofN,- ). We

can rewrite the projection using an inner product as follows:

Zi(:N:)= Zi(xN 411'), (6.2-40)
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where u,- is the unit vector on line i and the parentheses contain the inner product ofthe

vectors 1N and u,- [Bras and Rodriguez-Itur'be, 1985].

 

 

 

 

       

 

 
Figure 6.8 Schematic of field and turning-band lines (from Mantoglou and Wilson,

1982).

Once the one-dirnensional covariance C1 (5) has been generated for each ofthe L

lines, the point Nofthe two-dimensional region is assigned the simulated value
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L

Zs(x~)= fizz-(m ~u.~) (6.2-41)
i=1

This gives us the covariance of the one-dimensional process. We now need to show the

relation with the two dimensional covariance CS (v). From Mantoglou and Wilson

(1982), take two points of the field with location vectors x1 and x; as shown in Figure 6.9.

The simulated points are given by

ZS(xl)=%éZi(xl 41:) (62-42)

and

Z5(x2)=—1—ZL:Z-(x1-u).(6.2-43)
@121 J J
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Figure 6.9 Projection of vector v onto a turning-bands line (from Mantoglou and

Wilson, 1981).

Recall that the one-dimensional process has zero mean. The field ZS also has zero mean

and the covariance between the points is

CS(XI’XZ)= E [jl—Zézi(xl "01%;21'61 Fri]

(6.2-44)

2%: iE[Zi(x1'“i)Zj(x2'uj)]
i=1 j=1

Recall that the expectation ofthe product oftwo independent events is zero, unless the

events are identical. In equation (6.2-44), we can simplify the summation by noting that
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the covariance is nonzero for i =j, and zero otherwise. Simplifying equation (6.2-44), we

obtain

1 L

CS(X1,X2)= ZZE[Zi(X1'“i)Zi(x2 '“il (6-2-45)

i=1

Note that the expression in the summation can be written as the covariance of single line

using the separation vector v as follows

E[Z,-(x1-u,-)Zi(x20ui)]=C1(v-uj), (6.2-46)

where C1 (v - uj )= C(g) is the covariance of the one-dimensional process, which we

assumed to be stationary and thus v = x2 — x1. Replacing the expression in the

summation with the covariance ofthe one-dimensional process gives

1 L

Cs (Krdiz)= ZZCI(V '“i)- (6-2-47)

i=1

Since the unit vector is unifonnly distributed about the unit circle, we obtain

1 L

CS (v) = lim —2C1(v-u,-)= E[C1 (v - u)], (6.2-48)

L—)oo L i=1

where v = [V]. We write the continuous form ofthe expectation for equation (6.2-48) as

follows

E[C1(v - u)] = I: C1 (v - u)f(u)du , (6.2-49)

wheref(u) denotes the probability density fimction of u and Q? the unit circle (for two-

dirnensional case) or unit sphere (three-dimensional case). The differential length or area

on Q? at the end ofvector u is given by du. For the two-dimensional case, we have

f(u) =i (6.2-50)

27:.
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Substituting the probability density function into equation (6.7-29) we obtain the

covariance function for the two-dimensional field as follows

CS(v)=2L Lug; C1(v-u)du. (6.2-51)

circle

This gives the relation between the covariance of the one-dimensional process and the

covariance for the two-dimensional field. In IGW we can obtain the variogram (and

covariance) for a given set of data points. IGW will best fit the data with a spherical,

exponential or Gaussian model. From this and using the best-fit variogram equation, we

can obtain a covariance model for the data. In practice we assume to know the

covariance function C(v) to be preserved during the simulation. So the field covariance

CS (v) is assigned the assumed covariance function. We then need to obtain the one-

dimensional covariance function C1 (5).

The details can be seen in Bras and Rodriguez—Iturbe (1985). We give the relation

between the two-dimensional covariance function C(v) = CS (v) and the one-dimensional

covariance C1(v) along the turning bands in polar coordinates as follows

CS—(v)—:j—C1(6)2d (6.2-52)

v2 _

where 5 = v sin 6 , d5 = vcos316. This integral equation cannot be evaluated directly to

give an expression for C1(v) as a function of C(v) Mantoglou and Wilson (1982) give

examples ofthe exponential covariance and for the Bessel type oftwo-dimensional

covariance derived from the spectral density firnction.
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Since IGW uses these different models, we show the exponential model, Bessel

model, and the hole-type model. These models are selected when forming a random

conductivity field.

Exponential Model

The two-dimensional model has a covariance firnction

C(v) = 025“" (6.2-53)

and the one dimensional covariance is given as

C105):02{1-§-a§[10(a§)-Lo(a§)l}, (6.2-s4)

where 10 is a Bessel function of order zero, and L0 is a modified Struve firnction oforder

zero (Abramowitz and Stegun, 1965).

Bessel Model

The two-dimensional model has a covariance function

C(v) = 02b VK1(b v) (6.2-55)

and the one-dimensional covariance is given a

C( _ 2 iiL-bé- _b: -_ -15)—0' 1 2 51(1):) e E1( b5) , (6.256)

where Ei is the exponential integral function.

Hole-type Model

The hole-type model is used to fit a model ofthe exponential or Bessel processes.

Mantoglou and Wilson (1981) show that the two-dimensional covariance function in the

turning-bands method that relates to the one-dimensional hole covariance fimction is

given by
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C(v)=0'2{10(av)—L0(av)+av[11(av)—L1(av)—%]}, (6.2-57)

where 11 and L1 are Bessel and Struve functions of order 1 and a is the parameter of

C1 (5) in the following equation

C1(5) = 0'2 (1 — a5)e"a§ o s g < oo. (6.2-58)

Since this covariance firnction has similar behavior to both the exponential and Bessel

processes, we fit these processes by the hole-type covariance function.

Generation ofrealizations

The generation of realizations along the turning-bands lines uses a moving-average

process with the weighting function defined as

203/;(1—aw)e_aw wZ O

0 w<O

f(w) = ( (6.2-59)

As in the spectral approach, the covariance function ofthe one-dimensional process or

along the bands is the discrete covariance function. We refer the reader to Bras and

Rodriguez-Iturbe (1985) for the full detailed explanation for conditional and

unconditional simulations.

6.2.4.3 Spectral Algorithm

The spectral method requires a little more background in understanding the method,

since the simulations and preserving of statistical properties is done in the frequency

domain, instead of in the spatial domain. We first give a general outline to the approach,

and then explain the necessary theory for each ofthe steps in accordance with IGW 3
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User's Manual [Paulson, 2002]. The beginning of the spectral approach is obtaining the

covariance structure from the scatterpoint data created by IGW or entering field data.

Using the variogram analysis IGW best fits the data with a covariance model (i.e.

exponential, hole-type, etc.). It then transforms the covariance to the frequency domain

using the Fast Fourier Transform (FFT). IGW is then able to easily generate different

stochastic processes that are statistically equivalent. We give the mathematical

descriptions ofthe processes below.

The stationary covariance structure between two spatial quantities fiom a zero-mean

2D stochastic process h(r1,r2) = h(r) is given as

R(rl , 22 ) = R(r) = 15[h(r1 + r1,r2 + 72 W0] (6.2-60)

where m is the conjugate function of h(r). The spectrum ofthe stochastic process,

S(k1,k2) = S(k), can be expressed as the FFT ofthe covariance function as follows

S(k) = ”R(r)exp[27ti(k - 1)]dr (6.2-61)

and

R(r)= 117:3- ”S(k)exp[— 272i(k-r)]dk (6.2-62)

We then write the above covariance and spectral relationship in their discrete form using

 

the discrete FFT

N1 -1 N2 -1 m n m n

Sum = Z Z Rm1.m2 exv[2m'( 13,1 + If, 2 H (6.2-63)

"11:01:12 =0 1 2

1 N1—1N2—1 .

le,m2 =W;N_2 Z anbnz exp[— 27110111an A1 +man2 A2)] (6'2'64)

I!1=0n2=0
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where N1, N2 = the 2D domain dimensions [L],

k = the frequency [LI],

2' = the spatial quantity [L], and

A = the grid spacing [L].

Since we will be employing this method to generate many logarithmic hydraulic

conductivity fields, we usef= In K values as the spatial quantities from the 2D stochastic

process. We now replace equation (6.2-64) with the notation for the log hydraulic

conductivity field.

If thefm is a stochastic process, the covariance between any two points m1 and m; can be

written as follows

1 N1 -1N2 -1

fmbm2 =—-—— 2 217mm exp[— 27zi(m1k,,lA1 +m2kn2A2)]. (6.2-65)
N1N2 _ _

n1 —0 n2 —0

The stochastic processes F in the frequency domain are random under the assumption

thatfm is a stochastic process. Assuming that the spectral density F represents a wide-

sense stationary process, that is,

E[F,,l,,,2 ] = O , (6.2-66)

E[Fn,,, me] = O , where n.- ¢ m,- (6.2-67)

where I"? is the conjugate function ofF. Taking the expectations of equation (6.2-65) and

multiplying by the conjugate 7 , we obtain the following relationship

Eanlmz Fn1,n2 ] = N1N2Sn1,n2 ’ (6-2‘68)

which relates to the spectral density given earlier. So the objective is to first generate a

stochastic process, for example, a log hydraulic conductivity random field. From this we
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can randomly sample the field and then IGW will find the best fit covariance structure for

the data. IGW then uses the FFT to obtain the random spectrum in the fi'equency domain.

This is where we generate many random spectrums that have the same statistical

properties.

6.2.4.4 Sequential Gaussian Simulation

The Sequential Gaussian Simulation can be found in the GS Library manual and we

refer the user to that manual.

6.2.5 Recursive Statistical Post-Processing

For each ofthe realizations created the mean head, log conductivity, and concentration

are obtained. The post-processing of all the realizations allows one to obtain the overall

statistics of the simulation such as the probability density function (PDF), the cumulative

distribution function (CDF), the mean, the variance, and the covariance. For the

collection or ensemble of all the realizations we use recursive formulas for the statistical

moments that are listed below.

The IGW field-based statistics are a little more challenging to describe in that they are

based upon the stochastic process or random field. We let the random field be noted

f(x,y). IGW uses recursive formulas for many realizations or stochastic processes (as

done with the Monte Carlo method), so that it only has to store the data for the current

realization. It would take up too much memory ofthe computer to store each realization

and the post-process the statistics. Recursive formulas are equivalent to the definitions

provided above, but are made efficient for multiple realizations.
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6.2.6 Monte Carlo Flow and Transport Modeling

The Monte Carlo method is used to generate many different solutions that are

statistically equivalent and also have a component ofrandomness. This allows a model

to incorporate variability between data points.

6.2.6.1 Basic Idea

The basic idea for the Monte Carlo method is to generate many random In K

realizations. We then solve the flow equation for each realization and obtain flow

realizations. Once we obtain the flow realizations, we use this information to generate

the plume realizations by solving the transport equation.

6.2.6.2 New Information from Monte Carlo

After generating the many different likely scenarios or realizations, IGW computes the

ensemble means (minimum variance estimate) and confidence intervals (variances). We

are then able to analyze the statistics and obtain the uncertainty and risk-based

predictions (probability) for the flow and transport in a heterogeneous aquifer.

6.2.6.3 Monte Carlo Simulation Procedure

We go through the Monte Carlo Simulation step-by-step in Chapter 7: Illustrative

Applications of Stochastic Groundwater Theory. The first example in that section is the

Monte Carlo method.

The general procedure is as follows:

1. Create the model set-up with boundary conditions, sources/sinks, and monitoring

wells.

2. Create the conductivity random field by using the "Random" choice in IGW.

3. Run the model and then sample the field to obtain hypothetical data points. If field

data is available, input that data into a spreadsheet format.
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4. Then choose the type of simulation to be completed using the data (i.e. conditional

simulation, unconditional, etc.)

5. Use the exploratory data analysis to see whether or not the data is Gaussian and

whether or not the data is stationary. In order, to determine stationarity a sufficient

amount ofdata points is necessary.

6. Select the Monte Carlo method as the type of solution and the number ofrealizations.

Also, IGW allows the user to choose the number ofvisual outputs for each realization.

7. Observe the post-statistics such as the concentration breakthrough curve at the

monitoring wells. The PDF, CDF, and stochastic process are also available for the log

conductivity, head, and concentration. Also, the means and variances can be obtained

graphically as well as computationally giving results of uncertainty, confidence intervals,

and risk prediction.

6.2.7 Recursive Formulas for Ensemble Statistics

Recursive Mean

The recursive mean is calculated by

_ "(k-l) _
FUC) (x, y) = F (x, y)(: 1) + f(xs y) , k =1929H-Nk (62-69)

where k is the realization index number. The total number ofrealization, Nk, is set by the

user and can theoretically approach infinity.

Recursive Variance

The recursive variance is calculated by

 

(k—I) _ _ we 2
0.00 (x, y) = 0' (x, J’Xk 1) + [[(x9 y) F (x9 y)] k =1,2,"., Nk (6.2-'70)
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Recursive Covariance

Considering a second random field, g(x,y), the covariance between point Pj(x,y) and

Pg(x,y) is expressed as

 

 

I I “(‘0

9 : k—l

_ “(16) _ “(’0
+ [f(x.y) F (x.y)JLgl(cxo,yo) G (x0,)’o)] k =1.2.---.Nk

(6.2-71)
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7 Illustrative Applications of Stochastic Groundwater Theory

7.1 Probability Model

In the 19605, Warren and Price (1961) and Shvidler (1964) presented applications of

the Monte Carlo method to flow in porous media. Although the Monte Carlo method was

seen at this earlier time, it wasn’t popular until Freeze (1975) used the Monte Carlo

method to study both steady-state and transient flow in a one-dimensional domain, where

the hydraulic conductivity is assumed to be statistically independent in adjacent blocks

[Zhang, 2002]. “Freeze’s (1975) work is arguably the beginning ofthe stochastic era for

flow in porous media [Zhang, 2002].”

We first explain conceptually the Monte Carlo approach and then we show the

mathematical set-up of the method. Conceptually, the Monte Carlo method is statistical

sampling. Statistical sampling is completed on different realizations (or paths) that are

statistically equivalent. The realizations are generated using a variety ofmethods, which

we explore next.

As mentioned earlier in Chapter 5, the statistical sampling approach to modeling

heterogeneity in groundwater flow allows us to use both random fields and field data.

Even though the data may be sparse, we can form a conditional simulation, which honors

the data at those points. In this innovative example, we first create a randomly generated

conductivity field with a mean of 100 fi/day, log conductivity variance of 1, and with a

correlation scale of 10 m. We then sample 150 data points (see Figure 7.1). From these

points, we use exploratory analysis of the scatterpoints to obtain additional statistical

information. We then choose a conditional simulation and show the associated
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variogram with the points. The variogram (see Figure 7.2) shows that range is about 45

m and the sill is located at 0.61. The correlation scale is obtained from the range, and in

this case the correlation scale is 75 m. We also obtain that the log hydraulic conductivity

can be represented as a stationary process because the variogram is bounded with

increasing separation distance.

We slightly change the set-up from the previous contaminant transport model by

adding a lake in the center of the domain. This is done for illustrative purposes of

showing the effects of an internal boundary that creates nonstationarity within the model.

We find that nonstationarity changes the distribution of the plume.
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Figure 7.1 Flow field with representative scatterpoints used for a conditional Monte

Carlo simulation.
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Figure 7.2 Variogram of scatterpoints

IGW gives the best-fit solution for the range, sill, and nugget. The nugget is the value

given close to the origin. In this case, the nugget is assigned zero as the variogram is

predicted to go through the origin itself. This represents the small-scale variability. We

notice that for this particular sampling the data is bounded and so we can assume that the

process is stationary within the domain of sampling.

We obtain insight into an appropriate model for the data fi'om the variogram. In this

example, exponential model best fits the data with range 45 meters and variance 0.61.

Later this becomes critical in the choice ofmethod for the generation ofrealizations. For

instance, the spectral method requires a covariance structure that will represent the data.

7.1.1.1 Different realizations and static profiles

To contrast the mean behavior, we show some ofthe results from individual

realizations that vary considerably fi‘om one to another. We also show the associated

static profile for each ofthe realizations shown below to give an idea ofhow the

concentration distribution changes considerably in the different realizations. The first
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realization we show with the log conductivity. The remaining realizations we show just

the plume to better visualize the differences.

-
“'1
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Tranelent Flow, Time Elapsed - 0 days (0.00 years), In Reallzatlon 100

 
Figure 7.3 Realization 100 plume migration at the end of4800 days.
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Figure 7.4 Static profile from original location to Monitoring Well 1.
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Figure 7.5 Realization 104 plume migration at the end of 4800 days.
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Figure 7.6 Static profile from original location to Monitoring Well 1.

  

  
Figure 7.7 Realization 104 plume migration at the end of 4800 days.
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Figure 7.8 Static profile from original location to Monitoring Well 1.
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Figure 7.9 Realization 107 plume migration at the end of 4800 days.
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Figure 7.10 Static profile from original location to Monitoring Well 1

The results above are all very different and yet, they are still statistically equivalent. We

need to be able to characterize the mean and variance for the ensemble ofall realizations

to get an estimate ofthe most probable locations that the plume will travel. IGW

provides he user with a "means and variances" graph that is processed for all realizations.

7.1.1.2 Means and Variances

We next show the means and variances ofthe plume and conditional field after 100

realizations (see Figure 7.11). This is very import for practitioners, in that; one can

obtain a confidence interval to predicting the location of a plume migrating. One ofthe

major advantages of stochastic modeling is that multiple realizations can be used to show

an exhaustive process ofmany possibilities that could happen with equal probability.

The accumulation of all such realizations gives a mean behavior (ensemble mean) and

predicted variance. However, caution should be taken in that the means and variances
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describe a Gaussian process. If the distribution of a parameter is not Gaussian, then the

means and variances may be inaccurate.

 
 

Figure 7.11 Means and Variances after 100 realizations.

Many statistics can be calculated once the Monte Carlo simulation is complete. The

process, probability density function, and cumulative density function are all obtainable

from the simulation for the different specified points of interest. In this case, we

specified two different monitoring wells. We will take a look at some of the interesting

distributions, but not all the distributions for each well. The objective in calculating the

different distributions is to show that we cannot assume that the head, in K, or
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concentration distributions are Gaussian. In particular, internal boundary conditions have

an effect on the nature of the distribution.

7.1.1.3 Head distributions

We first look at the probability density fimction for the head at each ofthe monitoring

wells (see Figure 7.12 and Figure 7.13). The density functions for Monitoring Well 2

(located closest to the initial location of the plume) resembles that of a normal probability

distribution. But the density firnction for Monitoring Well 1 (located at the edge ofthe

pond) is slightly skewed (the peak is shifted to the right instead ofbeing centered). The

primary reason for the change in the density function is the proximity to the pond

(internal boundary).

    
Figure 7.12 Head at Monitoring Well 2, away from internal boundary.
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‘ Probability at Monitoring Well 1

 

Figure 7.13 Head at Monitoring Well 1, near the internal boundary.

7.1.1.4 Concentration distributions

We next look at the concentration density fimctions at the monitoring wells. In the

contaminant transport section, we discussed the concentration ofthe plume being

represented as a Gaussian distribution. We predict that the internal boundary condition

will change the distribution, and that the distributions away from the boundary conditions

should still represent a Gaussian distribution. We observe the following results (see

Figure 7.14 and Figure 7.15). Neither ofthe monitoring wells show a Gaussian

distribution, which means the means and variances will not give an accurate description

ofthe concentration. Monitoring Well 1 shows a first a peak and then greatly reduces,

similar to an exponential disuibution. Monitoring Well 2 actually shows two peaks (first

a smaller peak and then a slightly larger peak)
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Figure 7.14 Concentration in a non- Gaussian distribution at lake boundary.
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Figure 7.15 Concentration in a non-Gaussian
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We see that the results of the concentration distributions as the different wells are very

different. Yet, neither one ofthem is a Gaussian-like distribution. It poses the question

ofwhat type of distribution does concentration have with variability, if any? We have

seen effects ofdecay, partitioning, and dispersivity in a homogeneous aquifer with the

distributions showing some similarity to the Gaussian distribution (whether shifted,

reduced peak, etc.) We would expect that chemical properties of the pollutant or even the

chemical interaction between both the medium and the pollutant to yield non-Gaussian

behavior.

7.1.1.5 Log conductivity distribution

We next observe the probability distribution functions for the logarithmic

conductivity. As noted above in the generation ofrealizations, we use a random normal

vector to generate the conductivities in between the data points. So one would expect

that the distributions of the log conductivity to resemble a Gaussian distributions. At

Monitoring Well 2 (firrthest fi'om the lake), we obtain a primarily Gaussian distribution

are ln K =3.0, which corresponds to a conductivity value of 20.08 m/day. We used an

average value of20 m/day to form the ln K field.
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Figure 7.16 Ln K distribution at Monitoring Well 2.

Observing the In K probability distribution firnction at Monitoring Well 1, which is

closer to the boundary of the lake, we find that the distribution still resembles a Gaussian

distribution. This is due to the generation ofthe field itself. Even though the region

around a lake would primarily have a higher conductivity, we used the same average

conductivity value of20 m/day in the region near the lake. The reason is that the lake

does not firlly penetrate the aquifer, and we are capturing the heterogeneity ofthe aquifer.

If the lake were to have penetrated deep into the aquifer, then a deterministically defined

conductivity would have to be assigned to the region ofthe lake. We would then have to

resample the region of interest.
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Figure 7.17 Ln K distribution at Monitoring Well 1 (near the lake).

In summary, we have seen that the distribution change for the head and concentration

when there is an internal boundary condition. This can easily be predicted in that the

flow ofboth the discharge fi'om the river and the contaminant are interrupted by the lake

boundary. The conductivity, however, was not affected as long as the lake boundary

does not penetrate deep into the aquifer. If it does, then the conductivity zones will need

to be added to capture the change in soils.

7.1.1.6 Concentration breakthrough curves

We continue with our analysis by observing the concentration breakthrough curves at the

different monitoring wells. The concentration breakthrough curve shows an average

breakthrough time of about 2500 days (point of inflection) (see Figure 7.18). The mean

and standard deviation are given for the well. We also can visualize a particular

realization with respect to the mean and standard deviations. This is very powerful in
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that we can determine a range oftime when the concentration for the plume to enter the

well. Similar results show for Monitoring Well 1, but with a later breakthrough time.
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Figure 7.18 Concentration breakthrough curve at Monitoring Well 2.
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8 Conclusion

The bridge between theory and applications begins with replicating the basic concepts of

groundwater flow, contaminant transport, and stochastic flow and transport, in a visual

numerical setting. The visual software that we used was the software package Interactive

Groundwater (IGW). We gave examples of local, intermediate, and regional flow by

recreating the Toth solution. Then we recreated the Freeze and Witherspoon results with

the added anisotropy and heterogeneity to the Toth solution. For contaminant transport,

we showed the affects of decay, partitioning, and dispersion in migrating plume. We also

showed the correlation between the grid resolution and numerical dispersion. Finally, we

showed the basic concepts ofrepresenting the porous medium as a random field

(stochastic flow). We showed the effects of small-scale variability on a migrating plume.

We also investigated using effective parameters (or average parameter values) versus

representing the heterogeneity of the medium using a random field.

We extended beyond the basic concepts with innovative examples such as flow

beneath a dam, transient lake with recharge, groundwater seepage using drains,

hierarchical modeling in a well field, and conditional Monte Carlo simulation using the

fast Fourier spectral approach.

Every piece ofthe numerical model starting from the hardware to the algorithms used

plays a critical role in the efficiency of a software package. We have shown in the above

examples yet another perspective ofthe computational bottleneck, namely, the

visualization of results. In this case, much ofthe inefficiency associated with the

visualization has been removed by the computational structure of IGW. This is not
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present in other software packages such as GMS and MODFLOW. Although results can

be seen within minutes, there is still a need for efficient numerical algorithms so that the

interactive model becomes "continuous" in delivering results. The crux of this paper has

been to provide researchers, practitioners, and instructors with examples that will aid in

conceptualizing the dynamics of groundwater. We provide final comments regarding the

issues that are currently present as applied to researchers, practitioners, and instructors.

8.1 Research Issues

Some of the current issues that are present in groundwater research are the

computational bottleneck, representing nonstationary dynamics, and reducing numerical

error.

The application of spectral methods and perturbative methods in representing the

variable porous medium has helped considerably in resolving the high computational

time for modeling variability. But, yet much ofthe stochastic applications assume that

the fluctuations of the log conductivity field and hydraulic head values can be represented

by stationary processes. Yet, there are many instances when this cannot be assumed (i.e.

internal boundary conditions, trends within the medium). Li and McLaughlin (1991 ,

1995) established a nonstationary spectral method to better deal with these changes in the

medium. The theoretical results have proven to give better resolution in the problematic

regions, but the practicality of the application in the numerical generation ofthe solutions

was hindered by the computational time. The results can be verified with analytical

solutions that are complex and tedious, and only exist under simplifying assumptions.

Current research for IGW includes a new method that uses the stationary spectral method

to analyze the general behavior. Then in areas that are problematic (i.e. internal
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boundary conditions), numerical modeling with fine grids are used to resolve the flow

pattern about the complex geometry of the domain. There is much progress being made

in exploring new theories and their application in groundwater modeling. The impacts

will only draw us closer to being able to model the real-world with a three-dimensional

computationally efficient software package.

8.2 Practitioners Issues

From the practitioner's perspective, groundwater modeling needs to be correlated with

the given data taken from well logs, pump tests, and other data collection techniques.

The underlying question that is still prominent amongst groundwater modelers is whether

or not deterministic or stochastic modeling should be the method of choice. Gelhar

(1993) addresses this same issue in his book Stochastic Subsurface Hydrology. The

answer is that it should depend on the objective of the project. In some instances, when

flow prediction is the only desired result, then deterministic modeling may be adequate.

When considering contaminant transport, then stochastic modeling may be appropriate.

So the issue at hand is determining when each type ofmodeling should be used.

Another issue that is still problematic is that the field can change drastically within a

few steps of each data collection point. In order to capture heterogeneity in a model, we

have to consider the Heisenberg uncertainty principle. That is, where the measurement

device interferes with the fundamental measurement. In every subsurface class, we study

the different ways to obtain the fundamental parameter values, for example, determining

conductivity of a certain soil type. From analyzing soil samples in the lab to tracer

studies in the field, the determination ofthe hydraulic conductivity lends itself to very

elaborate procedures. The bottom line is that the characterization of data incorporated
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into groundwater model has many limitations and assumptions. It is impossible to both

physically and economically represent a project site with enough data.

This leads to using calibration techniques that often use well log data. When simply

modeling the general flow pattern in a basin, this method can give valid results. But as

mentioned before, if contaminant transport is included, then this may not be adequate.

Where do we go from here? From a practical standpoint, software such as IGW needs

to be stressed to incorporate stochastic techniques with data points. Using "real-time

steering", which allows the scientist or engineer "to be an equal partner with the computer

in manipulating and maneuvering the 3D visual presentations ofthe modeling results [Li

and Liu, 2004]." It gives the user control over much ofwhat has been considered a

"black box" in the past. For instance, the modeler can "interactively steer the

computation, control the execution sequence ofthe program, guide the evolution of the

subsurface flow and plume migration dynamics, control the visual representation of data

during processing, and dynamically modify the computational process during its

execution [Li and Liu, 2004]." In instances where the location ofthe plume is critical,

probability modeling should be used since it gives confidence intervals ofthe location of

the plume at a desired time. Moreover, with legal issues rising, especially in groundwater

lawsuits, visual software needs to be incorporated in the courtroom to educate the jurors,

judges, and lawyers. In particular, the placement ofboundary conditions (and how the

model can vary) is critical in the outcome of the flow pattern.

8.3 Instructional Issues

The instructional issues that we face today stem from presenting both theory and

applications to students that have a wide variety in background. The actual subject

179



matter of groundwater flow uses partial differential equations and the theory is

considered to be at a graduate level because ofthe underlying equations. Darcy's Law is

the main equation that gets the majority of focus at the undergraduate level, and yet the

solution to that equation can lead to very complex theories. However, in training students

both at the graduate and advanced undergraduate levels, educational stress should be on

conceptualizing the physical dynamics ofthe system. This can be done in pointing out

the relationships between parameters, without actually solving the equations. Knowing

whether or not a software package is giving valid solutions is the most pressing issue

facing groundwater modeling in the classroom today.

Instructional software such as IGW lets students build a hypothetical real-world where

the physical dynamics can be singled out amongst the theory. The advances that need to

be made in groundwater modeling lie in asserting that students conceptualize many

models and be able to predict the results. IGW is a "sketch book" for very complex

dynamical groundwater situations. Students can develop their own hypothetical

situations and quickly see results. This will allow students to see the necessary

components ofa model (i.e. boundary conditions, water table location for a vertical

model, sources/sinks, etc.). Finally, after forming an intuitive picture of groundwater

dynamics, advanced studies should be given in building a data dependent model. This

will provide the student with a better background to decide whether or not the model is

accurate.
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10.1 Appendix A

Appendix A is written as the “how-to” documentation of the IGW examples given in the

main text. They are to aid in both using the software as well as for instructional

purposes. The appendix is also written such that it can serve independently as a manual

for students to use.

We use the following steps as a general step-by-step guideline for the flow and transport

models problems. The stochastic examples are done separately:

1.

2.

9

Domain: Determine the size ofdomain needed and whether or not the units will

be in meters or feet.

Zones and Parameter Values: Construct the zones needed and assign parameter

values. To replicate the examples above we provide the coordinates for defining

each zone. For instructional purposes, we suggest that the instructor roughly

estimate the zones. IGW has been designed to give quick illustrations that allow

changes. Also, when defining the zones, IGW gives the option ofcalculating

zone mass balances.

Boundary Conditions: Construct boundary conditions, i.e. no-flow, constant

head, etc. This step can also include the generation of a particular flow pattern.

Flow from left to right can be constructed using two different stages in rivers at

the left and right boundaries, respectively.

Internal Sources/Sinks: Add internal sources/sinks (i.e. recharge zones,

lakes/rivers, drains). With the sources/sinks decide whether transient or steady-

state is appropriate

Run Flow Model/Add Particles: The determination of the flow pattern can be

done by discretizing and running the model. If also considering contaminant

transport in the model, continue with step 6. IGW does not require that the flow

and transport be'solved separately.

Contaminant Zones: Add contaminants either by constructing a zone that is

either an instanteous or continuous source. This is done similarly to the internal

sources and sinks. Or construct a line or zone ofparticles.

Profile Model: Add cross-sectional models by defining profile (polylines) along

paths of interest.

Transient or Steady-State: For particles and concentration, the model will run in

transient mode. For flow one must choose one ofthe processes (river, drain,

recharge, etc.) to be transient.

Grid Size: Discretize and run the model.

10. Static Profiles: Define static profiles along paths of interest.

11. Water Balance: View water balance results.
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10.1.1 Seepage beneath a Dam.

Inactive zone

  

 

    

Sheetpile

5186“" 1°” Constant Head-

20 feet

Constant Head=

200 feet

  

   

500 feet
K-8.64 m/day

 1000 feet .. 

    

Figure 10.1 Triangular dam with sheetpile

1. Domain: 1000 ft x 1000 ft.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

(0,0), (304.8, 0), (304.8, 152.4), (190.5, 152.4), (190.5, 137.2), (114.3, 137.2),

(114.3, 152.4), (0,152.4, end)

Parameter values: We assigned a conductivity value of 8.64 m/day.

Triangular Dam:

(114.3, 137.2), (114.3, 228.6), (120.4, 228.6), (190.5, 152.4), (190.5, 137.2, end)

This is an inactive zone.

Reservoir:

(0,152.4), (114.3, 152.4), (114.3, 213.4), (0,213.4, end)
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Shallow Controlled Discharge:

(190.5, 152.4), (304.8, 152.4), (304.8, 158.5), (184.9, 158.5, end)

We also opted to calculate the zone mass balance for the porous medium. This allows us

to figure out the volume of seepage for a particular thickness.

3. Boundary Conditions: Boundary conditions were assumed to be no-flow for the left,

right, and bottom. The triangular dam is considered an “inactive” zone. The reservoir is

assigned a constant head boundary of200 feet, and similarly, the shallow controlled

discharge assigned a constant head of20 feet.

4. Internal Sources/Sinks: There were no internal sources or sinks for this example.

5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step, but in

order to visualize the flow lines, we assign a polyline with particles evenly spaced. The

solution for this problem is a steady-state solution. Since we “activate” particles for

visualization, the solution is obtained using “transient” mode.

6. Contaminant Zones: We constructed a particle polyline by using the following

endpoints:

(0, 148.32) and (114.3, 148.32). We then assigned 12 particles along the line.

7. Profile Model: Since this is a cross-sectional or vertical model, we do not define a

profile model.

8. Transient or Steady-State: Since we have added particles for visualization, the

solution is obtained using “transient” mode.

9. Grid Size: We discretized the model with 200 x 200 cells, which gives a cell

dimension of 1.5 meters x 1.5 meters, approximately. When using particles whether for

visualization or for contamination, the model must be finely discretized.

10. Static Profiles: No static profiles were done for this model.

11. Water Balance: The zone mass balance can be seen at the end of the simulation.

IGW has a default thiclmess of 50 meters. As mentioned before the average crest length

is approximately 1500 ft, we use a width of 1,640 ft for this size ofdam. So we need to

multiply the seepage rates by a factor of 10 to obtain the total seepage rate. We

calculated the zone mass balance without the sheet piling and then with the sheet piling.

For the sheet piling, we added an “inactive” zone with the following coordinates and

repeated steps 1-11.

Sheetpile: (114.3, 137.2). (117.3, 137.2), (117.3, 106.7), (114.3, 106.7, end).
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10.1.2 Toth Solution: Local Model and Regional Model.

1. Domain: 20,000 it x 2,000 ft (Local)

20,000 ft x 15,000 it (Regional)

2. Zones and Parameter Values: Constructed the following zones with coordinates:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Values for this were generated using a MATLAB program (see Appendix B) and

are specific to the undulations (see text for analytical equation). In this case, we

have 20 = 1000 feet, u = 72/100 , a' = 100 and b' = .011 . The list of specific input

values is given as the 41 x 2 matrix T in Appendix B. For instructional purposes,

a roughly drawn figure will yield similar results.

Parameter values: We assigned a conductivity value of 25 m/day.

 

ll .11I

 

Figure 10.2 Porous medium

Inactive zones:

The inactive zones were formed along the top of the porous medium to represent

the surface. The undulations actually represent the water table, not the surface. At

certain places the water table may meet the surface (i.e. surface seepage,

wetlands, etc.)

3. Boundary Conditions: Boundary conditions were assumed to be no-flow for the left,

right, and bottom. The “caps” or unsaturated zone is considered an “inactive” zone. In

this vertical model, the water table is the upper boundary condition. The water table is

formed using the polyline feature, and we used the values for matrix T in Appendix B

(evenly spaced points in the sinusoidal variation). IGW assumes that the water table

boundary is fixed in the vertical model.

4. Internal Sources/Sinks: There were no internal sources or sinks for this example.

5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step, but in

order to visualize the flow lines, we assign a polyline with particles evenly spaced. The

solution for this problem is a steady-state solution. Since we “activate” particles for

visualization, the solution is obtained using “transient” mode.
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6. Contaminant Zones: We constructed a particle polyline by lowering the vertical

coordinate of each undulation point by 30 meters (90 feet)). We then assigned 30

particles along the line.

7. Profile Model: Since this is a cross-sectional or vertical model, we do not define a

profile model.

8. Transient or Steady-State: Since we have added particles for visualization, the

solution is obtained using “transient” mode.

9. Grid Size: We discretized the model with 200 x 100 cells, which gives a cell

dimension of 30.63 meters x 6.16 meters, approximately. When using particles whether

for visualization or for contamination, the model must be finely discretized.

10. Static Profiles: No static profiles were done for this model.
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10.1.3 Freeze and Witherspoon.

For this example, we use the general set-up given for the isotropic case. This contains the

general outline for the porous medium and the unsaturated zone. Then for the different

cases, we will reference the changes.

1. Domain: 300 meters x 100 meters

2. Zones and Parameter Values: Constructed the following zones (with coordinates):

(U = upper zone, L = lower zone)

Porous Medium:

Case 1: Isotropic (Kh=10 m/day; Kh:Kv=1 :1)

Case 2: Anisotropic (Kx=10 m/day; Kr:Ky=10:l)

Coordinates(Cases 1&2): (0, 0), (300, 0), (300, 52), (35, 50), (0, 48, end)

 

Surface

 

 fi/// /// / / // /// //

Porous Medium

Figure 10.3 Freeze and Witherspoon Anisotropic Case 2

Case 3: Low upper conductivity zone. (KU=l m/day; KL=10 m/day)

Coordinates: Lower zone (0, 0), (300, 0), (300, 40), (0, 40, end)

Upper zone (0, 40), (300, 40), (300, 52), (35, 50), (0, 48, end)

 

i Surface

I

 

W// ////////////

UnerZone   
Lower Zone

Figure 10.4 Freeze and Witherspoon Anisotropic Case 3

Case 4: Very high upper conductivity zone. (KU=100 m/day; KL=1 m/day)

Coordinates(Cases 4 & 5): Lower (0, 0), (300, 0), (300, 20), (0, 20, end)

Upper (0, 20), (300, 20), (300, 52), (35, 50), (0, 48, end)
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Case 5: Very high lower conductivity zone. (KU=10 m/day; KL=1000 m/day)

 

Surface

 

_,_,—~7-7'77//////////////////////////

Upperlone

Figure 10.5 Freeze and Witherspoon Anisotropic Cases 4 and 5

 

Case 6: High, low, high conductivity zones horizontally.

(Kleft=100 m/day; Kmiddle=10 m/day; Kright=100 m/day)

Coordinates: Left zone (0, 0), (60, 0), (120, 50.6375), (35, 50), (0, 48, end)

Middle zone (60, 0), (100, 0), (200, 51.2375), (120, 50.6375, end)

Right zone (100, O), (300, 0), (300, 52), (200, 51.2375, end)

/—Su rfoce

g //////

Left Zone Middle , Right Zone

Zone -; ,3

Figure 10.6 Freeze and Witherspoon Anisotropic Case 6

 

 

 

 

Inactive zones:

The inactive zones were formed along the top ofthe porous medium to represent

the surface.

3. Boundary Conditions: Boundary conditions were assumed to be no-flow for the left,

right, and bottom. The unsaturated zone is considered an “inactive” zone. In this vertical

model, the water table is the upper boundary condition. The water table was assigned

using the polyline feature and the following points:

Coordinates: (0, 48), (35, 50), (300, 52, end)

IGW assumes that the water table boundary is fixed in the vertical model.

4. Internal Sources/Sinks: There were no internal sources or sinks for this example.
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5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step, but in

order to visualize the flow lines, we assign a polyline with particles evenly spaced. The

solution for this problem is a steady-state solution. Since we “activate” particles for

visualization, the solution is obtained using “transient” mode.

6. Contaminant Zones: We constructed a particle polyline by lowering the surface

vertical component of each point by 2 meters. We then assigned 30 particles along the

line.

7. Profile Model: Since this is a cross-sectional or vertical model, we do not define a

profile model.

8. Transient or Steady-State: Since we have added particles for visualization, the

solution is obtained using “transient” mode.

9. Grid Size: We discretized the model with 100 x 85 cells, which gives a cell

dimension of 3.03 meters x 1.19 meters, approximately. When using particles whether

for visualization or for contamination, the model must be finely discretized.
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10.1.4 Transient Lake.

1. Domain: 1000 meters x 750 meters

2. Zones and Parameter Values: Constructed the following zones (with coordinates):

Porous Medium (represent with one zone in the horizontal plane):

Used scatterpoints to create a topographical surface with a lake in cross-sectional

view. Note: The lake is formed by the topography, not the actually assigning of

cells. The following is a table of the scatterpoints used from left to right in the

domain. (We do not give the exact coordinates for each of the scatterpoints, but

this can be done for critical projects where data is known.)

Parameter Values: Conductivity = 0.001 cm/sec

 

\ . ‘3
‘ \

- I I . i ‘\. ’

\‘ \

m‘-. \ I ‘( . 'l .

. .\ .

u - ~ ~ . . \'

400.00 . . . -

S 102 ~
/

. ., ,2

. , . . '7. . . ”I: .

“v—I'V'T'”: . ,/ .

 . , 1 -

'f'200.00(m   
Transient Flow. ‘fime Elapsed = 10 days (0.03 years) 

Figure 10.7 Lake in cross sectional view
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Scatterpoint Surface (m) Top (m) Bottom (m)

102 35 35 -50

103 45 45 -52

104 -l 5 -15 -45

105 2.5 2.5 -45

106 -8 -8 -42

107 25 25 -50

108 40 4O -55      
Table 10.1 Scatter points

3. Boundary Conditions: Boundary conditions were assumed to be no-flow for the left,

right, bottom and top. The unsaturated zone is considered an “inactive” zone.

4. Internal Sources/Sinks: The internal sources or sinks for this example include the

river/lake and recharge.

Parameter Values: Recharge = 10 in/yr

River = Transient

Sediment Conductivity = 0.1 m/day

River Bottom = same as surface

5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. In this

case, we do not use particles to depict the flow line. Since we defined the river/lake as

“transient”, the solution is obtained using “transient” mode.

6. Contaminant Zones: No particles used.

7. Profile Model: We defined a profile model. In the profile model, the water table was

obtained from the horizontal model. We created a profile model shown above (the line

through the scatterpoints).

8. Transient or Steady-State: The solution is obtained using “transient” mode.

9. Grid Size: We discretized the model with 100 x 75 cells, which gives a cell

dimension of 10.10 meters x 10.13 meters, approximately. When using particles whether

for visualization or for contamination, the model must be finely discretized.
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10.1.5 Surface Seepage

1. Domain: 1000 meters x 750 meters

2. Zones and Parameter Values: Constructed the following zones (with coordinates):

Porous Medium (represent with one zone in the horizontal plane):

Used scatterpoints to create a topographical surface with a lake in cross-sectional

view. Note: The seepage regions are formed by the topography, not the actually

assigning of cells. The following is a table ofthe scatterpoints used from left to

right in the domain. (We do not give the exact coordinates for each ofthe

scatterpoints, but this can be done for critical projects where data is known)

Parameter Values: Conductivity = 0.001 cm/sec

 

 
 

  

 

 
 
 
 
 

 
 

  

 .. , ,.’f’.ZSPI33 CCL‘I" . ._ _
.-- -- .(Dm .. 400.00.— ...600.00......m0.00u—.-.1

mumFlow,11rne‘E'l'epeeod=20ammum)

Figure 10.8 Scatter points for topography and seepage
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Scatterpoint Surface (m) Bottom (m)

122 45

123 10

124 15

125 25

126 45

127 6

128 25

129 -2

130 30

131 50

132 2

133 40

134 -4

135 35

136 60

137 60

138 60 
Table 10.2 Scatter points for topography

3. Boundary Conditions: Boundary conditions were assumed to be no-flow for the left,

right, bottom and top. The unsaturated zone is considered an “inactive” zone.

4. Internal Sources/Sinks: The internal sources or sinks for this example include the

drain and transient recharge.

Parameter Values: Recharge = Transient

Drain = Same as surface elevation

5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. In this

case, we do not use particles to depict the flow line. Since we defined the recharge as

“transient”, the solution is obtained using “transient” mode.

6. Contaminant Zones: No particles used.

7. Profile Model: We defined two profile models. In the profile models, the water table

was obtained from the horizontal model. The profile models were defined diagonally

across the domain as shown above.

8. Transient or Steady-State: The solution is obtained using “transient” mode.

9. Grid Size: We discretized the model with 50 x 37 cells, which gives a cell dimension

of 10.27 meters x 10.45 meters, approximately.
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10.1.6 Pumping Well

1. Domain: 26.25 ft x 52.49 ft (8 m x 16 m)

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Middle Aquifer Layer: 1.8 m x 8 m (This zone needs to correspond with the well

screen since it is the only layer turned on).

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Parameter values: We assigned a conductivity value of 103.68 m/day in the

lower aquifer layer. The upper layers were assigned as “inactive”.

scatterpoint -> , d- scatterpoint
 

59.57

well 7 g ;

\ INACTIVE .

  
 

 

well

screen

INACT IVE

INACTIVE

INACT IVE .

scatterpoint
9‘ scatterpount

Figure 10.9 Pumping well
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3. Boundary Conditions: Scatterpoints were used to depict the thickness of the aquifer

expanding radially. The thickness was assigned by using the “top of aquifer” and

“bottom of aquifer” inputs. Scatterpoints at the edge of the model were given a thickness

value of 50.265 meters and in the center 0.314 meters. Boundary conditions were

assumed to be no-flow for the bottom and top of the lower aquifer. The cast and west

boundaries are also no-flow boundaries, except where the well screen is located.

4. Internal Sources/Sinks: We assigned the lower well zone a negative recharge value

of -96.4 m/day. The area of the zone is 0.09 m2 (0.05 x 1.8). For a pumping rate of -

8.676 m3/day.

5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. The

solution for this problem is a transient-state solution. Since we calculate the zone mass

balance over time, we run the model in transient mode.

6. Contaminant Zones: Particles were not used in this model.

7. Profile Model: Since this is a cross-sectional or vertical model, we do not define a

profile model.

8. Transient or Steady-State: The solution was obtained using the “transient” mode, so

that we can obtain the cumulative volume of the water pumped in the water balance.

9. Grid Size: We discretized the model with 161 x 161 cells, which gives a cell

dimension of 0.05 meters x 0.1 meters, approximately. When using particles whether for

visualization or for contamination, the model must be finely discretized.

10. Static Profiles: No static profiles were done for this model.
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10.1.7 Well Head Protection Area

1. Domain: 7200 ft x 5400 ft.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Plume zone: (914.4, 457.2), (944.88, 444.95), (975.36, 365.76), (944.88, 286.57),

(914.4, 274.32), (883.92, 286.57), (853.44, 365.76), (883.92, 444.95)

These points are located on an ellipse with semimajor axis =300fl and semiminor

axis = 200ft, centered at (914.4, 365. 76).

South river zone:

(0, O), (O, 60.96), (2194.56, 60.96), (2194.56, 0, end)

North river zone:

(0, 1584.96), (0, 1645.92), (2194.56, 1645.92), (2194.56, 1584.96, end)

Parameter values:

Conductivity = 100 ft/day

Porosity = 0.3

3. Boundary Conditions: No flow for the lefi and right boundaries. Constant head

boundaries for the top and bottom boundary conditions.
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Figure 10.10 Well protection area

4. Internal Sources/Sinks: We have the following pumping rates (point source/sink) for

the wells:

Town Well = -500 gpm

Rural Well 1 = -100 gpm

Rural Well 2 = -100 gpm

Rural Well 3 = -200 gpm

South River: Stage = 5 meters

Leakance = 5 /day

Bottom Elevation = -30 meters

North River: Stage = 0 meters

Leakance = 5 /day

Bottom Elevation = -30 meters

5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. The

solution for this problem is a transient solution, since we place particles around the wells.

We run the model backwards in time to obtain the wellhead protection area.
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6. Contaminant Zones: Particles were placed around the well, using the default number.

7. Profile Model: We did not define a profile model.

8. Transient or Steady-State: The solution was obtained using the “transient” mode.

9. Grid Size: We discretized the model with 30 x 40 cells, which gives a cell dimension

of 51.44 meters x 52.25 meters, approximately. When using particles whether for

visualization or for contamination, the model must be finely discretized. We used a time

step of 10 days.

10. Static Profiles: No static profiles were done for this model.
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10.1.8 Random Walk

1. Domain: 1000 it x 500 it.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Parameter values: Conductivity = 20 m/day

Particle Zone: (100, 200), (100, 300), (200, 300), (200, 100, end)

 

4760 days

 

 
.999
   

          :400 .0 0(m) . 800 .00
 

Figure 10.11 Random walk

4. Internal Sources/Sinks: The plume region is considered an “instantaneous” source.

We used polylines for the constant head boundaries on the left and right sides.

Left polyline = 2 meters

Right polyline = 0 meters

5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. The

solution for this problem is a transient-state solution, since we observe the

plume/particles moving.

6. Contaminant Zones: Particles were used by picking “Random Walk” as the

contaminant transport method.

Local dispersivity: Longitudinal = 1 meter

Transversal = 0.1 meter

Vertical = 0.0 meter
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7. Profile Model: We did not define a profile model.

8. Transient or Steady-State: The solution was obtained using the “transient” mode.

9. Grid Size: We discretized the model with 50 x 25 cells, which gives a cell dimension

of20.4 meters x 20.8 meters, approximately. When using particles whether for

visualization or for contamination, the model must be finely discretized.

10. Static Profiles: No static profiles were done for this model.

11. Water Balance: The zone balance was not calculated for this example.
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10.1.9 Numerical Dispersion and Hierarchical Modeling

1. Domain: 7200 it x 5400 ft.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Plume zone: (914.4, 457.2), (944.88, 444.95), (975.36, 365.76), (944.88, 286.57),

(914.4, 274.32), (883.92, 286.57), (853.44, 365.76), (883.92, 444.95)

Thesepoints are located on an ellipse with semimajor axis =300ft and semiminor

axis = 200ft, centered at (914.4, 365.76).

 

South river zone:

(0, 0), (O, 60.96), (2194.56, 60.96), (2194.56, 0, end)

North river zone:

(0, 1584.96), (0, 1645.92), (2194.56, 1645.92), (2194.56, 1584.96, end)

Parameter values:

Conductivity = 100 ft/day

Porosity = 0.3
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Figure 10.12 Numerical dispersion

4. Internal Sources/Sinks: We have the following pumping rates (point source/sink) for

the wells:

Town Well = -500 gpm

Rural Well 1 = -100 gpm

Rural Well 2 = -100 gpm

Rural Well 3 = -200 gpm

South River: Stage = 5 feet

Sediment conductivity = 0.1 m/day

Sediment thickness = River bot elev. - aquifer top elev.

Bottom Elevation = -30 feet

North River: Stage = 0 feet

Sediment conductivity = 0.1 m/day

Sediment thickness = River bot elev. — aquifer top elev.

Bottom Elevation = -30 feet
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5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. The

solution for this problem is a transient-state solution, since we observe the

plume/particles moving.

6. Contaminant Zones: We have one contaminant zone, which we represented as a

plume and with particles. We used MMOC for the plume, and forward particle tracking

for the particles. Both zones used the coordinates for the “plume zone” listed above.

7. Profile Model: We did not define a profile model.

8. Transient or Steady-State: The solution was obtained using the “transient” mode.

9. Grid Size: We discretized the parent model with 100 x 77 cells, which gives a cell

dimension of 21 .6 meters x 21.7 meters, approximately. We discretized the child model

with 100 x 120 cells, which gives a cell dimension of 4.5 meters x 4.5 meters,

approximately. When using particles whether for visualization or for contamination, the

model must be finely discretized. We then ran the model and viewed the sub-model

output ofthe child model, which is more accurate.

10. Static Profiles: No static profiles were done for this model.

11. Water Balance: The water balance was not calculated for this example.
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10.1.10 Hierarchical Modeling

1. Domain: 7200 ft x 5400 ft.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Plume zone: (914.4, 457.2), (944.88, 444.95), (975.36, 365.76), (944.88, 286.57),

(914.4, 274.32), (883.92, 286.57), (853.44, 365.76), (883.92, 444.95)

These points are located on an ellipse with semimajor axis =300ft and semiminor

axis = 200ft, centered at (914.4, 365.76).

South river zone:

(0, 0), (0, 60.96), (2194.56, 60.96), (2194.56, 0, end)

North river zone:

(0, 1584.96), (0, 1645.92), (2194.56, 1645.92), (2194.56, 1584.96, end)

Parameter values:

Conductivity = 100 ft/day

Porosity = 0.3
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Figure 10.13 Hierarchical modeling

4. Internal Sources/Sinks: We have the following pumping rates (point source/sink) for

the wells:

Town Well = -500 gpm

Rural Well 1 = -50 gpm

Rural Well 2 = -100 gpm

Rural Well 3 = -200 gpm

South River: Stage = 5 feet

Sediment conductivity = 0.1 m/day

Sediment thickness = River bot elev. — aquifer top elev.

Bottom Elevation = -30 feet

North River: Stage = 0 feet

Sediment conductivity = 0.1 m/day

Sediment thickness = River bot elev. — aquifer top elev.

Bottom Elevation = -30 feet
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5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. The

solution for this problem is a transient-state solution, since we observe the

plume/particles moving.

6. Contaminant Zones: We have one contaminant zone, which we represented as a

plume and with particles. We used MMOC for the plume, and forward particle tracking

for the particles. Both zones used the coordinates for the “plume zone” listed above.

Plume concentration = 550 ppm (instanteous source)

7. Profile Model: We did not define a profile model.

8. Transient or Steady-State: The solution was obtained using the “transient” mode.

9. Grid Size: We discretized the parent model with 100 x 77 cells, which gives a cell

dimension of 21 .6 meters x 21.7 meters, approximately. We discretized the child model

with 200 x 97 cells, which gives a cell dimension of4.4 meters x 4.5 meters,

approximately. We discretized the grandchild model with 160 x 82 cells, which gives a

cell dimension of 2.8 meters x 2.9 meters. When using particles whether for visualization

or for contamination, the model must be finely discretized. We then ran the model and

viewed the sub-model output ofthe child model, which is more accurate.

10. Static Profiles: No static profiles were done for this model.

11. Water Balance: The water balance was not calculated for this example.
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10.1.11 Advection only, decay, partitioning, and dispersion of a migrating plume

1. Domain: 7200 it x 5400 ft.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Plume zone: (914.4, 457.2), (944.88, 444.95), (975.36, 365.76), (944.88, 286.57),

(914.4, 274.32), (883.92, 286.57), (853.44, 365.76), (883.92, 444.95)

These points are located on an ellipse with semimajor axis =300fl and semiminor

axis = 200ft, centered at (914. 4, 365.76).

South river zone:

(0, 0), (0, 60.96), (2194.56, 60.96), (2194.56, 0, end)

North river zone:

(0, 1584.96), (0, 1645.92), (2194.56, 1645.92), (2194.56, 1584.96, end)

Parameter values:

Conductivity = 100 ft/day

Porosity = 0.3
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Figure 10.14 Advection only, decay, partitioning, and dispersion of a migrating

plume

4. Internal Sources/Sinks: We have the following pumping rates (point source/sink) for

the wells:

Town Well = -500 gpm

Rural Well 1 = ~100 gpm

Rural Well 2 = -100 gpm

Rural Well 3 = -200 gpm

South River: Stage = 5 feet

Sediment conductivity = 0.1 m/day

Sediment thickness = River bot elev. - aquifer top elev.

Bottom Elevation = -30 feet

North River: Stage = 0 feet

Sediment conductivity = 0.1 m/day

Sediment thickness = River bot elev. — aquifer top elev.

Bottom Elevation = -30 feet
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5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. The

solution for this problem is a transient-state solution, since we observe the

plume/particles moving.

6. Contaminant Zones: We used MMOC for the numerical method oftracking the

plume.

Plume concentration = 500 ppm (instantaneous source)

Advection only: No additional parameter values required.

Decay: Decay = 0.005 /day

Partitioning: Partitioning coefficient = 1 mL/g

Dispersion: Longitudinal = 100 m

Transversal = 5 m

7. Profile Model: We did not define a profile model.

 

8. Transient or Steady-State: The solution was obtained using the “transient” mode.

9. Grid Size: We discretized the parent model with 100 x 77 cells, which gives a cell

dimension of 21.6 meters x 21.7 meters, approximately. We only show the advection

case.

10. Static Profiles: Static profiles were obtained for each example. The data was then

exported to an excel file. A graph with the different effects was then created.
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10.1.12 Deterministic heterogeneity using random walk and multiple models

Multiple Models: Create a template model (i.e. model that has the basic same

parameters and boundary conditions), then click on the “multiple models” button in IGW.

In this case we formed two models. Since random walk uses particles and plume

representation, we show two ofthe same multiple models (side by side) (see Figure

below).

1. Domain: 1000 m x 500 m.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Parameter values: Conductivity (outside of lenses and fingering) = 20 m/day

Fingering: Arbitrary coordinates were chosen.

Conductivity (in fingering formation) = 0.1 m/day

Lenses: Arbitrary coordinates were chosen.

Conductivity (in lenses) = 0.1 m/day

Particle Zone: (100, 200), (100, 300), (200, 300), (200, 100, end)
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Figure 10.15 Deterministic heterogeneity using random walk and multiple models
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4. Internal Sources/Sinks: The plume region is considered an “instantaneous” source.

We used polylines for the constant head boundaries on the left and right sides of each

model.

Left polyline = 2 meters

Right polyline = 0 meters

5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. The

solution for this problem is a transient-state solution, since we observe the

plume/particles moving.

6. Contaminant Zones: Particles were used by picking “Random Walk” as the

contaminant transport method.

7. Profile Model: We did not define a profile model.

8. Transient or Steady-State: The solution was obtained using the “transient” mode.

9. Grid Size: We discretized the model with 200 x 201 cells, which gives a cell

dimension of 5 meters x 5 meters, approximately. When using particles whether for

visualization or for contamination, the model must be finely discretized.

10. Static Profiles: No static profiles were done for this model.
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10.1.13 Log hydraulic conductivity represented as a variable random field.

Multiple Models: Create a template model (i.e. model that has the basic same

parameters and boundary conditions), then click on the “multiple models” button in IGW.

In this case we formed four models.

1. Domain: 1000 m x 500 m.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Parameter values:

Random Conductivity (starting in the upper left hand corner and proceeding

clockwise) = 20 m/day (given average value for each model)

Upper Left Corner

Random => Scale 1

Spectral Algorithm

,1, = 1y =10

(Variance) 0'2= l

Exponential Model

Angle = 90

Nugget = 0.01

Scale 2

Spectral Algorithm

A, = 1y = 100

(Variance) 02 = O

Exponential Model

Angle = 90

Nugget = 0.01

The overall variance is then obtained by summing the variances for each scale. In

this case (upper left hand corner), we have a variance of 1.

Upper Right Corner

Random => Scale 1

Spectral Algorithm

,1, = 1y =10

(Variance) 0'2 = 1

Exponential Model

Angle = 90

Nugget = 0.01

Scale 2

Spectral Algorithm

xix = 11y = 100

(Variance) 0'2: 1

Exponential Model

Angle = 90

Nugget = 0.01

The overall variance is then obtained by summing the variances for each scale. In

this case (upper left hand comer), we have a variance of 2.

Lower Right Corner

Random => Scale 1

Spectral Algorithm

Scale 2

Spectral Algorithm
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lx=ly=10 lx=ly=100

(Variance) 02= 1 (Variance) 0'2= 2

Exponential Model Exponential Model

Angle = 90 Angle = 90

Nugget = 0.01 Nugget = 0.01

The overall variance is then obtained by summing the variances for each scale. In

this case (upper left hand comer), we have a variance of 3.

Lower Left Corner

Random => Scale 1 Scale 2

Spectral Algorithm Spectral Algorithm

Ax=ly=10 Ax=ly=100

(Variance) 0'2 = 1 (Variance) 0'2 = 3

Exponential Model Exponential Model

Angle = 90 Angle = 90

Nugget = 0.01 Nugget = 0.01

The overall variance is then obtained by summing the variances for each scale. In

this case (upper left hand comer), we have a variance of4.

Particle Zone: (100, 200), (100, 300), (200, 300), (200, 100, end)

 

  mono A m

’ " .~ , Steady Flow. Time Elapsed - 1810 days (4.96 years)-

 

Figure 10.16 Log hydraulic conductivity
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4. Internal Sources/Sinks: The plume region is considered an “instantaneous” source.

We used polylines for the constant head boundaries on the left and right sides of each

model.

Left polyline = 0 meters

Right polyline = -2 meters

5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. The

solution for this problem is a transient-state solution, since we observe the

plume/particles moving.

6. Contaminant Zones: We picked 50 particles in the zone and used forward particle

tracking.

7. Profile Model: We did not define a profile model.

8. Transient or Steady-State: The solution was obtained using the “transient” mode.

9. Grid Size: We discretized the model with 200 x 100 cells, which gives a cell

dimension of 10.2 meters x 10.2 meters, approximately. When using particles whether

for visualization or for contamination, the model must be finely discretized.

10. Static Profiles: No static profiles were done for this model.
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10.1.14 Macrodispersion versus local dispersion using effective parameters

Multiple Models: Create a template model (i.e. model that has the basic same

parameters and boundary conditions), then click on the “multiple models” button in IGW.

In this case we formed two models.

1. Domain: 1000 m x 500 m.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Parameter values:

Upper Model:

Conductivity = 20 m/day

Porosity = 0.3

Local dispersivity (macrodispersion for this case):

Longitudinal = 20 meters

Transversal = 3.25 meters

Vertical = 0 meters

Lower Model:

Random Conductivity = 20 m/day (given average value for each model)

Random => Scale 1 Scale 2

Spectral Algorithm Spectral Algorithm

xix=ly=10 xix=2y=10

(Variance) 0'2= 1 (Variance) 0'2: 1

Exponential Model Anistropic Bell Model

Angle = 90 Angle = 90

Nugget = 0.01 Nugget = 0.01

The overall variance is then obtained by summing the variances for each scale. In

this case (lower model), we have a variance of 2.

Porosity = 0.3

Local dispersivity (macrodispersion for this case):

Longitudinal = 10 meters

Transversal = 1 meters

Vertical = 0 meters
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Particle Zone (used in template model): (100, 200), (100, 300), (200, 300),

(200, 100, end)

suadyFlolemeElapeed-Mdayanzsm 
Figure 10.17 Macrodispersion versus local dispersion using effective parameters

4. Internal Sources/Sinks: The plume region is considered an “instantaneous” source.

We used polylines for the constant head boundaries on the left and right sides of each

model.

Left polyline = 0 meters

Right polyline = -2 meters

5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. The

solution for this problem is a transient-state solution, since we observe the

plume/particles moving.

6. Contaminant Zones: We picked 50 particles in the zone and used forward particle

tracking.

7. Profile Model: We did not define a profile model.

8. Transient or Steady-State: The solution was obtained using the “transient” mode.
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9. Grid Size: We discretized the model with 100 x 100 cells, which gives a cell

dimension of 10.1 meters x 10.2 meters, approximately. When using particles whether

for visualization or for contamination, the model must be finely discretized.

10. Static Profiles: No static profiles were done for this model.

220

 



10.1.15 Waste pond model with individual fractures

1. Domain: 2000 ft x 700 fi.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Parameter values:

Porous medium zone (outside of sand lenses):

(39.624, 30.48), (82.296, 167.64), (112.776, 176.784), (213.36, 176.784), (228.6,

173.736), (243.84, 164.592), (304.8, 152.4), (365.76, 164.592), (381.0, 173.736),

(396.24, 176.784), (609.6, 176.784), (609.6, 30.48, end)

Random Conductivity = 10'7 cm/sec (given average value-glacial till)

Random => Scale 1 Scale 2

Spectral Algorithm Spectral Algorithm

Ax=ly=10 Zx=xly=10

(Variance) 0'2= 1 (Variance) 0'2= 1

Exponential Model Anistropic Bell Model

Angle = 90 Angle = 90

Nugget = 0.01 Nugget = 0.01

The overall variance is then obtained by summing the variances for each scale. In

this case (lower model), we have a variance of 2.

Porosity = 0.4

Local dispersivity (macrodispersion for this case):

Longitudinal = 10 meters

Transversal = 1 meters

Vertical = 0 meters

Waste pond zone (contaminant zone):

(228.6, 173.736), (243.84, 164.592), (304.8, 152.4), (365.76, 164.592), (381.0,

173.736, end)

Lake: (0,0), (0,167.64), (82.296, 167,64), (39.624, 30.48), (3048,1524, end)

Sand lenses:

Upper left lens (ellipse centered at 700, 350):
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(152.4, 106.68), (182.88, 113.28), (213.36, 114.3), (243.84, 113.28), (274.32,

106.68), (243.84, 100.08), (213.36, 99.06), (182.88, 100.08, end)

Lower Middle lens (ellipse centered at 800, 250):

(182.88, 76.2), (213.36, 82.80), (243.84, 83.82), (274.32, 82.80), (304.8, 76.2),

(274.32, 69.60), (243.84, 68.58), (213.36, 69.60, end)

Upper right lens (ellipse centered at 1200, 375):

(304.8, 114.3), (335.28, 120.90), (365.76, 121.92), (396.24, 120.90), (426.72,

114.3), (396.24, 107.70), (365.76, 106.68), (335.28, 107.70, end)

Conductivity (sand lenses) = 0.1 cm/sec

Porosity =

Limestone aquifer zone:

(0, 0), (30.48, 15.24), (39.624, 30.48), (609.6, 30.48), (609.6, 0, end)

Conductivity (limestone aquifer) = 104 cm/sec

Porosity = 0.15
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Figure 10.18 Waste pond model with individual fractures

4. Internal Sources/Sinks: The plume region is considered an “instantaneous” source.

We used polylines for the constant head boundaries on the left and right sides of each

model. We also use polylines to construct the fractures.

Left polyline (along lake boundary) = 550 feet

Right polyline (in limestone aquifer) = 552 feet

Fracture polylines: polyline feature in IGW choose "Model polyline as a fracture" in the

Hydraulic Conductivity section in the IGW interface and use the fracture width of 0.01 m
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5. Run Flow Model/Add Particles: The flow pattern can be obtained at this step. The

solution for this problem is a transient-state solution, since we observe the

plume/particles moving.

6. Contaminant Zones: The waste pond is the contaminant zone. It has a concentration

of 100 ppm and is a continuous source.

7. Profile Model: We did not define a profile model.

8. Transient or Steady-State: The solution was obtained using the “transient” mode.

9. Grid Size: We discretized the model with 100 x 53 cells, which gives a cell

dimension of 4.1 meters x 4.2 meters, approximately. When using particles whether for

visualization or for contamination, the model must be finely discretized.

10. Static Profiles: No static profiles were done for this model.

223

 



10.1.16 Probability Model

1. Domain: 7200 it x 5400 ft.

2. Zones and Parameter Values: Constructed the following zones (with coordinates)

and assign parameter values:

Porous Medium (IGW currently only allows units of meters to be entered):

In order to keep units of feet, we convert feet to meters for entry of coordinates.

Plume zone: (914.4, 457.2), (944.88, 444.95), (975.36, 365.76), (944.88, 286.57),

(914.4, 274.32), (883.92, 286.57), (853.44, 365.76), (883.92, 444.95)

Thesepoints are located on an ellipse with semimajor axis =300fi and semiminor

axis = 200ft centered at (914.4, 365.76).

South river zone:

(0, 0), (0, 60.96), (2194.56, 60.96), (2194.56, 0, end)

 

North river zone:

(0, 1584.96), (0, 1645.92), (2194.56, 1645.92), (2194.56, 1584.96, end)

Lake: (807.41, 923.32), (745.30, 879.53), (716.07, 832.03), (712.42, 788.29),

(737.99, 759.09), (814.21, 737.20), (891.44, 722.60), (946.24, 733.55), (1008.35,

744.50), (1081.41, 773.69), (1110.64, 817.49), (1121.60, 853.98), (1096.03,

897.77), (1052.19, 934.27), (960.85, 956.17), (880.48, 948.87, end)

Parameter values:

Conductivity 100 ft/day (average)

Porosity = 0.3

3. Scatterpoint data

For this step we must create the data using scatterpoints. So, we sample randomly 150

different points in a somewhat arbitrary sub-region ofthe overall model. This region is

the predicted area that the plume will travel.

 
A. We first create the random field for the entire domain.

 Random Conductivity = 100 fi/day

Random => Scale 1 Scale 2

Spectral Algorithm Spectral Algorithm

Ax=ly=10 Ax=ly=100

(Variance) 0'2= l (Variance) 0'2: 0

Exponential Model Anistropic Bell Model

Angle = 90 Angle = 90
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Nugget = 0.01 Nugget = 0.01

The overall variance is then obtained by summing the variances for each scale. In this

case, we have a variance of 1.

B. Then select the polygon for the sub-region.

C. Then, in the file "Utilitiy", we select “Random Sampling” with 150 data points.

D. IGW then returns a table (ScatterPoints.csv file) with the data points. We then save

the data in the same file directory as the main model.

B. We then re- open the main model and input the ScatterPoints.csv file for the sub-

region zone. By right clicking on a scatterpoint we can select "Switch List" to enable

conditioning on the data points, Then we can select the newly formed group of

conditional points and obtain another menu, which includes the different interpolatory

schemes and exploratory data analysis. (Notice in the figure below that the random

field in the sub-region is created from the scatterpoints in the sub-region area.)

 

 
Figure 10.19 Probability model

4. Exploratory Data Analysis: At this point we can view the exploratory data analysis

ofthe scatterpoints as well as view the experimental variogram. The exploratory data

analysis gives a variety of statistics for the scatterpoint data such as the maximum,

minimum, mean, median, mode, variance, standard deviation, skewness, coefficient of
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variance, the lower quantile 25%, and the upper quantile 75%. It also show the

histogram, PDF, CDF, and h-scatterplot ofthe data points. The variogram gives insight

into whether or not the data (such as conductivity data in this case) is nonstationary or

stationary.

Model-direction 1 (angle-90)

0 Experimental data —direction1
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Figure 10.20 Variogram

5. Internal Sources/Sinks: The plume region is considered an “instantaneous” source.

We have the following pumping rates (point source/sink) for the wells:

Town Well = -500 gpm

Rural Well 1 = -100 gpm

Rural Well 2 = -100 gpm

Rural Well 3 = -200 gpm

South River: Stage = 5 feet

Sediment conductivity = 0.1 m/day

Sediment thickness = River bot elev. - aquifer top elev.

Bottom Elevation = -30 feet

North River: Stage = 0 feet

Sediment conductivity = 0.1 m/day

Sediment thickness = River bot elev. — aquifer top elev.

Bottom Elevation = -30 feet

6. Run Flow Model/Add Particles: The flow pattern can be obtained at this step, but for

there are a couple of extra steps for performing a Monte Carlo simulation. The solution

for this problem is a transient-state solution, since we observe the plume/particles

moving.

A. For a Monte Carlo simulation, we first chose a “conditional simulation” and the

“spectral approach” in the menu for the conditional data points.

B. Then under the “Solver” menu, we chose a Monte Carlo simulation with 100

realizations.
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We also placed a static profile to obtain the concentration over distance in each ofthe

realizations.

The time step was set to 40 days for duration of4800 days (13.15 years). We viewed

the results at 4800 days for each realization.

Specify that the “Means and Variances” should be calculated.

Add monitoring wells to obtain the different post statistics and breakthrough curves.

We selected the options to "Monitor head and concentration" and to "Monitor

probability distribution".

Monitoring Well 1 is located at (727.031, 733.547).

Monitoring Well 2 is located at (836.634, 547.423).

.
5

.
0

7
’
1
!
“

6. Contaminant Zones: We used MMOC for the numerical method oftracking the

plume.

Plume concentration = 500 ppm (instantaneous source)

7. Profile Model: We did not define a profile model.

8. Transient or Steady-State: The solution was obtained using the “transient” mode.

9. Grid Size: We discretized the model with 200 x 154 cells, which gives a cell

dimension of 10.7 meters x 10.8 meters, approximately. When using particles whether

for visualization or for contamination, the model must be finely discretized.

10. Results and Static Profiles: We obtained the following various results.

A. We obtained the “Means and Variances” graph, which shows the probability of

the plume passing through a particular point.

B. We obtained the experimental probability density firnction (PDF), the cumulative

distribution function (CDF), and the process for the hydraulic head, conductivity,

and concentration.

C. For the concentration, we obtained the concentration breakthrough curves at the

different monitoring wells.

D. After the 100 realizations were finished we ran a couple more simulations to show

interesting static profiles graphs from model.
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10.2Appendix B

Matlab code with associated sinusoidal curves.

clear all;

x=0:500:20000;

m=size(x)

u=pi/100;

a=100;

A=a/cos(u);

A_=2*A;

b=22/20000

B=b/cos(u);

C=tan(u);

zO=1000;

i=1 :41;

f(i)=zO+C*x+A*sin(B*x);

g(i)=zO+C*x+A_*sin(B*x);

plot(12*2.54*x./100,12*2.54*f./100)

hold on

plot(12*2.54*x./100,12*2.54*g./100,'r')

axis tight;

T=zeros(4l ,2)

U=zeros(41,2)

T(:,1)=12*2.54*x'./100;

T(:,2)=12*2.54*f./100;

U(:,1)=12*2.54*x'./100;

U(:,2)=12*2.54*g'./100;

T

U
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