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ABSTRACT

Analysis of the Spectrum of the Single Integral Equation for Scattering

from Dielectric Objects

By

Jun Yuan

Surface integral equations are widely used to analyze electromagnetic scattering

from a dielectric object residing in free space. Methods for analyzing scattering

from dielectric bodies have largely relied on either the PMCHWT or the Muller

formulations. It is well known that the PMCHWT formulation result in a first kind

Fredholm integral equation, is not well-conditioned and leads to slow convergence.

The Miiller formulation, on the other hand, results in a second-kind integral equation

and is well-conditioned as the hyper-singular terms nearly cancel for low-contrast

ratios. However, the Miiller formulation is not very accurate for very high-contrast

materials. Alternatively, it has been shown that scattering from a dielectric body can

be computed using a single unknown and a set of cascaded equations, viz., the single

integral equation (SIE) [1]. Existing literature [2] has reported that the condition

number of the impedance matrix is excellent. However, no work has been attempted

to analyze the convergence and uniqueness of the SIE operator. In this thesis, a

detailed analysis is carried out to reveal the underlying mathematical properties of

the operator. It will be shown that this operator does not produce unique solutions

at internal resonance frequencies. Nonetheless, we suggest a method to overcome

spurious resonances and propose an integral equation that is accurate for arbitrary

material contrast ratios, while still preserving its well-conditioned nature.
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CHAPTER 1

INTRODUCTION

Analysis of electromagnetic scattering from arbitrary shaped three-dimensional (3-

D) homogeneous or layered homogeneous dielectric bodies is of considerable interest

and is largely motivated by possible application in the society of computational elec-

tromagetics, due to the wide application of materials in a variety of radar targets.

The early studies focused mainly on spherical or nearly spherical scatterers by using

classical analysis. But in many applications the scatterer is an arbitrarily shaped

3—D object. For dielectric objects with a surface of arbitrary shape, one has to re-

sort to some approximate numerical techniques based on either integral or differen-

tial equations. Recent developments in the field of computational electromagnetics

(CEM) have greatly expanded the palette of analysis tools to include problems in

which the boundary conditions or the shape of the scatterer makes previous classical

mathematical approaches intractable. Surface integral equations are often preferred

for homogeneous or layered homogeneous objects, as they permit the use of surface

equivalent currents. Compared with volume integral equations, the computational

cost is greatly reduced from 0(N3) to 0(N2).

However, the efficiency of this method depends heavily on the mathematical for-

mulation. Given the fact that the CEM engineers need to solve practical problems

of millions of unknowns, it is essential that the formulation yield a well-conditioned

matrix system, so that the solution can converge to an accurate result rapidly. On

the other hand, the formulation should yield a unique solution. In other words, the

mathematical model should produce unique results at all frequencies.

An overview of the mathematic models for analyzing the EM scattering from a

dielectric body of arbitrary shape is given in Chapter 2, including a description of



different integral equation approaches with an emphasis on the single integral equation

(SIE) formulation.

Chapter 3 covers the MOM implementation of the SIE scheme. Details of the

method are elaborated upon, especially, the basis functions used, and the method to

compute the inner product with the testing function. Also covered in Chapter 3 is

the adaptation of the FMM algorithm for this specific scenario. Numerical results

are illustrated at the end of this chapter, and these results are compared against the

solutions obtained either using the classic approach or using an extant numerical code

developed by Dr. Shanker Balasubramaniam at Michigan State University.

The spectral analysis of integral equation operator is introduced in Chapter 4.

The convergence properties of various equations are explained and illustrated in this

chapter. The spectrum of the peculiar SIE operator is investigated from the mathe-

matic perspective. As will be shown, the SIE operator does not yield unique solutions

at resonance frequencies. Hence, we proceed to devise an augmented SIE operator

and prove its validity thereafter.

Chapter 5 serves to conclude this thesis. Contributions to this research are dis-

cussed, along with future work necessary to expand the applicability of this new

scheme in handling the EM scattering phenomena.



CHAPTER 2

INTEGRAL EQUATIONS FOR SCATTERING FROM DIELECTRIC

BODIES

2.1 Definition of the dielectric scattering problem

Consider a homogeneous dielectric body of volume V, as shown in Figure 2.1, whose

boundary is denoted by 9. Additionally, 9+ and 9‘ denote surfaces that are con-

formal to and lie just outside and inside 9, and n denotes the outward pointing

normal to {2. The regions inside (denoted as R1) and outside (denoted as R2) 9 are

characterized by material parameters (6:1, pl) and (52, #2), respectively. Impressed

sources residing within R1 produce incident electromagnetic fields electric and mag-

netic fields {EinC,HinC}. The interaction of the incident fields with 9 gives rise to

the scattered fields Eicaltr), Hicat (r). The total fields {BECK Him} in R1 comprise

both the incident and scattered fields, viz.,

Eti°t(r) = Eincm + Eicatu) (2.1a)

H]°t(r) —_— Hin°(r) + Hicaim (2.1b)

Inside Q, the fields are expressed by Eacatfi), Hacatfi).

2.2 Surface Equivalence Theorem

The equivalence principle [1] is applied to the scattering problem from a dielectric

body, as illustrated by Figure 2.2. One can set up a problem equivalent to the original

problem external to Q as follows. Let the original field exist external to $2, and the

null field internal to (I, while the whole region is characterized by (51, #1). This

is shown in Figure 2.2(a). To support the scattered field, there must exist surface



currents J1, M1 on 9 according to the continuity conditions across the boundary.

The currents therefore satisfy the constraints

J1 = a x [Hinc + Hficat] (2.2a)

M1 = [Einc + Rim] x a (2.2b)

where fl is an outward pointing normal. Since the currents radiate in unbounded

homogenous space, we can determine the scattered field using

 

Eicmfi‘) = 721L1(J1) - K1(M1) (23a)

area) ‘= K101) + UllLl(M1) (2.31»)

where

L1{X} é —jk1/ [7+ —1-VV G1(r r') - X(r’) dS’ (2.4a)

n k? ’

K1{X} i f V X [X(r’)G1(r,r')] (15' (2.41))

9

I= is the idem factor, or unit dyad.

Similarly, we can set up another equivalence for the field internal to Q as shown

in Figure 2.2(b). Another set of equivalent currents J2, M2, prescribed by

J2 = -fi x Ham (2.5a)

M2 = 433““ x a (2.5b)

reside over Q in the homogeneous space of (52, p2), and produce the null field external



to Q and the original field Egan“), chaWr) internal to 9, which is determined as

Eicatm = 71214202} - K2{M2} (26a)

Hacatir) = K202} + n§1L2{M2} (26b)

Our specification of the null field internal/external to Q is overly restrictive in the

preceding models. Any other field would serve equally well, given that the resulting

equivalent currents satisfy the field continuity constraints. Yet, our proposed choices

prescribe the complementary relation between the currents in Figure 2.2(a) and Figure

2.2(b), viz.,

J1 = a x [Hinc + Him] = (412) x chat = —J2 (2.7a)

M1 = [Einc + Bicat] x a : E302“ x (432) = —M2 (2.7b)

due to the fact that

ii X [Hinc + Hicat] = fi x Hacat (2.83)

a x [Einc + Eicat] = a x 1336“ (2.8b)

and

fig = —fi (2.9)

is the normal vector inward to 9.

Using Eqs. [2.3 - 2.6], the classical Poggio—Miller-Chang-Harrington-Wu-Tai (PM-

CHWT) formulation [2] is derived, leading to

a x Eincl9+ = —fi x Eficai|n+ + a x Egcatln- (2.103.)

a x Hinclmt = is x Hficailfli, + a x chatln- (2.10b)



An alternate approach suggested by Miiller [3] is to scale the interior and exterior field

operators by the constitutive parameters and then subtract eqs. 2.5 from eqs. 2.2,

representing the interior and exterior problems, respectively. The Miiller equations

read as

—fi x Einclfi = (1+ 0) M1 + a x (Hamil,2+ — aagcatlfl-) (2.1m)

—fi x Hinclmt = —— (1 + ,3) J1 + a x (HiC‘iH,2+ + fichatln-) (2.11b)

where a = 52/51, and fi = ,ug /,u1, as chosen by Miiller in his construction of integral

equations.

This formulation has some advantages over the PMCHWT formulation for low

contrast materials (i.e., 5,. < 20). Specifically: 1) it behaves as a second-kind integral

equation; 2) the static terms of the L-operator in Eqs. 2.4 cancel in the limit as

[r — r’ | —+ 0, effectively canceling the hypersingular term [3, pg. 300]; and 3) the

Miiller formulation has a lower condition number than the PMCHWT formulation

for moderate to low contrast materials.

2.3 Single Integral Equation

The coupled vector integral equations, PMCHWT and Miiller require one to solve

for a set of unknown equivalent electric and magnetic currents. Marx [4] developed,

in both the time and frequency domains, 3. single integral equation for scattering

problems involving homogeneous dielectric bodies. Glisson [5] elaborated upon the

technique for 3-D dielectric objects in the frequency domain using the techniques and

terms that EM researchers are more familiar with. Numerical demonstration was

recently reported by Yeung [6] and Tsang [7].

To determine the scattered field using SIE, we employ the equivalence principle to

develop two different models. For the same original problem, two models equivalent



in the external and internal regions, are illustrated in Figure 2.3. A model equivalent

to the exterior region is shown in Figure 2.3(a). In contrast to the classical model in

Figure 2.2(a), only a single current Jeff resides in the homogeneous medium (51, #1) to

produce the correct scattered field external to Q. The equivalent source Jeff, however,

is not unique unless the scattered field is specified internal to Q. In the approach

usually followed, the auxiliary field is set to 0. And Jeff is uniquely determined by

Jeff = a x [Hinc + H‘i‘catoefl, 0)]

_ (2.12)

= fl x HInc + ft x K1{Jefir}

Equivalence to the original problem inside (I (Figure 2.3(b)), the sources are con-

structed by imposing (J2, M2). These sources radiate in a homogeneous medium

(52, [12) and produce the correct scattered field inside S2 and a null field outside SI.

Continuity of the true field is enforced to relate the equivalent currents Jeff and

(J2, M2) using the relations,

a x a x Egcat = a x a x [EiInc + Eicat'] (2.13)

a x H3O?“ = a x [Hinc + Hficat] (2.14)

Thus,

J2 = —fi x chat [9+

= —fi x [Hinc + Hfical] [9+ (215)

= -fi X HmC -— fl X K1{Jeff} [9+



M2 = —Egcat' X fl [9+

= _(Einc + meat] x a (9+ (216)

= _E1nc X f1 — 01L1{Jeff} X fl [9+

We may restate Eqs. 2.13 and 4.28 in terms of Jeff as

n x fi >< Einc = fi X 13 X (772L2{J2} - K2{M2} - 771L1{JeH})

= ft x f1 x (n2L2{—fi x Hinc — f1 x K1{Jeff}}

. (2.17)

— K2{—EInc x I“! - n1L1{JeH} X a}

— 771L1{Jeff})

A . A 1

n x HlnC = n X (EL2{M2} + K2{J2l — KliJeffl)

1 .

= fl X —L2{—Emc X fl — 01L1{J } X fl}

(n2 eff (2.18)

+ K2{—fi x Hinc - r“: x KliJeflll

“KliJeffD

Rearranging both sides of eqn. 2.17 yields the EFIE equation

-772fiXfiXL2ifiXKliJeffl}—771fi><fiXK2{fiXL1{Jeff}}-fl1fixfiXLliJeff} = Erhs

(2.19)

where the term

Erhs = f1 x f1 x Einc + 7721“] x f1 x L2{f1 x Hinc — 1‘1 x f1 x K2{Einc x fi}} (2.20)

is the right-hand-side given by the incident field. Similarly, the MFIE equation can

be derived, leading to

. .. 77 . . ..

n x K2{n x K1{Jefl—}} + in x L2{n x L1{Jeflr}} — n x K1983} = Hrhs (2.21).



where

H,hs = a x HlnC + a x K2{fi x Hmc} — -n—f1 x L2{fi x Emc} (2.22)

2

The unknown fields in Eqs. 4.28 and 2.13 can be expressed in terms of integrals over

their respective sources. Then Eqs. 2.15 and 2.16 give J2 and M2 in terms of the

single current Jeff, and Eqs. 2.19 or 2.21, or an appropriate linear combination of

these equations represents an integral equation to be solved for Jeff-

In the next few chapters, we will investigate the desirable properties of the MFIE

equation (in eqn. 2.21). It will be shown that the MFIE equation is a second kind

integral operator (Appendix A).



(€1,111) f1
tot tot

E1 ,H1 /
Einc

\.

Figure 2.1. Homogeneous dielectric scattering object (52, p2) embedded in the

medium (61, #1).

   

 

(61,111) Em, Hi“ (£2412)
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Figure 2.2. Equivalence principle models.
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\. ' w. ' r \ £3... , EM»!
‘2‘ ..;.;, ‘ .r‘zi \M“~*W’

Jeff

(8) (b)

Figure 2.3. Equivalence principle models of SIE.
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CHAPTER 3

NUMERICAL SOLUTION USING THE METHOD OF MOMENTS

3.1 Method of Moments

The method of moments is employed to convert the MFIE into a matrix equation,

which can be algebraically solved to determine the unknown effective current [8] The

general method of converting a linear integrodifferential equation

£{f(x)} = 9(1) (3-1)

into a matrix equation is discussed here. The first step in converting the integral equa-

tion to a matrix equation is to expand the unknown in a finite number of subdomain

basis functions

N

f(r) = Z aifBJ-(x) (3.2)

1:1

Inserting this into the general equation and using the linearity of the operator L result

in

n

E acumen = 9(1‘) (3.3)

1:1

The next step is to test this equation with a testing function set. The testing pro-

cedure is accomplished by taking the inner product of the equation with a testing

function. The inner product of two real functions is defined as the integral of their

product over their region of support,

b

(fawn) = / f(:v) he) dz. (3.4)

12



Using this definition, eqn. 3.3 can be converted into N linear equations by testing it

with N different testing functions

n

2 cm), aim-(ma,- '2 merge», 2‘: 1, N (3.5)

i=1

The integral equation for the unknown continuous function f(x) has now been con-

verted into a system of N equations in N unknowns. The unknowns now are the

coefficients of the basis functions, i.e., aj. Converting into matrix notation gives

i - a? = g (3.6)

where E is an N X N matrix, and 517 and 57 are N-dimensional vectors with elements

Lij = <fTi(I),£fBj($)> (3-7)

and

Qi = <fTi(17)29(1’))- (3.8)

The matrix L can now be inverted provided it is not singular. A necessary condition

to ensure a nonsingular matrix is the use of a set of independent basis function.

Many choices of basis and testing functions are possible. For this application, the

Galerkin testing procedure was chosen. For the Galerkin method, the basis and

testing functions are the same, i.e.,

9i = <fBi(1‘)sg(I))- (3-9)

In the specific application of the method of moments to the EFIE, the current on

the electrical body is treated as the unknown. This requires the definition of four

13



different types of basis functions, each to be used on a specific portion of the body.

These are described in the next section.

3.2 Current Basis Functions

The equation in 2.19 or 2.21 involve a set of cascaded operators, i.e., the output

of one operator serves as the feed of another operator. Numerical implementation

of the integral equation requires transforming the SIE 2.19 and 2.21 or 2.21 into a

matrix equation. To this end, the surface S) is discretized by a set of triangular

patches. Figure 3.1 shows an example of modeling a spherical surface. The mesh

tool is developed using MATLAB. The unknown effective current Jeff is expanded

in terms of Rao-Wilton-Glisson (RWG) functions [9] associated with an edge 2' of

the triangulated surface. Figure 3.2 shows such a triangle pair. Points in Ti+ are

designated by the local position vector [31" pointing from the free vertex 0i+ of Ti".

Similar remarks apply to the position vector ,6; in Ti‘ except that it is directed toward

the free vertex opposite to the edge 2' in Ti“ .

A vector basis function fi associated with the ith edge is defined as

11 4+ +

mpi ’ r 6 Ti
1

l-

fi(") = —l—)57, r E T‘ (3-10)
2Ai 1 1

0, otherwise

where li is the length of the common edge 2' and A? are the areas of the triangles Tit,

respectively.

The effective current Jeff is thus expanded in terms of fi

Jew) = Z Iffimr) (3.11)

i=1

14



where N is the total number of edges in the triangular-patch model of Q and Iieff are

the unknown current coefficients.

The basis function fi possesses very desirable properties that are described in [9]

1. The current has no component normal to the boundary (which excludes the

common edge) of the surface formed by the triangle pair Ti+ and Ti’, and hence

no line charges exist along this boundary.

2. The component of current normal to the ith edge is constant and continuous

across the edge as may be seen with the aid of Figure 3.3, which shows that the

normal component of )6;i along edge 71 is just the height of triangle Tii with edge

2' as the base and the height expressed as 2Ait/li. This latter factor normalizes

fi in eqn. 3.10 such that its flux density normal to edge 2' is unity, ensuring

continuity of current normal to the edge. This result, together with 1, implies

that all edges of Ti+ and ”I; free of line charges

3. The surface divergence of fi, which-is proportional to the surface charge density

associated with the basis element, is

i +
F, r E T;

1

vs - fi(r) = 7’1; r e :1; (3.12)

0, otherwise

3.3 Projection and Inner Product

An important issue associated with the cascaded operators in eqn. 2.21 is the choice

of intermediate projection spaces for each operator product. If the effective current

3.11 were substituted directly into the single integral equation 2.21, the resulting

equation would be difficult to evaluate because of the cascaded integral operator

n x L2{fi x L1{*}}, which involves a hyper-singular component attributed to the

15



differential operator VV in eqn. 2.4. Instead, it is more convenient to expand the

arguments of the integral operators in 2.15 and 2.16 using the vector basis function

fi- Hence, 2.15 and 2.16 can be rewritten as

n

—a x [Hmc + Him] [9+ = Z lief, (3.13)

i=1

. n

—[Elnc + Eicat] x f1|Q+ = Z Iimfi (3.14)

i=1

where chat and E302“ are given by eqs. 2.15 and 2.16, and (lie, Iim) are the inter-

mediate expansion coefficients.

Employing simple verctor identities, we obtain

[Hinc(r+) + Hicat(r+)] . 1i = fi. {—fi x [Hinc(r+) + Hicat'(r+)] x 1i}

__ ". S3. ._ n IJ fJ(r) x 11 (3.15)

n

i=1

n

2: 11-601 X f!) ‘ fj(r)

i=1

where 11 has been chosen in such a way that if a right-hand screw through the triangle

Ti+ were rotated in the sense of the vector Ii, it would advance in the direction of the

unit normal ii to Ti+' The quantity (1i x f1) - fj(r) in eqn. 3.15 is the component of fj

normal to the ith edge. Since the assumption is made that r is infinitesimally close

to the edge 2', this term vanishes but for j = 2'. Therefore, eqn. 3.15 reduces to

mince.) + Hica‘(r+)l -11 = m x 11) -f1(r) (3.16)I

As stated in Sec. 3.2, the ‘-’ product on the right-hand side (RHS) of 3.16 is the

component of the vector basis function fi normal to the associated edge 2', and has

16



a constant value across the edge. Furthermore, this value is independent of position

along li- On the other hand, the left-hand side (LHS) of eqn. 3.16 varies along li-

Nonetheless, the relation can be satisfied in an average sense by integrating both sides

of this equation along the common edge 2'. Therefore, the expansion coefficients lie of

the intermediate equivalent electric current can be expressed as

1 - -

I? = ii’ [1 [H‘nc(r+) + Haste») -11 d1
1 n (3.17)

= -/ Hicat(r+) - li (11 + ho 1

I1 111 ’

where hO. i is due to the incident electric field.

Similarly, the the expansion coefficients Iie of the intermediate equivalent magnetic

current are given by

1 .

Jim = —E [1 [Emc(r+) + Eficatug] .1, dl

1 n (3.18)

= —-/ Eficat(r+) ' li dl — 80 i

11 In ’

where 60, i is due to the incident magnetic filed.

3.4 Construction of the Moment-Method Matrix

In order to solve the problem using the method of moments, one needs to choose the

proper testing functions and evaluate the inner product of the field with the testing

functions. An advisable testing procedure is to choose the unit vector li and the inner

product with a given integrodifferential operator £{fj} is defined to satisfy

<1,,r{rj} >= 11/] 1,.r{rj} d1 (3.19)
n .

1

With the given inner product, the intermediate expansion coefficients If and Iim
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are computed from the coefficients of the effective current Ijefi

Ie ZWe
1h wh [193’] (3.20)

Z .

where [19], [1m] and [Ieff] are length-N column vectors of the respective coefficients,

and [ZWe] and [ZWh] are N x N matrices, the entries of which are determined by

the pre—defined integral operators in eqn. 2.4 and eqs. 3.17 and 3.18

2”’i’j’=ai/27r6ij— 6ij)i1/:J/ [j],- )x VGl(r — r’)]dS’ dl

, Q .»
ZVl/ifinz —]”1/1/jlij- (1")Gl(r— r') (15' dl (3.21)

—]/l{251/ V’f r)[Gl (ira—r)— G1(r[)—r')] dS’

where ai is the angle between the planes of the triangles Ti+ and Ti measured in the

exterior region, Tj = Tj+ + T]? and 5ij is the Kroneck delta function. Also, r? and r?

are the two endpoints of the edge 2', such that the unit vector Ii points from rib to rid.

G1(r — r’) is the Green’s function for the exterior region

G1(r — r') = e’jkl [r — r’]/47r|r — r'] (3.22)

where k1 is the wavevector in the exterior region.

Applying the same procedure to the MFIE equation 2.21, one can construct the

moment-method matrix equation

ZWe

[ ZUe ZUm ] [Jeff] - [2W9] [Jeff] =[hol + [ZUellhol

zwh (3.23)

- [ZUml [60]
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In the above equation, hO and 60 are the length-N excitation vectors, the elements

of which are obtained as

ho 1= / HinC(r).1, dl
1 1°

1 . (3.24)

60’ i = /1’ Emc(r) - 1i d1

1

ZU6 and ZUm are N x N matrices, with the entries

ZUfi = — ai/27r6ij+(1- 6ij)1/li£ [I li'lf:1(rl)x VG2(I‘ — r')]dS" dl

i j

ZUinn =—stl/li/li [1‘ li-f3(r')G'2(r—r') dS'dl (3.25)

J

_9._ r..' ?_’_ b—' '
liflul TV 5(r)[02(r1 1') 01“! fl] d5

3.5 Augmenting with the Fast Multipole Method

It is well known that the computational costs and the memory of classical MOM

solvers that are augmented by FMM schemes scale as 0(Ns log NS) and 0(Ns), re-

spectively. As such, the development of FMM based schemes has been a subject of

intense study for a over a decade following the seminal paper by Rokhlin [10]. FMM

employs a divide and conquer strategy to reduce the overall computational cost; this

is achieved by embedding the body in a fictitious cubical box, and recursively dividing

this into eight smaller boxes. A box that is subdivided into smaller boxes is termed

the “parent” of the “child” boxes that result from the operation. This leads to a uni-

form oct-tree structure. For an N+ 1-level scheme, this subdivision proceeds N times.

At the lowest level, the boxes are populated by basis functions or equivalently a set

of point electric and magnetic dipoles. Fields due to these dipoles are computed at

other locations by upward and downward traversal of the tree. In order to accomplish

this in a hierarchical manner, the following dictum is used to create interaction lists:
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a pair of boxes at any level are said to be in the far field of each other if the distance

between their Centers is greater than a prescribed distance and if their parents are

in the near field of each other. In practice, this distance, at any level, is chosen to

be twice the linear dimension of the box at that level. Thus for any given box at a

level greater than one, interactions with boxes in the near field have to be resolved at

lower levels in the tree. Interaction with a box in its far field can be computed at a

higher level in the tree provided that the respective parent boxes are in the far field

of each other.

The matrix equation 3.23 can be solved using the iterative methods, e.g., the

transpose-free quasi-minimal residuals method (TFQMR) [11]. TFQMR is acceler-

ated by the FMM method to achieve optimized computation time and memory cost

[12].

3.6 Numerical Results

The aim of this section is to test the efficiency and accuracy of the single integral

equations discussed in the last section. This is accomplished by applying SIE to the

problems of electromagnetic scatttering of a plane wave by arbitrary shaped dielectric

objects. In what follows, it is assumed that the dielectric scatterer is immersed in the

free space (51 = 50, M = [10, c1 = 3 x 108 m/s), and the material is non-magnetic

(p2 = [.10). These results are compared against the analytical data obtained by the

Mie series [13] or the existing computer code based on the Muller formulation.

As shown in Figure 3.4, the scattering from a dielectric sphere of 1 m radius and

62 = 480, centered at the origin and illuminated by an incident plane wave with

Ex = :1“: polarization, it = ~23 incident direction, and f0 = 250MHz, is analyzed.

There are totally 3600 unknowns involved in solving this problem. The data agree

very well with those obtained using the Mie series. However, for this example, the

SIE code converges almost twice as fast as that are based on the Miiller formulation.
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In a second example, scattering from the same sphere as given in Figure 3.4,

discretized in terms of 4020 spatial basis functions, is analyzed at f0 = 160 MHz.

The sphere is excited by an electromagnetic wave that is Ex = :i: polarized and

incident from the It = —:2 direction. The RCS pattern in the :r-y plane compare very

well with the Mie series, as illustrated in Figure 3.5.

The next example shows the scattering from a dielectric sphere of the same size

but with 82 = 450. The incident wave is Ex = :i: polarized, and impinges on the

scatterer from the If: = —:2 direction. The incidence frequency is f0 = 225MHz. There

are totally 9414 unknown basis functions. Figure 3.6 demonstrates good agreement

between the RC8 patterns obtained using the SIE solver and the Miiller code.

Our final example of the sphere, given by the second example but analyzed at a

higher frequency, is shown in Figure 3.7. The boundary is modeled by 30318 unknown.

The incident plane wave at the frequency f0 = 300MHz is Ex = :f: polarized, and

illuminates the sphere from the ft = —2 direction. Again, results obtained using both

SIE equation and Mie series compare satisfactorily.

It turns out that the SIE code can handle not only the smooth geometries, e.g.,

the sphere, but non-smooth boundaries as well. As shown in Figure 3.8, a cubic

box of dimensions 1.0 mx1.0 mx1.0 m is excited by an electromagnetic wave that

is polarized in the :2: direction and incident from the -2 direction. The total number

of unknowns is 4077, and the incidence frequency is f0 = 257MHz. The agreement

between the results obtained by SIE and Miiller codes is again very good.

In the last example, scattering from a “fat” almond, discretized using 2208 basis

functions is analyzed using SIE and results verified by the Miiller formulation, as

demonstrated in Figure 3.9. The almond fits in a box of dimensions 1.5 mx1.0

mx0.8 In. The incident field travels in the I} = —:3 direction, is Ex = :i: polarized,

and has a frequency of f0 = 100MHz.

21



E
F
;
;
‘
;
¢
_
—

;
.‘
-

u
‘
V
~

‘
«

-
‘
w
’
fi
n
.

f
i
n
”            

 

”
A
V
A
?

_
|

.
‘

5
3
;

5
:
1
”
‘
1«
fl
a
t
;

3
"
”
:
5
"
n
gF ‘T 1'." g 15’ i

n .

1 4’4? “it?“ 5’. 5).:

“0%“mnuwin
“

*i‘hv¢¢uvmvm
um§t¢

: v

,3-{a$3”;‘VA
YAV‘YavaVAVfi

fi

   

 

  

  

  

     
 

”MVigil"

* v,AVAYAVAYafl 

Figure 3.1. Triangulated meshing of a dielectric sphere with r = 1.0. The number of

triangles is 2904, and the number of edges is 4356.
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Figure 3.2. Triangle pair (Ti+, Ti') and parameters associated with the ith edge.

23



  

H
+

  

N :
L +

,.
..

v.
..

 L 1'
 

1?:

Figure 3.3. Geometry parameters of the triangle pair Ti+ and Ti" .

24



R
C
S
(
s
t
m
)

14

12

10

 

 

  
 

 

 

,_\ —- Mie Series

-— SIE
fEm

\ /

I

\

\ /

/

\

\ /

\ I

l I l L l l I l l l

20 40 60 80 100 120 140 160 180 200

¢(DEG)->

Figure 3.4. RC8 pattern of an 52 = 250 sphere in the 13-3; plane at f0 = 160MHz.

25



 

  
 

 

 
 

—— Mie Series

— Single htegral Equation
fEx

10 ~

5 _

E
m

m

E

$3
0 ..

-5 _

_10 1 1 1 l 1 1 J J

0 50 100 150 200 250 300 350 400

(b (DEG) —)

Figure 3.5. RC8 pattern of an 52 = 450 sphere in the 17-3; plane at f0 = 160MHz.

26



 

15F

   

 

 
 

— Mie Series

E — Single htegral Equation

(B

10 —

5 ..

A I

E

8
3 o -

co

0

Ir

-5 _

-10 -

_15 1 1 1 1 1 1 ' 1 1

0 50 100 150 200 250 300 350 400

«p (DEG) -—>

Figure 3.6. RC8 pattern of an 52 = 450 sphere in the x-y plane at f0 = 225MHz.

27



Dielectric Sphere: er = 4.0, 0/1 = 4.0. NS = 30.318

 

 

 

 

  
 

 
 

25 r r f T l L 4

' ' ' ' MieSeries

- — - Single Integral Equation

20 ............................................................................................... .l

15 .............................................................................................. «a

g

I

m :
31o ........... -

(n
:

Q .

“r
2

5-........... .1

0 ................................................................................ ........... ..

1 f

_5 J 1 1 1 1 1 4

50 100 150 200 250 300 350 400

(13—)

Figure 3.7. RCS pattern of an 52 = 450 sphere in the x-y plane at f0 = 300MHz.

28



 

 

   

   
 

I

— Muller

~— SIE

E ..

rn

m

B

Q -

.4

_30 1 1 L 1 l l l

50 100 150 200 250 300 350 400

(b (DEG) —)

Figure 3.8. RC8 pattern of an 52 = 450 cubic box in the :r-y plane at f0 = 257MHz.

29



 

 

      
 

 

E J

m

in

3

g a

_l

40 _ _

.45 - _

—— Muller

—— Single Integral Equation

_50 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400

d) (DEG) —)

Figure 3.9. RC8 pattern of a fat almond in the :r-y plane at f0 = 100MHz.

30



CHAPTER 4

SPECTRAL ANALYSIS OF THE SIE OPERATOR

Method for scattering analysis from dielectric objects have been dominated by the

PMCHWT and Miiller formulations have dominated the computational electromag-

netic (CEM) society for decades. However, the constraints as discussed in section

2.2 have prompted the CEM researchers to search for desirable integral formulations.

Recent progress in the construction of “fast” methods for the solution of the boundary

integral equations, in both frequency [10] and time [14] domains, has vastly expanded

the scope of tractable problems.

Most of the integral formulations for analyzing scattering from dielectric bodies

to date are in essence various combinations of L1{*} and K1{*} operators as given in

2.4. Understanding the performance and behavior of new boundary integral formu-

lations requires a rigorous mathematical investigation of the basic integral operators.

Throughout this chapter, we investigate in detail the spectral properties of different

operators, and specifically analyze the SIE operator.

4.1 Definition of the Spectrum Analysis

We illustrate spectral analysis of operators used for analyzing scattering from a per-

fectly conducting (PEC) sphere of radius a. First, any surface current J on a sphere

may be given in terms of the surface Helmholtz decomposition

J = Vtcp + f x vii/J (4.1)
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with

00 11

d1 2

90 = Z Zdn/mbanm (4.2a)

11:1 m2-1]

111 = Z Zdlnm2YCnm (42b)

11:1 m=-'D

where

anfi‘) = Prllml(cos 6)e'jm¢, n 2 O, |m| g n (4.3)

is the spherical harmonics [1], and

_ (n. -— Iml)!(2n +1)

dnm — (n + lml)!47rn(n + 1) (4'4)

 

is the normalization constant to simplify the subsequent calculations. The coefficients

bum and cum may be any complex numbers. Using the conjugate relation 7:1 =

Yfim, it is a straightforward exercise to establish the orthogonality of the spherical

harmonics:

1 2 1 2 A — I A I

[9 dnfn dn'/m'Yrin(r)Y33 (r) d8

21r

——a2/0 / d1/2dIII/Ii,P,'1ml(cos 6)Pr'1r,n l(cos 6)

e‘iim'm>13 sin0 d6 dqs -

25nn'5mm'

n(n + 1)
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1/2 1/2 —m’
nl/ dnmdnlmrvtynn:l(f) ‘ VtY (i) dig,

S

= / dfifidifi, [i- x vii/3(1)] . [f x v37$'(i)] dS’

S

 

= [02" f0” difidfi/Ii, [digpgmkcosm %P},‘P"(cosa) (4-6)

+ST:::;:PI|1ml(cos 6)PI|1I,nll(cos 6)] e'j(m'm,)¢’ sin0 d6 do

= 5nn'5mm'

and

f8 vii/3(3). [f- x vii/"3113] dS’ = 0. (4.7)

In eqs. 4.3 to 4.7, (6, (1)) are the spherical polar angles, and i‘ is unit vector normal to

the spherical surface. From the equations above, a complete set of basis functions on

the surface of a sphere of radius a is given by the vector spherical harmonics

36.1mm» = f x vii/mm) (4.8a)
 

-j n(n + 1)

mam = r x inmw, 45) (4.812)

Next, the conventional electric field integral equation (EFIE) and magnetic field

integral equation (MFIE) for electromagnetic scattering from PEC surfaces may be

rewritten as

fl X Einc = 171T1 O J (4.9)

a x Hinc = (g + K1) 0 J (4.10)
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where the integral operators T1 and K1 are defined [15] by

T1 0.] =T(k1)OJ

= —jk1 f1 X [S ds’{G(k1,r,r')J(r’) (4.11)

+ki2V[VG(k1,rir') 400]}'1

(4.12)

= _fi x/S ds’VG(k1,r,r') x J(r’)

1 1

Applying T1, K: E (K1 + 5) and Ki E (K1 — 2) to each basis function in 4.8

yields

76 —11 k a 1111 k. a {—5

T(kl)o A“ = “( 1 ) ”( 1 L“ (4.13)

Unm Jh(k1a)Hh(kla)Xnm

i’ - '1' k a H k a x’
K+(k1)0 _,nm = J n( l ) Il( 1 :nm (4.14)

Unm jlln(kla)ll'll’n(kla)Unm

x 411 k. a 1111' k a ifK'(kl)o gum = J n( 1 l n( 1 an (4.15)

Unm jjh(kla)lHln(kla)Unm

where Jim and Mn are Riccati-Bessel and first-kind Riccati-Hankel functions of order

n, and k1 is the wavenumber associated with the kernel of the each integral operator.

The Riccati-Bessel and Riccati-Hankel functions are defined in terms of spherical

Bessel jn(:r.) and Hankel hfll)(:r) functions by

link?) = 1711(1) (4.16a)

Il-lln(:r) = $IL£1)(1:) (4.16b)

The spectrum of an integral operator is defined as the function preceding each
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basis function on the right-hand-sides in eqs. 4.13, 4.15 and 4.14. There are gener-

ally two spectrum factors associated with each basis function, respectively. For the

convenience of what follows, Alli X denotes the spectrum function of order 71 due to

—> ——>

T operating on X, and Arrf U represents its U cousin.

4.2 Spectrum Properties of the Integral Operators

Well-behaved integral operators are the sum of a constant operator and a compact

operator (see Appendix). The operators lead to second-kind integral equations, which

can be solved with fully controlled error. However, boundary integral operators in-

volved in scattering analysis typically violate this requirement in one or more of three

ways.

1. The operator may accumulate at zero. A typical example is the spectrum

function Mi X' As shown in Figure 4.1, a plot of three spectrum curves as a

function of ha is presented for orders 1, 3 and 5. It is worth noting that for a

given kla, A? X eventually vanish, as indicated by the position of point A on

the complex plane.

2. The operator may have an unbounded spectrum, such as a hypersingular oper-

ator. The spectrum function /\% U falls into this category. A similar plot in

Figure 4.2 demonstrate the singularity of A1} U when the order increases. For

a fixed kla, A% U would eventually blow up to 00.

3. The operator may have trivial spectrum values associated with resonances, often

nonphysical. These are often referred to as “spurious resonances”, which can

be observed in the case of the operator T1.

It is well-known that the MFIE operator (or K1+ ) is a second-kind integral oper—

ator. As illustrated in Figure 4.3 and Figure 4.4, both A§+ and Ali‘l' converge

,X ,U
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to —1/2 in the limit of large 71. Therefore, the operator K+ maintains a bounded

spectrum. However, as is evident from eqn. 4.14, Figure 4.3 and Figure 4.4, the oper-

ator K+ yields null eigenvalues at the zeros of .lthcla) for Yum, and at the zeros of

.lln(k1a) for finm, it is not regarded as a well-behaved operator. By the same token,

the operator K‘ seems spectrally bounded, but is not free of resonances. Similar plots

are given in Figure 4.5 and Figure 4.6.

Our analysis shows that the operator T1 does not have a bounded spectrum,

either. Yet a cascaded operator T2(k1) = T(k1) o T(k1) seems to possess better

spectral properties.

32’ 33
T2(k1)° _,nm =r1112" Hum

Unm Unm

(4.17)

, , xnm
=-.lln(k1allHln(kla-l-Un(kla)Hn(kla) —>

Unm

It is worth noting that the basis functions inm and finm are eigenfunctions of the

operator T2(k1), and its eigenvalues accumulate at -1/4, a result which follows from

the asymptotic properties of jn(:r) and hg1)(a:) [16], and is illustrated in Figure 4.7.

' An interesting and yet useful derivation [15]

3'5

K+<k1> o K’(k1)° sum
Unm

Y
= ,i}. 0 K1 0 411m

(4.18)

um

I I 3sum

2 —.Un(kla)ll‘lln(k1a).Un(k1a)IHIn(k1a)
—§

Unm
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reveals the identity

T2(k) = K2(k) — — = K+(1~.) o K’(k) (4.19)

4.3 Analysis of the SIE Spectrum

Following the notation of the operators T and K, we can rewrite the SIE operator on

the left—hand—side of eqn. 2.21 as

SmOJerr= K'<kg>oI<-<k1)-Z—;T<k2>oT<k1> oJeg (4.20)

Our previous analysis reveals that both of the operators T o T and K+ 0 K' have

bounded eigenvalues that asymptotically converge, for large order n, to given values.

Thus we “predict” that the linear combination of K:2 0 Ki and T2 0 T1 possesses a

similar spectral behavior.

It is a straightforward exercise now to derive the eigenvalues of the Sm operator.

if —'11 k 111' leafnm =K'(k2)o .7 n( la) n( 1 ) nm

Unm )1;,(k1a)nn(k1a)finm

—.ll kalHl kaU—:7—1—T(l.72)0 n(1) 11(an111

’72 llh(kia)Hh(kia)Xnm

——>

—_Iin(k.1a)lfll’n(k1a).lln(k2€l)Hh(k20) xnm

—->

_J;,(k1a)111n(k1a).ll;,(k2a)Hn(k20)Unm

771 ’ln(k1alHn(k1a)llh(k2a)Hh(k2a)inm

"2 —i;.<kla)Ht(k1a>in(kzammam’nm
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Jn(k10)H'n(k2a) %Jh(k20lfln(klal — 111(k2allHleUc1a) Fine 4 21

lh(kia)Hn(k2a) %Jn(k2almh(kia) - llh(kzallHln(k1a) finm ( I )

Figure 4.8 and Figure 4.9 show the eigenvalue curves of a dielectric sphere with

k2 = 21:1. As the order 71 increases, the eigenvalues accumulate, for the given material

contrast ratio, at 1 /2 for )‘ISlmX’ and at 5/4 for ”gmfl' However, the SIE operator Sm

suffers from the internal resonances, due to the fact that the eigenvalues vanish at the

zeros of .Iln(k1a) for the inm and at the zeros of 11;,(k1a) for the finm. As a result.

the operator Sm is not regarded as a well-behaved second-kind integral operator,

and therefore the SIE formulation, by itself, is not a suitable integral equation for

analyzing closed dielectric objects.

Yeung [6] claims that although the EFIE 2.19 and MFIE 2.21 are individually

singular at the same resonant frequency, a linear combination of the EFIE and MFIE,

namely the CFIE = [(1 — a)A]MFIE + amEFIE, where 0 < a < 1.0 and A is

the average length of the triangular-patch model, is non-singular at all frequencies.

The operator Se as in eqn. 2.19 can be expressed in terms of T and K as

Se 0 Jeff = 7)] Z—2f X TM?) 0 K_(kl) + f‘ X K-(k2) O T051) 0 Jeff (4.22)

1

And the eigenvalues can be obtained

36Sec Hum

Unm

—- Ill k a IHI’ k a i
=771'77—2f‘XTUC2lo ]n(1) n(1)—)nm

”1 jig,(k1a)11n(k1a)Unm

—.II I: a 1111 k a 1—1’+fo_(k2)o 11(1) 11(1an

Jh(Aila)Hh(klalxnm
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jlln(kla)lHI’n(k1a).lln(k2a)lliln(k2a)finm
_ 772.

-01 —I‘X —>

"1 1;.(k1amnwlawakeamewea)Xnm

fix —j-1ln(klalmn(klal-Uh(k2a)Hn(k2alfinm

~11;(name(k1a>1n<kea->H;.<kea)’inm

_ 7,2 —j11n(k1a)IHI',,(kla)1n(k2a)11n(k2a)i’nm

"1 it(k1annualawukeamakeafinm

_> (4.23)

j-lln(k1a)Hn(kla)Jh(k2a)Hn(k2a)Xnm

’j-lli1(k1(l)Hh(klal~lln(k20)Hh(k2a)I—jnm

j.lln(k10)Hn(k20) [.ll’n(k2a)lHIn(k1a)

=n1 n1

—j-llii(kia)Hh(k2a) [Jn(k2a)Hh(k10)

—%21—11<k2a>wn<k1a)] fine

However, as is evident from eqs. 4.3 and 4.23, the operator Se shares resonances (at

the zeros of .lln(k1a) for the Yum modes, and at the zeros of .ll’n(kla) for the finm

modes) with the SIE operator Sm. This is a disproof of the conclusions drawn by

Yeung [6].

4.4 Well-behaved CSIE Operator

One possible remedy for the spurious resonance is the addition of an equivalent mag-

netic current Meff on 0+, with the constraint [17] that

Me = 7711“ x Jae (4.24)
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This additional current would give rise to an new term on the left-hand-side of the

SIE equation, denoted as

Smi 0 Me = — Knee) 0 Tel) + Z—1T(k2)0 K111) 0 Mar (425)
2

And by operating on the spherical harmonic, the eigenvalues for Sm:r are obtained

if

Smt O 7711' X ._,nm

Unm

- , n1 - Unm
= -711 K (’92)<>T(k'1)+—T(’€2)°K (’91) 0 _,

722 -Xnm

11' k a 1111' k a if=01 K‘(k.2)o n( 1 l n( 1 )_,nm

.Iln(kla)ll'lln(kla)Unm

'1' k a 1111 k a U
+n—1T(k2)o J n( 1 l n( 1 )finm

772 j-lln(kla)Hh(kla)Xnm

7) -J'llii(k10)H'n(kia)Jn(kza)Hh(k20)Xnm
: 1 _’

flinwlalfln(klal3h(k2a)Hn(k20lUnm

+n_1 'j-llii(klalmn(klal-Uh(k2a)Hh(k20)Xnm

"2 —11n(k1a)H'n(klawneeamneeaffinm

-J‘~li’n(k10)Hii(k2a) [ n(k2allHl'n(kial - %Jh(k2a)HD(kla):| Yum

j.lln(k1a)lllln(k2a) [.llfikgafllilnwla) — -:;—;.lln(k2a)llll’n(k1a)] Unm

(4.26)

Apparently, they don’t share any zeros with the eigenvalues of operator S. Thus,

we can write an expression for a well-behaved combined source single integral equation
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(CSIE) operator

SCS 0 Jeff : Sm O Jeff‘l' Sm? 0 (fl X Jefi)

——- [Iran 0 K111) — Z—:T(k2) 0 mm] 0 Jay (42?)

— m [1:11:21 0 T1k1>+ Zine) o K'(k1)] o (a x Jee)

The condition number of the CSIE, though larger than that of the SIE, is still domi-

nated by the well-behaved property of S.

4.5 An alternative integral equation scheme

It should be noted that the CSIE formulation is not the only approach for eliminating

the spurious resonances. We spend the rest of this chapter analyzing an integral

equation scheme from a different perspective.

At interior resonant frequencies, the E field tangential to 9 calculated from the

SIE surface currents is not continuous across the boundary. It follows that the H

field normal to Q will not necessarily be continuous. It is suggested that the inclusion

of the normal boundary conditions of the magnetic field would augment the SIE to

yield the unique exterior solution at all frequencies [18],[19].

fi- [#vzHica’tl = fi- [#1(Hinc + H1635] (4.28)
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It can be re-written, in analog to eqn. 2.17, in the following form.

. inc _ . (1'2

11' [#111 l- n - (331%le + #2K2{J2} - MiKllJefil)

_ - ”2L _Einc .. _ L. J ..

-n' 752{ Xn n11iefrlxn}

+ Mszi-fi >< Him - 13 X K1{Jeir}}

-u1K1{JeH}) (429)

= 13' (Ciin—Einc X f! — 771L1{Je£f} X fl}
2

+ #2K2i-fi >< Him - fl >< KliJefrll

—#1K1{Jeff})

where c2 = 1/, #32112 is the velocity of light in the interior media.

Rearrangement of the terms in the above equation gives the “augmented” single

integral equation (ASIE)

.. .. 77 .. ,. ..

n ' #2K2{n >< KliJefrll + $11142“! X LiiJesll - n ' u1K1iJeH} = H5115 (430)

where

H318 = a . lem0 + a - 112K2{fi x HmC} — 51112911 x EmC} (4.31)

Next, we prove that this ASIE shares no resonance with the existing SIE spectrum.

By inspection, two differences can be observed between ASIE and eqn. 2.20.

0 Due to the normal product (fr), ASIE is a scalar equation;

0 The term —fi - p1K1{Jefl»} cannot be combined with f1 - 112K2{fi x K1{Jefi}}.
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Using notation similar to eqn. (4.20), we define the ASIE operator as

33'. 0 Jeff = {-11sz - [K2 0 K(k1)l + ‘2‘?” [L2 0 T(/~71)l - mfi ° K1} 0 Jeff (43?)

Utilizing the mapping of T <———> n x L and K +——+ -fi x K, and representing the

unknown Jeff with inm and Unm, the right-hand-side of the ASIE equation can be

rewritten as

= -u2fi - K2 0 [Ken o xnml + Pin - L2 0 [Tim 0 Km]

— 111a. [K1 0 36mm]

_ ~ + . 1 —* ’71 ~ ~ T_ —112n-K2 e [K (1.1) — 5] o Xnm + 2241- L2 0 [Mil 0 Xnml

= —u2fi ' K2 0 lK+(k1) 0 inml + Z—éfi - L2 0 [YT/~71) 0 Km]

,. —> 1 - _’

— #1“' [K1 0 xnml — EHZD' [K2 0 Xnm]

= j11.2.ll;1(kla)Hn(kla) {fi- [K2 0 Xnml}

- flfln(kla)H11(kla){fi'lL2 ° Unml}

C2

.. —-> 1 - '2

— pln '[K10 Xnm] _ 5H2“ ' [K2 0 xnm]

. , 1 . —*
= #2 (Jinwlamnma) — 5) {n ~ [K2 0 Xnml}

— 21—.lln(llc1(1)1H1n(klal{fi‘lL2 0 Umnl}
C2

— #lfi‘ [K1O i*nml

(4.33)
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and

Si 0 1—er1111 = {“Wfi ' [K2 0 K(kl)l + 13131112 0 T(klll — #lfi ' K1} 0 fjum

: _,.2fi - K2 0 [K(k1) 0 1‘1an Z—éa - L2 0 [T(k1) o Unm]

— #14 [K1 0 finml

: _p,2fi . K2 0 [K+(k1) — é] o Unm + Z—éfi - L2 0 [T(k1) 0 finml

— mfi- [K10 I7’an

: —112fi-K2 o [K+(k1) o 17’an 761:4: - L2 olT(k1)o rim]

— Mfr [K1 0 Unm] — ‘21‘#2fi' [K2 0 i3nml

= —juein<k1a)H;1<k1a) {fi- 1K2 o Unml}

+ flflh(kla)H’n(kla) {a - [L2 0 ifnml}
02

- #lfi‘ [K10 finml — $11213 ' [K2 0 iTum]

= -1u2 (1134411241213 + $) {fi- {Kg 0 mm}

+ Z—illflkla)llilil(k1a) {13- [L2 0 inml}

— [llfi ' [K1 0 finm]

(4.34)
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Denoting

43mm) = :1- [K1 0 36m] (4.35a)

33mm) = fi - [K1 0 Unm] (4.35b)

¢;m(k,2) = fl. [K2 0 33m] (4.35c)

cpgmwz) = 13- [K2 0 Tim] (4.354)

\llflm(kg) = 13- [L2 0 36mm] (4.35e)

43mm) = fi- [L2 0 mm] (4351)

we may present eqs. 4.33 and 4.34 in slightly different forms

—) _ , 1 I a

Si; 0 ann = #2 [2141145111445 — 5] cheese) — Z—éinlklamn(kla)wnm<ke)

- #1‘I’fim(/~71)

(4.36)

—+ ' I 1 u T, I I 1'

Siln ° Unm : —H2 [Jjn(kla)Hn(kla) + E] (puma?) + C_;~Hn(kla)Hn(kla)q’nm(k2)

- H1‘piim(k1)

(4.37)

In the above eqn. 4.36, it is obvious that the coefficient [flh(k1a)lilln(k1a)— il

doesn’t share nulls with .lln(k1a)lilln(k1a). [jllh(k1a)lHIn(k1a) — {I has only complex

roots, while on the contrary, zeros of .lin(k1a)lHln(k1a) are all real. Therefore, at least

one of these two terms has non-trivial value at the interior resonant frequencies. By

the same token, the term S?“ o Unm yields finite right-hand-side in eqn. 4.37. It is

also worth noting that neither $313032) nor 1131:1032) in eqs. 4.36 and 4.37 would

support a interior resonance mode. This is because 41%;: (1:2) and 111:4?(142) depend

solely on kg, and although they may vanish at certain frequencies pertaining to the
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interior media (k2), it is only at the resonant frequencies associated with the exterior

media (k1) that the SIE operator would fail.

These desirable properties of ASIE make it suitable for augmenting eqn. 4.21,

Smofinm = ,U’n(kla.)ll'lln(k2a) [%Jn(k.2a)lfll;1(k1a) — .ll’n(k20.)lliln(kla)] I—jnm (4.39)

to circumvent the resonance deficiency of SIE.

—-> _ I 1 :r

s: o xnm = #2 [11..(kla1111n124a) — 5] 14.3.32)

— 27—31}ana.)lliln(kla)‘ptrllm(k2) _ ulqflfimwl)

Sm 0 Xnm = Jn(kla)Hh(k2a) [1% h(k20)Hn(klal - ‘Unfk2athW10'l SEnm

(4.40)

-——+ . ’ 1 u

Sit. o Unm = -#-2 [21114151111314 + 5] enmrke)

77 I I 1' u+ éfln(k1a)lliln(kla)q’nm(k2) — minim/£1)

sm 0 Unm = lunamnwea) [Z—é-Uflbalmflft’la) — 1114251114315] Unm

(4.41)

At interior resonant frequencies, i.e., nulls corresponds to .lln(kla) or .Ilh(kla), eqs.

4.40 and 4.45 would reduce to

Sean 0 Xnm = #2 [NMMHWnUCial — i] (141111le - II-l‘l’iim(k1)

Smo Xnm :

(4.42)
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3% 0 Unm = —%#2¢"rim(k2) + 321-121(1710)Hh(k10)‘1’3m(k2) — #lq)iim(k1)

s... o Unm = arklamnwea) [Z—énrmmam — it<kea>Hn<k1a>l Unm

(4.43)

for .lln(k1a) = 0, respectively, and

3% ° xnm = —%~Un(kla)Hn(kla)‘I’iim(k2l — #I‘I’fim(kll

Sm 0 76mm = Jniklalmmkzal [glhfizalflnflual - JnU‘zalflhUflal) 32mm

(4.44)

Si. 0 Unm = -M2 [jlln(k1a)lfll;1(k1a)+ i] ‘I’iimezl — H1¢iim(k1) (4 45)

Sm ° I_jnm = 0

for .ll'n(kla) = 0.

Now, the foregoing analysis should suffice to conclude that by solving SIE and

ASIE, together,

Sm 0 Jeff 2 Hrhs (4.463)

s; o 18,,» = H315 (4.46b)

spurious resonances from the exterior scattering or radiating problem can be elimi-

nated.

4.6 Implementation and solution of the augmented integral equations

From the prior analysis, one can say that ASIE is a viable remedy for the interior

resonant issue of SIE. However, it proves no advantage unless several difficulties are

addressed when implemented using MoM.

o The augmented equations are overdetermined. Two equations need to be solved

for only one unknown current Jeff

o Cascaded operators, e.g., K'(k2) o K'(k1) and T(k2) o T(k1), are encountered
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in eqs. 4.46, and they can possess hyper-singular component, especially for

T032) 0 T031).

0 Both vector and scalar equations show up in the augmented equations.

There is a standard procedure for finding the least-squared solution to an overde-

termined set of equations [18], [20]. Thus we are allowed to solve eqs. 4.46 by

multiplying the equations by the Hermitian conjugate of its coefficient matrix, and

then solving the resulting even-determined, Hermitian set of equations. Since we

have proved that the overdetermined equations can yield a unique solution at all

frequencies, the least-squared solution becomes identical to this unique solution.

As for the second bullet, appropriate intermediate projection spaces need to be

chosen discretely for the each of the inner products. Adams et al. [21] have proposed

using the surface Helmholtz complement of the RWG subspace ({fi x fi}[:l) for

the intermediate projection. With the appropriate projection subspaces, a correct

discretization procedure for the T(k2) o T(k1) operator can be achieved.

Since eqn. 4.46b is a scalar function, a set of scalar testing functions are required.

Pisharody et al. [19] recently reported that spatial scalar testing functions can be

constructed using the Silvester polynomials [22] in the normalized parametric coordi-

nates. The most straight-forward category are the “hat” functions, which are unity

at a given node, vanish at all neighboring nodes.
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n 6 [1,3,5].
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Figure 4.4.
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Plot of three spectral functions of A"
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Figure 4.5. Plot of three spectral functions of AICX for kla 6 [001,6], and
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Figure 4.6.

n 6 [1,3,5].

Plot of three spectral functions of [\nK’U for ha 6 [001,6], and
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Figure 4.7. Plot of three spectral functions of A22 for kla E [0.01, 6], and n 6 [1,3,5].
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CHAPTER 5

CONCLUSIONS

This thesis presented an mathematical perspective of a new integral equation for

analyzing the scattering from arbitrary dielectric bodies. The equivalence models,

the numerical implementation using MOM, and the rigorous analysis of the spectrum

properties of the SIE Operator was covered. A modified SIE scheme was devised and

proven to be second-kind and resonance free for spheres.

First, the standard models for analyzing the scattering from dielectric objects were

introduced, followed by a in—depth discussion of their respective pros and cons. The

SIE integral equation, with the subsets of MFIE and EFIE, was presented in detail.

Second, the general method of moments was covered, with the emphasizing on

the conventional steps converting a linear integro—differential equation into a matrix

equation. The RWG triangular basis function was reviewed, and used to represent

the effective unknown current in a discretized form. A two—stage projection technique

was specified, i.e., the inner product was defined and two cascaded matrices were

constructed to replace the SIE integral equation with a matrix equation. Then the

accelerative algorithm, FMM was included to expedite the solving phase. Numerical

results generated with various geometries were illustrated, and in comparison with

the known data, the accuracy and the convergence of the SIE scheme were clearly

demonstrated.

Third, the mathematical foundations of the spectrum analysis were covered, start-

ing with the spherical basis functions. All fundamental integral operators were inves-

tigated and their spectrum properties were discussion by showing ”the spectral curves

in the complex plane. Then the same steps were applied to the SIE operator. And

it is shown that the SIE operator behaves like a second-kind integral operator, but
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suffers from spurious resonances. A supplemental magnetic source turned out to be

an appropriate remedy, and would yield a combined-source SIE, which were found to

be free from resonances.

The thesis extended to discuss an alternative approach to overcome the interior

resonance. In this new approach, the normal fields are included to augmented the

original SIE-MFIE equation. Rigorous proof shows that this set of augmented field

equations possess a unique solution at all frequencies. Crucial difficulties in practical

implementation are examined and necessary information is provided as to solve the

whole system.
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APPENDIX A

DEFINITION OF A SECOND KIND INTEGRAL OPERATOR

The standard definition of a second kind integral operator is an operator for the form

A1 + K (A.1)

where A is a constant, I is the identity, and K is a compact operator. In scattering

theory, one encounters operators of the form

AIPI + A2P2 + K (A.2)

where A1 and A2 are constants and P1 and P2 are orthogonal projection operators

such that

P1 + P2 = I (A3)

Operators of the form A.2 possess most of the desirable properties of second integral

operators. Such expressions are referred as second kind integral operators throughout

this paper.
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