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ABSTRACT

ESTIMATING PARAMETERS FOR MULTIDIMENSIONAL ITEM

RESPONSE THEORY MODELS BY MCMC METHODS

By

Yanlin Jiang

Efforts to apply Markov Chain Monte Carlo (MCMC) methods to three-parameter lin-

ear logistic multidimensional IRT models are addressed using the Metropolis-Hastings

algorithm within Gibbs approach. Bayesian modal estimators of both item and pro-

ficiency parameters are obtained in a simultaneous process rather than a separate

parameter estimation procedure. It is shown that it is effective by blocking individ-

ual item discrimination and proficiency dimensional parameters and treating them

without reference to other item and proficiency parameters. Both simple and com-

plex structures of item dimensions are included. In addition, various proficiency di-

mensional structures are considered for three and five dimensional cases, respectively.

The effects of four potential factors on model parameter estimation are investigated.

Simulation studies are conducted across different designs for one-, three-, and five-

dimensional cases. Results show that the parameter estimators based on MCMC are

accurate in terms of correlation and root mean square errors. Numeric examples for

the estimates of the standard errors demonstrate that the estimation is statistically

stable and accurate.
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Chapter 1

Introduction

1.1 Item Response Theory Models

Item response theory (IRT) becomes more and more important for psychological and

educational testing. This philosophic and theoretic framework not only provides

useful analytical tools (e.g., item differential functioning and test equating), but also

provides an effective test design tool. The importance of the IRT framework cannot

be realized unless the model parameters are accurately estimated given that the model

assumptions are satisfied and the model is adequately fitted to the observed data.

In this chapter, both uni-dimensional and multi-dimensional logistic IRT models

will be introduced, then some of the existing estimation methods will be reviewed,

and finally the importance of a new method for estimating multidimensional IRT

models will be addressed.

1.1.1 The Uni-dimensional Item Response Theory Models

Classical test theory (CTT) has been the mainstream of educational and psycholog-

ical testing research and practice for many decades. Gulliksen’s “Theory of Mental



Tests ” (1950) is one of the earliest books and a milestone of measurement theory.

However, CTT suffers from a number of limitations, as is often seen in the literature

(e.g., Embreston & Reise, 2000; Hambleton & Swaminathan, 1985). For example,

item statistics (e.g., item difficulty) are sample dependent; reliability and standard

errors of measurement estimators, which are the fundamental concepts in true score

theory, do not take the proficiency diflerences among examinees into account. Hence,

only a single reliability estimate is obtained for one test. Furthermore, CTT cannot

probabilistically predict examinees’ response on items unless the items have previ-

ously been administered to similar individuals. In many testing contexts such as

adaptive test, it is important to predict the examinee’s response in probability in

order to provide next item for the examinee. As Lord states,

“we need to describe the items by item parameters and the examinees

by examinee parameters in such a way that we can predict probabilistically

the response of any examinees to any items, even if similar examinees have

never taken similar items before (P.11, Lord, 1980)”.

Unfortunately, CTT fails to satisfy this property. Item response theory is a model-

based measurement framework. IRT provides a more complete rationale for model-

based measurement than CTT and overcomes a number of limitations of CTT (for

details, please refer to Embreston & Reise, 2000). The important development of IRT

is due to the work of Lord (1952, 1953), Birnbaum (1957, 1958a, 1958b), Lord and

Novick (1968), and Rasch (1960). Various IRT-based models have been developed

in the literature, for examples, the normal ogive models (Lord, 1952) and the logis

tic models (Rasch, 1960; Birnbaum, 1957, 1958a, 1958b, 1968; & Wright & Stone,

1979) for binary data, the graded response model (Samejima, 1969), the partial credit
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model (Master, 1982), and the nominal response model (Bock, 1972) for polytomous

data. There are other uni-dimensional IRT models (e.g., continuous response model,

Samejima, 1972) but will not be discussed here since this study focuses on applying a

new method to the logistic IRT models. One common feature of these models is that

they explicitly predict the probability of correct response on an item given person

and item parameters. More comparisons of other characteristics between CTT and

IRT can be found in Embreston and Reise (2000).

In the family of IRT models, the three-parameter logistic model (3PL model) is

one of the most widely used models. It was proposed by Birnbaum in 1968. For a

dichotomous item, the item response function (IRF or called ICC) is the probability

of a correct response to the item. This probability can be represented by the function

(Lord, 1980)

exp[1.7ai(9j — bill

1 + exp[1.7a.-(9j - bail ,

 

112(9)); p(Uij = 1 I aubuCiagj) = Ci + (1 — Ci) (1-1)

where

p,(9j) is the probability of correct answer to item i given the jth examinee’s proficiency

level 03-;

Uij is the item response either 0 (incorrect) or 1 (correct) for examinee j on item i;

a, is the ith item discriminating power; it is usually a positive number.

b,- is the ith item difficulty;

c, is the ith item lower asymptote or called pseudo-guessing parameter; and

1.7 is a scale constant.



If there is no lower asymptote parameter in the above model, i.e., c,- = 0, the 3PL

model reduces to the 2PL model. Furthermore, if the discriminating power parameter

a,- is treated as a constant in the model, then the model becomes 1PL model or Rasch

model because of only one item parameter (i.e., item difficulty) in the model. Note

that the 3PL, the 2PL, and the 1PL models only contain one proficiency parameter

for each examinee, an important assumption for the models, which are labelled as

uni—dimensional IRT models.

In addition to unidimensionality, another important assumption for IRT models

is local independence. For a single examinee, the responses to the test items are

related to each other only through this examinee’s proficiency parameter(s). Hence,

local independence can be understood as conditional independence. It assumes that

examinee’s responses to items are independent of each other after controlling for the

examinee’s proficiency parameter(s). The mathematical expression of local indepen-

dence is given by

n

p(ulau2i ' ' ' tun l 0) = Hpi(ui i 0), (12)

i=1

where u,- is the item response on the ith item for a single examinee and i = 1, 2, - - - ,n.

Equation (1.2) implies that given a fixed proficiency parameter, the joint distribution

p of responses to n items is the product of the marginal distributions p,- for all items.

1.1.2 The Multi—dimensional IRT Models

In the multi-dimensional item response theory (MIRT), items require multiple abilities

to get a correct response. Under this circumstance, the uni-dimensional IRT models



are not adequate for such response data. A family of IRT models that contain multiple

proficiency parameters is needed to reflect proficiency level on different dimensions

for each examinee.

MIRT is an extension of uni-dimensional IRT. Like uni-dimensional IRT, MIRT

models examinee’s behavior (i.e., item response) given person and item characteristics.

The essential difference of MIRT from uni-dimensional IRT is that in MIRT, multiple

proficiency parameters are used to model person abilities and a vector form of item

parameters to characterize items.

To describe MIRT-based models, it is necessary to introduce the concept complete

latent space. Lord defined it as a collection of all those latent variables Ok’s that

discriminate among groups of examinees (Lord & Novick, 1968) for k = 1, 2, - - . , p,

where p is the number of proficiency dimensions. Denote the complete latent space 0

by the vector

0 5 (01,027 ' ° ' 30?)" (1'3)

These variables can be thought of as “psychological dimensions necessary for the

psychological description of individuals” (p.359). For the population of examinees,

every single examinee possesses a value for each of the latent variables in the space.

For uni-dimensional IRT models, the complete latent space has only one variable. For

multi-dimensional IRT models, it is assumed that two or more latent variables are

needed to characterize an examinee’s proficiency.

There are a few MIRT-based models. Early MIRT models for binary data were

from the work of McDonald (1967) and Lord & Novick (1968). Other models have



also been found in the literature. For example, the multidimensional Rasch model

(Stegelmann, 1983), the multidimensional two-parameter normal ogive IRT model

(Bock, Gibbons and Muraki, 1988), the multicomponent latent trait model (MLTM;

Whitely, 1980), etc. Reckase provides the extension of the uni-dimensional three

parameter logistic model to multi-dimensional form (Reckase, 1985, 1996). He pointed

out that

“After reviewing many possible models that include vector parameters for

both examinee and item characteristics [see McKinley and Recakse (1982)

for a summary], the model given below was selected for further develop-

ment because it was reasonable given what is known about item response

data, consistent with simpler,uni-dimensional item response theory mod-

els, and estimable with commonly attainable numbers of examinees and

test items (p.272)”.

exp (aiaj + d.)

1 + “1301491 + di),

 

pi(0j) E p(U1‘j =1 I ai,d,-,c,-,9,-) = C; +(1— Ci) (1.4)

where

p(U,-,- = 1 | a,, d,-, c,-, 03-) is the probability of a correct response (score of 1) for

examinee j on test item i;

U,,- is a dichotomous random variable representing the item response for examinee j

on item i;

Q, is the vector of abilities for examinee j, i.e., 91- E (OJ-1,6,2, - - - ,0,,,)’;

a, is a vector of parameters related to the discriminating power of the test item i (the

rate of change of the probability of correct response to changes in trait levels for the

examinees);

d, is a parameter related to the difficulty of item i;

6



c,- is the probability of correct response that is approached when the abilities assessed

by item i are very low; c,- is usually called the lower asymptote, or less correctly, the

guessing parameter.

The unique contribution of the model above, as summarized by Recakse (1997),

is that it focuses on the characteristics of the test items and the way they interact

with the examinee population. This model has proved to be useful for a variety of

applications and has helped in conceptualizing a number of psychometric problems

including the assessment of differential functioning and test parallelism (Ackerman,

1990, 1992).

1.2 Estimation Methods for IRT Models

1.2.1 Commonly Used Estimation Methods and Their Limi-

tations

IRT models contain at least two types of parameters: person parameters (also called

latent trait, proficiency, or ability parameters) and item parameters. Estimating

person parameters for IRT models is frequently accomplished by using one of three

methods: (1) maximum likelihood (ML); (2) maximum a posteriori (MAP); and

(3) expected a posteriori (EAP). The ML method estimates person parameters by

maximizing the likelihood of an examinee’s item responses. But one critical problem

in the ML method is that the ML cannot estimate person parameters for examinees

who have all correct or all incorrect response patterns (p.162, Embreston &o Reise,

2000). In addition, ML estimates have the consistency property only as sample size



increases (here sample size refers to the number of test items, or test length), which

in reality, is not an easy condition to meet because the test is often viewed as a fixed

set of items.

Both EAP and MAP are from the Bayesian perspective. MAP (also called

Bayesian Modal Estimation) scoring method uses prior information about person

proficiency in conjunction with the likelihood function to estimate proficiency level

by maximizing a posterior distribution. The advantage of MAP is that proficiency

can be estimated for all possible response patterns including perfect pattern. The per-

fect pattern could be all-correct response pattern, all-incorrect response pattern, or

some odd pattern that makes it difficult for the ML procedure to find solutions (e.g.,

no solution, or multiple solutions). Critics of Bayesian modal estimation methods is

the proficiency estimates may depend on heavily the choice of the prior distribution

of proficiency parameters especially when the sample size (i.e., test length) is small.

EAP is a method of finding the mean of a posterior distribution. One advantage of

the EAP estimator is that it “has minimum mean square error over the population of

ability” (p.439, Bock & Mislevy, 1982). However, the estimates from EAP are biased

(Wainer & Thissen, 1987).

Item parameters in IRT models are usually estimated by the maximum likelihood

(ML) approach. The commonly used methods under this approach are (a) joint maxi-

mum likelihood (JML), (b) marginal maximum likelihood (MML), and (c) conditional

maximum likelihood (CML).

It is known that the consistency property of the maximum likelihood estimator



holds for person parameters only when item parameters are known and the number of

items increases. Similarly, the consistent item parameter estimates can be obtained

when person parameters are known and the number of examinees increases. The

JML procedure simultaneously estimates person and item parameters for all items

and examinees by jointly maximizing the likelihood function of the response data.

In principle, this procedure is straightforward. However, it has several drawbacks in

practice as some researchers pointed out. First, nonlinear (i.e., S—shape) item char-

acteristic curve (ICC) results in nonlinear likelihood equations. Solving nonlinear

equation systems is often a formidable task (Hambleton & Swaminathan, 1985). See-

ondly, when used with the 3PL model, large numbers of examinees (e.g., more than

1000) are required for accurate item parameter estimation (e.g., Lord & Novick, 1968;

Swaminathan & Gifford, 1979). Thirdly, increasing the number of examinees cannot

guarantee the estimation improvement (Hulin, Lissak, & Drasgow, 1982). That is,

the consistency property of estimation does not always hold due to increase in both

item (structure) and person (incidental) parameters simultaneously.

When sufficient statistics are available for person parameters, one may avoid the

problem of presenting person parameters in the likelihood function. For the Rasch

model, since the number correct score (also called total score) is a sufficient statistic for

the proficiency parameter, it is possible to express the likelihood function L(U I 0, b.)

in terms of total score instead of proficiency parameters. The CML procedure can

be used to estimate item parameters and the corresponding estimates are consistent

(Hambleton & Swaminathan, 1985). However, since CML requires a sufficient statistic



for estimating trait level, it is restricted to the Rasch model family. In more complex

models such as the 2PL, the 3PL and the MIRT models, proficiency estimates are

dependent on item characteristics. Therefore the total score is no longer a sufficient

statistic for estimating proficiency. In addition, Embreston and Reise (2000) pointed

out several other disadvantages on CML estimation procedure: no estimates for items

or persons are available for perfect response pattern (R218); numerical problems often

occur for long tests, complicated patterns of missing data, or polytomous data.

Estimating item parameters can be carried out if the likelihood function can be

expressed without any reference to the person parameters. Assuming the underly-

ing distribution of proficiency is continuous and known, the essence of MML is to

integrate over the proficiency distribution, then the item parameters are estimated

in the marginal distribution (Bock & Lieberman, 1970). This procedure removes the

dependency of item parameter estimates on the proficiency estimates. The advantage

of MML is its estimates possess the consistency preperty since increasing number

of examinees doesn’t require additional estimation of proficiency estimates (Kiefer

& Wolfowitz, 1956). The MML approach is accomplished within the framework of

the EM algorithm (p.190, Baker, 1992). Although MML/EM has lot of nice features

and becomes a standard for item parameter estimation, Baker (p.190, Baker, 1992)

pointed out that certain limitations of this approach exist in practice. For example,

items that are answered correctly or incorrectly by all examinees have to be eliminated

for item parameter estimation before calibration, an obvious loss of data information;

certain data set can yield large absolute value of item difficulty and other deviant

10



values as item parameter estimates. Once these deviant values are used for profi-

ciency estimation, it will cause estimation process to fail. In addition, although many

has done research on an accelerated EM algorithm which is faster, the EM algorithm

convergence rate is slow when estimating high-dimensional models.

If prior information about item parameters is available, Bayesian estimation meth-

ods are possible for IRT-based models. In 1982, 1985, and 1986, Swaminathan and

Gifford (1982, 1985, 1986) derived Bayesian estimation procedures for the one, two-,

and three-parameter logistic models, where item parameter estimation takes place

without any marginalization. Mislevy (1986b), Tsutakawa and Lin (1986) took a

different approach, which inherited properties of MML by integrating (i.e., marginal-

izing) proficiency parameter out of likelihood function. Marginal Bayesian modal

estimation is accomplished within the framework of the EM algorithm (Baker, 1992)

too. However, marginalized Bayesian item parameter estimates may heavily depend

on the item priors in particular for small sample size, and hence the resulting item

parameter estimates will be shrunk to the mode of its corresponding prior distribution

for informative priors.

The frequently used estimation methods and their limitations are summarized

in this section. For one-dimensional IRT models, although joint maximum likelihood

estimates are available in some programs to estimate item and proficiency parameters

simultaneously (e.g., LOGIST uses joint maximum likelihood estimation paradigm

formulated by Alan Birnbaum in 1968), the estimates of proficiency parameters need

not be consistent as the sample size increases (e.g., Neyman & Scott, 1948; Little &

11



Rubin, 1983). In addition, in some extreme situations of responses, the maximum

likelihood procedure could give positive or negative infinity estimates for proficiency

parameters.

MML/EM procedure has become a central methodology for parameter estimates

in the IRT framework. However, when test settings get more complex (e.g., with

presence of missing data and polytomously score data) and IRT models are more

complicated (e.g., the MIRT models), application of EM algorithm becomes less

straightforward (Patz & Junker, 1999a).

In Section 1.3, the importance of a new method for parameter estimation in linear

logistic MIRT models will be addressed.

1.2.2 Applications of MCMC methods to Estimation of IRT-

based Models

A new estimation approach that could avoid some shortcomings of the estimation

procedures discussed above is desired to improve the estimation accuracy in particular

for the more complicated testing practices and the complex IRT models. Markov

Chain Monte Carlo (MCMC) methods, which are from a Bayesian perspective, can

be applied to estimating parameters for IRT models.

Researchers have had interests in MCMC methods for several decades (e.g., Metropo-

lis, et al., 1953). MCMC methods have been successful in many Bayesian applications

because they allow one to draw samples from a wide range of interested posterior dis-

tributions, including many for which simulation methods were previously much more

difficult to implement ( e.g., Gilks, Richardson, & Spicgelhalter, 1996).

12



MCMC methods have also been recently implemented for parameter estimation

and inference through stochastic simulation for IRT models. Patz and Junker (1999a)

demonstrate that MCMC techniques are well-suited to complex models with IRT

assumptions and the MCMC methodology can be routinely implemented to fit the

IRT contexts, and further address the strategies and issues of extending the basic

MCMC methods for Bayesian inference in complex IRT settings such as non-response,

designed missingness, multiple raters, guessing behaviors, and partial credit (i.e.,

polytomous) test items (Patz & Junker, 1999b). Earlier work can trace back to

Albert (1992), who estimated the two-parameter normal ogive model for augmented

data using the Gibbs sampler. Various applications of MCMC methods have also

been developed in the literature for item parameters recovery (e.g., Wollack, Bolt,

Cohen, & Lee, 2002; Mathews & Hombo, 2001; Kim & Cohen, 1998; Dela-Torre,

Patz, 2001; Maris & Maris, 2002; Fox, 2002; Williamson, Johnson, Sinharay & Bejar,

2002), for coefficient alpha estimates (Li & Woodruff, 2001), etc.

Different from the Bayesian modal estimates discussed in Section 1.2, the MCMC

estimates of parameters will no longer be dependent on the prior distribution and the

parameter estimates are not shrunk to the mean of prior distribution.

1.3 The Importance of the Study

Recently, Segall (1996, 2001) has advanced multidimensional adaptive testing (MAT)

and the measure of general proficiency using a linear logistic MIRT model. He found
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that MAT could provide equal or higher reliability with fewer items than are required

in one-dimensional adaptive test. He concludes that in addition to increasing mea-

surement efficiency, MAT can also be used as a tool ensuring adequate and efficient

coverage of content for examinees at different levels of proficiency (Segall, 1996). How-

ever, as he emphasizes, further study is needed before MAT can be routinely applied

and item parameter estimation for MIRT models must be refined.

In estimating parameters for MIRT models, simple structure (i.e., each item only

measure one dimension of proficiency) is sometimes assumed (e.g., Dela-Torre, Patz,

2001). the Multi-unidimensional approach, as suggested by Segall (e.g., 1996), is an

example of a simple structure. In this approach, several sub-tests measuring difl’er-

ent contents are given at one test administration. There are two ways to estimate

the model parameters for the multi-unidimensional approach. One is estimating the

model parameter for the tests separately (i.e., independently), which is not realis-

tic since usually the contents to be measured are correlated. The other way is to

treat each content as one dimensional, then estimate the model parameters simulta-

neously using a multidimensional model. Segall (1996) pointed out that although the

multi-unidimensional approach is appealing in terms of its simple structure, it may

suffer at least two undesirable features. One may be due to the poor specification

of the elements of the covariance matrix of the proficiency vector, and the other is

that the assumption of simple structure may lead to some poorly specified loadings

(p.350). In addition, to develop a common metric and orientation of item parameter

estimates for MIRT models is not convenient or even unlikely to be achieved. Segall
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(1996) addresses that when developing large item pools with several dimensions, it is

often necessary to divide the pools into subsets of items. This design however may

raise several issues concerning the metric of the latent dimensions. Therefore, a new

methodology is desirable for the concurrent estimation of item parameters for MIRT

models for building item pool before MAT can be more reliably implemented.

Both item and proficiency parameters in MIRT models can be estimated simul-

taneously using MCMC methods. Parameter estimation using MCMC methods is

different from a number of approaches for estimating MIRT models (Carlson, 1987;

Fraser, 1988; McDonald, 1985; Mckinley & Reckase, 1983; Muthen, 1984). Efforts to

apply MCMC methods to multidimensional models have been explored in the litera-

ture. For example, Beguin and Glas (1998) generalized the Albert (1992) procedure

to the unidimensional 3PL normal ogive model and Q—multidimensional normal ogive

models. However, the study assumes the underlying covariance matrix for abilities

is an identity matrix, which is not realistic since the proficiency dimensions in one

test are more likely to be correlated. Moreover, the values of item parameters in the

study are restricted to a small range (e.g., a is from O to 1, d is from -1 to 1), which

is also not realistic for a general and more complex testing context.

De—la-Torre and Patz (2001) examine simultaneous proficiency estimation for

MIRT models using MCMC approach. But the study only assumes the simple struc-

ture. In addition, to estimate the proficiency parameters, the study assumes the item

parameters are known, which actually is not available in many applications.

Belt and Lall (2003) investigate the item parameter estimation of compensatory
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and noncompensatory MIRT models using the MCMC method. In their study, the

guessing parameter was not included in the MIRT models and only two-dimensional

model was considered. In addition, the item parameters cover only a small range of

values.

However, not much attention has been paid to three-parameter MIRT models that

has been proven useful for a variety of applications in the literature. It is necessary

to study parameter estimation using MCMC methods in a more general, complex,

and realistic situations. For example, guessing parameter is included to the model,

complex item dimension structures (i.e., each item measures one dimension or more

than one dimension of abilities) are considered in the test design with an exploratory

solution, and the inter-correlation among proficiency dimensions will be estimated and

not limited to the identity matrix or special pattern of covariance matrix (e.g., all off-

diagonal elements are the same). Moreover, the current study intends to examine the

impact of four factors — the test length, the number of dimensions, the sample size,

and the proficiency covariance structure on the accuracy and stability of parameter

estimates for MIRT models.
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Chapter 2

MCMC Methods for Parameter

Estimation for Logistic MIRT

Model

2.1 Overview of Markov Chain Monte Carlo Meth-

ods

Statistical inference is a procedure for drawing conclusions about pepulation pa-

rameters from the observed sample data. Bayesian statistical conclusions about a

parameter are typically made in terms of a probability statement conditioned on the

observed data, or the posterior of the interested parameter. A sample generated by

MCMC methods can be used for statistical inference, including point estimate, the

construction of a marginal density, prediction, estimation of moments, and so on.

Gill (2002) defined Markov chain as:

“a stochastic process with the preperty that any specified state in the

series, 0“), is only dependent on the previous value of the chain. Or in a

probability expression (p.302):

p(g(t) E A l 9(0),g(1), . .. ,g(t-2),g(t-1)) = p(g(t) E A l 90-1)), (2.1)

Where A is an event or range of events in the complete state space; t is a positive

17



number referring to the tth time interval; 6 is a random quantity taking values in

some known state space, 0.

The Monte Carlo method uses random samples from the desired distribution in-

stead of calculating quantities from the analytical form to summarize the interested

theoretical distribution.

Generally speaking, the Markov Chain Monte Carlo methods invlove two steps.

First, producing a chain in which each value only depends on the previous value.

Second, once this chain converges to the desired posterior distribution, the Monte

Carlo method is used to summarize the interested distribution.

There are two basic methods in MCMC: (1) Gibbs sampler; (2) Metropolis-

Hastings algorithm.

The Gibbs sampler named by Geman and Geman (1984) is one of the most widely

used MCMC techniques. Let Q be the model parameters vector with k components,

and q,- be the ith model parameter in Q. Denote Q E (q1,q2, - -- ,q,-,--- ,le and

Q_,- E (q1,q2,~-- ,q,-_1,q,-+1,--- ,qk). Then Q can be expressed as Q E Q_,- U q,.

Denote the complete conditional function of the ith parameter by P(q,- | Q_,-) E

P(€Iil(11.(I2,"' 141—1,(1:+1,°°',(Ii)-

The Gibbs sampler sequentially samples from the complete conditional distribu-

tions P(q,- | Q_,-, y),i = 1, . .. ,k, where y indicates observed data.

Then Gibbs sampling algorithm can be defined as the following:

1. Specify the starting values for the model parameter vector Q, i.e.,
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2 t=0 t=0 t=0

Q“°’=(q§ ).q§ ),-- .9}. ))-

2. At t + 1th iteration, simulate

qltH ) from p(ql |q2t),q(t),. sq)?”

l (t 1 t

93+ ) from We | 91+ ).q§).- .99)

1 t 1 t 1 t 1 t t

95” ) from P(Qt I 9‘ I ).q§+ ). .q.‘31 ),q§.31.--- .919)

q(t+1) fr (t+1) (t+1) (t+1) .

om p(q;c I q1 , q2 , -__,qk 1 ) sequenttally.

3. Set t = t + l and repeat step 2 until convergence.

The second frequently used method is the Metropolis-Hastings algorithm (M-H

algorithm, Metropolis et a1, 1953; Hastings, 1970). This method is applied when

it is difficult to simulate from the complete conditional distributions by traditional

methods (by the method of rejection sampling or by a known generator, for example).

A Markov chain using the M-H algorithm can be obtained as follows:

For any parameter 0,

1. Assign an initial value for parameter 6.

2. Specify a preposal density r(0‘, 0(‘+1)), which defines the proposal density from

state 0‘ to state 0““).
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3. Given the current state 0‘, the candidate 9" for the next state 6““) in the chain

is sampled from r(6‘, 6(‘+”).

4. 6" is accepted as the next value 6““), i.e., 0““) = 0" with probability 0(0‘, 0‘),

where

 

. . _ . 9(9’)7‘(9‘.9‘)
a(0,0)—m1n{g(0t)r(0t,0‘),1}, (2.2)

and g(.) is the density of the target distribution.

5. If 0“ is rejected, then the next value will stay at current state, i.e., assign

g(t-l-l) : at.

The M-H algorithm first simulates a Markov chain whose distribution differs from

the desired distribution for the parameter, and then subsequently uses the acceptance

probability to reject or accept the value such that a new Markov chain is constructed

that has the target posterior as its stationary distribution.

It has been shown that the Gibbs sampler is a special case of the M-H algorithm

where the probability of accepting the candidate value is always one (p.436, Gelman

1992; p.182, Tanner 1996). The distinction between the Gibbs sampler and the M-H

algorithm is that the M-H algorithm requires the complete conditional distribution

and so it is more restrictive (p.166, Gamerman 1997, Besag et a1. 1995, Tierney

1991).

The combination of the Gibbs sampler and the M-H algorithm is a hybrid algo-

rithm. One value is generated from the M-H procedure, followed by the next Gibbs

step. Like the Gibbs sampler and the M-H algorithm, the M-H within the Gibbs
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algorithm also produces a Markov chain with the correct stationary distribution.

2.2 Likelihood Einctions for the Linear Logistic

MIRT Models

If pre—calibrated item parameters are available, maximum likelihood estimates or

Bayesian modal estimates of the proficiency parameters can be obtained. Suppose the

assumption of local independence is held for the MIRT models. Then the probability

of a set of observed responses u,- = (u1j,u2j, - - - ,ugj, - - - ,unj) for the jth examinee

with proficiency vector 91- on 71 items is equal to the product of the probabilities

associated with the response to each item.

L(Uj l 91', 2,A,d,C) = p(ulj,u2j,- ' ' ,u,,~,- ° ' ,unj I 0]) (2.3)

n

= II p.(0,-)”ii(1 - 101092))l ' “‘1‘, (2.4)

i=1

where

Uij is a response (0 or 1) of the jth examinee on the ith item;

9,- is a p-dimensional proficiency vector, i.e., Oj = (OJ-1,0,2, - -- ,ij).

p,(0,-) is the probability of the jth examinee correctly answering the ith item. Simi-

larly, the probability of a set of N observed responses

v,- = (1111,1112, - -- ,v,j, - -- ,v,N) for the ith item is given by

N

L(v, | 9,2,a,,d,,c,-) = H p(v,1,v,-2,-~ ,v,,-,--- ,2)»; | 9,2,a,,d,-,c,-)

j = 1

N

H plenum - p.(9.))1— "

j =1
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According to Bayes theorem, the posterior density function of 03- for j = 1, 2, - - - , N,

can be expressed as

 new»: Lam-19.)“); L(ujl91)7ro(9j) (2.5)

where

L(uj | 01-) is the likelihood function given by (2.3);

11'9 is the prior distribution of 9;

m(uj) is the marginal probability density of u,-; and

N is the number of examinees.

Assume the prior distribution of 9 is a multivariate normal with mean vector u

and the covariance matrix 2, then the density of 7r9(9,-) is

770(9j)=(27f)ZIZ 2exp[--(¢9 - u)§3'1(91-u)l- (2-6)

Maximizing L(Oj | uj) can obtain the Bayesian modal estimates of an individual

proficiency parameter vector Oj,Vj = 1, 2, ~ - - ,N. That is to solve the equations as

(9—.03),—logL(0- luj)=0,Vk=1,,2- -,p;j=1,2,-~-,N. (2.7)

Nevertheless, in many applications, the item parameters are not available, or both

item and proficiency parameters are required to estimate from the observed data. The

following section is to address the simultaneous estimation of the item and proficiency

parameters using the MCMC methods.
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2.3 M-H within Gibbs for Parameter Estimation

for MIRT Models

2.3.1 Complete Conditional Functions for Model Parameters

Under the assumption of local independence, the overall likelihood function of re-

sponses for N examinees on 71 items can be written as

N

L(Ule,2,A,d,c) = H L(u,|o,-,2,A,d,c)

j = 1

n

= II L(v.le,2,a.,d.,c.~)

i= 1

N n

= 1'1 11 p.(6.-)"='j(1—p.<a,-))l-“9,

j = 12' = 1

where

6 is a N x p matrix representing all proficiency parameters, i.e.,

611 912 91p

921 922 ' " 92p

95(919929'”,0j9°'°90N)’=
;

\ 9N1 9N2 6’ij  

E is a p x p variance-covariance matrix for 9,- under the assumption that each

examinee comes from a multivariate normal population, i.e., 0 ~ Np(0, )3); p is the

number of dimensions of proficiency parameters;

A is a n x p matrix representing all a parameters for n items, i.e.,
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( 011 012 01p \

021 022 02p

A = e e e e e e e )I _ . . . . .

— (aliafl, ta], ran — 1

ail ai2 alp

(am an2 0'an

a,- is a row vector with p components representing all of parameters related to

discriminating power for the ith item, i.e., a, = (an, n.2, - - - ,a,,,);

d is a vector of d parameters for n items;

i.e., d5 (d1,d2,--- ,d,-,--- ,dn)’;

c represents a vector of all pseudo-guessing parameters for a test of n items,

i.e., cs (c1,C2,--- ,c,-,--- ,cn)’;

U is a N x n matrix of responses data for all N examinees on n items;

v, is a response vector for all N examinees on the ith item,

i.e., v, E (v,1,v,-2,--- ,v,J-, - -- ,v,N)’.

uj is a row vector for the jth examinee’s response on all items,

i.e.,uj E (1113,2121, - ~ ,unj).

The above equations tell that the likelihood function for the N x n response matrix

can be expressed as either the product of the likelihood functions across all examinees

or the product of the likelihood functions across all items.

Let 1r(9,2,A,d, c) denote the joint prior distribution of all parameters in the
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model 9,2,A,d, and c. Assume that the prior distributions of both item and

person parameters are independent. Then the joint prior distribution can be written

7r(8,2,A,d,c) = 7rQ(G I 2)7r2(2)7rA(A)7rd(d)7rc(c)

= (II-VI 770(93' I Elfizmll f1 77a(ai)7rd(di)7rc(ct')-

j=1 i=1

The joint posterior function for model parameters can be expressed as

p(e, 2, A, d, C I U) 0( L(U I 9, 2, A, d, c)1r(9, 2, A, d, c)

Apparently, we cannot simulate samples from the joint posterior distribution di-

rectly, since the joint posterior is not a known distribution for direct sampling.

In order to sample values for the model parameters from the joint posterior dis-

tribution, the Metropolis-Hastings within Gibbs (Gibbs/M-H) algorithm is imple-

mented, which is found to be effective in experimenting with new models (Patz &

Junker, 1997), the complete conditional distributions of the parameters in MIRT

models are analytically expressed in the following:

The complete conditional distribution of the proficiency parameters by Bayes the-
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orem is

P9(9j I e_j,2,A,d,C,U) = P(9j I11j,2,A,d,C)

OC L(Hj I 9j,A,d,C)7i’9(9j)

= Homeric — plant-Was).
i=1

where 9_j = (01, 92, ° ' ' , 03'-“ 912+}, ° ° ' , 951),. Note that 9 = 91' U 9.3.

Similarly, we can have the complete conditional distributions for item parameters.

That is,

P(vi I aiaeizidiici)P(aireizadiaci)

P(ea zaviadiaci)

oc L(ViI 9.21,, dr.cr-)7ra(at)

Pa(ai I A—i, 9, 21 d7 C, U) =

 

Hpr(9j)“‘j(1 — pr(9:-))1 " “aroma,

i=1

It can be shown that the complete conditional distributions for d,- and e,- have the

following expressions:

Pd(d, I d_i,8,E,A, c, U) at L(vt I 9,at,d,-,c,-)7rd(d,-)

Tl

= II p,(o,.)uz~r(1_p,(o,))1wad“),
i: l

Pd(ci I C-la ea 2)A3d9U) a L(Vi I eiaiadiici)7rci(c‘i)

n

= II pt(9,-)“‘j(1 ‘ pi(0j))1 _ winder),

i=1

where

71's,, 7rd, and 71}; are the prior distributions for a, d, and c respectively;
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A4 is a (n — 1) x p matrix, i.e., A4 = (a1,a3,--~ ,ai_1,ai+1, - -- ,an);

d_i is a vector with (n — 1) components, i.e., d_t = (d1,d2, - -- ,d,-_1,d,-+1, - ~- ,dn);

c_t is a vector with (n — 1) components, i.e., C4 = (01,62, - - - ,c,-_1, c,+1,- -- ,cn); and

p,(Bj) is as previously defined in equation (1.4).

2.3.2 Modelling the Covariance Structure for Multidimen-

sional Abilities

For a test measuring several different proficiency dimensions, it is assumed that each

examinee’s proficiency follows a p-variate normal distribution with mean vector u.

and the variance-covariance matrix 2. That is, 01' ~ Np(p.,E), Vj = 1,2,--- ,N.

Since there is not much meaning in comparing abilities across dimensions, the mean

of each dimension proficiency is set to zero. Thus, the mean vector for proficiency is

set to a p-component zero vector.

Modelling the covariance matrix is very important but difficult because (1) there

are KHz—”ll parameters to estimate, where p is the number of dimensions; and (2) the

matrix is required to be non—negative definite. To estimate the variance-covariance

matrix 2, this study will use the inverse-Wishart (W‘l) distribution, a multivariate

generalization of the sealed inverse-x2 distribution, as the prior distribution of the

matrix 2, i.e.,

2 ~ W‘1(m, ‘11), (2.8)

which is suggested by Gelman, Carlin, Stern, and Rubin (2004). The above distri-

bution is the conjugate prior distribution for the covariance matrix in a multivariate

normal distribution. Where m and \II describe the degrees of freedom and the scale
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matrix for the inverse-Wishart distribution on 2. The advantage of using inverse—

Wishart as prior distribution for )3 is that the posterior distribution of 2 also follows

the W“1 distribution (e.g., Gelman, Carlin, Stern, and Rubin, 2004) :

711'

E I 9~ W‘l(m+n,(n—1)S+‘I'+ 53'), (2.9) 

n+1

where n is the number of examinees, S is the sum of squares and cross product matrix

about the sample mean

N

(n — as = 2 9,19} (2.10)

j=l

T is the number of prior measurements, 0,- is a p - dimension vector, and 9- is a

p—dimensional sample mean vector. Since the posterior distribution on E is a known

distribution, 2 I 0 can be sampled directly.

Let 2k be the kth sample covariance matrix drawn from W'l(m + n, (n — 1)S +

\P + %§§'). Let sijk be the (ij)th component of 2k. Then the estimate of

proficiency structure is the average of drawn covariance matrix samples:

1 N

.2 _ 2

k=l

where N is the total number of randomly drawn samples; 2', j = 1, 2, . - - . p.

There are alternative approaches to modelling the underlying proficiency struc-

ture. Another method for estimating proficiency structure is addressed through a

two-dimensional example. For a two-dimensional IRT model, assume the proficiency

parameters come from a bivariate normal distribution N2(0, E), where E is the stan-
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dardized covariance matrix or correlation matrix, i.e.,

Assume p has a prior density which is the uniform distribution on (—1, 1). Then the

posterior for p, fp(p I 9) can be expressed as

fp(p I 9) 0< p(9 I p)1(_1,1). (2.12)

where p(9 I p) is the probability function given by

N

p(elp) = H

j = 1

N
_.l! 1 '

0C (1 - P2) 2 CXP[_W 2 (9i;- — 2091192) + gig-II,

j = 1

and I(—1, 1) is an range indicator function.

Therefore, the posterior for p is

2 -fl 1 N 2 2

fp(pI 9) 0< (1 — p I 2 “PI—W Z (91,- — 210911921 + 92,-)I1(_1,1)- (2-13)

2‘ = 1

_e£—1 _ 1+
Letp— (TE—+3. Thené—logtg.

= 28
f5“ I 9) fp(P I e)d§

2e£

1+e€'

 

= fp(l0 I 9)

Suppose f is the maximum likelihood estimates of E, and 62 represents the estimated
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variance of E. f can be obtained by letting

p = arg mgxme | p)

= arg mgxlogme I p),

where

N N

logp(8 I p) = e +——2 log(1 — — W200? —2p01j02j + 033-),

where e is a constant. Solve the likelihood equation

 

 

3103149 | p) = 0

6p '

The equation above implies,

Np N
—- 1— p2 -— pijWf-w —2p61j92j 'I” 02jH_—17;01j02j = 0’

i.e., ,5 subjects to

Np+——1 +pjpz2::(03 —2p01j92j + 931-) — 2011021 = 0.

, . . - ~ 1 ‘
l\ote here, the pI'IOI' 7rp(p) = U(-1,1). So pmle = pmode' Thus 5 = log 113% The

Fisher information

Me) = wag—logos I p»

N

- —E5p—2'108P(9IPI- 1_p2-
 

Then the asymptotic distribution of pmle is approximated by N(p, ) as N —.__1_

N1(/))

00.
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Therefore, by the delta method, 5 has the asymptotic distribution as

 

 

. 1 1+p 2 .

—+ N h ,—h’ , where h p =10 = , h’ = ——,1.e.,t (02) NW) 01)) (1 g1_p 5 (p) H),

g N(5 e—£-+—1) ”2 - e£ + 1 Hence aMetro olis-Hastin al orithm can be written

to generate 5 from f5(£ I 9) using N(E, 6%) as the proposal density.

Since the target function f5(€ I 9) —t N(E, 62). The sampling density is N(5, 62).

The transition function can be expressed as r£(.) = N(E, 62). The M-H algorithm is

as follows: Given 5‘, simulate y from N(f, 62), then 5‘“ = y with 0(5‘, y) and 6‘ with

1 — a(§‘, y), where

A

My | emf—E)

a(£,y)=min 6.. ,1

ms I ent—3)

y—

at

 

Repeat this step.

2.3.3 Random Walk Metropolis Algorithm within Gibbs

Since each complete conditional distribution is not convenient for sampling directly

from the expressions given in Section 2.3.1, a MetrOpolis step, in which each pa-

rameter or block has to specify a proposal distribution, is needed for the sampling

process. Patz and Junker (1997) point out that there is much freedom in choosing

the proposal distributions. For example, to sample a proposal value for 01- at step

t + 1, a multivariate normal distribution can be chosen as the convenient proposal

distribution.

The random walk algorithm will choose the candidate state via a random walk

mechanism. The candidate state is not chosen independently of the current state. And
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the candidate state is not always accepted, unlike in the Gibbs sampler. Specifically,

let 8?? be the p—dimensional Euclidian space, and let r be a density on if?” so that

the transition function is defined as R(y, B) = [B r(z — y)dz. Define the acceptance

probability a by

(2)719 - 2) 1},_ ~ 9
a(y, z) — min {g(y)r(z _ y) , (2.14)

where g(.) is the density of the target distribution function (e.g., the above posteriors

for each examinee proficiency parameter, P9(0:,- I 8.5, E, A, d, c, U, or the complete

conditional distribution for each item parameters,Pa(ai I A_i, B, 2,d, C, U),

Pd(di I d_i, e, 2, A, C, U»,

and Pc(c,- I C_i, e, 2, A, d,U)). If the denominator is zero, just set a = 1.

Suppose Y, = y. Generate a “candidate ” observation z from the distribution R(y, .);

accept this observation (set Yt+1 = z) with probability a(y,z). Otherwise, reject

this observation (set Y,“ = Y; = y). Another way to describe the procedure is as

follows. Start at y. Generate a candidate step w from the distribution R defined by

R(B) = fl; r(a:)d:c with probability a(y, y + to) moving forward to w; Otherwise stay

at y.

In the MIRT context, for instance, denote rg(0,-‘, 0f“) as the transition function

for the constructed Markov chain for sampling the jth examinee’s abilities. For

random walk Metropolis algorithm, the transition kernel can have the form

1 , _

73(0)}, git-H) = exp {—§(0jt — 9jt+l) 2 I(Gjt — 9jt+l)} . (2.15)

Then the acceptance probability for the new candidate 9f, 3' = 1,2, . - - , N from the
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transition kernel r9(0j‘, 9;“) is

 

0* 0* at

g9(03t)ro(01t ’ 01*),1 . (2.16)

99(92' )To(9j ’91 )

Note here the target distribution g9(.) is the complete conditional distribution defined

a(0,-t,6j*) = min {

previously, i.e.,

99(9j) P9(9j I 9.,-,A, (1,6, U) OC L(Uj I 9j,A,d,C)’/Tg(0j I 2)

n

H pt(0r)“‘j(1 —p.-(0.-)>1 - “aroma.

i=1

Similarly, the acceptance probability for a new candidate of item parameters a;‘ for

item i, i = 1, 2, ~ .. ,n from the transition kernel ra(ait,ai(t+1)) is,

 

.* t t

o agar = min {9“(a‘ )Ma‘ ’3‘ ),1} , 2.17

( I ) ga(ait)ra(aitaai*) ( )

where g..(.) is the complete conditional distribution for at, i.e., ga(ai*) (X L(Vi I

9, ai", di, c,-)7ra(ai"‘). In the same way, we can find a(d§,d,?) and (I(CE, 6:).

The following are the proposal densities corresponding to person and item param-

eters, which are chosen for the purpose of convenience and efficiency.

. t+1 . t

Proposal dens1ty for 9 IS Np(9 , Eat).

Preposal density for each component of aitTI, aik is U (ail: — h, afik + h),

Proposal density for d2“ is N(dz, 02).

Proposal density for Ct+1 is U(C: — 5, CI + (I);
i
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where h, 6, and 02 are constants. In this study, h = 0.3, 6 = .03, and o2 = 1.

Once the derivation of the complete conditional distribution for each parameter

in the multidimensional model is finished, the corresponding acceptance probabilities

can be calculated. And if the proposal densities are specified, it is ready to draw

parameter samples.

The steps for this drawing of parameter samples for the MIRT model are:

1. Draw 0;. ~ Np(0;,29t), Vj = 1,2,--- ,N. 0;.“ = 9; has acceptance proba-

bility 040;, 0;)

2. Draw 2 I 9 ~ w-1(m + n, (n — ms + \II + ”$367)
 

* o

3. Draw each ail: ~ U(aik — haaik + h), (LEE-1 = a”: With probability of

a(afk,afk) VI: = 1,2,-~-,p. and i = 1,2,--- ,n. p is the total number of

dimensions.

4. Draw d: ~ N(dfi, 02) with acceptance probability ofa(d:, (1?) Vi = 1, 2, - -- , n.

5. Draw c: N U(cf - (i, C: + (5) with acceptance probability of a(c§, 6:) Vi =

1, 2, - - - ,n. Here h and k are known constants.

2.4 Unbiased and Consistent Estimators of Param-

eters

Let 9,1,, (fibril-,6,- be the model estimators Vj = 1,2,-~ ,N, i = 1,2,--- ,n, k =

1, 2, - -- , p. For example, if the samples from the complete conditional distribution

M

r 1

of 9;, at, d,, c,- are drawn from the constructed Markov chain, then 0,), = M Z 37;“

m=l
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M M M
1 ~ 1 1

ink = — E am, d,- = — 2 d}", and c,- = — E c1", where M is the sample size

M m=1 M m=l M m=1

used for the estimates after certain length of the burn-in period.

Obviously, E(é,-) = 93-, E(éii) = ai, Ea.) = di, E(5i) = Ci since E93: = 93': E03: =J

aik, Ed;7| = (1,, and EC? = c,-. That is, the estimators are unbiased.

VGT(0J']¢)

 

The variance of the estimates Var(éjk) =T —> 0, We = 1, 2, - -- ,p. as M —>

. , d.-

00. Var(c‘z,-k) = Lag-5191c)- —> 0, Var(d,-) = V013 ) ——» 0,

Var(é,~) = YEIME). ——+ 0, as M —» 00. By the law of large number, 0:,- —+ 0,- , a, —* a,,

d,- —+ d,, and 6,- -—+ c,- in probability. Therefore, the estimates are consistent.

By the central limit theorem,

M=> N(0,1), (2.18)

V var(6jk)

as M —» 00, for j = 1, 2, - - - ,N. This can give a confidence interval for the estimate of

proficiency parameters. Similarly, the results also hold for item parameter estimates.
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Chapter 3

Simulation Studies and Results

The derivations for the application of MCMC methods into the 3-PL linear logistic

multidimensional IRT model are illustrated in Chapter 2. This approach is imple-

mented in a C++ program, which provides an eficient computational tool for param-

eter estimation of MIRT models of the application of the program are reported in the

chapter. In this chapter, the parameter estimates for MIRT models. The accuracy

and stability of the MCMC estimates will be examined by simulating various testing

situations for the one-, three-, and five-dimensional MIRT models, respectively.

Various simulation studies are presented in this chapter in an attempt to examine

the efiects of four potential factors on the recovery of item and underlying proficiency

parameters. These factors are: the number of proficiency dimensions, proficiency

structure (i.e., covariance matrix for the proficiency distribution), test length (i.e.,

the number of test items), and the sample size (i.e., the number of examinees). Us-

ing simulated data to investigate parameter estimation has at least two advantages:
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(1) since the true person and item parameters are available, they can be used to

assess the accuracy of parameter estimates, with smaller root mean square errors

(RMSE) between the true parameters and the parameter estimates indicating more

accurate estimation; (2) the information for the number of dimensions is available

from the simulated data, as is similar to the confirmatory factor analysis given the

factor structure is known before analyzing data. With knowing the number of di-

mensions, researchers do not have to do additional analysis to determine how many

dimensions each item measures and what these dimensions are about, a strategy

that can help researcher separate dimensionality analysis with the issue of parameter

estimation. It is necessary to point out that determining the statistical dimension

based on the observed data itself is actually a complex and active research area. For

example, Researchers suggest detecting the underlying dimension structure by para-

metric approach (e.g., Reckase, Ackerman, & Carlson, 1988; Miller 81. Hirsh 1992)

and nonparametric approach (e.g., Roussos, 1995). The topic of detecting dimension

structure from the observed data is out of the scope of this research. Therefore, to

control the dimensional structure in the simulated data instead of diagnosing it will

facilitate an effective examination of the MCMC estimation approach.

In addition, to examine the performance of parameter estimation by the MCMC

approach in this research involves only simulation experiments because: (1) real data

analysis will bring the model-data fit issue, which is often confounded with the issue

of parameter estimation and obviously is not the focus of this study; (2) it is more

difficult to evaluate the accuracy of estimation due to the lack of the true parameter

37



information.

3.1 Prior Distributions for Model Parameters

The MCMC approach for parameter estimation is in fact from Bayesian perspective.

The item and proficiency parameters are not treated as fixed values but random vari-

ables with probability distributions. The role of prior distributions for both item

and proficiency parameters is to provide additional information on the parameters

before data collection and parameter estimation. In this study, the prior distribution

for proficiency vector is Np(0, 29). That is, the group of examinees is assumed to

come from the multivariate normal population Np(0, 29), where p is the number of

dimensions. The prior distribution for each component of each a parameter is the uni-

form distribution, the prior distribution for each d parameter is the standard normal

distribution, and the prior for each c parameter is also the uniform distribution.

3.2 Diagnosing the Convergence of Markov Chains

There are many approaches to the diagnosis of the convergence of a Markov chain.

The purpose of this analysis is to ensure that the constructed Markov chains for

the posterior distributions for both item and proficiency parameters through the

Metropolis-Hastings within Gibbs algorithm have the target stationary distributions

before taking sample for Monte Carlo estimation. The reliable estimation requires

that each posterior distribution of a parameter converges to its stationary distribution.

Gelfand and Smith (1990) suggested several approaches to check the convergence
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based on graphical techniques. For m parallel chains, plot a histogram for n values of

kth iteration, after skipping certain iterations (say 19 iterations), and plot a histogram

for n values of (k + p)th iteration. Convergence is assumed if the histograms have

very close pattern.

Gelman, Carlin, Stern, and Rubin (p.294, 2004) recommended an approach to

the inference and assessing convergence based on several independent parallel chains.

First, simulate several independent sequences, with over-dispersed initial values. If

multiple chains with different starting values are well mixed after certain number of

iterations, then one can conclude that the chain reaches the convergence.

3.3 Initial Values and Iterations

The choice of initial values should not affect the item and proficiency estimates,

because the final estimates rely on the sample from the posterior distributions for the

parameters when they reach stationary status. The initial values are often discarded

before computing Monte Carlo estimates for the parameters. However, the initial

values may affect the convergence speed for each chain of a posterior distribution.

Thus, carefully selected starting values will accelerate the convergence speed and

construct an effective Markov chain. For example, Beguin and Glass (1998) suggested

using a = 1, d = 0, and the true c parameter or its estimates from BILOG as starting

values and concluded that 1000 burn-in iterations was sufficient.

In this study, random initial values will be used each time for the estimation. To
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ensure the convergence of each chain, a large number of iterations, for example, 10,

000, will be taken. Moreover, multiple chains (e.g., 3 chains) will be constructed for

each data set to assess the convergence of each chain and evaluate the accuracy and

stability of the estimates by comparing the estimation from each chain with different

random initial values. Hence, the starting values used for estimating proficiency

parameters in this study are randomly drawn from Np(0, I), and the initial values for

item parameters will be randomly sampled from uniform distributions.

Since three independent replications of Markov chains are constructed with dif-

ferent initial values for each data set, the final estimates for the parameters take the

mean of the estimates from the three independent chains. For each independent chain,

parameter estimates H is the average of the sample from posterior distributions, i.e.,

- 1 "

11:52:21,, (3.1)

i=1

where n is the number of samples drawn from the stationary Markov chain for the

posterior distribution. Thus the final estimates of parameters for each data set H is

the average of the estimates from multiple independent chains,

m

H = 2 H,, (3.2)

i=1

where m is the number of replications, i.e., m = 3 in this study.

All of the data sets are randomly sampled from the linear logistic multidimensional

IRT model for various conditions (e.g., test length, the sample size of examinees, the

number of dimensions, and different proficiency covariance matrices). To minimize

the sampling effects on parameter estimation, three replications are simulated for each
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condition. Four factors considered in the simulation studies result in a total of 60

dichotomous response data sets. Therefore, the precision of parameter estimates can

be compared across the sample size, the test length, and the proficiency structures.

3.4 Estimating the Unidimensional 3PL Model

The form for the unidimensional 3PL model is given in equation (1.1) in the first sec-

tion of Chapter 1. This section will discuss the parameter estimation by simulating

dichotomous response data from the unidimensional 3PL model. One big difference

for estimating unidimensional model parameters from the estimation of the multidi-

mensional model parameters is that no underlying proficiency dimension structure

needs to be estimated. To consider the model indeterminacy problem and establish

a fixed metric for both item and proficiency parameter estimates, the sample of the

posterior distributions for proficiency parameters will be standardized at each step of

sample draw. Therefore, the final metric for the proficiency parameter estimates is

placed on 0, 1 metric.

For the simulation study in this section, the underlying proficiency parameters

and difficulty item parameters are generated from the standard normal distribution

N(0, 1); the discriminating power and asymptote item parameters are generated from

a uniform distribution. Two tests with 30 and 45 items were simulated. Each test is

administrated to 2000 and 5000 examinees, respectively. The combination of the test

length, the sample size, and replications yields 12 (i.e., 2 x 2 x 3) data sets. Table
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3.1 and Table 3.2 are the true items parameters for the two tests.

It can be seen from Table 3.1 and Table 3.2 that both tests contains a wide variety

of values of item parameters. For example, in the 30—item test, the discriminating

power a parameter ranges from the smallest of .54 to the largest of 2.43, the diffi-

culty parameters from -1.64 to 1.6, and the asymptote parameters from 0 to .25. In

the 45—item test, the discriminating parameters cover a range between .5 and 2.45,

the difficulty parameters fall into a range within -1.78 to 2.85, and the asymptote

parameters ranges from 0 to .25.

3.4.1 Assessing Convergence

Table 3.3 shows the three independent estimates from each chain replication with

different initial values for the data set generated by the 30—item test to 2000 examinees.

The final item parameter estimates are the mean of the three independent estimates

for each chain. Clearly, the estimates from the three independent chains are very

stable and consistent. For example, item 28 has the same estimates on a and c

parameters over three chains, but has .01 difference on b parameter estimates across

the three independent chains. The largest change for a parameter estimates over

three independent chains is on item 1, showing 1.82 for the first chain, 1.67 for the

second chain with a difference of .15, and 1.72 for the third chain. The slight change

of estimates for each item parameter across the three independent chains indicates

the stable estimates by the MCMC. More importantly, one can assess the convergence

of the posterior distributions by the stability of the estimates over multiple chains
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Table 3.1: True Item Parameters for 30—Item Test (Dim = 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Item Discriminating ((1) Difficulty (b) Asymptote (c)

1 1.67 -l.17 0.14

2 0.89 0.28 0.09

3 0.55 -1.64 0.14

4 1.85 -0.72 0.16

5 2.07 0.50 0.08

6 1.40 0.46 0.18

7 2.43 1.37 0.21

8 0.85 -0.04 0.14

9 1.39 0.91 0.09

10 1.25 0.14 0.09

11 1.52 -0.19 0.21

12 1.34 -0.80 0.25

13 1.64 -0.44 0.05

14 0.99 0.57 0.12

15 1.48 -1.11 0.16

16 0.54 0.48 0.09

17 1.78 1.60 0.03

18 1.10 0.21 0.14

19 2.09 -0.31 0.01

20 2.26 1.10 0.04

21 1.53 0.65 0.24

22 0.79 -0.41 0.11

23 2.40 0.57 0.11

24 0.73 -1.21 0.25

25 0.56 0.62 0.02

26 0.56 -1.43 0.19

27 1.01 1.51 0.04

28 2.07 1.31 0.18

29 2.05 -0.25 0.17

30 1.48 -1.62 0.10      
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Table 3.2: True Item Parameters for 45-Item Test (Dim = 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Item (1 b c Item 0 b c

1 1.73 0.03 .09 24 1.98 —0.88 .09

2 2.45 0.00 .16 25 0.83 0.20 .02

3 2.35 0.45 .02 26 0.84 0.98 .07

4 1.04 0.15 .22 27 1.95 0.90 .01

5 2.37 0.27 .23 28 1.99 -0.51 .19

6 0.95 -1.78 .05 29 0.92 -1.80 .20

7 2.06 1.08 .08 30 1.26 2.85 .00

8 1.43 -0.59 .11 31 1.77 -1.19 .02

9 1.63 -0.67 .11 32 0.50 -0.44 .17

10 2.00 0.54 .18 33 1.78 -0.62 .08

11 2.13 0.33 .25 34 0.61 0.64 .00

12 1.27 -0.56 .17 35 2.21 -0.57 .19

13 1.45 -0.64 .22 36 2.31 0.54 .09

14 2.04 -1.31 .05 37 2.30 0.27 .07

15 0.53 1.16 .19 38 1.51 1.48 .07

16 1.51 -1.53 .13 39 2.26 0.45 .10

17 2.29 0.70 .10 40 0.85 -1.05 .14

18 0.62 -0.18 .07 41 1.33 —0.33 .15

19 2.10 -1.08 .11 42 1.02 -1.24 .02

20 1.69 0.64 .23 43 0.73 1.74 .11

21 1.55 -1.32 .08 44 1.21 1.53 .07

22 1.34 0.03 .18 45 1.99 1.31 .19

23 1.50 1.21 .03 - - - -        
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Figure 3.1: Sample ACF for series of a6, Dim = 1
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suggested by Gelman, Carlin, Stern, and Rubin (p.294, 2004). Table 3.3 provides

numeric demonstrations that the chain has converged to its stationary distribution.

Similar results are obtained for the sample size of 5000 and for the 45-item test but

are omitted here.

Figure 3.1 describes the estimated autocorrelation function (ACF) in the series of

discriminating power for the 5th item after throwing away the burn-in draws. It is

found that the autocorrelation become negligible at lags greater than 28. Figure 3.2

illustrates the behavior of the Markov chains constructed by the M-H within Gibbs

algorithm for item 5 in the 30—item test. The upper panel shows the first 2000 draws

for the posterior distribution of a parameter, the middle shows the 2000 draws for the
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Table 3.3: Estimates from three chains for 30-Item Test (Dim = 1, N = 2000)

 

Item 01 0.2 0.3 (11 d2 d3 Cl 02 C3

1 1.82 1.67 1.72 -1.00 -1.07 -1.05 .23 .18 .20

2 0.87 0.88 0.88 0.23 0.27 0.27 .07 .08 .08

3 0.46 0.45 0.43 -1.78 -1.80 -1.97 .20 .20 .17

4 1.66 1.58 1.60 -0.71 -0.75 -0.73 .16 .13 .14

5 2.09 2.12 2.12 0.56 0.58 0.57 .08 .09 .09

6

7

8

 

 

 

 

 

 

1.37 1.37 1.38 0.56 0.59 0.58 .20 .20 .20

2.09 2.11 2.10 1.43 1.44 1.44 .21 .21 .21

0.99 0.97 0.96 0.26 0.26 0.24 .26 .25 .25

9 1.50 1.49 1.51 0.90 0.91 0.90 .07 .07 .07

10 1.45 1.42 1.45 0.18 0.19 0.20 .08 .08 .09

11 1.70 1.71 1.71 -0.12 -0.10 -0.11 .22 .23 .23

12 1.17 1.13 1.17 -0.83 -0.87 -0.82 .23 .20 .24

13 1.68 1.68 1.63 -0.33 -0.31 -0.34 .06 .07 .05

14 1.01 1.00 0.99 0.64 0.65 0.64 .12 .12 .11

15 1.51 1.54 1.53 -1.16 -1.12 -1.14 .05 .07

16 0.64 0.68 0.66 0.83 0.90 0.89 .18 20

17 1.82 1.80 1.81 1.68 1.70 1.69 .04 04

18 1.19 1.20 1.21 0.17 0.20 0.20 .12 .13

19 2.06 2.06 2.05 -0.31 -0.29 -0.30 .00 .00

04

23

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 2.35 2.35 2.36 1.17 1.19 1.18 .04

21 1.60 1.60 1.59 0.76 0.77 0.77 .23 . .

22 0.79 0.8 0.75 -0.31 -0.26 -0.37 .14 .16 .12

23 2.24 2.24 2.22 0.60 0.63 0.62 .12 .12 .12

24 0.67 0.65 0.67 -1.52 -1.55 -1.50 .07 .06 .08

25 0.58 0.59 0.59 0.78 0.79 0.81 .04 .04 .04

26 0.59 0.57 0.60 -1.33 -1.37 -1.30 .20 .20 .22

27 1.14 1.18 1.14 1.45 1.45 1.46 .04 .04 .04

28 2.22 2.22 2.22 1.36 1.37 1.37 .19 .19 .19

29 2.34 2.31 2.34 -0.20 -0.20 -0.19 .18 .18 .18

30 1.72 1.72 1.69 -1.41 -1.39 -1.43 .23 .24 .22
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Figure 3.2: Sample draw at first 3000 iterations for series of a, b and c
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posterior distribution of b parameter, and the lower panel gives the first 2000 draws

of the posterior distribution for the asymptote parameter. The path plot in Figure

3.2 shows that the posterior distributions for the fifth item parameters mixed well

even in the first 2000 draws. The path plots for other items in the 30—item test or

45-item tests have similar path plots for 2000 draws and are not shown.

The column 2 through 7 (denoted asa65,6,S(a), S(b), S(c)) in Table 3.4 are the

item parameter estimates and their corresponding standard error of the estimates for

the 30—item test with sample size 2000 from the first replication of response data.

The last six columns are the values for the sample size 5000. Table 3.5 shows the

item parameter estimates from BILOG-MG3 using MML procedure for the same
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Table 3.4: Item Parameter Estimates for 30—Item Test (Dim = 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

N = 2000 N = 5000

Item 6 5 6 5(6) 5(1)) S(c) 6 5 6 5(6) S(b) S(c)

1 1.74 -1.04 .20 .16 .07 .06 1.70 -1.14 .13 .10 .07 .05

2 0.88 0.26 .08 .09 .09 .04 0.83 0.22 .04 .04 .04 .02

3 0.45 -1.85 .19 .05 .29 .09 0.58 -1.35 .23 .04 .17 .06

4 1.61 -0.73 .14 .18 .10 .07 1.88 -0.65 .17 .12 .05 .03

5 2.11 0.57 .09 .19 .04 .01 2.07 0.55 .07 .11 .02 .01

6 1.37 0.58 .20 .15 .05 .02 1.41 0.56 .18 .09 .03 .01

7 2.10 1.44 .21 .27 .05 .01 2.17 1.42 .21 .20 .03 .03

8 0.97 0.25 .25 .09 .08 .03 0.75 -0.10 .09 .05 .07 .03

9 1.50 0.90 .07 .14 .04 .01 1.38 0.98 .08 .10 .02 .01

10 1.44 0.19 .08 .10 .04 .02 1.20 0.20 .09 .06 .03 .02

11 1.71 -0.11 .23 .15 .05 .03 1.64 ~0.08 .24 .10 .04 .02

12 1.16 -0.84 .22 .10 .10 .06 1.29 -0.78 .22 .08 .07 .04

13 1.66 -0.33 .06 .12 .04 .03 1.55 -0.42 .01 .07 .02 .01

14 1.00 0.64 .12 .12 .08 .03 0.93 0.63 .12 .07 .06 .02

15 1.53 -l.14 .06 .13 .08 .06 1.62 -0.95 .18 .11 .06 .04

16 0.66 0.87 .19 .10 .13 .04 0.55 0.57 .11 .04 .08 .03

17 1.81 1.69 .04 .25 .07 .01 1.83 1.66 .03 .14 .03 .00

18 1.20 0.19 .13 .12 .07 .03 1.16 0.23 .13 .07 .04 .02

19 2.06 -0.30 .00 .13 .03 .01 2.04 -0.27 .01 .09 .01 .01

20 2.35 1.18 .04 .15 .04 .01 2.24 1.15 .05 .15 .02 .00

21 1.60 0.77 .23 .18 .05 .02 1.60 0.69 .24 .12 .02 .01

22 0.78 -0.31 .14 .06 .12 .05 0.71 -0.51 .04 .04 .09 .04

23 2.23 0.62 .12 .18 .04 .01 2.21 0.62 .10 .14 .02 .01

24 0.66 -1.52 .07 .04 .14 .06 0.70 -1.41 .10 .03 .10 .06

25 0.59 0.79 .04 .06 .10 .03 0.58 0.74 .03 .04 .09 .03

26 0.59 -1.33 .21 .06 .26 .09 0.55 -1.69 .04 .03 .11 .04

27 1.15 1.45 .04 .13 .07 .01 1.09 1.54 .05 .08 .04 .01

28 2.22 1.37 .19 .21 .05 .01 2.35 1.35 .18 .14 .03 .01

29 2.33 —0.20 .18 .16 .04 .02 2.14 -0.14 .20 .13 .02 .02

30 1.71 -1.41 .23 .17 .08 .06 1.79 -1.35 .23 .15 .08 .06          
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Table 3.5: Item Parameter Estimates for 30—Item Test In BILOG-MG3 (Dim = 1)

 

N=2000 N=5000

Item 6 13 6 6 B 6

1.83 -1.00 .25 1.71 -1.17 .15

0.88 0.21 .08 0.81 0.18 .04

0.61 -0.65 .50 0.58 -144 .21

1.67 -0.73 .16 1.90 -0.68 .18

2.09 0.52 .08 2.04 0.51 .07

1.39 0.54 .20 1.39 0.53 .18

2.20 1.38 .21 2.14 1.39 .21

0.95 0.17 .24 0.75 -0.12 .11

1.49 0.85 .07 1.38 0.94 .09

10 1.45 0.15 .08 1.17 0.14 .08

11 1.66 -0.17 .22 1.62 -013 .24

12 1.18 -0.83 .25 1.27 -0.83 .21

13 1.65 -0.37 .05 1.53 -047 .01

14 1.00 0.58 .11 0.93 0.60 .12

15 1.46 -123 .00 1.64 -097 .19

16 0.67 0.84 .19 0.57 0.58 .12

17 1.82 1.62 .04 1.81 1.63 .03

18 1.23 0.17 .13 1.15 0.18 .12

19 2.02 -033 .00 2.02 -031 .01

20 2.52 1.12 .04 2.21 1.12 .04

21 1.60 0.72 .23 1.57 0.66 .24

22 0.78 -0.35 .14 0.66 ~0.61 .00

23 2.28 0.56 .12 2.19 0.59 .10

24 0.64 -1.67 .00 0.72 -1.31 .17

25 0.58 0.73 .03 0.55 0.64 .01

26 0.57 -152 .15 0.51 -1.87 .00

27 1.16 1.40 .04 1.08 1.51 .05

28 2.41 1.31 .19 2.47 1.31 .18

29 2.51 -021 .19 2.09 -0.19 .20

30 1.72 -139 .28 1.82 ~1.36 .26
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Table 3.6: Item Parameter Estimates for 45—Item Test (Dim = 1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

N=2000 N=5000

Item 6 13 6 3(6) 3(0) S(c) a B 6 3(6) S(b) 8(6)

1 1.54 -001 .08 .10 .03 .02 1.59 0.01 .07 .07 .03 .01

2 2.42 0.06 .17 .11 .03 .02 2.31 .08 .17 .13 .02 .01

3 2.31 0.46 .02 .15 .02 .01 2.41 0.50 .02 .10 .02 .00

4 1.00 0.20 .24 .10 .07 .03 0.95 0.20 .20 .05 .03 .02

5 2.37 0.31 .26 .14 .04 .02 2.44 0.35 .24 .09 .03 .01

6 0.96 -l.65 .09 .08 .14 .07 0.99 -155 .11 .05 .08 .05

7 2.10 1.13 .07 .20 .03 .01 2.06 1.16 .08 .16 .02 .01

8 1.35 -0.60 .14 .14 .11 .06 1.41 -049 .15 .07 .04 .03

9 1.55 -0.69 .11 .12 .06 .04 1.66 -0.62 .12 .08 .03 .02

10 1.93 0.55 .16 .18 .04 .02 2.08 0.58 .17 .12 .02 .01

11 1.87 0.33 .24 .17 .05 .02 2.03 0.37 .24 .12 .03 .01

12 1.39 -042 .23 .14 .10 .06 1.33 -0.47 .18 .08 .04 .03

13 1.28 -0.71 .18 .15 .12 .06 1.36 -0.63 .18 .06 .04 .03

14 2.29 -124 .08 .17 .06 .05 2.23 -1.19 .05 .12 .03 .03

15 0.50 1.01 .15 .08 .17 .05 0.43 1.02 .12 .05 .13 .04

16 1.53 -153 .21 .15 .11 .06 1.57 -143 .20 .18 .15 .11

17 1.89 0.76 .09 .17 .04 .01 2.16 0.75 .09 .12 .02 .01

18 0.61 -013 .10 .06 .16 .06 0.59 -025 .04 .03 .10 .04

19 2.28 -107 .14 .15 .05 .04 1.91 -107 .07 .13 .05 .03

20 1.62 0.70 .23 .17 .06 .02 1.77 0.71 .25 .13 .03 .01

21 1.60 -130 .09 .13 .08 .06 1.43 -135 .02 .07 .04 .02

22 1.38 0.04 .19 .12 .06 .03 1.45 0.11 .19 .07 .02 .01            
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Table 3.7: Item Parameter Estimates for 45-Item Test (Dim = 1), cont.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

N =2000 N =5000

Item 6 5 6 5(6) 5(0) 8(6) 6 B 6 5(6) S(b) S(c)

23 1.40 1.25 .02 .12 .05 .01 1.51 1.25 .03 .08 .03 .00

24 1.84 -0.96 .04 .14 .05 .03 2.08 "-0.78 .12 .09 .02 .02

25 .85 0.24 .02 .06 .06 .02 0.83 0.19 .00 .03 .03 .01

26 1.03 1.19 .12 .14 .07 .02 0.87 1.13 .09 .06 .04 .01

27 1.69 1.01 .01 .16 .04 .01 1.85 0.98 .01 .10 .02 .00

28 1.80 -052 .24 .15 .04 .03 1.95 -045 .21 .12 .05 .03

29 0.87 -195 .13 .10 .22 .10 0.85 -194 .07 .05 .09 .05

30 1.19 3.17 .00 .20 .29 .00 1.26 2.98 .00 .09 .10 .00

31 1.72 —1.22 .02 .11 .05 .03 1.69 -1.12 .04 .12 .07 .04

32 0.44 -072 .11 .04 .21 .06 0.50 -.67 .05 .02 .10 .04

33 1.66 -0.63 .06 .13 .05 .03 1.76 -0.56 .05 .08 .03 .02

34 0.64 0.69 .02 .06 .09 .02 0.66 0.72 .03 .05 .05 .02

35 2.22 -0.58 .20 .20 .06 .04 2.40 -0.48 .21 .11 .03 .02

36 2.39 0.55 .08 .12 .03 .01 2.40 0.58 .09 .11 .02 .01

37 2.37 0.32 .08 .14 .03 .01 2.46 0.33 .08 .07 .02 .01

38 1.37 1.56 .07 .19 .06 .01 1.47 1.54 .07 .11 .04 .01

39 2.33 0.50 .10 .14 .03 .01 2.37 0.49 .09 .11 .02 .01

40 0.76 -124 .05 .05 .09 .05 0.80 -1.13 .07 .04 .10 .05

41 1.18 -043 .06 .08 .05 .03 1.37 -024 .16 .06 .03 .02

42 1.32 -094 .21 .10 .08 .06 1.21 -101 .14 .05 .05 .04

43 0.77 1.76 .11 .13 .09 .02 0.77 1.78 .11 .08 .08 .01

44 1.19 1.59 .06 .13 .06 .01 1.27 1.60 .08 .09 .04 .01

45 1.84 1.36 .19 .24 .05 .01 1.94 1.34 .19 .16 .03 .01            
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data set, a standard procedure of item parameter estimation in most IRT calibration

software. Comparing the results of item parameter estimates from these two different

procedures, one can see that these results are very close to each other and close to

their true item parameters, indicating the two estimation methods are comparable.

Table 3.6 and 3.7 show the item parameter estimates and the corresponding standard

error for the 45—item test.

As is true in many estimation programs in IRT, item parameter estimates con-

tain estimation errors even if the data and the mathematical models have perfect

fit. To examine the estimation accuracy of item parameter estimates, root mean

square errors (RMSE) of the item parameter estimates are calculated from each data

replication and each chain. In this study, three data replications are observed for

both tests (i.e., the 30-item test and the 45—item test). Here data replication means,

for example, the 30—item test is administered to three groups of different examinees

who come from the same population (N(0, 1)). Therefore, there will be three sets of

item parameter estimates corresponding to the three groups of examinees. For each

data set, the computation program will come up with three different chains along

with three different initial values to make sure that the MCMC approach can provide

stable parameter estimates. Each chain will independently give estimates for item

parameters. Therefore, combining three data replications and three chains for each

data set will yield nine sets of item parameter estimates. For each data set, the final

item parameter estimates are the average of estimates from the three chains. RMSE is

defined as the square root of the mean squared difference between the item parameter

52



Table 3.8: RMSE for Estimating Uni-dimensional Models (Dim = 1)

 

 

 

 

     

30 x 2000 30 X 5000 45 x 2000 45 x 5000

a .15 .07 .11 .07

b .11 .08 .08 .08

c .05 .04 .04 .03
  

estimates and the true item parameters over 1' data replications and across 71 items

(7' in this example is 3, and n is 30 or 45). Let 17 denote as item parameter (e.g.,

discriminating power parameter a, or difficulty parameter b, or asymptote parameter

c) and 6 as item parameter estimates. Then RMSE can be calculated by

n r .

‘= '= (Ur-71122RMSE(77) = \/22 12] 1 J J .

rxn

 

 

RMSE gives a summary index of assessing the accuracy of item parameter estimates.

Apparently, the larger RMSE of item parameter estimates for a data set, the worse

of the item parameter estimates. For a simulation study, the perfect fit of model

and data is assumed, and thus the difference between the true and item parameter

estimates may depend on estimation procedures and some other factors (e.g., the

sample size of examinees).

Table 3.8 contains the RMSE for item parameters. It shows that for the same

test the larger the sample size, the smaller RMSE, and the less estimation errors.

The largest RMSE for a is .15 in the 30-item test with 2000 examinees. The smallest

RMSE is .07 in both tests when sample size is 5000. The largest RMSE for b is .11 in

the 30—item test with examinee 2000. It also shows that the RMSE for c is generally

smaller than RMSE for a and b, with the largest one .05 in the 30—item test to 2000
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Table 3.9: Correlations Between Me Proficiency and Estimates (Dim = 1)

 

Tests N = 2000 N = 5000

30-items .9546 .9554

45—items .9712 .9718

 

 

     

examinees.

Table 3.9 shows the correlation between true proficiency and estimates from the

MCMC approach. For the 30—item test, the correlations are around .96. The correla-

tions in the 45—item test are about .97, slightly higher than those in the 30—item test.

That is, longer tests gives higher correlation between true and estimates, implying

better proficiency parameter estimation. Figure 3.3 shows the plots of true proficiency

versus estimates corresponding to the four correlations in Table 3.9. One can see that

the proficiency estimates from the longer test (i.e., the 45-item test) more closely

around the reference line y = 2:, representing a higher correlation between the true

and estimates. Figure 3.4 through Figure 3.6 are the plot of the true item parameter

versus the estimates for parameter a, b, and c, correspondingly. Most of the plots are

close to the reference line y = 2:. For these figures that have larger sample size, the

plots are more close to the reference line, implying better item parameter estimates.

3.5 Estimating the 3-Dimensional MIRT Model

This section will discuss the simulation studies of the parameter estimation for the 3-

dimensional model, which is slightly different compared to the parameter estimation

for the unidimensional model because the number of parameters in the multidiem-
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Figure 3.3: 'Irue Proficiency Versus Estimates (Dim = 1)
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Figure 3.4: True 6 Parameter Versus Estimates (Dim = 1)
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sional model is much greater than that in the unidimensional model. In addition,

new parameters (e.g., proficiency structure parameters that appear as the compo-

nents in the covariance matrix of the underlying proficiency distribution) need to be

considered to estimate at the same time along with the estimation of the item and

proficiency parameters. One more concern for MIRT model parameter estimation

is the issue of indeterminacy that is inherited from the form of the MIRT model.

Basically, one needs to put some constraints to ensure the MIRT model parameters

have fixed solutions. The following sections will discuss the design of the simulation

studies, for example, on how to generate the item and proficiency parameters and

the response data, the underlying proficiency covariance, how to put constraints on

the items in a test to establish a fixed scale for the parameter estimates, and how to

assess the accuracy and stability for the parameter estimation.

3.5.1 Generating Proficiency Parameters

Assume that the underlying distribution of proficiency for each examinee follows the

multivariate normal distribution with mean vector p and covariance matrix 29. That

is, 0,- ~ Np(p., 29), where j = 1,2, - - - , N. Proficiency parameters for each examinee

are randomly drawn from Np(0, 29), where p is the number of dimensions; 29 is the

generating covariance matrix, which corresponds to its dimensional structure and will

have more discussions in Section 3.5.3. The mean vector p here is set to 0, because

each dimension actually represent one hypothetical construct and comparison among

dimensions seems to be not necessary.
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3.5.2 The Number of Proficiency Dimension and Sample Size

One factor that might indirectly affect the parameter estimation in the MIRT model is

the proficiency dimensions (i.e., the number of latent variables in the complete latent

space). As is known, the unidimensional IRT model (dim = 1) has 3 parameters

for each item and one parameter for an examinee’s proficiency. For a test with 71

item and N examinees, the total number of parameters to be estimated is 371 + N.

But in the case of the 3-dimensional MIRT model, there are 5 parameters for each

item (i.e., three 6 parameters plus d and c parameters), 3 parameters for an individual

proficiency, and 3 more parameters for representing the components in the proficiency

covariance matrix. Therefore, for a test with 71 items and N examinees, the total

number of model parameters need to estimate is 5n+3N +3, much more than that in

the unidimensional model. The increasing number of parameters in the MIRT model

brings more difficulties for the estimation given the test length n and the sample

size of examinees N, since more information is required to achieve the same level of

estimation precision.

The simulation studies here consider two different numbers of dimensions for esti-

mating multi-dimensional MIRT models: three and five proficiency dimensions. That

is, three, and five-dimensions of proficiency are required to determine the correct

answers in the simulation studies.

The stable Monte Carlo estimates may depend on the sample size (this would also

be the case for the maximum likelihood and Bayesian modal estimation). To investi-

gate the effect of the sample size on the accuracy and stability of the estimation, the
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response data with the sample size 2000 and 5000 examinees are independently gen-

erated from the multivariate normal population. The sample size 2000 is considered

as moderate, and 5000 as a large sample.

3.5.3 Proficiency Structure

For multivariate analysis, the estimating of the covariance matrix is an important

step, because the covariance structure can reveal some helpful information on the

interrelations among the interested set of variables. Since the comparisons among

proficiency dimensions are not useful in testing practice, one can standardize the set

of proficiency components and thus make the variance for each proficiency dimension

equal to 1, which reduce the number of parameters in the proficiency covariance. For

example, if a test requires 3 dimensional proficiency, three additional parameters are

needed to describe the proficiency covariance. However, the off-diagonal components

represent the interrelations among the required proficiency dimensions and the pair-

wise correlations in the matrix may vary. For the multi-dimensional MIRT model,

the generating covariance matrices used are in the form of

1 p p

. 1 p

p p

p p 1

for simplicity, where p in the proficiency structure matrix equals to .2, which is

denoted as,
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For a more general case, ,0 takes different values for the off-diagonal components.

For example, the generating covariance matrix for the 3-dimensional model has off-

diagonal components from .2 to .7 denoted as

29.9 E
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e
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0
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3.5.4 Generating Item Parameters

It is natural to assume that some items in a test only measure one dimension profi-

ciency (call such items uni-items), some items may measure two or more dimensions

(call such items multi-items). A test can be composed by both uni—items and multi-

items. Two tests that include both uni-items and multi-items are generated in this

simulation study on estimation for the 3-dimensional MIRT model with 30 and 45

items, respectively.

Table 3.10 contains the true item parameters for the 30—item test. The first 15

items only measure one dimension proficiency and the remaining 15 items measure

three dimension abilities. The parameter vector a ranges from 0 to 2.45. Note for the

items which measure 3-dimensional abilities, some components in the a parameter are

dominant over other dimensions(e.g., item 20, 21, 24), and some items have very close

values of 6 parameters on two or three dimensions (e.g., item 19, 25, 26, 27). The

values of (1 parameters are simulated from the standard normal distribution N(0, 1).
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The lowest d value is -1.63 and the highest value of d is 2.38, indicating a wide

range of d values is included in the test. Asymptote parameters c are drawn from

the uniform distribution U(0, .25). High guessing parameters are not expected for

good test items, as in the case of this example. Combined with the number of items

(e.g., 30 and 45 items) and the sample size (e.g., 2000 and 5000), and the underlying

proficiency structure (e.g., 29,3 and 29,9), there are in all 24 dichotomous response

data sets generated.

To solve the indeterminacy problem and establish a fixed scale for the model

parameter estimates, the first three items are chosen as an unidimensional item, which

is strongly considered to measure only the first, the second, and the third dimension,

respectively. More specifically, the a values for the first item takes zero on the second

and third dimensions, the a values for the second item takes zero on the first and

third dimensions, and similarly the a values for the third item takes zero on the first

and second dimensions. These three items are viewed as anchor items, because they

are placed at the first three positions in the test and all are uni-dimensional items,

which is treated as a constraint in order to settle the metric issue or the indeterminacy

problems that are inherited in the MIRT models. It is argued that the model can

be identified by setting the mean vector of proficiency parameters equal to zero and

standardizing the covariance matrix, plus the above constraints, which are also used

in the exploratory option of NOHARM (Fraser, 1988).

Table 3.11 contains the true parameters for the 45-item test. The first thirty

items only measure one dimension proficiency. Item 1 and item 4 to item 12 only
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load on the first dimension, item 2 and item 13 through item 21 measure the second

dimension, and item 3 and item 22 through item 30 only load on the third dimension.

The remaining 15 items of the test, item 31 through item 45, are able to measure all

three dimensions. The parameters a in the 45—item test also see a wide range as well,

from 0 (item 2) to 2.43 (item 41). The minimum value of parameter (1 is -2.06 (item

26) and the maximum is 2.07 (item 6). The parameters c are within the range of .01

to .24 in this test.

The first three items in the 45—item test are also uni-dimensional items and placed

in the first three positions in the test, which is to believe that these three items are

able to measure well the first, the second, and the third dimension, respectively. The

purpose of placing the three uni-dimensional item in the first three positions in the

test is to settle the indeterminacy problems and establish a fixed scale for the item

and proficiency parameter estimates.

3.5.5 The Estimation Accuracy and Stability for

the 3-Dimensional MIRT Model

Table 3.12 contains the RMSE for the item parameters in the 3—dirnensional model

for both tests with the sample size 2000 and 5000 and in a condition that all of

the off-diagonal components for the proficiency covariance are equal to .2. Note the

item parameter estimates are the means of the three individual estimates of the item

parameters, which are based on the three chains with different random initial values.

By taking the means of the individual estimates based on multiple chains for the

same data set, one can expect the the final estimates to be more stable and accurate
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Table 3.10: True Item Parameters for 30-Item Test (Dim = 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Item 61 62 63 d c

1 1.30 0 0 -0.23 .21

2 0 0.50 0 0.02 .00

3 0 0 2.10 -1.00 .24

4 1.93 0 0 0.61 .06

5 0.81 0 0 0.31 24

6 1.62 0 0 1.76 .00

7 0.59 0 0 1.56 .06

8 0 2.45 0 -0.38 .08

9 0 1.88 0 -0.86 .14

10 0 0.57 0 -0.51 .02

11 0 1.15 0 1.25 .03

12 0 0 1.35 -0.29 .25

13 0 0 0.98 2.38 .09

14 0 0 1.46 -1.45 .12

15 0 0 1.49 -0.30 .21
 

16 1.34 2.23 1.98 -1.24 .05

17 1.84 2.34 0.90 0.08 .00

18 0.86 1.04 1.76 1.13 .03

19 1.93 1.65 1.96 0.61 .11

20 0.56 0.87 1.97 1.23 .09

21 2.20 0.96 1.16 -l.01 .05

22 1.58 1.48 2.29 -1.58 .19

23 1.26 1.68 1.45 -0.07 .16

24 2.37 0.75 0.52 -1.37 .02

25 1.94 1.99 1.16 -1.63 .04

26 0.89 1.32 0.92 0.35 .20

27 1.25 1.56 1.64 1.08 .06

28 2.07 1.71 2.43 0.79 .06

29 1.41 0.96 2.12 0.46 .20

30 0.98 2.30 1.64 -0.43 .08

 

 

 

 

 

 

 

 

 

 

 

 

 

         
63



Table 3.11: 'D‘ue Item Parameters for 45-Item Test (Dim = 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Item 61 a2 63 d c Item 61 62 63 d c

1 1.12 0 0 0.18 .09 24 0 0 0.24 0.56 .13

2 0 1.51 0 1.28 .08 25 0 0 1.96 -0.23 .14

3 0 0 1.24 —0.46 .19 26 0 0 0.44 -2.06 .04

4 2.03 0 O -1.74 .05 27 0 0 0.91 0.24 .07

5 1.92 0 0 1.24 .14 28 0 0 2.46 0.05 .07

6 1.84 0 0 2.07 .19 29 0 0 0.77 1.06 .01

7 2.43 0 0 0.42 .11 30 0 0 1.57 0.51 .02

8 0.94 0 0 1.04 .03 31 2.26 0.52 1.85 -2.05 .06

9 0.89 0 0 0.27 .13 32 1.20 1.05 0.79 0.28 .04

10 0.52 0 0 ~0.69 .22 33 2.31 1.25 1.98 —0.31 .13

11 0.30 0 0 -0.75 .23 34 1.38 0.64 1.62 0.80 .02

12 0.94 0 0 0.65 .12 35 0.53 2.21 1.23 -0.55 .02

13 0 0.53 0 —0.92 .22 36 0.95 1.09 1.02 -0.99 .23

14 0 0.91 0 1.28 .03 37 0.22 0.92 0.80 0.04 .23

15 0 0.22 0 0.02 .17 38 1.77 2.50 0.78 1.33 .01

16 0 1.03 0 -1.64 .02 39 1.32 2.19 1.32 1.30 .13

17 0 1.87 0 -1.69 .02 40 1.85 1.08 1.22 -0.45 .09

18 0 0.79 0 -1.11 .03 41 1.27 2.21 2.43 1.98 .10

19 0 1.81 0 -0.47 .17 42 0.22 1.15 2.00 0.50 .24

20 0 1.75 0 1.31 .12 43 0.36 1.25 0.21 -0.43 .16

21 0 0.73 0 -1.07 .21 44 1.95 1.60 1.35 -0.90 .03

22 0 0 2.05 -1.22 .04 45 1.11 2.21 1.07 -0.40 .07

23 0 0 2.05 0.47 .05 - - - - - -            

 

Table 3.12: RMSE for Multi-dimensional Test (Dim = 3, p = .2)

 

 

 

 

 

 

     

Estimates 30 x 2000 30 x 5000 45 x 2000 45 x 5000

61 .15 .08 .15 .06

(£2 .12 .08 .16 .04

*3 .18 .08 .11 .05

a? .19 .10 .22 .11

6 .07 .03 .06 .03   
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because the fluctuation of the item parameter estimates induced by the initial values

and sampling errors are taken into accounted. It shows for a given test (e.g., the 30-

item or 45-item test) the larger the sample size, the smaller RMSE. For the 30—item

test, the largest RMSE for a. is .18 when sample size is 2000, but is .8 when sample

size is 5000. The RMSE for d parameter is .19 when sample size is 2000, and is .10

for the sample size 5000. The RMSE for c parameter is .07 for sample size 2000, but

is .03 for 5000. Similar results can also be found in the 45-item test. The smallest

RMSE is .04 for a parameter in the 45-item test with sample size 5000. Note that

within the same test and with the same sample size, the RMSE for 6,,Vi = 1, 2, 3 are

close to each other, which implies that the estimation can achieve the same level of

precision across dimensions. It also shows that the RMSE for c is generally smaller

than the RMSE for a and b, with the largest one .07 in the 30—item test to 2000

examinees.

Table 3.13 gives the RMSE for the situation in which the underlying proficiency

covariance is a general one or it does not follow a special pattern (e.g., all off-diagonal

components on the proficiency covariance matrix are the same). The results of the

parameter estimation for this particular condition are found very similar to the case

in which the off-diagonal components for the covariance matrix are equal to .2. This

implies that the underlying proficiency covariance does not affect the item parame-

ter estimates, which is expected because the estimation of the item and proficiency

parameters are independent.

Compared to the RMSE for the unidimensional model in Table 3.8, the RMSE
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Table 3.13: RMSE for Multi-dimensional Test (Dim =3, p = general)

 

 

 

 

 

 

Estimates 30 x 2000 30 x 5000 45 x 2000 45 x 5000

a} .10 .12 .13 .06

62 .14 .06 .11 .07

63 .13 .12 .13 .06

" .13 .11 .21 .15

6 .06 .03 .06 .04       

Table 3.14: Correlations Between True Proficiency and Estimates (Dim = 3, p = .2)

 

 

 

 

30 x 2000 30 x 5000 45 x 2000 45 x 5000

corr(01, 61) .8765 .8737 .9144 .9136

corr(02, 62) .8677 .8703 .9125 .9121

COI'I’(03, 93) .8531 .8649 .9109 .9146       

for item parameter estimates in Table 3.12 and 3.13 are generally higher those item

parameter estimates for the 3—dimensional MIRT model. It is clear that given the same

size of data information, the more parameters to be estimated, the more estimation

errors.

It can be seen that for the same test, larger sample size gives smaller RMSE. The

RMSE for a parameter cross dimensions are close to each other with a range from

.10 to .14 for the sample size 2000 and a range of .06 to .12 for the sample size 5000.

The largest RMSE for d is .21, which occurs in the 45-item test with 2000 examinees,

the smallest is .11 in the 30—item test with sample size 5000. Generally speaking,

The RMSE for parameter c are smaller than those for parameters a and d, varying

from .03 to .06, because c is restricted to a very small range. The RMSE of c for the

sample size 5000 are about the half of the ones for 2000 examinees.
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Table 3.15: Correlations Between True Proficiency and Estimates (Dim = 3, p =

general)

 

 

 

 

30 x 2000 30 x 5000 45 x 2000 45 x 5000

corr(01, 6,) .8876 .8943 .9198 .9259

corr(02, 62) .8878 .8966 .9211 .9255

corr(t93, 93) .8474 .8602 .9111 .9101       

The correlations between true abilities and estimates are presented in Table 3.14

and 3.15 for p = .2 and p is varied, respectively. Table 3.14 shows that for the 30—item

test the correlation between the true values and the estimates are around .87 with

a very small range from .8531 to .8765. Also, the correlations for the 45—item test

slightly differ from .9109 to .9146. The 45—item test in general has higher correlations

(around .91) between the true and the estimated abilities than those in the 30-item

tests. This implies the proficiency estimates get improved for the longer test, or the

estimation precision for proficiency in the longer test is better than that in the short

test (i.e., the 30—item test).

Table 3.15 presents the correlations between the true proficiency (6) and the esti-

mates (6) for the situation in which the components for the off-diagonal proficiency

covariance matrix take different values. The 30-item test gives correlations from .8474

to .8966. Higher correlations are also found in the 45-item tests with a range from

.9101 to .9259. No noticeable difference of correlations have been found cross dimen-

sions. For example, for the 30-item test with 2000 examinees, the correlation between

the first proficiency dimension and its estimates, corr(01, 61) = .8876, the correlation

between the second proficiency dimension and its estimates, 0077(02, 62) = .8878, and
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the correlation for the third dimension is corr(03,63) = .8474. Comparing Table

3.14 to 3.15, slightly higher correlations appear in the situation that p takes different

values than the fixed p = .2 condition. But the difference is negligible.

In general, the correlations for the unidimensional model in Table 3.9 are higher

than those for the 3-dimensional model in Table 3.14 and 3.15. This implies that

as the number of dimensions increases from 1 to 3, the number of parameters to

be estimated increases from 2090 to 6153 for the 30-item test to 2000 examinees.

Therefore, more estimation errors will appear in the item and proficiency estimates

for the 3-dimensional model.

Figure 3.7 through Figure 3.9 show the plots of the true proficiency versus the

estimates for the 30—item and the 45-item tests cross different sample sizes. The

plots in these 3 figures demonstrate that the true and estimates are more close to the

reference line y = :r for the longer test (45—item), as is consistent with the findings

on the correlations in Table 3.14 and 3.15. Figure 3.10 through 3.13 are the plots

of the true item parameters versus their estimates and they are all tightly around

the reference line, showing the stable and accurate estimates are obtained in various

simulation conditions regarding the test length, the examinee sample size, and the

underlying proficiency covariance. It is worth pointing out that from the Figure 3.10,

3.11, and 3.12, for 6 parameters with true value 0, the estimates are close to zero.

The estimates in the tests with larger sample size (e.g., N = 5000) are even closer to

zero, with the biggest difference between the true parameters and estimates less than

.2.
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Figure 3.7: True Proficiency Versus Estimates (Dim = 3, p = general, 71. = 30, N =

5000)
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Note that the plots are for the situation in which the underlying proficiency covari-

ance matrix is 293. Similar results are also obtained when the proficiency covariance

is Bag, in which the pairwise correlations vary, but the plots are omitted here.

3.6 Estimating the 5-dimensional Model

The two tests for the simulation studies in this section will have the same number of

item (e.g., n = 30 or n = 45) and will also be administrated to the groups of examinees

with size N = 2000 and N = 5000, respectively. The differences are both tests are

assumed to require five dimensions of proficiency to correctly answer the items in the

two tests. Since the tests are to measure five dimensions of abilities, the total number
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Figure 3.10: True 61 Parameter Versus Estimates (Dim = 3, p = .2)
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Figure 3.11: True 62 Parameter Versus Estimates (Dim = 3, p = .2)
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Figure 3.12: True 63 Parameter Versus Estimates (Dim = 3, p = .2)
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of parameters to be estimated are (5 + 2)n + 5N + 10, where n stands for test length

and N for the sample size of examinee. For the 30-item test that is administrated

to 2000 examinees, for example, the total number of model parameters need to be

estimated from the observed data is 10220, which is much greater than the sample

size 2000. If this test is to administrated to a group of 5000 examinees, the number

of model parameters is 25220. Similarly, for a 45-item test that is administrated to

a group of 2000 examinees, the total number of model parameters is 10325, and is

25325 if administrated to a sample of 5000 examinees.

The design for the 30—item test that is assumed to measure five dimensions of

abilities will follow the same pattern as that of the three dimensional tests. To put

some constraints for the model identification and the establishment of the fixed scale

for the parameter estimates, the first five items are unidiemsional items and are placed

on the first five positions in the test with each item measuring only one dimension

of proficiency. More specifically, these items are also called anchor items with the

first item only measuring the first dimension of proficiency and the second items only

measuring the second dimension, and so on. Table 3.16 and 3.17 contain the true

item parameters for the 30-item test and the 45-item test, respectively. It can be

seen that the anchor items have a wide range of values on the 6 parameters (e.g.,

from .65 to 2.04 for the 30—item test, and from 1.38 to 2.32 for the 45-item test). In

the 30—item test, there are two additional unidimensional items (e.g., item 6 through

item 15) for each dimension and the rest of the items are assumed to measure all

five dimensions of abilities (e.g., item 16 through item 30). For the 45—item test,
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only one additional unidimensional item for each dimension are present in the test,

item 6 through item 10. The rest of the items in this test are suppose to measure

all five dimensions of abilities. In the 30—item test, each dimension of proficiency is

designed to be measured by only 17 items. And in the 45-item test, each dimension

of proficiency can be measured by 42 items, much more than that in the 30—item

test. According to this design of items for the two tests, one would reasonable expect

that the proficiency estimates in the 45—item would be improved since more items are

designed to measure each dimension of proficiency.

Note that the true item parameters in both tests in Table 3.16, 3.17 and 3.18

include a wide range of values on each item parameter. For example, the largest

value of a parameter is 2.44 and the lowest is 0 in the 30—item test, and the largest

and lowest 6 values in the 45—item test are 2.32 and 0, respectively. The values on d

parameters for both tests have a reasonable range, which are both from a standard

normal distribution. All the asymptote parameters are controlled within the range

between 0 and .3.

The five dimensional proficiency parameters are randomly generated from a multi-

variate normal distribution with the mean vector 0 and the covariance matrix 20 (i.e.,

N(0, 29)). As in the case for the three dimensional tests in Section 3.5, the mean

vector for the underlying proficiency distribution is set to 0 to establish the same

scale for each proficiency dimension. In the same way, the covariance matrix 29 is

standardized and becomes actually the correlation matrix among these dimensions of

abilities. The pairwise correlation among these five dimensions (or the off-diagonal
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Table 3.16: True Item Parameters for 30-Item Test (Dim = 5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Item 0.1 0.2 63 64 65 d c

l 0.65 0 0 0 0 1.76 .20

2 0 1.74 0 0 0 ~0.69 .23

3 0 0 2.04 0 0 0.13 .15

4 0 0 0 1.38 0 1.13 .24

5 0 0 0 0 0.98 -0.64 .14

6 1.14 0 0 0 0 0.30 .07

7 1.64 0 0 0 0 -0.11 .10

8 0 0.67 0 0 0 -0.62 .23

9 0 1.21 0 0 0 0.73 .25

10 O 0 1.49 0 0 -1.12 .12

11 0 0 0.99 0 0 -1.10 .12

12 0 0 0 1.18 0 1.34 .04

13 0 0 0 1.41 0 2.02 .09

14 0 0 0 0 1.91 0.49 .16

15 0 O 0 0 0.88 -1.28 .24

16 2.44 1.24 2.18 1.88 0.85 0.85 .03

17 1.81 1.85 2.28 1.21 2.44 -l.64 .13

18 1.02 2.14 1.77 1.80 2.02 0.91 .07

19 0.60 1.75 2.14 2.19 2.35 2.73 .03

20 0.94 1.23 2.07 1.91 1.42 1.43 .19

21 1.01 1.39 2.17 2.26 0.98 0.95 .12

22 1.13 1.47 2.50 1.08 1.84 2.30 .08

23 1.32 1.29 1.59 2.20 0.80 0.48 .22

24 0.73 2.28 2.00 0.86 0.87 0.51 .15

25 2.43 1.08 1.84 1.15 2.03 0.20 .15

26 1.73 1.30 2.42 1.29 1.15 0.21 .00

27 1.98 1.69 1.50 2.28 1.46 -0.71 .15

28 2.00 1.39 2.15 0.59 1.10 -0.86 .09

29 1.62 1.92 1.56 2.07 1.91 -0.09 .10

30 0.81 1.70 2.13 1.39 1.28 0.75 .06
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Table 3.17: True Item Parameters for 45-Item Test (Dim = 5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Item 0.1 02 a3 a4 0.5 d C

1 2.32 0 0 0 0 -0.17 .18

2 0 1.94 0 0 0 0.16 .22

3 0 0 1.53 0 0 0.36 .13

4 0 0 0 1.38 0 0.30 .19

5 0 0 0 0 1.71 0.47 .12

6 1.51 0 0 0 0 0.71 .23

7 0 1.74 0 0 0 -l.61 .21

8 0 O 1.90 0 0 -0.88 .03

9 0 0 0 2.14 0 ~1.l5 .16

10 0 0 0 0 1.34 -0.13 .18

11 1.30 1.61 1.93 2.05 0.83 -0.73 .00

12 1.03 2.24 0.73 2.20 1.94 2.12 .23

13 2.05 1.56 1.09 0.92 1.83 -0.75 .04

14 1.36 0.93 0.90 1.89 1.45 1.12 .17

15 1.42 2.11 0.88 1.22 0.80 -0.07 .20

16 1.10 0.95 1.83 0.80 1.34 0.00 .23

17 1.65 1.52 2.15 1.09 1.38 1.01 .15

18 1.48 1.25 1.00 1.19 1.85 2.17 .14

19 0.82 1.49 0.62 2.01 1.84 -0.58 .21

20 0.87 1.79 1.61 1.10 1.31 -0.92 .02

21 0.93 2.07 1.49 1.11 1.85 0.80 .03

22 1.03 2.14 1.76 2.33 1.49 0.01 .01  
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Table 3.18: True Item Parameters for 45-Item Test (Dim = 5), cont.

 

Item 61 62 a3 64 65 d c

23 1.97 2.17 2.32 2.10 1.57 -0.44 .08

24 1.79 1.25 1.93 1.87 2.34 0.17 .24

25 1.29 0.76 2.20 1.70 1.60 -1.35 .10

26 1.50 1.90 2.03 1.31 1.07 -0.74 .17

27 1.65 0.90 1.42 1.81 0.69 -0.31 .12

28 2.31 0.82 1.91 1.50 1.75 -2.08 .19

29 0.93 2.35 2.34 1.70 1.12 0.36 .08

30 1.99 0.73 1.58 1.68 1.04 -1.36 .08

31 1.34 1.20 1.88 2.18 1.60 -0.81 .18

32 1.49 1.50 1.76 2.00 1.63 -0.25 .12

33 1.95 2.22 1.39 1.59 1.09 -0.29 .11

34 0.64 1.26 0.80 1.21 0.95 -1.55 .23

35 1.06 1.51 1.69 1.64 1.17 -O.60 .09

36 1.45 0.82 1.92 1.66 0.49 0.50 .13

37 1.52 2.22 0.87 1.70 0.71 0.82 .13

38 2.04 1.45 0.97 2.28 1.81 0.96 .24

39 0.90 2.06 1.27 1.55 1.25 1.83 .00

40 1.93 2.09 1.65 1.25 0.80 0.78 .04

41 1.44 1.01 0.81 2.13 1.22 0.19 .25

42 0.74 1.78 1.94 0.92 2.07 -1.01 .04

43 1.93 1.81 0.69 0.90 1.79 0.08 .09

44 1.11 1.91 1.83 0.86 1.06 1.60 .22

45 2.05 1.25 1.55 0.89 1.79 0.89 .02
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components in 29) can be the same or can vary from each other. In this section,

two covariance matrices of 29 are used and denoted as $9,; and 239.9, respectively.

From the notations on the covariance matrices, one can see that the former covariance

matrix indicates that all the off-diagonal components take the same values (e.g., .2)

and the off-diagonal components for the latter covariance matrix vary from .2 to .6,

which is shown as

20.9
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Combined with the test length (30 and 45), the sample size (2000 and 5000), the

proficiency covariance (29,3 and 29,9), and the replications, 24 response data sets

are yielded for the simulation studies on the five dimensional case. For each data set,

multiple chains (e.g., 3 chains for each data set) will be constructed. To give more

stable and accurate estimates, the final estimates for item parameters will take the

means of the three individual estimates from each chain with different initial values.

Therefore, there are in all 72 runs for the parameter estimates in this section.

Table 3.19 and Table 3.20 give the RMSE for the item parameter estimates for

the eight simulation conditions for each item parameter. The differences between the

two tables are that the underlying proficiency covariance is different. The results of

Table 3.19 are based on 29.3 and Table 3.20 on 29.9. Most of the RMSE in the tables

are less than .2. The highest RMSE value (.29) is for d parameter in the condition of

5000 examinee on the 45-item test with covariance 29,9.
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Clearly from the two tables, the precision of item parameter estimates does not

change due to the use of different proficiency covariance. Or the underlying proficiency

covariance is not a factor that can affect the item parameter estimates, which is

expected because sampling of item and proficiency parameters are independent. It

is also clear that the RMSE are generally smaller when the sample size is 5000 than

those when the sample size is 2000, which is also expected since more examinees

provide more information on item parameter estimation. However, the estimation

seems better on the 30-item test since the RMSE have slightly higher values in the

45—item test in general no matter what the sample size is, which is not expected.

One possible reason is that the dimension structure in the 30-item test (only 17 items

measuring all 5 dimensions) is much simpler than the 45—item test (32 items measuring

all 5 dimensions). In addition, more items with extreme values that are difficult to

estimate, might appear in the 45-item tests.

Compared to the RMSE for item parameter estimates in the unidimensional model

(Table 3.8) and the 3—dimensional model (Table 3.12 and 3.13), the RMSE for the

item parameter estimates for the 5—dimensional model (Table 3.19 and 3.20) are gen-

erally higher. Again, this implies for the same size of data information, the more

parameters to be estimated as the number of dimensions increases, the more errors

for the estimation.

Table 3.21 shows the correlations between the true and estimates of proficiency

parameters when the underlying covariance matrix is 29,3. That is, the off diagonal

components for the covariance matrix of the proficiency distribution is equal to .2.
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Table 3.19: RMSE for Multi-dimensional Test (Dim = 5, p = .2)

 

 

 

 

 

 

 

 

 

Estimates 30 x 2000 30 x 5000 45 x 2000 45 x 5000

61 .15 .13 .21 .20

62 .24 .16 .20 .14

63 .16 .11 .23 .15

64 .20 .14 .22 .22

65 .18 .15 .20 .14

d .21 .16 .22 .24

6 .05 .05 .03 .03     

Table 3.20: RMSE for Multi-dimensional Test (Dim = 5, p = general)

 

 

 

 

 

 

 

 

 

Estimates 30 x 2000 30 x 5000 45 x 2000 45 x 5000

a, .17 .15 .26 .17

62 .18 .16 .27 .18

63 .16 .15 .20 .19

a, .18 .16 .25 .21

65 .21 .18 .24 .25

6 .25 .17 .28 .29

6 .06 .04 .03 .03     
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Table 3.21: Correlations Between True Proficiency and Estimates (Dim = 5, p = .2)

 

 

 

 

 

 

30 x 2000 30 x 5000 45 x 2000 45 x 5000

corr(01, 61) .7899 .7829 .7935 .7976

corr(03, 62) .7508 .7499 .7984 .8006

corr(03, 0'3) .8038 .8067 .8088 .8195

corr(04, 9",) .7606 .7641 .7934 .7818

corr(t95, 65) .7594 .7559 .8010 .7915      
 

In general, the correlation for each dimension in this study is around .8, and the cor-

relations are close between the two proficiency covariance conditions, indicating the

proficiency covariance does not affect proficiency estimates. When compared to the

correlations for the unidimensional model (Table 3.9) and the 3-dimensional model

(Table 3.14 and 3.15), the correlations for the 5—dimensional model in Table 3.21 and

3.22 are generally smaller, which is expected because as the dimension increases, more

parameters are to be estimated. The lowest correlations are for the short test ( the

30-item test), which is eXpected, because each dimension of proficiency is measured

by only 17 items. The longer test (the 45-item test) has slightly higher correlation

coefficients. Low correlations indicate large estimation errors for the proficiency esti—

mates. Nevertheless, the estimation is not significantly improved in the 45item test

although each dimension is measured by 32 items. One possible interpretation is that

the parameters to be estimated substantially increase as the number of dimensions

increases to five.
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Table 3.22: Correlations Between True Proficiency and Estimates (Dim = 5, p =

general)

 

 

 

 

 

 

 

30 x 2000 30 x 5000 45 x 2000 45 x 5000

corr(61, 61) .7835 .7935 .8076 .7999

corr(92, 62) .7548 .7617 .7882 .7983

corr(03, 63) .8098 .8034 .8221 .8139

corr(04, 6,) .8171 .8241 .8264 .8326

corr(05, 65) .7745 .7971 .8244 .8333      

3.7 Proficiency Structure Estimation

The estimates of the underlying proficiency structure have potential affects on the

convergence speed, since at each sampling step, the proficiency samples are taken

from the multivariate normal distribution with mean vector 0 and sample covariance

from the inverse Whishart distribution based on the sample covariance of abilities.

Good recovery of the covariance structure can make an effective Markov chain.

The components of the underlying proficiency covariance are also estimated along

with item and proficiency parameters by the MCMC procedure. For each data set,

one estimate of covariance can be obtained for each chain replication with different

initial values. The final covariance matrix estimate is the mean of the three estimates

from independent chains. Note for each chain, the proficiency covariance estimate

is the mean of the 1000 sample of the covariance from inverse Wishart distribution,

which is also based on the sample covariance. The good estimates of covariance

matrix would better recover the interrelations across proficiency dimensions. Table

3.23 gives estimates for each chain of the 30—item test in threedimensional case with
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Table 3.23: Estimates of Covariance Matrix, Dim = 3, p = .2

 

 

 

 

   

Data 30 x 2000 30 x 5000

1.02 0.21 0.15 1.01 0.15 0.13

Repl 1.01 0.14 1.03 0.13)

0.97 0.98

1.04 0.18 0.17 0.99 0.18 0.18

Rep2 0.99 0.12 1.00 0.18

0.96 1.01

0.99 0.13 0.17 1.00 0.12 0.14

Rep3 1.03 0.21 1.01 0.17)

1.01 1.00
 

Table 3.24: Estimates of Covariance Matrix, Dim = 3, p = general

 

 

 

 

   

Data 45 x 2000 45 x 5000

.95 .58 .15 .99 .69 .16

Rep 1 .94 .29 1.00 .25

.98 1.01

1.04 .65 .13 1.01 .68 .14

Rep 2 ( 1.02 .24 ) ( 1.01 .25 )

.99 1.01

.99 .60 .18 .98 .70 .19

Rep 3 .97 .22 1.02 .27

1.05 .99

 

 

 
p taking the same value of .2 for all off—diagonal components. The table shows the

diagonal elements are all close to 1, ranging from .96 to 1.04. The off diagonal

elements ranges from .12 to .21. Similarly, Table 3.24 shows the covariance estimate

for the 45—item test in the three-dimensional case with true covariance 29,9. Clearly,

the estimate of each component is close to their true parameter. Results from the five

dimensional case in Table 3.25 and 3.26 also indicate the reasonably good recovery

of the proficiency structure.
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Table 3.25: Estimates of Covariance Matrix, Dim = 5, p = general

 

 

 

 

 

Data 30 x 2000 30 x 5000

1.03 .14 .24 .23 .47 1.00 .26 .26 .21 .47

1.05 .18 .39 .23 .99 .22 .46 .25

Repl 1.00 .29 .19 1.00 .32 .31

.99 .54 .99 .43

1.05 .97

1.01 .27 .30 .28 .44 1.01 .20 .29 .26 .39

1.03 .28 .55 .29 1.03 .07 .54 .20

Rep2 1.02 .39 .25 .98 .35 .24

1.07 .44 1.03 .52

1.02 1.00

1.03 .10 .17 .22 .55 1.01 .20 .30 .22 .53

1.01 .25 .45 .21 1.03 .21 .44 .20

Rep3 1.03 .37 .30 .98 .45 .29

1.00 .50 1.03 .41

1.03 1.00   
Table 3.26: Estimates of Covariance Matrix, Dim = 5, p = .2

 

 

 

 

 

Data 45 x 2000 45 x 5000

.99 .18 .23 .38 .21 1.02 .21 .20 .33 .18

1.05 .22 .29 .06 .99 .21 .24 .22

Repl 1.00 .31 .21 1.01 .28 .15

.98 .25 .99 .14

1.05 .97

1.04 .17 .21 .17 .21 1.02 .16 .18 .33 .15

1.02 .15 .28 .21 .99 .24 .27 .18

Rep2 1.04 .30 .18 1.01 .26 .18

1.00 .27 .99 .17

1.00 .97

1.03 .14 .24 .28 .35 1.01 .19 .20 .33 .17

.98 .32 .22 .13 1.03 .24 .26 .17

Rep3 1.03 .35 .26 .98 .25 .18

1.04 .33 1.04 .17

1.03 1.00   
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3.8 Computing Time

One open criticism to the MCMC approach is the extensive computation, which may

depends on the program efficiency, the size of the data, the convergence speed, and

the computer equipment as well. The program efficiency includes the design and

algorithm in the source codes. Many researchers now use the application softwares

(e.g., WINBUG, BUGS, SAS, SPLUS, MATLAB) to run MCMC procedures (e.g.,

Patz and Junker use S-PLUS, 1999a; Bolt uses WinBug, 2004). Some researchers

use computer languages (e.g., S, R, FORTRAN, JAVA) to code their own programs.

In this study, the code is written by C++ with efficient algorithm using MCMC

for computing IRT model parameter estimation. The size of data involves the test

length, the sample size of examinees, and number of dimensions and parameters to

be estimated. In general, the longer the test, the more time is needed. Similarly,

the larger number of examinees and dimensions of proficiency required, the longer

the computing time is required. For a given data set, the more parameters are to be

estimated, the longer the computing time is needed. As for the convergence speed,

it is associated with the priors chosen for each item and proficiency parameters, and

is also associated with the data structure. If each chain is diagnosed not mixed well,

or not converged to the target posterior distributions, long iteration is required, and

thus longer time is required. Finally, better equipped computer system give faster

computation for the same program. The computing time for 11000 iterations using

the C++ program is given in the Table 3.25, and it is calculated based on a computer
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Table 3.27: Computing time for 1-, 3-, and 5-Dimension data

 

 

 

 

Data 30 x 2000 30 x 5000 45 x 2000 45 x 5000

1-dimension 37 min 1 hr 17 min 42 min 1 hr 33 min

3-dimension 59 min 2 hr 30 min 1 hr 20 min 3 hr 35 min

5-dimension 1 hr 35 min 4 hr 5 min 2 hr 8 min 5 hr 17 min      
 

with 512 MB RAM and 3300 AMD Athlon 64 processor. The shortest time, 37

minutes, is in the computation of the parameter estimation for unidimensional model

with 30 items and 2000 examinees. The longest time is in the case with 45 items to

5000 examinees and with 5 dimensions of proficiency, taking 5 hours and 17 minutes

to finish the 10000 iterations. The time required to computing other conditions is

within the range from the shortest to the longest.
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Chapter 4

Concluding Remarks and Future

Research Directions

This research involves extensive simulation studies on parameter estimation for mul-

tidimensional IRT models in various conditions in terms of the test length, the sample

size of examinees, the number of dimensions, and the underlying proficiency structures

using the MCMC approach. Results on parameter estimates from these conditions

are compared to investigate the influence of the potential factors on the accuracy and

stability of the estimation.

This study is a extensive examination on the MCMC approach to parameter

estimation in terms of the test length, the examinee sample size, the number of

dimensions, the proficiency covariance, the range of item parameters, and the di-

mensional structure in each simulated tests. For example, the study includes both

unidimensional items and multidimensional items in a test, and it has a wide variety

of parameter values (not limit to certain range of values for parameters). Moreover,

the study does not only focus on simple structure, but also considered the complex

structure.
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The MCMC approach provides a convenient and flexible framework for parameter

estimation of complex IRT models, as is shown in Chapter 3 for estimating multidi-

mensional models. The C++ program is used to estimate not only the simple IRT

model (e.g., unidimensional) but also some complex models (e.g., multidimensional

IRT models). The framework involves estimation of any type of parameters in the

IRT models (i.e., item parameters, proficiency parameters, proficiency covariance).

One can use the framework to estimate both item and proficiency parameters simul-

taneously. Or one can obtain the estimates of the proficiency covariance matrix to

infer the interrelations among the proficiency dimensions. For some simple situations,

for example, if only item parameter estimates, or only proficiency estimates, or only

knowing the interrelations among proficiency dimensions is required, the program can

give the required estimation procedures and ignore other parameter estimation with-

out loss of any generality. In this case, the MCMC approach would be faster because

less number of parameters are to be estimated, and thus less operation time is needed.

In addition, under this framework, one can give the item parameter estimates first,

then treat the item parameter estimates as true to yield the proficiency parameter es-

timates and proficiency covariance estimates (even by other procedures, for example,

ML procedure). Or one is able to estimate all the model parameters simultaneously,

as is done in this study. In addition, the framework is not restricted to short tests

or lower dimensional tests. It is particularly useful for estimating higher dimensional

and long tests with large number of examinees, or is useful for the contexts in which

the IRT model is so complicated that other estimation approaches become infeasible.
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The MCMC approach is effective and the computation is efficient. For parameter

estimation in unidimensional models, half an hour is enough for a test with 30 items

to 2000 examinees for 11000 iterations. One hour and half to longer tests and larger

sample size, for example a 45—item test to 5000 examinees. The path plots for the

posterior distribution for item parameters shown in Figure 3.2 imply that the con—

structed chains are well mixed even in the first 3000 iterations. If some parameters are

not required for the estimation, less time is needed for the estimation and the resulted

estimates are not affected by ignoring other parameter estimation. For example, the

item parameters estimation will take less time if no proficiency parameter estimation

is involved and the results of item parameter estimates are not affected, because the

estimation of item and proficiency parameters are independent. Moreover, better

equipped computer system can give faster computation for the parameter estimation.

The important aspect of the MCMC approach for parameter estimation of IRT

models is the reasonable estimation accuracy and stability for the estimates. Simu-

lation study can have a straightforward comparison between the estimates and the

true parameters, which are available before the estimation. The accuracy of item

parameter estimates increases as sample size increases, but decreases as the number

of dimensions increases.

The estimation accuracy for item parameters can be seen from the comparison

between the true and the estimates directly, which are presented in the RMSE tables

(e.g., Table 3.8, 3.12, 3.13, 3.19, and 3.20) and plot figures (e.g., Figure 3.4 through

3.6 and Figure 3.10 through 3.13) in Chapter 3 for various simulation conditions. For

89



the unidimensional case, the item parameter estimates for both tests (e.g., the 30-item

test and the 45-item test) are listed in Table 3.4, Table 3.6 and 3.7 for sample size

2000 and 5000 along with the standard errors. For multidimensional model parameter

estimation, each item parameter estimate is not listed in a table but is plotted with

the corresponding true parameters. The small difference between the true and the

estimates of the item parameters indicates reasonable estimation. One can see in

Table 3.4 and Table 3.6 and 3.7 on the item parameter estimates for unidimensional

case, most of the absolute differences between the true and estimates are less than

.1 and many of the standard errors of estimates are also less .1. More results are

found in the summary statistics—RMSE. For unidimensional case, the RMSE for 6

parameters is less than .15 and arrives .07 when the sample size increases to 5000

(Table 3.8). The RMSE for b parameter is less than .11 and c parameter less than

.05. For parameter estimation in multidimensional case, the RMSE is generally higher

than the RMSE in the unidimensional models. For example in Table 3.12 and 3.13

for the RMSE for 3—dimensional model estimation, the RMSE for each 6 parameter

estimates is generally higher than RMSE for 6 parameter in the unidiemnsional case;

the RMSE in 5-dimensional item parameter estimation (Table 3.19 and 3.20) are

in general higher than both the unidimensional and 3-dimensional case. One can

conclude that as the dimension of proficiency increases in the model, the RMSE for

item parameter estimates become larger, indicating poorer item parameter recovery.

One simple interpretation to this observation is that the number of parameters to be

estimated increases substantially as the proficiency dimension increases. Given the
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same data structure and information, the more parameters need to estimate (as in the

3—dimensional and 5-dimensional model), the less information that the data contains

for parameter estimation, and thus the less accurate the item parameter estimates. It

is expected that the RMSE are larger in the 5—dimensional models than those in the

3—dimensional or unidimensional model. The good recovery of the item parameters

can also be found from the plots of the true item parameters versus the estimates

(e.g., Figure 3.4 through 3.6, Figure 3.10 through 3.13). In these figures the plots are

closely around the reference line, indicating good estimates are obtained.

The precision of the proficiency estimates are assessed in terms of the correlation

and plots of the true proficiency parameters versus the estimates. Large correlations

are obtained for longer test (the 45—item test), but lower correlations are associated

with higher dimensional tests (e.g., 5—dimensional test). The proficiency covariance

matrix has negligible effects on proficiency parameter estimation.

The correlation tables show the correlations between the true proficiency param-

eters and estimates in terms of the number of dimensions, the sample size, and the

test length (e.g., 3.9, 3.14, 3.15, 3.21 and 3.22 ). One can find that the correlations

for the unidimensional case are the highest, more than .95 for every conditions in the

simulation studies (Table 3.9). The correlations for the multidimensional cases (e.g.,

3 dimensions and 5 dimensions) are generally lower than those in the unidimensional

models, around .8 ~ .93 for each proficiency dimensions. The plots of the true profi-

ciency versus the estimates in Figure 3.4 through 3.6 show the estimates are closely

around the reference line for unidimensional model. However, the plots on Figure 3.10
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through 3.13 for the multidimensional proficiency cases show the estimates relatively

spread out from the line. The possible reason to explain the relations of the correla-

tions with the proficiency dimensions is concerning the information that is contained

in the data. One can expect better proficiency estimates or higher correlations for the

lower dimensional models, in particular for the uni-dimensional model, because less

parameters are required to be estimated in the same size of data structure and more

information contained in the data is provided for the proficiency estimation. Better

proficiency estimates is expected for longer tests if the higher dimensional model is

used.

The estimation accuracy for both item and proficiency parameter estimates by

the MCMC approach is clearly seen by the comparison of the results with the results

from other procedures. For example, for unidimensional case, item parameter esti-

mates in the 30-item test are calibrated from the standard procedure — MML/EM in

BILOG-MG3, which is shown in Table 3.5. The results from the two approaches are

comparable. However, the MCMC procedure, although from a Bayesian perspective,

is flexible and convenient for much more complex IRT models. Furthermore, as Patz

and Junker point out, one advantage of the MCMC procedure over traditional method

is that this procedure is capable to estimate the exact joint posterior distribution for

the parameters (Patz and Junker, 1999a).

The accuracy of the estimation by MCMC is clearly seen from the consensus esti-

mation on the replication of data sets and the consensus estimation on the replication

of multiple chains. This is also the aspects of the stability of the parameter estimation
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of the MCMC approach. It is seen from Table 3.3 for the unidimensional case, the

three independent chains yield very stable estimates of item parameters for the 30-

item tests. Similar results are obtained for the 45—item tests and higher dimensional

model parameter estimation. For the same data set, parameter estimates are stable

from three independent chains with different initial values indicating the posteriors

of the model parameters reach the stationary status. That is why the parameter

estimates do not depend on the initial values. The item parameter estimates are not

only stable across the multiple chains, but also stable across data sets (e.g., Table

3.8, 3.9).

It seems difficult to increase the estimation precision for both item and proficiency

parameter estimates in IRT models at the same times. When the sample size increases

for a fixed number of items in a test, the item parameter estimates are expected to

be improved. For a fixed group of examinees, the proficiency parameter estimates

are expected to improve as the number of items in a test increase. One can argue

that for a fixed number of items in a test, the number of item parameters to be esti-

mated is fixed and increasing the sample size of examinees provides more information

for estimating item parameters. Therefore, the standard error of estimates decreases.

When estimating proficiency parameters for a fixed number of examinees, the number

of proficiency parameters to be estimated will be improved as the number of items

increases in the test, because the test provides more information for estimating profi-

ciency parameters. This also happens to the parameter estimation using the MCMC

procedures. It is seen from Table 3.13 and 3.14 that for a fixed test (e.g., the 30—item

93



test or the 45-item test), item parameter estimates get better in terms of RMSE when

the sample size changes from 2000 to 5000.

The proficiency covariance is well recovered in the MCMC procedure and the

estimation of the proficiency covariance matrix does not affect the item parameter

estimates.

The relations between the estimates and the design variables for a test (e.g., the

test length, the sample size of examinees, and the number of dimensions) are helpful

for suggesting a general guideline for parameter estimation. For example, to require

accurate item parameter estimates for the unidimensional model assuming perfect

model-data fit, if a test consists of 30 items, the number of 2000 examinees is good

enough. But with the same number of 30 items for estimating item parameters

from the 3—dimensional model, more than 2000 examinees (e.g., 5000) could achieve

the estimation precision. Similarly, for the 5-dimensional model, more than 5000

examinees (e.g., 8000 or more) could help to reach the same estimation precision.

For proficiency estimates using the unidimensional model, the number of 30 items

can provide reasonable good estimation, as seen in the correlation Table 3.9 and plot

Figure 3.3. But for the 3-dirnensional test, the number of 45 items could provide

reasonable good estimation for proficiency estimates, as seen in Table 3.14 and 3.15

and Figure 3.17. For the 5-dimensional model, more than 45 items (e.g., 60 items)

could help for reasonable good proficiency estimation.

One limitation for the MCMC approach estimating multidimensional IRT model

parameters except the extensive computation, is the number of dimension is given.
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But the number of dimensions is not generally available in real data analysis. How

would the performance of the MCMC approach be if the number of dimension is less or

more than that of the required dimensions in the test? This is an interesting practical

issue and worthwhile for further research efforts. This issue is in fact also a model-data

fit issue rather than parameter estimation issue (the focus of the whole research), or

sensitivity issues on parameter estimation using the MCMC approach. The reality is

the estimates are acceptable on the basis of the model-data fit. However, the MCMC

approach does not give any mechanism to diagnose whether or not the data fit the

estimating model. How much additional errors would be introduced because of the

model-data having not adequately fit? This practical issue would give challenges to

the MCMC estimation.

In the simulation studies, the proficiency covariance matrix varied from a special

pattern (e.g., all off-diagonal elements are the same) to a general one and the effects of

the proficiency covariance matrix on the parameter estimation are carefully examined,

the proficiency population is assumed from multivariate normal or standard normal.

If the examinee groups are not from a normal distribution, does the approach still

yield accurate and stable estimation? This issue also deserves further research efforts,

because the examinees might not come exactly from a normal population in many

applications.

In addition, the metric for both item and proficiency parameters is established

by a well-defined set of anchor items, which are often placed in the first positions

in the tests. The anchor items help with solving the indeterminacy problems that
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is inherited in many IRT models. However, the choice of anchor items are often

subjective, and therefore may influence the establishment of the proficiency scales.

Further research is needed to investigate the effects of the anchor items on parameter

estimation using the MCMC approach. In real data applications, how can one choose

a useful set of anchor items that help with the model identification and meanwhile

ensure accurate parameter estimation?

Finally, the item parameter estimates by MCMC methods are compared with the

estimates by TESTFACT, and the results show that the estimates from MCMC meth-

ods are better than those from the TESTFACT. Table 4.1 shows the item parameter

estimates by TESTFACT for the 30—item test with 3 dimensions to 2000 examinees

(i.e., the first replication of the data). Table 4.2 shows the item parameter estimates

by TESTFACT for the 30-item test with 5 dimensions to 2000 examinees (i.e., also

the first replication of the data). The input of the estimates for the pseudo-guessing

parameters is the true values for the c parameters. Compared with the true item

parameters (Table 3.10 and Table 3.16) and the estimates by MCMC (Table Table

3.13, 3.19, and 3.20), the item parameter estimates by TESTFACT in Table 4.1 and

4.2 in general seem a little bit worse. In addition, the results from TESTFACT have

some deviant values (e.g., item 11, item 17, item 18, item 19, item 21 in Table 4.2 for

5—dimensional case).
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Table 4.1: TESTFACT Item Parameters estimates for 30—Item Test (Dim = 3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Item 61 0,2 63 d

1 1.25 -0.2 -0.17 -0.27

2 -0.09 0.65 -0.16 0.02

3 -0.45 -0.37 2.28 -1.2

4 1.97 -0.33 -0.35 0.53

5 0.86 -0.21 -0.13 0.22

6 1.37 -0.22 -0.21 1.47

7 0.65 -0.22 -0.08 1.57

8 -0.55 2.64 -0.41 -0.53

9 -0.27 1.86 -0.41 -1

10 -0.11 0.67 -0.15 -0.6

11 -0.16 1.08 -0.15 1.16

12 -0.29 -0.34 1.47 -0.33

13 -0.24 0.04 0.89 2.22

14 -0.03 -0.32 1.31 -1.46

15 -0.28 -0.36 1.83 -0.56

16 0.44 1.54 1.26 -1.48

17 1.11 1.78 0.19 -0.24

18 0.3 0.71 1.19 0.86

19 1.28 1 1.17 0.21

20 0.04 0.48 1.5 0.95

21 2.06 0.4 0.53 -1.39

22 1.29 0.75 1.96 -2.2

23 0.8 1.16 0.78 -0.42

24 2.27 0.19 -0.09 -1.55

25 1.35 1.45 0.45 -1.91

26 0.58 0.98 0.44 0.21

27 0.61 0.91 1.02 0.66

28 1.13 0.77 1.31 0.37

29 0.95 0.41 1.62 0.16

30 0.47 1.99 1.09 -0.87     
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Table 4.2: TESTFACT Item Parameters Estimates for 30—Item Test (Dim = 5)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Item 0.1 02 a3 a4 (15 d

1 0.88 -0.07 -0.29 -0.11 -0.02 1.59

2 -0.54 3.67 -0.59 -0.43 -0.66 -0.76

3 -0.05 -1.67 7.62 -0.88 -l.03 -1.84

4 -0.16 -0.4 -0.4 1.71 -0.25 1.48

5 -0.21 0 -0.25 -0.38 1.47 -0.58

6 1.96 -0.27 -0.39 -0.35 -0.24 -0.06

7 2.67 -0.31 -0.33 -0.54 -0.51 -0.75

8 -0.06 0.83 -0.14 0.03 -0.21 -0.5

9 -0.17 2.43 -0.38 -0.42 -0.42 1.17

10 0. 14 -0.2 1.3 -0.16 -0.25 -1.24

11 -22.14 -5.89 98.05 -15.65 -22.07 -76.86

12 -0.27 -0.22 -O.31 1.89 -0.41 1.66

13 -0.15 -0.16 -0.25 1.44 -0.31 2.13

14 -1.17 -2.15 -1.93 -1.48 10.28 2.83

15 0.01 -0.11 -0.14 -0.08 0.45 -0.42

16 3.19 -0.12 1.26 1.25 -0.51 0.3

17 15.39 1.78 26.26 7.73 26.4 -35.36

18 -0.62 6.8 0.43 6.35 10.72 7.27

19 -4.07 3.32 5.28 8.76 9.89 14.02

20 0.36 -0.06 1.26 1.74 1.24 1.57

21 -5 2.5 15.72 43.88 8.1 24.18

22 1.23 0.66 2.01 0.1 1.68 1.94

23 0.78 0.2 0.07 0.63 -0.1 0.72

24 0.81 2.59 1.17 —0.29 -0.03 0.21

25 2.02 -0.18 0.36 0.15 0.82 0.1

26 1.59 0.07 1.14 0.42 0.56 -0.26

27 0.7 0.21 0.05 0.45 0.03 0.12

28 1. 13 0.25 0.55 -0.09 -0.02 -0.48

29 0.87 0.35 -0.05 0.48 0.21 0.25

30 0.3 0.28 0.74 0.52 0.5 0.5
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