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ABSTRACT

NETWORK-EMBEEDED FEC FOR OVERLAY MULTICAST:
ANALYSIS AND OPTIMIZATION

By
Mingquan Wu
Forward Error Correction (FEC) can only be implemented on an end-to-end basis
between the sender and the multicast clients in traditional multicast systems (such as IP
multicast). Emerging overlay networks, however, open the door for new paradigms of
network FEC. This thesis presents a new framework, which we refer to as Network-
Embedded FEC (NEF) for overlay multicast networks. Under NEF, we place FEC
encoders and decoders (codecs) in selected intermediate nodes of an overlay network.
The NEF codecs detect and recover lost packets within FEC blocks at earlier stages
before these blocks arrive at deeper intermediate nodes or at the final leaf nodes. This
approach significantly reduces the probability of receiving undecodable FEC blocks. In
essence, the proposed NEF codecs work as signal regenerators in a communication
system and can reconstruct most of the lost data packets without requiring retransmission.
The packet-loss model of NEF over random multicast trees that exhibits packet losses
with memory over its links were developed and analyzed. Both centralized and
distributed algorithms for the placement of NEF codecs within random multicast trees
were designed and implemented. NEF can be used independently to achieve a desired
level of reliability for certain applications; it can also be integrated with ARQ to achieve
complete reliability. Our theoretical analysis and simulation results show that a relatively
small number of NEF codecs placed in sub-optimally selected intermediate nodes of a

network can improve the goodput and overall reliability dramatically.
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Chapter 1 Introduction

Providing reliable multicast services over the Internet is driven by the increasing
popularity of applications that deliver realtime and non-realtime multimedia content to
groups of users. Consequently, reliable multicast protocols have received a great deal of
attention and have been studied extensively, and the area of reliable multicast continues
to present many challenging problems. Generally, there are two schemes that provide
reliable communication, Automatic Repeat Request (ARQ) and Forward Error Correction
(FEC). ARQ based multicast protocols may suffer from the well-known feedback
implosion problem, and hence, a variety of techniques have been proposed to improve
their scalability [30][31][32]. Meanwhile, FEC-based approaches do not, in general,
guarantee reliable multicast, and therefore, these approaches are often integrated with
some form of an ARQ scheme [33] [34].

Under FEC, redundant parity packets are sent together with (or sometimes after) the
original data packets. A popular scheme of linear-block FEC codes that have been
proposed and used extensively for packet loss recovery is the family of Reed Solomon
(RS) codes. A RS(n,k) encoder takes k message packets and produces n -k parity
packets. A receiver that receives any k& of the n packets can reconstruct the original data.
The k message packets are referred to as a transmission group or TG, and the n packets
are referred to as an FEC block.

This thesis presents a new FEC-based packet-networking framework, which we refer to
as Network-Embedded FEC (NEF). The proposed NEF approach exploits new and
emerging overlay network paradigms by placing FEC codecs at selected nodes within an

overlay multicast network. In an overlay multicast network, multicast functions such as



membership management and data replication are promoted to the application layer [49]
[52]. Thus, our proposed NEF framework can also be supported at the application layer
within an overlay network. Application-level functions, in general, and the proposed
network-embedded FEC, in particular, could add a rather significant burden on the
resources of the overlay network due (in this case) to the complexity of channel codecs.
Therefore, only a small percentage of total nodes in the network should be assigned as
codecs. In essence, the proposed NEF codecs work as signal regenerators in a
communication system, and hence, they can reconstruct the vast majority (and sometimes
all) of the lost data packets without requiring retransmission. This can be illustrated in a
simple example as shown in Figure 1.

Figure 1 shows two multicast trees, (a) is a traditional IP multicast tree and (b) is an

overlay multicast tree. Assume that the source sends a RS(20,15) block; each link has a

loss rate of 10%. For a traditional end-to-end route (e.g., under IP multicast) in Figure
1(a), the probability that the receiver can decode the FEC block is 26% (This is the same
as the probability that the receiver receives 15 or more packets within a 20-packet FEC
block). For the overlay multicast case (Figure 1(b)), if the codec receives more than 15
packets, it can reproduce the original data and parity packets and send 20 packets to the
receiver. Since the codec is closer to the source than the receiver, it has a much higher
probability to decode a FEC block than the receiver. Using this scheme, the probability
that the receiver can decode FEC blocks increases from 26% to 69%. This improvement
can be achieved while the re-generated packets (by the codec) experience the same loss

probability as other packets.
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Figure 1 (a) IP multicast, router does not participate in FEC (b) A NEF codec in a multicast tree can

recover lost data and parity packets and send these packets downstream.

When integrated with ARQ, NEF codecs can share the burden of the source to process
feedbacks and retransmissions. When a receiver sends a feedback message along the
reverse path of the multicast tree toward the source, the feedback message can be
intercepted by the first codec it reaches. The codec will then send the repair packets to the
receiver. As feedback and retransmission packets do not have to travel all the way to and

back from the source, bandwidth usage and delay penalty decrease.

We show through extensive analysis and simulations that a small number of NEF codecs
can significantly improve the overall goodput and decodable probability of a given
multicast network. We believe that the proposed NEF approach can open the door for the
development of new highly reliable multicast networks. These NEF-based networks can
be designed with the desired level of reliability for the delivery of realtime (e.g., video
and audio) or non-realtime content to a large number of users.

The main contributions of this work are:

e A Network-embedded FEC (NEF) framework has been proposed and developed.

When compared with end-to-end FEC, NEF can greatly improve the playback



quality of a real time application using a relatively high code rate. NEF can also
be integrated with ARQ to achieve complete reliability.

e The packet-loss model of NEF over random multicast trees that exhibits packet
losses with memory over its links has been developed and analyzed. The model
takes into consideration the Markov-chain nature of losses and the impact of
linear-block based FEC on such losses.

e Both centralized and distributed codec placement algorithms have been designed
and implemented. New Network Simulator (ns2) [82] components have been
developed and integrated within ns2 to conduct proper network simulations. The
performance of both algorithms and their impacts on NEF-based network have
been analyzed and evaluated.

e A hybrid ARQ and NEF (HANEF) reliable multicast protocol has been designed
and implemented. The performance of HANEF has been evaluated and
compared with other types if reliable multicast protocols.

e The use of NEF for multihop wireless multicast applications has been studied,
comparison with other MAC layer multicast/broadcast protocols has been
performed

The remainder of the thesis is organized as follows. Chapter 2 provides a brief overview
of related work. Chapter 3 presents an analytical model for Network-Embedded FEC
routes within an overlay multicast network. Chapter 4 describes and analyzes a
centralized NEF codec placement algorithm. In Chapter 5, a distributed codec placement
algorithm is presented. Chapter 6 gives the details of the design and implementation of

the hybrid ARQ and NEF reliable multicast algorithm. In chapter 7, we study the use of



NEF in multihop wireless networks. Summary and future works are presented in Chapter

8.



Chapter 2 Related work

In this chapter, basic concepts and background material related to the proposed NEF
framework are briefly covered. We first review the IP multicast model and its recent
development; we then give a short introduction to overlay and peer-to-peer networks.
Reliable issues for real-time multicast applications are discussed in the last part of this

chapter.

2.1 Multicast

Multicast is an efficient way to delivery data from one or more sources to a group of
users. It is efficient because: 1) it does not put any additional burden on the multicast
source or receivers; 2) it saves bandwidth in that only one copy of data is transmitted on
each branch of a multicast tree. In contrast to unicast, which provide point-to-point
communication, multicast provides one-to-many or many-to-many communications.
Typical applications for multicast include video conferencing, remote learning, stock
quotes and real-time broadcasting. Figure 2 shows a simple network with four end
systems and two routers, where source A needs to send data to three receivers B, C and
D. In Figure 2a, source A sends to each receiver a copy of the data using unicast. In this
case, three copies of the data are transmitted on the link between source A and routerl
and two copies of the data are transmitted between routerl and router2. For IP multicast
(shown in Figure 2b), data packets are replicated at each router, only one copy of the data
is transmitted on each link of the forwarding path, which means a significant saving on

bandwidth resources.



The IP multicast model was first introduced by Stephen Deering in 1989 [1]. The model
is based on the concept of group. A multicast group consists of users who are interested
in receiving a particular data stream. The group is open; sources only need to know a
multicast address', they do not need to know group membership; sources do not need to
be group members to which they are sending. The group is dynamic; users can join or
leave a multicast group at will. The group does not have any physical or geographical
boundaries—every host connected to the internet can join the group. IP multicast is based

on UDP; packets are delivered using a best-effort policy.

@ (b) ()

Figure 2 (a) multiple unicast, (b) IP multicast (c) overlay multicast

The first network that provided multicast service was the Multicast Backbone
(Mbone) [2], which was created in 1992. The Mbone uses Distance Vector Multicast
Routing Protocol (DVMRP) [3] to build and maintain a multicast distribution tree.
Several intra-domain multicast routing protocols were then developed and became
standards. These include Multicast Extension of OSPF (MOSPF) [4], Protocol
Independent Multicast dense mode (PIM-DM) [5], Protocol Independent Multicast sparse
mode (PIM-SM) [6] and Core Based Trees (CBT) [7]. Inter-domain multicast is much

more complex, a temporary solution is to use three protocols working together, these

! The Internet Assigned Authority (IANA) has assigned the class D address space for IP multicast, which
falls in the range of 224.0.0.0 to 239.255.255.255.



protocols are Multiprotocol extensions for BGP (MBGP) [9], Multicast source discovery
protocol (MSDP) [10] and PIM-SM[6].

The difficulties in multicast address management [12][13] and inter-domain multicast
implementation have lead researchers to make some fundamental changes to the IP
multicast model. Express Multicast [14] brings up the logical channel model. In Express,
the source and multicast group address (S, G) pair forms a unique multicast channel,
group members must send explicit join message along the reverse unicast path to the
source. Express solves the address management problem; it also reduces the routing
complexity and makes the collection of information about subscribers much easier.
Express is designed for single source multicast applications, Simple Multicast [15] is
similar to Express multicast but it allows multiple sources per group.

Another issue is that it is very difficult to implement congestion control in IP multicast.
In unicast, congestion control can be achieved by transport layer protocols like TCP; for
multicast, things become much more complicated; the paths lead from the source to
different users may have different channel capacities; different end users may have
different memory and computation capability and may also have different quality
requirements. Much effort has been put into designing multicast congestion control

algorithms [16]-[28], yet congestion control for multicast remains a challenging problem.

2.2 Overlay and Peer-to-Peer Networks

For reasons we have described above, the implementation of IP multicast is very slow.
This has lead research effort to overlay multicast [49]-[58]. In overlay multicast,

multicast related functionality such as membership management and packet replication



are implemented in end systems rather than intermediate routers. End systems self-
organize into an overlay network upon the underlying unicast infrastructure, multicast are
actually implemented on top of the IP unicast service.

There two kinds of overlay networks, proxy-based and peer-to-peer (P2P) [60][61][62].
In P2P overlay multicast network, each node in the multicast tree (or mesh) are also
multicast clients. At each node in the network, data packets will go all the way up to the
application level and then be replicated and forwarded. In the proxy based overlay
networks, proxies provide application level services to multicast clients. Nodes between
the sources and proxies and between proxies and clients are still running conventional
multicast (IP multicast) protocols.

When compared with IP multicast, overlay multicast does not need to add any additional
burden on intermediate routers. This adheres to the long standing belief that intelligence
should be pushed to the edge of the network. In IP multicast, routers need to keep the
status of the multicast tree, replicate packets, and running complicated multicast routing
protocols. The implementation of these functions requires fundamental changes to the
existing internet infrastructure. Though most routers nowadays implement native IP
multicast, they introduce much complexity and serious scale problems at the IP layer. By
shifting the multicast functionalities from routers to end systems, a major obstacle of
implementing multicast is removed.

Another advantage of overlay multicast is that it makes higher layer functionalities such
as congestion control and error correction much easier. As overlay multicast is built upon
unicast, it can resort to transport layers protocols such as TCP for congestion control.

Overlay multicast also give more flexibility for error correction. The proposed Network-



Embedded FEC exploits the flexibility of the overlay multicast to provide reliable
transmissions for multicast applications.

There are also drawbacks for overlay multicast. Figure 2c shows an example for overlay
multicast. When compared to IP multicast in Figure 2b, overlay multicast may introduce
multiple copies of packets on some of the branches of the multicast tree such as the hop
from node A to routerl and the hop from router2 to node C. Packets may not always
follow the optimum shortest path from the source to each receiver; in this example
packets from A to D does not follow the shortest path. This may introduce extra delay for
some users. In [59], Castro et al showed that, as compared to IP multicast, overlay
multicast increases average delay penalty by 1.5-2.5 times and average link stress by 1.3-
1.5 times.

When compared to unicast in Figure 2a, overlay multicast can still save bandwidth. This
is especially true if the overlay network is carefully designed, and only one copy of data
packets is on expensive and critical paths. In Figure 2c, if the path from routerl to

router?2 is an inter-continent hop, the bandwidth saving is still significant.

2.3 Realtime Reliable Multicast

Realtime applications such as video/audio multicast can often tolerate limited packet
losses. Some of these applications, such as multimedia streaming, could also tolerate
some initial delay. For such applications, “reliable realtime” multicast is somewhat
different from the conventional end-to-end reliable protocols: “Reliability” in this case
does not necessarily imply a none-fault (perfect) delivery of every packet to every user in

the group. “Realtime reliability” is rather still a best effort protocol in the sense that it
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enables each receiver to recover as many lost or corrupted packets as possible before the
playback deadline expires. Further, for these applications, ARQ schemes may add very
large round trip time (RTT) delay to recover a lost packet; this makes FEC more
appealing for many realtime applications. Some proactive FEC protocols were designed
for realtime and non-realtime services. These protocols require no receiver feedback and
retransmission, like RMDP [35] and Digital Fountain [36]; other implementations
explore the possibility of integrating FEC and ARQ [30][38]. In this proposal, we
advocate the employment of NEF-based multicast independently (without ARQ) with

certain realtime applications (e.g., streaming) in mind.
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Chapter 3 Analysis of Network Embedded FEC

Based Routes

In this chapter, we first review the packet loss pattern in the internet which, in general,
can be captured by the Gilbert Model. In the second section of this chapter we give a
short introduction to system analysis of Markov process; we then use this powerful tool
to perform probabilistic analyze of the Gilbert Model in the context of FEC. In the last
part of this chapter, we describe the analysis of network-embedded FEC based routes,

which will be used in our codec placement algorithm in the following chapter.

3.1 The Packet Loss Model

Packet loss patterns have a crucial impact on the performance of the channel coding used
over multicast trees. This in turn impacts the message-packet goodput of both realtime
and non-realtime multicast applications. In particular, the message goodput (or
conversely the effective packet loss) experienced by a realtime application provides a
direct measure for the quality of the received played-back multimedia content. The
packet loss patterns are influenced by the underlying random process that induces these
patterns. Analysis in [40] and [41] have used a binomial loss model, where the only
parameter used to capture the loss process is the average loss rate. In reality, this is not
enough as packet loss often occurs in bursts. For a particular receiver, if one packet is
lost, the packet following this packet is more likely to get lost, in other words, the packets
loss are temporary correlated. Two reealtime applications experienced the same average

loss rate but different length of loss bursts may show complete different play out quality.
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A class of random process that can well capture the correlations between lost packets
and, at the same time, not difficult to analysis, is Markov Chain.

Consider a random process {X,,n=0,1,2,....} , where X, can take on a finite set of
possible values. This set of possible values can be denoted by a set of nonnegative

integers {0,1,2,....}, we call this set of nonnegative integers as the states of the random
process. If X, =i, the process is said to be in state i at time n. A Markov chain has the

property that, given the present state, the conditional distribution of the future state is
independent of the past state, in other words,

P{X

n+l

=jl Xy =i, X, ;=i |, X, =i, Xy =ip} =P{X

n+l

=J| Xp =1}
This probability is also defined as the transition probability of the Markov process,

denoted as Py that is,

py=PX,, =il X, =i}

n+l

p;jrepresents the probability that the process, when in state i, will next make a transition

into state j . For any state iand j, we have

pl] ZO, i,jZO; Zpuzly i=0’1""'
j=0

If we use P to denote the matrix of one-step transition probability of the process, we have

Poo Por -+ Poj

P P " Py
P= . . .

Pio Pa " Py
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The Gilbert model is the most widely used model to simulate the packet loss process
[76][77]. Gilbert model is represented by a two-state Markov chain. When the process is
in good state, all packets are received correctly; when the process is in bad state, all
packets are lost or corrupted. The state diagram of the Gilbert model is shown in Figure

3, where state 0 and state 1 represent the Good state and Bad state, respectively.

Py,

P

Figure 3 State Diagram of Gilbert Model

the one-step transition probability matrix for this process is
Pz[l’oo Pm]
Py Pn
We are often interested in multiple step transition probability. Let ¢ij(") be the

probability that the process will occupy state j at time n given that it occupied state i at
time O,

¢ij(") =P{X,=]J| Xo= i} 0<i,j<1,n=0,1,2,....
the quantity ¢ij (n) is called the n-step transition probability of the Markov process from

state ito state j. Using matrix notation, the n-step transition probability matrix
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p(n) = {g;(m} = [¢°°(") ¢°1(")] n=0,12,....

¢10 (n) ¢1 1 (n)

in general, we have
g(n)=P" n=0,1,2,..

where PO =1 , I is the identity matrix.

The steady state probability of this process is

7(0) = _Po
Po1* Py
and
a(y=—>20L
Po1+ Pio
respectively.

In [37], Yajnik have used a general k order Markov chain to model the packet loss
process. Here, the packet loss events observed by a particular receiver is mapped to a
series of random variables that take on two values, 0 and 1. When the receiver correctly
receives a packet, the random variable is 0, when a packet is lost, the random variable is
1. The probability of the current packet will be received or lost will depend upon the
status of the last k events. This process can be characterized by a conditional probability
matrix Py where each element in the matrix can be obtained by the following definition:
B (x| x;_geeX; 4 ) =Prob(X; =x; | X,y =x;_|,.X;_p =%_)
For an example, in a 3 order Markov chain, P{X;=0|X,_ =0,X, ,=1X, ;=0}

represent the probability that at time i, the receiver will receive a packet correctly given

that at time i-/, a packet is received; at time i-2, a packet is lost and at time i-3, a packet

15



is received. Apparently, for a three order Markov chain, we need 8 states to describe the

process. For a general k order Markov chain, we need 2* states. In [37], the authors have
used the entropy analysis to show that the 3 order (8 states) Markov chain is the best to
simulate the packet loss in Mbone. The general k order Markov chain requires much
more states than the simple Gilbert model, from the statistic analysis in [37], its accuracy
improvement over the Gilbert model in simulating the loss process is limited.

The simple Gilbert model may not capture the various loss burst length accurately. The
general k order Markov Chain requires too many states, and thus incurs significant
analysis complexity. Sanneck and Carle in [77] advocate the use of loss run-length to
define the states of a Markov chain. In the loss run-length model, a random variable X is
defined as follows: X =0: “no packet lost”, X =k: “exactly k consecutive packets lost”,

X 2 k: “at least k consecutive packets lost”. The transition graph of a m +1 states loss

run-length model is showed in Figure 4:

Figure 4 loss run-length model with (m+1) states [77]

In this model, when k& =0 (no packet lost), if the next packet is correctly received, the
process will stay in state X =0, if the next packet is lost, the process will transit into
state X >1; for 0 <k <m, every additional lost packet will cause the process transit into

the next state, every successfully received packet will cause the process return to state 0;
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when the process reaches X =m, if the next packet is correctly received, the process
returns to state X =0, if the next packet is lost, the process will remain in state X =m.

The transition matrix of this model is as following:

P Pn O 0
Pro 0 pp :
p-| 7 0 (.) '
. . 0
P(m-1y0 0 P(m-1)m
Pmo O O Pmm

From the tractability point of view, the Gilbert model provides the best fit. Authors in
[37] compared the third order general Markov model and the Gilbert model using entropy
analysis. Jian in [76] compared the Gilbert model with the loss run-length model. Both
have shown that the Gilbert model provided adequate accuracy in simulating the loss

process. In the following, we will use the Gilbert model in our analysis.

3.2 System Analysis of Markov Process

For FEC-based real-time applications, one key measure that will determine the quality of
playback is the message goodput; another key performance measure, which directly
influences the effective goodput, is the probability of recovering all message packets
(e.g., k packets) within an FEC block of a given size (e.g., n packets). We refer to this
measure as the decodable probability. This probability measure and the message goodput
are rather straightforward to evaluate if the channel is memory-less. However,‘ for
channels with memory, such as Markov channels, these performance measures are not

trivial to evaluate.
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In [78], Yee and Weldon provided an approach for evaluating the Bit Error Probability
(BEP) of the Gilbert-Elliott channel using a combinatorial method. This method,
however, is rather complicated to evaluate and does not lend itself to simple analysis of
complex networks such as large multicast trees. In [79], the author provides a powerful
tool for the analysis of general Markov processes using a system analysis approach.
Below, we describe, extend, and employ this approach for the analysis of Markov
channels and routes that (1) exhibit lost packets and (2) employ FEC codecs.

The author in [79] developed an approach to study the dynamic probabilistic systems
based on the techniques of linear system analysis. A system is defined as an operator that
takes one input signal and produces one output signal. Here we are only concerned with
discrete systems, where the input and output signals are discrete functions; we use f(n)
and g(n) to represent the input signal and output signal, respectively. We further restrict
our analysis to linear time-invariant systems. The characteristic of a linear time-invariant
discrete system can be uniquely specified by its unit impulse response, h(n). For linear

time-invariant discrete systems, we have the following
n
g(n)= kZ f(kh(n-k) n=0,1,2,....
=0
We can use vectors to represent the input and output discrete series. The input series

fQ0), £(1), f(2),.....1s represented by f; similarly, g(n) and h(n) are represented by

gand h . The above equation is the well-known convolution of the input and the unit

impulse response of the system. Using vector representation, we have the following:

g=f*h
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For large and complicated systems, time domain analysis can become very difficult;
system analysis for large systems is often accomplished in the transform domain. The

geometric transformation of a sequence f(n) is defined as following:

f(2)=) f(n)z"
n=0

In the transform domain, the relationship between the input and the output becomes:
g(z) = f(2)h(2)

In the transform domain, the system can be represented by a flow graph:

h(z)
f(z) « > - 2(2)
g(2)=f(z) h(z)

Figure S the basic flow graph

In the system flow graph, joining the input and output nodes is a line segment, called a
branch, directed from the input to the output. A(z) is also called the transmission of the
branch.
Feedback system is a common component in complex systems, especially in dynamic
probabilistic systems. The following figure gives the block diagram and the flow graph of
a simple feedback system. For this feedback system, the relationship between the input
and output can be represented by the following equation:

g=f+g*h
In the transform domain, this becomes:

glz) 1
f(2) 1-h(2)
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This implies that a feedback loop has a transfer function that equals to [1 - k(z)]™".

~ ) 1 ~ 1
o> & 6 _>_§f£2 . 2
h h(z)
(a) (b)

Figure 6 (a) block diagram of a feedback system. (b) flow graph of a feedback system

It is trivial to see that two branch systems connected in parallel is equivalent to a single
branch system whose transfer function is the sum of the transfer functions of the
individual branches; two systems connected in series have an equivalent transfer function
that is the product of the transfer function of each system. Using these equivalent
relations, very complex systems can be reduced to very simple systems.

Systems with multiple inputs and multiple outputs can be described using matrix
notation. For systems with & inputs and M outputs, their input and output relation can be

represented by

g(n) = i f(n)H(n-k)
k=0
Here, f(n) and g(n) are row vectors each has N and M components respectively. H is N by
M matrix. In the transform domain, the relationship becomes:
8(2) = f(z) H(2)
Here, f(z) is the N-dimensional vector of input signal transforms, g(z) is the M-

dimensional vector of output signal transforms and H(z) is the N by M matrix of transfer

functions that completely describe the system.
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The author in [79] has shown that a Markov process is in fact a time-invariant, physically
realizable linear process, and the system analysis methods we described above can be
used to analysis Markov process. As it is well known, the n-step transition probability of

a Markov process can be represented by:
#(m)=P" n=0,1,2,..
where P is the one-step transition probability matrix of the Markov process. The
geometric transform of ¢(n) is
#(z)=[1-Pz]"!
This is equal to the transmission matrix of a feedback matrix system whose feedback

transmission is Pz , as shown below:

Pz

Figure 7 flow graph of a feedback matrix system

The flow graph corresponding to the Matrix system is the Markov process transition

diagram with each branch labeled with J % instead of Py- Figure 8 is the flow graph of

a two state Markov process.
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Py

Po# ( P#

P#

Figure 8 flow graph of the Markov process

3.3 Probability Analysis of the Gilbert Model?

Based on the framework described above, we present a new method for evaluating any
desired loss/recovery probability measure for the Gilbert model. In particular, we present
a rather elegant and simple approach for evaluating the probability of receiving i packets
among n packets transmitted over Gilbert erasure channels.

To evaluate the desired probability measure for the Gilbert model, we construct another
Markov process by extending the two-state Gilbert model. We use G and B to indicate
that the process is in Good state or Bad state respectively; we use the number of correctly
received packets as the indexes for the states of the extended Markov chain. For example,
if the receiver correctly receives i packets and the channel is in a good state, then the
process is in state G; ; on the other hand, if the receiver correctly receives i packets and
the channel is in a bad state, then the process is in state B; The state transition of the new

(extended) Markov process is shown in Figure 9.

2 Part of this work has been published in [92]
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P

Figure 9 Extended state transition diagram for the Gilbert model

The probability that the sender transmits n packets and the receiver correctly receives
i packets is the probability that the process starts at Gy or By and is in state G; or B;after

n stages. We use ¢GoG,- (n) to represent the multistep transition probability from Gy to G;:
96,6, (M) = Pis(n) = G; | s(0) = Gy} 0y

where s(j) is the state of the extended Markov process at time index ;. Using the

method described in the above section, the flow graph of the extended Gilbert model is:

Pz pnz Pz

Figure 10 flow graph of the extended Gilbert model

Using the flow graph reduction methods,the flow from Gyto G, can be simplified as:
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polplozz Pozplo-’-; po:PmZz

Figure 11 simplified flow graph of the Gilbert model
Let ¢GoG.~ (2) be the geometric transform of ¢GOGi (n) , then ¢GoG.~ (z) is just the

transmission from Gyto G , from the flow graph above, ¢GOG (z) can be obtained as:

2
Po1P1o?

Y 0<isn ()
1-p,,2z

¢GoGi (2)= (Pypz +

Now, taking the inverse Z transform, we have:

Po1P1o? )
Poo(l-Pl 1z)

= p&)zi 2 ( i J( Po1P1o? )m

m Poo(1 - P 12)

b6,6,(2) = Pz’ (1+

. . i ]
=paoz'2('J(p°""°)”'z”'( —
Poo 1-py 2

o (i . . 1
— 1 zl + m __m l—mzm+1 m
Poo Z(m)PmPloPoo (_I—p“z)

We know that for m >1 the inverse transform of ( )" is

(m-1)! (n+D)(n+2)...(n+m-1)p
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1
l—p“z

then the inverse transform of z™"( )" is

(n—m—i+)(n-m—i+2)...(n—-i-)p[™"

(m—1)!

From above we can get:

i . Li)(n-i-1 m _i-m _n—i—-m
¢GOG,.(")=P005("_1)+Z(’”]( m—1 )P(')"lplopoo P

m=l1

When k& =0, it is trivial to get ¢Gon (n) = 0. Summery the above results, we get

i i(n-i-1 pmpmpi—mpn—i—m O<i<n
il |\ m—1 |PorPr0Po0" P11
¢GoG.~ (n=<4 0 i=0 3)

Doo i=n
Similarly, it can be shown that:

L(i)(n—i-1 mtl _m _i-m_n—i-m-1 .

_ Z( ]( )Pm PP P 0<i<n

¢q)&(n)— m=0\M m 4)

0 i=n

g (M =1m0\ m \ m e o A )

0 i=0
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il i-1)( n—i m+l _m+l_i-m-1_n-m—i-1 O<i<
z Por Pro P Pii e

mo\ m Jlm+1
o5 (W=y P =0 s
0 i=n

\
It is worth noting that [80] derives a similar expression, however using a very different
approach and different notations.

If we use ¢(n,i) to represent the probability that the sender transmits n packets and the

receiver correctly receives i packets, then:
P(n,i) = ”(0)(¢(;0(;i (n)+ ¢GOBi (n))+ 71'(1)(¢BOG’. (n) + ¢BOBi (n) 7

— P ang z(l) = —Po__

Po1t+ Pro Po1 * Pyo

where 7(0) = are the steady state probabilities in good

state and bad state respectively.

The desired probability measure @(n,i) can be completely evaluated using any two
parameters that characterize the underlying Gilbert erasure channel. Traditionally, the
transitional probabilities py, and p,, (or py, =1-p,, and p;, =1-p,,) are used for such
characterization. A more useful insight and analysis can be gained by considering other
parameter pairs. In particular, in [78] the authors have used the average loss rate p and
the packet correlation p to represent the state transition probabilities. The average loss
rate of the Gilbert channel is

p= Po)
Dot Py

The correlation between to consecutive error packets is:

26



P =Py +Pyp~1

The transition probabilities can be represented by p and p as:

Py =1-p(-p); py, = p(1-p)

P =10-p)1-p); p;; =1-01-p)1-p)

The steady state probabilities are directly related to the loss rate p: #(0)=1-p and
z(1)=p. The packet erasure correlation p provides an average measure of how the
states of two consecutive packets are correlated to each other. In particular, when p=0,
Po; + Pp =1, the loss process is memory-less, and the above probability measures
reduce to the special case of a memory-less Binary Erasure Channel (BEC). On the other
hand, as the value of p increases, then the states of two consecutive packets become
more and more correlated. Hence, we find the parameters p and p provide an intuitive,

insightful, and broad characterization for the impact of channel coding on networks with
losses. Later in the proposal, we will present our analysis and simulation results for the
centralized and distributed NEF algorithms in terms of the two parameters, average loss

rate p and the packet correlation p, instead of the traditional transitional probability

parameters p,, and p,.

Figure 12 plots the probability of a receiver correctly receives i packets when the source

sends n packets over a Gilbert channel. Here, n is set to 30, the average loss rate pis set
to 1% and the packet correlation p is changed from 0 to 0.9. When compared with the
Binomial model (where p =0 ), if the number of packets sent is set unchanged, we can
see that as p increases, the probability of receiving a smaller number of packets

increases. For a given p, as i increases, @(n,i) increases exponentially; this increase
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slows down as p increases. When p =0.9, we can see that ¢(n,i) has a small spike at

i=0, and a big spike at i =30. This observation is in accordance with common sense;
when the correlation is very strong, once the process initially starts in bad or good state, it

has the inertia to stay in that state. For p =0.01 and p = 0.9, the transition probabilities

are py, =0.999, p,, =0.001, p,, =0.099, p,; =0.901 respectively.

0
10 T ! ' ' : 7
! : ' : ./
; . ' RO /4
=09 ! : ; o .
{1 T T e LERNy £ fonmmeeees -
p=( . ' ! : :
_ p=0.5 ; : : :
2 10" o O S HENEED A Y S deeeeeeeee -
< : : : ' :
p=03 i 5 s §
1T S S beeee Ao R S R domeens -
1 A
10-” i ] ] ] ]
0 5 10 15 20 25 30

number of correctly received packets, i

Figure 12 probability of a receiver to receive i packets

In FEC codes, we are often concerned with the probability that a node can receive enough

packets to decode an FEC block. For a (n,k) FEC code, this probability is:

P(i>k)= gg»(n,i)

Figure 13 shows the average decodable probability of a receiver when the sender

transmits FEC blocks through a Gilbert channel. The block size n is set to 30, the
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average loss rate of the channel is set to 1%; & is changed from 20 to 30, and the packet

correlation p is changed from 0 to 0.9.
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Figure 13 decodable probability for a receiver to receive packets through a Gilbert Channel

From the plot, we can see that for a given average loss rate (1% here), when the code rate
is low, the higher the packet correlation, the lower the decodable probability; however
this phenomenon changes when the code rate increases. For example, when the code rate

k/n2>27/30, the decodable probability for p=0.9is higher than that when p=0.7;
when the code rate k/n=29/30, the decodable probability for p=0.7is higher than
that when p=0.5 . In the Gilbert model, the average burst length is
1/p,, =1/(1- p)(1- p), when p increases, the burst length increases. For high code rate

FEC codes, any FEC block suffer a few packet loss may not be able to be decoded. Given

the average loss rate unchanged, longer loss burst means fewer FEC blocks that suffer
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from packet losses; however, these fewer FEC blocks with packet losses exhibit long
bursts of losses (due to the high correlation). Therefore, having fewer FEC blocks with
losses (although bursty) may result in a higher decodable probability.

When designing FEC codes such as RS(n,k) for a Gilbert channel, the code rate must be

- chosen carefully. Code rate can be adjusted by keeping one of the two variables (nor k)
constant and change the other. Keeping n unchanged, the number of packets the receiver
will receive is a random variable represented by K ; on the other hand, if we want the
receiver side to receive at least k packets, where k is a constant, the number of packets
we should send at the source is a random variable represented by N. We want to find
the mean and variance of K and N . For the binomial loss pattern, this is trivial. It is
informative if we could also know these parameters for the Gilbert model. Later in our
distributed codec placement algorithm, we need to estimate the variance of the number of
packets that a codec requires in order to decode a FEC block. The characteristic of these
parameters will help us in designing a more efficient distributed codec placement
algorithm.

The mean and variance of K is just the mean and variance of state occupancy in Good

state when the Markov process is in stage n. Let E;;[k] and Eg;[k] be the average

occupancy in good state when the initial channel state is in Good and Bad states,
respectively. We then readily have [79] :

n+l) _

Egglk]=(1-p)n+1)+ i’% 1 )

l _ l _ n+l
Egolk)= (1= pi+ )~ —LI=22 o)
The average of X is then:
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ETk] = n(0)E;;[k]1+ (1) Egg K]

=(1-p)n (11
We see that the average received packets are the same as that in the binomial model and
it does not depend on the correlation coefficient p .
Unlike the mean, the variance does depend on the correlation coefficient p. A closed
form of the variance of state occupancy is rather complicated, an asymptotic form of the
variance is:

Var[k] = 2(0)argg[k]+ z(\Vargg[k]

l1+p pp(-p)p+2) (12)

=np(l—p)1_p 1= p)?

Figure 14 plots the impact of packet correlation p on the variance of received packet.
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Figure 14 variance of k versus packet correlation p
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Here n is set to 30 and the average loss rate is set to be 1%. We can see that when p =0,
the variance is the same as that of the binomial model; as p increases, the variance of
k increases; the slop of the increase also grows with p increases, and the variance
approaches infinity as p approaches 1.

To calculate the mean and variance of N (in order for the receiver to receive more
than k packets), we extend the state transition diagram similar to the one we used when

we derived the expression for ¢(n,i). The difference is that the process is now trapped at
state G, . This is shown in Figure 15. Now the mean and variance of N is just the mean
and variance of the stages for the process to be trapped into state G, . Using the similar

approach we have used before, we have:

P

poo poo S poo

Figure 15 extended Markov model for analysis of mean and variance of vV

2
Po1P1o?

)k
l—p“Z (13)

1
¢Gon (2)= i: (Pgoz +

Let PGon (n) be the probability that the process starts at state G, and will be trapped in

state G, exactly at stage n, that is
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¢Gon (n)= mZ=OP G,G, (m) (14)

We have

2
_ _ Po1Pro? \k
PGon (2)=a _Z)¢Gon (2)= (Pooz + _l — p"' .z ) (15)

The mean number of steps from G, to G, would be:

' k
kg6 [n]=F 6,6, () :=1= 1-p (16)

while the variance is

VarGon [n]= {PG"OGk (2)+ PC';on (z)- (P(';OGk (Z))z} |21

___kpd+p)
(- p)1- p)’ (7

For the same reason, we can get

k p

R R T ®
kp(1+ p) p(1-p(l-p))
Ve =
R T v s g R
thus

Eln]= 2(0)Eg,g, [n]+7(DEp g, [n]

__k . pr
l1-p (A-p)1-p)

(20)
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Var[n] = ﬂ(O)VarGon [n]+ Jz'(l)VarBon [n]

__lp(+p) . pp-pQ-p)
A-p)1-p)* (A-pPa-p? &

Again, we can see that the correlation coefficient p has little effect on the mean of N

but will affect the variance of N significantly. Figure 16 plots the relationship between

the variance of N and p when k=20and p=1%. As we can see, as p approaches 0,

the variance of N approaches to the case when the packet loss follow the binomial

distribution; as p approaches to 1, the variance of N approaches infinity. The increase of
the variance is slow as p increases from 0 to 0.7, but becomes dramatic as p increases

from 0.7 to 0.9. In our simulation (that we will show later), we will see that the efficiency

of FEC decreases more dramatically at the higher end of p. Various techniques such as

interleaving can be used to decrease the packet correlation.
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—
o
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Figure 16 Variance of N versus packet correlation p
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3.4 Analysis of Network Embedded FEC Based Routs

Previous studies analyzed the packet-loss model for FEC-enhanced multicast trees (e.g.,
[41][43]). These studies are based on the IP multicast model, in which intermediate nodes
do not participate in FEC. These studies also assume the binomial distribution of packet
losses and hence do not take into account the Markov nature of packet losses (as was
done in our analysis presented above). Here, we study the packet-loss model of a

multicast tree when FEC codecs® are placed in the intermediate nodes of a tree.

In our analysis, we use the following notations:

T A multicast tree with a root node r

|T| The size (in terms of the total number of nodes) of a multicast tree T
T* A sub-tree rooted at some node ¢ € T' but does not include the node c.
¢ The set of leaf nodes of 7¢ .

ITf| The total number of leaf nodes of a the sub-tree T°

p,() Probability that node v € T’ receives exactly i packets.

Pyv-1G, J) | Probability that node v receives i packets given that its parent v -1
sends j packets.

p The packet loss probability between the link from v—1 to v
p The correlation between the states of consecutive packets
(n,k) The desired FEC block parameter pair used by the system. n is the

FEC block size, and & is the number of message packets.

RS(n,k) | Reed Solomon code with k message packets and n-k parity packets.

% In the sequel, we present our analysis in the context of Reed-Solomon (RS) codes which have been among the most
popular FEC schemes for packet loss recovery of realtime multicast data. Nevertheless, many aspects of our analysis
and the key conclusions of this work are applicable to any other form of linear block codes that are based on successful

FEC-block recovery when the number of received packets is equal to or high than the number of message packets in the
block.
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We use p,, (i, ) to represent the probability that node v receives i packets given that

its parent v—1 sends j packets. For links with memory-less losses, this probability is

simply a binomial distribution:
Poa (i,f)=(f](1—p)‘ ®)
On the other hand, if the packet losses follow the Gilbert model, then
By =90,0) ®
where from (7):
¢(),1) = (0)(8g, 6, () + &g 5 () + 7()(Pp 6, (/) + #5 5, (/)
When computing the probability P, (i) that a node v receives exactly i packets, we need

to consider two cases; first, we consider the case when the parent node v—1 has no
codec; second, we consider the case when the parent node v —1 has a NEF codec. If node

v’s parent does not have a codec, the probability that node v receives i packets is:
n
p,()= va—l (j)PV|v_1 () (10)
J=i

Note that Py (i,/)=0 Vj<i. In other words, node v can receive i packets only

when its parent v —1 sends at least i packets. For the root node (r) of the tree, we define

0 0<i<n-1

Pr(i)={ , (11

1 i=n
Equation (10) is a recursive function, and hence with the initial condition from (11), we

can calculate the probability p, (i), for any node v in the multicast tree, that it receives

exactly i packets. When a node has a codec for a RS(n,k) block, and if that node receives

36



less than & packets and cannot decode the FEC block, it will just forward the received
packets as usual; if it receives k or more packets, the node can decode the block and
reconstruct the original data. It can also reproduce the lost parity packets. In fact, a codec
can produce more or less than n—k parity packets if desired; however, in our analysis,
we assume that the NEF codecs reconstruct the original data and reproduce the lost parity

packets using the same RS(n,k) code. These packets are then multicasted downstream.

(In our simulation for the distributed algorithm, we will simulate the scenario where a
codec produces a number of parity packets that is required by its children).

A node that has a NEF codec and which receives k < j < n packets will send n packets.

If v is the immediate child of a codec, the probability that it receives i packets becomes

[ n
kav—l (B, (,n) k<i<n
j:
P,'()) =5

n k-1 (12)
_Z;c By (DPyym)+ D B, (DB, G, )) 0<i<k
LJ= J=t

Once a node c is assigned a NEF codec, the probability P, (i) or all ve T will change
and need to be recomputed. We use (12) to calculate P, (i) for the immediate children of

the codec. For nodes that are not immediate children of a codec, the calculation of

P, (i) is the same as equation (10).

Here we use Pvdec to represent the probability that node v can decode a RS(n,k) block:

n
Bl = P(i2 k)= B,(i) (13)
i=k

We define the average decodable probability of a tree T for p2p and proxy-based overlay

networks, respectively, as:
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Z Pdec
v

dec _ veT—-r

avg — 1T |1 (14)
dec
N it
dec _vely
avg-leaf — |T1r| (15)

If we use r,(v) to represent the number of received data packets (not including the parity

packets received) of a FEC block at node v, then

n k-1
E[rd(v)1=§M(i)+52ia(i) 16)

n =0
For a RS(n,k) block, if a node receives i >k packets, only k packets are message
packets; if a node receives i < k packets, we assume on average only (k/n)i are message

packets. For a p2p and overly networks, we define the message goodput as:

>, H0)
_vel-r 17):
& irne P

ZTr Elr,(v)]

gleaf = ‘T;r |k (18)

3.5 A Cascaded Peer-to-Peer Channel

In a peer-to-peer overlay network, each node in the network is an end system. We define
the path between each pair of these p2p nodes a p2p channel. A p2p channel may consist
of multiple underlying routers and physical links, and can be modeled as a Gilbert

channel. As we have analyzed before, a p2p channel thus can be fully characterized by its
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average loss rate p and its packet correlation p . In a p2p overlay multicast tree, from the
sender to each receiver there is a forwarding path consisting of a series of intermediate
p2p nodes and a cascaded p2p channels. Before we go forward to analysis the NEF
performance on a general multicast tree, we first analysis a cascaded peer-to-peer
channel.

Figure 17 shows a cascaded channel consists of ten p2p nodes and nine p2p channels that
connect these nodes. The p2p sender channel-codes a set of k message packets into a

block of n FEC packets using a systematic Reed-Solomon (RS) erasure recovery code.

p2p sender Intermediate nodes p2p receiver

Figure 17 a cascaded p2p channel

The p2p receiver performs erasure—channel decoding to recover any lost message

packets. For a RS(n,k) code, the receiver could recover all k message packets if it

receives any k or more packets out of the original npackets transmitted by the sender.
Here, the block size nis kept constant, and the number of message packets in a block % is
changed, so that the code rate k/nwill change according to k. The average loss rate of
the p2p channels is set to 3%, the packet correlation of the p2p channels will change so
that we can see how loss burst length will affect the performance of the NEF. We will use
the analysis presented in the last section to calculate the decodable probability and the
message goodput at the p2p receiver. While every intermediate node can act as codec, we
present only two cases: “all intermediate nodes act as codec” and “a single intermediate

node act as codec”. Apparently, these two cases represent a measure of “upper” and
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“lower” performance bounds in respective to decodable probability and message
goodput.

Figure 18 shows the decodable probability and goodput of the p2p receiver when packet
correlation is set to 0. Here, nis set to be 30 and % is changed from 15 to 30. We show

the results when no intermediate nodes act as codec, one intermediate node act as codec
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Figure 18 decodable probability and message goodput of a cascaded p2p channel when p=0
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and all intermediate act as codecs. When the code rate is low, all three cases have the
decodable probability of close to 1; when the code rate is very high, all the decodable
probabilities approaches to 0. Both very high and very low code rate are rarely used in
practice; very low code rate causes very high overhead; when the code rate goes so high
that the receiver can not decode almost any FEC block, its better not to use FEC at all.
For a wide range of code rate between these two limits, we can see that both “all
intermediate nodes act as codecs” and “a single intermediate node act as codec” out
perform the case when there no codecs at all. For an example, when &k =24, if no
intermediate node act as codec, the p2p receiver has a decodable probability of 40%; if
one intermediate node act as codec, the decodable probability increases to 82%; if all
intermediate nodes act as codec, the decodable probability is 100%. The same pattern can
be observed on the message goodput of the p2p receiver.

Adding codecs in the intermediate nodes of a network may incur computation complexity
and delay penalty. The time needed for encoding and decoding depend on the particular
code in use and computation power of the end system. Rizzo in [44] showed the time

needed to encode and decode different (n,k) linear erasure codes using software
implementation on a Pentium 133 system running FreeBSD. For a (30,16) code, the
average encoding time is 1.5ms per packet; the average decoding time is about 1.7ms per
packet. The encoding and decoding time will increase as nor kincreases. For example,
the average times needed to encode and decode a (60,32) code on the same system are
3.0ms and 3.5ms per packet respectively. Often, dedicated hardware is used to speedup
the encoding and decoding operations, but this will add extra costs on end systems.

Though all intermediate nodes act as codec may cause too much delay penalty, if only
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one or two codecs added to the intermediate nodes, the performance improvement may
out-weight the delay penalty incurred; this is especially true for multicast applications,
where one intermediate codec may serve hundreds or thousands of end users
downstream.

Figure 19 shows the decodable probability and message goodput when packet correlation
equals to 0.7. We can see that even when one codec (optimally chosen as will be
discussed further below), the decodable probability and goodput is clealry better than the
case when there are no codecs.

It is important to note also that the improvements due to a NEF codec may decrease at
higher values of correlation when compared to the case when the packet correlation
equals zero. This is because as the loss-burst length increases, the probability that an
intermediate node can decode a FEC block decreases. If an intermediate codec can not
decode a FEC block, it can not reproduce the lost message or parity packets, and will just

act as a normal node. For an example, When the average loss rate p =3% and packet
correlation p = 0.9, the average loss burst length is 1/(1- p)(1- p) =14.3; even for very
low code rate codes such as RS(30,16), a FEC block suffer from such a long burst of loss
can not decode the FEC block, so an intermediate codec cannot recover lost packets.

One way to overcome such long loss bursts is to use interleaving. As Yee has shown in
[78], an interleave degree of I will decrease the effective packet correlation to p’.
Another way is to use longer block codes. Figure 20 shows the decodable probability and
message goodput when block size nis set to 255 and the number of message per block is
changed from 210 to 230. Here the average packet loss is 3% and the packet correlation

is 0.9. We see that with very strong packet correlation and average loss burst of 14.3
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packets, even with only one intermediate codec, the performance is much better than end-

to-end FEC.
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Figure 19 decodable probability and message goodput of a cascaded p2p channel when p=0.7
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Figure 20 decodable probability and message goodput of a cascaded p2p channel using long block
size,p=3%,p=0.9.
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Chapter 4 Centralized Codec Placement Algorithm

The analysis presented in the previous chapter did not make any assumption regarding
the placement of the NEF codecs within a multicast network. In this chapter, we develop
a mechanism for placing NEF codecs within a given network topology. The algorithm is
then implemented on random multicast trees to evaluate the impact of intermediate

codecs on multicast applications [90][91].

4.1 Previous work

In a large topology, identifying the optimum locations for the NEF codecs is not an easy
task. One objective is to place codecs in the intermediate nodes of a topology to
maximize the average decodable probability. Assuming that the loss rate for each link in
the topology and the number of codecs to be placed are known beforehand, the problem
is similar to (but different from) the well-known P-median problem[63][71]. A P-median
problem is to find P locations in the network to place facilities in order to minimize the
overall cost for servicing all of the nodes. Generally, in a P-median problem, the cost to
serve a node is determined by the weight at the node and the distance between the node
and its nearest available facility. It has nothing to do with other facilities placed in the
network. As we have seen in the previous section, in order to calculate the decodable
probability, we need to know the loss rate of the links on the path between the node to the
source (root node); we also need to know the locations of the codecs that have been
placed on that path, not just the immediate codec that serves the node.

There are several studies that address the P-median problem on a tree. In[66], Goldman

found a O(n) algorithm for the l-median problem. Kariv and Hakimi gave a
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O(n? p*) solution for a P-median problem on a tree with n nodes [67]. More recently, Li
et al find a O(n’k?) time algorithm to place k web caches on an n-node directed tree[71].

In[72], Tamir provides a O(pn®) algorithm for the P-median problem on a tree.

4.2 Centralized Codec Placement Algorithm

Because the decodable probability at a node in a NEF network is impacted by all the
codecs placed along the path from that node to the source (root), the dynamic
programming approaches that have been used in previous network-placement problems
(e.g., [71]) cannot be simply adapted to solve the NEF codec placement problem. In the
following, we use a greedy algorithm to place m codecs in the multicast tree.

The greedy algorithm finds the best location for the first codec, then the next best

location for the second one, and so on. Once a node is selected, an FEC codec is added to
regenerate any lost data or parity packets. Let T c T be the sub tree rooted at node
c €T not including c. If cis set as a “codec node”, only those nodes v e T¢ will benefit
from this selection; meanwhile, the “codec node” c itself will not be affected. For nodes

v'eT—TC, everything remains unchanged. Let P% and P,% denote the average

decodable probability for node v e T before and after node c is set as a codec node,

respectively. We need to find ¢ € T that maximizes the following:

max( Y, (B - P%)) (19)

ceTl ere

A similar optimization objective function can be expressed for proxy-based overlay
networks, except here the summation takes place over the leaf nodes only. In this case,

we need to find ¢ € T that maximizes
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Under the proposed greedy algorithm, we use an exhaustive search to find the best place
for the first codec, after we find the optimum ¢ € T node, we place the codec at that
node. We use the same method to place the next codec; this process continues until all of

the m codecs are placed.

4.3 Analysis Results
4.3.1 Analysis Results for 100 Nodes Network

We applied the performance analysis presented above to a general tree structure. We use
the popular Georgia Tech gt-itm [81] network topology generator to produce a set of ten
100-node transit-stub graphs. For each graph, we use Dijkstra’s Shortest Path First (SPF)
algorithm to produce a tree rooted at a randomly selected node. We used the greedy
algorithm described in the previous subsection to place the NEF codecs in the multicast
tree. The number of codecs was increased from 0 to 10. After each codec is placed, we
calculate the improvement on average decodable probability and goodput.

As mentioned above, in a p2p overlay multicast network, nodes in the multicast tree are
also end users, which often are placed at the edge of the Internet. Each hop in the overlay
network often consists of several underlying physical hops. This implies that the loss rate
of each hop could be higher than the loss rate of a backbone link in an IP multicast
model. Here, we show results when the loss rate per-link is set to 3%, 4%, and 5%. These
loss rates are in accordance with previous studies [37]. We studied the performance

improvement under each of these loss rates for a variety of RS codes. Here, we present
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the results for RS(255,223) , which is a popular FEC code that has hardware and software
implementations. (The channel coding rate* for RS(255,223) is 87.5%.)

The average FEC block decodable probability and data goodput for each tree were
evaluated. The results are the averages over all of the ten random trees that were
analyzed.

Figure 21 shows the decodable probability and goodput when error packet correlation are
set to 0 and 0.8 respectively. In both cases we can see as the number of codecs increases,
the decodable probability and goodput increase dramatically. This is specially true when
the first few codecs are placed. For example, in Figure 21(a), for a 3% per-link loss rate,
the first codec increase the decodable probability from 18.6% to 76%; the first 3 codecs
increase the decodable probability from 18.6% to above 95%. In Figure 21(b) the first 3
codecs increase the goodput from 85% to 99% For a typical realtime (e.g., video)
application, reducing the effective packet losses from 15% (85% goodput) to less than
1% (higher than 99% goodput) will naturally have dramatic improvements in the decoded
video quality, both in terms of PSNR and visual perception. Under high losses, traditional
end-to-end FEC could resort to a significantly lower FEC coding rate (to lower the packet
losses and achieve high reliability). However, this reduces the effective source rate

significantly. In this case, NEF could be used to maintain the high reliability performance

4 This code rate may be high for some of the loss rates that are evaluated in this paper. However, it is
important to note that the main conclusions of our study are valid regardless of the specific RS codes used.
In particular, the proposed NEF framework can be used in one of two ways. Under one approach, a given
RS code is already being used (on an end-to-end basis) prior to adding any NEF codecs. In this case, NEF
can significantly improve the overall goodput as shown extensively by our analysis and simulations in this
paper. Under another approach, a reliable communication infrastructure is already in place. This reliable
infrastructure would be normally based on using very conservative (low) FEC rates (i.e., much lower than
the effective end-to-end channel capacity). In this case, NEF can be used to significantly improve the
efficiency of the RS codes by increasing its rate while maintaining the same level of reliability provided by
the original infrastructure. In this paper, we focused on the first scenario to illustrate the benefits of the
proposed NEF-based framework.
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while increasing the FEC rate significantly (i.e., increasing the effective source bitrate).

Either way, NEF provides salient and dramatic improvements in the delivery of realtime

over multicast networks.
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Figure 21 decodable probability and goodput of p2p overlay multicast tree, p = 0.

In proxy-based overlay networks where only leaf nodes are end users, the performance of

intermediate codecs are much like those of the peer-to-peer overlay networks.
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Figure 22 shows the decodable probability and goodput of leaf nodes when the packet

correlation is set to 0.
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Figure 22 decodable probability and goodput of proxy-based overlay multicast tree, p = 0.
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Figure 23 decodable probability and goodput of p2p overlay multicast tree, p = 0, p is normally
distributed with mean of 3%, 4% and 5%, variance of 1.5%, 2%, 2.5% respectively.

In the above analysis, we have assumed the average loss rates on each link of the
multicast tree are the same. In reality, this is not the case. Different link may have
different bandwidth and different background traffic, this will cause different network
conditions and hence different loss rate. We do the analysis on the same set of trees we
have described above. The positions of the codecs are not the same as that when all the
links have the same loss rate, but the effectiveness of the codecs are not affected. Figure

23 shows the results when the average loss rate among the links of the multicast tree are
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normally distributed, with mean of 3%, 4% and 5% and variance of 1.5%, 2% and 2.5%

respectively.

4.3.2 Analysis Results for 600 Nodes Network

The same analysis is performed on a set of 600-hundred-node networks. Here we assume
the binomial loss model, the average loss rates are set to be 2%, 3% and 4% respectively.
We use the same transit-stub topology model as we have used in the 100-node network.
Figure 24 shows the average decodable probability and goodput of the p2p overlay
multicast trees when each link has the same loss rate. Figure 25 shows the results for the
proxy-based multicast trees. Figure 26 shows the result when the loss rates are normally
distributed among the links, with mean of 2%, 3% and 4%, variance of 1%, 1.5%, and

2% respectively.
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Figure 26 decodable probability and goodput of p2p overlay multicast tree,600-node, p =0, p is
normally distributed with mean of 2%, 3% and 4%, variance of 1.0%, 1.5%, 2.0% respectively.

4.3.3 Simulation Verification

We implemented the NEF framework using network simulator2 (ns2) [82]. Here, FEC is
used independently without ARQ, we will implement another version of NEF integrate
FEC and ARQ to provide reliable multicast in our future work. We added a FEC packet

header and traffic generator to the simulator to produce RS(n,k) form of traffic. The

FEC header has a FEC block_ID label to differentiate different blocks. It also has a flag



to indicate whether a packet is data, parity packet. The parameters » and & can be set by
the application. The traffic generator transmits packets in FEC blocks, the first & packets
within a block are data packets and the remainder n — k& packets are parity packets. The
transmission rate can be set by the application.

We have implemented primitives to build overlay networks upon the underlying
topologies in ns2. As the algorithm to build the overlay network is not the main concern
here, we use the Dijkstra’s Shortest Path First (SPF) algorithm to build the overlay upon
the underlying topology. The overlay we built forms a SPF multicast tree as we have used
in our analysis. We have implemented a FEC UDP agent class and a FEC application
class in the simulator. Each node in the graph will have a FEC UDP agent and a FEC
application attached to it. The FEC application can detect how many data and parity
packets that are lost in each FEC block. If the node is not a codec, the application merely
replicates the packets and forwards them down streams. If the node is set as a codec, it
will take action according to how many packets it received from the FEC block; if it
receives less than & packets; it just replicates and forwards; if it receives k or more
packets, it reproduces the lost packets and send these packets out on all the outgoing
interface of the node for that multicast group. Notice that the reproduced packets are not
multicasted to the entire group, but only to the sub-tree rooted at that NEF codec node.
(We do not implement the actual Reed-Solomon encode and decode processes in the
application; so the delay penalty incurred by the codec could not be measured here
precisely.)

The network graphs are the 100-node graphs we used in analysis. The FEC code we use

is RS(255, 223), and the packet loss model we used is the BER model, the same as we
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have used in our analysis. For each simulation, 30 blocks were sent. We first simulate the
scenario when no intermediate nodes were set as codecs; then the number of codecs is
increased from 1 to 10. The locations of the codecs were determined from our analysis.
We run the simulations on each one of the ten simulation trees. The results are the
average of all the simulations

Figure 27 (a) and (b) show the decodable probability and goodput average over all the
nodes respectively. By comparing the simulations with the analysis results in Figure 21
(a) and (b), we can see that the differences between the simulation and analysis is within
1% for the decodable probability and 2% for goodput.. Figure 28(a) and (b) show the
decodable probability and goodput average leaf nodes respectively. Again we can see
the simulation results and the analysis results are very close. In comparison with

Figure 22(a) and (b), we can see the biggest difference for the decodable probability over
the leaf nodes is within 2%, and the biggest goodput difference is within 3%. Overall, the
ns2 simulation results verify the analysis results: employing NEF codecs in the

intermediate nodes improve the decodable probability and goodput significantly.
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Figure 27 simulation results: decodable probability and goodput for p2p overlay network, 100-node.

p =0, pis set to 3%, 4% and 5% respectively.
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100-node. p = 0, p is set to 3%, 4% and 5% respectively.
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4.3.4 Analysis Results for Burst Loss

The above analysis has assumed that the packet loss follows the BER model, that is, there
is no correlation between the lost packets. In reality, packet loss occurs in bursts.
Previous work have showed that the loss burst length would impact the end-to-end FEC
[41][76]. In this section, we analysis the impact of loss burst length on NEF [93]. The
setup is the same as in the previous section, only that we will assume the Gilbert packet

loss model here. For (n,k) FEC codes, calculate one point of goodput need to calculate n

point of probability; calculate one point of decodable probability need to calculate
n— k point of probability. In section 3.3, we have seen that the calculation probability for
Gilbert model is very complex and requires very high computation power, here we use
the greedy algorithm to find the place of codecs that maximum the decodable probability
but we will use the simulation to get the results for goodput improvement. This time in
our simulation, a Gilbert loss model is inserted into each link of the multicast tree. For the
decodable probability, the analysis results and simulation results are very close; the
results we presented here are the simulation results, also we only present the results for
100-node network.

Figure 29, Figure 30 and Figure 31 shows the decodable probability and goodput the p2p
multicast tree when packet correlation is set to 0.1, 0.5 and 0.9 respectively. Comparing
the results, we can see that as packet correlation increases, the improvement in decodable
probability and goodput becomes less dramatic. But even when the error packet
correlation is very high, the improvement is impressive. In Figure 31, when the packet

correlation is 0.9, for loss rate of 3%, we see that the first 3 codecs increase the decodable
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probability from 35% to above 61%, and the goodput is increased from 85% to over

91%.
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Figure 29 decodable probability and goodput for p2p overlay multicast tree, 100-node. p = 0.1,
P=2%, 3%, 4% respectively.
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Figure 31 decodable probability and goodput for p2p overlay multicast tree, 100-node. p = 0.9,

P=2%, 3%, 4% respectively.

In order to get a better understanding of the impact of loss burst length on the
effectiveness of NEF, we analyzed the decodable probability and goodput when the
number of codec is set to 5 and the packet correlation is increased from 0 to 0.9. The
result is plotted in Figure 32. Here, it can be observed that the decodable probability and

goodput decrease as p increases from 0 to 0.9. This implies that the erasure correlation
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coefficient has a direct impact on the FEC codec performance. As the erasure correlation
increases, the FEC codec performance is reduced due to an increase in the number of
“long bursts” of lost packets in an FEC block. Nevertheless, the overall performance of
the 5-NEF codecs stays very close to the optimum performance (at p =0), and does not
drop-off significantly only at high values of o when it approaches 1. Even for p=0.9,

the overall goodput when p =3% is around 90%.
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Figure 32 decodable probability and goodput when the number of codec is set to 5 and packet
correlation is changed from 0 to 0.9



For proxy-based overlay network, where only leaf nodes are considered as end users, we
can see the similar pattern of decodable probability and message goodput improvement.
The results are not presented here.

From the above analysis, we observe that for both binomial and Gilbert loss model, a
relative few codecs can greatly increase the decodable probability and goodput. The
reason for this is that in a transit-stub structure, a node in a stub domain often reaches to
the majority of nodes in other stub domains through a few nodes in transit domain. A
relative small number of codecs placed at some strategic points can affect most of the
nodes in the whole network.

Another observation we can make is that the lower the per-link loss, the more effective
the codec works, and the smaller number of codecs is needed to increase the decodable
probability and goodput into an acceptable value. It can be seen that the slope of the
increase is much bigger for the first few codecs when per-link loss is 3% than when it is
5%. Also the first few codecs contribute more improvements than the left, this is because
the first few codecs are often placed at a relatively higher hierarchy of the multicast tree

and serve more downstream children.

4.3.5 Overhead Analysis

In NEF, we have seen that intermediate codecs can improve the decodable probability
and message goodput. In end-to-end FEC, this can be achieved by using lower rate FEC
codes. In both cases, higher ratios of additional/overhead packets are sent into the
network and these packets increase the overall overhead bandwidth. Here we measure the

bandwidth overhead in terms of the cost for each message packet received [48]. The cost
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of a message packet is the product of the average number of packets transmitted
(including message packets and parity packets sent by the source and intermediate
codecs) per message packet and the average number of links (hops) these packets
traversed. For both NEF and end-to-end FEC, we do not consider control packets when
we measure the cost of a message packet (for example, messages exchanged to build the
overlay multicast tree).

When there is no loss in the network, each client will receive exactly what the source has
sent. There is no need for the use of FEC or retransmission. There is a bandwidth cost
related to this ideal condition. We call this ideal bandwidth cost, and use cost_ideal to
represents this. If there is loss in the network, we will use end-to-end FEC or NEF to add
protection. The bandwidth cost of this two error protection schemes are cost FEC and
and cost NEF respectively. We use the difference of the bandwidth costs correspond
with these two schemes between the ideal bandwidth cost to represent the bandwidth
overhead.

We use ns2 simulations to measure the average cost of a message packets. The packet
correlation is set to 0.5. For NEF, we use RS(255,223) FEC code, the number of codecs
is changed from 0 to 10. We measure the decodable probability and the average cost of a

message packet each time a new codec is added to the multicast session. For end-to-end
FEC, we start with RS(255,223) code, and we increase the FEC block size n by 10 at
each step of our simulation. For each different block size n, we measure the decodable
probability and the average cost of a message packet.

Figure 33(a) plots the average bandwidth overhead versus the decodable probability for

NEF and end-to-end FEC for the set of p2p networks when the average packet loss rate
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per link is set to 3% and the packet correlation is set to 0.5. For NEF, we can see that as
the decodable probability increases (through adding codecs in the intermediate nodes),
the bandwidth overhead decreases. For end-to-end FEC, the packet cost remains almost
unchanged but increases when the decodable probability is above 0.9. Figure 33(b)
shows the results for proxy-based overlay network. For both cases, we can see that the
bandwidth overhead for end-to-end FEC is much higher than that of NEF when the
decodable probability is the same.

Figure 34 and Figure 35 show the results when the packet losses per link are set to 4%
and 5% respectively. For end-to-end FEC, we can see that as decodable probability
increases (through decrease code rate), the bandwidth overhead increases and then
decreases. For NEF, the packet cost decreases consistently but the slope of the decrease
becomes smaller as the loss rate per link increases. Again, we can see the average
bandwidth overhead for end-to-end FEC is much higher than that of NEF, and the

difference between them becomes bigger as the loss rate per link increases.
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4.3.6 Performance of the greedy algorithm

The solution produced by the greedy algorithm may be sub-optimal. If there is only one
codec, the greedy algorithm will give the best choice. In order to get an idea about how
close we are to the optimum solution, we use the exhaustive search to find the first 2 and
3 codecs in the 100-node graph. As we have seen, the first three codecs give more
improvements than the rest of the codecs; also doing exhaustive search for 4 or more
codecs on a 100-node graph is too timing consuming. We run the exhaustive search on
the set of trees we analyzed, with the per-link loss set to 3%, 4% and 5% respectively and
the packet correlation is set to 0. In most case, the greedy algorithm finds the optimum
solution.

Table 1 and Table 2 show the average decodable probability and goodput of the two
algorithms when 2 and 3 codecs were placed in the tree. The difference of between the
results of the two algorithms is small. Studying each tree separately, the worst case
occurred on a tree when the codec number is 2 and link loss of 4%; in this case, the
greedy algorithm gave a decodable probability and goodput of 45% and 88.4%
respectively, while the optimum gave results of 59% and 93.3%, the difference is 14%
and 5%. For the same case, when the codec number increases to 3, however, the
difference decreases to 7% and 2% respectively. In general, as codec number increases,
the difference between the results of optimal and greedy algorithm decreases. Over all,

the greedy algorithm produces satisfying results.
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TABLE 1 AVERAGE DECODABLE PROBABILITY:
COPARISION BETWEEN OPTIMAL AND GREED ALGORITHM
Num of p=3% p=4% p=5%

codecs opt greedy opt greedy opt greedy
2 09110 | 0.9044 | 0.6217 | 0.5794 | 0.3671 | 0.3671
3 09488 | 0.9488 | 0.7332 | 0.7146 | 0.4809 | 0.4809

TABLE 2 AVERAGE GOODPUT:
COPARISION BETWEEN OPTIMAL AND GREED ALGORITHM

Num of p=3% p=4% p=5%

codecs opt | greedy | opt | greedy | opt | greed
2 98.5% | 98.4% | 93.9% | 91.9% | 87.8% | 87.8%
3 99.1% | 99.1% | 95.8% | 95.4% | 90.4% | 90.4%

4.3.7 Necessity of the Greedy Algorithm

One reason that we need a greedy algorithm is that we want to limit the number of codecs
in a multicast session even if every node is willing to act as codec. Encoding and
decoding are computation expensive operations, too many codecs may cause longer delay
penalty and may transmit too many unnecessary packets into the network. In the above
section, we have observed that when we embedded ten codecs in a one-hundred node
network, the maximum number of codecs per source-to-sink path is only two.

The other reason that we need the greedy algorithm is that not all possible codec
arrangements necessarily lead to significant improvement in reliability and/or a near-
optimal performance. We choose a proxy-based scenario to underline this argument. The
results in this section are based on two arbitrarily chosen trees (for the sake of discussion
we refer to these trees as “treel” and “tree2”) from the set of random trees considered in

this paper.
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It can be observed in Figure 36 (a) - (b) that placing NEF codecs in an arbitrary manner
does not necessarily lead to an increase in reliability. It should be appreciated that trivial
placements (e.g. embedding a NEF codec on a leaf node) have been excluded in Figure
36 (a) - (b). The design of our greedy algorithm is such that single NEF codec embedding
is always optimal. However, even for multiple codec embeddings the placement given by
the greedy algorithm is almost equal (if not equal) to the optimal solution. For 2 NEF
codec placement for tree2 the solution given by the greedy algorithm was equivalent to
the optimal solution and for treel in the sorted list of placements the greedy solution was
just 1 index below the optimal solution. Furthermore if all the considered solutions are
assumed to be equally likely in a random NEF placement then:
o For a single NEF codec placement:
= The decodable probability of a solution given by greedy algorithm is 62.57 % for
treel and 58.92 % for tree2 as compared to the decodable probability of 18.54 % for
treel and 14.54 % for tree2 obtained by averaging over all random placements.
= The goodput of a solution given by greedy algorithm is 94.16 % for treel and 93.57
% for tree2 as compared to the goodput of 85.33 % for treel and 82.93 % for tree2

obtained by averaging over all random placements.

o For a placement of two NEF codec:

» The decodable probability of a solution given by greedy algorithm is 79.82 % for
treel and 83.39 % for tree2, the results for the optimal solution are 83.25% for treel
and 83.39% for tree2 respectively, as compared to the decodable probability of
22.87 % for treel and 17.98 % for tree2 obtained by averaging over all random

placements.
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= The goodput of a solution given by greedy algorithm is 97.06% for treel and 97.46
% for tree2, the results for the optimal solution are 97.57% for treel and 97.46% for
tree2 respectively, as compared to the goodput of 86.14 % for treel and 83.72 % for

tree2 obtained by averaging over all random placements.

Thus from the above discussion it should be clearly evident that an efficient NEF codec
placement algorithm is necessary and the greedy algorithm that we have proposed is
indeed such an algorithm. The proposed algorithm not only is near optimal but also
improves the decodable probability and goodput by a significant margin when compared
with a random placement. It should be noted though that random algorithms where, all
the solutions considered here are not equally likely, might provide better performance.
However as the solution given by the greedy algorithm is almost always equal to the
optimal solution, we believe that it would be difficult to design a simple enough random

algorithm that can provide performance comparable to the greedy algorithm.
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Chapter 5 A Distributed Codec Placement Algorithm

The analysis in chapter 4 shows that a few codecs placed in the intermediate nodes of a
network can greatly improve the decodable probability. In reality, it is impossible to
know the loss rate of each branch before hand, especially the loss rates are always in
dynamic change; further, the topology of a multicast session will change with time as
users join and leave the session randomly; also it does not scale to run an centralize
algorithm for a large network. We implement a simple distributed algorithm to place
codecs in the intermediate nodes without the knowledge of full topology; the algorithm
can also cope with the dynamics of the network. We use ns2 [82] to simulate the

performance of the distributed algorithm.

5.1 Algorithm Design

In a distributed codec placement algorithm, nodes need to exchange information with
each other. These information will be used by each node in its decision making process to
decide if it should act as a codec. The exchange of information will cause management
and traffic overhead. For management overhead, we mean that nodes need a mechanism
to exchange and store the information. The traffic overhead has relationship with
message size and how frequently these messages are exchanged. In a distributed
algorithm, these overheads should be kept as low as possible.

In our algorithm, we assume that every node is willing to act as codec if it meets certain
conditions; we also assume that nodes are willing to exchange information to each other
for the codec placement purpose. Even if every node can act as codec, we want to limit

the number of codecs in a multicast session. Encoding and decoding are computation
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expensive operations, too many codecs may cause longer delay penalty and may transmit
too many unnecessary packets into the network.

The distributed algorithm should deal with the dynamics of the network. In a multicast
session, nodes join and leave randomly and the structure of the multicast distribution tree
is changing constantly. This is especially true when an intermediate node leaves the
multicast tree; all its children need to find their new parents and the structure of the
multicast tree may change dramatically. The positions of the codecs should be changed to
reflect the structure change of the network topology in a timely fashion. Another
dimension of the network dynamics is that the conditions of the network, including the
congestion conditions of nodes and available bandwidth resources, also change with time,
this will cause variations in the loss rates of branches of the multicast distribution tree. A
node may require a different number of parity packets to decode a FEC block at different
times. A codec should adjust the number of parity packets it produces and transmits
according to the requirements of its children at different times.

In order to limit the number of codecs in the network, we impose certain conditions for a
node to be a codec. The first criterion for a node to be a codec is that on average, the node
should be able to decode FEC blocks; only when a node can decode a FEC block can it
be able to produce extra parity packets requested by its children. The second criterion for
a node to be a codec is that it has children that need extra parity packets. If all the
children of the node are able to receive enough packets to decode FEC blocks, there is no
need for this node to send extra parity packets down stream.

Often there are multiple codec placement choices to satisfy the nodes’ requirements in a

multicast application. We use the same multicast tree in Figure 1 as an example, here we

78



assume this is a p2p multicast tree, each node in the tree is an end system. We redraw the
tree in Figure 37. Assume node 0 is the source; node 1, 2, 3, 4 on average can decode
FEC blocks; node 5, 6 and 7 on average can not receive enough packets to decode FEC
blocks and requires 3, 5 and 8 extra parity packets respectively. One scheme is to have
two codecs, node 3 and 4; where node 3 will send 3 extra parity packets to node 5, and
node 4 will multicast 8 extra parity packets to node 6 and 7. The other scheme is to have
just one codec, node 3; where it will multicast 8 parity packets to node 4, 5, 6 and 7. The
later scheme may reduce the number of codecs, but it requires node 4 and node 5 to

receive more extra packet.

Figure 37 a p2p overlay multicast tree

We call those nodes that on average can decode FEC blocks as codec candidates. To
select a limited number of codecs from these codec candidates, one approach is to let
these candidates to exchange link state information with each other, decisions can then be
made based on the partial knowledge of the topology of the network. This approach,
while maybe feasible, is rather complicate, especially when the network is in a dynamic
change. Also when codecs are added to the network, nodes down streams that could not

receive enough packets to decode FEC blocks before can now receive extra parity
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packets from the upstream codecs and maybe qualified as codec candidates, this makes
the problem further complicate.

We designed a simple algorithm to solve this problem. In our approach, each node sends
feedback messages to its parent periodically. In the feedback message, the node tells its
parent the biggest number of parity packets its children have required and the number of
children it has that on average can not decode FEC blocks. A codec candidate, on
receiving the feedback message, if it finds that the number of children that can not decode
FEC blocks passes a certain threshold, will make a decision to become a codec. Set a
threshold on the number of children that can not decode FEC blocks can limit the number
of codecs in a network. If the threshold is set to 1, then every node that on average can
decode FEC blocks and have at least one child that needs extra parity packets will
become a codec. If we set the threshold higher, the positions of codecs are pushed to the
higher positions of the multicast tree and the number of codecs in the network will
decrease.

For a node to acquire the information about the biggest number of parity packets its
children have requested and the number of its children that can not decode FEC blocks,
the feed back message should start from leaf the nodes of the network; an intermediate
node should not send feedback until it receives feedbacks from all its immediate children.
This, however, will cause a lot of time delay before the first codec is assigned. In a real
time application, intermediate nodes first detect packet losses, and codecs should be put
in places as soon as possible. In our algorithm, an intermediate node, once detects that it
can not decode a FEC block, will send feedback to it parent immediately even if it does

not get any feedback from its children. For example, in Figure 37, if node 3 detects
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packet losses and can not decode a FEC block, it will send a feedback message to node 1
without waiting feedback messages from node 4 and 5. Node 1, on receiving feedback
from node 3, if it decides to be a codec, will produce and transmit extra parity packets to
node 3; the number of parity packets it sends, however, will be adjusted once the
information about node 4, 5, 6 and 7 is obtained.

The time interval between consecutive feedback messages sent by a node should be
selected carefully according to a specific application. While a shorter interval may cause
more traffic overhead, a longer interval may not be able to reflect the dynamics of the
network timely. In addition, some critical information may need to pass to the codec
immediately. For example, In Figure 36, if node 1 is a codec and node 7 has asked the
biggest number of parity packets among the children of node 1. If node 7 leaves the
multicast session, the biggest number of parity packets required from node 1 should be
updated immediately, otherwise, unnecessary redundant parity packets are sent
downstream. On the other hand, given the same setting as in the previous example, if the
link between node 4 and 6 becomes deteriorated and causes node 6 to loss a lots of
packets, node 4 and 3 should pass this information immediately to node 1 so that node 1
can produce more parity packets as requested.

There are maybe multiple codecs along the path from the source to a receiver. The
immediate codec of a node is the upstream codec that is nearest to the node. The packets
a node receives consist of the original message and parity packets sent by the source and
the parity packets produced by one or more codecs on the path between the source and

the node.
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Assuming we use RS(n,k) FEC code. Each node estimates the average number of

packets it receives per FEC block. We use avg recv to represent this estimation. If
avg_recv 2k, this node is a codec candidate. This estimation, however, cannot be used to
calculate the number of extra parity packets it requires from its immediate codec in order
to decode a FEC block.

Let avg recv; be the estimation of the average received packets per FEC block of node i.
When there no codecs upstream, k - avg recv; is the average number of extra parity
packets needed for node i. If there are already one or more codecs upstream, then & -
avg_recv; represents the incremental requirement based on the number of parity packets
those codecs have already produced and sent.

Figure 38 shows an example. In Figure 38(a), there is no codec in the multicast tree, each
number outside the circle is the number of parity packets that node requires; in this case,
node 3 requires 2 packets Aand node 6 requires 10 packets etc. In Figure 38(b), node 1
receives feedback from node 2 and 3 and becomes a codec. Node 1 then produces and
transmits 2 extra parity packets downstream, as represented by the number 2 by the side
of the “codec” label. If these parity packets does not suffer to loss and the network
condition does not change, then the average received packets for each node down stream
node 1 will increase by 2, and k - avg recv; will decrease by 2. In Figure 38(b), the
number outside each circle is updated to reflect these changes. In this case, node 3
requires 0 parity packets and node 6 requires 8 parity packets, etc. Notice the number
outside node 2 becomes -1, this means node 2 receives more parity packets than it needs.
Figure 38(c) reflects the updated number when node 1 receives feedback message from

node 6 and sends 10 extra parity packets downstream.
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Figure 38 the number of parity packets of a node requires changes as codec sends different number
of packets

Comparing Figure 38(a) and (b), using node 6 as an example. Node 6 uses k - avg_recv
as the number of parity packets it requires and send this message to its parent node 4.
When & - avg_recv is changed from 10 to 8, node 4 does not know whether this change is
caused by a codec upstream sending extra parity packets or caused by the improved
network condition on the branch that connect node 4 and 6. Comparing Figure 38(b) and
(c), k - avg_recv of node 6 is changed from 8 to 0; again, node 4 does not know if the
change is caused by a codec sending a different number of parity packets® or by the
dynamic network condition. In either case, it is difficult for node 4 to update as exactly
how many parity packets node 6 is requiring.

In order to solve this problem, we require each node to perform another estimation -- the
average received packets per FEC block without counting the parity packets produced by
its immediate codec upstream. If we use avg recv_imm to represent this estimation, then
k - avg recv_imm represents the number of parity packet a node requires from its

immediate codec upstream. In the above example, if the network conditions do not

3 In a distributed environment, a node in general does not know how many parity packet a codec upstream
produces and transmits.
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change, then & - avg recv_imm of node 6 will not change no matter how many parity
packets the codec (node 1) produces and transmits. Using the same example, in Figure
38(a), k - avg_recv_imm of node 6 is 10. In Figure 38(b) and (c), if the network condition
does not change, and node 1 produces and sends 2 and 10 parity packets respectively, k -
avg _recv_imm of node 6 will remain 10 unchanged. However, if the network conditions
are changed, k - avg_recv_imm of node 6 will be changed to reflect the differences.

A codec i will also send feedbacks to its parent. The number of parity packets it requires
is not the biggest number among its children, but the number it requires itself from its
immediate codec upstream, again we use k — avg_recv_imm; to represents this number.
Initially, when a node i decide to become a codec, if there are no codecs between node i
and the source, the node knows the largest number of parity packets required by each of
its immediate children from itself. If there are codecs upstream, the node knows the
largest number of parity packets required by each of its children from its immediate
codec upstream, we use reg; to represent this number for its child j; once this node
becomes a codec, the biggest number of parity packets child j requires from itself would
then be req;— (k — avg_recv_immy).

In Figure 38(b), the immediate codec upstream of node 6 is node 1. Here, we can see that
once node 1 becomes a codec, node 3 can now receive enough packets to decode FEC
blocks and becomes a codec candidate. Node 3 has 4 children that cannot decode FEC
blocks, if this number passes the threshold we have set, then node 3 becomes a codec.
Now the immediate codec upstream of node 6 becomes node 3. After node 3 becomes a
codec, node 3 will also send feedback to its parent, node 1; the number of parity packets

it requires now is not the biggest number required among its children (in this case, 10),
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but the number of parity packets itself requires (in this case, 2); the number of children
that can not decode FEC blocks, however, is the same as that before node 3 became a
codec (in this case, it is 5, including node 3 itself), this will remain node 1 to act as codec.
Initially, node 3 knows the number of parity packets its children requires from its
immediate codec upstream (in this case 10), as node 3 also requires 2 parity packets from
its immediate codec upstream, it estimates that the biggest number of parity packets
required from its children would be 10-2 = 8. After this initial stage, the number of parity
packets in the feedback message would reflect the requirements from its children to itself.
A node will keep a record for each codec upstream. When a node receives a parity packet
produced by a codec, it will record its IP address and the number of hops between the
codec and itself. A node can differentiate the packets it receives from different upstream
codecs by their IP addresses. Further, a node can tell which codec is its immediate codec

by the distance (the number of hops) between the codec and itself.

5.2 Algorithm Implementation

In the above section, we set out the principles that we are going to use in designing the
distributed algorithm. In this section, we detail the implementation of the distributed
algorithm in network simulator ns2.

In the proposed distributed algorithm, each node maintains a linked list of child_info data
structure (except leaf nodes). Each child_info data structure stores information needed
regarding each of its immediate child. The child_info has the following data members:

e req parity indicates the parity packets requested by the child from its immediate

codec upstream;
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® req_children indicates the number of nodes in the sub-tree rooted at the child that, on
average, can not decode FEC blocks if it does not receive parity packets produced by
its immediate codec upstream .

Each node also keeps the following records about itself:

e avg recv, an estimate for the average received packets per FEC block;

e avg recv_imm, the average received packets per FEC block without counting the
parity packets it receives from its immediate codec upstream.

In the following description of the distributed algorithm, we use the node number as

index to reference the above parameters of a particular node. For example, avg recv;

represents the average received packets per FEC block of node i.

Initially, there is no codec in the multicast session. Each node estimates its average

received packets per block avg recv. At this point, avg recv_imm and avg recv are

equal. (Once there are codecs between a node and the source, these two parameters must

be estimated separately). The number of parity packets each node requires from its

immediate codec upstream is (k— avg_recv_imm), represented by avg req. The parity

packets sent by a codec, however, are suffered from losses. Assuming the loss rate from

the nearest codec to node i is r;, we adjust the number of parity packets node i requires to

avg req; = (k—avg _recv_imm;) * (1+r;)

Each parity packet sent by a codec have a sequential number and a group tag, this can

help a node to estimate r;. Also there is variation for the received packets per FEC block;

this is especially true when loss occurs in bursts. Assuming the variation that node i

receives avg_recv_imm; packets is avg_dev;, then the number of parity packets node i

requires is adjusted to
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avg_req; = (k—avg_recv_imm;) x (1+r;) + avg_dev;
We use the following equations to calculate the estimations of the parameters listed
above:

avg_recv(K+1) = (I-g) xavg _recv (K) + g xrecw(K+1)

avg_recv_imm (K+1) = (1-g) x avg_recv_imm (K) + g x recv_imm(K+1)

avg_err(K+1) = |avg_recv_imm(K+1) - avg_recv_imm (K)|

avg _dev(K+1) = (I-h) x avg_deW(K) + h x avg_err(K+1)
Here, avg_recv (K) represents the average received packets per FEC block up to the time
when a node receives the Kth FEC block; recv(K+1) represents the packets received by a
node for block K+1; In our estimation, g is set to 0.1 and 4 is set to 0.2.
Let max_regq; be the largest number of parity packets required by the node itself and its
immediate children; sum_children; be the total number of nodes in the subtree rooted at
this node(including itself) that, on average, can not decode FEC blocks if they do not
receive parity packets produced by its immediate codec upstream. If node i is a leaf node,
then max_req; = avg_req;; if avg recv_imm; < k, then sum_children; =1, otherwise,
sum_children; = 0; if node i is an intermediate node, max_regq; is initialized to avg req;;
if avg_recv_imm; < k , then sum_children; is initialized to 1, otherwise, it is initialized
to 0. For the intermediate nodes, max_req and sum_children will be updated when it
receives feedback from its children.
Each node sends feedback to its parent periodically. In our algorithm, a node will send

feedback each time a new FEC block is received. We still use RS(255,223) code as an

example in our simulation, so a node will send one feedback (very small) packet per 255

(standard size) data packets.
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In the feedback message, node i reports to its parent max_req; and sum_children;. As
these information is passed from the leaf nodes toward the root of the multicast tree,
eventually, each node will know the biggest number of parity packets required among the
nodes that belong to the subtree rooted at this node; each node will also know the total
number of nodes in this subtree that, on average, can not decode FEC blocks if they do
not received extra parity packets from the immediate codec upstream this node.

Let C;represents the immediate children of node i, Figure 39 describes the action taken
by node i when it sends a feedback message. Here, a codec will also send feedback;
however it will only send to its parent the number of parity packets it requires itself, not
the biggest number required by its children.

Assume node j is node i’s parent. When node j receives a feedback from node i, node j
will first update node i’s information in child_info; then it will make a decision to see if
it can act as a codec. If avg_recv;> k and the sum of nodes among its children that can
not decode FEC blocks is bigger than a certain threshold, say thresh_children (we use the
threshold to set a limit on the number of codecs), then the node can make a decision to
become a codec. Figure 40 and Figure 41 summarize the action taken by node j when it

receives feedback from node i.

88



Procedure Send_feedback
Node i send feedback its parent node j
IF node i is a leaf node THEN
max_req;= avg_req;
IF avg recv_imm; < k THEN
sum_children; =1
ELSE IF avg_recv_imm; > k THEN
sum_children; =0
END IF
END IF
IF node i is a intermediate node THEN

max_req; = max (child_info,,—req_parity, avg_req;)

meC,
IF avg_recv_imm; < k THEN

sum_children; =1+ z (child_info,,—req_children)
me;

ELSE IF avg_recv_imm; > k THEN
sum_children; = Z (child_info,,—req_children)

meC;
END IF

END IF

IF node i is codec THEN

Send max_req; = avg req;
END IF
Send max_req; sum_children; to node j
END Send_feedback

Figure 39 send_feedback procedure
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Procedure Receive_Feedback
Node j receive feedback from node i
child_info; —»req_children = sum_children;
child_info; — req_parity = max_req;
Call Procedure Decision_making

End Receive_Feedback

Figure 40 receive_feedback procedure

Procedure Decision_making

Node j make a decision whether it should be a codec
sum_children; = Z (child_info,,—req_children)

mC;

req_max;= max (child_info,,—req_parity)

IF node j not a codec THEN
IF avg recv;> k
and sum_children; > thresh_children
and req_max; >0 THEN
Set nodej a codec
END IF
ELSE IF node is a codec THEN
IF avg recvi<k
or sum_children; < thresh_children
or req_max;<0 THEN
Set nodej not a codec
END IF
END IF

End Decision_making

Figure 41 decision_making procedure

Once a node becomes a codec, if it can decode an FEC block, it can reconstruct the

original FEC block; at the same time, it will produce the largest number of parity packets
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required by its children (the maximum among child_info— req_parity) and forward to
each child the number of parity packets they have required (child_info— req_parity).
Each node along the forwarding path of the multicast tree also knows the largest number
of parity packets required by each of its children (child _info— req parity), so the node
does not necessarily forward all the parity packets it receives to all of its children, but
only forward the number of parity packets each child has requested; this way, the
transmission overhead is decreased.

The algorithm runs on top of an overlay multicast routing protocol. The random join and
leave of nodes to a multicast session will not affect the performance of the algorithm. For
example, when a node first joins the multicast session, its parent will allocate a child_info
data structure for this node. The node will estimate its avg recv and avg recv_imm
according to whether or not there are codecs upstream. When the node sends feedback to
its parents, the parent will update the information stored in child info for this node.

If a leaf node leaves a session, the parent of this node will detect this leave (by the
routing protocol or other mechanism) and will delete the child_info data structure for this
child. If this child has been the node that requested the biggest number of parity packets
among all the children, the parent will then select the biggest number of parity packets
required among all its other children and send a feedback to its parent.

If an intermediate node leaves a multicast session, the behavior of the parent of this node
will be the same as that when a leaf node leaves a session. The children of this node will
reset their estimation of avg recv and avg recv_imm. The overlay multicast routing
protocol will find new parents for the children. The parents will allocate child_info data

structures to these children as if they are newly joined nodes, and the children will restart
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their estimation of avg recv and avg recv_imm once they receive packets from their new

parents.

5.3 Simulation Results

We implemented the above distributed algorithms in ns2. Primitives to build overlay
networks upon the underlying topologies are also implemented. The algorithm to build
and maintain the overlay network is not a main focus of this work. Hence, we built an
overlay network to form a Shortest Path First (SPF) multicast trees that we produced in
chapter 4. On each link in the multicast tree, we insert a two state Markov error model

with error packet correlation pset to 0.5 and the average loss rates set to 3%, 4% and 5%

respectively. We run the simulation on all the ten trees we produced in chapter 4, the
results are the average of these simulations.

Table 2 shows the simulation results. Here, the source sends RS(255,223) FEC blocks.

The threshold thresh_children is set to 1, 5, and 10 respectively; the packet error
correlation is set to 0.5 (as mentioned above). It can be observed that the thresh_children
parameter does not have a significant impact on the overhead and goodput. As we have
discussed, the thresh_children parameter is used to control the number of codecs in the
distributed algorithm. In the distributed algorithm, codec use adaptive FEC; hence, when
the number of codecs in the network is small, each codec may send more repair parity
packets into the network, and this explains why the number of codecs (under the
distributed algorithm) does not have the dramatic effect on the performance as in the

centralized algorithm.
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TABLE 3 SIMULATION RESULTS FOR DISTRIBUTED ALGORITHM

Thresh = 1 Thresh = 5 Thresh = 10
Loss rate 3% 4% 5% 3% 4% 5% 3% 4% 5%
Dec prob 096 |[094 |0.70 | 0.92 0.85 0.72 090 |0.80 |0.71
| goodput 0.99 0.98 090 | 0.98 096 | 091 0.98 0.95 0.91
overhead 0.16 |0.16 | 0.21 0.17 0.16 |0.20 |0.18 0.16 | 0.20

5.3.1 Performance analysis of the distributed algorithm

As we have discussed before, if there is no loss in the network, then each node will
receive all the data packets reliably without any overhead. When there is loss in the
network, we can use different error recovery schemes to increase the reliability of the
receivers. Different error recovery schemes may achieve different levels of reliability and
may incur different amounts of overhead.

For an error recovery scheme, we can adjust certain parameters to achieve the desired
level of reliability, which, of course, will cause a certain amount of overhead. For
example, a multicast application using end-to-end FEC for error recovery, if we decrease
the FEC code rate, the application may become more reliable, but the bandwidth
overhead may also increase. For end-to-end FEC, the only parameter that we can control
is the code rate, though even for the same code rate, we still can use different FEC codes.
In a centralized NEF codec placement algorithm, in addition to controlling the code rates,
we can also control the number of codecs in the network. In the distributed NEF codec
placement algorithm, we can control the code rates and the condition parameters that a
node needs to satisfy in order for that node to be a codec.

In this section, we compare the performance of the distributed codec placement
algorithm, the centralized codec placement algorithm and end-to-end FEC in terms of a

“distortion measure” versus bandwidth overhead. Here, our distortion measure is the
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average loss ratio of message packets experienced by the different schemes under
consideration. We implement the three error recovery schemes in a multicast distribution
tree, with the loss rate per-link of 3% and packet correlation of 0.5. The FEC codes we
used is Reed Solomon codes with £ = 223 and n is increased from 235 to 305 in steps of
10. For the centralized codec placement algorithm, for each FEC code we use, the
number of codecs is changed from 1 to 10. In the distributed codec placement algorithm,
for each code we use, the condition parameter thresh_children is set to 1, 5 and 10
respectively. In the centralized and distributed codec placement algorithms, if there are
multiple implementations that achieve the same distortion, we select the implementation
that has the minimum overhead.

Figure 42 shows the distortion versus bandwidth overhead of these three schemes. It can
be observed that the two NEF schemes can achieve less distortion with less bandwidth
overhead than that of end-to-end FEC. The distributed algorithm has a wider dynamic
rang in overhead (from 0.05 to 0.18) than that of the centralized algorithm and end-to-end
FEC. As we have explained before, we have more control on NEF than that of on end-to-
end FEC. Comparing the two NEF schemes, the distributed algorithm is more flexible
than the centralized algorithm. This is because: First, the number of codecs in the
centralized placement algorithm is limited, while there is no limitation for the distributed
algorithm. Second, the behavior of codecs in the centralized algorithm and the distributed
algorithm is different. In the centralized codec placement algorithm, if a codec can
decode a FEC block, it rebuilds the original FEC block; that is, for a codec that receives k&

or more packets of a RS(n,k) block, that same codec will send n packets. In the

distributed codec placement algorithm, a codec will send the number of parity packets a
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child requested; in other words the number of parity packets a codec send may be larger
or smaller than (n — k).

When the overhead is between 0.14 and 0.18, the distributed algorithm causes a distortion
(i.e., message packet loss rate) of about 1% to 2%. While the end-to-end FEC may cause
a distortion of 4% to 25%. When the overhead is less than 10%, the distributed algorithm
can obtain a distortion of less than 15%, this is better than the centralized algorithm. For
overhead between 10% and 14%, the centralized algorithm outperforms the distributed

algorithm, but the difference between these two algorithms is less than 5%.
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Figure 42 Performance comparisons between distributed algorithm, centralized algorithm, and end-
to-end FEC.
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Chapter 6 A Hybrid ARQ-NEF (HANEF) Reliable

Multicast Protocol

NEF is designed with realtime applications (audio/video) in mind. In some overlay
network applications where reliable distributions of contents are desirable, NEF can be
integrated with ARQ to achieve 100% reliability. Even for a realtime application, if the
round trip time (rtt) delay between the receivers and retransmission servers is short, ARQ
is still a viable option [38][83][84] to increase the reliability of an application. In this
chapter, we describe the details of a Hybrid ARQ-NEF (HANEF) reliable multicast

algorithm.

6.1 Related Work

6.1.1 The heterogeneous problem

In a multicast session, each receiver may require different number of parity packets for
the same FEC block; also different receivers may have different round trip times to the
recovery server. One of the main difficulties in designing reliable multicast protocol is to
compromise between delay penalty and retransmission overhead. This can be shown in
the following example. Figure 43 shows a 4-node network, where node 0 is the source,
node 2 and 3 are two receivers. The numbers on the branches indicate the time delay
between the nodes. The numbers below node 2 and 3 represent the number of parity
packets these two nodes require in order to being able to decode a FEC block. The
source first receives a feedback from node 3 requesting 6 packets; these parity packets are

then produced and multicasted to all of the receivers. Node 2 then sends feedback before
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it receives the retransmitted parity packets from the source requesting 10 packets; again
these parity packets are produced and multicasted to all of the receivers. A total of 16
parity packets are retransmitted, which is much more than the requirement of the worst

case node.

©

1ims
(1)
6ms 3ms
(2 ©
10 6

Figure 43 synchronization among receivers is difficult for reliable multicast

The above example just shows one round of feedback and retransmission; as
retransmitted packets also suffer from losses, multiple rounds of feedbacks and
retransmissions are required for each receiver to achieve reliability. As the number of
receivers increases, the problem becomes worse.

One way to solve this problem is that, for each round, the source will wait until it
receives feedbacks from all the receivers, as the round-based protocol proposed in [38].
In the above example, the source will not retransmit parity packets until it receives
feedbacks from both node 2 and 3. This approach guarantees that the source will send no
more parity packets than the requirement of the worst case node, but requires all the
receivers adapt to the slowest receiver in the network. Also in the multicast session, as
users join and leave the multicast session, it is difficult for the source to decide if it has

received feedback from all the receivers.
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An alternative way is that the source waits a random period of time before it sends out the
retransmission packets. In this case, the source does not have to wait until it receives the
feedback from the slowest node, but it will also send out more parity packets than the
requirement of the worst case node. This approach is a compromise between delay
penalty and bandwidth overhead. The time that the source should wait need to be
designed carefully in order for this method to be efficient [48].

Another approach is that each node waits a random time period before it sends feedback;
also the feedbacks are multicasted to all the receivers in the multicast session or to the
receivers in local recovery groups [31][85]. In the above example, if node 3 holds back
7ms before it sends feedback and node 2 holds back 1ms, then the feedback message
multicasted by node 2 will reach node 3 before it sends feedback itself. Once node 3
receives the feedback message, if the number of required parity packets is bigger than the
number that it requires, it will suppress its feedback message. The performance of this
scheme depends on the random time each node should wait before it sends out feedback.
In the above example, if node 2 holds back longer than node 3, then there will be no
improvement in the performance. The random time delay needs to be selected carefully
and may need change according to different applications; also one or more feedback

multicast groups need to be formed and may incur more management overhead.

6.1.2 Source based and distributed error recovery

There are lots of literatures on reliable multicast. Generally, they can be classified into
two classes: source based error recovery and distributed error recovery [43]. In source
based error recovery, only the source will process feedbacks and retransmissions. This

can easily lead to the feedback explosion problem. Various techniques have been adopted
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to suppress feedbacks. One scheme is to use a ring-based protocol, where only one node
will send feedback to the source at one time [86]. Another scheme is to multicast
feedbacks to all the receivers [87] [88], as we have described in the above subsection.
Retransmissions can be multicasted to all the receivers or can be unicasted to a particular
receiver. In [87] and [89], the authors have proposed a scheme where retransmission is
unicasted or multicasted based on the number of receivers that sent the requests. All of
the schemes we referenced above require the source to wait for a period of time before
sending retransmission.

In a large multicast session, even when feedback suppression techniques are adopted, it is
still very difficult for the source to process all of the feedbacks and retransmissions. In
this case, receivers are organized into local groups where each group is served by a local
error recovery server [31] [85]. Different feedback suppression techniques and
retransmission methods can be adopted for local recovery.

We propose a reliable multicast algorithm that minimize the average delay penalty, at the
same time, keep the redundant retransmitted packets no more than the requirements of the
worst case node. The following subsection describes the algorithm in detail. Again we

assume using a RS(n,k) FEC code.

6.2 HANEF Algorithm Design

We add two more parameters in the repair request and retransmission packet header to
synchronize the activities between the receivers and the repair servers (source or codecs):
round and repair_sent (for feedback, these are set to round f and repair sent f

respectively; for retransmission, these are set to round_t and repair_sent_t respectively).
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The meaning of these two parameters will be explained later. We first use a simple
example to explain our approach.

In Figure 43, when node 3 first sends a repair request, it will require 6 parity packets. At
the same time, it will set round_f =1 and repair_sent_f=0 in the feedback header. When
the source receives the feedback message, it will retransmit 6 parity packets immediately,
at the same time, the source will set round_t=1 and repair_sent_t=6 in the retransmission
header. Also the source will record the retransmission status for this FEC block, in this
case, one round of parity packets has been transmitted and the number of parity packets
retransmitted is 6. Node 2 will send its first feedback message before it receives the
retransmitted parity packets from the source. Node 2 will require 10 parity packets and it
set round_f=1 and repair_sent_f=0 in the feedback header. When the source receives this
feedback message, round f=1 and repair sent f=0 in the feedback header indicate that
node sent this feedback message before it receives the last retransmitted parity packets.
The source will sent 10-6=4 parity packets. It will also set round t=2 and
repair_sent_t=10 in the retransmission header. Using this approach, we can see that a
receiver sends feedback messages immediately once it detects that it can not decode a
FEC block; and the source sends retransmission packets immediately after it receives a
feedback. The number of parity packets sent by the source is no more than the
requirements of the worst case node. In the following, we describe the receiver and

sender side algorithms in detail separately.

6.2.1 Receiver Side Algorithm

Each FEC block has a block_ID. A receiver keeps the biggest Block_ID it has received in

current_ID. 1t also keeps the following four parameters for each FEC block:
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e recv_pkts, the number of packets the receiver has received for this FEC block.

e recv_round, the most recently retransmission round it has received, which is
initialized to 0.

e repair_sent_r, the recorded total repair packets the source or codec has sent up to
and including the recv_round, which is initialized to 0.

e status, this can be one of the four status: RECV, WAIT, RECV_RET, and DONE.
When a receiver receives the first packet of a block, the block enters into the RECV state.
We assume that when the source sends the original data, packets from different FEC
blocks are not interleaved. So when a receiver receives a block that has a block_ID bigger
than current ID, it knows that the transmission of the current FEC block has been
terminated, and a new FEC block is commencing. The receiver will check the state of the
current block. If it can decode the block, then this block enters into the DONE state, and
the receiver does not have to keep any status information for this block. However, if the
receiver receives less than k packets of the current block, it will send the feedback
message immediately and set the block into the WAIT state. The receiver will also setup a
wait_timer for this block. This wait timer expires after a round-trip time from the
receiver to the source.

The header of a feedback message includes the following parameters:

e block_ID, the block_ID of the block that needs repair packets

e req_num, the number of repair packets this block needs, set to k — recv_pkts.

e round_f, which is always set to recv_round+1.

e repair_sent f, the total repair packets the source or codec has sent up to and

including the recv_round, which is same as repair_sent r.

101




When a receiver sends a feedback message for the first time, round fis set to 1 and
repair_sent fis set to 0.

As we will describe later, in the head of the retransmission packet, the sender will include
the block_ID, the round_t, which indicates the retransmission round of this block, and
repair_sent_t, which represent the total retransmission packets up to and including this
round_t. When a receiver receives this retransmission packet, recv_round is set to
round_t, the receiver will also record repair_sent t in repair sent_r. The receiver then
increments recv_pkts by one and checks if it can decode the FEC block. If it can, the
receiver is DONE for this block; if it cannot, the receiver set the status of the FEC block
to RECV_RET. Once a block is in a RECV_RET state, if the receiver continues to receive
retransmission packets for that block but still cannot decode the block, the FEC block
remains in the RECV_RET status; meanwhile recv pkts is increased accordingly.
However, if it does not receive any retransmission packets of the block within a certain
threshold® time, the receiver will assume that this round of retransmission is over. If it
still can not decode the FEC block, it will send another feedback and the status of the
block is set to WAIT. This time the round-trip is set to be the round trip time from the
node to the codec that sends the retransmission. Again the wait_timer will expire after the

round-trip time.

6 . . .. .
We assume that repair packets are sent consecutively at a certain interval, and we set some threshold time
that is proportional to the interval: threshold = a* interval, where a is some constant (e.g., a=10).
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recv_pkts > k

Receive retrans

recv_pkts <k
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recv_ret_timer )
wail_timer expires Receive retrans

expires

Figure 44 state diagram of a FEC block at a receiver

If a block is in WAIT state and the receiver does not receive any retransmission packets
for this block within the round-trip time, the wait_timer expires and the receiver sends a
feedback message for this block. This time the recv _round is increased by 1, the
parameters in the feedback header are set in the same way as we have described before.
The block stays in the WAIT status. Figure 44 shows the status transition diagram.

Figure 45 describes the receiver side algorithm in different state.

The send feedback and receive retransmission procedure of a receiver are described in

Figure 46 and Figure 47 respectively.
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IF status = RECV
IF receive a packet for the current FEC block
recv_pkts++
END IF
IF received the last packet of the current FEC block
IF recv _pkts > k
Set status = DONE
ELSE IF recv_pkts <k
recv_round =0
repair_sent r=0
Call send_feedback procedure
END IF
ENF IF
END IF

IF status == WAIT
IF receive retransmission packets
Call recv_retransmission procedure
ELSE IF wait_timer expires
Call send_feedback procedure
END IF
END IF

IF status == RECV_RET
IF receive retransmission packets
Call recv_retransmission procedure
ELSE IF recv_ret_timer expires
Call send_feedback procedure
END IF
END IF

Figure 45 receiver side algorithm

Procedure send_feedback
req_num = k — recv_pkts
round_f = recv_round + |
repair_sent_f = repair_sent_r
send feedback message to its immediate codec upstream
Set wait_timer
Set status = WAIT
END Procedure

Figure 46 send_feedback procedure
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Procedure recv_retransmission
recv_pkts++
recev_round = round_t
repair_sent_r = repair_sent_t

IF recv_pkts > k
Set status = DONE
ELSE

Set recv_ret_timer
Set status = RECV_RET
END IF

END Procedure

Figure 47 recv_retransmission procedure

6.2.2 Sender Side Algorithm

A sender (original source or codec) may choose to send the retransmission packets
immediately or wait for sometime after it receives a feedback message. The later case
only needs a small modification relative to the former one. We only focus on the case
when the sender sends retransmission repair packets immediately.
Besides the block_ID, the sender also keeps the following parameters for each block:
e current round, the most recently retransmitted round for this FEC block,
initialized to 0.
e current_sent, the total retransmission packets that have been sent for this block up
to and including current_round, initialized to 0.
o last_time, the time for the last request has been sent for this block. When certain
interval have passed and the sender does not receive any feedback message for a
FEC block, the sender can assume that all receivers have received this block
reliably and can delete the record for this block.
When a repair server (the source or a codec) receives a feedback message, if the round f

in the feedback message is bigger than the current_round, this implies that the receiver
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has received some or all of the most recently sent retransmission packets, and it is asking
for more repair packets. In this case, current_round is set to round f in the feedback
message. And current sent is increased by req_num. The repair server will multicast
req_num number of repair packets down stream immediately. In the header of each
retransmitted packet, the round t is set to current_round and repair_sent t is set to
current_sent. Apparently, when the sender receives the first feedback message of a block,
the round_t is set to 1 and repair_sent t is set to the req_num, which is required by the
node that has sent this feedback message.

On the other hand, if the round f is equal to or smaller than the current round, this
implies that the node did not receive any of the most recently round of retransmission at
the time it sent this feedback message. In this case, if current sent is equal to or bigger
than the sum of req num and repair_sent f in the feedback message, this feedback
message is ignored; however, if current sent is smaller than the sum of req num and
repair_sent_fin the feedback message, this means that even after the receiver receives all
the most recently retransmitted packets, it still can not decode the block. Let m =
req_num + repair_sent_f - current_sent. The current_round will be increased by 1 and
the current_sent will be increased by m. after the repair server has updated these records,
it will multicast m repair packets down stream. Again, in the header of each retransmitted
packet, the round_t is set to current_round and repair_sent_t is set to current_sent.
Figure 48 and Figure 49 describe the recv_feedback and send_retransmission procedures

at the sender side respectively.
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Procedure recv_feedback
IF current_round < round
current_sent = current + req_num
current_round = round
m = req_num
ELSE
IF current_sent > req_num + repair_sent f
m=0
END IF
IF current_sent < req_num + repair_sent_f
m = req_num + repair_sent_f- current_sent
current_sent = current_sent + m
current_round++
END IF
END IF
While m > 0
Call Procedure send_retransmission
m--;
END Procedure

Figure 48 recv_feedback procedure

Procedure send_retransmission

round_t = current_round

repair_sent_t = current_sent

produce a parity packet and schedule to multicast it downstream
END Procedure

Figure 49 send_retransmission procedure

6.3 Algorithm Implementation in NS2

We implement the algorithm in network simulator ns2. In our implementation, the source
will run the sender-side algorithm, leaf nodes will run the receiver-side algorithm and
codecs will run both the sender-side and receiver-side algorithms (codecs also send
feedbacks).

For p2p overlay networks where all intermediate and leaf nodes are receivers, if the leaf

nodes receive all FEC blocks reliably, all intermediate nodes should receive all FEC
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blocks reliably. To further reduce the average delay penalty in p2p networks, we can
require all intermediate nodes to run the receiver-side algorithm. This option, however, is
not implemented here.

A receiver that cannot decode a FEC block will send a feedback message along the
reverse path of the multicast tree toward the source. When the feedback message reaches
the first codec en-route, and if that codec can decode the block, it will use the required
number of parity packets and multicast these packets downstream. Otherwise, if the
codec could not decode the FEC block, then this codec itself is in need for some
additional parity packets. Hence, in our HANEF reliable multicast model, a NEF codec
could also generate a feedback message requesting parity packets from one of the
upstream codec nodes or from the root node. Therefore, a codec that receives a feedback
message and which cannot decode the FEC block will have to wait until it receives the
retransmission packets from one of the upstream codecs or from the original source (root
node). In HANEF, codecs will not forward the retransmitted repair packets transmitted
by the source or other codecs opstream.

In the HANEF model, we do not employ any feedback suppression mechanism.
However, the NEF framework naturally provides some form of suppression. A “natural
suppression” is taking place since the NEF codec does not forward the feedback
messages toward the root node (assuming that the codec can serve the feedback
messages). Per each round of the HANEF model, and under the worst condition, the
codec will send a single feedback message toward the root (when the codec cannot
recover the FEC block). Nevertheless, it is feasible to support other elaborate forms of

feedback suppression mechanisms in conjunction with the NEF framework. Since our
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primary objective here is to analyze the impact of network-embedded FEC codecs, we
opted to pursue a model that supports the most generic (and simplest) reliable multicast

functions.

6.4 Simulation Results

6.4.1 Performance Comparison of HANEF and CER

The HANEF algorithm works well for source based error recovery scheme. In this case,
the source will run the sender side algorithm and the leaf nodes run the receiver side
algorithm we have designed above. We compared the performance of the source based
HANEF with the Centralized Error Recovery (CER) scheme described in [43]. For
simplicity, we did not implement any feedback suppression in CER, a receiver will send
feedback to the source using unicast once it detects that it can not decode a FEC block.
The source will wait for some time to accumulate feedbacks from receivers before it
retransmits repair packets; we use the variable 7w to represent this wait time. As
indicated by [48], the value of Tw will impact the performance of CER. Also in CER, the
retransmissions are multicasted downstream. We implement HANEF and CER on the set
of the trees that we have used in Chapter 4. The delay on each branch is set to 0.1 second;
the loss rate per link is 3%. We compare the performance of HANEF and CER when Tw
is changed from 0 to 300m:s.

TABLE 4 and TaBLE 5 show the average bandwidth cost (defined in chapter 4) and the

average delay latency’ for a node to receive enough packets to decode a FEC block for

7 In [42] it has been shown that using software implementation on a 166MHz Pentium PC, the data rate of
RS(255,223) can reach 1.1M bps. For packet size of 512 bytes, encoding one packet only need 0.4ms.

Using more advanced PC or dedicated hardware, the encoding rate can be much faster. Assuming a hop
delay of 100ms, the encoding and decoding delays at codecs are negligible.
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CER and HANEF respectively. For the CER approach, it can be seen that as Tw
increases, the bandwidth cost decreases but delay latency increases. From TABLE 4, when
Tw equals 300ms, the bandwidth cost is 1.38 and the delay latency is 1.28 seconds for
CER; the bandwidth cost and delay latency are 1.11 and 1.21 seconds for HANEF. We
can see that the bandwidth overhead of HANEF is much less than the CER approach,

while the delay penalty of HANEF is close to that of CER.

TABLE 4 COMPARISON OF BANDWIDTH COST AND DELAY FOR CER AND HANEF, AVERAGE OVER ALL

NODES
CER HANEF
Tw (ms) 0 50 100 150 200 250 300
Bwd_cost 223 1.69 1.60 1.50 1.49 1.41 1.38 1.11
Delay (s) 1.11 1.06 1.13 1.12 1.18 1.19 1.28 1.21

TABLE 5 COMPARISON OF BANDWIDTH COST AND DELAY FOR CER AND HANEF, AVERAGE OVER LEAF

NODES.
CER HANEF
Tw (ms) 0 50 100 150 200 250 300
Bwd_cost 4.59 3.48 3.29 3.09 3.07 29 2.84 2.29
Delay (s) 1.20 1.19 1.27 1.27 1.34 1.35 1.45 1.41

6.4.2 Performance Comparison of HANEF and DER

We compare the performance of HANEF with several Distributed Error Recovery (DER)
schemes [43]. In the first DER scheme, we had the source and local recovery server run
the sender side algorithm, and the leaf nodes run the receiver side algorithm.of our
proposed HANEF approach that we have described above We call this approach
HANEF/DER scheme, and for short we denote to this approach as DER-1. In the second
DER scheme, we have all the local recovery servers run the centralized algorithm. That

is, the local recovery server will wait for some time to accumulate the feedback messages
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before they send out repair parity packets. We set the wait time to 200ms and 300ms, we
label these scenarios as DER-2-200 and DER-2-300 respectively. Due to the time-
complexity of the simulations, we only simulate these schemes on one of the trees we
have used in chapter 4. .

Figure 50 shows the average time delay for a node to receive enough packets to decode a
FEC block for the four schemes (HANEF, HANEF/DER or DER-1, DER-2-200, and
DER-2-300) when the average loss rate per link are set to 3%, 4% and 5% respectively.
When there is no codecs (local recovery server) placed in the intermediate nodes of a
distribution tree, this is equivalent to the centralized error recovery scheme. For this
case, we can see that the time delay for HANEF and DER-1 is equal. When the loss rate
equals 3%, the time delay associated with HANEF is larger than the DER-2-200 scheme
and DER-2-300 scheme. When the loss rate equal 4% or 5%, the delay for HANEF is
larger than DER-2-200 and smaller than DER-2-300 scheme. As the number of codecs
(local recover server) increases, the time delay associated with HANEF decrease
dramatically. With only 1 codec, the average delay for the HANEF scheme is better than
DER-2-200 and DER-2-300 under all the loss rates. For example, when the loss rate
equals 3%, with 1 codec (local recover server), the average delay for HANEEF is 0.78s,
while the delays for DER-1, DER-2-200 and DER-3-300 are 1.28s, 1.07s and 1.22s
respectively. As the number of codecs (local recover server) increases, the improvement
of HANEF over that of the other three schemes increases. When the number of codecs
(local recover servers) equals to 5, with loss rate of 3%, the delay for HANEF is 0.23s,

and is 0.95s, 0.77s and 0.81s for DER-1, DER-2-200 and DER-2-300 respectively.
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Figure 50 time delay versus number of codecs ( local recover servers). Average over all the nodes.
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Figure 51 shows the results for proxy-based overlay networks. In this case, only leaf
nodes are considered as clients. Again, we can see that as the number of codecs (local
recover server) increases, the time delay associated with HANEF is smaller than that of
DER-1, DER-2-200 and DER-2-300.

As we have mentioned at the beginning of this chapter. The heterogeneous nature of
multicast clients means that to achieve reliability, the number of parity packets required
for each client is different. To satisfy the exact number of parity packets requested by
each node, the only way is to use unicast. The unicast scheme does not scale when the
number of clients in a group becomes large; it is also not bandwidth efficient in a
multicast environment. In all of the four reliable multicast schemes described above, the
repair parity packets are transmitted using multicast by the source or local recover
servers. This means that some nodes will receive more packets than they need. The
unsolicited parity packets waste bandwidth. Figure 52 shows the average received
packets per FEC block for each node to reliably decode a FEC block, the code used here

is RS(255,223). In HANEF and DER-1, as the codecs (local recover servers) and the

clients run the sender algorithm and receiver algorithm we have designed, the average
received packets are almost equal for the two schemes and are both significantly lower
than that of DER-2-200 and DER-2-300. For an example, with loss rate of 3%, when
there is no codecs (local recover servers), the average number of received packets per
FEC block is 250 for HANEF and DER-1, and is 319 for DER-2-200 and 299 for DER-2-
300 respectively. When the number of codecs (local recover servers) increases to 5, the
average received packets per FEC block is 239 for HANEF, 240 for DER-1, 279 for

DER-2-200 and 267 for DER-2-300 respectively. We can also see that because DER-2-
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300 waits longer than DER-2-200 to accumulate the feedback messages, the average
received packets for DER-2-300 is smaller than that of DER-2-200. By comparing
Figure 52 (a), (b) and (c), we can see that as the loss rate increases, the average number
of received packets per FEC block increases.

Figure 53 shows the average number of received packets when averaged over the leaf

nodes.
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Processing feedback and retransmission consumes computation power. In HANEF and
DER, codecs (local recover server) can share the burden of processing feedbacks and
retransmissions for the source; also as feedback messages (or retransmissions) do not
have to travel all the way back from each client to the source (or from source to each
client), bandwidth overhead and delay penalty can be decreased, which has already been
shown in our delay and bandwidth overhead analysis. Here we compare the feedback and
retransmission overhead of HANEF and other DER schemes.

Figure 54 shows the maximum number of received feedback messages among the source
and codecs (local recover servers) per FEC block for each node to receive enough packets
to decode a FEC block. It can be seen that HANEF has the smallest number of received
feedback messages among the four schemes. This is because in HANEF, as the number
of codecs increases, the probability of receiving undecodable FEC blocks decreases
dramatically. For example, when the number of codecs (local recover servers) is 2, the
maximum number of received feedback message among the source and codecs (local
recover servers) is 7, while this number is 33 for DER-1 and 58 for both DER-2-200 and
DER-2-300. Even when there is no codecs (local recover servers), the number of received
feedback message for HANEF and DER-1 is smaller than that of DER-2-200 and DER-2-
300, this is because in HANEF and DER-1, retransmissions are sent immediately after a
feedback message is received by a node, as retransmissions are multicasted to all the
nodes, other nodes that have received the retransmissions and could decode the FEC
block would suppress their feedback messages. The same reason can explain why the
received feedback messages among the source and codecs (local recover servers) for

DER-2-200 is smaller that that of DER-2-300; it is because DER-2-200 waits a shorter
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time than DER-2-300 to send its retransmissions after it receives a feedback message. By
comparing Figure 54 (a), (b) and (c), we can see that as the loss rate increases, the
maximum number of received feedback messages among the source and codecs (local
recover servers) increases, this is because retransmissions also suffer losses; hence,
higher link loss rate means a node may need more (feedback and retransmission) rounds
to receive a FEC block reliably.

Figure 55 shows the maximum number of retransmissions among the source and codecs
(local recover servers) per FEC block for a node to receive a FEC block reliably. Again,
we can see that HANEF has the lowest number of retransmissions among the four
schemes. For example, in Figure 55 (a), when the loss rate is 3% and there is no codecs
(local recover servers), the maximum number of retransmissions for the source is 43 for
HANEF and DER-1, 123 for DER-2-200, and 100 for DER-2-300, this is in accordance
when we compare the performance of HANEF with centralized error recovery schemes.
As the number of codecs increases, the number of retransmissions decreases dramatically
for HANEF, while this number only decreases mildly for the other three schemes. For
example, when the number of codecs (local recover servers) is 2, the maximum number
of retransmission among the source and codecs (local recover servers) is 14 for HANEF,
while this number is 41 for DER-1, 119 for DER-2-200, and 95 for DER-2-300,
respectively. Comparing Figure 55 (a), (b) and (c), we can see that as the loss rate
increases, the maximum number of retransmissions increases. Further, by comparing
Figure 54 with Figure 55, we can see that the maximum number of received feedback

messages among the source and local recover servers in DER-2-200 is smaller than that
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of DER-2-300, while the maximum number of retransmission for DER-2-200 is bigger

than that of DER-2-300.

6.5 Summary

In this chapter, we have designed and implemented a hybrid ARQ and NEF (HANEF)
reliable multicast transport algorithm. We have compared the performance of HANEF
with other centralized error recover schemes (CER) and distributed error recovery (DER)
schemes. Through our simulations, we can see that HANEF outperforms CER and DER
in terms of delay penalty and bandwidth overhead. In summary, our HANEF algorithm
has the following advantages over other DER schemes: (1) our method does not require
local clients to organize into different local multicast groups; also a client does not have
to get the address of local repair server of that group. This is especially useful when
multicast clients are dynamic. For example, if a local repair server leaves a group, then
the clients in the group will have to organize into a new local multicast group or join
other local multicast groups. This could produce significant management overhead. (2)
feedback is sent immediately once losses are detected, and retransmission are sent
immediately once a feedback is received, this makes our method more suitable for real

time multicast applications. (3) The average time latency for a client to reliably receive a

FEC block and bandwidth overhead is smaller in our method.
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Chapter 7 NEF for Multi-hop Wireless Networks

In multi-hop wireless networks, such as ad hoc networks, end users’ nodes also work as
routers. Hence, the NEF approach can be employed in such networks. In this chapter we
focus on the use of NEF codecs for multicast applications in multi-hop wireless networks
where nodes are static (i.e., not mobile). Codec placement in a mobile environment is a
challenging problem, and it is left as part of our future work.

We first describe the wireless LAN protocols and the background of multicast
applications in multi-hop wireless networks. We then show that NEF working with a
modified MAC layer protocol can improve the decodable probability and goodput for

multicast applications.

7.1 Introduction
7.1.1 Wireless LAN Protocols

There two types of wireless local area networks, infrastructure based and ad hoc
networks. In infrastructure based wireless networks, mobile terminals communicate with
each other or end systems in the wired network through an access point (base station). In
ad hoc networks, clients organize into networks spontaneously without infrastructure
support; each end system is a user as well as a router. As a wireless channel has a
broadcast characteristic and an end system or base station has certain transmission rang,
using only carrier sense multiple access will cause the well known hidden terminal and

exposed terminal problems. Figure 56 shows the phenomena of these two problems.
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In Figure 56(a), terminal A and C want to send to terminal B. A starts transmitting, as C
is out of rang of A, it can not sense that A is transmitting; C then starts transmitting,
causing interference at B; this is the hidden terminal problem

In Figure 56(b), node C wants to send to node D and node B wants to send to node A.
They can send simultaneously since A only receives signals from B and D only receives

signals from C. B starts to send, C can not send because of carrier sensing, this is the

exposed terminal problem
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Figure 56 (a) Hidden terminal problem. (b) Exposed terminal problem
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In order to solve the hidden and exposed terminal problems, current MAC layer schemes
have added collision avoidance mechanism. For example, in 802.11, when a user needs to
send data to a client, it first sends a Request to Send (RTS) message, if the client is ready
to receive the message, it will send a Clear to Send (CTS) to the sender. The sender then
transmits the data, the client, after receiving the data, will send an ACK message for
acknowledgement.

As wireless channels are much less reliable than wired channels, 802.11 uses MAC layer
retransmissions to add protection. Generally, for short packets (such as control message),
the MAC layer will retry seven times; for long packets (data packets), the MAC layer will
retry four times. This hop-by-hop retransmission mechanism greatly increases the

reliability of a wireless channel.

7.1.2 Multicast in Multihop Wireless Networks

Multicast in wireless network has many applications, such as in sensor networks and
military operations, etc. Generally, multicast routing protocols for wired network do not
work for wireless networks due to limited resources (power, bandwidth), nodes
movement, or channel characteristics (a link may be unidirectional). A lot of work has
been done in designing multicast routing protocols for wireless networks; see for example
[103]-[107]. Typically, these protocols can be classified as tree-based [104] or meshed
based routing protocols [103]. In tree based protocols, each client has a single path to the
source. The amount of bandwidth resources for building and maintaining a tree is often
less then the mesh-based approach. However, a tree is more vulnerable to disruption due

to nodes movement or clients leaving multicast sessions. A mesh based protocol is more

125



robust, yet it often incurs more bandwidth overhead; also a node needs to use cache to
detect duplicate control and data packets due to routing loops.

Compared with other wireless multicast protocols, Multicast Ad hoc On-Demand
Distance Vector routing (MAODV) incurs lower processing and memory overhead, as
well as lower network utilization. Consequently, we use MAODV protocol in our
simulations. In the following, we briefly introduce MAODV.

MAODV is an extension of AODV, and hence; its operation is similar to that of AODV.
When a node needs to join a multicast group, a node broadcasts a RREQ message. When
the RREQ message reaches a node already on the multicast tree, the node will unicast a
RREP message back to the requesting node. Multiple nodes on the multicast tree may
receive the RREQ message, so the node sending the request may receive multiple RREP
replies, each indicating a route to the multicast tree. The node will select a route by
sending a MACT message along that route. For nodes along a route that did not receive a
MACT message, their states kept for the route will be expired. A node that sends a RREQ
but does not receive any RREP within certain time will become the group leader itself.
Each multicast group has a group leader. The responsibility of the group leader is to
initialize and maintain the group sequence number. The group sequence number is used
to keep multicast routes update. For example, a node on a multicast tree receiving a
RREQ request that has a bigger group sequence number than itself learn that its routes

has expired and can not answer the request.

7.1.3 MAC Layer Multicast Protocols

In a wired network multicast application, a packet is replicated by the router (in IP

multicast) or the peer (in overlay multicast) at a fork of the multicast distribution tree; a
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copy of the packet is then transmitted on each branch of the distribution tree downstream.
For wireless multicast applications, MAC layer multicast protocols may exploit the
broadcast characteristic of the wireless channel to achieve bandwidth efficiency, as a
packet may reach several receivers in a single transmission [94][95]. The 802.11 MAC
layer multicast protocol works as described below:

When a node has a multicast packet ready for transmission, it first executes the
contention phase. Once the node obtains access to the channel, it will proceed and
multicast the data. There is no RTS/CTS handshake between the sender and receivers,
and the receivers do not send ACKs. The source IP address of the multicast data is the
address of the source of the group, the destination of the multicast packet is the group’s
multicast address, and the MAC layer address is set by the IP/MAC address mapping.
Figure 57 shows an example of this. In Figure 57, node A needs to send a packet to node
B and C; instead of transmitting the packet to B and C separately using unicast, A may
choose to multicast (broadcast) the packet, B and C may receive the data from a single
transmission. As there is no RTS/CTS handshaking, the probability of losses due to
collision may increase. For example, in Figure 57, while D transmits to C, and A starts to

multicast (broadcast) a packet to B and C, this may cause a collision at C.
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Figure 57 mac layer broadcast

A variety of MAC layer multicast protocols have been designed to decrease losses due to
collision. In [96], the author tried to use RTS/CTS handshaking for 802.11
multicast/broadcast. When a node has a packet to broadcast, it first executes the
contention phase. Once the node obtained the access to the channel, it broadcasts a RTS
to its neighbors; if the node receives any CTS from its neighbors, it broadcasts the packet.
Otherwise it backs off and executes another round of contention phase. The limitation for
this approach is apparent; more than one neighbors sending CTS at the same time will
cause collisions at the sender. Even if the sender receives a CTS, it does not mean that all
of its neighbors are in the Clear to Send state. The work in [97] tried to solve the collision
problem in [96] by adding a NAK phase; when a node sends a CTS and does not receive
the data packet, the node will send a NAK message, this does not solve the problem
completely because the NAK message may also suffer from collisions. In the Broadcast
Medium Window (BMW) protocol proposed in [98], a node keeps a lists of its neighbors,
it also has a send buffer and a receive buffer; when a node has a packet to broadcast, it

first obtains access to the channel through a contention phase, then it sends out a RTS to
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one of its neighbors with the sequence number of the packet in it. When the neighbor
receives the RTS, it will check its receive buffer to see if it has received all the packets
with the sequence number smaller than or equal to the sequence number of the upcoming
packet; if all packets has been received, it will send a special CTS to notify the sender to
suppress its data transmission; otherwise it will send a CTS with the sequence numbers of
packets that has not been received in it; the sender, once receives the CTS, will send all
the lost packets. This protocol requires lots of modification to the existing 802.11
protocol and requires at least a contention phase for each neighbor. The authors in [99]
proposed a Batch Mode Multicast MAC (BMMM) protocol; the idea is that the sender
uses its RTS message to instruct its receivers to send their CTS in order; it has also added
a RAK (Request for ACK) message to coordinate the sequence of the receiver to send
their ACK messages. The goal is to avoid CTS and ACK collision. The authors in [95]
proposed a scheme for the sender to estimate the number of receivers in ready to receive
state by measuring the power of a busy tone; this, however, needs accurate power
regulation which is very difficult in practice.

In [100], a Leader-Driven Multicast protocol (LDM) was proposed. LDM was used in a
wireless LAN to distribute video contents to a group of mobile hosts (MH). In LDM, a
leader is selected among a group of MHs participated in a multicast session. The access
point (AP) would send data stream to the leader using unicast; non-leader MHs would
monitor the traffic from the AP to the leader, collect data and reconstruct the data stream.
LDM needs a modified Networjk Interface Card (NIC) driver; and packet corruption
correlation between the leader and non-leader MHs would impact the performance of

LDM. The author also evaluated the performance of LDM when combined with FEC.
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7.2 Using NEF for Multihop Wireless Multicast

As we have described in the above section, and as far as we know, there is no simple way
to solve the reliable MAC layer multicast problem. For realtime multicast applications,
where clients can tolerate limited packets loss and have strict requirements on time delay,
we can use NEF to add more protection. In fact, NEF can work with a variety of MAC
layer multicast protocols to increase the reliability of a multicast application. In this
section we describe a scheme that combines NEF with the 802.11 MAC layer
multicast/broadcast protocol and evaluate its performance.
We use MAODV as our multicast routing protocol. We downloaded a MAODYV patch for
ns2 from [106]. In the implementation of MAODV in [106], a multicast packet is
forwarded to each neighbor using multiple unicast transmissions. In order for the
MAODV [106] to work with the 802.11 MAC layer multicast protocol, we did some
modifications to the MAODV [106] implementation. A node that receives a multicast
packet will perform the following steps:
1. If the node is not on the multicast distribution tree, the packet is discarded.
2. If the node is on the multicast tree but the sender is not the next hop toward the
source on the reversed distribution tree, the packet is discarded.
3. If the node is a group member, the packet is sent up the protocol stack to the
correspondent application.
4. If the node has at least one next hop on the distribution tree, the packet is re-
multicasted.
For the application layer Network-Embedded FEC (NEF) implementation, we use the

distributed codec placement algorithm designed in Chapter 5. A node sends feedback
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(using unicast) periodically to its parent. Any node that has at lease one child that on
average can not decode a FEC block will become a codec.

The source will send RS(n,k) FEC blocks to a group of users. Once a node on the

multicast tree becomes a codec, if it receives k or more packets it rebuilds the original
FEC block and sends n packets downstream; otherwise it just forwards what it has
received.

As we have mentioned above, in the implementation of MAODYV in [106], a multicast
packet is forwarded to each neighbor using multiple unicast transmissions. As unicast
uses MAC layer retransmission to increase reliability, we call this scheme maodv-retrans.
Another scheme is to use pure 802.11 multicast scheme at the MAC layer, we call this
scheme maodv-pmcast. In our scheme, we implement NEF at the application layer and
use pure 802.11 multicast at the MAC layer, we call this scheme maodv-nef . In the next

section, we compare the performance of these three schemes using simulation.

7.3 Simulation Setup and Results

The topology we used in our simulation is 50 nodes placed randomly on a 500 x 500
square meter grid. We use the Freespace radio propagation model, the transmission range
for each node is set to 100 meters. The data packet size is set to 512 bytes; the source rate
is set to 32kbps, using RS(25,20) code. The data rate of the channel is set to 5.5Mbps.
The packet loss ratio is set to 3% and 5% per hop respectively and the packet correlation
is set to 0.5. We run the simulation for 900 seconds.

Figure 58 shows the average decodable probability when the number of clients increases

from 1 to 50. If there is only one client in the group (the unicast case), the decodable
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probability for the three schemes are almost equal; As the number of clients in the group
increases, maodv-nef outperforms the other two schemes; with maodv-pmcast has the
lowest decodable probability. In Figure 58 (a), when all the nodes participate in the
group, the decodable probability for maodv-nef is 0.85, and it is 0.75 and 0.5 for maodv-
retrans and maodv-pmcast respectively. Figure 58 (b) shows the decodable probability
when the loss rate per hop is 5%. By comparing Figure 58 (a) and (b), we can see that as
the loss rate increases from 3% to 5%, the decodable probability improvement of maodv-
nef over the other two schemes increases. In Figure 58 (b), when all the clients in the
topology join the group, the average decodable probability for maodv-nef is 0.72, and is
0.54 and 0.32 for maodv-retrans and maodv-pmcast respectively. It can also be observed
that generally, as the number of clients in the group increases, the decodable probabilities
for all the three schemes decreases; the decrease is most significant for maodv-pmcast.
For loss rate of 3%, when only one client in the group, the decodable probability of
maodv-pmcast is 0.99, this number is decrease to 0.5 when all nodes in the topology join

the group.
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Figure 58 Decodable probabilities versus number of clients in the group. (a) p=3% (b) p=5%
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We use the same definition of goodput as we have used in Chapter 3. For convenience,
we repeat the definition here: the goodput for one node is the number of message packets
the node receives divided by the number of message packets the source has sent. Average
the individual goodput over all the clients in the group obtains the average goodput of the
multicast session. Figure 59 shows the average goodput of a multicast session as the
number of clients in the group increases from one to fifty. It can be seen that maodv-
pmcast has the lowest goodput among the three schemes. The goodputs of maodv-nef and
maodv-retrans are very close when the loss rate is 3% and the number of clients in the
group is less than thirty(Figure 59 (a)); when the number of clients in the multicast group
increase to more than forty, the goodput for maodv-nef outperforms that of maodv-
retrans significantly. When the loss rate is 5%, the goodput of maodv-nef is better than

that of maodv-retrans in most cases.
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Figure 59 Goodput versus the number of clients in the group. (a) p=3%, (b) p=5%.

The throughput is the number of packets received by all the clients in the multicast
session in a unit time. TABLE 6 and TABLE 7 show the throughputs when loss rate is set
to 3% and 5% respectively. It can be observed that the throughput of maodv-nef is larger

than that of maodv-retrans and maodv-pmcast, while the throughput of the later two
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TABLE 6 THROUGHPUTS FOR LOSS RATE OF 3%

Num_clients 1 10 20 30 40 50
maodv-nef 7 65 134 192 255 316
maodv-retrans 7 62 115 181 237 299
maodv-pmcast 7 60 123 176 239 290

TABLE 7 THROUGHPUTS FOR LOSS RATE OF 5%

Num clients 1 10 20 30 40 50
maodv-nef 7 63 127 179 241 294
maodv-retrans 7 57 108 162 204 274
maodv-pmcast 7 55 114 162 217 264

7.4 summary

In this chapter, we studied the use of NEF for multicast applications in multi-hop wireless
networks. We integrated NEF with 802.11 based MAC layer broadcast schemes, and
have shown that it outperforms the MAC layer retransmission scheme and broadcast only
scheme in terms of FEC decodable probability, message goodput and throughput. In the
future, we will study combining NEF other MAC layer multicast/broadcast schemes to

increase reliability of multicast application in ad hoc and multi-hop wireless networks.
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Chapter 8 Conclusions and Future Works

8.1 Summary

In this thesis, we present the using of network embedded FEC (NEF) for error corrections
in p2p and proxy-based overlay multicast applications. Under NEF, FEC codecs are
placed in the intermediate node of a network. These NEF codecs can detect and recover
lost packets within FEC blocks at earlier stages before these blocks arrive at deeper
intermediate nodes or at the final leaf nodes. This approach significantly reduces the
probability of receiving undecodable FEC blocks among multicast end users. NEF can be
designed to use independently in realtime multicast applications to obtain the desired
level of playback quality; it can also be integrated with ARQ to obtain a one hundred
percent reliability transmission.

In chapter 3, the probability analysis was performed on a Gilbert channel. In particular, a
close function was obtained for a receiver to receive exactly i packets when the sender
send n packets; this enable us to quantify the impact of packet loss correlation on the
performance of FEC. Message goodput and decodable probability of NEF and end-to-end
FEC on a cascaded Gilbert channel was then compared. It shows that over a wide rang of
code rate, NEF outperforms end-to-end FEC. The last section of chapter 3 is the analysis
of network-embedded FEC routes; this provides the foundation for the centralized code
placement algorithm.

A centralized codec placement algorithm was designed and implemented in chapter 4.
The algorithm assumes that the topology of the multicast tree and the loss rate for each

link are known before hand and use a greedy approach to optimize the average decodable
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probability. Analysis and simulation show that, under both random and burst packet
losses, a relative few codecs placed in the intermediate nodes of the network can
significantly improve the decodable probability and message goodput. In both p2p and
proxy-based overlay network, NEF outperforms end-to-end FEC. It is also shown that in
order to obtain the same level of reliability, NEF causes much less bandwidth overhead.
The performance of the greedy algorithm was very close to that of the optimum.

In the centralized algorithm, we assumed that the topology of the multicast tree and the
loss rate of each branch of the tree were known before hand. In a real world multicast
session, nodes join and leave randomly and the structure of the multicast tree is changing
constantly. Besides the structure change of the multicast tree, the available bandwidth for
different users may also change over time; this may cause the loss rates on different
branches of the tree change dynamically. Further, a centralized algorithm for placing and
embedding FEC codecs may not scale well for a large network. In chapter 5, we present a
distributed codec placement algorithm. The distributed algorithm use a simple feedback
mechanism to collect information, a node would decide whether it should act as codec
based on the average number of packets it received per FEC block and the number of
children that can not decode FEC blocks. The distributed algorithm can cope with the
dynamics of the network; its performance is close to the centralized codec placement
algorithm.

NEF can be used independently for realtime applications which can tolerate certain level
of losses; it can also be integrated with ARQ to achieve 100 percent reliable transmission.
In Chapter 6, we designed and implemented a hybrid ARQ and NEF (HANEF) reliable

multicast protocol. We compared the performance of HANEF with other CER and DER
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reliable multicast protocols, simulation results shows that HANEF can decreased

retransmission overhead dramatically and at the same time keep the delay penalty at the

minimum.

In chapter 7, we studied the performance of NEF in multihop wireless multicast

applications. We observed that NEF outperformed retransmission based and broadcast

based multicast schemes in terms of goodput and throughput, especially when a large

portion of nodes in the wireless network participated in the multicast session,

8.2 Future Works

Here, we highlight some of the key items that we plan to pursue under the NEF

framework:

When NEF is used in wireless networks, we have assumed that all nodes are
static. In ad hoc networks, clients will move around at different speeds and
directions. Codec placement in ad hoc mobile network is a challenging problem;
one of our future studies is to explore the codec placement in ad hoc mobile
networks.

In chapter 7, we have only studied the performance of NEF when combined with
a simple MAC layer multicast scheme. To fully understand the performance of
NEF in wireless networks, combination of NEF with more efficient MAC layer
multicast schemes need to be studied, especially with the LDM protocol proposed
in [100].

In NEF, intermediate codecs inject extra packets into the network; flow and
congestion control, however, is not considered in this proposal. Another

dimension of the future work is to integrate flow and congestion control into the
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NEF framework. It has been shown that hop-by-hop congestion control is stable
and responds more promptly than end-to-end congestion control scheme, both in
wired and wireless networks [101][102]. Hop-by-hop congestion control requires
participation of intermediate node. The integration of congestion control and NEF
in a single scheme represents another future work effort.

We have focused on Reed-Solomon (RS) codes for erasure (packet-loss) channels
throughout this thesis. Extensions of the NEF framework under more recent
channel coding schemes, such as Low-Density-Parity-Check (LDPC) codes, and
other channels, such as error channels, represent another key aspects of future

directions for this work.
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