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ABSTRACT

PROCESS OPTIMIZATION FOR MOIST-AIR IMPINGEMENT COOKING OF

MEAT PATTIES

By

Sanghyup Jeong

Process conditions of a moist air impingement cooking system were optimized to

achieve maximum yield and to satisfy safety and quality constraints, simultaneously. To

accomplish this goal, various strategies were tested by combining different modeling

approaches, global optimization algorithms, and parameterization of control profiles.

In this study, a finite element model (FEM) predicting yield, Salmonella

inactivation, internal color change, and surface color change was considered as an actual

experiment with which all the results were compared. Static neural network models

(SNNM) and a dynamic neural network model (DNNM) were utilized as potential, faster

alternatives to the finite element model. For the global optimization algorithms, genetic

algorithms (GA), simulated annealing (SA), and integrated controlled random search in

dynamic system (ICRS/DS) algorithms were tested along with the finite element model

and alternative models. In addition, piecewise linear interpolation (PLI) and Fourier

series (FS) were used for the control profile parameterization.

This study was conducted in two different ways. In the first part, overall aspects

of this optimization problem and the effectiveness of the various strategies were

investigated to identify the best strategy for ideal dynamic control profiles. Secondly,

based on prior knowledge, the optimization strategies were applied to several

industrially-relevant case studies.



The performance of the alternative models (DNNM and SNNM) was fast, general,

and robust, with a few exceptions. Even though the accuracy and the power of

classification were not as high as the finite element model results, the neural network

models showed potential as reliable alternative models. The highest goal (yield) was 73%,

which was obtained by using the ICRS algorithm, FEM, and PLI. However, the

optimization strategies with alternative models could not find such a high yield; rather,

they committed critical classification errors at the later stages of the optimization process.

Generally, all the global optimization algorithms showed convergence to an optimal

solution, albeit with different convergence speed and goal achievement. Although

comprehensive evaluation was impossible, ICRS was observed as the most

recommendable algorithm.

Single-stage, double-stage, and multi-zone processes were studied by using three

different models (FEM, DNNM, and SNNM) and the ICRS algorithm. The maximum

yield (67%) was achieved in the double-stage process. The case studies showed that a

simple and minor design change of the single-stage oven might improve the performance.

In addition, the objective fianction (yield) for the single-stage oven was replaced

with a cost function, and the operating conditions for maximum profit were determined,

which were different from the results when the objective function was yield. Finally,

Monte Carlo simulation showed that all the optimal profiles were highly sensitive to

small perturbations, which implied difficulties in the actual application of the optimal

solutions, due to unavoidable control errors of a cooking system.
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1 INTRODUCTION

1.1 Background

1.1.] Food Quality and Safety

Food processing technology has been advanced along with human history.

However, the fundamental concept of food processing has not changed considerably,

even though many innovative processes and products are being developed. Basically,

manufacturing of foods encompasses two types of conversions, physical and chemical.

The main purposes of these conversions are preserving and improving the quality of

processed food products. One of the predominant unit operations, inducing both physical

and chemical conversions, is heat or thermal processing.

Thermal processing is transferring heat to a food material to induce desirable

results, but this also can cause concurrent undesirable results. Thermal processing

increases digestibility (e.g., protein denaturation), reduces enzyme and microorganism

activity, and enhances food characteristics (e.g., carbohydrate gelatinization, color

development, texture, and flavor changes). However, thermal processing also produces

undesirable results, such as loss of heat sensitive nutrients and undesirable color and

flavor changes due to over-cooking. Therefore, a compromise must be found between

intensity of thermal processing and its various effects on the product (Trystram, 2004).

According to the results of a recent survey published in “Trends In The United

States - Consumer Attitudes and The Supermarket 1999”(FMI, 1999), the top food

selection concerns and the percentages of the shopping public that consider these factors

“very important” in their food selection were as follows: (1) Taste, (92% of those

interviewed), (2) Nutrition, (70%), (3) Product Safety (70%), (4) Price, (63%), (5)

1



Storability, (42%); (6) Ease of Preparation, (35%); (7) Food Preparation Time (35%) and

(8) Product packaging that can be recycled, (29%). Therefore, food manufacturing must

address not just production volume, but also a variety of other competing criteria.

For the consumer’s food safety concern, the USDA Economic Research Service

(ERS) reports that the percent of consumers “completely confident” in the safety of the

food supply increased from a low of 72% in 1992-93 to a high of 83% in 1996, with

levels declining to 74% in 2000 (ERS, 2002).

From the economic viewpoint, food safety is the most critical and nonnegotiable

quality factor. In the United States, foodbome diseases have been estimated to cause 6

million to 81 million illnesses and up to 9,000 deaths each year (Mead et al., 1999). For

six specific bacterial pathogens, the costs ofhuman illness are estimated to be $9.3-12.9

billion annually (Buzby et al., 1996). In 2000, ERS estimated the annual costsl due to

selected foodbome pathogens2 as $6.9 billion (ERS, 2000). These estimated costs are an

enormous burden for society and also for food manufacturers.

Therefore, it is clear that the major sectors (i.e., consumers, industry, and

regulatory agencies) in the food market must collaborate to improve the current situation.

 

' includes medical costs, productivity losses, and costs of premature deaths

2 Campylobacter (all serotypes), Salmonella (nontyphoidal), E. coli 0157, E. coli non-0157 STEC, and

Listeria monocytogenes



1.1.2 The Drivefor Food Quality and Safety Innovation

Driving forces can be passive or active. Since the 1993 outbreak of E. coli

0157:H7, consumer awareness and demand for food safety has increased (Golan et al.,

2004). The passive driving forces often come from foodbome illness outbreaks and

recalls3, and they trigger consumer awareness, regulatory changes, or industrial

innovation.

“The number and size of recalls have increased dramatically over the last decade.

During 1993-96, the number of meat and poultry Class I4 recalls averaged about 24 per

year and amounted to 1.5 million pounds annually; during 1997-2000, Class I recalls

averaged 41 per year and reached 24 million pounds annually (Ollinger and Ballenger,

2003).” These increasing recall cases are not because of loose control, but because the

ability to detect pathogens on products has increased dramatically, which can generate

more recalls (AMI, 2002). In addition, the ability to track foodbome disease and tie it to a

specific food product has evolved into a practical technology (AMI, 2002). Recalls result

in bad reputation and catastrophic financial damage to a manufacturer.

Therefore, efficient quality assurance has become a critical issue for consumers,

manufacturers, and related government organizations. Instrumentation, food safety

practices, and lethality criteria are of central importance, with particular emphasis on very

high sanitary and hygienic operating standards. Evolving federal regulations, such as

 

3 A food recall is a voluntary action by a manufacturer or distributor to protect the public from products that

may cause health problems or possible death. The purpose of a recall is to remove meat or poultry from

commerce when there is reason to believe it may be adulterated (injurious to health or unfit for human

consumption) or misbranded (false or misleading labeling and/or packaging) (FSIS, “FSIS Recalls”, USDA,

http://www.fsis.usda.gov/Fsis_Recalls/index.asp, March 22, 2005.).

4 Recalls that involve meat or poultry products that could, especially without cooking to safe temperature,

cause serious illness or death.



9CFR318.17 (FSIS, 1999 & 2001), change safety regulations from passive to active

compliance required of the food industry. Traditionally, regulations have provided a

specific endpoint temperature and holding time to achieve target lethality in a meat and

poultry product. Thus, the traditional approach discourages the food industry from

adopting new technology and voluntary compliance to the regulations. However, the

evolving regulations require manufacturers to prove, via scientifically supportable means,

that their process or Operating policy achieves a target lethality performance standard.

The transition from command-and-control to performance standards allows more

freedom of choosing process design and operation policy, but also moves more

responsibility to the industry.

Contrary to the above passive driving forces, there might be an active driving

force that originates from industry. Food manufacturers invest in the development ofnew

methodologies to improve safety and quality of their food product. When industry

successfully innovates to produce safe foods, a win-win situation arises, with the

innovating firm, consumers, and government all benefiting from improved food safety

(Golan et al., 2004).

Many attempts have been made to maximize desirable quality and simultaneously

minimize undesirable effects by adding ingredients, developing innovative process

equipment, improving process conditions, and so forth. Among those approaches,

improving process conditions is advantageous, in that it uses existing systems. Therefore,

additional capital investment is not necessary to resolve these contradicting factors to

achieve both safety requirements and maximize quality and profit. Finding the best

operating condition is critical from the perspective of industry, because the need to



improve efficiency, reduce energy consumption, increase productivity, and comply with

regulations pushes industry to adopt improved safety practices if they can see

simultaneous benefits in yield, which translate to profit.

1.1.3 Economic Significance ofthe Meat Industry

In spite of the increased safety concerns, the US. meat and poultry industry

contributes significantly to the US. agricultural economy. Total meat and poultry

production in 2000 exceeded 80 billion pounds, a 31 percent increase since 1987. The

meat and poultry industry is the largest segment ofUS. agriculture, contributing over

$100 billion in annual sales to the GNP (AMI, 2001).

The products affected by regulatory changes related to ready-to-eat products

account for over $28 billion in annual sales (FSIS, 2001), and consumer trends for ready-

to-eat products also suggest continued rapid growth in this category. The size of this

market is important as a spur to greater profit in this industry. Accordingly, the industry

aims to develop novel products and to increase the efficiency of its production lines. For

an example, even a modest 0.5% improvement of cooking yields based on the $28 billion

annual sales in this category would give an impact of approximately $140 million

increase in annual revenue for ready-to-eat products in the US.

Therefore, given the regulatory changes and the economic importance of ready-

to-eat (RTE) meat products, there are compelling needs for integrated simulation tools

that will allow industry to design and operate processes that meet the lethality

performance standards and simultaneously increase quality and profit. Optimization

techniques that find the conditions for the best result from a given situation are needed to

meet these demands. Process optimization is the most economic approach for industry to



maximize yields while ensuring safety and quality factors with existing facilities.

Therefore, the information and tools that will enable the industry to design and operate

the optimal processes are essential.

I. 1.4 Recent Innovation in Meat Patty Processing

Impingement cooking technology has been popular in certain segments of the

food processing industry, because of its efficiency. Specifically, moist air impingement

cooking systems are widely used in the ready-to-eat meat product industry, because the

system (Figure 1.1) results in short cooking time and relatively high cooking yield.

The moist air impingement cooking systems jets a steam-air mixture through

arrays of nozzles onto products, yielding a high heat transfer rate by reducing the

thickness of the boundary layer at the surface of the product. Also, at the initial stage of

cooking, steam is condensed on the surface of the product, which results in effective

transfer of latent heat into the product at low temperature. Therefore, moist air

impingement cooking systems are characterized by fast cooking and suppression of

moisture loss. Moist air impingement cooking systems involve many control variables,

such as cooking duration, air temperature, air moisture content, impingement exit

velocity, and impingement geometry (e.g., jet width, spacing, and height).
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Figure 1.1 Schematic diagram of a multi-staged, moist-air impingement cooking

system.

Currently, most oven operators select the oven operating conditions ‘(i.e., the

control variables) based on their experience or simple rules of thumb, which are not

necessarily proven scientifically. For a single-stage oven, one might operate the oven

within sub-optimal conditions. However, if multiple ovens (Figure 1.1) are connected to

increase the rate ofproduction with various cooking zones, then the complexity and size

of the problem is too large to select optimal conditions with experience. Also, meat

cooking under moist air impingement cooking environments involves multiple control

Variables, mass transfer coupled with heat transfer, phase transitions, and complex

cOndensing boundary conditions, which results in complex combinations of control

PrOfiles.



Therefore, optimizing the process conditions ofmoist air impingement cooking

systems is a significant challenge and a worthwhile endeavor from the perspective of

researchers, food processors, oven manufacturers, and government agencies.

1.2 Objectives

The overall goal of this study was to develop an efficient process optimization

method, in terms of speed and objective-achievement, and to evaluate the method for

maximizing cooking yield, while ensuring the microbial safety and quality of ready-to-eat

meat products (ground and formed meat and poultry products) cooked in commercial

moist air impingement cooking systems. To achieve the overall goal, the specific

objectives were:

1. To add color prediction capabilities to an existing finite element model.

2. To develop an alternative process model for moist air impingement cooking of

meat patties by using artificial neural network (ANN) to replace an existing

finite element model.

3. To identify the best strategy for process optimization among many

combinations of optimization algorithms, process models, and

parameterization of control functions.

4. To apply the developed optimization strategies to three case studies: single-

stage, double-stage, and multi-zone oven systems.

5. To examine the performance of the optimization strategy for a single-stage

oven system, given an economic-based objective function.



2 LITERATURE REVIEW

2.1 Achieving Extrema in Food Processing

An ultimate goal of most production activity is to increase profitability at given

conditions, and food processing is no exception. Typically, improving the efficiency,

reducing process time, and increasing yield and quality are concerns for most food

processors and equipment designers. Generally, a typical industry consists of

management, process design and equipment specification, and plant operations (Edgar et

al., 2001). Because these components are inter-connected, achieving those improvements

are not simple tasks. Therefore, depending on the level of complexity and difficulty, the

scope of a problem can be the entire enterprise, 3 plant, a process, a single unit operation,

a single piece of equipment in that operation, or any intermediate stage between these

(Beveridge and Schechter, 1970).

Generally, these improving activities are maximizing the capabilities of existing

facilities or equipments by changing their conventional operating policies, conditions,

numbers, and so on. All these attempts can be described in a single word: “optimization.”

A more formal definition would be “the collective process of finding the set of conditions

required to achieve the best result from a given situation (Beveridge and Schechter,

1970).”

2-2 Characteristics of Optimization in Food Processing

Food processing is unique in that the process involves materials having irregular

Shapes, non-homogeneous compositions, and individual variance even in the same

material. In addition to the materials, quality factors for product evaluation can be



subjective, such as taste, aroma, and flavor. Also, food processing encompasses various

techniques, such as frying, baking, boiling, blanching, fermenting, drying, and so on.

Therefore, modeling food processing phenomena is very challenging.

Models are essential components of modern process systems engineering (i. e.,

simulation, optimization, and control), and they are usually classified into three

categories, which are first-principle models (or white-box), data-driven models (or black-

box), and hybrid models (or gray-box) (Banga et al., 2003). Without adequate models, it

is impossible to carry out optimization. From the view point of the application of

optimization technique, the first-principle models are highly desirable, because the

response time of the models is short, and it is convenient to apply various mathematical

operations, such as differentiation. However, because first-principle models are difficult

to obtain, data-driven models and hybrid models are popular in food processing.

Generally, mathematical modeling of a food process requires knowledge of transport

phenomena and reaction kinetics. Transport phenomena involve heat, mass, and

momentum transfer into a food, and reaction kinetics cover degradation or inactivation of

nutritional and organoleptic factors or microbial and enzymatic activity (Oliveira and

Oliveira, 1999). Usually, these multi-physical phenomena are expressed as sets of

algebraic, partial, and ordinary differential equations in the mathematical model. Due to

the lack of theoretical methods for solving those highly complex, nonlinear systems of

equations, most of the problems are solved by using numerical techniques, such as the

finite difference method and the finite element method. Considering that most

0Immization techniques require numerous iterations of a process model, the numerical,
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computational requirements of the model are often significant impediments to

optimization.

One of the popular methods to overcome the above difficulties of modeling is

alternative modeling, which can be fast, simple, and robust, with reliable accuracy. Even

though alternative models sacrifice some degree of accuracy, compared to numerical

models, the overall benefits of the alternative modeling techniques must be considered

when evaluating performance in an actual optimization problem.

Artificial neural networks (ANN) have emerged as a potential alternative to

physical-based models for food process engineering, because of their simple structure,

robustness, no requirement ofprior knowledge, and adaptive performance (Torrecilla et

al., 2004). ANN have been successfully applied to the modeling of food processes (Mittal

and Zhang, 2000; Sablani and Shayya, 2001; Chen and Ramaswamy, 2002; Chen and

Ramaswamy, 2003; Horiuchi et al., 2004; Torrecilla et al., 2004), property and quality

prediction (Berg et al., 1997; Xie and Xiong, 1999; Raptis et al., 2000; Albert et al.,

2001; Therdthai and Zhou, 2001; Tominaga et al., 2001; Hussain et al., 2002; Boillereaux

et al., 2003; Ganjyal et al., 2003), machine vision and image analysis (Chao et al., 2002;

Marique et al., 2003; Diaz et al., 2004), extrusion (Ganjyal and Hanna, 2002), microbial

growth and inactivation (Geeraerd et al., 1998; Garcia-Gimeno et al., 2003), high-

pressure processes (Torrecilla et al., 2005), and fluid flow (Adhikari and Jindal, 2000;

Sablani and Shayya, 2003; Singh and Jindal, 2003). Once an ANN is established, the

Computation time of the network is very small with reliable accuracy. ANN is ideal for

SyStem identification and replacement of an existing first-principle model. For example, it

11



was shown that ANN were very effective for replacing a finite difference computer

simulation of retort processes (Chen and Ramaswamy, 2002).

Another difficulty in food processing optimization arises at the characteristics of

the response space of a problem. If the response space has just a single unique maximum

(or minimum), finding the extremum can be guaranteed. However, food processing

models are generally characterized as a system of nonlinear partial differential algebraic

equations, which usually exhibit a multimodal nature (Banga et al., 2003). In this

situation, an effective and systematic procedure (or algorithm) is essential for

optimization.

2.3 The State of the Art of Optimization Techniques

In the previous section, characteristics of food processing were discussed by

focusing on model related issues. However, to solve practical optimization problems,

effective techniques that are capable of consistently finding the best solution to the

problems must be available.

A popular optimization technique is nonlinear programming (NLP, Section 3.1.2),

which is usually using gradient information to decide the search direction (e.g., steepest

ascent path). If NLP is applied to highly nonlinear, constrained, and multimodal problems,

it usually converges to the “nearest” local solutions, because its search direction and size

are determined from its starting point (Edgar et al., 2001). Therefore, NLP cannot

guarantee a global solution”, if the starting point is not close enough to the global

x

5

l"3f€=l‘s to local maxima or mrnrma in a section of the entire solution space

6

reft'tl's to the highest or the lowest point among other local maxima or minima.
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optimum. However, the local nature ofNLP algorithms can be overcome by global

optimization (GO, Section 3.1.2.5) techniques designed to find a global solution.

GO algorithms are designed to escape from local solutions and explore promising

regions where a global solution may exist. Also, GO can be utilized with ANN in parallel,

without any modifications to the process model. In food process engineering, G0 has

been used with numerical models, such as finite difference models (FDM), finite element

models (FEM), and ANN (Chen and Ramaswamy, 2002). Banga et al. (2001) and

Zorrilla et al. (2003) coupled a FDM model of double-sided cooking of meat patties

directly with the Integrated Controlled Random Search for Dynamic Systems (ICRS/D8),

which is an adaptive stochastic GO algorithm.

Response surface methodology (RSM7) is currently the most popular optimization

technique in food science, because of its comprehensive method, reasonably high

efficiency, visualization, and simplicity, even though RSM is inefficient and cannot be

automated in finding the overall optimum (Arteaga et al., 1994). Also, Banga et al.

(2003) pointed out some important drawbacks ofRSM methods, such as the empirical,

local, and stationary nature of these statistical techniques. RSM has uncertainty ofmodel

equations, which means the model might not represent a real physical model, because

RSM is a statistically designed experimental optimization method. Generally, the method

is not considered as a formal optimization technique. However, RSM has been

\

7 RSM uses quantitative data from an appropriate experimental design to determine and simultaneously

solve multivariate problems. The equations describe the effect of the test variables on the response,

determine interrelationships among test variables, and represent the combined effect of all test variables in

the I‘CSponse. This approach enables an experimenter to make efficient exploration of a process or system

(PORCIano S. Madamba, “The response surface methodology: an application to optimize dehydration

operations of selected agricultural crops”, Lebensm.-Wiss. u.-Technol., v. 35, p. 584)
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successfully applied to product development and static process identification when the

system behavior or the process is unknown, complicated, and static.

2.4 Applications in Food Process Engineering

2. 4.1 Sterilization ofCanned Product

Optimization techniques have been rigorously applied to sterilization of

prepackaged conduction-heated food, such as retorting of canned foods. The basic form

of this application is to find the best combination of retort temperature and process time

for a constant heating process or the best retort time-temperature history for optimal

control, which can simultaneously achieve the required lethality of the target

microorganism and maximize quality factors.

The first attempt by Teixeria et al. (1969) found the best combination of retort

temperature and process time for a constant retort process of conduction-heated foods.

The best set of time and temperature was found by plotting thiamine retention against

equivalent process conditions producing the same level of lethality. Even though the

attempt introduced optimization concepts to food process engineering, the study did not

apply formal optimization methods to the problem.

Saguy and Karel (1979) applied Pontryagin’s maximum principle (PMP) to

maximize thiamine retention in retort process and found a single optimal variable retort

temperature profile. The significance of this study was the first application of formal

0Inimization theory to food process engineering. However, because the application of

PMP requires quite a modification of the original problem, it might not be suitable for a

ComPlex problem.
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Numerous attempts have been made since the work of Teixeira et al. (1969) to

optimize retort operation. However, the essential features of those optimization problems

have many similar aspects (Table 2.1). The popular objectives of sterilizing prepackaged

conduction-heated foods were maximizing retention of a single nutrient, minimizing

quality degradation, and minimizing energy consumption. Most of the prior studies dealt

with microbial lethality as an inequality constraint and a two-dimensional numerical

model (heat conduction only) as an equality constraint.

Although there was similarity in the formulation of the problem among these

many studies, the major difference among them was the method used to find the optimal

condition or profile. Application of formal optimization methods has been increasing, so

that several studies (Saguy and Karel, 1979; Nadkami and Hatton, 1985; Banga et al.,

1991; Chalabi et al., 1999; Kleis and Sachs, 2000; Erdogdu, 2002; Erdogdu and Balaban,

2003) found optimal retort solutions, with respect to specific assumptions. The type of

Optimal solutions can be categorized into: (a) combinations ofprocess time and constant

temperature, (b) piecewise continuous temperature profiles, and (c) on-off type of control

profiles. Even though the piecewise continuous temperature profile is the true optimal

solution, the solution cannot always be considered as the best, because it is not practically

possible to implement a continuous profile in many conventional processes.

The biggest advantage in applying process optimization to retorts is the relatively

simple process model, as compared with unpackaged food processes. Usually, the retort

optimization encompasses a single control variable, temperature, which limits the burden

ofcomputation. Also, the process model does not involve mass transfer, which is a very

Complex phenomenon in meat cooking process.
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Table 2.1 Analysis of basic elements used to optimize sterilization processes of

prepackaged conduction-heated foods.
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IC: inequality constraints; EC: equality constraints; TL: lower temperature limit; TU: upper temperature

limit.

2 Max., maximizing; Min., minimizing

VAL, volume averaged lethality; Fc, critical lethality

C

d FDM, finite difference method; FEM, finite element method

GS, graphical search; PMP, Pontryagin’s maximum principle; PMDP, Pontryagin’s minimum

distributed principle; ICRS/DS; Integrated Controlled Random Search for Dynamic Search; SQP,

Sequential quadratic programming

e . .

VRT, variable retort temperature; opt., optimum
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Chen and Ramaswamy (2002) developed an ANN model with training and testing

data produced by a finite element model, and coupled the ANN model with GA. In that

study, the control function (i. e., retort temperature) was parameterized with sine and

exponential functions to replace the traditional constant retort process. The coupled

ANN-GA model was able to identify the relationship between the operating variables and

control function parameters. Even though the ANN-GA found the optimal processing

condition of a retort process, the optimal solution could be improved if additional

parameters for the control function were used to increased flexibility. Also, the work of

Chen and Ramaswamy (2002) was for prepackaged food retorting, a simpler process

model than convection cooking of meat patties.

2.4.2 Food Dehydration

Dehydration is a common method to extend the shelf life of foods. This operation

is normally removing water in a foodstuff- via evaporation or sublimation (Brennan,

1990). Among many techniques, such as freeze drying, spray drying, super-heated drying,

infiared drying, microwave drying, heated air drying of a solid food block is the focus of

this review, because of the physical similarities with meat patty cooking under moist air

impingement cooking. Using heated air is the typical method of dehydration, in which a

food product is placed in contact with a moving stream of heated air. Therefore, drying

can be an optimization problem, in which the optimal conditions are sought to maximize

retention of nutrients, such as ascorbic acid, while minimizing enzyme or microbial

activities (Banga and Singh, 1994).

Drying processes are generally driven by evaporation at the surface, which causes

Water transport within a foodstuff. Fick’s equation of diffusion is often used to describe
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water transport in drying. For hot air drying, the mass transfer model must be coupled

with a heat transfer model, often assuming a one-dimensional thin slab and an

evaporation term to account for the energy balance. These partial differential equations

are usually solved by the finite difference method or rarely by existing analytical

solutions with empirical equations for model parameters, such as diffusion coefficient,

convective heat transfer coefficient, and first-order rate constant for ascorbic acid

degradation (Mishkin et al., 1982). Food drying quality parameters are often modeled by

using first-order reaction kinetics (Mishkin et al., 1983; Banga and Singh, 1994).

Mishkin et al. (1982) used Pontryagin’s maximum principle (PMP) and the

complex method to find the optimal air temperature profile maximizing ascorbic acid

retention in a model system (a slab composed of water, cellulose, and ascorbic acid) with

fixed relative humidity. The complex method was selected, because the method was

convenient to use along with any type of process model and constraints without

modification. Mishkin et al. (1983) extended their research to a multi-stage drying

process. They found optimal stepwise temperature and humidity profiles for three stages

by using the complex method.

Banga and Singh (1994) set up four different optimization problems for drying of

a thin slab of cellulose: (a) maximizing ascorbic acid retention with a constraint on the

final moisture content, using air dry bulb temperature as the control variable; (b)

minimizing process time with final retention of ascorbic acid, using air dry bulb

temperature control; (c) maximizing ascorbic acid retention with final retention of

enzyme, using dry bulb temperature and relative humidity control; (d) maximizing energy

efficiency with final ascorbic acid retention, with dry bulb temperature control. These
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problems were solved by using an ICRS/DS algorithm, and they found optimal piecewise

linear control profiles in all cases.

In spite ofmany similarities with meat cooking processes under moist air

condition, drying processes are different from meat cooking, in that cooking involves

more complex mass transfer phenomena (water-fat mixing and fat dripping), microbial

inactivation, phase change, and air humidity sufficiently high to cause condensation.

2.4.3 Meat Patty Cooking

The abundance ofprior research in retort operation is due to the availability of the

process model, which encompasses relatively simple phenomena, such as depletion of

certain nutrients coupled with heat transfer. However, the nature of meat patty cooking is

an unpackaged process that generally involves various mass transfer phenomena, such as

evaporation and dripping of fat and water. In addition, geometry change and phase

transition is typical for this process. These phenomena must be coupled with heat transfer

and solved. Other difficulties in the modeling of meat patty cooking arise in the heating

medium. The heating medium in retort processes is water or steam, which does not

interact with the food material in the package and has simple thermal properties.

However, in an unpackaged food product, the heating medium interacts with the surface

of the food material, which therefore leads to more elaborate boundary conditions.

Banga et al. (2001) and Zorrilla et al. (2003) applied the dynamic optimization

technique (Section 3.1.2.6) to contact cooking of meat patties, which is considered as the

first attempt to optimize a meat patty cooking process. The objective of those studies was

to minimize cooking loss of patties, while ensuring inactivation ofE. coli 0157:H7 and

final product center temperature. One-dimensional coupled heat and mass transfer solved
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with finite difference method (Pan, 1998) was used as a process model. The above

optimization problem was solved by a global optimization algorithm, ICRS/DS

(Integrated Controlled Random Search for Dynamic Systems), which found the optimal

piecewise step grill surface temperature profile (Banga et al., 2001; Zorrilla et al., 2003).

The process model is an important part of an optimization problem, because the

model is used to predict the objective value and constraints. The process model

developed by Pan, (1998) and used by Banga et al. (2001) and Zorrilla et al. (2003),

assumed the patty as a one dimensional infinite slab, which is less accurate than two-

dimensional modeling. Even though the model could predict water and fat transfer and

microbial log reduction, other important quality factors, such as internal color change and

surface color change, were not considered. Also, the nature ofthe cooking method was

contact cooking, which was modeled using simplified, effective boundary conditions,

compared with the condensing-convective boundary conditions during meat patty

cooking under a moist air environment. In their optimization problem, grill surface

temperature was the single decision variable. However, moist-air impingement meat patty

cooking involves the additional control variables of air humidity, impingement velocity,

and impingement geometry. Even though the performance of ICRS/DS was good enough

to locate the global optimum for the contact cooking problem, comparison with other GO

methods was not conducted.

2.4.4 Various Processing Areas

In addition to the application for canning, cooking, and drying, optimization

techniques have been applied to the other processes, such as ultra-filtration, baking,

extrusion, cheese manufacturing, mixing, and so forth. Each application provides some
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lesson about the implementation of formal optimization techniques to the unique nature

of various food processes.

Usually, the objectives of wine filtration are to minimize colloid content,

maximize color intensity, and maximize flux by varying pore size and the recycle rate of

membranes (Gergely et al., 2003). Gergely et al. (2003) expressed the objective firnction

as a second-order form of regression functions of the membrane pore size and recycle

flow rate, which was a response surface model (RSM). Even though the RSM can solve

some Optimization problems, generally the method is not recognized as a formal

optimization method (Section 2.4).

In optimizing commercial bread baking, the biggest challenge is getting a reliable

process model. Therdthai et al. (2002) used four different temperature zones of a

commercial oven and baking time to find optimal condition for minimizing loss while

controlling the top crust color, side crust color, and average crust color within acceptable

ranges. Statistical methods were used to construct a model equation, which was a RSM.

However, some researchers have used neural networks coupled with a Genetic Algorithm

(GA) for leavening process optimization in a bread-making industrial plant (Fravolini et

al., 2003). Fravolini et al. (2003) used a nonlinear system identification method, called

NARMA (Nonlinear Autoregressive-Moving Average), to model the leavening process.

Extrusion is very complex process. The most common objectives are expansion

ratio, shearing strength, and sensory texture, which are functions of temperature, feed

moisture, and process variables, such as screw speed, screw compression ratio, feed

speed, and die diameter. RSM is the most popular method to model the process and to

apply optimization methods, because the results ofRSM are analytically differentiable
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mathematical expressions (Chévez-Jéuregui et al., 2000); Frazier et al., 1983; Iwe et al.,

1998; Karwe and Godavarti, 1997; Olkku et al., 1983; Quintero-Ramos et al., 1998;

Vainionpaa, 1991). Therefore, optimal condition could be found by applying theoretical

optimization techniques directly to the model.

In addition to applications for food processes, well-organized dynamic

optimization problems also exist in biochemical processes, such as fermentation

(Tartakovsky et al., 1995; Banga et al., 1997; Berber et al., 1998; Tsoneva et al., 1998;

Faqir, 1998);Lee et al. 1999; Radhakrishnan et al., 1999; Halsall-Whitney et al., 2003;

Levisauskas et al., 2003). The nature of biochemical processes is similar to food

processes, in that their dynamic behavior is inherently nonlinear. However, most

biochemical systems can be modeled by a set of ordinary differential equations, which

makes many optimization theories applicable, because the model equations are

differentiable. Generally, biochemical processes have been treated as problems of optimal

control, which use a special form of the performance function.
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3 THEORIES

3.1 Overview of Optimization Theory

3.1.] Introduction

3. 1 .1.1 What is Optimization?

Our daily life is always full of choices in various activities, such as traveling,

shopping, or eating. Decision—making is the cognitive process of selecting a course of

action from among multiple alternatives. The purpose of decision-making is to choose the

best alternatives fitting with our goals. Even though the purpose of decision-making is

clear, making decisions involves many considerations and uncertainties. In the case of a

simple problem, we can guess the results of some trials or test the effect of each possible

alternative. However, as the number of variables and the interactions between variables

increase, these attempts lose the ability of identifying the best solution among the many

possible good solutions. For example, we can increase the thickness of insulation to

decrease energy loss, but increased insulation thickness increases cost, which is the trade-

off. In that case, the problem is to find the thickness of insulation minimizing the total

cost, which cannot be solved easily.

Therefore, systematic methods and procedures are necessary to solve those

problems containing many variables, restrictions, and factors, which compete with each

other for the best solution. Optimization can be defined as “the collective process of

finding the set of conditions required to achieve the best result from a given situation”

(Beveridge and Schechter, 1970). By the help of optimization techniques, we can explore

more complex decision-making situations with more certainty and effectiveness.
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3.1.1.2 Essential Features of Optimization Problems

By observing optimization problems, some common features can be found. For

example, if a driver wants to travel from city “A” to city “B” in the least time, then the

minimum traveling time will be the primary objective for the driver. To accomplish this

goal, the driver has to consider the speed limit of each state, weather conditions, physical

limits of driver and car, paths, and so on.

The basic components of an optimization problem are the objective function,

decision variables, constraints, and mathematical model. These components are well

explained by Evans (1982).

1. Objective function (performance function, or cost function): This is the quantity

to be maximized (or minimized). It is often referred to as the cost or performance

function. Whether measured in dollars, efficiency, or other terms, the performance

function evaluates alternative solutions to the problem to determine which one is

the best.

Decision variables: These are the parameters in the process or system that can be

adjusted to improve the objective. They are the free or independent variables that

must be specified in the traditional case-study approach to problem-solving.

Constraints: All optimization problem have constraints on the allowed solutions.

These constraints may limit values of the decision variables or of other dependent

variables that describe the behavior of the system.

Mathematical Model: If the problem is to be solved other than by trial-and-error

physical experimentation, we must have a model of the system. The model is the

mathematical representation of the system that determines the objective function
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in terms of the decision variables. It also determines other dependent variables

that may be subject to constraints.

Now, we can define optimization by using the terms described above. Therefore,

optimization is finding a set of conditions maximizing or minimizing the objective

function while satisfying the imposed constraints of the problem.

3.1.1.3 Solving Optimization Problems

To solve an optimization problem, one must analyze the essential features of

problem. This means that the objective and constraints of the problem should be

identified first, but not necessarily in the form of mathematical expressions. Then the

objective function must be expressed in terms of the system variables by using

mathematical expressions. Interrelationships, internal restrictions, and system models

must be expressed in mathematical form. Now, the problem is reconstructed according to

the essential components of a formal optimization problem. Upon this mathematically

redefined optimization problem, an appropriate optimization method and algorithm can

be applied to obtain the optimal conditions to achieve the objective.

3 . 1.1.4 Hierarchy of Optimization Problems

Optimization can be employed at any level in a plant, ranging from a small piece of

equipment to management of a whole company. Someone may need more workers to

maximize the production rate. However, from the management perspective, this

0Dtirnization result might not be favorable, because of labor cost. Therefore, the scope of

Optimization is important, because one level of optimization does not guarantee the
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optimality of another level of a system. Typical industrial company optimization

encompasses three levels: management, process design and equipment specification, and

plant operation (Edgar et al., 2001). The highest level of optimization of a company is the

management to maximize net profit. To accomplish the objective, someone would need

to model the whole company, including every piece of equipment, which is practically

impossible. Therefore, the scope of an optimization problem must be reviewed before

proceeding to the next step.

3.1.2 Theory and Methods

3.1.2.1 Basic Concepts of Optimization

The basic concepts of optimization can be clearly illustrated by observing an

unconstrained one-dimensional case. “Unconstrained” means that there are no equality or

inequality constraints, so that the independent or dependent variables can be simulated

without any limitations. Let’s take a simple arithmetic example. Ifwe define a quadratic

firnction y with an independent variable x and coefficients a, b, and c, then:

y=f(x)=ax2+bx+c [3,1]

The objective is to find x minimizing or maximizing the function value. One might plot

the function to see the actual shape of the curve and find a maximum or minimum point

graphically (Figure 3.1). However, there is a mathematical tool to see the feature of the

Curve, which is the first derivative 0») information obtained by differentiating the above

equation with respect to the variable x. This is shown in Equation [3.2].

y'=§%r—)=2ax+b [3.21

26



f(X)

‘—y=f(x)=ax2+bx+c
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0 -b/2a 
 

Figure 3.1 Locating minimum point of a quadratic function with first derivative

information.
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This first derivative information implies that there is an extreme point between the

sign changes of the gradient (Equation [3.2]), which is an inflection point. The inflection

point (stationary point) of zero gradient can be calculated by setting the right hand side of

Equation [3.2] equal to zero. Thus, the stationary point is x= —b/2a. If the x value is

inserted to the Equation [3.1], then we can have an extreme value

ofy = (—b2 + 4ac) /(4a). However, we still do not know whether the value is maximum or

minimum if we do not have graphical information. To determine this, the second

derivative information of the Equation [3.1] is necessary. The second derivative (y") is:

y" = 2a [3.3]

If the second derivative is negative, then the extreme value is a maximum or vice versa.

Hence, a necessary condition for a minimum or maximum off(x) is that the first

derivative off(x) becomes zero at x. However, the necessary condition does not tell

whether the extremum is the minimum or maximum. So, we need the second derivative

information as a sufficiency condition. Now, we can identify a minimum or maximum of

f(x) mathematically with the necessary and sufficient conditions.

The above case is very simple, but the basic concepts can be extended to the

multivariable cases with some help of mathematical techniques. Letf(xl, x2,...,x,,) be an n-

dimensional function. To meet the necessary condition, the first derivative of each

Variable x1, x2...x,. must be zero as follow.

 

af(x)=6f(x)=,,,=i(x_)=0
[34]

6x1 6x2 a'xn

.
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A set of variables satisfying the set of Equations [3.4] represents an extreme

point. The sufficient condition for the extreme point can be checked with the nature of the

matrix of second partial derivatives (Hessian matrix) off(xl, x2,...,x,.) at the point, which

is the extension of Equation [3.3] to the multivariable case. If all the objective functions

of our problems were quadratic and differentiable, then life would be simple. However,

this analytical method has many limitations in real life applications. Therefore, we need a

more general approach to solve optimization problems.

Before addressing this issue, imagining a movie scene will give us insight for the

generalized optimization method. Let’s imagine a situation that two special soldiers

(captain “A” and captain “B”) are dropped from an airplane into an enemy region in a

night having no moon light (Figure 3.2). Their mission is to find the highest point from

sea level and communicate with the nearby resistance. Their landing location is different

from each other, so that they have to complete the mission individually. Captain A has

the map of the region, compass, and GPS (global positioning system), but captain B lost

his equipment because of a tough landing. Captain A saw the map and located the highest

point and also his current location with GPS. Then he set the direction toward the highest

point and finally got to the point. However, captain B does not have any information or

equipment, except a small flashlight in the complete darkness, which means he only can

get terrain features a few yards around him. How could he get to the highest point? So, he

marked his current location on the ground and looked around with the flashlight. He

found that the steepness of terrain was increasing in the northeast direction. So, he kept

moving a few yards from his current location to the next location in this direction if there

Was an increase of elevation. He repeated this strategy until he could observe no more
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increase of elevation. Fortunately, he reached the same location where captain A arrived,

because there was only one peak in the region. However, if there were several peaks, it

could take more time or he might be stranded at a sub-peak.

 

 

  

/: I : : 1: i \' f I ' j 3 ' 7 ' Sea Level

 Sea Level

Figure 3.2 Illustration of the operation of captain “A” and captain “B”.

In the above story, our focus is captain B’s approach, because his situation is very

Slmilar to ours, like finding a maximum or minimum within a region that we cannot
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figure out, which means no analytically differentiable mathematical expressions. Captain

B’s approach gives us a clue for setting up a general rule for finding such an extreme

point in an unknown region. There are three factors to determine the next point from the

current point. Current point (15"), search direction (of), and step size (5") are needed to

determine the next point (xw). Also, the relationship can be expressed mathematically as

following:

xk“ =xk +a" -S" [3.5]

The above iterative search procedure stops based on some criteria. If there is no

significant improvement, the search stops. There are many methods to perform the

search; however, the differences between methods are mainly in how they generate the

search direction. A popular method is using the first derivative information. However,

function value, and finite difference approximation are also used in lieu of derivatives

(Edgar et al., 2001). Table 3.1 shows some methods according to their approaches.

Table 3.1 Unconstrained multivariable optimization methods categorized by how

they generate the search direction (Edgar et al., 2001;Venkataraman, 2002).

 

Function values only Gradient based

 

@irect Method) (Indirect Method)

Random Search Steepest Descent

Grid Search Conjugate Gradient

Univariate Search Davidon-Fletcher—Powell Method (DFP)

Simplex Search Broydon-Fletcher-Goldfarb-Shanno Method (BFGS)

Conjugate Search

Until now, we discussed handling unconstrained function optimization. However,

the real life optimization problem always has equality or inequality constraints. The

Constraints have to be handled so that the constrained optimization problem can be

Converted into an unconstrained optimization problem. The basic idea is to set the -
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objective function free from constraints by using mathematical manipulations of the

constraints.

Let us first look at the handling of equality constraints. Three methods are mainly

used for the solution of such problems: direct substitution, constrained variation, and

Lagrange multipliers.

Direct substitution is to substitute equality constraints to the objective function

when the equality constraints are all linear equations. Then, the constraints vanish, and

the problem can be handled as an unconstrained case.

Constrained optimization subjected to inequality constraints is treated as in the

case of equality constrained problem after transformation of inequality constraints to

equality ones by introducing a slack variable, which is a buffer between the original

inequality constraint and the transformed equality constraint.

Therefore, a general approach to solve a constrained optimization problem is to

convert the constrained problem into an unconstrained problem. Then, unconstrained

multivariable optimization techniques (Table 3.1) can be used to find optimal solution.

3.1.2.2 Linear Programming

A linear programming8 (LP) problem is one in which the objective and all of the

constraints are linear functions of the decision variables, so that the linear constraints

(lines in 2-dimensional case) form boundaries. Therefore, an objective function,

represented as a line, is moving through the bounded region to find an optimal set of

variables to get an extreme value in a two-dimensional case (Figure 3.3).

 

8 “The word programming here does not refer to computer programming, but means optimization.”

Edgar, T. F., D. M. Himmelblau and L. S. Lasdon (2001). Optimization of chemical processes. New York,

McGraw-Hill.
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Figure 3.3 Concept of linear programming problem in a two-dimensional case.

One of the important characteristics ofLP is that the extremum of a linear

program always occurs at a vertex or corner of the system boundaries, which is the

intersection of constraints in the feasible region (Beveridge and Schechter, 1970). The

basic idea is a systematic examination of these boundaries, which is converting a set of

constraints into a set of equality equations and applying linear algebra and matrix

manipulation (Venkataraman, 2002). For instance, the simplex algorithm is designed to

explore one intersection after another to the direction of improving the objective function,

according to a set of rules, until the best objective function attainable is found (Beveridge

and Schechter, 1970).
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3.1.2.3 Nonlinear Programming

Nonlinear programming (NLP) problems contain at least one nonlinear equation

of the objective function or constraints (Venkataraman, 2002). No single optimization

algorithm can possibly be efficient or even successful in all cases of interest. However,

unique techniques are well developed for each specific case. For instance, a nonlinear

objective function with linear equality constraints can be handled with the direct

substitution method, which solves the objective function explicitly for one variable and

eliminates that variable from the problem formulation (Edgar et al., 2001). A nonlinear

objective function with linear inequality constraints can be solved by using Kuhn-Tucker

conditions9 and Lagrange multipliers"). If an optimization problem has a quadratic

objective function and linear inequality or equality constraints, quadratic programming

(QP) can be used (Edgar et al., 2001). Another strategy to solve nonlinear optimization

problems is to replace all nonlinear functions in the problem with their Taylor series

approximations and apply linear programming, which is called successive linear

programming (SLP) (Edgar et al., 2001).

The most robust and generally accepted nonlinear optimization technique is the

generalized reduced gradient (GRG) method, which is also implemented as the “Solver”

in the spreadsheet program Microsoft Excel (Edgar et al., 2001). The concept ofGRG is

to reduce the dimension ofthe first derivative of the objective firnction by using the first

 

9 At any local constrained optimum, no (small) allowable change in the problem variables can improve the

value of the objective function (Edgar, T. F., D. M. Himmelblau and L. S. Lasdon (2001). thimization of

chemical proces_s_e§. New York, McGraw-Hill.). This is a generalization of the Lagrange multiplier method.

'0 By introducing an unknown scalar variable to the constraints, a linear combination is formed, which

reduces a constrained problem into an unconstrained problem (Venkataraman, P. (2002). Applied

optimization with matlab proggamming. New York, John Wiley & Sons).
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derivative of constraints. All major NLP algorithms are based on estimation of first

derivatives of the problem to obtain a solution and to evaluate the optimality conditions

(necessary and sufficient conditions) (Edgar et al., 2001). Because NLP is mainly based

on the gradient information, the solution has a local nature, which means the solution is a

local maximum or minimum, but not necessarily the global one in general cases of

nonlinear optimization problems (Figure 3.4).

Global maximum

Local maximum

,fl"

l’ I,

’0’:

g:::

 

Figure 3.4 Global and local optimum in 2-dimensiona1 case (The picture was

adopted from the help manual of MATLAB®).
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3.1.2.4 Mixed-Integer Programming

Another special type of optimization problem is mixed integer programming

(MIP). As the name implies, this type ofproblem includes integer variables that are not

continuous. The integer variable is common in plant operation, design, location, and

scheduling (Edgar et al., 2001). For example, number of equipment, yes-no decisions,

and number of stages are integer variables. If the objective function and constraints are

linear in a MIP, then it is called mixed-integer linear programming (MILP). And if the

MIP involves nonlinear objective and constraints, then it is called mixed-integer

nonlinear programming (MINLP) (Edgar et al., 2001). If the number of integer variables

is small, then exhaustive or complete enumeration is possible. However, the effort grows

exponentially to examine all possible solutions (Venkataraman, 2002). Therefore,

systematic ways are necessary to get to the optimal solution with less effort and time and

also to handle large scale problems.

One popular solution for this kind of the problem is branch and bound (BB). The

basic concept ofBB is systematically finding the closest set of discrete variables from the

optimum set of continuous variables. To do this, a relaxation technique is used to convert

the discrete variables into continuous variables bounded by their maximum and minimum

value. BB uses two strategies to find the best set of integer variables. Branching is the

efficient way of covering the feasible region by several smaller feasible sub-regions, and

bounding is comparing and selecting the sub-region having its upper bound that is less

than the lower bound of any other sub-region.
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3.1.2.5 Global Optimization

We have discussed unconstrained, constrained multi-dimensional cases, and some

special cases, such as LP, NLP, MILP, and MINLP. One of the underlying assumptions

for optimality is that the problem must be convex, which means there is only one

minimum or maximum. Thus, if the convex condition is not met, then the above methods

can be stranded at a local optimum, not at a global optimum (Figure 3.4). This situation

frequently happens when the model has nonlinear equality constraints, such as a

nonlinear material balance, nonlinear physical property relations, nonlinear process

models, and so on (Edgar et al., 2001).

In addition, if a gradient-based method is involved, then the search method can

become stranded around the vicinity of local minima or maxima, without guarantee of

optimality. However, in spite of this fundamental limitation, there are several effective

and practical optimization techniques that explore infinite solution spaces systematically

with minimum effort and high possibility of locating the global optimum. This type of

optimization is called global optimization (GO).

In a G0 problem, a local solution can be considered as a global optimum if the

local solution is the best among many local solutions or if multiple search trials from

different starting points reach to the same local solution. Widely used GO methods can be

classified as deterministic (exact) or stochastic strategies (heuristic) (Banga et al., 2003).

Deterministic global optimization methods are based on the systematic gradient-

based local search methods following the systematically divided sub-regions of attraction

until they meet their termination criteria. This type of method can guarantee global
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optimum in certain problems, but not in a general GO problem. Branch-and-boundll

methods, methods based on interval arithmetic (Kearfott, 1996), and multi-start methods

are classified as deterministic GO techniques (Edgar et al., 2001). Even though

deterministic GO methods have sound theoretical convergence properties, the associated

computational effort increases very rapidly (often exponentially) with the problem size

(Banga et al., 2003).

Stochastic GO methods do not follow systematically divided regions of attraction.

Instead, they set their search direction based on a logic found in natural processes, such

as cooling of metals and genetic evolution processes. Many stochastic GO methods can

locate the vicinity of global solutions with relatively good efficiency, but the downside is

that global optimality cannot be guaranteed (Banga et al., 2003). Scatter search, tabu

search, simulated annealing, and genetic and evolutionary methods can be classified as

stochastic GO methods (Edgar et al., 2001). Stochastic GO methods are applicable to

almost any problem, without modification of the original process model (Edgar et al.,

2001). In the case of Genetic and evolutionary GO methods, the method produces a

population that is a set of solutions and keeps updating the population with improved

solutions according to the rule of biological processes of crossover and mutation.

Although stochastic GO cannot guarantee a global optimum, it is widely adapted to solve

real life problems, because of its relative simplicity and robustness.

 

" Branch and bound algorithms are a variety of adaptive partition strategies that have been proposed to

solve global optimization models. These are based upon partition, sampling, and subsequent lower and

upper bounding procedures: these operations are applied iteratively to the collection of active ('candidate')

subsets within the feasible set D. Their exhaustive search feature is guaranteed in similar spirit to the

analogous integer linear programming methodology (Eric W. Weisstein et al. "Branch and Bound

Algorithm." From Math World--A Wolfram Web Resource.

http://mathworld.wolfram.com/BranchandBoundAlgorithm.html, March 22, 2005).
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3.1.2.6 Static and Dynamic Optimization

In the previous sections, we have discussed how to solve optimization problems

in each special case, especially when all the constraints are algebraic equations. In other

words, the problem is not changing with time. For instance, finding the optimum

diameter of a pressure vessel does not involve a time factor. However, what if the

constraints have time varying equations, such as ordinary differential equations in which

a variable is changing with respect to time? This kind of optimization problem can be

called “dynamic” optimization, as opposed to the “static” optimization problem. To be

precise, this type of problem is generally referred to as an optimal-control problem,

which is the area of control. However, some optimization techniques can be employed to

solve such problems.

There are two general approaches. The first approach is discretization of the

control function, which can be understood as dividing the control function into pieces.

This method is replacing a differential term by the first order Eulerian difference

expression, which is:

g z 36(0) - x(tl—l)

dt At

 

[3.6]

Now the ordinary differential equation can be expressed as a set of algebraic

equality constraints, which is the standard form of a constrained nonlinear programming

technique.

The second method is parameterization of the control function. We need an

infinite number ofpoints to express a varying control function, which is not practical.

However, if the control filnction is expressed with Fourier series or a simple polynomial
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form, the infinite solution space can be explored with a finite number of parameters. By

applying NLP, the optimal set ofparameters can be obtained as the optimal control

function, even though there is no guarantee of optimality.

3.2 Global Optimization Techniques

3.2. 1 Genetic Algorithm (GA)

Genetic algorithms (GA) are well-known stochastic global optimization

algorithms based on biological evolution theory. Holland (1962) was the first to use the

technique, but its use as an optimization tool began in earnest in the late 19805,

developed momentum in the mid-19908, and continues to attract serious interest today

(Venkataraman, 2002). Genetic algorithms have been successfully applied to a wide

range ofproblems, such as engineering design, scheduling, signal processing, optimal

control, transportation, and so on.

The biological evolution theory is the combination of Darwin's theory of natural

selection and Mendel's theory of genetics. According to the theory, a chromosome in a

gene pool is modified by simple rules of genetics, such as crossover and mutation. The

biological system having the gene that is the fittest among others to the environment

survives and produces the next generation, having individuals with more desirable

characteristics. These biological concepts are implemented in genetic algorithms via

numerical operations. For example, a vector of design variables is considered as a

chromosome in genetic algorithms. The following is a description of genetic algorithm

datails; the explanations are largely adopted from the work of Venkataraman (2002).

Figure 3.5 shows the general procedures of a genetic algorithm. The initial

population is constructed with a certain number of design vectors that take higher rank in

40



terms of a performance index or an objective function value, in the case of an

unconstrained problem among randomly produced individuals”. For the constrained

problem, these individuals must satisfy the specific constraints. The initial population

size usually remains the same throughout the whole generation. However, there are no

specific criteria to determine the optimal initial population size (Venkataraman, 2002).

Next generation candidates are now produced by using selected parents and

genetic operators. A crossover genetic operator exchanges a piece of the chromosome of

each parent. A simple crossover exchanges a piece of chromosome in the same location

of each parent, and the ratio of the piece is generated randomly at each operation (Figure

3.6). Arithmetic crossover uses a linear combination ofparent chromosomes to produce

two children.

 

'2 This refers to a vector of design variables. A piece of the chromosome or a portion of a design vector is

called as allele.
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Figure 3.5 General procedure of a genetic algorithm.
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Figure 3.6 An example of simple crossover operation in a genetic algorithm.

The children are defined as:

C1 = XIX-I- le

[3.7]
C2 = 12X + lilY

where, Ii] +12 =1; 11,12 > 0

X, Y: parents

C1, C2: children

The parameter A, and A; are generated randomly. Mutation selects a design variable

randomly and replaces it with a randomly generated value. Generally, these genetic

operators, crossover and mutation, narrow a search to a promising region that might have

a local extremum (Venkataraman, 2002). However, it is hard for a global optimization

algorithm to find a global optimum if it is stranded around a local solution. Another
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feature ofGA is immigration, in which a set ofrandomly generated, unbiased population

is added to the existing population before the selection is made for the next generation.

By using this feature, GA can reduce the possibility of being trapped in a local solution

and effectively explore an entire solution space.

The newly generated population now must be evaluated to identify suitable

parents for the next generation. A simple method of selecting parents is ranking or sorting

the individuals of the population according to their objective function value. A fraction of

the best individuals can be used for reproduction of the next generation. In a strategy

called tournament selection, the remaining portion of the population, excluding the

fraction of the best individuals, is fed back to the next generation as new immigrants.

The above genetic operation and fitness evaluation are performed until the

generation number reaches a certain number or the solution does not show any

improvement. GA is very useful for handling ill-behaved, discontinuous, and

nondifferentiable problems, because the algorithm generates a possible solution group at

each iteration, instead of a search direction, and is effective for handling continuous

problem (Venkataraman, 2002).

3.2.2 SimulatedAnnealing (SA)

Annealing is a heat treatment technique to alter material characteristic by

removing internal stresses and crystal defects. When a material is in molten state, atoms

can move freely before they form crystal structure. However, if a molten material is

cooled down rapidly, atoms lose chances to form crystal structure, which creates internal

stresses and crystal defects. Therefore, the rapidly cooled material is in a higher energy
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state than the material cooled slowly. The cooling schedule is also called the annealing

schedule, which reduces the surrounding temperature from the critical temperature to a

sufficiently lower temperature stepoby-step. In each cooling step, the material being

treated is allowed to cool in the firmace until it reaches thermal equilibrium with its

surrounding temperature. By using the technique, internal energy of a material can be

minimized, which means stable crystalline order. Usually, annealing is used to soften a

material and make it more ductile, to relieve residual stresses, and to refine the crystal

structure (Shigley and Mischke, 1989).

The above ideas can be applied to finding the global optimum in an optimization

problem, which has become popular for combinatorial optimization” problems. The

molten state of the material can be an initial design space in which every combination of

variables has equal opportunity to be searched out to find the best combination. The

objective is to reduce the internal energy level to the lowest state, which is crystalline

order. As the annealing temperature goes down, the mobility of atoms decreases, and the

total internal energy level goes down at the same time, which means that the search

direction is being fixed to a direction without considering other opportunities. When the

temperature reaches the final scheduled temperature, atoms form crystalline structure,

which represents the lowest energy level, a global minimum.

The above analogy is realized by the basic SA procedure (Floquet et al., 1994)

summarized by Edgar et al. (2001) as follows:

0 Choose an initial solution x , an initial temperature T, a lower limit oftemperature

TLow, and an inner iteration limit L.

 

'3 A method to search for the best possible solution out of very large number of discrete feasible solutions.
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0 While (DTLow), ('10

O

O

O

Fork= 1, 2,..., L, do

Make a random choice of an element x' e N(56) , where N( x) = x + a - S

(or: search direction; S: stepsize)

Move_value=f(x') - f(x)

If move_value S 0 (downhill move), set x = x'

If move_value > 0 (uphill move), set x = x' with probabilityp = exp(-

move_value / T) > r (uniformly distributed random number in [0, 1])

(Kirkpatrick et al. , 1983)

End inner loop

0 Reduce temperature according to an annealing schedule. An example is new

T=C’T0, where 0 < c < 1 (c is the rate of annealing schedule).

0 End temperature loop

Basically, the algorithm is more supportive of a solution that improves the

objective function, while permitting adverse solutions to give potential for the algorithm

to discover the global optimum and to escape a local optimum (Venkataraman, 2002).

Some of the critical parameters are the perturbation method of neighbor selection,

transitional probability,14 and the rate of annealing schedule (c).

To obtain a neighbor state ofX0, a search direction and a stepsize must be

determined. Given a neighborhood structure, simulated annealing can be viewed as an

algorithm that continuously attempts to transform the current configuration into one of its

 

" Probability to accept a worse solution.
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neighbors. Practically, the calculation of the search direction and stepsize could be

determined by using the traditional one-dimensional case (Venkataraman, 2002).

For the transitional probability firnction, Metropolis algorithm15 and Glauber

algorithm16 are related to Boltzman probability distribution17 (Edgar et al., 2001).

The way in which the temperature is decreased is known as the cooling schedule.

The rate of annealing schedule must be appropriate for its application so as not to get

trapped in a local minimum due to fast cooling. The annealing rate can be fixed to a value

or can vary in each step of cooling (Laarhoven and Aarts, 1987). For the algorithm to be

effective, it is recommended that the probability be in the range of 0.5 Sp S 0.9

(Venkataraman, 2002).

This mechanism is mathematically best described by means of a Markov chain”,

a sequence of trial, where the outcome ofeach trial depends only on the outcome of the

previous one (Laarhoven and Aarts, 1987). An example of a Markov chain is a random

walk").

A Simulated Annealing program consists of a pair of nested DO-loops. The outer-

most loop sets the temperature, and the inner-most loop runs a Metropolis Monte Carlo

simulation at that temperature.

 

'5 p = exp (-move_value / T)

MP = exp I-move_value / T) / (l + exp (-move_value / T)

‘7 p = -k / T (k: Boltzmann constant; T: annealing temperature)

‘8 A collection of random variables {X,} (where the index t runs through 0, 1,...) having the property that,

given the present, the firture is conditionally independent of the past. In other words, P( X, =j l X0 = to, X]

= i1, Xr) = i)- 1) = P( X, = jl X,- I = i,-1). (Eric W. Weisstein. "Markov Chain." From Math World--A

Wolfram Web Resource. http://mathworld.wolfram.com/MarkovChain.html, May 18, 2005)

19 . . . . .

Idea of taking successrve steps in a random direction.
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Like other discrete optimization techniques, such as Branch-and-Bound and Tabu

Search, SA is a popular method to solve combinatorial optimization problems, which

seek the best combination out ofmany possible combinations. Typically, these

techniques are being used in production system planning, scheduling, transportation, and

logistics.

3.2.3 Integrated Controlled Random Searchfor Dynamic Systems (ICRS/DS)

ICRS/DS is a modification of the ICRS algorithm (Banga and Casares Long,

1987; Casares and Rodriguez, 1989), which was a generalization of the method proposed

by Goulcher and Casares Long (1987) for steady-state optimization problems (Banga et

al., 1997). As a generic algorithm, ICRS/DS is not as popular as GA or SA, but it has

been applied to various problems, such as bioprocesses (Banga 'et al., 1997), wastewater

treatment (Banga and Casares Long, 1987), retorting (Banga et al., 1991), drying (Banga

and Singh, 1994), and meat patty cooking (Banga et al., 2001), and proved its ability to

solve dynamic Optimization problems.

Basically, ICRS/D8 uses two strategies: control vector parameterization and a

stochastic direct search procedure. The original constrained dynamic optimization

problem is transformed into a constrained nonlinear programming (NLP) problem by

using a flexible parameterization of the control function. The constrained NLP problem is

solved using the stochastic direct search procedure (Banga et al., 1997). Like GA and SA,

the search uses search direction and step size to determine the next feasible move. This

search mechanism starts with a user-specified feasible control vector and perturbs the

vector randomly with a normal probability distribution, which has the control vector as

the average and a standard deviation vector. The standard deviation vector is a set of
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smaller distances between the control values and their upper and lower bounds. If the

algorithm cannot find any improvement within a limited number of trials, the standard

deviation vector is reduced by a heuristic parameter, which results in smaller search step.

The algorithm can be terminated by checking user-specified tolerances for the decision

vector and/or the performance index at the end of each iteration (Banga et al., 1997).

The detailed procedures of ICRS/DS can be found in the work ofBanga et al.

(1997). These procedures consist of control profile parameterization and the modified

ICRS algorithm.

Controlprofileparameterization:

The control function u(t) over t e [to ,tf] is parameterized using N

points, (6,- , (0)) (i = 1...N). The value of u(t) at iteration k can be calculated using

variable-length piecewise linear interpolation (Equation [3.8]) within the optimization

procedure and Q-k _<. t 3 61/11;

k k

(t)- - 0)-

u" (t) = 3124—“: - 91‘) + of [3.8]

By using the above parameterization technique, the original optimal control

problem is transformed into a 2N (or 2NM if there are M control variables) dimensional

nonlinear programming (NLP) problem. For implementation purpose, the parameterized

time and control values (0,- , 60,-) are replaced with the decision variable vector 4‘ for any

iteration k by using the following rule:
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5126,", i=1....N
k k [3.9]

g, =ro,_N, i=N+l...2N

Also, the upper and lower bounds for the decision variables are expressed in a

  

simple way:

it” = 0r”, A.3-L = 6}; i=1...N
U U L L [3.10]

.- = 0,-_N. e“.- = 0,-_N; i: N+ l...2N

In addition, the parameterization must satisfy following conditions.

For time-intervals:

ref 3 l9," s a,” ‘

k k .
l9,- s cm r1 =1...N, Vk [3.11]

L U L
92' s e,- s 9.41 I

For control vector limits:

(0,-1’ 3 ref s (in , i=1...N, Vk [3.12]

For initial and final time-interval limit:

L U U
61 =61 =t0, 6N =tf [3.13]

The above parameterization method is designed for variable-length intervals. However, if

a fixed constant discretization ratio of time is desired, it suffices to take

 a,” = of + e =[ tf )(i—1)+ e [3.14]

where e is a small number.
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The ModifiedICRS Algorithm (Figure 3.7):

The algorithm starts with a feasible decision vector, which can be chosen

randomly. Subsequently, a standard deviation vector is calculated by multiplying

minimum intervals (smaller interval between the decision vector and upper and lower

bound vector) by a heuristic parameter (k,). Based on the initial feasible vector, the

algorithm generates a next decision vector by using the standard deviation vector

(stepsize) and Gaussian distribution (random direction). Once the next decision vector is

evaluated as feasible (satisfying all the constraints) and improved (increasing or

decreasing objective function value), the above iteration is repeated until a convergence

criteria is satisfied. However, if the next generation decision vector is determined as an

infeasible or retrogressive (or remains the same), the failure counter (F) is increased by

one up to a pre-set value (recommending ne >< total dimension of a problem). Every

failure counter increment, another new decision vector is generated with the same

standard deviation vector and tested. If the algorithm fails to get an improved decision

vector within a pre-set failure counter value, the standard deviation vector (stepsize) is

decreased by multiplying another heuristic parameter (k2). This stepsize reduction is

continued until the algorithm encounters a feasible and improved decision vector with the

frequency of the maximum failure counter value. Once the feasible and improved

decision vector is found, the failure counter is set to zero.

In this algorithm, the three heuristic parameters (k1, kg, and n.) are critical to be

successful in optimization process. Pan (1998) recommended 1/3, 1/2, and 4 as default

value for k), kg, and ne, respectively.
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Figure 3.7 Flowchart of modified ICRS algorithm.
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3.3 Artificial Neural Network

3.3.1 Fundamentals

As mentioned before, availability of a model is essential to solving optimization

problems in various applications. Even when a model is available, the computational

demand and the compatibility with optimization algorithms are critical to run an

optimization procedure effectively. Taking into account the above facts, simpler and

faster models often must be considered. Therefore, artificial neural network (ANN)

appears to be a good candidate for fast nonlinear dynamic models (Trelea et al., 1997).

In cognitive neuroscience, a neural network (also known as a neuronal network or

biological neural network to distinguish from artificial neural networks) is a population of

interconnected neurons. As the primary cells in the nervous system, neurons are structural

constituents of the brain. Generally, neurons are five to six orders of magnitude slower

than a silicon chip; events in a silicon chip happen in the nanosecond (10'9 8) range,

whereas neural events happen in the millisecond (10'3 3) range. However, the brain

processes tremendous amounts of information by using massive interconnections

between approximately 10 billion neurons and 60 trillion synapses (Haykin, 1999).

Neurons react to electrochemical impulses. Generally, neurons consists of several

dendrites (receptive zone) and one axon (transmission line to output). If the sum of the

input signals from dendrites surpasses a certain threshhold, the neurons encodes their

outputs (action potentials or spikes), which originate at the cell body (soma) of neurons

and transmit the electrical signal along the axon (Figure 3.8).
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Figure 3.8 Physical structure of a neuron.

An artificial neural network is defined as “a massively parallel distributed processor

made up of simple processing units, which has a natural propensity for storing

experiential knowledge and making it available for use” (Haykin, 1999). The

mathematical model of a neuron is comprised of three basic elements that are a set of

synapses20 (connecting links), an adder (summing junction), and an activation function

(squashing firnction) in the Figure 3.9.

 

20 Elementary structural and functional units that mediate the interactions between neurons (Simon Hayakin,

Neural Networks: A Comprehensive Foundation, p. 6).
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An input signal is multiplied by the synaptic weight while passing through the

synapse. All the weighted input signals are summed up at the adder. Finally, the

activation function regulates the amplitude of the output of a neuron. Basically, training a

neural network or learning process is the process of adjusting the synaptic weights to

minimize the error between outputs and targets. Depending on the methods of learning

and the architectures ofnetwork, a large variety of neural networks exists.

3.3.2 Back-Propagation Feed-Forward Neural Network (FFNN)

The feed-forward neural network trained by back-propagation is reckoned as a

major advance in the history of artificial neural network, because it provides a

theoretically sound technique for training multilayer, feed-forward networks with

nonlinear neurons when there is no efficient, theoretically sound method for training
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(Wasserman, 1993). As a training method, back-propagation became highly popular in

neural network training (Haykin, 1999).

In the feed-forward neural network, the input data flows only in one direction

from input layer to output layer. Basically, training a neural network means to find the

best set of weights of neurons that minimizes the error between neural network prediction

and measured data. Thus, the back-propagation method starts with initial weights to

produce prediction and uses its error to adjust the weights in the direction of reducing the

error by using a learning rule or weight updating rule. Because adjusting weights starts

from outmost layer to inner hidden layer, the method goes by the name of “back-

propagation.” The following is the fundamental principles of the back-propagation

training method. The notations of Figure 3.10 will be used for further mathematical

representation. Details can be found in the work of Wasserman (1993).’

The first step for back-propagation is to calculate outputs with given inputs and

initial weights of each layer. The input column vector (x) is multiplied by hidden layer

weight matrix (Wm‘), then the result is transferred to the nonlinear activation function (f).

Thus,

yj = f(wjfoi) [3.15]

Finally, at the output layer, the vector y is multiplied by output layer weight matrix

(WOL). Therefore,

yk = WELL- = wiLfIWfiLxrl [3.161
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Figure 3.10 Topology of back-propagation of feed-forward neural network.

After obtaining the network output, error between output vector and target vector is

computed. Sum of squared error (SSE) is used for error measurement. Hence,

e=SSE=Zek =Zkrk —y,,)2] [3.17]

k k

Now, the error information is propagated from the output layer to the hidden layer

in the form of a gradient vector (V), which is the set of derivatives for all weights with
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respect to the output error. Thus, a positive gradient of a weight means that overall error

is increased, which requires the weight to be decreased to reduce the overall error. In case

of a negative gradient, the opposite is true. The gradient vector of output layer can be

evaluated as follows:

  

 

as 66

V32: z 6w01‘ {67] 332 [3.18]

jk k jk

where,
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ay—k = —2(tr — yr) [3.19]

$32 = y,-
[3.20]

jk

V1015” : the gradient vector component associated with the weight from neuronj in

the hidden layer to neuron k in the output layer

kaL : the weight connecting neuronj in the hidden layer to neuron k in the output

layer

yj : output ofneuronj in the hidden layer

yk : output of neuron k in the output layer

tk : the target value for neuron k in the output layer

By using the calculated gradient of each weight, the following weight update rule or

learning rule can be defined.
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0L 0L 0L
wjk (n+1)=wjk (n)—77 gvjk [3.21]

where

ij (n): the value of the weight at time n

77: a learning rate constant, typically < 1.0

According to the weight update rule, a weight of a negative gradient gains more weight

and a weight of a positive gradient loses its weight.

The next step is to find the gradient vector of the hidden layer. According to the

chain rule of calculus, this gradient can be expressed as:

as- [as] a. . aw
J awyf-IL Z6” 5Yj avj dwgll‘ [ I

By substituting the following relations to the Equation 3.27

 
  

 

68

—=‘2(tk 'yk)55k [3.231
aYk

5311‘— : w’f [3.24]
6y,- 1

5y;
—= ' - 3.25avj f (V,) l 1

83L = x, [3.26]

5W

and defining
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on} = 26,,wjjfftvj) [3.27]

where f' is the derivative of the nonlinear function. Thus, Equation 3.22 becomes

V5?“ = or]. -x,. [3.28]

Now, the weights of the hidden layer can be updated by using the same updating rule of

the output layer.

W5.” (n + 1) = wijO-L (n) — n - V ,3“ [3.29]

The above two-layer example can be generalized for multi-layered feed-forward neural

network. By calculating 6 for each neuron using 6 from the previous layer, V for each

weight can be calculated, and the weight can be adjusted.

The training can be done by using sequential method and batch method.

Sequential method updates weight at the time each input vector is applied. In batch mode,

however, changes of weights are done after presenting all input vectors to the network.

Because the batch training averages the derivatives over a pass through the training set,

the batch training gives a more accurate estimate of the overall gradient.

The back-propagation method is generally slow to train a network. However,

some methods are available to speed the process. These methods are using second

derivative information for fast convergence. Due to the second-order information,

training time may be reduced by up to a factor of 100. Conjugate gradient descent and

quasi-Newton method are examples of these fast convergence methods (Wasserman,

1993)
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3.3.3 Generalized Regression Neural Network (GRNN)

GRNN is a neural network architecture that has many similarities with the radial

basis-function21 neural network (RBF), in which each hidden neuron uses a radial basis-

function as the activation function, and the output neurons implement linear combinations

of these radial basis—function. Among many neural networks, nonlinear regression theory

based GRNN can approximate any arbitrary function between input and output vectors

(Wasserman, 1993). Therefore, if the GRNN is used for predicting the future value of

observed variables that are dependent variables related to input variables in a process,

plan, or system, the GRNN can be used to model the process, plant, or system

(Christodoulou and Georgiopoulos, 2001).

GRNN is based upon well-established nonlinear regression theory, which is the

following formula (Wasserman, 1993):

Iy-f(x,y)dy

Emir]: ‘2) [330]

If(x, y) dy

 

where

y = output of the estimator

x = the estimator input vector

E(ylx) = the expected value of out, given the input vector x

f(x, y) = the joint probability density function (pdf) of x and y

 

2' An activation function which is centered at a point specified by the connection weight vector and whose

position and width are adjusted by learning. The most popular radial basis-function is the Gaussian firnction.
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GRNN is, in essence, a method for estimating f(x, y) , given only a training set.

Detail architecture is shown in Figure 3.11. Specht (1991) shows that y, (function value)

is estimated optimally as follows:

n n

yi = Zhiwlj Zhi [3.31]

i=1 i=1

where

wij = the target (desired) output corresponding to input training vector x, and

outputj

2_ D-

hi = exp': 3 :l, the output of a hidden layer neuron

20

 

D} = (x — ii ,- )T (x - u,) (the squared distance between the input vector x and the

training vector u

x = the input vector (a column vector)

u,- = training vector i, the center ofneuron i (a column vector)

0' = a constant controlling the size of the receptive region
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Figure 3.11 Architecture of generalized regression neural network (GRNN).

The GRNN copies the training cases into the network to be used to estimate the

response on new points. In GRNN, one simply assigns to wij the target value directly

from the training set associated with input training vector i and componentj of its

corresponding output vector (Wasserman, 1993). Because of the above fact, a GRNN

trains almost instantly. Thus, as the number of pairs of inputs/output increases, the more

computation time is required, because of the corresponding increase ofthe number of

hidden neurons. The a is the standard deviation of the response curve of the neuron.

Therefore, points nearby contribute most heavily to the estimate. Ifa is small, the neuron

responds only to the input vector close to the weight of the neuron (Figure 3.12). Again,
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if 0 is large, the neuron responds to the wide range of input vector. GRNN can only be

used for regression problems, because of the nature of the fundamental equation. Like a

radial basis-function (RBF) network, a GRNN does not extrapolate. Thus, it is important

to construct the training data set carefully, so that the data set covers the region of

interest.

 

 

 small a

  
Figure 3.12 GRNN response depending on the size of receptive field (a) in two-

dimensional case.
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4 METHODS AND PROCEDURES

4.1 Overall Methods and Procedures

Figure 4.1 is a schematic diagram to show the overall procedures and methods of

this project. In this study, the model outputs from an existing, validated finite element

model (FEM) of meat patty cooking (Watkins, 2004) were considered as actual field

experiments. For this study, the model was expanded to include quality prediction

capability, such as internal color change (Section 4.3.3) and surface color change

(Section 4.3.4). By using the integrated FEM, various data groups (train and test or

validation) were generated to develop various artificial neural networks (ANN) as

alternatives to the FEM (Section 4.5). Then, various optimization strategies were applied

to both models (FEM and ANN’s) to find a theoretically possible optimal condition and

to evaluate the various strategies (Section 4.6). Optimization strategies were then applied

to industrially-relevant case studies (single-stage, double-stage, multi-zone, and an

economic-based problem) to illustrate potential utility of these technologies (Section 4.7).

4.2 Impingement Cooking Technology

As the term “impingement” represents, it is a sharp collision produced by striking

or dashing a heating medium against a product. Because of the “sweeping away” effect

around the product, the boundary layer thickness is reduced greatly, which increases the

heat transfer rate. Therefore, impingement technology can be characterized as a fast and

efficient means of processing.
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Figure 4.1 A schematic diagram of overall procedures and methods.
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This technology is widely adopted in the industrial applications, including:

annealing of non-ferrous sheet metals, tempering of glass, drying ofpaper and textile,

cooling of electrical components and turbine blades, and processing of food products

(Saad et al., 1980). Especially, if the impingement technology is used with moist air

instead of dry air, some unique advantages can be obtained

When the moist air meets a surface cooler than the dew point temperature of the

moist air, water condenses on the product surface. Due to condensation at the initial stage

of cooking, the condensed steam gives off its latent energy to the product. This efficient

heat transfer happens until the product surface temperature increases beyond the dew

point temperature of the moist air.

In this research, a moist air impingement oven (model JSO-IV, Figure 4.2), which

is a commercial product of Stein-DSI (a business ofFMC FoodTech, Sandusky, OH),

was the example oven used for process modeling. The major process variables of the

oven are impingement exit velocity, process duration, moisture content of the impinging

gas (volumetric basis), and impinging gas temperature. These four process variables were

used for the process modeling and optimization. Even though there are some physical

system configuration parameters, such as open slot ratio, jet spacing, and gap between jet

exit and surface, these parameters were held constant for this study and not included in

the control variable group.
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Figure 4.2 An actual and a cross-sectional image of the JSO-IV Jet Stream® Oven

of Stein-DSI (FMC FoodTech).

4.3 Integrated Process Model Development

As a complex, multi-physical phenomenon, meat cooking involves many factors,

such as yield, microbial inactivation, and quality changes. A finite element model

developed by Watkins (2004) could predict yield (via fat and moisture prediction) and

microbial inactivation within a meat patty subjected to moist air impingement cooking.

However, the model could not predict other quality factors.

Internal cooked appearance of ground beef patties is used to evaluate doneness by

many consumers (Hunt et al., 1999). In addition, flavor is a very important component,

which is affected by the Maillard reaction on the surface of meat product (Mottram,

1998). Therefore, internal color change and flavor (with surface color change) models

were incorporated into the finite element model (Section 4.3.3 and 4.3.4).

Many of the reactions in food processing follow first-order kinetics, which can be

expressed by the familiar D-value and z—value (Toledo, 1991). Those kinetic parameters
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for the quality indices in this project were calculated based on literature data (Section

4.3.3 & 4.3.4).

4. 3. I Basic Finite Element Model

The process model is a central component in optimization problems, because it is

used as an equality constraint. Thus, moist air impingement cooking of meat patties needs

to be modeled before the cooking system can be optimized. Watkins (2004) developed

this model by using a coupled heat and mass (moisture) transfer model. The model also

encompassed fat transport and Salmonella inactivation. The model utilized the finite

element method to solve separate equations for heat, moisture, and fat transport. These

equations were coupled through boundary conditions and interdependent thermo-physical

property relationships. An enthalpy formulation for heat transfer was utilized to avoid

discontinuities related to solid-to-liquid phase changes of water and fat within the

product. A solution for modeling condensing-convective boundary conditions during

moist air impingement cooking, developed by Millsap (2002), was incorporated into the

model. These boundary conditions accounted for the additional heating effects of surface

condensation that can occur within moist air impingement systems (Watkins, 2004).

A ground and formed meat patty (2-D cylindrical object) was used as a model

product. Input temperatures were converted to enthalpy using an equation based on the

work ofVoller and Cross (1981). Heat transfer was modeled via following equation.

@411 ,. kT a_” +3: kT @ [4.1]
at rar cT-par dz cT-paz

  

Moisture transfer within the product was modeled using a two-dimensional equation for

diffusion in radial coordinates.

69

 

 



  

at r 6r cm,water 'p ar 52 cm,water 'p 62

M-[li[r km,water amwater]+_a_[ km,water 6mm,” ]]

[4.2]

For fat transfer modeling, a two—dimensional formulation of Darcy’s law for diffusion of

liquids through porous media was used (Datta, 2002).

amfat 1 6 amfat 5 amfat

—at_ = [-— r ' Dcap,fat —a—r—_ + E Dcap,fat '3— [4'3]

rar

The heat transfer boundary condition was formulated with a convection term and a

moisture transport (evaporation/condensation) term:

6T

kT a: = hT (Tair — Tsurface) + hm, water ‘ ’l'vaporization ' (Cair T Csurface) [4'4]

Mass transfer at the product surface was modeled by using a convective boundary

condition.

6m

km, water 3:!” = m,water (Coir '— Csurface) [4'5]
 

The fat content at the surface of the patty was modeled using an equation derived

from experimental data (Equation [4.6]) (Watkins, 2004). The equation [4.6] was utilized

to set the values of the fat content at each boundary node as a function of temperature and

product composition.

mfa, = 0.7062 — 0.0193 . T + 0.0001 - T2 + 0.0069 . mi, fa, + 0.0002 - T . mi, f,,

[4.6]
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In addition to these boundary conditions, heat and mass transfer at the radial and

vertical centerlines of the patty were assumed to be zero due to product symmetry. These

coupled partial differential and ordinary differential equations were solved by using the

finite element method (Watkins, 2004). The finite element solution of this time-

dependent field problem was solved with a finite difference approximation in the time

domain to generate the time—step solution, and the time step was 1 second. The time step

was smaller than the allowable time step (AF2.16 s), which was calculated to prevent the

finite element model from oscillating and deviating from physical limits for a right

triangle element, by using Equation [4.7] (Segerlind, 1984).

At <L
[4.7]

l— 6

where

a: det([c(°)]-a[k(°)])=0; det: determinant; c & k: element matrices

0:1/2 for central difference method

However, in some cases of actually running this FEM model, instability of the

prediction of yield and surface temperature were observed at the very early stage and

rarely at the later stage. Therefore, the time step was decreased from 1 to 0.5 second to

reduce the instability of the model.

Watkins (2004) validated the finite element model using data generated in

industrial cooking tests with beef patties in a JSO-IV (Stein~DSI, a business ofFMC

FoodTech, Sandusky, OH) and additional published data for ground chicken breast

patties cooked in a pilot-scale impingement oven (Stein, FMC FoodTech). Predictions of
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cooking yield had errors ranging from 0.1 to 15.4%, with an average deviation of 5.9%

(27 sets of process conditions) in the industrial cooking tests. Comparisons with

published data were also favorable (standard errors of prediction for yield ranged from

1.1 to 15.7%).

4.3.1.1 Model Product

The dimension of the patty was 120 mm in diameter and 10 mm in thickness,

which was modeled as a two-dimensional, axisymmetric body. Figure 4.3 shows the

element mesh configuration, which consisted of 36 nodes and 50 elements.

The model patty was assumed to initially be 60% water, 20% fat, and 20% protein.

The initial temperature was set to 5 °C.

 

 

     

      
Center

Patty

  

Figure 4.3 Finite element mesh utilized for one quarter of the 2-D cylindrical model

product.
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4.3.2 Kinetic Parametersfor Microbial Inactivation in a Meat Patty

Salmonella is the most heat-resistant organism among other food related

microorganisms, such as E. coli 0157:H7 and Listeria monocytogenes (Murphy et al.,

2004). A few works (Juneja et al., 2001; Murphy et al., 2002; Murphy et al., 2004) of

thermal inactivation kinetics for Salmonella cocktails in ground beef were found and

compared to get a conservative reference D and z-value.

In Table 4.1, D values at 62.5 °C, which is the center between 55 and 70 °C, were

compared, and the D value of 2.62 min was selected as a conservative value.

For z-value, the highest value (9.14 °C) was chosen among other values, because

the value reflects the least sensitivity to temperature change.

Table 4.1 Comparison chart of thermal inactivation parameters ofSalmonella

cocktail for ground beef (1:(Murphy et al., 2002); 2:(Juneja et al., 2001); 3:(Murphy et al., 2004)).

 

 

 

 

 

 

 

 
 

 
 

 

l 2 3

Fat [%] 18.56 12.45 34.4

Water [%] 51.30 65.5 49.7

Method 0.7 mm 1-2 mm Thin bag

thin metal thin bag

container

Culture Type Cocktail Cocktail Cocktail

Tr [°C] [min] [min] [min]

55 9.09 37.05

57.5 7.70 18.35

58 8.65

60 4.80 5.48 6.90

D-value [ 6:55 I 2.40 1.50 | 2.62 l

65 0.97 0.67 1.03

67.5 0.57 0.30

68

70 0.25 0.066

z-value 9.14 [°C] 6.01 [°C] 5.74 [°C]
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4.3.3 Kinetic Parametersfor Internal Color Change ofa Meat Patty

Kinetic modeling is a very efficient tool to model food quality, which otherwise

can be very subjective. Once the rate and temperature dependence of a reaction is known,

the reaction can be controlled and predicted (Martins et al., 2001).

The color of the center region of a meat patty is an important quality index related

to acceptability. As cooking proceeds, the center color gradually changes from red-pink

to brown (1'. e., “well done”) due to the heat denaturation of various types of myoglobin.

The rate of cooked meat hemoprotein formation (via the rate of loss of myoglobin

solubility) was found to obey first-order kinetics in aqueous muscle extracts and mixtures

of myglobin and bovine serum albumin (Geileskey et al., 1998). They measured first-

order rate constants for the loss of myoglobin solubility in various muscles at 60, 65, 70,

and 80 °C.

To implement first-order kinetics in the basic finite element model, a reference

decimal reduction time (D,) and z-value were calculated based on the rate constants at the

various temperatures (Toledo, 1991). The reference temperature was 60 °C. D, was

calculated by using Equation [4.8] and the first-order rate constant (Geileskey et al.,

1998) at the reference temperature.

_ ln(10)

- k

 Dr [4.8]

To calculate the z-value in the temperature ranging from 60 to 80 °C, activation energy

(E3) was obtained by using temperature and rate constant data from (Geileskey et al.,

1998), assuming an Arrhenius relationship (Toledo, 1991). The z-value was then

computed as follows:
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_ ln(10)

z —- (Ea /R) Tsz [4.9] 

Table 4.2 shows the derived D, and z-values for different muscles. Considering that most

ground beef comes from the chuck, sirloin, or round, the D, and z-value ofbeef chuck

were used for estimating acceptability (via center color change) of model product.

Even though the color for acceptability can be predicted with the above parameters, an

adequate log reduction value of internal color change must be specified to use the quality

as a constraint in this optimization problem.

Table 4.2 Reference decimal reduction time (D,) and z-value of internal color change

in the various muscles at the reference temperature of 60 °C (Geileskey et al., 1998).

 

 

Muscle D, [min] 2 [°C]

Beef shin 85.28 9.63

Beef chuck 65.79 9.79

Beefm. I. dorsi 35.42 10.41
 

Hunt et al. (1999) observed that 95.9% denaturation of oxymyoglobin (OMb),

which is contained in significant amount in most ground beef, was visually scored 5 (no

evidence ofpink color or “well done”). Also, the ground beefused in that research

contained 20% fat, and the pigment was predominantly OMb (Hunt et al., 1999), which

implies a good match with the model product in this study. Thus, the target level of

denaturation (95.9%) was converted to the equivalent value of 1.387 log reductions,

which was used as a minimum criterion for internal color change of meat patty. Even

though there is some variation in the concentration of myoglobin in beef, the differences

in concentration do not appear to be a factor in the dependence of denaturation on muscle

type (Geileskey et al., 1998).
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4.3.4 Kinetic Parametersfor Surface Color Change ofa Meat Patty

Non-enzymatic browning in food processing is the major cause of surface

browning, aroma, and taste (Martins, 2003). Non-enzymatic browning of baked products

is a very complex chemical reaction, which encompasses two major reactions, the

Maillard reaction and caramelization (Zanoni et al., 1995).

The Maillard reaction starts with an initial reaction of a reducing sugar with an

amino compound, followed by consecutive and parallel reactions to form a variety of

colored and colorless products (Martins and Van Boekel, 2005). In addition to the

desirable effects, the reaction generates undesirable results, such as discoloration, off-

flavor, and mutagenic and carcinogenic components. Therefore, it is necessary to

optimize the reaction by finding the best balance between the favorable and unfavorable

effects of the reaction in a given process (Lingnert, 1990). The Maillard reaction is very

complex reaction and very difficult to control (Martins et al., 2001). For instance, over

1,000 volatile compounds are formed during cooking (Mottram, 1998). Many factors

influence the reaction, such as temperature, time, pH, water activity, type of reactants,

and availability of reactants (Lingnert, 1990).

The Maillard reaction kinetics has been studied in various applications, such as

frying and drying. However, detailed observations for the Maillard reaction during

cooking of meat patties, especially in the moist air impingement convection cooking

environment, were not found in the literature.

Another non-enzymatic browning is caramelization. Caramelization is defined as

the thermal degradation of sugars leading to the formation of volatiles (caramel aroma)
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and brown-colored products (caramel colors). Caramelization usually occurs at high

temperature (>120 °C), compared to the Maillard reaction temperature (>50 °C).

Non-enzymatic browning is very complex and encompasses not just a single

reaction pathway, but a whole network of various chemical reactions (Martins et al.,

2001). Although complex reactions are involved, general perceptions for non-enzymatic

browning reactions are color and aroma. The resultant effect of the various reactions can

be lumped into crust color development during a meat cooking process. Dagerskog and

Bengtsson (1974) studied the relationship among crust color formation, yield,

composition, and processing conditions for double-sided pan frying of meat patties. They

found kinetic parameters for crust color changes, in terms of reaction rate and activation

energy. Ateba and Mittal (1994) obtained kinetic parameters for crust total color change

and firmness. The above studies for crust color change of meat product used the total

crust color change (AE) to describe the overall quality changes due to non-enzymatic

browning. The total color change was calculated with the following equation (Dagerskog

and Bengtsson, 1974):

 

AE = \/(AL)2 + (M)2 + (Ab)2 [4.10]

where,

AL: lightness

Aa: redness

Ab: yellowness

Color development is a surface phenomena, so that the plot of surface temperature

(recipe A) and color change (recipe C) (Dagerskog and Bengtsson, 1974) were digitized
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to obtain a D, and z-value (Table 4.3). Even though the recipes were different, both data

were assumed for one recipe in this study, because only two graphical data sets were

available. Recipe “A” consisted of 59.6% water, 15.6% fat, and 9% breadcrumb, and

recipe “C” consisted of 66.6% water, 14.1% fat, and no breadcrumb. Therefore, recipe

“C” is closer to the model patty in this study, in terms ofcomposition.

Table 4.3 Digitized data of surface time-temperature plot (recipe A) and time-color

change plot (recipe C) of Dagerskog and Bengtsson (1974).

 

Pan Temperatures
 

 

 

140[°C] 160£C1 180 [°C] 200 [°C]

Time [min] T,[°C] AB Ts[°C] AE T,[°C] AE T,[°C] AB

0 10.00 0 10 0 10 o 10 0

1 101.40 5.51 107.60 3.95 121.60 6.14 130.30 7.70

1.5 103.40 3.48 110.20 6.76 123.50 7.80 132.60 9.99

2 103.70 6.02 111.20 9.46 122.20 9.88 129.40 12.17

2.5 104.70 8.62 112.50 9.04 122.90 12.27 130.70 14.82

3 105.60 8.57 115.10 12.21 126.40 15.03 135.90 15.60

4 109.50 12.36 122.20 15.17 134.90 16.37 148.90 18.40

5 113.40 14.90 127.70 17.51 142.70 17.87 158.60 20.37

6 116.70 16.04 132.00 19.01 149.80 19.48 166.10 20.21
 

Ts: product surface temperature

The AE was replaced with the difference with the maximum color change

(AEM.=22). Then, a log reduction of color change was calculated. By using the Microsoft

Excel SOLVER (Microsoft Excel Version 2000: Redmond, WA) and Equation [4.11], the

D-value and z-values for this kinetics were estimated based on minimization of the

RMSE of color change.
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C 1

1 ——=— —dt 4.11

ogicoj ID I I

0

where,

 

19:1), .10 z [4.12]

The estimated D-value and z-value for the surface color kinetics were 7.75 min

and 90.55 °C, respectively (average RMSE=1.33 [AE]).

Now, dynamic surface color change can be predicted by integrating Equation

[4.11] over time with the given D and z—values. However, there are several hurdles for the

non-enzymatic browning to take place on the surface of a meat patty in the moist air

cooking environment. The first barrier is water film formation due to condensation on the

meat patty surface when the surface temperature is lower than the dew point temperature

of the moist air. The water film keeps the surface temperature under 100 °C, which is far

less than the critical caramelization temperature of 120 °C. For the Maillard reaction,

some water is needed, because water participates in the later stage of the reaction.

However, excessive water suppresses the reaction and also dilutes surface concentration

of amino acids and sugars, which result in retarded or no reactions. Therefore, under the

presence of condensed water on the surface, it is hard to expect non-enzymatic browning

mainly due to the Maillard reaction. Even after overcoming the water film formation,

evaporation occurs, which decreases the surface temperature until the film disappears.

When the product surface temperature reaches 100 °C, the water evaporation zone

recedes toward the center. The surface continues to lose water, the temperature rises, and
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structural and chemical changes in the protein result in crust formation (Ateba and Mittal,

1994). Finally, non-enzymatic browning of the surface takes place rapidly when the

surface temperature passes the critical temperature of the caramelization reaction. After

this point, caramelization is accelerated significantly. The above limitation to non-

enzymatic browning on the surface of meat patty under moist air cooking conditions need

to be implemented in a simple non-enzymatic browning model to predict surface quality

of the meat patty.

To account for the adverse effects, a function cueing the non-enzymatic browning

on the product surface is necessary. A sigmoid function, which is the common form of an

activation function, was adopted for this purpose via the logistic function (Equation

[4.13]).

l

f = 1+e—a-(Ts—Tdew)

[4.13] 

The sigmoid function is ideal, because it is convenient to account for an abrupt change

around a critical point and also it is continuous (Figure 4.4). The logistic function

parameter a was determined at the value where 99.5% change is achieved in the range of

+/- 5 °C around the critical value. Therefore,

a = _]n(0%5_) e 1.06 [4.14]
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Figure 4.4 A sigmoid function (logistic function) of surface temperature (T‘s)

showing gradual change in a certain factor around a critical value, Tm, in this case.

The sigmoid function incorporating surface temperature and dew point

temperature was inserted into Equation [4.11] to provide a status of surface browning for

integration over time. Thus, the final equation of non-enzymatic browning, accounting

for condensation effects, was expressed as follow:

 

 

’f

log[—EC—] = — B; dt [4.15]

O

’0

where,

T )- 1 4 16
f( S — l+e—a(Ts—Tdew) I ° ]

Tr—T

13:1), .10 z [4.17]
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In Equation [4.14], the surface temperature was obtained from the finite element solution,

and the dew point temperature was interpolated by using the tabulated data22 ofdew point

temperature and moisture content by volume (which is a model input).

For non-enzymatic browning, both minimum and maximum critical values are

necessary for the cooking process to control the desirable color development on the

surface of the product, so that the product is neither too pale nor over-cooked. Generally,

the surface non-enzymatic browning is measured by total color change (Dagerskog and

Bengtsson, 1974; Ateba and Mittal, 1994). Dagerskog and Bengtsson (1974) observed

that the maximum total color change was 22, and suggested 10 as a desirable color

change. In this optimization problem, 10 and 15 were chosen as lower and upper bounds

for surface color change values, respectively. Unlike with microbial inactivation, the

intensity of color is increasing instead of decreasing. Thus, relative color change, which

is defined by subtracting a color change value from the maximum observable color

change value (AEmax=22), was used to calculate the log reduction as follow:

AE — AE
1og[—"&—] [4.18]

AEmax

Therefore, 0.263 and 0.497 were used as a minimum and a maximum log reduction of

relative color change, respectively.

4.3.5 Practical Considerationsfor Integration ofModels

Log reduction value is a good tool for describing the amount of reduction from

initial concentration of a material. However, if the reference D-value is small, which

 

22 In Humidity/Moisture Handbook by Machine Application Corporation (Sandusky, OH)
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means fast reaction, the log reduction value may be too large for computer programming

to handle such a large number. For computer programming, the double data type,

according to IEEE Standard 754 for double precision, allows +/-308 for maximum and

minimum exponent to 10. Thus, floating-point overflow problems occur when the

reference decimal reduction time is too small.

Final log reduction of a non-isothermal process can be integrated as:

n
 log All =log—1Yi + log& + + log

N0 N0 N1 Nn—l

_ At/D, At/D, At/D, l4-19l
_ + +...+——————

(Tr’Tl] [Tr—T2] (Tr'Tn)

10 z 10 z 10 2

Even though the log(N,,/N,,-,) at early stages of cooking has no overflowing problem,

 

log(N,./N,,-,) of a later stage can become very large, which results in the abortion of the

computer program. To resolve this problem, a multiplier (m) was adopted to slow the

process, so that the log reduction number stays within the computational limit. After

finishing the process, the original log reduction number was calculated back by using the

multiplier. For this, an increased D-value (D, ) was defined as follow:

A

D, = m x D, [4.20]

Then the Equation [4.19] can be re-written by using Equation [4.20]. Thus,

[Gigi—n] :logivl—+log]—V;+..+log——N" = At/D, At/Dr At/D,
+ +..+-————

0 N0 N1 Nn—l [Tr-Tl) [Tr-T2) (Tr-Tn)

10 z 10 z 10 z

where, * means resultant log reduction using the increased Dr-value.

 

[4.21]
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Now, dividing Equation [4.19] with Equation [4.21] produces the following result.

 

   

 

At/D, + At/D, +...+ At/D,

agile] [2:1] [2:2] [7:14] All.....1 .
No*=10 2“ 10 Z. 10 Z“ :13. =_Qr_=m’Dr=m

.451] A”? + Mr ....._____A”Dr 4’4.....1 r Dr
No [Tr—41] [112] [ii] Dr

10 Z 10 Z 10 z

[4.22]

Therefore, the original log reduction value can be restored by using the multiplier m.

Even though the size ofm can vary depending on the size of the maximum exponent, the

value of 106 was used for microbial inactivation calculation in this research.

4.4 Formulating the Optimization Problem

The objective of the problem is to maximize patty yield by finding optimal

process temperature, humidity, impingement air velocity, and cooking duration, while

ensuring the target microbial lethality, internal color change, and surface color change.

This optimization problem can be formulated with mathematical expressions to apply

formal optimization techniques. The formulation of the problem contains three essential

components: the objective function, inequality constraints, and equality constraints.

Objective Function:

The objective is to maximize performance index J, which is the final patty yield

(%) by finding the optimal process temperature profile T(t), humidity H(t), impingement

air velocity V(t), and cooking time tf over t e [0, LI]:

_ +_ +1

J= f(i,)=m"’f m” x100 [4.23]
mw0+mfo+l

 

84



The final yield,f(tf), was calculated by dividing the final patty weight by the initial patty

weight. The weights were calculated with water and fat content based on non-fat solids.

Inequality Constraints:

Final log reduction of microbial inactivation and internal color change (Cc) of the

center of patty should be greater or equal than 6.5 (beef) and 1.3 87, respectively. Also,

the acceptability via surface color change (Cs) log reduction should be between 0.263 and

0.497. These limits are:

L0,) 2 Lc(= 6.5) [4.24]

Cc (tf) 2 Cc,c(= 1.387) [4.25]

Cs, 1. (= 0.263) s C, (tf) 3 CW (= 0.497) , [4.26]

The control variables (process temperature, humidity, impingement air velocity,

and cooking time) are also bounded by upper and lower limits. For temperature, the JSO-

IV oven can achieve 260°C and is not normally operated below 100°C. Also, the

maximum humidity level is 90%MV, and the maximum impingement velocity is 30.6

m/s. Based on the above actual capacities and reasonable range of cooking duration, the

following upper and lower bounds were set:

TL (= 100) s T(t) s TU (= 250) [°C] [4.27]

HL(= 0) s H(t) _<_ HU(100) [%MV] [4.28]

(Instead of 90% MV, 100%MV was used to test maximum theoretical limit)

VL (= 0) s V s VU (= 30) [m /s] [4.29]
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tf,L (= 60) s tf s t,1, (= 600) [s] [430]

Equality Constraints (Process Model):

The finite element process model (Section 4.3) developed for moist air

impingement cooking of ground formed meat patties was the equality constraint for this

problem.

4.5 Alternative Modeling by Using Artificial Neural Networks

Artificial neural networks were used to replace the finite element process model,

in order to speed simulation time. The networks were trained and tested to determine

whether the networks were representing the finite element process model sufficiently

well. Two different training strategies were applied to two different types ofnetworks.

Static training (Section 4.5.3) was used to develop static neural network model (SNNM),

and dynamic training (Section 4.5.4) was used to develop dynamic neural network model

(DNNM). The first step for training and optimization was to parameterize the control

profiles.

4. 5.1 Parameterization ofthe Control Function

To explore the infinite solution domain, an efficient method ofrepresenting the

dynamic control vectors must be available. In this research, control vectors were

parameterized in two ways: by using piecewise linear interpolation, which was used by

Banga et al. (1997), and by Fourier series.

Piecewise linear interpolation (PLI):

The piecewise linear interpolation method was used to represent a control

function with a fixed number of points and final process time. The interval between the
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points can vary, but in this application, the control functions were evenly discretized into

20 pieces. Thus, by using those points, any other points can be calculated by using

Equation [3.8] (piecewise linear interpolation). Therefore, a total of 21 points, including a

flexible endpoint time, were used to parameterize each control function (process

temperature, humidity, and impingement velocity). Although the size of interval varied

depending on the endpoint time, due to the fixed 21 control points, the effect of the

interval size was not considered in this research. Therefore, the maximum interval was 30

[s] for the duration of 600 [s], and the minimum interval was 3 [s] for the duration of 60

[s]. Thus, the total number ofparameters to represent three control functions and process

duration was 64 (=3 X21+1). Each designated point followed the conditions of Section

3.2.3.1 (Equation [3.11-14]).

In the case of linear interpolation, the total 64 discrete values comprise the

following structure.

A set of discrete values= {p1, p2, p64}, where

p1~p2/: discrete values of temperature

p22~p421 discrete values of humidity

p43~p63z discrete values of impingement velocity

p64: cooking duration

Fourier series (FS):

The Fourier series is a robust parameterization tool. Fourier synthesis can

generate all possible continuous functions with a sum of sine and cosine functions called

a Fourier series. The function is uniquely defined by constants known as Fourier

coefficients, which are shown in Equation [4.31]:
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T(t) = 329 +Z(ak cos(kt) +6, sin(kt)) [4.31]

k=l

In this application, the infinite Fourier series was limited to ten terms, which is sufficient

to closely approximate even step functions. Also, the period (2n) of cosine and sine

functions needs to be adjusted to the cooking duration tf. Thus, Equation [4.31] was

rearranged on the interval {-0, tf] as follow:

10

T(t) = 194.202,, cos(k§—'1)+o,, sin(k 11)) [4.32]
2 k 1 tf lf

Therefore, according to the Equation [4.32], each control profile was parameterized by

using 21 Fourier series coefficients for a given process duration.

In the case of Fourier parameterization, the 64 parameters comprise the following

structure.

A set ofparameters={p1, p2, p64}, where

p1~pzo (i.e. ak, bk): Fourier coefficients for temperature; p2, (i.e. a0): shift

pzrp41: Fourier coefficients for humidity; p42: shift

p43~p6zz Fourier coefficients for impingement velocity; p63: shift

p64: cooking duration

4.5.2 Training and Validation Data Groups

As previously mentioned, training and validation data groups for neural networks

were produced by using the integrated FEM. In this study, a total of five neural networks

(one DNNM and four SNNM) were trained and validated with various groups of data.

Each group of data had a different number of input-target data sets and contents
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depending on process type, which creates complexity. Thus, each group of data sets was

named for further reference (Table 4.4). In addition, the detailed conditions for each data

group are provided in Table 4.5. For example, the alternative model SNNM_S was

trained by using D3 and validated with D7 (Table 4.4), and the conditions for those data

sets are reported in Table 4.5.

Data group D2 was generated with 63 Fourier coefficients and a process time.

Fourier coefficients (Equation [4.32]), a], and bk, were selected randomly between ~100

and 100, and a shift value (up) was also chosen between 5 and 200. Among these random

combinations, only the profile satisfying the upper and lower bounds of the control

variables (temperature, humidity, and velocity) were accepted and applied to the FEM to

generate results.

Table 4.4 The names and contents of data groups for training and testing neural

networks.

 

 

 

 

 

 

 

 
 

 

Neural Networks Training Data Group Testing Data Group

Type Name Name Contents Name Contents

1,000 processes were generated with 64

910 constant D2 random Fourier coefficients including

processes coogg time.

(Table 4.5) 1,000 processes (randomly generated

D7 constant processes with random cooking

DNNM DNNM D1 (54,600 duration)

conditions/states D4 2187 processes

sampled out for (double-sgge, Table 4.5)

training) D5 2187 processes

multi-zone, Table 4.5)

1,000 processes were generated with 64

SNNM_R D2 D6 random Fourier coefficients including

cooking time. (#D2)

1,296 processes 1,000 processes (randomly generated

SNNM SNNM_S D3 (single-stage, D7 constant processes with random cooking

Table 4.5) duration)

SNNM_D D4 D8 1,000 processes (randomly generated

double-stage conditions)

1,000 processes (randomly generated
D9 . . .

multi-zone conditions)

       SNNM_M D5

 

89



Table 4.5 Conditions of each process type to produce training data groups; D1,

single-stage (D3), double-stage (D4), and multi-zone (D5) process.

 

Control Variables
 

 

 

 

 

 

 

Process Total

T H V tf nu r

”is 1°C] 1% MV1 im/si [s] (1.2:):an

100,112.5, 1, 15,30, 1,5, 10, 15, 20, 25, 30

125, 137.5, 40, 50, 60,

Constant 150, 162.5, 70, 80, 90,

Process“ 175, 187.5, 100 600 910

(1)1) 200, 212.5,

225, 237.5,

250

Single- 100, I30, 0, 20, 0.5, 6.4, 12.3, 18.2, 24, 3O 60, 180

Stage 160, 190, 40, 60, 300, 420 1,296

(D3) 220, 250 80, 100 540, 660

Double- T1 T2 H1 H2 V1 V2 tr

stage 100 100 0 0 0.5 0 60

(D4) 175 175 50 50 15.25 15.25 330 2,187

250 250 100 100 30 30 600

Multi- T H V1 V2 V3 V4 tf

”figs?“ 100 0 0.5 0.5 0.5 0.5 60

(D5) 175 50 15.25 15.25 15.25 15.25 330 2,187

250 100 30 30 30 30 600

 

* Process conditions remain constant during cooking

4.5.3 Static Training

Depending on the characteristics of the training data sets and the architecture of

neural network, the mapping relationship between input and output vectors may be static,

where each application of a given input vector always produces the same output vector

(Wasserman, 1993). Therefore, a neural network trained by this method cannot account

for process history; rather, it merely identifies a relationship between initial conditions

and results. This kind of neural network has to be trained whenever different process

types are engaged.

For SNNM_R (Table 4.4), 1,000 random time-varying conditions were used to

generate data sets by using the finite element process model. Some examples of random

time-varying conditions are illustrated in Figure 4.5.
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Figure 4.5 Examples of random time-varying conditions by using Fourier series

control profile parameterization.

Each training data set consisted of 64 parameters, which consisted of 21 randomly

generated Fourier coefficients for 3 different control vectors (temperature, humidity, and

impingement velocity) plus process duration. Those 64 parameters were used as the

system input variables. By using the 64 parameters and Fourier series (Equation [4.32]),

three continuous random profiles were generated and used for the finite element process

model input to predict the yield, microbial lethality, internal color change, and surface

color. The outputs of the finite element model were used as target data sets. The data

group (D2) of combined input and target data sets was used to train the SNNM_R

(Section 3.3.2). Those data groups were also used for validation ofGRNN_R.

For the training of SNNM_S, SNNM_D, and SNNM_M, training data groups (D3,

D4, and D5) were generated according to their conditions in Table 4.5.
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4. 5.4 Dynamic Training

Compared to the static training method, the dynamic training method teaches

system behavior so that the neural network can predict output depending upon previous,

as well as current, input and/or output (Wasserman, 1993). Therefore, the dynamic neural

network reacts like a physical model, not just an input-output vector mapping.

If a full factorial design is planned with 64 parameters and just two extreme

values for each parameter, it results in 264 combinations, which is an impractical number

of trials. However, dynamic training can capacitate the neural network to understand

system behavior with a limited amount of information or training data set. Morimoto et

al. (1997) used historical input and output data to describe the dynamic characteristics of

fruit color changing behavior with time and temperature. The only disadvantage of

dynamic training is that it takes a little more time to produce outputs, because the neural

network has to predict the next point based on the previous point until it gets to the final

point.

Depending on the interval size, the accuracy of the prediction also changes. The

smaller the interval is, a more accurate result is possible. In this research, process

temperature, humidity, and impingement velocity were used as system control vectors,

and yield, microbial lethality, internal color change, and surface color were included in

states (Figure 4.6). In addition, past time was included in the inputs as a factor accounting

for history of the system until it became past state. Morimoto et al. (1997) added linear

data to the input of neural network and observed that the identification accuracy for any

cumulative responses was significantly improved. However, the linear data were replaced

with actual current time of the system.
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To obtain the training data group D1, 910 constant process conditions (Table 4.5)

were produced, and the results were calculated with the finite element model. The

combination has a maximum possible duration (600 [8]) by which other durations can be

covered, because the process is constant.

t(n-l) t(n)

 

  Past time >Current time

/////////////// /////////////

I I ' I %’ast/St//a//t//% éurrentStateW? I I I I

//////////////////// ////////////

[ Process direction >

Figure 4.6 Conceptual diagram of dynamic training paradigm.

\
s

 

 

 

Out of the 910 resultant processes, 54,600 data sets were sampled with 10 seconds

interval. By using the sampled data, input and output pairs for neural network training

were reconstructed. Figure 4.7 shows the structure of input/output pairs.

The control force vectors, which have direction and magnitude, are implicitly

dissolved in the past and current controls. Although the four current outputs can be

predicted with a single GRNN, an individual GRNN for each output was trained to

increase accuracy for each prediction (Trelea et al., 1997). The network parameters were

also optimized independently.
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Figure 4.7 The structure of an input/output data pair for dynamic training to

identify dynamic characteristics of meat patty cooking.
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How well the input data are represented to the network is a critical issue to a

successful application of artificial neural networks (Wasserman, 1993). There are two

important points to be considered in the training of the GRNN. First, the target vectors

(yield and the other outputs) are monotonic, which are always increasing or decreasing in

one direction. If the GRNN is trained with actual values, then there is a possibility for the

GRNN to forecast a value that does not coincide with the monotonic characteristics of

output target vectors. This abnormality of forecasting can be minimized by training the

network not with actual values but with the difference. At the end of prediction, a

cumulative summation for each time was calculated to get the actual value for each time,

which renders all the training data to be always positive or negative.

Secondly, thermal inactivation kinetics of a small z-value generate large log

reduction values, because ofhigh sensitivity to temperature change. The z-values for

thermal inactivation ofSalmonella and the depletion ofMyoglobin (internal color

change) are 5.9 °C and 10.41 0C, respectively, which are relatively smaller than 90.55 °C

for kinetics of surface color change. Therefore, there are huge variations in the predicted

results. The large variations in the magnitude of the components of a vector may not

convey meaningful information, but can confuse the network (Wasserman, 1993). In the

above case, raw data range from zero to several orders of magnitude, while the critical or

valuable information is located in a small range. Wasserman (1993) suggests that “taking

the logarithm of the data will adjust the range so that large values can be ‘squashed’ more

than small values, thereby allocating a constant range to a given percentage deviation”,

which is called nonlinear normalization. In this research, nonlinear normalization using
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base-10 logarithm was used for the training GRNN with the above two reaction kinetic

data (Salmonella inactivation and internal color change).

4. 5.5 Neural Network Validation

All the neural network based models were validated with the testing data groups

that were prescribed in Table 4.4. For all the validations, root mean squared errors for

yield, microbial lethality, internal color change, and surface color were calculated to

quantify the performance of the neural networks.

4. 5. 6 Neural Network Parameter Optimization

FFNN based models consist of layers and neurons embedded in the hidden layer.

For the best performance of the network, the number of layers and neurons must be

optimized. Generally, there is no specific rule to set these numbers except by trial-and-

error. In this specific application, the number of layers was two, and nine combinations of

the numbers ofneurons for each layer were examined in terms of root mean squared error

to find the optimal number ofneurons in each layer. For each layer, 5, 10, and 15 neurons

were selected for the combinations. For each case, 500 data sets were used to test each

combination.

DNNM has a fixed number of layers and neurons according to the principles of

network architecture (Section 3.3.3). Therefore, the size of the receptive field that

determines the robustness of the network needs to be optimized by using trial-and-error.

The parameter is represented as “spread” in the actual computer code. With varying

“spread”, the results in terms ofRMSE were compared, and the value shows the
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minimum RMSE was selected as an optimal “spread.” For this trial-and-error procedure,

100 data sets from D2 were used to test each case.

4.6 Process Optimization Strategies

4. 6.1 Combinations of Techniques

The optimization techniques utilized in this research are global optimization

algorithms, which can be coupled with any type ofprocess model. Thus, various

combinations of optimization strategies are possible, depending on the optimization

algorithm, type ofprocess model, and method of control function parameterization. Table

4.6 shows the optimization strategies that were evaluated in this study. The numbers in

Table 4.6 were used throughout this study to refer to a specific optimization strategy.

Table 4.6 Optimization strategies (by strategy number), according to their process

model, the method of control profile parameterization, and optimization algorithm.

 

 

 

 

 

 

 

  
 

 
 

  

  

 
 

  

  

  

   

\\ Optimization Algorithms

Model “mm" PM.” GA SA ICRS/DS
parameterization

PLI 1 2 3

FEM FS 5 6 7

111 ll [ PLI 9 10 11

D FS 13 14 15

Ill 11 l PLI N/A N/A N/A

S ’R FS 21 22 23

Single-stage 25

FEM Double-stage 29

Multi-zone 33

Single-stage 26

DNNM Double-stage N/A 30

Multi-zone 34

SNNM;S Single-stage 27

SNNM D Double-stage 31

SNNM_M Multi-zone 35    
 

PLI: piecewise linear interpolation; FS: Fourier series
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SNNM_ R was not trained with actual control values, but with Fourier

coefficients. Thus, control function parameterization with PLI could not be applied,

because SNNM was specific for trained data type. All of these combinations (Table 4.6)

were designed to find ideal and continuous optimal control profiles.

4. 6.2 GA Based Strategy

Genetic algorithms (Section 3.2.1) have some parameters that must be set before

running the algorithm properly. For genetic algorithms, setting a convergence criterion

using the objective function value is difficult, because sometimes the same objective

function value wins the competition for several or more generations. Therefore, the total

number of generation cycles was set to 400 as a default value, because most of the

significant convergences tended to occur around 200 generations, according to prior

observations. The algorithm was terminated when it reached the target generation number.

However, if convergence was not achieved at the final number of generations, the

optimization process was continued until no improvement was observed. The size of

initial population and the population of each generation was set to 10 in this research,

because the number is not too large to demand too much computation, nor too small to

cause slow convergence. In addition, there is no specific rule for setting the number in the

initial population (Venkataraman, 2002). Other parameters are also problem-specific. If

large numbers are selected for the other parameters, it will demand huge computation

time, depending on the process model. Thus, rate of simple crossover, arithmetic

crossover, mutation, and immigrants of each generation were set to produce 6, 6, 4, and 2

Offspring, respectively. Mutation rate was 0.016 (=1/64), which replaced one parameter

with a random value among 64 parameters. At the end of each generation, all the
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population was tested to identify qualified individuals that satisfied all the constraints,

and they were moved to the next generation.

4. 6.3 SA Based Strategy

As indicated in Section 3.2.2, there are several critical parameters for a simulated

annealing algorithm, such as cooling schedule, number of Markov chains at a temperature,

transitional probability fiinction, and convergence criteria.

The following cooling schedule was used:

A

T =—+B 4.33

k k+1 [ I

where,

k=1...N

(To-TNXNH)
A =

N

B = To - A

The above cooling schedule generates more moderate acceptance probability

(between 0.5~0.8) than high acceptance probability (above 0.9), which reduces

exhaustive exploration at the initial search. The initial temperature, final temperature, and

the number of cooling steps were set to 25, 0.001, and 150, respectively. These

optimization parameters generate a probability curve (Figure 4.8) showing less

exhaustive exploration in the early stage, which is desirable in this specific application.
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Figure 4.8 Acceptance probability (Boltzmann probability) along with cooling

schedule (T,=25, TN=0.001, N=150, and average increment of accepted objective

value=0.3) for SA.

In this research, a Boltzmann probability distribution function was used as a

transitional probability function (acceptance probability), which is classic and simple.

The algorithm was coded to terminate its search when there is no acceptance and no

improvement of the objective firnction. The number of iterations at each cooling cycle,

which is the length of Markov chain, was set to 20 from prior observations.

The algorithm generates the next move by using random search direction and

stepsize for each parameter or discrete value. Variable stepsizes were used, depending on

the control vectors (temperature, humidity, and impingement velocity) and type of

control function representation (discretization or parameterization), because the
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sensitivity of each parameter or value is different. Depending on the structure of the

control vector (Section 4.4.1), different step-sizes were used as follows:

Linear interpolation parameterization:

o Stepsize[p1~p21]=5; temperature profile

0 Stepsize[pzz~p42]=5; humidity profile

- Stepsize[p43~p63]=5; impingement velocity profile

0 Stepsize[p64]=10; cooking duration

For Fourierparameterization:

o Stepsize[p,~p20]=2; stepsize[p2,]=10; temperature profile

0 Stepsize[p27~p41]=2; stepsize[p42]=5; humidity profile

0 Stepsize[p43~p62]=2; stepsize[p63]=2; impingement velocity profile

0 Stepsize[p64]=10; cooking duration

The search direction was produced by using uniform random distribution of interval

between -O.5 and 0.5.

4. 6.4 ICRS/DS Based Strategy

The ICRS algorithm has three important heuristic parameters, kl, kg, and ne. The

k, parameter controls the size of the search step by changing the magnitude of the

standard deviation vector. However, if the search fails to find improvement before the

number of trial reaches the failure counter (F), the standard deviation vector is

subsequently reduced by using kg. The ne integer parameter controls the rate of

convergence by changing the failure counter value. Pan (1998) recommended default

values of kl=1/3, k2=1/2, and ne=4. However, the stepsize of search depends on the

method of control profile parameterization. If the control parameters are highly sensitive,
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then k1 needs to be reduced. A k, value of 0.05 was used for the case of Fourier

parameterization, because the Fourier coefficients are more sensitive than the discretized

values in PLI parameterization. For the case of linear interpolation parameterization (PLI),

the default value k,=1/3 was used.

According to the original ICRS/DS algorithm, the failure counter (F) is ac times

twice the problem dimension. The problem dimension of this research is 64. Thus, the

failure counter must be 512, which demands too much computation time. By using some

trial runs, the failure counter was set to 100, because it was rare to reach 100 or more. For

convergence criterion, Equation 3.19 was used with the tolerance value of 1.5X10'5.

4. 6.5 Benchmark Testfor Optimization Algorithms

Even though the principles of GA, SA, and ICRS optimization algorithms are well

established and proven, the developed computer codes must be validated for their

effectiveness. Especially, in this application, a multi-variable problem is desirable,

because the optimization problem of this study is multivariate. The Bezier23 curve is a

good tool to observe the behavior of all the variables in two-dimensional space

(Venkataraman, 2002). A fifih-order Bezier curve-fitting problem was presented to each

computer code. The fifth-order Bezier curve is:

B(t)=Z[:]fl(l—t)"_iti, t6 [0,1] [4.34]

i=0

where,

 

23 Bézier curves were widely publicized in 1962 by the French engineer Pierre Bezier, who used them to

design automobile bodies. The curves were developed in 1959 by Paul de Casteljau using de Casteljau‘s

algorithm. Bézier curves are widely used in computer graphics to model smooth curves.

(http://en.wikipedia.org/wiki/Bezier_curve)
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n=degree

[qti(1—t)"—i, i = 0,---,n Bernstein basis polynomials

2

For n=5, the fifth order Bezier function becomes:

B(t) = P0 (1 —t)5 + 5Plt(l -z)4 +10P2t2(1—t)3 +10P3t3(1-t)4 + 5P4t4(1—t) + 105:5

[4.35]

Equation [4.35] was used to minimize root mean squared error with the following curve:

f(x) = 1 + 0.25x + 2e_x cos 3x [4.36]

A total of eight design variables were used to fit the above curve. All the computer codes

associated for this benchmark test were adopted from the works ofVenkataraman (2002).

4.7 Case Studies

Global optimization techniques developed and tested in the above sections were

applied to practical situations to validate their potential application to real, industrially-

relevant processes. Even though the optimal control profiles are the “best” in terms of

mathematical application of the theories, it is practically challenging to apply the

theoretically “best” profile in the real life situation, given constraints of existing

equipment and knowledge. Therefore, a series of case studies (single-stage, double-stage,

and multi-zone) that are currently available, or at least practical with minimal changes of

cooking system configuration, were solved and compared to each other.
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4. 7. 1 Single-Stage Oven

The single-stage oven case represents an oven (JSO-IV) using constant control

profiles during its process. The control variables were constant temperature, humidity,

impingement velocity, and cooking duration. Because the oven uses a constant profile,

the actual number of control variables can be reduced down to four instead of 64, which

was used in the previous applications.

Three different models were used in this case study, FEM, DNNM, and SNNM_S.

The previously developed FEM and DNNM models were used without alterations.

However, the SNNM_S, was trained with the D3 training data group, because the static

neural network model was specific for training data set. The FEM, GRNN, and SNNM_S

were coupled with SA, GA, and ICRS/DS, respectively.

4. 7.2 Double-Stage Oven

The double-stage oven case is considered as the second possible option that

occurs in real commercial applications, by connecting two single-stage ovens in series.

This is a relatively simple solution for the food processing industry. The double-stage

system generates an equidistant, two-step constant control profile, which has more

dynamics in control than does the single-stage oven. Although more capital cost is

necessary to purchase an additional unit, increased yield and production rate may justify

cost. In this case study, only the total yield of the system was considered and optimized.

The total number of control variables was seven, given two steps for each control

profile and a cooking duration. FEM and DNNM were not altered, but the SNNM_D was

trained with 2,187 data sets of data group D4, because the SNNM_D was a static model.

The 2,187 training data sets were combinations of three different levels and the seven
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control variables (Table 4.5). The FEM, DNNM, and SNNM_D were coupled with GA,

SA, and ICRS/DS, respectively.

4. 7.3 Multi-Zone Oven

This configuration may be a suggestion for the oven manufacturing industry.

Among the three major control variables (temperature, humidity, and impingement

velocity), varying impingement velocity is the easiest design change to implement in the

existing system, because the local jet exit velocity can be controlled by the size of the jet

exit or other flow control mechanisms. By observing this case study, the effect of a multi-

zone concept was tested.

Control temperature and humidity remained constant throughout the process, and

four equidistance zones were considered for different impingement velocities. Thus, the

total number of control variables was seven, including the process duration. SNNM_M

was trained with 2,187 data sets of data group D5, which were the combinations of three

different levels for each variable according to Table 4.5.

4. 7.4 An Example ofEconomic-Based Optimization

As the level of optimization is expanded from a single unit operation to an entire

plant, the best control profile of the single unit may be reevaluated to improve the overall

objective of the plant. Compared to unit operation optimization, economic-based

optimization requires much more information related to management, such as product

value, energy cost, labor cost, warehouse management, raw material prices, and so on. In

addition, the objective can vary, such as minimizing energy consumption, maximizing

Processing rates, maximizing profit, or maximizing a practical quality attribute.
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In this case study, capacity and geometric information for the oven was obtained

from specifications of the JSO-IV (model 4044). For simplicity, raw material feeding rate,

energy cost, and final product yield were considered as factors influencing the net profit

of an entire system. Even though many of the values for these factors were “best guess”,

it was considered adequate to illustrate the concept of economic-based optimization. To

make the problem as a single objective optimization, all the factors were converted into

price ($) with the following equations. The economic-based optimization problem was

defined as follow:

Objective function (f): maximizing profit [S]

f= product value -feed cost - energy cost :

. Energy cost ($/hr) = (steam cost) + (electricity cost) + (thermal cost)

= a 'fH(H)+fl-(fV(V)+fB(B))+r°K'fr(T)

' Product value ($/hr)= ,u - Y ,where Y = fy (H,V,T,t) - F

I Feed cost (raw material: frozen beef patties)($/hr)=¢ - F ,where F = 3600 - A - B

Variables:

- fy (T, H, V,t) [%]: process model

- fH (H) = 0 ~ H [kg/h]: steam consumption rate as a function ofH

' fV (V) = u - f ' A - V [kW]: electrical demand as a fianction of V

2

' fB (B) = 3%6—3) - 10'3 [kW]: electrical demand for transporting patties

(kinetic energy required to transport patties on conveyor belt was divided

by residence time of a patty(L/B))
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Parameters:

500,000

1 50

 

fT (T) = [ -(1.8T + 32) + 1,170,000] - (1055.04) [J/h] (Fulton®

thermal fluid boiler (capacity: 2.2 MMBtu/h) was modeled. A linear

relationship between operating temperature and power was assumed)

H: humidity set point [%MV]

V: impingement velocity set point [m/s]

T: temperature set point [°C]

fH: amount of steam as a fimction of humidity set point [kg]

fv: electricity'as a function of impingement velocity set point [kW]

fT: amount of natural gas as a function of temperature set point [J/h]

fy: cooking model output or yield [%]

f3: electricity as a function of belt speed [kW]

Y: production rate [kg/h]

1F: feed rate [kg/h] as a function of process duration

B: belt speed [m/s] (from (24 fi)/(60 s) to (24 fi)/(600 s)) as a function of

process duration

o=0.0092: steam cost [$/kg]

B=O.30: electricity cost [$/kWh]

7:0.18: natural gas cost [$/kg]

u=7.7l: product value [$fkg] (3.50 S/lbs)

(p=4.19: raw patty price [$/kg] (1.90 $/lbs)
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N34: loading capacity of patties per unit length of oven [kg/m] (258 patty

(120X10mm) on cooking area assumed)

I 0:5: amount of steam per hour proportional to the process humidity (linear

relationship was assumed from 90%-1,000 lbs/hr required) [kg/(h'%MV)]

I 0:0.33: electricity demand unit flow rate of air [kW/(m3/h)]

I K=2E-82 kg of natural gas to produce 1 J [kg/J]

I f: fraction of nozzle open area (0.0683): total slot open area per total belt

area or cooking zone area

I L=7.32: cooking zone length (24 ft) [m]

I w=1.85: width of conveyor belt [m]

I A=L><w=13.6: cooking zone area (146 ftz) [m2]

I m=64.6: total product weight on cooking area (43 X6=258 patties><113.5

g=29.3 [kg]

Control variables:

I T: Process temperature [°C]

I H: Process humidity [%MV]

I V: Impingement exit velocity [m/s]

I t: Process duration [5]

Explicit constraints:

I Upper and lower bound ofT, H, and V (Equation [4.26—28])

I Cooking duration can be expressed via belt speed:

Bf,L(= 0.012) s B s Bf,U(= 0.12) [m/s]
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Implicit constraints:

I The constraints, such as microbial lethality, internal color change, and surface

color, are imbedded in the cooking model implicitly.

Assumptions:

I JSO-IV was assumed to have no transitional (inlet or outlet) cooking/equilibration

zone (e.g., steam tunnel), and was therefore assumed in this entire project to be

just a impingement zone.

I Only steady-state operation was considered.

The above objective function seems like a linear function, but it is nonlinear,

because of the nonlinear cooking model. Thus, global optimization techniques were

applied to the problem. Different cooking models (FEM and SNNM_S) were used for

comparison. Even though the parameters of the above equations were estimated by guess,

the effect of parameters was assessed through sensitivity analysis.

4.8 Programming and Computation Tools

A high level computing language, MATLAB® (The MathWorks, Inc., Natick,

MA), was used for all the computer programming ofthe research, because of its

convenience of handling matrix and vector formulations, which are the major operations

of artificial neural networks, optimization algorithms, and finite element modeling. Also,

neural network toolbox 4.0.1 in the MATLAB 7.0.0 provides neural networks, such as

GRNN and FFNN, which were used in the computer codes.

High performance PC’s (3.2 GHz, Intel Pentium 4 hyper threaded) were used to

run the optimization algorithms using GRNN and FFNN. To run optimization algorithm
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coupled with FEM, server computers (Sun Fire v880, 4 UltraSPARC-III 750MHz 64 bits

CPU) were used.

By using those computers, approximately >20,000 FEM runs, > 20,000 ANN runs,

and >100 optimization runs were calculated. In total, all of these runs required an

estimate of >250 h ofCPU time.

110



5 RESULTS AND DISCUSSION

5.1 Integrated Process Model Performance

The integrated process model was developed by adding quality prediction kinetics

(Section 4.3.3 and 4.3.4) to the existing finite element model (Watkins, 2004) that was

previously validated (Section 4.3.1). The performance of the integrated model was tested

qualitatively with various control profiles, but not quantitatively, because of the lack of

actual experimental data encompassing the complex output from the model. Even though

the accuracy of the model was not measured with experimental values, a reasonable

working model is sufficient to test the effectiveness of various Optimization techniques

and alternative models. Figure 5.1 and Figure 5.2 are example model predictions under

constant control profiles and dynamic control profiles, respectively.

Although there were huge log reductions in some cases, the predicted log

reduction ofSalmonella and internal color change were used without truncation at the

target log reductions (6.5 and 1.4, respectively) to increase the performance of neural

networks. In some cases, instability of the prediction of yield and surface temperature

were observed at the very early stage. However, the instability was minimized by

decreasing the time step of model calculation from 1 to 0.5 second.

The surface color prediction in the moist process condition (Sec. 4.2.4) was well

represented in Figure 5.1 and Figure 5.2, which represent high and low humidity process

conditions, respectively. The surface color change in Figure 5.1 showed a very slow rate

throughout the process, because the surface temperature could not reach the process dew

point temperature (2197.2 °C dew point, 90%MV). Under the ambient dew point

temperature, condensation of moisture is predominant on the surface of a patty, which
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suppresses the browning reaction. However, the surface temperature in Figure 5.2 was

much higher than the highest dew point temperature (281.7 °C dew point, 50%MV),

which accelerated the simulated browning reaction on the surface. In Figure 5.2(d),

surface color change remained within upper (0.497) and lower (0.263) bounds for about

200 seconds in the later stage.

5.2 Training and Optimizing Neural Networks

5.2.1 Dynamic Neural Network Model (DNNM)

The DNNM was developed by using four GRNN trained with a training data set

(in data group D1) consisting of 53,442 states that were sampled out of the 910 results of

the finite element model, according to the dynamic training methodology of the Section

4.4.3. The only network parameter of the GRNN was “spread”, which determines the size

of receptive field of the network. In this study, each “spread” was determined at a point

minimizing RMSE of each GRNN (yield, Salmonella inactivation, internal color change,

and surface color change) in DNNM. Firstly, the networks were trained with data group

D1, and their prediction RMSE for each trial “spread” was computed by using 100

random data sets from data group D2 and plotted with respect to each trial “spread”

(Figure 5.3).

The DNNM consisted of four different GRNN. For the yield prediction GRNN,

0.25 was determined as the optimal “spread” around the lowest RMSE. For the other

constraint GRNN, 0.2 was to be a commonly optimal “spread.” Thus, those optimal

“spreads” were used to train each GRNN that was specific for each of the four outputs.
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Figure 5.3 Optimal “spread” values at the lowest RSME were determined by trying

“spread” for each GRNN in DNNM: (a) Yield prediction; (b) Salmonella

inactivation, internal color change, and surface color change.
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5.2.2 Static Neural Network Models (SNNM)

5.2.2.1 SNNM for random and single-stage process

The optimal number of neurons for each hidden layer needs to be determined for

SNNM_R (SNNM for random process), because the model uses a feed-forward neural

network. The optimal number ofneurons of the two hidden layers was determined by

simulating 9 different combinations. The combinations were designed with full factorial

(5, 20, and 40 neurons). The RMSE for yield, Salmonella reduction, internal color change,

and surface color change were calculated for each combination. However, the RMSE of

each category could not be compared with each other, due to the scale of each category.

Thus, to determine the optimal combination of neurons, the RMSE ofeach category was

normalized with its possible maximum value (100, 10, 10, and 2) and averaged. Then the

averages of the normalized RMSE were compared with each other.

The lowest average of the normalized RMSE (0.029) was observed with the

combination of40 and 20 neurons in the first and second hidden layer, respectively

(Figure 5.4). Therefore, two hidden layers containing 40 and 20 neurons were used for

the architecture of SNNM for the random process (SNNM_R). This architecture was also

used for the training of SNNM for a single-stage process (SNNM_S), without validation,

because the effect of the variation of the number ofneurons was insignificant by

observation.
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Hidden Layer

 

Neurons of the First

Hidden Layer

Figure 5.4 Average normalized RMSE of each combination for the number of

neurons in each hidden layer of SNNM_R.

5.2.2.2 SNNM for double-stage and multi-zone process

The SNNM for double-stage (SNNM_D) and multi-zone processes (SNNM_M)

was developed by using GRNN instead of FFNN, because of the poor performance of

FFNN by trial and observations. Various values for “spread” were tested in terms of

RMSE. Because the SNNM had a neural network to predict yield, Salmonella reduction,

internal color change, and surface color all at the same time, the “spread” should be

chosen by negotiating among RMSE of the outputs. The “spread” for SNNM_D was

negotiated around 0.6, which gives more accuracy to constraints prediction than goal

prediction (Figure 5.5). Also, 0.55 was chosen for the “spread” ofGRNN_M by

negotiating accuracies among outputs (Figure 5.6). Other values can be used as long as

those values are not offset too much from a reasonable “spread.”
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Figure 5.5 RMSE (yield, Salmonella inactivation, internal color change, and surface

color change) of SNNM_D for different “spread” values.
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Figure 5.6 RMSE of SNNM_M for different “spread” values: (a) Yield prediction;

(b) Constraints prediction.
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5.3 Validation of the Trained Neural Networks

5. 3.1 The Performance ofDNNM

5.3.1.1 DNNM for Random Fourier Process

To increase the accuracy for yield, Salmonella inactivation, internal color change,

and surface color change prediction, four DNNM’s were trained by using GRNN. For

validation of the networks, 1,000 conditions were generated randomly by varying the 20

coefficients of the Fourier series for each control vector (temperature, humidity, and

impingement velocity) and cooking duration. Thereafter, the 1,000 conditions were

applied to the finite element model, and 1,000 resultant data were obtained. The

conditions at every 10 seconds and the initial state values were cast to the four

individually trained DNNM, and the output vectors were compared with the result of the

finite element model. The accuracy of the trained DNNM was calculated in terms of

RMSE (Table 5.1).

Table 5.1 The performance of DNNM for a random data group (D2 of Table 4.4), in

terms of RMSE.

 

 

 

Salmonella lntemal Color Surface Color

Yield Inactivation Change Change

[%] (>0.813)** (>0.146)** (0.26~0.497)

[103(10g(N/No))] [10g(logLC/Co))] [10g(C/Co)]

RMSE 2.05 0.63 0.55 0.12

Number Of 1,000 1,000 1,000 999*
Samples

RMSE: Root mean squared error.

* One of the data in the 1,000 samples was eliminated due to overflow.

** log of critical limit for each factor (O.813=log(6.5), 0.146=log(1.4))

Figure 5.7 shows several example of the network prediction qualitatively. In

Figure 5.8, the performance of the individual DNNM was represented graphically.
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The slope (0.98) of the regression line of yield (Figure 5.8 (a)) prediction was

close to l, and the intercept (1.83) was also small, which means that the model represents

the characteristics of the finite element model. Even though some points deviated more

than 10% from the 1:1 line, the overall accuracy was fairly good (RMSE = 2.05).
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Figure 5.8 The performance ofDNNM for random process as a predictor and

classifier. (a) Yield; (b) Salmonella inactivation; (c) Internal color change; (d)

Surface color change (some data in NE region was not plotted).
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The Salmonella inactivation results were divided into four regions, with a

crosshairs at the value 0.813 (=log 6.5) in Figure 5.8 (b). Salmonella inactivation works

as a constraint in the actual optimization problem. There are two critical aspects of the

model prediction: constraints satisfaction (i.e., classification) and goal prediction

accuracy. If there is an order of priority between those two aspects, the constraints

satisfaction must be placed first, because it determines whether a process “passes”.

Therefore, the prediction results were analyzed according to classification categories

(Table 5.2).

The samples in the true-fail region (Figure 5.8 b) are under-cooked sample, in

terms ofmicroorganism inactivation. Again, the samples in the true-pass region passed

the critical standard log reduction value. However, some points in the false-fail region

were under-estimated samples, which mean safe estimation while sacrificing chance to be

explored. In the false-pass region, there were about 1.7% of over-estimated samples out

of the 1,000 points, which was an small number of false-passes. However, the false-pass

region is the most dangerous one that must be avoided among the classification

categories.

Table 5.2 Four possible classification categories of the constraints satisfaction.

 

Neural Network Prediction
 

 

FEM Prediction Pass Fail

Pass True-pass False-fail

Fail False-pass* True-fail
 

* Most dangerous prediction

Plot (c) in Figure 5.8 shows the result of internal color change prediction. With

the same rationale as the Salmonella inactivation case, samples in the true-pass, true-fail,
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and false-fail region are considered as safe classification. Only a small portion (53 points)

of the 1,000 data points is located in the false-pass region, which is not desirable.

Data points in Figure 5.8 (d), were divided into 9 regions, because the surface

color change constraint has lower (0.26) and upper critical limits of (0.497). The points in

the true-fail, true-pass, and true-fail region were classified correctly and safely. However,

about 11% of the 1000 points in the two false-pass regions were classified as a dangerous

category.

Generally, the trained DNNM showed good prediction and classification

performance for the random process, even though the DNNM was trained by using the

results of constant processes. The false-pass region is inevitable for a model, but the

region must be avoided when the optimization algorithms explore solution space with the

model.

Among the 1,000 random data, 170 points that satisfied the safety and quality

constraints were sorted out and superimposed on the yield plot (Figure 5.9).
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Figure 5.9 Accepted patties (170 patties) were superimposed on the 1,000 random

data.
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The accepted patties were located between 36% and 51% yield. This fact does not

mean that the optimal solution may exist in this range. Rather, the optimal point may be

in some region beyond 51%, but with a very low probability. However, GRNN based

dynamic neural network model can search the region beyond 51%, because of the nature

of the model, which is explained in detail in the Section 4.5.4. Also, the plot implies that

optimization algorithms will progress fast in this range (36 - 51%), because of the high

density of training data.

The performance of a neural network can be measured by two different criteria,

depending on the characteristics of the network. Goal network predicting scalar, such as

patty yield, can be estimated via the RMSE. However, constraint networks that determine

“Yes” or “No”, “Passed” or “Failed”, or “True” or “False” (such as safety and quality)

can be estimated by using classification rate. In Table 5.3, the classification rates of

DNNM as a constraint network were divided in four categories. A critical value is the

error of classification for false-pass category. The rate was 0.15 for DNNM network

applied to random processes.

Table 5.3 Classification rate ofDNNM for random processes.

 

Classification Categories
 

 

 

 
 

Correct Incorrect

True-pass* True-fail False-fail False-pass Total

NN prediction 170 647 71 112 1,000

JFEM results) (241) (759) (241) (759) (1,000)

R,“ 0.71 0.85 0.29 0.15
 

* Sample passed all constraints (Salmonella inactivation, internal color change,

and surface color change)

** Rate of classification = DNNM prediction / FEM results
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5.3.1.2 DNNM for Single-Stage, Double-Stage, and Multi-Zone Process

DNNM is a dynamic neural network model, which can be applied to any type of

input patterns. Therefore, the performance of the DNNM must be general and robust. To

measure the robustness, the performance ofDNNM was measured for single-stage,

double-stage, and multi-zone processes.

Randomly produced single-stage, double-stage, and multi-zone data were applied

to the DNNM, and RMSE’s for yield, Salmonella inactivation, internal color, and surface

color prediction were calculated for each case (Table 5.4). The RMSE of the single-stage

case showed good accuracy for goal prediction (yield, 1.67%) and constraint predictions

(0.49 for Salmonella inactivation, 0.42 for internal color change, and 0.76 for surface

color change). Such accuracy was possible, because the DNNM was trained with single-

stage data. It is not strange that the accuracy for the multi-zone case was not much

different from the accuracy of the single-stage case, because the multi-zone process has a

similar input data pattern to the single-stage, except for a variable velocity profile.

Generally, the accuracies of double-stage and multi-zone cases were in the reasonable

range, which supports the robustness of the dynamic neural network model.

Table 5.4 The performance ofDNNM for single-stage, double-stage, and multi-zone

processes in terms of RMSE.

 

  

 

 

Salmonella lntemal Color Surface Color

Yield Inactivation Change Change

[%] (>0.813)** (>0.146)** (0.26~0.497)"

Process Type Performance [log(log(N/No))] [log(log(C/Co))] [logiC/CM]

Single-stage 23:33:) 1.67 (998*) 0.49 (998*) 0.42 (998*) 0.76 (998*)

Double-stage (1:11:35) 3.22 (994*) 1.20 (994*) 1.04 (994*) 0.90 (990*)

Multi-zone RMSE

Process (# data) 1.91 (1,000) 0.57 (1,000) 0.50 (1,000) 2.09 (999*)

 

RMSE: Root mean squared error

* Some data in the 1,000 samples was eliminated due to computation overflow.

** Critical limits
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Figure 5.10 shows validation plots ofDNNM for the single—stage oven. All the

predictions were very close to the 1:1 line. Other validation plots for double-stage

(Appendix A: Figure A.l) and multi-zone process (Appendix A: Figure A.2) can be

found in the appendix.

The performance ofDNNM for various processes was also measured in terms of

the rate of classification (Table 5.5). Classification rate for false-pass category for the

single-stage case was very low (0.02) as expected. However, false-pass rates for double-

stage process were high compared with the other processes. DNNM is a robust model but

is not perfectly free from the characteristics of training data sets, which is a single-stage

process. The double-stage process deviates more from a single-stage process than does

the multi-zone process, and therefore shows the highest false-pass error for DNNM

among other process types.

Table 5.5 Classification rate ofDNNM for single-stage, double-stage, and multi-zone

processes.

 

Classification Categories
 

 

 

 

 

 

 

 

P Correct Incorrect

TOCCSS

Type . ' False-

True-pass“ True-fall False-fall pass Total

. NN prediction 162 785 38 15

Sgggle' (FEM results) (200) (800) (200) (800) (1,000)

g" R," 0.81 0.98 0.19 0.02

NN prediction 80 682 116 122

ngle' (FEM results) (196) (804) (196) (804) (1,000)

g R, 0.41 0.85 0.59 0.15

Multi- NN prediction 129 772 71 27

zone (FEM results) (200) (799) (200) (799) (9991)

Process Rc 0.65 0.97 0.36 0.03
 

* Sample passed all constraints (Salmonella inactivation, internal color change,

and surface color change)

" Rate of classification = DNNM prediction / FEM results

1' Some data was eliminated due to computation overflow.
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Figure 5.10 Goal and constraints prediction performance of the DNNM for single-

stage process: (a) Yield; (b) Salmonella inactivation; (c) Internal color change; (d)

Surface color change.
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Figure 5.10 (Cont’d)

((1)

Surface Color Change (log(C/CO)) by FEM
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5.3.2 The Performance ofSNNM

The performance of a static neural network model is specific to the training data,

which is in contrast to the performance of the DNNM trained by a single data group D1.

Four different SNNM were trained by using random, single-stage, double-stage, and

multi-zone process data. The training data for single, double, and multi-zone process

were generated according to Section 4.4.2. Then the feed-forward neural network was

used for all predictions (yield, Salmonella inactivation, internal color change, and surface

color change). However, the feed-forward neural network was not trained well for double

and multi-zone processes. Thus, a generalized regression neural network was used for

double and multi-zone processes, and improved results were obtained.

The performances of the trained SNNM were validated by using test data groups

in terms ofRMSE (Table 5.6). The RMSE of yield for random and single-stage

processes were 1.78 and 2.52, which were much smaller than the RMSE for double-stage

and multi-zone process. For safety and quality constraints, the same was true. In addition,

training result of SNNM for the double-stage and multi-zone process, in terms ofRMSE

and correlation coefficient, were poor (Figure A.4 and Figure A5 in appendix A).

The performance of SNNM for 1,000 random processes was graphically

represented in Figure 5.11. Compared to the performance of the DNNM (Table 5.1) for

random processes, the SNNM were more accurate for yield, Salmonella reduction, and

internal color change. Surface color change prediction accuracy was almost identical.

130



T
a
b
l
e
5
.
6
T
h
e
p
e
r
f
o
r
m
a
n
c
e
(
R
M
S
E
)
o
f
S
N
N
M

f
o
r
r
a
n
d
o
m
,
s
i
n
g
l
e
-
s
t
a
g
e
,
d
o
u
b
l
e
-
s
t
a
g
e
,
a
n
d
m
u
l
t
i
-
z
o
n
e
p
r
o
c
e
s
s
e
s
.

 

S
a
l
m
o
n
e
l
l
a

l
n
t
e
m
a
l
C
o
l
o
r

S
u
r
f
a
c
e
C
o
l
o
r

Y
i
e
l
d

I
n
a
c
t
i
v
a
t
i
o
n

C
h
a
n
g
e

C
h
a
n
g
e

P
r
o
c
e
s
s

[
%
]

(
>
0
.
8
l
3
)

(
>
0
.
1
4
6
)

(
0
.
2
6
~
0
.
4
9
7
)

T
y
p
e

P
e
r
f
o
r
m
a
n
c
e

[
l
o
g
(
l
o
g
(
N
/
N
0
)
)
1

[
l
o
g
(
l
o
g
(
C
/
C
o
)
)
]

[
l
o
g
(
C
/
C
0
)
]

131

R
a
n
d
o
m

R
M
S
E

1
.
7
8

0
.
3
5

0
.
2
8

0
.
0
9
 

N
1
,
0
0
0

l
,
0
0
0

l
,
0
0
0

9
9
9
*
 

S
i
n
g
l
e
-
s
t
a
g
e

R
M
S
E

2
.
5
2

1
.
3
8

0
.
9
2

0
.
1
5
 

N
l
,
0
0
0

l
,
0
0
0

l
,
0
0
0

9
9
9
*
 

D
o
u
b
l
e
-

s
t
a
g
e

R
M
S
E

6
.
3
2

2
.
5
6

1
.
7
0

0
.
2
0
 

N
l
,
0
0
0

l
,
0
0
0

l
,
0
0
0

1
,
0
0
0
 

M
u
l
t
i
-
Z
o
n
e

P
r
o
c
e
s
s

R
M
S
E

5
.
4
8

2
.
2
2

1
.
4
6

0
.
1
7
 

N
1
,
0
0
0

l
,
0
0
0

l
,
0
0
0

9
9
9
*
 

N
:
N
u
m
b
e
r
o
f
d
a
t
a

*
*
S
o
m
e

d
a
t
a
i
n
t
h
e
1
,
0
0
0
s
a
m
p
l
e
s
w
e
r
e
e
l
i
m
i
n
a
t
e
d
d
u
e

t
o
c
o
m
p
u
t
a
t
i
o
n
o
v
e
r
fl
o
w
.



.
3

O D

l

o
n

O

1

Y
i
e
l
d
b
y
S
N
N
M
_
R

[
%
]

 

  
0 20 40 60 80 100

Yield by FEM [%]

(a)

   

  

  

 

/

“+5.4 / /‘

 

Salmonella Inactivation (Iog(log(N/N0))) by

FEM

(b)

S
a
l
m
o
n
e
l
l
a

I
n
a
c
t
i
v
a
t
i
o
n
(
l
o
g
(
|
o
g
(
N
/
N
0
)
)
)
b
y

 

Figure 5.11 Goal and constraints prediction performance of the SNNM for random

Fourier process condition: (a) Yield; (b) Salmonella inactivation; (c) Internal color

change; ((1) Surface color change.
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(d)
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Suface Color Change (log(C/CO)) by FEM

Figure 5.11 (cont’d)
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The performance of the SNNM as a classifier was also measured (Table 5.7).

Although false-pass rates were similar to each other, false-fail rates of the double-stage

and multi-zone process were double those for random and single-stage processes. Based

on RMSE and classification rate, SNNM’s for double-stage and multi-zone processes

were a poor predictor and classifier, and are therefore not appropriate for further

utilization. Therefore, those two SNNM were not used with optimization algorithms. The

reason of such a poor performance could be some problem with the training data group or

inappropriate neural network type.

Table 5.7 Classification rate of SNNM for random, single-stage, double-stage, and

multi-zone process.

 

Classification Categories
 

 

 

 

 

 

 

 

 

 

Process Correct Incorrect

Type True- False- False-

jass“ True-fail fail pass Total

Random NN prediction 190 702 53 55

Process (FEM results) (243) (757) (243) (757) 41,000)

Rc 0.78 0.93 0.22 0.07

Single- NN prediction 146 739 53 62

stage (FEM results) (199) (801) (199) (801) (1,000)

Rc 0.73 0.92 0.27 0.08

Double- NN prediction 90 729 107 70

stage (FEM results) (197) (797) (197) (797) (9961')

Rc 0.46 0.91 0.54 0.09

Multi- NN prediction 99 733 104 63

zone (FEM results) (203) (796) (203) (796) (9991)

Process Rc 0.49 0.92 0.51 0.08
 

"‘ Sample passed all constraints (Salmonella inactivation, internal color change,

and surface color change)

RC: Classification rate = NN prediction / FEM results.

1' Some data was eliminated due to computation overflow.



5.4 Benchmark Test for Optimization Algorithms

A Bezier curve fitting problem (Section 4.6.5) was solved with three Optimization

algorithms (GA, SA, and ICRS), and the results were compared (Table 5.8). Ten

simulations were executed for each algorithm, and the average and variance were

calculated. The lowest average RMSE was achieved by the ICRS algorithm. The three

average RMSE were statistically compared, and the averages were not significantly

different from each other (F-value=1 .42; p-value=0.26). In other words, their

performances were almost identical.

Table 5.8 Comparison of the convergence of three different optimization algorithms

in terms ofRMSE for the Bezier parametric curve fitting problem.

 

 

 

RMSE

Algorithms Simulations Average Variance

GA 10 0.4804 0.1334

SA 10 0.2871 0.0586

ICRS 10 0.2580 0.1167
 

GA showed a gradual and moderate rate of convergence through out the total 200

generations (Figure 5.12 (a)). SA showed lots of exploration at the early stages but not

many in the later iterations (Figure 5.12 (b)). The ICRS algorithm converged before the

20th iteration (Figure 5.12 (c)). However, this does not mean that the ICRS is the fastest

algorithm, because the execution time for one generation is heuristic, which is different

from the other algorithms.
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Figure 5.12 Examples of objective function value (RMSE) for every generation of

three different optimization algorithms in the Bezier parametric curve fitting

problem. (a) GA; (b) SA; (c) ICRS.
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Generally, all computer codes for the optimization algorithms successfully

optimized the Bezier curve-fitting problem. However, the speed of the algorithms could

not be compared, because the total execution time depends on the values of the algorithm

parameters.

5.5 Optimal Conditions from the Various Strategies

5. 5.1 Summary ofthe Various Optimization Strategies

To understand comprehensive characteristics of specific optimization strategies

for meat patty cooking under moist air impingement conditions, three models, two

control profile parameterization methods, and three optimization algorithms were

combined (Table 5.9) and tested. However, the SNNM-PLI combinations (strategy #17,

#18, and #19) were not tested, because ofproblem previously described (Section 4.6.1)

The highest maximum yield (73%) was achieved with the ICRS-FEM-PLI

strategy (#3), and the second highest yield (70%) was achieved with SA-FEM-FS

(strategy #6). However, neural network model based optimization strategies showed

constraints satisfaction problems, meeting safety and quality constraints. This is an

expected classification error, because those alternative models were trained using FEM

results, which was considered as an experiment in this research. However, even though

the FEM-based optimization strategies satisfied all the constraints, those might actually

not be free from the constraint satisfaction problem, if the results were validated with

actual field experiments.
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Table 5.9 Brief results of the various optimization strategies.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

         

Max Convergence

1 . . ’ Constraints and Optimal

Model CP Algorithm Strategy Y1};l]d Satisfaction Profiles

0 (Appendix A)

Figure A.6

GA 1 56 S Figure A.7

Figure 5.15
PLI SA 2 64 S Figure A.8

Figure 5.13
ICRS 3 73 S Figure 5.14

FEM Figure A 6

GA 5 60 S Figure A.7

Figure 5.15
FS SA 6 70 S Figure A.8

Figure 5.13
ICRS 7 65 S Figure 5.14

Figure A.9

GA 9 57 US Figure A. 10

Figure A.11
PLI SA 10 52 US Figure A.12

Figure A. 13

ICRS 11 60 US Figure A. 14

DNNM Figure A 9
GA 13 69 US Figure A. 10

Figure A.11
FS SA 14 49 S Figure A. 12

Figure A. 13
ICRS 15 55 US Figure A.14

GA 17 N/A N/A N/A

PLI SA 18 N/A N/A N/A

SNNM_ ICRS 19 N/A N/A N/A

R GA 21 51 S Figure A. 15

PS SA 22 53 US Figure A. 16

ICRS 23 54 S Figure A.17
 

l

S: Satisfied; US: Unsatisfied

Control profile parameterization method
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Generally speaking, FEM based approaches were the slowest approaches, and DNNM

and SNNM-based approaches were much faster, while sacrificing accuracy. All the

different strategies converged at the end of the optimization process (Figure 5.13, strategy

#3). However, all the converged optimal control profiles were not consistent with each

other, which implies that the solution domain might be highly multi-modal and

constrained. In addition, the total number of control parameters was 64 in this study,

which made it somewhat difficult to achieve uniform and consistent optimal yields and

profiles. Even so, some strategies showed meaningful optimal control profiles,

suggesting stepwise control policies in Figure 5.14 and Figure 5.15 . Polynomial

regression curves were added to the PLI profiles to illustrate general trends in process

conditions. Convergence and optimal control profiles of the other strategies can be found

in Appendix A.
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Figure 5.13 ICRS-FEM optimization process and convergence (strategy #3): (a) PLI

parameterization; (b) FS parameterization.
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Figure 5.14 Optimal control profile of temperature, humidity, impingement velocity,

and cooking duration found by ICRS-FEM optimization strategy (strategy #3): (a)

PLI parameterization; (b) FS parameterization.
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and cooking duration found by SA-FEM optimization strategy (strategy #6): (a) PLI

parameterization; (b) FS parameterization.
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5. 5.2 Optimization Performance ofthe Alternative Models Coupled with Algorithms

In this research, FEM was used as a replacement for actual experiments.

Therefore, the results ofDNNM and SNNM were compared with FEM results to test the

performance of alternative models when those models were coupled with various

optimization algorithms.

To measure the model performance via speed, the execution time of the model

itself was measured by using the MATLAB profiler function and constant control profiles

(600 seconds process duration). FEM, DNNM, and SNNM took 140, 16, and 0.22

seconds, respectively. Compared with FEM, therefore, DNNM and SNNM showed huge

benefit in total execution time of algorithms, due to the iterative nature of the algorithms.

In addition to the execution speed, the model performance was measured via

prediction accuracy, in terms of constraints satisfaction. Table 5.10 showed that most of

the cases committed false-pass classification errors, except three cases (strategy #14, #21,

and #23).

Table 5.10 Predicted goal and constraint values ofDNNM and SNNM, compared

with the result of FEM.

 

 

 

 
  

 

 

 

 

 

 

 

 

 

Objective Constraints

S Salmonella log lntemal color Surface color

trate . reduction change change

gy Y‘e'd [%] (>0.8l3) (>0. 145) (0.26~0.497) 5

(Table [log(log(N/No))] [logflg(C/Co))] [log(C/Co)]

Model 5.9) A F E [%] A F A F A F

9 57 44 29 1.44 4.01 0.15 2.19 0.27 >100*

10 52 48 9 1.48 1.76 0.15 0.29 0.26 0. l 7*

DNNM 1 l 60 57 5 1.47 3.09 0.15 1.43 0.45 0.22“

13 69 65 6 1.71 -0.93* 0.15 -2.14* 0.39 0.15*

14 49 44 13 1.61 3.33 0.15 1.66 0.27 0.37 P

15 55 50 10 1.7 1.41 0.19 -0.04* 0.30 0.27

21 51 47 10 1.64 2.37 0.15 0.80 0.26 0.32 P

SNNM 22 53 51 4 1.64 1.87 0.15 0.37 0.26 0.21*

23 54 48 13 1.65 2.78 0.15 1.14 0.26 0.41 P
 

A: alternative model prediction; F: finite element model result; S: constraints satisfaction status; P: passed

all the three constraints; E (Prediction error) =100>< IA-F I / F [%]; *: Unsatisfied constraint
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Also, the prediction error for yield of those successful cases were 10 to 13%.

Another interesting point was that there were more false-pass classification errors in

surface color change prediction than the other two constraints, indicating that the surface

color change is reacting sensitively to the control profiles.

5. 5.3 Efficiencies of Various Strategies

Efficiency of an optimization can be measured by dividing total goal achievement

by total execution time (Equation [5.1]).

5A =IYmax “YoI/texe [5-1]

However, comparing efficiencies of multiple strategies based on absolute fair conditions

seemed impossible, because of the various parameters in the algorithms and a heuristic

search algorithm. Although absolute comparison was difficult, total execution time and

achieved maximum yield are provided in Table 5.11.

To measure combined performance of each strategy, averaged execution time per

unit iteration was defined, which was calculated at the point where a strategy converged

to 99% of the final converged value. Generally, the efficiencies ofDNNM and SNNM

were higher than the efficiency ofFEM, due to fast convergence. However, the efficiency

does not account for accuracy. The efficiencies in Table 5.11 do not provide an absolute

fair comparison, but provide a rough reference. Even though a fair comparison was

impossible, the performance of the optimization algorithms thereby can be viewed

qualitatively.
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Table 5.11 Total execution time and the achieved maximum yield for various

optimization strategies.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             

Algori Yo Ymax D 8A

Model CP thm Strategy No.99% tG ten [%] [%] [%] [% mid/s]

GA 1 86 1.33 114.38 48 56 8 0.07

PLI SA 2 95 10.94 1039.30 40 64 23 0.02

FEM ICRS 3 46 6.72 309.12 38 73 34 0.1 1

GA 5 165 0.58 95.70 53 60 6 0.07

FS SA 6 127 4.9 622.30 40 70 29 0.05

ICRS 7 96 6.03 578.88 53 65 11 0.02

GA 9 554 0.08 44.32 52 57 5 0.1 l

PLI SA 10 130 0.48 62.40 43 52 9 0.14

ICRS 11 231 0.23 53.13 48 60 12 0.22

DNNM GA 13 215 0.05 10.75 51 69 17 1.60

FS SA 14 147 0.12 17.64 38 49 11 0.62

ICRS 15 7 0.08 0.56 38 55 16 28.91

GA 21 23 0.0039 0.09 50 51 l l 1.59

SNNM FS SA 22 N/A 0.00044 N/A N/A N/A N/A N/A

ICRS 23 26 0.0034 0.09 48 54 5 59.39
 

CP: Control profile parameterization; Now/.1 Iteration number achieving 99% of the final objective value;

to: Averaged execution time per iteration; texe: total execution time; Yo: Initial objective value; Ymax:

Final objective value; D: [Yo-Ymax]; 8A: Optimization efficiency [% yield/s]

Strategy #l~7 were run on Sun Fire V880 (4 UltraSPARC-III 750MHz 64 bits CPU), and 9~23 were run on

PC (3.2 GHz, Intel Pentium 4 hyper threaded). Thus, to compare with FEM results, time must be multiplied

by about 4.5.

Global optimization has exploration and exploitation features in its algorithm.

Figure 5.16 shows how the control variables converge throughout the whole optimization

process in GA, SA, and ICRS. In GA (Figure 5.16, (a)), there is no distinct point dividing

exploration and exploitation mode, because the algorithm has the two features in every

generation. However, in SA, there is a distinct section of exploration, which is over 50%

of the entire optimization process, which indicates the algorithm was effective for

searching many possibilities at the early stages of optimization. Following exploration,

the exploitation process gradually starts as the process goes to the later stage of

optimization. However, the exhaustive exploration at the early stage could be negative to

the efficiency of SA algorithm, especially when the process model is slow. Compared
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with SA, ICRS showed no distinctive section of exploration and exploitation; rather, it

was gradual. Therefore, ICRS could avoid exhaustive searching at the early stage by

transitioning smoothly from exploration to exploitation within a small number of iteration.
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exploitation features of the optimization algorithms: (a) GA-FEM—PLI (strategy #1);

(b) SA-FEM-FS (strategy #6); (c) ICRS-FEM-PLI (strategy #3).
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5. 5.4 Constraints Satisfaction Problem

To analyze the search pattern of a DNNM or SNNM based optimization strategy

that is committing false-pass classification errors frequently, the search pathways were

validated with FEM results. A typical example is presented in the Figure 5.17. The

performance index or goal (yield) moved along the 1:1 prediction line, even though the

accuracy was not high (Figure 5.17 (a)). However, the search algorithm traveled to the

false-pass region at the later stage of optimization for all three constraints. This strange

behavior was likely due to erroneous moves that had small slope in the validation plot.

However, if the pathways of the constraints are guided to follow the 1:1 line, the

possibility of the erroneous move can be reduced.

Therefore, a directional constraints satisfaction (DCS) algorithm was developed

and implemented in the ICRS algorithm. The DCS algorithm guides the progress of

constraints in one direction, which is determined at the starting point, until no progress is

observed, and then turns the direction into a direction of more progress. This alternate

process is kept until the goal is converged. Figure 5.18 shows an example of a DCS

implemented ICRS algorithm search behavior. In the figures, all three constraints moved

along the 1:1 line without deviatory moves, even though a constraint fell into a false-pass

region. Another positive side effect is that the pathway of the goal was also straight,

which means fast convergence. However, the goal achieved was relatively lower than the

algorithm without DCS. This drawback might be possible, because the search algorithm

was initially constrained in one direction while sacrificing explorations chances.
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Another strategy to avoid false-pass classification errors is using under-estimated

conditions as a starting point of the optimization algorithm. For strategy #23, a highly

under-estimated point was intentionally used as a starting point, which was successful in

avoiding false-pass classification error throughout the several simulations.

5. 5.5 Sensitivity ofthe Optimal Control Profiles

Monte Carlo simulation was applied to the optimal solutions to check the

sensitivity of the answer by using Equation [5.2]:

17i=pi+0-1‘ [5.2]

By using control parameter (p,) as an average, a normal distribution (F), and a practical

standard deviation (0), a perturbed control parameter (5,- ) was generated for 64 control

parameters. The standard deviations were set as follows: 1 for PLI parameters, which

means actual perturbation of2H (°C, %MV, m/s, and s) and 0.01 for PS parameters,

which perturbs control profiles with almost the same magnitude of the PLI case, except

process duration (=1). A total of 100 simulations were executed for the optimal results of

strategy #3 and #6, because these were the first and the second best results, in terms of

patty yield.

For strategy #3 (FEM-PLI-ICRS), 37 simulations showed computational overflow,

and the other 63 simulations gave proper predictions (Table 5.12). However, all the 64

simulations were rejected due to the constraints satisfaction test. This is a reasonable

result, because the search algorithm locates a final solution with very small stepsize

moves in all directions, which result in a solution very close to the constraint boundaries.

If this high sensitivity of the optimal solution is also true to actual experiments, the
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adoption of the optimal solution must be careful, because of the variance of the actual

control profiles. Therefore, a sub-optimal solution of strategy #3 was checked for

sensitivity. The sub-optimal solution was arbitrarily chosen at 45th iteration (48 iteration

total). Even though the simulation showed almost the same number of computational

overflows, the risk of failure was lowered from 100% to 85% (Table 5.12), and the

expected average yield was 64.51i2.02 (95% confidence) among 62 non-failed

simulations, compared with 71% for the optimum. The Monte Carlo simulation was also

applied to strategy #6, with standard deviation 0.01 for Fourier coefficients and 1 for

process duration. This case showed less computational overflows, much lower risk of

failure (49%), and higher expected average yield of 68.36i0.62 (95% confidence) than

the case of strategy #3. Therefore, Fourier parameterization can be considered to have

more advantages in real application of the optimal solution in terms of risk of failure.

Table 5.12 Sensitivity of the optimal solutions for FEM_ICRS_PLI and

FEM_SA_FS was obtained by using Monte Carlo simulation.

Number of Total Number Risk of Failure Yield Confidence

 

 

Maximum Failures 0f Samples (Nf/ N1) Interval for N,

Strategy Yield [%] N] N,“* [%] (95% confidence)

#3 73 63 63 100 N/A

71 53 62 85 64.51i2.02*

#6 7O 39 79 49 68.36zt0.62
 

* Among nine true-pass cases, an outlier (20% yield) was excluded

** Among 100 simulations, some simulations failed to predict results due to computational over flow.

The simulation results of strategy #6 were represented by using histograms

(Figure 5.19) to see more aspects of the simulations. Figure 5.19 (a) showed that a point

of 10% deviation from the optimal solution was rare but possible. In contrast, there was

also a possibility to have a little more improved result. The constraints for Salmonella

reduction and internal color change had a small possibility of rejection. However, the

surface color change constraint showed more vulnerability to rejection.
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Figure 5.19 Histograms of objectives and constraints were plotted from the

population of Monte Carlo simulation for the strategy #6: (a) Yield distribution of

passed simulations; (b) Salmonella inactivation distribution; (c) Internal color

change distribution; (d) Surface color change distribution.
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5.6 Case Studies

5. 6. 1 Single-Stage Process

The ICRS algorithm was applied to find optimal constant profiles for a single-

stage oven process. Two independent trials, having different starting conditions, were

made for strategy #25, and the results were summarized in Table 5.13.

Table 5.13 The results of the single-stage optimization process by using ICRS-FEM.

 

 

 

 

 

 

Objective Constraints Control Variables

Surface Color

Salmonella Internal Color Change

Maximum Inactivation Change (0-26~0-497)

Yield (>65) (>14) (0.1 1~0.87)" T H v Pt

Trial [%] [Iog(N/N0)] [Iog(C/C0)] [Iog(C/Co)] [°C] [%MV] [m/s] [5]

1 68* 53.79- 154* 039* 102 97 28 212

1M 57 959.01 21.08 0.27 104 95 28 306

2 57 49.14 1.40 0.31 248 10* 29 222

3" 57 49.14 1.40 0.31” 248 10 29 222

4" 67 47.58 1.40 0.14“ 100 89 29 216

5‘ 67 47.71 1.41 0.26 101 87 10 230
 

* The values are meaningless due to computational failure.

" l7th iteration of trial 1 (21 iteration total).

1' Lower bound was 10% MV that is achievable in practical application.

# Surface color change constraint was relaxed. (0.11~0.87).

I A reduced D-value (=233 s which is the V2 of the original D-value) was used for surface color change

kinetics.

At the first trial, 68% yield was achieved with low temperature (close to 100 °C)

and high humidity (close to 100 %MV) (LTHH) condition. However, the algorithm took

a wrong path at the 17th iteration and showed abrupt improvement ofthe yield, because of

failure of the predictive model at certain conditions (Figure 5.20). Even so, the

optimization process already showed a converging trend at the 13th iteration, and the

result of the 17th iteration was considered as the final converged answer. Therefore, the

maximum yield was 57% at the 17th iteration, with low temperature and high humidity
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condition, which could be a generally accepted operating policy in commercial

application. In addition, the optimal profiles at the17th and the 21St iteration were very

close to each other, except for total process duration.

  

   

    

70 -

55 4 Model failed for 60 “

... correct prediction 58 ,

\° "6'
9;- 60 . 2

>

m ..
0. m

45 ~ ‘1 52 —

40 +1 T _ 50 l T T

0 10 20 0 5 10 15

Generation Generation

(a) (b)

Figure 5.20 Optimization processes for single-stage oven: (a) Process for low

temperature and high humidity optimal profile; (b) Process for high temperature

and low humidity profile.

The second trial (Table 5.13) showed 57% yield with high temperature (close to

250 °C) and low humidity (#10 %MV), which is opposite to the conditions of the 1St trial.

The HTLH (high temperature and low humidity) condition processed the patty minimally

in terms ofSalmonella reduction and internal color change, which was the advantage,

compared with the case of the LTHH. In addition, the total process time is also shorter

than the duration of the LTHH.
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Therefore, those results suggest that the HTLH condition is more favorable for

single-stage cooking, according to the facts found in this optimization. However, this is

opposite to the conventional operating concept in industry, which favors LTHH (or

HTHH) to achieve high yield. The surface color change factor incorporated into process

model might be the cause of this opposite result, because HTLH condition is

advantageous to surface browning.

In addition, the effects of a relaxed constraint and a kinetic parameter change

were studied via trial 3, 4, and 5 in Table 5.13. Trial 3 and 4 were conducted with relaxed

surface color constraints (0.1 l~0.87), which showed two extreme cases, HTLH and

LTHH. These patterns were similar with the patterns of trial 1 and 2 in Table 5.13, except

improved yield (66%) and decreased process time (216 s), which were possible because

the surface color change could go beyond the previous lower bound (0.26) and resulted in

0.14. However, the results of trial 3 were identical with trial 2, which showed that the

increased range of surface color constraint had no effect on this HTLH pattern. For trial 5,

the D-value of surface color change was decreased by half of the original value (7.75

min), which increased reaction rate. LTHH profile was found as an optimal solution,

because the decreased D-value was close to the D-value ofSalmonella inactivation.

Neural network model based optimization strategies were also tested, and the

results were summarized in Table 5.14. The yield prediction accuracies of SNNM were

better the DNNM, even though the model performance ofDNNM was better than SNNM.

The third trial (#27-3 in Table 5.14) was very accurate (2% error) and passed all the

constraints.
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The optimal control profiles found by DNNM and SNNM showed similar

tendency with FEM based optimization. Temperature profile patterns were polarized into

upper and lower limits, while humidity profile patterns were in the mid range between the

upper and lower limits. To avoid frequent false-pass classification errors, the DCS

algorithm was applied to the two trials of SNNM based optimization (#27-1 and #27-2).

Even though one ofthe trials failed to satisfy surface color constraints, the predicted

value (0.26) was close to the result (0.24) ofFEM.

The optimal solutions for the single-stage oven were compared with the previous

actual experiment (Watkins, 2004). The actual experiment was for the single stage moist-

air impingement oven, and the conditions consisted of temperature (121~232 °C),

humidity (50~88 %MV), impingement velocity (11.4~21.8 m/s), and cooking duration

(180~660 8). Among 27 different conditions, 19 conditions were verified as fully-

cooked24 cases, and the yield was ranged from 58% to 73%. Considering the differences

in the constitutions of the sample patties (65.7 % water and 10% fat), patty dimensions,

the process conditions, and the number of quality constraints, the optimal solutions of this

study can be thought to be in a reasonable range.

 

2‘ According to FSIS, required lethalities (6.5-log10 or 7—log10 reduction of Salmonella) are achieved

instantly when the internal temperature of a cooked meat product reaches 71 . 1°C or above.
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5. 6.2 Double-Stage Process

The double-stage process is a simple and practical solution to give dynamics to

the process, via serial arrangement of two single-stage ovens. Two trials with ICRS-FEM

strategy (strategy #29) were conducted, and the results are summarized in the Table 5.15.

The two trials showed consistent results in every aspect. The yields achieved by double-

stage process were 67%, which were about 10% point higher than the yields of single-

stage process. The advantage is not just improved yield, but also the shorter process

duration, which is almost half that of the single-stage process. This is a very encouraging

result for both food processors and oven manufacturers. For food processors, high yield

and short process time increase profits and productivity, which can justify the capital cost

of two ovens. In addition, the optimal process satisfies multiple safety and quality

constraints within a single process.

In the previous section, the results from strategies #3 and #7 already suggested

that a 2- 0r 3-step process might be optimal. Thus, that indication was further supported

by the results of the double-stage process optimization. In Figure 5.21, temperature and

velocity profiles were not significantly different in each step. However, humidity showed

two significantly different conditions, dry process (20 %MV) and wet process

(2100 %MV). This implies that humidity plays major role in the double-stage process.

Also, the pattern of humidity condition (low to high humidity) was opposite to industrial

convention (high to low humidity). This interesting result might be caused by the surface

color change factor in the integrated FEM.
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Figure 5.21 Optimization processes and optimal control profiles for double-stage

oven obtained by ICRS-FEM strategy: (a) Optimization process; (b) Optimal

control profile of trial #1; (c) Optimal control profile of trial #2.
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The effects of relaxed constraint were also demonstrated Via trial 3 and 4 in Table

5.15. Trial 3 Showed almost identical results with the previous trials (trial 1 and 2).

However, trial 4 suggested LTHH profile because of the relaxed surface color change

constraint. The yield was almost same with the other trials but the process time was

longer than the other trials. Thus, the high temperature and low-high humidity profile

seems more desirable in case of double-stage oven process.

Neural network model based optimizations were also conducted using DNNM.

Although the ICRS-DNNM found optimal solutions, they fell into false-pass

classification errors. Also, SNNM application was not considered, due to low model

accuracy.

5. 6.3 Multi-Zone Process

A multi-zone process was investigated by using the ICRS algorithm coupled with

FEM (strategy #33) and DNNM (strategy #34). In Table 5.16, maximum yield achieved

by the ICRS-FEM strategy was 65%, which is about 8% point higher than the maximum

yield of the Single-stage process.

The process time of strategy #33 was also about half the process time of the

single-stage process (trial 1 in Table 5.13) even in HTLH conditions. This result is also

opposite to industrial convention, which would suggest that LTHH achieves high yield.

In LTHH profile, internal temperature of the patty can be easily increased to inactivate

Salmonella and to achieve internal color change, but the high humidity also hampers

nonenzymatic surface browning. However, in HTLH profile, the low impingement

velocity in the % portion of the entire process was minimizing yield loss until the last

portion of the process, in which the impingement velocity was increased to meet the
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surface color constraint. These internal reactions (Salmonella inactivation and internal

color change) and surface reaction (surface color change) took place one after the other in

the LTHH profile, which resulted in longer cooking duration. However, these internal

and surface reactions took place simultaneously in the HTLH profile, which seemed to

Shorten the process.

In this comparison, only ICRS-DNNM strategy was tested, because the model

performance of SNNM for multi-zone process was poor (Figure A.5). Although the

maximum value achieved by ICRS-DNNM was 61%, the value was over-estimated by

about 5% points, compared with the FEM validation result. Figure 5.22 shows stepwise

velocity profiles for strategy #33 and #34. ICRS-DNNM found LTHH profile as an

optimal control profile, while ICRS-FEM suggests HTLH control profiles.

When the surface color change constraint was relaxed, which ranged from 0.11 to

0.87, two trials (33-1 and 33-2 in Table 5.16) showed improved yields and HTLH type

profiles. Trial 33-2 was quite impressive, in that the process achieved better results in

yield and process time than the case of the double-stage oven. The improved yield (69%)

was achieved just by varying impingement velocity. However, the ultimate dry

conditions (~0%MV) of all the trials of strategy 33 must be considered in the practical

sense. A practical lower bound for humidity was considered necessary.
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Figure 5.22 Optimization process and optimal control profile were obtained by

using ICRS-FEM and ICRS-DNNM for multi-zone process: (a) Optimization

process of strategy #33; (b) Optimal control profiles of strategy #33; (c)

Optimization process of strategy #34; ((1) Optimal control profiles of strategy #34.
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5. 6.4 Economic-Based Optimization

Based on the single-stage process model, a profit model was developed according

to the equations in Section 4.7.4. Then, the ICRS algorithm was used to search for a

maximum profit, rather than Simply a maximum yield. All the control variables, such as

temperature, humidity, velocity, process duration, and yield, converged to 243 °C,

2 %MV, 30 MS, 154 S, and 64%, respectively (Figure 5.23 (a)). The optimal profile

suggested HTLH policy, which is also consistent with the second trial of the single-stage

optimization. The maximum yield reached 64%, which is much higher than the yield of

the single-stage process, even though the optimization was based on the same predictive

model. This is possible, because the objective function value is not yield, but profit,

which might affect the solution space feature. Therefore, the same algorithm could reach

a much higher objective value. The profit started from negative value and turned to gain

afier passing around 55% yield (Figure 5.23 (b)). Plot (0) of Figure 5.23 shows that the

energy cost is fluctuating as the control variables changes. However, the impact of the

energy cost was much smaller than the feed cost or product value. The product value was

proportional to the yield, and the feed cost was inversely proportional to the process

duration.
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Figure 5.23 Optimization processes and optimal control variables for maximum

profit of single-stage oven were found by using ICRS-FEM strategy: (a)

Convergence history; (b) Comparison of net profit and patty yield; (c) Various cost

history.
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In addition, the sensitivity of the optimal solution was investigated by using

Monte Carlo simulation (Equation [5.2]). As in the previous cases, the optimal solution

was also highly sensitive to the constraints. All the 100 Simulations with standard

deviation of 2 °C, 2 %MV, 0.1 m/S, and 1 S (for temperature, humidity, velocity, and

process duration) failed to satisfy the constraints (Table 5.17). However, in Table 5.17, a

sub-optimal solution (241°C, 3 %MV, 29 m/s, and 175 S at 10th iteration) Showed 47%

risk of failure, which was much lower than the risk of failure of the optimal solution.

Even though the sub-optimal solution was more practical for application, there was 200

S/h difference with the optimal solution, which was estimated $720,000 difference

annually (based on 12 h operation/day for 300 day/yr.)

Table 5.17 Sensitivity of the optimal solutions was obtained by using Monte Carlo

simulation for economic-based optimization problem.

 

Confidence Interval

 

 

(95% confidence)

Optimal Yield @ Number Total RiSk Of Failure

Strate Profit Optimal Profit of Fails Simulations (Nf/Nt) Yield Profit

gy [$411 1%] N, N, 1%] 1%] [MI]

#37 518 64 100 100 100% N/A N/A

318 61 47 100 47% 61 .6:l:0. 12 324.98i5.49
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6.1

6 CONCLUSIONS

General Conclusions

Global optimization algorithms, integrated process models, and control profile

parameterization methods were combined and utilized to find optimal control profiles

maximizing patty yield while satisfying microbial safety and quality constraints. Based

on the results of the previous chapter, the following conclusions were drawn:

1. Artificial neural networks were developed and substituted as alternative process

models for finite element model. Dynamic neural network models (DNNM)

showed robust performance for random, single-stage, double-stage, and multi-

zone processes. However, static neural network models (SNNM) demonstrated

good performance just for random and Single-stage processes. The DNNM and

SNNM were much faster than the FEM (about 9X and 636X, respectively).

Although the accuracy ofDNNM and SNNM were lower than FEM, those neural

network models were Viable alternatives to FEM, due to improved execution time.

Various optimization strategies were designed with combinations of models,

algorithms, and parameterization methods. The highest yield (73%) was obtained

by strategy #3 (ICRS-FEM-PLI), which converged to control profiles with

apparent step changes in the control variables. The strategies using neural network

models found optimal solutions 10~1,000 times faster than did FEM. However,

most ofthem committed false-pass classification errors or showed low accuracy

for yield prediction, even though the DCS algorithm helped the model not commit

false-pass classification errors. Compared to the other algorithms, ICRS was the

most recommendable algorithm, because it was easy to set the algorithm
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parameters, and ICRS showed well-balanced exploration and exploitation features.

In addition, ICRS-related strategies achieved significant improvement of the

objective value within relatively few iterations. Even though the highest yield was

achieved by a strategy using PLI, the solutions obtained by PLI were much more

sensitive than the solutions by FS. Therefore, FS is recommended for practical

usefulness of the obtained solution. Even though the ideal and optimal profiles are

impossible to generate practically, those ideal profiles suggest what type of

general process might be a desirable strategy.

. Single-stage, double-stage, and multi-zone processes were studied by using three

different models and the ICRS algorithm. The maximum yield (67%) was

achieved in the double-stage process, and the control profiles showed similar

control patterns with the results from strategy #3 (FEM-PLI-ICRS) applied to a

continuously varying process. Case studies showed many possible variations of

the single-stage process to achieve improved solutions. In addition to the

optimization for yield, a simple economic-based example was illustrated from the

viewpoint of net profit for a single-stage process. Maximum profit was achieved

at 64% yield, which was different from the Single-stage case with a yield

objective.

. Monte Carlo simulation showed that the sensitivity of optimal solutions was very

critical for the usefulness of the solution. Small perturbations of the optimal

control profiles could result in failure to satisfy safety and quality constraints.

Instead of using the optimal solution, however, slightly sub-optimal solutions
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were less sensitive to the perturbations and therefore less susceptible to fail (for

constraints).

This study was designed to build a foundation for multivariate nonlinear dynamic

process optimization, such as meat patty cooking under moist air impingement

environments. This type ofproblem is very difficult and complex from the viewpoint of

product and process. In this study, various factors, such as product yield, microbial safety,

and colors, were investigated to identify the best optimization strategy for this type of

process. Finally, many valuable aspects related to developing the model, selecting

optimization algorithms, interpreting optimal results, and handling various pitfalls were

carefully studied, and knowledge was established. However, a direct application of the

resultant numbers of this study to a problem requires discretion by users, because the

resultant numbers, such as maximum yield and the status of constraint satisfaction, can be

significantly affected by the properties related to various calculations, such as yield,

safety, and quality predictions. Even so, the knowledge of process optimization strategy

in this study remains sound for the applications to various complex food processing

operations, such as frying, drying, extrusion, baking, and retorting.

6.2 Suggestions for Future Research

Although the results of this project are instructive and potentially valuable, further

research and improvements are still necessary. The following suggestions are made for

future research.

1. The process model plays a very important role in optimization. The FEM, DNNM,

and SNNM models must be validated with actual experiments. For this purpose,
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the integrated FEM needs to be fine-tuned with validated predictive model

parameters of quality.

. Optimal solutions found throughout this research need to be validated

experimentally. Even though some optimal profiles are impractical to generate,

Single or double-stage results can be validated by experiment.

. Methods or algorithms need to be developed to avoid false-pass classification

errors when alternative models are used. A neural network trained with the

relationship between goal and constraints might help optimization algorithms

maneuver the solution space without committing false-pass classification error.

. Even though the alternative models did not Show satisfactory performance

locating optimal solutions, they can be used to acquire prior knowledge for the

target model. For example, sensitivity analysis can be used along with alternative

models to reduce control variables, test the effect of parameters, determine the

approximate location of optimal solution, etc.

. Effective control profile parameterization methods need to be devised to address

the sensitivity issues for optimal solutions. Confidence interval embedded control

profiles can reduce the risk of failure involved in the high sensitivity of the

optimal control profile. Also, such a high sensitivity problem needs to be

validated by experiment.

. The finite element model used in this study had some degree of error with

physical experiment. In this study, how the source (finite element model) error

affects the optimal solutions was not studied. However, as long as the finite

element model represents the general characteristics of the solution space, the
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general conclusions seem to remain sound, even though some numeric value

might change. Even so, the effect of the source error on the optimal solution

Should be studied.

. A new efficient global optimization algorithm having advantages from GA, SA,

and ICRS can be developed and applied to this problem.

. Typical installations of a single-stage oven have an inlet and outlet tunnel (often

with saturated condition) in addition to the major cooking zone. These actual

process conditions need to be implemented in the control profiles to reflect these

systems and to obtain results that are directly practical and interesting to the

industry.
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APPENDIX A

Tables and Figures of Optimization Processes

Polynomial regression lines were added to smooth piecewise control profiles so that

general trend could be observed in the following plots:

Figure A.7 (a), Figure A.10 (a), Figure A.12 (a), and Figure AM (a)
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Figure A.l The performance ofDNNM for double-stage process: (a) Yield; (b)

Salmonella inactivation; (c) Internal color change; (d) Surface color change.
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Figure A.2 The performance of the DNNM for multi-zone process: (a) Yield; (b)

Salmonella inactivation; (c) Internal color change; (d) Surface color change.
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Figure A.2 (cont’d)
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Figure A.3 The performance of the SNNM for single-stage process: (a) Yield; (b)

Salmonella inactivation; (c) Internal color change; ((1) Surface color change.
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Figure A.4 The performance of the SNNM for double-stage process: (a) Yield; (b)

Salmonella inactivation; (c) Internal color change; ((1) Surface color change.
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Figure A.5 The performance of the SNNM for multi-zone process: (a) Yield; (b)

Salmonella inactivation; (c) Internal color change; (d) Surface color change.
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Figure A.6 GA-FEM optimization process and convergence: (a) PLI
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Figure A.7 Optimal control profile of temperature, humidity, impingement velocity,

and cooking duration found by GA-FEM optimization strategy: (a) PLI

parameterization; (b) FS parameterization.
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Strategy #2 & #6
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Figure A.8 SA-FEM optimization process and convergence: (a) PLI

parameterization; (b) FS parameterization.
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Strategy #9 & #13

   

58 1

574 544

LE 56 _ 62 _

"‘ o\°

% 55 1 1; 60 i

g 54 g “as" 58 a

E 53 — 5' 56 4

if 54 4

52 i
52 i

51 ‘T—T‘ —" ' "'v _I_—_"' "'— "_ "_“l 50 ‘1“ I _ ‘~T_‘ _‘

0 500 1000 0 50 100

Generation Generation

(a) (b)

Figure A.9 GA-DNNM optimization process and convergence: (a) PLI

parameterization; (b) FS parameterization.
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Figure A.10 Optimal control profile of temperature, humidity, impingement velocity,

and cooking duration found by GA-DNNM optimization strategy: (a) PLI

parameterization; (b) FS parameterization.
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Strategy #10 & #14
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Figure A.11 SA-DNNM optimization process and convergence: (a) PLI

parameterization; (b) FS parameterization.
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Figure A.12 Optimal control profile of temperature, humidity, impingement velocity,

and cooking duration found by SA-DNNM optimization strategy: (a) PLI

parameterization; (b) FS parameterization.
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Strategy #11 & #15
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Figure A.14 Optimal control profile of temperature, humidity, impingement velocity,

and cooking duration found by ICRS-DNNM optimization strategy: (a) PLI

parameterization; (b) FS parameterization.
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Strategy #21
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Figure A.15 Optimization process and optimal control profiles found by GA-

SNNM_R optimization strategy and Fourier series parameterization: (a)

Convergence history; (b) Optimal control profile of temperature, humidity,

impingement velocity, and cooking duration.
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Strategy #23
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Figure A.17 Optimization process and optimal control profiles found by ICRS-

SNNM_R optimization strategy and Fourier series parameterization: (a)

Convergence history; (b) Optimal control profile of temperature, humidity,

impingement velocity, and cooking duration.
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APPENDIX B

Computer Codes
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‘ Iii—MW__u :- . ____». . _ 

User Guide

In this study, various optimization strategies and case studies were coded via

Matlab. Even though there are many computer codes for each cases, some typical codes

were represented in the appendix. Many other codes were simple variations of those

typical codes. Also, some sub-programs were commonly used in the other applications

with slight variations.

The appendix has codes related to two neural network model development

(DNNM and SNNM), three GO algorithms (GA, SA, and ICRS), and two

parameterization methods (PLI and FS). However, the entire FEM code was not included,

except some quality prediction sub-programs, because the large portion of the work was

done by Watkins (2004).

MATLAB codes for case studies have the same frameworks with other strategies.

The only difference is the sub-program generating random profiles, which has specific

number of control variables for each applications, l-stage (4 control variables), 2-stage (7

control variables), and multi-zone process (7 control variables). Therefore, those codes

were not included in this appendix.
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Dynamic Neural Network Model (DNNM)

Train_DNNM.m has following two sub programs.

0 Generate_Squata_ Train.m

0 Generate_Squata_ Test.m
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Train_DNNM.m

% Train_DNNM . m

% This program trains a dynamic neural network model as an alternative

to

% a finite element model by using a nonlinear system identification

method.

%

% TRAINING PHASE

%

 

 

clear all

fprintf('Network Training Started...\n')

fprintf('>Training Phase:\n')

counter=0;

=1; % Global training matrix head number

Nt=0; % Global training matrix tail number

m=2; % length of past time series

mg=3*m+1+1; % total number of rows of training matrix

mk=3*m+l; % row # of target output value at global training matrix

% Constructing global trainging data set

for j=1z1

start =[l 209]; % start file #

finish=[910 328]; % finish file #

fprint£('Tota1 number of training data = %d\n',finish(j))

for instart(j):finish(j)

% clear interim variables

clear a dPl dP2 dP3 dP4 dTl dT2 dT3 dT4 P1 P2 P3 P4 T1 T2 T3

T4

path=j :

switch path

case 1

fid3=£open(['C:\MATLAB?\work\Dissertation\Data_Pool\Train\FE Solution

Piles\Constant\FEsolution_',num2str(i),'.dat']);

case 2

fid3=fopen(['C:\MATLAB?\work\Dissertation\Data_Pool\Test\FE Solution

Piles\FEsolution_',num2str(i),'.dat']);

end

% Reading individual data files

a=fscanf(fid3,'%f %f %f %f %f %f %e %e %e %e %f %f',[12,

infl); % [time temp steam.velocity yield vavqu SamonellaLR D1 034 DEavg

Tc Ts]

a=a';

fclose(fid3);

% Data Correction: Abnormal data trend will be truncated
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% The total row# of data file is 1201. If the file has abnormal

data, fscanf terminates its reading right at the beginning of the

abnomality. In this case the total number of row of the file will be

less than 1200

[rn cn]=size(a);

if rn < 1200

a=a(l:rn-20,:);

end

% Converting concurrent data to sequential data format

[P1, Tl]=Generate_Squata_Train(a,5); % 5 Yield

[P2, T2]=Generate_Squata_Train(a,7); % 7 Salmonella Reduction

[P3, T3]=Generate_Squata‘Train(a,8); % 8 D1 (Doneness via

internal color change

[P4, T4]=Generate_Squata_Train(a,10);% 10 DEavg (Averaged

Doneness via surface color change

[rnl,cn1]=size(Pl(mg,:

[rn2,cn2]=size(P2(mg,:

[rn3,cn3]=size(P3(mg,:

[rn4,cn4]=size(P4(mg,:

V
V
v
v

V
V
V
v

s
.

\
g

\
o

‘
0

% Log10(P2 E P3, T2 8 T3)for scaling

P2=prelog('p',P2,m); T2=prelog('t',T2,m);

P3=prelog('p',P3,m); T3=prelog('t',T3,m);

% Calculating difference of target values in an interval

for h=lzcn3

if h==1

dTl(l,h)=P1(mk,h)-T1(1,h);

d'r2 (1,h)=P2 (mk,h) -'1'2 (1,11);

dT3(l,h)=P3(mk,h)-T3(1ph)i

dT4(1,h)=T4(1,h)-0;

else

dTl(1,h)=T1(1,h-l)-T1(l,h);

dT2(l,h)=T2(1,h-1)-T2(1,h);

dT3(1,h)=T3(1,h-1)-T3(l,h);

dT4(1,h)=T4(1,h)-T4(1,h-1):

end

end

% Replacing the target value with the difference

T1(1,1:cn3)=dTl;

T2(1,1:cn3)=dT2;

T3(1,1:cn3)=dT3;

T4(1,1:cn3)=dT4;

% Creating a global training file from individual file

Nt=Nh+cn1;

SP1(1:mg,Nh:Nt-1)=Pl(1:mg,:

SP2(l:mg,Nh:Nt-1)=P2(1:mg,:

Salmonella LR

SP3(1:mg,Nh:Nt-l)=P3(1:mg,:

SP4(1:mg,Nh:Nt-1)=P4(l:mg,:

° STl(1,Nh:Nt-l)=Tl(l,:); % Yield

° ST2(1,Nh:Nt-l)-T2(l,:); %

v
v

‘
‘

ST3(1,Nh:Nt-l)=T3(1,:); % DI

ST4(1,Nh:Nt-1)-T4(1,:); % DEavg

v
v

‘
.

‘
g
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NhaNt;

end

end % End of constructing a global training data set

fprintf('End of constructing a global training data set\n')

% Normalization

[SP1n,minSP1,maxSPl] = premnmx(SP1);

[SP2n,minSP2,maxSP2] = premnmx(SP2);

[SP3n,minSP3,maxSP3] 8 premnmx(SP3);

[SP4n,minSP4,maxSP4] = premnmx(SP4);

[STln,minSTl,maxST1] = premnmx(ST1);

[ST2n,minST2,maxST2] 8 premnmx(ST2);

[ST3n,minST3,maxST3] a premnmx(ST3);

[ST4n,minST4,maxST4] 8 premnmx(ST4);

% Training networks for each output by using Generalized Regression NN

net1=newgrnn(SP1n, STln, 0.5); % Yield

net2=newgrnn(SP2n, ST2n, 0.22); % Salmonella

net3=newgrnn(SP3n, ST3n, 0.22); % DI

net4=newgrnn(SP4n, ST4n, 0.20); % DE

fprintf('\n>End of Training\n')

% Saving trained networks

save('C:\MATLAB?\work\Dissertation\NN\TrainedNetworks\netl','net1');

save('C:\MmTLAB7\work\Dissertation\NN\TrainedNethrks\net2',‘net2');

save('C:\MATLAB?\work\Dissertation\NN\TrainedNethrks\net3',‘net3');

save('C:\MATLAB?\work\Dissertation\NN\TrainedNetworks\net4',‘net4');

% Saving normalization parameters

% SP1 SP2 SP3 SP4 8T1 ST2 8T3 8T4

% min max min max

% row 1~8

% row 9

Outputs(l:8,1)=minSPl; Outputs(1:8,3)=minSP2; Outputs(1:8,5):minSP3;

Outputs(1:8,7)=minSP4;

Outputs(1:8,2)=maxSP1; Outputs(1:8,4)=maxSP2; Outputs(l:8,6):maxSP3;

Outputs(l:8,8)=maxSP4;

Outputs(9,l)=minSTl; Outputs(9,3)=minST2; Outputs(9,5):minST3;

Outputs(9,7)=minST4;

Outputs(9,2)=maxST1; Outputs(9,4)=maxST2; Outputs(9,6)=maxST3;

Outputs(9,8)=maxST4;

fida

fopen('C:\MATLAB7\work\Dissertation\NN\TrainedNetworks\normal_para.dat'

.‘wt'H

£printf(fid,'%10.8f %10.8f %10.8f %10.8£ %10.8f %10.8f %10.8f %10.8f

\n',Outputs');

fclose(fid);

% Retrieving stored networks and parameters

clear net

load('C:\MATLAB?\work\Dissertation\NN\TrainedNethrks\netl',‘net1');

loadt'C:\MATLAB?\work\Dissertation\NN\TrainedNethrks\net2','net2');
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load('C:\MATLAB7\work\Dissertation\NN\TrainedNetworks\net3',‘net3');

load('C:\MATLAB?\work\Dissertation\NN\TrainedNetworks\net4','net4');

fid=fopen('C:\MATLAB?\work\Dissertation\NN\TrainedNetworks\normal_para.

dat');

,

a=fscanf(fid,'%f %f %f %f %f %f %f %f',[8, infll; % [time temp steam

velocity yield vavqu SamonellaLR DI D24 DEavg Tc Ts]

a=a';

fclose(fid);

minSP1=a(1:8,l); minSP2=a(l:8,3); minSP3=a(1:8,5); mdnSP4=a(l:8,7);

maxSPl=a(l:8,2); maxSP2=a(1:8,4); maxSP3=a(1:8,6); maxSP4=a(l:8,8);

minSTl=a(9,l); minST2=a(9,3); minST3=a(9,5); minST4=a(9,7);

maxSTl=a(9,2); maxST2=a(9,4); maxST3=a(9,6); maxST4=a(9,8);

 

 

m=2; % length of past time series

mg=3*m+l+l; % total number of rows of training matrix

mk=3*m+1; % row # of target output value at training matrix

% SIMULATION PHASE

fprintf('>Simulation Phase\n')

clear Outputs

clear Y;pred b_pred DI_pred D3_pred t

clear X_meas meeas DI_meas DE_meas

for counter=10:10 % 13

clear a b Cond ittcl ittc2 ittc3 ittc4

clear ittl itt2 itt3 itt4

clear dPPl dPP2 dPP3 dPP4 dTTl dTT2 dTT3 dTT4

clear PPl PP2 PP3 PP4 TT1 TT2 TT3 TT4

% Reading result files

fidafopen(['C:\MATLAB?\work\Dissertation\Data_Pool\Test\FE Solution

Piles\FEsolution_',num2str(counter),'.dat']);

a=fscanf(fid,'%f %f %f %f %f %f %e %e %e %e %f %f',[12, infill; %

[time temp steam velocity yield vav M SamonellaLR DI D34 DEavg Tc Ts]

asa';

fclose(fid);

% Reading condition files

fid=fopen(['C:\MATLAB?\work\Dissertation\Data;Pool\Test\Condition

Files\Condition_',num2str(counter),'.dat']);

b=fscanf(fid,'%f %f %f %f',[4, infl); % [time temp steam.velocity

yield vangiSamonellaLR DI DE4 DEavg Tc Ts]

b=b';

fclose(fid);

% Reconstructing testing matrix

[PP1, TT1]=Generate_Squata_Test(a,5); % Yield

[PP2, TT2]=Generate_Squata_Test(a,7); % Salmonella LR

[PP3, TT3]=Generate_Squata_Test(a,8); % DI

[PP4, TT4]=Generate_Squata_Test(a,10); % DEavg
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% log10(ipp2, ipp3)scaling

PP2=prelog('p',PP2,m);

PP3=prelog('p',PP3,m);

% Recording measured data for comparison

measuredTTlsPP1(mk,:);

measuredTT2=PP2(mk,:);

measuredTT3=PP3(mk,:);

measuredTT4=PP4(mk,:);

% Sampling contol profile from condition file

CondsGenerate_Squata_Cond(b);

[rt1,ctl]ssize(PP1);

% Assigning initial values

% Yield

ippl(1:mg,1)=Cond(1:mg,1); % copy

ippl(mk,l)=100; % 100 %

itt1(l:mrl,1)=0; % initial difference is zero

% Salmonella reduction

ipp2(1:mg,1)=Cond(1:mg,1) ;

ipp2(mk,1)=-10; % ~0

itt2(l:m-1,1)=0;

% Internal doneness via internal color change

ipp3(1:mg,1)=Cond(1:mg,l);

ipp3(mk,l)8-10; % ~0

itt3(l:m-l,l)=0;

% External doneness via surface color chane

ipp4 (l:mg,1)=Cond(l :mg,1);

ipp4(mk,l)=0; % 0

itt4(l:m-1,l)=0;

% Initial simulation

% Scaling input data by using Minna: value at the trining phase

ippln = tramnmx(ipp1,minSP1,maxSP1);

ipp2n = tramnmx(ipp2,minSP2,maxSP2);

ipp3n a tramnmx(ipp3,minSP3,maxSP3);

ipp4n = tramnmx(ipp4,minSP4,maxSP4);

% Simulation

itlssim(netl,ippln);

it2=sim(net2,ipp2n);

it3=sim(net3,ipp3n);

it4=sim(net4,ipp4n);

% Denormalization

itl a postmnmx(it1,minST1,maxST1);

it2 a postmnmx(it2,minST2,maxST2);

it3 a postmnmx(it3,minST3,maxST3);

it4 8 postmnmx(it4,min8T4,maxST4);
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ittcl(l,1)=itl(1,1);

ittc2(1,1)=it2(1,1);

ittc3(l,l)=it3(l,l);

ittc4(l,l)=it4(l,l);

%...............................................

% Beginning of time stepping simulation

%...............................................

for j=2:ctl

i-j;

% Constructing input data set

ippl(l:mk-1,1)=Cond(1:mk-1,i); % copying conditions

ippl(mg,1)=Cond(mg,i); % copying time sequence

ittl(1,1)=itl(l,1);

ipp2(l:mk-l,1)8Cond(1:mk-1,i);

ipp2(mg,1)=Cond(mg,i);

itt2(1,1)=it2(1,1);

ipp3(l:mk-1,1)=Cond(1:mk-1,i);

iPP3(m9.1)=Condlmq.i):

itt3(l,l)-it3(l,1);

ipp4(1:mk-1,1)-Cond(1:mk-1,i);

ipp4(mg,1)=Cond(mg,i):

itt4(1,1)=it4(l,l);

% replacing past time series of output

ipp1(mk,1)=ipp1(mk,1)-itt1(l,1); % value(t=n)-value(t=n-1)-

difference

ipp2 (mk.1)=ipp2 (mk.1) -itt2 (1,1);

ipp3(mk,l)=ipp3(mk,1)-itt3(l,1);

ipp4(mk,1)=ipp4(mk,1)-itt4(1,1);

% Normalization

ippln s tramnmx(ipp1,minSP1,maxSP1);

ipp2n = tramnmx(ipp2,minSP2,maxSP2);

ipp3n I tramnmx(ipp3,minSP3,maxSP3);

ipp4n a tramnmxtipp4,minSP4,maxSP4);

% Simulation

itlasimtnet1,ippln);

it2=simtnet2,ipp2n);

it3-sim(net3,ipp3n):

it4=sim(net4,ipp4n);

% Denormalization

itl a postmnmx(it1,minST1,maxST1);

it2 = postmnmx(it2,minST2,maxST2);

it3 = postmnmx(it3,minST3,maxST3);

it4 - postmnmx(it4,minST4,maxST4);

% record simulation result; difference at each time

ittc1(1,i)8it1(1,l);

ittc2(1,i)=it2(1,1);

ittc3(1,i)=it3(l,l);
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ittc4(l,i)=it4(l,1)i

% shift down past time series of output

ittl(2:m~1,1)=ittl(1:m-2,1);

itt2(2:m~l,1)=itt2(1:m-2,l);

itt3(2:mrl,1)=itt3(1:m-2,1);

itt4(2:mr1,l)=itt4(1:m-2,1);

end % End of time stepping simulation

% copying time series to t

tsPP1(mg,l:i);

t=t';

% Calculating cumulative results

[b c]=size(ittcl);

ittc1m41,1)2100;

ittclmil,2:c+l)-100-cumsum(ittcl);

TT1=measuredTT1;

[b c]=size(ittc2);

ittc2mil,1)=-10;

ittc2m41,2:c+l)--10-cumsum(ittc2);

TT2=measuredTT2;

[b c]=size(ittc3);

ittc3mt1,1)--10;

ittc3m(1,2:c+1)--10-cmmmum(ittc3);

TT3=measuredTT3;

[b c]=size(ittc4);

ittc4m41,1)80;

ittc4m41,2:c+1)=0+cumsum(ittc4);

TT4=measuredTT4;

% Transposing data for graphical representation

TplsTTl'; ittclsittclm}:

Tp2=TT2'; ittc2=ittc2mfl;

Tp3=TT3'; ittc3-ittc3mfl;

Tp4=TT4'; ittc4-ittc4mf;

% Storing result of each simulation

Y;pred(counter,1)-ittc1(ct1,1);

Y;meas(counter,1)=Tpl(ct1,1);

D_pred(counter,l)=ittc2(ctl,1);

b_meas(counter,1)-Tp2(ct1,1);

DI_pred(counter,1)=ittc3(ctl,1);

DI_meas(counter,1)=Tp3(ct1,1);

DE_pred(counter,1)=ittc4(ctl,l):

DR_meas(counter,1)=Tp4(ct1,1);
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% Graphical Validation

% szrnu’prediction ittc:Network prediction

figure

haplot(t,Tpl(1:i,1),'k+',t,ittcl(1:i,1),‘ko');

%title('Yield');

xlabel('Process Time [s]');

ylabel('Yield [%1');

legend('FEM','GRNN',4);

set(h,'MarkerSize',5,'LineWidth',1.5);

grid on

figure

h=plot(t,Tp2(1:i,1),'k+',t,ittc2(1:i,l),'ko');

%title('Sa1monella LR');

xlabel('Process Time [s]');

ylabel('Log(Log Reduction of Salmonella)');

legend('FEM','GRNN',4);

set(h,'MarkerSize',5,'LineWidth',l.5);

grid on

figure

h:plot(t,Tp3(1:i,1),'k+',t,ittc3(l:i,1),'ko'):

%title('DI');

xlabel('Process Time [s]');

ylabel('Log(Log Reduction of Internal color change)');

legend('FEM','GRNN',4);

set(h,'MarkerSize',5,'LineWidth',1.5);

grid on

figure

h;plot(t,Tp4(1:i,l),'k+',t,ittc4(1:i,1),'ko');

%title('DEavg');

xlabel('Process Time [s]');

ylabel('Log(Log Reduction of Crust Color Change)');

legend('FEM','GRNN',4);

set(h,'MarkerSize',5,'Linewidth',l.5);

grid on

fprintf('%d\n',counter)

end

% Exporting final results

Outputs(:,l)=Y_meas(:,1);

Outputs(:,2)-Y_pred(:,1);

Outputs(:,3)=b_meas(:,l);

Outputs(:,4)=L_pred(:.1):

Outputs(:,5)-DI_meas(:,l);

Outputs(:,6)=DI_pred(:,1);

Outputs(:,7)-DE_meas(:,1);

Outputs(:,8)=DE_pred(:,1):
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fid=

fopen(['C:\MATLAB7\work\Dissertation\NN\Validation\result_final_opt.dat

Ul'lwtl)’.

fprintf(fid,'%10.4f %10.4f %10.4f %10.4f %10.4f %10.4f %10.4£ %10.4f

\n',Outputs');

fclose(fid);
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Generate_Squata_ Train.m

% Generate_Squata_Train.m

% Reconstruct P(input) & Tg(output) with original data to train DNNM

function [rvl, rv2]=Generate_Squata_Train(a,resu1t)

% Input 8 output matrix structure

% [input output]

% inputsle Sd Vd / Tm Sm vm./ Y L Tc Ts / Yp Lp Tcp Tsp / t ]

% output=[Yf Lf ch Tsf]

[r c]=size(a); % [#rows #columns]

m=2; % number of past time series

i=0;

dt=10; % [sec]

for mi=(dt*2+l):(2*dt):(r-O);% (2*dt) due to the time interval of data

set is 0.5 s

i=i+1;

%Conditions @ t(n+1)

%Process Temperature

for n=1:m

if (mi-2*dt*n)<1

T(n)=25; % Ambient Temp. 25C

else

T(n)-a(mi-2*dt*n,2);

end

end

%Process Humidity

for nalzm

if (mi-2*dt*n)<1

H(n)-5; % Ambient Humidity. 30%

else

H(n)=a(mi-2*dt*n,3);

end

end

%Jet Velocity

for n=lzm

if (mi-2*dt*n)<1

V(n)=0; % Ambient Jet. 0 m/s

else

V(n)=a(mi-2*dt*n,4);

end

end

% Time data

if (mi-2*dt*l)<= 0

t=((mi-2*dt*1)+1)/2-1;

else
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t=a(mi-2*dt*l,1); %a(mi-2*n,1);

end

%State @ t(n)

%Output

for n=l:m-1

if (mi-2*dt*n)< 1 % initial state

switch result

case 5

Yp(n)=100; %initial yield

case 7

Yp(n)=0; %initial Salmonella LR

case 8

Yp(n)=0; %initial DI

case 10

Yp(n)=0; %initial DEavg

end

else

dumy=a(mi-2*dt*n,result);

Yp(n)=dumy; % 5: row# contains output variable

end

end

dumy=a(mi,result); % 5: row# contains output variable

Yf=dumy;

% Constructing input and output set

k=i; %k=i-m4 %(m-l);

% Input data set

P(1:m,k)=T(1:m); % Temperature series

P(m+1:2*m,k)=H(l:m); % Humidity series

P(2*m+1:3*m,k)¢V(1:m); % velocity series

P(3*m+l:4*m-l,k)=Yp(1:mrl); % Output series

P(4*m,k)=t; % Linear Data series

% P(4*m:5*mrl,k)=t(l:m);

% T matrix

Tg(1,k)=Yf; % State @ t(n+1)

end

% Return variables

rvlsP;

rv2=Tg;
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Generate_Squata_ Test.m

% Generate_Squata_Test.m

% Reconstruct G(input)with test data to simulate DNNM

function rvl=Generate_Squata_Test(a)

[r c]=size(a); % [#rows #columns]

m=2; % number of past time series

i=0;

dt=10; % [sec]

% Tailoring original condition data set

T1=a(1:dt*2:r,2); [i j]=size(T1); T1(i+1,1)=a(r,2);

H1=a(l:dt*2:r,3); [i j]=size(H1); H1(i+1,1)8a(r,3);

Vl=a(l:dt*2:r,4); [i j]=size(V1); V1(i+l,1)=a(r,4);

t=a(l:dt*2:r,l); [i j]=size(t); t(i+1,1)=a(r,1);

% Transposing

T1=T1'; H1=Hl'; Vl=Vl’; =t';

[nr nc]=size(T1);

% Assigning intial values

T2(1,1)=25; T2(1,2:nc)=T1(l,1:nc-l);

H2(1,l)=25; H2(1,2:nc)=Hl(l,1:nc-1);

V2(1,l)=25; V2(1,2:nc)=V1(1,1:nc-1);

% Merging into a single matrix

G(1,:)=T1;

G(2,:)=T2;

G(3,:)=Hl;

G(4,:)=H2;

G(5,:)=V1;

G(6,:)=V2;

G(8,:)=t;

% Return value

rvl=G;
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Static Neural Network Model (SNNM)
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Train_SNNM.m
 

% Train_SNNM.m

% This program is to train SNNM with random.profile

clear all

 

TRAINING

 

:
5

1
P

¢
I
P

% Reading files

fprintf('**************\n');

fprintf('Training Phase\n')

ct=0 ; % counter

for i=1:1000

% Reading Fourier parameters

fid=fopen(['C:\MATLAB?\work\Dissertation\Data_Pool\D2\Condition

Para\Parameter_' ,num2str(i) , ' .dat' ]) ;

=fscanf(fid,'%f',[1, inf]); % [temp(l-21) steamt22-42)

velocity(43-63) time(64) yield.SamonellaLR DI DEavg RMSE(T) RMSE(H)

RMSE (V) ]

h=h';

fclose(fid);

% Reading results

fidsfopen(['C:\MATLAB7\work\Dissertation\Data_Pool\D2\PB Solution

Files\FEsolution_',num2str(i),'.dat']);

g=fscanf(fid,'%f %f %f %f %f %f %e %e %e %e %f %f',[12, inf]); %

[temp(l-21) steam(22-42) velocity(43-63) time(64) yield SamonellaLR DI

DEavg RMSE (T) RMSE (H) RMSE (V) ]

9=9' :

fclose(fid);

[rn cn]=size(g);

% Rearranging data structure

ct=ct+1;

P(1:64,ct)=h(1:64,1); % input training

% Yield

T(l,ct)=g(rn,5); % output training

% lethality

if g(rn,7)<0.0000000001

T(2,ct)=-10;

else

T(2,ct)-log10(g(rn,7)); % output training

end

% DI (interanal color change)

if g(rn,8)<0.000001

T(3,ct)=-6;
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else

T(3,ct)=log10(g(rn,8)); % output training

end

% DE (surface color change)

T(4,ct)=g(rn.10);

end

% Normalization

[Pn,minP,maxP,Tn,minT,maxT] = premnmx(P,T);

% Network training: feed-forward neural network

net 3 newff([minP maxP],[40 20 4],('tansig' 'tansig'

'purelin'},'traincgp'); %40 20

net.trainParam~epochs 8 1500;

net.trainParam~show=10;

net 8 train(net,Pn,Tn);

fprintf('\n>8nd of Training\n')

% Saving trained network 8 parameters

save('C:\MATLAB?\work\Dissertation\NN\SNNM_R\net',’net');

Outputs(1:64,1)=minP;

Outputs(1:64,2)=maxP;

Outputs(65:68,l)=minT;

Outputs(65:68,2)=maxT;

fid: fopen('C:\MATLAB?\work\Dissertation\NN\SNNM_R\net;para.dat','wt');

fprintf(fid,'%10.8f %10.8f\n',0utputs');

fclose(fid);
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% Testing

ct=0;

clear h g Pt Tt Outputs

nst;

fprintf(' ----------------\n')

fprintf('Simulation Phase\n')

% Retrieving stored network and parameters

clear net

load('C:\MATLAB?\work\Dissertation\NN\SNNM;R\net','net');

fidafopen('C:\MATLAB?\work\Dissertation\NN\SNNMLR\net‘para.dat');

asfscanf(fid,'%f %f',[2, infl); % [time temp steam velocity yield.vang

SamonellaLR DI D34 DEavg Tc Ts]

asa';

fclose(fid);
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minP=a(1:64,1);

maxP=a(l:64,2);

minT=a(65:68,l);

maxT=a(65:68,2);

for i=1:1000

nf=nf+l;

% Reading Fourier parameters

fidnfopen(['C:\MATLAB7\work\Dissertation\Data_Pool\D6\Para\Parameter_',

num2str(i) , ‘ .dat'l);

hsfscanf(fid,'%f',[l, ian); % [temp(l-Zl) steam(22-42)

velocity(43-63) time(64) yield.SamonellaLR DI DEavg RMSB(T) RMSE(H)

RMSBW) ]

h=h';

fclose(fid);

% Reading results

fidsfopen(['C:\MATLAB?\work\Dissertation\Data_Pool\D6\Test_Pourier',num

2str(i) , ' .dat'l);

gafscanf(fid,'%f %f %f %f %f %f %e %e %e %e %f %f',[12, infl); %

[temp(1-21) steam(22-42) velocity(43-63) time(64) yield SamonellaLR DI

DEavg RMSE ('1') mass (3) RMSE (V) 1

939';

fclose(fid);

[rn cn]=size(g);

% Rearranging data structure

ct=ct+l;

Pt(1:64,ct)=h(1:64,1); % input training

% Yield

Tt(1,ct)=g(rn,5); % output training

% lethality

if g(rn,7)<0.0000000001

Tt(2,ct)--10;

else

Tt(2,ct)=loglO(g(rn,7)); % output training

and

% DI

if g(rn,8)<0.000001

Tt(3,ct)=-6;

else

Tt(3,ct)=loglO(g(rn,8)); % output training

end

% DE

Tt(4,ct)=g(rn,10);

end

% Nermalization
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[Ptn] = tramnmx(Pt,minP,maxP);

% simulation

Tsimnssim(net,Ptn);

Tsimspostmnmx(Tsimn,minT,maxT);

 

 

Graphical validation

*—-O-o-o——o—<v—o -*—.—- o *. 97-7-0— o-o-o o --.—--- o—o o~-.-—-.o~+a HM+_._4_._._.

#
#
1
"

    

figure

plot(Tt(l,:),Tsim(l,:),'.r');

title('Yield')

grid on

RMSE_Yield:RMSE(Tt(l,:)',Tsim(1,:)',0);

figure

plot(Tt(2,:),Tsim(2,:),'.r');

title('Salmonella LR')

grid on

RMSE_LR=RMSE(Tt(2, :) ' ,Tsim(2, :) ' ,0);

figure

plot(Tt(3,:),Tsim(3,:),'.r');

title('DI')

grid on

RMSE_DI=RMSE (Tt(3, :) ' ,Tsim(3, :) ' ,0);

figure

plot(Tt(4,:),Tsim(4,:),'.r');

title('DEavg')

grid on

RMSE_DEavg:-RMSE (Tt(4, :) ' ,Tsim(4, :) ' ,0);

fprintf('%6.4f\n%6.4f\n%6.4f\n%6.4f\n',RMSE_Yield,RMBE_LR,RMSE_DI,RMSE_

DEavg);

 %sm ~—+—~ ~- ~4 I

% Exporting

  

% Changing variable name

F1(:,l)=Tt(1,:)'; P1(:,2)-Tsim(1,:

F2(:,1)=Tt(2,:)'; F2(:,2)=Tsim(2,:

P3(:,1)=Tt(3,:)'; F3(:,2)=Tsim(3,:

F4(:,l)=Tt(4,:)'; F4(:,2)=Tsim(4,:

s
a
v
v
y

-
c

o
c

‘
0

‘
g

‘
0

‘
.

% Exporting final results

Outputs(:,l)=F1(:,1);

Outputs(:,2)-Fl(:,2):

Outputs(:,3)=F2(:,1);

Outputs(:,4)=F2(:,2);

Outputs(:,5)=F3(:,l):

Outputs(:,6)-F3(:,2);

Outputs(:,7)=F4(:,1);
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Outputs(: ,8)=F4(: ,2);

Outputs=0utputs';

fids fopen(['C:\MATLAB?\work\Dissertation\NN\SNNM_R\RMSE.dat'],'wt');

fprintf(fid,'RMSE(Y)8 %10.4f\n',RMSE_Yield);

fprintf(fid, 'RMSE(L)= %10. 4f\n' ,RMBE_LR);

fprintf(fid,,'RMSE(DI)= %10. 4f\n' ,RMSE_DI);

fprintf(fid.,'RMSE(DE)= %10. 4f\n' ,RMSE_DEavg);

fprintf(fid, '%10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f

\n' ,Outputs);

fclose(fid);

clear Outputs

 

Classification 5 Exporting

«
D
d
’
c
’

 

% Initial values

c1=0;c2=0;c3=0;c4=0;

c5=0;c6=0;c7=0;c8=0;

Outputs_aa=[0; 0; 0; 0; ; , ;

Output8_rr=[0; OI. O; o; I I I

Outputs_typeI=[0; 0; 0; ; , ; ;

Outputs_typeII=[0; 0; 0; 0; ; 0; 0; 0;];

index_aa=0; index_rr=0; index typeI=0; index_typeII=0;

for i=1:1000

% Rate of the accepted for the accepted

if

(P2(i,1)>=0.813)£&(F3(i,1)>=0.146)8&(F4(i,1)>=0.26)5&(F4(i,1)<=0.497)%

accpeted patties among the measured

c1=c1+1;

if

(F2(i,2)>=0.813)8&(F3(i,2)>=0.l46)8&(F4(i,2)>=0.26)5&(F4(i,2)<=0.497)

c2=c2+1;

Outputs_aa(c2,l)=F1(i,l);

Outputs_aa(c2,2)=Fl(i,2);

Outputs_aa(c2,3)=F2(i,l);

Outputs_aa(c2,4)=F2(i,2);

Outputs_aa(c2,5)=F3(i,l);

Outputs_aa(c2,6)=F3(i,2);

Outputs_aa(c2,7)=F4(i,1);

Outputs_aa(c2,8)=F4(i,2);

index_aa(c2,1)=i;

end

end

% Rate of the rejected for the rejected

if

(F2(i,1)<0.813)||(F3(i,1)<0.146)|[(P4(i,l)<0.26)||(F4(i,1)>0.497)%

rejected patties among the measured

c3=c3+1;
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if

(F2(i,2)<0.813)||(F3(i,2)<0.146)||(F4(i,2)<0.26)ll(F4(i,2)>O.497)

end

end

c4=c4+1;

Outputs_rr(c4,l)=Fl(i,1);

Outputs_rr(c4,2)=F1(i,2);

Outputs_rr(c4,3)=F2(i,l);

Outputs_rr(c4,4)=P2(i,2);

Outputs_rr(c4,5)=E3(i,1);

Outputs_rr(c4,6)=F3(i,2);

Outputs_rr(c4,7)=F4(i,l);

Outputs_rr(c4,8)=F4(i,2);

index_rr(c4,l)-i;

% Rate of Type I error

if

(F2(i,1)>=0.813)5&(F3(i,1)>-0.146)&&(F4(i,1)>=0.26)8&(F4(i,1)<=0.497)%

accpeted patties among the measured

c5=c5+1;

if

(F2(i,2)<0.813)||(F3(i,2)<0.l46)||(F4(i,2)<0.26)||(F4(i,2)>0.497)

end

end

c6=c6+l;

Outputs_typeI(c6,1)=F1(i,l):

Outputs_typeI(c6,2)-F1(i,2):

Outputs_typeI(c6,3)=P2(i,1);

Outputs_typeI(c6,4)=F2(i,2);

Outputs_typeI(c6,5)=F3(i,1);

Outputs_typeI(c6,6)-F3(i,2);

Outputs_typeI(c6,7)=F4(i,l);

Outputs_typeI(c6,8)=F4(i,2);

index_typeI(c6,1)=i;

% Rate of False-pass classification error

if

(P2(i,l)<0.813)||(F3(i,1)<0.146)ll(P4(i,1)<0.26)||(P4(i,1)>0.497)%

rejected patties among the measured

c7=c7+l;

if

(F2(i,2)>=0.813)8&(P3(i,2)>=0.146)5&(F4(i,2)>80.26)8&(F4(i,2)<=0.497)

end

end

c8=c8+1;

Outputs_typeII(c8,1)=Fl(i,1);

Outputs_typeII(c8,2)=Fl(i,2);

Outputs_typeII(c8,3)=F2(i,1);

Outputs_typeII(c8,4)-F2(i,2):

Outputs_typeII(c8,5)=F3(i,1);

Outputs_typeII(c8,6)=F3(i,2);

Outputs_typeII(c8,7)=F4(i,l);

Outputs_typeII(c8,8)=F4(i,2);

index_typeII(c8,1)=i;
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end

R_aa=c2/c1;

R;rr=c4/c3;

R_typeI=c6/c5;

R_typeII=c8/c7;

% Exporting Classification Results

fids fopen(['C: \MATLAB7\work\Dissertation\NN\SNNM;R\DA_aa.dat'],'wt');

fprintf(fid, 'R_aa= %10. 4f=%d/%d\n' ,R_aa,c2, cl);

fprintf(fid, '%10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f

\n' ,Outputs_aa');

fprintf(fid,'%d\n',index_aa');

fclose(fid);

fids fopen(['C: \MATLAB7\work\Dissertation\NN\SNNM;R\DA_rr.dat'],'wt');

fprintf(fid, 'R_rr= %10. 4f=%d/%d\n' ,R_rr, c4,c3);

fprintf(fid, '%10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f

\n' ,Outputs_rr' );

fprintf(fid,'%d\n',index_rr');

fclose(fid);

fids

fopen(['C:\MATLAB7\work\Dissertation\NN\SNNMprDA;typeI.dat'],'wt');

fprintf (fid, 'R_typeI= %10 . 4f=%d/%d\n' , R_typeI , c6 , c5) ,-

fprintf(fid,'%10.4f %10.4f %10.4£ %10.4f %10.4f %10.4f %10.4f %10.4f

\n',Outputs_typeI');

fprintf(fid,'%d\n',index_typeI');

fclose(fid);

fida

fopen([' C: \MATLAB7\work\Dissertation\NN\SNNMiR\DA_typeII.dat'],'wt');

fprintf(fid, 'R_typeII= %10. 4f=%d/%d\n' ,R_typeII, c8 ,c7);

fprintf(fid, '%10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f %10. 4f

\n' ,Outputs_typeII' );

fprintf(fid,'%d\n',index_typeII');

fclose(fid);
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Genetic Algorithm (GA)

This case was coupled with FEM and PLI (piecewise linear interpolation)

parameterizaiton method.

GA_FEM_PLI.m has following sub-programs. Some sub-programs for genetic operations

(crossover and mutation) were adopted from the work ofVenkataraman (2002) and

modified.

0 SimpleCrossover.m

ArithmeticCrossover.m

Mutation_PLI.m

Populator_PLI.m

CheckRange_PLI.m

GenProfile_PLI.m

fun_FEM_PLI.m

o FunGenFEM_PLI.m

o Model_FEM (Finite element model was not included. Refer the model

developed by Watkins (2004).

V fun_DNNM_FS.m :

This sub-program can be included when the GA is coupled with DNNM and

Fourier series parameterization method while maintaing framworks of

GA_FEM_PLI.m.

o FourierFunGen.m (included DNNM package)

0 Generate_Squata_Test.m (included in DNNM package)
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GA_FEM_PLLm

% GA_FEM_PLI.m

% Genetic algorithm coupled with FEM and piecewise linear interpolation

% parameterization (PLI) were used.

clear all

global Fbest_trace Xbest_traceIMu_count

% GA parameters

fprintf('GA Optimization Started!\n')

nDes=64; % i of design parameters [duration temp moisture velocity]

nG=200; % total number of generation

nPi=10; % i of initial population

nP=4; % i of population for each generation

nSC=3; % number of simple crossover - each yields 2 children

nAC=3; % number of arithmetic crossover - each yields 2 children

nIMs4; % number of imigrants

nMU=2; % number of mutation

% Generating initial population

fprintf('Generating initial population\n')

% Getting initial population information from a file

for i=l:nPi

fid=fopen(['lhome/jeongsal/Matlab/l/IP/IDsmooth_',num2str(i),'.dat']);

g=fscanf(fid,'%g',[1, infl); % [temp(1-21) steam(22-42)

velocity(43-63) time(64) yield SamonellaLR DI DEavg RMSE(T) RMSE(H)

RMSE (V) ]

939';

fclose(fid);

vector=g(l:64,1);

status=1; % lscontraints satisfied; Oanot satisfied

results=g(65:68,1); % predicted yield, Salmonella reduction, DI, DE

ind(i,:)=vector';

ind_Y(i,l)=results(l,1); % yield

ind_status(i,l)=status;

ind_results(i,:)=results'; % Evaluation of individual: Yield

% ind_L(i,1)=Lf; %fun_nn_1stg_nlec(vector); % Evaluation of

individual: Lethality

fprintf('%d ',i)

end

fprintf('\n')

% If you want to generate an initial pop., unmark following marked code

and

% mark the above code.
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% % Generating initial population

% ctsO;

% for i=1:nPi

% status=0; % Ozconstaints are not satisfied, lzsatisfied

% while statusalo

% vectoraPopulator_PLI(nDes); % Generating individuals

having target lethality

% [status, results]=fun_PEM_PLI(vector); % Calculating

result with GRNN and vector

%

% end

% ind(i,:)=vector'; % transposed

% ind_Y(i,l)=results(l,1); %100-fun_nn_1stg(vector); %

Evaluation of individual: Yield

%

% ind_status(i,1)=status;

% ind_results(i,:)=results'; % Evaluation of individual: Yield

53

% passedCond(1:nDes,1)=vector;

% passedCond(nDes+1:nDes+4,1)=results;

% ctsct+1;

%

fidefopen(['C:\MATLAB?\work\Dissertation\Optimizer\InitialPopulation\ID

',num2str(ct),'.dat'],'wt');

fprintf(fid,'%f\n',passedCond');

fclose(fid);

'5

%

%

% fprintf('%d ',i)

% end

% fprintf('\n')

% Sorting to select parents

[value, index]=sort(ind;Y,'descend');

% Selecting parents

for i-lznP

Xgen(i,:)=ind(index(i),:);

Xgen_status(i,l)=ind_status(index(i),:);

Xgen_results(i,:)=ind_results(index(i),:);

E_Origin(i,l)=ind;results(index(i),1);

x_Origin(i,:)=ind(index(i),:);

end

clear index

***********************************************************

% Generating offsprings and immigrants

for iG=lznG

fprintf('***\n')

fprintf('Generation %d\n',iG)

% Simple crossover

[XChild] s SimpleCrossover(nDes, nP,nSC,Xgen);

for i=1:2*nSC
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Xgen(nP+i,:) = XChild(i,:);

end

fprintf('\nFinished: Simple Crossover')

% Arithmetic crossover

[XAChild] a ArithmeticCrossover(nDes, nP,nAC,Xgen);

for i=l:2*nAC

Xgen(nP+2*nSC+i,:) - XAChild(i,:);

end

fprintf('\nFinished: Arithmetic Crossover')

% Mutation

[n1 m1] = size(Xgen);

[XMu]=.Mutation_PLI(nDes,Xgen);% mutate all members

for i-l:nMU % nMU mutated.member selected among all muatated

population

Xgen(nP+2*nSC+2*nAC+i,:) 8 XMu(i,:);

end

fprintf('\nPinished; Mutation')

% Immigration

[n2 m2] I size(Xgen);

for j = lanM

vect = Populator_PLI(nDes);

Xgen(n2+j,:) 8 vect';

end

fprintf('\nFinished: Immigration\n')

% Checking the validity of parameters: testing if the actual control

% profiles are in the proper ranges

i=0:

clear temegen temegen_status temegen_results

[n4 m4] 8 size(Xgen);

for islzn4

s(i,1)=CheckRange_PLI(Xgen(i,:)');

if s(i,1)=-=1

j=j+1;

temegen(j,:)=Xgen(i,:);

if (i<=nP)

temegen_status(j,:)=Xgen_status(i,1);

temegen_results(j,:)=Xgen_results(i,:);

end

end

and

clear Xgen

Xgenstemegen;

Xgen_status=temegen_status;

Xgen_results=temegen_results;

fprintf('Finished: Range check: ')

[n3 m3] - size(Xgen);

fprintf('Rejection rate(range)=%d/%d\n',(n4-n3),n4)
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% Evaluation

fprintf('Evaluation process\n')

for i = (nP+1):n3

vector 8 Xgen(i,:);

[status, results]=fun_PEM_PLI(vector');

Xgen_status(i,1)=status;

Xgen_results(i,:)-results';

end

% Inspecting constraints satisfaction

kk=0;

for i=1:n3

if (Xgen_status(i,l)-1)&(isnan(Xgen_results(1,1))==0)

kkakk+1;

passengen(kk,:)=Xgen(i,:);

passengen_results(kk,:)=Xgen_results(i,:);

passengen_status(kk,:)=Xgen_status(i,1);

end

end

if kk<2

fprintf('\nSpieces terminated\n')

break;

end

% Sorting

[value, indexlssort(passengen_results(:,1),'descend');

clear temp temp_status temp_results

% Temporary storage

tempspassengen;

temp_status-passengen_status;

temp_results-passengen_results;

fprintf('Number of passed generations %d',kk)

passengen_results(index,:);

fprintf('Pass ratio8 %d/%d\n',kk,n3)

Xbest=passengen(index(l),:); % best condition at each generation

Fbest=passengen_results(index(1),:); % best yield at each

generation

Xbest_trace(iG,:)=Xbest; % progressive history

Ebest_trace(iG,:)-Fbest; % progressive history

clear Xgen Xgen_status Xgen_results XChild XAChild xuu passengen

passengen_results passengen_status

% Selecting parents: Same vector will be skipped for diversity

for i=1:nP

Xgen(i,:)-temp(index(i),:);

Xgen_status(i,1)=temp_status(index(i),1);

Xgen_results(i,:)=temp_results(index(i),:);

end
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clear index

Xgen_results

% Saving workspace at every 50 iteration

if(mod(iG,50)==0)

save(['C:\MATLAB7\work\Dissertation\Packages\l\1\NerkSpace_',num2str(iG

)I"Mt']);

end

end % End of cycle of a generation

%............................................................

% Plotting 8 Exporting

%............................................................

fprintf('Plotting 5 Exporting\n')

[n m] I size(Xbest_trace);

% Plotting the best profiles

p=FunGenFEM_PLI(Xbest_trace(n,z)');

time=p(:,1);

tM(: I2);

hum-Pt: .3);

vel=p(:,4);

figure

h=plot(time,temp,'r—',time,hum,'b--',time,ve1,'mr.');

xlabel('Process time [s]');

ylabel('Temperature [deg. C] / Humidity [%MV] / velocity [m/sJ');

1egend('Temperature','Humidity','Velocity',4);

set(h,'LineWidth',1.5);

tot=nP+2*nSC+2*nAC+Mu_count+nIM

SimpleCrossover_rate=(2*nSC)ltot % each crossover produce two children

ArithmaticCrossover_rate=(2*nAC)ltot

MMtation_ratedMu_count/tot

Immigration_rate=nIM/tot

% Exporting result

% History of generations

fid=fopen(['C:\MATLAB7\work\Dissertation\Packages\1\1\Result_generation

s.dat'],'wt');

for islznG

for j=1:m

fprintf(fid,'%10.4f',Xbest_trace(i,j));

end

fprintf(fid,'%10.4f %10.4f %10.4f %10.4f\n',Ebest_trace(i,:));

end

fclose(fid);

% Reporting GA summary

fid3=

fopen(['C:\MATLAB7\work\Dissertation\Packages\1\1\Result;eummary.dat'],

'vt');
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fprintf(fid3,‘ ---------------------------------------------------------

\n');

fprintf(fid3,’ SUMMARY OF GA-FEMZOPTIMIZATION\n');

fprintf(fid3,‘ >Discretized profile for each control vector\n');

fprintf(fid3,‘ >GA-FEM found the best combination of 64

coefficients\n');

fprintf(fid3,‘ ---------------------------------------------------------

\n');

fprintf(fid3,'Yield;max= %10.4f [%%]

\nlog(Lanicrob)= %10.4f\nlog(DI)- %10.4f\nlog(DE)8 %lO.4f\n\n',Fbest);

fprintf(fid3,‘[Optimization Parameters]\n');

fprintf(fid3,'1. Design variables: %d\n',nDes);

fprintf(fid3,'2. Initial population: %d\n',nPi);

fprintf(fid3,'3. Parents: %d\n',nP);

fprintf(fid3,'4. Generation cycle: %d\n',nG);

fprintf(fid3,'5. Simple crossover: %d\n',nSC);

fprintf(fid3,'6. Arithmatic crossover: %d\n',nAC);

fprintf(fid3,'7. Immigration: %d\n',nIM);

fprintf(fid3,'8. Population/genertion: %d\n\n',tot);

fprintf(fid3,'9. Simple crossover

rate: %6.2f\n',SimpleCrossover_rate);

fprintf(fid3,'10. Arithmatic crossover

rate: %6.2f\n',ArithmaticCrossover_rate);

fprintf (fid3, ' 11 . Mutation rate: %6. 2f\n' ,Mutation_rate) ;

fprintf(fid3,'12. Immigaration

rate: %6.2f\n',Immigration_rate);

fprintf(fid3,‘ --------------------------------------------------------

\n') ;

fclose(fid3);
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SimpleCrossover.m
 

% creating children by simple crossover

function ret = SimpleCrossover(nDes,nP,nSC,X)

XPl = X(l,:);

XP2 a X(2,:);

for k=1:nSC

r - rand(1,1);

if r > 0.5

r1 = floor(nDes*r);

else

r1 = ceil(nDes*r);

end

for i = l:1:length(XP1)

if i < r1

XC1(i) = XP1 (i);

XC2 (i) a XP2 (i);

else

xc1(i)= XP2(i);

XC2(i)= XP1(i);

end

end

temp=2*(k-1)+1;

C(temp,:)=XCl;

C(temp+1,:)=xc2;

end

ret 3C;
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ArithmeticCrossover.m

function ret = ArithmeticCrossover(nDes,nP,nAC,X)

XP1=X(1,=);

XP2=X(2,:);

for k=l:nAC

r1 = rand(l,1);

r2 = 1 - r1;

for i = l:nDes

XC1(1,i) = r1*XPl(l,i) + r2*XP2(1,i);

XC2(1,i) = r2*XP1(1,i) + r1*XP2(l,i);

end

temp=2*(k—1)+1;

C(temp,:)=XCl;

C(temp+l,:)=XC2;

end

ret =C;

229



Mutation_PLI.m

% Mutating all the vectors by changing a single element

function ret I Mutation_PLI(nDes,X)

global xvl yvl xv2 yv2 Mu_count

Mu_countIO; % mutation counter

xx I X;

[n m] =size(X);

for

end

ret

i I 1:n

r I rand(1,l);

if r > 0.5

r1 I floor(nDes*r);

else

r1 I ceil(nDes*r);

end

for j = lzm

if(j II r1)

x=Populator_PLI(nDes);

xxu,j) I 8(j):

Mu_countIMu_count+l;

end

end

= XX;
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Populator_PLI.m

% Generating control parameters within feasible ranges

function rv2=Populator_PLI(nDes)

% generates a random control vector

n=(nDes-1)/3; % w/o duration; 21 points for each control vector

t_L=60; t_D=600; % time bounds [s]; L=lower UIupper

T;L=100; T_D=250; % Temperature bounds [C]

H_LIO; H_D=100; % Steam content bounds [% by volume]

v;r=o; V;D=30; % Impingement velocity bounds [mls]

% generating random profiles

x(1:n,1)IT_L+(T_D-T_L)*rand(n,1); % Temperature

x(n+l:2*n,1)=H_L+(H_D-H_L)*rand(n,l); % Humidity

x(2*n+1:3*n,l)=v;L+(v;D-V;L)*rand(n,l); % velocity

x(3*n+1,1)Iround(t_L+(t_D-t_L)*rand(1,1)); % duration

rv2Ix;
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CheckRangquthn

% Check if the control profiles are within the upper and lower bounds.

function status=CheckRange_PLI(X)

% Temperature, humidity, and velocity bounds

Bounds=[100 250; 0 100; 0 30]; %[TL TU; HL HU; VL VU]

[r c]=size(X);

duration=X(r,l);

PIE‘unGenFEM_PLI (X) ;

timestep=0.5;

T(111)=P(3:2):

3(311)=P(1:3);

v(:11)=P(:I4);

% Check violations

if ((max(T) <= Bounds(l,2)) && (min(T) >= Bounds(1,1)))

SlIl;
.

else

81:0;

end

if ((max(H) <I Bounds(2,2)) as (min(H) >I Bounds(2,l)))

S2=l;

else

end

if ((max(V) <= Bounds(3,2)) && (min(V) >= Bounds(3,1)))

S3=1;

else

33:0;

and

status = 81 * $2 * S3; % 1=passed, 0=not passed
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GenProfile_PLI.m
 

% Calculating actual time-condition data with parameters

function rvl = GenProfile_PLI(v) % v=vector

% Spliting parameters for each control vector

T(1:21,1)=v(l:21,1); % Temperature

M(1:21,1)=v(22:42,1); % Humidity

V(1:21,l)=v(43:63,1); % velocity

duration=v(64,l);

tIO:(duration/(21-1)):duration;

% Generating 0.5 sec time intervals

ti=0:0.5:duration;

t=t';

ti=ti';

% Interpolation with parameters

Ti = interpl(t,T,ti);

Mi interpl (t,M,ti);

Vi interp1(t,v,ti);

% Merging time-condition data into a matrix

Cond(:,1)=ti;

Cond(:,2)=Ti;

Cond(:,3)=Mi;

Cond(:,4)IVi;

% return value

rvl=Cond;
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fun_FEM_PLI.m

% Process evaluation with FEM and PLI

function [status, results]=fun_PEM_PLI(v) % nlc: nonlinear constraints

% Getting function value at each time

CIFunGenFEM_PLI (v) ;

duration=v(64,1);

TeIC(:,2);

Se=C(:,3);

ve=C(:,4);

dt=0.5;

% FEM Solution

[rvl rv2 rv3 rv4 rv5 rv6 rv7 rv8]IModle_PEM(duration,Te,Se,ve,dt);

[nr nc]=size(rv1);

results(1,1)=rv1(nr,1); % Yield

results(2,1)=rv3(nr,1); % Lethality

results(3,1)=rv4(nr,1); % DI

results(4,1)=rv6(nr,1); % DE

Lfsresults(2,l);

DIfIresults(3,l);

DEf=results(4,1);

if (Lf >- 6.5)

Det_Lf=1; % passed

else

Det_Lf=0; % failed

end

if (DIf >I 1.4)

DetpprIl; % passed

else

Det_DIf=0; % failed

end

if (DEf >I 0.263)&& (DEf <= 0.497)

Det_DEf=1; % passed

else

Det_DEfI0; % failed

end

% 1: feasible; 2: infeasible

status=Det_Lf*Det_DIf*Det;DEf;
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FunGenFEM_PLI.m
 

% Calculating actual time-condition data with parameters

function rvl = FunGenFEM_PLI (v) % v=vector

% Spliting parameters for each control vector

T(1:21,1)=v(1:21,1); % Temperature

M(1:21,1)Iv(22:42,1); % Humidity

V(1:21,1)Iv(43:63,1); % velocity

duration=v(64,1);

t=0:(duration/(21-l)):duration;

% Generating 0.5 sec time intervals

ti=0:0.5:duration;

tIt';

tiIti';

% Interpolation with parameters

Ti I interp1(t,T,ti);

Mi I interp1(t,M,ti);

Vi I interp1(t,V,ti);

% Merging time-condition data into a matrix

Cond(:,1)Iti;

Cond(:,2)=Ti;

Cond(:,3)IMi;

Cond(:,4)IVi;

% return value

rleCond;
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fun_DNNM_FS.m

% Dynamic neural network model and Fourier parameter inputs

function [status, results]=fun_DNNM_FS(v)

% Retrieving stored networks and parameters

clear net

load( 'M: \Matlab\NNs\netl' , 'netl ') ;

load( 'M: \Matlab\NNs\net2 ' , ' net2 ' ) ;

load( 'M: \Matlab\NNs\net3 ' , 'net3') ;

load('M:\Matlab\NNs\net4','net4');

% Open scaling parameters

fid=fopen('M: \Matlab\NNs\nermal_para.dat') ;

aIfscanf(fid,'%f %f %f %f %f %f %f %f',[8, infl); % [time temp steam

velocity yield vav M SamonellaLR DI DE4 DEavg Tc Ts]

a=a';

fclose(fid);

% Assigning scaling parameters

minSP1=a(l:8,1); minSP2=a(1:8,3); minSP3Ia(1:8,5); minSP4Ia(1:8,7);

maxSPl=a(l:8,2); maxSP2=a(1:8,4); maxSP3=a(l:8,6); maxSP4Ia(l:8,8);

minSTlIa(9,1); minST2=a(9,3); minST3=a(9,5); minST4Ia(9,7);

maxSTl=a(9,2); maxST2=a(9,4); maxST3Ia(9,6); maxST4=a(9,8);

m=2; % number of system parameter (length of past time series)

mg=3*m+l+1; % total row number of training matrix

mk=3*m+l; % row location of target output value at training matrix
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clear Outputs

clear Y_pred L_pred DI_pred DE_pred t

clear b Cond ittcl ittc2 ittc3 ittc4

clear ittl itt2 itt3 itt4

% Getting profiles

C=FourierFunGen(v);

% Rearranging input data for DNNM

CondIGenerate_Squata_Test(C);

[rt1,ct1]=size(Cond);

% Setting initial conditions

ippl(l:mg,l)=Cond(1:mg,1); % copy

ippl(mk,1)=100; % 100

ittl(1:m-1,l)=0; % initial difference is zero

ipp2 (l:mg,l)ICond(1:mg,1) ;

ipp2(mk,1)=-10; % which is almost zero
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itt2(1:m-1,l)=0;

ipp3(1:mg,l)ICond(1:mg,l);

ipp3(mk,1)I-10; % 0

itt3(1:m-1,1)=0;

ipp4(l:ng,l)ICond(l:mg,l);

ipp4(mk,1)=0;

itt4(l:m-1,1)I0;

% Initial simulation

% Transform data using a precalculated.minimum.and.maximum.value

ippln I tramnmx(ippl,minSP1,maxSPl);

ipp2n I tramnmx(ipp2,minSP2,maxSP2);

ipp3n I tramnmx(ipp3,minSP3,maxSP3);

ipp4n I tramnmx(ipp4,minSP4,maxSP4);

% Simulation

itlIsim(net1,ippln); %ittc1(l,1)Iit1(1,1);

it2Isim(net2,ipp2n); %ittc2(l,1)=it2(1,1);

it3Isim(net3,ipp3n); %ittc3(1,1)Iit3(l,l);

it4=sim(net4,ipp4n); %ittc4(l,1)=it4(1,1);

% Denormalization

itl I postmnmx(it1,minST1,maxST1);

it2 I postmnmx(it2,minST2,maxST2);

it3 I postmnmx(it3,minST3,maxST3);

it4 I postmnmx(it4,minST4,maxST4);

ittc1(l,1)=itl(1,1);

ittc2(1,1)Iit2(l,1);

ittc3(1,1)=it3(1,1);

ittc4(l,1)=it4(l,1);

g...............................................

% Beginning of time stepping simulation

%...............................................

for jI2:ct1

in;

% Constructing input data set

ippl(1:mk-l,1)=Cond(l:mk-l,i); % copying conditions

ippl(mg,l)ICond(mg,i); % copying time

ittl(1,1)=itl(1,1);

ipp2(l:mk-1,1)=Cond(l:mk-l,i);

ipp2<fl9.1)=Cond(m9.i);

itt2(1,1)Iit2(1,1);

ipp3(1:mk-l,1)ICond(1:mk-l,i);

ipp3tm9.1)-Cond(mg.i);

itt3(l,1)Iit3(1,1);

ipp4(1:mk-1,1)ICond(l:mk-l,i);

ipp4(mg,1)ICond(mg,i);
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itt4(l,l)=it4(1,l);

% replacing past time series of output

ipp1(mk,1)Iippl(mk,1)-itt1(1,l); % value(tIn)Ivalue(tIn-1)-difference

ipp2 (mk,1)=ipp2 (mk.1) -itt2 (1.1):

ipp3(mk,l)Iipp3(mk,1)-itt3(1,1);

ipp4(mk,1)Iipp4(mk,1)-itt4(1,l);

% Normalization

ippln I tramnmx(ippl,minSPl,maxSPl);

ipp2n I tramnmx(ipp2,minSP2,maxSP2);

ipp3n I tramnmx(ipp3,minSP3,maxSP3);

ipp4n I tramnmx(ipp4,minSP4,maxSP4);

% Simulation

itlIsim(net1,ippln); % yield

it2Isim(net2,ipp2n); % Salmonella inactivation

it3Isim(net3,ipp3n); % Internal color change

it4-sim(net4,ipp4n); % Surface color change

% Denormalization

itl I postmnmx(itl,minST1,maxSTl);

it2 I postmnmx(it2,minST2,maxST2);

it3 I postmnmx(it3,minST3,maxST3);

it4 I postmnmx(it4,minST4,maxST4);

% record simulation result; difference at each time

ittcl(l,i)=itl(1,l);

ittc2(1,i)Iit2(l,l);

ittc3(1,i)=it3(l,1);

ittc4(1,i)Iit4(1,l);

% shift down past time series of output

ittl(2:m-1,1)Iittl(1:m-2,1);

itt2(2:m-1,1)Iitt2(l:m-2,l);

itt3(2:m-1,1)Iitt3(1:m-2,l);

itt4(2:m-l,1)Iitt4(l:m-2,l);

end % End of time stepping simulation

% copying time series to t

tICond(mg,l:ctl);

% Calculate cumulative results

% Yield

[b c]=size(ittc1);

ittc1m(1,l)I100;

ittclm(1,2:c+l)I100-cumsum(ittc1);

% Salmonella inactivation

[b c]=size(ittc2);

ittc2m(1,1)I-10;

ittc2m(1,2:c+1)I-10-cumsum(ittc2);

% Internal color change

[b c]=size(ittc3);
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ittc3m(1,l)I-10;

ittc3m(1,2:c+1)I-10-cumsum(ittc3);

% Surface color change

[b c]=size(ittc4);

ittc4m(1,1)I0;

ittc4m(l,2:c+1)I0+cumswm(ittc4);

% Transposing data

ittclIittclm';

ittc2Iittc2m';

ittc3=ittc3m';

ittc4Iittc4m';

% Testing feasibility

results(1,1)Iittcl(ct1,l); % final yield

results(2,l)=ittc2(ct1,1); % final log(Salmonella.LR)

results(3,1)Iittc3(ct1,1); % final log(DI.LR)

results(4,1)=ittc4(ct1,l); % final DE.LR

LfIresults(2,1);

DIfIresults(3,l);

DEfIresults(4,l);

if (Lf >I 0.813) % LfcI0.813, 2.5I316.2 log reduction

Det_LfIl; % passed

else

Det_LfI0; % failed

end

if (DIf >I 0.146) % DIfcI0.146

Det_DIfI1; % passed

else

DetpprIO; % failed

end

if (DEf >I 0.26)&& (DEf <I 0.497) % [0.26 0.497]

Det_DEfI1; % passed

else

Det_DEfI0; % failed

end

% 1: feasible, 2: infeasible

statusIDet_Lf*Det_DIf*Det_DEf;
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Simulated Annealing (SA)

File association:

SA_FEM_FS.m has following sub-programs:

GenFourierParaSeLm

fun_FEM_FS.m

CheckRangam

FourierFunGen.m
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SA_FEM_FS.m

% SApFEM_FS.m

% Simulated annealing algorithm coupled with FEM and Fourier series

% parameterization method.

clear all

sprintf('Simulated Annealing Algorithm Started...')

% Parameters

NiI20; % number of inner iteration

aI-0.5; % lower bound of random direction

bI0.5; % upper bound of random direction

I21; % number of design variables of a control vector

iGIO ;

nGIlSO; % total number of iteration

T0I100; % initial temp

TnI0.001; % final temp

% Stepsize for each parameters

stepsize(1:20,l)I2; stepsize(21,l)=10; % Temperature

stepsize(22:4l,l)I2; stepsize(42,1)I5; % Humidity

stepsize(43:62,1)I2; stepsize(63,l)I2; % velocity

stepsize(64,l)=10; % duration

% Finding initial feasible control vector

% By using FEM

statusIO;

while statusIIO

XIGenFourierParaSet(N);

% Evaluate performance index

[status results]=fun_FEM_FS(X); % JI100-Yield

end

% % By reading from file

% fidIfopen(['/home/jeongsal/Matlab/G/IP/IP_',num2str(4),'.dat'l);

% ngscanf(fid,'%f',[l, infl); % [temp(1-21) steam(22-42) velocity(43-

63) time(64) yield SamonellaLR DI DEavg RMSE(T) RMSE(H) RMSE(V) ]

9:9'F

fclose(fid);

XIg(1:64,1);

statusIl;

results=g(65:68,1);d
’
fl
fl
c
p
w

% Assinging initial objective value

JIresults(1,l)

iIl;
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JinitIJ;

XinitIX;

[rn cn]=size(X);

TITo;

% Starting iteration

for iGI1:(nG+1)

kIO;

C_acceptI0; % Counter for acceptance

C_improv=0; % Counter for improvement

fprintf('%dth Generation\n',iG)

while k < Ni % Inner loop begins

statusIO;

while statusIIO

S£I0;

while Sf II 0

% generating random direction [a, b] @ n-dim.

hypersphere

s = a + (b - a) * rand(rn,l);

% Calculating new control vector

Knew I X + stepsize .* S;

% checking feasiblility of Xnew

SfICheckRange(Xnew);

end

% Obtaining prediction results by using process model

[status resultslIfuonEM_FS(Knew);

end

Jneeresults(1,l);

delJIJnew-J;

% Checking if the new result is improved

if delJ > 0 % improved

P31;

CLimprovIC_improv+l;

else

pIexp(-abs(delJ)/T);% Boltzmann probability distribution

end

rIrand(1); %0.7; %rand(l)

% New objective value is accepted and the design vector is

updated ‘

if p>r

XIXnew;

JIJnew;

ka+1;
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iIi+1;

q_accepted(i,l)IJ;

xgaccepted(i,:)IX;

C_acceptIC_accept+l;

else

ka+1;

end

fprintf('kI%d pI%f r=%f JI%f\n',k,p,r,J)

end

% Cooling Schedule

NIiG;

AI(To-Tn)*(nG+1)/nG; % meta variable

BITo-A; % meta variable

TIA/(N+1)+B

% Recording convergence history

q_history(iG,l)IJ; % last value at every temperature

XLhistory(iG,:)Ix;

Rpaccept(iG,1)IC_accept; % number of acceptance

R;improv(iG,l)IC_improv; % number of improvement

% Saving workspace at every 5 iteration

if(mod(iG,5)II0)

save(['lhome/jeongsal/Matlab/6/6/WerkSpace_',num2str(iG),'.mat']);

end

end

% Plotting optimal control profiles

pIFourierFunGen(x,10);

time=p(:,1);

tamp=p(: (2);

lump(: '3);

vel=p(:,4);

figure

hIplot(time,temp,'r-',time,hum,'b--',time,ve1,'mr.');

xlabel('Process time [s]');

ylabel('Temperature [deg. C] / Humidity [%Mv] / velocity [m/sl');

legend('Temperature','Humidity','velocity',4);

set(h,'LineWidth',1.5);
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GenFourierParaSeLm

% Generating Fourier series parameter set

function rv2IGenFourierParaSet(N)

% Upper and lower limit of each control variables

t_LI60; t_UI600; % time bounds [s]; LIlower UIupper

T:LI100; TbUIZSO % Temperature bounds [C]

H_LI0; H_DI100; % Steam content bounds [% by volume]

V;II0; V;DI30; % Impingement velocity bounds [m/s]

% generating a random cooking duration

durationIround(t_L+rand(l,1)*(t_D-t_L));

remain=mod(duration,10); % time should be integer and multiple of 10

durationIduration-remain;

% calculating Fourier coefficients

x(1: N, 1)ICalculateFourierCoeffs(T_U, T_L, duration, 1); % Temperature

x(N+1:2*N,1)ICalculateFourierCoeffs(H_U, H_L, duration, 1); % Humidity

x(2*N+l: 3*N, 1)ICalculateFourierCoeffs(V_D,‘V_L, duration, 1);

velocity

x(3*N+1,1)Iduration; % Cooking duration

rv2Ix;
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fun_FEM_ParaJn

% Calculating prediction results by using FEM and Fourier parametes

function [status, results]=fun_£EM_Para(v) % nlc: nonlinear constraints

% Getting profiles with 0.5s interval

C=FourierFunGen(v, 0.5);

duration=v(64,1);

Te=C(:,2);

Se=C(:,3);

vs=C(:,4);

dt=0.5:

% FEM Solution

[rvl rv2 rv3 rv4 rv5 rv6 rv7

rv8]=FH_pataGen_half(duration,Te,Se,Ve,dt):

[nr nc]=size(rvl);

% Re-arranging results

results(l,l)=rv1(nr,l); % Yield

results(2,l)=rv3(nr,1); % Lethality

results(3,1)=rv4(nr,l); % DI

results(4,l)-rv6(nr,l); % DH

Lfaresults(2,1);

DIf=results(3,1);

DHfsresults(4,l);

% Checking feasibility

% Salmonella reduction

if (Lf >3 6.5)

Det_Lf=l; % passed

else

Det_Lf=O; % failed

end

% Internal color change

if (DIf >2 1.4)

Det_pr=l; % passed

else

Det_pr=O; % failed

end

% Surface color change

if (DEf >8 0.263)&& (DEf <2 0.497)

Det;pEf=1; % passed

else

Det_pEf=0; % failed

end

% lsfeasible; 0=infeasible

sumDet=Det_Lf*Det_pIf*Det_pEf;
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% Check if the data points generated by Fourier coeffs. are in the

upper

% and lower bounds.

function status=CheckRange(X)

% Limits of variables

Bounds=[100 250; O 100; O 30]; %[TL TU; HL HU; VL VU]

[r c]=size(X);

duration=X(r,1);

timestep=l;

kmax=10; % maximum # of series

s=2*pi/((duration/2)*kmax); % period

for k=l:3

base-1+21*(k-l);

a=X(base:base+(kmax-l),1);

b=X(base+kmax:base+2*kmax-l,1);

f0=X(base+2*kmax,1);

i=0;

for ti=0:timestep:duration

i=i+1;

susz;

for m=lzkmax

sum:sum*a(m,1)*sin(s*mfiti)+b(m,l)*cos(s*mfiti);

end

fs(i,1)=f0+swm;

end

if ((max(fs) <= Bounds(k,2)) && (min(fs) >= Bounds(k,1)))

S(k.1)=l;

else

S(k,l)=0;

end

end

% l=feasible, O=infeasible

status=S(1,l)*S(2,l)*S(3,l);
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FourierFunGen.m

% Generating control profile with 0.5s interval by using Fourier

coeffs.

function rvl = FourierFunGen(v,timestep) % v=vector

% Assigning Fourier coefficients

aT(l:lO,l)=v(1:10,l); bT(1:lO,l)=v(11:20,1); foT=v(21,1); % Temperature

aMKl:10,l)=v(22:31,l); bM(1:10,l)=v(32:41,1); foM-v(42,l); % Humidity

aV(1:10,1)=v(43:52,l); bV(1:lO,1)=v(53:62,1); fthv(63,1); % velocity

duration=v(64,1);

kmaxslo; % maximum.# of series

s=2*pi/((duration/2)*kmax); % period

i=0;

% Calculating

for t=0:timestep:duration %j=0:(quotient+1)

i=i+1;

sumT=O:

sumMsO;

sumvbo;

for kalzkmax

sustsumT+aT(k,l)*sin(s*k*t)+ bT(k,1)*cos(s*k*t);

sumM=sumM+aMXk,l)*sin(s*k*t)+ bM(k,l)*cos(s*k*t);

sumvesumv+aV(k,l)*sin(s*k*t)+ bV(k,l)*cos(s*k*t);

end

fT=foT+sumT;

fusfouwsumu;

thfoV+sumV;

Cond(i,l)=t;

Cond(i,2)=fT;

Cond(i,3)=fM;

Cond(i,4)=fv;

end

% returning profile data

rvl=Cond;
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ICRS Algorithm

File association:

ICRS_FEM_PLI.m has following sub-programs:

- GetMinIntervaLm

o fun_FEM_PLI.m **

o CheckRange_PLI.m * *

** Thesefiles are included in the genetic algorithm in this study.
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ICRS_FEM_PLLm
 

% ICRS Algorithm

clear all

fprintf('ICRS+FHM.Algorithm.started\n')

% Parameters and input data

kal; % iteration counter

tol_criterion=0.0001; % convergence criterion

iG=400; % max. iteration

% Heuristic parameters

k1=l/3;

k2=l/2;

neleO; % Failure counter limit

N=21; % 21 control points for each control vector

M34; % # of control vectors

TotDim=N*(M-l)+1; % Total # of dimensions

% Ranges of parameters

XiU( lzN, 1)=250; % temperature

XiU( N+1:2*N,1)=100; % steam

XiU(2*N+l:3*N,l)=30; % velocity

XiU(3*N+1,l)=600; % time

XiL( 1:N, l)=100;

XiL( N+1z2*N,l)=0;

XiL(2*N+1:3*N,l)=O.5;

XiL(3*N+1,1)=60;

% Getting initial contol vectors by reading a file

fidsfopen(['/home/jeongsal/Matlab/3/IP/IDsmooth_',num2str(5),'.dat']);

g=fscanf(fid,'%f',[1, infl);

9‘9 r

fclose(fid);

Xik=g(l:64,l);

status=l;

results=g(65:68,1);

% Assigning initial objective value

Josresults(1,l);

% Storing initial control vector

Xik_History(k,:)=Xik';

J;History(k,l:4)=resu1ts';

tolal;

% Starting iteration

while (k < i6)
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% Calculate the minimum.intervals of the decision variables

Lik=GetMinInterval(XiU, XiL, Xik);

% Calculate the vector of standard deviations, using kl

Sik=k1*Lik;

F:0;

Jns-l; % just for safety

while (status ~= l)||(Jn < Jo)

[r c]=size(Xik);

P;

if F > (no)

Sik=k2*Sik;

F=0;

end

ParaStatussO;

% Generate a new decision vector using Gaussian distribution

while ParaStatus==0

XikNew I Xik + Sik .* randn(r,1);

Parastatus=CheckRange_PLI(XikNew);

end

% Evaluating performance index

[status results]=fun_FEM_PLI(XikNew);

Jn=results(1,1);

if (status == O)||(Jn <= Jo)

F=F+1; % Increase failure counter by 1

end

end

% Check the convergence

if isnan(Jn)-=O

tol=abs(Jn-Jo)/abs(Jo);

k=k+l;

Xik=XikNew;

Joan;

Xik_History(k,:)=Xik';

J_History(k,1:4)=results';

tol_History(k,1)=tol;

else

fprintf('Skipped because of NaN\n');

end

fprintf('k=%d F=%d J=%f\n',k,F,Jn)

% Saving workspace at every 2 iteration

if(mod(k,2)8=0)

save(['/home/jeongsal/Matlab/3/IP/Wbrk8pace_',num2str(k),'.mat']);

end
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end

fprintf('End of ICRS+FEM.Algorithm\n');

% Exporting result

% History of generations

fid=fopen(['[home/jeongsal[Matlab/3/3/Result_history_Fourier.dat'],‘wt'

);

for i=1:k

for j=l:TotDim

fprintf(fid,'%10.4f',Xik_History(i,j));

end

fprintf(fid,'%10.4f %10.4f %10.4f %10.4f',q_History(i,:));

fprintf(fid,'%10.4f\n',tol_History(i,l));

end

fclose(fid);

% Reporting ICRS summary

fid3=

fopen(['/home/jeongsa1[Matlab/3/3/Result_summary_Fourier.dat'],'wt');

fprintf(fid3,‘ ---------------------------------------------------------

\n');

fprintf(fid3,‘ SUMMARY OF ICRS-GRNN OPTIMIZATION\n');

fprintf(fid3,’ >Control vector parameterization with Fourier

series\n');

fprintf(fid3,‘ >ICRS-GRNN found the best combination of 64 descision

parameters\n');

fprintf(fid3,‘ ---------------------------------------------------------

\n');

fprintf(fid3,'YieldLmax= %10.4f [%%] \nlog(LR~microb)= %lO.4f\nlog(DI)=

%10.4f\nlog(D£)= %10.4f\n',q4History(k,l:4));

fprintf(fid3,'Cooking duration: %10.4f [s] \n',Xik_History(k,64));

fprintf(fid3,'tolerance= %10.4f \n\n',tol_History(k,l));

fprintf(fid3,‘[Optimization Parameters]\n');

fprintf(fid3,'1. # of Decision parameters: %d\n',N);

fprintf(fid3,'2. # of Control variables: %d\n'pM);

fprintf(fid3,'3. Total dimension of problem: %d\n',TotDim);

fprintf(fid3,'4. kl heuristic parameter: %6.4f\n',k1);

fprintf(fid3,'5. k2 heuristic parameter: %6.4f\n',k2);

fprintf(fid3,'6. ne heuristic parameter: %6.4f\n',ne);

fprintf(fid3,'7. Convergence criterion: %6.4d\n',tol_criterion);

fprintf(fid3,'8. # of Fourier series: %d\n',10);

fprintf(fid3,'9. Total # of iteration: %d\n',k);

fprintf(fid3,‘ --------------------------------------------------------

\n');

fclose(fid3);
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GetMinIntervaLm

% Calculating minimum intervals of the decision variables

function rv=GetMinInterval(U, L, V)

[r c]=size(V);

for i=1:r

dL¢V(i,l)-L(i,l);

dU=U(i,1) -V(i,l);

if dL <8 dU

r(i,1)=dL;

else

r(i,l)=dU;

end

rv=r;
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Quality Prediction Sub-Programs

These sub-programs were added in the FEM of Watkins (2004).

o Salmonella inactivation: CalculateSurvivors.m

0 Internal color change: CalculateCenterColorChange.m

0 Surface color change: CalculateAveragedSurfaceCalorChange.m
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CalculateSurvivors.m

% Calculate the number of surviving microorganisms for eanch node at

each time step

function []=CalculateSurvivors()

global NumNodes timestep temperature Ninitial No NW Nnew Nneww

logreduction logreductionw Dvalue Tref z TimeToLimit

m31000000; % factor to reduce Dr

% Log—linear inactivation equation

for X s 1:NumNodes

d = m*Dvalue * 10 “ ((Tref - temperature(X)) / Z);

Nnew(X) = No(X) / (10 “ (timestep / d));

No(X) 8 Nnew(X);

logreduction(X) a -log(No(X) / Ninitial) / log(lO);

logreduction(X)=mfilogreduction(X); % restoring original Dr

% weibull inactivation equation

if logreduction" < 9

b = 0.000000000011047 * exp(0.4l758 * temperature(l)); %‘0.03 *

(temperature(l)) * 2 - (2.7 * temperature(l)) + 72.19

n s 1.12;

NnewW(X) 8 NWO!) * (10 0 (-b * ((timestep / 60) " n)));

if Nnew(X) < l

Nnew(X) 8 1;

end

NWO!) a NnewW(X);

logreductionw a -log(NW(X) / Ninitial) / log(lO);

else

logreductionw 8 9;

end

end
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CalculateCenterColorChange.m

% Calculate log reduction OMB(Oxy-myoglobin) concentration at center

function [rv]=CalculateCenterColorChange(t, Tc,delT)

% Geileskey A. et al. (1998)

% Target log reduction = 1.387 which is 95.9% denaturation of OMB which

is

% no evidence of pink.

% The worst case parameters:

Dr=5116.86; % [s] beef shin

2810.41; % [C] beef m. l. dorsi

Tr=60; % [C]

m=1000; % mDr=m*Dr Overflow Preventing Multiplier

mDr=m*Dr;

t=t';

Dt=mDr*10.“((Tr—Tc)/z); % Calculating D-value at time t

LRt=(-1 ./ Dt)*delT; % Calculating Log Reduction at time t for delT

mCumulative_LR=cumsum(LRt'); % Cumulative Log Reduction

Cumulative_LR:mfimCumulative_LR; % Restoring cumulative log reduction

rv=(-Cumulative_LR');
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CalculateAveragedSmfaceColorChangem

% Calculate color change at surface

function [rv]=CalculateSurfaceColorChange(t, Td, Ts, delT)

% Dagerskog and Bengtsson (1974)

% The crust color kinetic parameters were obtained from the graphical

data

Dr=465.30; %[s]

2:90.55; %[C]

Tr=110; %[C]

a=1.06; % Activation function parameter(99.5% activation level

within +/- 5C)

m=1000; % mDr=m*Dr Overflow Preventing Multiflier

mDr=m*Dr;

[rn cn]=size(Ts);

t=t';

for i=1:rn

f=1/(1+exp(-a*(Ts(i,1)-Td(i,1)))); % Activation function

Dt=mDr*10“((Tr-Ts(i,1))lz); % Calculating D-value at time t

LRt(i,1)=f*(-1 / Dt)*de1T; % Calculating Log Reduction at time t

for delT

end

mCumulative_LR=cumsum(LRt'); % Cumulative Log Reduction

Cumulative_LR=mfimCumulative_LR; % Restoring cumulative log reduction

rv=(-Cumulative_LR');

256



REFERENCES

257



REFERENCES

Adhikari, B. and V. K. Jindal 2000. Artificial neural networks: A new tool for prediction

ofpressure drop of non-Newtonian fluid foods through tubes. Journal of Food

Engineering 46(1): 43-51.

Albert, S., H. Hiden, A. Conlin, E. B. Martin, G. A. Montague and A. J. Morris. 2001.

Inferential quality assessment in breakfast cereal production. Journal of Food

Engineering 50(3): 157-166.

AMI. 2001. "Overview of US. Meat and poultry production and consumption."

American Meat Institute Fact Sheet Retrieved 03/21, 2005, from

http://www.meatami.com/Content/NavigationMenu/PressCenter/FactSheets_Info

Kits/FactSheetMeatProductionandConsumption.pdf.

AMI. 2002. "Timeline of factors impacting recall frequency and foodbome disease rates.’

American Meat Institute Fact Sheet; Retrieved 3/21, 2005, from

http://www.meatami.com/Content/Navigation/Menu/PressCenter/FactSheets_Info

Kits/FactSheetRecallFactors.pdf.

Arteaga, G. E., E. Li-Chan, M. C. Vazquez-Arteaga and S. Nakai. 1994. Systematic

experimental designs for product formula optimization. Trends in Food Science &

Technology 5(8): 243-254.

Ateba, P. and G. S. Mittal. 1994. Dynamics of crust formation and kinetics of quality

change during frying of meatballs. Journal of Food Science 59(6): 1275-1278.

Banga, J. R., A. A. Alonso and R. P. Singh. 1997. Stochastic dynamic optimization of

batch and semi-continuous bioprocesses. Biotechnol. Prog. 13(3): 326-335.

Banga, J. R., E. Balsa-Canto, C. G. Moles and A. A. Alonso. 2003. Improving food

processing using modern optimization methods. Trends in Food Science &

Technology 14(4): 131-144.

Banga, J. R. and J. J. Casares Long. 1987. Integrated controlled random search:

Application to a wastewater treatment plant model. The Institution of Chemical

Engineers Symposium Series 100: 183-192.

Banga, J. R., Z. Pan and R. P. Singh. 2001. On the optimal control of contact-cooking

processes. Food & Bioproducts Processing 79: 145-151.

Banga, J. R., R. I. Perez-Martin, J. M. Gallardo and J. J. Casares. 1991. Optimization of

the thermal processing of conduction-heated canned foods: Study of several

objective functions. Journal of Food Engineering 14(1): 25-51.

258



Banga, J. R. and R. P. Singh. 1994. Optimization of air drying of foods. Journal of Food

Engineering 23(2): 189-21 1.

Barreiro, J. A., C. R. Perez and C. Guariguata. 1984. Optimization of energy

consumption during the heat processing of canned foods. Journal ofFood

Engineering 3(1): 27-37.

Berber, R., C. Pertev and M. Tfirker. 1998. Optimization of feeding profile for baker's

yeast production by dynamic programming. Bioprocess Engineering 20: 263-269.

Berg, T., U. Erikson and T. S. Nordtvedt. 1997. Rigor mortis assessment of Atlantic

salmon (salmo salar) and effects of stress. Journal of Food Science 62(3): 439-

446.

Beveridge, G. S. G. and R. S. Schechter. 1970. Optimization: Theory and practice. New

York, McGraw-Hill.

Boillereaux, L., C. Cadet and A. Le Bail. 2003. Thermal properties estimation during

thawing via real-time neural network leaming. Journal of Food Engineering

57(1): 17-23.

Brennan, J. G. 1990. Food engineering operations. London; New York, Elsevier Applied

Science.

Buzby, J. C., T. Roberts, C.-T. J. Lin and J. M. MacDonald. 1996. Bacterial foodbome

disease: Medical costs and productivity loses. Agricultural Economic Report

(Economic Research Service/USDA) No. 741 .

Casares, J. J. and J. Rodriguez. 1989. Analysis and evaluation of a wastewater treatment

plant model by stochastic optimization. Appl. Math. Modeling l3(July): 420-424.

Chalabi, Z. S., L. G. van Willigenburg and G. van Straten. 1999. Robust optimal receding

horizon control of the thermal sterilization of canned foods. Journal of Food

Engineering 40(3): 207-218.

Chao, K., Y.-R. Chen, W. R. Hruschka and F. B. Gwozdz. 2002. On-line inspection of

poultry carcasses by a dual-camera system. Journal of Food Engineering 51(3):

185-192.

Chavez-Jauregui, R. N., M. E. M. P. Silva and J. A. G. Areas. 2000. Extrusion cooking

process for Amaranth (Amaranthus caudatus L.). Journal ofFood Science 65(6):

1009-1015.

Chen, C. R. and H. S. Ramaswamy. 2002. Modeling and optimization of variable retort

temperature (VRT) thermal processing using coupled neural networks and genetic

algorithms. Journal of Food Engineering 53(3): 209-220.

259



Chen, C. R. and H. S. Ramaswamy. 2003. Analysis of critical control points in deviant

thermal processes using artificial neural networks. Journal of Food Engineering

57(3): 225-235.

Christodoulou, C. and M. Georgiopoulos. 2001. Applications of neural networks in

electromagnetics. Boston, MA, Artech House.

Dagerskog, M. and N. E. Bengtsson. 1974. Pan frying of meat patties-relationship among

crust formation, yield, composition and processing conditions. Lebensmittel-

Wissenschaft und-Technologie 7(4): 202-207.

Datta, A. K. 2002. Biological and bioenvironmental heat and mass transfer. New York,

Marcel Dekker, Inc.

Diaz, R., L. Gil, C. Serrano, M. Blasco, E. Molto and J. Blasco. 2004. Comparison of

three algorithms in the classification of table olives by means of computer vision.

Journal ofFood Engineering 61(1): 101-107.

Edgar, T. F., D. M. Himmelblau and L. S. Lasdon. 2001. Optimization of chemical

processes. New York, McGraw-Hill.

Erdogdu, F. 2002. Nonlinear constrained optimization of thermal processing: 1.

Development of a modified algorithm of complex method. Journal ofFood

Process Engineering 25: 1-22.

Erdogdu, F. and M. O. Balaban. 2003. Complex method for nonlinear constrained multi-

criteria (multi-objective function) optimization of thermal processing. Journal of

Food Process Engineering 26(4): 357-375.

ERS. 2000. "ERS/USDA briefing room - Economics of foodbome disease: Estimating

the costs of bacterial foodbome disease." Retrieved 4/28, 2005, from

http://www.ers.usda.gov/briefing/FoodborneDisease/features.htm.

ERS. 2002. "ERS/USDA briefing room - Consumer food safety behavior." Retrieved

4/28, 2005, from

http://www.ers.usda.gov/Briefing/ConsumerFoodSafety/consumerconcerns/.

Evans, L. B. 1982. Optimization theory and its application in food processing. Food

Technology(July): 88-93.

Faqir, N. M. 1998. Optimization of glucose isomerase reactor: Optimum operating

temperature mode. Bioprocess Engineering 18: 389-396.

Floquet, P., L. Pibouleau and S. Domenech. 1994. Separation sequence synthesis: How to

use simulated annealing procedure? Computers & Chemical Engineering 18(11-

12): 1141.

260



FMI. 1999. Trends in the United States--Consumer attitudes & the supermarket. In

minimizing microbiologicalfood safety risks: Potentialforpreslaughter

(preharvest) interventions: White paper. Ransom J. R., Sofos J. N., Scanga, J. A.,

and Smith, G. C., Center for Red Meat Safety, Colorado State University, Fort

Collins, CO 80523-1171.

Fravolini, M. L., A. Ficola and M. La Cava. 2003. Optimal operation of the leavening

process for a bread-making industrial plant. Journal of Food Engineering 60(3):

289-299.

Frazier, P. J., A. Crawshaw, N. W. R. Daniels and P. W. Russell Eggitt. 1983.

Optimisation of process variables in extrusion texturing of soya. Journal of Food

Engineering 2(2): 79-103.

FSIS. 1999. Performance standards for the production of certain meat and poultry

products. 9 cfr parts 301, 317, 318, 320, and 381: Final rule. Federal register.

Docid: Fr06ja99-2. Food Safety and Inspection Service, US. Department of

Agriculture, Washington, DC.

FSIS. 2001. Performance standards for the production ofprocessed meat and poultry

products; proposed rule. Federal register. February 27, 2001. 12590-12636.

Ganjyal, G. and M. Hanna. 2002. A review on residence time distribution (RTD) in food

extruders and study on the potential of neural networks in RTD modeling. Journal

of Food Science 67(6): 1996-2002.

Ganjyal, G. M., M. A. Hanna and D. D. Jones. 2003. Modeling selected properties of

extruded waxy maize cross-linked starch with neural networks. Journal ofFood

Science 68(4): 1384-1388.

Garcia-Gimeno, R. M., C. Hervas-Martinez, E. Barco-Alcala, G. Zurera-Cosano and E.

Sanz-Tapia. 2003. An artificial neural network approach to Escherichia coli

0157:H7 growth estimation. Journal ofFood Science 68(2): 639-645.

Geeraerd, A. H., C. H. Herremans, L. R. Ludikhuyze, M. E. Hendrickx and J. F. Van

Impe. 1998. Modeling the kinetics of isobaric-isothermal inactivation ofBacillus

subtilis a-amylase with artificial neural networks. Journal ofFood Engineering

36(3): 263-279.

Geileskey, A., R. D. King, D. Corte, P. Pinto and D. A. Ledward. 1998. The kinetics of

cooked meat haemoprotein formation in meat and model systems. Meat Science

48(3/4): 189-199.

Gergely, S., E. Bekassy-Molnar and G. Vatai. 2003. The use of multiobjective

optimization to improve wine filtration. Journal of Food Engineering 58(4): 311-

316.

261



Golan, E., T. Roberts, E. Salay, J. Caswell, M. Ollinger and D. Moore. 2004. Food safety

innovation in the United States: Evidence from the meat industry. Economic

Research Service/USDA. Agricultural Economic Report. No.831.

Goulcher, R. and J. J. Casares Long. 1987. The solution of steady-state chemical

engineering optimization problems using a random-search algorithm. Computers

and Chemical Engineering 2: 33-36.

Halsall-Whitney, H., D. Taylor and J. Thibault. 2003. Multicriteria optimization of

gluconic acid production using net flow. Bioprocess & Biosystems Engineering

25: 299-307.

Haykin, S. S. 1999. Neural networks: A comprehensive foundation. Upper Saddle River,

N.J., Prentice Hall.

Holland, J. H. 1962. Outline for a logical theory of adaptive systems. Journal of the ACM

9(3): 297-314.

Horiuchi, J.-i., T. Shimada, H. Funahashi, K. Tada, M. Kobayashi and T. Kanno. 2004.

Artificial neural network model with a culture database for prediction of

acidification step in cheese production. Journal of Food Engineering 63(4): 459-

465.

Hunt, M. C., O. Sorheim and E. Slinde. 1999. Color and heat denaturation of myoglobin

forms in ground beef. Journal of Food Science 64(5): 847-851.

Hussain, M. A., M. Shafiur Rahman and C. W. Ng. 2002. Prediction ofpores formation

(porosity) in foods during drying: Generic models by the use of hybrid neural

network. Journal of Food Engineering 51(3): 239-248.

Iwe, M. O., I. Wolters, G. Gort, W. Stolp and D. J. van Zuilichem. 1998. Behaviour of

gelatinisation and viscosity in soy-sweet potato mixtures by single screw

extrusion: A response surface analysis. Journal of Food Engineering 38(3): 369-

379.

Juneja, V. K., B. S. Eblen and G. M. Ransom. 2001. Thermal inactivation ofSalmonella

spp. in chicken broth, beef, pork, turkey, and chicken: Determination of D- and Z-

values. Journal of Food Science 66(1): 146-152.

Karwe, M. V. and S. Godavarti. 1997. Accurate measurement of extrudate temperature

and heat loss on a twin-screw extruder. Journal of Food Science 62: 367-372.

Kearfott, R. B. 1996. Rigorous global search: Continuous problems. Dordrecht; Boston,

Kluwer Academic Publishers.

Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi. 1983. Optimization by simulated

annealing. Science 220(4598): 671-680.

262



Kleis, D. and E. W. Sachs. 2000. Optimal control of the sterilization of prepackaged food.

SIAM Journal on Optimization 10: 1180-1195.

Laarhoven, P. J. M. v. and E. H. L. Aarts. 1987. Simulated annealing: Theory and

applications. Norwell, MA, Kluwer Academic Publishers.

Lee, J.-H., H. C. Lim, Y. J. Y00 and Y. H. Park. 1999. Optimization of feed rate profile

for the monoclonal antibody production. Bioprocess and Biosystems Engineering

20(2): 137-146.

Levisauskas, D., V. Galvanauskas, S. Henrich, K. Wilhelm, N. Volk and A. Lubbert.

2003. Model-based optimization of viral capsid protein production in fed-batch

culture ofrecombinant Escherichia coli. Bioprocess & Biosystems Engineering

25: 255-262.

Lingnert, H. 1990. Development of the Maillard reaction during food processing. In The

Maillard reaction infoodprocessing, human nutrition andphysiology. P. A. Finot,

H. U. Aeschbacher, R. F. Hurrell and R. Liardon. Basel;Boston;Berlin, Birkhauser

Verlag.

Marique, T., A. Kharoubi, P. Bauffe and C. Ducattillon. 2003. Modeling of fried potato

chips color classification using image analysis and artificial neural network.

Journal ofFood Science 68(7): 2236-2266.

Martins, S. I. F. S. 2003. Unravelling the Maillard reaction network by multiresponse

kinetic modeling. Netherlands, Wageningen University. Thesis(Ph.D.): 170.

Martins, S. I. F. S., W. M. F. Jongen and M. A. J. S. van Boekel. 2001. A review of

Maillard reaction in food and implications to kinetic modelling. Trends in Food

Science & Technology 11(9-10): 364-373.

Martins, S. I. F. S. and M. A. J. S. Van Boekel. 2005. A kinetic model for the

glucose/glycine Maillard reaction pathways. Food Chemistry 90(1-2): 257-269.

Mead, P. S., L. Slutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro, P. M. Griffin

and R. V. Tauxe. 1999. Fcod-related illness and death in the United States.

Centers for Disease Control and Prevention. Atlanta, GA.

Millsap, S. C. 2002. Modeling condensing-convective boundary conditions in moist air

impingement ovens. Dept. of Agricultural Engineering. East Lansing, Michigan

State University. MS: xi, 117 leaves.

Mishkin, M., M. Karel and I. Saguy. 1982. Application of optimization in food

dehydration. Food Technology(36): 101-109.

Mishkin, M., I. Saguy and M. Karel. 1983. Minimizing ascorbic acid loss during air

drying with a constraint on enzyme inactivation for a hypothetical foodstuff.

Journal of Food Processing & Preservation 7: 193-210.

263



Mittal, G. S. and J. Zhang. 2000. Use of artificial neural network to predict temperature,

moisture, and fat in slab-shaped foods with edible coatings during deep-fat flying.

Journal ofFood Science 65(6): 978-983.

Morimoto, T., W. Purwanto, J. Suzuki and Y. Hashimoto. 1997. Optimization of heat

treatment for fruit during storage using neural networks and genetic algorithms.

Computers and Electronics in Agriculture 19: 87-101.

Mottram, D. S. 1998. Flavour formation in meat and meat product: A review. Food

Chemistry 62(4): 415-424.

Murphy, R. Y., L. K. Duncan, E. R. Johnson, M. D. Davis and J. N. Smith. 2002.

Thermal inactivation D- and Z-values ofSalmonella serotypes and Listeria

innocua in chicken patties, chicken tenders, franks, beef patties, and blended beef

and turkey patties. Journal of Food Protection 65(1): 53-60.

Murphy, R. Y., E. M. Martin, L. K. Duncan, B. L. Beard and J. A. Marcy. 2004. Thermal ‘

process validation for Escherichia coli 0157:H7, Salmonella, and Listeria

monocytogenes in ground turkey and beef products. Journal of Food Protection

67(7): 1394-1402(9).

Nadkami, M. M. and T. A. Hatton. 1985. Optimal nutrient retention during the thermal

processing of conduction-heated canned foods: Application of the distributed

minimum principle. Journal ofFood Science 50: 1312-1321.

Ohlsson, T. 1980. Optimal sterilization temperatures for sensory quality in cylindrical

containers. Journal of Food Science 45: 1517-1521.

Oliveira, F. A. R. and J. C. Oliveira. 1999. Processing foods: Quality optimization and

process assessment. Boca Raton, Florida, CRC Press.

Olkku, J., A. Hagqvist and P. Linko. 1983. Steady-state modelling of extrusion cooking

employing response surface methodology. Journal of Food Engineering 2(2): 105-

128.

Ollinger, M. and N. Ballenger. 2003. Weighing incentives for food safety in meat and

poultry. Amber Waves. April.

Pan, Z. 1998. Predictive modeling and optimization of hamburger patty contact-cooking

process. Dept. of Biological and Agricultural Engineering. Davis, University of

California. Ph.D.: xv, 169 leaves.

Quintero-Ramos, A., M. C. Boume, J. Barnard and A. Anzaldr'ra-Morales. 1998.

Optimization of low temperature blanching of frozen jalapefio pepper (capsicum

annuum) using response surface methodology. Journal ofFood Science 63(3):

519-522.

264



Radhakrishnan, T. K., S. Sundaram and M. Chidambaram. 1999. Non-linear control of

continuous bioreactors. Bioprocess Engineering 20: 173-178.

Raptis, C. G., C. I. Siettos, C. T. Kiranoudis and G. V. Bafas. 2000. Classification of

aged wine distillates using fuzzy and neural network systems. Journal ofFood

Engineering 46(4): 267-275.

Saad, N. R., A. S. Mujumdar and W. J. M. Douglas. 1980. Heat transfer under multiple

turbulent slot jets impinging on a flat plate. In Drying '80, developments in drying

(pp. 422-430). A. S. Mujumdar. Washington, Hemisphere Pub. Corp.

Sablani, S. S. and W. H. Shayya. 2001. Computerization of Stumbo's method of thermal

process calculations using neural networks. Journal ofFood Engineering 47(3):

233-240.

Sablani, S. S. and W. H. Shayya. 2003. Neural network based non-iterative calculation of

the friction factor for power law fluids. Journal ofFood Engineering 57(4): 327-

335.

Saguy, I. and M. Karel. 1979. Optimal retort temperature profile in optimizing thiamine

retention in conduction-type heating ofcanned foods. Journal ofFood Science 44:

1485- 1490.

Segerlind, L. J. (1984). Applied finite element analysis. New York, Wiley.

Shigley, J. E. and C. R. Mischke. 1989. Mechanical engineering design. New York,

McGraw-Hill.

Silva, C., M. Hendrickx, F. Oliveira and P. Tobback. 1992. Optimal sterilization

temperatures for conduction heating foods considering finite surface heat transfer

coefficients. Journal ofFood Science 57: 743-748.

Singh, P. P. and V. K. Jindal. 2003. Pressure drop estimation in tube flow ofnon-

Newtonian fluid foods by neural networks. Journal ofFood Process Engineering

26: 49-65.

Specht, D. F. 1991. A general regression neural network. IEEE Transactions on Neural

Networks 2(6): 568-576.

Tartakovsky, B., S. Ulitzur and M. Sheintuch. 1995. Optimal control of fed-batch

fermentation with autoinduction of metabolic production. Biotechnology and

Progress 11: 80-87.

Teixeira, A. A., G. E. Zinsmeister and J. W. Zahradnik. 1975. Computer simulation of

variable retort control and container geometry as a possible means of improving

thiamine retention in thermally processed foods. Journal ofFood Science 40: 656-

659.

265

 



Teixeria, A. A., J. R. Dixon, J. W. Zahradnik and G. E. Zinsmeister. 1969. Computer

optimization of nutrient retention in the thermal processing of conduction-heated

foods. Food Technology 23: 137-142.

Therdthai, N. and W. Zhou. 2001. Artificial neural network modelling of the electrical

conductivity property ofrecombined milk. Journal of Food Engineering 50(2):

107-111.

Therdthai, N., W. Zhou and T. Adamczak. 2002. Optimisation of the temperature profile

in bread baking. Journal of Food Engineering 55(1): 41-48.

Toledo, R. T. 1991. Fundamentals of food process engineering. New York, Van Nostrand

Reinhold.

Tominaga, O., F. Ito, T. Hanai, H. Honda and T. Kobayashi. 2001. Sensory modeling of

coffee with firzzy neural network. Journal of Food Science 67(1): 363-368.

Torrecilla, J. S., L. Otero and P. D. Sanz. 2004. A neural network approach for

thermal/pressure food processing. Journal of Food Engineering 62(1): 89-95.

Torrecilla, J. S., L. Otero and P. D. Sanz. 2005. Artificial neural networks: A promising

tool to design and optimize high-pressure food processes. Journal of Food

Engineering 69(3): 299-306.

Trelea, I. C., G. Trystram and F. Courtois. 1997. Optimal constrained non-linear control

of batch processes: Application to corn drying. Journal of Food Engineering

31(4): 403-421.

Trystram, G. 2004. Symposium 8: Engineering: Solutions to enhance food safety

reevaluation ofthermal food processes in order to increase food safety and

quality: Frying, drying, salting, smoking. Journal of Food Science 69(5): E251-7.

Tsoneva, R. G., T. D. Patarinska and I. P. Popchev. 1998. Augmented Lagrange

decomposition method for optimal control calculation ofbatch fermentation

processes. Bioprocess Engineering 18: 143-153.

Vainionpaa, J. 1991. Modelling of extrusion cooking of cereals using response surface

methodology. Journal ofFood Engineering 13(1): 1-26.

Venkataraman, P. 2002. Applied optimization with MATLAB programming. New York,

John Wiley & Sons.

Voller, V. and M. Cross. 1981. Accurate solutions of moving boundary problems using

the enthalpy method. International Journal of Heat and Mass Transfer 24: 545-556.

Wasserman, P. D. 1993. Advanced methods in neural computing. New York, Van

Nostrand Reinhold.

266



Watkins, A. E. 2004. A combined convection cooking and salmonella inactivation model

for ground meat and poultry products. Dept. of Biosystems and Agricultural

Engineering. East Lansing, Michigan State University. Ph.D.: xix, 260 leaves.

Xie, G. and R. Xiong. 1999. Use of hyperbolic and neural network models in modelling

quality changes of dry peas in long time cooking. Journal of Food Engineering

41(3-4): 151-162.

Zanoni, B., C. Peri and D. Bruno. 1995. Modelling ofbrowning kinetics of bread crust

during baking. Lebensmittel-Wissenschafi und-Technologie 28(6): 604-609.

Zorrilla, S. E., J. R. Banga and R. P. Singh. 2003. Dynamic optimization of double-sided

cooking of meat patties. Journal of Food Engineering 58(2): 173-182.

267

 

 


