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ABSTRACT

Analysis of the Spectrum of the Single Integral Equation for Scattering
from Dielectric Objects
By

Jun Yuan

Surface integral equations are widely used to analyze electromagnetic scattering
from a dielectric object residing in free space. Methods for analyzing scattering
from dielectric bodies have largely relied on either the PMCHWT or the Miiller
formulations. It is well known that the PMCHWT formulation result in a first kind
Fredholm integral equation, is not well-conditioned and leads to slow convergence.
The Miiller formulation, on the other hand, results in a second-kind integral equation
and is well-conditioned as the hyper-singular terms nearly cancel for low-contrast
ratios. However, the Miiller formulaltion is not very accurate for very high-contrast
materials. Alternatively, it has been shown that scattering from a dielectric body can
be computed using a single unknown and a set of cascaded equations, viz., the single
integral equation (SIE) [1]. Existing literature [2] has reported that the condition
number of the impedance matrix is excellent. However, no work has been attempted
to analyze the convergence and uniqueness of the SIE operator. In this thesis, a
detailed analysis is carried out to reveal the underlying mathematical properties of
the operator. It will be shown that this operator does not produce unique solutions
at internal resonance frequencies. Nomnetheless, we suggest a method to overcome
spurious resonances and propose an integral equation that is accurate for arbitrary

material contrast ratios, while still preserving its well-conditioned nature.
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CHAPTER 1

INTRODUCTION

Analysis of electromagnetic scattering from arbitrary shaped three-dimensional (3-
D) homogeneous or layered homogeneous dielectric bodies is of considerable interest
and is largely motivated by possible application in the society of computational elec-
tromagetics, due to the wide application of materials in a variety of radar targets.
The early studies focused mainly on spherical or nearly spherical scatterers by using
classical analysis. But in many applications the scatterer is an arbitrarily shaped
3-D object. For dielectric objects with a surface of arbitrary shape, one has to re-
sort to some approximate numerical techniques based on either integral or differen-
tial equations. Recent developments in the field of computational electromagnetics
(CEM) have greatly expanded the palette of analysis tools to include problems in
which the boundary conditions or the shape of the scatterer makes previous classical
mathematical approaches intractable. Surface integral equations are often preferred
for homogeneous or layered homogeneous objects, as they permit the use of surface
equivalent currents. Compared with volume integral equations, the computational
cost is greatly reduced from O(N3) to O(N2).

However, the efficiency of this method depends heavily on the mathematical for-
mulation. Given the fact that the CEM engineers need to solve practical problems
of millions of unknowns, it is essential that the formulation yield a well-conditioned
matrix system, so that the solution can converge to an accurate result rapidly. On
the other hand, the formulation should yield a unique solution. In other words, the
mathematical model should produce unique results at all frequencies.

An overview of the mathematic models for analyzing the EM scattering from a

dielectric body of arbitrary shape is given in Chapter 2, including a description of



different integral equation approaches with an emphasis on the single integral equation
(SIE) formulation.

Chapter 3 covers the MoM implementation of the SIE scheme. Details of the
method are elaborated upon, especially, the basis functions used, and the method to
compute the inner product with the testing function. Also covered in Chapter 3 is
the adaptation of the FMM algorithm for this specific scenario. Numerical results
are illustrated at the end of this chapter, and these results are compared against the
solutions obtained either using the classic approach or using an extant numerical code
developed by Dr. Shanker Balasubramaniam at Michigan State University.

The spectral analysis of integral equation operator is introduced in Chapter 4.
The convergence properties of various equations are explained and illustrated in this
chapter. The spectrum of the peculiar SIE operator is investigated from the mathe-
matic perspective. As will be shown, the SIE operator does not yield unique solutions
at resonance frequencies. Hence, we proceed to devise an augmented SIE operator
and prove its validity thereafter.

Chapter 5 serves to conclude this thesis. Contributions to this research are dis-
cussed, along with future work necessary to expand the applicability of this new

scheme in handling the EM scattering phenomena.



CHAPTER 2

INTEGRAL EQUATIONS FOR SCATTERING FROM DIELECTRIC
BODIES

2.1 Definition of the dielectric scattering problem

Consider a homogeneous dielectric body of volume V', as shown in Figure 2.1, whose
Boundary is denoted by Q. Additionally, Q1 and Q" denote surfaces that are con-
formal to and lie just outside and inside 2, and i denotes the outward pointing
normal to Q. The regions inside (denoted as R;) and outside (denoted as Rg) Q are
characterized by material parameters (¢1, p1) and (g9, pg), respectively. Impressed
sources residing within R; produce incident electromagnetic fields electric and mag-
netic fields {Einc,Hinc}. The interaction of the incident fields with Q gives rise to
the scattered fields Eﬁcat (r), Hicat(r). The total fields {Et1°t, Hi‘)t} in R} comprise

both the incident and scattered fields, viz.,

Eiot (r) = Einc(r) + E?cat(r) (2.1a)

H{Yr) = H"(r) + H{(r) (2.1b)
Inside (, the fields are expressed by E%cat(r), Hacat'(r).

2.2 Surface Equivalence Theorem

The equivalence principle [1] is applied to the scattering problem from a dielectric
body, as illustrated by Figure 2.2. One can set up a problem equivalent to the original
problem external to  as follows. Let the original field exist external to §2, and the
null field internal to €2, while the whole region is characterized by (e1, p1). This

is shown in Figure 2.2(a). To support the scattered field, there must exist surface



currents J1, M; on 2 according to the continuity conditions across the boundary.

The currents therefore satisfy the constraints

Jy = i x [HP¢ 4+ H§Y (2.2a)

M, = [EC + ES) x (2.2b)

where 1 is an outward pointing normal. Since the currents radiate in unbounded

homogenous space, we can determine the scattered field using

E{°®(r) = mLy(J;) - K1 (My) (2.3a)
H (r) = Ky (J7) + 0y L1 (M) (2.3b)
where
Li{X}= —jkl/ I+ —I-VV Gi(r,r') - X(r') dS’ (2.4a)
Q k% ’
K{X} ﬁ/ V x [X(r')Gy(r,r")] dS’ (2.4b)
Q

I is the idem factor, or unit dyad.
Similarly, we can set up another equivalence for the field internal to €2 as shown

in Figure 2.2(b). Another set of equivalent currents Jo, Mo, prescribed by

Jo = —fi x HY® (2.5a)

M, = —Ef® x i (2.5b)

reside over 2 in the homogeneous space of (e9, u2), and produce the null field external



to 2 and the original field Egcat(r), H%cat(r) internal to Q, which is determined as

E5(r) = ngLo{Ja} — Ko{Mg} (2.6a)

H(r) = Ko{J2} + 75 Lo{ My} (2.6b)

Our specification of the null field internal/external to €2 is overly restrictive in the
preceding models. Any other field would serve equally well, given that the resulting
equivalent currents satisfy the field continuity constraints. Yet, our proposed choices
prescribe the complementary relation between the currents in Figure 2.2(a) and Figure

2.2(b), viz.,

J) = i x [H'C 4 H = (—fg) x HY® = —J, (2.7a)

M = [EC + Ef® x i = ES® x (—hg) = —My (2.7b)

due to the fact that

fi x [HI%¢ + H§®®Y = 4 x H§ (2.82)
it x [ERC + ES2Y) = i x E§°at (2.8b)

and
fig = —h (2.9)

is the normal vector inward to §2.
Using Egs. [2.3 - 2.6], the classical Poggio-Miller-Chang-Harrington- Wu-Tai (PM-
CHWT) formulation [2] is derived, leading to

fix EMC| 4 = —f x ES 4 +f x ES3Y . (2.10a)

fx HIZC| = —f o H 4 + 0 x HF® - (2.10b)



An alternate approach suggested by Miiller [3] is to scale the interior and exterior field
operators by the constitutive parameters and then subtract eqs. 2.5 from egs. 2.2,
representing the interior and exterior problems, respectively. The Miiller equations

read as

—A x EC| L = (1+a)Mj + i x (E§ 4 — oEF® o) (2.11a)

—Ax H 4 = — (14 6)J; +# x (H® 4 + SHF,) (2.11b)

where a = €9/¢1, and 3 = pg/u1, as chosen by Miiller in his construction of integral
equations.

This formulation has some advantages over the PMCHWT formulation for low
contrast materials (i.e., €, < 20). Specifically: 1) it behaves as a second-kind integral
equation; 2) the static terms of the L-operator in Eqs. 2.4 cancel in the limit as
|r — r'| — 0, effectively canceling the hypersingular term [3, pg. 300]; and 3) the
Miiller formulation has a lower condition number than the PMCHWT formulation

for moderate to low contrast materials.

2.3 Single Integral Equation

The coupled vector integral equations, PMCHWT and Miiller require one to solve
for a set of unknown equivalent electric and magnetic currents. Marx [4] developed,
in both the time and frequency domains, a single integral equation for scattering
problems involving homogeneous dielectric bodies. Glisson [5] elaborated upon the
technique for 3-D dielectric objects in the frequency domain using the techniques and
terms that EM researchers are more familiar with. Numerical demonstration was
recently reported by Yeung [6] and Tsang [7].

To determine the scattered field using SIE, we employ the equivalence principle to

develop two different models. For the same original problem, two models equivalent



in the external and internal regions, are illustrated in Figure 2.3. A model equivalent
to the exterior region is shown in Figure 2.3(a). In contrast to the classical model in
Figure 2.2(a), only a single current J g resides in the homogeneous medium (g7, ¢1) to
produce the correct scattered field external to 2. The equivalent source Jog, however,
is not unique unless the scattered field is specified internal to §2. In the approach
usually followed, the auxiliary field is set to 0. And J.g is uniquely determined by

— A inc scat

Jeff = 0 X [H‘ + H{™ (Jefr, 0)] 212

=h x H™® + i x K; {J.g}

Equivalence to the original problem inside 2 (Figure 2.3(b)), the sources are con-
structed by imposing (J9,M5). These sources radiate in a homogeneous medium
(e9,u9) and produce the correct scattered field inside Q2 and a null field outside (2.
Continuity of the true field is enforced to relate the equivalent currents J.g and

(J9,Mb3) using the relations,
A x & x E§® = 4 x & x [EPC + Ef (2.13)
i x H§® = A x [HPC 4 H{8Y (2.14)
Thus,

Jo=—axHF?| 4
= —i x [HPC 4 H§?Y | (2.15)

= —fi x H™ - & x K1 {Jeg} |+



Mg = —E5™' x |4

_ __[Einc + Eicat] % @i |n+ (2.16)

=-E™ xf- mLi{Jeg} x 0 |Q+

We may restate Eqs. 2.13 and 4.28 in terms of J.g as

i x i x E™C = h x fi x (n9Lo{J2} — K2{Ma} — mL1{Jeg})
x fi x (ngLg{—f x H® — & x K1{Jg}}
' (2.17)
— Ko{—E"° x i — g L1 {Jeg} x A}

- nlLl{Jeﬁ'})

- 1
fi x H™ = fi x (ELz{M2} +Ko{J2} - K1{Jeq})

1 .
n x —L2{—Emc X n— 'r)lLl{J } X ﬁ}
(nz off (2.18)
+ Ko{—f x H™ — i x K; {Jq}}

—Ki1{Jesr})

Rearranging both sides of eqn. 2.17 yields the EFIE equation

—nefixAxLo{AxKy{Jeg}}-naxaxKo{aixLi{Jeg}}-nnxiaxLi{Jeg} = Eqpg

(2.19)
where the term

E;ps = 0 x & x EP 4 nofi x i x Lo{f x H™ — & x i x Ko{E'™ x 4}} (2.20)

is the right-hand-side given by the incident field. Similarly, the MFIE equation can
be derived, leading to |

A x Ko{h x K1 {Jeg}} + %ﬁ x Lo{f x L1{Jeg}} — fi x K1{Jeg} = Hyy,s (221)



where
Hp, = & x H™ 4 A x Ko{A x H™} — %ﬁ x Ly{A x EI"¢} (2.22)

The unknown fields in Egs. 4.28 and 2.13 can be expressed in terms of integrals over
their respective sources. Then Eqgs. 2.15 and 2.16 give Jo and My in terms of the
single current Jg, and Egs. 2.19 or 2.21, or an appropriate linear combination of
these equations represents an integral equation to be solved for J.g.

In the next few chapters, we will investigate the desirable properties of the MFIE
equation (in eqn. 2.21). It will be shown that the MFIE equation is a second kind

integral operator (Appendix A).



=

- (en,p1)
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Figure 2.1. Homogeneous dielectric scattering object (c9, pg) embedded in the
medium (g7, pg).
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3 M;

(a) (b)
Figure 2.2. Equivalence principle models.
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CHAPTER 3

NUMERICAL SOLUTION USING THE METHOD OF MOMENTS

3.1 Method of Moments

The method of moments is employed to convert the MFIE into a matrix equation,
which can be algebraically solved to determine the unknown effective current [8]. The

general method of converting a linear integrodifferential equation

L{f(x)} = g(z) (3.1)

into a matrix equation is discussed here. The first step in converting the integral equa-
tion to a matrix equation is to expand the unknown in a finite number of subdomain

basis functions N

f(@) =Y aifpjlx) (3.2)

=1
Inserting this into the general equation and using the linearity of the operator £ result
in
n

> a;{fpj(x)} = g(x) (3.3)
j=1

The next step is to test this equation with a testing function set. The testing pro-
cedure is accomplished by taking the inner product of the equation with a testing
function. The inner product of two real functions is defined as the integral of their

product over their region of support,

b
()@ = [ fa) bia) do. (3.4)

12



Using this definition, eqn. 3.3 can be converted into N linear equations by testing it

with N different testing functions

(fri(@), Lij(@))a; = (frile). g(z)), i=1N (35)
j=1

The integral equation for the unknown continuous function f(z) has now been con-
verted into a system of N equations in N unknowns. The unknowns now are the

coeflicients of the basis functions, i.e., aj. Converting into matrix notation gives
L-a=g (3.6)
where L is an N x N matrix, and @ and § are N-dimensional vectors with elements

Ly = (fti(x), Lfp;(z)) (3.7)

and

gi = (fri(2). g(x))- (3.8)

The matrix L can now be inverted provided it is not singular. A necessary condition
to ensure a nonsingular matrix is the use of a set of independent basis function.
Many choices of basis and testing functions are possible. For this application, the
Galerkin testing procedure was chosen. For the Galerkin method, the basis and

testing functions are the same, i.e.,

gi = {fBi(2). 9(x))- (3.9)

In the specific application of the method of moments to the EFIE, the current on

the electrical body is treated as the unknown. This requires the definition of four

13



different types of basis functions, each to be used on a specific portion of the body.

These are described in the next section.

3.2 Current Basis Functions

The equation in 2.19 or 2.21 involve a set of cascaded operators, i.e., the output
of one operator serves as the feed of another operator. Numerical implementation
of the integral equation requires transforming the SIE 2.19 and 2.21 or 2.21 into a
matrix equation. To this end, the surface Q is discretized by a set of triangular
patches. Figure 3.1 shows an example of modeling a spherical surface. The mesh
tool is developed using MATLAB. The unknown effective current J.g is expanded
in terms of Rao-Wilton-Glisson (RWG) functions [9] associated with an edge i of
the triangulated surface. Figure 3.2 shows such a triangle pair. Points in Ti+ are

designated by the local position vector /3;"

pointing from the free vertex 0i+ of Ti+‘
Similar remarks apply to the position vector p; in T; except that it is directed toward
the free vertex opposite to the edge ¢ in T;.

A vector basis function f; associated with the ith edge is defined as

4
L o4 +
mpi , reT;
- (r) — §
KO- oA reh (3.10)
\ 0, otherwise

where [; is the length of the common edge ¢ and Aii are the areas of the triangles Tii,
respectively.
The effective current Jog is thus expanded in terms of f;
n

Jear(r) = 3 IETE (r) (3.11)

i=1

14



where N is the total number of edges in the triangular-patch model of 2 and Iieff are

the unknown current coefficients.

The basis function f; possesses very desirable properties that are described in [9].

1. The current has no component normal to the boundary (which excludes the

common edge) of the surface formed by the triangle pair Ti+ and T7, and hence

no line charges exist along this boundary.

. The component of current normal to the ith edge is constant and continuous
across the edge as may be seen with the aid of Figure 3.3, which shows that the
normal component of ﬁ'f along edge i is just the height of triangle Ti:t with edge
i as the base and the height expressed as 2A;t /1. This latter factor normalizes
f; in egqn. 3.10 such that its flux density normal to edge ¢ is unity, ensuring
continuity of current normal to the edge. This result, together with 1, implies

that all edges of Ti+ and T free of line charges

. The surface divergence of f;, which is broportional to the surface charge density

associated with the basis element, is

L reT?t
A !
Vs =4 _hi ccr (3.12)
A{ 1
0, otherwise

3.3 Projection and Inner Product

An important issue associated with the cascaded operators in eqn. 2.21 is the choice

of intermediate projection spaces for each operator product. If the effective current

3.11 were substituted directly into the single integral equation 2.21, the resulting

equation would be difficult to evaluate because of the cascaded integral operator

fi x Lo{fi x Li{*}}, which involves a hyper-singular component attributed to the

15



differential operator VV in eqn. 2.4. Instead, it is more convenient to expand the
arguments of the integral operators in 2.15 and 2.16 using the vector basis function

f;. Hence, 2.15 and 2.16 can be rewritten as

n
—f x [HIBC 4 Hicat] |t = Z It (3.13)
i=1

. n
—[EinC 4 Eicat] % @i |Q+ - Z Imf; (3.14)
i=1

where chat and Egcat’ are given by egs. 2.15 and 2.16, and (If, Ij*) are the inter-
mediate expansion coefficients.

Employing simple verctor identities, we obtain

[Hinc(r+) + H?Cat(u)] Ly =h- {—ﬁ X [Hinc(r+) + H?Cat(ﬁ)] X li}

n
=fi- ef. .
=i Z I£5(r) x | (3.15)
=1
n
=) F( xn)- fi(r)
j=1

where ]; has been chosen in such a way that if a right-hand screw through the triangle
Ti+ were rotated in the sense of the vector l;, it would advance in the direction of the
unit normal i to Ti+’ The quantity (l; x f) - f(r) in eqn. 3.15 is the component of f;
normal to the ith edge. Since the assumption is made that r is infinitesimally close
to the edge ¢, this term vanishes but for j = i. Therefore, eqn. 3.15 reduces to

[H"(r,) + HS®(r,)] -y = I5(); x 1) - f(r) (3.16)

1

As stated in Sec. 3.2, the ‘.’ product on the right-hand side (RHS) of 3.16 is the

component of the vector basis function f; normal to the associated edge ¢, and has

16



a constant value across the edge. Furthermore, this value is independent of position
along l;. On the other hand, the left-hand side (LHS) of eqn. 3.16 varies along ;.
Nonetheless, the relation can be satisfied in an average sense by integrating both sides
of this equation along the common edge i. Therefore, the expansion coefficients Iie of

the intermediate equivalent electric current can be expressed as

1 : :
=7 [ )+ HE)
1J1n
h - (3.17)
=+ [ H{(re) - Ldl+hg
L Jip ’

where hq j is due to the incident electric field.
Similarly, the the expansion coefficients I ie of the intermediate equivalent magnetic

current are given by

1

™= —% / [E™(r,) + E}?(r,)] - ; dl
11 In (3.18)
1 ln

where €( ; is due to the incident magnetic filed.

3.4 Construction of the Moment-Method Matrix

In order to solve the problem using the method of moments, one needs to choose the
proper testing functions and evaluate the inner product of the field with the testing
functions. An advisable testing procedure is to choose the unit vector 1; and the inner

product with a given integrodifferential operator C{t}} is defined to satisfy
< li,E{f}} >= 11/1 li-ﬁ{fj} dl (3.19)
1JIn

With the given inner product, the intermediate expansion coefficients Iie and Iim
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are computed from the coefficients of the effective current / jeﬁ‘

I W [Ieﬂ'] (3.20)
Ib ZWwh '

where [I€], [I™] and [I®ff] are length-N column vectors of the respective coefficients,
and [ZW®) and [ZWD] are N x N matrices, the entries of which are determined by

the pre-defined integral operators in eqn. 2.4 and egs. 3.17 and 3.18
Z‘/Vig =ai/2ﬂ'(sij _(lnéij)l/li‘/‘ / li'[ftj(rl) xVGl(r—r')]dS' dl
L Tj
4 ]Qlu'l / !
zwp - -4 /1 [F k- ()G (r — ') dS' dl (3.21)
1 J
~il9s [ V' @)(G(ra 1) - G1a? — )] a5
J
where q; is the angle between the planes of the triangles Ti+ and T; measured in the
exterior region, Tj = 7}+ + ’I; and 5ij is the Kroneck delta function. Also, rf‘ and r%’

are the two endpoints of the edge i, such that the unit vector I; points from rib to ria.

G1(r —r') is the Green’s function for the exterior region
Gi(r—r') = eIk Ir — r'|/47|r — ¥'| (3.22)

where k1 is the wavevector in the exterior region.

Applying the same procedure to the MFIE equation 2.21, one can construct the
moment-method matrix equation
ZW*®

(18] — 12w [1°6]] =lhg] + [2U%)[Ro]

[ ZUe zym ]
Zwh (3.23)

= [2U™[eo]
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In the above equation, hg and eg are the length-N excitation vectors, the elements

= /1 H"(r) . I; dl
i

of which are obtained as

. (3.24)
€0.1 = / Emc(r) . li dl
b li
ZU® and ZU™ are N x N matrices, with the entries
ZUS = - ai/27r(5ij + (1 - dij)l/li/ / li . [f:](r') X VGQ(I‘ - r')]dS’ dl
ZU{]-I:l - JQe1/4 / / r')Go(r — r') dS' dl (3.25)

lQM1/ V' f(r') [Go(rf — 1) — Gl(r -r')] dS

3.5 Augmenting with the Fast Multipole Method

It is well known that the computational costs and the memory of classical MOM
solvers that are augmented by FMM schemes scale as O(Nglog Ns) and O(Ns), re-
spectively. As such, the development of FMM based schemes has been a subject of
intense study for a over a decade following the seminal paper by Rokhlin [10]. FMM
employs a divide and conquer strategy to reduce the overall computational cost; this
is achieved by embedding the body in a fictitious cubical box, and recursively dividing
this into eight smaller boxes. A box that is subdivided into smaller boxes is termed
the “parent” of the “child” boxes that result from the operation. This leads to a uni-
form oct-tree structure. For an NV + 1-level scheme, this subdivision proceeds N times.
At the lowest level, the boxes are populated by basis functions or equivalently a set
of point electric and magnetic dipoles. Fields due to these dipoles are computed at
other locations by upward and downward traversal of the tree. In order to accomplish

this in a hierarchical manner, the following dictum is used to create interaction lists:
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a pair of boxes at any level are said to be in the far field of each other if the distance
between their centers is greater than a prescribed distance and if their parents are
in the near field of each other. In practice, this distance, at any level, is chosen to
be twice the linear dimension of the box at that level. Thus for any given box at a
level greater than one, interactions with boxes in the near field have to be resolved at
lower levels in the tree. Interaction with a box in its far field can be computed at a
higher level in the tree provided that the respective parent boxes are in the far field
of each other.

The matrix equation 3.23 can be solved using the iterative methods, e.g., the
transpose-free quasi-minimal residuals method (TFQMR) [11]. TFQMR is acceler-
ated by the FMM method to achieve optimized computation time and memory cost

(12].

3.6 Numerical Results

The aim of this section is to test the efficiency and accuracy of the single integral
equations discussed in the last section. This is accomplished by applying SIE to the
problems of electromagnetic scatttering of a plane wave by arbitrary shaped dielectric
objects. In what follows, it is assumed that the dielectric scatterer is immersed in the
free space (1 = €g, p1 = pg, ¢1 = 3 % 10® m/s), and the material is non-magnetic
(u2 = pg). These results are compared against the analytical data obtained by the
Mie series [13] or the existing computer code based on the Miiller formulation.

As shown in Figure 3.4, the scattering from a dielectric sphere of 1 m radius and
€9 = 4gq, centered at the origin and illuminated by an incident plane wave with
Ex = i polarization, k = —# incident direction, and fo = 250MHz, is analyzed.
There are totally 3600 unknowns involved in solving this problem. The data agree
very well with those obtained using the Mie series. However, for this example, the

SIE code converges almost twice as fast as that are based on the Miiller formulation.
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In a second example, scattering from the same sphere as given in Figure 3.4,
discretized in terms of 4020 spatial basis functions, is analyzed at fy = 160 MHz.
The sphere is excited by an electromagnetic wave that is Ex =& polarized and
incident from the k = —# direction. The RCS pattern in the z-y plane compare very
well with the Mie series, as illustrated in Figure 3.5.

The next example shows the scattering from a dielectric sphere of the same size
but with eg = 4¢g. The incident wave is Ex = % polarized, and impinges on the
scatterer from the k = —2 direction. The incidence frequency is fo = 225MHz. There
are totally 9414 unknown basis functions. Figure 3.6 demonstrates good agreement
between the RCS patterns obtained using the SIE solver and the Miiller code.

Our final example of the sphere, given by the second example but analyzed at a
higher frequency, is shown in Figure 3.7. The boundary is modeled by 30318 unknown.
The incident plane wave at the frequency fo = 300MHz is Ex =% polarized, and
illuminates the sphere from the k = —# direction. Again, results obtained using both
SIE equation and Mie series compare satisfactorily.

It turns out that the SIE code can handle not only the smooth geometries, e.g.,
the sphere, but non-smooth boundaries as well. As shown in Figure 3.8, a cubic
box of dimensions 1.0 mx1.0 mx1.0 m is excited by an electromagnetic wave that
is polarized in the & direction and incident from the -2 direction. The total number
of unknowns is 4077, and the incidence frequency is fo = 257MHz. The agreement
between the results obtained by SIE and Miiller codes is again very good.

In the last example, scattering from a “fat” almond, discretized using 2208 basis
functions is analyzed using SIE and results verified by the Miiller formulation, as
demonstrated in Figure 3.9. The almond fits in a box of dimensions 1.5 mx1.0
mx0.8 m. The incident field travels in the k = —# direction, is Ex = & polarized,

and has a frequency of fy = 100MHz.
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Figure 3.1. Triangulated meshing of a dielectric sphere with r = 1.0. The number of
triangles is 2904, and the number of edges is 4356.
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Figure 3.2. Triangle pair (Ti+, T;') and parameters associated with the ith edge.
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Figure 3.3. Geometry parameters of the triangle pair Ti+ and T;.
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Figure 3.4. RCS pattern of an €9 = 2¢( sphere in the z-y plane at fy = 160MHz.
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Figure 3.5. RCS pattern of an €9 = 4¢( sphere in the z-y plane at fy = 160MHz.
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Figure 3.6. RCS pattern of an €9 = 4¢( sphere in the z-y plane at fy = 225MHz.
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Figure 3.7. RCS pattern of an €9 = 4¢( sphere in the z-y plane at fo = 300MHz.
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Figure 3.8. RCS pattern of an €9 = 4¢( cubic box in the z-y plane at fo = 257MHz.
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Figure 3.9. RCS pattern of a fat almond in the z-y plane at fy = 100MHz.
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CHAPTER 4

SPECTRAL ANALYSIS OF THE SIE OPERATOR

Method for scattering analysis from dielectric objects have been dominated by the
PMCHWT and Miiller formulations have dominated the computational electromag-
netic (CEM) society for decades. However, the constraints as discussed in section
2.2 have prompted the CEM researchers to search for desirable integral formulations.
Recent progress in the construction of “fast” methods for the solution of the boundary
integral equations, in both frequency [10] and time [14] domains, has vastly expanded
the scope of tractable problems.

Most of the integral formulations for analyzing scattering from dielectric bodies
to date are in essence various combinations of L {*} and K; {*} operators as given in
2.4. Understanding the performance and behavior of new boundary integral formu-
lations requires a rigorous mathematical investigation of the basic integral operators.
Throughout this chapter, we investigate in detail the spectral properties of different

operators, and specifically analyze the SIE operator.

4.1 Definition of the Spectrum Analysis

We illustrate spectral analysis of operators used for analyzing scattering from a per-
fectly conducting (PEC) sphere of radius a. First, any surface current J on a sphere

may be given in terms of the surface Helmholtz decomposition

J=Vio+ix Vi (4.1)
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with

= /2
=33 dlibam¥® (4.2a)
n=1m=-n
00 n 1/2
v=3" Y dcam¥® (4.2b)
n=]1m=-n
where
Y2 (#) = P™(cosf)ed™®,  n>0./m|<n (4.3)

is the spherical harmonics [1], and

_ (n—=|m|)(2n+1)
dom = (n+ |m|)4mn(n+ 1) (4.4)

is the normalization constant to simplify the subsequent calculations. The coefficients
bnm and cpm may be any complex numbers. Using the conjugate relation ?,'i‘ =
Y™, it is a straightforward exercise to establish the orthogonality of the spherical

harmonics:
1/2 ,1/2 N ,
[ iR @Y @) as
2%
=a / / 1/2 ,11,/3],P'm|(cos 6?)PI|:,n l(cos 6)
I(m-mo gin g 4o do .

_ 20nn/dmm
n(n + 1)

32



/ 2412 vtym ). v (8) ds'

/ dnfadglon [ x VYY) - [¢x V'V (7)) as
2
/ / 1/2 ,11//31, [EP'ml( 0s 6) ;P,';,nl(cos 0) (4.6)

le' (cos 0) PI™(cos 0)] I (m-m)é i 9 4o dg

sm20

= Sun'émm
and
/ VYR (E) - [f- x Vt7$l(f)] ds' = 0. (4.7)
S

In egs. 4.3 t0 4.7, (6, @) are the spherical polar angles, and f is unit vector normal to
the spherical surface. From the equations above, a complete set of basis functions on

the surface of a sphere of radius a is given by the vector spherical harmonics

Xm0, ¢) = —raee# x VIY(8, ¢) (4.8a)
—jvn(n+1)
Unm(6,6) = # x Xnm(6,9) (4.8b)

Next, the conventional electric field integral equation (EFIE) and magnetic field
integral equation (MFIE) for electromagnetic scattering from PEC surfaces may be

rewritten as

i x ERC =T 0l (4.9)

fi x HINC = (% + Kl) 0J (4.10)
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where the integral operators 7] and K are defined [15] by
T1oJ=T(k1)oJd
= —jk; A x /S‘ ds' {G(ky,r,r')J(x') (4.11)

+1:_§V[VG(k1,r, r) 'J(r/)]}

K10J=K(k1)OJ
(4.12)
= —fi x -/S ds'VG(ky,r,r') x J(r')

Applying T3, Ki" = (K1 + %) and K] = (K1 — %) to each basis function in 4.8

vields
X —Jn(kya)Hg(k1a) T
T(k)od ~ "0 3= n(k10)Hn(ky )_.“m (4.13)
Unm Jn(k1a)Hy (k1a) X nm
r - )
X —3J (kya)Hp(k1a) X
K+(k1)o{ _’nm _ 33n(k1a)Hn (ky an (4.14)
\ Unm jjn(kla)H;l(kla)Unm I
(., SN )
X —3Jn(k1a)H, (k1a) X
K (k) o —’nm _ JIn(kya)Hp (ky Lm } (4.15)
\ Unm ].Uln(kla)Hn(kla)Unm

where J, and Hp are Riccati-Bessel and first-kind Riccati-Hankel functions of order
n, and kj is the wavenumber associated with the kernel of the each integral operator.
The Riccati-Bessel and Riccati-Hankel functions are defined in terms of spherical

Bessel jp(z) and Hankel h,(ll)(:r) functions by

In(z) = zjn(z) (4.16a)
Hp(x) = thll)(x) (4.16b)

The spectrum of an integral operator is defined as the function preceding each
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basis function on the right-hand-sides in egs. 4.13, 4.15 and 4.14. There are gener-
ally two spectrum factors associated with each basis function, respectively. For the
convenience of what follows, /\.‘f X denotes the spectrum function of order n due to

. q . _) .
T operating on X, and ’\9[‘  Tepresents its U cousin.

4.2 Spectrum Properties of the Integral Operators

Well-behaved integral operators are the sum of a constant operator and a compact
operator (see Appendix). The operators lead to second-kind integral equations, which
can be solved with fully controlled error. However, boundary integral operators in-
volved in scattering analysis typically violate this requirement in one or more of three

ways.

1. The operator may accumulate at zero. A typical example is the spectrum
function )\%’ x- As shown in Figure 4.1, a plot of three spectrum curves as a
function of kja is presented for orders 1, 3 and 5. It is worth noting that for a
given kja, /\%, X eventually vanish, as indicated by the position of point A on

the complex plane.

2. The operator may have an unbounded spectrum, such as a hypersingular oper-
ator. The spectrum function /\%\ U falls into this category. A similar plot in
Figure 4.2 demonstrate the singularity of )\%‘ U when the order increases. For

a fixed kja, /\% U would eventually blow up to oo.

3. The operator may have trivial spectrum values associated with resonances, often
nonphysical. These are often referred to as “spurious resonances”, which can

be observed in the case of the operator T7.

It is well-known that the MFIE operator (or K i" ) is a second-kind integral oper-

ator. As illustrated in Figure 4.3 and Figure 4.4, both /\E + and /\; +,, converge
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to —1/2 in the limit of large n. Therefore, the operator K maintains a bounded
spectrum. However, as is evident from eqn. 4.14, Figure 4.3 and Figure 4.4, the oper-
ator K yields null eigenvalues at the zeros of Jj,(kqa) for i’nm, and at the zeros of
Jn(kqa) for ﬁnm, it is not regarded as a well-behaved operator. By the same token,
the operator K~ seems spectrally bounded, but is not free of resonances. Similar plots
are given in Figure 4.5 and Figure 4.6.

Our analysis shows that the operator 77 does not have a bounded spectrum,
either. Yet a cascaded operator T2(k.1) = T(k1) o T(k1) seems to possess better

spectral properties.

— —
X
T2(k1)0 nm — T12 ° -—’nm
Unm Unm
(4.17)
! ! xﬂm
= —Jn(k1a)Hn(k1a)Jy(k1a)Hy (k1 a)
nm

It is worth noting that the basis functions _)—(’nm and ﬁnm are eigenfunctions of the
operator T2(k1), and its eigenvalues accumulate at -1/4, a result which follows from
the asymptotic properties of jp(z) and hsll) (z) [16], and is illustrated in Figure 4.7.

An interesting and yet useful derivation [15]

X
K+ (k)oK (kp)od %

Unm

X
—KfoKjod ™ (4.18)
nm

! ! _x+nm

= —JIn(k1a)Hn(k1a)Jy(k1a)Hy(k1a) §
Unm
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reveals the identity

T2(k) = K2(k) — - = KT (k) o K" (k) (4.19)

1
4
4.3 Analysis of the SIE Spectrum

Following the notation of the operators T and K, we can rewrite the SIE operator on

the left-hand-side of eqn. 2.21 as
Sen 0 Jef = | K~ (kg) 0 K™ (k) — Z—;T(kz) oT(k1)| o Jer (4.20)

Our previous analysis reveals that both of the operators T o T and Kt o K~ have
bounded eigenvalues that asymptotically converge, for large order n, to given values.
Thus we “predict” that the linear combination of K o K] and Ty o T} possesses a
similar spectral behavior.

It is a straightforward exercise now to derive the eigenvalues of the S;, operator.

X I (k@) H, (ka) X
S, o _}nm K (ky) o JIn(kya)Hy ( la)_> nm
Unm ]Jh(kla)Hn(kla)Unm
_J,(kja)Hp(k1a)U
—n—lT(k) n(l)n(l) nm
2 Ty (kya)Hy (k10) Xnm

—JIn(k1a)Hy (k1a)In(koa)Hy, (koa) xnm
—']]Il kla)Hn(I\,la).ﬂ' (k2a)]HIn Aza)Unm

—
m ) —JIn(kr1a)Hn(ka)Jy (kea)Hy (koa) X nm

"2 | —J;(k1a)Hy (k) In(kea)Hn (ko) Unm
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In(k1a)Hy(k2a) %Jh(kw)ﬂn(kla)—Jn(k2a)H'n(k1a) Xnm

Jn(k1a)Hn(k2a) Z—;Jn(kza)Hh(kla) ~ Ty (koa)Hn(k1a)| Unm .
Figure 4.8 and Figure 4.9 show the eigenvalue curves of a dielectric sphere with
ko = 2ky. Asthe order n increases, the eigenvalues accumulate, for the given material
contrast ratio, at 1/2 for /\gm,x, and at 5/4 for ’\gm,U' However, the SIE operator S,
suffers from the internal resonances, due to the fact that the eigenvalues vanish at the
zeros of Jn(kja) for the inm and at the zeros of Jj,(kja) for the ﬁnm. As a result,
the operator S, is not regarded as a well-behaved second-kind integral operator,
and therefore the SIE formulation, by itself, is not a suitable integral equation for
analyzing closed dielectric objects.

Yeung [6] claims that although the EFIE 2.19 and MFIE 2.21 are individually
singular at the same resonant frequency, a linear combination of the EFIE and MFIE,
namely the CFIE = [(1 — a)A]MFIE + a/e1/n EFIE, where 0 < a < 1.0 and A is
the average length of the triangular-patch model, is non-singular at all frequencies.

The operator Se as in eqn. 2.19 can be expressed in terms of T and K as
SeoJeg=m [Z—Qf' X T(kg) o K™ (k1) + £ x K (k9) o T(kl)J oJe (4.22)
1

And the eigenvalues can be obtained

X
Seo _’nm
Unm
— 3 (kya)H, (k1a) X
—n 7’—2f°xT(k2)o JIn(kqa) n(l)_)nm
n 3% (k1a)Hp(k1a) Unm
—Jn(kla)Hn(kla)Unm

+T % K_(L'Z) o .
.Uln(kla)ﬂ'ﬂ,n(kla)Xnm
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M In(k1a)Hp (k1a)In(kga)Hn(kga) Unm

n T (k1a)Hn (k) Ty (kga)H (koa) X nm
. —5In(k1a)Hn (k1 )3 (kga)Hn (koa)Unm
— 3 (k1a)H (k1 a)Jn (koa)Hiy (k2a) X nm
| ng ) ~59n(k1a)H(k1a)In(kpa)Hn (k2a) Xnm
M| ¥, (kya)Ha(kya)T,(kga)Hy (kga) Unm
( . (4.23)
L | 3nls B ()T, (ko) (ko) X

| 33 (k10)H (k10)Jn (k20)Hy (k20) Unm
( A
7dIn(k1a)Hn(k2a) [J; (kea)Hn(k1a)

—%Jn(kga)ﬂh(kla)] X um
—jJn(kja)Hy (koa) [Jn(koa)Hy (k1 a)
- 22—1.11'11(1620)1}1[11(1:111)] I—jnm

)

However, as is evident from egs. 4.3 and 4.23, the operator S, shares resonances (at

\

the zeros of Jn(kja) for the i)nm modes, and at the zeros of J;(kja) for the ﬁnm
modes) with the SIE operator Sp,. This is a disproof of the conclusions drawn by

Yeung [6].

4.4 'Well-behaved CSIE Operator

One possible remedy for the spurious resonance is the addition of an equivalent mag-

netic current Mg on Q% with the constraint [17] that

Meff = T)lf‘ X Jeff (4.24)
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This additional current would give rise to an new term on the left-hand-side of the

SIE equation, denoted as
Sm' o Mgg = — | K (ko) o T(k1) + %T(kg) ) K'(kl)] oM. (4.25)

And by operating on the spherical harmonic, the eigenvalues for S,,' are obtained

X
Sm)(O mrx _,nm
Unm
- m - ﬁnm
=-m |K (ko) oT(k1) + =T(kg) o K (k1) | 0
2 ~Xnm
T, (kya)H, (k1a) X
oy | K (k) n(k1a)Hy (k1 )_,nm
Jn(kla)Hn(kla)Unm
i1 (k1a)Hy(k1a)U
+n—1T(k2)o 300 (k1a)Hn( la)_)nm
2 JIn(k1a)Hy (k1a) Xnm

—

. —jJn(k1a)Hp (k10)In(kga)Hy (k2a) X nm
=N N
33n(k1)Hn (k10) Ty (k9a)Hn (k2a) Unm

o) 3Tk a)Hin (k1) (kpa) iy (k) X

"2 | —jIn(k1a)Hp (k1a)In(kye)Hn(kge) Unm

i (k10)H (koa) [ﬂnwzam'n(kla) - Zz—l.v;l(kza)mnwla)] R om
=mM —
i (k10)Hn (ko) [Jr'n(kzamn(kla) - zg—lﬂnwa)ﬂa(kla)] Com

(4.26)

Apparently, they don’t share any zeros with the eigenvalues of operator S. Thus,

we can write an expression for a well-behaved combined source single integral equation
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(CSIE) operator

SCS [¢] Jeﬂ' = Sm [e] Jeﬂ‘+ SmT (] (fl X Jeﬂ')
_ [K'(kz) o K(ky) — L(iy) o T(kl)] o Jog (4.2

—m [K‘(k2) o T(k1) + LT (k) o K'(kl)] o (8 x Jog)
Uy

The condition number of the CSIE, though larger than that of the SIE, is still domi-

nated by the well-behaved property of S.

4.5 An alternative integral equation scheme

It should be noted that the CSIE formulation is not the only approach for eliminating
the spurious resonances. We spend the rest of this chapter analyzing an integral
equation scheme from a different perspective.

At interior resonant frequencies, the E field tangential to Q calculated from the
SIE surface currents is not continuous across the boundary. It follows that the H
field normal to 2 will not necessarily be continuous. It is suggested that the inclusion
of the normal boundary conditions of the magnetic field would augment the SIE to

yield the unique exterior solution at all frequencies [18],[19].

- [upHE™) = - [y (H™ + H{) (4.28)
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It can be re-written, in analog to eqn. 2.17, in the following form.

A [H =4 <‘-‘,§L2{Mz} + uoKa{Ja} — mKi{Jeg))

n- (%;—Lg{—Einc X N — nlLl{Jeﬁ'} X fl}

+ poKo{—h x H™ — i x K1 {Joq}}

-mK1{Jeg}) (429)
=0 (ZLal-B x d - mLy{Tg) % 1)

+ upKo{—i x H™ — i x Ky {Jg}}

-11K1{Jeg})

where cg = 1/,/E9115 is the velocity of light in the interior media.
Rearrangement of the terms in the above equation gives the “augmented” single

integral equation (ASIE)
- Ko {h x K1 {Jeg} + T Loff x Ly {Jeg}} - - K {Jer) = HY,, (430)
where
HO = H + i poKo{ x HIC} — %ﬁ - Lo{f x E'"} (4.31)

Next, we prove that this ASIE shares no resonance with the existing SIE spectrum.
By inspection, two differences can be observed between ASIE and eqn. 2.20.

e Due to the normal product (ii-), ASIE is a scalar equation;

e The term —i - u1 K {Jeg} cannot be combined with i - uoKo{f x Ki{Jeg}}.
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Using notation similar to eqn. (4.20), we define the ASIE operator as

S2, 0 Jofp = { —uoh - [Kp o K(kp)] + L [Ly o Tlhky)] - - Kl} oJof (4.32)

Utilizing the mapping of T — i x L and K «—— —i x K, and representing the
unknown J.g with inm and _Ijnm, the right-hand-side of the ASIE equation can be

rewritten as

S2 o Xpm = {—,ugﬁ Ko 0 K(ky)] + Z—;ﬁ [Lgy o T(ky)] — pyh - Kl} o Xnm
= —pofi - Ko o [K (k1) o Xnm] + Z—;ﬁ Lo o [T(k1) o X nm]
~ py - (K o Xam)
= —igh- Ky o [K* (k1) = 7)o Kom + Lt Ly o [T(ky) o K]
— mh- [Ky 0 Xom|
= —pgh - K o [KF (k1) o Xnm] + Z—;ﬁ Lo o [T(k1) o X nm]
— pyh - [Ky o Xam] - %#213’ (K2 0 Xam)
— jtgTh(k1a)Hn(k10) {A - (K3 0 Xum]}
— L In(kya)Hn(k10) {# - [Lz o Unm)}
2
~ p1f - (K1 0 Xnm] - %N2ﬁ - [K2 0 Xnm)
- iz (i34 010a(ir0) - 3) {8 (Ko  Kam])
- S Ia(hi@)Hn(k1a) {8 L 0 Unm]}

—ph-[Kpo i,nm]

(4.33)
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and

S2 o Unm = {—/_tQﬁ - [Kg o K(ky)] + Z—;—ﬁ- [Lo o T(k1)] — p1fa- Kl} o Unm
. . — 'r’l - 3 —_—
= —poh - Ko o [K (k1) o Unm] + b Lo [T'(k1) © Unm]
~ p1- (K 0 Unm)
1 — . —
= —pgh - Ky o [KF (k) — 5loUnm + Z_;n -Lg o [T'(k1) © Unm]
— p1# - Ky o Unm]
= —pph - Ky o [KT(ky) o Unm)] + g;—ﬁ Ly o [T(k;) © Unm)
— 1 . —
— - [Ky o Unm] — Suhi - [Kg © Unn]
= —jupdn(ky0)Hy(kya) {# - [Kg 0 Unm] }
+ Ly (k1 o) (kya) {f - [Lg o Xom]}
c2
R — 1 —
. , 1 . =
= 1 (albr )y k10) + 5 ) {8+ (K2 o Tm)
—
+ L3, (ky )My (ky0) {8 [Lg © Xom] }
c2

—ph-[Kjo fJ’nm]

(4.34)
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Denoting

Ppm(k) =0-[Kjo inm] (4.35a)
Dim(k1) = - K1 0 Upm) (4.35b)
®rm(k2) = i - [Kg 0 Xnm) (4.35¢)
Bim(k2) = - [K 0 Unm) (4.35d)
Vi (ko) = - [Lg o Xnm] (4.35¢)
Wim(ke) = # - [Lyo Unm) (4.35f)

we may present eqgs. 4.33 and 4.34 in slightly different forms

rs -/ 1 I u
S2 o Xnm = po [J-Un(ha)Hn(kla) - 5] Phm(k2) — Z_;-Hn(kla)Hn(kla)‘I’nm(k2)

= 11 Pnm(ky)
(4.36)

I3 . ’ 1 u ' ’ T
S0 D =~ | (k1) (1) + 3| Bim(he) + L0, a0 1) ¥ )

- m1®am(k1)

(4.37)

In the above eqn. 4.36, it is obvious that the coefficient [;J},(kja)Hn(k1a) — 1]
doesn’t share nulls with Ju(kja)Hn(kya). [jJn(k1a)Hn(k1a) — ] has only complex
roots, while on the contrary, zeros of Jn(k1a)Hp(kja) are all real. Therefore, at least
one of these two terms has non-trivial value at the interior resonant frequencies. By
the same token, the term S2& o ﬁnm yields finite right-hand-side in eqn. 4.37. It is
also worth noting that neither 4%{31 (k9) nor \Ilﬁ{ﬁl (k9) in egs. 4.36 and 4.37 would
support a interior resonance mode. This is because (I)ﬁ{ﬁl (k9) and \Ilf,{&l (k9) depend

solely on k9, and although they may vanish at certain frequencies pertaining to the
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interior media (k9), it is only at the resonant frequencies associated with the exterior
media (k1) that the SIE operator would fail.

These desirable properties of ASIE make it suitable for augmenting eqn. 4.21,

Sen 0 Xnm = Jn(k1a)H, (koa) [Z—;.Il'n(kga)ll-ﬂn(kla) - .IIn(kga)]HI;I(kla)] Xom (4.38)

Sen© Unm = I, (k1a)Hn (koa) [Z—;.ﬂn(kza)l}ﬂh(kla) - .ll'n(kga)]HIn(kla)] Unm (4.39)

to circumvent the resonance deficiency of SIE.

¢

e ot 1 z
S0 Ko = 4 [ 3 (h10n(b10) - 5| S

- Z—;Jn(klamn(kla)wam(b) — u1 @4 (k1)

Sen © Xnm = Jn(kja)H, (koa) [%Jh(kQa)Hll(kla) — Ju(koa)H! (kya) | X am
(4.40)

\

( N ) , 1
S0 U = ~1 | (k1T (10) + 5| @ (k2

+ 2L, () 1) Wi (52) — 1B ()

Sm© D = (k10 Hn(bge) | ZIa(bge ) (10) — 3y (kz)nb10)| Do
(4.41)

\
At interior resonant frequencies, i.e., nulls corresponds to Jn(kya) or Jj,(kja), egs.

4.40 and 4.45 would reduce to

S2 o Xnm = pg [jJ,(k1a)Hn(kya) — 1] @2 (kg) — py ®am (ky)

Sm°i’nm=0

(4.42)
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S% 0 Unm = —342®fim (ko) + ZLTn(k10)H (k10) Vm (ko) — 11 @i (k1)

Sm © Unm = J4 (k1a)Hy (ko) [%.ﬂn(k2a)H’n(k1a) - ;l(kQa,)Hn(kla)] Uom
(4.43)

for Jn(kpa) = 0, respectively, and

§%, 0 Xum = ~ 2 Jn(k10)Ha (k10) Vi (k2) - 11 Phm (k1)

Sm © Xnm = Jn(k10)Hy (kga) [%Jh(k2a)ﬂn(kla) - Jn(kQG)Hh(kla)} Xum
(4.44)
S2 0 Unm = —p2 [jIn(k10)Hy (k1a) + 3] @hm(k2) — 11 @hm (K1) (4.45)
N .49
Sm o Unm =0
for J;,(k1a) = 0.

Now, the foregoing analysis should suffice to conclude that by solving SIE and

ASIE, together,

SmoJeg = Hyps (4.46a)

S o Jeg =HE (4.46b)

spurious resonances from the exterior scattering or radiating problem can be elimi-

nated.

4.6 Implementation and solution of the augmented integral equations

From the prior analysis, one can say that ASIE is a viable remedy for the interior
resonant issue of SIE. However, it proves no advantage unless several difficulties are

addressed when implemented using MoM.

e The augmented equations are overdetermined. Two equations need to be solved

for only one unknown current J g
e Cascaded operators, e.g., K™ (ko) o K™(k1) and T'(kg) o T'(k1), are encountered
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in egs. 4.46, and they can possess hyper-singular component, especially for

T(kg) o T(ky).
e Both vector and scalar equations show up in the augmented equations.

There is a standard procedure for finding the least-squared solution to an overde-
termined set of equations [18], {20]. Thus we are allowed to solve egs. 4.46 by
multiplying the equations by the Hermitian conjugate of its coefficient matrix, and
then solving the resulting even-determined, Hermitian set of equations. Since we
have proved that the overdetermined equations can yield a unique solution at all
frequencies, the least-squared solution becomes identical to this unique solution.

As for the second bullet, appropriate intermediate projection spaces need to be
chosen discretely for the each of the inner products. Adams et al.[21] have proposed
using the surface Helmholtz complement of the RWG subspace ({ii x fi}iN=1) for
the intermediate projection. With the appropriate projection subspaces, a correct
discretization procedure for the T'(kg) o T'(k1) operator can be achieved.

Since eqn. 4.46b is a scalar function, a set of scalar testing functions are required.
Pisharody et al. [19] recently reported that spatial scalar testing functions can be
constructed using the Silvester polynomials [22] in the normalized parametric coordi-
nates. The most straight-forward category are the “hat” functions, which are unity

at a given node, vanish at all neighboring nodes.
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CHAPTER 5

CONCLUSIONS

This thesis presented an mathematical perspective of a new integral equation for
analyzing the scattering from arbitrary dielectric bodies. The equivalence models,
the numerical implementation using MoM, and the rigorous analysis of the spectrum
properties of the SIE operator was covered. A modified SIE scheme was devised and
proven to be second-kind and resonance free for spheres.

First, the standard models for analyzing the scattering from dielectric objects were
introduced, followed by a in-depth discussion of their respective pros and cons. The
SIE integral equation, with the subsets of MFIE and EFIE, was presented in detail.

Second, the general method of moments was covered, with the emphasizing on
the conventional steps converting a linear integro-differential equation into a matrix
equation. The RWG triangular basis function was reviewed, and used to represent
the effective unknown current in a discretized form. A two-stage projection technique
was specified, i.e., the inner product was defined and two cascaded matrices were
constructed to replace the SIE integral equation with a matrix equation. Then the
accelerative algorithm, FMM was included to expedite the solving phase. Numerical
results generated with various geometries were illustrated, and in comparison with
the known data, the accuracy and the convergence of the SIE scheme were clearly
demonstrated.

Third, the mathematical foundations of the spectrum analysis were covered, start-
ing with the spherical basis functions. All fundamental integral operators were inves-
tigated and their spectrum properties were discussion by showing the spectral curves
in the complex plane. Then the same steps were applied to the SIE operator. And

it is shown that the SIE operator behaves like a second-kind integral operator, but
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suffers from spurious resonances. A supplemental magnetic source turned out to be
an appropriate remedy, and would yield a combined-source SIE, which were found to
be free from resonances.

The thesis extended to discuss an alternative approach to overcome the interior
resonance. In this new approach, the normal fields are included to augmented the
original SIE-MFIE equation. Rigorous proof shows that this set of augmented field
equations possess a unique solution at all frequencies. Crucial difficulties in practical
implementation are examined and necessary information is provided as to solve the

whole system.
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APPENDIX A

DEFINITION OF A SECOND KIND INTEGRAL OPERATOR

The standard definition of a second kind integral operator is an operator for the form
M+ K (A.1)

where ) is a constant, [ is the identity, and K is a compact operator. In scattering
theory, one encounters operators of the form

AP+ 2P+ K (A.2)

where A; and A9 are constants and P; and P, are orthogonal projection operators
such that
Pi+P=1 (A.3)

Operators of the form A.2 possess most of the desirable properties of second integral
operators. Such expressions are referred as second kind integral operators throughout
this paper.
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