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ABSTRACT

THE HYBRID DIGITAL TREE AND ITS APPLICATIONS TO

GENOMIC SEQUENCE DATABASES

By

Qiang Xue

This dissertation focuses on index structures, search algorithms, and applications

for large string databases whose indexes cannot fit entirely in the main memory

(RAM). String searching is a classic research topic that has received increasing atten-

tion in recent years, due to the rapid growth of digital text collections (strings) and

the fast expansion of application range and complexity. Traditional string indexing

approaches are either RAM-based or disk-based. The RAM-based structures perform

poorly when a database index size exceeds that of the available RAM. On the other

hand, disk-based structures do not take full advantage of the available RAM, which

may result in overwhelmed Input/Output (I/O) operations. In this dissertation, a

novel indexing approach, the Hybrid Digital tree (HD—tree), is proposed. The HD-

tree index contains two parts: the RAM-index and the disk-index. The RAM-index

resides in the RAM to minimize the disk accesses; while the disk—index maintains the

rest of the index on disks so that large databases can be indexed.

The first half of this dissertation focuses on index structures. The HD-tree is

proposed after investigating existing indexing techniques. Construction and search

algorithms for the HD-tree are developed, and characteristics of the tree structure are

discussed. The HD-tree is applied to prefix and substring searches, and is compared

with the Prefix B-tree. The comparison shows that the HD-tree not only reduces I/O

operations by a factor of two to three, but also reduces the total query processing

time by one order of magnitude. The HD-tree is also applied to approximate string

matching based on the Hamming distance, where the performance of the HD-tree



surpasses that of the M-tree and the linear-scan approach.

In the second half of this dissertation, the HD-tree is applied to indexing and

searching genomic sequence databases, such as the entire GenBank protein sequence

database. Since the GenBank data is massive, using the standard method to gen-

erate an HD-tree index takes dozens of hours. Therefore, the Sort-Merge method is

proposed to reduce the construction time by an order of magnitude. Sequence search

algorithms using scoring matrices are developed for the HD-tree. Compared with

BLAST, a popular sequence search tool, the HD-tree not only reduces query time by

a factor of four, but also finds more valid results for short queries. Finally, the HD-

tree is applied to sequence searches using the Profile Hidden Markov Model (PHMM),

where it Shows great success. Compared with one of the most popular PHMM search

tools, HMMER, the HD-tree is orders of magnitude faster for Short queries.

In the appendix, the research of ' approximate q-gram matching in genomic se-

quence databases is presented. It is Shown that searching genomic sequence databases

using longer query word length and larger Hamming distance in the filtering stage

provides an excellent opportunity for optimizing the search cost, while improving the

quality of the search. This result provides further support and motivation for devel-

oping advanced indexing schemes, such as the HD-tree, for large genomic sequence

databases.

In summary, this dissertation not only develops a new tree structure for string

indexing, but also successfully applies the structure to real applications. According

to comparisons with existing techniques, the proposed data structure, the HD-tree,

is promising for indexing and searching large string databases, especially genomic

sequence databases.
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Chapter 1: Introduction

The study of data structures and algorithms has been a fundamental research

in the field of computer science Since the era of electronic computing. The increase

in raw computing power cannot discount the significance of discovering efficient

data structures and algorithms. After all, the faster the computing equipment, the

more is the gain from human intelligence. This chapter presents the research needs

in string indexing, the basic concepts of string matching, and research challenges in

string databases. Existing techniques and their limitations are briefly discussed, so

that the motivations for the proposed hybrid indexing approach is clear. The

contributions and overview of this dissertation are presented at the end of this

chapter.

1.1 Research Needs

Electronic text (string) collections have increased dramatically over the last

decade, from megabytes of dictionaries, to gigabytes of genomic sequences, to

terabytes of web documents. Such expansion has not stopped accelerating as

information technologies continue to develop. Hence, string indexing techniques

become more and more essential to process the massive available information. Many

applications, such as computational biology [1, 2, 3], signal processing [4, 5], and

information retrieval [6, 7, 8], must process complex queries (e.g., approximate

string matching) on the growing amount of text collections. Due to the limited size

of the internal memory (i.e., Random Access Memory, or RAM), partial or entire

indexes have to be stored on the external memory (disk). The resulting

input/output communication between fast RAM and Slow disk creates a major

performance bottleneck. In order to reduce search cost and improve query



performance, new ideas must be developed to design efficient data structures and

search algorithms for processing such large text collections. Motivated by this fact,

the focus of this dissertation is on designing and analyzing index structures and

search algorithms for large string databases, such as genomic sequence databases.

1.2 Basic Concepts for String Matching

A string consists of a series of symbols (or characters) chosen from an alphabet

A of Size [A]. The letters and strings are assumed to have a lexicographic order. In

this dissertation, lower-case letters are used to denote symbols from A (e.g., a, b and

c), while lower-case Greek letters are used to denote strings (e.g., a, 6 and 7). The

combinations of strings or symbols indicate string concatenation. For example, 06

is the concatenation of a and 6, while ab is the concatenation of a and b. Given a

string a = a1...an of length [a] = n, a1...a,- is called a prefix of a, cry-man a sufifix of

a, and a,...aj a substring of a. For simplicity, a database is considered to be a set of

records with the form T,- = ([95, A;), where n,- is a unique string and A, the

descriptive information of Ni, such as a statistic, a string position, or a pointer to

another location where such information can be found. Since this dissertation

focuses on the issues of string indexing, A; is usually ignored in discussions (i.e., not

strictly distinguishing a record and a string).

This dissertation divides string matching problems into two categories:

non-approximate string matching and approximate string matching, based on their

computational complexity. Non-approximate string matching includes exact, prefix,

substring, and range searches, which are used in applications such as web search

engines, relational databases, and E—businesses. Given a database containing strings

n1...nn, an exact search, ExactSearch(a), retrieves n,- such that n,- = a, 1 S i _<_ n;

a prefix search, P'ref2255'earch(a), retrieves it,- where a is a prefix of is]; a sub-string
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disk W ExactSearch(hybrid) = {hybrid}

hybrid

index PrefixSearch(in) = {index, insert,

insert intersting}

interesting

prefix SubstringSearch(in) = {index, insert,

string intersting, string, substring}

Structure

substring RangSearch(in, out) = {index, insert,

suffix interesting, prefix}

L
 

Figure 1.1: Examples of Non—Approximate String Matching

search, SubstringSearch(a), retrieves It, where a is a substring of Hi; and a range

search, RangeSearch(a, fl), retrieves n,- such that a S n,- S 6. Examples of

non-approximate string matching are Shown in Figure 1.1.

Approximate string matching is the string matching with “errors,” and the

earliest references are from the late 19603 (Signal processing) and the 19708

(computational biology). The general form of approximate string matching is to

find the positions of a text where a given pattern occurs, allowing a limited number

of “errors” in the matches [9]. Various error models have been developed to define

how different two strings are, by measuring a “distance” between the two strings. A

user-defined distance is used to identify one string as the erroneous variant of

another. The distance measures are further discussed in Section 4.5.1.

1.3 Growth of String Databases

String databases and string matching techniques are used in many applications.

The following sections introduce the rapid growth in a few applications, such as

signal processing, relational databases, E—businesses, and computational biology.



1.3.1 Signal Processing

Signal processing is used in speech recognition to determine text messages

transmitted in audio signals. Approximate matching is critical in this application,

because parts of a speech may be lost or mispronounced. At the same time, since

the physical transmission of signals is error-prone, error correction is important to

restore the correct message from a possible error introduced during the

transmission. One of the most popular distance measurements, known as the

Levenshtein distance [4] (also called edit distance) was originally developed for the

purpose of error correction. The fast growing of multi-media databases demands the

ability of searching the content of audio data, and the increasing interest in wireless

networks keeps looking for stronger error correcting methods. Hence, approximate

string matching in signal processing is a very active research area.

1.3.2 Relational Databases

The rapid growth of the Internet, the increase in online transaction processing,

and the expansion of large database applications have contributed Significantly to

the data explosion of relational databases, such as consumer relation management,

national white pages, and digital libraries. In an recent survey (September 14, 2005)

of the world’s largest and most heavily used databases by Winter Corporation, the

size of the largest commercial database tops the 100 TB mark, and has increased

three-fold Since the 2003 survey [10]. The largest Windows data warehouse is 19.5

TB and the largest number of rows/records is 2.8 trillion. For the first time, the

peak workload on a system exceeds 1 billion SQL statements per hour.

In relational databases, a large portion of queries deal with strings (e.g.,

searching names or addresses). In a majority of cases, users do not expect an exact

match of the query string, therefore, prefix search, substring search, and range

search are important. How to index and search these massive string data efficiently



and effectively is a challenging research issue.

1.3.3 E-businesses

The exponential growth of the Internet continues to encourage many traditional

businesses to enter the electronic business (E—business) realm. Consequently,

managing electronic documents iS essential for the success of E—business. For

example, an important application in E—busineSS is to provide electronic product

catalogs (E—catalogs) for buyers to locate and select products [11]. Consider a large

E—store, such as Amazon.com, the E—catalog may contain millions of products and

may receive hundreds of queries per second. In order to provide prompt query

response, the E—catalog data have to be indexed properly. In recent years, XML

(eXtensive Markup Language), which is based on plain text, has become a standard

for representing and exchanging documents on the Internet. Almost all recent

E—business standards are based on XML. Since the amount of XML data is large

and increasing, efficient storage and query of XML documents is a growing challenge

in computer science research [12].

1.3.4 Computational Biology

Computational biology has experienced tremendous growth over the past

decade. It is known that genetic information is encoded in DNA and protein

sequences. DNA sequences are represented as strings using a four-letter alphabet

{A,C,G,T}. Protein sequences are represented as strings using a twenty-letter

alphabet, where each letter represents an amino acid. Searching over these strings is

a fundamental operation for problems such as assembling DNA chains from the

pieces obtained by experiments, looking for given features in DNA chains, or

determining how different two genomic sequences are. In such applications, exact

match is of little use due to mutations of genomic sequences. Therefore,
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approximate string matching becomes critical in computational biology.

There are several public sequence databases, such as GenBank [13],

Swiss-PORT [14], EMBL Nucleotide Sequence Database [15], and DNA Data Bank

of Japan [16]. These databases have seen exponential growth in recent years, partly

due to the well-known human. genome project [17]. Figure 1.2 shows the growth

chart of GenBank. AS of April 2004, GenBank contains approximately 44 billion

base pairs, and 40 million sequences. The rapid expansion of genomic sequence

databases and the complexity of sequence matching tasks demand the development

of efficient and effective data structures and search algorithms.

1 .4 Memory Hierarchy

In order to be cost-effective, computer systems usually contain a hierarchy of

memory levels, where each memory level has different cost and performance

characteristics. The lowest level consists of CPU registers and caches that are built



with the fastest but most expensive memory. Above this lowest level is the internal

memory, which is also called random-access memory (RAM). At a higher level,

inexpensive but slower magnetic disks are used for external mass storage. Finally,

even slower but larger-capacity devices such as tapes and optical disks are used for

archival storage. Figure 1.3 illustrates a typical memory hierarchy and its

characteristics.
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Figure 1.3: The memory hierarchy of a typical uniprocessor system. Below each

memory level is the range of typical sizes of that memory level. The value of B at

the top of the figure indicates the block transfer size between two adjacent levels of

the hierarchy. Sizes are given in units of bytes (B), kilobytes (KB), megabytes (MB),

gigabytes (GB), or terabytes (TB).

In modern programming languages, the notion of Virtual Memory allows the

program address-space to be far larger than what can fit in the RAM. Programmers

usually assume that all memory references require the same access time. In many

cases, such an assumption does no harm, especially when the data sets are small.

However, when large address spaces Span multiple levels of the memory hierarchy,

the assumption of equal access time may not reflect the actual behavior of the

program. This is because accessing data in the lowest level of memory is orders of

magnitude faster than accessing data in higher levels. For example, accessing a

CPU register takes nanoseconds (10’9 seconds), and accessing RAM takes tens of



nanoseconds, but the latency of accessing data from a disk is several milliseconds

(10"3 seconds), which is about one million times Slower than that of a CPU register.

Since the latency and bandwidth of memory chips are improving more quickly than

those of disks (roughly 60% increase per year in processor performance, and 20%

increase per year in disk performance [18]), the access gap is continually growing.

Therefore, in applications that process massive amounts of data, the input/output

communication (I/O) between levels of memory, especially between the RAM and

disks, often becomes a bottleneck. As these trends continue, the I/O bottleneck

grows ever worse without some changes in the fundamentals of data storage.

1.5 Existing Indexing Structures and Their

Limitations

Indexing structure is a topic studied throughout the development of computer

science. The well-known B-tree structure [19], which is the basis of most disk-based

indexing structures, was proposed in 1972. The digital tree, which is widely used in

string matching, can be traced back to the 19608 [20]. Modern databases contain

various types of data, such as pictures, audios, videos, and spatial data; yet textual

data (i.e., strings) are still the major components of database systems. How to

efficiently index these strings was, is, and will remain a critical issue for database

performance.

Over the past few decades, many data structures have been proposed for string

indexing. These data structures can be divided into two categories: disk-based

structures and RAM-based structures. The first category includes inverted files [7],

Prefix B-trees [21] and String B-trees [22, 23, 24]. The second category includes

various structures based on digital trees (also known as tries), such as Patricia tries

[20], suffix trees [25, 26], suffix arrays [27] and PAT trees [28].



Since string indexes for large applications are often too massive to fit entirely in

the RAM, disk Space must be used to store the indexes. However, the latency of

accessing data from a disk is much Slower than that from the RAM. Therefore, the

resulting I/0 communication can be the major performance issue. The two

important measures that are normally used to evaluate the performance of

disk-based data structures are the number of I/OS to answer a query and the

storage utilization of disk blocks.

Among disk-based data structures, inverted files are popular for keyword-based

searches. However, it is difficult to perform substring and similarity searches using

inverted files. B-trees [19] and their variations [29], are well known balanced

multi-way search trees for manipulating dynamic data on the disk. They are very

efficient in handling fixed length keys (e.g., integers). However, the performance of

B—treeS degrades dramatically for variable length keys (e.g., strings), since the

fan-out (i.e., the number of children) of an internal node depends on the number of

strings stored in the node. The Prefix B—tree is designed to improve the

performance of string indexing by using the shortest unique prefixes as separators

within an internal node. The String B-tree uses the Patricia trie inside its internal

nodes to provide the same worst-case performance as the B—tree. However, since the

String B-tree stores indexed strings in a separate file, it generally requires more disk

accesses than the Prefix B-tree. These disk-based indexing techniques do not require

RAM. To use the large amount of available RAM, they rely on caching mechanisms

that are usually not optimized for individual data structure. Therefore, there is a

need for disk-based data structures to efficiently use the available RAM.

The RAM-based structures are useful for indexing strings in the RAM where

string queries are performed. Patricia tries and PAT/suffix trees are particularly

effective in handling relatively small amount of text. However, as the database size

increases, it is no longer feasible to keep the entire trie in the RAM. Various methods



have been proposed to reduce the sizes of tries, such as efficient implementations of

trie nodes [30] and encoded representations of tries. For example, PaTries [31] and

PAT-trees [28, 32] are variants of Patricia tries, in which Jacobson’s encoding is

used to reduce Space requirement. The compressed trie structures trade Space with

computational complexity. However, for very large databases, it is still not practical

to fit the corresponding indexes in the RAM. Another approach is to page tries on

disks. Because of the unbalanced topology of a trie, it is shown to be difficult and

inefficient to page a trie on disk. For example, in the worst case, a downward path

of k nodes will be stored in (We) different pages [24]. Paging tries is especially

expensive for dynamic indexing, where inserting or deleting an m-length string may

take 9(m) page splits or merges [24]. Updating operations will also cause the

storage utilization to degrade quickly. In [33], it is reported that the storage

utilization is 43% for 238KB dynamic text and 38% for 5.55MB dynamic text.

Therefore, it is concluded that RAM-based index structures are not suitable for

indexing large string databases whose indexes cannot fit entirely in the RAM.

CPU

DISK

 

 

The U0 Bottleneck

 

(a) (b)

Figure 1.4: Limitations of Disk-based and RAM-based Index Structures

In summary, disk-based structures can index large databases but usually do not

fully utilize the available RAM and may result in I/O bottleneck (see Figure 1.4b).

On the other hand, RAM-based structures are efiicient for string matching

problems. However, as database size increases, indexes may become too large to fit

in the RAM (see Figure 1.4a), and RAM—based structures perform poorly when
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database index size exceeds that of the available RAM.

1.6 The Hybrid Approach

According to the above discussion, both RAM-based and disk-based data

structures have their strengths and limitations. Since our goal is to index large

string databases with the aim of performing complex queries efficiently, the existing

data structures cannot provide satisfactory performance. Therefore, a novel

approach, the Hybrid Digital tree (HD-tree), is proposed. The basic idea of the

HD-tree is to keep the internal nodes (similar to those in a digital tree) in the RAM

to minimize the number of I/Os, while maintaining the leaf nodes (which hold the

database strings) on disks to maximize the capability of the tree for indexing a large

database. Strings stored in a leaf node Share the same prefix. The internal nodes

are built on these prefixes and are used to guide the search to the leaf node(s)

containing the query answer(s). Unlike a traditional digital tree, the parent of a leaf

node in the HD-tree allows a set (“range”) of multiple prefixes so that indexed

strings with different prefixes may share the same leaf node (i.e., disk block) to

improve storage utilization. Moreover, unlike the traditional concept of range, the

above prefix “range” of a node may not be “continuous”, so that the storage

utilization can be further improved.

It is known that traditional disk-based trees, such as Prefix B-trees, may use

the available RAM to cache their internal nodes, so that the number of disk I/OS

may be reduced. However, the HD-tree is different from this approach as follows:

First, an internal node of disk-based trees is a disk block, which is usually several

kilobytes in size. However, an internal node of the HD-tree is a data structure (i.e.,

a trie node), which is usually several bytes in size. Second, the internal nodes of

disk-based trees are stored on disks and have to be read into the RAM whenever
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necessary. However, all internal nodes of the HD-tree are kept in the RAM, so that

no disk I/Os are required to access these internal nodes.

The HD-tree is Shown to be efficient for both non-approximate and

approximate string matching. Using the HD-tree, the number of I/Os is optimal for

prefix and substring searches. Although hashing techniques can also achieve

optimality for exact searches, it cannot be used effectively in prefix, substring, and

approximate string searches. It is observed that for a given database size, a small

amount of RAM improves the performance of the HD—tree significantly. Since the

data structure of internal nodes in an HD-tree is Similar to that of tries, the HD-tree

not only has a data compression property that is not supported by other disk-based

structures such as the Prefix B-tree, but also achieves great success in approximate

string matching. The HD—tree supports various approximate string matching based

on the Hamming distance [34, 9], simple edit distance [4], general edit distance

using a scoring matrix [35], and the profile hidden Markov model [36]. The HD—tree

has shown to be effective in indexing and searching large genomic sequence

databases such as the entire GenBank protein sequence database.

1.7 Contributions

This dissertation not only studies two important areas of string databases:

indexing Structures and approximate string matching, but also deals with real world

applications in genomic sequence databases. A novel index structure, the Hybrid

Digital tree (HD-tree), is proposed. The HD-tree is a RAM/diSk-based tree that

incorporates and extends indexing strategies of the digital trees and B-trees, taking

advantages of their strengths in search performance and index capability. The

HD-tree is compared with the Prefix B-tree using real textual data from Text

REtrieval Conference (TREC) collections [37]. Queries are generated with different
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cluster levels to study the effectiveness of the HD-tree. It is shown that given

random distinctive queries, the number of disk I/Os is reduced by more than 60%,

while the query time is reduced by one order of magnitude. The HD-tree is also

applied to approximate string matching based on the Hamming distance, where the

HD-tree outperforms existing techniques such as the M-tree [38] and the linear scan

approach [39, 40].

The HD-tree is applied to genomic sequence databases. Due to the

non-structured feature of genomic sequence data, and the largeness of the database,

the standard approach of building HD-tree takes many hours. Heuristics are

developed to reduce tree construction time in an order of magnitude. Hence, the

HD-tree index can be created for the entire GenBank protein database in reasonable

time (e.g., 3-4 hours). Algorithms are developed for genomic sequence search using

scoring matrices [35, 41]. The HD-tree is compared with the well-established

sequence search algorithm, BLAST [3, 42]. For Short protein sequence queries (e.g.,

insulin), the HD-tree is not only four times faster than BLAST, but also able to find

more valid query results. The speed improvement of the HD-tree is even more

impressive in sequence search using the Profile Hidden Markov Models (PHMMS),

where heuristic algorithms are not applicable. Experiments are conducted on both

synthetic and real queries. The HD-tree is Shown to be orders of magnitude faster

than HMMER, a popular PHMM search tool, for short queries.

Besides index structures and search algorithms, in the appendix, the research of

approximate q-gram matching in genomic sequence databases is presented. It is

shown that searching genomic sequence databases using longer word length and

larger Hamming distance in the filtering stage provides an excellent opportunity for

optimizing the search cost while improving the quality of the search. This result is

another proper justification of developing advanced indexing schemes, such as the

HD-tree, for large genomic sequence databases.
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1.8 Overview of the Dissertation

The first half of the dissertation focuses on the index structures for large string

databases. In Chapter 2, some existing techniques for string indexing are covered.

In Chapter 3, the structure of the Hybrid Digital tree (HD-tree) and the algorithms

to build the HD-tree are presented. In Chapter 4, the behavior of the HD-tree is

discussed and algorithms for prefix searches and approximate string matching based

on the Hamming distance are presented. The comparisons between the HD-tree and

other index techniques, such as the Prefix B-tree for prefix search and the M-tree for

approximate string matching based on the Hamming distance, are also discussed in

Chapter 4.

The second half of the dissertation focuses on applying the HD-tree to genomic

sequence databases. In Chapter 5, the background on genomic sequence analysis is

covered. In Chapter 6, the techniques to index and search genomic sequence

databases using the HD-tree is presented, and the performance of the HD—tree is

compared with that of BLAST. In Chapter 7, sequence searches based on PHMMS

are introduced, algorithms to search PHMMS using the HD—tree are presented, and

the performance of the HD-tree is compared with HMMER, a popular PHMM

search tool.

Finally, conclusions and future work are discussed in Chapter 8. In appendix,

the research on approximate q-gram matching in genomic sequence databases is

presented.
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PART ONE

THE HYBRID DIGITAL TREE
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Chapter 2: Existing Indexing

Techniques

String indexing is an increasingly important task in computer science. In the

past a few decades, many data structures have been proposed. All data structures

can be characterized in two main ways: based on how a search is performed

(hashing, complete key, or digital decomposition) and based on where they are used

(in the RAM or on a disk).

Based on how a search is performed, there are three basic categories: hashing,

search trees, and digital trees. Hashing maps a key to an integer in a given range

(e.g., extendible hashing [43]). It “randomizes” the key order, and is able to perform

an exact search very fast. In search trees, the complete value of a key is used to

direct the search (e.g., B-trees [19] and Prefix B-trees [21]). In a digital tree (known

as a trie, pronounced “try” [44], or radix search tree), keys are decomposed as a

sequence of digits or alphabetic characters to direct the search (e.g., Patricia tries

[20], suffix trees [26], PAT trees [28], and suffix arrays [27]). Based on where the

structure is used, the above data structures can be divided into two categories:

RAM-based and disk-based. The first category (RAM-based) includes various

structures based on digital trees, such as Patricia tries, suflix trees and suffix arrays.

The second category includes the extendible hashing [43], the Prefix B-tree [21], and

the String B—tree[24]. In following sections, these data structures will be introduced

as the background for the rest of this dissertation.
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2. 1 Extendible Hashing

The common element of all hashing algorithms is a predefined hash function

hash(N possible keys) —> (0, 1, ..., M — 1) (2.1)

that maps N keys (e.g., strings) to M hash addresses (i.e., integers) in a uniform

manner. Since it is possible that two keys may map into one address, how to resolve

the collision makes hashing algorithms differ from each other. Most traditional

hashing methods have a statically allocated table and are designed to handle only a

fixed range of N. When N becomes large, the static hash table becomes infeasible,

due to the increased space requirement. Therefore, dynamic hashing structures

(e.g., extendible hashing) are required to handle widely varying values of N.

As shown in Figure 2.1, extendible hashing contains a directory and a set of

disk blocks storing the keys. Assume M is sufficiently large and the directory

consists of a table (i.e., array) of 2d pointers, where d is a non-negative integer and

each pointer points to a disk block. Keys are assigned to a table location

corresponding to the d least significant bits of its hash value. The value of d is

called global depth. It is set to the smallest value for which each block has at most B

keys assigned to it. A lookup operation takes at most two I/OS: one to access the

directory, and the other to access the block containing the item. If the directory fits

in the RAM, only one 1/0 is needed.

To minimize storage utilization, several table locations may share one disk

block if the total number of keys assigned to these table locations are less than B.

These table locations have the same It least significant bits in their corresponding

hash value. The value of k is called the local depth. It is chosen to be as small as

possible so that the keys assigned to these table locations fit into a single disk block.

Therefore, each disk block has its own local depth. Note that local depth is less
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then or equal to the global depth.

If a disk block overflows after a new key is inserted, the block needs to be split

and the keys within the block need to be redistributed. If the local depth of the

overflowing block is less than the global depth, only the block’s local depth is and

the corresponding pointers in the directory need to be modified. If the local depth

of the overflowing block is equal to the global depth, the global depth is increased

by one, and the directory doubles in Size. The is how extendible hashing adapts to a

growing N. The pointers in the new directory are initialized to point to the

appropriate disk blocks. These disk blocks themselves do not need to be changed

because of directory doubling, except for the block that overflows. An example of

extendible hashing is shown in Figure 2.1.
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4,12,

42  
global depth d = 3 global depth d = 3

(a) 0))
global depth d = 4

(C)

Figure 2.1: Extendible hashing with block Size B = 3. The keys are the numbers inside

a block. The hash address of a key consists of its binary representation. For example, the

hash address of key 12 is ‘...001100’. (a) After insertion of the keys 4, 8, 12, 23, 40, 41,

42. (b) Insertion of 76 into directory location 100 causes the block with local depth 2 to

Split into two blocks with local depth 3. (c) Insertion of 52 causes the block with to split

into two blocks with local depth 4. The directory doubles in size and the global depth d is

increased to 4.

In extendible hashing, at least Q(n/B) (It gives lower bounds) blocks are
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needed to store the directory. On average, the directory uses O(N1+1/B/Bz) (9

gives exact order) blocks [45]. For practical values of N and B, the N1/B is a small

constant, typically less than 2. The expected number of disk blocks required to store

the keys is asymptotically n/ln2 z n/0.69 [46]. Besides the extendible hashing,

other dynamic hashing schemes include linear hashing [47] and spiral hashing [48].

More detailed surveys and analysis for dynamic hashing can be found in [49, 50].

Hashing works well for exact searches in the average case. However, it does not

support sequential searches such as retrieving keys in a specified range, and other

advanced searches such as a substring search. A more effective approach for

sequential searches is to use search trees, which are explored next.

2.2 B-trees and Prefix B-trees

B-trees [19] and B-tree variations [29] are well known balanced multi-way

search trees used for manipulating dynamic data on disks. Each node of a B-tree is

a disk block that can store 9(8) pointers and keys, where B is the disk block size.

A B—tree of order m (m = 6(3)) satisfies the following properties:

1) Each node has at most m children.

2) Each internal node (i.e., non-leaf node), except for the root, has at least m/2

children.

3) The root has at least 2 children, unless it is a leaf.

4) All leaves appear on the same level.

5) An internal node with k children contains k — 1 keys.

A node that contains 1' keys and r + 1 pointers can be represented as that in

Figure 2.2, where 1131 < k2 < < kr and P,- points to the sub—tree for keys between

k, and 102-+1. Searching in a B-tree starts from the root and requires fetching at

most one node at each level into the RAM. For example, after the node in Figure
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Figure 2.2: A B-tree Node

        

2.2 has been read into the RAM, the given query key, k, is searched among k1, k2,

..., 19,». If the search is successful, the desired key is found; otherwise, assuming

k,- < k < ki+1, the node indicated by P,- is fetched and the search process is

repeated. The pointer P0 is used if k is less than k1, and P,— is used if k is greater

than hr. The search is unsuccessful if the pointer is null.

If a new key is inserted into a B—tree of order m, where all leaves are at level I,

the new key is inserted into the appropriate node on level I — 1. If the node

overflows (i.e., contains 712 keys), it splits into two nodes (see Figure 2.3) and inserts

the key, [Wm/2], into the parent of the original node. If the splitting causes the

parent node to overflow, the parent node splits, and so on. A splitting can thus

propagate up to the root, and the tree grows in height only when the root splits.

Deletions are handled in a Similar way by merging nodes.

/" "\
P0"11’1 kIm/Zl-l Ptwill-1 Flip/2] kIm/Zl-l Prm/2‘1-1 km le

ll 1 l l 1

Figure 2.3: B-tree Splitting

 

               

The complexity of B-trees has been studied thoroughly, and their behavioral

boundaries have been determined. Given a B-tree of order m, assume that there are

N keys, the height, h, of the B-tree is bounded by:

N+1

h 3 1+ log]m/2](—2—). (2.2)
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When a new key is being inserted, the average number of nodes, 3, that need to be

split is bounded by:

s g 1 +—. (2.3)

Therefore, the average number of Splits while building a tree of N keys is less than

1/([m/2]) — 1) per insertion [51].

Since the birth of the B-tree, many approaches have been developed to improve

the basic B-tree structure. For example, in a BT-tree [51, 29], all keys are stored in

leaves. The uppper levels, which are organized as a B-tree, consist only of an index

as a roadmap to enable rapid location of a key. The leaves of a B+-tree are linked

together in order to facilitate range queries and sequential access. In B*-trees [29],

splitting is postponed by “sharing” the overflowing node’s data with one of its

adjacent siblings. The overflowing node needs to be split only if the adjacent sibling

is also full. When this happens, a new node is created. Data from the overflowing

node and its full sibling are evenly redistributed among the three nodes, making

each of them approximately 2/3 full. This method reduces the number of times new

nodes must be created and thus increases the storage utilization. Assume random

insertions. In regular B-trees, it is shown that the average storage utilization of

nodes is ln2 z 69% [46, 52], while in B*-trees, the average storage utilization

increases to about 2 ln(3/2) z 81% [53].

Although the B-tree was initially designed for fixed-length keys, such as

integers, the basic idea can be used for variable-length keys, such as strings.

However, if the keys are variable-length strings, the number of keys stored in each

tree node may not reach the upper limit, m, before the node becomes full.

Consequently, the height of the tree is not bounded, as in Equation 2.2. As the key

length increases, the number of keys per node decreases; therefore, the height of the

tree increases. Thus, the performance of the B-tree degrades, Since more internal

nodes must be accessed.
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In order to increase the number of keys stored in internal nodes, the Prefix

B-tree is proposed in [21]. In conventional B-trees, a separator has to be a key (e.g.,

k[m/2] in Figure 2.3) . Assume a group of keys is: { “abstract”, “common”,

“define”, “longlonglongword”, “moment”, “people” }. In order to split the group,

the key “longlonglongword” has to be used as the separator. However, Prefix B-tree

removes such limitation, and uses the shortest unique prefix of a key as a separator.

For example, any Shortest string between “define” and “longlonglongword” in

lexicographic order (e.g., ‘e’ or ‘f ’) can be a separator (see Figure 2.4). This method

increases the number of keys stored in internal nodes. However, it can fail when

keys have a long common prefix, Since they are adjacent to each other in

lexicographic order. In [54], head compression is used to factor out a common prefix

from all keys in an internal node. In [55], another compression scheme is adopted.

The idea is: if a key begins with the same 12 characters as its immediate predecessor,

the key is stored with its first 11 characters replaced by integer n. This approach

saves space but it does not prevent a key from having many characters in the rest of

its positions. Besides the storage issue, heuristics to improve searching performance

within a Prefix B-tree node can be found in [55].

 

[ ..., . \... 1

/\
[ abstract, common, defineg] [ longlonglongword, moment, people]
  

Figure 2.4: An Example of the Shortest String Separator in a Prefix B-tree

2.3 Tries

TIies (pronounced “try”, and derived from “information retrieval” [44]), or

digital trees, are recursive tree structures that use digital decomposition (i.e.,

decompose strings as a sequence of digits or characters) to represent a set of strings
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and to direct the search. The basic idea is similar to the thumb index on a large

dictionary, where from the first letter of a given word, the pages containing all

words beginning with that letter can be located immediately.

A trie can be defined as the following: assume S is a set of strings, and

A = {01'}le is the alphabet (a special symbol $ is included to represent the end of

a string), then the trie associated to S is defined recursively by the rule:

trie(S) = (trie(S|a1), ..., trie(S|a,~)), (2.4)

where S |a,; represents the subset of S consisting of strings that start with a,- and

stripped of their initial letter a,. The recursion is halted as soon as 5' contains one

string. A trie only maintains the minimal prefix set of strings necessary to

distinguish all the strings of S.

A basic trie can be represented asan M-way tree, where each node is a vector

of M components corresponding to symbols in A. Each edge is labeled with a

symbol that leads to the next node. Each node on level I represents the set of all

keys that begin with a certain sequence of 1 characters. The sequence is the

concatenation of the labels traversing from root to a leaf node. An example of a trie

structure is shown in Figure 2.5.

Since tries represent strings along the paths in the tree, not in the nodes,

considerable compression can be achieved by Sharing paths. The height of a trie is

the number of nodes in the longest path from the root to an external node. On

average, the height of a trie is logarithmic for any square-integrable probability

distribution [56]. Tries provide potentially faster access than search trees, since one

comparison may lead to a large fan-out (up to [AD [43].

Compacted tries compresses the unary paths (i.e., each node on the path has

only one child) of the tries by storing the labels along the paths into trie nodes [51].
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Figure 2.5: An Example of a Trie

Patricia tries (”Practical Algorithm To Retrieve Information Coded In

Alphanumeric”) are binary tries where the individual bits of the keys are used to

decide on the branching [20]. Each internal node of the Patricia trie has an

indication of which bit is to be used for branching. This may be given by an

absolute bit position or by a count of the number of bits to skip.

2.4 Suffix Trees and Suffix Arrays

A suffix (semi-infinite string) is a substring, which starts from a position in a

text and continuing toward the end as far as necessary to make the substring unique

within the text. A common method to accelerate string searching is to index all

sufifzes of a text using a trie. The resulting trie is known as a suffix tree [25]. For

each suffix, a logic pointer pointing to the starting position of the suflix is stored at

the leaf node of the suffix tree. The starting position can be either at a character or

at a word. To make sure that no suffix in the text is a prefix of another suffix, a

unique character that is not in A is appended at the end of the text. An example of

a suflfix tree is shown in Figure 2.6, where # represents the unique character.
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Figure 2.6: An Example of a Suffix TYee for “BANANA”. Pointers to the suffix

position are shown in leaf node.

Classical algorithms construct a suffix tree for a string of length n in

O(n log |A|) time and 0(n) space (0 gives upper bounds) [25, 26, 57]. A recent

algorithm removes the dependence on alphabet size [58]. Because the suflix tree

indexes all possible suffixes of the text, it occupies a great deal of Space, e.g., 17

bytes per index point. Using Patrica trees in a similar setting, 12 bytes are required

for each index point. PaTrieS [31] and PAT-trees [32, 28] are variants of Patricia

tries, in which the Jacobson’s encoding [59] of the tries is used to reduce Space. The

average space requirement for each index point in such variants is 6 bytes.

Suffix trees are powerful data structures. However, they use much space. Even

though compression techniques help to reduce the size, suffix trees built on large

text may easily exceed RAM Size. Therefore, suffix trees have to be stored on disk.

As Shown in [24], since suflix trees have an unbalanced topology that is

text-dependent, it is difficult to apply suffix trees on disk efliciently and dynamically.

It is also shown in [33] that dynamically paging suffix trees on disk leads to

decreasing storage utilization, e.g., 43% for 238KB text and 38% for 5.55MB text.

Suffix arrays store all the text suffixes in lexicographic order by their pointers.

They are very space-efficient because only one pointer per suffix is stored. Suffix
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arrays are inherently static. They can be applied on external memory by

partitioning the index into disk blocks. The performance on external memory

degenerates when the text collection becomes large and changes over time.

Searching in a suflix array requires 0(log2 N) number of disk accesses. This binary

search may perform poorly because of the number of random disk accesses. To

reduce the number of disk accesses, the supra-index: has been used as the first step

of the search [7]. The supra-index is a sampling of one out of b suffix array entries,

where for each sample, the first I suffix characters are stored in the supra-index.

2.5 String B-trees

In a conventional B—tree, 9(3) keys are stored in each internal node. However,

if the keys are variable—sized text strings, the keys (i.e., string) can be arbitrarily

long, and there may not be enough space to store 9(3) strings per node, even using

the heuristics adopted by the Prefix B-tree. Consequently, the performance of the

tree degrades as the average fan—out (i.e., the number of children) of internal nodes

decreases. The worst case of the B-tree indexing variable-length strings is not

bounded as that of the B-tree indexing fixed length integers. In order to provide

bounded fan-outs, a straightforward approach is to stored 9(3) pointers to the

9(3) strings in each internal node. However, accessing each string within the

internal node during the search may require one disk access in the worse case.

Therefore, the number of I/Os required for search is usually too high to make this

approach useful. To solve this issue, the String B-tree is proposed so that not only

the fan-out of an internal node is bounded by 9(3), but also the number of I/Os

required for searching an internal node is bounded by a constant number. Such

feature is achieved by using a data structure similar to the Patricia trie within an

internal node, and store keys in a separate file. The Patricia trie is used to
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determine the pointer to follow by accessing the file once. The resulting query time

to search in a String B-tree for a string of l characters is therefore 0(logB N + l/B).

Insertions and deletions can be done in the same I/O bound.

String B-tree provides a theoretical guaranteed worst-case performance for

string searches. However, since the String B—tree stores strings in a separate file, two

disk I/Os are required for searching an internal node. In leaf nodes, extra disk I/Os

are required to access query answers. The performance of the String B-tree is hence

usually worse than that of the Prefix B—tree. This is the reason why the Prefix

B-tree is selected to compare with the HD-tree in Chapter 4.4.
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Chapter 3: The HD-Tree

The HD—tree adopts a hybrid RAM/disk-based structure, in which leaf nodes

are stored on the disk so that a large database can be indexed, and internal nodes

are kept in the RAM to achieve greater efficiency. The HD-tree incorporates and

extends some indexing strategies of the digital tree and the B*-tree [29], taking

advantage of their strengths in search performance, compression capability, and

storage utilization. The structure and construction algorithms of the HD—tree are

presented in the following sections. Besides the notation and assumptions

introduced in Section 1.2, symbol I] is a Special auxiliary symbol such that t] ¢ A and

ti < c for any c E A. Assume T is a set of letters, functions MIN(T) and MAX('1‘)

yield the smallest and greatest element in T, respectively.

3. 1 Basic Structure
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Figure 3.1: An HD—tree
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The HD-tree is an unbalanced and ordered tree (see the example in Figure 3.1).

An internal node, 6, of the HD-tree contains a list of pairs L(6) = {(a1, P1),

(a2, P2), ..., (am, Pm)}, where P,- is a pointer to its child node; ai(1 S i S m) is a

letter from A, called the label of Pi; and a1 < a2 < < am, such that the pointers

are ordered according to their labels. The order of Siblings (the nodes who have the

same parent) are determined by the pointers. For example, the left sibling of node 6

is node 2, while the right sibling of node 6 is node 13. Leaf nodes, which are

implemented as disk blocks, contain the suffixes of indexed strings. The path string

of a tree node is the concatenation of the labels along the path traversing from the

root to the node. The path string of the root is empty. Since an HD—tree node can

be uniquely identified by its path string, a path string is also called an id—string

(i.e., identification string) of the corresponding node. Let ID(6) denote the id-String

of a tree node 6. In Figure 3.1, ID(2) = a, ID(9) = bbe, and ID(15) = db.

3.2 HD-tree Properties

An HD-tree must satisfy two basic properties, which determine the proper leaf

nodes for the indexed strings.

PROPERTY 1 For each internal node, 6, in an HD-tree, ID(6) is a common prefix

of all strings contained in any leaf node in the sub-tree with 6 as the root.

Property 1 is similar to that of a digital tree. However, the id-string of a leaf

node 6’ in an HD-tree represents one or more prefixes (i.e., a set or “range” of

prefixes) which strings in the leaf node, 6', may have. Let PS(6') be the prefix—set

of a leaf node 6’. If |PS(6')| = 1, all strings in 6’ share the same common prefix in

PS(5’) Such a leaf node is called a Single-Group Leaf (SGL). If [PS(6’)| > 1, 6’

may contain several groups of strings, where the strings in each group share a prefix

which is different from the prefix of another group. Such a leaf node is called a
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Multi- Group Leaf (MGL). The reason for using SGL and MGL is to improve disk

utilization; otherwise, some large groups of strings may hinder the grouping of small

groups. Based on Property 1, each prefix in PS(6’) differs only in the last letter. An

internal node in an HD-tree may have three types of pointers: (1) Internal Pointer

(IP) to an internal node; (2) Single-Group Leaf Pointer (SGLP) to an SGL; and (3)

Multi-Group Leaf Pointer (MGLP) to an MGL.

In a traditional index tree such as the B—tree, any key, k, within a given range

is kept in one node. This strategy is incorporated into an HD-tree by storing the

keys having their prefixes within a “range” (i.e., a set) in the same leaf node. The

reason to adopt this strategy in an HD-tree is based on the following observation:

the group of keys with one prefix may be too small, and multiple such groups may

fit in a leaf node (disk block), which can improve storage utilization.

A key range in a traditional index tree is continuous in that no key between the

two boundaries of the range can be excluded. However, the prefix “range” (called

the prefix-set) in the HD-tree may not be continuous because one or more prefixes

between the two boundaries (minimum and maximum prefixes) of the range may be

excluded. The reason to allow the exclusion of some prefixes from the range is that

their corresponding key groups may be too large to share one leaf (block) with

others. In such cases, one or more separate leaves (disk blocks) are used to store the

group of keys corresponding to such a prefix of the large group and keep the

remaining small groups of keys (with prefixes within the “range”) in another leaf

node.

The prefix-set, PS(6'), for an SGL, 6’, contains the unique prefix ID(5'), i.e.,

PS(6’) = {ID(6’)}. For example, in Figure 3.1, node 11 is an SGL with

PS(11) = {bbcc}; that is, all the strings in this node have the common prefix, bbcc.

It is the task of the tree building algorithms to determine which node is an SGL.

For example, a percentage of the free Space in a leaf node is used in the HD-tree to
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determine an SGL.

Unlike an SGL, whose prefix-set is directly presented by its id-String, the

prefix-set of an MGL needs to be derived as follows: let 6’ be an MGL, and 6 be the

parent node of 6’ containing list L(6) = {(a1,P1), ,(ak, Pk), ,(am, Pm)},

where m > 0 and Pk is the pointer to 6'. Let ,8 = ID(6), the prefix-set of MGL 6’ is

defined as:

PS(6’) = {go | c e rpk}, (3.1)

where Tpk is a set of letters obtained through the following steps:

1: T’Pk = {a,- ] (ai, Pi) E L(6),a,- < ak,P,- is an MGLP };

2 : if (T101: iS empty ) b’ = ll;else b’ = MAX(T'Pk);

3: TA={a|aEA,b'<aSak};

4 : rggk = {a,- | (aj,Pj) e L(6),b’ < a,- < ak,

3, is an IP or SGLP };

5: TPk=TA_T,1”k'

The set, TA, contains all letters (i.e., a continuous range) between the last

letter, b’, of the id-string of the closest left Sibling MGL (if any, otherwise b’ = ll)

and the last letter, ak, of the id-string of the current leaf, 6’. However, any letter

between b’ and ak that is used as a label for a pointer to an internal node or an

SGL is excluded from TA. The letters in the resulting set, Tpk, are used as the last

letters for the prefixes in PS(6’), which may not be continuous (i.e., some prefixes

within the range may be excluded). The following two examples are given to

illustrate the steps to find the prefix-set of a leaf node.

Example 1 Find the prefix-set of node 9 in Figure 3.1.

In Figure 3.1, the internal node, 7, contains a list

L(7) = { (b, 3?), (c, P210), (e, 33)}, where Pin pointing to node n. The steps to find
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the prefix-set of node 9 are as follows:

1: T’P9={b}; 2: b’=b;

3: TA={c,d,e}; 4: TIP,§={C};

5: T133 = {d,e}.

Since 3 = ID(7) = bb, PS(9) = {bbd, bbe}, where bbc is excluded from PS(9),

the group of keys with prefix bbc are stored in the leaf nodes 11 and 12.

Example 2 Find the prefix-set of node 12 in Figure 3.1.

In Figure 3.1, the internal node, 10, contains a list L(10) = {(c, 3111), (d, 3212)}.

3111 is an SGLP, and the steps to find PS(12) are as follows:

3: TA={a,b,c,d}; 4: T153212: {c};

5: TP212 = {a,b,d};

Since 6 = ID(10) = bbc, PS(12) = {bbca, bbcb, bbcd}. Prefix bbcc (which is

greater than bbcb and smaller than bbcd) is excluded from PS( 12). Therefore,

PS(12) is not a continuous range of prefixes.

PROPERTY 2 Each leaf node, 6', in an HD-tree keeps all the strings with a prefix in

its prefix-set, PS(6’).

Based on the previous discussion on the prefix—set, Property 2 of the HD-tree

guarantees that any key is placed in one and only one leaf node of an HD-tree. In a

traditional index tree (e.g., the B-tree), not every key in the range of a leaf node

must appear in the node. If a user wants to search for such a key, the search

algorithm will report that the key is not in the database. Similarly, each prefix in

the prefix-set of an MGL does not necessarily have a corresponding key in the MGL.
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In the HD-tree, keys are stored in leaf nodes. Since the prefix of a key can be

found along the path from the root to a leaf node, to duplicate the prefix in the leaf

node is not necessary. Therefore, only suffixes are stored in leaf nodes physically.

However, an MGL, 6’, has more than one prefix. If we only store the suffix (after

removing its prefix in PS(6’)) of a key in the node, we would lose the corresponding

relationship between the suffix and the prefix of the key. As previously discussed,

each prefix in PS(6’) differs only in the last letter. To resolve the above ambiguity,

the suffix of a key is saved together with the last letter of its prefix in PS(6’) To be

consistent, the keys in an SGL are also saved in the same way. Note that the key

compression feature (i.e., sharing the common prefixes at the internal nodes and

storing only suffixes in the leaf nodes) in the HD-tree increases its capability to

index large databases for given RAM and disk sizes.

Because the HD-tree guarantees that a key can be kept in one and only one leaf

node, several features can be derived regarding the optimality of the tree to support

various types of string queries. Assume that all internal nodes of the HD—tree are

kept in the RAM. The first feature is:

FEATURE 1 Let Q be an exact, prefix, or substring search. If there exists an

answer(s) to Q, the HD-tree is optimal for Q. Only the leaf node(s) containing the

answer(s) will be accessed. If Q has no answer, at most one disk access is required.

For a range string query that finds any string, a, such that 31 g a S 32, where

31 and 32 are the boundary strings, the second proposition is:

FEATURE 2 If both boundary strings are in the answer set for a range string query,

the HD-tree is optimal for the query.

Feature 2 only gives a suflicient condition for the optimality of the HD-tree

when processing a range query. In other words, even if one or both boundary strings

are not in the answer set, the HD-tree can still be optimal as long as the leaf node
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for the missing boundary string has at least one answer to the query. If the leaf

node(s) for the boundary string(s) contains no answer to the query, the access to

that leaf node(s) (disk block) is an extra access(s). Hence, the third feature is:

FEATURE 3 At most two extra disk accesses are required to process a range query

using the HD-tree.

After the basic structure and properties of the HD-tree are defined, it is

important to develop algorithms to build the HD-tree according to the structure

and properties.

3.3 Building the HD-Tree

To build an HD-tree, algorithms are needed for insertion, deletion, and update.

A deletion is the reverse of an insertion, while an update can be implemented by a

deletion followed by an insertion. In this dissertation, only the insertion issues and

its related algorithms are discussed. Note that IP (Internal Pointer), SGLP

(Single-Group Leaf Pointer), and MGLP (Multi-Group Leaf Pointer) are used in

algorithm descriptions.

3.3.1 Insertion Procedure

The insertion procedure inserts a new string, is, into a given HD-tree, where

is = k1...kn, k,- 6 A, and 1 S i S n. The special symbol,ll, is appended at the end of

a string to prevent the string becoming any id-string in the given HD-tree. The

insertion process uses the prefix, k1 hi, to find an internal node whose id-String is

equal to k1 lei. Then the letter, ki+11 is used to find a qualified leaf node. The

insertion continues within the leaf node using the rest of the string, ki+l kn. The

root of an HD-tree is at level 1. Given an internal node, 6, at level l, kl is used to
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determine the next pointer to follow. Algorithm 1 (HD-Insert) is a recursive

procedure. It first finds a leaf node, 6', to accommodate It. Once 6’ is found, It is

inserted into 6’. If 6’ overflows (i.e., the node Size exceeds the disk block capacity)

as a result of the insertion, Algorithm 2 (HD-OverflowProc) is invoked. When a

string is inserted into an empty HD-tree, an empty internal node (the root) is

created before invoking Algorithm HD-Insert.

ALGORITHM 1 : HD-Insert(n, l, 6)

Input: (1) a new string is = k1...kn; (2) the current level I; (3) the current

internal node 6, where L(6) = {(a1,Pl), (ak,Pk), (am,Pm)}.

Output: an updated HD-tree

Method:

1. fori=1tomdo

2. if a,- == kl and P,- is an [P then

3. call HD-Insert(n, l + 1, 6122.); return;

4. else if a,- 2 kl and P,- is a SGLP

or MGLP then

5 compute Tpi as shown in Section 2.2;

6 if kl E Tpi then

7. read 6392, from disk into 6’; goto 18;

8 end if;

9 end if;

10. end for;

11. forj=mtoldo

12. if Pi is a MGLP then

13. read 63,], from disk into 6’;

aj = kl; goto 18;

14. end if;
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15. end for;

16. create an empty leaf node 6}, as an MGL;

17. add (kl, P) into L(6)

where P is a MGLP pointing to 6’;

18. add kl kn into 6’;

19. if 6’ overflows then

20. call HD-OverflowProc(6, 6’);

21. end if;

22. write 6’ back to disk;

23. return;

* 6p indicates the tree node pointed to by P.

Algorithm HD-Insert follows internal pointers down the tree as far as possible

(steps 1-4). Then, if there exists an SGL or MGL that can accommodate the search

key, the node is read into the RAM as the chosen leaf node (steps 5-11). Otherwise,

the right most MGL node is chosen (steps 13—15) and its range is expanded (step

16). If no leaf node is qualified to accommodate the key (e.g., only internal nodes

are available), a new leaf node is created and attached to its parent node (steps

20—21). Finally, the key is inserted into the chosen leaf node (step 22). If the leaf

node overflows after the insertion, Algorithm HD-OverflowProc is invoked (step 24);

otherwise, the leaf node is written back to disks (step 26).

3.3.2 Overflow Processing

As more keys are inserted into a leaf node, the leaf node may exceed its

capacity to accommodate more keys (i.e., overflow). Before describing the algorithm

to process an overflow leaf node, the concepts and notation used in the description

are first introduced. In HD-trees, only suffixes of the original strings are stored in a

leaf node (See step 18 in Algorithm HD-Insert). These suffixes are called
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Figure 3.2: Examples of the SGL and the MGL.

suffix-strings. A group is a set of suflix-strings whose first letters are the same. The

common first letter of a group is called the group-head. Groups are ordered by their

corresponding group-heads. The first group iS called the leftmost group and the last

group is called the rightmost group. In other words, given a leaf node, 6', whose

parent is 6, a group in 6' contains strings having the same prefix, 3c, where c is the

group-head and B = ID(6). AS discussed in Section 3.1, an SGL contains only one

group and an MGL contains one or more groups. For example, in Figure 3.2, node

11 is an SGL which contains one group whose group-head is c. Node 17 is an MGL

which contains three groups, whose group—heads are c, d and, e, respectively.

3.3.3 Linked Leaf Nodes

:>

HU MGL Split

*—

—l—

  L—a
Linked Leaf Node

(a) (b) 
SGL Split

Figure 3.3: Examples of the HD-tree Growth
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The HD-tree keeps track of the current available RAM whenever adding or

deleting an internal node (not shown explicitly in the algorithms). When RAM is

available, the tree grows by creating internal nodes through overflow processing and

splitting (see Figure 3.3a). When there is no available RAM, the tree stops creating

new internal nodes. Hence, if a leaf node exceeds the disk block size after inserting a

string, an extra disk block is linked to the original disk block to accommodate the

overflowing data (see Figure 3.3b). Consequently, a search within the leaf node

accesses all linked disk blocks. Using this approach, the HD-tree works with any Size

of RAM.

ALGORITHM 2 : HD—OverflowProc(6, 6’)

Input: ( 1) an internal node 6, where

L(5) = {(01, P1), (are, Pk), (am, Pmll;

(2) an overflow leaf node, 6’, pointed to by P,- in L(6).

Output: an updated HD-tree

Method:

1. if the current RAM is not enough to create

a new internal node then

2 link a new disk block to 6'; return;

3. end if;

4. if 6pi contains only one group then

5. create an internal node 63;;

6 remove (a,, Pi) from L(6);

7 add (a;, P') into L(6) where P’ is an IP

pointing to 6x;

8. remove the first letter a,- from each

suffix-strings in 6' ;

9. add (b, P”) into L(6x) where b is the greatest
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group-head in current 6' and P” is a

MGL pointer to 6’;

10. if 6’ still overflows then

11. call HD-OverflowProc(6$, 6’);

12. else

13. write (6') back to disk; return;

14. end if;

15. else

16. call HD—Split(6, 6’, user-defined threshold);

17. end if;

18. return;

Algorithm 2 (HD-OverfiowProc) is a recursive procedure to handle overflow leaf

nodes. If the overflow leaf node, 6’, iS an SGL, an internal node is created and the

HD-tree grows one level down on the corresponding branch (steps 1-6).

HD—OverflowProc may be invoked again if 6’ continues to overflow (steps 7-8). If 6’

is an MGL, Algorithm 3 (HD—Split) is invoked (step 14).

3.3.4 Split Heuristics

    

c e g

.

         

node 1 node 2 node 3

Figure 3.4: Illustration of a large group hindering a possible merge

In the HD-tree, suffix-strings in overflow leaf nodes are split by group. If a node
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is split into two as soon as it overflows (called SSplit Algorithm), the resulting

storage utilization is very low. This low storage utilization has two main causes.

First, Since leaf nodes are ordered by the labels of leaf node pointers, a leaf node

containing a large (in Size) group may hinder the possible merging of left and right

siblings. For example, in Figure 3.4, leaf node 2 contains a large group ‘e’ (95% of

the block Size). Group ‘e’ cannot be stored in either leaf node 1 or 3, since it will

cause overflow. If group ‘e’ does not exist, leaf node 1 and 3 can be merged into one

leaf node, which will increase storage utilization. Second, since Splitting is done by

group, it may divide groups in an unbalanced way. The key range (i.e., the

prefix-set) of a leaf node keeps shrinking without any possibility of expanding.

Consequently, many underflow leaf nodes (where the storage utilization is less then

50%) are created that may be merged with siblings. Figure 3.5 illustrates a series of

Splitting that creates two underflow leaf nodes (b2 and b3), which could be merged

into one node.
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Figure 3.5: Illustration of the underflow leaf nodes generated by simple Split (5'Split)

According to the above two observations, in order to improve the storage

utilization, two heuristics are used: (1) an SGL is created if the size of a group is

greater than a user-defined threshold T (e.g., 85% of the disk block size), (2) after
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an a large group is moved out of an overflow leaf node into an SGL, and before an

overflow node is Split, groups may be moved to qualified siblings to avoid splitting.

The first heuristic is to move a large group into an SGL, so that it does not interfere

with the grouping of an MGL. The second heuristic helps to expand or shrink the

key range (i.e., the prefix-set) of a leaf node in order to improve the storage

utilization.

ALGORITHM 3 : HD-Split(6, 6’, T)

Input: (1) an internal node 6, where

L(5) = {(01,191) (at, Pk) (am,Pm)};

(2) an overflow MGL 6’ pointed to by P, in L(6);

(3) a threshold T.

Output: an updated HD-tree

Method:

1. if 6’ contains a group g3; whose size is

greater than T then

2. create an empty leaf node 63, as an SGL;

3. move gx from 6’ into 65;;

4. add (a;,;, P3) into L(6) where am is the

group-head of 9;; and P3; is a SGLP pointing

to 65:;

5. adjust(a,-, P,)*;

6. end if;

7. if a left/right MGL sibling 6py of 6’ has

space to accommodate the leftmost/rightmost

group 9 in 6’ then

9
°

read 6}, from disk;

y

9
"

move from 6’ into 6’ ;
. 9 pg
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10. adjust(a,-, Pi) and (ay, P9);

11. end if;

12. if 6' overflows then

13. if 6' contains only one group then

14. call HD-OverflowProc(6, 6’);

15. else

16. create an empty leaf node 6; as an MGL;

17. move groups from 6' into 6'2 one by one in

increasing order until 6; is more than half

full or there is only one group left in 6' ;

18. add (az, 3;) into L(6);

19. adjust (ai, Pi) and (az, P2);

20. end if;

21. end if;

22. write new and modified leaf node(s) to disk;

23. return;

* adjust(a,', Pi) is a procedure which sets a; to the largest group-head in the

leaf node 6}): and marks P, as SGLP or MGLP correspondingly.

In Algorithm HD-Split, heuristic (1) is implemented in steps 1-6, while

heuristic (2) is implemented in steps 7~11. If 6’ still overflows after the two

heuristics are applied, 6’ is split and a new leaf node is created to accommodate

some groups in 6’ (steps 12-17).

Figure 3.6 shows a few examples of HD-tree splitting and the linked leaf nodes

after inserting more strings into the original HD-tree (see Figure 3.1). For example,

node 11 in Figure 3.1 grows into an internal node 11 and two leaf nodes: 19 and 20.

Node 17 splits into two leaf nodes: 17 and 21. Node 18 grows to three linked leaf

nodes: 18a, 18b, and 18c, which happens when the RAM is not available for further
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Figure 3.6: Examples of HD—tree splitting and linked leaf nodes

  

    
  

splitting.

After the HD-tree is built, algorithms are needed to search the HD-tree for

different types of queries. The next chapter presents the search algorithms and the

performance of the HD-tree.
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Chapter 4: HD-tree Behavior

Once the HD-tree is built, various queries can be conducted using the tree. In

this chapter, algorithms for prefix search and approximate string matching based on

the Hamming distance are presented. Characteristics of the HD-tree are discussed.

The experimental results show that HD-tree outperform existing data structures,

such as the Prefix B-tree for prefix searches and the M—tree for approximate string

matching based on the Hamming distance.

4.1 Prefix Search

The HD-tree is able to handle exact, prefix, and sub-string searches. In this

section, Algorithm 4 (HD-PrefixSearch) is presented for prefix searches. Other

string queries (see Section 1.2) can be performed using the prefix search algorithm.

For example, ExactSearch(a) is equivalent to PrefixSearch(atl).

RangeSearch(a, B) can be done by first finding the leaf nodes storing a and 3 using

PrefixSearch(all) and PrefixSearch(,6]l), respectively, then sequentially access all

the leaf nodes between these two leaf nodes. Similar to the approach used in [24],

the HD—tree handles sub-string searches within a set of strings {141, ..., an} by

indexing all suffix strings of K1, ..., nn. Therefore, SubstringSearch(a) can be

performed by PrefixSearch(a) on these suffix strings.

ALGORITHM 4 HD—PrefixSearchO-t, t, 6)

Input: (1) the query string is: = k1...kn;

(2) the current level I;

(3) the current internal node 6, where

L(5) = {(01,131) (akipk) (am,Pm) };

Output: query result(s)
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Method:

1. if 1 > n then

2 return all strings in leaf nodes under 6;

3. end if;

4. fori=1tomdo

5. if a,- == kl and P, is an [P then

6 return HD-PrefixSearch( is, l + 1, 6132.);

7 else if (P,- is an SGLP and a, == kl)

or ( P,- is an MGLP and az- >= kl) then

8. read 6}), from disk

2

9. retrieve strings in 63,2, which have a

prefix [elm/en;

10. end if;

11. end for;

12. return;

Algorithm HD-PrefixSearch starts from the root of an HD-tree, which is at level 1,

and traverses down the tree as far as possible (steps 4-6). If a leaf node is

encountered, the search will read the leaf node from disks and linearly search the

strings in the leaf (steps 7-10). If the prefix is Shorter than the id-String of a node

(see Section 3.1), all the strings in the sub-tree are the answers (steps 1-3). Figure

4.1 shows the paths of searching “aa” (node 1 —- > 2 -— > 3 -— > 4, 4a, 4b, 5) and

“bbcda” (node 1 — > 6 — > 7 — > 10 — > 12).

4.2 Data Sources for Experiments

The performance of the HD-tree on prefix searches are tested using real textual

data. A sample database, WSJ1, is generated from the Wall Street Journal (entire
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Figure 4.1: Examples of String Searches

year of 1991), which is a part of the Text REtrieval Conference (TREC) collection

[37]. Markup tags are removed, texts are split into segments of 5MB each, and

unique prefixes of the suffix strings at word boundaries are extracted for every

segment. If a prefix string is longer than 32, only the first 32 letters are kept to

reduce storage requirement. WSJ1 can be used for keyword-based document

searches [7]. Similarly, database WSJ2 is generated from the same data source,

except that suffix strings start at letters (not spaces). WSJ2 is used for sub-string

searches [28]. The sample query set, Q1, is generated by randomly selecting

keywords from the Wall Street Journal (1991). The sample query set, Q2, is

generated by randomly selecting substrings from WSJ2. The sample database,

GENO, is generated using DNA sequences from GenBank (see Chapter 6 for

GenBank Overview). Overlapping words (strings) of length 28 (i.e., a fixed window

size of 28 Shifting from the beginning to the end of a sequence by one letter at a

time) are extracted from these DNA sequences. Conducting Similarity searches on

these overlapping strings is useful for finding homologous regions in genomic

sequence databases [60]. To increase the efficiency, every two symbols from the
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DNA alphabet, (A, C, G, T}, are encoded into one symbol. Hence, the string length

becomes 14. Each of these databases consists of 15 million strings and each string is

associated with a four-byte integer containing position information. WSJI is used

for prefix searches, while GENO is used for approximate string matching based on

the Hamming distance.

Statistics of these databases and query sets are shown in Table 4.1, where key#

indicates the number of database keys; max, min, and avg are the maximum,

minimum, and average length of keys, respectively. The query performance (the

number of I/OS) in the experimental results is the average among the 100 queries

for text databases and 1000 queries for DAN sequence databases.

Table 4.1: Statistics of sample databases and queries

 

FDB size key# [min max avg ]

WSJl 260.0MB 15M 3 33 14.18

WSJ2 251.8MB 15M 2 33 13.60

GENO 257.5MB 15M 14 14 14

Q1 856B 100 4 20 8.56

Q2 902B 100 4 10 9.02

Q3 140003 1000 14 14 14

 

 

 

 

 

 

 

        

4.3 HD-Tree Behavior

Experiments are conduced to analyze the behavior of the HD-tree and evaluate

its performance by comparing it with existing techniques. The HD-tree is

implemented using C++ and experiments are conducted on a PC with 512MB

RAM and 1.8GHz Pentium 4 processor, running Linux OS. The disk block size used

in the experiments is 4096 bytes.
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Table 4.2: RAM/disk Usage of HD-trees

D3 27.39 54.75 109.4 164.1 219.2 274.3

RAM 0.1123 0.2009 0.3428 0.4623 0.5716 0.6679

disk: 32.08 57.04 96.95 130.5 161.1 188.2

total 32.19 57.24 97.3 131 161.7 188.9

ratio(%) 117.5 104.5 89.93 79.83 73.77 68.87         
D3,RAM, disk, total: MB; Databases: Samples from WSJl;

ratio = total/DB; ALN=0

4.3.1 RAM and Disk Usage

Figure 4.2 illustrates the RAM usage of the HD-tree, where mRam is the

minimum RAM size needed to achieve the minimal-IO (i.e., the optimal I/O

achieved by the HD-tree), and oRam is the minimum RAM size required to achieve

near-optimal performance. Table 4.2 shows the RAM, disk, and total (RAM+disk)

size of HD-trees. Note that the ratio between the total size of an HD-tree and the

corresponding database size decreases as the database size increases. This

performance gain is achieved by the compression feature of the HD-tree.
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4.3.2 Split Heuristics

A set of experiments is designed to Show the effectiveness of the Split heuristics

for building an HD-tree. Table 4.3 shows the comparison of the storage utilization

(using one disk block for each leaf node) between the SSplit, which is a B+tree-like

approach, and the HD-Split (see Section 3.3.4). Note that the HD-Split adopted two

heuristics to improve the storage utilization. One heuristic is to distinguish the SGL

from the MGL, which allows the prefix range to be “discontinuous.” The other

heuristic is to move groups to the left or right sibling to avoid a Split, so that the

prefix set of an MGL is dynamically adjusted. It is Shown that the HD-Split

increases the disk utilization by more than 40%, which indicates the effectiveness of

the grouping mechanism in the HD-Split.

Table 4.3: Split heuristics on storage utilization

 

 

 

 

 

DBSize(MB) ] 50 ] 100 [ 150 | 200 | 250]

SSplit 45.7 44.8 44.6 44.5 44.1

HD-Split 65.1 63.5 63.1 62.7 62.6

Improve 42.5 41.7 41.5 40.1 42.0       
 

Databases: Samples from WSJl, Table value: %

4.3.3 Threshold Phenomena

AS described in Section 3.3.3, using linked disk blocks, the HD-tree is scalable

for any RAM size. Figure 4.3 Shows the relationship between the average number of

links (ANL) and the available RAM Size as the percentage of the database size

(RAM/DB). The ANL is the total number of linked disk blocks divided by the

number of linked leaf nodes. An ANL value of zero means that each leaf node

occupies one disk block. As shown in Figure 4.3, the ANL decreases as the

RAM/DB increases. Note that there exists a threshold (where the curve becomes

flat) in the figure. The threshold is almost invariant of database Sizes.
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When ANL is greater than zero (i.e., the linked disk blocks are used), the query

performance of the HD-tree is shown to be closely related to the ANL. Curves in

Figures 4.4 and 4.5, where the number of I/OS rather than ANL is used, are similar

to those in Figure 4.3. The threshold phenomenon is due to the logarithmic nature

of the tree (i.e., lower level contains less nodes). As the HD—tree grows, adding the

same amount of RAM (i.e., increasing a certain number of leaf nodes) has a

decreased impact on the selectivity of the tree (i.e., the total number of leaf nodes).

Therefore, when the available RAM is limited with respect to the database size, it is

important to allocate enough RAM at the threshold point where the RAM is most

effectively utilized.
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when the answer Size changes.

4.4 Comparisons with the Prefix B-tree

In this section, the performance of the HD-tree is evaluated by comparing it

with that of the Prefix B—tree. The Prefix B—tree is widely adopted by database
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systems and has been shown to be a practical technique for indexing large string

databases. The Prefix B-tree used is the experiments was implemented by the

popular Berkeley DB [61], which is an Open source database system. As a

disk-based index structure, the Prefix B-tree does not require any RAM, while the

HD-tree requires a certain amount of RAM to keep its internal nodes. For a fair

comparison, the same amount of RAM used by the HD-tree is provided for the

Prefix B-tree as a cache. The caching algorithm is based on the popular LRU

(least-recently—used) heuristic, which is used by almost all commercial database

systems because of its Simplicity and effectiveness. The LRU algorithm keeps

recently accessed internal nodes in the RAM to reduce the number of disk I/Os.

The disk I/Os are compared between the HD-tree and the Prefix B-tree using

1000 queries with different numbers of distinctive queries. This set of experiments is

designed to evaluate the effect of the locality of the query results on the performance

of the HD-tree and the Prefix B—tree. The queries are generated as follows: ( 1)

generate a certain number of distinct queries to form a query pool; (2) randomly

generate 1000 queries from the query pool. In one extreme case, the 1000 queries

are all the same (i.e., one distinctive query), i.e., all the 1000 queries return the

same results. As the number of distinctive queries increases, the level of localities in

the query results reduces. The other extreme is when all 1000 queries are different.

As Shown in Figure 4.6, the performance of the Prefix B-tree is better when the

number of distinctive queries are small. However, as the number of distinctive

queries increases, the performance of the Prefix B-tree deteriorates quickly. The two

curves cross between 10 and 20 distinct queries, where the HD-tree starts to

outperform the Prefix B—tree. For 1000 distinctive queries, the HD-tree is almost

three times better than the Prefix B-tree in term of the number of disk I/OS. The

results Show that the performance of the Prefix B-tree using the LRU caching

mechanism is very susceptible to the locality of the query results. On the other
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Figure 4.6: I/O comparison for different query localities; average query length is 6.

hand, the HD-tree is robust to distinctive queries. It is concluded that the HD-tree

performs better as queries become more distinctive. In the following comparisons,

1000 distinctive random queries are used.

In Figures 4.7 and 4.8, the performance of the HD-tree and the Prefix B-tree is

compared for different RAM sizes. In Figure 4.7, it is shown that the HD-tree not

only reduces the number of I/OS, but also uses the RAM more effectively than the

caching mechanism adopted by the Prefix B-tree. For example, as the RAM

increases from 250KB to 1.6MB, the HD-tree reduces more than 50% of I/OS, but

the Prefix B-tree only reduces less than 20% of I/Os. For the given database WSJl

(252MB) and 1.6MB of RAM, the HD-tree reaches its optimal status where each

leaf node occupies only one disk block. In Figure 4.8, more RAM to the HD-tree is

served as a cache which is the same as that of the Prefix B-tree. It is shown that the

HD-tree is continually better than the Prefix B—tree when the RAM is largely

available.

In Figure 4.9, the number of I/Os are compared for different query lengths. It

is Shown that the HD-tree performs increasingly better than the Prefix B-tree as the
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query string length increases. Since the Prefix B—tree uses the same amount of RAM

as that of the HD-tree to cache internal nodes, it is concluded that the hybrid

RAM/disk—based index structure (e.g., the HD-tree) is better than the disk-based

structure combined with caching (e.g., the Prefix B-tree plus LRU caching),

especially when queries are more distinctive.
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Finally, the HD—tree is compared with the Prefix B-tree in terms of total

running time including both the RAM processing time and the I/O time. The

experiments are conducted in the same computing environment (a Linux PC with

512MB RAM and 1.8GHz Pentium 4 processor). Figure 4.10 shows the running

time of the HD-tree and the Prefix B—tree for 1000 queries with different numbers of

distinctive queries. It is noticed that the actual running time of the HD-tree is

comparable to that of the Prefix B—tree even when the 1000 queries are the same.

The reason is that since a large amount of RAM is available, the operating system

provides LRU caching for the HD-tree as well. The HD-tree is shown to be

increasingly faster than the Prefix B-tree as the number of distinctive queries
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Figure 4.10: Running time comparison; average query string length is 6.

increases. For 1000 distinctive queries, the HD-tree is more than one magnitude

faster than the Prefix B-tree.

4.5 Approximate String Matching Based on the

Hamming Distance

Most disk-based index structures, such as the Prefix B-tree, cannot efficiently

perform approximate string matching. However, since the HD-tree uses a trie-based

structure for internal nodes, it has a great potential to perform well in approximate

string matching. In this section, the search algorithms and experimental results for

approximate matching based on the Hamming Distance are presented. More

complex string matching issues and applications are discussed in Chapter 6 and 7.
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4.5.1 Distance Measure

In order to perform approximate string matching, a distance measure is

required. Levenshtein distance [4], which is the most popular distance measure, 2

allows user to deletion, insertion, or substitution of a symbol in two matching

strings. If different operations have different costs, or if the costs depend on the

symbols involved, it is called general edit distance. The general edit distance is

powerful enough for a wide range of applications, such as genomic sequence analysis.

If all the operations cost one, it is called simple edit distance (or just edit distance),

denoted as edist(a, 6), where a and 5 are strings. Edit distance is the minimum

number of operations to make two strings equal. For example, edist( “string”,

“stingy”) = 2. If only substitution is allowed at cost one, it is known as Hamming

distance [62], denoted as hamming(a, ,8). In order to compute the Hamming

distance, the two strings must have the same length. For example,

9, fl

hamming(“string , stingy”) = 4 and hamming(“string”, “strict”) = 2.

4.5.2 Search Algorithm

ALGORITHM 5 HD-HammingSearchOc, 1, max, 6)

Input: (1) the query string 14 = k1...kn; (2) the current level I;

(3) the maximum Hamming distance max 2 0;

(4) the current internal node 6,

where L(6) = {(a1,P1) (ak, Pk) (am, Pm)};

Output: query result

Method:

1. fori=1tomdo

2. if a,- 74 kl and max 2 1 and P,- is an [P then

3. return HD-HammingSearch(

Ii, l+ 1, max -— 1, 6132.);
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4. else if az- == kl and P,- is an [P then

5. return HD—HammingSearch(

19, 1+ 1, max, 6132.);

6. else if P,- is an SGLP and az- 51$ kl

and max =2 0 then

7. return NULL;

8. else if P,- is an MGLP or SGLP

9. read 61% from disk;

10. retrieve suffix strings a in 6h

where HDistance(a, kl...kn) 3 max

11. end if;

12. end for;

13. return;

Algorithm 5 (HD—HammingSearch) starts from the root of an HD-tree, which is at

level 1, and traverses down the tree as far as possible (steps 2-5). Note that the

maximum Hamming distance decreases if a mismatch is found while going down the

tree (step 3). Once a leaf node is encountered (steps 6—10), the search may continue

within the leaf node (steps 9—10), or stop at step 7 if the condition in step 6 is

satisfied.

4.5.3 Comparisons

One straightforward method to perform similarity searches based on the

Hamming distance is to employ the linear scan. Assume that the database is stored

sequentially on disk without fragments, which boosts its performance by a factor of

10. The performance of the linear scan is proportional to 10% of the database size.

This benchmark is used in [39, 40]. As shown in Figure 4.11, for Hamming distances

_<_1 and $2, the HD-tree with RAM as small as 50KB outperforms the 10% linear
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scan. For Hamming distance 33, the HD-tree outperforms the 10% linear scan

when the RAM size is more than 150KB. Figure 4.12 shows that as the database

size increases, the HD-tree is increasingly more efficient than the 10% linear scan.
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Figure 4.11: I/0 comparison for Similarity searches as RAM size increase; the y-axis

is the number of I/Os as the percentage of the total disk blocks occupied by the

database.

Table 4.4 shows the performance comparison between the HD-tree and the

M-tree, a disk-based metric tree for similarity searches [38]. It is shown that the

number of I/Os using the HD-tree is much less than that using the M-tree. Since

the M-tree is a pure disk based structure, it does not have any RAM requirement. If

the RAM is available, the M-tree can cache the top level tree nodes to reduce the

number of I/Os. However, the performance of the M-tree does not improve much as

the RAM size increases. On the other hand, a small amount of RAM can boost the

performance of the HD-tree dramatically. For Hamming distance 32, the M-tree

takes an extra 560KB RAM to cache the second level of the tree, but the

performance is improved less than 1%. However, 16KB RAM helps the HD-tree to

reduce the number of I/Os from 640 to 214, i.e., the performance is improved by a

59



 

 

   

 

     

20 I— I I I I I I I I I I

- x—x Hamming distance <= 1 -

HHamming distance <= 2

15 "‘ O—O Hamming distance <= 3 ‘

— I0% Linear scan

§
V 10 — —

O
a

5 —
._

0 XQL—l - x ' L ,‘ l M 1

O 50 100 150 200 250 300

Database Size (MB)

Figure 4.12: I/O comparison for Similarity searches as the Database size increases,

the y-axis is the number of I/Os as the percentage of the total disk blocks occupied
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factor of two.

The potential of the HD-tree is not limited in various types of queries discussed

in this chapter. In fact, the HD-tree is more useful is approximate string matching

based on general edit distance. The potential of the HD-tree is further explored in

the second half of this dissertation.

Table 4.4: the HD-tree vs. the M-tree

 

 

  

HD — tree M — tree

ram i0 ram i0

KB S 1 S 2 S 3 KB S 1 S 2 S 3

4 125 641 1684 0*“ 790 1420 2480

20 27 198 802 4** 789 1419 2479

32 18 143 616 564* 649 1279 2339

***: no cache; **: cache the root; *: cache top two levels

 

 

 

         
 

60



PART TWO

INDEXING AND SEARCHING GENOMIC

SEQUENCE DATABASES
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Chapter 5: Genomic Sequence

Analysis

The publication of the first working draft of the entire human genome sequence

in February 2001 is considered to be a milestone of scientific research. The journal,

Nature, describes this event as “Unravelling the three billion or so base pairs of our

entire DNA has been compared to the landing on the moon, the splitting of the

atom and even the invention of the wheel [63].” The broadly available genomic

sequences provide a great opportunity to advance our understanding of the role of

genetic factors in human health and disease, and to apply this insight rapidly to

drug development, disease prevention, and genetic tests [64]. The massive amount of

sequence information requires careful storage, organization, and analysis. Therefore,

bio-informatics, which includes recording, analyzing, and searching of nucleotide

and protein sequences, is an emerging and prominent research field, where biology,

computer science, and information technology merge into a single discipline.

Since the inception of the Human Genome Project, which was completed in

2003, hundreds of other genome sequence projects on microbes, plants, and animals

have been completed or are in progress [17]. Advances in molecular biology and

sequencing equipment have allowed the increasingly rapid sequencing of large

portions of the genomes. For example, a new technology developed at the 454 Life

Sciences Corporation may achieve a 100-fold increase in DNA sequencing speed over

current technology [65]. This technique could allow one person using one machine to

easily sequence the 3 billion base pairs in the human genome within a hundred days.

As the genomic sequence database continues to grow exponentially, the current

popular linear-scan-based searching method will sooner or later become infeasible.

Index-based approaches, such as the HD-tree, could become the choice of sequence
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searching in the future. In this chapter, existing techniques used in sequence

analysis are presented, and the following two chapters will discuss indexing and

searching genomic sequence databases using the HD-tree.

5.1 Introduction to Sequence Analysis

It is known that DNA (deoxyribonucleic acid) stores complete instructions for

all the cellular functions of an organism. The primary structure of DNA is

represented as strings using a four-letter alphabet, { A,C,G,T }, where each letter

represents a nucleotide. RNA (polynucleotides) is a single-stranded molecule

composed of nucleotide sequences that is similar to the double-stranded DNA. RNA

helps to transfer information from DNA to the protein-forming system of the cell.

Three-letter combinations of the nucleotide form messenger RNA (mRNA), which

transcribes amino acids. Amino acids in turn can be combined to create proteins.

Therefore, the structure of protein is represented as a string using a twenty-letter

alphabet, each letter corresponds to one amino acid. The letters in nucleotide

(DNA) or protein sequences are known as base pairs (or residues).

Most sequence databases consist of long strings of nucleotides and/or amino

acids. Each sequence of nucleotides or amino acids represents a particular gene or

protein (or section thereof). There are also databases which include taxonomic

information, such as the structural and biochemical characteristics of organisms.

Sequence databases provide scientists with a wealth of information. However, the

power of a sequence database comes not from the collection of information, but in

its analysis, which is the most pressing task in bio-informatics. Scientific research

has shown that all genes share some common elements. A new sequence often has

significant similarity to a sequence which is already known. Therefore, part of the

information about the structure and function of the known sequence can be
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transfered to the new sequence. If two sequences are related, they are homologous,

and one sequence is a homologue of another.

The common applications of sequence analysis include:

(1) finding genes in DNA sequences of various organisms;

(2) aligning similar proteins and generating phylogenetic trees;

(3) clustering protein sequences into families to develop of protein models; and

(4) developing methods to predict the structure and/or function of newly

discovered proteins and structural RNA sequences [36].

Table 5.1: Two pairwise alignments to a fragment of human alpha globin: hba_human

 

(a) hbaJnunan GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL

G+ +VK+HGKKV A+++++AH+D++ +++++LS+LH KL

sequencexi GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

(b) :hbaJnnnan GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL

GS+ + G + +0 L ++ H+ D+ A +AL D ++AH+

sequencel) GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE
 

All these applications involve the most basic sequence analysis task:

determining if two sequences are homologous. This is usually done by first aligning

the sequences (or parts of them), and then deciding whether that alignment is more

likely because the sequences are homologous, or just by chance. Table 5.1 shows an

example of two pairwise alignments [36], where (a) implies a clear similarity, and (b)

is most likely unrelated. In the central line of each alignment, identical positions are

indicated with letters, and “related” positions with plus signs (“Related” pairs are

those which have a positive score in a substitution matrix, which is discussed in

Section 5.3.). Within aligned sequences, symbol ‘-’ represents a gap due to insertion

or deletion.

In the task of finding homologous sequences, the key issues are:
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(1) the type of alignments to be considered;

(2) the scoring system used to rank alignments;

(3) the method used to find alignments; and

(4) the method used to evaluate the significance of alignments.

The focus of this dissertation is on issue (3), and other issues are resolved by

existing techniques. In the following sections, these issues are discussed in detail.

5.2 Alignment Type

There are three types of sequence alignment: pairwise alignment, structural

alignment, and multi-sequence alignment.

Pairwise alignment is the most commonly used alignment type. It is used to

find a homologue of a gene (protein or DNA), or a gene-product in a database of

known examples. Pairwise alignment can be done locally or globally. A local

alignment finds related regions within sequences. They can consist of a sub-sequence

within each sequence. For example, positions 22-32 of sequence X might be aligned

with positions 64—74 of sequence Y. A global alignment between two sequences is an

alignment in which all the characters in both sequences participate in the alignment.

That is, both sequences have to be aligned from beginning to end. Global alignment

is useful mostly for finding closely-related sequences. Local alignment is more

flexible than global alignment and has the advantage to find related regions that

appear in a different position in the two proteins. This is not possible with global

alignment methods. Global and local alignment can refer to query and database

sequences, respectively. For example, both query and database sequences are global,

or global on query sequence and local on database sequence.
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Structural alignment is mostly used for proteins. It is a form of alignment to

establish equivalences between two or more protein structures based on their fold.

Because protein structure is more conserved than protein sequence, structural

alignments can be more reliable, especially when the sequences have diverged so

much that simple sequence comparison cannot detect their similarity.

Multi-sequence alignment, as shown in Table 5.2 [66], is an extension of

pairwise alignment. It incorporates more than two sequences into an alignment and

aligns all of the sequences in a specified set. Multi-sequence alignments is used to

identify related regions between sequences. It is also very useful in generating profile

hidden hidden Markov models to search sequence databases for more distant

homologues (see Chapter 7).

Table 5.2: An example of multi-sequence alignment: eight fragments from im-

munoglobulin sequences

 

VTISCTGSSSNIGAG-NHVKWYQQLPG

VTISCTGTSSNIGS--ITVNWYQQLPG

LRLSCSSSGFIFSS--YAMYWVRQAPG

LSLTCTVSGTSFDD--YYSTWVRQPPG

PEVTCVVVDVSHEDPQVKFNWYVDG--

ATLVCLISDFYPGA--VTVAWKADS--

AALGCLVKDYFPEP--VTVSWNSG---

VSLTCLVKGFYPSD--IAVEWESNG--
 

5.3 ' Scoring System

A key element in evaluating the quality of a pairwise sequence alignment is to

assess whether a given alignment constitutes evidence for homology by a process of

mutation. The basic mutational processes are substitutions, insertions, and

deletions. Substitutions change residues in a sequence, while insertions and deletions

add and remove residues, respectively. Insertions and deletions are together referred

to as gaps. Conservative substitutions are generally defined as amino acid
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replacements that preserve the structure and functional properties of proteins. In

order to distinguish homologous alignments from random alignments, a scoring

scheme is needed, where a “substitution matrix” is often used to assign a score for

aligning any possible pair of residues.

Early sequence analysis used a unitary scoring matrix, where all matches and

mismatches are scored or penalized the same. The unitary scoring matrix is

equivalent to the simple edit distance (see Section 4.5). Although unitary scoring

matrix is sometimes used for DNA and RNA comparisons, it is not appropriate for

‘protein alignments since it ignores the mutation and structure relations between

different amino acids. Years of research in protein sequence analysis has shown that

matches and mismatches among different amino acid pairs require different scores,

and various substitution matrices have been developed to reflect these different

scores [67, 35, 41].

Substitution matrices are generally presented as log-odds matrices, where each

score in the matrix is the logarithm of an odds ratio [36]. The odds ratio is the ratio

of the number of times residue ‘A’ is observed to replace residue ‘B’, divided by the

number of times residue ‘A’ would be expected to replace residue ‘B’ randomly. A

positive score in the matrix indicates a pair of residues that replace each other more

often than expected by chance. This is evidence in favor of the aligned sequences

being homologous. Meanwhile, negative scores in the matrix are evidence against

the sequences being homologous.

The process of computing log-odds scores is shown as follows. Assume a pair of

sequences, a and 6, of lengths m and n, respectively. Let a,- be the ith symbol in a,

and bj be the jth symbol in B. These symbols come from some alphabet A (e.g., the

twenty amino acids). Symbols from A are also denoted by low-case letters like a, b.

For now, only ungapped (i.e., no gaps) global pairwise alignments are considered.

Assume two sequences are drawn from a random match model R, where any
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symbol a occurs independently with frequency fa. Hence the probability of

matching two sequences is:

P(a,fl|R) = I Ifa, I I fbj. (5.1)

i J'

In the alternative match model H, where the two sequences are homologous,

aligned pairs of residues occur with a joint probability Pub The value Pab can be

thought of as the probability that the residues a and b have each independently

been derived from some unknown original residue, c (c might be the same as a

and/or b). The probability for the alignment is:

P(a,aH> = Hpab, (5.2)

i

The ratio of these two probabilities is the odds ratio:

  

P(Q,IB[H) _ Hzpa’lbi =11 paib’l (53)

PWfiIR) — Hifainifb, faifb, °

In order to arrive at an additive scoring system, the logarithm of this ratio,

known as the log-odds ratio, is computed as:

S = Z 8((12', bi), (54)

i

where

Paib-

faifb.

is the log likelihood ratio (i.e., score) of pair (a, b) occurring as an aligned pair, as

 

sat-mi) =10g< > (5.5)

opposed to an unaligned pair.

In the 1970’s, Dayhoff pioneered this approach to derive the well known PAM

(Point Accepted Mutations) family of substitution matrices [67]. In Dayhoff’s

68



method, all of the proteins are aligned in several families. Then, phylogenetic trees

(a graphical means to depict the relationships of a group of organisms) are

constructed for each family. Each phylogenetic tree is examined for the substitutions

found on each branch. This leads to a table of the relative frequencies with which

amino acids replace each other. This table is combined with the relative frequencies

of each amino acids in the proteins studied to compute the PAM matrices. Each

PAM matrix is associated with a number, which is the number of mutations per 100

amino acids in the sample protein data. For example, PAM30 assumes the

occurrence of 30 point mutations per 100 amino acids (or 300 nucleotides) in the

gene. An example of a substitution matrix, PAM30, is shown in Table 5.3. Using a

substitution matrix, the total score assigned to an alignment is a sum of scores for

each aligned pair of residues, plus scores for each gap. Such additive scoring

schemes assume mutations occur independently at different positions in a sequence,

which is a reasonable approximation for DNA and protein sequences [36].

Table 5.3: The PAM30 Substitution Matrix
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There are several recent attempts to construct scoring matrices based on

observed amino acid substitutions. The BLOSUM (BLOcks SUbstitution Matrix)

family of matrices are one of these newly developed log-odds scoring matrices [41].

Unlike PAM matrices, which are developed from global alignments, BLOSUM

matrices are based on local multi-sequence alignments of more distantly related

sequences. These ungapped alignments are obtained from protein families called

BLOCKS database [68]. The first stage of building the BLOSUM matrix is to

cluster (group) sequences that are identical in more than d% of their amino acids.

This is done to avoid bias of the result in favor of a certain protein. The matrix

built from blocks with more than d% of similarity is called BLOSUMd. For

example, the matrix built using sequences with more than 62% similarity is called

BLOSUM62. The second stage is to compute the probability of amino acids in each

column of the multiple alignments. Finally, the log odd ratio is calculated and

rounded to the nearest integer.

In general, different substitution matrices are tailored to detect similarities

among sequences that are diverged by differing degrees. It is shown that the

BLOSUM62 matrix is among the best for detecting most weak protein similarities

[41]. However, the BLOSUM series does not include any matrices suitable for short

queries (e.g., < 50). Therefore, PAM matrices are recommended instead [69].

5.3.1 Gap Penalties

Sequence alignments involve gaps, which are caused by insertions or deletions

of residues (see Table 5.1). Gaps are expected to be penalized. The cost associated

with a gap of length l is given either by a linear score,

g(l) = —lo, (5.6)
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or an afi‘lne score,

g(l) = —o - (l — 1)e, (5.7)

where o is called the gap-open penalty, and e is called the gap-extension penalty.

The gap—open penalty is usually greater than the gap-extension penalty. This allows

long insertions and deletions to be penalized less than they would be by the linear

gap cost. For example, for queries shorter than 35 residues, the recommended

gap-open and gap-extension penalties are -9 and -1, respectively [69].

5.4 Alignment Algorithms

Given a scoring system, an algorithm is needed to find an optimal alignment for

a pair of sequences. Dynamic programming, which solves a problem by caching

sub-problem solutions rather than recomputing them, is essential to sequence

analysis. Dynamic programming algorithms are guaranteed to find the optimal

scoring alignment(s). Since log-odds ratio is used in the scoring scheme, the optimal

alignment has the highest score. The following sections introduce two most

commonly used dynamic programming algorithms in sequence analysis: the

Needleman-Wunsch algorithm[70] and the Smith-Waterman algorithm [71].

5.4.1 Needleman—Wunsch Algorithm

The Needleman-Wunsch algorithm performs a global alignment on two

sequences. It is the first instance of dynamic programming being applied to

biological sequence comparison. An improved version is introduced in [72]. The idea

of the Needleman-Wunsch algorithm is to build up an optimal alignment using

previous optimal alignment for shorter sub-sequences. Given two sequences:

a = a1...am and ,6 = b1...bn, assume an (m +1) x (n + 1) table T, where T(i,j)

(the cell at ith row and jth column of T) is the score of the best alignment between
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the subsequence a1...a.,- and b1...bj. T(i, 3') can be built recursively by first

initializing T(O, 0) = 0, then proceeding to fill the table from top left to bottom

right (see Figure 5.1). The score of T(i, j) is obtained as follows:

T(i,0) = —i0

T(OJ) = -J'0

T(i — 1, j — 1) + s(a,-, b,) (58)

NM) = max T(i—1,j)—o ,

T(i,j—1)—o

where s(a,-, bj) is the substitution score of a,- and bj, o is the the gap—open penalty,

and the linear gap score is used. The values in the top row, T(O, j), represent

alignments of b1...bj to all gaps in (1. Likewise, values in the left-most column,

T(i, 0), represent alignments of almai to all gaps in [3. The value in the table cell,

T(m, n), is by definition the best score for aligning a and ,8. The

Needleman—Wunsch algorithm takes 0(mn) time and 0(mn) memory. Since m and

n are usually comparable, the algorithm is said to be 0(n2).
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Figure 5.1: Compute a Cell in a Dynamic Programming Table
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5.4.2 Smith-Waterman Algorithm

The Smith-Waterman algorithm is a well-known algorithm for performing local

sequence alignment. It is similar to the Needleman-Wunsch algorithm, except a few

changes which enable the Smith-Waterman algorithm to find optimal local

alignments. First, since a local alignment may start at any position, T(i, j) is

allowed to take the value 0, if all other options have value less than 0. This

corresponds to starting a new alignment. Hence, the score of T(i, j) is obtained as

follows:

T(i,0) = 0

T(OJ) = 0

0

(5.9)

Ti—1,'—1 +3 a-,b-
T(i,j) : max ( .7 ) ( i i)

T(i_1ij)—0

T(i,j — 1) — 0

Note that the top row, T(O, j), and the left-most column, T(i, 0), are filled with

zeros, instead of —jo and —i0 in the Needleman—Wunsch algorithm.

The second change is that an alignment can end anywhere in the table.

Therefore, instead of taking the value in T(m, n) for the best score, the algorithm

looks for the highest score of T(i, j ) over the whole table. In order for

Smith—Waterman algorithm to work, the expected score for a random alignment

must be negative. Otherwise, a long alignment between random unrelated sequences

will have high scores due to their length, and the optimal local alignment would be

likely to be masked by a longer but incorrect alignment. At the same time, there

must be some 3(a, b) greater than 0. Otherwise, the algorithm cannot find any

alignment, since zero is always chosen as the maximum score at each cell. The

scoring matrices discussed in Section 5.3 satisfy these two conditions.

The Needleman-Wunsch and Smith-Waterman algorithms are guaranteed to
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find the optimal global and local alignments, respectively. However, they require

0(mn) time and space. If a large number of sequences are searched, time rapidly

becomes an issue. Therefore, there are many attempts to develop heuristic

alignment algorithms with the aim of increasing speed under limited sacrifice of

sensitivity (i.e., the optimal alignment may be missed). Two of the best-known

heuristic algorithms are BLAST [3, 42] and PASTA [73, 74].

5.4.3 BLAST

The BLAST (Basic Local Alignment Search Tool) is designed for finding high

scoring local alignments between a query sequence and a target database. The basic

idea of BLAST is that true alignments are very likely to contain a short segment of

identities (as in DNA sequences), or very high scoring matches (as in protein

sequences). These short segments can be used as “seeds” to find a good longer

alignment. By keeping the seed segments short, it is possible to make a hash table

for all possible seeds from the query sequence and use the hash table to find the

matching segments in the target database.

Query: GSVEDTTGSQSLAALLNKCKT-RLVNQWIKQPLMDKNRIEERLNLVE

 

The hash table EEG i:

containning ’ PR6 l 4

sub—queries (seeds) PKG 1 4

PNG 13

PDG 13

13 score threshold

PSG 1 3 T = 13

PQA 12

PQN 12

extension . . . extension

‘ t >
  

 

Query: 3 2 5 SLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEA 3 6 5

+LA++L+ TP G R++ +W+ P+ D + ER + A

Sbkt 290 TLASVLDCTVTPMGSRMLKRWLHMPVRDTRVLLERQQTIGA 330   

Figure 5.2: The BLAST Search Algorithm
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In Figure 5.2, assuming protein sequences, the BLAST algorithm looks for

words (seeds) of length W (default = 3 ) that score at least T (default = 13) using a

substitution matrix. Words in the database that score T or greater (called High

Scoring Pair or HSP) are extended in both directions using an algorithm similar to

the Smith-Waterman algorithm. The extension stops when the score of the

extended alignment falls below a threshold. The extended alignment that meets

certain criteria (see Section 5.5) will then be reported by BLAST.

5.4.4 FASTA

As shown in Figure 5.3, FASTA uses four steps to find local high scoring

alignments:

(1) Identify all exact matches of length I: (k-tuples) or greater between the

two sequences a and 6. Speed is achieved by employing a hash table. For

example, for proteins, if k = 3, there are 8000 (203) possible k-tuples. Each

element of an array, A, of length 8000 is set to represent one of these k-tuples.

Sequence a is scanned once and the location of each k—tuple in a is recorded in

the corresponding element of A. Sequence 6 is then scanned. By referring to

the locations of all k-tuples in (1, matches that are common to a and 3 are

identified.

(2) If two k-tuples are present on the same diagonal, then the difference

between their starting position (offset) is also the same. The diagonals with

the most significant number of matches are identified. The best diagonals are

extended to find maximal scoring ungapped regions.

(3) If there are several initial regions above a user-defined score, then those

that could form a longer alignment are joined, allowing for gaps and a score a:

is calculated with a penalty for each gap. These candidate alignments are
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ranked by x.

(4) The highest scoring candidate alignments are realigned using dynamic

programming over a narrow band of the high scoring diagonal to produce an

alignment with the final score.

 

 

 

 

. .\
\ s

\

\

\

\

\‘~ ‘

l.\\‘\~ \\\
~ \

%\ ~ \\

I‘H\ \     
 

(a) Step 1: Find Identical Regions (b) Step 2: Locate and Extend Di-

agonals

—— Sequence a——-> —-— Sequence a——>

 
 

   \
   «

—
g

a
o
u
a
n
b
a
s
—
.

/

<
_
_
_

9
a
a
u
a
n
b
a
s

 

(c) Step 3: Join Regions ((1) Step 4: Apply Dynamic Pro-

gramming

Figure 5.3: The FASTA Algorithm
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5.5 Evaluating Alignments

Once an Optimal alignment is found, the next task is to determine if the

alignment is a biologically meaningful alignment (i.e., constitutes evidence for

homology), or just the best alignment between two entirely unrelated sequences.

The most common method is based on the statistical approach of calculating the

chance of a match score greater than a randomly observed value (i.e., the sequences

are unrelated).

Statistics for the scores of local alignments, which are the focus of this

dissertation, are well understood [3]. It is known that the asymptotic distribution of

the maximum, MN, of a series of N independent random variables has the form

P(MN g 2:) 2 exp(—KNe)‘(“’_“)) (5.10)

for some constants K, /\ [36, 75]. This form of distribution is called the extreme

value distribution or EVD. For local ungapped alignment, the appropriate EVD is

derived analytically in [3].

Given sufficiently large sequence lengths m (query) and n (database), the

expected number of random matches with score at least S is given by the formula

133(3) = KmneAS, (5.11)

where A is the positive root of

Zfafbe*s(“’b) = 1, (5.12)

a,b

and K is a constant which is dependent only on fa and s(a, b). E(S) is called the
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E—value for the score S. The probability of a match having score greater than S is

P(a > S) = 1 — e—E(S), (5.13)

where P(a > S) is called P-value. In practice, E—value is usually used as the

measurement to determine the significance of an alignment. The E—value is

approximately how many alignments having the given score or higher would expect

to be found in the given database by chance. Therefore, the smaller the E—value, the

more significant (i.e., more likely to be homologous) is the alignment.

The statistics discussed above have a solid theoretical foundation only for

ungapped local alignments. However, many computational experiments and some

analytic results strongly suggest that the same theory applies as well to gapped

alignments [76, 42, 77]. For ungapped alignments, the statistical parameters can be

calculated from the substitution scores and the background residue frequencies of

the sequences being compared. For gapped alignments, these parameters must be

estimated from a large-scale comparison of random sequences. In [76], the values of

A and K are provided for a range of standard protein alignment scoring schemes,

using a large amount of randomly generated sample data.
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Chapter 6: Indexing and Searching

Genomic Sequence Databases

As shown in Chapter 5, genomic sequence databases have seen rapid growth in

recent years. There are three major sequence databases: the DNA DataBank of

Japan (DDBJ), the European Molecular Biology Laboratory (EMBL), and the

GenBank. All three databases participate in the International Nucleotide Sequence

Database Collaboration (INSDC). They increase in size and exchange data on a

daily basis.

6.1 Overview of GenBank

GenBank [13] is a genetic sequence database hosted by the National Center for

Biotechnology Information (NCBI) at the National Institutes of Health (NIH). It is

an annotated collection of publicly available DNA and protein sequences. GenBank

contains millions of sequences, submitted from individual laboratories or large-scale

sequencing projects. As shown in Figure 1.2 (see Chapter 1), GenBank grows at an

exponential rate. In a recent press release (August 22, 2005), the INSDC announced

that the DNA sequence database had exceeded 100 gigabases (i.e., approximately

100GB) [78]. In this dissertation, the entire GenBank non-redundant protein

sequence database (as of April, 2004) is chosen as the testbed for the HD-tree. This

database contains approximately 1.9 million sequences, and 661 million residues.

6.2 Existing Techniques

To support efficient searches in genomic sequence databases, many algorithms

(systems) have been developed. Based on how the search is conducted, these
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systems can be divided into two categories: linear-scan—based and index-based.

Linear—scan—based systems include FASTA and BLAST, which are described in

Chapter 5. Index-based systems, such as BLAT [79] and CAFE [80, 81], perform a

query using a pre—built index of the database. Although linear-scan-based systems

are faster than index-based systems for smaller databases, as the size of the genomic

sequence databases continually increases, index-based systems are more and more

appealing.

Searching homologous regions in a genomic sequence database is usually

conducted in two stages: the filtering stage and the alignment stage. The filtering

stage detects candidate regions which are likely to be homologous. The alignment

stage then examines these regions in detail and reports the regions which are indeed

homologous according to some criteria (e.g., the E-value introduced in Section 5.5).

Due to the unstructured nature of genomic sequences, words (i.e., sub-strings) of

length L (also called q-grams) is often used for indexing and searching in the

filtering stage [42, 82, 79, 74]. Words can be either overlapping (i.e., a fixed window

size of L shifting from the beginning to the end of a sequence by one letter at a

time) or non-overlapping (see Figure 6.1). Hits (positions of the words in the

genomic sequence) are located by matching query words with database words. Each

hit may produce a candidate region. Dynamic programming is used in the alignment

stage to find the true homologous regions from the candidate regions [71, 83].

Sequence: ADEGBCDEA

Overlapping words: ADE, DEG, EGB, GBC, BCD, CDE, DEA

Non—overlapping words: ADE, GBC, DEA

word length = 3

Figure 6.1: Overlapping versus Non-overlapping Words

Among index-based methods, BLAT builds an index in the RAM using

non—overlapping words (length of 4 or 5 for protein sequences). BLAT is shown to
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be faster than BLAST; however, it is less sensitive. CAFE uses inverted files [7] to

index overlapping words (length of 3 for protein sequences). Candidate regions are

generated by searching these overlapping words. Heuristics, such as FRAMES [80],

are used to reduce the number of candidate regions passed to the alignment stage.

Suffix trees (see Section 2.4) have been used in genomic sequence searches for

small databases [2, 9, 84]. Suffix trees can be built in the RAM within 0(n) space

and 0(n) time [57]. However, constructing an suffix tree larger than the available

RAM is a challenging task [85, 9, 84]. Therefore, algorithms using suffix trees have

not been successfully applied to large genomic sequence databases. In [84], a new

way of creating suffix trees inexcess of available RAM size for genomic sequences is

proposed. Multiple passes over sequences are adopted and each pass processes a

sub-range of suffixes. The suffix tree is used to search genomic sequences. However,

the search dose not return the high scoring alignments, but the positions of the

potential matches. It is concluded that using the suffix tree for genomic sequence

searches can significantly reduce the computation compared to the standard

dynamic programming methods [84].

In [86], another index structure, suffix sequoia, is proposed to index protein

sequences. Suffix sequoia indexes overlapping words (length of 5 is used for 471M

residues). Positions of these overlapping words are stored on disks. A data

structure, called bitmap, combined with ofi’set files are used to locate the position

list of an overlapping word stored on disks (position files). The index size of suffix

sequoia is relatively small, which is just over 4 bytes per residue of sequences. This

is because only the positions of the overlapping words are stored. Sequence names

are indexed, so that given a position, the corresponding sequence name is returned.

The search of suffix sequoia returns the sequence names which contains a

overlapping word that when aligned with an overlapping query word, may achieve a

score above certain threshold. Therefore, the search results of suffix sequoia are not
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high scoring alignments, such as those returned by BLAST.

The HD-tree is a better approach than these existing index-based methods.

First, the HD-tree uses longer overlapping words, which eliminate the filtering stage

and reduce the search time for short queries. Second, the HD-tree is guaranteed to

find the optimal alignments according to user-defined search criteria, since the

HD-tree searches each overlapping word. Finally, the HD-tree is also applicable to

more complex sequence searches, such as the profile hidden Markov model (see

Chapter 7), which none of these index-based methods have attempted to do.

6.3 Creating the HD-tree Using the Sort-Merge

Method

The success of the HD-tree in prefix searches (see Chapter 4) encourages the

application of this structure in approximate string matching, especially in the area

of genomic sequence analysis. Since the matching of a sequence may start at any

position, overlapping words of length L are used to index genomic sequence

databases [87, 82, 60]. This increases the size of string data by at least L times. The

standard approach (Brute-Force) of creating an HD-tree is to insert one string at a

time. Therefore, at least one disk access may be required. Due to the largeness of

the GenBank protein sequence database, using the Brute-Force approach to create

an index may result in an overwhelming number of disk accesses and an

unreasonable large amount of time. For example, in one experiment, it takes

approximately 30 minutes to index 375MB of overlapping words generated from

protein sequences containing 15 million residues. In order to index the entire

GenBank protein sequence database (661 million residues) within a reasonable time

(e.g., several hours), heuristics must be developed to speed up the index process.

The HD-tree is an ordered tree; therefore, if the inserted strings are in sorted
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order, the tree can be built quickly from left to right. Based on this observation, the

Sort-Merge method is developed to build the HD-tree for large string databases in

the following steps:

1. The string database is divided into segments (e.g., 50MB) depending on the

available RAM size. Each segment is loaded into the RAM, and an array of

suffix pointers pointing to each position is created in the RAM.

2. An internal sorting process (e.g., quicksort [51]) is conducted so that these

suffix pointers are sorted in the lexicographic order of the suffix strings they

are pointing to. Each suffix string is associated with a 4-byte integer that is

the position of this suffix string in the sequence database.

3. These sorted suffix strings are written into temporary files on disks. Only the

first L characters of these suffix strings are reserved. For the suffix strings

having the same first L characters, their positions are linked into a position

list.

4. After all segments are processed, the temporary files containing the sorted

strings are merged into one file using an external merge algorithm [51]. The

the final file contains the sorted suffix strings for the entire database.

5. Create partial HD—trees (i.e, sub-trees) in the RAM from the sorted suffix

strings. These partial HD-trees are written to disks when they exceed a

user-defined threshold (e.g., 32MB).

6. Merge these partial HD-trees into the final HD-tree.

The process of creating an HD-tree index from the GenBank protein sequence

database using the Sort-Merge method is shown in Figure 6.2.

Since the inserted strings are in sorted order, the standard splitting algorithm

(see Algorithm 3 in Section 3.3.4) is modified to increase the storage utilization.
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Figure 6.2: The Sort-Merge method of creating the HD-tree from the GenBank pro-

tein sequence database

The basic idea is to fill up a node as much as possible. If the current leaf node

overflows, only the right-most unit is moved to the newly-created leaf node (see

Figure 6.3b). Note that in the standard HD-tree splitting algorithm, units in the

overflowing leaf node are evenly distributed as much as possible between the

overflowing leaf node and the newly-created leaf node (see Figure 6.3a).

Using the Sort-Merge method, the construction time of the HD—tree is greatly

reduced, and storage utilization is also improved. Figure 6.4 compares the

construction time between the Brute-Force method and the Sort-Merge method. It

is shown that the BruteForce construction time is increased significantly when the

number of indexed words reaches 15 million. This is because the size of the HD-tree

containing 15 million words (approximately 375MB) exceeds the available RAM size

in this example. When the HD-tree is smaller than the available RAM, leaf nodes

are cached in the RAM by the operating system, therefore the actual number of

disk accesses is relatively small. However, once the RAM cannot hold the entire
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tree, some leaves has to be stored on disks. Hence, each subsequent insertion may

require at least one disk access (i.e., the total number of disk access may be

proportional to the number of overlapping words), which increases the construction

time significantly. On the other hand, using the Sort-Merge method, the number of

disk accesses is roughly proportional to the sizes of the overlapping words (the

sorting process) and the HD-tree (the merging process). The Sort-Merge method is

almost 10 times faster than the Brute-Force method for large string databases such

as the GenBank protein sequence database. As shown in Figure 6.5, storage

utilization of the Sort-Merge method is consistently over 85%, which is improved

significantly over the Brute-Force method. This improvement is due to the splitting

heuristic which fills up a leaf node as much as possible.
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Figure 6.5: Improvement in Storage Utilization using the Sort—Merge Method. Over-

lapping words of length 20 are used.

Typically, some strings in a leaf node share a common prefix. Therefore,

another heuristic is to use difierence-encoding [55] to store strings in leaf nodes.

Difference—encoding stores strings in lexicographic order. It uses a one-byte integer
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to indicate the number of prefix characters that are repeated from the previous

string (i.e., the common prefix). Figure 6.6 shows an example of this encoding

scheme. The difference-encoding can reduce not only the storage requirement of leaf

nodes, but also the number of characters to be compared when searching strings

stored in a leaf node sequentially, since the length of the common prefix is stored.

 

 

 

 

      

ACHILECPED 0 ACHILECPED

ACHILECPHR Difference—encoding 8 HR

ACHILECPHT \ 9 T

ACHILECPRG /> 8 RG

ACHILECPRR 9 R

ACHILERLQE 7 RLQE

Storage: 60 bytes Storage: 26 bytes

Figure 6.6: An example of the Difference-encoding

6.3.1 Discussion

The Sort-Merge method of the HD-tree uses similar construction strategy (i.e.,

build partial trees) as that in [84] (Hunt’s method) to build large suffix index.

However, the two methods have the following differences: First, the Hunt’s method

is to create a large persistent suffix tree exceeds the available RAM size. The suffix

tree is stored on disks as a disk-image of the RAM. Therefore, it is not considered as

a disk-based structure. The Sort-Merge method is to create an HD—tree index for

overlapping words (i.e., prefixes of length L for all suffix keys). The HD-tree is a

hybrid RAM/disk-based data structure which uses disk blocks as leaf nodes.

Second, the Hunt’s method uses multiple passes to create partial suffix trees, while

the Sort-Merge method divides the database sequences into smaller segments to

create partial HD-trees.

Since the implementation of the Hunt’s method is not available, the

experimental results provided in the paper are shown in Table 6.1. Although the
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machine and the database are not the same, the construction time of the Hunt’s

method seems to be longer than that of the HD-tree, and the index size seems to be

larger. This is partly because the Hunt’s method creates the complete suffix tree,

which is space and time consuming. However, as the overlapping word length

increases, the construction time and space requirement of the Sort-Merge method

may exceed that of the Hunt’s method.

Table 6.1: Hunt’s Suffix Tree versus the HD-tree

 

Database Hardware RAM Space Time
 

Hunt’s Suffix Tree 268M DNA Enterprise 450 SUN 2GB 19GB 13.5h

HD-tree, suffixes 661M Protein Pentium 1.8G PC 516MB 10.6GB 3.41h

of length 20
 

The HD-tree contains RAM-index and disk-index. The RAM-index of the

HD-tree is the top levels of the suffix tree in the Hunt’s method. The disk-index of

the HD-tree contains the suffixes of the overlapping words. These suflixes enable the

HD-tree to quickly find answers for short queries (i.e., less than the length of

overlapping words). Using Hunt’s method, however, if a query cannot be answered

in the suflix tree (which happens often), in order to find an answer (i.e., a high

scoring alignment), the search must follow the pointer stored in leaf nodes to the

original database sequences. This operation is very costly if the sequence database is

not reside in the RAM, since at least one random disk access is require for a possible

match. This is likely to be the reason why the Hunt’s method does not return high

scoring alignments, but only the positions which may be a potential match.

6.4 HD-tree Search Algorithm

Using suffix trees and suflix arrays to perform approximate string matching has

been studied for years [88, 57, 2, 85]. Most of these researches are focused on simple

edit distance (also called k-difference problem), where a constant cost (e.g., unitary
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cost) is used for insertion, deletion, and substitution. Since genomic sequence

searches use substitution matrices and affine gap cost model (see Section 5.3),

algorithms based on simple edit distance cannot be directly applied.

The HD-tree indexes overlapping words of length L. Therefore, it can be

viewed as a suffix tree with maximum hight of L. The algorithm of sequence search

in the HD-tree is an extension of the dynamic programming algorithm applied to a

suffix tree for approximate string matching based on the edit distance [2, 57, 84].

Substitution matrices and affine gap cost model are integrated in the algorithm.

Imagine the need to obtain the best matching score, score(a, 6), between sequences

01 = a1...am and B = bl...bn. A table of (m + 1) x (n + 1) cells is created. Cell CM

(i.e., ith row and jth column) contains the value CM, which is the maximum

achievable score by matching a1...a,- and b1...bj. The following equations define the

calculation of cm- (i.e., the dynamic programming):

0 = the gap-open penalty (negative value)

e = the gap-extension penalty (negative value)

mm), = the substitution score for symbol a and b

o if from cell 0 - to cell C-/ -/ opens a gap

gap(C,-,j, 0240)) = m i ..7

e if from cell CiJ' to cell 01" j’ extends a gap

C780 = 0+e*i, 0<i$m

CO,j = —inf, O<j$n

Ci-1,j + gap(Ci—1,j101,j),

01,3' = max Ci,j—1+gaP(Ci,j-110i,j)a

Ci—1,j—1 + ma,,b,-

In the above equations, Cm,n is the score(a, fl), and c230 is the score between

a1...a,~ and empty string. CO,j is initialized to —inf (i.e., negative infinity), so that
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gaps at the beginning of an overlapping word are not allowed. This is because the

score of an alignment with beginning gaps is always less than that of the same

alignment without the beginning gaps. Since the HD-tree indexes all overlapping

words, the alignment with beginning gaps is a redundant result of the same

alignment without the beginning gaps. Figure 6.7 shows a dynamic programming

table in the HD-tree.

Database Overlapping Word ——>
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Gap—open penalty: ~10 Gap-extension penalty: -2

Figure 6.7: An Example of a Dynamic Programming Table Used in the HD-tree.

Recall that in the HD—tree, each tree node at level :1: corresponds to an

id-string, almax, which is the concatenation of the labels along the path from the

root to the tree node (see Section 3.1). Since HD-tree indexes overlapping words,

every potential match can be found by traversing the HD-tree from root to leaves.

Therefore, query answers can be found by starting at the root and following every

branch, until a match is found or the id-string of the current tree node cannot be

the prefix of a possible match (i.e., any string under this sub-tree is not a answer,
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and the sub-tree is abandoned for the search).

Given a query string, q = q1...qk, and a minimum matching score, S, an

algorithm is designed to determine the matching score between q and string (1’,

using the dynamic programming described in Equation 6.1. In order to traverse the

HD-tree and abandon a sub-tree that does not contain query answers, the algorithm

must be able to meet the following criteria: (a) considering the string a'

incrementally, (b) determining when score(q, a’) Z S, and (c) determining when

score(q, a'fi’) < S for any string, 5’ (see Section 1.2 for string notation).

Assume a table of (k + 1) x (h + 1) is created, where k is the query length, and

h is the height of the HD-tree. Starting from the root, the algorithm descends

recursively by every branch of the HD-tree. When descending by a branch labeled by

letter a, the algorithm appends a to current string, a’, and compute a table column

corresponding to a (see Figure 6.8). There are three possibilities for a given 01':

(1) If the score(q, oz’) 2 S, all the leaves of the current sub-tree are reported

as answers.

(2) If score(q, a’fl') < S for any string, 6', the sub-tree corresponding to a’ is

abandoned immediately.

(3) Otherwise, the algorithm continues recursively descending through the

HD-tree.

In order to fulfill criterion (c), the heuristic to determine whether

score(q, o/fi’) < S for any string, ,8’, is as follows: assume the cell Ci 1| contains
,la

the maximum score in column |a'| (i.e., cells CO [all to Ck I all), then the maximum

achievable score equals to score(q, a'qi+1...qk) (i.e., the rest of matching is an exact

match). If score(q,a’qi+1...qk) < S, then for any string, )8’, score(q, a’fl’) < S,
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where

I
score(q, a'qz-+1...qk) = score(ql...q,-, a ) + score(q,;+1...qk, qi+1...qk). (6.2)

The HD—tree sequence search algorithm is shown in Algorithm 6. Array

msc[l...k] is precomputed, where msc[i] = score(q,-+1...qk, Qi+1---‘Ik)- String

(1 = almaz is the id—string of the HD-tree node, N, at level 9:. CM is the value in

the ith row and jth column of the table C. In the algorithm, the computation of

line 1 is based on the dynamic programming described in Equation 6.1. Lines 2 to 3

correspond to criterion (b), and lines 5 to 8 correspond to criterion (c). The

algorithm is recursive and the number of table columns is at most the height of the

HD-tree.

ALGORITHM 6 HD-SeqSearch(Table C, HDtreeNode N, String (1 = a1...a$)

Input: (1) a query string q = (ll-"(1k (2) the minimum score S

Output: matched strings

Method:

1. Compute column a: of the table C using am, the resulting table is C’;

2. if Ck,x Z S then

3 Report all the leaves below the tree node N;

4. else

5 01,25 = ma$(60,x---Ck,z);

6. if (cm, + msc[i] < S) then

7 return;

8 end if

9. else

10. for each child N' labeled b

11. if(NI is a leaf node);
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12. search strings in NI;

13. else

14. HD-SeqSearch(C’, N’, ab);

15. end if

16. end for

17. end if

An example of traversing the HD-tree and computing the dynamic

programming table for a sequence search is shown in Figure 6.8. Compared with the

standard dynamic programming method (which computes 17. columns), the HD-tree

significantly reduces the computation. For example, in Figure 6.8, only 10 columns

are computed (this does include the columns computed within the shaded leaf node).

This is because: (1) since the HD-tree indexes overlapping words, computing one

table column at a tree node is equivalent to computing multiple table columns in a

standard dynamic programming; (2) a sub-tree may be abandoned if it is impossible

to satisfy the search criterion in the sub—tree (lines 6 and 7 in Algorithm 6).

6.5 Comparisons with BLAST

BLAST [3, 42] is the most commonly used tool in bio-informatics. It is used by

GenBank to provide genomic sequence searches. Although there are more sensitive

algorithms (such as FASTA [73, 74]), BLAST is much faster and, in practice, has

proved sensitive enough to detect the moderate sequence similarities that imply

homology. In our experiments, the local BLAST (version 2.2.6 for Linux,

downloaded from the NCBI web site) is used for searching the GenBank protein

sequence database with the following parameters: word size is 3, scoring matrix is

PAM30, E—value is 100, gap-open penalty is —9, and gap extension penalty is -1 (see

Section 5.3 for the meaning of these parameters). These parameters are
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Figure 6.8: An example of a genomic sequence search using the HD-tree. Arrow shows

the traversing path. Each downward arrow computes one column (the right-most)

of the table, and upward arrows do not compute matrix. “continue”, “return”, and

“search leaf” correspond to lines 14, 7, and 12 in Algorithm 6, respectively.
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recommended by BLAST for searching queries shorter than 35 residues [69].

Although sequence analysis involves long queries, (e.g., hundreds or thousands

of residues), this dissertation focuses on short queries, such as some insulin protein

sequences. Short queries are also useful in primer and probe design packages, where

the intent is not to find related genes or gene segments, but to find regions of

sequence that might cause cross-priming or cross-hybridization. Therefore, detecting

even relatively short homologous regions is useful. Another application of short

queries is to find motifs (i.e., recurring patterns) in DNA and protein sequences

[89, 90] and use motifs to find active regions of proteins [91]. Motifs are usually

short, Figure 6.9 shows the distribution of motif lengths using a motif extraction

algorithm, MEX, from 7000 enzyme sequences [91].

It is realized that the index methods in [84, 86] are related to the HD-tree.

However, they do not provide valid query results (see Section 6.2). Therefore, the

real sequence search tool, BLAST, is chosen as the comparison target.

The performance of the HD-tree is compared with that of BLAST in the

context of the quality of the query result and the query processing time. For fair

comparison of query time, all experiments are conducted on a Linux PC with

512MB RAM and 1.8GHz Pentium 4 processor. In the experiments, the entire

query is aligned (i.e., global on query) to each possible position of database

sequences (i.e., local on database sequences). Queries of length 10 (2 sequences), 14

(8 sequences), and 18 (8 sequences) are selected from the GenBank protein sequence

database. Each query has the word ‘insulin” in their annotation. It is noted that

these selected queries may not be insulin sequence, but may be insulin-related or

insulin-like protein sequences. Only these real queries are used (synthetic queries are

used in Chapter 7), so that query quality can be measured as follows. Since the

ideal answer set is unknown, the quality of the query result is measured by the

number of returning sequences containing the word “insulin” in their annotations.
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Figure 6.9: Motif length distribution using MEX from 7000 enzyme sequences
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This approximation is based on a reasonable assumption that sequences having

“insulin” in their annotations would most likely to be homologous.

6.5.1 Closeness of HD-tree Queries

The HD—tree uses closeness as a query parameter. The closeness is a

percentage value to measure the similarity between two sequences. The usage of the

closeness is as follows. Given a query sequence and a scoring matrix, an exact

match achieves the maximum score. The maximum score multiplied by the

closeness is the minimum score that each query answer must achieve, so that these

query answers will satisfy the similarity defined by the closeness. For example, for a

given query “ADEGBC”, using the PAM30 substitution matrix (see Section 5.3),

the maximum score achieved by an exact match is 50 (i.e., score( “ADEC’BC” ,

“ADEGBC”) = 50). If the closeness is 80%, only those alignments that achieve the

score of 40 (50 :1: 80% = 40) and above are considered as the query answers.

6.5.2 Index Size and Construction Time

Since the database is given, the index size and construction time of the HD-tree

is affected by the length of the overlapping words. Table 6.2 presents the index sizes

and construction times of the HD-tree for different lengths of overlapping words. It

is shown that as word length increases, the construction time and the index size

increases accordingly.

For the given GenBank protein sequence database, BLAST takes 26 minutes to

process the raw data. It creates 7 files and the total size is approximately 1.45GB.

The processing time of BLAST is not to build index, but to re—organize the raw

data so that BLAST can search the database more efficiently. On the other hand,

for the same database using overlapping word length of 20, it takes the HD—tree

approximately 2.43 hours to sort the overlapping words, and one hour to create the
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Table 6.2: Index Size, construction time and storage utilization of the HD-tree for

the GenBank protein sequence database

 

Word RAM Disk SortTime MergeTime TotalTime ASU*

 

Length (MB) (GB) (hour) (hour) (hour) (%)

12 10.29 6.60 1.73 0.62 2.35 87.83

15 12.54 8.02 2.00 0.73 2.73 87.40

18 14.85 9.47 2.21 0.88 3.10 87.03

20 16.42 10.46 2.43 0.98 3.41 86.79
 

ASU: average storage utilization

tree from these sorted overlapping words. Although the construction time of the

HD-tree is about three hours longer than that of BLAST, if a large amount of

queries are conducted after the index is built, the amortized construction time is not

significant.

The length of overlapping words affects the query performance of the HD-tree.

If the query length is close to or longer than that of a overlapping word, the

HD-tree may not be able to determine if the word is the query answer or not, since

appending more residues at the end of the word may achieve higher score. In this

situation, the HD-tree must follow the position information associated with the

word to continue the search in the original database sequences. This operation is

expensive and not recommended in the HD-tree (see Section 8.2 for the future work

related this issue). Therefore, the HD-tree requires the query length to be shorter

than the length of overlapping words.

Figure 6.10 shows the level distribution of the HD-tree in the RAM for different

overlapping word lengths. It is shown that increasing the overlapping word length

leads to an increased total HD-tree levels (i.e., the area under a curve) in the RAM.

This in turn increases the possibility to reduce the number of disk accesses, since

more sub—trees may be abandoned during the search. However, as shown in Table

6.2, increasing the overlapping word length results in larger index size and longer

construction time. Therefore, it is recommended to choose the longest overlapping
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word according to available resources. In the following experiments, overlapping

words of length 20 are used.
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Figure 6.10: Distribution of HD-tree Levels in the RAM. Levels greater than 10 are

not shown.

6.5.3 Quality of Query Results

In Table 6.3, the query result of the HD—tree is compared with that of BLAST.

The column “Common” indicates the total number of insulin sequences found by

both the HD—tree and the BLAST. The column “HD-only” and “BLAST-only”

indicate the total number of insulin sequences found only by the HD—tree and

BLAST, respectively. As shown in the table, the quality of the HD-tree query

results increases as the corresponding closeness decreases. This is because the

minimum score required for a matching decreases as closeness decreases. Therefore,

alignments with lower matching score (i.e., distantly related) are returned as query

answers. When the closeness is low enough, the HD-tree not only finds all the

insulin sequences found by BLAST, but also finds some insulin sequences that
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BLAST cannot find. For example, for query length of 14, at the closeness level of

40%, the HD-tree returns 119 extra insulin sequences that BLAST cannot find.

Table 6.3: Query quality comparison

 

QueryLen Closeness (%) Common HD-only BLAST-only
 

10 90 8 0 O

10 80 8 0 0

10 70 8 0 O

10 60 8 1 0

10 50 8 1 0

10 40 8 1 0

1O 3O 8 72 O

14 90 28 4 197

14 80 128 4 97

14 70 179 12 46

14 60 209 22 16

14 50 219 29 6

14 40 225 119 0

14 30 225 206 0

14 20 225 280 0

18 90 17 2 16

18 80 25 3 8

18 70 26 4 7

18 60 33 4 0

18 50 33 67 0

18 40 33 69 0

18 30 33 1 12 O

18 20 33 131 O
 

In Figure 6.11, the number of insulin sequences among the top N results is

compared between the HD-tree and BLAST. These query results are sorted by their

matching scores. It is shown that the HD—tree consistently outperforms the BLAST.

For example, among the top 1000 results, the HD-tree returns 35 more insulin

sequences than that of the BLAST. Again, this shows that the HD-tree achieves

better query quality than BLAST.
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Figure 6.11: Number of insulin sequences among top N results. Query length is 14.

6.6 Query Time

Table 6.4: BLAST query time

 

Query Length Query Time (seconds)
 

10 37

14 46.25

18 45.75
 

As shown in Table 6.4, the query time of BLAST is relatively stable. This is

because each query has to scan through the entire database. The query time of the

HD-tree increases as the closeness increases. However, as shown in Figure 6.12, the

HD—tree is consistently faster than BLAST. Even at the closeness level of 40%,

where the quality of the HD-tree surpasses that of the BLAST, the HD-tree is still

four times faster than BLAST. The query performace of the HD-tree is affected by

query length. According to HD-tree search algorithm (Algorithm 6) described in

Section 6.4, for a given closeness, as the query length increases, the value of msc[i]

increases. Consequently, the possibility to abandon a sub-tree decreases, and more
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Figure 6.12: HD-tree query time

leaf nodes are accessed, which increases the query time.

According to the experiment results shown above, it can be concluded that, for

short queries (e.g., query length < 20) using appropriate closeness, the HD-tree

outperforms BLAST not only in speed, but also in quality of query results. The

potential of the HD-tree is not limited to this achievement. In the next chapter, the

HD-tree is applied to more complex sequence search tasks, where each position of a

query sequence uses different scoring criteria.
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Chapter 7: Sequence Search Using

the Profile Hidden Markov Model

The Profile Hidden Markov Model (PHMM) has received increasing attention

in the field of protein homology detection, since profile-based methods are much

more sensitive in detecting distant homologous relationships than pairwise methods

[92, 93, 94, 95]. Because of the computational complexity involved in PHMM

searches, heuristic alignment algorithms, such as BLAST and FASTA, have not

been successfully applied in this area. Pure dynamic-programming—based systems

are often used for PHMM searches. However, these dynamic-programming—based

systems are very time consuming. For instance, it may take approximately 15

minutes to search a short model of length 12 in the GenBank protein sequence

database. The HD-tree is able to reduce the PHMM search time significantly

without reducing the quality of search results. In this chapter, sequence analysis

using PHMM is introduced. Algorithms for searching the HD-tree using PHMM are

proposed. Finally, the HD—tree is compared with HMMER [96], a popular

implementation of PHMM for protein sequence analysis. It is shown that the

HD-tree is orders of magnitude faster than HMMER for short queries.

7.1 Profile Analysis

Profile analysis has long been a useful tool in finding and aligning distantly

related sequences [97]. A profile is a description of the consensus (e.g., probability of

a residue) of a multi-sequence alignment (see Section 5.1) from a group or “family”

of homologous sequences. It uses a position-specific scoring system to capture the

information of conservation at various positions in a multi-sequence alignment. This
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makes it a much more sensitive method for searching genomic sequences than

pairwise methods (e.g., BLAST or FASTA) that use a position-independent scoring

system. Profile-based methods need mathematical theory to support the meaning

and derivation of the scores [94]. The Hidden Markov Model (HMM) is a type of

probabilistic models that is generally applicable to time series or linear sequences. It

has been widely applied to speech recognition since the 19703 [98]. In 1994, HMM

was first introduced into profile-based sequence analysis as a coherent theory [99].

7.2 Markov Chain

A Markov chain is a sequence of random variables (X1, X2, X3, ...), having the

property that, given the present, the future is conditionally independent of the past

[100]. In other words,

P(Xt = leo =i0,X1=i1,---,Xt—1=it—1)= P(Xt = jIXt—l = it—1)' (7-1)

Therefore, the probability of a Markov sequence, a = a1a2...am, is

P(a) = P(am,am_1,...,a1)

= P(am[am_1,...,a1)P(am_1[am_2,...,al)...P(a1) (7-2)

= Plamlam—1)P(am—1lam—2)---P(al)

7.3 The Hidden Markov Model

The hidden Markov model contains a finite set of states. Transitions among the

states are governed by a set of probabilities, called transition probabilities. The state

sequence is called the path, 7r. The path itself follows a Markov chain, so that the

probability of a state depends only on the previous state. The transition probability
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from state k to state l is written as:

th = P(7T,i = ll’ITi_1 = k). (7.3)

To mark the beginning and end of the model, to,k and tl,0 are used to represent the

beginning and end transition probability, respectively. Each state of HMM can

produce a symbol from a distribution over all possible symbols. Therefore, the

probability of producing a symbol, a, at state k is defined as:

ek(a) = P(a,' = a|7ri = k). (7.4)

This probability is called emission probability. Assume an HMM is used to generate

a sequence. At any state, a residue is emitted from the state’s emission probability

distribution. The next state is chosen according to the state’s transition probability

distribution. The model then generates two strings of information. One is the

underlying state path, produced by transmitting from state to state. The other is

the observed sequence, where each residue is emitted from one state in the state

path. The name, “hidden Markov model”, comes from the fact that the state

sequence is a Markov chain and is “hidden” from observers. Only the symbol

sequence is directly observed. The joint probability of an observed sequence, a, and

a state path, 7r, is:

m

P(C¥, W) = t0,7r1 II €7r(ai)t7ri,7ri+1, (7.5)

i=1

where 7rm+1 equals to 0, and represents the end of the model.

Figure 7.1 shows an example of a simple HMM. Starting in the initial state, 1,

the next state is chosen with transition probability 151,1 (i.e., staying in state 1) or

1:13 (i.e., moving to state 2). Then a residue is generated with an emission

probability associated with the current state (e.g., generate a G with p1(G)). The

105



transition or emission process is repeated until the end state is reached. In this way,

a hidden state path, and an observed symbol sequence are produced.

In summary, an HMM specifies the following four properties:

(1) the symbol alphabet, A, containing |A| different symbols (e.g., A =

{A,C,G,T} for DNA, [A] = 4);

(2) the number of states, N, in the model;

(3) emission probabilities, ei(a), for each state, i, that sum to one over [A]

symbols, (1: Ea e,(a) = 1; and

(4) transition probabilities, t“, for each state, i, going to any other state

(including itself), j, that sum to one over N states: Zj ti,j = 1.

t1, end

 

 
  

  
 

 hidden state path: 1: = 1—2—2

"[ """" l“““““l""""""""""""""""""
G C G observed sequence: on = GCG

Figure 7.1: A simply HMM. The joint probability P(a,7r) = t1,1 t1,2 t2,end p1(G)

p2(C) p3(G). Note that another state path (1-1-2) could have generated the same

symbol sequence with a probably different joint probability.
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7.4 The Most Probable Path

Given a particular sequence, oz, and a HMM, there are many state paths, 7r,

may generate (1. However, the probabilities of generating a from each path are very

different. The path having the highest probability to generate the given sequence,

a, is called the most probable path:

7r* = argmaa: P(a, 7r), (7.6)

(I

where argmaa: returns the maximum parameter, 7r, which generates the maximum

value of P(a, 7r). The most probable path, 7r*, is what people are usually interested

in. It can be found recursively by the Viterbi algorithm [36]. Suppose the

probability, vk(i), of the most probable path ending in state k with observation a, is

known. Then the probability, vl(i + 1), of the most probable path ending in state I

can be calculated for observation ai+1 as:

v10+ 1) = 61(ai+1) mg$(vk(i)ak,z)- (7-7)

Since all sequences have to start in the beginning state, 0, the initial condition is

that v0(0) = 1. By keeping backward pointers, the actual state sequence (i.e., the

path) can be found by backtracking. Assume the transition probability to end state

is tk,0v the Viterbi algorithm is:

ALGORITHM 7 : Viterbi

Input: (1) a HMM of length L; (2) a sequence a = a1...am.

Output: the most probable path 7r* .

Initialization (i = 0):

v0(0) = 1, vk(0) = 0 for k > 0.

Recursion (i = 1 L):
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7)10') = ezlaz‘) mgfivkfi - 1)tk,z);

ptr2~(l) = argmazr(vk(i — llthl-

Termination: k

P(=v,7r*) = mgmlvkflflkc);

«*L = argmax(vk(L)tk,0).

'IYaceback (i =kL 1):

«2:1 = ptrz-(vrg‘).

7.5 The Profile Hidden Markov Model

Functional biological sequences typically come in families. Just as a pairwise

alignment captures the relationship between two sequences, a multi-sequence

alignment can show how the sequences in a family relate to each other. It is

desirable to provide a consensus model for a multi-sequence alignment, so that the

relationship between an new sequence and the family can be identified. In [99], a

particular type of HMMs is introduced. This type of HMMs is well suited for

representing profiles of multi-sequence alignments, and is called the Profile Hidden

Markov Model (PHMM).

Unlike the general HMMs, PHMMS are strongly linear, left-right models. There

are three states at each consensus column of a multi-sequence alignment: “match”,

“insert”, and “delete”. A “match” state models the distribution of residues allowed

in a column. An “insert” and “delete” state at each column models insertion and

deletion of one or more residues between this column and the next, respectively. A

small PHMM corresponding to a short multi-sequence alignment is shown in Figure

7.2. Algorithms for generating a PHMM from a multi-sequence alignment are

described in [36].

In order to increase computing speed (since sum operation is usually faster
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Figure 7.2: A small PHMM (right) representing a small multiple alignment of five

protein sequences (left) with three consensus columns. Squares represent match states

(Ml-M3). The 20 emission probabilities are calculated using Laplace’s rule (i.e., each

missing residue is counted one). Insert states (diamonds I0—I3) also have 20 emission

probabilities (assume to be the same as the background distribution). Delete states

(circles labeled D0—D3) are “mute” states that have no emission probabilities. State

transition probabilities are shown as arrows.
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than product) and resolve underflow problems due to small values of probabilities,

the probability parameters in a PHMM are usually converted to additive log-odds

scores [92, 101]. If the emission probability of a match state is pa for residue a, and

the expected background frequency of residue a in the sequence database is fa, the

score for residue a at this match state is log(pa/fa). Therefore, the scores for

aligning a residue to a profile match state are comparable to that of the traditional

position-independent scoring system (see Section 5.3).

In position-independent scoring systems, an insertion or deletion of an residue,

a, is scored with the affine gap penalty: g(l) = —o — (l — 1)e, where l is the gap

length, 0 is the gap-open penalty, and e is the gap-extension penalty. In a PHMM,

for an insertion of length I, there is one state transition for entering into an insert

state (called M-I transition), I — 1 state transitions for each subsequent insert state

(called I-I transition), and one state transition for leaving the insert state (called

I-M transition). The cost of the M-1 transition is log tM,I, where tM,I is the state

transition probability for moving from the match state to the insert state. In the

same way, the costs of the I-1 transition and M-1 transition are log tI,I and log tI,M:

respectively. This is akin to the affine gap penalty, with the gap-open penalty as

log tM,I + log t],M, and the gap-extension penalty as log t],I- However, in a

PHMM, these gap costs are not arbitrary numbers. Since PHMMS have a cost for

the transition from a match state to a match state that has no counterpart in

position-independent scoring systems, the probability of a transition to an insert

state is linked to the probability of a transition to a match state, If the gap cost is

reduced by raising the transition probability, tM,I: toward 1.0, the probability of

the M-M transition, tM,M, falls toward zero, and thus the cost for sequences

without an insertion approaches negative infinity. Therefore, there is a trade-off in

choosing the state transition probabilities so that the cost for the sequences having

an insertion is balanced against the cost for the sequences without insertion. This is
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an example of why PHMMS are useful and non~trivial.

Additionally, in PHMMS, an inserted residue is associated with the emission

probabilities of an insert state. If these emission probabilities are the same as the

background residue frequency, the score of the inserted residue is log fa/fa = 0. In

position-independent scoring systems, inserted residues have no cost besides the

affine gap penalty. This zero cost assume that insertions in protein structures have

the same residue distribution as proteins in general. This assumption is usually

wrong, since insertions tend to be seen most often in surface loops of protein

structures, and so have a bias toward hydrophilic residues [92]. PHMMS can capture

this information in emission distributions of the insert state, which increases the

sensitivity of sequence searching using PHMMS.

7.6 Viterbi Equations

An important usage of PHMMS is to detect potential membership in a family

by obtaining significant matches of a sequence to a given PHMM. The search can be

done by the Viterbi equations [36], which are related to Algorithm 7 described in

Section 7.4.

Let VjM (i) be the log-odds score of the best path of matching a sub-sequence,

almi, and the sub-model up to state j, ending with a, being emitted by state Mj-

Similarly, V]! (i) and VjD (i) are the scores of the best path ending in (ii being

emitted by Ij and Dj, respectively. Then the Viterbi equations are:

111



VM1(i—l)+logtM. M.

M . eM-(ai) )1 3-1, J

Vj (Z) = logfi— + marl: Vj_1(z _ 1)+logt1j_1,Mj

D -_
Vj_1(z 1) +108tDJ-_1,Mj

eI.(a-) V.M(i—1)+logt . . (7.8)

VjI(i) = log—fi—f—+max J MJ’IJ

a, V-I(i— 1)+logt1. I-
] 3’]

VJ! (i—1)+logt . .

Vlei) — max 3 1 MJ‘I’DJ
D -_

Vj_1(z 1)+10gtDj—13Dj

In order to allow an alignment to start and end in a delete or insert state, in

Figure 7.2, the “Begin” state is represented as M0, and VOM(0) is set to 0. The

“End” state is represented as ML+1, and the VjM (i) without the emission term is

used to calculate Vfifln) as the final score for matching the HMM with the

sequence, a = al...n-

7.7 Searching PHMM Using the HD-tree

The algorithm to search PHMM in the HD-tree is related to the algorithm

described in Section 6.4. Assume a query model, q = ‘11...k, and a minimum

matching score, 5. Starting from the root, the algorithm descends recursively by

every branch of the HD-tree. When descending by a branch labeled by the letter, a,

the algorithm adds a to the current string, (1'. Assume phmm(q, a’) is the highest

achievable score by matching q and (1’. There are three possibilities for the given a’:

(1) If the phmm(q, a’) Z S, all the leaves of the current sub-tree are reported

as answers.

(2) If phmm(q, a’fl’) < S for any string, B’, the branch is abandoned
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immediately.

(3) Otherwise, the algorithm continues recursively descending through the

HD-tree.

The score of the best path to match the sub-sequence, a’ = almi, and the

query model, q = q1...qk, is computed using the Viterbi Equation 7.8. Program 1 is

the pseudo code (C++ style) of the PHMM search algorithm at each tree node in

the HD-tree. The above three possibilities (1), (2), and (3) are determined at lines

59, 61, and 63, respectively. Lines 11 to 21, 28 to 32, and 41 to 49 correspond to the

computations of VjM (i), VjM (i), and VjM (i) in the Viterbi equations, respectively.

The variables used in the program are explained as follows:

a is the symbol (amino acid) at the current tree node;

k is the length of the model;

-INFTY is the negative infinity value;

sc is the current best log—odds score;

gtsc(XXX, j) is the given log-odds score of the transition probability (TMM:

match to match, TIM: insert to match, TDM: delete to match, etc.) from

(j — 1)th state to j state of the model;

gmsc(aa, j) and gisc(aa, j) are the given log-odds scores of the emission

probabilities of aa at jth match and insert state of the model, respectively;

gmmx(i, j), gimx(i, j), and gdmx(i, j) are the best scores at the jth

match, insert, and delete state for sub-sequence a’ = a1...a,-, respectively (i.e.,

VJ-M(i), VjM(i), and VJ-M(i) in Equation 7.8).

max is the maximum matching score of sub—sequence, a', to the given PHMM;
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max_j is the jth position where the maximum score is achieved;

maxsch] is the maximum achievable score of any sub-sequence to the

sub-model, qj...qk. It is the counterpart of the msc[i] in Algorithm 6 (see

Section 6.4). Similar to the msc[i], the maxsc[j] is used to abandon a sub-tree

which does not contain a potential match (see lines 57 to 59). The maxsc[j] is

precomputed using the Program 1, except that gmsc(aa, j) (line 18) and

gisc(aa, j) (line 46) are replaced by the maximum log-odds scores of the

emission probabilities at jth match and insert state of the model, respectively.

PROGRAM 1 : PHMM Search

01: thmSearchCuchar aa, int i)

02: {

03: int sc = O;

04: int rt = UNKNOWN;

05: int max = -INFTY;

06: int max_j = 0;

O7: gmmx(i, O) gimx(i, O) = gdmx(i, O) = -INFTY;

08: for (int j = 1; j <= k; j++)

09: {

10: /* match state */

11: gmmx(i, j) = -INFTY;

12: if ((sc = gmmx(i-l, j-1) + gtsc(TMM, j-1)) > gmmx(i, j))

13: gmmXCi, j) = so;

14: if ((sc = gimx(i-l, j-1) + gtsc(TIM, j-1)) > gmmx(i, j))

15: gmmx(i, j) = so;

16: if ((sc = gdmx(i-l, j-1) + gtscCTDM, j-1)) > gmmx(i, j))

17: gmmx(i, j) = so;
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18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

if (gmsc(aa, j) != -INFTY)

gmmx(i, j) += gmsc(aa, j);

else

gmmx(i, j) = -INFTY;

if (gmmx(i, j) > max)

{

max = gmmx(i, j);

max_j = j;

}

/* delete state */

gdmx(i, j) = -INFTY;

if ((sc = gmmx(i, j-1) + gtsc(TMD, j-1)) > gdmx(i, j))

gdmx(i, j) = so;

if ((sc = gdmx(i, j-1) + gtsc(TDD, j-1)) > gdmx(i, j))

gdmx(i, j) = so;

if (gdmx(i, j) > max)

max = gde(i, j);

max-j = J';

/* insert state */

if (j < k)

gimx(i, j) = -INFTY;

if ((sc = gmmx(i-l, j) + gtsc(TMI, j)) > gimx(i, j))

gimx(i, j) = sc;

if ((sc = gimx(i-l, j) + gtsc(TII, j)) > gimx(i, j))
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45: gimx(i, j) = so;

46: if (gisc(aa, j) != -INFTY)

47: gimx(i, j) += gisc(aa, j);

48: else

49: gimx(i, j) = -INFTY;

50: if (gimx(i, j) > max)

51: {

52: max = gimx(i, j);

53: max_j = j;

54: }

55: }

56: }

57: curmax = max + maxsc[max_j];

58: if (curmax < S)

59: rt = ABANDDN;

60: else if (sc >= 8)

61: rt = FOUND;

62: else

63: It = CONTINUE;

64:

65: return rt;

66: }

7.8 The HMMER Package

HMMER is a freely distributable package (current version is 2.3.2) for protein

sequence analysis using PHMM [96]. It contains a set of programs useful for
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building and searching PHMMS. HMMER is hosted at Washington University at St.

Louis, and is one of the most popular packages used by biologists to detect distant

homologous relationships using PHMMS. HMMER is used to search for sequences

that belong to a known protein family constructed from a multi-sequence alignment.

The protein family, like most protein families, is so diverse that a BLAST search

may fail to report even the known members in the family. HMMER is also used in

automated annotation of the domain structure of proteins, and automated

construction and maintenance of large multi—sequence alignment databases [102].

 

 

 

Figure 7.3: The “Plan 7” architecture of HMMER. Squares indicate match states;

diamonds indicate insert states; circles indicate delete states and special states; arrows

indicate state transitions.

Figure 7.3 shows the current HMMER “Plan 7” model architecture [102].

There are 7 transitions per node in the main model. Unlike the standard model in

Figure 7.2, Plan 7 has five special states: ‘S’, ‘N’, ‘C’, ‘T’, and ‘J’. When combined

with entry probabilities from ‘B’ state and exit probabilities to ‘E’ state, these

special states control unique features of the model. For instance, how likely the

model is to generate various sorts of local or multi-hit alignments. The

abbreviations used in Figure 7.3 are explained as follows [102]:

Mx: Match state x. Has K (K = 20 for protein sequences) emission
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probabilities.

Dx: Delete state m. Non-emitter.

Ix: Insert state cc, Has K emission probabilities.

S: Start state. Non-emitter.

N: N-terminal unaligned sequence state. Emits on transition with K

emission probabilities.

B: Begin state (for entering main model). Non-emitter.

E: End state (for exiting main model). Non-emitter.

C: C—terminal unaligned sequence state. Emits on transition with K emission

probabilities.

J : Joining segment unaligned sequence state. Emits on transition with K

emission probabilities.

In traditional pairwise alignments, distinction is made between global

Needleman-Wunsch and local Smith-Waterman algorithms. However, in the Plan 7

architecture, local versus global alignment in HMMER is controlled by transition

probabilities. For example, local alignments with respect to the model are achieved

by non—zero state transition probabilities from the begin state, ‘B’, to internal

match states, and from internal match states to the end state, ‘E’ (see dotted lines

in Figure 7.3). Local alignments with respect to the sequence are achieved by

non-zero state transitions on the flanking insert states, ‘N’ and ‘C’. More than one

hit to the PHMM per sequence is achieved by a cycle of non—zero transitions

through the special insert state, ‘J’.
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7.9 HMMER Plan 7 in the HD-tree

The HD—tree adopts the Plan 7 architecture of the HMMER package, so that

local, global, and multi-hit alignments can be easily controlled by transition

probabilities in PHMMS. Using the same architecture also allows better comparison

between HMMER and the HD-tree. To implement the Plan 7 architecture, Program

1 has to be modified to include the extra states. Therefore, Program 2 is inserted

between line 15 and line 16 of Program 1, and Program 3 is inserted between line 56

and line 57 of Program 1. The variables used in Program 2 and Program 3 are

explained as follows:

bsc [j] is the given log-odds score of the transition probability ‘E’ state to jth

state;

esc [j] is the given log-odds score of the transition probability from jth state

to ‘E’ state;

gxsc (XXX, MOVEILDDP) is the given log-odds scores of the transition

probability at the state, ‘N’, ‘E’, ‘C’, or ‘J’, where “MOVE” refers to the

transition N-B, E—C, C-T, or J-B; and “LOOP” refers to the transition N-N,

E—J, C—C, or J-J;

gxmx(i , XXX) is the best log-odds score of the transition probability from ith

state to the state, ‘B’, ‘E’, ‘C’, ‘J’, or ‘N’ (e.g., XMN represents the transition

probability to ‘B’ state).

PROGRAM 2 : PHMM Search for HMMER Plan 7, A

01: if ((sc = gxmx(i-1, XMB) + bsc[j]) > gmmx(i, j))

02: gmmx(i, j) = sc;

PROGRAM 3 : PHMM Search for HMMER Plan 7, B
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01:

02:

03:

O4:

05:

06:

07:

08:

09:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

/* N state */

gxmx(i, XMN) = -INFTY;

if ((sc = gxmx(i-l, XMN) + gxsc(XTN, LO0P)) > -INFTY)

gxmx(i, XMN) = sc;

/* E state */

gxmx(i, XME) = -INFTY;

for (int j 1; j <= k; j++)

if ((sc gmmx(i, j) + esc[j]) > gxmx(i, XME))

gme(i, XME) = sc;

/* J state */

gxmx(i, XMJ) = -INFTY;

if ((SC = gmeCi-l, XMJ) + gxsc(XTJ, LDDP)) > -INFTY)

gxmx(i, XMJ) = sc;

if ((sc = gxmx(i, XME) + gxsc(XTE, LOOP)) > gxmx(i, XMJ))

gxmx(i, XMJ) = sc;

/* B state */

gxmx(i, XMB) = -INFTY;

if ((sc = gxmx(i, XMN) + gxsc(XTN, MOVE)) > -INFTY)

gxmx(i, XMB) = sc;

if ((sc = gxmx(i, XMJ) + gxsccer, MOVE)) > gxmx(i, XMB))

gxmx(i, XMB) = sc;

/* C state */

gxmx(i, XMC) = -INFTY;

if ((SC = gme(i-1, XMC) + gxsc<XTC, LDOP)) > -INFTY)

gme(i, XMC) = sc;

if ((sc = gxmx(i, XME) + gxsc(XTE, MOVE)) > gxmx(i, XMC))

gxmx(i, XMC) = sc;
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28: sc = gxmx(i, XMC) + gxsc(XTC, MOVE);

7.10 Comparisons

In this section, the HD-tree is compared with HMMER for sequence searching

using PHMMS. The entire GenBank protein database is served as the sample

database. The HD-tree is created using overlapping words of length 20.

Experiments are conducted on a Linux PC with 512MB RAM and 1.8GHz Pentium

4 processor. Queries are generated from the popular PFAM database. Both

synthetic and real queries are used in the experiments. Since PHMMS provide the

parameters to computer E-value (see Section 5.5), the HD-tree is able to accept

E-value as a search criterion besides the closeness defined in Section 6.5.1.

7.10.1 PFAM

PFAM (Protein FAMilies) is a large collection of multi-sequence alignments and

PHMMS, covering many common protein families [103]. Genome projects, including

both the human and fly, have used PFAM extensively for large scale functional

annotation of genomic data [104]. PFAM version 18.0 (August 2005) is used in the

experiments. It contains alignments and models for 7973 protein families, based on

the Swissprot 47.0 and SP—TrEMBL 30.0 protein sequence databases [105]. PFAM is

constructed by first distinguishing a stable curated “seed” alignment of a small

number of representative sequences, then using HMMER to make a model of the

seed, then searching the database for homologues using the model, and

automatically producing the full alignment by aligning every sequence to the seed

[103].
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7.10.2 Synthetic Queries

The first set of experiments is conducted using synthetic queries, which are

generated from long PHMMS in PFAM. The procedure of generating the synthetic

queries is as follows. Assume a long PHMM, Mr, of length L. Transition and

emission probabilities related to match, insert, and delete states of a synthetic

query, Ms, of length l are copied from the ith to (i + l)th state of Mr. Transition

probabilities from ‘B’ state to any state in Ms are copied from the first I states of

Mr, which transition probabilities from any state to ‘E’ state in Ms are copied from

the last I states of Mr. These synthetic queries are then run through a program,

hmmcalibrate, provided by HMMER package. hmmcalibrate takes a PHMM and

empirically determines parameters (such as A in Equation 5.11) that are used to

make searches more sensitive by calculating more accurate E—values (see Section

5.5).

The HD—tree is not a heuristic search algorithm such as BLAST. Therefore, all

results are found as long as the search criterion (e.g., the E-value) is satisfied.

Experiments have shown that the HD-tree finds all the results returned by

HMMER. Therefore, the query quality of the HD-tree is the same as that of

HMMER. Table 7.1 shows the average query time with respect to query lengths and

E—values using the HD-tree and HMMER. For the HD-tree, the results are the

averages of 100 synthetic queries unless clearly stated. However, since HMMER is

very slow (10-15 minutes per query), only 10 synthetic queries are used for HMMER

to generate the average. It is shown that the HD-tree is orders of magnitude faster

than HMMER for queries shorter than 12. As the query length increases, the

performance of the HD-tree decreases faster than that of HMMER. Therefore, it is

not recommended to use the current HD-tree for queries longer than 12 (see Section

8.2 for potential solutions for long queries).

Besides the E—value, the HD-tree also uses closeness (see Section 6.5.1) to
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Table 7.1: HD-tree versus HMMER, E—value = 10

 

Qlen 7 8 9 10 11 12

HMMER 605.1 723.1 672.0 741.6 859.4 878.9

HD-tree 0.007 0.012 0.927 5.631 38.760 154.970

Table value: Query time in seconds.

 

 
 

evaluate the degree of similarity between two sequences. E—value and closeness are

exchangeable for a given query. Table 7.2 shows the relationship between the

closeness and the E—value for the synthetic queries. It is shown that for the query of

length 7, even a near-exact match (i.e., closeness = 98%) may result in E—value of at

least 10. This is one reason why short queries are executed very fast using the

HD-tree. In order to return more results for short queries, either the E-value is to

be increased or the closeness has to be decreased.

Table 7.2: Closeness versus E-value

 

 

Qlen Eval Ang Eval Ang Closeness Angval Closeness Angval

7 10 98.0 100 93.8 60 3019.0 90 674.7

8 10 96.4 100 86.0 60 1348.0 90 209.2

9 10 90.6 100 75.1 60 628.6 90 69.8

10 10 82.8 100 65.0 60 295.5 90 21.5

11 10 72.8 100 55.2 60 134.5 90 5.8

12 10 63.2 100 47.5 60 64.8 90 1.8  
 

Qlen: Query Length; Eval: E—value; Angval: Average E-value; Ang: Average Closeness.

Figure 7.4 illustrates the relationships between query time and query length for

given closenesses. It is shown that the query time decreases as the query length

decreases or closeness increases. The trend is similar to that of the HD-tree in

pairwise alignments using position-independent scoring matrices (see Section 6.6).

In order to show the relationship between query time and disk accesses, Table 7.3

provides the statistics for queries of length 10. It is shown that the query time is

closely related to the number of disk accesses, which reflects the pruning power (i.e.,

the ability to abandon a sub-tree in a search) of the HD-tree. Table 7.4 presents the

number of dynamic programming columns computed in sequence searches using the
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HD—tree, where “Ratio” is the number of columns computed by the HD-tree divided

by the number of columns computed by regular dynamic programming. Similar

comparison is conducted in [84] to show that using suffix index can significantly

reduce the number of columns to be computed. Same conclusion can be made from

Table 7.4.
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Figure 7.4: HD-tree query time for synthetic PHMMS

Table 7.3: HD-tree query time for synthetic PHMMS; Query length = 10

 

Closeness Qtime DiskAcc AccPerc Ang-value

 

(%) (seconds) (%)

90 0.14 48 0.001 21.46

80 0.88 299 0.011 51.77

70 5.04 1989 0.072 125.4

60 25.29 11153 0.407 295.5

50 100.43 57781 2.107 684.8
 

Qtime: query time; DiskAcc: the number of disk accesses;

AccPerc: the percentage of accessed leaves.
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Table 7.4: Computation of dynamic programming table columns using synthetic PH-

MMs, Closeness = 60%

 

PHMM Length Column Computed Ratio
 

7 10103 1.52844E—05

8 35335 5.34569E—05

9 117850 0.000177882

10 348271 0.000526885

11 899827 0.001361312

12 2573057 0.003892673
 

7.10.3 Analyzing Query Time

To further analyze the performance difference between the HD-tree and

HMMER, the query time is divided into CPU time and disk access time. Table 7.5

shows the statistics of the query performance using 10 synthetic queries with

different query lengths for both the HD-tree and HMMER. The original GenBank

protein database, which includes sequence annotations, contains 239732 disk blocks

(4KB each block). The total length of the sequences is approximately 661 million.

The HD-tree generated from the database contains 2741767 leaf nodes (i.e., disk

blocks). In Table 7.5, DiskAchum is the average number of disk blocks accessed by

the HD-tree. DiskAccTime is the time spent on reading data from disks. DiskAccPl

is the DiskAchum as the percentage of the total number of leaf nodes. DiskAccP2

is the DiskAchum as the percentage of the number of disk blocks occupied by the

database, which HMMER accesses sequentially. DptColumn is the number of

Dynamic Programming Table (DPT) column computed by the HD-tree, which

includes the DPT columns computed for searching strings within leaf nodes.

DptRatio is DptColumn divided by 661 million (i.e., the number of DPT column

computed by HMMER).

As shown in Table 7.5, for different query lengths, the majority of HD-tree

query time (approximately 90% or above) is spent on reading disks. However, more

than 93% of HMMER query time is spent on CPU computation. Therefore, it can
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be concluded that the HD-tree is an I/O-bound approach and HMMER is a

CPU-bound approach.

HMMER is a pure dynamic-programming—based method. It sequentially reads

all database sequences, and compute one DPT column for each residue. For any

query, reading the database takes approximately 40 seconds. The computation of

DPT (approximately 661 million columns) dominates the query time. Therefore, the

query time is relatively consistent, except some variations due to the post-processing

of query results. The computational complexity of HMMER is 0(mn), where m is

the query length and n is the database size.

Table 7.5: Analyzing query time. Both the HD-tree and HMMER use 10 synthetic

queries, and E-value = 10.

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 
 

 

 

 

QueryLen [ 7 8 9 10 11 12

HD-tree

CpuTime 0.001 0.001 0.004 0.028 1.258 9.094

CpuTime% 10.0 8.3 5.6 4.9 7.9 10.5

DiskAccTime 0.009 0.011 0.067 0.543 14.720 77.420

DiskAccTime% 90.0 91.7 94.4 95.1 92.1 89.5

DiskAchum 1 1 21 229 11304 76975

DiskAccPl (%) 0.000 0.000 0.001 0.008 0.412 2.807

DiskAccP2 (%) 0.000 0.000 0.009 0.096 4.715 32.109

DptColumn 101 132 721 7855 395785 2697946

DptRatio 1.528E—8 1.997E—8 1.091E—7 1.188E—6 5.988E—5 4.082E—3

Closeness 99.0 97.0 88.7 77.1 67.3 59.5

MaxError 0.19 0.32 2.28 4.29 6.95 10.36

HMMER

CpuTime 567.45 681.41 632.01 700.70 819.72 839.34

CpuTime% 93.78 94.23 94.05 94.48 95.38 95.50

DiskAccTime 37.65 41.69 39.99 40.90 39.68 39.56

DiskAccTime% 6.22 5.77 5.95 5.52 4.62 4.50  
On the other hand, as an index-based method, the HD-tree significantly

reduces DPT computation. This reduction is the result of two reasons. First, since

the HD-tree indexes all overlapping word using trie structure, it avoids the repeated

DPT computations for the subsequences (at different positions) having the same
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prefix. Second, during the tree traversal, a sub-tree may be abandoned (i.e., pruned)

if a possible match is not possible within the sub-tree. For example, for query

length of 7, the DPT column computed by the HD-tree is only 101, which is

negligible compared to 661 million columns computed by HMMER. As the query

length increases, the computation of DPT increases. However, even when the query

length is 12, the DPT columns computed by the HD-tree is still less than 0.1% of

the DPT columns computed by HAMMER. Therefore, the CPU time of the

HD-tree is not the major factor of the the query performance. However, since the

HD-tree stores leaf nodes on disks, the query time is dominated by the disk access

time, which is proportional to the number of disk accesses (i.e., leaf-node accesses).

Since the internal nodes of the HD-tree is a trie, each tree node represents a string

(i.e., a prefix of overlapping words). A sub-tree can be pruned (i.e., do not access

the leaf nodes in this subtree) if the best alignment between the query and the

prefix string representing the sub-tree has exceeded the maximum error (i.e., the

maximum score minus the minimum score. See Section 6.5.1.). The maximum error

is determined by both the closeness and the length of query sequence, and the

closeness plays a more important role. As shown in Table 7.5, the average closeness

decreases as the query length increases, hence the maximum error (MaxError in

Table 7.5) increases. The increased maximum error leads to decreased pruning

power. For a given query, assume a sub-tree, T, is pruned for a maximum error of 5.

If a is increased, the search has to continue within T. Therefore, only sub-trees of T

may be pruned, and the pruning power is reduced. It is observed from the

experimental results that for a given HD—tree and a fixed E—value, the number of

disk accesses increases exponentially as the query length increases. Therefore, as the

query length increases, HMMER will sooner or later outperform the HD-tree.
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7.10.4 Real Queries

In order to compare the HD-tree with HMMER using real PHMMS,

experiments are conducted on PHMMS obtained from the PFAM database directly.

Table 7.6 shows the query time of the HD-tree and HMMER using these real

PHMMS, where “Seq” is a given number to distinguish different queries having the

same length. Although the overall performance trend is similar to that in synthetic

queries, it is observed that the running time varies among queries having the same

length. This may due to the fact that the HD—tree uses the prefix of a query to

reduce the search space. Therefore, the composition of a query affects the

performance of the HD-tree. For example, if the first a few states in a PHMM has

more pruning power, the HD-tree tends to be faster.

In summery, according to the results from both synthetic and real data, the

HD-tree is shown to be much faster than HMMER in PHMM search for short

queries. In Chapter 6, the HD-tree also outperforms BLAST for pairwise alignment

using position-independent scoring matrices. As genomic sequence databases

continue to grow, the benefit of using an index-based approach, such as the HD-tree,

is more and more appealing than the linear-scan-based approach, such as HMMER

and BLAST, especially for complex sequence analysis tasks such as PHMM searches.
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Table 7.6: Query time for real PHMMS; E—value = 10

 

Qlen Seq HD—tree Closeness HMMER

 

(seconds) (seconds)

7 1 0.386 74 563

8 1 0.028 79 741

8 2 0.363 67 704

8 3 0.036 99 951

8 4 0.002 99 741

8 5 0.128 72 709

9 1 4.661 57 660

9 2 0.001 99 692

9 3 4.871 58 671

9 4 0.001 99 757

10 1 0.168 81 740

10 2 8.909 53 731

10 3 0.612 76 724

10 4 9.464 61 951

10 5 3. 168 70 728

10 6 0.001 99 717

1 1 1 5.685 47 809

1 1 2 0.312 81 856

1 1 3 5.312 66 821

1 1 4 7.000 64 786

1 1 5 1.112 66 844

12 1 36.252 45 898

12 2 160.322 48 875

12 3 52.374 53 905

12 4 229.911 41 843

12 5 211.286 34 892
 

Qlen: query length; Seq: query sequence number.
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Chapter 8: Conclusions and Future

Work

8.1 Conclusions

There is an increasing demand for eflicient indexing techniques to support

various types of queries (e. g., prefix searches and approximate string matching) on

large string databases, such as genomic sequence databases. Most existing string

indexing techniques are either RAM-based or disk-based. RAM-based index

structures are not suitable for large databases when only a limited amount of RAM

is available. Disk-based structures, on the other hand, can index large databases but

usually do not fully utilize the available RAM.

In this dissertation, a novel hybrid RAM/disk-based structure, the Hybrid

Digital tree (HD-tree), is proposed. The HD-tree takes advantage of the strengths of

both RAM-based and disk-based structures. It contains two parts: the RAM-index

and the disk-index. The RAM-index uses the trie structure, and resides in the RAM

to minimize the disk accesses; while the disk-index maintains the rest of the index

on disks so that large databases can be indexed. Algorithms for constructing and

searching the HD-tree are developed. The HD—tree not only scales well with the size

of the RAM and the database, but also is efficient for various types of queries.

Experiments are conducted to compare the HD-tree with existing techniques. In

comparisons with the Prefix B-tree for prefix searches, the HD-tree not only reduces

I/O operations by more than 60%, but also reduces the total query processing time

by one order of magnitude. The HD-tree also outperforms the linear scan and the

M-tree for approximate string matching based on the Hamming distance.

The HD-tree is very useful in solving real-world applications, such as searching
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genomic sequence databases. The proposed Sort-Merge method successfully reduced

the standard HD-tree construction time (the Brute-Force method) by an order of

magnitude, so that the entire GenBank protein sequence database can be indexed in

few hours. Algorithms are developed to perform sequence searches using the

HD-tree. In the application of searching homologous sequences using

position-independent scoring matrices, the HD-tree is not only four times faster

than BLAST, a popular heuristic sequence search tool, but also able to find more

homologous sequences for short queries. The speed improvement of the HD-tree is

even more impressive in sequence search using Profile Hidden Markov Models

(PHMMS), where heuristic algorithms are not applicable. The HD-tree is shown to

be orders of magnitude faster than HMMER, a popular PHMM search tool, for

short queries, while maintaining the same query quality as that of HMMER.

The major contribution of this dissertation is the application of index-based

approximate string matching for genomic sequence databases. This is a prominent

research area in the field of bio-informatics. Due to the complexity of advanced

sequence searches, such as the profile hidden Markov model (PHMM) search,

dynamic programming over the entire sequence database is used by popular search

tools such as HMMER. However, as the genomic sequence databases continually

grow rapidly, index-based approaches will sooner or later replace linear-scan-based

approaches.

Traditional Disk-based string index structures, such as Prefix B—trees and

String B—trees, are not applicable in approximate string matching, although they

may index large string databases. This is because these Disk-based structures use

string as the index unit (unlike the trie which decomposes a string into letters). An

internal node contains a set of strings and represents sub-ranges of the entire search

space. Depending on which sub-range the query string belongs to, the search

continues in a child node having smaller sub-ranges. Such tree structure is effective
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for exact matches or prefix matches, since the query results belong to one sub-range.

However, for approximate string matching, the query results may belong to many

sub-ranges across the entire search space. The sub—ranges defined by internal nodes

of Prefix B-trees or String B—trees are not small enough to rule out the possibility of

finding a match within a sub—range (i.e., a sub—tree). Therefore, the tree loses its

pruning power, and the entire tree may have to be accessed for a query.

On the other hand, trie-based index structures decompose a string into a

sequence of letters and build index letter by letter. Therefore, the sub-ranges are

much more refined than those in B—trees, and a search may be able to prune a

sub-tree if a match is not possible within the sub-tree. Trie-based structures, such

as suffix trees, are effective in approximate string matching by significantly reducing

the computation of dynamic programming table [84]. However, the suflix tree is a

RAM-based structure and requires a large amount of RAM, which makes it

infeasible to index the entire GenBank protein database in the RAM. In [84], a

method is proposed for creating suffix trees (Hunt’s suffix tree) in excess of available

RAM size. Disk space is served as the image of RAM for the suffix tree and

accessing the suffix tree relies on the operating system to page in/out the disk

image. Since the suffix tree stores pointers (i.e., suffix positions) in leaf nodes, a

search may not be completed unless it follows the pointer to the original sequence

database, which is costly.

The HD-tree, is a combination of both the RAM-based and disk-based

structures. It uses trie-based structure to index overlapping words, so that it is as

efficient as the suffix tree in reducing the computation of dynamic programming

table. The HD-tree stores partial overlapping words in leaf nodes, so that a search

of short queries (shorter than the length of overlapping words) does not need to

access original sequence databases. Unlike the disk-based suffix tree, the HD-tree

uses a small amount of RAM to store internal nodes of the tree, and groups strings
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having the same prefix in leaf nodes (i.e., generate some clustering information).

These RAM-based internal nodes can prune the leaf nodes (i.e., disk blocks) that do

not contain the query answer. Hence the number of disk accesses is significantly

reduced. Since Hunt’s suffix tree does not have a mechanism to group strings into

disk blocks (i.e., lack of clustering information), it requires more disk accesses than

the HD—tree. Therefore, a hybrid RAM/disk-based index structure such as the

HD—tree is a promising approach for indexing and searching large string databases,

especially genomic sequence databases.

8.2 Future Work

The success of the HD-tree in genomic sequence searches using PHMM

encourages continual research in this area. One of the biggest challenges is to

support long queries. As shown in previous chapters, performance of the HD-tree

degrades as query length increases. Therefore, a new method for employing the

HD-tree needs to be developed for long queries.

One promising solution for long queries is to use two search stages: filtering and

alignment. In the filtering stage, the HD-tree is served as a filter to locate the

potential homologous regions in the database using short sub-queries (e.g., length of

7 to 11 residues) obtained from a long query. In the alignment stage, these potential

regions can be extended in both directions and be searched against the long query

using dynamic programming to find the final results. This strategy is similar to that

of heuristic algorithms, such as BLAST. However, most heuristic algorithms rely on

hashing techniques for filtering, which makes PHMM searches very difficult. The

HD-tree, on the other hand, provides an index structure that supports complex

PHMM searches. At the same time, a potential homologous region returned by

HD-tree searches can be more informative than that of existing heuristic algorithms,
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due to longer sub—query length (7 to 11 residues versus 3 to 4 residues). This will

likely reduce the number of candidate regions in the alignment stage.

In the above two-stage approach, how to generate sub-queries effectively and

efficiently is an important research issue. In a genomic sequence (or PHMM), some

sub-regions are more informative than others. These highly informative sub-regions

have been used to look for motifs (i.e., recurring patterns) in DNA and protein

sequences [89, 90]. According to the Shannon theory, the entropy (i.e., mean

amount of information) in a message can be computed as:

H = — 2pm.) Iogp<m.->. (8.1)
i=1

where p(m,-) is the probability of the message component, m,- [106]. For a PHMM,

the emission probabilities of each symbol at each state (position) is known.

Therefore, the information content (also called relative entropy) of a PHMM of

length L can be computed as:

L [Al fi j

I = Z me- log —p,—. (8.2)

j=1i=1

where fiJ is the emission probability of ith symbol in A, and p,- is the background

frequency of the ith symbol [89, 107, 108]. The information content can then be

used to find the highly informative sub-regions in a long PHMM. However, the

number and length of sub-queries, and the search criteria for these sub-queries (such

as closeness and E-value) all affect query time and quality. Therefore, developing

the appropriate method to generate sub-queries will be an important part of future

work for long-query searches using the HD-tree.

Once sub-queries are generated and query results are produced, the next step is

to construct candidate homologous regions from the search results of sub—queries.
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One approach is to consider each search result as a candidate region, similar to that

in BLAST. Another approach is to form candidate regions based on the position of

initial search results, similar to that in FASTA. The second approach is likely to be

faster, but may sacrifice sensitivity, since it employs a heuristic method for selecting

candidate regions from initial sub-query search results. Algorithms need to be

developed and experiments need to be conducted to find the best approach to

generate candidate regions, which is another important part of the future work.

In summary, the HD—tree developed in this dissertation is shown to be a

valuable approach for indexing and searching large string databases. It is

successfully applied to genomic sequence databases for short queries, especially in

the profile hidden Markov model searches. Yet, the potential for using the HD-tree

for long queries needs to be explored further so that it can be a more powerful tool

for the growing field of genomic sequence analysis.
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Appendix A: Approximate Q-gram

Matching in Genomic Sequence

Databases

Searching a genomic sequence database usually begins with selecting a set of

candidate regions, a stage called filtering. Local alignments on these candidates are

then performed to find true homologous regions. Exact matching of q-grams

(substrings or words of length q) has been used by popular systems, such as the

BLAST, for the filtering stage. However, if a smaller q value is used, exact matching

can result in a very large candidate set, leading to low search efficiency. On the

other hand, with a larger q value for exact matching, search efficiency improves but

the accuracy of the search is significantly reduced. As the size of genomic sequence

databases increases, the situation may get even worse. In this appendix, the

application of approximate q-gram matching based on the Hamming distance (see

Section 4.5) is analyzed for the filtering stage. According to the experimental results

on GenBank nucleotide databases, it is concluded that approximate matching based

on a combination of larger q value and longer Hamming distance, is much more

efficient and effective than exact matching. A theoretical model is developed to

further analyze the performance of approximate matching.

A. 1 Introduction

genomic sequence databases are widely used to assist molecular biologists in

understanding the biochemical function, chemical structure and evolutionary history

of organisms. Given a query sequence, a basic operation on these databases is to
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locate the homologous regions within existing genomic sequences. During the past

decade, genomic sequence databases have been growing rapidly in size. The size of

GenBank [109], a popular collection of publicly available DNA sequences, increased

from 217,102,462 residues (base pairs) and 215,273 sequences in 1994, to

44,575,745,176 residues and 40,604,319 sequences in 2004 [110]. At the same time,

there is an increasing demand for searches on genomic sequence databases.

To support efficient searches on genomic sequence databases, many algorithms

(systems) have been developed in the past decade. Based on how the search is

conducted, these systems can be divided into two categories: linear-scan-based and

index-based. Linear-scan—based systems, such as FASTA [73, 74] and BLAST

[3, 42], compare a query sequence with all the sequences in the database. FASTA is

considered as the most accurate (sensitive) system, while BLAST is more popular

and faster but less sensitive. Index-based systems, such as BLAT [79], CAFE

[80, 81], and Suffix Sequoia [111, 86] perform a query using a pre—built index of the

database. Although linear-scan-based systems are faster than index-based systems

for smaller databases, as the size of the genomic sequence databases continually

increases, index-based systems are more and more appealing for their efficiency.

Searching homologous regions in a genomic sequence database is usually

conducted in two stages: the filtering stage and the alignment stage. The filtering

stage detects candidate regions which are likely to be homologous. The alignment

stage then examines these regions in detail and reports the regions which are indeed

homologous according to some criteria. The resulting homologous regions are also

called “high-scoring segment pairs” or HSPs [42]. Because of the unstructured

nature of genomic sequences, the q-gram (substring or word of length q) is often

used as a basic indexing/search unit in the filtering stage [42, 82, 79, 74]. Q-grams

can be either overlapping (i.e., a fixed window size of L shifting from the beginning

to the end of a sequence by one letter at a time) or non-overlapping. Hits (q—gram
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positions in the genomic sequence) are located by matching query q-grams with

database q-grams. Each hit may produce a candidate region. Dynamic

programming and scoring matrices are used in the alignment stage to find the true

homologous regions among the candidate regions [83, 71]. These algorithms are so

costly that the alignment stage may take more than 90% of the total processing

time. Therefore, the quantity and the quality of candidate regions produced by the

alignment stage are very important for improving the overall efliciency of the

searching algorithm. Heuristics, such as the two-hit method in [42], have been

developed to reduce the number of candidate regions based on original hits. Besides

q-grams, suffix keys are also used as an index/search unit in the filtering stage [112].

Compared to q-gram based approaches, these suffix-key-based methods take more

time and space; however, they are more sensitive in finding matches that have

relatively low similarity to the query [112, 111].

In the filtering stage, both FASTA and BLAST use a hashing technique to

sequentially search overlapping query q-grams against overlapping database

q-grams. On the other hand, BLAT builds an index based on non—overlapping

q-grams in memory. It uses either exact matching or approximate matching with at

most one mismatch in the filtering stage to locate candidate regions. BLAT was

shown to be faster than popular existing tools, such as BLAST; however, it is less

sensitive. CAFE uses inverted files [7] to index genome databases. Overlapping

q-grams are used in CAFE. Heuristics, such as FRAMES [80], are used to reduce

the number of candidate regions passed to the alignment stage. Compared with

FASTA, CAFE is shown to be faster in searching GenBank nucleotide databases

with comparable accuracy [80].

This appendix focuses on the performance of the filtering stage using q-grams.

Most existing systems use exact matching of q-grams to find the hits. For example,

BLAST provides the options of using different word length q. The shorter q, the
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higher the sensitivity is; however, the number of resulting candidate regions also

increases dramatically. For example, for a typical BLAST search, 61,926,143 hits

might be found using q = 7, while only 271,083 hits would be found using q = 11.

On the other hand, homologous regions that would be found using q = 7 can be

missed using q = 11. Using exact matching, it is difficult to further reduce the

number of hits while increasing the sensitivity. Since HSPS can be viewed as the

results of approximate matching, using approximate matching based on the

Hamming distance in the filtering stage may produce lower number of hits as well as

higher sensitivity.

Approximate matching on string databases has been studied extensively [9].

Index-based q-gram methods were proposed to reduce the search cost for large

genome databases [113, 114]. In BLAT, one mismatch has been shown to be

effective in finding low similarity HSPS; however, the system does not provide the

option to use more than one mismatch. Approximate q-gram matching with more

than one mismatch has not been adopted widely in searching genome databases.

The goal of this appendix is to investigate the effect of applying larger word

length (q) and higher Hamming distance (i.e., the number of mismatches) to the

filtering stage. Experiments were conducted on both the E. coli and the entire

GenBank nucleotide databases to investigate the performance (cost and sensitivity)

of various combinations of word length and Hamming distance. A theoretical model

is developed to further analyze the performance. Both experimental results and

theoretical analysis show that approximate matching using longer word length and

larger Hamming distance can achieve both lower cost and higher sensitivity than

exact matching for the filtering stage.

The rest of this appendix is organized as follows. Methodology and

experimental results are discussed in Section A.2.2, the theoretical model is

presented in Section A3, and conclusions and future work are given in Section A4
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A.2 Filtering Based on Approximate Matching

A.2.1 Motivation

The motivation for using approximate matching of q-grams for the filtering

stage is inspired by the following observations. Since HSPs, especially ones with

relatively low similarity, may have evenly distributed mismatches, it is likely that

exact matching may not be able to find a hit (using larger q) within such HSPs. Let

q/h represent approximate matching of q-grams within Hamming distance of h.

Exact matching of q-grams is represented as q/0. For example, in Figure A.1(a), the

HSP cannot be found by word size of 7 or larger. However, the HSP can be found

by approximate matching of 13/ 1. On the other hand, for a region (assume it is not

an HSP) in Figure A.1(b), two hits will be reported by 7/0. However, the region

will be passed by 13/ 1. Therefore, it is possible that lower cost (number of hits) and

higher sensitivity can be achieved by using proper q/h combination. Since

approximate matching has two adjustable variables, q and h, it is more flexible than

exact marching, where only word length q can be tuned.

ttgatgatgtcatagtatgc attgatgatgtcatctta

IIIIIIIIIIIIIIIIII IIIIIII IIIIIII

ttgatgctgtcatcgtatgc attgatggctacatctta

“0 (b)

Figure A.1: Example alignments

A.2.2 Methodology

BLAST is the most commonly used tool in bio-informatics. Although there are

more sensitive algorithms, nucleotide BLAST (BLASTN) is much faster and, in

practice, has proved sensitive enough to detect the moderate sequence similarities
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that imply homology. In addition to its more formal use in detecting evolutionarily

related sequences, due to its speed and availability, local BLASTN is used as a core

component in several primer and probe design packages, where the intent is not to

find related genes or gene segments, but to find regions of sequence similarity that

might cause cross-priming or cross-hybridization. For these uses, even relatively

short regions of similarity will be of concern. BLASTN (version 2.2.6 for Linux,

downloaded from the NCBI web site) is used to generate the standard HSP answer

set by searching a database with word size of 7 and mismatch penalty of -1. Queries

are 30 probes from an actual oligonucleotide micro-array; each of them has 70

residues. Sequences in standard FASTA format were downloaded from the GenBank

in May 2003. The non-redundant nucleotide database, contained 1,751,987

sequences and 8,542,465,976 residues; the E. coli database contained 400 sequences

and 4,662,239 residues.

A program is developed to simulate the filtering stage. Overlapping q-grams

from a query sequence are compared with overlapping q-grams from the database

sequences. Given a Hamming distance h, a hit is recorded if the Hamming distance

between a query q-gram and a database q-gram is within distance h. Assume the

standard HSPS are provided. If a hit lies within a standard HSP, it is a true hit,

otherwise, it is a false hit. An HSP is considered to befound by the program if at

least one hit lies within a standard HSP. Each false hit generates a candidate region,

while any number of true hits within a HSP generates only one candidate region.

Therefore, the search cost measured by alignments (i.e., the number of candidate

regions) is computed by the number of false hits plus the number of HSPs found.

Sensitivity is measured by the number of HSPS found divided by the number of

standard HSPs.
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A.2.3 Experimental Results

Two sets of experiments are conducted using various q and h combinations on

both the E. coli database and the entire GenBank nucleotide database. To fully

understand the behavior of approximate matching for different HSPS, four HSP

categories are defined for the E. coli database and two HSP categories for the

GenBank nucleotide database based on the length of the HSPS and their similarity

to the query. The categories are shown in Table A1

Table A.1: Categories of HSPS returned by Probes

E. coli

Category I II III IV

total L*220 L*Z40 L*Z4O 20$L*$40

8+ 3 80 S+ 3 80

 

 

 

 

 

 

            

 

 

 

 

HSPNumber 482 387 52 43 192

ActualS [63, 100: :63, 95: :63, 89] [63, 80: :69, 80:

ActualL [15, 70: :20, 70: :40, 70: :40, 70: :25, 40:

GenBank

Category V VI

total L* 2 40 20 g L* _<_ 40

5+ 3 80 5+ 3 80

HSPNumber 2690 205

ActualS [65, 100: [65, 80: :76, 80:

ActualL [21, 70 :40, 70] :35, 40:      
 

L*: HSP length; 8+: Similarity in percentage.

The sensitivities of each q/h combination are calculated based on these HSP

categories. Figures A.2—A6 show the experimental results on the cost-sensitivity

relationships for some typical q/h combinations. Note that only q-grams shorter

then the minimum HSP length in a HSP category are examined.

Since 11/0 is the default word size for BLASTN, it is used as the benchmark in

the following discussions. In Figures A.2-A6, all q/h combinations that have a

better sensitivity and cost than 11/0 are identified within the dotted lines at the

upper-left corner of the figures. In Figure A.2, it is shown that 11/0 only finds

22.0% of the total HSPS that are longer than 20, while 20/4 is able to find 77.8%
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HSPS with a similar cost. 16/3 is able to find 90.7% of the HSPS with 10 times more

cost than 11/0. However, its cost is still about 10 times less than that of 7/0. In

each figure, there always exist some combinations of q/h perform better than 11/0

both in cost and sensitivity, such as 17/2 in Figure A.2 and 24/5 in Figure A.5.

Moreover, some combinations of q/h such as 20/3 are consistently better than 11/0

in all HSP categories. Such phenomenon indicates that approximate matching is

able to achieve better performance in both sensitivity and cost than exact matching.

Table A.2 shows three combinations which are always better than 11/0 in cost and

sensitivity for all categories. For example, compared with 11/0, on the average, 20/3

improves the sensitivity by 55%, while reduces the cost by 90%. Table A.2 also

shows an interesting trend: with properly increasing word length and Hamming

distance, sensitivities and costs are improved continuely.

It is observed that with a fixed word length, both cost and sensitivity increases

as the Hamming distance increases. With a fixed Hamming distance, both cost and

sensitivity decreases as the word length increases. This trend is consistent among all

HSP categories; however, the relationship of sensitivity may not be consistent if

both Hamming distance and word length changes. For example, the sensitivity of

16/2 is a little better then 13/1 in Figure A.2; however, it is worse than 13/1 in

Figure A.3. This indicates that different HSP categories may affect the performance

of approximate matching.

In order to achieve certain sensitivity requirement, both q and h have to be

adjusted in order to reduce the cost. Table A3 shows the q/h combinations that

achieve the least cost under corresponding sensitivity requirements. Since 7/0 is

used to construct the standard answer set, the cost of approximate matching is

compared with the cost of 7/0 at different sensitivity levels. It is shown that

approximate matching is able to achieve high sensitivity with relatively low cost.

For example, in category II, the sensitivity of 30/10 is 98%; however, the cost is
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Figure A.3: E. coli, HSP Category II
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Figure A.5: E. coli, HSP Category IV
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Figure A.6: GenBank. HSP Categorv V
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Figure A.7: GenBank, HSP Category VI
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only 2% of that using 7/0. In category V, 16/3 finds 96% of HSPS using only 8%

cost of 7/0. Note that, since the HSPS returned by 7/0 are used as the standard

HSP set to calculate the sensitivities, the sensitivity of 7/0 is always 100%. In real

application, there could exist HSPS that cannot be found by 7/0, but can be hit by

approximate matching.

Table A.2: Combinations better than 11/0 in both cost and sensitivity
 

 

 

    
 

 

 

   
 

0T1I I 11 III IV

q/h 0' S+ C" S+ 6" S+ C" 5+

14/1 0.61 1.35 0.61 1.08 0.60 1.12 0.60 1.89

17/2 0.24 1.53 0.24 1.04 0.22 1.06 0.22 1.37

20/3 0.08 1.84 0.08 1.04 0.06 1.06 0.06 1.05

0T1i v VI Avg.

q/h C“ 3+ 0- 5+ C" 5+

14/1 0.90 1.44 0.90 1.58 0.70 1.41

17/2 0.42 1.50 0.42 1.90 0.29 1.40

20/3 0.16 1.58 0.16 2.72 0.10 1.55

CT“: HSP Category; 0‘: Cost / (Cost of 11/0); 5+: Sensitivity / (Sensitivity of

11/0).

As shown in Figure A.2 (HSP 2 20) and A.3 (HSP 2 40), the sensitivities of all

combinations decrease when HSPS are shorter; however, 11/0 decreases faster than

other combinations. It is concluded that approximate matching is less affected by

HSP length than exact matching. For relatively low similarities and shorter HSPS,

approximate matching has a greater advantage. For example, in Figure A.5, 11/0

only finds 9.9% of the HSPS while 20/4 is able to find 60.4% of the HSPS with

similar cost.

To measure the consistency of above observations, experiments are carried out

using some typical q/h combinations in a much larger database (i.e., the GenBank

nucleotide database). As shown in Figure A6 and A.7, the performances of the

selected q/h combinations have a very similar trend to that of the E. coli database.

The sensitivities of all combinations are higher than those in the E. coli database,
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Table A.3: Combinations satisfy minimum sensitivity.
 

 

 

 

 

 

 

C'Tr I II 111

MS‘ q/h C‘ 5+ q/h C‘ 5+ q/h C" 5+

40 20/3 0.00037 0.40 30/5 0.000018 0.40 20/3 0.00029 0.42

60 18/3 0.0053 0.64 30/8 0.00051 0.69 30/8 0.0005 0.63

70 20/4 0.0058 0.78 20/4 0.0058 0.75 19/4 0.02 0.81

80 19/4 0.02 0.88 19/4 0.02 0.85 19/4 0.02 0.81

90 16/3 0.06 0.91 30/10 0.02 0.98 30/10 0.02 0.98

CT“ VI V VI

MS‘ q/h C" 5+ q/h 0' S+ q/h C“ 5+

40 18/3 0.0051 0.41 18/2 0.00044 0.46 20/3 0.0006 0.66

60 20/4 0.0057 0.60 20/3 0.00059 0.64 20/3 0.0006 0.66

70 19/4 0.02 0.79 16/2 0.0052 0.71 18/3 0.0071 0.94

80 20/5 0.06 0.92 16/3 0.08 0.96 18/3 0.0071 0.94

90 20/5 0.06 0.92 16/3 0.08 0.96 18/3 0.0071 0.94   
 

CT”: HSP Category; M5“ Minimum sensitivity; 0‘: Cost / (Cost of 7/0); 5+: Sensitivity /

(Sensitivity of 7/0).

because the GenBank nucleotide database contains more HSPS with higher

similarities.

A.3 Theoretical Analysis

A theoretical model is developed to further analyze the performance of

approximate and exact matching for the filtering stage. The problem is studied in a

probabilistic framework where artificial genomic sequences are generated according

to the Bernoulli model, which is also used by BLAST for their scoring system. In

the Bernoulli model, every symbol of a finite alphabet A is created independently of

the other symbols with different probabilities (identical independent distribution,

i.i.d.). The following notations are used in the description of our theoretical model:

3: The similarity ratio between two regions.

A: the nucleotide alphabet of size |A| = 4.

PD(a): The distribution of a letter a E A in database sequences.

PQ (a): The distribution of a letter a E A in query sequences.
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HDist(fil, 62): The Hamming distance between two q—grams: Bl and ,32.

A.3.1 False Hit Probability (FHP)

According to the Bernoulli model, if one letter is drawn from a query sequence

and one letter is drawn from database sequences, the probability that the two

letters are identical is Pm = ZaeA PD(a) * PQ (a). The probability that two

q-grams are identical is M(q) = (Pm)q. Therefore, the probability of h mismatches

between two q—grams is:

M’(q. h) = (z) x (PM—ha — 10m)". (Al)

where (’ql) is the number of combinations of q taken h at a time. The

probability that two q-grams are within Hamming distance h is:

h . .

Mm, h) = 2(3) >< (Pm)4"(1— Pm)‘. (A.2)

i=0

Mf(q, h), called False Hits Probability (FHP), is the probability of matching a

query q-gram by chance among database q-grams.

A.3.2 True Hit Probability (THP)

Assume the similarity between two homologous regions, HRl and H122, is 3.

Similar to Mf (q, h), for a q—gram, 61, from HRI, the probability of having a q—gram

62 in HR2 and HDist(fil,flg) g h is:

h

MM. 22) = 2(3) x sq—iu - s>i (A.3)

i=0

Mt(q, h), called True Hit Probability (THP), is the probability of matching a

q-gram within a homologous region. The higher the value of Alt(q, h), the better is
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the chance that the homologous regions in the database will be selected in the

filtering stage, hence, the higher is the sensitivity.

A.3.3 Verifying FHP and THP

To verify the correctness of the theoretical model, the theoretical FHP and

THP are compared with corresponding experimental values. The experimental FHP

is computed as the number of total hits divided by the search space, which is the

number of query q-grams times the number of database q-grams. Table A.4 shows

the alphabet distributions of the queries and databases used in our experiments.

Table A.5 shows the comparison between theoretical and experimental results of

FHP. Query q-grams in this experiment are generated from the same probes as

mentioned in Section A.2.2. It is shown that the experimental results are close to

the corresponding theoretical FHP values. The errors between theoretical and

experimental values are caused by the fact that the alphabet distribution in genomic

sequences is not totally independent. When the theoretical FHP is very low, such as

that of 20/2, the non-independent factor, which is not included in the model, starts

to dominate the number of false hits.

To verify the correctness of the theoretical THP, the HSPS returned by the

BLASTN are used as the answer set. The experimental THP is the number of true

hits divided by the total number of q—grams within all the HSPS. Since the

similarity value varies among HSPS, the final theoretical THP value is normalized

by the percentage of each valid similarity in the answer set. As shown in Table A6,

the experimental results are close to the theoretical values, which verifies the

correctness of the model.
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Table A.4: Alphabet Distribution

 

 

 

A T C G

Probes 0.26571 0.27571 0.21333 0.24524

E.coli 0.24639 0.2461 1 0.25404 0.25347

GenBank 0.28837 0.28408 0.21293 0.21462
 

Table A.5: False Hit Probability (x 1e—10)

 

 

q/h Theoretical Experimental

7/0 6051012 7580745

11/0 2352 3679.3

12/ 1 24369.3 30950.8

13/1 5728.4 8692.1

13/2 1090089 1467631

16/1 109.8 88.5

16/2 2583.3 3716.1

16/3 37269.7 52180.9

20/1 0.5 0

20/2 15.8 2.1

20/3 290.2 246.4

20/4 3795.5 5326.1 
 

Table A.6: True Hit Probability

 

q/h I Theoretical Experimental
 

 

7/0 0.137 0.154

11/0 0.0485 0.0594

13/1 0.13 0.16

16/2 0.195 0.239

18/3 0.287 0.345

20/1 0.0325 0.0475

20/2 0.107 0.135

20/3 0.223 0.273

20/4 0.372 0.443 
 

Query: Probes; DB: GenBank
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A.3.4 Discussion Based on Theoretical THP and FHP

According to Equations A.2 and A.3, fixing the word length, both THP and

FHP increase as the Hamming distance increases; fixing the Hamming distances,

both THP and FHP decrease as the word length increases. This trend is observed in

the experimental results. Since THP is the probability of matching one query

q-gram with one HSP q-gram, the value of THP is much lower than that of the

actual sensitivity since there are multiple trials within a HSP; however, using THP

can approximate the trend of sensitivity. Therefore, it is possible to estimate the

cost and sensitivity of approximate matching using the model. Note that, for a

given database and sensitivity requirement, very low FHP may not be necessary.

For example, if the database size is 1e+7 and query sequence is le+3, the search

space is about 2e+10 (since both strands must be considered), theoretically, any

FHP less than 2e—10 generates less than one hit (2e+10 * 2e—10 = 1). Therefore, it

is not necessary to further reduce the FHP.

Since approximate matching is more expensive than exact matching, among all

combinations which satisfy given complexity and sensitivity criteria, it is

cost-effective to chose the shortest word length and hamming distance combination.

The model can be used to find the best choice of q/h to satisfy user specified system

cost and sensitivity.

A.4 Conclusion

Searching genomic sequence databases becomes increasingly challenging as the

rate of increase in database sizes continues to accelerate. Approaches based on

q—grams are widely used. Most existing q-gram—based systems use exact matching to

locate candidate regions in the filtering stage. Approximate matching beyond one

mismatch has not been adopted in most existing q-gram-based systems. In this
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appendix, it is shown that searching genomic sequence databases using longer word

length and larger Hamming distance in the filtering stage provides an excellent

opportunity for optimizing the search cost while improving the quality of the search.

The encouraging results could be a motivation for researches in efficient calculations

of Hamming distance. Moreover, the significant improvement in performance

achieved by the Hamming distance-based search opens the possibilities of creating

more advanced indexing schemes for large genomic sequence databases, where the

number of the Hamming distance computations are minimal, and the cost of the

Hamming distance computation in main memory is negligible compared to the cost

of secondary memory accesses. Finally, a theoretical model is developed to further

analyze the performance of approximate matching. The model can be used to find

the best choice of q-gram length and the Hamming distance to satisfy user specified

system cost and sensitivity.
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