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ABSTRACT

CFD SIMULATION OF TWO-PHASE FLOWS IN A VERTICAL DUCT
By
Iffat Tasneem Shaik Mohammad
The flow of a suspension of spherical particles in air through a vertical rectangular
channel with equal inlet and outlet cross sectional areas was simulated under visothermal
conditions using Fluent. An Eulerian approach was used in which the multiphase problem
is represented as two interpenetrating continua. A granular model was employed for the
mixture stress and a realizable “eddy” viscosity model was used for the Reynolds
stress. The purpose of this work was to evaluate the ability of the multiphase model to
capture the flow physics associated with catalytic risers. Experimental findings of Ibsen
et al. (2001) were used for evaluating the numerical predictions. The numerical
predictions were able to capture the axial and span wise particle velocity in some regions
of the flow but failed to capture the correct pressure drop. In addition, while the
turbulence model provided realizable results for the single-phase flows tested, it became

unrealizable when coupled with the multiphase granular model.
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CHAPTER 1
INTRODUCTION
1.1 Introduction to Circulating Fluidized Bed
The study of multiphase flows represents a challenging and fruitful area of endeavor
since the state of the art for multiphase flows is considerably more primitive where the
correct formulation of the governing equations is still under debate whereas the transport
equations of single phase Newtonian fluids are generally well-accepted and closed form
solutions for specific cases are well documented.

Numerical simulation of flows associated with risers is the main topic of this
thesis. Gas-solids fluidization has a wide application in chemical, metallurgical and
energy industries with the largest applications being in fluidized bed reactors in coal
combustion for large scale thermoelectric power generation and catalytic cracking of
petroleum to produce gasoline and other fuels. The use of circulating fluidized bed
system is increasing as it can be applied to a wide area of applications such as power
generation, catalytic cracking and drying of wet powders with a good result (low cost to
performance ratio). The circulating fluidized bed combustors are superior to pulverized

coal combustors regarding fuel flexibility and emission performance of NO, and SO,.

An advantage of circulating fluidized bed combustor is that it can be fired with
low-grade coal, biomass and waste with reasonable efficiency whereas its disadvantage
being the emission of small particle. Hence, it is necessary to put energy into separating
the particles from the outflow. Today several hundreds of circulating fluidized bed

combustors is operating with the largest ones delivering 250 MW of power.



One of the possible reasons for the rather modest maximal turn out of power is the
lack of good design tools for scale-up of the process. Computational Fluid Dynamics
(CFD) software has proven to be a relatively efficient tool for design of applications with
single-phase flows. However, for multiphase flow, CFD models still need to be improved
before the same precision in the results can be obtained. This study will focus on
simulating a multiphase problem with the purpose of assessing the accuracy of the
simulations through a realizability diagram.

The structure of multiphase flows in circulating fluidized bed columns is quite
complex, showing great variations on solids volumetric fraction throughout the riser,
involving continuous formation and dissipation of clusters, and a high rate of
recirculation of solids leading to an intense superficial contact between gas and solids
providing high reaction rates. Therefore, the knowledge of the flow hydrodynamics is of
great importance, allowing relevant reactive and mass transport parameters to be
determined.

The mathematical modeling of gas-solids fluidization processes represents an
ancillary tool for minimizing the experimental efforts required for developing industrial
plants. However, mathematical modeling and numerical simulation are in continuous
development, contributing in a growing way for the better understanding of processes and
physical phenomena. Mathematical models require experiments in order to be validated
and, concerning fluidization, the required experiments involve complex measurements.
Hence, mathematical modeling also represents an incentive for the development of new

experimental methods and techniques.



In this work, numerical simulations are performed for the gas-solids flow in a
riser of circulating fluidized bed using the Eddy Viscosity Model proposed by Shih et al.
(1995).

1.2 Principles of a Circulating Fluidized Bed

A Circulating Fluidized Bed schematic is as shown in Figure 1.1.

Gas ()Tutlet

Cyclone

Ri
e Return Leg

i

Primary Gas Inlet

Figure 1.1: Schematic of a Circulating Fluidized Bed
It consists mainly of a riser, a cyclone and a return leg. In the riser, particles that form a
particulate bed in the bottom are kept in free motion by an upward flowing gas (or liquid)
hence the term “fluidized bed”. When the superficial gas velocity is sufficiently high the
particles will rise to the exit of the riser and enter the cyclone. A cyclone is used to
separate the particles from the out flowing gas. The separated particles are then

reintroduced into the riser through the return leg, hence the term “circulating”. As the



superficial gas velocity increases from zero the system goes through fixed bed, bubbling
regime, slug flow, turbulent regime and finally in the fast fluidization regime. The flows
studied in this thesis are associated to a circulating fluidized bed operated in the turbulent
and the fast fluidization regime.

1.3 Previous work in the area of Circulating Fluidized Bed

In the following subsections previous work in the field of experimental and numerical
analysis of gas-solid flow will be discussed.

1.3.1 Experimental work

Circulating fluidized beds can roughly be divided into two categories based on the layout
of the riser: The fluidized catalytic cracking riser is tall with a height to width ratio well
above 10 and most often cylindrical; the circulating fluidized bed combustor riser which
is low with a height to width ratio below 10 and mostly based on a square sectioned. The
gas-particle flows experienced in these two types of risers differ as a result of the
difference in the layout.

In the literature, various articles can be found on experimental findings in
circulating fluidized beds. Two types of non-intrusive measuring devices, based upon
laser light have been used in the past for obtaining experimental results namely the
Laser/Phase Doppler Anemometry and the Particle Image Velocimetry. Zhang et al.
(1995), Werther et al. (1996), Samuelsberg et al.(1996), Wang et al. (1998) and
Mathiesen et al. (2000) obtained experimental results in circulating fluidized bed of the
first category of risers using Laser Doppler Anemometry. Laser Doppler Anemometry
was also used by Berkelmann et al. (1991), Wang et al. (1993), Van den Moortel et al.

(1997), and Zhou et al. (2000) to obtain experimental results in circulating fluidized bed



of the second category of risers. The circulating fluidized bed investigated by
Berkelmann et al. (1996) was a 4 MW fluidized bed combustor whereas the remaining
references investigated laboratory scale models. Gidaspow et al. (1992) measured solids
flux with a sampling probe and solids concentration with an X-ray probe. From the solids
flux and the solids concentration they deduced the solids velocity. Werther et al. (1997)
measured solids volume concentrations and solids velocities with a guarded capacitance
probe in a 109 MW circulating fluidized bed boiler at full load.

All the references mentioned above deal with the properties of the solids in a
circulating fluidized bed. References concerning measurements of both gas and solid
velocities are scarce but existent. Hamdullahpur et al. (1987) measured gas, and two
different solid phases present in a laboratory scale circulating fluidized bed boiler model.
Yang et al. (1993) measured gas and solids velocities in a fluidized catalytic cracking
riser with a Laser Doppler Anemometry system under relatively dilute operating
conditions. The gas flow was seeded with talcum particles (d, = 1 4 m). (Bensalah 1999)
used a Phase Doppler Anemometry system for measuring both phases in a circulating
fluidized bed test rig which was operated under relatively dilute conditions. Glass
particles with two non-overlapping particle size distributions were used for the gas and
solid phase, respectively, thereby distinguishing the two phases by their sizes. The mean

diameter for the seeding glass particles was 9 # m and the mean diameter for the solids
was 60 z m. Gillandt et al. (2001) measured gas and solid properties in a particle laden jet

with a particle range of 1:200 with a Phase Doppler Anemometry system.



1.3.2 Numerical simulations

Numerical predictions of multiphase flow by CFD models have gained a more
widespread use over the past years. When narrowing the multiphase flow field into gas-
particle flows there exists two different CFD approaches namely the Eulerian-Lagrangian
and the Eulerian—Eulerian. In this thesis, attention will be put on the latter CFD approach.
When modeling the gas-particle flow with an Eulerian multiphase model it has become
more and more customary to rely on the kinetic theory of granular flow for modeling the
particle phase.

The theory of the model is based on kinetic theory of non-uniform gasses, as
presented by Chapman et al. (1970). The model was developed and matured through
publications as Jenkins et al.(1983), Lun et al.(1984), Jenkins et al. (1987), Gidaspow et
al.(1990) and Gidaspow (1994). A wide variety of models have been used ranging from
very simple approaches solving only the basic equations to more advanced approaches
solving a large number of equations.

Sundaresan et al. (1991), Nieuwland et al. (1996), Samuelsberg et al.(1996),
Mathiesen et al.(1999) and Neri et al.(2000) made numerical predictions with a two-
dimensional two-phase numerical model of a vertical riser section of a circulating
fluidized bed. Gidaspow et al. (1992), Samuelsberg et al. (1996), Mathiesen et al. (2000)
simulated the entire fluidized bed including cyclone and return leg in two dimensions.
Sun et al. (1999) and Benyahia et al. (2000) made two-dimensional two-phase
simulations of circulating fluidized bed riser flow for the participation in the PSRI

challenge problem (1995) presented at the Fluidization XIII conference.



Expanding the numerical model from two to three dimensions has the clear
advantage of including three-dimensional effects in the numerical predictions. A
disadvantage is the considerable increase in the size of the problem, which needs to be
solved. Benyahia et al. (1999) predicted the flow in a tall cylindrical riser in three
dimensions using fluidized catalytic cracking particles for the solid phase. Kuipers et al.
(1999), Mathiesen et al. (1999) predicted gas-particle flow in a circulating fluidized bed
with a square sectioned riser in three dimensions and found the largest average
concentration of solids in the corners of the riser. Balzer et al. (1997) predicted the flow
in an industrial circulating fluidized bed boiler of 125MW with a three-dimensional
model using 350,000 nodes. The model was based on a comprehensive set of equations
related to the kinetic theory of granular flow approach. De Wilde et al. (2001) also used a
comprehensive model with a large number of equations to predict the flow in a
cylindrical fluidized catalytic cracking riser in three dimensions. Zhang et al. (2001)
predicted the flow in a fluidized bed riser with a simple model solving a small number of
equations but used a relatively large number of grid cells for the numerical simulation.
The Euler/Lagrange approach has most often been used for predicting the flow in
bubbling gas-fluidized beds (e.g. Hoomans et al. (1996), Hoomans et al. (2000), van
Wachem et al. (2001), but has also been used for predicting the flow in the riser of a
circulating fluidized bed (e.g. Helland et al. (2000), Helland et al. (2002). (Helland et al.
(2000) simulated fluidized bed riser flow in two dimensions with an Euler/Lagrange
model tracking 250,000 particles.

The numerical modeling of bubbling fluidized beds are related to the modeling of

circulating fluidized beds. In the area of bubbling fluidized beds, interesting work has



appeared which can inspire the improvement of circulating fluidized bed modeling.
Syamlal (1998) modeled a bubbling fluidized bed and compared a first order upwind
scheme with second order schemes for discretizing the convection terms and found that
more realistic results were obtained with the second order schemes. Enwald et al. (1999)
evaluated four different closures of the two-dimensional form of the Euler/Euler model,
with and without gas and particulate-phase turbulence models. Additionally, they
evaluated a two-dimensional model with the simplest closure on a refined mesh and
concluded that it was of higher priority to carry out the calculations on a fine mesh than
to use more sophisticated models.

1.4 Objectives of the thesis

The overall objective of this work is to evaluate the usage of single phase and two-phase
turbulent models using CFD code FLUENT 6.2. in their ability to capture the important
physical phenomena encountered in a riser by comparing the numerical predictions
against the experimental findings of Ibsen et al.(2001).

These objectives are achieved through the following four tasks.

1. Verification of fully developed single phase laminar flow in a channel.

2. Realizability of various turbulent viscous models.

3. Comparison of various drag interphase models in a bubbly flow.

4. Verification and realizability of multiphase models in gas-solid simulations.



1.5 C ional d il idered in this work

The computational domain considered in all the simulations is as shown in Figure 1.2.

W=0.17m
k)

Top view
D=0.19m

'T'

Uniform pressure T T T T

outlet
w Re = P%Dn

u
Dz 4 x Area
Perimeter

/ H -
e B _ss
Front view
H=1.2m
g l (v)
X (w)
Location of origin in the x-y plane

thnt

Uniform velocity inlet

Figurel.2: Geometry of 3D-vertical upward channel flow considered in the simulation

As the geometry considered here is rectangular, a three dimensional Cartesian geometry
is chosen with dimensions 0.17 x 1.20 x 0.19m, width(x) x height (y) x depth (z)
respectively, in order to match with the experimental device (Ibsen et al., 2001). A
staggered “hex-cooper” volume mesh was created in GAMBIT 2.2 with a very fine mesh
near the walls and a rather coarse mesh at the center. The grid is made of 146,880 cells

and 156,695 nodes (35, 37 and 121 nodes in x, y and z directions respectively).



1.6 Theoretical and Numerical considerations of this work

The numerical simulations involve solving the Reynolds Averaged Navier-Stokes
(RANS-) equation and the Reynolds averaged continuity equation for the mean velocity
and mean pressure fields. A realizable eddy viscosity model for the Reynolds stress is
used in case of two-phase flows as a closure for the RANS-equation.

All the simulations were performed using a segregated solver. The upwind
scheme is used in all the numerical simulations in which the control-volume based
technique is used to convert the governing equations to algebraic equations consisting of
integrating the governing equations about each control volume, yielding discrete
equations that conserve each quantity on a control-volume basis. The quantities at cell
faces are computed using a multidimensional linear reconstruction approach where the
order of accuracy is achieved at cell faces through a Taylor series expansion of the cell-
centered solution about the cell centroid. The set of algebraic equation is solved using the
Algebraic Multigrid Method (Hutchinson et al., 1986)

In case of two-phase flows, the Eulerian multiphase model was used where the
coupling is achieved through the pressure and interphase exchange coefficients using the
Phase Coupled SIMPLE algorithm for the pressure-velocity coupling, (Patankar, 1980).
1.7 Boundary and Initial Conditions applied in this work
The geometry of the physical domain and the boundary conditions are shown in Figure
1.2.

For single phase simulations: On the bottom side of the riser, an upward uniform velocity
was specified; on the lower side, the pressure relative to a reference pressure was

specified as zero. The simulation imposes a no slip condition at the wall.
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For two-phase simulations: In addition to the above conditions, the volume fraction of the

dispersed phase on the inflow boundary was specified. The velocity of the primary phase
and the velocity of the secondary phase were assumed equal and uniform. A zero
backflow volume fraction was specified for the dispersed phase on the pressure patch.

Initial conditions for single-phase simulations: Zero initial velocity was specified in the

flow domain for all the single-phase simulations.

Initial conditions for two-phase simulations: The initial concentration of the secondary

phase was zero in the flow domain for all the two-phase simulations.
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CHAPTER 2
SINGLE PHASE FLOW
2.1 VERIFICATION OF FULLY DEVELOPED LAMINAR FLOW IN A DUCT
The objective of this section is to perform the numerical simulation of a fully developed
laminar flow in a channel and to validate the computational results by comparing the span
wise velocities against the analytical solution as given in equation (2.3). The simulations
were performed by considering air as a Newtonian fluid (constant p and constant 4 ) with
a Reynolds number of 5 based on hydraulic diameter. The steady state grid independent
numerical predictions of span wise velocities are compared with the analytical solution
and the error in the numerical predictions has been computed.
2.1.1 Governing equations applied to laminar single phase simulations
The governing equations used in this simulation are as follows
Continuity Equation
V.-U=0 2.1

The conservation of momentum is

(0-V)0=-%+vv20+§ 2.2)

where p,vand U are the density, kinematic viscosity and velocity of the fluid
respectively. g is the acceleration due to gravity and p is the static pressure.

2.1.2 Analytical solution for fully developed single phase channel flow
For a fully developed single phase laminar flow in a square cross-section, the analytical

solution is given by Constantinescu V. N. (1995) and in Handbook of Physics (2002).

12



o
Go__\2) dp 2 (»-1) 2[1 _ cosh(nzY /W) ] cos(nzX / W) 23)

-1
Py dz ,,=12’3(’5 ) cosh(nzD / 2W) n3

where W and D are the width and depth of the square channel.

2.1.3 Numerical results and verification
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T
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-0.085 -0.035 X 0.015 0.065

Figure 2.1: Plot of location of points at which
the velocity profiles are drawn for Z/H = -0.8.

Figure 2.1 shows the location at which a comparison between the numerical and
analytical span wise velocities is made in Figure 2.2 at an axial location of 1m. above the
bottom of the riser. The numerical predictions compares very well with the analytical
solution except near the centerline which exhibits a small error. Figure 2.3 shows the
absolute error in the numerical results. It can be seen that the maximum error of 1.4E-05
is found at the centerline. This could be due to numerical errors encountered in the
calculations. The error is calculated as

Absolute error calculation: Analyticalvalue — Numerical value

13
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Figure 2.2: Plot of comparison of numerical and analytical span wise
velocities. They predict almost the same with a slight error. See pg 13
for error calculation
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maximum absolute error of 1.4E-05 was found at the centerline.
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2.2 COMPARISON OF VARIOUS VISCOUS MODELS IN A TURBULENT
DUCT FLOW

2.2.1 Governing equations applied to turbulent single phase simulations
The actual or instantaneous velocity is decomposed into mean # and fluctuating

velocities #' as

—

U=a+u (2.4)
The continuity equation applied to# + u#’ then gives

V-U=0 (2.5)
The conservation of momentum applied to the averaged field gives

pli - Vid) = —Vp + uV%i + pg — pV - [@'d'] (2.6)
where p, pand u are the density, viscosity and velocity of the fluid respectively. g is

the acceleration due to gravity and p is the static pressure.

Ensemble averaging is used to extract the mean flow properties from the instantaneous

N

ones as u;(%,¢) = lim 1 Zu,(")(ic',t) 2.7
N> N n=1

U;(%,2) = u;(%,1) + ui(x', 1) (2.8)

The Reynolds-averaged momentum equation is

) . OR;;
plu; PP 0] 0| i, e 2.9)

d Bad |

where R;; = —pu;u; is called the Reynolds stress. The Reynolds stress components

have additional unknowns introduced by the averaging procedure, hence they must be
modeled (related to the averaged flow quantities) in order to close the equations and this

can be done in one of the following ways:
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1. Eddy-Viscosity Models (Boussinesq, 1877).

It is a mathematical analogy to the stress-rate-of-strain relation for a Newtonian
fluid. According to this hypothesis, the Reynolds stresses are modeled using an eddy (or
turbulent) viscosity 4, as

RU = —puiuj = ﬂt[ax—; + a_le - g(pk + Hy a—x:-](s,j (210)

2. Reynolds Stress Model (Gibson et al., 1978); (Launder, 1989); (Launder et al., 1975).

It involves calculation of the individual Reynolds stress components, #;u; using

differential transport equations. The individual Reynolds stress components are then used
to obtain closure of the Reynolds-averaged momentum equation. The exact form of the
Reynolds stress transport equations may be derived by taking moments of the exact
momentum equation. This is a process wherein the exact momentum equations are
multiplied by a fluctuating property, the product then being Reynolds-averaged.

The scope of this section is to verify the realizability of various viscous models
used in Fluent 6.2 namely the Spalart-Allmaras, the Standard k- @, the Realizable k- ¢ and
the Reynolds Stress Model. The steady state numerical simulations of a turbulent single
phase flow in a channel were performed by considering air as a Newtonian fluid with a
Reynolds number of 10,000 based on hydraulic diameter. The near wall treatment

specifications can be found in Appendix A. The eigenvalues of the Reynolds stress

term— pu;u’; for each of these models have been computed and the invariants are plotted

using a “Lumley diagram” as shown in Figure 2.4 to verify their realizability.
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2.2.2 Lumley diagram (Lumley J., 1978)

The following table shows the equations used for constructing the Lumley diagram.

Table 2.1: Lumley Diagram

Orientation States Eigenvalues Invariants
Remarks
Al Ay A3 | Iy Iy
A Uniaxial alignment (ID) 1 0 0123 2/9
B Planar anisotropic (2D) I-x  x 0 | IIp=2/9+211I 0<x<1/2
C Planar isotropic (2D Random) | 1/2 1/2 0] 1/6 -1/36
D Planar axisymmetry X x 1-2x|2HI,=6(11,/6)"° | 1/3<x<1/2
E Isotropic (3D Random) 173 1/3 130 0
F Axial axisymmetry x  x 1-2x | 21, =6(11,/6)'° | 0<x<1/3
The anisotropic tensor is defined as
b=—ro _Lls (2.11)
= u_ uli‘il 3 =

where § is the identity matrix. Three invariants of b can now be defined as

Iy Etr(g)
Hb EU‘(L)'
Iy, atr@-

0

N—

(2.12)

o Io*

v)

Two nontrivial invariants II, and III}, are used to describe the realizability of the tensor,

which is shown in Figure 2.4 in the enclosed region.

bl d

. u'u .
Let A;,4,,43 are the three eigenvalues of the tensor ——=. The eigenvalues
tr

I

A1,43, A3 are independent of the choice of the coordinate system. The invariants Il and

IITy, can be expressed as eigenvalues of the matrix b as

My = (4 —1/3)% + (4, —1/3)2 + (43 - 1/3)? (2.13)

My, = (4 —1/3)% + (4, —1/3)> + (43 - 1/3)* (2.14)
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Figure 2.4: Sketch of the boundaries of the realizable states for b

As the sum of the three eigenvalues is unity, A5 is chosen to be dependent on A;and 4, .
A two-dimensional solution space can be obtained from equations 2.13 and 2.14.

2.2.3 Various viscous models and their approximations

The following are the various turbulence models used in Fluent 6.2

The Spalart-Allmaras Model

It is a single transport equation model proposed by Spalart et al. (1992). It treats that the
production and destruction turbulent terms cancels each other and hence solves directly

for a modified turbulent viscosity v as

- — 2

Dy 1|5 -\ dv dv

= = G, +— |2 ol .y 2.15
D e an‘{(jJ+pv)___6xj +Cpap x, v (2.15)
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where Eddy — Viscosity is obtained as

o)
(%) +Cyy

=Pvin.  fu= (2.16)

G, , Y, are the production and destruction of turbulent viscosity, v is the molecular

kinematic viscosity and o, =§ » Cy1 =7.1 and Cpy=0.622.

Standard k - ® Model
The standard ¥ — @ model in FLUENT is based on the Wilcox k —® model proposed
by Wilcox (1998). It belongs to the general 2-equation Eddy Viscosity Model family.

The exact transport equations for k and ¢ are

D_k=_a__.u1 k'+£ +Vi -mz_g (217)
Dt ox P 0x Ox

De o — 2vou op Ou; | Ouj duj  ou; Oujj
—=—|-&uy - — v -2 +
Dt ox p Ox; ox; 6x1 Ox; | Ox; ox; Ox; ox;

—_—_— 2
au' s, 2[v o%u ]
J

- 2vu

(2.18)

axl ax,ax ax axl ax,

The modeled transport equations for the turbulence kinetic energy k and the specific

dissipation rate @ in the Standard k — @ model are

Dk_ _ aU, o [( m)ok
Dk ks 2| e B | O 219
"D S Syt J[[#+°'k]axj] e
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p22= 02 Vi pprse? +i{(ﬂ+ﬁr_J a“’} (2.20)

Realizable k - ¢ Model

The term "realizable" means that the model satisfies certain mathematical constraints on
the Reynolds stresses, consistent with the physics of turbulent flows. The realizable & - £
model proposed by Shih et al. (1995) address the following:

1. A new eddy-viscosity formula involving a variable C , originally proposed by

Reynolds.
2. A new model equation for dissipatione based on the dynamic equation of the
mean-square vorticity fluctuation.
Transport Equations for the Realizable k - ¢ Model

The modeled transport equations for k and ¢ in the realizable k - ¢ model are

ok
-—(pk) —(pkuj) [( i"—)—]mk +Gy - pe-Yy @.21)
Ox ; O ) Ox;
) ) P 4\ o¢ &2 €
2 (pe) + ~(peu; )= || p+ £ | = | + pC;Se - +Clp = C3,G
at(Pe) axj(psuj) axj{(# e)axj] pC1Se pC2k+~/§E e 7 C3:0b
(2.22)

2

where y, = pC, Ll
£

—, C= max[043 U ] ,,=S£’ S = /25,8,
n+S £

In these equations, G ; represents the generation of turbulence kinetic energy due to the

mean velocity gradients. G is the generation of turbulence kinetic energy due to
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buoyancy. Y, represents the contribution of the fluctuating dilatation in compressible
turbulence to the overall dissipation rate. C,=1.9 and C),=1.44. o4, =1.0 and o.=1.2.
where the ranges are C;:1.8-2; C,:1-1.8; 04:0.9-2; 0:0.95-3 (Ching and Jaw, 1998).
Reynolds Stress Model

The Reynolds stress model proposed by Gibson et al. 91978); Launder, (1989); Launder
et al. (1975) attempts to address the deficiencies of the eddy viscosity model but it is
computationally more expensive.

The Reynolds Stress Transport Equations
The exact transport equations for the transport of the Reynolds stresses p u u may be

written as follows

0( == = e (= =)
5 uiuj) (PUk ‘u' ) [pu}u'juk + p(é'kju, + 5ikuj )]
Ox
Local Time Derivative C Convectxon Dr =Turbulent Diffusion

0 0 (==r —= Ol ——- Bl =5 =z
a[# o, (“z“j)] P(“u“; o, +uju kax—k) Pﬂ(giuj9+gj“i0)

— ~ ~G EBuoyanZy Production
Dy, i =Molecular Diffusion B,'i =Stress Production
oo\, o o
P e ) P il B (@i ikem + T i) (2.23)
’{axj o, Homy, g Pk U tmEiken + Uil jim

- Fyj = Production by System Rotation
@; =Pressure Strain  £ij = Dissipation
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2.2.4 Numerical results and verification
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Figure 2.6: Velocity vectors for the Standard k — @ model at Z/H=-0.5.
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Figure 2.8: Velocity vectors for the Reynolds Stress Model at Z/H=-0.5.
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Figures 2.5 to 2.8 shows the velocity vectors for various turbulent viscous models and it
shows that all the models predict the same profiles except the Reynolds Stress Model.

The profiles at which the realizability plots for the various viscous models are plotted are

shown in Figure 2.9.
Y/D=0 Y/D=0.48
Z/H=-0.5 Z/H=-0.5
y | Profilel Y
Profile2
X X

Figure 2.9: Location of profiles at which the realizability plots for the various
viscous models are drawn.
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Figure 2.10: Realizability plot for the Standard k& — @ model at profilel.
It predicted thatIII;, = 0.
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Figure 2.11: Realizability plot for the Standard & — @ model at profile 2.
It predicted thatIlly, ~ 0.
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Figure 2.12: Realizability plot for the Realizable & - ¢ model at profile 1
It predicted thatIIl, = 0.
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Figure 2.13: Realizability plot for the Realizable & - ¢ model at profile 2.
It predicted thatIlly = 0.
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Figure 2.14: Realizability plot for the Reynolds stress model at profile 1
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Figure 2.15: Realizability plot for the Reynolds stress model at profile 2

Figure 2.10 to 2.15 shows the realizability plots for the Standard k — @ model, the
Realizable £ -£ model and the Reynolds stress model. It was found that all the viscous
models proved to be realizable except the Spalart-Allmaras. The Spalart-Allmaras is
found to be highly unrealizable and the computed eigenvalues and invariants for this
model can be found in Table C1 and C2 of Appendix C.

Also it can be seen from Figures 2.10 to 2.13 that the Standard k& — @ model and
Realizable k¥ -& model which uses the Boussinesq hypothesis predicts that the III

invariant of the anisotropic tensor b is almost zero which can be explained as follows

For a fully developed steady flow,

i =u,(x,y)E, (2.24)
Ou, . . Ou, _
Vu, = a—xzexez + —gzeyez (2.25)
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Since S = %(va + vl ) (2.26)

S = % %axa, + %é’yéz + %é’zéx + %é‘zé‘y] 2.27)
- X
/ -
o o %
1 a?l'x 1 0 0 a
Ss=-| 0 0 2zl or S==|0 0 b (2.28)
= 2 oy = 2
a{"z aﬁz 0 a b 0
Ox ay )
. = 2
Also since — pu'u’ = 24, § - 3 pkl (2.29)
which gives 244 Ly _2H g 1,y (2.30)
—2pk 3% 2pk= 3= =
hence b isrelatedto Sas b = —pil’ S (2.31)

The eigenvalues of the symmetric matrix S are {O, a’ + bz, - \/ a? + b2 }

Therefore, the eigenvalues of 2 are {O, _ptcl’ \/az + b2 , %\/az + bz}

2
whichresultsin Iy, = 0; II, = 2(%) (32 + bz) and Il = 0.

Since in the simulations, the flow is not fully developed, the I is predicted as nearly
zero as seen in Figures 2.10 to 2.13 whereas the Reynolds Stress Model does not make

the above assumption and use a different model for — p u;u’; .
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Figure 2.16: Contours of the turbulent kinetic energy for the Standard ¥ — @ model and
the Realizable k — £ model at planes Y/D=0, Y/D=0.48 and Z/H=-0.5.

Figure 2.16 predicts a variation in the turbulent kinetic energy for the Standard k& — @ model
and the Realizable & — £ model at various cross-sections in the riser.
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CHAPTER 3
TURBULENT TWO PHASE FLOWS
Overview of two phase flows

Significant efforts have been made to describe the flow phenomena and dynamic
behavior of the two-phase flows where the transfer of momentum, mass, and energy
across the phase interface is of crucial importance.

Also, numerical simulations should satisfy strong demands in relation to
approximation, especially near a wall, stability, keeping some important integral
properties of governing equations and others. The Boussinesq's hypothesis between
stress tensor and strain velocity tensor forms a rather simple model which enables to
conduct numerical calculation up to bounded walls including a laminar sub layer. The
succeeding chapters deal with the numerical simulation of turbulent bubbly flow and gas-
solid flows.

3.1 COMPARISON OF DRAG INTERPHASE MODELS IN A BUBBLY FLOW
Bubbly flows play a significant role in a wide range of geophysical and industrial
processes like oil transportation, mixing in chemical reactors, and elaboration of alloys,
cooling of nuclear reactors, two-phase heat exchangers, aeration processes, ship
hydrodynamics, and atmosphere-ocean exchanges. In a two-phase bubbly flow, the mass,
momentum and energy transfer processes involved are inherently complicated and
closely linked to phase distribution profiles through the strong interaction at the gas—
liquid interface. Numerical simulations can help to predict two-phase dispersed flows but
the capabilities of these codes are, to a large extent, limited by the closure models used to

represent the momentum exchange between the dispersed and the continuous phase.
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Owing to the very weak relative density of bubbles compared to that of the liquid, almost
all the inertia is contained in the liquid, making inertia induced hydrodynamic forces
particularly important in the prediction of bubble motion. Hence, in this section,
predictions of various drag interaction models have been compared for a bubbly flow
problem.

3.1.1 Case study Problem

The scope of this section is to perform steady state numerical simulations of bubbly flow
in a channel using an Eulerian approach in order to compare and validate the various drag
interphase models used in Fluent 6.2 namely the Schiller and Naumann model (Schiller,
1935), the Morsi and Alexander model (Morsi et al., 1972) and the symmetric model.
Two Newtonian fluids, air dispersed in water is assumed with a uniform velocity of
0.3m/s and a 10 vol. % dispersed (air) phase. The air particles were assumed to be
spherical with a diameter of Imm. The simulations were performed using a realizable
eddy viscosity model. The near wall treatment specification for this case can be found in
Appendix A.

3.1.2 Governing equations applied to gas-liquid simulations

The governing equations used in these simulations are based on a separate treatment for
each phase and are given below

The volume fraction of each phase is calculated from a continuity equation as
1 (o -~

—”(5 (aqpq)+ v (“q/’q“q )) =0 CRY

p rq

Where i, is the velocity of the primary phase g and Prq 1s the phase reference density of

the phase g in the solution domain. The volume of phase g, is defined by
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Vy = [agdv (3.2)

4
n
where 3 ag = 1 (3.3)
g=1 :
The effective density of phase q is [)q =a, P, 34

Equations (3.2) and (3.3) calculate the primary-phase volume fraction.

The conservation of momentum for a fluid phase g is

—a~(aqpqiiq)+ V. (aqpqﬁqﬁq) =-a,Vp+ V- : +agpq8 + i (qu(z'ip - iiq))
ot p=1
(3.5)
Here g is the acceleration due to gravity and P is the pressure shared by all phases.
== - - 2 - = -
Tg = aq,uq(qu + Vug)+ aq(lq - qu )V gl (3.6)

Here ugand A, are the shear and bulk viscosity of phase g. |

3.1.3 Theoretical formulation of various drag interphase models
Momentum exchange between the phases is based on the value of the fluid-fluid

exchange coefficientK ,,. It is the drag function that differs among the exchange-

coefficient models. The following are the three different drag interphase momentum
theories found in FLUENT for the gas-liquid flow.

The exchange coefficient can be written in the following general form as

_%q%pPpf

(3.7)
T

Pq
P

where g is the primary phase and p is the secondary phase. The particle relaxation time is

given as
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_ ppdg
18,uq

Tp

where drag function,

_CDRC

4 24

and d ,is the particle diameter

The drag coefficient given by various models is as follows

The Schiller-Naumann Model (Schiller, 1935)

24(1 +0.15Re0-087 )/Re Re <1000
Cp = 3
b =)044 Re >1000

The Morsi and Alexander Model (Morsi et al., 1972)

aj az
Cp=a1+—+—=—
D 1 Re Rez
( 0,24,0 0<Re<0.1
3.690,22.73,0.0903 0.1<Re<l1
1.222,29.1667,-3.8889 1<Re<10

0.61617,46.50,-116.67 10 <Re <100

ay,ajz,az =
0.3644,98.33,-2778 100 < Re <1000
0.357,148.62,—-47500 1000 < Re < 5000
0.46,-490.546,578700 5000 < Re < 10000
(0.5191,-1662.5,5416700 Re >10000
The Symmetric Model

=“p(appp+aqpq)f , =(“epp+aqpq)lzzz
pq P 18lapup +agug)

Pq
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Figure 3.1: Plot of comparison of the various drag models for the bubbly flow.

34

(3.14)



3.1.4 Numerical results and discussions
In Figure 3.2, the locations at which the points extracted to produce Figures 3.3 to Figure

3.8 are shown. X/W=0
Y/D=0

Figure 3.2: Location of profile at which the various drag models are compared.

1.04

1.02 +

w<u>

098

0.96

0.94
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 3.3: Plot of dimensionless axial velocity of water vs. dimensionless height for the
Schiller-Naumann model, the Morsi and Alexander model and the Symmetric model
(sn, ma, sym). All models give similar results.
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Figure 3.4: Plot of dimensionless axial velocity of air vs. dimensionless height for the
Schiller-Naumann model, the Morsi and Alexander model and the Symmetric model
(sn, ma, sym). All models give similar results.
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Figure 3.5: Plot of dimensionless axial dynamic pressure of water vs. dimensionless
height for the Schiller-Naumann model, the Morsi and Alexander model and the
Symmetric model (sn, ma, sym). All models give similar results.
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Figure 3.6: Plot of dimensionless axial dynamic pressure of air vs. dimensionless height

for the Schiller-Naumann model, the Morsi and Alexander model and the Symmetric
model (sn, ma, sym). All models give similar results.
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Figure 3.7: Plot of dimensionless axial turbulent kinetic energy of water vs.
dimensionless height for the Schiller-Naumann model, the Morsi and Alexander model
and the Symmetric model (sn, ma, sym). All models give similar results.
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Figure 3.8: Plot of dimensionless axial volume fraction of air vs. dimensionless height
for the Schiller-Naumann model, the Morsi and Alexander model and the Symmetric
model (sn, ma, sym). All models give similar results with a very slight difference.

From Figures 3.2 to Figure 3.8, it can be seen that all the correlations studied predict
similar values of global quantities such as the velocity, pressure, turbulent kinetic energy
and concentration of the dispersed phase for the steady state solution. From the Figure 3.1
it can be seen that for the Reynolds number of 10,000 the C,, values given by the various
drag interphase models is about the same.

The profiles at which the realizability plots are drawn for the secondary phase is shown in

Figure 3.9.
Y/D=0 Y/D=0.4
Profile
Y Y
Profile
X X

Figure 3.9: Location of profiles at which the realizability plots are drawn for Z/H = -0.5
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Figure 3.10: Realizability plot for the secondary phase (air) in the gas-liquid
simulations at profile 1. The realizable k - ¢ model predicted thatIll, ~ 0.
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Figure 3.11: Realizability plot for the secondary phase (air) in the gas-liquid
simulations at profile 2. The realizable k - ¢ model predicted thatIIly = 0.
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The realizability plots for the secondary phase (air) using the Schiller-Naumann drag
interphase model is as shown in Figures 3.10 and 3.11. In the two-phase simulations of
gas-liquid flows, the realizable k£ -& model proves to be realizable for the secondary
phase (air) while it shows to be highly unrealizable for the primary phase (water) and the
computed eigenvalues and invariants for this unrealizable case can be found in Table C3
and C4 of Appendix C. Again, it can be seen from the above figure that the III invariant

of the anisotropic tensor b is almost zero.

Also, all the various drag models studied in this case predicts exactly the same
realizability values with a negligible difference. For the sake of brevity; the realizability
plots for all the other drag models are not presented. Figure 3.12 shows a variation in the

turbulent kinetic energy in the riser.

gl
00
- 0
- 0
gl
H oo
— 00t
- 2
gl |
i |

0008 .
i o
i
00

X
Y/D=0 Y/D=0.48

Figure 3.12: Contours of the turbulent kinetic energy for the primary phase (water) at
planes Y/D=0, Y/D=0.48 and Z/H=-0.5.
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3.2 NUMERICAL SIMULATION OF A GAS-SOLID FLOW IN A RISER

The scope of this section is to perform the transient numerical simulations for the gas-
solid flow under isothermal conditions in a riser using a realizable eddy viscosity model.
The purpose is to evaluate the ability of the multiphase model to capture important
physical phenomena encountered in a catalytic riser. Further, the experimental findings of
Ibsen et al. (2001) were used here for evaluating the quality of the numerical predictions.

Transient simulations of gas-solid flows in a riser have been performed using a
realizable “eddy” viscosity model proposed by Shih et al. (1995) to account for the
transport of mean momentum by turbulent fluctuations. The dispersed turbulence model
and a granular model were used to model the gas and solid phase respectively. Air is
considered as a primary phase with constant density and viscosity. The solid particles are
assumed to be spherical in shape with a uniform density. The various parameters used in
this simulation are shown in Table 3.1. The near wall treatment specifications can be
found in Appendix A.
3.2.1 Assumptions made in the gas-solid simulations
Due to the complex nature of the flows associated with the riser, the following
simplifications in the geometry and particle size were introduced for the purpose of this
exploratory study.
Particle size: Since the simulations presented here were based on three dimensional
modeling of the gas-solid flow, the numerical modeling was restricted to two-phase
simulations with one solid phase with a representative particle diameter for the particle

size distribution in the experiments in order to keep the computational time down.
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Circulating Fluidized Bed Geometry: The inlet is located at the bottom and the outlet is
located at the top, thereby neglecting the effects of the inlet and the exit locations, which
are placed at the side on the actual riser.

3.2.2 General guidelines for mathematical modeling in fluidization

Harris et al. (1996) present a classification of models for simulating circulating fluidized
beds. According to the authors there are three types of mathematical models:

1. Models that predict the axial variation of the density of solids and disregard its lateral
variations.

2. Models that predict the span wise variation of the density of solids and the high
average slipping velocities, accounting for two or more regions of different flow
characteristics.

3. Models that apply the fundamental conservative equations of the fluid dynamics for
predicting the two-phase gas-solids flow.

The first two types of models are mostly used for preliminary design, mainly for
investigating the effects on the process of geometry and operational conditions. These
models can easily include chemical kinetics for simulating the performance of reactors.
The models of the third type, as for example a two-fluid model, are more suitable for
research allowing, for instance, the behavior of flow local structures and the effects of
local geometry to be studied. Figure 3.13 presents actual lines and tendencies for the third
type of mathematical modeling. There are two major tendencies for modeling, following
a treatment either Eulerian for both phases (Eulerian formulation) or Eulerian for the

fluid phase and Lagrangian for the particulate phase (Eulerian-Lagrangian formulation).
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Paths in the mathematical modeling for
fluidization processes
Eulerian formulation for both phases Eulerian formulation for the gas
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flow for the gas phase * Pseudo-particle approach
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