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ABSTRACT

CFD SIMULATION OF TWO-PHASE FLOWS IN A VERTICAL DUCT

By

Iffat Tasneem Shaik Mohammad

The flow of a suspension of spherical particles in air through a vertical rectangular

channel with equal inlet and outlet cross sectional areas was simulated under'isothermal

conditions using Fluent. An Eulerian approach was used in which the multiphase problem

is represented as two interpenetrating continua. A granular model was employed for the

mixture stress and a realizable “eddy” viscosity model was used for the Reynolds

stress. The purpose of this work was to evaluate the ability of the multiphase model to

capture the flow physics associated with catalytic risers. Experimental findings of Ibsen

et al. (2001) were used for evaluating the numerical predictions. The numerical

predictions were able to capture the axial and span wise particle velocity in some regions

of the flow but failed to capture the correct pressure drop. In addition, while the

turbulence model provided realizable results for the single-phase flows tested, it became

unrealizable when coupled with the multiphase granular model.
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CHAPTER 1

INTRODUCTION

1.1 Introduction to Circulating Fluidized Bed

The study of multiphase flows represents a challenging and fruitful area of endeavor

since the state of the art for multiphase flows is considerably more primitive where the

correct formulation of the governing equations is still under debate whereas the transport

equations of single phase Newtonian fluids are generally well-accepted and closed form

solutions for specific cases are well documented.

Numerical simulation of flows associated with risers is the main topic of this

thesis. Gas-solids fluidization has a wide application in chemical, metallurgical and

energy industries with the largest applications being in fluidized bed reactors in coal

combustion for large scale thermoelectric power generation and catalytic cracking of

petroleum to produce gasoline and other fuels. The use of circulating fluidized bed

system is increasing as it can be applied to a wide area of applications such as power

generation, catalytic cracking and drying of wet powders with a good result (low cost to

performance ratio). The circulating fluidized bed combustors are superior to pulverized

coal combustors regarding fuel flexibility and emission performance ofNOx and 802.

An advantage of circulating fluidized bed combustor is that it can be fired with

low-grade coal, biomass and waste with reasonable efficiency whereas its disadvantage

being the emission of small particle. Hence, it is necessary to put energy into separating

the particles from the outflow. Today several hundreds of circulating fluidized bed

combustors is operating with the largest ones delivering 250 MW ofpower.



One of the possible reasons for the rather modest maximal turn out ofpower is the

lack of good design tools for scale-up of the process. Computational Fluid Dynamics

(CFD) software has proven to be a relatively efficient tool for design of applications with

single-phase flows. However, for multiphase flow, CFD models still need to be improved

before the same precision in the results can be obtained. This study will focus on

simulating a multiphase problem with the purpose of assessing the accuracy of the

simulations through a realizability diagram.

The structure of multiphase flows in circulating fluidized bed columns is quite

complex, showing great variations on solids volumetric fraction throughout the riser,

involving continuous formation and dissipation of clusters, and a high rate of

recirculation of solids leading to an intense superficial contact between gas and solids

providing high reaction rates. Therefore, the knowledge of the flow hydrodynamics is of

great importance, allowing relevant reactive and mass transport parameters to be

determined.

The mathematical modeling of gas-solids fluidization processes represents an

ancillary tool for minimizing the experimental efforts required for developing industrial

plants. However, mathematical modeling and numerical simulation are in continuous

development, contributing in a growing way for the better understanding ofprocesses and

physical phenomena. Mathematical models require experiments in order to be validated

and, concerning fluidization, the required experiments involve complex measurements.

Hence, mathematical modeling also represents an incentive for the development of new

experimental methods and techniques.



In this work, numerical simulations are performed for the gas-solids flow in a

riser of circulating fluidized bed using the Eddy Viscosity Model proposed by Shih et a1.

(1995).

1.2 Principles of a Circulating Fluidized Bed

A Circulating Fluidized Bed schematic is as shown in Figure 1.1.

Gas Outlet

II
 

Cyclone

Ri

ser Return Leg

   
IIIIIII

Primary Gas Inlet

Figure 1.1: Schematic of a Circulating Fluidized Bed

It consists mainly of a riser, a cyclone and a return leg. In the riser, particles that form a

particulate bed in the bottom are kept in free motion by an upward flowing gas (or liquid)

hence the term “fluidized bed”. When the superficial gas velocity is sufficiently high the

particles will rise to the exit of the riser and enter the cyclone. A cyclone is used to

separate the particles from the out flowing gas. The separated particles are then

reintroduced into the riser through the return leg, hence the term “circulating”. As the



superficial gas velocity increases from zero the system goes through fixed bed, bubbling

regime, slug flow, turbulent regime and finally in the fast fluidization regime. The flows

studied in this thesis are associated to a circulating fluidized bed operated in the turbulent

and the fast fluidization regime.

1.3 Previous work in the area of Circulating Fluidized Bed

In the following subsections previous work in the field of experimental and numerical

analysis of gas-solid flow will be discussed.

1.3.1 Experimental work

Circulating fluidized beds can roughly be divided into two categories based on the layout

of the riser: The fluidized catalytic cracking riser is tall with a height to width ratio well

above 10 and most often cylindrical; the circulating fluidized bed combustor riser which

is low with a height to width ratio below 10 and mostly based on a square sectioned. The

gas-particle flows experienced in these two types of risers differ as a result of the

difference in the layout.

In the literature, various articles can be found on experimental findings in

circulating fluidized beds. Two types of non-intrusive measuring devices, based upon

laser light have been used in the past for obtaining experimental results namely the

I Laser/Phase Doppler Anemometry and the Particle Image Velocimetry. Zhang et a1.

(1995), Werther et al. (1996), Samuelsberg et al.(1996), Wang et a1. (1998) and

Mathiesen et a1. (2000) obtained experimental results in circulating fluidized bed of the

first category of risers using Laser Doppler Anemometry. Laser Doppler Anemometry

was also used by Berkelmann et a1. (1991), Wang et al. (1993), Van den Moortel et al.

(1997), and Zhou et a1. (2000) to obtain experimental results in circulating fluidized bed



of the second category of risers. The circulating fluidized bed investigated by

Berkelmann et al. (1996) was a 4 MW fluidized bed combustor whereas the remaining

references investigated laboratory scale models. Gidaspow et al. (1992) measured solids

flux with a sampling probe and solids concentration with an X-ray probe. From the solids

flux and the solids concentration they deduced the solids velocity. Werther et a1. (1997)

measured solids volume concentrations and solids velocities with a guarded capacitance

probe in a 109 MW circulating fluidized bed boiler at full load.

All the references mentioned above deal with the properties of the solids in a

circulating fluidized bed. References concerning measurements of both gas and solid

velocities are scarce but existent. Hamdullahpur et a1. (1987) measured gas, and two

different solid phases present in a laboratory scale circulating fluidized bed boiler model.

Yang et al. (1993) measured gas and solids velocities in a fluidized catalytic cracking

riser with a Laser Doppler Anemometry system under relatively dilute operating

conditions. The gas flow was seeded with talcum particles (dp = 1 p m). (Bensalah 1999)

used a Phase Doppler Anemometry system for measuring both phases in a circulating

fluidized bed test rig which was operated under relatively dilute conditions. Glass

particles with two non-overlapping particle size distributions were used for the gas and

solid phase, respectively, thereby distinguishing the two phases by their sizes. The mean

diameter for the seeding glass particles was 9 ,u m and the mean diameter for the solids

was 60 p m. Gillandt et a1. (2001) measured gas and solid properties in a particle laden jet

with a particle range of 1:200 with a Phase Doppler Anemometry system.



1.3.2 Numerical simulations

Numerical predictions of multiphase flow by CFD models have gained a more

widespread use over the past years. When narrowing the multiphase flow field into gas-

particle flows there exists two different CFD approaches namely the Eulerian-Lagrangian

and the Eulerian-Eulerian. In this thesis, attention will be put on the latter CFD approach.

When modeling the gas-particle flow with an Eulerian multiphase model it has become

more and more customary to rely on the kinetic theory of granular flow for modeling the

particle phase.

The theory of the model is based on kinetic theory of non-unifonn gasses, as

presented by Chapman et al. (1970). The model was developed and matured through

publications as Jenkins et al.(1983), Lun et al.(1984), Jenkins et al. (1987), Gidaspow et

al.(1990) and Gidaspow (1994). A wide variety of models have been used ranging from

very simple approaches solving only the basic equations to more advanced approaches

solving a large number of equations.

Sundaresan et al. (1991), Nieuwland et al. (1996), Samuelsberg et al.(1996),

Mathiesen et al.(1999) and Neri et al.(2000) made numerical predictions with a two-

dimensional two-phase numerical model of a vertical riser section of a circulating

fluidized bed. Gidaspow et al. (1992), Samuelsberg et al. (1996), Mathiesen et al. (2000)

simulated the entire fluidized bed including cyclone and return leg in two dimensions.

Sun et al. (1999) and Benyahia et al. (2000) made two-dimensional two-phase

simulations of circulating fluidized bed riser flow for the participation in the PSRI

challenge problem (1995) presented at the Fluidization XIII conference.



Expanding the numerical model from two to three dimensions has the clear

advantage of including three-dimensional effects in the numerical predictions. A

disadvantage is the considerable increase in the size of the problem, which needs to be

solved. Benyahia et al. (1999) predicted the flow in a tall cylindrical riser in three

dimensions using fluidized catalytic cracking particles for the solid phase. Kuipers et al.

(1999), Mathiesen et al. (1999) predicted gas-particle flow in a circulating fluidized bed

with a square sectioned riser in three dimensions and found the largest average

concentration of solids in the corners of the riser. Balzer et al. (1997) predicted the flow

in an industrial circulating fluidized bed boiler of 125MW with a three-dimensional

model using 350,000 nodes. The model was based on a comprehensive set of equations

related to the kinetic theory of granular flow approach. De Wilde et al. (2001) also used a

comprehensive model with a large number of equations to predict the flow in a

cylindrical fluidized catalytic cracking riser in three dimensions. Zhang et al. (2001)

predicted the flow in a fluidized bed riser with a simple model solving a small number of

equations but used a relatively large number of grid cells for the numerical simulation.

The Euler/Lagrange approach has most often been used for predicting the flow in

bubbling gas-fluidized beds (e.g. Hoomans et al. (1996), Hoomans et al. (2000), van

Wachem et al. (2001), but has also been used for predicting the flow in the riser of a

circulating fluidized bed (e.g. Helland et al. (2000), Helland et al. (2002). (Helland et al.

(2000) simulated fluidized bed riser flow in two dimensions with an Euler/Lagrange

model tracking 250,000 particles.

The numerical modeling of bubbling fluidized beds are related to the modeling of

circulating fluidized beds. In the area of bubbling fluidized beds, interesting work has



appeared which can inspire the improvement of circulating fluidized bed modeling.

Syamlal (1998) modeled a bubbling fluidized bed and compared a first order upwind

scheme with second order schemes for discretizing the convection terms and found that

more realistic results were obtained with the second order schemes. Enwald et al. (1999)

evaluated four different closures of the two-dimensional form of the Euler/Euler model,

with and without gas and particulate-phase turbulence models. Additionally, they

evaluated a two-dimensional model with the simplest closure on a refined mesh and

concluded that it was of higher priority to carry out the calculations on a fine mesh than

to use more sophisticated models.

1.4 Objectives of the thesis

The overall objective of this work is to evaluate the usage of single phase and two-phase

turbulent models using CFD code FLUENT 6.2. in their ability to capture the important

physical phenomena encountered in a riser by comparing the numerical predictions

against the experimental findings of Ibsen et al.(2001).

These objectives are achieved through the following four tasks.

1. Verification of fully developed single phase laminar flow in a channel.

2. Realizability of various turbulent viscous models.

3. Comparison ofvarious drag interphase models in a bubbly flow.

4. Verification and realizability of multiphase models in gas-solid simulations.



1.5 Computational domain considered in this work

The computational domain considered in all the simulations is as shown in Figure 1.2.
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Figurel .2: Geometry of 3D-vertical upward channel flow considered in the simulation

As the geometry considered here is rectangular, a three dimensional Cartesian geometry

is chosen with dimensions 0.17 x 1.20 x 0.19m, width(x) x height (y) x depth (2)

respectively, in order to match with the experimental device (Ibsen et al., 2001). A

staggered “hex-cooper” volume mesh was created in GAMBIT 2.2 with a very fine mesh

near the walls and a rather coarse mesh at the center. The grid is made of 146,880 cells

and 156,695 nodes (35, 37 and 121 nodes in x, y and 2 directions respectively).



1.6 Theoretical and Numerical considerations of this work

The numerical simulations involve solving the Reynolds Averaged Navier—Stokes

(RANS-) equation and the Reynolds averaged continuity equation for the mean velocity

and mean pressure fields. A realizable eddy viscosity model for the Reynolds stress is

used in case oftwo-phase flows as a closure for the RANS-equation.

All the simulations were performed using a segregated solver. The upwind

scheme is used in all the numerical simulations in which the control-volume based

technique is used to convert the governing equations to algebraic equations consisting of

integrating the governing equations about each control volume, yielding discrete

equations that conserve each quantity on a control-volume basis. The quantities at cell

faces are computed using a multidimensional linear reconstruction approach where the

order of accuracy is achieved at cell faces through a Taylor series expansion of the cell-

centered solution about the cell centroid. The set of algebraic equation is solved using the

Algebraic Multigrid Method Oiutchinson et al., 1986)

In case of two-phase flows, the Eulerian multiphase model was used where the

coupling is achieved through the pressure and interphase exchange coefficients using the

Phase Coupled SIMPLE algorithm for the pressure-velocity coupling, (Patankar, 1980).

1.7 Boundary and Initial Conditions applied in this work

The geometry of the physical domain and the boundary conditions are shown in Figure

1.2.

For single phage simulations: On the bottom side of the riser, an upward uniform velocity

was specified; on the lower side, the pressure relative to a reference pressure was

specified as zero. The simulation imposes a no slip condition at the wall.
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For two-phase simulatio_n_§: In addition to the above conditions, the volume fraction of the

dispersed phase on the inflow boundary was specified. The velocity of the primary phase

and the velocity of the secondary phase were assumed equal and uniform. A zero

backflow volume fraction was specified for the dispersed phase on the pressure patch.

Initial conditions for single-phase simulations: Zero initial velocity was specified in the

flow domain for all the single-phase simulations.

Initial condition_s for tWO-phfifi simulLticms: The initial concentration of the secondary

phase was zero in the flow domain for all the two-phase simulations.
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CHAPTER 2

SINGLE PHASE FLOW

2.1 VERIFICATION OF FULLY DEVELOPED LAMINAR FLOW IN A DUCT

The objective of this section is to perform the numerical simulation of a fully developed

laminar flow in a channel and to validate the computational results by comparing the span

wise velocities against the analytical solution as given in equation (2.3). The simulations

were performed by considering air as a Newtonian fluid (constant p and constant p ) with

a Reynolds number of 5 based on hydraulic diameter. The steady state grid independent

numerical predictions of span wise velocities are compared with the analytical solution

and the error in the numerical predictions has been computed.

2.1.1 Governing equations applied to laminar single phase simulations

The governing equations used in this simulation are as follows

Continuity Equation

v - r7 = o (2.1)

The conservation ofmomentum is

(U-V)U=—%+VVZU+§ (2.2)

wherep ,vand (7 are the density, kinematic viscosity and velocity of the fluid

respectively. g is the acceleration due to gravity andp is the static pressure.

2.1.2 Analytical solution for fully developed single phase channel flow

For a fully developed single phase laminar flow in a square cross-section, the analytical

solution is given by Constantinescu V. N. (1995) and in Handbook of Physics (2002).
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0 = _ 2 £8 °° (n-1)/2[1- cosh(n7rY/W) ] cos(sz/W) (2.3)
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where W and D are the width and depth of the square channel.

2.1.3 Numerical results and verification
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Figure 2.1: Plot of location ofpoints at which

the velocity profiles are drawn for Z/H = -0.8.

Figure 2.1 shows the location at which a comparison between the numerical and

analytical span wise velocities is made in Figure 2.2 at an axial location of 1m. above the

bottom of the riser. The numerical predictions compares very well with the analytical

solution except near the centerline which exhibits a small error. Figure 2.3 shows the

absolute error in the numerical results. It can be seen that the maximum error of 1.4E-05

is found at the centerline. This could be due to numerical errors encountered in the

calculations. The error is calculated as

Absolute error calculation: Analyticalvalue — Numerical value
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Figure 2.3: Plot of absolute velocity error vs. dimensionless width. A
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2.2 COMPARISON OF VARIOUS VISCOUS MODELS IN A TURBULENT

DUCT FLOW

2.2.1 Governing equations applied to turbulent single phase simulations

The actual or instantaneous velocity is decomposed into mean ii and fluctuating

velocities it" as

U.

"I

U = ii + u (2.4)

The continuity equation applied to ii + it" then gives

v - t7 = 0 (2.5)

The conservation ofmomentum applied to the averaged field gives

p(ii - va) = —Vp + ,quii + pg — pV {W} (2.6)

where p , ,u and ii are the density, viscosity and velocity of the fluid respectively. g is

the acceleration due to gravity andp is the static pressure.

Ensemble averaging is used to extract the mean flow properties from the instantaneous

N

ones as ui(.ic',t) = lim 1- ZuS")(5c°,t) (2.7)

N—roo N n=1

UNIV): “i(3,t)+“i(x',t) (2-8)

The Reynolds-averaged momentum equation is

. . 6R~

[,qu =_§E.+_€3_ #% +__'J_+p§ (2.9)

where Ry- = —pii;-z'i'j is called the Reynolds stress. The Reynolds stress components

have additional unknowns introduced by the averaging procedure, hence they must be

modeled (related to the averaged flow quantities) in order to close the equations and this

can be done in one of the following ways:
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l. Eddy-Viscosity Models (Boussinesq, 1877).

It is a mathematical analogy to the stress-rate-of-strain relation for a Newtonian

fluid. According to this hypothesis, the Reynolds stresses are modeled using an eddy (or

turbulent) viscosity y, as

le = —pu,-uj = flt[-ax—; + a] — §[pk + #t EEJO‘U- (2.10)

2. Reynolds Stress Model (Gibson et al., 1978); (Launder, 1989); (Launder et al., 1975).

It involves calculation of the individual Reynolds stress components, iij-ii'j using

differential transport equations. The individual Reynolds stress components are then used

to obtain closure of the Reynolds-averaged momentum equation. The exact form of the

Reynolds stress transport equations may be derived by taking moments of the exact

momentum equation. This is a process wherein the exact momentum equations are

multiplied by a fluctuating property, the product then being Reynolds-averaged.

The scope of this section is to verify the realizability of various viscous models

used in Fluent 6.2 namely the Spalart-Alhnaras, the Standard k- a) , the Realizable k— s and

the Reynolds Stress Model. The steady state numerical simulations of a turbulent single

phase flow in a channel were performed by considering air as a Newtonian fluid with a

Reynolds number of 10,000 based on hydraulic diameter. The near wall treatment

specifications can be found in Appendix A. The eigenvalues of the Reynolds stress

term — pul'u'j for each of these models have been computed and the invariants are plotted

using a “Lumley diagram” as shown in Figure 2.4 to verify their realizability.
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2.2.2 Lumley diagram (Lumley J., 1978)

The following table shows the equations used for constructing the Lumley diagram.

Table 2.1: Lumley Diagram

 

 

 

 

 

 

 

      
 

Orientation States Elgenvalues Invariants
Remarks

111 ’12 ’13 11b IIIb

A Uniaxial alignment (ID) 1 0 0 2/3 2/9

B Planar anisotropic (2D) l-x x 0 11b =2/9+21Hb 0 S x S 1/2

C Planar isotropic (2D Random) 1/2 1/2 0 1/6 -1/36

D Planar axisymmetry x x l-2x 2111b =6(IIb/6)l'5 1/3 st 1/2

E Isotropic (3D Random) 1/3 1/3 1/3 0 0

F Axial axisymmetry x x l-2x 2111b =6( 11b /6)‘-5 osxs 1/3

The anisotropic tensor is defined as—

b:—: “:3: —15 (2.11)

= tr u"u 3 =

where g is the identity matrix. Three invariants of 1:) can now be defined as

Ib =tl‘(I=))

IIb=tr(=

1111)"= [IL

)0 (2.12)

“)2I
I
O
‘

I
I
O
‘

Two nontrivial invariants IIb and 1111, are used to describe the realizability of the tensor,

which is shown in Figure 2.4 in the enclosed region.

"I"!

Let 21, 2.2 , 113 are the three eigenvalues of the tensor—FL). The eigenvalues

tr u 'u

21 , 22 , 23 are independent of the choice of the coordinate system. The invariants Ilb and

IHb can be expressed as eigenvalues of the matrix 2 as

111, = (,11 —1/3)2 + (22 -l/3)2 + (2.3 —1/3)2 (2.13)

111., = (21 —1/3)3 + (2.2 —1/3)3 + (23 - l/3)3 (2.14)
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Figure 2.4: Sketch of the boundaries of the realizable states for 2

As the sum of the three eigenvalues is unity, [13 is chosen to be dependent on 21 and 22.

A two-dimensional solution space can be obtained from equations 2.13 and 2.14.

2.2.3 Various viscous models and their approximations

The following are the various turbulence models used in Fluent 6.2

The Spalart-Allmaras Model

It is a single transport equation model proposed by Spalart et al. (1992). It treats that the

production and destruction turbulent terms cancels each other and hence solves directly

for a modified turbulent viscosity 6 as

— 2

Dv 6v

-— = Gv +— - Y 2.15D: 0' 6x;—-{(y+pvj——v—}+ Cbzp[5v] v ( )
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where Eddy — Viscosity is obtained as

V03

(%) + C31

 

m= p 5f“ . fvl a (2.16)

0,, , Yv are the production and destruction of turbulent viscosity, v is the molecular

kinematic viscosity and 0",, =% , CV] = 7.1 and Cb2 = 0.622.

Standard k — a) Model

The standard k — a) model in FLUENT is based on the Wilcox k — a) model proposed

by Wilcox (1998). It belongs to the general 2-equation Eddy Viscosity Model family.

The exact transport equations for k and a are

Dk—_a[_ u1(k'+£)+v—a—]—m%-s (2.17)

l

 

Dt 6x p 6x, 6x

 

—_ —'_ . —'—_' can’-
2§=_6__8,u;_23221_6£_+v_6_5_2v6u, aulaul+aut J

Dt 6x1 p 6xj ax}- 6x1 6xj ax, 6xj 6x1 6x1

 

 

  

—2vu

2
r 2 r r all, 2 r

,6“ 6“ -2v—6" 6“——2[v a “' ] (2.18)
’axjaxmxj 6xj6x1 6x1 6x16):1-

The modeled transport equations for the turbulence kinetic energy k and the specific

dissipation rate a) in the Standard k - a) model are

Dk BU, a 6k

—= k +— + 2.19

pm i15’0‘ pflffl w (ix/“K” ELI—j] ( )
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p-‘E= a9 "a—UI-pflfrswz +i[(p+i’—]93] (2.20)
D kryax ax ax

‘ 1 j aw j

6‘ I t k

where (oz—oc— and ,u,=a p—

r a)

Realizable k - a Model

The term "realizable" means that the model satisfies certain mathematical constraints on

the Reynolds stresses, consistent with the physics of turbulent flows. The realizable k - a

model proposed by Shih et al. (1995) address the following:

1. A new eddy-viscosity formula involving a variable Cfloriginally proposed by

Reynolds.

2. A new model equation for dissipations based on the dynamic equation of the

mean-square vorticity fluctuation.

Transport Equations for the Realizable k - a Model

The modeled transport equations for k and a in the realizable k - a model are

6 6 a ,u, 6k
—-(0k +—Ioku- =— +—— — +6 +0 — s—Y 2.21
a: ) axj 1) ax]. III! Ukjaxj] k b P M ( )

a 6 a p, 66 £2 a

— £+— au-=—— +—-—-+ Sa— -————+C —C G
at ) axj(p j) ax] Hi“ 0‘8)ij pCI pCZk-I-x/V; 18k 38 b

(2.22)

h - k2 C — 043 ’7 -Sk S- 25 Sw erey, —pC#—;—, l—max . ,fi , r)— E, _ ij ij

In these equations, G k represents. the generation of turbulence kinetic energy due to the

mean velocity gradients. G b is the generation of turbulence kinetic energy due to
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buoyancy. YM represents the contribution of the fluctuating dilatation in compressible

turbulence to the overall dissipation rate. C2 =1.9 and C15 =1 .44. ck =1.0 and 08 =1.2.

where the ranges are C2 :1.8-2; C18 :1-1.8; 0k :0.9-2; 05 :0.95-3 (Ching and Jaw, 1998).

Reynolds Stress Model

The Reynolds stress model proposed by Gibson et al. 91978); Launder, (1989); Launder

et al. (1975) attempts to address the deficiencies of the eddy viscosity model but it is

computationally more expensive.

The Reynolds Stress Transport Equations

The exact transport equations for the transport of the Reynolds stresses p u"u- may be

written as follows

 

  

a —) 52410 66
"’."' U filii')=— —Xk—[pufiij“'17 +p(-5u’- +514 1

. u -

J

Local Time Derivative ac: .=.Convection D“). :Turbulent Dzfiiision

 

a a T 7761?} 27-7617,:

— —u'-'- u'u' +u'-u'— u'0+ u—'-t9

  

 

 

 

fl v Gy- z-Buoyancy Production

DL, y- EMoIecular Difi‘itsion Pij sStress Production

5,7. 617'- W

+ p— +——L -— 2p—’-———- - 2,00,, u'u'mafia" + util-mafia") (2.23)

axj- 6x,- 6xk 6xk k 1

1 B—W——’ Fg- =Pr0duction by System Rotation

¢ij‘=Pressure Strain 5:] =DiSSipatton
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2.2.4 Numerical results and verification

 

X

Figure 2.5: Velocity vectors for the Spalart-Alhnaras model at Z/H——0.5.

 

 

 
 

Figure 2.6: Velocity vectors for the Standard k — 60 model at Z/H-—0.5.
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Figure 2.8: Velocity vectors for the Reynolds Stress Model at Z/H=-O.5.

23



Figures 2.5 to 2.8 shows the velocity vectors for various turbulent viscous models and it

shows that all the models predict the same profiles except the Reynolds Stress Model.

The profiles at which the realizability plots for the various viscous models are plotted are

 

 

 

 

      

shown in Figure 2.9.
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Z/H=—0.5 Z/H=-0.5
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X X

Figure 2.9: Location ofprofiles at which the realizability plots for the various

viscous models are drawn.
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Figure 2.10: Realizability plot for the Standard k - a) model at profilel.

It predicted thatIIIp, z 0.
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Figure 2.12: Realizability plot for the Realizable k - 3 model at profile 1

It predicted that 1111, z 0 .
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Figure 2.13: Realizability plot for the Realizable k - a model at profile 2.

It predicted that IIIb z 0 .
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Figure 2.14: Realizability plot for the Reynolds stress model at profile 1

26



0.8
 

0.7 _

0.6 ~

0.5 -

K
b

0.4 —

0.3 —

0.2 —

0.1 T   
 

O l l 1 l

-0.05 0 0.05 0.1 0.15 0.2 0.25

III b
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Figure 2.10 to 2.15 shows the realizability plots for the Standard k—(o model, the

Realizable k -6 model and the Reynolds stress model. It was found that all the viscous

models proved to be realizable except the Spalart-Alhnaras. The Spalart-Alhnaras is

found to be highly unrealizable and the computed eigenvalues and invariants for this

model can be found in Table C1 and C2 ofAppendix C.

Also it can be seen from Figures 2.10 to 2.13 that the Standard k —a) model and

Realizable k -5 model which uses the Boussinesq hypothesis predicts that the III

invariant of the anisotropic tensor 2 is almost zero which can be explained as follows

For a fully developed steady flow,

a = uz(x, y)a, (2.24)

bu _, 2 au _. _.

Vuz = 1372er + jeyez (2.25)
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Since .1 = avg + VET) (2.26)

S = l au, axe, + au, “,5, + au, 5,5, + au, 1;,
= 2 6x 6y fix by

r ~ \

O 0 auz

S=— O 0 z or S=—- 0 0 b

= 2 0y = 2 b 0

6172 61:2 0 a

tax 5)’ 2

. 27., 2

Also srnce — pu u = 221,; - §pk£ (2.29)

whichgives "W“ =1 -3”—‘ =11+b (2.30)
- 2pk 3= 2pk= 3= =

hence 2 is related to g as 1:) = _ ”t g

pk

The eigenvalues of the symmetric matrix :2 are {0, W12 + b2, — Vaz + b2 }

Therefore, the eigenvalues of l; are {0, _ 51’ \Iaz + b2, \Ia2 + b2}
&

Pk Pk

 

2

which results in Ib = 0; I11, = 2[%] (32 + b2) and IIIb = 0.

Since in the simulations, the flow is not fully developed, the ml, is predicted as nearly

zero as seen in Figures 2.10 to 2.13 whereas the Reynolds Stress Model does not make

the above assumption and use a different model for — p uj-u’j .
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Figure 2.16: Contours of the turbulent kinetic energy for the Standard k - a) model and

the Realizable k — a model at planes Y/D=0, Y/D=0.48 and Z/H=-0.5.

Figure 2.16 predicts a variation in the turbulent kinetic energy for the Standard k - a) model

and the Realizable k — a model at various cross-sections in the riser.
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CHAPTER 3

TURBULENT TWO PHASE FLOWS

Overview of two phase flows

Significant efforts have been made to describe the flow phenomena and dynamic

behavior of the two-phase flows where the transfer of momentum, mass, and energy

across the phase interface is of crucial importance.

Also, numerical simulations should satisfy strong demands in relation to

approximation, especially near a wall, stability, keeping some important integral

properties of governing equations and others. The Boussinesq's hypothesis between

stress tensor and strain velocity tensor forms a rather simple model which enables to

conduct numerical calculation up to bounded walls including a laminar sub layer. The

succeeding chapters deal with the numerical simulation of turbulent bubbly flow and gas—

solid flows.

3.1 COMPARISON OF DRAG INTERPHASE MODELS IN A BUBBLY FLOW

Bubbly flows play a significant role in a wide range of geophysical and industrial

processes like oil transportation, mixing in chemical reactors, and elaboration of alloys,

cooling of nuclear reactors, two-phase heat exchangers, aeration processes, ship

hydrodynamics, and atmosphere-ocean exchanges. In a two-phase bubbly flow, the mass,

momentum and energy transfer processes involved are inherently complicated and

closely linked to phase distribution profiles through the strong interaction at the gas—

liquid interface. Numerical simulations can help to predict two-phase dispersed flows but

the capabilities of these codes are, to a large extent, limited by the closure models used to

represent the momentum exchange between the dispersed and the continuous phase.
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Owing to the very weak relative density of bubbles compared to that of the liquid, almost

all the inertia is contained in the liquid, making inertia induced hydrodynamic forces

particularly important in the prediction of bubble motion. Hence, in this section,

predictions of various drag interaction models have been compared for a bubbly flow

problem.

3.1.1 Case study Problem

The scope of this section is to perform steady state numerical simulations of bubbly flow

in a channel using an Eulerian approach in order to compare and validate the various drag

interphase models used in Fluent 6.2 namely the Schiller and Naumann model (Schiller,

1935), the Morsi and Alexander model (Morsi et al., 1972) and the symmetric model.

Two Newtonian fluids, air dispersed in water is assumed with a uniform velocity of

0.3m/s and a 10 vol. % dispersed (air) phase. The air particles were assumed to be

spherical with a diameter of 1mm. The simulations were performed using a realizable

eddy viscosity model. The near wall treatment specification for this case can be found in

Appendix A.

3.1.2 Governing equations applied to gas-liquid simulations

The governing equations used in these simulations are based on a separate treatment for

each phase and are given below

The volume fraction of each phase is calculated from a continuity equation as

1 6 ..
_(E(a,pq).v.(a,p,.,)) =0 (3.1)
prq

Where iiq is the velocity of the primary phase q and prq is the phase reference density of

the phase q in the solution domain. The volume ofphase q, is defined by
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Vq = [61qu (3.2)

V

n

where Z aq =1 (3.3)

q=l .

The effective density of phase q is pq = aqpq (3.4)

Equations (3.2) and (3.3) calculate the primary-phase volume fraction.

The conservation ofmomentum for a fluid phase q is

£9—(aqpqiiq)+ V - (aqpqiiqiiq) = —aqu + V -: + aqpqg + §(qu(up - uq»

at p=1

(3.5)

Here g is the acceleration due to gravity and P is the pressure shared by all phases.

= .. _. 2 .. = .

rq = aqpq (qu + quT)+ aq(kq — qu)V ~ qu (3.6)

Here ,uq and kq are the shear and bulk viscosity ofphase q. .

3.1.3 Theoretical formulation of various drag interphase models

Momentum exchange between the phases is based on the value of the fluid-fluid

exchange coefficient Kpq. It is the drag function that differs among the exchange-

coefficient models. The following are the three different drag interphase momentum

theories found in FLUENT for the gas-liquid flow.

The exchange coefficient can be written in the following general form as

zaqapppf
(3.7)

TPq

P

where q is the primary phase andp is the secondary phase. The particle relaxation time is

given as
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r ——— (3.8)
P

1821‘]

where drag filnction,

CD Re

= 3.9f 24 ( )

and dp is the particle diameter

The drag coefficient given by various models is as follows

The Schiller-Naumann Model (Schiller, 1935)

0.687

D ' 0-44 Re > 1000 '

The Morsi and Alexander Model (Morsi et al., 1972)

“2 “3
C = a +— +— 3.11D 1 Re R62 ( )

' 024,0 0 < Re < 0.1

3.690,22.73,0.0903 0.1 < Re <1

1.222,29.1667,—3.8889 1 < Re <10

O.61617,46.50,—116.67 10 < Re < 100

01,02,03 = i (3.12)

0.3644,98.33,—2778 100 < Re <1000

0.357,l48.62,—47500 1000 < Re < 5000

0.46,—490.546,578700 5000 < Re < 10000

L0.5191,—1662.5,5416700 Re 2 10000

The Symmetric Model

2

=aP(aPpP+aqpq)f 1' _(aHpP+aqpq}1p. (3.13)

[’4 ’ P‘I —
rpq 18(appp+aqqu
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0.687
f _ CD RC Where C - 24[1+ 0.15RC J/RC R6 51000

24 D - 0-44 Re >1000

 (3.14)
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Figure 3.1: Plot of comparison of the various drag models for the bubbly flow.
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3.1.4 Numerical results and discussions

In Figure 3.2, the locations at which the points extracted to produce Figures 3.3 to Figure

3.8 are shown. X/W=0

Y/D=0

 

    
Figure 3.2: Location ofprofile at which the various drag models are compared.
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Figure 3.3: Plot of dimensionless axial velocity of water vs. dimensionless height for the

Schiller-Naumann model, the Morsi and Alexander model and the Symmetric model

(sn, ma, sym). All models give similar results.
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Figure 3.4: Plot of dimensionless axial velocity of air vs. dimensionless height for the

Schiller-Naumann model, the Morsi and Alexander model and the Symmetric model

(sn, ma, sym). All models give similar results.
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Figure 3.5: Plot of dimensionless axial dynamic pressure of water vs. dimensionless

height for the Schiller-Naumann model, the Morsi and Alexander model and the

Symmetric model (sn, ma, sym). All models give similar results.
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for the Schiller-Naumann model, the Morsi and Alexander model and the Symmetric

model (sn, ma, sym). All models give similar results.
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Figure 3.8: Plot of dimensionless axial volume fraction of air vs. dimensionless height

for the Schiller-Naumann model, the Morsi and Alexander model and the Symmetric

model (sn, ma, sym). All models give similar results with a very slight difference.

From Figures 3.2 to Figure 3.8, it can be seen that all the correlations studied predict

similar values of global quantities such as the velocity, pressure, turbulent kinetic energy

and concentration of the dispersed phase for the steady state solution. From the Figure 3.1

it can be seen that for the Reynolds number of 10,000 the CD values given by the various

drag interphase models is about the same.

The profiles at which the realizability plots are drawn for the secondary phase is shown in
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Figure 3.9: Location ofprofiles at which the realizability plots are drawn for Z/H = -0.5
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Figure 3.10: Realizability plot for the secondary phase (air) in the gas-liquid

simulations at profile 1. The realizable k - 6 model predicted thatIIIb z 0 .
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Figure 3.11: Realizability plot for the secondary phase (air) in the gas-liquid

simulations at profile 2. The realizable k - 5 model predicted that IIIb z 0 .
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The realizability plots for the secondary phase (air) using the Schiller-Naumann drag

interphase model is as shown in Figures 3.10 and 3.11. In the two-phase simulations of

gas-liquid flows, the realizable k -8 model proves to be realizable for the secondary

phase (air) while it shows to be highly unrealizable for the primary phase (water) and the

computed eigenvalues and invariants for this unrealizable case can be found in Table C3

and C4 of Appendix C. Again, it can be seen fi'om the above figure that the IH invariant

of the anisotrOpic tensor b is almost zero.

Also, all the various drag models studied in this case predicts exactly the same

realizability values with a negligible difference. For the sake of brevity; the realizability

plots for all the other drag models are not presented. Figure 3.12 shows a variation in the

turbulent kinetic energy in the riser.

 

3 011021

  

 

  
   

x x

Y/D=0 Y/D=0.48   
Figure 3.12: Contours of the turbulent kinetic energy for the primary phase (water) at

planes Y/D=0, Y/D=0.48 and Z/H=-0.5.
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3.2 NUMERICAL SIMULATION OF A GAS-SOLID FLOW IN A RISER

The sc0pe of this section is to perform the transient numerical simulations for the gas-

solid flow under isothermal conditions in a riser using a realizable eddy viscosity model.

The purpose is to evaluate the ability of the multiphase model to capture important

physical phenomena encountered in a catalytic riser. Further, the experimental findings of

Ibsen et a1. (2001) were used here for evaluating the quality of the numerical predictions.

Transient simulations of gas-solid flows in a riser have been performed using a

realizable “eddy” viscosity model proposed by Shih et al. (1995) to account for the

transport of mean momentum by turbulent fluctuations. The dispersed turbulence model

and a granular model were used to model the gas and solid phase respectively. Air is

considered as a primary phase with constant density and viscosity. The solid particles are

assumed to be spherical in shape with a uniform density. The various parameters used in

this simulation are shown in Table 3.1. The near wall treatment specifications can be

found in Appendix A.

3.2.1 Assumptions made in the gas-solid simulations

Due to the complex nature of the flows associated with the riser, the following

simplifications in the geometry and particle size were introduced for the purpose of this

exploratory study.

Particle size: Since the simulations presented here were based on three dimensional

modeling of the gas-solid flow, the numerical modeling was restricted to two-phase

simulations with one solid phase with a representative particle diameter for the particle

size distribution in the experiments in order to keep the computational time down.
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CirculaMuidized Bed Geometry: The inlet is located at the bottom and the outlet is

located at the top, thereby neglecting the effects of the inlet and the exit locations, which

are placed at the side on the actual riser.

3.2.2 General guidelines for mathematical modeling in fluidization

Harris et a1. (1996) present a classification of models for simulating circulating fluidized

beds. According to the authors there are three types ofmathematical models:

1. Models that predict the axial variation of the density of solids and disregard its lateral

variations.

2. Models that predict the span wise variation of the density of solids and the high

average slipping velocities, accounting for two or more regions of different flow

characteristics.

3. Models that apply the fundamental conservative equations of the fluid dynamics for

predicting the two-phase gas-solids flow.

The first two types of models are mostly used for preliminary design, mainly for

investigating the effects on the process of geometry and operational conditions. These

models can easily include chemical kinetics for simulating the performance of reactors.

The models of the third type, as for example a two-fluid model, are more suitable for

research allowing, for instance, the behavior of flow local structures and the effects of

local geometry to be studied. Figure 3.13 presents actual lines and tendencies for the third

type of mathematical modeling. There are two major tendencies for modeling, following

a treatment either Eulerian for both phases (Eulerian formulation) or Eulerian for the

fluid phase and Lagrangian for the particulate phase (Eulerian-Lagrangian formulation).
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Figure 3.13: Sketch outlining the actual lines and tendencies for the third type of

mathematical modeling in fluidization.

In the Eulerian formulation both phases are treated as a continuum. Each phase is

modeled separately in terms of a system of conservative equations for mass, momentum

and energy. The conservative equations present terms accounting for interface

interaction, which are related to mass, momentum and energy exchanges through the

interface. In their traditional formulation, those models require the dynamic viscosity of

the solid phase to be specified. A constant value for the solids viscosity can be obtained

through momentum balances applied to experimental data (Gidaspow et al., 1992).

The traditional Eulerian formulation has been extensively applied to fluidization

(Gidaspow et al., 1983; Gidaspow, 1986; Bouillard et al., 1989). A new approach has

been developed by a number of researchers for dealing with solids phase viscosity

(Jenkins et al., 1983; Lun et al., 1984; Jenkins et al., 1985). This is the kinetic theory of

granular flow, which is based on the kinetic theory of dense gases (Chapman et al.,

1970).
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Bagnold, (1954) and Gidaspow, (1994) is generally credited with starting the

kinetic theory approach of granular flow. The kinetic theory of granular flow is based on

an analogy between the flow of granular materials and the motion of gas molecules

(Peirano, 1996). In spite of allowing the direct determination of the solids viscosity, the

kinetic theory of granular flow implies in more complex numerical procedures and higher

computation times. Gidaspow, (1994) was the first to present a detailed theoretical

derivation of Kinetic Theory of Granular Flow and to consider its application to

particulate flows.

In Eulerian-Lagrangian formulation only the gas phase is assumed as a

continuum. This approach allows a better understanding of the particle—particle

interactions. However, the Eulerian-Lagrangian formulation requires a complete set of

equations (Newton’s second and third laws) to be written for each particle in the flow

field, difficulting its application to fluidization in view of computational limitations.

Otherwise it is a very useful tool for the development of new rheological models for

fluidized suspensions, and to enhance the formulation of closing laws required by two-

fluids Eulerian models.

The analysis of gas-solid flows is complex because of the strong coupling

between the solid and gas phases. The gas flows through the interstitial spaces or voids

created by the particles, moving the particles and re-arranging the gas flow paths. The gas

phase exerts a drag force on the solids; the solids exert an equal and opposite force drag

on the gas. Furthermore, the pressure gradients created in the gas flow give rise to

pressure forces on the particulate phase. Density differences between the two phases

cause buoyancy driven flows. Thus the two phases exchange momentum and energy.
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3.2.3 Governing equations applied to gas-solid simulations

The mathematical model is based on a three-dimensional Eulerian realizable k — a

multiphase model. The gas phase calculations are done using a continuum approach. The

conservation equations for the solid phases are based on the kinetic theory for granular

flow. The governing equations for the gas solid model may be summarized as follows.

The volume fraction of each phase k is calculated from a continuity equation

0 a

5(akpk)+ V ' (akpkuk) = 0 (3-15)

whereak , pk and 17k are the volume fraction, density and velocity ofphase k respectively.

The conservation ofmomentum for a fluid phase q is

%(aqpq5q)+ V ' (aqpqfiqfiq) = ‘0‘qu + V ' : + aqpqg + Eleq(17p - at!)
q:

(3.16)

The solid-phase stresses are derived by making an analogy between the random particle

motion arising from particle-particle collisions and the thermal motion of molecules in a

gas, taking into account the inelasticity of the granular phase. As is the case for a gas, the

intensity of the particle velocity fluctuations determines the stresses, viscosity, and

pressure of the solid phase. The kinetic energy associated with the particle velocity

fluctuations is represented by a "pseudo thermal" or granular temperature which is

proportional to the mean square of the random motion ofparticles.

The conservation ofmomentum for the solid phase s is given as

a = n

5(aspsiis) + V - (aspsiisiis) = -asz - VPs + V . rs + aspsg + Z; qu(1'iq — it's)

q—l

(3.17)
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The stress-strain tensor is given as

.. ..7‘ 2 ..

rq = aqpq(qu +qu )+aq[/1q --§,uq)V-uq1 (3.18)

where p and g are pressure and gravitational acceleration respectively. pq and liq is the

shear and bulk viscosity of phase q; Ksq is the drag coefficient between the phase 3 and

q. The solid phase pressure ps, the bulk viscosity is and the shear viscosity #3 are

derived from the kinetic theory for granular flow.

The interphase momentum transfer coefficient between gas and solid is modeled

as proposed by Gidaspow, (1986) which is

3 asaqpq ifs " l7q _

qu = 2CD dl laq2‘65 (3.19)

S

 

where CD = 24 [l+0.15(aq Re,)°~687] (3.20)
aq Re5

 

3.2.4 Governing equations applied in the kinetic theory of granular flow

The following are the equations applied in the kinetic theory of granular flow

Granular Temperature

The viscosities need the specification of the granular temperature for the solids phase for

which an algebraic equation proposed by Syamlal et al. (1993) is

0: (- 153749;): V17, -79. +¢qs (3.21)

where (— pSI + 2?): V173 is the generation of energy by the solid stress tenor, 765 is the

collisional dissipation of energy and gigs is the energy exchange between the fluid or solid

phase and the solid phase.
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The collisional dissipation of energy 79, represents the rate of energy dissipation

within the solids phase due to collisions between particles which is given by Lun et al.

(1984) as

2

76 =12(1-ess k0,“ ,0 a

s dsx/Z s
 

2 3/2

s 9. (3.22)

The transfer of the kinetic energy of random fluctuations in particle velocity from

the solids phase to the fluid or solid phase is represented by ¢qp and is given by

Gidaspow et al. (1972).

¢qs ='3 qu9s ' .
(3.23)

Solids phase shear viscosity (neglecting frictional viscosity)

It is given as the sum of kinetic and collisional shear viscosities as

 

lopsds 19,7: 4 2 4 a “2
= 1+- 1+ + —a d 1+ -—‘—

#3 96613 (1 + ess )g0,ss 5 g0,ss as( es) 5 5:03 ng,ss( 933 7:

J J

v

”akin ”3:601!

(3.24)

Granular Bulk Viscosity

The solids bulk viscosity accounts for the resistance of the granular particles to

compression and expansion. The expression for this is given by Lun et al. (1984).

4 6 1/2

ks = gaspsdsgo,” (1 + e“ (7;) (3.25)

For granular flows in the regime where the solids volume fraction is less than its

maximum allowed value, a solids pressure is calculated independently and used for the

pressure gradient term, Vps , in the granular-phase momentum equation. Because a
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Maxwellian velocity distribution (which has a temperature term) is used for the particles,

a granular temperature is introduced into the model, and appears in the expression for the

solids pressure and viscosities.

The solids pressure is composed of a kinetic term and a second term due to

particle collisions and is given by Lun et.al. (1984) as

2

Ps = aspsgs + 2103(1 + 335 )as gO,ss63 (326)

where cm is the coefficient of restitution for particle collisions, go,” is the radial

distribution filnction, and 63 is the granular temperature.

Radial distribution Function

It specifies a correction factor that modifies the probability of collisions between grains

when the solid granular phase becomes dense. The expression for this is given by Sinclair

et al. (1989)

 

l

go=1—[ a, T (3.27)

3.2.5 Experimental set up of the 1/9 scale Cold Circulating Fluidized Bed Boiler

The dimensions of the experimental set up of Ibsen et al. (2001) were 1.5 m x 0.19 m x

0.17 m corresponding to Height(x) x Depth(y) x width (z) respectively. A cyclone was

located at the rear of the riser, 1.2 m above the primary air distributor to separate the

solids, which passed a particle seal designed as a bubbling bed, before being reintroduced

in the lower part of the riser. No secondary air was used. The amount of solids

recirculated was adjusted to give a pressure drop across the riser equal to 2.7 KPa
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(corresponding to 8KPa in the full-scale boiler). A detailed description of the model is

provided by Johnsson et al. (1999).

3.2.6 Numerical configuration of the gas-solid simulations

The numerical flow parameters applied in the gas-solid simulations are tabulated in Table

 

 

 

 

 

 

 

 

 

 

 

3.1.

Table 3.1: Parameters for the gas-solid simulations

5;“???ngthe gammy XxYxZ 1.2 x 0.17 x 0.19

Number of Mesh Cells Ncell 146,880

Gas Density Pg 1.2 kg/m3

Gas Velocity Vg 1.0 m/s

Gas Viscosity #1g 1.8 E-05 kg/ms

Particle diameter dp 45 ,u m

Particle Density Pp 7800 kg/m3

Amount of Solids Used ms 9 kg

Volume fraction of solid as 0.03572

Restitution coefficient e 0.95

Maximum Solid Packing es ,max 0.64    
 

A uniform plug flow is assumed for the gas phase at the inlet with a superficial velocity

of 1.0 m/s (Reynolds number=12,156). The inlet flux of the solid phase is assumed to be

equal to the outlet flux. The simulation imposes a no-slip condition at the wall for all

phases. Zero initial velocity was specified for the solid phase in the flow domain with the

solids being evenly distributed in the lower half of the riser. Due to the large number of

cells in three dimensions, the simulations were terminated after 208 of real time and the

averaged results were obtained which was found to be adequate. A mean volume length

diameter of dp= 45 p m. is used for the solid phase (Peirano et al., 2000). About 9 kg. of
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solids were used in the simulations to give a pressure drop over the riser height which is

comparable to the experiments.

3.2.7 Simulation time

Simulations of fluidized beds with about 9 kg of solids took about 8 days to simulate 20

seconds of real time. The simulations were run on 6 nodes with a 2.2 GHz processor. In

comparison Zhang et al. (2001) used 101 days to simulate 21 s with their fine grid on a

SGI Origin 200.

3.2.8 Numerical results and discussions

The numerical predictions are plotted against the experimental findings along profiles 1,

2, 3, 4 and 5 are shown in Figure 3.14. The Hexp=l .5m.
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Figure 3.14: Locations ofprofiles used for plotting the gas-solid results
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Figure 3.15: Plot of comparison between the measured (Ibsen et al., 2001) and

computed static pressure vs. dimensionless height at profile 1. It can be seen that a

linear pressure drop is predicted which deviates greatly from the experiments.

Static pressure

Figure 3.15 shows the computed and measured static pressure drop as a function of riser

height at profile 1. The numerical results fail to predict the right order of pressure drop.

The simulations showed a linear pressure drop which deviates strongly from the non-

linear findings of the experiments. Also the pressure drop at the inlet is predicted as 5kPa

which was only 2.7kPa in the experiments.

Particle velocities

The particle velocities at profile 2 and 3 are shown in Figures 3.16 to 3.19. It shows that

the mean volume-length diameter does not give a good agreement with the experimental

findings when considering particle velocity profiles.
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Figure 3.16: Plot of comparison between the measured (Ibsen et al., 2001) and

computed axial particle velocities at profile 2. (x = 0 is the center of the duct).

The experimental findings in Figures 3.16 and 3.19 indicate a constant decrease in the

axial and span wise velocities at the centerline whereas in the numerical model this trend

for the particle velocities was not captured. Also in Figure 3.16 the predicted solid

velocities near the wall deviate much from the experimental findings which are an

indication that wall boundary conditions for the solid particles is quite complex.

In Figure 3.18, the particle velocities are not symmetric about the centre line which may

indicate that the averaging time has been short. Also in Figure 3.19, the numerical

predictions exhibit a rather poor match with the experiments.
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computed span wise particle velocities at profile 3.

Volume fraction

Figures 3.20 and 3.21 present instantaneous contour plots of solids at various times and at

various sections. The predicted time variation of the solids volumetric fraction through

the riser of Circulating Fluidized Beds is indicative of a quite complex hydrodynamic

behavior. There are steep variations on both span wise and axial solids concentrations,

together with fi'equent formation and dissociation of clusters flowing both upwards and

downwards. The numerical results show that fewer heavier simulated particles

accumulate in the region very close to the wall due to larger inertia. Also, the simulations

did not predict the dense bottom bed which was present in the experimental findings. The

simulations predicted a mean solids volume fraction in the lowest part of the riser of 5-10

%. The solids volume fraction should have been 2-3 times higher. In addition, the

simulations fail to capture the fine particles rather it shows the formation of clusters.
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Figure 3.22: Realizability plot for the u u associated with the primary phase computed

with the Realizable k - s at profile 4.
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Figure 3.23: Realizability plot for the u u associated with the primary phase computed

with the Realizable k - a at profile 5.
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The Realizability plots for the W associated with the primary phase computed with the

Realizable k - a is shown in Figures 3.22 and 3.23. In the two-phase simulations of gas-

solid flows, the realizable k -6 model proves to be highly unrealizable for the primary

phase (air) near the center while it is realizable near the walls. The computed eigenvalues

and invariants can be found in Tables C5 and C6 of Appendix C. Since the dispersed

phase turbulence model is used in the simulations, the calculation of the eigenvalues and

hence the realizability plot for the secondary phase (solids) is not possible.
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Figure 3.24: Plot of comparison of the two drag models for the gas-solid flows.
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Figure 3.25: Contours of the turbulent kinetic energy for the primary

phase (air) at Y/D=0, Y/D=0.8 and Z/H=—0.5.

Figure 3.25 shows that the contours of turbulent kinetic energy for the gas-solid

simulations are the same at any cross-section in the riser.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

The objective of this work was to assess the performance of single phase flow and two-

phase turbulent flow models implemented in FLUENT 6.2 using experiments and the

invariant diagram for the Reynolds’ stress. The Reynolds’ stress must have positive or

zero eigenvalues to be physical or realizable, and the invariant diagram bounds the region

corresponding such eigenvalues.

Weakness observed in the models

The velocity vectors for the various turbulence models applied in the single phase

flow simulations are the same except for the Reynolds Stress Model which predicted a

great deviation from the other three viscous models. In addition, the various turbulence

models proved to be realizable except for the Spalart-Allmaras model (Spalart et al.,

1992) which showed to be unrealizable. Moreover, the Realizable k -6 model (Shih et al.,

1995) which was realizable for single phase flows became very unrealizable for the

primary phase in the two-phase flow simulations.

The gas-solid flow model was not able to predict the right order of pressure drop

across the riser. Also, the predicted time averaged profiles of the axial and span wise

particle velocities show good agreement with the experimental findings (Ibsen et al.,

2001) only in some regions of the flow.

The gas-solid flow model is not capable ofpredicting the correct interaction of the

turbulent gas phase and particles; the dispersion of the secondary phase is under

predicted. The numerical results did not predict a dense bottom bed as seen in the

experimental set-up. The simulations predicted a mean solids volume fraction in the
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lowest part of the riser of 5-10 %. The solids volume fraction should have been 2-3 times

higher.

Recommendations

The solid viscosity parameter and the interface momentum transfer applied should

be rigorously modeled through a suitable theory which can accurately characterize the

two-phase interactions and the physical phenomena involved. The kinetic theory of the

granular flow is a promising theory for this purpose.

Turbulence effects must be accounted properly in gas-solid flows through

Reynolds stress terms. According to Enwald et al. (1996), in bubbling fluidized beds

which are characterized by high solids concentrations, the particulate inertia attenuates

the gas phase turbulent parameters. However, for circulating fluidized beds which are

mostly characterized by regions of low solids concentrations, turbulence becomes

significant.

Since the gas-solid flows in fluidized beds are characterized by three-dimensional

effects due to non-unifonn shapes and sizes distributions of the particles, asymmetric

solids feeding, asymmetric geometry at the exit of the riser, and the presence of solids

separators such as cyclones, the whole installation should be simulated considering the

above factors. Such simulations demand a very large number of grid cells in order to

obtain grid independent solutions, which increase the computational time considerably.

On the other hand, the uncertainty on the experimental measurements which are

characteristic of gas-solids multiphase flows must be taken into account.

In summary,,the results of simulation presented here strongly suggest that many

features related to two-phase Eulerian approach needs improvement if accuracy is to be
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achieved. Special attention should be directed towards interface momentum transfer,

turbulence in two phases, pressure and viscosity of the secondary phase, and realistic

boundary conditions. On the numerical side it becomes evident that more refined grids

are required which unfortunately becomes prohibitive in view of the computational time.
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APPENDICES

A. Models and near wall treatment applied in the thesis

Table A: Table summarizing the various turbulence models and the respective near wall

treatments applied in the simulations along with their y+ values.

 

 

 

 

 

 

 

 

     

Case Turbulence Near Wall +

Models Treatment y

Spalart-Allmaras _ 2.75

Standardk — a) - 2.6

Single Phase

Turbulent Flow Realizablek — a Standard wa" 2.75
Treatment

Reynolds Stress Enhanced Wall 2 6

Model Treatment '

. Enhanced Wall Air 0.66

Bubbly Flow Realrzablek — a Treatment Water 925

. . Enhanced Wall Air 9.8

Gas-solld Flow Realrzablek — a Treatment Solid 18   
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B: Comparison ofterms for the various turbulent viscous models.

Table B1: Table summarizing the various terms for the Spalart-Allmaras

model and the Standard k - a) model studied.

 

 

 

 

 

 

 

 

 

Turbulence Closure Models

Terms Spalart-Allmaras Standard k — a)

Local Time Derivative g; I») _6_at(pk); 2at(par)

a _

Convection ax_(Pv“j ) 6:jo)6:(I‘M—“mi )

J ax]

Turbulent Viscosity ,u, = pIval pt: apk

a)

- " 2—”—‘ s---s 2— 88--Production terms G, = CblpSv O'k lj ; kmil: 1] 1]

Dissipation terms - pfl’ffl. kw; pflfflmz

- 2

. v
Destructron terms Yv = Cw1”‘42) -    
 

Table B2: Table summarizing the various terms for the Realizable k - a

model and the Reynolds Stress model studied.

 

 

 

 

 

 

 

   

Turbulence Closure Models

Terms Realizable k - 19 Reynolds Stress Model

Local Time 6 6 6 :7,-

Derivative 510’"), 5005') 5; (611,111.)

Convection 6 6 6 .. _.
_ . ; __ gu. U '. ':jlam.>,,<p .1 We.—.1

Turbulent k2

Viscosity =pC,,-—a -

Production 517'. -
2_,u, $.- 1 =77 014i .

terms 0k S,"jSIi’ pC181/ZSl-‘l'sij " p[u,-11k ax—k + ujuk é; ,

W606 + gju.6-)

- 2Wk(171}17'm81km + 7151763}ka

Dissipation pC 6.2 6u,’-—a—§_'j

t rms 6‘; ——

e p 2 k + J; 6xk 6xk

Destruction 8 -

terms D6 = C16 IC3£Gb   
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C. Computed eigenvalues and invariants

Table Cl: Computed eigenvalues and invariants for a single phase turbulent flow

using the Spalart-Allmaras model; Y/D=O; Z/H=-O.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Location Eigenvamgs Invariants

X Al 12 I13 III) 1111,

0085 -14456.1 0057 14457.12 4.18E+08 2.45E+08

-0.0845 -59086.6 0.635 59087 6.98E+09 -3.2E+09

-0.08388 -17465.2 0.586 17465.59 6.1 E+08 -2.3E+08

008309 -50871 .3 -4.2 50876.46 5.18E+09 3.52E+10

008212 -119145 -23.62 1191693 2.84E+10 1.02E+12

-0.0809 -18093.2 -8.5 18102.7 6.55E+08 8.67E+09

007937 -123432 127.45 1233057 3.04E+10 -5.8E+12

-0.07746 -24271.1 -49.84 24321.95 1 .18E+09 8.89E+10

-0.07508 -5700.57 21.84 5679.73 64756219 -2.1E+09

-0.0721 -3055.86 21.55 3035.31 18551858 -5.9E+08

-0.06837 -1033.24 -14.7 1048.93 2168052 48864675

006231 -1070.94 63.76 1008.17 2167373 -2.1E+08

-0.0553 41.1 141 -37.3 79.4 9383.897 3698012

-0.0472 -363.45 154.5 209.9 200040 -3.5E+07

003783 -989.754 -571 .25 1562 3745782 2.65E+09

-0.027 -2164.92 888.26 1277.6 7108310 -7.4E+09

-0.01448 -1586.92 -1352.79 2940.7 12996163 1 .89E+10

2.22E-18 -1748.73 844.1941 905.5 4590694 -4E+09

0.014479 -1586.92 -1352.79 2940.7 12996163 1 .89E+10

0.027002 -2170.92 890.717 1281.2 7147756 -7.4E+09

0.037834 -989.754 -571 .25 1562 3745782 2.65E+09

0.047202 -363.45 1 54.54 209.9 200040 -3.5E+07

0.055304 -41 .1 141 -37.28 79.4 9383.897 3698012

0.062312 -1070.94 63.76 1008.17 2167373 -2.1E+08

0.068374 -1033.24 -14.7 1048.9 2168052 48864675

0.072099 -3053.71 21.54 3033.2 18525687 -5.9E+08

0.075079 -5700.57 21.84 5679.73 64756219 -2.1E+09

0.077463 -24271.1 4984 24321.95 1.18E+09 8.89E+10

0.079371 -1 23432 127.45 1233057 3.04E+10 -5.8E+12

0.080897 -1 8093.2 -8.49 18102.7 6.55E+08 8.67E+09

0.082117 -119145 -23.62 1191693 2.84E+10 1.02E+12

0.083094 -50871 .3 -4.2 50876.46 5.18E+09 3.52B10

0.083875 ~17465.2 0.58 17465.6 6.1E+08 -2.3E+08

0.0845 -59086.6 0.63 59087 6.98E+09 -3.2E+09

0.085 -1 4456.1 0056 14457.12 4.18E+08 2.45E+08    
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Table C2: Computed eigenvalues and invariants for a single phase turbulent flow

using the Spalart-Allmaras model; Y/D=O.48; Z/H=-O.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Location Eigenva|ues Invariants

X 111 112 I13 Uh [Uh

-0.085 -1 1377.2 0.543 11377.65 258891356 -81437229

00845 -73150.8 -7.171 73159.01 1.07E+10 1.2E+11

-0.08388 -17592.8 -3.828 17597.59 619180587 3.86E+09

-0.08309 -68104.8 23.31 68082.51 9.273E+09 -3.2E+11

-0.08212 49683.2 -21.29 49705.47 4.939E+09 1.6E+11

00809 -106722 -51.75 106774.9 2.279E+10 1 .78E+12

-0.07937 -95947.7 -45.28 95993.98 1 .842E+10 1.26E+12

-0.07746 -671307 -265.1 6715733 9.017E+11 3.59E+14

007508 -373809 91.76 3737179 2.794E+1 1 - -3.83E+13

00721 -107809 6.227 1078034 2.324E+10 -2.05E+11

-0.06837 44903.7 -4.903 44909.57 4.033E+09 3.17E+10

-0.06231 -70731.2 -14.15 70746.37 1.001 E+10 2.17E+11

-0.0553 -80329.6 -14.57 80345.19 1.291 E+1 0 2.89E+11

00472 -98622 -17.45 98640.47 1 .946E+10 5.19E+11

-0.03783 -93456.7 -17.1 93474.76 1 .747E+10 4.57E+11

-0.027 -113695 -20.63 113717.1 2.586E+10 8.13E+11

001448 -114072 -21.13 1140942 2.603E+10 8.38E+11

2.22E-18 -109972 -20.68 1099937 2.419E+10 7.63E+11

0.014479 -114072 -21.13 1140942 2.603E+10 8.38E+11

0.027002 -113717 -20.63 1137384 2.587E+10 8.14E+11

0.037834 -93456.7 -17.1 93474.76 1 .747E+10 4.57E+11

0.047202 -98622 -17.45 98640.47 1 .946E+10 5.19E+1 1

0.055304 -80329.6 -14.57 80345.19 1 .291E+10 2.89E+11

0.062312 ~70731.2 -14.15 70746.37 1 .001E+10 2.17E+11

0.068374 -44903.7 -4.903 44909.57 4.033E+09 3.17E+10

0.072099 -107809 6.227 1078034 2.324E+10 -2.05E+11

0.075079 -373809 91.76 3737179 2.794E+1 1 -3.83E+13

0.077463 -671307 -265.1 6715733 9.017E+11 3.59E+14

0.079371 -95947.7 4528 95993.98 1 .842E+10 1 .26E+12

0.080897 -106722 -51.75 106774.9 2.27QE+10 1 .78E+12

0.082117 49683.2 -21.29 49705.47 4.939E+09 1.6E+11

0.083094 -68104.8 23.31 68082.51 9.273E+09 -3.2E+1 1

0.083875 -17592.8 -3.828 17597.59 619180587 3.86E+09

0.0845 -73150.8 -7.171 73159.01 1.07E+10 1.2E+11

0.085 -11377.2 0.543 11377.65 258891356 -81437229
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in the gas-liquid simulations; Y/D=0; Z/H=-O.5

Table C3: Computed eigenvalues and invariants for the primary phase (water)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Location Eigenvalues Invariants

X 3.1 12 13 Uh Uh,

-0.085 -15.314 0.333 15.981 489.71 0.100727

-0.0845 -78.501 0.331 79.17 12430.05 37.72916

-0.08388 -84.027 0.321 84.706 14235.27 261 .2749

-0.08309 -83.944 0.292 84.652 14212.32 883.6041

-0.08212 -91 .626 0.246 92.379 16928.98 2205.522

-0.0809 -97.869 0.172 98.697 19319.07 4666.574

007937 -102.23 0.057 103.17 21093.31 8747.825

007746 -102.14 -0.105 103.25 21092.16 13874.94

-0.07508 -96.931 -0.282 98.214 19041.36 17578.25

-0.0721 ~89.106 -0.469 90.574 16143.41 19416.09

006837 -88.54 -0.937 90.478 16026.1 1 30537.17

-0.06231 -73.806 -2.816 77.622 1 1480.15 54144.5

-0.0553 -33.228 -4.739 38.967 2644.666 19730.94

-0.0472 -20.715 ~11.24 32.957 1641 .359 23846.03

003783 -14.21 -11.94 27.151 1081.379 14362.18

-0.027 -18.418 -18.12 37.541 2076.644 38630.16

-0.01448 -80.805 -76.15 157.95 37277.1 1 2934399

2.22E-18 -349.24 166.9 183.31 1834354 -3.2E+07

0.014479 -80.805 -76.15 157.95 37276.86 2934369

0.027002 -18.418 -18.12 37.541 2076.633 38629.85

0.037834 -14.21 -11.94 27.151 1081.366 14361.94

0.047202 -20.714 -11.24 32.955 1641.089 23839.91

0.055304 -33.227 -4.739 38.966 2644.532 19729.05

0.062312 -73.805 -2.816 77.621 11479.7 54139.79

0.068374 -88.54 -0.937 90.477 16026.04 30536.01

0.072099 -89.105 -0.469 90.574 16143.19 19415.11

0.075079 -96.931 -0.282 98.214 19041 .36 17577.63

0.077463 -102.14 -0.105 103.25 21092.16 13874.41

0.079371 -102.22 0.057 103.17 21093.26 8747.404

0.080897 -97.869 0.172 98.697 19319.07 4666.31

0.0821 17 -91 .626 0.246 92.379 16928.96 2205.372

0.083094 -83.944 0.292 84.652 14212.31 883.5298

0.083875 -84.027 0.321 84.705 14235.25 261.2384

0.0845 -78.501 0.331 79.17 12430.05 37.71271

0.085 -15.314 0.333 15.981 489.71 0.100622
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in the gas-liquid simulations; Y/D=O.48; Z/H=-0.5

Table C4: Computed eigenvalues and invariants for the primary phase (water)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Location Eigenvalues Invariants

X 1.1 12 2.3 Hb IHb

-0.085 -10.07 0.33 10.7 216.36 -0.23

-0.0845 -59.8 0.34 60.47 7234.09 -107.13

008388 -72.67 0.38 73.28 10649.64 -741.163

-0.08309 -83.76 0.47 84.3 14121 .98 -2840.333

-0.08212 -9594 0.6 96.36 18490 -6826.123

-0.0809 -95.86 0.6 96.22 I 18449.4 -8452.243

-0.07937 -88.062 0.65 88.4 1 5572 -7364.19

-0.07746 -85.38 0.65 85.7 14639.8 694207

007508 -86.43 0.64 86.8 1 5004.78 -6806.9

-0.0721 -87.73 0.6 88.13 15463 -6115.5

-0.06837 -89.6 0.52 90.07 16137.8 -4517.27

006231 -92.26 0.4 92.9 17138.43 -1239.33

-0.0553 -92.7 0.28 93.47 17339.98 1437.67

-0.0472 -93.9 0.23 94.68 17784.64 2850.82

-0.03783 -93.7 0.22 94.51 17718.58 2972.55

-0.027 -93.58 0.23 94.35 17659.59 2795.52

-0.01448 -93.9 0.22 94.67 17778.62 2871.7

2.22E1 8 -93.9 0.22 94.73 17800.57 2979.48

0.014479 -93.9 0.22 94.67 17778.53 2871 .57

0.027002 -93.58 0.23 94.35 17659.45 2795.08

0.037834 -93.7 0.22 94.51 17718.62 2971 .63

0.047202 -93.9 0.23 94.67 17780.68 2844.21

0.055304 -92.77 0.28 93.49 17345.67 1432.34

0.062312 -92.24 0.38 92.86 17132.51 -1222.6

0.068374 -89.6 0.52 90.09 16146.75 -4511.6

0.072099 -87.75 0.6 88.15 15470.52 -6134.7

0.075079 -86.42 0.6 86.78 14999.34 -6818.45

0.077463 -85.37 0.65 85.73 14638.62 -6949

0.079371 -88.06 0.65 88.4 15572.18 -7370.8

0.080897 -95.87 0.64 96.23 18450.72 -8460

0.082117 -95.95 0.58 96.36524 18491.7 -6833.8

0.083094 -83.77 0.47 84.3012 14123.8 -2845

0.083875 -72.67 0.38 73.28319 10650 -741

0.0845 -59.8 0.34 60.471 15 7234.3 -107.4

0.085 -10.07 0.33 10.73 216.3 -0.23     
 

67

 



the gas-solid simulations; Y/D=O; Z/H=-O.5.

Table C5: Computed eigenvalues and invariants for the primary phase (air) in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Location Eigenvalues Invariants

X 2.1 2.2 13 11b 111b

-0.085 0.33 0.33 0.34 4.86E-05 -2.1E-09

-0.0845 0.33 0.33 0.34 2.74E-05 -9.5E-10

-0.08388 0.31 0.33 0.354 0.000998 1 .28E-07

-0.08309 0.27 0.33 0.44 0.009 8.02E-06

-0.08212 0.28 0.328 0.4 0.0067 4.93E-05

-0.0809 0.15 0.35 0.54 0.0632 -0.00172

-0.07937 -0.13 0.35 0.774 0.4 -0.0126

-0.07746 0.15 0.38 0.464 0.05 -0.00345

-0.07508 -0.14 0.323 0.84 0.45 0.007

-0.0721 -0.57 0.375 1.1954 1.56 —0.098

-0.06837 -0.99 0.475 1.517 3.18 —0.67

-0.06231 -0.6 0.58 1.02 ‘ 1.41 -0.48

-0.0553 -0.125 0.42 0.7 0.35 -0.047

-0.0472 0.078 0.175 0.7 0.26 0.05

003783 -0.82 0.487 1 .33 2.36 -0.53

-0.027 -1.99 0.458 2.54 10.34 -1.93

-0.01448 -7.62 0.315 8.3 126.68 3.37

2.22E-18 -6.6 -1.03 8.6 119.6 236.7

0.014479 -3.12 -0.71 4.8 33.24 48.79

0.027002 -2.32 0.11 3.2 15.3 4.998

0.037834 -0.67 0.43 1 .24 1 .85 -0.26

0.047202 -0.8 0.24 1 .55 2.78 0.4

0.055304 -0.8 0.205 1.59 2.86 0.54

0.062312 0.014 0.24 0.74 0.27 0.034

0.068374 0.103 0.3 0.6 0.13 0.008

0.072099 0.18 0.3 0.52 0.06 0.002749

0.075079 0.25 0.3 0.45 0.02 0.001082

0.077463 0.15 0.32 0.52 0.07 0.001068

0.079371 -0.00179 0.33 0.671 0.23 0.000976

0.080897 -0.035 0.33 0.7 0.27 0.000129

0.082117 0.218 0.33 0.45 0.03 —8.4E-06

0.083094 0.32 0.33 0.34 0.000135 5E-08

0.083875 0.314 0.33 0.35 0.000758 2.13E-07

0.0845 0.33 0.33 0.33 1.21 E-05 4.02E-10

0.085 0.33 0.33 0.34 7.89E—05 2.34E-09    
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the gas-solid simulations; Y/D=0.48; Z/H=-O.5.

Table C6: Computed eigenvalues and invariants for the primary phase (air) in

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Location Eigenvalues Invariants

X Al ’12 ’13 11b IIIb

—0.085 0.33 0.333 0.336 1.7E-05 1 .24E-10

-0.0845 0.333 0.333 0.334 7.54E-08 -8.4E-13

-0.08388 0.291 0.333 0.376 0.003595 -6.8E~07

-0.08309 0.224 0.335 0.441 0.023593 -4.9E-05

-0.08212 0.173 0.329 0.499 0.053186 0.000362

-0.0809 -0.014 0.316 0.698 0.254016 0.006552

00793? 0.072 0.318 0.61 0.145081 0.00332

-0.07746 0.139 0.335 0.527 0.07531 -0.00014

-0.07508 0.293 0.34 0.367 0.002817 -2.6E-05

-0.0721 0.236 0.306 0.458 0.025795 0.000996

-0.06837 0.1 15 0.326 0.559 0.098595 0.001086

-0.06231 0.04 0.335 0.625 0.171139 -0.00037

-0.0553 0.147 0.334 0.519 0.069209 -9.2E—05

-0.0472 0.207 0.333 0.46 0.031912 3.08E-05

-0.03783 0.223 0.333 0.444 0.024254 8.41 E-06

-0.027 0.231 0.335 0.435 0.020864 -4.1E-05

-0.01448 0.246 0.337 0.418 0.014756 -7.2E-05

2.22E-18 0.25 0.34 0.41 0.012965 -0.00013

0.014479 0.22 0.338 0.442 0.024735 -0.00019

0.027002 0.184 0.332 0.485 0.045323 0.000121

0.037834 0.258 0.325 0.417 0.012773 0.000156

0.047202 0.269 0.333 0.398 0.008434 2.89E-06

0.055304 0.285 0.332 0.383 0.004827 6.23E-06

0.062312 0.229 0.325 0.446 0.023592 0.000278

0.068374 -0.035 0.338 0.697 0.267441 -0.00188

0.072099 01 0.348 0.752 0.362615 -0.00795

0.075079 -0.06 0.353 0.708 0.295388 -0.00863

0.077463 -0.02 0.355 0.666 0.235889 ~0.00753

0.079371 0.032 0.354 0.614 0.17037 -0.00526

0.080897 0.079 0.346 0.575 0.123601 -0.0024

0.082117 0.176 0.334 0.489 0.049053 -7.9E-05

0.083094 0.27 0.329 0.401 0.008565 5.35E-05

0.083875 0.293 0.333 0.374 0.003315 2.55E-06

0.0845 0.332 0.333 0.334 2.52E-06 7.1E-11

0.085 0.331 0.333 0.336 1 .18E-05 3.91 E10      
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