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ABSTRACT

PARAMETRIC IDENTIFICATION OF

CHAOTIC/NONLINEAR SYSTEMS AND REDUCED

ORDER MODELS BASED ON PROPER ORTHOGONAL

DECOMPOSITION

By

Yang Liang

In the dissertation, the parametric identification and proper orthogonal modes

(POMS) were investigated on chaotic/nonlinear systems such that a reliable and

general-purpose process can be developed to reconstruct the mathematical models

of nonlinear and/or chaotic systems.

First, a parametric identification method was examined for different chaotic sys-

tems, e. g. whirling, multi-degree-of-freedom, and strong nonlinearity, and by sim-

ulation and experiments. The original parametric identification method of chaotic

systems is a hybrid time and frequency domain method based upon the harmonic

balance method applied to unstable periodic orbits (UPOs), and solved by least mean

squares. A chaotic base-excited single pendulum system was simulated. The identi-

fication method was modified for the whirling system with measured data of angular

displacement. The nonlinearity was also approximated by two types of function se—

ries: linear interpolation functions and harmonic functions. Poincare sections showed

that the identified system and the original simulation system had similar chaotic

behavior. Then, the identification method was applied to an experimental chaotic



double pendulum under vertical base excitation. Several noise reduction techniques

were applied to reduce the identification errors due to the noise contamination in

the experimental data and the strong nonlinearity. Meanwhile, an error optimiza-

tion process, based on the linear regression and statistics, was proposed to improve

the identified parameters by selecting sub-harmonics of the unstable periodic orbits.

An energy balance method, as a second-step identification after the harmonic bal-

ance method, was applied to give a more accurate estimation of the small damping

coefficients.

It was also found that any chaotic orbit can be an approximated representation

of some UPO, and the longer the orbit the better the approximation. Thus, there

is an option between collecting UPOs for the extraction, and using longer arbitrary

data segments. The identification process can be simplified to a frequency domain

method. Examples were examined to show the success of the simplification.

The study then goes to parametric identification and the POM for building re-

duced order models of unknown systems. The special interest here is systems with

strong nonlinearity, where the reduced order models from experimental POM was

limited in simulating the unknown systems other than the neighborhood set plane

where the POM data is in the phase space. An added-constraint method was pro—

posed and examined by two simple systems: a two-mass system with nonlinear spring

and a mass-pendulum system. It showed that the added constraint can improve ap-

plicability of the POM reduced order model as well as increasing the accuracy of

the simulation result. Nevertheless, the method is to be tested by high dimensional

nonlinear systems, to which the proposed added constraint method can really make

a big difference in applications.
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CHAPTER 1

Introduction

1.1 Motivation

System identification, as an inverse question of dynamical systems analysis and quite

often a prerequisite of dynamics analysis, has been widely used and investigated in

industry, such as for the control and modeling of complex structures. There are

basically two classifications of system identification:

1. Non-parametric identification requires no actual governing dynamical equations

of a system, but rather an approximated model by a series of approximation

functions. Thus, no physical paremeters are identified, but coefficients of the

approximation functions. Some of the non-parametric identification methods

are based upon differential equations, which share many common features with

the parametric identification that we are going to discuss. On the other hand,

many more are based upon time-delay models, which are to be used in control

applications to approximate short-term behaviors of systems. The time-delay

models are also quite easy for instant, real time approximation of the dynamical

behavior.

2. Parametric identification is based upon governing differential equations, or re-



duced order models of the systems. Therefore, the identified parametric systems

can be better representations of the original unknown systems, and are often

used for dynamics analysis of the systems.

Our focus here is to use parametric identification to reconstruct a model which can

simulate an original unknown system. The advantages of a nonlinear mathematical

model over a linear one are quite obvious: more accurate description of the real phys-

ical systems and thus, more precise prediction of dynamical behavior, which satisfies

the requirements of modern technologies. For the nonlinear systems, chaotic systems

are among the most mysterious. Due to their random-like responses, they were once

considered stochastic systems, until “chaos theory” and chaotic data observation tech-

niques were developed. Chaos is generally considered as aperiodic time-asymptotic

behavior in a deterministic system which exhibits sensitive dependence on initial con-

ditions [1]. The phase-space trajectories of chaotic systems do not settle down to fixed

points or periodic orbits. Many developed identification methods are not suitable for

systems with chaotic responses. Therefore, this study here is aimed at developing

and perfecting an identification process which can be applied to general chaotic (also

nonlinear) systems. The systems in our scope include strongly nonlinear systems,

whirling systems, and high dimensional systems, because of their special features and

difficulty in accurate identification.

A general expression of a class of nonlinear oscillation systems is

Mira) + can) + Km) + mar, 55) + prrrs, type) = f(t), (1.1)

where f is a vector variable, matices M, K, C are mass, spring and damping matri-

ces, vectors fNL and fNp are nonlinear functions of displacement and velocity, and

fp(t) is the parametric excitation term. For simple systems, we can derive the math-

ematical model, and identify the actual physical parameters. However, for many high



dimensional systems, such as fluids and continuous structures, we tend to avoid the

exact differential equation of the original system, but use a simplified reduced order

model based upon modal analysis. The benefits of reduced order models (ROMS) are:

1. ROMS are simple and require much fewer parameters to identify.

2. Generally, only a few of the low order normal modes of that system Show up in

the dynamics of an actual system.

3. Identification of partial differential equations (PDES) of continuous systems

is much more complex than ordinary differential equations (ODES) and also

restricted by experimental data.

4. The ODES are handier in simulation than the PDE, and thus, easier for analysis.

We can simplify nonlinear continuous or high dimensional systems by using either

assumed modes, linear normal modes (LNMs), nonlinear normal modes (NNMs) [2]

or proper orthogonal modes (POMS) [3] to project the PDES into the form of a series

of ordinary differential equations in modal coordinates. Then, since usually only few

of the normal modes (or orthogonal modes if POMS are used) are typically active

with some level of significance in the dynamical behavior of a system, a truncated

series of equations can be used to approximate the original system.

For linear systems, both NNMS and the weighted POMS [4] become the linear

normal modes (LNMs). But, it should be noticed that the NNM method is more

fit to theoretical analysis which assumes known systems’ structures, and governing

equations. On the other hand, POM method is more of an experimental method,

which deals with orthogonal modes obtained from experimental or testing data, by

which the governing differential equations can be reconstructed.

Hence, the scheme of the dissertation involves two parts: parametric identification

and reconstruction of reduced order models by POD.



1 .2 Literature review

Till now, most of the methods of parametric identification of nonlinear systems fo-

cused mainly on free vibration, random excitation or periodically forced steady state

vibration behavior. Mohammad [5] introduced a direct identification method by

using time-domain displacement, velocity and acceleration Signals. The method is

simple, but also requires all of the displacement, velocity and acceleration informa-

tion, and is not noise-resistant. In [6], nonlinear resonances by random excitations

were utilized and part of the parameters were identified. Chen and Tomlinson [7]

proposed a time series acceleration, velocity and displacement model (AVD model)

with a narrowed investigation scope: dry Coulomb friction, viscous damping and

nonlinear stiffness. Also, many other methods are effective within limited dynami-

cal systems [8, 9, 10, 11, 12, 13, 14, 15]: weak non-linearity, complex algorithm and

time-consuming, non-chaotic behavior, single or two degree-of—freedom systems.

Some of the identification methods, though not originally proposed or examined

under chaotic systems, have potential application to be applied to chaotic nonlinear

systems. Plakhtienko [16, 17] introduced a special weight method for parametric iden-

tification, which is derived from orthogonal basis functions. If Fourier series functions

are applied as the orthonormal basis, the method then becomes the harmonic balance

method. The inverse harmonic balance method has been applied to various nonlin-

ear systems identification [18, 19, 20, 21] which are under forced excitation and have

steady-state periodic responses. Thothadri [22] also developed a similar harmonic

balance identification on multi-degree—of-freedom nonlinear systems. A wavelet-based

approach was discussed by Ghanem and Romeo [23]. Both the discrete wavelet trans-

form and Fourier transform are based upon signal reconstruction by an orthonormal

basis, except that the wavelet transform is a localized time-frequency reconstruction.

Meanwhile, the harmonic balance method is, in essence, a frequency domain method,



and much easier to apply than the wavelet method. Due to this property, Feeny and

Yuan [24, 25] proposed a method for chaotic systems, which exploits the harmonic

balance of extracted unstable periodic orbits (UPOS), because one of the fundamen-

tal properties of deterministic chaos is that the chaotic set of a dynamical system

contains infinite number of unstable periodic orbits. It is the primary method used

in this the dissertation. There are several reasons for choosing this method:

a The identification process can be theoretically applied to any dynamical sys-

tem. For linear systems, it becomes the frequency response function method if

multiple excitation frequencies are tested. For non-chaotic nonlinear systems,

there have been successful applications of the harmonic balance method.

0 The method exploits the existence of unstable periodic orbits, and has generated

satisfying identification results.

0 Some possible developments exist for further improvement, including the friction

issue, experiments, and error reduction.

Parametric identification of large order systems is greatly facilitated in reduced or-

der models. A popular tool for reduced order modeling is proper orthogonal decompo-

sition. Proper orthogonal decomposition (POD), or Karhunen-Loeve decomposition,

has been widely used for empirical modal analysis. As a statistical method utilizing

the correlation matrix derived from a set of measurement histories, POD produces

the empirical modes, which are known as proper orthogonal modes (POMS), from

the eigenvectors of the correlation matrix, and the corresponding energy levels of the

modes, known as proper orthogonal values (POVS), from the matrix eigenvalues.

For linear systems with evenly distributed mass, POMS are actually the linear

normal modes [26]. Therefore, it can be used as modal analysis tool [27, 28, 29, 4, 30,

31]. Meanwhile, since its introduction, POD has been widely used in fluid, turbulence



areas as modal reduction tool [3, 32, 33], and recently in structural dynamics [34, 35,

36, 37, 38, 39, 40, 41, 42, 43]. Some used it to estimate the active dimension of a

dynamical system [33, 37, 38].

For reduced order models, combining POD with system identification is a very

promising area in the analysis of systems dynamics. For chaotic and nonlinear sys-

tems, the POM based reduced order models can approximate the systems’ behavior

by fewer modes than the models based upon linear normal modes [41], which implies

that the POM models are more efficient than the LNM models for reducing nonlinear

systems. POD’s applications in system identification and reduced order modeling

for nonlinear/chaotic systems has also gained some improvements in applications of

systems with simple nonlinearity [39, 44, 40, 42, 43]. In [39] the POM itself is also

part of the system identification process.

1.3 Outline of the dissertation

The purpose of this dissertation is to generate accurate and robust models of non—

linear and/or chaotic vibration systems. We can either do it by direct parametric

identification provided that the governing equations of the systems are handy, or

for large-order systems, by obtaining approximated reduced order models based upon

POMS or NNMs of the systems, and identifying parameters of the reduced order mod-

els. Consequently, the dissertation consists of two major parts. The first part focuses

on parametric identification of single and two degree-of-freedom (d. o. f.) systems.

The systems studied are whirling pendulum systems. The second part is on the para-

metric identification of ROMS. POD is used for the reduced-order modeling, and we

focused attention on broadening the applicability of identified models to conditions

beyond those for which the POD was performed. Details are outlined below.

First, we will concentrate the focus on parametric identification method, 0. g.



a harmonic balance based identification process for chaotic and nonlinear systems

[24]. Since the method has been tested on simple single (1. o. f. systems, the goal of

this study is to test it on systems with more complicated nonlinearity and multiple

d. o. f. systems. The pendulums, due to their whirling nature and trigonometric

nonlinearity, are distinctive from ordinary oscillatory systems, and thus are chosen

for the investigation. The pendulums are also easily examined by experiments due

to their simple structures. A simulated Single pendulum was first examined. Then, a

base-excited double pendulum was selected for experimental application to whirling

and multi—degree-of-freedom systems. Once successfully tested, the follow-up goal is

to simplify and improve the current method. Hence, the identification investigation

will be divided into three separate chapters, and each with a different focus.

Chapter 2 deals with a simulation study of a chaotic single pendulum system. The

main contribution of this chapter is to apply the identification method to whirling

chaotic systems. A brief introduction will be given to explain special features, dynam-

ical behaviors and tools for analysis of chaotic systems. The purpose is to examine

the method on a whirling, chaotic and parametrically excited single degree-of-freedom

system. It is assumed that the system is unknown to us except that the pendulum

is parametrically excited with some known frequency. Meanwhile, to make the simu-

lation resemble an experiment setup, only the angular displacement signal was used.

An embedding technique was then applied to obtain the reconstructed phase space,

which is essential to extract the UPOS from the chaotic data. The extracted orbits

are actually not the true unstable periodic orbits, but their approximations, whose

accuracy can be measured by the tolerance error during the extraction. It is also

hoped that many UPOS can be obtained so as to increase the reliability of the iden-

tified results. Based upon the UPO, the harmonic balance method can be applied

to build the identification matrix equation, and the parameters can be identified si-

multaneously. Another aspect of the identification study is the use of function series



to approximate the unknown nonlinear functions. Two sets of function series were

used: the Fourier series and the linear interpolation functions. Both approximations

showed good matches with the true values.

Chapter 3 upgrades the study to a experimental double pendulum system. This in-

vestigation was to examine the identification method by a experimental multi-degree—

of—freedom system, to develop noise reduction, optimization techniques to improve

the identification results, and to estimate damping terms more accurately by energy

balance method. Again, the system is chaotic, whirling and parametrically excited.

Since the collected angular displacements were noise contaminated, noise reduction

techniques were applied. The strong nonlinearity of the double pendulum was also

found to contribute to the errors in the identified parameters, especially those non-

linear terms with velocity and/or acceleration signals. To quantify and reduce error

in the identification results, an identification error was defined to indicate quantita-

tively how ‘good’ the identification is, and based upon it, an optimization process

was developed. The core of the Optimization process is to obtain a smart choice of

sub-harmonics of the UPOS for harmonic balancing. Based upon the results of the

harmonic balance method, the energy method was developed as a follow-up to give

more accurate estimation of the damping parameters.

Chapter 4 describes a Simplified identification process. The underlying reason

for the improvement is because UPOS become less available for extraction, as the

degrees of freedom of a system goes up. As a result, the identification result can

deteriorate with fewer UPOS. The idea comes from the unstable periodic orbits inside

the chaotic data. Since the UPOS are the ‘skeleton’ of the chaotic set, every chaotic

orbit is considered to be an approximated periodic orbit of large period. Thus, the

extraction step can be skipped, making the whole identification process look quite like

a frequency domain method for linear systems. The importance of the simplification

can not be underestimated. It actually makes it possible to identify all kinds of



systems in the frequency domain.

Ultimately, as the d. o. f. of systems increases, the need for reduced-order mod-

eling becomes mandatory. Thus, the second part of the dissertation is to combine

POD and parametric identification to build reduced order models for nonlinear sys-

tems. For high dimensional systems, reduced order models are effective replacements

of the original governing equations. POD provides a simple and theoretically appli-

cable vehicle for reduced order modeling through experimental data. Our focus is

on systems with strong nonlinearity, where the POM based models are limited to a

small neighborhood of the initial conditions where the POM comes from due to the

nonlinearity. A new added-constraint method was developed and tested to improve

the reconstructed reduced order models. Due to the complexity of this topic, the

study was only a beginning of a series of future studies.

Chapter 5 poses the problem of reduced—order modeling with strongly nonlinear

systems. By borrowing ideas from NNM analysis, a geometric constraint method was

proposed to accompany the POM models. The idea was tested on two simple systems:

a two-mass system with nonlinear spring and a mass-pendulum system. The analysis

was based upon simulation. It turned out that the added constraint method can not

only increase the accuracy of the POM models, but extend the applicability of those

models. Although it is not clear if this method will be as effective on high d. o. f.

systems as it is to the analyzed low (1. o. f. examples, it gives us a possible direction

to improve the accuracy of the reduced order models.

Finally, Chapter 6 will conclude the dissertation with possible future research on

this topic. The improvements could be real-time identification of chaotic systems,

further identification of small parameters (i. e. frictions terms), POD for whirling

systems, and experiments or simulations of reduced order models of nonlinear high

dimensional systems.



CHAPTER 2

Simulation Study of a

Base-Excited Single Pendulum

2. 1 Introduction

A simulated, horizontally base-excited pendulum is investigated as a first step for

whirling, chaotic system identification. A harmonic balance parametric identification

method is examined here, because of its simplicity and capacity for handling chaotic

data.

Pendulum systems are among the most thoroughly investigated dynamic systems

in chaotic, nonlinear system research [45, 46, 47, 48, 49, 50, 51] for their simplicity in

both theoretical expression and experimental validation. Water [45] studied the un-

stable periodic orbits of a vertically excited system. Jeong and Kim [46] investigated

the bifurcation phenomena and routes to chaos of a horizontally excited system. Fur-

thermore, Bishop [47] and Dooren [48] studied the regions of chaos of a parametrically

excited pendulum in parametric space. These works provide the general relationship

between chaotic behavior and the influence of parameters on the system, and facilitate

our investigation of the pendulum with horizontal base-excitation.

Meanwhile, based upon the harmonic balance method [18, 19, 20, 21], Feeny and
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Yuan [24, 25] proposed a method for chaotic systems which exploits the extracted

unstable periodic orbits. This method was successfully applied to single degree of

freedom systems, and is theoretically applicable to chaotic or non-chaotic, strongly

nonlinear multi-degree-of-freedom systems.

Our purpose here is to apply the harmonic balance algorithm to the horizontally

excited pendulum system such that we can examine the algorithm’s applicability on

systems with chaotic whirling behavior and parametric excitation. The identification

method has been examined on smooth excitation single (1. o. f. systems [24]. However,

the pendulum is a more complicated case. Since the single pendulum is both whirling

and under parametric excitation, the algorithm must be modified and can now be

improved partially. In the following sections, the single pendulum system and the

modified method will be introduced first. Pre-requisites for applying this method

will be discussed, primarily regarding the phase plane reconstruction. Then, the

simulation results will be presented and discussed.

2.2 Horizontally excited single pendulum 8:: iden-

tification algorithm

Single pendulum systems have simple structures, but strong non-linearity due to

their whirling property. The governing differential equations can be simulated eas-

ily, and the experimental verification is also feasible. Based upon these advantages,

horizontally base excited single pendulums are chosen for investigation here. The

non-dimensional form of the differential equation is

é+2g/ré+1/r2sin0—fsintcos0=0, (2.1)

11



where t = wr, w is the angular excitation velocity, and 'r is the actual time; 5 is

the viscous damping coefficient; r = w/wN, wN = mge/J is the natural frequency

of the linearized system, m is the pendulum mass, 6 is the the centroid offset from

the pendulum hinge, J is the moment of inertia about the joint point. Meanwhile

coefficient f = mea/J is the non-dimensional excitation amplitude, and a is the

excitation amplitude. For simplicity, we denote cr = 2E/r as the new non-dimensional

damping coefficient. The function f sintcosd is the nonlinear parametric excitation

term, and 1/r25in0 is the autonomous nonlinear part. The angular displacement

9 is in 5'1 space (one dimensional sphere space), whereas the angular velocity and

acceleration are in RI space.

In the Simulation study, it is assumed that we know little of the system except

for the parametric identification. To apply the identification algorithm [24] to the

pendulum system, the following more general expression of a single d. o. f. system

can be assumed:

Grit + kLL‘ + fanl($,i‘) + {d1 + fpnl($, i‘)}p(t) = —:i, (2.2)

where k is the linear stiffness parameter, fanl(:r,:i:) is the autonomous nonlinear

part, fpnl(x, 1'2) is the time-independent part of the parametric excitation term, and

coefficient (11 is the amplitude of external excitation force. If all is non-zero and fpnl

equal to zero, the system becomes a nonlinear system with external excitation force.

On the contrary, if (11 is zero and fpnl is non-trivial, it is then a parametrically excited

system. For the examined single pendulum, parameter k = O and d1 = 0. Meanwhile,

since the non-linearity of the pendulum is caused by geometry, it is convenient to

assume fan] and fpnl in equation (2.2) as functions of only displacement, such that

it becomes

C7413 + fanl($) + fpn,l(x)p(t) = —'T (23)

12



Based on equation (2.3), the harmonic excitation term p(t) = (11 cos wt + [31 sin wt

with excitation frequency w. Unknown functions meI and fan) can be approximated

by

N

fpnl % Z Pia-(x), (2.4)

i=1

N

fanl z 2 qr¢t(1‘), (2-5)

i=1

where {oz-(:1: )} is a set of orthogonal basis functions, and Pi, q,- are unknown parame-

ters. Since the choice of basis functions can affect accuracy of the identified functions,

two sets of basis functions were tested in the simulation: linear interpolation functions

and Fourier series functions.

Substituting (2.4), (2.5) and the harmonic excitation into (2.3), we have

N

crsi: + Z qi¢>2(:1:)+ 2 mega:x)cost + Z “46,-(:1::1:)sint = —:'1}, (2.6)

i=1 i=1

where n; = Pial and p,- = Pifil. With equation (2.6), harmonic balance identifica-

tion [24] can be applied after extracting unstable or stable periodic orbits from the

collected displacement data. For a period k orbit, if displacement :1: is in R1 (one

dimensional real space), the displacement, velocity and acceleration signals can be

approximated by the following truncated Fourier series expansions:

l ' ' t

$k(t) ~-a0k+ 321m“003th +bj,kSSinL:) (2-7)

M .

)~; 37:3(a—aJ-ksinJ—w—kt+bjkccosj%t), (2.8)

j—l

t
513k(~:2—j2w2/k2(aJ~kcosJ—-m+kasian), (2.9)

j— 1 k k

where, for non-dimensional equation (2.6), w = 1. However, for :1: in 5'1 (one di-
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Figure 2.1. A period-4 orbit (a) sampled signal; (b) actual continuous signal arc; (c)

- - - constant rotation part wckt, - oscillatory part xvar.

mensional sphere space, e. g. the angular displacement 0 in the single pendulum),

Equations (2.7) — (2.9) are not applicable for whirling. The harmonic balance method

can still be applied here, but with proper modification. The issue is that the velocity

and acceleration are R1 signals, and cannot be derived directly from the sampled S1

displacement Signal.

Consider an experiment in which whirling angle 6 signal is collected with an en-

coder such that the output :1: has values in the interval [—7r, 7r). Thus, a: is discontin-

uous. According to the illustration in Figure 2.1 of a period four orbit of the single

14



pendulum system, the sampled data {as} should be converted to a continuous signal

{sec} in R1, and then decomposed as

xck = wckt + (Evankv

where wckt represents the constant rotating part of a whirling periodic orbit, and

xvaJJk is the oscillatory part of the orbit signal, which can be approximated by the

truncated Fourier series expansion

1 M
jwt jwt

xvaJJk(t)~ 2U01k+ZJ(uJchos—k +vJ-Jksin JJJ).

J=l

Based upon xck, the corresponding velocity and acceleration can be expressed as

' wt ° t

t) zwck + Z—J——w wksinj—w +vJ-chos—Jw ), (2.10)

j=l k( uj k k

cat t

+vJ-ks1n‘7w (2.11)

M

an) a Z —12w2/k2(u,cok >
SJ__W

i=1 k

Meanwhile, for a period-k orbit, if ¢J(r) : S1 ——> C[——1, 1], as in the case of the

pendulum, the continuous functions (DJ-(rck), ¢J(:1:k) cos wt and ¢J(rk) sin wt can also

be approximated by

M . .
wt

¢J- (xk)~~ cJ-OJk/2 + 2(CcJ-J-J kcos J:——t + dJ-J-JksinJT), (2.12)

J'2—1

M J'wt jwt
¢J(:1:k)cost- eJOJk/2 + 218(eJ-J-chos— +fJJ-Jksin—k ), (2.13)

j:1

M . .
t t

d>J-(:1:k)sint~gJ-0Jk/2+ Z((gJ-J-chos]: +hJ-J-Jksin 2:— ). (2.14)

j=1
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Substituting (2.10)—(2.14) into (2.6), the differential equation can be transformed

into the following matrix equation for a period-k orbit

  

  
  

{ wok €10,1/2 9101/2 0101/2 eN0,1~/2 9N0,k/2 CNO,k/2\

funk €1th 911,1c 011,1: 8N1,k 9N1,k CN1,k

4:3,,le f11,k h11,k d11,k fN1,k thJc leJc

itjcgvMJc e1M,k 91M,k ClM,k eNMJc 9NM,k CNMJc

\‘A‘fcguMJc f1M,k h1M,k d1M,k fNM,k hNMJc dNM,k/

( Cr \

111 f 0 \

P1 w2u1,k/k2

(11 (”lune/1’62

"N M2w2'uMJk/k2

pN \M2w2vM,k/k2 )

\‘IN/
(2.15)

For simplicity, A]: is denoted as the left-hand side matrix,

)‘=(C7‘ "1 P1 91 "N PN 4N )T’

and

1”".5k=(0 w2u1Jk/k2 w2vle/k2 M2wQUMJk/k2 M2w2vMJk/k2

Equation (2.15) can then be expressed as AkA = Bk.

For multiple periodic orbits, by combining the single periodic orbit matrices to-

16



gether, we can obtain the following matrix equation

211:5, (2.16)

where

= T T T T
A (A1 Ak AK),

T
’B=(B¥.‘ ... 1611;... J81?) J

and A is a K(2M +1) x (3N +1) identification matrix . When K(2M + 1) > 3N +1,

the matrix can be solved by least mean square method. The least squares solution of

(2.16) is

A = (ATA)‘1ATB. (2.17)

The error of the identification algorithm can be affected by several factors, includ-

ing accuracy of unstable periodic orbits, noise contamination, system nonlinearity

and the choice of basis functions of approximation.

2.3 Introduction to phase plane reconstruction

and extraction of unstable periodic orbits

Usually in an experiment, only limited signals can be acquired accurately, e. g. the

angular displacement signal in this simulation. However, for the extraction of unstable

periodic orbits, phase plane information is necessary. It is then that the phase plane

reconstruction technique [52] is applied. Suppose that 3(k) is the sampled smooth

signal from dynamical systems. Smooth dynamics in an n dimensional phase Space

could be approximately represented by an embedding dimension space

S(k) = {s(k),s(k + Td), . . .,s(k +(d—1)Td)},

17



where d is the dimension of the reconstructed phase space and Td is the time delay

of the embedding dimension. Although the reconstructed phase space is a distorted

appearance of the real phase plane, it provides us information of phase orbits, at-

tractors, periodie orbits and other chaotic characteristics. To the pendulum system,

s(k) = 0(k), 6 E [-7r,7r) is actually a non—smooth observable. But the method can

also be applied here since the functions of angular displacement, speed and accelera-

tion are all smooth.

2.3.1 Choosing the time delay and embedding dimension

The time delay value Td can be obtained from average mutual information function

[52], which is expressed as

P a

123(1) = EJ102321. bum-agffififi. (2.18)

where t is the time lag, a. is the sampled data 3(1), A is the set of {3(1)}, 1: = z' + T,

b is thus s(z' + t), and B is considered as the set of {3(2' + t)}. Meanwhile, PA(:1:) is

the probability function of observing :1: out of a set A, PB(y) is the probability of

observing y out of a set B, and PAB(:c,y) is defined as the probability of observing

function of (:r, y) out of the set of A n B. After calculating I (t), the ‘best’ time delay

Td is chosen when I (t) reaches its first minimum.

To determine the value of dE for minimum required delay dimensions, the false

nearest neighbors method was applied [52]. The false nearest neighbors method iden-

tifies the embedding dimension for which false trajectory crossings do not occur.

2.3.2 Extracting unstable periodic orbits (UPOS)

There are numerous unstable periodic orbits in a chaotic signal. The UPO set is a

dense set within the chaotic orbits. The reconstructed phase space can be used to ex-

18



tract the hidden UPOS. Since the horizontally excited single pendulum is excited by

a harmonic signal with period T, the UPOS will have the periodicities of integral mul-

tiples of the excitation period T. Though theoretically, no exact UPO can be found

through the collected data, the theory proved that some very close approximation of

the UPO exists provided that the data is long enough. With the error tolerance 6

set for UPO extraction, we say that an approximated UPO of period It: is extracted if

|S(n — kT) — S(n)| < e, where S(n — kT) is the starting point of the extracted orbit,

and S(n) is the end point. Usually e is set as 1—5% of the span of the data [24], and

the smaller 6 value is always desirable if possible, since the corresponding UPO will

be closer to the real periodic orbits.

Meanwhile, a recurrence error between the starting and end points will occur in

the extracted UPO by the choice of e, which is an exhibition of the accumulated error

compared to the ‘true’ periodic orbit. Generally, to acquire more accurate UPOS,

smaller 8 is used.

2.4 Numerical Simulation of the horizontally ex-

cited pendulum

2.4.1 Phase space reconstruction

The simulation was based upon the non-dimensional differential equation (2.1). A

data set of 30000 points was gathered with a sampling rate f3 = 25/T. Displayed in

Figure 2.2 (a) is the 2-D reconstructed phase space. The coefficients were chosen as

f = 1.52, c = 0.03, r = 0.8333. The actual minimum embedding dimension needed

for a complete phase space reconstruction was found to be four. However, since our

purpose of reconstructing phase space is to extract UPOS, which compare points with

[CT time interval (implying the addition of the SI dimension of time), the possibility

19



  

      
  

4 4

2 2

a E
s 0 E 0

3 o

5

-2 -2

-4 -4

-4 - o 4 - — o 2 4

theta(t) theta(t)

(a) (b)

Figure 2.2. Reconstructed phase plane (a) and Poincaré section plot (b); 0(t) is

represented by theta(t) in the plots.

of encountering a false nearest neighbor is greatly reduced. Hence, two embedding

coordinates are adequate for this case, and are also simpler for display purposes.

According to Figure 2.3 of the average mutual information, the calculated best

time delay was Td = 5. The phase portrait and the Poincaré section are displayed

in Figure 2.2 (a) and (b). The Poincaré section plot, obtained by plotting the cross-

section of the phase flow at a fixed periodic time position T = t mod 27r since the

system is under periodic excitation, provides us a handy tool for visually comparing

chaotic properties of different systems. Similar Poincare section plots give evidence

of similar dynamical behaviors of the systems.

2.4.2 Parametric identification

For simplicity, the data used in the identification process was noise-free, thus excluding

the noise-generated error in the identified parameters. The UPOS were extracted

before applying the identification algorithm. An error tolerance of e = 3% was
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Figure 2.3. Mutual information of the data; the first minimum is at dt=5.

applied in the extraction. The error tolerance can be made smaller if longer sampled

data is available. Consequently, around 25 UPOS were extracted from period 1 to

period 16. Figure 2.4 shows a example of periodic orbits of period one and two. Some

are whirling orbits, whereas others are oscillating orbits. With the UPOS extracted,

in the identification process, two sets of basis functions were tested to approximate

the unknown nonlinear functions in the governing equation.
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Figure 2.4. (a)A period-1 orbit; (b) A period-2 orbit; (c) A period-2 orbit; (d) A

period—2 orbit.

Harmonic basis functions

If basis functions are set as 95219-1”) = cos kz, ¢2k(:r) = sin kx, k=1, 2, 3, ..., the

differential equation (4.12) is then converted to

err + ZkK=1(n2k_1 cos k3: + 112),, sin km) cost + Zf=1(p2k_1 cos k2: + p21,, sin kz) sint

+ 25:1(‘12k—1 cos k2: + ‘12]: sin kz) = —i.

(2.19)
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Table 2.1. The "k1 Pk and qk values when harmonic basis is applied.

 

 - 7% n1; Ink-fir. 191, pk lpk-fikl 1);, qt lqk-ékl
 

coskO 0.009 0.0 0.009 -1.526 -1.52 0.006 -0.004 0.0 0.004
 

sin/c0 0.003 0.0 0.003 -0.0 0.0 0.0 1.434 1.44 0.006            

For the investigated pendulum, it is convenient to set K = 1, i. e. include only the

first harmonics, since the differential equation is simple and consists of harmonic type

non-linearity.

For systems like the Single pendulum, where the non-linearity comes from angular

rotation and the displacement variables belonging to the sphere space, a harmonic

basis can be a very good choice due to its capability of representing rotation and

periodic behaviors. Displayed in Table 2.1 are the identified coefficients of (2.19)

with fik, pk, 9k representing the estimated values, and nk, pk, qk representing the

true values. The estimated or value is 0.0339. Compared to the real values, all of the

parameters are quite accurate with minor errors less than 0.01.

Linear interpolation basis functions

Linear interpolation functions can be expressed as

x—‘iéJf—lli‘, (k—1)d<:r<kd

111(22): @331‘1—“9, kdgx<(k+1)d,

0, otherwise

where d is the distance interval. Had we not known the apprOpriate basis func-

tions, e. g. harmonics in this case, interpolation functions are good alternatives [21].

For better expression of the nonlinear functions, generally more interpolation points

(functions) are needed [25]. However, that implies more unknown parameters and
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function.

requires more periodic orbits for the least mean square method. Eight points were

utilized in this identification. The interval {—71, 71) was divided evenly into eight equal

sub-intervals. The unknown curves can be represented by the piece-wise linear curve

connected between sub-interval nodes.

Figures 2.5, 2.6, and 2.7 Show the piece-wise curves of {11k}, {pk}, {qk}. Mean-

while, the identified friction coefficient cr = 0.0348. It can be seen that {nk} curve

is nearly zero, {pk} curve is a cosine curve, and the {qk} curve is a sine curve, which

are consistent with the differential equation (2.1). The eight-point approximation is

still a rough representation of the real curve, and consequently introduces more error

than the harmonic basis case. In the next section, we will discuss the error’s influence

on the dynamic characteristics of the system.
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2.5 Discussion and validation

Direct comparison showed that the identification algorithm was satisfying for the

single degree of freedom system. Furthermore, it was the harmonic basis that gener-

ated the more precise identification result, due to the fact that the unknown nonlinear

functions consist of harmonics. However, when investigating unknown systems, direct

comparison is unavailable. In this case, it is then natural to examine the dynamical

behavior, 0. g. chaotic characteristics, of the identified system for validation purposes.
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Figure 2.8. Poincaré section plots of identified systems: (a) by linear interpolation

basis, (b) by Harmonic basis.

Displayed in Figure 2.8 (a) and (b) are Poincaré sections of the identified systems

with harmonic basis and linear interpolation basis. The Poincaré sections look similar

to the original pendulum, which implies the dynamical similarity of these three chaotic

systems. Thus, for the purpose of chaotic characteristics, the linear interpolation

approximation, though a coarse representation, is still acceptable.

For more validation methods of the unknown systems, we can also refer to the

linearized model method, comparison of fractal dimensions, bifurcation diagrams, and
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Lyapunov exponents. But for this simulation case, where the parameters are known,

direction comparison is the best tool.

2.6 Concluding remarks

In this chapter, the simulated parametric identification procedure was investigated

for a chaotic horizontally base-excited pendulum. The identification was assumed to

apply to a single-degree-of-freedom system with a known parametric excitation fre-

quency and unknown nonlinearity. The identification algorithm [24, 25] was modified

for application to the whirling pendulum system. Two types of basis functions were

applied to approximate the unknown functions. Then, the simulations of the identi-

fied models were presented to verify the effectiveness of the algorithm. Both the direct

comparison and the validation methods showed the accuracy of the identified param-

eters and the similarity between the original and the identified systems. Although

both of the methods gave similar results, the harmonic basis functions matched the

form of the true nonlinearity, and therefore in this case, gave a more precise result.

On the other hand, the linear interpolation was also valuable since it is a good choice

for a general unknown type of non-linearity in a single variable. According to the

simulation result, the modified parametric identification process was successful in the

single degree of freedom whirling system. However, the simulation was limited to

single degree of freedom systems with no noise contamination. For more general ap-

plications, multi—degree of freedom systems and experimental verifications are needed

for full investigation of the proposed method.
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CHAPTER 3

Experimental Study of a

Base-Excited Double Pendulum

The approximated periodic orbits can be extracted by phase space reconstruction

techniques [53, 54, 52] with a certain tolerance of error for extraction. The approxi-

mated UPOS made little influence on the identification of the single pendulum system.

However, it is not clear whether it is so for multi—degree-of-freedom systems, or sys-

tems with strong nonlinearity. Also, it is necessary to examine the harmonic balance

based identification method in experimental systems in which the collected signals

are noise contaminated. These are the reasons for the continued research on an ex-

perimental multi-dcgree-of-freedom system: the double-pendulum system. Another

reason that the double-pendulum system was chosen for experiment is that it is easier

to adjust parameters of the double pendulum system to exhibit chaotic behavior than

the single pendulum system.

3.1 Description of the double pendulum system

A schematic diagram of the double pendulum is shown in Figure 3.1. The first arm

has mass ml, centroid offset 61, arm length 11, and angular inertia J61 based upon
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Figure 3.1. A sketch of the double pendulum.

the arm centroid point. The second arm has mass m2, centroid offset 82, arm length

12, and angular inertia ch. 91 is the absolute angular displacement of the first arm

and 62 is relative angular displacement of the second arm.

The two arms of the pendulum are supported and connected by low friction bear-

ings. The bearings are assumed to have two types of friction: dry Coulomb friction

and viscous damping. To the specific double pendulum that was used in the exper-

iment, tests indicated that the first arm bearings had dominantly Coulomb friction

because of no oil lubrication, and the second arm bearings had dominantly viscous

friction due to full oil lubrication. With these known properties, we can then obtain
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the non-dimensional governing differential equations of this system:

f

$.14” 01105.2 COS ($2 — $1) - 011$g sin ($2 — $1) + 012 sin $1

+1313 Sin 0513? + 61182971051) - 0120152 - €51)= 0 (31)

(152+ b21051 COS ((132 - (151) + 521% sin ((22 - 41) + 1922 sin 42

+b23 Sin (2523? + 020152 — (151) = 0 

where 451 = 01 and $2 = 01 +02 are absolute angular deflections, Bu = m28211/J01,

1112 = 9(m181 + "1210/1701, 513 = (W161 +m211)/Jol 1 321 = m282’1/J021 1’22 =

9m262/J021 (’23 = m262/J02 1012 = 012/1101: C2 = C1'2/J02, J01 = Jc1+m1€i+m2li

, and J02 = J62 + 172283; y is the excitation displacement of the support with known
7

1, :r > 0

frequency fe; and f (.13) = sign(:1:) = 4 0, :1: = 0 is a Sign function representing

—1, a: < 0 
Coulomb friction. Function f (:12) is valid if there are no sticks. For convenience of

the analysis, a non-dimensional form of the governing differential equation is desired.

By letting 7' = 271th and Q = 2rrfe, then, 52 = g; - 931% = 271fejd; = {2%. Under a

sinusoidal excitation y = acosr, where a is the excitation amplitude, equation (3.1)

can be expressed as

f

451" + 311%” COS (<22 — Q51) - 1311452'2 sin (¢2 - 451) + 312 Bin $1

J +313 sin any” + C118211710210 - 012(42' - 41') = 0 (3 2)

<22” + 321051" COS (¢2 — <21) + 321¢1’2 sin ((22 - 051) + 322 sin $2

( +323 Si1145231” + C2(¢2' - 451') = 0 

WhCI‘C $J’ = ad;$JJ,BJ'1 = 0J1, 8J2 = big/Q2 for i=1, 2, .823 = —bJ-3a, C11 = 611/92,

012 = c12/Q and 02 = c2/w. The differential equation is non-autonomous because

of the time dependence of y(T).

For identification purposes, the excitation signal y can be approximated by the
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Fourier series expansion of

J

y(7) = 2(chosj1' + Fj sian), (3.3)

J =1

where the coefficients EJ- and FJ- are unknown. For the present system with harmonic

excitation, y = E1 cos 7' + F1 sin 7' is adequate for identification. Since all the param-

eters are unknown with the only exception of the excitation frequency, equation (3.2)

can then be transformed into

311¢2” COS ((1)2 - ¢1)- 1311M2 sin ($2 - <01) + 1312 Bin $1

+313 sin $1 0057 + 814 sin (1)1 sinT + Cllsign(d>1') - C12($2, — 451’) = —¢1”

321¢1IICOS (452 — $1) + 132N251,2 Sin ((152 — 451) + 322 Sin 432

+853 Sin $2 cos 1' + 8&4 sin $1 sin 7' + C2(¢2’ _ 4,1!) ____ _¢2//

,

 
(3.4)

where B£3 = 313E1 and Bg4 = Bi3F1 for i=1, 2. For simplicity, we will use 323 and

82-4 to replace 8:3 and 8:4 in the later parts of this report. Equation (3.4) is then

the desired form for identification.

3.2 Method

The identification process is similar to the one used in the simulated parametrically ex-

cited single pendulum (Chapter 2), which contains data acquisition/post-processing,

phase plane reconstruction/extracting unstable periodic orbits, formation of the iden-

tification matrix and the solution by the least mean square method. Due to apparatus

limitations, some signal noise occurred during digitization. Therefore certain digital

filtering techniques were applied to the acquired signals. Details of the post-processing

will be introduced in next section. Other modifications are also applied to the double

pendulum system for improvement of the identification.
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Due to the complexity of the non-linearity of the double pendulum equation (3.4),

our unknown parameters contain only those coefficients of terms of the differential

equations, which will greatly simplify the identification matrix. There are totally

11 unknown parameters in the two differential equations, namely, Bu, 812, ...,

824, Cu, 012 and C2. Similar to the case in the single pendulum simulation, the

angular displacements 61 and 02 are both variables in S1 (one dimensional sphere

space). However the angular speeds, accelerations and sin (b,- (2' =1,2) belong to R1

(one dimensional continuous real space). Hence, for any period-k orbit (there may

be multiple orbits of same periodicity k, the Fourier series expression of the periodic

orbits is

jw , jwt

$1,k,tz()~91,,,,kzt+00kz/2+XX03,,‘—sz08kt'+b3,k,zSIDT) (35)

j:—1

and

jw , jwt

$2,kl(t~) 92Mk1t+60k1/2+ Z(ccjklcosk t+djk,ls1n—E-), (3.6)

j=1

where QUCJ’ is the average rotation speed per cycle for the lth orbit of period k. By

doing so, the following equations can be obtained through the Fourier expansion of

periodic orbits:

jw

 

- m jw , jwt

4512,10)~91,,kz+ Z 73(—achJCOS—kt'+b3,k,zsmT). (3.7)

i=1

- jw , jwt

¢Z,k,t~l()~,92k,z+ 2:1,? -C3',k,zCOS——k +613,k,zsm-k—), (38)

j:—-1

m -2 2

-' J w J'w J'wwt

¢1,k,z(t)~ '21— ,2 (03,,sz08—k t+b3,k,zsin T) (39)
J:

m 2 2 -
u w

$2,k,l(t) 2 Z -] 26(jleOSJ—k— +djleln ’6 ), (310)

J=1
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jwt
 

 

 

 

.. €1,0,k,l J'wt .
¢-i,k,l(t) C05 (¢2,k,z ‘ 4’1,k,1)’~“ 2 + Z (ei,j,k,l COS T+fi,j,k,l 3111 k ), (3-11)

i=1

-2 . 91,0,k,z m jwt , 3m

45mm“) 31“ ($2,k,z — $1M) * 2 + Z (9i,j,k,l COS T + hi,j,l,k sm T)’ (3-12)

i=1

. 3 191,0,“ m jwt , jwt
szgn(q§i,k,l(t)) z 2 + Z (pi,j,k,l cos —k— + qz‘,j,k,l sm T)’ (3.13)

i=1

. 7‘1,0,k,l m jwt , jwt
sm ¢i,kl z 2 + Z (ri,j,k,l COST + Si,j,k,l sm T), (3.14)

i=1

. U1 k m 'wt . 'wt

5m (25,,“ cost a —%—’—l + Z (“LJ'JQI cos 1;- + ”2}ij sm J—k—), (3.15)

1:1

. . w m 'wt , 'wt

srn¢i,k,131nt a: Jig-lg + Z (wi,j,k,l cos 37 + Zi’chJ Sln '77), (3.16)

1:1

where k=1, 2, ..., K, and i=1, 2, is the corresponding period of the orbit; K is the

maximum periodicity. Meanwhile, for the non-dimensional differential equations, time

t here is actually T in equation (3.4), and fundamental frequency is 1. If incremental

encoders are used to sense the angular displacements, then velocity and acceleration

are not directly measured. Their Fourier transforms can be handily generated by the

displacement’s Fourier transform for periodic response. However, for noise contam—

inated displacement signals, noisy errors may be amplified in the obtained Fourier

spectrum of velocity and acceleration.

Also, Fourier series expansions of some terms in the differential equations, such as

(13% 1: sin (452,]: — 431$) , are not obtained by direct Fourier series expansion of their time

domain signal, but by convolution of known Fourier expansion components with a low

pass filter applied. The purpose of applying a low pass filter to each signal component

before convolution is to avoid noise amplification. Reasons will be explained in the

following sections. Substituting (3.5—3.16) into (3.4), and equating the coefficients of
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terms with identical harmonic order, we obtain two matrix equations:

01‘

( (6 — 9l2,0,1,1

(6 - 9)2,1,1,1

(f - h)2,1,1,1

(8 — 9)2,0,k,l

(8 - 9)2,1,k,z

(f - h)2,1,Jc,z 

7'1,0,1,l ul,0,l,1

Tl,1,1,1 ul,l,l,1

31,1,1,1 U1,1,1,l

T1,O,k,l “1,0,k,l

Tl,1,k,l “1,1,k,l

Sl,l,k,l v1,l,k,l

(311)

312

313

314

011

K 012 )
  

w1,0,1,1

w1,1,1,1

zl,l,1,1

w1,0,k,l

wl,1,k,l

 

21,1,k,1

01,1,1

51,1,1

9 2

H
:
H

II

:
9
1

35

pl,0,1,1

pl,l,l,1

q1,1,1,1

p1,0,k,l

P1,1,k,l

ql,l,k,l

\.

 

91,1,1- Q2,1,1

d1,1,1 - b1,1,1

-C1,1,1+ a1,1,1

91M - 92M

d1,k,l - b1,k,l

-61,k,z + 0ch

\

 
(3.17)

(3.18)



and

  

  

  

( (e-g)1,o,1,1 7‘2,0,1,1 'U2,0,1,1 w2,0,1,1 -91,1,1+92,1,1 )

(6-9)1,1,1,1 1"2,1,1,1 “2,1,1,1 w2,1,1,1 d1,1,1-b1,1,1 (B \

(f-h)1,1,1,1 S2,1,1,1 v2,1,1,1 22,1,1,1 -(01,1,1-ai,1,1) 11

. . . . . 312

313

(6-9)1,o,k,z 7‘2,0,1~,z ”2,0,131 102,033 91,3,1 —92,k,z B14

(e-9)1,1,k,z ’"2,1,k,l “2,13,: w2,1,k,l d1,k,l -b1,k,z \ C

U -h)1,1,k,z 32,1,k,l v2,1,k,t 22,1,k,z -(61,k,z —a1,k,z) 2 j

( s 2 2 s s )

( 0 )

C1,1,1

d1,1,1

_ 0 ,

CLka—z

deJk-2

\ ) (3.19)

01'

A252 = (2'2, (3.20)

where 51 and 52 are vectors of unknown parameters. Given a set of periodic orbits, it

is adequate to equate the coefficients of the first several orders of sub-harmonics since

they are usually the major components of the periodic orbits and less contaminated by

noise. We then truncate the Fourier series expansion, and take the first M harmonics,

such that (2M + 1) - K > NC, where (2M + 1) - K is the total number of rows in

the matrix A.,-, and NC is the number of unknown coefficients in 551 or :32. With
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these conditions satisfied, the two equations can be solved by the least mean square

method:

5‘51 =(A1TA1)‘1A1Tc71 (3.21)

and

52 = (AgA2)—1A§(f2. (3.22)

After the non-dimensional parameters are identified, the physical properties can

then be restored according to non-dimensional parameters’ definition if part of the

physical parameters are known prior to identification. In the experiment, mg, 82, [1

were treated as known since these physical properties were easily evaluated. Also, by

defining 325 = 8,23 + 82.24, i=1, 2, we can obtain

9
Pb = lBi2/32'5l = (ZerPa- (3.23)

Hence Pb is a constant for a constant excitation amplitude a and can be used as an

indicator of the accuracy of the identified results.

3.3 Experiment description

Figure 3.1 shows a sketch of the double-pendulum that was used in the experiment.

Two optical encoders (US Digital) were separately attached to the central arm (US

Digital H58—1024-157H) and the second arm (US Digital HSS-1024) to measure the

relative angular displacements 01 and 62. Both of the encoders had a resolution

of 1024, and were therefore capable of detecting a minimum angular difference of

0.35160. The two encoders sent out TTL square waves, which are noise-resistant, to

two EDAC (Encoder Digital to Analogue Converter) converters, which transformed

the TTL waves into analogue signals. After that, a data acquisition terminal trans-
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lated all the signals into computer-acceptable digital signals.

Table 3.1. Physical properties of the double pendulum.

 

 

 

 

 

 

    

ml (kg) 0.1362 mg (kg) 0.040

e1 (m) 0.0127 e2 (m) 0.0267

11 (m) 0.0635 12 (m) 0.0534

J1(kgxm2)* 6.99x10-4 J2 (111;,me 4.033x10—5

Cu 1.01 x 10-3 Cl * 0.0485

02 * 0.00366 — —   

For validation purposes, Table 3.1 lists all the physical properties of the double

pendulum. The asterisks in the table denote that some properties are not directly

measured, but estimated from other dynamic methods, which implies that those pa—

rameters could have small errors. To estimate the mass moment of inertia, a small-

amplitude free vibration was tested on the double pendulum. By evaluating the two

natural frequencies of the system through the FFT, the mass moment of inertia values

were calculated. Some parameters related to sampling and experimental settings are

listed in Table 3.2.

Table 3.2. Experimental settings.

 

Sampling rate (f3) 500 Hz Excitation freq. (fe) 5H2
 

 
Cut-off freq. (fc)

  
80 KHz Excitation amplitude (a)

 
1.15 cm
 

With all these settings, data were obtained during a three-hour-long chaotic vi-

bration. The data record lasted 22 minutes.
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3.4 Results and validation

3.4.1 Phase space reconstruction & UPO extraction

The embedding dimension was chosen to be eight by the false nearest neighbors

method. Mutual information [52] of the signal was used for choosing adequate time

delay Td-

Mutual Information

0. 1 8 I I I I I I I I I
 

0.16

0.14

0.12

0.1

I
(
d
t
)

0.08

0.06

0.04

0.02   
 

0 5 10 15 20 25 30 35 40 45 50

Figure 3.2. Mutual information I (dt).

It can be seen from Figure 3.2 that there are weak minima of I(dt) at dt =5,

15, 18 and 24. But, Td=24 in a driving period of 100 samples is somewhat close

to a quarter period, the ideal delay for a sinusoidal signal. The reconstructed phase
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Figure 3.3. Phase portrait of experimental data with dt=24, (a) 01(t)—91(t+ dt), (b)

01(t)—02(t), (c) 92(t)—62(t + dt); 9 is represented by theta in the figure.

portrait is plotted in Figure 3.3 with Td = 24. The portrait shows that the central

arm, represented by 01, oscillated in small angles most of the time with occasional

large-angle whirling, which implies relatively larger noise in the 01 signal due to the

limitation of the optical encoders. The second arm displacement, represented by 92,

consisted mainly of whirling vibration.

After choosing the embedding dimension and time delay, we used the reconstructed

phase plane to extract unstable periodic orbits (UPOS). The error tolerance of extrac-

tion e was set at 5%. Supposing that the sampled signal is s,(t) = [91“) 91(t'l' Td)]
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for i=1, 2, an approximated UPO with error tolerance e is extracted if

||s,-(t) — 3,-(t + kT)” < ei,i = 1,2, (3.24)

where T is the excitation period and k is periodicity of the recurrence. For the

given experimental settings, f3=500Hz, fe=5Hz, T=fs/fe=100. Then, for example,

for a given k = 4, if inequality (3.24) is satisfied, a period 4 orbit is then said to

be extracted. One data set of 670,000 points was used in the analysis. For a 5%

tolerance, 6 distinct orbits were extracted.

Figures 3.4—3.9 show all of the distinct extracted UPOS. In all cases, the small

arm whirled. In Figures 3.5 and 3.7, the central arm whirled, whereas in other figures,

the central arm oscillated without whirling. Compared to [24, 25], there were much

fewer extracted UPOS in this double pendulum system than those in the single (1. o.

f. systems, which even had tolerance error much smaller than 5%. This is because

recurrences are less frequent in higher dimensional spaces for small periodicity 16.

Suppose the number of boxes of size 1" needed to cover an attractor of dimension

01 is N1 ~ Alra, where A1 some constant determined by the chaotic attractor.

Roughly assuming even distance of data over an chaotic attractor, the probability of

recurrently hitting a given box 121 is p1 ~ 1/N1 ~ 1 /A1r—0’. Comparing this with

another chaotic attractor of dimension 6, we have

11 £2 fi—a
N T ,

P2 A1

which implies that the higher the dimension of a chaotic attractor, the smaller the

probability of finding a UFO with tolerance of error 1".
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Figure 3.4. A period 4 UPO; theta1 and theta2 in the plot represent 91 and 02;

dt=24; same for the following figures.
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Figure 3.5. A period 9 UPO.
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Figure 3.6. A period 12 UPO.
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Figure 3.8. A period 15 UPO.
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3.4.2 Identified parameters

Table 3.3 lists all of the identified parameters by Fourier series expansion of UPOS

with these enhancements: a low-pass filtering, FFT convolution of nonlinear terms

involving angular velocity and acceleration, the harmonic balance method and the

optimization. The reasons for the modifications will be explained in the following

sections.

Table 3.3. Identified parameters by applying low-pass filter, FFT convolution, Fourier

series expansion of UPO, harmonic balance method with sub-harmonics whose fre-

quencies are S excitation frequency fe=5 Hz, and sub-harmonics optimization.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

— Identified values ’h‘ue values Errorx 100%

B11 0.1167 0.1131 3.2%

812 0.0781 0.0711 9.8%

313 0.0809 — -

314 0.0264 — -

315 _ \/B§3 + Bl4 0.0849 0.0820 3.6%

1321 1.6149 1.6816 4.0%

B22 0.2562 0.2630 3.6%

B23 0.2777 - '-

B24 0.0715 - -

325 = 3333 + 324 0.2868 0.2913 1.6%

(111 * 0.0001 1.02x10-3 -

012 * 0.0007 0.00366 -

02 * 0.0106 0.0485 -

J01 (kg-m2)* 5.8113 x 10-4 5.99 x 10-4 2.0%

J02 (kg-m2)* 4.1995 x 10—5 4.033 x 10"5 3.9%

a (cm) 1.18 1.15 2.6%

mlel (kg-m) 1.73x10—3 1.60x10—3 8.5%
 

 
The sub-harmonic terms whose frequencies were smaller than (or equal to) the

excitation frequency were selectively included by an optimization method discussed

later in the identification procedure, because the noise is actually reduced in this
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frequency interval. The optimization process utilizes linear regression techniques

and will be introduced later. The friction coefficients have relatively much larger

error comparing to the errors of other identified values. Part of the reason for this

inaccuracy is due to the fact that both of the Coulomb friction and viscous damping

factors are much smaller than other factors in the same matrix equations. So an error

deemed small for a stiffness/mass parameter may cause large errors of the damping

parameters. As such, the damping coefficients will be estimated later by other means.

However, despite the friction factors inaccuracy, most of other parameters match

with the actual values within an error range of 10%, which is generally satisfying for

experimental data.

Meanwhile, as we have mentioned before, some of the ‘true’ values (marked with

‘*’) listed in Table 3.3 were obtained by an indirect dynamical method, e. g. small

angle free vibration, and thus those ‘true’ physical parameters and related non-

dimensional parameters may also have some error. Thus, more verification methods

were examined (see Section 3.4.6).

3.4.3 Friction issue

Our first result has shown that friction coefficients may not be precisely identified due

to their small values. Previous researches [24, 25] also indicate that friction parame-

ters were more difficult to identify accurately than other parameters in experiments

for a single degree of freedom system. The inaccuracy can result from mainly several

reasons:

1. experimental noise in the sampled data;

2. inadequate sensor sensitivity (the resulting error can also be treated as a noise

component);
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3. inaccurate model of friction, e. g. viscous friction, dry friction, or their combi-

nafion;

4. recurrence errors of the extracted UPOS;

5. strong nonlinearity of the investigated system.

Meanwhile, since the damping factors are much smaller than others, and the method

of least mean squares is used for solving, an error deemed small for other parameters

can cause relatively large errors for the damping terms. Inadequate sensor sensitivity

can actually be considered as one of the noise sources during data acquisition process.

The noise decreases the accuracy of the extracted UPOS. As a result of the above

reasons, the identified friction coefficients are erroneous, whereas other estimated

parameters show only small discrepancies from the real values. On the other hand,

if the friction coefficients can be determined prior to identification, the identification

could likely be improved. Here, one would like to know the roles of friction parameters

in the identification process, and whether the friction errors have influence on other

identified parameters in the two-degree-of-freedom double pendulum system, which

is lightly damped.

We can assume that friction parameters are already known, and we want to iden-

tify the other parameters in our harmonic balance method. In this work, we de-

termined the friction in each pendulum bearing by a small amplitude free vibration

method. The free vibration test indicated that in the central arm, solely Coulomb

friction was involved, and in the second arm, solely viscous friction was involved. The

non-dimensional form of the friction parameters are listed in Table 3.1. As such, the

friction parameters were estimated by using free vibration decrements. Hence, we

applied the identification algorithm with known friction coefficients.

The result in Table 3.4 shows that the friction parameters, due to their much

smaller values compared to other parameters (less than 1/5 of other parameters),
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Table 3.4. Identified non-dimensional parameters by optimized identification process

and noise reduction provided that the friction coefficients are known.

 

 

 

 

 

 

 

 

 

 

  

— Identified values 'Irue values Errorx 100%

311 0.1178 0.1131 4.2%

312 0.0774 0.0711 8.8%

313 0.0829 — -

814 0.0185 — -—

315 _ 33123 + B14 0.0852 0.0820 3.9%

321 1.6040 1.6816 4.6%

B22 0.2646 0.2630 0.6%

B23 0.2840 — '-

B24 0.0483 - -

325 = 3833 + 334 0.2880 0.2913 1.2%     

have little influence on the overall result. This was also shown in [25]. It implies that

the small errors in other parameters can cause a large percent error in the friction

terms. Hence, the first result in Table 3.3 is believed to be reliable for the coefficients

of conservative and parametric excitation terms.

For further verification, a simulation of the double pendulum system based on

equation (3.2) and the identified parameters was examined. However, the simulated

double pendulum system is extremely sensitive to parameter settings, e. g. friction

parameter values. The simulation was done in Matlab by digital integration. The

simulation result was obtained (shown in Figure 3.10) under Cu = 1.02 x 103,

Cu = 0.00366 and C2 = 0.0485 and other parameters set as the identified values in

Table 3.3.

3.4.4 High frequency noise in unstable periodic orbits

In the previous application of the chaotic system identification process ([24, 25], the

single pendulum simulation) in which single (1. o. f. systems were examined, the
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Figure 3.10. Phase portrait of the simulated system with Cu 2 1.02 X 10’3,

011:0.0366 and C2 = 0.0485; dt=24.
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identification algorithm was noise resistant. However, a similar hypothesis could not

be applied to the present two (1. o. f. system. The reason is simply due to the strong

non-linearity of the double pendulum, and it can be explained by the difference in

the governing differential equations of the investigated single and double pendulums.

The governing equation of the horizontally excited single pendulum in Chapter 2

is

0+c/r6+1/rzsin0— fsintcosO=0. (3.25)

Although the parametric excitation term is nonlinear, the 6 and 6 terms are, on

the other hand, linear. The sinG term in (3.25) can also be regarded as linear in

terms of harmonic functions. Suppose the contaminated signal is composed of the

real signal and noise n(t): 0(t) = 0t(t) + n(t). The angular velocity and acceleration

of periodic orbits can be obtained by equations similar to (3.7)—(3.10). Hence, by

equations (2.8) and (2.9), the noise in the obtained velocity and acceleration jth sub-

harmonic is actually amplified by jw/k and j2022 /192, though n(t) is rather small in the

displacement signal. The overall signals of speed and acceleration are then considered

to be contaminated mainly by high frequency noise. Apparently, to the system (3.25),

where speed and acceleration terms are all linear, since in the identification matrix,

only the first K terms of harmonic order are used, the high frequency noise whose

frequency larger than K+ 1th harmonic term will be automatically filtered out, which

explains why the identification process is noise resistant for systems like (3.25).

However, in the double pendulum system (3.4), the identification process ap-

pears to be less noise resistant than the previous examples since velocities and ac-

celerations do not appear linearly in differential equations. Specifically, it is the

(03;)2 sin ((152 - <31) and 05,-” cos (032 — (251) terms that contribute most to the noise in-

accuracy of the result. Other high order terms also have similar problems of noise

50



amplification. It can be explained, for example, by the following FFT equation

H232 sin (<22 - (151)] = 350502 ® f[Sin (CD2 - 451)], (326)

where .771?) represents the Fourier transform of :r, and operator <8) represents convo-

lution. The convolution operation can be expressed by

+00

13(0) <8) 0(0) = / F(0)G(a — w)d0, (3.27)
—00

where F(a) and (1(0) are two integrable functions. By convolution, the high frequency

noise in each component is, therefore, mixed into the lower-frequency components

of the nonlinear terms. Furthermore, it actually amplifies the noisy influence of the

angular displacement, e. g. high frequency noise, since in the algorithm, the frequency

components of 6,- and 91' are obtained by equations (3.7—3.10). Hence, the truncation

of the first K harmonic terms could not reduce the disturbance of the noise.

One way to avoid noise contamination is to filter out the high frequency noise of the

displacement signals after UPO extraction and before convolution. By doing so, the

noise component can be effectively controlled. The algorithm was incorporated in the

identification process, and it turned out to be effective. For g = (05;)2 sin (32 — 451),

Table 3.5 compares the difference of the first four orders of Fourier series coefficients

of y with low-pass filtering before convolution and without filtering. The discrepancy

between the two methods is quite obvious and intolerable. It shows the necessity of

applying an adequate low—pass filter. On the other hand, we may also refer to some

optimization method such that only sub-harmonics with less noise contamination can

be selected into the identification process. The cut-off frequency was set to be 1/5f3

Hz. Figure 3.11 shows the velocity and acceleration frequency spectra of 91. It can

be seen that the acceleration’s high frequency noise is quite intolerable, and even
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with the low pass filter of 1 /5f3 cut-off frequency, there is still considerable noise

remaining.

Table 3.5. Comparison of .7: (y) with and without filter added.

 

 

 

 

 

 

       

    

i Coefl'icients of cos (ix) Coefficients of sin (32:)

without filter with filter without filter with filter

1 -3.2486 -0.3087 0.0328 0.0000

2 -34.0713 -27.1330 17.7370 17.7403

3 -15.6946 -8.6732 -23.6908 -23.2652

4 -31.2079 -24.1696 -10.2571 -10.6034
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Figure 3.11. FFT amplitude of the 6.1 and 01 with and without low pass filter applied;

the continuous line is FFT of signals with filter of 1/5f3 cut-off frequency; the dotted

line is FFT of signals without filter; It is the order of sub-harmonics.

Displayed in Figure 3.12 are also signals with and without the low pass filter for

the period-9 UPO. The low pass filtered signals are more smooth and assumed to be

closer to real signals. Meanwhile, an identification process without any filtering was
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Figure 3.12. Signals without and with low pass filter applied; (a) and (b) are 6.1

without and with filter; (0) and (d) are y without and with filter applied to each

convolution components; It is the kth sampled point of the orbit.
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examined by utilizing the same periodic orbits displayed in Figures 3.4—3.9. Listed

in Table 3.6 are the identified parameters. Coefficient B21 displays a larger error

because of the strong non-linearity of the related term and the relatively larger noise

contamination level (due to 01’s small oscillation amplitude and the sensitivity of

Optical encoders).

Table 3.6. Optimized identification with no digital filter applied.

 

 

 

 

 

 

 

 

 

  

Parameters Identified values True values Errorx 100%

B11 0.1125 0.1131 0.5%

812 0.0790 0.0711 11.1%

B15 0.0825 0.0820 0.6%

321 1.1611 1.6816 31.0%

322 0.2553 0.2630 3.0%

B25 0.2564 0.2913 12.0%

011 0.0003 1.02 x 10‘3 —

012 -0.0002 0.00366 -

Cg 0.0164 0.0485 —    
 

3.4.5 Digital differentiation and error reduction

Recurrence tolerance

Due to the limited length of the experimental data, not many periodic orbits were

extracted by setting the extraction error tolerance small, e. g. less than 5% in the

present experiment. Thus, one would naturally tend to increase the error tolerance

such that more periodic orbits can be extracted. However, with the increased error

tolerance and hence more, but less accurate, periodic orbits, the identification results

turned out to get worse for the double pendulum system. The observation is consistent

with [55]. Table 3.7 lists the identified parameters (Fourier series method) with 8%
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error tolerance of extraction (in this case, 58 different orbits extracted), and showed

large errors. For the present system, the coefficients Bu and B21 are parameters

of strong nonlinear terms, and therefore, identification of these two parameters are

usually less stable and more prone to error due to the fact that the strong nonlinear

terms can magnify high frequency noise and the recurrence error is a major source of

high frequency noise.

Table 3.7. Comparison of calculated values by Fourier Series (FS) method and Digital

Differentiation (DD) method when error tolerance is set as 8% with filtering and

optimization process applied.

 

 

 

 

 

 

 

 

 

      

Parameters FS ID FS Errorx100% DD ID DD Errorx100%

B11 0.0126 88.5% 0.1224 8.2%

312 0.0730 2.7% 0.0760 6.9%

315 0.0908 10.7% 0.0908 10.7%

321 1.4703 12.6% 1.6103 4.3%

322 0.2607 0.9% 0.2559 3.7%

325 0.2851 2.1% 0.2772 4.8%

011 0.0014 — -00003 —

012 0.0005 — 0.0016 —

C2 0.0053 — 0.0093 —
 

 

The large recurrence error resulted from the error tolerance of the UPO extraction.

Figure 3.13 (a) and (b) display the calculated angular velocity and acceleration curves

of a period-9 (Figure 3.5) orbit by means of the Fourier series expansion method. An

impulse caused by the recurrence error occurs in the periodic velocity and acceleration

curves, which is not true for the real periodic orbits. If we look at the velocity curve,

it can be expressed as

A a

90) = 90) + 06(t — tc) + nu), (3.28)

where 6(t) is the calculated velocity, 0(t) is the real velocity, ad(t — tc) is the impulse
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with amplitude a proportional to the recurrence error, to is time delay, and 17(t) is

noise other than recurrence, which is considered to be small due to low-pass filtering.

Thus, after digital filtering, and applying the Fourier transform, we obtain

25(9) 2* 17(9) + aexp(—jtcw),

where a is the expression of the impulse function in frequency domain and is a white

noise. Furthermore, this noise contaminates all sub—harmonics of the velocity curve,

which could not be eliminated by the low pass digital filter and could hence generate

large error in the identification result.

Digital differentiation

Through the previous analysis, for a large recurrence error, one would naturally con-

sider that a similar scenario would happen to other dynamic systems with strong

non—linearity. In this case, digital differentiation could be applied given adequate

sampling points per cycle, 0. g. a high sampling rate fs. In this experiment, there

were 100 points per excitation period. Hence, a five-point differentiation algorithm

was applied to obtain the derivatives and double derivatives of angular displacements:

= 8[f(x + h) — f(a: — 11)] - f(a: + 2h) + for - 2h)

12h

 f(:1:) + 0(h4) (3.29)

and

: 16[f(:r+h)+f(:r—h) —2f(:r:)] ——f(:1:+2h) ——f(:1:—2h) +2f(:1:)

12h2 + 0(h4).

(3.30)

flat)
 

The errors of these algorithms can be reduced with a smaller time interval 11. The

five-point algorithm can also reduce the influence of high frequency noise since it

involves the neighboring four points. The obtained curves are in Figure 3.13 (c) and
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Figure 3.13. Obtained 61 and 61 orbits by Fourier series method (a) and (b) by digital

differentiation method (c) and (d); the recurrence impulses occur at k=800 in (a) and

(b).

(d) for the extracted period—9 orbit. It is apparent that the recurrence impulses are

eliminated for both of the cases, and much less high frequency noise is displayed in the

velocity and acceleration curves. The corresponding identified parameters are listed

in Table 3.7, which is more precise compared to the result of Fourier series method.

However, the algorithm for digital differentiation itself introduces calculation er-

rors in equation (3.29) and (3.30). It could not predict precisely the small value

parameters, e. g. friction parameters, according to an identification test based on the

simulated noise-free double pendulum system. On the other hand, the Fourier series

57



method can identify all of the parameters with satisfying accuracy if error tolerance

of extraction is small enough (2% in this case). It shows that the digital differenti-

ation method is more stable, but not more accurate compared to the Fourier series

expansion algorithm.

Choice of sub-harmonics or harmonics

The identification result varied when a different choice of sub-harmonics was applied.

The problem was not so troublesome in previous applications of the harmonic balance

method [24, 25] where nonlinearity was simple and not as strong as the double pen-

dulum case. However, in the present experiment, different sub-harmonic sets led to

quite different estimated parameters. It is then necessary for us to seek some general

rules for judging the result.

In equation (3.18) and (3.20), the first M sub-harmonics of each UPO (sub-

harmonics are functions of sin (ix/k) or cos (ix/k) where 2' and 11: represent the ith

term in Fourier series of a period I: orbit. Here, we denote Mk as the truncated sub-

harmonics for a period-k orbit. The choice of Mk remains an issue. For a periodic

orbit whose period is a multiple k of the excitation period, if Mk 3 k, i. e. including

only sub-harmonic frequencies less than or equal to the driving frequency, the result

was tested to be the best for the examined pendulum system. One reason is that

these sub-harmonics consisted of a large part of the energy of the displacement sig-

nal, and hence, contained a relatively small portion of the noise contamination (see

Figure 3.11). Also, the noise components in the velocity and acceleration signals were

reduced according to equations (3.7—3.10).

The remaining question is whether it is possible to measure the identification

error and use it as an indicator of how ‘true’ the identification is. To quantify the

identification error, we refer to linear regression techniques, borrow some concepts in
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Figure 3.14. Identification residual é'g with each dot representing a subharmonic; the

horizontal position of each dot is the predicted value of (72, the vertical position of each

point is the identification residual; identification was done with low-pass filtering, the

Fourier series expansion and the sub-harmonic set whose frequency 5 the excitation

frequency.

statistics, and transform (3.18)-(3.22) into

6, = 21,55, —-(7,-,z' = 1,2, (3.31)

where é,- is the residual vector. Then, we can define the identification error 8,- as

_ llfilloo
i— 7 1

ll‘h‘lloo

where (7,- : 24,5, is the predicted vector of (7,. With the identification error defined,

the rule of thumb for judging a good identification is 5,- < Q}, where 6c is a positive
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critical value. cc = 10% was used in the experiment. Figure 3.14 displays the residuals

52 and the corresponding identification error 52 is 18.4% when all 140 sub-harmonics

were included in the identification, whose frequencies were less than or equal to the

driving frequency. Apparently, the results for B2]- for j=1, 2, 5, are not satisfying,

and the comparison in Table 3.8 and Table 3.3 also corroborates the rule of thumb

since B21 has a 11.2% error. On the other hand, the B13' parameters have 51 = 8.8%,

and are quite consistent with the result after optimization in Table 3.3.

Table 3.8. Identified parameters with the Fourier series method and low-pass filtering,

but without optimization to sub-harmonics set.

 

 

 

 

 

 

 

 

 

  

Parameters Identified 'D‘ue values Errorx100%

Bu 0.1178 0.1131 4.2%

812 0.0782 0.0711 10.0%

815 0.0861 0.0820 5.0%

321 1.4935 1.6816 11.2%

322 0.2562 0.2630 0.5%

325 0.2828 0.2913 3.4%

011 0.0001 1.02 x 10-3 —

012 0.0007 0.00366 —

C2 0.0147 0.0485 —    
 

Our problem is now how to optimize the identification process so as to improve the

accuracy, i. e. minimize the identification error. From the statistics point of view, we

have a good linear regression curve if the resulting residuals are distributed evenly and

randomly around the predicted values. For this purpose, an optimization algorithm

was developed to exclude the sub-harmonics terms which result in large residuals, and

retain the terms which consist of most of the sub-harmonies and should have small

residuals. The sub-harmonics having large residuals are very likely contaminated

heavily by noise. The optimization process involves the following steps:
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1. Given the set of sub-harmonics, do the identification process and find the max-

imum absolute residual value emax.

2. For a level of significance 0, which is a small value, remove from the sub-

harmonic set those sub-harmonics whose corresponding residual e > (1 —

filemaxc

3. Repeat the first step by using the remaining sub-harmonics, and compute the

identification error 8,.

4. If a, < 10%, then stop the optimization process and assume that the desired

result has been obtained; if not, go back to step 1 with the remaining sub-

harmonics set and repeat the optimization process.

For the investigated system, after three optimization processes with 6 = 5% (by

excluding 10 erroneous sub-harmonics), the identification errors were reduced to 81 =

8.1% and 52 = 9.4%. The corresponding results are listed in Table 3.3. Displayed

in Figure 3.15 is the residual distribution of e'é after optimization. Compared to the

identified values without optimization in Table 3.8 and Figure 3.14, the Optimized ones

have smaller errors, smaller residuals, and are more accurate. However, the proposed

optimization can not work well for all cases. After a few cycles of optimization,

if the identification errors are still undesirable, we should either use more precise

UPOS, or re-select the set of sub—harmonics before optimization such that the noise

contamination can be minimized. In order to obtain more precise UPOS, besides the

UPO extraction with smaller tolerance of error, we can also refine the extracted UPOS

[55]. But the refinement process may generate erroneous results for quasi-periodic

orbits and may not be adequate for limited data sets. For better selection of sub-

harmonics, one may choose only those sub-harmonics that have the largest amplitude

in the UPO acceleration FFT spectrum (also avoid those noise contaminated high

61



frequency harmonics, since it could only be noise). Furthermore, the selection could

be simplified by choosing the harmonics instead of sub-harmonics if most of the orbits

are composed mainly of the harmonics of the driving frequency fe.
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Figure 3.15. Identification residual (72 after optimization with each dot representing

a subharmonic.

3.4.6 Validation methods

Generally, most of the parameters of a nonlinear system are unknown to us. The

direct comparison discussed in previous sections is not available for most applications.

Besides, lots of the ‘true’ parameters in Table 3.1 were also estimated. Hence, we do

not know the exact errors for the identified values. Two other methods were applied
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here to verify the identified parameters and the effectiveness of the identification

algorithm. The first one is to verify our method by identifying the simulated double

pendulum system such that comparisons can be made based on identification results

and the phase portraits of the experimental and simulated systems. The second

method involves the linearized system properties, 8. g. natural frequencies.

Identification of the simulated double pendulum system

To verify the effectiveness of the identification process, a simulated system was also

examined with parameters set as the identified values listed in Table 3.3 except for

the friction terms (see Section 3.4.3). The error tolerance of extracted unstable peri-

odic orbits is 5%. The phase portrait has been shown in Figure 3.10. Some similarity

observed in the simulated system compared to the experimental phase portrait (dis-

played in Figure 3.3), e. g. chaotic behavior. Many detailed chaotic characteristics

were not available due to the inadequate experiment data. However, it turned out

that more and different UPOs could be extracted from the equally large, sampled

data of the simulated system, than from the experimental data set. The difference

can be explained by the sensitivity of the chaotic systems to parameter settings and

initial conditions. Meanwhile, for the simulated system, the comparison in Table 3.9

between the identified values and the parameter settings shows that all the param-

eters including the friction coefficients are identified correctly, which confirms the

effectiveness of this algorithm. The friction coefficients, probably due to their much

smaller values and the weakness of the least mean square method, are still hard to

calculate very accurately, and thus, have larger error percentages. With little noise in

the simulated data, the error can only come from the recurrence error of the extracted

periodic orbits. Also, it confirms the difficulty of identifying small friction parameters

in the experiment, since more noise contamination occurred in the experimental data.
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Table 3.9. Comparison of the identified values and the true parametric settings of the

simulated system with low-pass filtering and optimization applied.

 

 

 

 

 

 

 

 

 

 

 

  

— Identified Parameters setting Errorx100%

J01 (kgm2 5.767 x 10‘4 5.757 x 10—4 0.2%

J02 (kg.m2 4.310 x 10“5 4.228 x 10‘5 1.0%

B11 0.1166 0.1167 0.1%

812 0.0787 0.0781 0.8%

315 0.0848 0.0849 0.1%

011 0.0005 0.0 -

012 0.0038 0.00366 3.8%

B21 1.5943 1.6149 1.3%

B22 0.2568 0.2562 0.2%

825 0.2866 0.2868 0.1%

02 0.0429 0.0485 11.5%     

Linear properties

The linearized pendulum can also be applied to validate the identification results, e. g.

by comparing the natural frequencies of the linearized system. Suppose the pendulum

has only small-angle oscillations without an excitation force. By discarding the higher

order terms and neglecting dry friction, equation (3.4) can be simplified as

<21” + 311452" + 312951 - Ci2(¢2' - (61’) = 0

(22" + 821451” + 322951 — 02(¢2' - 451') = 0

(3.32)

Since our goal is to examine the natural frequencies, by neglecting the damping terms,

equation (3.32) can be further simplified to the form of

451" = —Bl2/(1 — 311320991 + B22311/(1— 811321)” (3 33)

$2" = B12321/(1— B11321)¢>1+ —B22/(1 - 311320992
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and the characteristic matrix of equation (3.33) is

( 0 1 0 0)

—B12/(1—B B) 0 B B /(1—B B )0
A = 11 21 22 11 11 21 . (3.34)

0 0 0 1

  \812321/(1’311321) 0 -B22/(1-311B21) 0)

The eigenvalues of matrix A are the natural frequencies of the linearized system

in non-dimensional form. The natural frequencies of the identified system were found

to be 1.336Hz and 2.904Hz. Through FFT analysis, the natural frequencies obtained

by the experiment of free vibration are 1.25Hz and 3.00Hz. Comparison in Table

3.10 shows that the natural frequencies match the FFT result from experiment and

the ’true’ values calculated by the settings of the double pendulum. It suggests that

the identified parameters, excluding the friction terms, are reliable for the purpose of

system linearization.

Table 3.10. Natural frequencies.

 

— Identified Experimental Error x 100% ‘true’

fn1(hz) 1.336 1.25 6.9% 1.292

fn2(hz) 2.904 3.00 3.2% 2.940

 

 

       

3.5 The energy balance method for identification

of the gamping coefficients

In chapters 2 and 3, the identification results were satisfying except for the small

friction coefficients. The inaccuracy of friction coefficients became worse for noisy
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experiment data. The reason is due to solution method, i. e. least mean square

method, which tends to give more inaccurate solution for smaller parameters, e. g.

the small friction coefficients in this study. Also, it showed that the errors in friction

terms, since they are much smaller than other parameters, have little influence on

other estimated values. Consequently, we apply an energy balance method to estimate

the damping coefficients.

Suppose we have a single d. o. f. system with a governing differential equation

= -1... — can — f(:r) — 71.00120) + 90), (3.35)

where k, c, f (.13) and fp(:r) are unknown, and c is a small damping coefficient. First, we

can apply harmonic balance method to identify the parameters. Multiplying equation

(3.35) by cos 7%- and integrating it over one cycle of a periodic orbit, it can then be

expressed as

ftt+T(:iE + kw) cos %dt =

(3.36)

—- (”The + f(:z:)} cos 94d: — ftt+T{fp(2:)p(t) + g(t)} cos @331.

Similarly, we can also obtain equations for sin 1%: functions. The unknown functions

f (11:) and fp(:1:) can be approximated by function series with unknown coefficients (see

Chapter 1), and the integrals become the corresponding sub-harmonics in the FFT

spectrum. Then, the equation (3.36) can be converted to a matrix equation similar

to equation (2.15). One of the advantages of the harmonic balance method is that it

can identify all the parameters simultaneously. However, smaller parameters are also

vulnerable to noise influence from other terms.

To eliminate the noise from other terms, with the parameters partially known

from the harmonic balance identification, we can refer to energy balance method [56]

for a second-step identification. For some periodic orbit D of (3.35), we want to find
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the energy generated or dissipated by each term in the equation over one cycle, and

we obtain

f0 idx = —kj€i:rd:c — ch ids: — fD f(a:)dx — .710 fp(:r)p(t)d:l: + fD g(t)da:. (3.37)

The 50', km and f (11:) terms represents the conservative terms. Hence, theoretically, the

work done by the conservative forces within one cycle is zero. Equation (3.37) then

becomes

ch :irdx = ~1£D fp($)p(t)d:r + fD g(t)d:r, (3.38)

where the left hand side of the equation is the energy dissipated by the damping

term, the right hand side is the energy input into the system by force and parametric

excitation. The integrals in (3.38) can be calculated. Thus, if we can obtain multiple

periodic orbits of the system, we can then solve the damping coefficients by the least

mean square method. Since we have obtained the quite accurate estimation of those

unknown functions in the harmonic balance identification, the damping coefficient

can then be identified more accurately by the energy balance method.

Table 3.11. Identified damping coefficients by the energy balance method.

 

 

 

 

 

— Identified Experimental Error x 100%

— C11 C12 02

The identified -0.0004 0.0045 0.0396

True values 0.000101 0.00366 0.0485

error — 23% 18%      

For the single pendulum system in Chapter 1, the identified damping coefficient

is cr = 0.0353, and the corresponding error is 2.1% which is much smaller than

result error of the harmonic balance identification. For multi—d. o. f. systems, we can
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apply a similar method to each differential equation, and obtain the more accurate

estimation of the damping terms. Table 3.11 listed the identified damping terms by

energy balance method. Apparently, the second-step identification obtained much

better results. But the error is still much larger than 10%. The reasons could be

noise contamination in the signals, or inaccurate estimation of the ‘true’ values which

were also estimated by the small amplitude free vibration.

3.6 Concluding remarks

A double pendulum experiment was examined for chaotic system identification. The

investigated system was a multi-degree-of-freedom system with strong non-linearity,

e. g. mixed (0,, ¢,' and ¢,-’ non-linearity with whirling in 51 space. However, only

displacement signals were directly measured. To adapt to these new challenges, some

modifications were added to the harmonic balance identification algorithm:

1. The identification appeared to be less noise-resistant in this case, mainly due

to the strong nonlinear term of ((1),!)2 sin ((1)2 — (91) and 05,-” cos (0)2 - (1)1). The

high frequency noise contaminated the strong nonlinear terms at lower frequen-

cies without adequate low pass filtering of each component before convolution.

2. A digital differentiation algorithm was developed and applied to the experimen-

tal data in order to make the identification results more robust even with large

recurrence errors in the extracted orbits. It could be of use for limited data

sets. However, the digital differentiation algorithm also introduced differentia—

tion error, and thus, did not give accurate values of friction terms.

3. Choices of sub-harmonic terms also had influence on the identified parameters.

Inappropriate selection of sub-harmonics can generate poor results. To avoid

poor results, the key factor was to avoid noise contaminated sub-harmonics. For
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the present system, the sub-harmonics of frequencies less than the excitation

frequency were selected to avoid noise.

4. Linear regression techniques were applied to quantify the identification error 6,,

which reflected the error of the identified parameters by examining the residues

and the predicted values. Based upon the identification error, an optimization

algorithm was proposed to improve the result. An identification error less than

10% indicated an rather satisfying result. However, optimization is limited by

its statistical properties, and can not work for all data to satisfy the rule of

thumb.

Friction was a problem in the identification process. For slightly damped systems,

since the friction factors were much smaller than other parameters, the identification

could not produce accurate values of the friction terms. Noise and recurrence error

were the two factors that contributed to this error. However, the harmonic balance

algorithm is robust, and the validation process showed that the friction error had

little effect on other identified parameters. Based upon the identified non-damping

parameters, the damping coefficients were identified again in the second step of the

identification—the energy balance method which exploits the energy balance and dis-

sipation of the vibration system. The results were tested to be improved. Meanwhile,

the convergence of the identification algorithm was not fully discussed in the exper-

imental study, mainly due to the direct comparison between the identified and the

measured parametersln lien of convergence, the model was verified using residuals,

comparisons to known parameters and linearized properties. Through the experi-

ment, it can be concluded that the examined identification method can be applied

to systems with chaotic response, strong non-linearity and multiple degrees of free-

dom. With adequate modification, the identification result could be improved, and

the quality of the result can be quantified by the identification error.
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CHAPTER 4

Simplification to Frequency

Domain Method

4.1 System identification by frequency method

Pure frequency based parametric identification method has long been limited to non-

chaotic systems. The reason is that, generally, frequency domain methods are based

upon frequency response functions, or the harmonic balance method. For linear sys-

tems, their responses to any kind of dynamical load (which can be expressed as the

sum of simple loads, e. g. harmonic loads), by superposition, is equal to the sum of the

responses of each simple load acting separately. Thus, for linear systems, the harmonic

balance identification is equivalent to using frequency response functions (FRFS) if

multiple frequencies of excitation were used. The FRF is perfect for linear system

identification, since the FRF can be easily generated by an impact response. For

weak nonlinearity, Richard [12] and Kerschen [11] developed the conditional reverse

path (CRP) method based upon the FRFs, which seperates the response into linear

and nonlinear response parts. In [18, 19, 20, 21, 22], the harmonic balance method

was proposed to identify non-chaotic nonlinear systems, because it requires steady

state responses, i. e. periodic orbits. Similarly, Plakhtienko [16, 17] and Ghanem [23]
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developed respectively the special weight method and the wavelet analysis method.

All of the three methods have a common feature: a basis of orthonormal functions.

Furthermore, they all require a periodic response, though it is not an obvious require-

ment in the latter two methods. Discrete signal reconstruction by the orthonormal

basis requires periodic orbits. It inspired Yuan and Feeny [24, 25] to extract unstable

periodic orbits (UPOS) from data and then apply the harmonic balance method for

identification. This method was examined by whirling and experimental systems in

previous chapters. It can be regarded as a hybrid time-frequency (HTF) method.

The idea comes from the knowledge that hyperbolic chaotic systems, though having

no steady state periodic orbits, have chaotic responses with dense sets of unstable

periodic orbits inside.

In previous research [24, 29] and previous chapters, the HTF method has been

tested successfully on various chaotic systems, either by simulation or by experiment.

Although the method is capable of being applied to any chaotic system, the process

could be time-consuming since it requires extracting UPOs from the chaotic data. For

better results, it requires more accurately extracted UPOs and more orbits. Therefore,

the method requires a large amount of the collected data. Furthermore, for large (1.

o. f. systems, recurrences are less frequent, meaning UPOS of low periodicity are

visited less often. These drawbacks make it hard or impossible for fast parametric

identification, or real-time identification. Hence, one would like to investigate if it is

possible to skip the process of extracting unstable periodic orbits by applying more

chaotic properties, such that the harmonic balance method can be more conveniently

applied to nonlinear/chaotic systems.
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4.2 More chaotic properties and the improved fre-

quency domain method

The UPOS are extracted by satisfying the recurrence error tolerance,

IISUC + HT) - 509)” < 6, (4.1)

where S(k) = [ mag) $0,441,) $0; +de)] is the displacement signal in

an m dimensional embedding space [52], T is the excitation period, Td is the time

delay for embedding dimension, and 6 is the tolerance of recurrence error. Hence,

we say a close approximation of the UPO is found when equation (4.1) is satisfied.

The extraction method is usually targeted for short term periodic orbits. For long

periodic orbits (11 large), the extraction can be much simpler.

As we know that the set of unstable periodic orbits is the dense skeleton of the

hyperbolic chaotic attractor, it actually implies that for any chaotic orbit (of some

hyperbolic chaotic attractor with UPOS inside), a UPO can be found in any neigh-

borhood of the chaotic orbit, and the extracted UPOS can be utilized for chaos in-

vestigation [57, 53, 58, 59, 60]. Here, we will use this property and also add a claim

that:

Given a bounded hyperbolic chaotic set, assuming unstable periodic orbits inside

the attractor, any chaotic orbit within some time interval nT, where n is a large

integer, can be ‘approrimated’ to some extent by an unstable periodic orbit with 717’

periodicity with a similar frequency spectrum. The similarity increases as it gets

larger.

The word ‘approximate’ here generally can not be examined by the rule in (4.1) for

extracting UPOS, rather by the frequency spectra: the end-points may have significant

error, but the most of the orbit is a close approximation to a period-n orbit.
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Figure 4.1. The left shift one dimensional map

The claim comes from the fact that every chaotic set can be converted to equivalent

symbolic dynamics [52, 61]. With symbolic dynamics, the hidden properties of chaos

emerge clearer before our eyes. For instance, we can take a look at a one dimensional

map (shown in Figure 4.1) expressed by

22:, 0 S a: < 0.5

:r(k+ 1) = . (4.2)

2:1: - 1, 0.5 S :r < 1

This map is conjugate to the left shift operation of binary numbers in the interval

[0, 1) in symbol dynamics,

$(k +1) = :1:(k) x [10]), mod 1, (4.3)
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where the subscript b represents binary numbers. The uncountable set of irrational

numbers in [0, 1) forms the chaotic attractor. On the other hand, the countable set

of rational numbers in [0, 1) form the set of the unstable periodic orbits, and it is

dense in [0, 1). Since the set of irrational numbers is a set of Lebesgue measure 1, the

probability of observing a unstable periodic orbit is zero. However, for any chaotic

orbit x(t; :00) of length n starting from an irrational number 1:0, there is always some

periodic orbit y(t; yo) with periodicity 11. starting from rational number yo, such that

[[yO - 2:0” < 2‘", which implies the first it binary digits of :00 and yo are identical.

Comparing :r(t; :30) and y(t; yo), we observe that, for the first 71 points of these two

orbits,

|1'(k; 4:0) — ya; 40)) < 2—<"—k>,vxc s n. (4.4)

The error between the chaotic orbit and the periodic orbit increases as t increases.

For t = n, since y(t;y0) is a period n orbit, y(n;y0) = yo z :00, whereas, :r(n;:(:0)

becomes some number other than 320, and thus, forms a ‘recurrence’ error. For the

extraction of short periodic orbits, we can use the rule of (4.1) by choosing chaotic

orbits with small recurrence errors. However, the extraction of UPOS is harder for

high (1. o. f. systems, and can only utilize a small part of the data for identification.

Indeed, it has been observed by Yuan [62] that long chaotic orbits were good

for parametric identification by the harmonic balance method, though they did not

satisfy the UPO extraction rule. It then raises the question whether the long chaotic

orbits are usable for UPO approximation. For any long orbit x, i. e. large n number,

given an error level 6, according to inequality (4.4), there exists a K, such that for

the first K points of that chaotic orbit, the error between the chaotic orbit and some

period-n orbit satisfies

“6(550) — y(k; yo)” < 27%“ < wk 3 K < n.
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It implies that the first K points of a sampled chaotic orbit :1:(t; 2:0) of length n are

very close to the corresponding points of some unstable periodic orbit y(t; yo), and

the rest of a: may deviate from y. Hence, we can express a:(t) by

1705:1130) = y(t; 90) + 610) + 62(0) (4-5)

I(tn‘ )-y(t;y ), ts K
where el and e2 are error functions, and el(t) = O 0 ,

0, t > K

0, t S K

62(t) = . Function cl represents the first K points

I(t;130)- y(t;yo), t > K

of the chaotic orbit where the approximation error is small and [el(t)l < 6. Function

e2 represents the tail part of the chaotic orbit where the error to the periodic orbit

tends to increase beyond the tolerance of error 6, but is still limited [82(t)] < 1. In

the frequency domain, the discrepancy between :1: and y is

NW; $0) - y(t; 90)} = 70910)} + jr{¢’2(t)}- (4-6)

Obviously, if we can manage to reduce the error caused by the tail part, i. e.

(n — K) << n, the majority of the chaotic orbit can be a good representation of some

periodic orbit. As for the tail part, in the frequency domain, the recurrence error

generated by e2(t) can also be neglected if (n — K) < 11. Hence, in the frequency

domain, the chaotic orbit :r(t;;r0) becomes a close approximation to y(t;y0). The

solution to this problem is simply a large n, i. e. a long chaotic orbit. For instance,

suppose the tolerance of error 6:001, and n=100. There are only six tail points

out of the length-100 orbit with errors greater than 6, and in frequency domain, the

amplitude of the recurrence error e2 is less than 0.02, which is acceptable. Therefore,

every long chaotic orbit in the left-shift map is a good approximation of some unstable

periodic orbit, and the approximation is better if n is larger.
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This simple example based upon the shift map on the unit interval can be gen-

eralized since all the chaotic systems are equivalent to some corresponding symbol

dynamics. Thus, the claim is supported.

The claim simplifies the investigated systems’ identification method, and turns it

into a pure frequency method. Assuming a single chaotic data {S(k)} was sampled,

the chaotic data itself is a very long approximated unstable periodic orbit in the

frequency domain, and can be used directly for identification purposes. To acquire

more UPOS within the limited data and improve the identification results, we can

divide the orbit into pieces by some interval 7' = nT. For each piece, we can apply

the harmonic balance method and get the same equations as those in (2.15). However,

without inequality (4.1) satisfied, the recurrence error can cause jump noise in the

frequency spectrum, and thus generate inaccuracy for identification process. This

shortcoming can be overcome by choosing nT large enough such that the jump noise

influence to the whole power spectrum is reduced to an acceptable level.

It is now clear that a pure frequency method is justified. The pure frequency

method for chaos is intimately tied to our understanding of unstable periodic orbits

and the hyperbolic chaotic set.

4.3 Calculation examples

We will use two examples here to examine the improved method. The first one is

a simulated single pendulum with horizontal base excitation. The second example

is a double pendulum experiment. In both of the systems, a linear regression based

optimization method was applied to improve the identification results.
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4.3.1 Base-excited single pendulum

The simulation was based upon a horizontally excited single pendulum. Its non-

dimensional differential equation is

9+ 2€/r6+1/r2 sin6 — fsintcos6 = 0, (4.7)

where t = (07, w is the angular excitation velocity, and 1' is the actual time; 6 is

the viscous damping coefficient; r = w/wN, (0N = mge/J is the natural frequency

of the linearized system, m is the pendulum mass, e is the the centroid offset from

the pendulum hinge, J is the moment of inertia about the hinge point. Meanwhile

coefficient f = mea/J, and a is the excitation amplitude. For simplicity, we denote

cr = 25/r as the new non-dimensional friction coefficient. The function f sintcos 6 is

the nonlinear parametric excitation term, and 1/r2 sin6 is the autonomous nonlinear

part. In the simulated system, or = 0.036, f = 1.52 were used. Assuming viscous

damping and displacement nonlinearity, the differential equation is

Cris + fanl(:r) + fnnlc‘) cost + fpnl(a:) sint = —:15, (4.8)

where fan, is the unknown autonomous part, fun) and fpnl are the unknown para-

metric excitation parts. The unknown functions can be approximated by

N

fanl a: Z Qi¢i($)a
(4.9)

i=1

N

fnnl z 2 ni¢i($)a (4.10)

i=1

N

fpnl z E Pi¢i($)a
(4.11)

i=1
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where ¢,(:L') is a linear interpolation function:

W, (k—1)d<a:<kd

Kiilg—d—‘E, kdgx<(k+1)d-

0, otherwise

(MSU)

 \

Hence, the differential equation is to be identified in the form of

N N N

0rd; + kr + Z q,¢,-(:I:) + Z n,(,b,-(2:) cost + Z p,¢,-(:1:) sint = —:'13. (4.12)

Meanwhile, since angular displacement is a S1 signal, we used 2 = exp (i6) to solve

for 6 since it is much easier than the original method (see 2.2). Two sets of data were

examined: the noise-free data and the data with 10% random noise which was a noise

source with uniform distribution and the amplitude equal to 10% of the amplitude

of the signal. Compared to noise with normal distribution, the uniformly distributed

noise has more high frequency components and easier for computer generation. The

long data was cut into equal-length pieces with r = 60T. The 1' value can be selected

randomly as long as the periodicity is large enough for UPO approximation (see

previous section for error estimation) such that the recurrence impulse is small enough

in the frequency domain. Meanwhile, we should also avoid large 7' such that adequate

number of UPOS can be obtained for identification purposes. For the noise free data,

the identified cr = 0.0352, and the unknown functions were displayed in Figure 4.2.

Compared to the HTF method in Chapter 2, the error is even smaller. Figure 4.3 also

compares the Poincare’ sections of the original system and the identified system. The

chaotic property of the two systems is quite similar. For the data with 10% random

noise, the identification algorithm shows strong noise-resistance. The estimated or is

0.0343, and the identified stiffness functions are displayed in Figure 4.4.
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Figure 4.2. Identified functions by interpolation functions on noise-free data, (a) nk,

4.3.2 Experimental double pendulum

The second example is a double pendulum system with vertical base excitation. It

is both a whirling and a multi-degree-of-freedom system. A 100T orbit length was

selected. During identification process, the high frequency noise was filtered out by

a digital filtering technique, and linear-regression-based optimization was applied for

a better result. The identified parameters are listed in Table 4.1 in comparison with

the ‘true’ values (the values were measured by other methods, and thus, may not be
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the exact parameter values, see Chapter 3).

Shown in Figure 4.5 is the residual plot of the first matrix equation. It can be seen

that the residuals are much less than 10% of the maximum predicted value, implying

a good identification result by the 10% rule of thumb. Actually, the small residual

values were obtained even without using the optimization process. It supports the

claim that any long chaotic orbit is close to some unstable periodic orbit.

4.4 Concluding remarks

In this chapter, we improved and simplified the parametric identification method

for chaotic systems [24]. Assuming hyperbolic chaos for the investigated system,

due to properties of a chaotic attractor, the set of unstable periodic orbits forms

a dense skeleton of the attractor. Also, a long chaotic segment is arbitrarily close

to a UPO, except at the tail or head part, and is approximately the same in its

frequency spectrum. Thus, balancing harmonics of an arbitrary long segment of
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chaotic data simplifies the identification method from a complicated one involving

harmonic balance method and extraction of UPOS to a pure frequency method applied

to a long chaotic segment. Simulation and experiment were examined to verify this

improvement. The method was seen to be quite noise resistant.

With this simplification, previous research on whirling systems, and the optimiza-

tion of the identification by refining the set of sub-harmonics, the harmonic balance

method has been tested to be a very powerful and simple tool for the identification

of strongly nonlinear systems. The new discovery also unites the identification pro-
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Table 4.1. Comparison of the true values and the identified parameters by new

frequency method.

 

 

 

 

 

 

 

 

 

  

Parameters Identified values True values Errorx100%

311 0.1125 0.1131 7.8%

812 0.0770 0.0711 8.3%

815 0.0821 0.0820 0.1%

321 1.6091 1.6816 4.3%

822 0.2539 0.2630 4.5%

B25 0.2839 0.2913 3.5%

(111 0.0003 1.02 x 10"3 —

C12 -0.0010 0.00366 —

Cg 0.0077 0.0485 -     

cess of periodically excited linear and nonlinear systems under the commonly used

frequency domain method, i. e. the harmonic balance method.

Meanwhile, the research prompts a great amount of future work. Compared to

some other previous frequency methods of nonlinear systems [12], the present method

has no limitations to strongly nonlinear or chaotic systems. However, at present, the

harmonic balance method can be applied to nonlinear systems only if under periodic

excitation. For linear systems, the present method can be simplified to frequency

response functions (FRF) method, and can be applied to free vibration (under im-

pact) and random vibration (under random excitation, e. g. ergodic random signals)

cases. For nonlinear systems, identification under impact or random excitation are,

at present, still limited to weak nonlinearity, and are not available to the harmonic

balance method.

Nevertheless, the requirement of periodic orbits could be changed in the future if

we look at the periodic response in the frequency domain. We can say linear systems

have stable frequency response functions (FRF) under different excitations, due to

the fact that their stable responses are always stable periodic orbits with no change of
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shape. On the contrary, the nonlinear systems do not have structurally stable FRFs

under different excitations. Their FRFs are liable to change for different excitation

amplitudes, and are not defined for random excitation. The extreme representation

of the instability is chaotic systems, in which the stable responses are no longer stable

periodic orbits, but chaos with embedded UPOS. Actually, we assume that a single

free vibration after a single impact is not adequate for nonlinar system identification

unless we know exactly what type of nonlinearity that the system has. Instead, we

would refer to a series of impact vibration signals, e. g. systems under periodic impact

excitation. For randomly excited systems, the case is more complicated. We believe

that some analogue can be made between chaotic systems under periodic excitation

and nonlinear systems under random (ergodic) excitation.

84



CHAPTER 5

The Reduced Order Models of

Nonlinear Systems Based on

Proper Orthogonal Modes

5.1 Need for reduced order models

As the degree of freedom increases, the numbers of parameters increases, and the

complexity of the analysis and identification is magnified. A good way to overcome

these issues is with reduced order models. As such, with increasingly large system

order, at some point, reduced order modeling becomes mandatory.

In this chapter, we use proper orthogonal decomposition (POD) as the vehicle

for reduced order modeling. The parametric identification is then performed on the

reduced order model itself, thus marrying the POD with parametric identification.

In what follows, we review the POD: its strengths and shortcomings. We then

propose an enhancement of POD reduced order modeling that allows the identified

system to be applied to conditions beyond those for which the POD was performed.
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5.2 Proper orthogonal decomposition introduc-

tion

Proper orthogonal decomposition, or Karhunen-Loeve decomposition, has been widely

used tool for empirical modal analysis. As a statistical method utilizing the correlation

matrix derived from a set of measurement histories, POD leads to proper orthogonal

modes (POMS), which are taken as empirical modes, from the eigenvectors of the

correlation matrix, and the corresponding energy level of each mode, known as proper

orthogonal values (POVS), from the matrix eigenvalues. For linear systems with

evenly distributed mass, POMs actually represent the linear normal modes (LNMS)

[26]. Therefore, POD can be used as modal analysis tool [27, 28, 29, 4, 30, 31]. In

[31], a weighted POD method was proposed to show the common nature between

POMs and LNMs. Meanwhile, since its introduction, POD has been widely used in

turbulence as modal reduction tool [3, 32, 33], and recently in structural dynamics

[34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

The process of finding POMs is very simple. For a random field 6(23, t) defined on

a spatial domain (2, the field can be decomposed into two parts by

9(1'. t) = (1(1) + 19(1“. t). (5-1)

where (1(1) is the mean value, and 19(x,t) is the oscillation part. The snapshot of

19(2‘,t) in time tk, k=1, 2, ..., N, is denoted as 19,,(2‘). The objective is to find a

function ¢(:r) which is most similar to the set of 19,,(22) on average. It can be obtained

by solving the following integral eigenvalue problem:

72(19k(.1).19,(z))3(z)d. = 14(4). (5.2)
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jn 62min = 1, (5.3)

where (19k(:c)19k(z)) is the averaged cross correlation function, and the equation (5.3)

is an added normalization condition to make the solution unique.

Solving (5.2) and (5.3), we can obtain eigenfunctions ¢,~(a:), and corresponding

eigenvalues A,. The (13,-(2:) is the ith proper orthogonal mode, and the corresponding

A, is the proper orthogonal value of this mode under the collected data set. The

mode indices i are ordered by the values of the POVs, from largest to smallest. The

POV )1,- also shows how much energy lies in that mode. The total energy is defined

by 23:1 Aj, and the share of energy in each mode is A, /297:1 Aj.

The signal 19,,(93) can now be represented in terms of 03,-(12) by

1

29;.(4) z Z 939)) (1:), (5-4)

j=1

where the coefficient aj = (6(x,t),¢j(1:)). The number of significant modes l is

generally determined by 23:1 )1j greater than, for example, 99.9% of the total energy.

In practice, the data is discretised in both time and space. Thus, for m observa-

tions of an n dimensional vector :5, the ensemble of the signal becomes a matrix

$11 xlm

X=lr1 2;}.1= E 2 . (5.5)

xnl - 5 . xnm

If :5 has zero mean (:5 is the varying part of some field variable), then the covariance

matrix S is defined as

s = ~1—xxT. (5.6)
m

The POMs and POVs are now the eigenvectors and eigenvalues of the matrix S. For

high dimensional systems like turbulence, the matrix can be huge, and a direct solu-
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tion for eigenvectors and eigenvalues is quite difficult. In this case, another method

was introduced by Sirovich [63], but the details are not to discuss in this dissertation.

With the POMS as empirical modes, we can then apply them to build reduced

order models (ROMS). The dissertation research on POD and parametric identifica-

tion is quite different from the POD method in fluid turbulence research, the latter

of which is mainly a tool for model order reduction from PDES to ODES by POMS

and the Garlekin method [33]. The investigation in the dissertation is a further step

in building reduced order structural models by POD without necessarily requiring

knowledge of the continuous system. Assuming no, or partial, knowledge of the

governing equations of the systems, we try to reconstruct the systems by building

differential equations, based upon the empirical modes, expressed as

Ms} + Ca + K45 + 5.107. a) + 5.26. 5160) = 470). (5.7)

where all of the coefficients are unknown, functions fnl and fn2 are the nonlinear

functions, and y}(t) is the external excitation force with known excitation frequency,

y‘fit) is the parametric excitation. We will then need a parametric identification

method to find the best suitable values for the unknown coefficients. For simplicity,

the systems investigated here are free vibration systems with no damping. The reason

is that this is the initial investigation of a vast issue. The free vibration systems

without damping can also display nonlinear normal modes under bounded initial

conditions [64, 65, 2], which is a good tool for comparison with POMS. Therefore,

equation (5.7) is reduced to

M53 + K55 + fn1(a‘:’) = 0. (5.8)

The linear part of the model involves relatively few problems. However, there are
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questions regarding nonlinearity. First, what kind of nonlinearity Should be assumed?

Even though we know the physical nonlinearity of the original system, it is not clear

what form it will have when transmitted into the new modal coordinates. Thus,

function series, such as polynomials, are needed to approximate the nonlinearity.

Polynomial functions can be functions of displacement or velocity. Generally, it is

necessary to know what kind of nonlinearity is involved in the unknown systems.

This is why we treat the reconstruction process as a ‘graybox’. Second, for the

approximation function series, any unnecessary term should be discarded based upon

a priori information. The major reason is not for simplicity, but for their influences

on the dynamical responses, such as chaos, bifurcation and other nonlinear behaviors

sensitive to parameters. Sometimes, the nonlinearity approximation needs guesses

and trials, at the present research progress to approximate the dynamical responses

of the original system. Third, for the reconstructed reduced order models, one would

like to know to what extent it can represent the original system. It is a problem

especially for systems with strong nonlinearity. The reduced order models may not

work well under different initial conditions. We will discuss these problems later.

Even with many uncertainties and unknowns, POD is popular in modeling and

modal analysis because it is simple and empirical. For any system, linear or nonlinear,

it gives empirical orthogonal modes of the dynamical behavior, which can be used to

set up empirical governing equations, or for detecting the active modes in the vibra-

tion data. It is especially useful for analysis of complex structures or fluids. Structural

dynamics and fluid turbulence models are continuous and high dimensional. For the

turbulence case, the dynamics is also chaotic [66]. Usually, the dynamical governing

differential equations of those systems are hard to obtain, or hard to analyze. Thus,

one has to refer to approximation methods for analysis, either by discretisation meth-

ods like finite element analysis, or by reduced order models, e. g. the POM method.

The finite element method is more direct and usually accurate. However, it requires
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complex processing, and sometimes, can not give accurate simulation if the systems

are complicated, or chaotic. On the other hand, POM reduced order modeling is

empirical, as it obtains proper orthogonal modes through experimental data and re-

sults in a small number of the governing equations based upon the modal coordinates

of the empirical POM. The POM method treats a system like a gray box (known

basic dynamical mechanism, unknown global governing equations and parameters),

and it gives us functional models that can approximate the dynamical behavior of the

unknown systems. We can see that the large scale discretization and ROM methods

both have advantages and have different applications. However, in many cases, the

reduced order models are not inferior to the other discretisation methods, and those

models are much easier to simulate since they are composed of ODES, instead of

PDEs

5.3 Improving POD for strong nonlinear systems

5.3.1 Limitation of the POD

Proper orthogonal decomposition is basically a linear statistical method. When ap-

plied to nonlinear systems, POD has its own limitations. Unlike linear systems,

displacement-response configurations of nonlinear normal modes vary with the initial

conditions, implying that POMS of nonlinear systems vary with the initial conditions.

Therefore, the reduced order model from POM under one data set may only be suit-

able for initial conditions within a small neighborhood in the phase space of those

that generated the sampled data. Beyond this neighborhood, the approximation de-

teriorates due to nonlinearity. This can be a shortcoming of the POM-based models,

especially for systems with strong nonlinearity.

In contrast, NNMs are varying curved surfaces instead of planes in the phase space.
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One may consider NNM based reduced order models for more precise prediction of

system behavior. The NNM is a useful tool for theoretical modal analysis [64, 65, 2] of

nonlinear systems and model order reduction in NNM modal coordinates. However,

compared to POM model order reduction, it is complex and time consuming, and

requires clear knowledge of the governing equations of systems. For unknown systems

with strong nonlinearity, it is then necessary to find a way to improve POM based

models for better prediction and applicability under varying initial conditions, which

provides robustness of the reconstructed reduced order model. To investigate this, we

focused on two nonlinear systems: a two-mass system and a mass-pendulum system,

both of which were investigated under the initial conditions exciting only the first

nonlinear normal mode, such that Single d. o. f. reduced-order models can be built,

instead of reconstructing the original two (1. o. f. systems. For the former system,

the study focused on the limitation of the reduced-order model based only on one

POM, and then developing a new modeling method with an added constraint. The

purpose of this example is to Show whether the added-constraint method can improve

the accuracy of the reduced-order model as well as expanding the applicability of the

model under more initial conditions. For the latter example, the study focused on

how to treat unknown nonlinearity in the new models: nonlinearity approximation

with the constraint coordinate included, or nonlinearity with the constraint excluded,

which simplifies the nonlinearity approximation since there is only one degree-of-

freedom involved for this example. By the two examples, the POM-only models and

the proposed POM added-constraint models were investigated by low dimensional

systems. Investigation on these simple systems will provide a theoretical basis for

further study on high dimensional systems.
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5.3.2 The example of a two-mass system with nonlinear

spring

We consider a two-mass system with the differential equations

5131 = —2:l31 +1122 —:1L"‘13

3

(152 = 1‘1 —2:r2

(5.9)

where m = 1, and k = 1. In [2], the NNMs and modal differential equations of

equation (5.9)were solved for small amplitude vibration.
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Figure 5.1. Phase portraits of the original system (‘+’), the POD only model (the

dashed line), and the POD-constraint model (the dotted line) under the 5th initial

condition.

To build a reduced-order model for this system, we will only consider the first
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Figure 5.2. First NNM displacement shapes in y1, y2 coordinates, number 1—5 corre-

spond to the five initial conditions.

mode with different initial conditions. Assuming that the system is unknown to us

except that it has cubic nonlinearity, the goal is to build a single d.o.f. model for the

first mode, and make it applicable for general initial conditions on the first NNM. We

used five different initial conditions for the simulation. With zero initial velocities, the

five initial displacements were (1, 1.3833), (1.5,2.9250), (1.75,4.0365), (2.0,5.4667),

(3.0, 17.0). The reduced order model based on POD was done under the fifth initial

condition only.

For the two (1. o. f. system, there are two POMS: p'i and p3. The transformation

matrix A can be defined as

A=Wzfi fiél
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Hence, the modal coordinates can be defined as

37 = AEE, (5.10)

y :r

1 = AT 1 . (5.11)

92 332

For the simulated example, we obtained 1)] = ( —0.990 0.141 ) and P2 =

( 0,141 0,990 ). The POM p3 is the dominant POM, and consists of 99.7% of the

—0.990 0.141

total energy. Hence, the matrix A = . The modal coordinates yl,

0.141 0.990

yg obtained were y1 = —.990:1:1 + 0.141132 and y2 = 0.141151 + 99032. We can then

use new coordinates to transform the original differential equations into

9" =9 9 .y1 1(1 2) . (5.12)

92 = 9201.92)

As y2 accounts for a greater portion of the total energy, according to the original

POD, the yl would become significant, and the two (1. o. f. system could be reduced

a single (1. o. f. system in terms of y2 in equation (5.12). The dynamical behavior of

the original two-mass system could be approximated by yz only, using

= A . (5.13)

However, if the y2 mode is not sufliciently dominant, the reduced order model based

only on the linear y2 and equation (5.13) can not predict the system behavior satis-

factorily.

Suppose the coefficients of the ODES, such as equation (5.9), are unknown. Then,
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the transformation of the coefficients in equation (5.12) will produce complicated

expressions of the original parameters. To bypass this complication, the POM modal

projection and the parameter estimation can be coordinated as follows. The form of

the dominant equation can be expressed by

3 .

92 = 163/2 + Z njyé. (5.14)

j=1

where the parameters are unknown before identification. Assuming displacement

signals measured, a parametric identification method can then be applied. For this

example, the direct identification method [5] was used, since the simulation signals

were noise free and in free vibration. Digital differentiation was applied to obtain

velocity and acceleration Signals.

Displayed in figure 5.1 are phase portraits of the original two-mass system and the

one d.o.f. identified POM model under the fifth initial condition. A discrepancy be-

tween the two systems is visible in the behavior of yg. On the other hand, under these

initial settings, the behavior of the two-mass system is apparently one dimensional.

Meanwhile, Figure 5.2 shows the changing modal displacement shapes under these

conditions. The displacement mode Shape of the fifth condition is the most differ-

ent among them. Obviously, the modal surface is quite curved, and the POM model

(5.14) under the fifth condition can not be applied to other initial settings. This raises

the question of how to improve our model without introducing extra dimensions to

make the POM model more applicable to other initial conditions.

Traditionally, for systems like this one, POMS have to be re-calculated to recon-

struct the model under other conditions. To increase the applicability to a range of

initial conditions, the proposed solution is to add a constraint to the modal coordi-

nates. Its inspiration comes from solving for individual NNMs [2]. Basically, the idea

is to introduce a constraint coordinate yl obtained from the POD. However, unlike
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an extra d.o.f., it is a coordinate dependent on modal coordinate y2 and velocity 3:12,

and it can be expressed by

M M 'k

91: f(y2 92) ~23 Z aj,ky§?)2- (5.15)

j=0k=0

The constraint coordinate yl increases the accuracy of the POM model in addition

to enlarging its applicable domain in the phase space.

In the Simulation, a cubic polynomial was used to approximate the constraint

surface, and the coefficients a“, were estimated by the least mean-square method.

The model differential equation was also modified by introducing 311:

3 3 Wk
9 =2— 2 .. a- 933/1 3-0 k—O M 2 2 , (5.16)

372 = klyl + km + n(—0.990y1 + 0.141y2)3

where k1 and k2 are unknown coefficients of the linear terms, and n is the coefficient

of the known 11:13 nonlinearity. substituting (5.15) into equation (5.16), we can obtain

3 3 ' k 3 ' k 3

y2= ’((92 92) (8120 Z aj,ky239'2 + ($292 + n( 2 2 071592392 + 0-14192) .

M: k=0 j=0k=0

(5.17)

which is a simple single d. o. f. nonlinear oscillator. The new model can be regarded

as the added—constraint model.

Table 5.1. Identified parameters of the POM-constraint model (5.16) under the first

three conditions

 

— k1 162 n

Identified -0.9932 -1.7069 -0. 1607

'Ii‘ue values -0.9532 -1.7212 —0. 1412

Errors 4.2% 0.9% 13.8%
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Figure 5.3. Comparison of the invariant manifold: (a) under small amplitude (the

first three conditions), (b) under all five conditions; Surf 1 is the empirical surface

from POD, Surf 2 is Shaw’s surface, the continuous lines are the orbits under five

conditions; 2: axis is y'g, y axis is yg, z axis is yl.

97



First, the coefficients were estimated under the first three conditions. Displayed

in Table 5.1 are identified parameters of the y2 differential equation, and it Shows

a close match with the true values calculated from the linear transformation of the

two-mass equation (5.9) except the nonlinear term. The discrepancy in the coefficient

of the nonlinear term may come from the small amplitude vibration where nonlinear

effect is not so apparent, and the error from digital differentiation. Upon obtaining

the identified equation, Figure 5.3(a) displays the constraint surface (surf 1) fit for

the first three initial conditions which are of smaller oscillation amplitude. The con-

tinuous lines are the corresponding three orbits (the orbits are partially covered by

the surfaces and are hard to see). Surf 2 is the surface obtained by Shaw’s polynomial

approximation of NNM, which is a good approximation of the NNM surface under

small amplitude vibration. For small amplitude vibration, the two surfaces match

well. However, as the vibration amplitude increases, Shaw’s surface deviates from the

true orbits. Instead, the empirical POM model, which was fit from data that was not

‘small’ in asymptotic terms, shows a better match for more orbits in the phase space.

Figure 5.3(b) shows the surface fit (Surf 1) for the identified system under all of

the five initial conditions. In Figure 5.1, the dynamical orbit under the fifth initial

condition is also shown in the phase space (the dotted line), and shows a closer

match with the original system compared to the POD-only model. Noticeably, the

fifth orbit is much larger than the other four orbits. Shaw’s surface shows large

discrepancy from the real orbits for large amplitude vibration. On the other hand,

noticing that the identified model changed after using a larger data set, the empirical

surface changes to fit the fifth orbit, but also shows discrepancy for small amplitude

orbits. The discrepancy results from an inadequate polynomial approximation as well

as the nature of least mean square method. We can adjust our overall approximation

by using a different data set consisting of more records of small amplitude orbits,

or a weighted data set which gives more weight to the small orbits, such that the
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discrepancy over the whole surface can be more evenly distributed.

Through the analysis above, it is clear that if yl is neglected, i. e. neglecting

equation (5.15) when the energy in yl is negligible comparing to the dominant POM,

the ROM becomes a POM-only model (5.14). The constraint model, however, does

not neglect yl, but incorporates the curvature of the true NNM, to achieve the form

of equation (5.15). Effectively, this puts the model into the form of equation (5.17),

which is a differential equation with nonlinearity in displacement and velocity. By

its construction, it is made to accommodate dynamics of a wide range of initial

conditions.

5.3.3 The example of a mass-pendulum system

The differential equation and the nonlinearity

In the previous example, the added-constraint method was successful in enhancing the

adaptability of the POM reduced order model for a nonlinear system. Nevertheless,

under assumptions of known nonlinearity, the examined system is quite Simple. In

practice, the nonlinearity is quite often not clear to us. It is necessary to use function

series to approximate the nonlinearity.

We tested this problem by examining a more complex system: the mass-pendulum

system. Figure 5.4 shows a Sketch of this system, where the mass block has a horizon-

tal displacement 1:, and the arm has an angular displacement 6. The corresponding

differential equation is

1f: + 01117 + b12{6cos6 —- 62 sin 6} = 0

.. ,, 1 (5.18)

6 + b21 sin6 + bggicos6 = 0

where bu = k/ml +7712, b12 = mge/{(m1 + m2)l}, (321 = 77129816102, (’22 =

mge/Jog, m1 and m2 are the masses of the block and the pendulum (the mass of the
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Figure 5.4. A sketch of the mass-pendulum system.

bar included), J02 is the mass moment of inertia of the pendulum with respect to the

pendulum joint, e is the distance of the pendulum centroid to the joint, and :i: = z/l

is the non-dimensional displacement. For convenience, we drop the hat of the non-

dimensional displacement (it. The nonlinear terms are strong, including interaction

terms of the mass and the pendulum, mixed nonlinear terms involving displacement,

velocity and acceleration, and trigonometric functions. As a result, it is hard to de-

termine what kind of nonlinear format will show in the POM reconstructed reduced

order model. In the simulation, the initial conditions were chosen to excite only the

first NNM of the system. The POM extraction and the model identification process

were similar to the previous example. However, the two NNMs of the mass-pendulum

system were found only in the absence of whirling.

Now, we denote 21 as the major POM which consists of most of the energy of

the data, and 22 as the minor POM which is orthogonal to 21. The added-constraint

model will be composed of 21 and 22. Two types of the added constraint models were

100



tested. The first one is

22 = fc(21121) , (519)

251+ k2121+ P(Z1)= 0

where the differential equation of zl consists of only 21. On the contrary, the second

model, considering .22 as a dependent variable of .21, can be expressed as

Z2 = fc(21, 2'1) (5 20)

21+ 1:21.21 + 14,222 + 19(31: Z2) = 0

In both of the models, the constraint equations are functions of 2'1 and 21. But, in

the first model, the POM differential equation has only one independent variable zl,

and the nonlinearity is approximated by a polynomial of 21. In contrast, the POM

differential equation of the second model has both 21 and 22, and the nonlinearity

is approximated by a polynomial of 21, 22. The second model appears to be a bet-

ter approximation model to the system dynamics, because, much like the previous

example, the 22, as a function of 21 and 2'1, is also introduced in the differential

equation and is generally closer to the actual nonlinearity. It also brings more com-

plexity in the nonlinearity identification, and the problem may be worse for high (1.

o. f. systems. Besides, extra terms in the nonlinearity approximation may unstable

dynamical behavior. For this simulation study, the unknown parameters of equation

(5.19) and (5.20) were identified by the harmonic balance method discussed in the

previous three chapters of the dissertation.

Table 5.2. Physical parameters used in the simulation

 

ml (kg) 0.1 mg (kg) 0.1

k(N/m) 100 I(m) .04
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Simulation setting and the POD

The parameter values used in the simulation are listed in Table 5.2, and the mass

of the pendulum bar was neglected. Five initial conditions were tested, in which

the initial velocities were zero, and the initial displacements for a: and 6, from small

to large amplitude, were: (0125,0385), (0250,0733), (0.375,1.10), (05001.54),

(0575,1892). The resulting dynamical behavior corresponded the first NNM of this

system, under five different initial conditions on that NNM.
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Figure 5.5. The shapes of the 1st NNM of the mass-pendulum system under 5 i. c. :

1. (0125,0385), 2. (0250,0733), 3. (0.375,1.10), 4. (05001.54), 5. (0575,1892)

The dominant POM obtained under the first initial condition was .2] =

[ 0,2838 0.9589 ]T, which consists of 99.93% of the total energy. The minor POM

was 23 = [ —0.95890.2838 ]T. Figure 5.5 shows the five displacement shapes of the
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first NNM under these non-whirling conditions. It is clear that for large amplitude

vibration (curves 4, 5) the normal mode is quite twisted. If a POM based reduced

order model is built on 21, it is accurate for the first initial condition. However, the

reduced order model under 2] is not applicable to the other initial conditions listed

here. Therefore, one would like to test if the added-constraint model can adapt to

those initial conditions.

Table 5.3. Estimated polynomial coefficients of the constraint equation

 

(11 0.00132 a2 5.96x10“3 (1;; -00105

a4 -000327 a5 1.21x10—4 0.6 2.49

 

        

The added constraint and the weighted least mean square solution

In the study, the added constraint was estimated by a cubic polynomial:

_ - 3 - 3 2 - - 2
2:2 — alzl + (1221 + a3z1 + a421 + a5z1z1+ 0.62121 , (5.21)

where a, are the unknown coefficients. For better approximation of the small am—

plitude oscillation, the coefficients were solved by the weighted least mean square

method based on the data of all five initial conditions.

We can denote the following equation as the unweighted least mean square matrix

equation:

A55 : q: (5.22)

where (if is the vector of the unknown coefficients, (7 is some known terms without
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unknown coefficients,

and the small matrices Ai are data matrices from free responses to different initial

conditions. Vector f can be solved by this unweighted least mean square method.

Then, we can transform the matrix A to a weighted matrix

wlAl

Aw = 1

w545

where w,- is the weight. Correspondingly, we also denote

w1 (71

W5(75

Replacing A, (7 by Aw, (7w, equation (5.22) becomes

which is the weighted least means square method. The advantage of the weighted

solution method is that we can adjust the approximated solution :5 by giving different

weights to subsets. We can give large weights to some subsets of the data if we want

the approximated solution to have small discrepancy with the corresponding subsets.

In the case of the NNM approximation, larger weights were given to the data sets

from smaller oscillations such that the approximated constraint surface can have an

evenly distributed error over all vibration amplitudes. Thus, the result is better
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Figure 5.6. Comparison of Model I (the dotted lines) to the original mass-pendulum

system (the continuous lines) simulated under 1st initial condition, (a) phase plane,

(b) mode shape.

than the estimation from the unweighted least mean square method which tends to

accommodate more with the large amplitude orbits.

To the investigated system, the estimated values of the coefficients are listed in

Table 5.3. The constraint were Shared by both of the reduced order models.

Model of type I

Substituting a cubic polynomial into model-1 (5.19), we obtain

3 3 '° 11?
z = E:-_ E: _ a- z 32

21+ 16,121+ “11.1213: 0

where k2] = 0.0571, am 2 —-0.00468 in the investigation. The nonlinear term is

represented by only a cubic polynomial, and is simple for estimation.

Displayed in figures 5.6, 5.7, 5.8, are the dynamical behaviors of the original

system and the approximated model of the first type. The approximated model was

built on the data from five initial conditions. It shows that the approximated model
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(b) mode shape.
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Figure 5.8. Comparison of Model I (the dotted lines) to the original mass-pendulum

system (the continuous lines) simulated under 5th initial condition, (a) phase plane,

(b) mode shape.
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Figure 5.9. Comparison of Model II (the dotted lines) to the original mass-pendulum

system (the continuous lines) simulated under lst initial condition, (a) phase plane,

(b) mode shape.

is a good representation of the original system. The approximation is better for the

small amplitude vibration conditions, e. g. the first initial condition. As the vibration

amplitude increases, the phase plane curves show increasing difference between the

full and reduced order models. Part of the reason could be that the cubic nonlinearity

of 21 is inadequate to represent the nonlinearity of the original system. Meanwhile,

by mode shape comparison in figures 5.6, 5.7, 5.8, the vibration mode shapes of the

identified model are close to the real NNM shapes, and the minor displacement 22

is properly approximated. Noticeably, the energy in 22 coordinate increases as the

oscillation amplitude increases. This model has the same differential equation of zl

as the POM-only model, implying same dynamic behavior of 21. The only difference

is that the POM-only model consider 22 = 0, whereas, in the present mode, 22 is a

curve which can accommodate the change of initial conditions. Obviously, comparing

to the POM-only model, the added-constraint made the response of the ROM closer

to the actual first NNM of the original system, and thus improved the approximation

of the dynamic behavior of the original system.
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Figure 5.10. Comparison of Model II (the dotted lines) to the original mass-pendulum

system (the continuous lines) simulated under 3rd initial condition, (a) phase plane,

(b) mode shape.
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system (the continuous lines) simulated under 5th initial condition, (a) phase plane,

(b) mode shape.
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Model of type II

A more complex polynomial was used to estimate the nonlinearity in model-2 (5.20),

and it was

22 = 23320 2L0 “Jykzljiik , (525)

2’1 + kzlzl + [(72222 + dlzf + dngzg + d3zlz§ = 0

where the identified values are kzl = 0.0403, kg = 0.383, (11 = 0.00218, d2 = —0.146,

and d3 = —0.453 for the mass-pendulum system. The nonlinear terms are up to the

cubic order of 21 and 22. Theoretically, the nonlinearity approximation is better than

that of the model-I.

Noticeably, the 2% term was not included in the 21 differential equation of (5.25). It

was found that there was unstable behavior of the identified system if 2% nonlinearity

was included, and the corresponding response tended to be quasi-periodic. It looks

like a trial and error process, but it is not. Actually, the original systems also showed

3 termthe bifurcation to quasi-periodic response as the initial offset increases. The 22

made the response of the reduced-order model quasi-periodic at a smaller initial offset.

The identification process is performed on state values during responses, and not on

stability characteristics. Therefore, in sensitive systems, while a model is identified

for response values, it may be close to a bifurcation set, and may not have the right

stability. Thus, the model of equation (5.25) was selected for better approximation

of the original system. It shows that the nonlinear terms in the identification model

can bring unexpected results in the simulation. To the added constraint model, since

another dependent variable 22 is included, the problem becomes more complicated.

For this example, the ‘full’ set of nonlinear terms actually deteriorated the system

dynamics of the second model. However, the dilemma is that one does not know in

advance what terms are unnecessary, or undesired. The problem has to be solved by

reducing the higher order terms of the approximation functions, which increases the

difficulty of system identification.
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Figure 5.12. A time domain comparison between the original system (continuous

line), the Model—I (dashed line), the Model—II (dotted line) under the 3rd initial

condition.

Figures 5.9, 5.10, 5.11 show the comparison between model type II (5.25) and

original system by phase planes and vibration mode shapes. Due to the effect of more

nonlinear terms, by comparing the phase plane orbits, this model better approximates

to the original system in large amplitude vibration (Fig. 5.10, 5.11) than the first

model. On the other hand, the approximation of the small amplitude vibration is

not so satisfying comparing to the model of the first type. Possible reason can be the

influence of the nonlinear terms of .22.

Displayed in Figure 5.12 is a time domain signal comparison between the original

system and the two models. The time domain responses of the three systems are

very similar. But, the vibration frequencies are lightly different. In Figure 5.13, the

variation of the natural frequencies is compared among the three systems. It shows

that the reduced order model can also display inaccuracy in frequency domain. The
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five initial conditions for Model-I and Model-II.
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natural frequency change of the original system is a hardening curve as the vibration

amplitude (maximum potential energy) increased. Whereas, the curve of model-I is

a softening curve which resulted from the negative identified value of “111 in (5.24),

and the corresponding frequency discrepancy is large. The model of the second type

is somewhat a better approximation of the original system in the natural frequency

comparison.

5.4 Concluding remarks

In this chapter, the POM reduced order models of nonlinear systems was investigated.

Unlike the model order reduction techniques in turbulence [3, 32, 33], the complete

process of the proposed idea is to reconstruct and identify the governing differential

equations based upon proper orthogonal modes. The advantages of the method are

the abilities to simplify and identify an unknown complex system simultaneously. But,

it also brings the difficulty of identifying correctly the nonlinearity of the original

systems. Moreover, for systems with strong nonlinearity, the POM based reduced

order model can not give accurate prediction of the dynamics in conditions other than

the given initial conditions upon which the proper orthogonal modes were extracted.

Hence, the dissertation study generalized the POM based method by introducing

an added-constraint such that the reduced order model can be more accurate in

prediction of system dynamics as well as applicable to different initial conditions.

Two examples were examined: a two-mass system with a hardening spring and

a mass-pendulum system. Both of the two examples show success of the added-

constraint model, in which, due to the strong nonlinearity, the basic POM models

are not adequate in simulating system behaviors under different initial conditions.

Meanwhile, in the simulation study of the mass-pendulum system, two types of added-

constraint models were investigated: one with only the POM coordinates and the
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other one with POM coordinates and added-constraint coordinates involved. The

former one was found to be more suitable for small amplitude vibration. In this

example, however, the latter one was shown to be more accurate in predicting large

amplitude vibration.

The study was successful in the two examples of low-dimensional systems, which

are under free vibration with no damping. However, more experimental and sim-

ulation studies are needed for forced vibration systems, high-dimensional complex

systems, and chaotic systems. The questions involve what POMS are needed for

reduced order modeling, how to identify nonlinear terms in multi-degree-of-freedom

systems, how to apply the added-constraint method to improve the accuracy and

applicability of the POM model, and determining which type of models are best for

the investigated systems. If all of the obstacles can be solved, the added-constraint

POM model can be very powerful in system identification and simulation.
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CHAPTER 6

Conclusions and Future Work

6.1 Main contributions

The purpose of this dissertation was to provide a handy and useful tool for parametric

identification of nonlinear/chaotic systems, and also to reconstruct reduced order

models of complex systems based upon proper orthogonal modes and parametric

identification methods.

The parametric identification method is based upon harmonic balance method

[24], and focused on chaotic systems. Due to the nature of chaos—no stable steady

state behavior—the identification process first refers to the extraction of the unstable

periodic orbits, which form a dense set existing within the chaotic set. Then the

harmonic balance method can be applied upon the UPOS to identify the unknown

parameters. The dissertation study did a thorough investigation on the application

of this method: simulation and experimental study, multi-degree-of-freedom systems,

and whirling systems. The major achievements include

1. The method was examined successfully on whirling systems, e. g. single-

pendulum and double-pendulum systems. In both of the cases, only angular

displacement signals were supposed to be known, consistent with the limita-

tions of practical experiments. The special feature of whirling systems was
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that the angular displacements were not continuous signals, but signals in 31

space [—1r,1r). Thus, special modifications were made in the process of UPO

extraction and the approximation of velocity and acceleration signals.

. Noise reduction techniques were applied in the experimental investigation of

multi-degree-of-freedom systems, e. g. the double pendulum system with base

excitation. There were three reasons for applying noise reduction: the noise

contamination in the signals, the recurrence error of the extracted UPO, and

the strong nonlinearity which magnified the noise influence and propagated

it from high to low frequencies. The noise reduction techniques include low-

pass-filtering, digital differentiation, and choice of sub-harmonies by which the

less noise-contaminated sub-harmonics of the UPOs were selected for harmonic

balance identification.

. Based upon the understanding of the least mean square method, an error quan-

tification method was proposed to examine the accuracy of the estimated param-

eters. The quantification ideas were based upon linear regression and statistical

methods. Also, by the error quantification process, an optimization process was

established to improve the identification results by an Optimized selection of

sub-harmonies. The indicators of a good identification were small identification

error value, and an even and random distribution of the estimation errors.

. With more understanding of the chaotic set and the unstable periodic orbits, un-

der the assumption of hyperbolic chaotic attractor and unstable periodic orbits

contained within, the identification process which originally involved the extrac-

tion of UPOS and the harmonic balance method was simplified to a nearly pure

frequency method - simple harmonic balance identification. The simplification

was due to the fact that any chaotic orbit, if long enough, is an approximation

of some UPO. The longer the chaotic orbit, the better the approximation. This
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property was justified with simple symbol dynamics. The calculation examples

showed that the simplification could identify the parameters with satisfying re-

sults. The meaning of this simplification should not be under-estimated. The

most direct result is to make the identification process fast and requires rela-

tively small data set, i. e. it is more efficient. Hence, it is possible to apply this

method to cases of real-time identification. Meanwhile, the simplification also

makes the identification of all nonlinear systems possible by only one method -

the harmonic balance identification.

With the progress in identification techniques, the focus of the dissertation then

switched to the reduced order models by means of proper orthogonal modes, e. g. the

reduced order models for systems with strong nonlinearity. The POMs are experimen-

tal optimized orthogonal modes. They have been useful for model order reduction.

The dissertation study goes further in the direction of model order reduction, i. e.

reconstruction of reduced order models for unknown systems. Two simple examples

were given to test the method of added-constraint models. The special feature of the

added-constraint method is that extra constraint equations are added to minor mode

such that the constraint and the differential equation of the dominant POM together

form the new reduced order models. Through two example systems, it revealed:

1. In both the studies, the nonlinear added-constraint method showed better ap-

proximation of the systems’ dynamics than the POM-only reduced order models.

Also, the method made the reduced order models applicable to more general ini-

tial conditions. Compared to the nonlinear normal modes, the added-constraint

method is empirical and able to adjust the approximation model by different

data, i. 8. different initial conditions.

2. The identification of the nonlinear terms was more difficult if little knowledge

was known for the nonlinearity of the original systems. Two types of nonlin-
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ear models were examined in the mass-pendulum model: the model with no

constraint modal coordinates in the governing differential equations and the

one with constraint modal coordinates in the differential equations. The first

model was simpler, and more accurate for small amplitude oscillation. On the

contrary, the second model was more feasible for large amplitude oscillation,

and showed the difficulty in finding appropriate nonlinear terms in the model

to represent the nonlinearity of the original systems.

6.2 Directions for future work

There were achievements through this study on both parametric identification method

and the added-constraint POM reduced order models. However, many questions still

remain:

o In the experimental study, the identification of friction coefficients were erro-

neous. The reason was due to the small values of those parameters. It indicates

that the small parameters are more vulnerable to noise contamination, and thus,

hard to identify. Therefore, the energy balance method was applied to identify

the friction parameters. For non-damping small terms, e. g. small geometric

terms, similar procedure can also be developed. Suppose we have a single d. o.

f. vibration system expressed as

it + k2: + c1: + anx3 -_— f(t), (6.1)

where f (t) is a periodic excitation, and an is a small nonlinear coefficient com-

pared to linear coefficient k and c. Like the identification to small damping

terms in previous examples, the estimation of an will be hard in harmonic iden-

tification process, due to the influence of other large terms. To reduce the noise
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from other terms, multiplying (6.1) and integrating over one cycle of a periodic

orbit, we obtain

t+T __ t+T 2 t+T . t+T 4 t+T

ft :rsrdt+ ft kzr dt+ ft cmxdt+an [t a: dt= ft f(t):z:dt.

(6.2)

Noticeably, the integration of the velocity term over one cycle of a periodic orbit

is zero. Hence, equation (6.2) can be transformed to

t+T 4 t+T ,2 t+T 2 t+T

an/t :1: dt :/t :1: dt _/t kx dt+/t f(t):1:dt. (6.3)

The an can be solved by least mean square method if there are more than one

periodic orbit. The advantage of equation (6.3) is that there are fewer, and

only displacement and velocity terms. If the displacement signal is directly

measured, it is believed to be quite accurate. On the other hand, the velocity

and acceleration signals are to be obtained by the Fourier series method or

digital differentiation, which have been proved to have more high-frequency

noise. The high frequency noise is the worst for the acceleration signal. Hence,

we are quite confident that the estimation of an by (6.3) is more accurate

than the harmonic balance identification. For multi-degree-of—freedom systems,

similar methods are expected to be developed and improve the accuracy of

nonlinearity identification.

The simplification of the harmonic balance identification method makes it pos-

sible for real-time identification of chaotic systems. As we know that every

chaotic orbit can be an approximated orbit of some UPO, real-time identifica-

tion can be possible if the length of the UPO can be properly chosen. The goal

is to identify relatively slowly varying parameters of the governing equation,

or to assess damage of systems. Meanwhile, due to the similarity between the
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harmonic balance method and the wavelet analysis, the real-time identification

of chaotic systems can also be done by wavelet analysis. The questions are how

fast can the process be and the issue of noisaresistance.

It is also possible that the identification method can be applied to nonlin-

ear/chaotic systems under random or impulse excitation. The idea lies in the

analogue between the random excitation and the impulse excitation. The basic

root of this idea still comes from re-thinking of the unstable periodic orbits and

chaotic set. But it should be considered more in the frequency domain, instead

of the time domain.

The POD process for whirling systems requires study. The whirling signals, i. e.

the angular displacements, are not applicable to the traditional definition of the

proper orthogonal decomposition, since these signals are in a spherical space.

Hence, the reduced order models are hard to apply to whirling systems. The

possible solution can be to use the complex variables, instead of real variables,

to represent the whirling signals.

Nonlinear reduced order modeling is difficult. The approximation method can

be troublesome since unnecessary nonlinear terms can bring undesired dynam-

ical behavior for strongly nonlinear systems. The problem will become more

difficult for complex structures where the nonlinearity is not clear. An idea

might be to incorporate stability measures into identification process [67].

The added-constraint model, though successfully explained in the two examples,

is still in development, and needs to be examined by complex, high-dimensional

structures. The problems involve the determination of POM coordinates and

the constraint constraints, and how far can the method improve the performance

of the reduced order models.
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