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ABSTRACT

PISTON DESIGN AND ANALYSIS: PARAMETERIZED AND COMPLETE FINITE

ELEMENT ANALYSIS APPROACH FOR THE ASSESSMENT OF PISTON

PERFORMANCE

By

Andreas Petrou Panayi

Modeling the thermal and mechanical behavior of a piston is crucial, as it allows

for the prediction of piston characteristics such as dynamics and fiction. These

characteristics directly affect the efficiency of an internal combustion engine. In this

thesis, two studies are conducted; an evaluation of the parameterized piston modeling

method and a development of a finite element program for a full piston model analysis.

For the first study, a parameterized piston model is generated using a set of

selected geometrical parameters from the production piston model according to the

standard of CASE, a cylinder-kit simulation software. A finite element analysis is

conducted for both the parameterized piston model and the production piston model using

the software COSMOSDesignSTAR. A comparison of the two models shows good

agreement in both thermal and mechanical characteristics. CASE is used to demonstrate

the advantages of the parameterized model in the assessment of piston performance.

For the second study, a piston finite element analysis program is developed. The

capabilities of the program are demonstrated using a full piston CAD model. The meshed

geometry of the CAD model is imported and an analysis is performed over a full four-

stroke cycle. The piston’s elastic behavior under thermal and mechanical loads is verified

with COSMOSDesignSTAR and the elastohydrodynamic lubrication analysis results

show that this model is capable of predicting the piston behavior and performance.
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2006
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PREFACE

Computer simulations are becoming more popular by the day as advances in

electronics decrease computation time. One of the most widely used computational

methods in engineering now is finite element methods. By now this method is well

understood, and because of its robustness it allows for the solution of complex as well as

nonlinear systems. This thesis presents the finite element method as applied to the

analysis of a piston model. Commercial software is utilized, as well as a piston finite

element analysis code developed by the author.

The thesis starts by introducing the basics of finite element methods. The Finite

Element Theory chapter explains the methods used within this work. The aim of this

chapter is to develop an understanding of the theories upon which finite element codes

are built, thus enabling a confidence in using them. The author assumes the reader has

some previous knowledge in calculus, linear algebra, solid mechanics, heat transfer and

fluid mechanics as well as in numerical methods. The theories do not go in depth; thus,

with the assumed knowledge mentioned above, they can be very easily understood.

Also this thesis introduces the use of commercial software, which is a very

important tool for the engineer of today. A parameterized modeling method is presented

which significantly speeds up simulations. A finite element analysis of a parameterized

piston model as well as of a full piston model is conducted with COSMOSDesignSTAR.

A cyclic analysis is performed in CASE.

Furthermore the thesis shows how a custom finite element code can be developed

to meet specific needs. The last chapter clearly explains the steps required in the
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development of a piston finite element analysis code. Although the code itself is not

provided, detailed flowcharts are shown.

The images in this thesis are presented in color.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

As the oil prices increase, the emission standards tighten, and the competition in

the automotive market strengthens, the search for a more efficient reciprocating internal

combustion engine becomes vital. The prime “navigators” in this search are

computational tools. Such tools allow for a fast and relatively cheap course for a

prototype design, but can also be utilized for troubleshooting and optimization of existing

designs.

The internal combustion engine has been around for more than a century but its

physics are still not well understood. Its cyclic behavior represents an unsteady complex

system with multiple physical processes occurring simultaneously. The system then is a

multidisciplinary one which can be described by combustion [21, 41], thermodynamics

[3, 39], heat transfer [27, 29], solid mechanics [2, 53], fluid mechanics [43, 46], dynamics

[22, 26], and tribology [32, 38].

The “heart” of a reciprocating internal combustion engine is the piston. The

function of the piston is to convert the thermal energy of the combustion gases into the

mechanical energy that drives the engine. It is generally believed that about half of the

mechanical energy is lost just at the piston assembly. Therefore piston design is a very

important factor in engine efficiency.

The piston is confined within a cylinder bore, which acts as a guide to the piston’s

reciprocating motion. The piston skirt slides on the cylinder’s surface, thus providing the



support for the whole piston body. Under favorable operating conditions an oil film

separates the two surfaces. During a cycle the piston is exposed to sharp temperature and

pressure gradients due to the combustion gases just above its crown. The reciprocating

motion also exposes the piston to inertial loads. These gradients and loads affect the

mechanical behavior of the piston skirt, which directly affects the thickness of the oil

film, which in turn, determines the piston dynamics and the interaction of the piston with

the cylinder wall. If the oil film thickness is too low, then piston scuffing can be a

problem. If the thickness is too high, piston slap can be a problem. Therefore piston

quality depends on optimal geometrical design, body mass and material selection, that

ensure minimal energy loss due to inertia, heat transfer and piston-bore interaction.

However finding the optimal set of design characteristics that would yield optimal piston

quality is a very challenging job. Consequently computational tools become very

important in piston design.

1.2 Previous Efforts in Piston Modeling

Piston modeling can be divided into four subcategories: thermal modeling, solid

modeling, elastohydrodynamic lubrication modeling, and dynamic modeling. Over the

years several research efforts have been made in these areas.

Armand [1] and Woschni [55] proposed correlations to calculate the heat transfer

coefficient of the combustion gases above the piston crown. Woschni [56] did some

further work for the evaluation of the heat transfer coefficients for a high speed diesel

engine piston. He used the electrolytic tank analogue to obtain temperature measurements

to calculate the heat transfer coefficients. He proposed ranges for heat transfer



coefficients describing the different surfaces of the piston. Wu et al. [57] modified

Annand’s correlation to include radiation effects, and they developed a numerical model

for the calculation of the temperature distribution. Their analytical results showed

reasonable agreement with experimental ones.

Li [35] considered the piston’s thermoelastic behavior. He assumed that

temperature fluctuations during a cycle affect a piston layer only about 2 mm thick.

Beyond this layer the temperature is steady, given enough operating time for the engine.

Consequently he treated the piston’s thermoelastic behavior as a steady state problem. He

used experimental temperature measurements to propose a range of heat transfer

coefficients for an aluminum gasoline piston. He used these results and a finite element

model of a quarter of the piston to investigate the thermoelastic behavior of the piston

over a cycle.

Li et a1. [37] developed an automotive piston lubrication model to study the

effects of piston pin location, piston-to-cylinder clearances and lubricant viscosities on

piston dynamics and friction. They solved for particular solutions of the Reynolds

equation using finite differences, and used the Newton-Raphson method to solve for the

nonlinear equations of motion for the piston. In their model they assumed a rigid piston

model. Li [36] considered the elastic deformation of the piston skirt; integrating this with

hydrodynamic lubrication has formed the elastohydrodynamic lubrication analysis which

is considered by most of the recent efforts [9, 10, 11, 18, 30, 31, 40, 45, 54, 58, 59]. All

these have contributed in solving the elastic deformation of the piston using the finite

element method. Oh et al. [40] used the finite element method to solve for the Reynolds

equation; however they linearized it, thus solving for a set of linear equations. The rest of



 

the efforts use finite differences to solve for the Reynolds equation. This method however

requires mapping of nodal information, back and forth, from the finite element mesh to

the finite difference grid. This can result in the loss of crucial numerical information,

especially where sharp gradients exist between two nodes. Zhu et al. [58, 59] were the

first to consider the elastic deformation of the cylinder bore. They also proposed a

formula for the asperity contact pressure of an aluminum piston against a cast iron

cylinder according to Johnson’s model (1985). They also used the Reynolds equation

developed by Patir and Cheng (1978) which accounts for the effect of surface texture on

hydrodynamic lubrication. Duyar et al. [11] coupled the Reynolds equation with the

mass-conserving Reynolds equation to solve for the hydrodynamic pressure using finite

volumes. Computer aided engineering (CAE) tools for piston analysis have been

introduced in recent years, such as CASE [4], PISDYN [l 1] and GLIDE [24].

1.3 Objective

In this thesis, the author joins the disciplines of heat transfer, solid mechanics,

fluid mechanics and tribology to develop a computational model for the assessment of

piston quality. The Cylinder-kit Analysis System for Engines (CASE) is a comprehensive

cylinder-kit simulation software that is being widely used to predict piston dynamics,

ring-pack dynamics, oil film thickness and friction [6, 7, 12, 13, 14, 15, 16, 42]. Currently

CASE uses a parameterized piston model which is generated using a set of selected

geometrical parameters from the full piston model. The main advantage of the

parameterized model is its relatively simple geometry. This allows for the construction of

a simple small mesh where the governing equations can be solved very fast. Another



 

advantage of the parameterized model is its self-generation. This allows CASE, when

coupled with optimization sofiware, to perform an optimization simulation very quickly

without the need of external computer-aided design (CAD) software to change the

piston’s geometry. The author develops a piston finite element analysis program to

supplement the existing one of CASE. This program is capable of importing the meshed

geometry of a full CAD piston model and performs a cyclic analysis to assess the piston

quality. The parameterized approach has proven to be a less expensive approach in piston

quality assessment in terms of cost, time and effort. The objective then is to be able to

assess the optimal piston design characteristics like piston-pin location, skirt profile and

piston ovality from the parameterized piston model and use them to update the CAD full

piston model. Then a simulation for the modified CAD full piston model can be

conducted to verify if the selection of optimal design characteristics can improve the

performance.

In this thesis only the finite element part of the program is presented. At this stage

piston secondary dynamics are ignored. The piston is assumed to be moving right in the

centre of the cylinder bore, with no transverse movement or tilting. Viscosity variations

along the length of the cylinder bore and cylinder bore deformation are ignored.



 

CHAPTER 2

THE FINITE ELEMENT METHOD

2.1 Introduction

This chapter introduces the reader to the finite element method, from hereon

referred to as FEM, used in the preparation of this work. The philosophy of FEM is to

find the solution of a complicated problem by replacing it by a simpler one. Consider the

piston shown in Figure 2.1; it has a very complex geometry. The existing mathematical

tools are not sufficient to find an exact solution for its behavior (temperature distribution,

displacement distribution) under thermal and mechanical loading.

 

(a) (b)

Figure 2.1: Piston CAD model, (a) top side, (b) underside

However an approximate solution can be obtained using FEM. The complex

geometry of the piston can be divided into an assembly of many small sub-geometries

called finite elements (Figure 2.2). These elements are interconnected at specified joints



called nodes or nodal points. These nodes are usually found on the element boundaries

where adjacent elements are connected. Again the behavior of these finite elements is not

known, however it is assumed that it can be approximated by simple functions. These

approximating functions, also known as shape functions, are defined by the element

behavior at the nodes. Equilibrium equations can be readily developed to describe the

behavior of these finite elements. The unknowns arising from the development of these

equations are the nodal values of the element behavior. The simultaneous solution of

these equations describes the approximate behavior of the whole geometry. One

advantage of FEM is that the approximate solution can be improved by refining the mesh.

Of course however this would require more computational time. All of the theories

introduced in this chapter are extracted from literature [5, 20, 23, 28, 32, 33, 34, 38, 44,

47, 48, 49, 50, 51, 52,].

 

(a) (b)

Figure 2.2: Finite element mesh of piston, (a) top side, (b) underside



2.2 Approximate Solutions

Consider the function given in Eq. (2.1)

f(0) = y"(Q)+y'(Q)+y(Q) (2.1)

The residual, R, is given by

R = y"(Q) +y'(Q)+y(Q) -f(Q) (2.2)

The exact solution of Eq. (2.1) would yield R = 0. With approximate solutions, if

R cannot be made zero, it is brought as close to zero as possible.

2.2.1 Galerkin’s Method

This method, also known as the method of weighted residuals, tries to reduce the

residual over the entire domain by making its weighted average zero with respect to as

many independent weighting functions, a), as there are unknown parameters. Assume that

Eq. (2.1) is approximated by n unknown parameters, 3. Thus,

R=R(Q, 50, 51, ..., E") (2.3)

This results in,

MR“), 5,, 52, 5n) d.(2=0

.0

[@Rm, 5,, 52, 5n) d.(2=0

{2 (2.4)

[can R(.(2, 3,, 52, 5n) d0=0

.(2

Galerkin’s method uses the element shape functions as the weighting functions.

This ensures that the weighting functions are independent of each other and consequently

the resulting algebraic equations are independent.



2.2.2 Variational Method

This method arises from calculus of variations. The main idea behind calculus of

variations is to determine the extreme (maximum and minimum) or stationary values of

functionals. A functional, 1, is defined as function of other functions. Functionals of

equilibrium equations have been derived and are found in literature. Considering Eq.

(2.1) again approximated by n unknown parameters, 5', its functional can be given by,

[2 ]F(9, 50, 5,, 5,,)d{2 (2.5)

.0

Values of 5,, for i = l, 2,. . ., n, are sought which will minimize I, that is,

 

3] ar 31
—=—=...= =0 2.6

as, 35, a5, ( )

Equation (2.6) will result in n equations with n unknowns.

2.3 Elements and their Shape Functions

2.3.1 Linear Triangular Element

A linear triangular element (Figure 2.3) is a three-node element with straight

edges. The nodes are numbered in a counter-clockwise order. Node 1 can be specified

arbitrarily. Let the element behavior (temperature, displacement) be CD. Inside the element

(D is assumed to vary linearly, Eq. (2.7), and 45,, (Dz, $3, Eq. (2.8), denote the behavior

value at the respective nodes.

¢(x,y)=rh +222mm (2.7)



Q=m+ma+mn

$2 = 7714-772 1'2 +773y2 (2.8)

4’3 = 771+772 x3 “13%

The solution of Eqs. (2.8) leads to

1

771 = 31(014’1 +0'24'52 + “3%)

l

772 = 350251 +b2¢2 +b3¢3) (2.9)

1

'73 = 5(614’1 +62% ”3453)

where A is the area of triangle 1-2-3. The area is given by

l

1 x2 y2 (2-10)

1

and

m=en-en

%=&M‘nh

%=Mh-hh

fi=n-h

la=yy<n (21w

%=n—h

q=e-n

Q=M-B

C3 =X2 —x,

m



  
Figure 2.3: Linear triangular element

Substituting Eq. (2.9) into Eq. (2.7) and rearranging leads to

¢(x,y)= N1(x,y)¢1 + N2(x,y)¢2 + N3(x,y)¢3

where,

N] =312(a,+b1x+c,y)

N2 =2—1/I(a2 +b2x+c2y)

N3 =3!;1'(03 +b3x+c3y)

(2.12)

(2.13)

N,, N2, and N3 are the element shape functions. It can be shown that evaluating the

shape functions at x,, y], NI = 1, whereas N1 = 0, at nodes 2 and 3. Similarly the shape

function N2 and N3 have a value of 1 at nodes 2 and 3 respectively and 0 at the other

nodes.

11



Now let,

[N]=[N, N2 N3] (2.14)

and

O,

45(9): Q (2.15)

4’3

where, OM is the vector of nodal unknowns of element e. Thus,

ab = [N]O(e) (2.16)

Since the functions are linear, their derivative with respect to x or y is constant.

This suggests a constant derivative of O within the element, Eq. (2.17). Consequently

very small elements have to be used where sharp gradients are expected in the value of O.

aab —?__N1_¢,a__1v2 a) +_a__1v,
O 2.17

T): 8x 3x 3 ( )

Now consider a triangular element in its natural coordinates (Figure 2.4), L 1. L2,

L3. These three coordinates define a point P in terms of the areas, Eq. (2.18),

A A A
=.Ai,1,2=_AZ.,1,3=_/.13. (2.18)

and

A,+A2+A3=A (2.19)

thus,

L,+l/2+L3=l
(2.20)

12



 
Figure 2.4: Triangular element in its natural coordinates

It can readily be shown that

L1=N],1/2=N2,L3=N3 (2.21)

The Cartesian coordinates ofP are related to the natural ones by,

x = x1L1+ x2112 + x313

 

 

(2.22)

y = y1L1+Y2Q + y3l/3

For integrating polynomial terms in area coordinates Eq. (2.23) can be used,

1 1 1

[[Lf’nggdAz “#7" 2A (2.23)
A (61+ ,6 + y+ 2)!

and since Eq. (2.21) is true, then

1 1 1

[[NFNfod/r: “'6'” 2A (2.24)
(CH ,6 + 7+ 2)!

A
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Table 2.1 gives some common values for the integral of Eq. (2.23).

Table 2.1: Values for Eq. (2.23)

 

 

Value of Value of integral in Eq. (2.23)/A
a A 7

0 0 0 1l 0 0
1/3

2 0 0
1/6

1 1 0 1/12
3 0 0

l/ 10

2 1 0
1/30

1 l 1
1/60

4 0 0 1/15
3 , 0 1/60   
 

2.3.2 Linear Tetrahedral Element

The linear tetrahedron element is made of four flat triangular elements or faces,

interconnected at the four comers, nodes 1, 2, 3 and 4. The nodes on any face are

numbered in a counter—clockwise manner as seen from the vertex opposite the face. Table

2.2 shows the faces with their respective nodes as used in this work.

YA

 

—
.
L

Figure 2.5: Linear tetrahedral element
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Table 2.2: Face to node assignment for linear

tetrahedral element

 

 

Face Nodes

1 1-2-3

2 1-4-2

3 2-4-3

4 1-3-4

 
 

The derivation of the element shape firnctions is very similar as for the triangular

element. Again here the element behavior, O, is assumed to vary linearly within the

element,

¢(x,y,2)=771 +772 x+773 y+174z (2.25)

A=m+ma+mn+ma

4’2 = 771 +772 x2 +773)? +0422
(2.26)

4’3 = ’71 +772 1‘3 +773J’3 +0423

4’4 = 771 + 772 x4 + 773M + 77424

The solution of Eqs. (2.26) leads to

l

'71 = 37(014’1 +42% +a34’3 + 044’4)

l

772 = —(b1¢1 +1’2“”2 +b39153 +b4¢4)

2V (2.27)
l

773 = 2—V(Cl¢1 +Cz¢2 +C3¢3 +C4¢4)

l

774 =§7ld1¢1 +d2¢2 +43% “14454)
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where V is the volume of the tetrahedron 1-2-3-4. The volume is given by,

1‘1

x2

x3

p
—
a

y
—
s
p
—
‘
u
—
‘
p
—
s

 x4

and,

Y1

Y2

Y3

Y4

Y2

Y3

Y4

21

22

Z3

Z4  

22

24

1

l

l

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

for i = 1,2, ..., 4. The subscripts of x, y, and z, in Eqs. (2.29) to (2.32), are interchanged

cyclically in the order 4, l, 2, 3. These equations are valid for a tetrahedral numbered as

in Figure 2.5.

Substituting Eqs. (2.27) into Eq. (2.25) leads to,

¢(X,Y,Z)= Nl(X,Y9Z)¢1 +N2(anaZ)¢2 +N3(st9z)¢3 +N4(staZ)¢4 (233)

where,

16



N1=—l—(a1+b, x+cl y+d1 2)

6V

N2 =-1—'(02 +b2x+C2y+d22)

61V (2.34)

N3 =—(a3+b3x+c3y+d3z)

6V

N4 =817(a4+b4x+c4y+d4z)

N1. N2, N3, and N4 have a value of one at nodes 1, 2, 3, and 4 respectively and zero

  

elsewhere.

Now letting

[N]=[N, N2 N3 N4] (2.35)

and

I¢1‘

_ ab

db“): 2) (2.36)

4’3

l¢4.

then

(D = [N]O(e) (2.37)

As in the case of the triangular element the derivative of O with respect to x, y or

2, within the element is constant, Eq. (2.38).

a_a> 8__N,¢1+ 6___N2¢2 +8_N3¢3+E_9_N_4
(D 2.38

8x 8x 8x 8x 4 ( )

So far O is assumed to be a scalar quantity; however there are cases (displacement

analysis) where O is a vector (Figure 2.6).

17



 

Figure 2.6: Nodal degrees of freedom for displacement analysis

In such a case O(e) becomes,

65(3) =< v2 i (2.39)

  
and,

18



  

[N1 0 0

N2 0 0

N3 0 0

N4 0 0

0 N, 0

[N]T = O N’- O (2.40)
0 N3 0

0 N4 0

0 0 N,

0 0 N2

0 0 N3

[0 0 N4_

so that,

u

45: v =[N]O(e) (2.41)

W

Like the triangular element a tetrahedron can be described in its natural or volume

coordinates, L 1, L2, L3, L4. These coordinates define a point P in terms of volumes (Figure

2.7).

 

Figure 2.7: Tetrahedron natural coordinates

l9



where,

V= Volume of 1-2-3-4

V, = Volume of P-2-3-4

V2 = Volume of P-1-3-4

V3 = Volume of P-1-2-4

V4 = Volume of P-l -2-3

thus,

fi+fi+fi+fl=V

and

Q+Q+Q+Q=l

It can be readily shown that

L1=N1212=N22113=N32 L4=N4

The Cartesian coordinates ofP are related to the natural ones by,

x = x1L1+x21Q +X3L3 +X4L4

y = y1L1 + y21/2 + y31/3 + Y4L4

Z 1' 21L] + Zzbz + 231/3 '1' 241.4

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

For integrating polynomial terms in volume coordinates Eq.(2.47) can be used,

 

 

. . .6!
La 3 7146de a'fl'y'

911L213 4 (a+fl+y+6+3)!

and since Eq. (2.45) is true, then

1 1 151

NaNflN7N5 dV= a'fl‘y' '
{III 2 3 4 (a+fl+y+6+3)!

20

(2.47)

(2.48)



Table 2.3 gives some common values for the integral of Eq. (2.47)

Table 2.3: Values for Eq. (2.47)

Value of Value of integral in Eq.

(2.47)/A

1

1/4

1/10

1/20

1/20

1/60

1/ 120

1/35
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2.4 Finite Element Formulation

2.4.1 Heat Equation

For a three-dimensional steady state problem with no heat generation (Figure 2.8)

the governing differential equation is,

V(IEVT) =0 (2.49)

with a convective boundary,

3T 3T 3T
kxgnxi'ky-éTy—ny'f'kz-agnz+h(T—T°o)=0 onf' (2.50)

21



 

Figure 2.8: 3D arbitrary body

For an isotropic material where k, = ky = k2 = k, (2.49) reduces to,

V2T=O

and (2.50) to,

8T 3T +8T

an), +3y 11+), 82—nz +—(—T—T°°)=0

(2.51)

(2.52)

Using Galerkin’s method, multiplying by the weight function and integrating over the

domain, Eq. (2.51) becomes

[ szT do“) = 0

0(9)

Using Green’s first identity,

[(VTVw+a2V2TT=)d.(2 ][—n +%§ny+g—Tn )wdl‘

.0

Eq. (2.53) yields,

] VTdeQ‘e) = [
[LT at" 87"

0(9) [(6’)

(9)
8x "xx+a—ny+a—nz,](l)dr

22

(2.53)

(2.54)

(2.55)



From Eq. (2.52), Eq. (2.55) becomes,

[ VT-Va) (“2(3) =— [ fl(T—T,,) wdl‘(e) (2.56)

{2(9) r(9) k

Rearranging yields,

[ VT-Va) 210+}: [ Ta) dl‘zfl- ] wdrle) (2.57)

(e) k (e) k (e)
.{2 1" F

By approximating T,

T 2 N,- 7} (2.58)

and,

a: . 2,. an
ax Bx

a: = I} 8_N,_ (2.59)

8y 8y

8T 8N~
_z T- __2

dz 1 82

and,

a). = N. (2.60)

Eq. (2.57) through (2.60) yield,

 
h

d.Q(e) +— N-N- arr“) Tie)
3x 3x By By 82 82 k I I J {' }

”(e1 rte)

(2.61)

Equation (2.61) can be expressed as

([Kfe)]+[1<§e)]) Tl") = 13“?) (2.62)
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with,

 [KM]: [ aN" aNj+aNi aNj+aNi 8N1 dale) (2.63)
1 0(8) 3x 8x 8y By 82 dz

(1 _h[5129}; [ N,.Nj dF(") (2.64)

r(e)

p<e>=fl2 [ N, dl‘(e) (2.65)

k rlt’)

Now recalling the shape functions for a tetrahedral element, Eq. (2.34), the shape

function derivatives are given by,

.a_.NL -_—.i (2.66)

3x 6V

%=i (2.67)
By 6V

8N,- d,
__ =_ 2.68

dz 6V ( )

Thus considering the above equations, Eq. (2.63) becomes

- 1

[Kl(8):l= fl m(blbj +Cicj +d1d1) dg(e)

[2(8)

(2.69)

l

=6—IY-(bibj +Cicj +didj)

Now considering Eq. (2.48) and assuming convection on face 1 of the tetrahedron

Eq. (2.64) becomes,
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j

1"“)

2 1 1 0 (2.70)

h123A1231 2 1 0

l2k l l 2 O

_0 0 o 0‘  

where h223 is the heat transfer coefficient on face 1 and A 123 the area of face 1. The fourth

row and column are all zeros as M, is zero on face 1. There are three other forms of Eq.

(2.70) corresponding to faces 2, 3, and 4. Similarly the diagonal terms will be 2 and off-

diagonal terms 1. The terms of the row and column associated with the node not lying on

the face will be zero.

In a similar manner, for convection on face 1, Eq. (2.65) can be expressed as

13(9) :11: J. Ni dr(e)

k r(€)

(2.71)

= h123Too/1123, 1 i

3k 1

  

Again there are three other forms of Eq. (2.71) corresponding to each face. Here the row

corresponding to the node not lying on the face will be zero.

Eq. (2.69) to (2.71) represent the element matrices and vectors; assemblage of

these leads to the global stiffness matrix, [K], and global load vector P

”#:1421141

_ nel _.

P = Z P“) (2.73)

e=1
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thus,

[K]T = 13 (2.74)

with T being the vector of the unknown nodal temperatures.

2.4.2 Static Analysis

In this section the general equations governing solid and structural mechanics are

presented. The principle of minimum potential energy, also known as displacement

method, is used in deriving the finite element equations.

Equilibrium Eflations

Consider the arbitrary body of Figure 2.8. If a load is applied on surface, F, and if

an element of material is considered within the domain [2, it must be in equilibrium due

to the internal stresses developed. This leads to the internal equilibrium equations for a

three-dimensional body,

a6” BQW+BQZ+
 

 

 

=0

dx + dy dz P

a: do a:

y" W W =0 2.75

dx + dy + dz +¢y ( )

asz 810’ 80'22
=0

dx + dy + dz +¢z

where 0',“ and 0'22 are the normal stresses, 2'x,,2',,1'xz,2' 2’ and? are, ayy , y, zx 9 yz a zy 9

the shear stresses, and ¢x , ¢y , and (9,. are the body forces per unit volume acting along

the x, y and 2 directions respectively. For an isotropic material,
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1,0, = ryx

sz = sz
(2.76)

Tyz = ’22

Thus for a three-dimensional isotropic problem there are only six independent terms,

0",“, 0'”, 022, rxy , 7x22 and ryz.

Stress-strain Relations

Hooke’s law gives the stress-strain relations for a linearly elastic isotropic three-

dimensional solid as,

&=[R](§—Eo) (2.77)

where 6 is the stress vector,

i (2.78)Q
1 II

  

where E is the strain vector,

7 " (2.79)M II
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where 5‘0 is the initial strain stress vector given by a temperature differential AT , and the

coefficient of thermal expansion, a,

and the matrix [R] is given by,

where,

E is the Young’s modulus of elasticity, and v is the Poisson’s ratio.

    

  

 

 

 

8,0,0 [1

EYYo l

82 l

=< zo i=aAT< k

ny0 0

7x20 0

0
[7y20 L1

"A B B o 0 0“

B A B O 0 0

B B A O O 0

0 O O C O 0

O 0 O 0 C 0

_O 0 0 0 O C-

_ Eo-v)
—(1+V)(1—2v)

_ VE

(1+V)(1—2v)

E
C:

2(l+v)
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Strain-displacement Relations

The deformation of any elastic body under any given loading can be described by

three displacement components, u, v, and w, parallel to the x, y, and 2 directions

respectively. The normal strains are given by,

du

“fa?

dv

8y), = 5;

8-7

and the shear strains by,

_du

ny-ay

du

7x2

dv
=—+—

7y: dz dy

Boundngonditions

_dw

...Z 82

dv

dx

dw

=55;

dw

(2.83)

(2.84)

The boundary conditions can be either on displacements or on stresses. In this

work only boundary conditions on displacements are considered. Displacements of nodes

on boundary are set to zero.

Compatibility Equations

A body under a given loading should remain continuous, that is no cracks or gaps

should appear in the body. Consequently the deformations field should be continuous and
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single-valued. This requires a definite relation between normal and shear strains, the

compatibility equations, Eq. (2.85).

 

82822 328.10: _ 327x:

2 2 ‘
dx dz dxdz (2.85)

1 a_[any_ 87... dylezdzexx
  

 

 

 

 

2 dx dz dx dy ) dydz

ii 87’29) +37yz_ 37x2 _azgyv

2 dy dz dx dy ) dxdz

_1__a _ai’xy+37’yz +315: =£§£

2 dz dz dx dy dxdy

Principle of minimum potential energy

The principle of minimum potential energy states that: “Of all possible

displacement states a body can assume which satisfy the compatibility equations and

boundary conditions, the state which satisfies the equilibrium equations makes the

potential energy assume a minimum value.”

The potential energy, 17, of an elastic body is given by,

17 = A — S" (2.86)

where A is the strain energy and I” is the work done on the body by external forces.

If the energies are expressed as functions of u, v, and w, then at equilibrium the

principle of the minimum potential energy yields,

H(u,v,w)=A(u,v,w)—'I’(u,v,w) =0 (2.87)
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The strain energy of a linear elastic body is defined as

A : [aTado (2.88)

.0

where 0 designates the volume of the body. From the stress-strain relations of Eq. (2.77),

and assuming initial strains are present, Eq. (2.88) yields,

A = 1 [57" [R15 d0 - [5T [R]§o d!) (2.89)

2 .0 .0

The work done by external forces is given by,

'11-.- [BTU-(112+[5TU-dr (2.90)

.0 F

where (:0 is the vector of known body forces, O is the vector of surface forces or

fractions, (7 is the vector of displacements and F is the surface where the forces are

applied. Thus,

17: ]§T[R](a—2ao)dr2— [éTU-do— [OTU-df (2.91)

.0 .0 F

Using the variational method, a simple form of the variation of the displacement

field is assumed within each element and the conditions that will minimize the functional

are derived. In this case the functional is given by 17.

Finite Element Equations

The displacement field within an element is given by,

(7 = =[N]Q(e) (2.92)

§
<
=
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where [N] is the matrix of shape functions given by Eq. (2.40), and QM is the vector of

nodal displacement degrees of freedom of element ‘e’ given by Eq. (2.39).

The strain vector of Eq. (2.79), using Eqs. (2.83) and (2.84) can be given by,

  

a = [B]Q(e) (2.93)

where,

”d I

— O 0

dx

0 9— 0

3y

0 0 .83—
z

[B]— 2- i [N] (2.94)

dy dx

3 a
_ 0 _

dz dx

0 i i

_ dz dy‘

thus,

—b1 0 O C] d] OT

[)2 0 0 C2 d2 0

b3 0 0 C3 d3 0

b4 0 0 C4 (14 O

0 c, 0 b, 0 d,

[B]T ..i 0 C2 0 0 d2 (2 95)

6V 0 c3 0 b3 0 d3 '

0 C4 0 b4 0 d4

0 0 d] 0 bl Cl

0 0 d2 0 b2 CZ

0 0 d3 0 b3 C3

_0 0 d4 0 [24 C4‘  
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The stresses then can be expressed as

=lRl(5 -Eo)=lRllBlQ‘e’ -lRléo (2.96)

The potential energy can be expressed in terms of the element potential energies

  

as

nel

17 = Z 17“?) (2.97)

e=l

where,

l — T T - 2 T T _

17(9):; I Q“) [B] lRllBlQ‘eMdeL [ Q“) [B] We 40“”
gm 0(a)

(2.98)

_ J’Q(e) lNlT¢"dalei— JQ(e)T[N]T5dr(e)

0(9) r(€)

Thus,

177";leiIWB] [R][B]d.0(e)Q QTZ [[31T [R]? (19(8)

2 e=lg(e) e=l are)

(2.99)

— [[N]T¢"—dal") [ [N]TOdF(e)

[2(6) [‘(9)

where,

IQl‘

Qz. Q3, (2.100)

lQm.
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and,

m = degrees of freedom x no. of nodes (2.101)

The static equilibrium configuration of the body is found by solving the following

necessary condition for the minimization of the functional, 17,

911:0

3Q

This leads to

[KlQ = P

where [K] is the global stiffness matrix,

miles]
e=l

and P is the global nodal vector

‘ nel _ nel _ nel ‘

P=23<e>+zae>+zee>
e=1 e=l e=l

The element stiffness matrix, [Km] , is given by

[K<e>]= Ital’lkiwwe)
{2(e)

The element load vector due to thermal strains, 3(8) , is given by

a“) = 1 131T1R150da<e>
0(9)
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(2.104)
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The element load vector due to surface forces, PSM , is given by

163(8) z I [N1T5dr<e> (2.108)

rie)

The element load vector due to body forces, 1539), is given by

16;”: J‘ [1N]T $110“) (2.109)

0(9)

From the theories presented in Sections 2.3.1 and 2.3.2 it can be readily shown

that,

[K(e)] = W” [B]T [R][B] (2.110)

and

ll‘

1

(e)
—(e)_EaV . (e)_ . T.‘P, _(1_2V) (Ta,g Tref) [B] <0) (2.111)

0

l0.  

where V(e) is the volume of element ‘6’, T‘55; is the average of the nodal temperatures of

element ‘2’, and Tref is the reference (strain-free) temperature.

(Px Px

Let the body force vector (i = 09y , and the surface force vector 5 = py , then

(”2 pz
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Pb“) :71 1 (2.112)

  
and,

_. 14(8)

aka—1&1” (2.113)

  
AS; is the area of face 1-2-3 of element ‘e’. The fourth, eighth and twelfth entries of the

vector in Eq. (2.113) are zero as they correspond N4 which is zero on face 1-2-3. Eq.

(2.113) takes another three forms Corresponding to faces 2, 3, and 4.
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2.4.3 Reynolds Lubrication Equation

The Reynolds lubrication equation is derived from the Navier—Stokes equations

under the assumptions that:

i. The fluid is assumed to be Newtonian, with direct proportionality between

shear stress and shearing velocity

ii. The fluid is incompressible

iii. The flow is laminar

iv. Inertia and body terms are assumed to be negligible compared to the

viscous terms

v. Variation of pressure across the film is assumed to be negligibly small so

that P = P(x, y) only

vi. The curvature effects are negligible, that is the height of the lubricant film

is much smaller than the length or the width of the body

vii. The viscosity does not depend on pressure but can be affected by

temperature

viii. The motion of the lubricant fluid normal to the surface can be neglected

compared to the motion parallel to the surface.

These assumptions yield the most commonly encountered form of the Reynolds equation,

a[h3ap]+a[h3ap] 1 ah ah
— —— — —— =—V— — 2.114
8): 12,11 Bx By 12;! By 2 ay+dt ( )

This equation describes the pressure field of the flow between two bodies with

impermeable walls as shown in Figure 2.9. The first term on the right hand side accounts
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for the physical wedge and ah/at =li accounts for the squeeze film. h is the separation of

the two bodies and ,u is the viscosity of the fluid.

V is the relative velocity given by

V=Va—Vb (2.115)

For a positive pressure field the right hand side of Eq. (2.1 14) must be less than zero.

 

Y

Figure 2.9: Body and coordinate system for Reynolds lubrication equation

Finite Element Equations

For the derivation of the finite element equations of the Reynolds lubrication

equation the Galerkin method is used. Consider an arbitrary two-dimensional fluid film

as in Figure 2.10 , governed by Eq. (2.114), and with boundary conditions

13:? on F1 (2.116)
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and

3

Vh-i—VP -fi=q 0n r2 (2.117)

12;:

where is is the prescribed pressure on F1, q is the normal flow across the boundary F2, 17

is the unit outward normal to F2, and l7 = V} .

 

F1 \

o ‘/

X

Figure 2.10: 2D arbitrary body

Eq. (2.114) can be rewritten as

h3 1 ah ah
V —VP =—V—+— (2.118)

12;! 2 3y (it

From assumption (vi) above, Eq. (2.118) can be rewritten as

3

—"—V2P=1Va—h+§-'l (2.119)

12.11 2 3y at
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Now multiplying by the weight function and integrating over the domain,

3

[vapmm‘e’z j[—Viii+ahjwdale)

”(9)1211 0(6) 2 3y at

Using Green’s first identity,

[(VP.Vw+mV2P)d12= j(wVP)-iidr

{2 F

and Green-Gauss theorem

1‘3": (0de —{J'2h aydrz+jham d!)

then Eq. (2.120) becomes

3

j —h—VP-Vw do“): I[- Vh-a—Q—Qll (0)2112“)

0(8) 1211 0(8) By a:

(2.120)

(2.121)

(2.122)

(2.123)

If there is no flow across the boundary B, that is q = 0, and only the prescribed

pressure boundary condition is true, then I q a) dfm = 0 , thus Eq. (2.123) reduces to

rfi’)

0(a) y {2091

Now by approximating,

"
e 11

:
e 2

4O

3

J'[h—VP.Vw]dI2(e)=%V J‘ 118—.0) d.(2(e)— Ig-fwdflm (2.124)

(2.125)



and

leadsto

0(6)

h = 12,-N1 (2.126)

g—f=h=li,-N,- (2.127)

wj=Nj (2.128)

3

j MVNi-VN- d.{2(e)P(e)=-l—V j (hiNi)_aNj 2112(8)

12'” J 2 {2(e) ay

(2.129)

where 13(6) is the vector of nodal pressures of element ‘e.’ Eq. (2.129) can readily be

written as

where,

and,

 

[KW ] 15(8) = F59) + Fife) (2.130)

3

[K9]: 1 (”I“) 3N1 ”14.51143” m9 (2.131)
l2,u 8x 8x 3x 8x

[2(9)

-
3N.

F§e>=lV j (hiNi)—J (112(9) (2.132)

2 (e) 8y
.0

Fle)=— j (6.N.)wdr2(e) (2133)
h l l

'

{2(9)
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Assemblage of the element equations leads to

[K]P=F‘

where the global stiffness matrix [K] is

nel

1K1=§[K<e>]

the global load vector F“ is

and,

“
0
1

II

where

m = no. of nodes

  

(2.134)

(2.135)

(2.136)

(2.137)

Now from the theories developed in Section 2.3.1 for a linear triangular element,

Eqs. (2.131) to (2.133) can be expressed as
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1 12,3

(6‘

37112122 2

2

3(’1”2 2

h; 6

2

[Km]:_A_(e,)__(bib,+6ic,)< 3h1-h3 L ..2?

60x12xp J J 6h1h2h3 1

31122113 2

2 2

3"1’73 2

2

3’12’T3 [6

. h? .

- VAM

F159) 6 hicj‘

1

2 1 1
(e)

—(e)__4h _ 12 1 2 1h,

2.4.4 Incorporation of Boundary Conditions

(2.138)

(2.139)

(2.140)

Afler assembling the element stiffness matrix and the element load vectors the

system of equations can be written as,

[K]d3=I3 (2.141)

However [K] will be singular hence its inverse does not exist and thus the system

Cannot be solved for 5. In the case of static analysis, the physical meaning of this is that

the body is free to undergo unlimited rigid body motion unless some support constraints
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are provided to keep the body in equilibrium. Thus the prescribed boundary conditions

for a given problem are applied to Eq. (2. 141) before solving for d).

If (Dj is prescribed as ¢f , the load vector 13 is modified as

*

gag—K ab. (2.142)1.].

fori = I, 2, m

The rows and columns of [K] corresponding to (Dj are made zero, and the diagonal term

is set to one.

K.. =K.. :0 (2.143)

fori= l, 2, ...,m

and

Kjj =1 (2.144)

Finally the prescribed value of d); is inserted into the load vector,

P]. :49}. (2.145)

2.4.5 Guyan Reduction

The Guyan reduction method [20], also known as static condensation, eliminates

the unwanted degrees of freedom of a system, thus reducing its overall size and

consequently decreasing solution time. Given a system,

_.

[K]-X'=P

(2.146)

nxn nxl nxl

where n is the number of degrees of freedom, decomposing it,
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po qu leL pxl}

=4

       

where

q+p=n

(2.147)

(2.148)

Now if X2 is the vector of unwanted degrees of freedom, then the above system can be

reduced to,

[K11—K12K231K21]X1 = 151

where the reduced matrix, [KW], is given by,

[Kred] = [K11 — K121931191]

The compliance matrix, [C] is given by,

[C] = [Kred 1 -1

Also if )‘(2 , the deformation of the rest of the body, is needed then,

X2 = [4931191] 2?,

where the coordinate transformation matrix, [T] is defined as,

171=[-1<2;‘1<21]

(2.149)

(2.150)

(2.151)

(2.152)

(2.153)

When the stiffness matrix of a static problem is reduced no information is lost. It

can be seen from Eq. (2.150) that all the elements contribute to the reduced matrix.
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2.4.6 Conjugate Gradient Method

The conjugate gradient method is an iterative method for the solution of systems

of equations. The method cannot compete with direct methods, like solution by matrix

inversion, for small systems. However its strength is revealed with large, sparse systems.

A sparse system is one where most elements of the square matrix are zeros. For such

matrices only the non-zero elements can be stored thus saving storage space. Typically a

matrix is considered sparse if its density is less than 10%. Figure 2.11 shows a graphical

representation of the population of a stiffness matrix obtained from a piston thermal

analysis. The total size of the matrix is 10342, with 11338 non-zero elements. The density

of this matrix is 1.06%. Huge computational effort would be required to invert it, but a

solution for the system can easily be obtained using the conjugate gradient method.

 

270 ~

 

R
o
w
s

540 ~

 810»

 
0 270 ‘ 540 810 1034

Columns nz = 11338

Figure 2.11: Graphical representation of the population of a sparse matrix.
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Now consider the following function,

f(f)=%iT[A]i—XTI3 (2.154)

The imposed is to find a vector 56 that minimizes the scalar function f(51‘). The function

is minimized when its gradient is equal to zero, that is

Vf=[A]x—13=0 (2.155)

This is equivalent to solving

[A]; = 13 (2.156)

The gradient method achieves minimization by iteration. An initial guess for the vector it

is required, 561 , and each subsequent iteration computes a refined solution

56,-“ = 56,- +4131 (2.157)

where i is the iteration number, A is the step length and § is the search direction. Eq.

(2.157) must satisfy Eq. (2.156), that is

[A](f,-+zl,-§,-)=E (2.158)

Now let the residual of each iteration be

i=5-[Al‘i (2.159)

then Eq. (2.158) becomes

4.1415.- =7.- (2.160)

which readily leads to

51771
(2.161)
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The search direction is chosen by intuition to be equal to the residual as it gives the

largest negative change in f(if) ,

§,- 2 —Vf = fj- (2.162)

This is known as the method of steepest descent. It is not a very popular method as it

converges relatively slowly. The faster conjugate gradient method utilizes a modified

search direction given by

a... = 4.1 +4-4- (2.163)

The constant ,8 is chosen so that two successive search directions are conjugate to each

other, that is

5174114151: 0 (2'164)

From Eq. (2.163)

(raw/15.01418.- =0 0-165)

which yields,

.7 _

,B- = _ ”1411/4131“ (2.166)

I 3[iii/113:1"

The conjugate gradient method is a very efficient algorithm thus making it very

popular for solving large systems. This method is used in this work for the solution of the

systems of equations developed by the finite element formulation. Figure 2.12 outlines

the conjugate gradient algorithm.
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      §i+1 = 041+ fliEi

   

  

aid/4131'

T171412-

fit":—

 

 

 

Figure 2.12: Conjugate gradient method flowchart
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CHAPTER 3

ENGINE OPERATING PARAMETERS

3.1 Introduction

This chapter introduces the engine operating parameters used in this work. The

derivation of time step, piston position, piston speed, and piston acceleration is achieved

from the engine geometry and engine operating conditions. The theory developed in this

chapter is from Reference [25].

Figure 3.1 shows the terminology used in this work when referring to different

piston areas: the crown, the ring-pack area, the skirt, the pinhole, and the underside.

Crown

Ring-pack

area

Skirt

 

Underside

Figure 3.1: Piston terminology
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3.2 Time Step

Given a an engine operating at N revolutions per minute (rpm) then the time step,

At, between successive crank angles is given as,

  

i=N rev ]X360degxlmrn (3.1)

At min lrev 608

thus,

1

At =— (3.2)

3.3 Angular Speed

Given a an engine operating at N revolutions per minute then the angular speed,

a), is given by

 00=N i"- xfixlm‘“ (3.3)
mm lrev 60s

thus,

1tN

30 ( )

3.4 Piston Motion

Given the piston assembly shown in Figure 2.1, the piston position, velocity and

acceleration can be readily derived. r is the crankshafl radius, 1 is the connecting rod

length, d is the piston pin offset; 6 is the engine crank angle, to is the angular speed, and (p

is the angle the connecting rod makes with the piston axis. When 6 = 0 the piston is at the

top dead centre (TDC) at the beginning of the intake stroke. A four-stroke engine requires
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720 deg. for a cycle, where a cycle has four stokes: intake, compression, expansion and

exhaust.

d

  

ANTI-THRUST

..... -pX

I

4
THRUST 1

I

 

[12 — (r Sin 6- 602]“2

rcos 19

Figure 3.2: Piston assembly

Figure 3.3 shows a schematic of a piston confined within the cylinder bore. The

piston position at TDC and bottom dead centre (BDC) can be seen. C is the nominal

piston to cylinder bore clearance.
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Figure 3.3: Piston position extremities: bottom dead center and top dead center

Now let

6 = a) t (3.5)

so that

d6
_ = a) 3.6dt ( )

The piston position yp is given by

{—22 1 r 2 d 2
yp= l -—d +r 1-cost9—— 1—[7) [sin9——] (37)

r r
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Eq. (3.7) forces yp to be zero when the piston is at TDC. It can be easily modified to set yp

to be zero at either mid-stroke or BDC.

The piston speed, vp, is given by

 

dyp d6
v = —.__

P d6 dt

(3.8)

rcos6 sin 157-‘1

= no sin 6+ (2 fl) 2

I‘ll—(q) (sine—cg)

The piston acceleration, ap, is given by

_ dvp d6
a __ __ ...—-

P d6 dt

(3.9)

f )

 

2 . _d 2 2 _- - _d“02 0086+[Lj3 cos 6(srn6 %) 3/2 +[rjcos 9 s1n6(srn6 /r)

(01154-4) 1-11.21.19-21,
l

  
\

The angle (p can also be readily derived. From Figure 3.2,

Isin¢=rsin6—d (3.10)

thus

¢=sin-l[-———rsmla—d) (3.11)
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3.4.1 Sample results

Given the engine geometry and operating conditions of Table 3.1, Figure 3.4 to

Figure 3.7 show typical plots of piston position, piston velocity, piston acceleration and

angle (p respectively.

Table 3.1: Engine geometry and operating conditions

Crankshaft radius, r: 90.60 mm

 

Connecting rod length, l: 133 mm

 

 

  
 

Piston pin offset, d: -0.4 mm

Engine Speed, N: 1000 rpm

0.1 T l T l 1 1 f

0.08 —————————— ——————‘ ..... _i ......

E0-06 """"I “‘—T----i— -----E ————— 1|. _____ E_____ ' _____ _,

C
.

$6.64..........T ..... ;..... ..... 1_ .

o.oz--- ----- e----- ----- 1 ----------

0 i i i ' L 1 1

0 90 180 270 360 450 540 630 720

Crank angle [deg]

Figure 3.4: Piston position

55



A
c
c
e
l
e
r
a
t
i
o
n

[
m
s
'
2
]

V
e
l
o
c
i
t
y

[
m
s
’
1
]

O
N

I

N
L

800

——————————— ————— ————— ——————

----- ----------- ————— -— ~~~~~_-
..... ............ .....

o ................ I.....I ___________________ z

-200L ---------- 1 -------------- ; ————— ————————— 4

400 4: ' E : 5 I

 

___________________________________________

 
5.__—__4_____.. .__-__._ ___ __________________

 
0 90 180 270 360 450 540 680 720

0 90 180 270 360 460 540 680 720

 
 

Crank angle [deg.]

Figure 3.5: Piston velocity

 

  
 

Crank angle [deg.]
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CHAPTER 4

PARAMETERIZATION AND FEA APPROACH FOR THE ASSESSMENT OF

PISTON CHARACTERISTICS

4.1 Introduction

Elastohydrodynamic lubrication, piston dynamics and friction are important

characteristics determining the performance and efficiency of an internal combustion

engine. This chapter presents a finite element analysis on a production piston of a

gasoline engine performed using commercial software, the COSMOSDesignSTAR, and a

comprehensive cylinder-kit simulation software, CASE, to demonstrate the advantages of

using a reduced, parameterized model analysis in the assessment of piston design

characteristics. The fill piston model is parameterized according to the CASE

specifications. The two are analyzed and compared in the COSMOSDesignSTAR,

considering thermal and mechanical loads. The region of interest is the skirt area on the

thrust and anti-thrust sides of the piston. The results are compared with the CASE results

and a discussion follows on how the piston model simplification approach can help

significantly reduce computation time without losing valuable information on piston

performance. The piston characteristics are evaluated with the reduced model, thus

allowing for a faster analysis and optimization than would be possible with a complete

FEA piston model. The results demonstrate that the simplified model agrees qualitatively

and quantitatively with the full model; the maximum temperature and calculated

distortions on the skirt face are comparable. Computation time difference between the

full model and simplified model is not significant for a single analysis; however it
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becomes very significant when a cyclical analysis is performed at every crank angle

degree.

4.2 Piston model FE analysis

The finite element analysis is performed in COSMOSDesignSTAR, for both fiill

and parameterized piston models. The generated mesh uses tetrahedral elements; Figure

4.1 shows mesh for the full model. A finite element analysis is performed in the CASE as

well. It generates a mesh for the parameterized piston using hexahedral and pentahedral

elements (Figure 4.2). The parameterization of the piston model is shown in Figure 4.3

(a) (b)

Figure 4.1: Full piston model mesh in COSMOSDesignSTAR, (a) top

side, (b) underside

(a) (b)

Figure 4.2: Parameterized piston model mesh in CASE, (a) top side, (b)

underside

and Table 4.1.

 

59



 
 

 

  

 

 

  

  

   

 
 

 

 
 

L234
SPA——   

  SW
 

 

Figure 4.3: Parameterized piston dimensions

Table 4.1: Parameterized piston model feature labels

 

PDUk

PHT:

SHT:

CTH:

XPDI

YPDt

XCG:

YCG:

SHTB:

S“k

S“H:

SWQ:

BTH:

PBTH:

PINTHD:

SIR:

SIRC:

piston diameter

piston height

skirt height

mownflmwmmm

x-coordinate ofpin location

y-coordinate of pin location

x-coordinate of center of gravity

y-coordinate of center of gravity

tab height

skirt width

lower tab width

upper tab width

boss thickness

pin boss thickness

pin boss width

inner skirt radius

inner skirt radius center
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4.2.1 Thermal Loading

The engine modeled in CASE is a motored optically accessible engine used for

experimental oil film thickness measurements. The engine uses a production piston with

a sapphire cylinder wall.

The engine was first modeled in Ricardo WAVE to obtain the heat transfer above

the piston crown. Figure 4.4 shows pressure traces for the engine, both experimental and

from the WAVE model. The engine was run at 1500 rpm with 2 psi boost. The two

pressure traces have strong agreement except where the exhaust valve opens. The most

crucial part however is at the compression and power strokes. Thus the results from the

WAVE model can be considered reliable. Figure 4.5 shows the temperature of the air in

the cylinder over one cycle. Figure 4.6 shows the heat transfer coefficient above the

piston crown. The heat transfer coefficient is obtained using an advanced combustion

module, the IRIS Model in the WAVE.

 
30 I I I I I T I

----- AVE model

25 1 1 2 I — Experimental .1
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Figure 4.4: Pressure trace of optical engine
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Figure 4.5: In-cylinder air temperature for optical engine
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Figure 4.6: Heat transfer coefficient above piston crown using

Annand and Woschni correlations
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WAVE calculates the heat transfer coefficient using both Annand’s [1] and

Woschni’s [55] correlations. Averaging over the cycle, Eq. (4.1), Annand’s correlation

suggests a heat transfer coefficient of 230 W/mzK. Similarly Woschni’s correlation

suggests a value of 170 W/mzK. The average of the two correlations is chosen to be used

as the heat transfer coefficient above the piston crown. The mean temperature, Eq. (4.2),

is found to be 470 K.

— l 47:

8=Z,;Io hgda (4.1)

.—_ 1 41:

TVWJ‘O hngdB (4.2)

Woschni [56] solved for the heat transfer coefficients governing a piston using

numerical method and the electrolytic tank analog. His results suggest an average heat

transfer coefficient of 460 W/mzK above the crown, in the range of 1000 — 1900 W/mzK

in the ring groove area, 220 — 930 W/mZK at the land area, 550 — 720 W/mZK at the

piston skirt and 100 — 1300 W/mzK on the piston underside. Similar values are used by Li

[35].

In the study of the parameterized piston, the heat transfer coefficients are assumed

constant in each area and within Woschni’s range (Figure 4.7) and having values as in

Table 4.2.
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Table 4.2: Heat transfer coefficient and ambient temperature values

 

22/f 11/ \

Figure 4.7: Heat transfer coefficients for parameterized piston

 

 

for parameterized piston

g = 200 W/mzK T, = 470 K

h1=1000W/m2K T,=314K

h; = 700 W/mZK r2 = 310 K

h = 250 W/mZK T3 = 303 K

 
 

The same values are used for the full model analysis with the addition of a heat

transfer coefficient at the land area as well as at the pinhole of 400 W/mzK and 800

W/mzK respectively.

The thermal analysis was performed using three different sets of heat transfer

coefficients: the ones of Table 4.2, an increase by 15% and a decrease them by 15%. This

was done to assess the sensitivity of the piston to changes in the heat transfer coefficients.

The full piston model temperature distributions for the three cases are shown in Figure

4- 8, Figure 4.9, and Figure 4.10 respectively.
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3 2476+002

"I ‘ 3 2355-4102

22313.00":3

3 2’1 2e+|3132    
  

3 200mm:

3 188124002

3 1778‘002

3 18554002

3 153e+002

3 14264-002

3 1 3069002

Figure 4.8: Full piston model temperature distribution with boundary conditions of

Table 4.2 (temperature in Kelvin)

Temp

3 2708+002

' 253644302

  3247844302

,, _3 235e+002

- , 32232032

' . 321213.002

. 3200e+002

318812.002

317712.002

3155124002

: 3 15388002

 

3 14289032

3 1 309.1302

 

Figure 4.9: Full piston model temperature distribution with heat transfer coefficient

values increased by 15% (temperature in Kelvin)



Temp

3 2706‘002

3 2586+002

3 247E602    
132rem02

' ‘:.3223e0002

3: 32129»GU2

320069002

3188e+002

3 'l 77e+002

' 316$e+002

3153e4002

“ 3142e+002  3 130134-002

Figure 4.10: Full piston model temperature distribution with heat transfer coefiicient

values decreased by 15% (temperature in Kelvin)

Performing the thermal analysis on the parameterized piston model, it can be seen

that the temperature distribution follows a very similar pattern as the full piston model

(Figure 4.11, Figure 4.12, and Figure 4.13).

Temp

3 30091002

3 28888002

3 2'1 39002

3 20139002

3 1888+UU2

3 1758*‘3132

3 1131394002

 

3 lSUe+002

Figure 4.11: Parameterized piston model temperature distribution with boundary

conditions of Table 4.2 (temperature in Kelvin)
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Figure 4.12: Parameterized piston model temperature distribution with heat transfer

coefficient values increased by 15% (temperature in Kelvin)

Temp
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3 2.7584002

 

" . 3 26319002

3 25013002

3 23313002
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3 2136.002
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1. 3 113013.002

‘ 3 1759002

I 3 163e+002

 

3 lSDe+UOZ

 

Figure 4.13: Parameterized piston model temperature distribution with heat transfer

coefficient values decreased by 15% (temperature in Kelvin)

Table 4.3 summarizes the maximum and minimum temperatures for each of the

above cases. The trends are the same for both models. The parameterized piston model,

though, has less surface area exposed to convection than the full piston model.

Consequently it has a maximum temperature of about 4 K higher than the full model.
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Also the minimum temperature of the parameterized model is about 2 K higher. These

results demonstrate that the temperature distribution on the piston is not greatly affected

by the heat transfer coefficient values. The temperature difference of nodal values is in

the range of 2 — 4 K which can be acceptable since the complexity of piston thermal

loading is simplified as in Figure 4.7 and Table 4.2. Thus the assumed values of Table 4.2

can be considered valid.

Table 4.3: Maximum and minimum temperature for the

three sets of heat transfer coefficients

 

 

 

h Tmax (K) Tmin (K) AT (K)

Full Piston Model

Table 4.2 325.5 314.2 11.3

+15 % 326.2 313.6 12.6

~15 °/o 324.7 314.7 10.0   
 

Parameterized Piston model

 

 

Table 4.2 329.2 315.9 13.3

+15 % 330.1 315.3 14.8

~15 % 328.3 316.6 11.7  
 

4.2.2 Thermal Loading Deformation

The temperature distribution on the piston causes thermal strains which

consequently deform the body. Considering only deformation due to thermal strains

(Figure 4.14 and Figure 4.15), the two models are not in strong agreement quantitatively;

but qualitatively they both deform outwards, away from the center axis. The fill] model

has a maximum deformation of 102 um at the tab edge and the parameterized 78 pm at

the same location. However, considering the entire skirt face, the average deformation is
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58 um for the full model and 57 pm for the parameterized. Thus on a mean basis the two

models have a strong agreement.

LlFTES

1 03064301

9 4429-002

  13 50312002

‘ ,L, r 7 72512002

6 8E-7e-01‘J2

61 13089—1302

5 150e.002

4 2926—002

3 433e.002

2 575e002

1 71711002

8 50312003  0 00020000

Figure 4.14: Full piston model deformation due to thermal loading (URES: resultant

deformation in mm, deformation scale 1:50)

URES

'1 03013001

9 4428-002

  8 58313-002

 

”1,117 32512002

6 86719-002

: 800313-002

511509-002

4 29212002

3 3312.002

2 57512002

1 7178-002

8 583e-003

 

0 UDDe+CIIJU

Figure 4.15: Parameterized piston model deformation due to thermal loading (URES:

resultant deformation in mm, deformation scale 1:50)



4.2.3 Mechanical Loading

The piston experiences mechanical loads that force it to deform. In the analysis

three loads are considered as well as a constraint. Ambient pressure (100 kPa) is applied

above the crown to simulate the effects of combustion gases, and on the piston skirt to

2 is applied tosimulate the effects of lubrication pressure. A body load of 9.81 ms'

account for inertial effects. The pinhole is restrained (Figure 4.16). The same loads are

applied to the parameterized piston model.

 

Figure 4.16: Mechanical loading, red arrows: atmospheric pressure, green arrows:

constraint, body load not shown

Figure 4.17 and Figure 4.18 show the deformation due to mechanical loading for

both the firll piston model and the parameterized model respectively. The two

demonstrate exactly the same behavior. The full model has a maximum deformation of

5.98 um, and the parameterized model deforms 6.04 pm towards the piston center axis.

The two models have a strong agreement both quantitatively and qualitatively.
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Figure 4.17: Full piston model deformation due to mechanical loading

(URES: resultant deformation in mm, deformation scale 1:50)
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' ,5 5083mm

 

0 C'UU‘?+000

Figure 4.18: Parameterized piston model deformation due to mechanical loading

(URES: resultant deformation in mm, deformation scale 1:50)

4.2.4 Combined Thermal and Mechanical Loading

This section examines the effects on piston skirt deformation of both thermal and

mechanical loads applied together. Since the lubrication pressure on the skirt is not



always uniform, influenced by piston tilting, piston lateral motion and bore distortion,

different skirt load cases are considered in examining the overall skirt behavior.

0 Case 1: Uniform normal pressure on skirt (Figure 4.19a)

0 Case 2: Directional uniform pressure on skirt (Figure 4.1%). Pressure is in

the z-direction

0 Case 3: Stepped uniform normal pressure on skirt (Figure 4.19e).

Maximum pressure is at the top of the thrust side.

0 Case 4: Stepped uniform normal pressure on skirt (Figure 4.19d).

Minimum pressure is at the top of the thrust side.

0 Case 5: Stepped uniform normal pressure on skirt (Figure 4.19e).

Maximum pressure is at the center of the skirt.

0 Case 6: Stepped uniform normal pressure on skirt (Figure 4.191“).

Maximum pressure is at the right half part of the piston, looking at it from

the thrust side.

The rest of the loads and constraints are as in Figure 4.16.

In Figure 4.20 to Figure 4.31, the deformation results are shown for each of the

above load cases. The thrust side is shown. The resultant deformation (URES) is in mm.

The deformation scale is 1:50.
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Figure 4.19: Pressure loads on skirt
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Figure 4.20: Full piston model deformation due to load case 1
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Figure 4.21: Parameterized piston model deformation due to load case 1
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Figure 4.22: Full piston model deformation due to load case 2
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Figure 4.23: Parameterized piston model deformation due to load case 2
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Figure 4.24: Full piston model deformation due to load case 3
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Figure 4.25: Parameterized piston model deformation due to load case 3
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Figure 4.26: Full piston model deformation due to load case 4
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Figure 4.27: Parameterized piston model deformation due to load case 4
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Figure 4.28: Full piston model deformation due to load case 5
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Figure 4.29: Parameterized piston model deformation due to load case 5
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Figure 4.30: Full piston model deformation due to load case 6
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Figure 4.31: Parameterized piston model deformation due to load case 6

Considering Figure 4.21 to Figure 4.31 and Table 4.4, it can be concluded that the

deformation on both the fill model and the parameterized model follows the same trends.

The two models have a qualitative agreement for all six load cases. The maximum

deformation occurs around the tab area. The thermal strains, as discussed earlier, lead to a

poor quantitative agreement, about 2 pm for each load case. The mean deformation has a

difference of about 1 um. The maximum deformation occurs at the tab edge of the anti-

thrust side for both models. It occurs on this side because the pin offset is towards the

thrust side. Consequently the restrained nodes, at the pinhole, are further from the anti-

thrust side, which allows it higher deformation.
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Table 4.4: Maximum and mean deformations on skirt

 

 

 

 

 

Parameterized

Skirt Full Model Model

Load Deformation (um)

Max Mean Max Mean

Case 1 97.0 53.0 73.8 51.9

Case 2 96.4 52.9 72.9 51.7

Case 3 94.0 51.7 76.2 52.6

Case 4 96.1 51.4 77.2 52.3

Case 5 95.6 51.6 76.9 52.6

Case 6 94.6 51.4 75.9 52.4   
 

4.2.5 Computation Time

An independent finite element solver running under MATLAB was used to

compare computation time between the full model and the parameterized model (Table

4.5). The mesh (4-node tetrahedral elements) was imported from COSMOS for both

models. The analysis was run on a Pentium 4 3.0 GHz.

Table 4.5: Mesh and computation time comparison

 

 

 

 

 

Parameter Full Parameterized

Model Model

No. of Elements 25270 6590

No. ofNodes 6339 1959

Thermal Loading

CPU Time (sec.) 30'” 3'76

Mechanical

Loading 489.55 17.03

CPU Time (sec)   
 

In the case of the thermal loading analysis the solution time for the full model is

greater by a factor of 8, compared to the parameterized model. Similarly in the case of the

mechanical loading analysis the full model solution is slower by a factor of 29.

Consequently running a full model analysis for one complete cycle would require 97.9
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hours compared to 3.4 hours for the parameterized model. Thus the parameterized model

is more cost-effective. Also it allows for a faster optimization of the design

characteristics.

The mesh generated in CASE (pentahedral and hexahedral elements) for the

parameterized model has 1620 elements with 6169 nodes. CASE uses a FORTRAN

based finite element solver which required approximately 20 seconds for the solution of

the thermal loading and the mechanical loading analyses.

4.3 CASE Analysis

4.3.1 Finite Element Analysis

Figure 4.32 shows the FEA results obtained from CASE for thermal loading. The

temperature distribution ranges from 318 K to 337 K. It is slightly higher than the

COSMOS result; the CASE uses a coarser mesh, also the solvers used are different. The

COSMOS uses iterative solvers, whereas the CASE uses Gauss elimination.

» ‘ in“... . »

F‘NW‘VL202:“-

 

Figure 4.32: Parameterized piston model temperature distribution from CASE

(temperature in degrees Celsius)
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Figure 4.33 shows the FEA results obtained from CASE for the combined

mechanical and thermal loading. These results, though, do not include the ambient

pressure loading on the piston skirt. CASE adds pressure loads on the skirt during the

cyclic analysis when there is a lubrication pressure. The deformation distribution follows

the same pattern as the COSMOS results with a maximum deformation of 125 um.

 

Figure 4.33: Parameterized piston model deformation obtained from CASE

(deformation in mm)

4.3.2 Piston Characteristics

This section demonstrates some of the capabilities of CASE. Only some of the

results are shown here: oil film thickness, friction force and piston dynamics.

Oil Film Thickness

Figure 4.34 and Figure 4.35 show the oil film thickness distribution on the skirt at

33 deg. on the thrust and anti-thrust sides respectively. From these, the piston orientation

can be deduced. At 33 deg., the top part of the piston tilts towards the thrust side and the
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bottom part towards the anti-thrust. The oil film thickness distribution follows the pattern

of the deformed skirt profile as in Figure 4.20. Also it is in the range of 500 pm, which is

the clearance between the nominal bore diameter and nominal piston diameter. Nominal

clearances are usually in the range of 50-70 pm. Here, the clearance is very large because

of the specifically built sapphire cylinder.

Friction Force

Figure 4.36 shows the friction force between piston and cylinder wall. A positive

value designates contact with cylinder on the anti-thrust side and negative value

designates contact on the thrust side. The four contact points considered are shown in

Figure 4.37. When the friction force is zero, the piston is floating in the cylinder.
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Figure 4.34: Skirt oil film thickness on thrust side at 33 CAD
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Figure 4.35: Skirt oil film thickness on anti-thrust side at 33 CAD
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Figure 4.37: Contact points of piston with cylinder wall

Piston Dynamics

Figure 4.38 shows the piston rotation over a cycle. At 33 deg. the piston has a

negative rotation, which means that the top part of the piston tilts towards the thrust side.

This agrees with the oil film thickness distribution.

Figure 4.39 shows the piston pin lateral motion. A positive value designates

movement of the piston pin towards the anti-thrust side. Negative values show movement

towards the thrust side. Piston pin lateral motion affects contact forces. Considering

Figure 4.36 and Figure 4.39, it can be seen that when the pin lateral position is at the

maximum the friction force peaks.
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Figure 4.39: Cyclic piston pin lateral motion
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Figure 4.38: Cyclic piston rotation about pin
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4.4 Experimental Results

The experimental results1 for oil film thickness from the motored sapphire bore

engine are inconclusive. Very few results are available and although they demonstrate a

qualitative agreement with the simulated results they do not agree quantitatively. The

experimental results are obtained using the laser induced fluorescence method. Figure

4.40 shows the experimental oil film thickness measurement at the TDC of the intake

stroke. Figure 4.41 shows the predicted oil film thickness by CASE at the same stroke

and location. Both experimental and simulated results show a thicker oil film near the oil

ring groove, which gets thinner away from it and towards the piston central axis. The

quantitative discrepancy can be attributed to three factors.

At this preliminary stage the thermoelastic and lubrication behavior of the

sapphire cylinder is still not well understood to be applied accurately to the piston model.

In the CASE simulation a fiilly flooded elastohydrodynamic model is assumed, however

experimental results show some irregularities which indicate the potential existence of

the partially flooded condition. Finally in the specific simulation the piston-to-bore

clearance is independent of the elastohydrodynamic behavior of the piston. The piston-to-

bore clearance is calculated from the cold-stage piston skirt profile rather than the crank

angle dependent deformed skirt profile which leads to bigger clearances. Consequently

these factors are under consideration and together with the acquisition of more

experimental results will be presented at a later stage.

 

 

1 Experimental oil film thickness measurements were provided by Andrew Fedewa of Mid-Michigan

Research sponsored by the US Army.
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Figure 4.40: Experimental oil film thickness measurement at TDC of intake stroke
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CHAPTER 5

PISTON FINITE ELEMENT ANALYSIS: THE FULL MODEL APPROACH

5.1 Introduction

As was shown in the last chapter, a parameterized piston model can be used as

guidance in assessing the piston characteristics. Once that guide line is obtained, what

can be done with it? The answer is proposed in this chapter. The goal is to develop a

piston program that will supplement the existing one in CASE. The new program will be

able to perform an analysis for a full piston model. The optimal design characteristics for

the piston obtained from the parameterized model analysis would be used to modify the

computer aided design (CAD) model of the full piston. The optimized full model then

would be analyzed to ensure for optimal piston characteristics.

The first module of the new piston analysis program is introduced here. This

module performs the finite element analysis of the fill piston over the cycle, thus called

piston finite element analysis, from hereon referred to as n-fea. The Greek letter ‘n’

appears from the Greek translation of piston, ‘marévz’.

5.2 Preprocessing

Unlike the existing PISTON program in CASE, n-fea is not a standalone

program; some preprocessing is required for the full piston model.
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5.2.1 CAD Model

The current version of 1r-fea requires the piston model to be oriented as shown in

Figure 5.1.

 

Figure 5.1: Piston orientation

The x-axis should pass through the skirt face with the anti-thrust side being in the

positive y-z plane. The y-axis should be parallel to the piston axis and the z-axis should be

parallel to the pinhole axis. The origin of the piston’s global coordinate system should be

at the centre of the crown. The orientations of the piston can be very easily changed in

any CAD sofiware. For this work SolidWorks is the software of choice.
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5.2.2 Mesh and boundary conditions

The next step is to mesh the model and apply the boundary conditions for both the

thermal and static analysis. The current version of 1r-fea supports mesh data files created

in COSMOSDesignSTAR.

COSMOSDesignSTAR uses only linear and quadratic tetrahedral elements for

meshing. The linear tetrahedral elements do not have the accuracy of the quadratic

tetrahedral elements as they do not conform to the geometry as well due to their linearity.

Quadratic elements however, lead to very large systems of equations. Thus considering

limitations in computer memory, the linear tetrahedral elements were chosen for this

study. n-fea can be easily modified to support different type of elements.

The boundary conditions and restraints are applied in COSMOSDesignSTAR as

well. Rather than applying the numeric value of the boundary condition in

COSMOSDesignSTAR, the piston faces affected by a specific boundary are flagged.

This allows for n-fea to recognize faces and apply the right boundary condition. Also the

user can run different simulations with different boundary conditions without having to

go back to COSMOSDesignSTAR.

Table 5.1 shows the flags used for the thermal analysis. A convective boundary is

applied to the faces. The heat transfer coefficient value is assigned as a flag for each area.

Table 5.1: Flags for thermal analysis

 

 

 

Piston area COSMOSDesignSTAR Flag

Crown h = l Wm'ZK'l

Ring-pack area h = 2 Wm'ZK'l

Skirt area (thrust and anti-thrust sides) h = 3 Wm'ZK'l

Underside h = 4 Wm'zK'l
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Table 5.2 shows the flags used for the static analysis. A uniform pressure flag is

assigned to the crown, thrust and anti-thrust sides faces. A fixed restraint is applied to the

pinhole and a body force is the positive y-direction is applied to the whole piston.

Table 5.2: Flags for static analysis

 

 

Piston area COSMOSDesignSTAR Flag

Crown P = 1 Pa

Skirt area (thrust side) P = 2 Pa

Skirt area (anti-thrust side) P = 3 Pa

Pinhole Restraint = Fixed

Body Body force: y-dir = 9.81 ms2 
 

COSMOSDesignSTAR outputs two data files, one for the thermal analysis and

one for the static analysis. Each data file contains the nodal coordinates, the connectivity

matrix, and the boundary conditions. The format of the data files is described in reference

[8].

5.3 Piston Finite Element Analysis (n—fea) program

After the piston model is preprocessed the 1r-fea program takes over to perform

the cyclic analysis. Figure 5.2 shows an overview of the m-fea program flow. Detailed

flowcharts of the n-fea program and of its subroutines are shown in Appendix A.

The n-fea program starts by loading the mesh data files exported from

COSMOSDesignSTAR. Then it loads the file that contains the piston material properties,

engine geometry, boundary conditions and pressure trace. After that it calculates the

piston motion as described in Section 3.4. Following this it calls the FEMmeshread

subroutine. Here the mesh data files are read. This subroutine returns the nodal

coordinates, connectivity matrix, and arrays containing the boundary conditions with
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their associated faces. Then it calls the FEMthermal subroutine. Here the thermal finite

element analysis is performed as described in Section 2.4.1.

Geometry and orientation in SolidWorks

Mesh and flag faces in COSMOSDesignStar

Calculate piston temperature distribution

Calculate piston deformation due to

thermal loading,

unit body force loading,

and unit combustion gas pressure loading

Calculate oil film thickness, skirt lubrication

and contact pressures, forces, and moments

Calculate piston deformation due to skirt

pressure loading

and piston total deformation

Calculate strains: ex, y 82, My er 7y: seq

Calculate stresses: ax. 0,, oz, Txy sz' ryz,

01' 02' 03' ”von' ”in!

 
Figure 5.2: Overview of the n-fea program flow
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FEMthermal returns an array containing the nodal temperatures, as well as an array

containing the element characteristics, that is, volume and shape function derivatives.

This element characteristic array is used by the rest of the subroutines that require

element characteristics information in the calculations.

This speeds up the whole program as element characteristics are calculated only

once. Following the FEMthermal subroutine the FEMstatic subroutine is called. Here the

deformations due to the thermal strains, d,, due to a body force, b, = 9.81 ms'z, db“, and

due to a uniform pressure, Pu = 100 kPa, on the crown, dgu, are calculated as described in

Section 2.4.2. Deformation is assumed to vary linearly with body force and pressure

loading thus dbu and dgu are used to calculate the actual deformation at each crank angle

over the cyclic analysis. FEMstatic also returns the connectivity matrix for both the skirt

thrust and anti-thrust sides. After this, u—fea prepares an array with the node numbers of

the nodes on the skirt in ascending order. This array is used as an input for FEMGuyan

subroutine where the skirt compliance matrix is calculated as well as the coordinate

transformation matrix. The method is described in Section 2.4.5. The Guyan reduction

method allows for the reduction of the system just to the nodes on the skirt, thus allowing

for a faster solution. The next step is to transform the skirt surface (bearing area) of the

thrust and anti-thrust sides from the three-dimensional global coordinate system to a two-

dimensional local one (Figure 5.3). This is done under the assumption that the skirt

curvature is negligible compared to the skirt circumferential length, thus allowing for the

solution of the Reynolds equation as described in Section 2.4.3.
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Figure 5.3: 2D skirt profile

Now, with all these prepared, the cyclic analysis begins. The time step is set at

one crank angle and is controlled by the external loop. The deformations due to

combustion gas pressure, Eq. (5.1), and piston axial acceleration, Eq. (5.2), are

 

 

calculated.

P (t)
dg(x,y,z,t)= 81:, dgu(x,y,z) (5.1)

a I

db(x,y,z,t)= pb( )dbu (x,y,z) (5.2)

Following this an iterative loop starts, the internal loop, to calculate the total

pressure on the skirt. An initial guess for the total pressure is required at t = 0. To make

the initial guess simple it is suggested to start from zero pressure, P,(t = O) = 0. Within the

internal loop the FEMstaticLUB subroutine is called, where the load vector due to

pressure loading on the skirt is built. Using the reduced stiffness matrix form FEMGuyan
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subroutine the deformation on the skirt due to hydrodynamic pressure loading, d,;,, is

calculated. Having all these, the total deformation on the skirt, d,, is calculated.

ds,m (x,y,z,t)=d,,m (x’y’z)+db,m (x’y’z’t)

(5.3)

+dg,m (x,y,z,t)+dsh,m (x,y,z,t)

where,

1 thrust side

m = (5.4)

2 anti —thrust side

Given the piston orientation described in Section 5.2.1 the lubricant film thickness can be

well approximated by,

hm (t)=C+(R—"ds,m(x,y=c0nst,z,t)|l) (5.5)

where C is the nominal clearance between cylinder bore and piston, R is the piston radius,

and II d3”, (x, y = const,z,t) H is the magnitude of the deformation vector evaluated from

x = 0, z = O and at constant y. The squeeze film is given by

km(t)=hm(t)-:tm(t—l) (5.6)
 

If the lubricant film thickness, hm, becomes smaller than the skirt waviness, Q,

then wavy contact occurs between the cylinder wall and the skirt. The wavy deformation,

(5,", is given by

.Q—h ' h [2

5m={ ’"’ 'f "‘< (5.7)
0, ifhm>.(2

Zhu et al [58, 59] , using Johnson’s model (1985) for a blunt wedge against a plane,

proposed a formula for the mean solid-to-solid contact pressure between an aluminum

alloy piston and a cast iron cylinder wall:
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PM, =(5.464x10‘3)6,,,‘-°552 (5.8)

This relation is used in this work.

Following this the ReEq subroutine is called. Here the Reynolds lubrication

equation is solved for the hydrodynamic pressure, Pb, on the skirt area as described in

Section 2.4.3. P), = 0 is used as the boundary condition for the Reynolds equation. Once

the hydrodynamic pressure is calculated, the half-Sommerfeld condition, Eq. (5.9), is

applied as conventional lubricants cannot withstand negative pressures and cavitate [32].

Ph,m = 1%,... -x(Ph,m) (5.9)

where 1(Ph,m) is a switch function,

1, ifpmzo

Z(Ph,m)={0, if P1,»: <0 (5.10)

The total pressure, P,, can then be calculated:

Pt,m=Ph,m+Pc,m (5'11)

The program checks for pressure convergence. The pressure residual, Pm, is calculated

by,

P... = flag—1|

a]2|

where i is the internal loop iteration number. If the pressure residual between successive

(5.12) 

internal loop iterations goes below a predefined tolerance (usually 103), then the internal

loop exits to the external loop. Otherwise the pressure is modified using underrelaxation:
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P. =PX“ +w.(P."—B"‘) (513)

where a), is the underrelaxation factor. a), begins at 0.5 and if successive pressure

residuals increase, then a), is decreased by 0.1 up to 0.1. P), and PC are very sensitive to

the deformations thus numerical stability becomes more difficult to achieve as the

lubricant film thickness decreases.

Once the pressure is converged, the hydrodynamic, contact and fiiction forces and

moment acting on the piston can be calculated (Figure 5.4).
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Figure 5.4: Forces and moments acting on piston

The hydrodynamic force is given by integrating the hydrodynamic pressure over

the two-dimensional skirt area (Figure 5.3),

Fh,m = H Ph,m (xs,m’ys,m)dxs,mdys,m (5'14)

A
s,m

Similarly the hydrodynamic moment about the wrist pin is given by,
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Mh,m : H Ph,m (xs,m’ys,m)'(a_ys,m)dxs,mdys,m (5'15)

A

The total hydrodynamic force Fh is given by,

Fh :Fh,l_F/1,2 (5.16)

and the total hydrodynamic moment, Mh, is given by,

Mthh,l‘Mh,2 (5-17)

The shear stress acting on the skirt can be expressed as,

r =———P-+—"—’-——’— (5.18)

The hydrodynamic friction and its moment about the wrist can be calculated as follows:

th,m = fl Tm (xs,m’ys,m)dxs,mdys,m (5'19)

AS m

th,m = H Tm (xs,m’ys,m)'(xs,m 'Cp )dxs,mdys,m (5'20)

A5 I"

The total hydrodynamic friction, F,;,, and total hydrodynamic moment, M/h, are expressed

as follows

th =th’] +th’2 (5.21)

th = Mflhl _Mflt,2 (5.22)

In a similar way the total contact force, F6, and total contact moment, MC, are

calculated:
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:49; Pcm x3m’ySm)dxs,mdys,m
(5.23)

M m = H Pc,m (xs,m’ys,m)'(a—ys,m )dxs,mdys,m (524)

PC = FCJ _Fc,2 (5.25)

Me = Mc,l "Mc,2 (5.26)

Given a fiiction coefficient ,uf, between the cylinder liner and the piston skirt, then the

contact friction force, Fk, and contact friction moment, Mfc, are expressed as follows:

ch,m =—I_v_Pl _[qupcgm(xx,sm’ys,m)dxs,deS,m (5'27)

vp AS,m

Mfc,m :I—'::I AIflch,m(xs,m’ys,m) (xs,m -Cp)dxs,mdys,m (5°28)

ch = ch,l + Ffflz (5.29)

Mfc = Mfc,l _Mfc,2 (5.30)

Now the total normal force on the piston due to hydrodynamic and contact

pressures is given by,

EthJch (5.31)

the total friction is given by,

Ff=th+FfC (5.32)

and the total moment, M, is given by,

M=Mh+MC+Mjh+MfC (5.33)
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Following this the total deformation of the piston is calculated. Using the

coordinate transformation matrix (Section 2.4.5), [T], the deformation for the whole

piston, db, due to the pressure loading on the skirt is calculated. The total piston

deformation, d, is given by,

d(x,y,z,t) = d, (x,y,z)+db (x,y,z,t)

(5.34)

+alg (x,y,z,t)+dh (x,y,z,t)

The resultant deformation, (1., is expressed as,

dr(x,y,z,t)="d(x,y,z,t)” (5.35)

Now that the program has calculated total piston deformation, the FEMstrain

subroutine is called. Here the strains for each element are calculated, as well as the

stresses at each node. The strain vector is calculated according to Eq. (2.93), and the

stress vector according to Eq. (2.96). Some further calculations are performed within the

FEMstrain subroutine. The equivalent or effective strain, seq, is calculated as,

seq = 2, ’51—:38—2— (5.36)

where,

e, --;:[(£x—ea)2 +(ey—ga)2 +(e, —ea)2:|

82 =§[(r.y)2 +0... )2 +(ryz )2] (5.37)

a, =§(.,+.~,+.~,)

The von Mises stress component, own, is calculated from the stress components as,
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0,0,, =[32—[(0x -ay)2 +(0x ‘02)2 +(0'y ‘02)2]

(5.38)

+ 3[(0xy )2 + (0",: )2 + (0y: )2 Hm

The principal stresses, 0), 02, and 03 are given by the eigenvalues of the stress tensor:

0'1 0 0 0x ny 0x2

0 0'2 0 = eig 0",), 0y ayz (5.39)

0 0 (73 0'12 6y: Oz

The stress intensity, mm, is calculated from the difference of the maximum and

minimum principal stresses. Given that a, > 02 > 03 then,

Jim 2 0'1 — 03 (5.40)

After all these calculations are made, the data is saved and the outer loop moves

to the next crank angle. The final converged solution of the hydrodynamic and contact

pressures will be periodic and will not depend on the initial guess for the total pressure.

47t

Ph(t)—Ph [t+;),

(5.41)

P.(t)=8(r+i§)

It is observed that a periodic solution is usually achieved after the second cycle.

Convergence of pressure, however, is greatly dependent on clearance. A high clearance

will tend to converge up to ten times faster than a low clearance.
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5.4 1r-fea Verification

As 1r-fea is a newly developed program, its predictions for both, the temperature

and the deformation are compared with COSMOSDesignSTAR’s predictions for

verification. A piston is considered with the thermal loads of in Table 4.2. A 100 kPa

uniform pressure is applied to the crown and the skirt, Also a body load of 9.81 ms'2 is

applied.

Figure 5.5 shows the nodal temperature as predicted by n-fea and

COSMOSDesignSTAR. The two predictions are in excellent agreement.

Figure 5.6 shows the prediction for the nodal resultant deformation. This

deformation is caused by both the thermal and mechanical loads. For the u-fea prediction

the contribution to the deformation due to the skirt loading is calculated via the Guyan

reduction technique (Section 2.4.5). The two predictions are also in excellent agreement.
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Figure 5.5: Nodal temperature as predicted by 1r- ea

and COSMOSDesignSTAR
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Figure 5.6: Nodal resultant deformation as predicted by 1t- ea

and COSMOSDesignSTAR
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CHAPTER 6

RESULTS

6.1 Introduction

This chapter presents results that can be obtained from n- ea. It should be recalled

that this version of n—fea only performs a finite element analysis of the piston to calculate

piston deformation and piston skirt loading, assuming _r_1_o_ secondary motion of the piston.

Consequently the results are not typical for a real operating piston as secondary dynamics

greatly influence piston behavior.

6.2 Engine geometry and operating conditions

The engine geometry used for this simulation is the optical engine of Chapter 4.

Table 6.1 shows the required inputs for the engine geometry and operating conditions.

Figure 6.1 shows the pressure trace used for the simulation.

Table 6.1: Engine geometry and operating conditions

 

 

Parameter Value

Engine speed 1000 RPM

Bore diameter Simulation 1: 90.2 mm

Simulation II: 90.1 mm

Stroke 90.6 mm

Connecting rod length 133 mm

Oil viscosity 0.02 Pa-s

Friction coefficient 0.15
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Figure 6.1: Pressure trace used for simulation

6.3 Piston geometry and properties

The piston used for this simulation is a generic piston, designed to comply with

the engine geometry of Section 6.2. Table 6.2 shows the piston properties and Figure 6.2

shows the piston CAD model used for the simulation.

Table 6.2: Piston properties

 

 

Parameter Value

Mass 0.4536 kg

Diameter 90 mm

Pin offset —0.4 mm

Distance fi'om top of skirt to centre of pin 14.5 mm

Skirt waviness 3.50 pm 
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Figure 6.2: Piston CAD model, (a) isometric view, anti-thrust side shown,

(b) underside, (c) front view, anti-thrust side shown,

(d) side view, red: thrust side

The material used for the piston is aluminum alloy 1345. Its material properties

are shown in Table 6.3.

Table 6.3: Material properties for aluminum alloy 1345

 

 Prqurty Value

Modulus of Elasticity 69 GPa

Tensile yield strength 82.72 MPa

Poisson’s ratio 0.33

Density 2700 1(ng

Coefficient of thermal expansion 2.4 x 10'5 K'1

Thermal conductivity 200 Wm'IK'l  
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The thermal boundary conditions for the piston are shown in Table 6.4. The

values are as described in Section 4.2.1.

Table 6.4: Thermal boundary conditions

 

 

  

Heat transfer Ambient

Piston area coefficient temperature

(Wm"K“) m)

Crown 200 470

Ring-pack area 1000 314

Skirt area (thrust and anti-thrust sides) 700 310

Underside 250 303

 

6.4 Mesh Refinement

The area of interest on the piston is the skirt area. In order to choose an adequate

element size for the mesh a mesh refinement study was performed. Figure 6.3 shows the

imported piston meshed geometry into n- ea. The global element size is 9.2502 mm. The

skirt area though is meshed using an element size of 3 mm (Figure 6.4). Five different

meshes were tested as of Table 6.5, varying the element size on the skirt.

To assess the quality of each mesh the hydrodynamic force on thrust and anti-

thrust sides as well as the total friction force were checked. On the thrust (Figure 6.5) side

meshes 1, II, and III are in good agreement. Meshes IV and V give a slightly higher force

at each crank angle, with the maximum difference being at about 3 N. This implies an

error of about 6%. On the anti-thrust side (Figure 6.6) only meshes I and II are in very

800d agreement. The maximum difference in this case is about 6 N. The total

hydrodynamic friction is in very good agreement for all five cases. This implies that the

velocity of the piston, Eq. (5.18), dominates in the evaluation of friction. Considering the
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above mentioned results and mesh sizes (Table 6.5), mesh III was chosen for this study as

it is only a demonstrative study and high accuracy is not required.

 

Figure 6.3: Imported piston meshed geometry, global element size: 9.2502 mm, skirt

element size: 3 mm

   

 

o o

xs [mm] xs [mm]

(a) (b)

Figure 6.4: Skirt mesh, (a) thrust side, (b) anti-thrust side
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Table 6.5: Mesh sizes

 

 

    
 

 

 

Global element Skirt element No. of No. of

Mesh . .
srze (mm) srze (mm) elements nodes

I 9.2502 5 3808 1273

II 9.2502 4 4133 1398

III 9.2502 3 4997 1728

IV 9.2502 2.5 6097 2119

V 9.2502 2 8034 2791
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Figure 6.5: Hydrodynamic force on thrust side for meshes of Table 6.5
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Figure 6.6: Hydrodynamic force on anti—thrust side for meshes of Table 6.5
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Figure 6.7 : Total hydrodynamic friction force for meshes of Table 6.5
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6.5 Periodicity and convergence

As an initial guess for the hydrodynamic pressure is required to start the

simulation, it is evident that the solution after one cycle will not represent the actual one.

Consequently the simulation needs to be run for more than one cycle until the solution is

periodic. It has been observed for all the cases tested, that periodicity occurs after the

second cycle. This can be seen in Figure 6.8 and Figure 6.9 where the total hydrodynamic

force on the piston is shown for the first three cycles for a piston-to-bore clearance of 100

um and 50 pm respectively.
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Figure 6.8: Hydrodynamic force over three cycles, C = 100 pm
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Figure 6.10: Hydrodynamic pressure convergence at 3rd
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Figure 6.11: Hydrodynamic pressure convergence at 3rd cycle, C = 50 um

Figure 6.10 and Figure 6.11 show the convergence of pressure. The number of

iterations required and the residual are shown for clearance of 100 um and 50 pm. For a

tolerance of 103, the hydrodynamic pressure for the case of 50 um converges about ten

times slower than the 100 um clearance case.

6.6 Simulation Results

In the interest of space not all simulation results can be shown here. Appendix B

shows all the outputs of n—fea for one crank angle for the simulation with clearance of

100 um. The chosen crank angle is at 365 degrees where the combustion gas pressure is

still relatively high, and the motion of the piston allows for the buildup of hydrodynamic

lubrication pressure. Some selected results are discussed below.
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6.6.1 Temperature

Figure 6.12 shows the temperature distribution of the piston. As discussed earlier,

given sufficient operating time of the engine, the piston is assumed to be at steady state

over the cycle as temperature fluctuations occur on the outer layer of the piston about 2

mm thick. As expected the temperature is higher on the crown because of the combustion

gases, and it decreases moving towards the bottom of the skirt. Most of the heat is lost at  
the ring-pack area where the heat transfer coefficient is highest.

Temp

  
Figure 6.12: Temperature distribution

6.6.2 Deformation

Figure 6.13 shows the x-component of the piston deformation at 405 degrees for

both 100 um and 50 pm of clearance. It can be seen that the latter clearance causes a

higher pressure buildup, which pushes the piston skirt more towards the piston center axis

(Figure 6.13b) than the 100 pm clearance, (Figure 6.13a).
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(b)

Figure 6.13: Deformation at 405 deg: x-component, (a) C = 100 um, (b) C = 50 um

6.6.3 Strain

Figure 6.14 shows the equivalent strain at 405 degrees for the clearance of 100

11m. The whole piston is in the low range up to 300 microns. The high strain occurs

around the pinhole. This is because the restraint for the static finite element analysis is

put at the pinhole. The nodes there cannot move relative to their neighboring ones. Thus a

high strain arises at that area.

 

Figure 6.14: Equivalent strain at 405 deg, C = 100 pm
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6.6.4 Stress

Since the stress is a function of strain, the area with high stress is around the

pinhole (Figure 6.15). Considering the maximum distortion energy theory and applying

the 3D von Mises yield criterion [53] to the piston (Figure 6.16), it can be seen that a few

nodes fall outside the cylinder. (The radius of the cylinder is defined by the yield strength

of the material.) According to the von Mises criterion failure would occur at the pinhole,

however in real operating conditions the pinhole surface slides on the piston pin.

von Mises

(Pair 1o7  

 

Figure 6.15: von Mises stress at 405 deg, C = 100 pm
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Figure 6.16: 3D von Mises yield criterion at 405 deg, C = 100 um

6.6.5 Lubrication Pressure

Lubrication or hydrodynamic pressure provides support for the piston within the

cylinder. Very high pressures are undesirable as they can deform the flexible piston skirt,

and also sharp pressure gradients will increase friction. In this section the lubrication

pressure as calculated by Eq. (2.114) is shown at two different crank angles, 315 degrees,

mid-stroke of compression, and 405 degrees, mid—stroke of expansion. At 315 degrees

(Figure 6.17 and Figure 6.18) the pressure is zero everywhere on the skirt. In the absence

of piston secondary motion the squeeze film is negligible, thus the physical wedge term

of the Reynolds equation dominates. However the velocity of the piston here is negative

causing a positive relative velocity, Eq. (2.115), and thus a negative pressure, where with

the application of the half-Sommerfeld condition it goes to zero. The opposite effect is

seen at 405 degrees where the velocity of the piston is positive.
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Comparing Figure 6.19 and Figure 6.20 with Figure 6.21 and Figure 6.22

respectively, it can be seen that halving the clearance creates a pressure about one order

of magnitude higher.

A study of these pressure profiles over a cycle can help improve piston design and

thus piston performance.
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Figure 6.17: Hydrodynamic pressure on thrust side at 315 deg, C = 100 um
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Figure 6.18: Hydrodynamic pressure on anti-thrust side at 315 deg, C = 100 pm
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Figure 6.19: Hydrodynamic pressure on thrust side at 405 deg, C = 100 um
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Figure 6.20: Hydrodynamic pressure on anti-thrust side at 405 deg, C = 100 pm

120

 



H400~
u

g- 300.

.—.400~

g- 300.

P
r
e
s
s
u
r
e

P
r
e
s
s
u
r
e

500 ~

200~

100~

 05

40

   

 

   

 

50

20 0

VS [mm] 0 '50 xs [mm]

Figure 6.21: Hydrodynamic pressure on thrust side at 405 deg, C = 50 um

500 \

200~

100~

 

 

50

20 0

Y3 [mm] 0 '50 xs [mm]

Figure 6.22: Hydrodynamic pressure on thrust side at 405 deg, C = 50 pm
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6.6.6 Oil Film Thickness

Figure 6.23 and Figure 6.24 show the oil film thickness at 405 degrees for the

clearance of 100 pm for the thrust and anti-thrust sides respectively. The simulation

assumes fully flooded lubrication. From these figures it can be deduced that the flexibility

of the skirt increases moving towards the bottom of it. Also it can be seen that the piston

has suffered thermal expansion as the oil film thickness is in the range of 75 pm to 90

um. Similar trends are observed at all crank angles.
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Figure 6.23: Oil film thickness on thrust side at 405 deg, C = 100 pm
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Figure 6.24: Oil film thickness on anti-thrust side at 405 deg, C = 100 um

6.6.7 Forces and Moments

Figure 6.25 shows the total hydrodynamic force experienced by the piston over a

cycle for both clearances, 100 um and 50 pm. As expected, the low clearance creates

much higher force. The hydrodynamic force, Eq. (5.16), is negative for both cases,

implying that the hydrodynamic force on the anti-thrust is higher. This is caused from the

thermal strains in conjunction with the pin offset. As described earlier, the pin offset is

towards the thrust side. Splitting the piston by a plane perpendicular to the pinhole axis

and coincident with the piston center axis (Figure 6.26), the anti-thrust side half has

slightly higher material volume. This allows for a higher thermal expansion on the anti—

thrust side half, as the pinhole is restrained and thermal expansion occurs radially away

fi'om the pinhole.
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Plane parallel to pinhole axis and coincident with piston axisFigure 6.26
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Figure 6.27: Histogram of resultant deformation on thrust and anti-thrust side due to

thermal expansion only

Figure 6.27 considers the histograms of the resultant deformation on thrust and

anti- thrust sides due to thermal expansion. The deformation of the anti—thrust side is

shifted to the right compared to the deformation of the thrust side. Also the anti-thrust

side deformation has higher frequency in the high values. This slightly higher

deformation on the anti-thrust side leads to a slightly smaller gap and consequently a

higher pressure buildup, which leads to a higher hydrodynamic force on the anti-thrust

side.

Also it can be seen from Figure 6.25 that the high clearance creates a force only

during the intake and expansion strokes. This is not the case for the low clearance. It

creates a force for a few degrees after the beginning of the compression stroke as well as

of the exhaust stroke. This is happens because of the squeeze film effect (second term on
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the right hand side of Reynolds equation). The high pressures have created enough

deformation on the flexible skirt during the down-strokes, that at the beginning of the two

up-strokes where the physical wedge has no effect, the squeeze film builds up pressure,

as the piston skirt relaxes.

Figure 6.28 shows the total contact force. For these two cases no contact force

occurs. This is expected in the absence of piston secondary motion, unless the piston

experiences extremely high temperatures that will cause very high thermal expansion.

 

   

 

l—c=1ooum

05 -----:———-1—---:-----i---'i'—C=50Hm

Z... 0 I I i I I I I

11.0 I i i i l :

  l l

0 90 180 270 360 450 540 630 720

Crank angle [deg]

 

Figure 6.28: Total contact force on piston

 

 

   

   l l

 

Crank angle [deg]

Figure 6.29: Total friction force on piston
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Figure 6.29 shows the total friction force on the piston, Eq. (5.32). The low

clearance causes a higher friction, as expected. It is evident from the figure that the piston

velocity term dominates the value of fiiction. The fiiction profile looks like an inverted

piston velocity profile (Figure 3.5), but of different magnitude. Lubrication pressure

gradient has little effect on fiiction.

Figure 6.30 shows the total moment, Eq. (5.33), experienced by the piston. The

moment is relatively small for both cases, as it depends on the piston skirt centroid

relative to the pinhole center. Comparing the two, the low clearance creates a much

higher moment on the piston.
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Figure 6.30: Total moment on piston
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this thesis two studies were conducted: an evaluation of the parameterized

piston modeling method and development of a finite element program for the hill piston

model analysis.

The first study has demonstrated the advantage of using a parameterized piston

model for evaluating the piston characteristics, elastohydrodynamic lubrication,

dynamics, and friction. A careful parameterization of the full piston model lead to a

reduced model which provided reasonable simulation results, with a significant reduction

in computation time.

Parameterized piston analysis can be used as a guideline for optimal piston

design. Optimization can be done on the parameterized piston automatically where design

characteristics such as the skirt profile, the pin location, and the piston ovality can be

varied to reconstruct a new model without the need of external solid modeling software.

Computational time constraints would prohibit automatic optimization using a very

detailed FE model.

Another advantage of the parameterized piston method is that it requires minimal

FEM knowledge from the end user. The mesh is generated automatically. Also the

convective boundary conditions, the pressure loads, the body load, and the restraints are

applied automatically. Setting up a full model for a FE analysis can be a tedious job as
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boundary conditions have to be applied to faces. For the piston presented in Chapter 4 the

fill] model has 782 faces whereas the parameterized model only 29.

The piston skirt has a strong influence on piston performance, such as lubrication,

dynamics and fiiction. It has been shown here that the parameterized piston demonstrates

a qualitative good agreement with the full model at the skirt area. Under thermal loading

they both deform away from the piston axis. Under mechanical loading they both deform

towards the piston center axis. Under the combined effect of mechanical and thermal

loading, they both deform away fiom the piston center axis.

There is a very good agreement between the effects of mechanical loading on the

two models, both qualitatively and quantitatively. The qualitative agreement is

maintained under the non-uniform skirt loading conditions. When the thermal expansion

is combined with the mechanical loading, the deformation results exhibit more of

qualitative agreement than quantitative. This disagreement on nodal deformation is

caused by the thermal expansion. As the parameterized model has a smaller volume,

125505 mm3, compared to the full model, 130833 mm3, its thermal expansion is less than

the full piston model. In the thermal analysis the piston is assumed to be at steady state

over the entire cycle, the in—cylinder air temperature is averaged, and mean values are

chosen for the heat transfer coefficients. Considering these assumptions the discrepancy

caused by the thermal expansion can be considered acceptable. The goal to obtain the

general behavior of the piston under both thermal loading and mechanical loading was

achieved here.

In the CASE analysis the deformation due to in-cylinder gas pressure, lubrication

pressure, and body load is evaluated at every crank angle. In this case the parameterized
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piston demonstrates the same behavior as the firll model. Thus the simulated

characteristics, like skirt profile and piston pin offset, are considered reasonable and can

be applied to the full model.

The second study has concentrated on the development of a finite element

program, specially tailored to conduct a piston analysis over a full four-stroke cycle. The

program couples heat transfer, solid mechanics, fluid mechanics and tribology under the

umbrella of finite elements. The program is able to import the meshed geometry of a

piston and perform a full cyclic piston analysis to predict the piston’s temperature

distribution, deformation, strains, and stresses. It also predicts skirt lubrication pressures,

oil film thicknesses, and forces and moments.

All these results are not typical of a piston at real operating conditions. A major

assumption was made, that the piston is moving along the center of the cylinder bore with

no freedom to move transversely or tilt. Also lubricant viscosity was assumed to be

constant along the length of the cylinder bore, and the cylinder bore was assumed rigid.

Despite these assumptions some insights were obtained for the piston modeling approach

and its behavior over a cycle.

The mesh size plays an important role in the accuracy of predicted results.

Although linear tetrahedral elements were used, their size can be controlled to minimize

error. For the assessment of the flexible skirt characteristics (forces and moments), a

mesh size of 2.5 mm would be adequate as the difference from the 2 mm element size is

very small. In the interest of computation time and since this was a demonstrative

simulation an element size of 3 mm was chosen for the skirt area. The rest of the piston
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can be meshed with a bigger element size as no crucial information is extracted fiom it

consequently saving on computation time.

The internal combustion engine is a cyclic device. Thus a cyclic behavior is

expected for the predicted parameters. As piston modeling is treated as an initial value

problem, guessing an initial lubrication pressure, the simulation needs to be run for more

than one cycle to fade out the error caused by the initial guess. It has been observed that

cyclic behavior occurs after the second cycle. Thus a simulation needs to be run for at

least two cycles for the predicted results to be considered valid.

Convergence of hydrodynamic pressure is directly affected by the nominal piston

to cylinder bore clearance. As the clearance decreases, the pressure requires more

iterations to converge. For all the cases studied the pressure never failed to converge. For

some crank angles though, this required up to 200 iterations.

A small clearance creates a higher pressure, as expected. In such a case the piston

skirt experiences less deformation. A small clearance, however, creates higher friction,

which is undesirable. At this stage, in the absence of secondary piston motion, no

conclusion can be made for the clearance size. From other efforts it has been shown that a

high clearance causes piston slap, and a too small clearance high friction. Consequently

there is a tradeoff between the two, as the hydrodynamic pressure is the one that supports

the piston within the cylinder bore.

The simulations predict that the area around the pinhole is the most highly

stressed area of the piston. The von Mises yield criterion even predicts failure at that area.

However, in real operating conditions, this prediction does not hold as the pinhole area is

131

  



not restrained but slides on the piston pin. For the simulation it has to be restrained to

provide sufficient boundary conditions for the solution of the static problem.

Finally it has been predicted that the piston pin offset affects lubrication pressure

and thus hydrodynamic force. Due to the offset the skirt face furthest from the pinhole, in

this case the anti-thrust side, experiences higher thermal expansion, creating a smaller

gap and thus building up a higher pressure.

7.2 Recommendations

The parameterized piston model achieves its goal. It predicts the piston’s general

behavior under the studied loads. The parameterized model can be improved by

incorporating the ring grooves, consequently bringing it closer to the full piston model.

1r-fea can currently predict a majority of the parameters affecting piston

performance. However, it needs further development before it can be confidently used in

a real simulation. The present developments form the backbone of a reliable piston

modeling program.

Secondary piston motion should be included in the program. The equations of

secondary motion of the piston and the equations of motion of the connecting rod should

be coupled with the deformation results and the Reynolds equation to predict piston

secondary motion within the cylinder bore.

Also, an algorithm should be developed to monitor the position of the piston land

areas, the areas between the ring grooves,. In the case of contact of any land with the

cylinder bore, the secondary piston dynamics would be altered.
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The Reynolds equation also needs improvement. The modified Reynolds equation

developed by Patir and Cheng (1978) should be used to account for the effects of surface

texture on hydrodynamic lubrication.

The half-Sommerfeld boundary condition for the hydrodynamic pressure used in

this model violates mass conservation. The cavitation algorithm [17] should be used

instead. It solves for the Reynolds equation for density variations and then calculates

pressure, in the meantime accounting for mass conservation.

The asperity contact model should be improved as well. Currently the formula

developed by Zhu et al. [59] for the contact of an aluminum piston with a cast iron

cylinder bore is used. This limits the model to just these two materials. The Greenwood-

Tripp model [19], which accounts for the contact of two nominally flat rough surfaces, is

recommended.

A flexible cylinder bore should also be included in the model, as in real operating

conditions the combustion gas pressure, lubrication pressure, and temperature gradients

deform the cylinder bore. Finally the lubricant viscosity should be modeled to vary with

temperature as this is the case with conventional lubricants. The cylinder bore is at

different temperatures along its length as well as the piston skirt. These affect the

lubricant viscosity in real operating conditions.

In conclusion, the parameterized piston model demonstrates a similar thermal and

mechanical behavior as the full piston model. The 1r-fea program can import the meshed

geometry of a full piston model and perform an analysis over a four-stroke cycle to

predict piston deformation, strains and stresses, as well as hydrodynamic and contact

forces.
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APPENDIX A

FLOWCHARTS OF THE 7r-fea PROGRAM AND OF ITS SUBROUTINES

Start n—fea

Load the mesh data files

Load the piston material properties,

the engine geometry,

the boundary conditions, and the pressure trace

Calculate the piston motion

GO to FEMmeshread

GO to FEMthermal

GO to FEMstatic

Sort nodes on skirt

GO to FEMGuyan

Map the skirt profile to a 2-D

coordinate system and renumber

the skirt connectivity matrix 
Figure A.l: Flow chart for the main program of n-fea (Part 1 of 2)
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For all the crank angle degrees

Calculate the deformation due to gas pressure

 
Calculate the deformation due to piston acceleration

WHILE the pressure residual greater than 10 '3 .

-
'

I l I

GO to FEMs‘taticLUB

Calculate the total deformation, gap,

squeeze film, and contact pressure

GO to ReEq

Calculate the total pressure on skirt

Calculate the hydrodynamic, contact,

and fiiction forces  
Calculate the piston deformation due to the skirt loading

and the total piston deformation

GO to FEMstrain

Save data

III-I-I-I-I-

End u-fea

Figure A.2: Flow chart for the main program of 1r-fea (Part 2 of 2)
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Enter from a- ea

Load the thermal mesh data file

FOR all the lines  
Read the nodal coordinates

Read the connectivity matrix

and the faces to be plotted

Read the convective boundary

conditions

Load the static mesh data file

FOR all the lines

Read the restraint nodes

Read the uniform pressure

boundary conditions

Read the body load Exit to n—fea

Figure A.3: Flowchart for FEMmeshread subroutine
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Enter from 1r-fea

Initialize arrays and matrices

FOR all the elements

Calculate the element volume and characteristics  
Calculate the element stiffness matrix

 

. - as u - - -- FOR all the faces

IF convective boundary

Calculate the element load vector and matrix

 Assemble the global stiffness matrix and load vector

Solve for the temperature

using conjugate gradient method

Exit to 1r-fea

 

Figure A.4: Flowchart for FEMthermal subroutine
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- Enter from 1r-fea

Initialize arrays and matrices

FOR all the elements

Load the element characteristics

Calculate the element stiffness matrix  
Calculate the body force load vector

Calculate the thermal strain load vector

FOR all the faces

 

.‘
\

I
.

r r I I IF uniform pressure boundary

—
’

IF crown flag

Calculate the surface force load vector   
...; _“- IF thrust side flag

 

  
  

.'
I

l
: Build the thrust side skirt connectivity matrix

I

.” .... ‘ IF anti-thrust side flag

1
I

I

: Build the anti-thrust side skirt connectivity matrix

it

Figure A.5: Flowchart for FEMstatic subroutine (Part 1 of 2)
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‘
5
,

Assemble the global stiffness

Assemble the global thermal stress load vector

Assemble the global body force load vector

Assemble the global surface force load vector

.
_
.
_
.
_
_
_
.
.
.
.
.
.
_
_
.
-
—
—
—
.
—
_
.
—
.
_
_
_
.
i

Solve for the deformation due to thermal strains

using conjugate gradient method

Solve for the deformation due to body force

using conjugate gradient method

Solve for the deformation due to surface forces

using conjugate gradient method

Exit to n—fea 
Figure A.6: Flowchart for FEMstatic subroutine (Part 2 of 2)
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Enter from n-fea

FOR all the nodes on the skirt

Calculate the reduced stiffness matrix

Calculate the coordinate transformation matrix

Calculate the skirt compliance matrix

Exit to 1r-fea

Figure A.7: Flowchart for FEMGuyan subroutine
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Enter from n- ea

Initialize arrays and matrices

FOR all the elements that have faces on the skirt

Load the element volume and characteristics

FOR all the faces

IF uniform pressure boundary condition

IF thrust OR anti-thrust flag

Calculate the load vector due to hydrodynamic pressure

Solve for the skirt deformation

Exit to 1r-fea 
Figure A.8: Flowchart for FEMstaticLUB subroutine
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Enter from n- ea

Initialize arrays and matrices

FOR all the elements

Load the element area and characteristics  
Calculate the element stiffiress matrix

Calculate the element load vector

due to the physical wedge

Calculate the element load vector

due to squeeze film

Assemble the global stiffness matrix

and global load vector

IF global stiffness matrix IS sparse

Solve for the hydrodynamic pressure

using conjugate gradient method  
IF global stiffness matrix IS NOT sparse

Solve for hydrodynamic pressure

by inversion

Exit to a—fea

Figure A.9: Flowchart for ReEq subroutine
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Enter from 1r-fea

Initialize arrays and matrices

FOR all the elements

Load the element volume and characteristics

Calculate the strain vector from known deformation

Calculate the stress vector from strain vector

Calculate the equivalent strain

Calculate the von Mises and principal stresses

and stress intensity

Exit to u-fea 
Figure A.10: Flowchart for FEMstrain subroutine
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APPENDIX B

SIMULATION RESULTS

The simulation results shown in this appendix are for the engine and piston

described in Chapter 6. All the results shown are at 365 crank angle degrees, 5 degrees

alter the expansion stroke. This crank angle was chosen because the combustion gas

pressure is still very high and the motion of the piston allows for hydrodynamic pressure

to be built. All these results are available for each crank angle, which make it feasible to

create animations to visualize piston deformation, stress, lubrication pressure or oil film

thickness over a cycle.
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Figure 8.1: Temperature distribution
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Figure 8.2: Deformation: x-component
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Figure 8.3: Deformation: y-component
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Figure 3.4: Deformation: z-component
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Figure B.5: Deformation: resultant
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Figure 3.7: Normal strain: x-component
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Figure B.8: Normal strain: y-component

 
Figure 13.9: Normal strain: z-component
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Figure 8.11: Shear strain: xz-component
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Figure 8.13: Equivalent strain
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Figure 3.14: Normal stress: x-component
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Figure 3.15: Normal stress: y-component
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Figure B.16: Normal stress: z-component
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Figure B.17: Shear stress: xy-component
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Figure 8.18: Shear stress: xz-component
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Figure B.19: Shear stress: yz-component
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Figure B.20: Principle stress: lSt principal direction
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Figure B.21: Principle stress: 2nd principal direction
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Figure B.22: Principle stress: 3rd principal direction
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Figure 8.23: von Mises stress
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Figure 8.24: Stress intensity
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Figure B.25: 3D von Mises yield criterion
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Figure 3.26: Hydrodynamic pressure: thrust side
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Figure 3.27: Hydrodynamic pressure: anti-thrust side
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Figure 3.28: Oil film thickness: thrust side
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Figure B.29: Oil film thickness: anti-thrust side
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