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ABSTRACT

PROCESS OPTIMIZATION FOR MOIST-AIR IMPINGEMENT COOKING OF
MEAT PATTIES

By
Sanghyup Jeong

Process conditions of a moist air impingement cooking system were optimized to
achieve maximum yield and to satisfy safety and quality constraints, simultaneously. To
accomplish this goal, various strategies were tested by combining different modeling
approaches, global optimization algorithms, and parameterization of control profiles.

In this study, a finite element model (FEM) predicting yield, Salmonella
inactivation, internal color change, and surface color change was considered as an actual
experiment with which all the results were compared. Static neural network models
(SNNM) and a dynamic neural network model (DNNM) were utilized as potential, faster
alternatives to the finite element model. For the global optimization algorithms, genetic
algorithms (GA), simulated annealing (SA), and integrated controlled random search in
dynamic system (ICRS/DS) algorithms were tested along with the finite element model
and alternative models. In addition, piecewise linear interpolation (PLI) and Fourier
series (FS) were used for the control profile parameterization.

This study was conducted in two different ways. In the first part, overall aspects
of this optimization problem and the effectiveness of the various strategies were
investigated to identify the best strategy for ideal dynamic control profiles. Secondly,
based on prior knowledge, the optimization strategies were applied to several

industrially-relevant case studies.



The performance of the alternative models (DNNM and SNNM) was fast, general,
and robust, with a few exceptions. Even though the accuracy and the power of
classification were not as high as the finite element model results, the neural network
models showed potential as reliable alternative models. The highest goal (yield) was 73%,
which was obtained by using the ICRS algorithm, FEM, and PLI. However, the
optimization strategies with alternative models could not find such a high yield; rather,
they committed critical classification errors at the later stages of the optimization process.
Generally, all the global optimization algorithms showed convergence to an optimal
solution, albeit with different convergence speed and goal achievement. Although
comprehensive evaluation was impossible, ICRS was observed as the most
recommendable algorithm.

Single-stage, double-stage, and multi-zone processes were studied by using three
different models (FEM, DNNM, and SNNM) and the ICRS algorithm. The maximum
yield (67%) was achieved in the double-stage process. The case studies showed that a
simple and minor design change of the single-stage oven might improve the performance.

In addition, the objective function (yield) for the single-stage oven was replaced
with a cost function, and the operating conditions for maximum profit were determined,
which were different from the results when the objective function was yield. Finally,
Monte Carlo simulation showed that all the optimal profiles were highly sensitive to
small perturbations, which implied difficulties in the actual application of the optimal

solutions, due to unavoidable control errors of a cooking system.
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1 INTRODUCTION

1.1 Background

1.1.1 Food Quality and Safety

Food processing technology has been advanced along with human history.
However, the fundamental concept of food processing has not changed considerably,
even though many innovative processes and products are being developed. Basically,
manufacturing of foods encompasses two types of conversions, physical and chemical.
The main purposes of these conversions are preserving and improving the quality of
processed food products. One of the predominant unit operations, inducing both physical
and chemical conversions, is heat or thermal processing.

Thermal processing is transferring heat to a food material to induce desirable
results, but this also can cause concurrent undesirable results. Thermal processing
increases digestibility (e.g., protein denaturation), reduces enzyme and microorganism
activity, and enhances food characteristics (e.g., carbohydrate gelatinization, color
development, texture, and flavor changes). However, thermal processing also produces
undesirable results, such as loss of heat sensitive nutrients and undesirable color and
flavor changes due to over-cooking. Therefore, a compromise must be found between
intensity of thermal processing and its various effects on the product (Trystram, 2004).

According to the results of a recent survey published in “Trends In The United
States - Consumer Attitudes and The Supermarket 1999”(FMI, 1999), the top food
selection concerns and the percentages of the shopping public that consider these factors
“very important” in their food selection were as follows: (1) Taste, (92% of those

interviewed), (2) Nutrition, (70%), (3) Product Safety (70%), (4) Price, (63%), (5)
1



Storability, (42%); (6) Ease of Preparation, (35%); (7) Food Preparation Time (35%) and
(8) Product packaging that can be recycled, (29%). Therefore, food manufacturing must
address not just production volume, but also a variety of other competing criteria.

For the consumer’s food safety concern, the USDA Economic Research Service
(ERS) reports that the percent of consumers “completely confident” in the safety of the
food supply increased from a low of 72% in 1992-93 to a high of 83% in 1996, with
levels declining to 74% in 2000 (ERS, 2002).

From the economic viewpoint, food safety is the most critical and nonnegotiable
quality factor. In the United States, foodborne diseases have been estimated to cause 6
million to 81 million illnesses and up to 9,000 deaths each year (Mead et al., 1999). For
six specific bacterial pathogens, the costs of human illness are estimated to be $9.3-12.9
billion annually (Buzby et al., 1996). In 2000, ERS estimated the annual costs' due to
selected foodborne pathogens’ as $6.9 billion (ERS, 2000). These estimated costs are an
enormous burden for society and also for food manufacturers.

Therefore, it is clear that the major sectors (i.e., consumers, industry, and

regulatory agencies) in the food market must collaborate to improve the current situation.

!includes medical costs, productivity losses, and costs of premature deaths

? Campylobacter (all serotypes), Salmonella (nontyphoidal), E. coli 0157, E. coli non-O157 STEC, and
Listeria monocytogenes



1.1.2 The Drive for Food Quality and Safety Innovation

Driving forces can be passive or active. Since the 1993 outbreak of E. coli
0157:H7, consumer awareness and demand for food safety has increased (Golan et al.,
2004). The passive driving forces often come from foodborne illness outbreaks and
recalls’, and they trigger consumer awareness, regulatory changes, or industrial
innovation.

“The number and size of recalls have increased dramatically over the last decade.
During 1993-96, the number of meat and poultry Class I recalls averaged about 24 per
year and amounted to 1.5 million pounds annually; during 1997-2000, Class I recalls
averaged 41 per year and reached 24 million pounds annually (Ollinger and Ballenger,
2003).” These increasing recall cases are not because of loose control, but because the
ability to detect pathogens on products has increased dramatically, which can generate
more recalls (AMI, 2002). In addition, the ability to track foodborne disease and tie it to a
specific food product has evolved into a practical technology (AMI, 2002). Recalls result
in bad reputation and catastrophic financial damage to a manufacturer.

Therefore, efficient quality assurance has become a critical issue for consumers,
manufacturers, and related government organizations. Instrumentation, food safety
practices, and lethality criteria are of central importance, with particular emphasis on very

high sanitary and hygienic operating standards. Evolving federal regulations, such as

3 A food recall is a voluntary action by a manufacturer or distributor to protect the public from products that
may cause health problems or possible death. The purpose of a recall is to remove meat or poultry from
commerce when there is reason to believe it may be adulterated (injurious to health or unfit for human
consumption) or misbranded (false or misleading labeling and/or packaging) (FSIS, “FSIS Recalls”, USDA,
http://www.fsis.usda.gov/Fsis_Recalls/index.asp, March 22, 2005.).

* Recalls that involve meat or poultry products that could, especially without cooking to safe temperature,
cause serious illness or death.



9CFR318.17 (FSIS, 1999 & 2001), change safety regulations from passive to active
compliance required of the food industry. Traditionally, regulations have provided a
specific endpoint temperature and holding time to achieve target lethality in a meat and
poultry product. Thus, the traditional approach discourages the food industry from
adopting new technology and voluntary compliance to the regulations. However, the
evolving regulations require manufacturers to prove, via scientifically supportable means,
that their process or operating policy achieves a target lethality performance standard.
The transition from command-and-control to performance standards allows more
freedom of choosing process design and operation policy, but also moves more
responsibility to the industry.

Contrary to the above passive driving forces, there might be an active driving
force that originates from industry. Food manufacturers invest in the development of new
methodologies to improve safety and quality of their food product. When industry
successfully innovates to produce safe foods, a win-win situation arises, with the
innovating firm, consumers, and government all benefiting from improved food safety
(Golan et al., 2004).

Many attempts have been made to maximize desirable quality and simultaneously
minimize undesirable effects by adding ingredients, developing innovative process
equipment, improving process conditions, and so forth. Among those approaches,
improving process conditions is advantageous, in that it uses existing systems. Therefore,
additional capital investment is not necessary to resolve these contradicting factors to
achieve both safety requirements and maximize quality and profit. Finding the best

operating condition is critical from the perspective of industry, because the need to



improve efficiency, reduce energy consumption, increase productivity, and comply with
regulations pushes industry to adopt improved safety practices if they can see

simultaneous benefits in yield, which translate to profit.

1.1.3 Economic Significance of the Meat Industry

In spite of the increased safety concerns, the U.S. meat and poultry industry
contributes significantly to the U.S. agricultural economy. Total meat and poultry
production in 2000 exceeded 80 billion pounds, a 31 percent increase since 1987. The
meat and poultry industry is the largest segment of U.S. agriculture, contributing over
$100 billion in annual sales to the GNP (AM]I, 2001).

The products affected by regulatory changes related to ready-to-eat products
account for over $28 billion in annual sales (FSIS, 2001), and consumer trends for ready-
to-eat products also suggest continued rapid growth in this category. The size of this
market is important as a spur to greater profit in this industry. Accordingly, the industry
aims to develop novel products and to increase the efficiency of its production lines. For
an example, even a modest 0.5% improvement of cooking yields based on the $28 billion
annual sales in this category would give an impact of approximately $140 million
increase in annual revenue for ready-to-eat products in the U.S.

Therefore, given the regulatory changes and the economic importance of ready-
to-eat (RTE) meat products, there are compelling needs for integrated simulation tools
that will allow industry to design and operate processes that meet the lethality
performance standards and simultaneously increase quality and profit. Optimization
techniques that find the conditions for the best result from a given situation are needed to

meet these demands. Process optimization is the most economic approach for industry to



maximize yields while ensuring safety and quality factors with existing facilities.
Therefore, the information and tools that will enable the industry to design and operate

the optimal processes are essential.

1.1.4 Recent Innovation in Meat Patty Processing

Impingement cooking technology has been popular in certain segments of the
food processing industry, because of its efficiency. Specifically, moist air impingement
cooking systems are widely used in the ready-to-eat meat product industry, because the
system (Figure 1.1) results in short cooking time and relatively high cooking yield.

The moist air impingement cooking systems jets a steam-air mixture through
arrays of nozzles onto products, yielding a high heat transfer rate by reducing the
thickness of the boundary layer at the surface of the product. Also, at the initial stage of
cooking, steam is condensed on the surface of the product, which results in effective
transfer of latent heat into the product at low temperature. Therefore, moist air
impingement cooking systems are characterized by fast cooking and suppression of
moisture loss. Moist air impingement cooking systems involve many control variables,
such as cooking duration, air temperature, air moisture content, impingement exit

velocity, and impingement geometry (e.g., jet width, spacing, and height).
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Figure 1.1 Schematic diagram of a multi-staged, moist-air impingement cooking
system.

Currently, most oven operators select the oven operating conditions (i.e., the
control variables) based on their experience or simple rules of thumb, which are not
necessarily proven scientifically. For a single-stage oven, one might operate the oven
within sub-optimal conditions. However, if multiple ovens (Figure 1.1) are connected to
increase the rate of production with various cooking zones, then the complexity and size
of the problem is too large to select optimal conditions with experience. Also, meat
cooking under moist air impingement cooking environments involves multiple control
variables, mass transfer coupled with heat transfer, phase transitions, and complex

condensing boundary conditions, which results in complex combinations of control

profiles.



Therefore, optimizing the process conditions of moist air impingement cooking
systems is a significant challenge and a worthwhile endeavor from the perspective of

researchers, food processors, oven manufacturers, and government agencies.

1.2 Objectives

The overall goal of this study was to develop an efficient process optimization
method, in terms of speed and objective-achievement, and to evaluate the method for
maximizing cooking yield, while ensuring the microbial safety and quality of ready-to-eat
meat products (ground and formed meat and poultry products) cooked in commercial
moist air impingement cooking systems. To achieve the overall goal, the specific

objectives were:

1. To add color prediction capabilities to an existing finite element model.

2. To develop an alternative process model for moist air impingement cooking of
meat patties by using artificial neural network (ANN) to replace an existing
finite element model.

3. To identify the best strategy for process optimization among many
combinations of optimization algorithms, process models, and
parameterization of control functions.

4. To apply the developed optimization strategies to three case studies: single-
stage, double-stage, and multi-zone oven systems.

5. To examine the performance of the optimization strategy for a single-stage

oven system, given an economic-based objective function.



2 LITERATURE REVIEW

2.1 Achieving Extrema in Food Processing

An ultimate goal of most production activity is to increase profitability at given
conditions, and food processing is no exception. Typically, improving the efficiency,
reducing process time, and increasing yield and quality are concerns for most food
processors and equipment designers. Generally, a typical industry consists of
management, process design and equipment specification, and plant operations (Edgar et
al., 2001). Because these components are inter-connected, achieving those improvements
are not simple tasks. Therefore, depending on the level of complexity and difficulty, the
scope of a problem can be the entire enterprise, a plant, a process, a single unit operation,
a single piece of equipment in that operation, or any intermediate stage between these
(Beveridge and Schechter, 1970).

Generally, these improving activities are maximizing the capabilities of existing
facilities or equipments by changing their conventional operating policies, conditions,
numbers, and so on. All these attempts can be described in a single word: “optimization.”
A more formal definition would be “the collective process of finding the set of conditions
required to achieve the best result from a given situation (Beveridge and Schechter,

1970).”

2.2 Characteristics of Optimization in Food Processing
Food processing is unique in that the process involves materials having irregular
shapes, non-homogeneous compositions, and individual variance even in the same

Material. In addition to the materials, quality factors for product evaluation can be



subjective, such as taste, aroma, and flavor. Also, food processing encompasses various
techniques, such as frying, baking, boiling, blanching, fermenting, drying, and so on.
Therefore, modeling food processing phenomena is very challenging.

Models are essential components of modern process systems engineering (i.e.,
simulation, optimization, and control), and they are usually classified into three
categories, which are first-principle models (or white-box), data-driven models (or black-
box), and hybrid models (or gray-box) (Banga et al., 2003). Without adequate models, it
is impossible to carry out optimization. From the view point of the application of
optimization technique, the first-principle models are highly desirable, because the
response time of the models is short, and it is convenient to apply various mathematical
operations, such as differentiation. However, because first-principle models are difficult
to obtain, data-driven models and hybrid models are popular in food processing.
Generally, mathematical modeling of a food process requires knowledge of transport
phenomena and reaction kinetics. Transport phenomena involve heat, mass, and
momentum transfer into a food, and reaction kinetics cover degradation or inactivation of
nutritional and organoleptic factors or microbial and enzymatic activity (Oliveira and
Oliveira, 1999). Usually, these multi-physical phenomena are expressed as sets of
algebraic, partial, and ordinary differential equations in the mathematical model. Due to
the lack of theoretical methods for solving those highly complex, nonlinear systems of
€quations, most of the problems are solved by using numerical techniques, such as the
finite difference method and the finite element method. Considering that most

Optimization techniques require numerous iterations of a process model, the numerical,
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computational requirements of the model are often significant impediments to
optimization.

One of the popular methods to overcome the above difficulties of modeling is
alternative modeling, which can be fast, simple, and robust, with reliable accuracy. Even
though alternative models sacrifice some degree of accuracy, compared to numerical
models, the overall benefits of the alternative modeling techniques must be considered
when evaluating performance in an actual optimization problem.

Artificial neural networks (ANN) have emerged as a potential alternative to
physical-based models for food process engineering, because of their simple structure,
robustness, no requirement of prior knowledge, and adaptive performance (Torrecilla et
al., 2004). ANN have been successfully applied to the modeling of food processes (Mittal
and Zhang, 2000; Sablani and Shayya, 2001; Chen and Ramaswamy, 2002; Chen and
Ramaswamy, 2003; Horiuchi et al., 2004; Torrecilla et al., 2004), property and quality
prediction (Berg et al., 1997; Xie and Xiong, 1999; Raptis et al., 2000; Albert et al.,

2001; Therdthai and Zhou, 2001; Tominaga et al., 2001; Hussain et al., 2002; Boillereaux
et al., 2003; Ganjyal et al., 2003), machine vision and image analysis (Chao et al., 2002;
Marique et al., 2003; Diaz et al., 2004), extrusion (Ganjyal and Hanna, 2002), microbial
growth and inactivation (Geeraerd et al., 1998; Garcia-Gimeno e al., 2003), high-
pressure processes (Torrecilla et al., 2005), and fluid flow (Adhikari and Jindal, 2000;
Sablani and Shayya, 2003; Singh and Jindal, 2003). Once an ANN is established, the
Computation time of the network is very small with reliable accuracy. ANN is ideal for

System identification and replacement of an existing first-principle model. For example, it
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was shown that ANN were very effective for replacing a finite difference computer
simulation of retort processes (Chen and Ramaswamy, 2002).

Another difficulty in food processing optimization arises at the characteristics of
the response space of a problem. If the response space has just a single unique maximum
(or minimum), finding the extremum can be guaranteed. However, food processing
models are generally characterized as a system of nonlinear partial differential algebraic
equations, which usually exhibit a multimodal nature (Banga e al., 2003). In this
situation, an effective and systematic procedure (or algorithm) is essential for

optimization.

2.3 The State of the Art of Optimization Techniques

In the previous section, characteristics of food processing were discussed by
focusing on model related issues. However, to solve practical optimization problems,
effective techniques that are capable of consistently finding the best solution to the
problems must be available.

A popular optimization technique is nonlinear programming (NLP, Section 3.1.2),
which is usually using gradient information to decide the search direction (e.g., steepest
ascent path). If NLP is applied to highly nonlinear, constrained, and multimodal problems,
it usually converges to the “nearest” local solution®, because its search direction and size

are determined from its starting point (Edgar et al., 2001). Therefore, NLP cannot

guarantee a global solution®, if the starting point is not close enough to the global

S
refers to local maxima or minima in a section of the entire solution space

6
refers to the highest or the lowest point among other local maxima or minima.
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optimum. However, the local nature of NLP algorithms can be overcome by global
optimization (GO, Section 3.1.2.5) techniques designed to find a global solution.

GO algorithms are designed to escape from local solutions and explore promising
regions where a global solution may exist. Also, GO can be utilized with ANN in parallel,
without any modifications to the process model. In food process engineering, GO has
been used with numerical models, such as finite difference models (FDM), finite element
models (FEM), and ANN (Chen and Ramaswamy, 2002). Banga et al. (2001) and
Zorrilla et al. (2003) coupled a FDM model of double-sided cooking of meat patties
directly with the Integrated Controlled Random Search for Dynamic Systems (ICRS/DS),
which is an adaptive stochastic GO algorithm.

Response surface methodology (RSM’) is currently the most popular optimization
technique in food science, because of its comprehensive method, reasonably high
efficiency, visualization, and simplicity, even though RSM is inefficient and cannot be
automated in finding the overall optimum (Arteaga et al., 1994). Also, Banga et al.
(2003) pointed out some important drawbacks of RSM methods, such as the empirical,
local, and stationary nature of these statistical techniques. RSM has uncertainty of model
equations, which means the model might not represent a real physical model, because
RSM is a statistically designed experimental optimization method. Generally, the method

is not considered as a formal optimization technique. However, RSM has been

" RSM uses quantitative data from an appropriate experimental design to determine and simultaneously
solve multivariate problems. The equations describe the effect of the test variables on the response,
determine interrelationships among test variables, and represent the combined effect of all test variables in
the response. This approach enables an experimenter to make efficient exploration of a process or system
(Ponciano S. Madamba, “The response surface methodology: an application to optimize dehydration
OPerations of selected agricultural crops”, Lebensm.-Wiss. u.-Technol., v. 35, p. 584)
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successfully applied to product development and static process identification when the

system behavior or the process is unknown, complicated, and static.
2.4 Applications in Food Process Engineering

2.4.1 Sterilization of Canned Product

Optimization techniques have been rigorously applied to sterilization of
prepackaged conduction-heated food, such as retorting of canned foods. The basic form
of this application is to find the best combination of retort temperature and process time
for a constant heating process or the best retort time-temperature history for optimal
control, which can simultaneously achieve the required lethality of the target
microorganism and maximize quality factors.

The first attempt by Teixeria et al. (1969) found the best combination of retort
temperature and process time for a constant retort process of conduction-heated foods.
The best set of time and temperature was found by plotting thiamine retention against
equivalent process conditions producing the same level of lethality. Even though the
attempt introduced optimization concepts to food process engineering, the study did not
apply formal optimization methods to the problem.

Saguy and Karel (1979) applied Pontryagin’s maximum principle (PMP) to
maximize thiamine retention in retort process and found a single optimal variable retort
temperature profile. The significance of this study was the first application of formal
Optimization theory to food process engineering. However, because the application of
PMP requires quite a modification of the original problem, it might not be suitable for a

Complex problem.
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Numerous attempts have been made since the work of Teixeira et al. (1969) to
optimize retort operation. However, the essential features of those optimization problems
have many similar aspects (Table 2.1). The popular objectives of sterilizing prepackaged
conduction-heated foods were maximizing retention of a single nutrient, minimizing
quality degradation, and minimizing energy consumption. Most of the prior studies dealt
with microbial lethality as an inequality constraint and a two-dimensional numerical

model (heat conduction only) as an equality constraint.

Although there was similarity in the formulation of the problem among these
many studies, the major difference among them was the method used to find the optimal
condition or profile. Application of formal optimization methods has been increasing, so
that several studies (Saguy and Karel, 1979; Nadkarni and Hatton, 1985; Banga et al.,
1991; Chalabi et al., 1999; Kleis and Sachs, 2000; Erdogdu, 2002; Erdogdu and Balaban,
2003) found optimal retort solutions, with respect to specific assumptions. The type of
optimal solutions can be categorized into: (a) combinations of process time and constant
temperature, (b) piecewise continuous temperature profiles, and (c) on-off type of control
profiles. Even though the piecewise continuous temperature profile is the true optimal
solution, the solution cannot always be considered as the best, because it is not practically

Possible to implement a continuous profile in many conventional processes.

The biggest advantage in applying process optimization to retorts is the relatively
simple process model, as compared with unpackaged food processes. Usually, the retort
Optimization encompasses a single control variable, temperature, which limits the burden
of computation. Also, the process model does not involve mass transfer, which is a very

complex phenomenon in meat cooking process.
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Table 2.1 Analysis of basic elements used to optimize sterilization processes of

prepackaged conduction-heated foods.

Constraints Optimization Optimal
. o . a
References Objective function 1c? EC® method ® Solution ®
(Tleg"é;’)‘a et al. 'r‘:{‘e"n'ﬁ(f:l’)a’“'“e VAL |2DFDM |Gs (T, tyopt.
Teixeira et al. Max. (thiamine VAL
(1975) retention) T,/1, |2PFDM |GS RT.t)opt.
.. Piecewise
caguy and Karel | Max. (thiamine YAL  |2pFDM | PMP continuous
( ) retention) L/ Ty rofile
(T, tyopt w/
Min. (surface & volume Comparison | linear
Ohlsson (1980) averaged cook value) Fe 2D FDM (diagrams) come-up-
time
Chart
. . (Unsteady- | Comparison | Constant
:?.lagr;in)ro etal f::i:‘s'u(;m:;gz ) Fc state heat (time- time &
P conduction | temperature) | temperature
)
. 2D
Nadkrani and . . VAL . On-off
Hatton (1985) Max. (nutrient retention) T,/ Ty numgncal PMDP control
solution
Banga et al. Max. (nutrient and VAL
(199g1) at surface quality retention) | Fc 2D FDM ICRS/DS VRT
Min. (process time)
E Step
. c Davis, Swann | function w/
Silva et al. (1992) :‘;’;’;ﬁ(zym quality | IDFDM | and Campey | linear
tend method come-up-
time
. 2D Open-loop
gh;;l;;n et al. Max. (nutrient retention) | Fc Theoretical | optimal ?:::Oll)ang
2D FDM control
. Max. (vitamins Fc
é‘&‘)%;‘“d Sachs | oention) Min. (energy | T./Ty | IDFEM | SQP fT,0)
consumption) Tend
Fe 1D/2D Complex Equidistant
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distributed principle; ICRS/DS; Integrated Controlled Random Search for Dynamic Search; SQP,
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€ VRT, variable retort temperature; opt., optimum
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Chen and Ramaswamy (2002) developed an ANN model with training and testing
data produced by a finite element model, and coupled the ANN model with GA. In that
study, the control function (i.e., retort temperature) was parameterized with sine and
exponential functions to replace the traditional constant retort process. The coupled
ANN-GA model was able to identify the relationship between the operating variables and
control function parameters. Even though the ANN-GA found the optimal processing
condition of a retort process, the optimal solution could be improved if additional
parameters for the control function were used to increased flexibility. Also, the work of
Chen and Ramaswamy (2002) was for prepackaged food retorting, a simpler process

model than convection cooking of meat patties.

2.4.2 Food Dehydration

Dehydration is a common method to extend the shelf life of foods. This operation
is normally removing water in a foodstuff. via evaporation or sublimation (Brennan,
1990). Among many techniques, such as freeze drying, spray drying, super-heated drying,
infrared drying, microwave drying, heated air drying of a solid food block is the focus of
this review, because of the physical similarities with meat patty cooking under moist air
impingement cooking. Using heated air is the typical method of dehydration, in which a
food product is placed in contact with a moving stream of heated air. Therefore, drying
<an be an optimization problem, in which the optimal conditions are sought to maximize
retention of nutrients, such as ascorbic acid, while minimizing enzyme or microbial
activities (Banga and Singh, 1994).

Drying processes are generally driven by evaporation at the surface, which causes

Wwater transport within a foodstuff. Fick’s equation of diffusion is often used to describe
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water transport in drying. For hot air drying, the mass transfer model must be coupled
with a heat transfer model, often assuming a one-dimensional thin slab and an
evaporation term to account for the energy balance. These partial differential equations
are usually solved by the finite difference method or rarely by existing analytical
solutions with empirical equations for model parameters, such as diffusion coefficient,
convective heat transfer coefficient, and first-order rate constant for ascorbic acid
degradation (Mishkin et al., 1982). Food drying quality parameters are often modeled by
using first-order reaction kinetics (Mishkin et al., 1983; Banga and Singh, 1994).

Mishkin et al. (1982) used Pontryagin’s maximum principle (PMP) and the
complex method to find the optimal air temperature profile maximizing ascorbic acid
retention in a model system (a slab composed of water, cellulose, and ascorbic acid) with
fixed relative humidity. The complex method was selected, because the method was
convenient to use along with any type of process model and constraints without
modification. Mishkin et al. (1983) extended their research to a multi-stage drying
process. They found optimal stepwise temperature and ht.lmidity profiles for three stages
by using the complex method.

Banga and Singh (1994) set up four different optimization problems for drying of
a thin slab of cellulose: (a) maximizing ascorbic acid retention with a constraint on the
final moisture content, using air dry bulb temperature as the control variable; (b)
minimizing process time with final retention of ascorbic acid, using air dry bulb
temperature control; (c) maximizing ascorbic acid retention with final retention of
enzyme, using dry bulb temperature and relative humidity control; (d) maximizing energy

efficiency with final ascorbic acid retention, with dry bulb temperature control. These
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problems were solved by using an ICRS/DS algorithm, and they found optimal piecewise
linear control profiles in all cases.

In spite of many similarities with meat cooking processes under moist air
condition, drying processes are different from meat cooking, in that cooking involves
more complex mass transfer phenomena (water-fat mixing and fat dripping), microbial

inactivation, phase change, and air humidity sufficiently high to cause condensation.

2.4.3 Meat Patty Cooking

The abundance of prior research in retort operation is due to the availability of the
process model, which encompasses relatively simple phenomena, such as depletion of
certain nutrients coupled with heat transfer. However, the nature of meat patty cooking is
an unpackaged process that generally involves various mass transfer phenomena, such as
evaporation and dripping of fat and water. In addition, geometry change and phase
transition is typical for this process. These phenomena must be coupled with heat transfer
and solved. Other difficulties in the modeling of meat patty cooking arise in the heating
medium. The heating medium in retort processes is water or steam, which does not
interact with the food material in the package and has simple thermal properties.
However, in an unpackaged food product, the heating medium interacts with the surface
of the food material, which therefore leads to more elaborate boundary conditions.

Banga et al. (2001) and Zorrilla et al. (2003) applied the dynamic optimization
technique (Section 3.1.2.6) to contact cooking of meat patties, which is considered as the
first attempt to optimize a meat patty cooking process. The objective of those studies was
to minimize cooking loss of patties, while ensuring inactivation of E. coli O157:H7 and

final product center temperature. One-dimensional coupled heat and mass transfer solved
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with finite difference method (Pan, 1998) was used as a process model. The above
optimization problem was solved by a global optimization algorithm, ICRS/DS
(Integrated Controlled Random Search for Dynamic Systems), which found the optimal
piecewise step grill surface temperature profile (Banga et al., 2001; Zorrilla et al., 2003).
The process model is an important part of an optimization problem, because the
model is used to predict the objective value and constraints. The process model
developed by Pan, (1998) and used by Banga ez al. (2001) and Zorrilla et al. (2003),
assumed the patty as a one dimensional infinite slab, which is less accurate than two-
dimensional modeling. Even though the model could predict water and fat transfer and
microbial log reduction, other important quality factors, such as internal color change and
surface color change, were not considered. Also, the nature of the cooking method was
contact cooking, which was modeled using simplified, effective boundary conditions,
compared with the condensing-convective boundary conditions during meat patty
cooking under a moist air environment. In their optimization problem, grill surface
temperature was the single decision variable. However, moist-air impingement meat patty
cooking involves the additional control variables of air humidity, impingement velocity,
and impingement geometry. Even though the performance of ICRS/DS was good enough
to locate the global optimum for the contact cooking problem, comparison with other GO

methods was not conducted.

2.4.4 Various Processing Areas

In addition to the application for canning, cooking, and drying, optimization
techniques have been applied to the other processes, such as ultra-filtration, baking,

extrusion, cheese manufacturing, mixing, and so forth. Each application provides some
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lesson about the implementation of formal optimization techniques to the unique nature
of various food processes.

Usually, the objectives of wine filtration are to minimize colloid content,
maximize color intensity, and maximize flux by varying pore size and the recycle rate of
membranes (Gergely et al., 2003). Gergely et al. (2003) expressed the objective function
as a second-order form of regression functions of the membrane pore size and recycle
flow rate, which was a response surface model (RSM). Even though the RSM can solve
some optimization problems, generally the method is not recognized as a formal
optimization method (Section 2.4).

In optimizing commercial bread baking, the biggest challenge is getting a reliable
process model. Therdthai et al. (2002) used four different temperature zones of a
commercial oven and baking time to find optimal condition for minimizing loss while
controlling the top crust color, side crust color, and average crust color within acceptable
ranges. Statistical methods were used to construct a model equation, which was a RSM.
However, some researchers have used neural networks coupled with a Genetic Algorithm
(GA) for leavening process optimization in a bread-making industrial plant (Fravolini et
al., 2003). Fravolini et al. (2003) used a nonlinear system identification method, called
NARMA (Nonlinear Autoregressive-Moving Average), to model the leavening process.

Extrusion is very complex process. The most common objectives are expansion
ratio, shearing strength, and sensory texture, which are functions of temperature, feed
moisture, and process variables, such as screw speed, screw compression ratio, feed
speed, and die diameter. RSM is the most popular method to model the process and to

apply optimization methods, because the results of RSM are analytically differentiable
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mathematical expressions (Chavez-Jauregui et al., 2000); Frazier et al., 1983; Iwe et al.,
1998; Karwe and Godavarti, 1997; Olkku ef al., 1983; Quintero-Ramos et al., 1998;
Vainionpaa, 1991). Therefore, optimal condition could be found by applying theoretical
optimization techniques directly to the model.

In addition to applications for food processes, well-organized dynamic
optimization problems also exist in biochemical processes, such as fermentation
(Tartakovsky et al., 1995; Banga et al., 1997, Berber et al., 1998; Tsoneva et al., 1998;
Fagqir, 1998);Lee et al. 1999; Radhakrishnan et al., 1999; Halsall-Whitney e al., 2003;
Levisauskas e al., 2003). The nature of biochemical processes is similar to food
processes, in that their dynamic behavior is inherently nonlinear. However, most
biochemical systems can be modeled by a set of ordinary differential equations, which
makes many optimization theories applicable, because the model equations are
differentiable. Generally, biochemical processes have been treated as problems of optimal

control, which use a special form of the performance function.
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3 THEORIES

3.1 Overview of Optimization Theory
3.1.1 Introduction

3.1.1.1 What is Optimization?

Our daily life is always full of choices in various activities, such as traveling,
shopping, or eating. Decision-making is the cognitive process of selecting a course of
action from among multiple alternatives. The purpose of decision-making is to choose the
best alternatives fitting with our goals. Even though the purpose of decision-making is
clear, making decisions involves many considerations and uncertainties. In the case of a
simple problem, we can guess the results of some trials or test the effect of each possible
alternative. However, as the number of variables and the interactions between variables
increase, these attempts lose the ability of identifying the best solution among the many
possible good solutions. For example, we can increase the thickness of insulation to
decrease energy loss, but increased insulation thickness increases cost, which is the trade-
off. In that case, the problem is to find the thickness of insulation minimizing the total
cost, which cannot be solved easily.

Therefore, systematic methods and procedures are necessary to solve those
problems containing many variables, restrictions, and factors, which compete with each
other for the best solution. Optimization can be defined as “the collective process of
finding the set of conditions required to achieve the best result from a given situation”
(BeVeridge and Schechter, 1970). By the help of optimization techniques, we can explore

More complex decision-making situations with more certainty and effectiveness.
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3.1.1.2 Essential Features of Optimization Problems

By observing optimization problems, some common features can be found. For

example, if a driver wants to travel from city “A” to city “B” in the least time, then the

minimum traveling time will be the primary objective for the driver. To accomplish this

goal, the driver has to consider the speed limit of each state, weather conditions, physical

limits of driver and car, paths, and so on.

The basic components of an optimization problem are the objective function,

decision variables, constraints, and mathematical model. These components are well

explained by Evans (1982).

1.

Objective function (performance function, or cost function): This is the quantity
to be maximized (or minimized). It is often referred to as the cost or performance
function. Whether measured in dollars, efficiency, or other terms, the performance
function evaluates alternative solutions to the problem to determine which one is
the best.

Decision variables: These are the parameters in the process or system that can be
adjusted to improve the objective. They are the free or independent variables that
must be specified in the traditional case-study approach to problem-solving.
Constraints: All optimization problem have constraints on the allowed solutions.
These constraints may limit values of the decision variables or of other dependent
variables that describe the behavior of the system.

Mathematical Model: If the problem is to be solved other than by trial-and-error
physical experimentation, we must have a model of the system. The model is the

mathematical representation of the system that determines the objective function
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in terms of the decision variables. It also determines other dependent variables

that may be subject to constraints.

Now, we can define optimization by using the terms described above. Therefore,
optimization is finding a set of conditions maximizing or minimizing the objective

function while satisfying the imposed constraints of the problem.

3.1.1.3 Solving Optimization Problems

To solve an optimization problem, one must analyze the essential features of
problem. This means that the objective and constraints of the problem should be
identified first, but not necessarily in the form of mathematical expressions. Then the
objective function must be expressed in terms of the system variables by using
mathematical expressions. Interrelationships, internal restrictions, and system models
must be expressed in mathematical form. Now, the problem is reconstructed according to
the essential components of a formal optimization problem. Upon this mathematically
redefined optimization problem, an appropriate optimization method and algorithm can

be applied to obtain the optimal conditions to achieve the objective.

3.1.1.4 Hierarchy of Optimization Problems

Optimization can be employed at any level in a plant, ranging from a small piece of
€quipment to management of a whole company. Someone may need more workers to
Maximize the production rate. However, from the management perspective, this
Optimization result might not be favorable, because of labor cost. Therefore, the scope of

Optimization is important, because one level of optimization does not guarantee the
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optimality of another level of a system. Typical industrial company optimization
encompasses three levels: management, process design and equipment specification, and
plant operation (Edgar et al., 2001). The highest level of optimization of a company is the
management to maximize net profit. To accomplish the objective, someone would need
to model the whole company, including every piece of equipment, which is practically
impossible. Therefore, the scope of an optimization problem must be reviewed before

proceeding to the next step.
3.1.2 Theory and Methods

3.1.2.1 Basic Concepts of Optimization

The basic concepts of optimization can be clearly illustrated by observing an
unconstrained one-dimensional case. “Unconstrained” means that there are no equality or
inequality constraints, so that the independent or dependent variables can be simulated
without any limitations. Let’s take a simple arithmetic example. If we define a quadratic

function y with an independent variable x and coefficients a, b, and c, then:

y=f(x)=ax2+bx+c [3.1)
The objective is to find x minimizing or maximizing the function value. One might plot
the function to see the actual shape of the curve and find a maximum or minimum point
graphically (Figure 3.1). However, there is a mathematical tool to see the feature of the
Curve, which is the first derivative (y") information obtained by differentiating the above

€quation with respect to the variable x. This is shown in Equation [3.2].

y'=%=2ax+b 3.2]
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This first derivative information implies that there is an extreme point between the
sign changes of the gradient (Equation [3.2]), which is an inflection point. The inflection
point (stationary point) of zero gradient can be calculated by setting the right hand side of
Equation [3.2] equal to zero. Thus, the stationary point is x= —b/2a. If the x value is
inserted to the Equation [3.1], then we can have an extreme value

of y = (=b* + 4ac)/(4a) . However, we still do not know whether the value is maximum or

minimum if we do not have graphical information. To determine this, the second

derivative information of the Equation [3.1] is necessary. The second derivative (y") is:
y'=2a [3.3]

If the second derivative is negative, then the extreme value is a maximum or vice versa.

Hence, a necessary condition for a minimum or maximum of f{x) is that the first

derivative of f{x) becomes zero at x. However, the necessary condition does not tell

whether the extremum is the minimum or maximum. So, we need the second derivative

information as a sufficiency condition. Now, we can identify a minimum or maximum of
J(x) mathematically with the necessary and sufficient conditions.

The above case is very simple; but the basic concepts can be extended to the

multivariable cases with some help of mathematical techniques. Let f{x,, x,...,x,) be an n-
dimensional function. To meet the necessary condition, the first derivative of each

variable x;, x;...x, must be zero as follow.

¥ _F®_ ¥ _
ox) B Oxy Ox, 0 B4
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A set of variables satisfying the set of Equations [3.4] represents an extreme
point. The sufficient condition for the extreme point can be checked with the nature of the
matrix of second partial derivatives (Hessian matrix) of f{x, x,,...,x,) at the point, which
is the extension of Equation [3.3] to the multivariable case. If all the objective functions
of our problems were quadratic and differentiable, then life would be simple. However,
this analytical method has many limitations in real life applications. Therefore, we need a
more general approach to solve optimization problems.

Before addressing this issue, imagining a movie scene will give us insight for the
generalized optimization method. Let’s imagine a situation that two special soldiers
(captain “A” and captain “B”) are dropped from an airplane into an enemy region in a
night having no moon light (Figure 3.2). Their mission is to find the highest point from
sea level and communicate with the nearby resistance. Their landing location is different
from each other, so that they have to complete the mission individually. Captain A has
the map of the region, compass, and GPS (global positioning system), but captain B lost
his equipment because of a tough landing. Captain A saw the map and located the highest
point and also his current location with GPS. Then he set the direction toward the highest
point and finally got to the point. However, captain B does not have any information or

€quipment, except a small flashlight in the complete darkness, which means he only can
&et terrain features a few yards around him. How could he get to the highest point? So, he
marked his current location on the ground and looked around with the flashlight. He
found that the steepness of terrain was increasing in the northeast direction. So, he kept
moving a few yards from his current location to the next location in this direction if there

Was an increase of elevation. He repeated this strategy until he could observe no more
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increase of elevation. Fortunately, he reached the same location where captain A arrived,
because there was only one peak in the region. However, if there were several peaks, it

could take more time or he might be stranded at a sub-peak.

/j Z - \ Sea Level

Sea Level

Figure 3.2 Illustration of the operation of captain “A” and captain “B”.

In the above story, our focus is captain B’s approach, because his situation is very

Similar to ours, like finding a maximum or minimum within a region that we cannot

30



figure out, which means no analytically differentiable mathematical expressions. Captain
B’s approach gives us a clue for setting up a general rule for finding such an extreme
point in an unknown region. There are three factors to determine the next point from the
current point. Current point (¥), search direction (o), and step size (S*) are needed to

k+1

determine the next point (x"" ). Also, the relationship can be expressed mathematically as

following:

K= xk p ok gk [3.5]

The above iterative search procedure stops based on some criteria. If there is no
significant improvement, the search stops. There are many methods to perform the
search; however, the differences between methods are mainly in how they generate the
search direction. A popular method is using the first derivative information. However,
function value, and finite difference approximation are also used in lieu of derivatives

(Edgar et al., 2001). Table 3.1 shows some methods according to their approaches.

Table 3.1 Unconstrained multivariable optimization methods categorized by how
they generate the search direction (Edgar et al., 2001;Venkataraman, 2002).

Function values only Gradient based

(Direct Method) (Indirect Method)

Random Search Steepest Descent

Grid Search Conjugate Gradient

Univariate Search Davidon-Fletcher-Powell Method (DFP)

Simplex Search Broydon-Fletcher-Goldfarb-Shanno Method (BFGS)

Conjugate Search

Until now, we discussed handling unconstrained function optimization. However,
the real life optimization problem always has equality or inequality constraints. The
Constraints have to be handled so that the constrained optimization problem can be

converted into an unconstrained optimization problem. The basic idea is to set the
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objective function free from constraints by using mathematical manipulations of the
constraints.

Let us first look at the handling of equality constraints. Three methods are mainly
used for the solution of such problems: direct substitution, constrained variation, and
Lagrange multipliers.

Direct substitution is to substitute equality constraints to the objective function
when the equality constraints are all linear equations. Then, the constraints vanish, and
the problem can be handled as an unconstrained case.

Constrained optimization subjected to inequality constraints is treated as in the
case of equality constrained problem after transformation of inequality constraints to
equality ones by introducing a slack variable, which is a buffer between the original
inequality constraint and the transformed equality constraint.

Therefore, a general approach to solve a constrained optimization problem is to
convert the constrained problem into an unconstrained problem. Then, unconstrained

multivariable optimization techniques (Table 3.1) can be used to find optimal solution.

3.1.2.2 Linear Programming

A linear programming® (LP) problem is one in which the objective and all of the
constraints are linear functions of the decision variables, so that the linear constraints
(lines in 2-dimensional case) form boundaries. Therefore, an objective function,
represented as a line, is moving through the bounded region to find an optimal set of

variables to get an extreme value in a two-dimensional case (Figure 3.3).

% “The word programming here does not refer to computer programming, but means optimization.”
Edgar, T. F., D. M. Himmelblau and L. S. Lasdon (2001). Optimization of chemical processes. New York,
McGraw-Hill.
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Figure 3.3 Concept of linear programming problem in a two-dimensional case.

One of the important characteristics of LP is that the extremum of a linear
program always occurs at a vertex or corner of the system boundaries, which is the
intersection of constraints in the feasible region (Beveridge and Schechter, 1970). The
basic idea is a systematic examination of these boundaries, which is converting a set of
constraints into a set of equality equations and applying linear algebra and matrix
manipulation (Venkataraman, 2002). For instance, the simplex algorithm is designed to
explore one intersection after another to the direction of improving the objective function,
according to a set of rules, until the best objective function attainable is found (Beveridge

and Schechter, 1970).
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3.1.2.3 Nonlinear Programming

Nonlinear programming (NLP) problems contain at least one nonlinear equation
of the objective function or constraints (Venkataraman, 2002). No single optimization
algorithm can possibly be efficient or even successful in all cases of interest. However,
unique techniques are well developed for each specific case. For instance, a nonlinear
objective function with linear equality constraints can be handled with the direct
substitution method, which solves the objective function explicitly for one variable and
eliminates that variable from the problem formulation (Edgar et al., 2001). A nonlinear
objective function with linear inequality constraints can be solved by using Kuhn-Tucker
conditions’ and Lagrange multipliers'®. If an optimization problem has a quadratic
objective function and linear inequality or equality constraints, quadratic programming
(QP) can be used (Edgar et al., 2001). Another strategy to solve nonlinear optimization
problems is to replace all nonlinear functions in the problem with their Taylor series
approximations and apply linear programming, which is called successive linear
programming (SLP) (Edgar et al., 2001).

The most robust and generally accepted nonlinear optimization technique is the
generalized reduced gradient (GRG) method, which is also implemented as the “Solver”
in the spreadsheet program Microsoft Excel (Edgar et al., 2001). The concept of GRG is

to reduce the dimension of the first derivative of the objective function by using the first

% At any local constrained optimum, no (small) allowable change in the problem variables can improve the
value of the objective function (Edgar, T. F., D. M. Himmelblau and L. S. Lasdon (2001). Optimization of
chemical processes. New York, McGraw-Hill.). This is a generalization of the Lagrange multiplier method.

1 By introducing an unknown scalar variable to the constraints, a linear combination is formed, which
reduces a constrained problem into an unconstrained problem (Venkataraman, P. (2002). Applied

optimization with matlab programming. New York, John Wiley & Sons).
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derivative of constraints. All major NLP algorithms are based on estimation of first
derivatives of the problem to obtain a solution and to evaluate the optimality conditions
(necessary and sufficient conditions) (Edgar et al., 2001). Because NLP is mainly based
on the gradient information, the solution has a local nature, which means the solution is a
local maximum or minimum, but not necessarily the global one in general cases of

nonlinear optimization problems (Figure 3.4).

Global maximum

Local maximum

Figure 3.4 Global and local optimum in 2-dimensional case (The picture was
adopted from the help manual of MATLAB®).
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3.1.2.4 Mixed-Integer Programming

Another special type of optimization problem is mixed integer programming
(MIP). As the name implies, this type of problem includes integer variables that are not
continuous. The integer variable is common in plant operation, design, location, and
scheduling (Edgar et al., 2001). For example, number of equipment, yes-no decisions,
and number of stages are integer variables. If the objective function and constraints are
linear in a MIP, then it is called mixed-integer linear programming (MILP). And if the
MIP involves nonlinear objective and constraints, then it is called mixed-integer
nonlinear programming (MINLP) (Edgar et al., 2001). If the number of integer variables
is small, then exhaustive or complete enumeration is possible. However, the effort grows
exponentially to examine all possible solutions (Venkataraman, 2002). Therefore,
systematic ways are necessary to get to the optimal solution with less effort and time and
also to handle large scale problems.

One popular solution for this kind of the problem is branch and bound (BB). The
basic concept of BB is systematically finding the closest set of discrete variables from the
optimum set of continuous variables. To do this, a relaxation technique is used to convert
the discrete variables into continuous variables bounded by their maximum and minimum
value. BB uses two strategies to find the best set of integer variables. Branching is the
efficient way of covering the feasible region by several smaller feasible sub-regions, and
bounding is comparing and selecting the sub-region having its upper bound that is less

than the lower bound of any other sub-region.
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3.1.2.5 Global Optimization

We have discussed unconstrained, constrained multi-dimensional cases, and some
special cases, such as LP, NLP, MILP, and MINLP. One of the underlying assumptions
for optimality is that the problem must be convex, which means there is only one
minimum or maximum. Thus, if the convex condition is not met, then the above methods
can be stranded at a local optimum, not at a global optimum (Figure 3.4). This situation
frequently happens when the model has nonlinear equality constraints, such as a
nonlinear material balance, nonlinear physical property relations, nonlinear process
models, and so on (Edgar et al., 2001).

In addition, if a gradient-based method is involved, then the search method can
become stranded around the vicinity of local minima or maxima, without guarantee of
optimality. However, in spite of this fundamental limitation, there are several effective
and practical optimization techniques that explore infinite solution spaces systematically
with minimum effort and high possibility of locating the global optimum. This type of
optimization is called global optimization (GO).

In a GO problem, a local solution can be considered as a global optimum if the
local solution is the best among many local solutions or if multiple search trials from
different starting points reach to the same local solution. Widely used GO methods can be
classified as deterministic (exact) or stochastic strategies (heuristic) (Banga et al., 2003).

Deterministic global optimization methods are based on the systematic gradient-
based local search methods following the systematically divided sub-regions of attraction

until they meet their termination criteria. This type of method can guarantee global

37



optimum in certain problems, but not in a general GO problem. Branch-and-bound''
methods, methods based on interval arithmetic (Kearfott, 1996), and multi-start methods
are classified as deterministic GO techniques (Edgar et al., 2001). Even though
deterministic GO methods have sound theoretical convergence properties, the associated
computational effort increases very rapidly (often exponentially) with the problem size
(Banga et al., 2003).

Stochastic GO methods do not follow systematically divided regions of attraction.
Instead, they set their search direction based on a logic found in natural processes, such
as cooling of metals and genetic evolution processes. Many stochastic GO methods can
locate the vicinity of global solutions with relatively good efficiency, but the downside is
that global optimality cannot be guaranteed (Banga et al., 2003). Scatter search, tabu
search, simulated annealing, and genetic and evolutionary methods can be classified as
stochastic GO methods (Edgar ef al., 2001). Stochastic GO methods are applicable to
almost any problem, without modification of the original process model (Edgar et al.,
2001). In the case of Genetic and evolutionary GO methods, the method produces a
population that is a set of solutions and keeps updating the population with improved
solutions according to the rule of biological processes of crossover and mutation.
Although stochastic GO cannot guarantee a global optimum, it is widely adapted to solve

real life problems, because of its relative simplicity and robustness.

' Branch and bound algorithms are a variety of adaptive partition strategies that have been proposed to
solve global optimization models. These are based upon partition, sampling, and subsequent lower and
upper bounding procedures: these operations are applied iteratively to the collection of active (‘candidate’)
subsets within the feasible set D. Their exhaustive search feature is guaranteed in similar spirit to the
analogous integer linear programming methodology (Eric W. Weisstein et al. "Branch and Bound
Algorithm." From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/BranchandBoundAlgorithm.html, March 22, 2005).
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3.1.2.6 Static and Dynamic Optimization

In the previous sections, we have discussed how to solve optimization problems
in each special case, especially when all the constraints are algebraic equations. In other
words, the problem is not changing with time. For instance, finding the optimum
diameter of a pressure vessel does not involve a time factor. However, what if the
constraints have time varying equations, such as ordinary differential equations in which
a variable is changing with respect to time? This kind of optimization problem can be
called “dynamic” optimization, as opposed to the “static” optimization problem. To be
precise, this type of problem is generally referred to as an optimal-control problem,
which is the area of control. However, some optimization techniques can be employed to
solve such problems.

There are two general approaches. The first approach is discretization of the
control function, which can be understood as dividing the control function into pieces.
This method is replacing a differential term by the first order Eulerian difference

expression, which is:

dx  x(t;)—x(ti_1)
dt At

[3.6]

Now the ordinary differential equation can be expressed as a set of algebraic
equality constraints, which is the standard form of a constrained nonlinear programming
technique.

The second method is parameterization of the control function. We need an
infinite number of points to express a varying control function, which is not practical.

However, if the control function is expressed with Fourier series or a simple polynomial
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form, the infinite solution space can be explored with a finite number of parameters. By
applying NLP, the optimal set of parameters can be obtained as the optimal control

function, even though there is no guarantee of optimality.

3.2 Global Optimization Techniques

3.2.1 Genetic Algorithm (GA)

Genetic algorithms (GA) are well-known stochastic global optimization
algorithms based on biological evolution theory. Holland (1962) was the first to use the
technique, but its use as an optimization tool began in earnest in the late 1980s,
developed momentum in the mid-1990s, and continues to attract serious interest today
(Venkataraman, 2002). Genetic algorithms have been successfully applied to a wide
range of problems, such as engineering design, scheduling, signal processing, optimal
control, transportation, and so on.

The biological evolution theory is the combination of Darwin's theory of natural
selection and Mendel's theory of genetics. According to the theory, a chromosome in a
gene pool is modified by simple rules of genetics, such as crossover and mutation. The
biological system having the gene that is the fittest among others to the environment
survives and produces the next generation, having individuals with more desirable
characteristics. These biological concepts are implemented in genetic algorithms via
numerical operations. For example, a vector of design variables is considered as a
chromosome in genetic algorithms. The following is a description of genetic algorithm
datails; the explanations are largely adopted from the work of Venkataraman (2002).

Figure 3.5 shows the general procedures of a genetic algorithm. The initial

population is constructed with a certain number of design vectors that take higher rank in
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terms of a performance index or an objective function value, in the case of an
unconstrained problem among randomly produced individuals'?. For the constrained
problem, these individuals must satisfy the specific constraints. The initial population
size usually remains the same throughout the whole generation. However, there are no
specific criteria to determine the optimal initial population size (Venkataraman, 2002).
Next generation candidates are now produced by using selected parents and
genetic operators. A crossover genetic operator exchanges a piece of the chromosome of
each parent. A simple crossover exchanges a piece of chromosome in the same location
of each parent, and the ratio of the piece is generated randomly at each operation (Figure
3.6). Arithmetic crossover uses a linear combination of parent chromosomes to produce

two children.

12 This refers to a vector of design variables. A piece of the chromosome or a portion of a design vector is
called as allele.
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Figure 3.5 General procedure of a genetic algorithm.
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Parents Children

Figure 3.6 An example of simple crossover operation in a genetic algorithm.

The children are defined as:
Cy=4X+4,Y
1=4 2 3.7]
Cz = lzx + /‘l]Y

where, 4 +4; =15 4;,4, >0

X, Y: parents

Ci, Cy: children
The parameter A, and A, are generated randomly. Mutation selects a design variable
randomly and replaces it with a randomly generated value. Generally, these genetic
operators, crossover and mutation, narrow a search to a promising region that might have

a local extremum (Venkataraman, 2002). However, it is hard for a global optimization

algorithm to find a global optimum if it is stranded around a local solution. Another
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feature of GA is immigration, in which a set of randomly generated, unbiased population
is added to the existing population before the selection is made for the next generation.
By using this feature, GA can reduce the possibility of being trapped in a local solution
and effectively explore an entire solution space.

The newly generated population now must be evaluated to identify suitable
parents for the next generation. A simple method of selecting parents is ranking or sorting
the individuals of the population according to their objective function value. A fraction of
the best individuals can be used for reproduction of the next generation. In a strategy
called tournament selection, the remaining portion of the population, excluding the
fraction of the best individuals, is fed back to the next generation as new immigrants.

The above genetic operation and fitness evaluation are performed until the
generation number reaches a certain number or the solution does not show any
improvement. GA is very useful for handling ill-behaved, discontinuous, and
nondifferentiable problems, because the algorithm generates a possible solution group at
each iteration, instead of a search direction, and is effective for handling continuous

problem (Venkataraman, 2002).

3.2.2 Simulated Annealing (SA)

Annealing is a heat treatment technique to alter material characteristic by
removing internal stresses and crystal defects. When a material is in molten state, atoms
can move freely before they form crystal structure. However, if a molten material is
cooled down rapidly, atoms lose chances to form crystal structure, which creates internal

stresses and crystal defects. Therefore, the rapidly cooled material is in a higher energy
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state than the material cooled slowly. The cooling schedule is also called the annealing
schedule, which reduces the surrounding temperature from the critical temperature to a
sufficiently lower temperature step-by-step. In each cooling step, the material being
treated is allowed to cool in the furnace until it reaches thermal equilibrium with its
surrounding temperature. By using the technique, internal energy of a material can be
minimized, which means stable crystalline order. Usually, annealing is used to soften a
material and make it more ductile, to relieve residual stresses, and to refine the crystal
structure (Shigley and Mischke, 1989).

The above ideas can be applied to finding the global optimum in an optimization
problem, which has become popular for combinatorial optimization'? problems. The
molten state of the material can be an initial design space in which every combination of
variables has equal opportunity to be searched out to find the best combination. The
objective is to reduce the internal energy level to the lowest state, which is crystalline
order. As the annealing temperature goes down, the mobility of atoms decreases, and the
total internal energy level goes down at the same time, which means that the search
direction is being fixed to a direction without considering other opportunities. When the
temperature reaches the final scheduled temperature, atoms form crystalline structure,
which represents the lowest energy level, a global minimum.

The above analogy is realized by the basic SA procedure (Floquet et al., 1994)
summarized by Edgar ez al. (2001) as follows:

e Choose an initial solution x, an initial temperature 7, a lower limit of temperature

Tiow, and an inner iteration limit L.

' A method to search for the best possible solution out of very large number of discrete feasible solutions.
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e While (T>T;ow), do
o Fork=1,2,...,L,do
o Make a random choice of an element x’' € N(X), where N(x)= x+a-S
(a: search direction; S: stepsize)
o Move_value= f(x") - f(x)
o Ifmove value <0 (downhill move), set x = x’
o Ifmove_value > 0 (uphill move), set x = x" with probability p = exp(-
move_value / T) > r (uniformly distributed random number in [0, 1])
(Kirkpatrick et al., 1983)
o End inner loop
e Reduce temperature according to an annealing schedule. An example is new
T=c"T,, where 0 < ¢ < 1 (c is the rate of annealing schedule).
¢ End temperature loop
Basically, the algorithm is more supportive of a solution that improves the
objective function, while permitting adverse solutions to give potential for the algorithm
to discover the global optimum and to escape a local optimum (Venkataraman, 2002).
Some of the critical parameters are the perturbation method of neighbor selection,
transitional probability,'* and the rate of annealing schedule (c).
To obtain a neighbor state of Xp, a search direction and a stepsize must be
determined. Given a neighborhood structure, simulated 'annealing can be viewed as an

algorithm that continuously attempts to transform the current configuration into one of its

' Probability to accept a worse solution.

46



neighbors. Practically, the calculation of the search direction and stepsize could be
determined by using the traditional one-dimensional case (Venkataraman, 2002).

For the transitional probability function, Metropolis algorithm'® and Glauber
algorithm'® are related to Boltzman probability distribution'’ (Edgar et al., 2001).

The way in which the temperature is decreased is known as the cooling schedule.
The rate of annealing schedule must be appropriate for its application so as not to get
trapped in a local minimum due to fast cooling. The annealing rate can be fixed to a value
or can vary in each step of cooling (Laarhoven and Aarts, 1987). For the algorithm to be
effective, it is recommended that the probability be in the range of 0.5 <p < 0.9
(Venkataraman, 2002).

This mechanism is mathematically best described by means of a Markov chain'®,
a sequence of trial, where the outcome of each trial depends only on the outcome of the
previous one (Laarhoven and Aarts, 1987). An example of a Markov chain is a random
walk'®.

A Simulated Annealing program consists of a pair of nested DO-loops. The outer-
most loop sets the temperature, and the inner-most loop runs a Metropolis Monte Carlo

simulation at that temperature.

Bp=exp (-move_value / T)
' p = exp (-move_value / T) / (1 + exp (-move_value / T)
' p = -k / T (k: Boltzmann constant; T: annealing temperature)

'® A collection of random variables {X;} (where the index ¢ runs through 0, 1,...) having the property that,
given the present, the future is conditionally independent of the past. In other words, P( X; = | Xp = i, X
=it X1 = ig-1) = P(X; = j| Xy = i.). (Eric W. Weisstein. "Markov Chain." From MathWorld--A
Wolfram Web Resource. http://mathworld.wolfram.com/MarkovChain.html, May 18, 2005)

% Idea of taking successive steps in a random direction.
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Like other discrete optimization techniques, such as Branch-and-Bound and Tabu
Search, SA is a popular method to solve combinatorial optimization problems, which
seek the best combination out of many possible combinations. Typically, these
techniques are being used in production system planning, scheduling, transportation, and

logistics.

3.2.3 Integrated Controlled Random Search for Dynamic Systems (ICRS/DS)

ICRS/DS is a modification of the ICRS algorithm (Banga and Casares Long,
1987, Casares and Rodriguez, 1989), which was a generalization of the method proposed
by Goulcher and Casares Long (1987) for steady-state optimization problems (Banga et
al., 1997). As a generic algorithm, ICRS/DS is not as popular as GA or SA, but it has
been applied to various problems, such as bioprocesses (Banga et al., 1997), wastewater
treatment (Banga and Casares Long, 1987), retorting (Banga et al., 1991), drying (Banga
and Singh, 1994), and meat patty cooking (Banga et al., 2001), and proved its ability to
solve dynamic optimization problems.

Basically, ICRS/DS uses two strategies: control vector parameterization and a
stochastic direct search procedure. The original constrained dynamic optimization
problem is transformed into a constrained nonlinear programming (NLP) problem by
using a flexible parameterization of the control function. The constrained NLP problem is
solved using the stochastic direct search procedure (Banga et al., 1997). Like GA and SA,
the search uses search direction and step size to determine the next feasible move. This
search mechanism starts with a user-specified feasible control vector and perturbs the
vector randomly with a normal probability distribution, which has the control vector as

the average and a standard deviation vector. The standard deviation vector is a set of
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smaller distances between the control values and their upper and lower bounds. If the
algorithm cannot find any improvement within a limited number of trials, the standard
deviation vector is reduced by a heuristic parameter, which results in smaller search step.
The algorithm can be terminated by checking user-specified tolerances for the decision
vector and/or the performance index at the end of each iteration (Banga et al., 1997).
The detailed procedures of ICRS/DS can be found in the work of Banga et al.
(1997). These procedures consist of control profile parameterization and the modified

ICRS algorithm.

Control profile parameterization:

The control function u(t) over t €[to,? ;] is parameterized using N

points, (6;,w;) (i = 1...N). The value of u(¢) at iteration & can be calculated using

variable-length piecewise linear interpolation (Equation [3.8]) within the optimization
k k .

procedure and6;” <t <6, ,;

k
.., — 0
uk ()= ——(-6/)+ of [3.8]

By using the above parameterization technique, the original optimal control
problem is transformed into a 2N (or 2NM if there are M control variables) dimensional
nonlinear programming (NLP) problem. For implementation purpose, the parameterized

time and control values (8;,;) are replaced with the decision variable vector ¢ for any

iteration k& by using the following rule:
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gk=0F, i=1..N

&F =of y, i=N+1..2N

[3.9]

Also, the upper and lower bounds for the decision variables are expressed in a

simple way:
el =o7, & =0k i=1.N [3.10]
giU =01'(£N’ égL =0i[_'N; i=N+1.2N
In addition, the parameterization must satisfy following conditions.
For time-intervals:
L k U
6 <6; <6,
k k .
0; <6, i=1..N, Vk [3.11]
L U L
0 <67 <6,
For control vector limits:
of <of <oV, i=1.N, Vk [3.12]
For initial and final time-interval limit:
L _ pU _ U _
O =6 =tg, Oy =t [3.13]

The above parameterization method is designed for variable-length intervals. However, if

a fixed constant discretization ratio of time is desired, it suffices to take

t
0,'U = 0,!‘ +&= {NL—IJ(I - 1)+ € [3°14]

where ¢ is a small number.
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The Modified ICRS Algorithm (Figure 3.7):

The algorithm starts with a feasible decision vector, which can be chosen
randomly. Subsequently, a standard deviation vector is calculated by multiplying
minimum intervals (smaller interval between the decision vector and upper and lower
bound vector) by a heuristic parameter (k). Based on the initial feasible vector, the
algorithm generates a next decision vector by using the standard deviation vector
(stepsize) and Gaussian distribution (random direction). Once the next decision vector is
evaluated as feasible (satisfying all the constraints) and improved (increasing or
decreasing objective function value), the above iteration is repeated until a convergence
criteria is satisfied. However, if the next generation decision vector is determined as an
infeasible or retrogressive (or remains the same), the failure counter (F) is increased by
one up to a pre-set value (recommending 7. x total dimension of a problem). Every
failure counter increment, another new decision vector is generated with the same
standard deviation vector and tested. If the algorithm fails to get an improved decision
vector within a pre-set failure counter value, the standard deviation vector (stepsize) is
decreased by multiplying another heuristic parameter (k). This stepsize reduction is
continued until the algorithm encounters a feasible and improved decision vector with the
frequency of the maximum failure counter value. Once the feasible and improved
decision vector is found, the failure counter is set to zero.

In this algorithm, the three heuristic parameters (k,, k2, and n.) are critical to be
successful in optimization process. Pan (1998) recommended 1/3, 1/2, and 4 as default

value for &, k;, and n,, respectively.
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Figure 3.7 Flowchart of modified ICRS algorithm.
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3.3 Atrtificial Neural Network

3.3.1 Fundamentals

As mentioned before, availability of a model is essential to solving optimization
problems in various applications. Even when a model is available, the computational
demand and the compatibility with optimization algorithms are critical to run an
optimization procedure effectively. Taking into account the above facts, simpler and
faster models often must be considered. Therefore, artificial neural network (ANN)
appears to be a good candidate for fast nonlinear dynamic models (Trelea et al., 1997).

In cognitive neuroscience, a neural network (also known as a neuronal network or
biological neural network to distinguish from artificial neural networks) is a population of
interconnected neurons. As the primary cells in the nervous system, neurons are structural
constituents of the brain. Generally, neurons are five to six orders of magnitude slower
than a silicon chip; events in a silicon chip happen in the nanosecond (10 s) range,
whereas neural events happen in the millisecond (10 s) range. However, the brain
processes tremendous amounts of information by using massive interconnections
between approximately 10 billion neurons and 60 trillion synapses (Haykin, 1999).
Neurons react to electrochemical impulses. Generally, neurons consists of several
dendrites (receptive zone) and one axon (transmission line to output). If the sum of the
input signals from dendrites surpasses a certain threshhold, the neurons encodes their
outputs (action potentials or spikes), which originate at the cell body (soma) of neurons

and transmit the electrical signal along the axon (Figure 3.8).
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Figure 3.8 Physical structure of a neuron.

An artificial neural network is defined as “a massively parallel distributed processor
made up of simple processing units, which has a natural propensity for storing
experiential knowledge and making it available for use” (Haykin, 1999). The
mathematical model of a neuron is comprised of three basic elements that are a set of
synapses®’ (connecting links), an adder (summing junction), and an activation function

(squashing function) in the Figure 3.9.

% Elementary structural and functional units that mediate the interactions between neurons (Simon Hayakin,
Neural Networks: A Comprehensive Foundation, p. 6).
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Figure 3.9 Mathematical model of biological neuron.

An input signal is multiplied by the synaptic weight while passing through the
synapse. All the weighted input signals are summed up at the adder. Finally, the
activation function regulates the amplitude of the output of a neuron. Basically, training a
neural network or learning process is the process of adjusting the synaptic weights to
minimize the error between outputs and targets. Depending on the methods of learning

and the architectures of network, a large variety of neural networks exists.

3.3.2 Back-Propagation Feed-Forward Neural Network (FFNN)

The feed-forward neural network trained by back-propagation is reckoned as a
major advance in the history of artificial neural network, because it provides a
theoretically sound technique for training multilayer, feed-forward networks with

nonlinear neurons when there is no efficient, theoretically sound method for training
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(Wasserman, 1993). As a training method, back-propagation became highly popular in
neural network training (Haykin, 1999).

In the feed-forward neural network, the input data flows only in one direction
from input layer to output layer. Basically, training a neural network means to find the
best set of weights of neurons that minimizes the error between neural network prediction
and measured data. Thus, the back-propagation method starts with initial weights to
produce prediction and uses its error to adjust the weights in the direction of reducing the
error by using a learning rule or weight updating rule. Because adjusting weights starts
from outmost layer to inner hidden layer, the method goes by the name of “back-
propagation.” The following is the fundamental principles of the back-propagation
training method. The notations of Figure 3.10 will be used for further mathematical
representation. Details can be found in the work of Wasserman (1993).”

The first step for back-propagation is to calculate outputs with given inputs and
initial weights of each layer. The input column vector (x) is multiplied by hidden layer
weight matrix (W""), then the result is transferred to the nonlinear activation function (f).

Thus,

yvi=rf (Wﬁin) [3.15]

Finally, at the output layer, the vector y is multiplied by output layer weight matrix

(Wo"). Therefore,

Vi = wgl'yj = w,?l‘f(wﬁl’x,-) [3.16]
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Figure 3.10 Topology of back-propagation of feed-forward neural network.

After obtaining the network output, error between output vector and target vector is

computed. Sum of squared error (SSE) is used for error measurement. Hence,

e=SSE=Zsk =Zktk-yk)2] [3.17)
k k

Now, the error information is propagated from the output layer to the hidden layer

in the form of a gradient vector (V ), which is the set of derivatives for all weights with
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respect to the output error. Thus, a positive gradient of a weight means that overall error
is increased, which requires the weight to be decreased to reduce the overall error. In case
of a negative gradient, the opposite is true. The gradient vector of output layer can be

evaluated as follows:

oe oe
v = oL =[8y J aiy& [3.18]
jk k Jk
where,
oe
F 20tk - yi) [3.19]
aiy& —y; 3.20]
ik

Vjo.kL : the gradient vector component associated with the weight from neuron in

the hidden layer to neuron £ in the output layer

wJQkL : the weight connecting neuron in the hidden layer to neuron & in the output
layer

y j - output of neuron j in the hidden layer

Y : output of neuron £ in the output layer
t; : the target value for neuron k in the output layer

By using the calculated gradient of each weight, the following weight update rule or

learning rule can be defined.
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OL
wo (n+1)=wii(n)-n-v [3.21]
where
Wik (n): the value of the weight at time n

n : a learning rate constant, typically < 1.0

According to the weight update rule, a weight of a negative gradient gains more weight
and a weight of a positive gradient loses its weight.
The next step is to find the gradient vector of the hidden layer. According to the

chain rule of calculus, this gradient can be expressed as:

VAL _ o _ (c’%:Jayk j| o 322
Y owi't Zayk ;N\ | owh* 322l

By substituting the following relations to the Equation 3.27

oe

——==2tx ~yk )= [3.23]
Ok
Dk _ L 3.24]
;
v
—L - f'(v; 3.25
Yy f'vy) [3.25]
il [3.26]
=X .

aw,.jﬂ '

and defining
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& = Zak WL £y 3.27]
k

where f' is the derivative of the nonlinear function. Thus, Equation 3.22 becomes
Vit = x [3.28]

Now, the weights of the hidden layer can be updated by using the same updating rule of

the output layer.
wilt(n+)=wdt(n)-n- v [3.29]

The above two-layer example can be generalized for multi-layered feed-forward neural
network. By calculating J for each neuron using J from the previous layer, V for each
weight can be calculated, and the weight can be adjusted.

The training can be done by using sequential method and batch method.
Sequential method updates weight at the time each input vector is applied. In batch mode,
however, changes of weights are done after presenting all input vectors to the network.
Because the batch training averages the derivatives over a pass through the training set,
the batch training gives a more accurate estimate of the overall gradient.

The back-propagation method is generally slow to train a network. However,
some methods are available to speed the process. These methods are using second
derivative information for fast convergence. Due to the second-order information,

training time may be reduced by up to a factor of 100. Conjugate gradient descent and
quasi-Newton method are examples of these fast convergence methods (Wasserman,

1993),
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3.3.3 Generalized Regression Neural Network (GRNN)

GRNN is a neural network architecture that has many similarities with the radial
basis-function?! neural network (RBF), in which each hidden neuron uses a radial basis-
function as the activation function, and the output neurons implement linear combinations
of these radial basis-function. Among many neural networks, nonlinear regression theory
based GRNN can approximate any arbitrary function between input and output vectors
(Wasserman, 1993). Therefore, if the GRNN is used for predicting the future value of
observed variables that are dependent variables related to input variables in a process,
plan, or system, the GRNN can be used to model the process, plant, or system
(Christodoulou and Georgiopoulos, 2001).

GRNN is based upon well-established nonlinear regression theory, which is the

following formula (Wasserman, 1993):

Iy S (x,)dy
E[yjx]=== [3.:30]

If (x,y)dy

where
y =output of the estimator

x = the estimator input vector

E( y[x) =the expected value of out, given the input vector x

f(x,y) =the joint probability density function (pdf) of x and y

2! An activation function which is centered at a point specified by the connection weight vector and whose
position and width are adjusted by learning. The most popular radial basis-function is the Gaussian function.
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GRNN is, in essence, a method for estimating f(x, ), given only a training set.
Detail architecture is shown in Figure 3.11. Specht (1991) shows that y; (function value)

is estimated optimally as follows:

n n
yi= th'wij th’ [3.31]
i=1 i=1

where

w;; = the target (desired) output corresponding to input training vector x; and
output j

2
h; = exp| —= |, the output of a hidden layer neuron
1 2 2

o

D,-2 =(x-u; )T (x —u;) (the squared distance between the input vector x and the
training vector u
x = the input vector (a column vector)

u; = training vector i, the center of neuron i (a column vector)

o = a constant controlling the size of the receptive region
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Figure 3.11 Architecture of generalized regression neural network (GRNN).

The GRNN copies the training cases into the network to be used to estimate the

response on new points. In GRNN, one simply assigns to w;; the target value directly

from the training set associated with input training vector i and component j of its

corresponding output vector (Wasserman, 1993). Because of the above fact,a GRNN

trains almost instantly. Thus, as the number of pairs of inputs/output increases, the more

computation time is required, because of the corresponding increase of the number of

hidden neurons. The ¢ is the standard deviation of the response curve of the neuron.

Therefore, points nearby contribute most heavily to the estimate. If o is small, the neuron

responds only to the input vector close to the weight of the neuron (Figure 3.12). Again,
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if o is large, the neuron responds to the wide range of input vector. GRNN can only be
used for regression problems, because of the nature of the fundamental equation. Like a
radial basis-function (RBF) network, a GRNN does not extrapolate. Thus, it is important
to construct the training data set carefully, so that the data set covers the region of

interest.

small ¢

Xz

Figure 3.12 GRNN response depending on the size of receptive field (o) in two-
dimensional case.



4 METHODS AND PROCEDURES

4.1 Overall Methods and Procedures

Figure 4.1 is a schematic diagram to show the overall procedures and methods of
this project. In this study, the model outputs from an existing, validated finite element
model (FEM) of meat patty cooking (Watkins, 2004) were considered as actual field
experiments. For this study, the model was expanded to include quality prediction
capability, such as internal color change (Section 4.3.3) and surface color change
(Section 4.3.4). By using the integrated FEM, various data groups (train and test or
validation) were generated to develop various artificial neural networks (ANN) as
alternatives to the FEM (Section 4.5). Then, various optimization strategies were applied
to both models (FEM and ANN’s) to find a theoretically possible optimal condition and
to evaluate the various strategies (Section 4.6). Optimization strategies were then applied
to industrially-relevant case studies (single-stage, double-stage, multi-zone, and an

economic-based problem) to illustrate potential utility of these technologies (Section 4.7).

4.2 Impingement Cooking Technology

As the term “impingement” represents, it is a sharp collision produced by striking
or dashing a heating medium against a product. Because of the “sweeping away” effect
around the product, the boundary layer thickness is reduced greatly, which increases the
heat transfer rate. Therefore, impingement technology can be characterized as a fast and

efficient means of processing.
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Figure 4.1 A schematic diagram of overall procedures and methods.
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This technology is widely adopted in the industrial applications, including:
annealing of non-ferrous sheet metals, tempering of glass, drying of paper and textile,
cooling of electrical components and turbine blades, and processing of food products
(Saad et al., 1980). Especially, if the impingement technology is used with moist air
instead of dry air, some unique advantages can be obtained

When the moist air meets a surface cooler than the dew point temperature of the
moist air, water condenses on the product surface. Due to condensation at the initial stage
of cooking, the condensed steam gives off its latent energy to the product. This efficient
heat transfer happens until the product surface temperature increases beyond the dew
point temperature of the moist air.

In this research, a moist air impingement oven (model JSO-IV, Figure 4.2), which
is a commercial product of Stein-DSI (a business of FMC FoodTech, Sandusky, OH),
was the example oven used for process modeling. The major process variables of the
oven are impingement exit velocity, process duration, moisture content of the impinging
gas (volumetric basis), and impinging gas temperature. These four process variables were
used for the process modeling and optimization. Even though there are some physical
system configuration parameters, such as open slot ratio, jet spacing, and gap between jet
exit and surface, these parameters were held constant for this study and not included in

the control variable group.
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Figure 4.2 An actual and a cross-sectional image of the JSO-IV Jet Stream® Oven
of Stein-DSI (FMC FoodTech).

4.3 Integrated Process Model Development

As a complex, multi-physical phenomenon, meat cooking involves many factors,
such as yield, microbial inactivation, and quality changes. A finite element model
developed by Watkins (2004) could predict yield (via fat and moisture prediction) and
microbial inactivation within a meat patty subjected to moist air impingement cooking.
However, the model could not predict other quality factors.

Internal cooked appearance of ground beef patties is used to evaluate doneness by
many consumers (Hunt et al., 1999). In addition, flavor is a very important component,
which is affected by the Maillard reaction on the surface of meat product (Mottram,
1998). Therefore, internal color change and flavor (with surface color change) models
were incorporated into the finite element model (Section 4.3.3 and 4.3.4).

Many of the reactions in food processing follow first-order kinetics, which can be

expressed by the familiar D-value and z-value (Toledo, 1991). Those kinetic parameters
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for the quality indices in this project were calculated based on literature data (Section

433&4.34).

4.3.1 Basic Finite Element Model

The process model is a central component in optimization problems, because it is

used as an equality constraint. Thus, moist air impingement cooking of meat patties needs

to be modeled before the cooking system can be optimized. Watkins (2004) developed
this model by using a coupled heat and mass (moisture) transfer model. The model also
encompassed fat transport and Salmonella inactivation. The model utilized the finite
element method to solve separate equations for heat, moisture, and fat transport. These
equations were coupled through boundary conditions and interdependent thermo-physical
property relationships. An enthalpy formulation for heat transfer was utilized to avoid
discontinuities related to solid-to-liquid phase changes of water and fat within the
product. A solution for modeling condensing-convective boundary conditions during
moist air impingement cooking, developed by Millsap (2002), was incorporated into the
model. These boundary conditions accounted for the additional heating effects of surface
condensation that can occur within moist air impingement systems (Watkins, 2004).

A ground and formed meat patty (2-D cylindrical object) was used as a model
product. Input temperatures were converted to enthalpy using an equation based on the

work of Voller and Cross (1981). Heat transfer was modeled via following equation.

Oh _10f, kr Oh) Of kr Ok [4.1]
ot ror\ cr-por) Oz\cr-poz

Moisture transfer within the product was modeled using a two-dimensional equation for

diffusion in radial coordinates.
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OMyyater _ _l_i ’ kmwater Omyyater +_a_ km,water OM yyater
ot ror\ Cmwater P Or Oz \ Cm,water * P 02

[4.2]

For fat transfer modeling, a two-dimensional formulation of Darcy’s law for diffusion of

liquids through porous media was used (Datta, 2002).

om fay 10 Om fat 7] om fat
ot =(;5 '+ Deap, or * oz Deap., gar 0z 431

The heat transfer boundary condition was formulated with a convection term and a

moisture transport (evaporation/condensation) term:

or
kT E = hT (Tair - Tsmface) + hm, water A'Vaporizati()n . (Cair _ Csurﬁzce) [4.4]

Mass transfer at the product surface was modeled by using a convective boundary

condition.

om
km, water aw:ter = hm,water (Cair - smface) [4.5]

The fat content at the surface of the patty was modeled using an equation derived
from experimental data (Equation [4.6]) (Watkins, 2004). The equation [4.6] was utilized
to set the values of the fat content at each boundary node as a function of temperature and

product composition.

m gy =0.7062-0.0193-T +0.0001 -T2 +0.0069 - m; 1y +0.0002-T - m; g

[4.6]

70




In addition to these boundary conditions, heat and mass transfer at the radial and
vertical centerlines of the patty were assumed to be zero due to product symmetry. These
coupled partial differential and ordinary differential equations were solved by using the
finite element method (Watkins, 2004). The finite element solution of this time-
dependent field problem was solved with a finite difference approximation in the time
domain to generate the time-step solution, and the time step was 1 second. The time step
was smaller than the allowable time step (A=2.16 s), which was calculated to prevent the
finite element model from oscillating and deviating from physical limits for a right

triangle element, by using Equation [4.7] (Segerlind, 1984).

At <% [4.7]
1-6

where

a: det([¢*“]-a[k])=0; det: determinant; ¢ & k: element matrices

6=1/2 for central difference method

However, in some cases of actually running this FEM model, instability of the
prediction of yield and surface temperature were observed at the very early stage and
rarely at the later stage. Therefore, the time step was decreased from 1 to 0.5 second to

reduce the instability of the model.

Watkins (2004) validated the finite element model using data generated in
industrial cooking tests with beef patties in a JSO-IV (Stein-DSI, a business of FMC
FoodTech, Sandusky, OH) and additional published data for ground chicken breast

patties cooked in a pilot-scale impingement oven (Stein, FMC FoodTech). Predictions of
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cooking yield had errors ranging from 0.1 to 15.4%, with an average deviation of 5.9%
(27 sets of process conditions) in the industrial cooking tests. Comparisons with
published data were also favorable (standard errors of prediction for yield ranged from

1.1 to 15.7%).

4.3.1.1 Model Product

The dimension of the patty was 120 mm in diameter and 10 mm in thickness,
which was modeled as a two-dimensional, axisymmetric body. Figure 4.3 shows the

element mesh configuration, which consisted of 36 nodes and 50 elements.

The model patty was assumed to initially be 60% water, 20% fat, and 20% protein.

The initial temperature was set to 5 °C.

Center

Patty

Figure 4.3 Finite element mesh utilized for one quarter of the 2-D cylindrical model
product.
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4.3.2  Kinetic Parameters for Microbial Inactivation in a Meat Patty

Salmonella is the most heat-resistant organism among other food related
microorganisms, such as E. coli O157:H7 and Listeria monocytogenes (Murphy et al.,
2004). A few works (Juneja et al., 2001; Murphy et al., 2002; Murphy et al., 2004) of
thermal inactivation kinetics for Salmonella cocktails in ground beef were found and
compared to get a conservative reference D and z-value.

In Table 4.1, D values at 62.5 °C, which is the center between 55 and 70 °C, were
compared, and the D value of 2.62 min was selected as a conservative value.

For z-value, the highest value (9.14 °C) was chosen among other values, because

the value reflects the least sensitivity to temperature change.

Table 4.1 Comparison chart of thermal inactivation parameters of Salmonella
cocktail for ground beef (1:(Murphy et al, 2002); 2:(Juneja et al., 2001); 3:(Murphy et al., 2004)).

1 2 3
Fat [%] 18.56 12.45 344
Water [%] 51.30 65.5 49.7
Method 0.7 mm 1-2 mm Thin bag
thin metal  thin bag
container
Culture Type Cocktail Cocktail Cocktail
T:[°C] [min] [min] [min]
55 9.09 37.05
57.5 7.70 18.35
58 8.65
60 4.80 5.48 6.90
Dvalue 240 150
65 0.97 0.67 1.03
67.5 0.57 0.30
68
70 0.25 0.066
z-value 9.14[°C] 6.01[°C] 5.74[°C]
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4.3.3 Kinetic Parameters for Internal Color Change of a Meat Patty

Kinetic modeling is a very efficient tool to model food quality, which otherwise
can be very subjective. Once the rate and temperature dependence of a reaction is known,
the reaction can be controlled and predicted (Martins et al., 2001).

The color of the center region of a meat patty is an important quality index related
to acceptability. As cooking proceeds, the center color gradually changes from red-pink
to brown (i.e., “well done”) due to the heat denaturation of various types of myoglobin.
The rate of cooked meat hemoprotein formation (via the rate of loss of myoglobin
solubility) was found to obey first-order kinetics in aqueous muscle extracts and mixtures
of myglobin and bovine serum albumin (Geileskey et al., 1998). They measured first-
order rate constants for the loss of myoglobin solubility in various muscles at 60, 65, 70,
and 80 °C.

To implement first-order kinetics in the basic finite element model, a reference
decimal reduction time (D,) and z-value were calculated based on the rate constants at the
various temperatures (Toledo, 1991). The reference temperature was 60 °C. D, was
calculated by using Equation [4.8] and the first-order rate constant (Geileskey et al.,

1998) at the reference temperature.

_In10)

D, ==

[4.8]

To calculate the z-value in the temperature ranging from 60 to 80 °C, activation energy
(E.) was obtained by using temperature and rate constant data from (Geileskey et al.,
1998), assuming an Arrhenius relationship (Toledo, 1991). The z-value was then

computed as follows:
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_ In(10)
2= EIR) TT, [4.9]

Table 4.2 shows the derived D, and z-values for different muscles. Considering that most
ground beef comes from the chuck, sirloin, or round, the D, and z-value of beef chuck
were used for estimating acceptability (via center color change) of model product.

Even though the color for acceptability can be predicted with the above parameters, an
adequate log reduction value of internal color change must be specified to use the quality

as a constraint in this optimization problem.

Table 4.2 Reference decimal reduction time (D,) and z-value of internal color change
in the various muscles at the reference temperature of 60 °C (Geileskey et al., 1998).

Muscle D, [min] z [°C]
Beef shin 85.28 9.63
Beef chuck 65.79 9.79
Beef m. I. dorsi 3542 10.41

Hunt et al. (1999) observed that 95.9% denaturation of oxymyoglobin (OMb),
which is contained in significant amount in most ground beef, was visually scored 5 (no
evidence of pink color or “well done”). Also, the ground beef used in that research
contained 20% fat, and the pigment was predominantly OMb (Hunt et al., 1999), which
implies a good match with the model product in this study. Thus, the target level of
denaturation (95.9%) was converted to the equivalent value of 1.387 log reductions,
which was used as a minimum criterion for internal color change of meat patty. Even
though there is some variation in the concentration of myoglobin in beef, the differences
in concentration do not appear to be a factor in the dependence of denaturation on muscle

type (Geileskey et al., 1998).
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4.3.4 Kinetic Parameters for Surface Color Change of a Meat Patty

Non-enzymatic browning in food processing is the major cause of surface
browning, aroma, and taste (Martins, 2003). Non-enzymatic browning of baked products
is a very complex chemical reaction, which encompasses two major reactions, the
Maillard reaction and caramelization (Zanoni et al., 1995).

The Maillard reaction starts with an initial reaction of a reducing sugar with an
amino compound, followed by consecutive and parallel reactions to form a variety of
colored and colorless products (Martins and Van Boekel, 2005). In addition to the
desirable effects, the reaction generates undesirable results, such as discoloration, off-
flavor, and mutagenic and carcinogenic components. Therefore, it is necessary to
optimize the reaction by finding the best balance between the favorable and unfavorable
effects of the reaction in a given process (Lingnert, 1990). The Maillard reaction is very
complex reaction and very difficult to control (Martins et al., 2001). For instance, over
1,000 volatile compounds are formed during cooking (Mottram, 1998). Many factors
influence the reaction, such as temperature, time, pH, water activity, type of reactants,
and availability of reactants (Lingnert, 1990).

The Maillard reaction kinetics has been studied in various applications, such as
frying and drying. However, detailed observations for the Maillard reaction during
cooking of meat patties, especially in the moist air impingement convection cooking
environment, were not found in the literature.

Another non-enzymatic browning is caramelization. Caramelization is defined as

the thermal degradation of sugars leading to the formation of volatiles (caramel aroma)
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and brown-colored products (caramel colors). Caramelization usually occurs at high
temperature (>120 °C), compared to the Maillard reaction temperature (>50 °C).
Non-enzymatic browning is very complex and encompasses not just a single
reaction pathway, but a whole network of various chemical reactions (Martins et al.,
2001). Although complex reactions are involved, general perceptions for non-eﬁzymatic
browning reactions are color and aroma. The resultant effect of the various reactions can
be lumped into crust color development during a meat cooking process. Dagerskog and
Bengtsson (1974) studied the relationship among crust color formation, yield,
composition, and processing conditions for double-sided pan frying of meat patties. They
found kinetic parameters for crust color changes, in terms of reaction rate and activation
energy. Ateba and Mittal (1994) obtained kinetic parameters for crust total color change
and firmness. The above studies for crust color change of meat product used the total
crust color change (AE) to describe the overall quality changes due to non-enzymatic
browning. The total color change was calculated with the following equation (Dagerskog

and Bengtsson, 1974):

AE = \/(AL)Z +(Aa)? +(Ab)? [4.10]

where,
AL: lightness
Aa: redness

Ab: yellowness

Color development is a surface phenomena, so that the plot of surface temperature
(recipe A) and color change (recipe C) (Dagerskog and Bengtsson, 1974) were digitized

77




to obtain a D, and z-value (Table 4.3). Even though the recipes were different, both data
were assumed for one recipe in this study, because only two graphical data sets were
available. Recipe “A” consisted of 59.6% water, 15.6% fat, and 9% breadcrumb, and
recipe “C” consisted of 66.6% water, 14.1% fat, and no breadcrumb. Therefore, recipe

“C” is closer to the model patty in this study, in terms of composition.

Table 4.3 Digitized data of surface time-temperature plot (recipe A) and time-color
change plot (recipe C) of Dagerskog and Bengtsson (1974).

Pan Temperatures

140 [°C] 160 [°C] 180 [°C] 200 [°C]

Time [min] T,[°C] AE T,[°C] AE T,[°C] AE T,[°C] AE
0 1000 0 10 0 10 0 10 0

1 101.40 551 107.60 395 121.60 6.14 13030 7.70

1.5 103.40 348 11020 6.76 123.50 7.80 132,60 9.99
2 103.70 6.02 111.20 9.46 12220 9.88 129.40 12.17
2.5 104.70 8.62 11250 9.04 12290 12.27 130.70 14.82
105,60 8.57 115.10 1221 126.40 15.03 13590 15.60
109.50 1236 12220 15.17 13490 16.37 148.90 18.40
113.40 1490 127.70 17.51 14270 17.87 158.60 20.37
6 116.70 16.04 132.00 19.01 149.80 1948 166.10 20.21

Ts: product surface temperature

w W

The AE was replaced with the difference with the maximum color change
(4Ema=22). Then, a log reduction of color change was calculated. By using the Microsoft
Excel SOLVER (Microsoft Excel Version 2000: Redmond, WA) and Equation [4.11], the
D-value and z-values for this kinetics were estimated based on minimization of the

RMSE of color change.
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where,

D=D,-10 * [4.12]

The estimated D-value and z-value for the surface color kinetics were 7.75 min
and 90.55 °C, respectively (average RMSE=1.33 [4E]).

Now, dynamic surface color change can be predicted by integrating Equation
[4.11] over time with the given D and z-values. However, there are several hurdles for the
non-enzymatic browning to take place on the surface of a meat patty in the moist air
cooking environment. The first barrier is water film formation due to condensation on the
meat patty surface when the surface temperature is lower than the dew point temperature
of the moist air. The water film keeps the surface temperature under 100 °C, which is far
less than the critical caramelization temperature of 120 °C. For the Maillard reaction,
some water is needed, because water participates in the later stage of the reaction.
However, excessive water suppresses the reaction and also dilutes surface concentration
of amino acids and sugars, which result in retarded or no reactions. Therefore, under the
presence of condensed water on the surface, it is hard to expect non-enzymatic browning
mainly due to the Maillard reaction. Even after overcoming the water film formation,
evaporation occurs, which decreases the surface temperature until the film disappears.
When the product surface temperature reaches 100 °C, the water evaporation zone
recedes toward the center. The surface continues to lose water, the temperature rises, and
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structural and chemical changes in the protein result in crust formation (Ateba and Mittal,
1994). Finally, non-enzymatic browning of the surface takes place rapidly when the
surface temperature passes the critical temperature of the caramelization reaction. After
this point, caramelization is accelerated significantly. The above limitation to non-
enzymatic browning on the surface of meat patty under moist air cooking conditions need
to be implemented in a simple non-enzymatic browning model to predict surface quality
of the meat patty.

To account for the adverse effects, a function cueing the non-enzymatic browning
on the product surface is necessary. A sigmoid function, which is the common form of an
activation function, was adopted for this purpose via the logistic function (Equation

[4.13]).

1
f= 14 e~ (Ts—Tdew) [4.13]

The sigmoid function is ideal, because it is convenient to account for an abrupt change
around a critical point and also it is continuous (Figure 4.4). The logistic function
parameter a was determined at the value where 99.5% change is achieved in the range of

+/- § °C around the critical value. Therefore,

a-= _m ~1.06 [4.14]
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Figure 4.4 A sigmoid function (logistic function) of surface temperature (Ts)
showing gradual change in a certain factor around a critical value, Tq.w in this case.

The sigmoid function incorporating surface temperature and dew point
temperature was inserted into Equation [4.11] to provide a status of surface browning for
integration over time. Thus, the final equation of non-enzymatic browning, accounting

for condensation effects, was expressed as follow:

'f
Cl__\L
log( Co J = jD dt [4.15]
10

where,

1
fTs)= |+ o-a(Ts—Tdew)

[4.16]

D=D,-10 = [4.17]
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In Equation [4.14], the surface temperature was obtained from the finite element solution,
and the dew point temperature was interpolated by using the tabulated data® of dew point
temperature and moisture content by volume (which is a model input).

For non-enzymatic browning, both minimum and maximum critical values are
necessary for the cooking process to control the desirable color development on the
surface of the product, so that the product is neither too pale nor over-cooked. Generally,
the surface non-enzymatic browning is measured by total color change (Dagerskog and
Bengtsson, 1974; Ateba and Mittal, 1994). Dagerskog and Bengtsson (1974) observed
that the maximum total color change was 22, and suggested 10 as a desirable color
change. In this optimization problem, 10 and 15 were chosen as lower and upper bounds
for surface color change values, respectively. Unlike with microbial inactivation, the
intensity of color is increasing instead of decreasing. Thus, relative color change, which
is defined by subtracting a color change value from the maximum observable color
change value (AEmax=22), was used to calculate the log reduction as follow:

hm(MJ [4.18]
AEmax

Therefore, 0.263 and 0.497 were used as a minimum and a maximum log reduction of

relative color change, respectively.

4.3.5 Practical Considerations for Integration of Models

Log reduction value is a good tool for describing the amount of reduction from

initial concentration of a material. However, if the reference D-value is small, which

2In Humidity/Moisture Handbook by Machine Application Corporation (Sandusky, OH)
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means fast reaction, the log reduction value may be too large for computer programming
to handle such a large number. For computer programming, the double data type,
according to IEEE Standard 754 for double precision, allows +/-308 for maximum and
minimum exponent to 10. Thus, floating-point overflow problems occur when the
reference decimal reduction time is too small.

Final log reduction of a non-isothermal process can be integrated as:

log Nu =log—]Yl+log&+...+log Ny
No No M Np-1
At/ D, At/ D, At/ D, [4.19]

= + B
[Tr"Tl] (Tr‘TZ) (Tr‘Tn)
10v 2 108 * 108 2

Even though the log(N,/N,.;) at early stages of cooking has no overflowing problem,

log(N,/N,.1) of a later stage can become very large, which results in the abortion of the
computer program. To resolve this problem, a multiplier (m) was adopted to slow the
process, so that the log reduction number stays within the computational limit. After

finishing the process, the original log reduction number was calculated back by using the

multiplier. For this, an increased D-value ( é, ) was defined as follow:

A

D, =mxD, [4.20]

Then the Equation [4.19] can be re-written by using Equation [4.20]. Thus,

*

N, At/ D, At/ D, At/ D,

log Nu =logiv—'-+log&+..+log = + -
Ny Ny N, N, (Tr—T]J (Tr-Tz) (Tr—Tn)
10° ¢ 108 2 108 2

where, * means resultant log reduction using the increased Dr-value.

[4.21]

83



Now, dividing Equation [4.19] with Equation [4.21] produces the following result.

At/D, At/ D, At/ D,
+ +..+
o) ) 5 ) e
No) _10\ Z 100 ? o ) _D, """ Db _mD __
logﬁ" M/D,  A/D, AMID, _ét_( ..... ) Or Dy
Ng (Tr‘Tl) [Tr‘TZJ (Tr“Tn) D,
10v ¢ 10t 2 100 “
[4.22]

Therefore, the original log reduction value can be restored by using the multiplier m.
Even though the size of m can vary depending on the size of the maximum exponent, the

value of 10°® was used for microbial inactivation calculation in this research.

4.4 Formulating the Optimization Problem

The objective of the problem is to maximize patty yield by finding optimal
process temperature, humidity, impingement air velocity, and cooking duration, while
ensuring the target microbial lethality, internal color change, and surface color change.
This optimization problem can be formulated with mathematical expressions to apply
formal optimization techniques. The formulation of the problem contains three essential
components: the objective function, inequality constraints, and equality constraints.
Objective Function:

The objective is to maximize performance index J, which is the final patty yield
(%) by finding the optimal process temperature profile 7(z), humidity H(z), impingement
air velocity ¥(2), and cooking time ¢ over ¢ € [0, #]:

myr+mg+1
J=fp) =0T 00 [4.23]
Myo + M g, +1
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The final yield, f{), was calculated by dividing the final patty weight by the initial patty

weight. The weights were calculated with water and fat content based on non-fat solids.

Inequality Constraints:

Final log reduction of microbial inactivation and internal color change (C,) of the
center of patty should be greater or equal than 6.5 (beef) and 1.387, respectively. Also,
the acceptability via surface color change (C;) log reduction should be between 0.263 and

0.497. These limits are:

L(ty)2 L (= 6.5) [4.24]
Co(t)2C, o (=1.387) [4.25]
C,,1(=0.263) < Cy (1) < Cy 1y (= 0.497) [4.26]

The control variables (process temperature, humidity, impingement air velocity,
and cooking time) are also bounded by upper and lower limits. For temperature, the JSO-
IV oven can achieve 260°C and is not normally operated below 100°C. Also, the
maximum humidity level is 90%MYV, and the maximum impingement velocity is 30.6
m/s. Based on the above actual capacities and reasonable range of cooking duration, the

following upper and lower bounds were set:
T (=100) <T(t) < Ty (= 250) [°C] [4.27]
Hp(=0)<H(t)< Hy(100) [%MV] [4.28]
(Instead of 90% MV, 100%MYV was used to test maximum theoretical limit)

Vi (=0)<V <Vy(=30) [m/s] [4.29]
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trL(=60)<ts <t 71 (=600) [s] [4.30]

Equality Constraints (Process Model):

The finite element process model (Section 4.3) developed for moist air
impingement cooking of ground formed meat patties was the equality constraint for this

problem.

4.5 Alternative Modeling by Using Artificial Neural Networks

Artificial neural networks were used to replace the finite element process model,
in order to speed simulation time. The networks were trained and tested to determine
whether the networks were representing the finite element process model sufficiently
well. Two different training strategies were applied to two different types of networks.
Static training (Section 4.5.3) was used to develop static neural network model (SNNM),
and dynamic training (Section 4.5.4) was used to develop dynamic neural network model
(DNNM). The first step for training and optimization was to parameterize the control

profiles.

4.5.1 Parameterization of the Control Function

To explore the infinite solution domain, an efficient method of representing the
dynamic control vectors must be available. In this research, control vectors were
parameterized in two ways: by using piecewise linear interpolation, which was used by
Banga et al. (1997), and by Fourier series.

Piecewisg linear interpolation (PLI):

The piecewise linear interpolation method was used to represent a control

function with a fixed number of points and final process time. The interval between the
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points can vary, but in this application, the control functions were evenly discretized into
20 pieces. Thus, by using those points, any other points can be calculated by using
Equation [3.8] (piecewise linear interpolation). Therefore, a total of 21 points, including a
flexible endpoint time, were used to parameterize each control function (process
temperature, humidity, and impingement velocity). Although the size of interval varied
depending on the endpoint time, due to the fixed 21 control points, the effect of the
interval size was not considered in this research. Therefore, the maximum interval was 30
[s] for the duration of 600 [s], and the minimum interval was 3 [s] for the duration of 60
[s]. Thus, the total number of parameters to represent three control functions and process
duration was 64 (=3x21+1). Each designated point followed the conditions of Section
3.2.3.1 (Equation [3.11-14]).

In the case of linear interpolation, the total 64 discrete values comprise the
following structure.

A set of discrete values={p,, p,, ..., ps4}, Where

pi~p2r: discrete values of temperature

D2r-p42: discrete values of humidity

P43~Ps3: discrete values of impingement velocity

Ps4: cooking duration
Fourier series (FS):

The Fourier series is a robust parameterization tool. Fourier synthesis can
generate all possible continuous functions with a sum of sine and cosine functions called
a Fourier series. The function is uniquely defined by constants known as Fourier

coefficients, which are shown in Equation [4.31]:
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(1) = 522 + Z(ak cos(kt) +by sin(kt)) [4.31]
k=1

In this application, the infinite Fourier series was limited to ten terms, which is sufficient
to closely approximate even step functions. Also, the period (27) of cosine and sine
functions needs to be adjusted to the cooking duration #. Thus, Equation [4.31] was

rearranged on the interval [-#/, ] as follow:
10
T(r)=29+ Z(ak cos(k ==Ly +b sink Z-Ly) [4.32]
2 — t f t f

Therefore, according to the Equation [4.32], each control profile was parameterized by
using 21 Fourier series coefficients for a given process duration.

In the case of Fourier parameterization, the 64 parameters comprise the following
structure.

A set of parameters={p,, py, ..., ps¢}, where

pi~p2o(i.e. ai, by): Fourier coefficients for temperature; p; (i.e. ap): shift

p2r~pq;- Fourier coefficients for humidity; p,;: shift

P43~ps2: Fourier coefficients for impingement velocity; ps;: shift

Pe4: cooking duration

4.5.2 Training and Validation Data Groups

As previously mentioned, training and validation data groups for neural networks
were produced by using the integrated FEM. In this study, a total of five neural networks
(one DNNM and four SNNM) were trained and validated with various groups of data.

Each group of data had a different number of input-target data sets and contents
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depending on process type, which creates complexity. Thus, each group of data sets was
named for further reference (Table 4.4). In addition, the detailed conditions for each data
group are provided in Table 4.5. For example, the alternative model SNNM_S was
trained by using D3 and validated with D7 (Table 4.4), and the conditions for those data
sets are reported in Table 4.5.

Data group D2 was generated with 63 Fourier coefficients and a process time.
Fourier coefficients (Equation [4.32]), a; and by, were selected randomly between -100
and 100, and a shift value (ap) was also chosen between 5 and 200. Among these random
combinations, only the profile satisfying the upper and lower bounds of the control
variables (temperature, humidity, and velocity) were accepted and applied to the FEM to

generate results.

Table 4.4 The names and contents of data groups for training and testing neural
networks.

Neural Networks Training Data Group Testing Data Group
Type Name Name Contents Name Contents
1,000 processes were generated with 64
910 constant D2 | random Fourier coefficients including
processes cooking time.
(Table 4.5) 1,000 processes (randomly generated
D7 | constant processes with random cooking
DNNM | DNNM | DL g4 609 duration)
conditions/states D4 2187 processes
sampled out for (double-stage, Table 4.5)
training) D5 2187 processes
multi-zone, Table 4.5)
1,000 processes were generated with 64
SNNM_R | D2 D6 | random Fourier coefficients including
cooking time. (#D2)
1,296 processes 1,000 processes (randomly generated
SNNM SNNM_S D3 | (single-stage, D7 | constant processes with random cooking
Table 4.5) duration)
SNNM D | D4 D8 1,000 processes (rz_xr}domly generated
- double-stage conditions)
SNNM M | DS D9 1,000 processes (randomly generated

multi-zone conditions)
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Table 4.5 Conditions of each process type to produce training data groups; D1,
single-stage (D3), double-stage (D4), and multi-zone (DS) process.

Control Variables

Process Total
T H A\ te .
opes Ll [%MV] [ms] [)  ymverof
100, 1125, 1, 15, 30, 1.5,10, 15, 20, 25, 30
125,137.5, 40, 50, 60,
Constant  150,162.5, 70, 80, 90,
Process* 175, 187.5, 100 600 910
(1) 200, 212.5,
225, 237.5,
250
Single- 100, 130, 0,20, 0.5, 64,123, 182, 24,30 60, 180
Stage 160, 190, 40, 60, 300,420 1,296
(D3) 220, 250 80, 100 540, 660
T, T2 H, H; Vi V2 te
Poae. 100100 0 0 0.5 0 60
Dd) 175 175 50 50 15.25 15.25 330 2,187
250 250 100 100 30 30 600
Multi- T H Vi Vs V3 Vi te
z°2_e7§;°‘ 100 0 05 05 05 05 60
D5 175 50 1525 1525 1525 1525 330 2,187
250 100 30 30 30 30 600

* Process conditions remain constant during cooking

4.5.3 Static Training

Depending on the characteristics of the training data sets and the architecture of

neural network, the mapping relationship between input and output vectors may be static,

where each application of a given input vector always produces the same output vector

(Wasserman, 1993). Therefore, a neural network trained by this method cannot account

for process history; rather, it merely identifies a relationship between initial conditions

and results. This kind of neural network has to be trained whenever different process

types are engaged.

For SNNM_R (Table 4.4), 1,000 random time-varying conditions were used to

generate data sets by using the finite element process model. Some examples of random

time-varying conditions are illustrated in Figure 4.5.
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Figure 4.5 Examples of random time-varying conditions by using Fourier series
control profile parameterization.

Each training data set consisted of 64 parameters, which consisted of 21 randomly
generated Fourier coefficients for 3 different control vectors (temperature, humidity, and
impingement velocity) plus process duration. Those 64 parameters were used as the
system input variables. By using the 64 parameters and Fourier series (Equation [4.32]),
three continuous random profiles were generated and used for the finite element process
model input to predict the yield, microbial lethality, internal color change, and surface
color. The outputs of the finite element model were used as target data sets. The data
group (D2) of combined input and target data sets was used to train the SNNM_R
(Section 3.3.2). Those data groups were also used for validation of GRNN_R.

For the training of SNNM_S, SNNM_D, and SNNM_M, training data groups (D3,

D4, and D5) were generated according to their conditions in Table 4.5.
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4.5.4 Dynamic Training

Compared to the static training method, the dynamic training method teaches
system behavior so that the neural network can predict output depending upon previous,
as well as current, input and/or output (Wasserman, 1993). Therefore, the dynamic neural
network reacts like a physical model, not just an input-output vector mapping.

If a full factorial design is planned with 64 parameters and just two extreme
values for each parameter, it results in 2 combinations, which is an impractical number
of trials. However, dynamic training can capacitate the neural network to understand
system behavior with a limited amount of information or training data set. Morimoto et
al. (1997) used historical input and output data to describe the dynamic characteristics of
fruit color changing behavior with time and temperature. The only disadvantage of
dynamic training is that it takes a little more time to produce outputs, because the neural
network has to predict the next point based on the previous point until it gets to the final
point.

Depending on the interval size, the accuracy of the prediction also changes. The
smaller the interval is, a more accurate result is possible. In this research, process
temperature, humidity, and impingement velocity were used as system control vectors,
and yield, microbial lethality, internal color change, and surface color were included in
states (Figure 4.6). In addition, past time was included in the inputs as a factor accounting
for history of the system until it became past state. Morimoto et al. (1997) added linear
data to the input of neural network and observed that the identification accuracy for any
cumulative responses was significantly improved. However, the linear data were replaced

with actual current time of the system.
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To obtain the training data group D1, 910 constant process conditions (Table 4.5)
were produced, and the results were calculated with the finite element model. The
combination has a maximum possible duration (600 [s]) by which other durations can be

covered, because the process is constant.

t(n-1) t (n)

Past time » Current time

uREs //{/{/{{State// /é/%t% sEmEm
_

////////////// W

I Process direction >

Figure 4.6 Conceptual diagram of dynamic training paradigm.

\\\\

Out of the 910 resultant processes, 54,600 data sets were sampled with 10 seconds
interval. By using the sampled data, input and output pairs for neural network training
were reconstructed. Figure 4.7 shows the structure of input/output pairs.

The control force vectors, which have direction and magnitude, are implicitly
dissolved in the past and current controls. Although the four current outputs can be
predicted with a single GRNN, an individual GRNN for each output was trained to
increase accuracy for each prediction (Trelea et al., 1997). The network parameters were

also optimized independently.

93



Current
Controls
(Scalar)

Past

Controls
(Scalar)

Past
Time

Past
States

T(k)
H(k)

V(k)

T(k-1)
H(k-1)

V(k-1)

{ t(k-1)

( Yk-1)
L(k-1)

Ce(k-1)

\ Cs(k' 1 )

T

Current Outputs

GRNNI1

% —=> | avm

GRNN2

% —> | AL(k)
] GRNN3

% —> | acx)

GRNN4

% — [ acw
/ |

Y(K)=Y(k-1)+AY(K)
L(k)=L(k-1)+AL(k)
Ce(k)=Cc(k-1)+AC.(k)
Cs(k)=Cs(k-1)+ACy(k)

Time delay

Figure 4.7 The structure of an input/output data pair for dynamic training to

identify dynamic characteristics of meat patty cooking.
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How well the input data are represented to the network is a critical issue to a
successful application of artificial neural networks (Wasserman, 1993). There are two
important points to be considered in the training of the GRNN. First, the target vectors
(vield and the other outputs) are monotonic, which are always increasing or decreasing in
one direction. If the GRNN is trained with actual values, then there is a possibility for the
GRNN to forecast a value that does not coincide with the monotonic characteristics of
output target vectors. This abnormality of forecasting can be minimized by training the
network not with actual values but with the difference. At the end of prediction, a
cumulative summation for each time was calculated to get the actual value for each time,
which renders all the training data to be always positive or negative.

Secondly, thermal inactivation kinetics of a small z-value generate large log
reduction values, because of high sensitivity to temperature change. The z-values for
thermal inactivation of Salmonella and the depletion of Myoglobin (internal color
change) are 5.9 °C and 10.41 °C, respectively, which are relatively smaller than 90.55 °C
for kinetics of surface color change. Therefore, there are huge variations in the predicted
results. The large variations in the magnitude of the components of a vector may not
convey meaningful information, but can confuse the network (Wasserman, 1993). In the
above case, raw data range from zero to several orders of magnitude, while the critical or
valuable information is located in a small range. Wasserman (1993) suggests that “taking
the logarithm of the data will adjust the range so that large values can be ‘squashed’ more
than small values, thereby allocating a constant range to a given percentage deviation”,

which is called nonlinear normalization. In this research, nonlinear normalization using
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base-10 logarithm was used for the training GRNN with the above two reaction kinetic

data (Salmonella inactivation and internal color change).

4.5.5 Neural Network Validation

All the neural network based models were validated with the testing data groups
that were prescribed in Table 4.4. For all the validations, root mean squared errors for
yield, microbial lethality, internal color change, and surface color were calculated to

quantify the performance of the neural networks.

4.5.6 Neural Network Parameter Optimization

FFNN based models consist of layers and neurons embedded in the hidden layer.
For the best performance of the network, the number of layers and neurons must be
optimized. Generally, there is no specific rule to set these numbers except by trial-and-
error. In this specific application, the number of layers was two, and nine combinations of
the numbers of neurons for each layer were examined in terms of root mean squared error
to find the optimal number of neurons in each layer. For each layer, 5, 10, and 15 neurons
were selected for the combinations. For each case, 500 data sets were used to test each
combination.

DNNM has a fixed number of layers and neurons according to the principles of
network architecture (Section 3.3.3). Therefore, the size of the receptive field that
determines the robustness of the network needs to be optimized by using trial-and-error.
The parameter is represented as “spread” in the actual computer code. With varying

“spread”, the results in terms of RMSE were compared, and the value shows the
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minimum RMSE was selected as an optimal “spread.” For this trial-and-error procedure,

100 data sets from D2 were used to test each case.

4.6 Process Optimization Strategies

4.6.1 Combinations of Techniques

The optimization techniques utilized in this research are global optimization
algorithms, which can be coupled with any type of process model. Thus, various
combinations of optimization strategies are possible, depending on the optimization
algorithm, type of process model, and method of control function parameterization. Table
4.6 shows the optimization strategies that were evaluated in this study. The numbers in

Table 4.6 were used throughout this study to refer to a specific optimization strategy.

Table 4.6 Optimization strategies (by strategy number), according to their process
model, the method of control profile parameterization, and optimization algorithm.

Optimization Algorithms

Model | Controlprofile |, SA | ICRSDS

parameterization
PLI 1 2 3
FEM FS 5 6 7
NNM PLI 9 10 11
D FS 13 14 15
NNM PLI N/A N/A N/A

S R FS 21 22 23
Single-stage 25
FEM Double-stage 29
Multi-zone 33
Single-stage 26
DNNM Double-stage 30
Multi-zone 34
SNNM S Single-stage 27
SNNM D Double-stage 31
SNNM M Multi-zone 35

PLI: piecewise linear interpolation; FS: Fourier series
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SNNM _ R was not trained with actual control values, but with Fourier
coefficients. Thus, control function parameterization with PLI could not be applied,
because SNNM was specific for trained data type. All of these combinations (Table 4.6)

were designed to find ideal and continuous optimal control profiles.

4.6.2 GA Based Strategy

Genetic algorithms (Section 3.2.1) have some parameters that must be set before
running the algorithm properly. For genetic algorithms, setting a convergence criterion
using the objective function value is difficult, because sometimes the same objective
function value wins the competition for several or more generations. Therefore, the total
number of generation cycles was set to 400 as a default value, because most of the
significant convergences tended to occur around 200 generations, according to prior
observations. The algorithm was terminated when it reached the target generation number.
However, if convergence was not achieved at the final number of generations, the
optimization process was continued until no improvement was observed. The size of
initial population and the population of each generation was set to 10 in this research,
because the number is not too large to demand too much computation, nor too small to
cause slow convergence. In addition, there is no specific rule for setting the number in the
initial population (Venkataraman, 2002). Other parameters are also problem-specific. If
large numbers are selected for the other parameters, it will demand huge computation
time, depending on the process model. Thus, rate of simple crossover, arithmetic
crossover, mutation, and immigrants of each generation were set to produce 6, 6, 4, and 2
offspring, respectively. Mutation rate was 0.016 (=1/64), which replaced one parameter

with a random value among 64 parameters. At the end of each generation, all the
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population was tested to identify qualified individuals that satisfied all the constraints,

and they were moved to the next generation.

4.6.3 SA Based Strategy
As indicated in Section 3.2.2, there are several critical parameters for a simulated
annealing algorithm, such as cooling schedule, number of Markov chains at a temperature,
transitional probability function, and convergence criteria.

The following cooling schedule was used:

T, =-2 4B 433]

The above cooling schedule generates more moderate acceptance probability
(between 0.5~0.8) than high acceptance probability (above 0.9), which reduces
exhaustive exploration at the initial search. The initial temperature, final temperature, and
the number of cooling steps were set to 25, 0.001, and 150, respectively. These
optimization parameters generate a probability curve (Figure 4.8) showing less

exhaustive exploration in the early stage, which is desirable in this specific application.
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Figure 4.8 Acceptance probability (Boltzmann probability) along with cooling
schedule (7,=25, Tx=0.001, N=150, and average increment of accepted objective

value=0.3) for SA.

In this research, a Boltzmann probability distribution function was used as a

transitional probability function (acceptance probability), which is classic and simple.

The algorithm was coded to terminate its search when there is no acceptance and no

improvement of the objective function. The number of iterations at each cooling cycle,

which is the length of Markov chain, was set to 20 from prior observations.

The algorithm generates the next move by using random search direction and

stepsize for each parameter or discrete value. Variable stepsizes were used, depending on

the control vectors (temperature, humidity, and impingement velocity) and type of

control function representation (discretization or parameterization), because the
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sensitivity of each parameter or value is different. Depending on the structure of the
control vector (Section 4.4.1), different step-sizes were used as follows:
Linear interpolation parameterization:
e Stepsize[p,~p./]=5; temperature profile
e Stepsize[p,~p4:]=5; humidity profile
o Stepsize[psr~ps3]=5; impingement velocity profile
o Stepsize[pss]=10; cooking duration
For Fourier parameterization:
e Stepsize[p,~p20]=2; stepsize[p,;]=10; temperature profile
o Stepsize[p,r~p4:]=2; stepsize[p,;]=5; humidity profile
o Stepsize[ps3~ps2]=2; stepsize[ps3]=2; impingement velocity profile
e Stepsize[pss]=10; cooking duration
The search direction was produced by using uniform random distribution of interval

between -0.5 and 0.5.

4.6.4 ICRS/DS Based Strategy

The ICRS algorithm has three important heuristic parameters, k;, k2, and n.. The
k; parameter controls the size of the search step by changing the magnitude of the
standard deviation vector. However, if the search fails to find improvement before the
number of trial reaches the failure counter (F), the standard deviation vector is
subsequently reduced by using k,. The n. integer parameter controls the rate of
convergence by changing the failure counter value. Pan (1998) recommended default
values of k;=1/3, k;=1/2, and n.=4. However, the stepsize of search depends on the
method of control profile parameterization. If the control parameters are highly sensitive,
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then k; needs to be reduced. A k; value of 0.05 was used for the case of Fourier
parameterization, because the Fourier coefficients are more sensitive than the discretized
values in PLI parameterization. For the case of linear interpolation parameterization (PLI),
the default value k,=1/3 was used.

According to the original ICRS/DS algorithm, the failure counter (F) is n, times
twice the problem dimension. The problem dimension of this research is 64. Thus, the
failure counter must be 512, which demands too much computation time. By using some
trial runs, the failure counter was set to 100, because it was rare to reach 100 or more. For

convergence criterion, Equation 3.19 was used with the tolerance value of 1.5x10%.

4.6.5 Benchmark Test for Optimization Algorithms

Even though the principles of GA, SA, and ICRS optimization algorithms are well
established and proven, the developed computer codes must be validated for their
effectiveness. Especially, in this application, a multi-variable problem is desirable,
because the optimization problem of this study is multivariate. The Bezier* curve is a
good tool to observe the behavior of all the variables in two-dimensional space
(Venkataraman, 2002). A fifth-order Bezier curve-fitting problem was presented to each

computer code. The fifth-order Bezier curve is:

B(t)=Z(:_'JPi(1-—t)"_i ', tefo] [4.34]
i=0

where,

2 Bézier curves were widely publicized in 1962 by the French engineer Pierre Bézier, who used them to
design automobile bodies. The curves were developed in 1959 by Paul de Casteljau using de Casteljau's
algorithm. Bézier curves are widely used in computer graphics to model smooth curves.
(http://en.wikipedia.org/wiki/Bezier_curve)
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n=degree

('th"(l -)"! i=0,---,n Bemstein basis polynomials
i

For n=5, the fifth order Bezier function becomes:
B(t) = By(1-t)° +5Rt(1-0)* +10P2(1-0)3 +10P,> 1-0)* + 5Pyt (1-1) + P51
[4.35]

Equation [4.35] was used to minimize root mean squared error with the following curve:

f(x)=1+0.25x + 2¢* cos3x [4.36]

A total of eight design variables were used to fit the above curve. All the computer codes

associated for this benchmark test were adopted from the works of Venkataraman (2002).

4.7 Case Studies

Global optimization techniques developed and tested in the above sections were
applied to practical situations to vaiidate their potential application to real, industrially-
relevant processes. Even though the optimal control profiles are the “best” in terms of
mathematical application of the theories, it is practically challenging to apply the
theoretically “best” profile in the real life situation, given constraints of existing
equipment and knowledge. Therefore, a series of case studies (single-stage, double-stage,
and multi-zone) that are currently available, or at least practical with minimal changes of

cooking system configuration, were solved and compared to each other.
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4.7.1 Single-Stage Oven

The single-stage oven case represents an oven (JSO-IV) using constant control
profiles during its process. The control variables were constant temperature, humidity,
impingement velocity, and cooking duration. Because the oven uses a constant profile,
the actual number of control variables can be reduced down to four instead of 64, which
was used in the previous applications.

Three different models were used in this case study, FEM, DNNM, and SNNM _S.
The previously developed FEM and DNNM models were used without alterations.
However, the SNNM _S, was trained with the D3 training data group, because the static
neural network model was specific for training data set. The FEM, GRNN, and SNNM_S

were coupled with SA, GA, and ICRS/DS, respectively.

4.7.2  Double-Stage Oven

The double-stage oven case is considered as the second possible option that
occurs in real commercial applications, by connecting two single-stage ovens in series.
This is a relatively simple solution for the food processing industry. The double-stage
system generates an equidistant, two-step constant control profile, which has more
dynamics in control than does the single-stage oven. Although more capital cost is
necessary to purchase an additional unit, increased yield and production rate may justify
cost. In this case study, only the total yield of the system was considered and optimized.

The total number of control variables was seven, given two steps for each control
profile and a cooking duration. FEM and DNNM were not altered, but the SNNM_D was
trained with 2,187 data sets of data group D4, because the SNNM_D was a static model.

The 2,187 training data sets were combinations of three different levels and the seven
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control variables (Table 4.5). The FEM, DNNM, and SNNM_D were coupled with GA,

SA, and ICRS/DS, respectively.

4.7.3 Multi-Zone Oven

This configuration may be a suggestion for the oven manufacturing industry.
Among the three major control variables (temperature, humidity, and impingement
velocity), varying impingement velocity is the easiest design change to implement in the
existing system, because the local jet exit velocity can be controlled by the size of the jet
exit or other flow control mechanisms. By observing this case study, the effect of a multi-
zone concept was tested.

Control temperature and humidity remained constant throughout the process, and
four equidistance zones were considered for different impingement velocities. Thus, the
total number of control variables was seven, including the process duration. SNNM_M
was trained with 2,187 data sets of data group DS, which were the combinations of three

different levels for each variable according to Table 4.5.

4.7.4 An Example of Economic-Based Optimization

As the level of optimization is expanded from a single unit operation to an entire
plant, the best control profile of the single unit may be reevaluated to improve the overall
objective of the plant. Compared to unit operation optimization, economic-based
optimization requires much more information related to management, such as product
value, energy cost, labor cost, warehouse management, raw material prices, and so on. In
addition, the objective can vary, such as minimizing energy consumption, maximizing

Processing rates, maximizing profit, or maximizing a practical quality attribute.
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In this case study, capacity and geometric information for the oven was obtained
from specifications of the JSO-IV (model 4044). For simplicity, raw material feeding rate,
energy cost, and final product yield were considered as factors influencing the net profit
of an entire system. Even though many of the values for these factors were “best guess”,
it was considered adequate to illustrate the concept of economic-based optimization. To
make the problem as a single objective optimization, all the factors were converted into
price ($) with the following equations. The economic-based optimization problem was

defined as follow:

Objective function ( /): maximizing profit [$]
f = product value — feed cost — energy cost :

= Energy cost ($/hr) = (steam cost) + (electricity cost) + (thermal cost)
=a - fg(H)+B-(fy ")+ fp(B) +7y k- fr(T)
= Product value ($/hr)=p-Y ,where Y = fy(H,V,T,t)-F
* Feed cost (raw material: frozen beef patties)($/hr)=¢ - F ,where F =3600-4-B
Variables:
*  fy(T,H,V,t) [%]: process model
s fy(H)=6-H [kg/h]: steam consumption rate as a function of H

* fy(V)=v-f-A-V [kW]: electrical demand as a function of V

2
* fp(B)= 2mT€B) 1073 [kW]: electrical demand for transporting patties

(kinetic energy required to transport patties on conveyor belt was divided

by residence time of a patty(L/B))
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Parameters:

500,000
150

fr(M)= ( (1.8T +32) +1,1 70,000) -(1055.04) [J/h] (Fulton®

thermal fluid boiler (capacity: 2.2 MMBtwh) was modeled. A linear

relationship between operating temperature and power was assumed)

H: humidity set point [%MV]

V: impingement velocity set point [m/s]

T: temperature set point [°C]

fu: amount of steam as a function of humidity set point [kg]

fv: electricity'as a function of impingement velocity set point [kW]
fr: amount of natural gas as a function of temperature set point [J/h]
fy: cooking model output or yield [%]

fs: electricity as a function of belt speed [kW]

Y: production rate [kg/h]

F: feed rate [kg/h] as a function of process duration

B: belt speed [m/s] (from (24 ft)/(60 s) to (24 ft)/(600 s)) as a function of

process duration

a=0.0092: steam cost [$/kg]

B=0.30: electricity cost [$/kWh]

v=0.18: natural gas cost [$/kg]

p=7.71: product value [$/kg] (3.50 $/lbs)
¢=4.19: raw patty price [$/kg] (1.90 $/1bs)
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A=4: loading capacity of patties per unit length of oven [kg/m] (258 patty
(120x10mm) on cooking area assumed)

0=5: amount of steam per hour proportional to the process humidity (linear
relationship was assumed from 90%-1,000 lbs/hr required) [kg/(h-%MV)]
v=0.33: electricity demand unit flow rate of air [kW/(m’/h)]

k=2E-8: kg of natural gas to produce 1 J [kg/J]

f: fraction of nozzle open area (0.0683): total slot open area per total belt
area or cooking zone area

L=7.32: cooking zone length (24 ft) [m]

w=1.85: width of conveyor belt [m]

A=Lxw=13.6: cooking zone area (146 ft?) [mz]

m=64.6: total product weight on cooking area (43x6=258 pattiesx113.5

g=29.3 [kg]

Control variables:

T: Process temperature [°C]
H: Process humidity [%MV]
V: Impingement exit velocity [m/s]

t: Process duration [s]

Explicit constraints:

Upper and lower bound of T, H, and V (Equation [4.26-28])
Cooking duration can be expressed via belt speed:

B 1(=0.012)<SB< B y(=0.12) [m/s]
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Implicit constraints:
= The constraints, such as microbial lethality, internal color change, and surface
color, are imbedded in the cooking model implicitly.
Assumptions:
= JSO-IV was assumed to have no transitional (inlet or outlet) cooking/equilibration
zone (e.g., steam tunnel), and was therefore assumed in this entire project to be
just a impingement zone.

* Only steady-state operation was considered.

The above objective function seems like a linear function, but it is nonlinear,
because of the nonlinear cooking model. Thus, global optimization techniques were
applied to the problem. Different cooking models (FEM and SNNM_S) were used for
comparison. Even though the parameters of the above equations were estimated by guess,

the effect of parameters was assessed through sensitivity analysis.

4.8 Programming and Computation Tools

A high level computing language, MATLAB® (The MathWorks, Inc., Natick,
MA), was used for all the computer programming of the research, because of its
convenience of handling matrix and vector formulations, which are the major operations
of artificial neural networks, optimization algorithms, and finite element modeling. Also,
neural network toolbox 4.0.1 in the MATLAB 7.0.0 provides neural networks, such as
GRNN and FFNN, which were used in the computer codes.

High performance PC’s (3.2 GHz, Intel Pentium 4 hyper threaded) were used to

run the optimization algorithms using GRNN and FFNN. To run optimization algorithm
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coupled with FEM, server computers (Sun Fire v880, 4 UltraSPARC-III 7S0MHz 64 bits
CPU) were used.

By using those computers, approximately >20,000 FEM runs, > 20,000 ANN runs,
and >100 optimization runs were calculated. In total, all of these runs required an

estimate of >250 h of CPU time.
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5 RESULTS AND DISCUSSION

5.1 Integrated Process Model Performance

The integrated process mod<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>