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ABSTRACT

PARAMETRIC IDENTIFICATION OF
CHAOTIC/NONLINEAR SYSTEMS AND REDUCED
ORDER MODELS BASED ON PROPER ORTHOGONAL
DECOMPOSITION

By
Yang Liang

In the dissertation, the parametric identification and proper orthogonal modes
(POMs) were investigated on chaotic/nonlinear systems such that a reliable and
gencral-purpose process can be developed to reconstruct the mathematical models
of nonlincar and/or chaotic systems.

First, a parametric identification method was examined for different chaotic sys-
tems, e. g. whirling, multi-degree-of-freedom, and strong nonlinearity, and by sim-
ulation and experiments. The original parametric identification method of chaotic
systems is a hybrid time and frequency domain method based upon the harmonic
balance method applied to unstable periodic orbits (UPOs), and solved by least mecan
squares. A chaotic basc-excited single pendulum system was simulated. The identi-
fication method was modified for the whirling system with measured data of angular
displacement. The nonlinearity was also approximated by two types of function se-
ries: linear interpolation functions and harmonic functions. Poincaré sections showed
that the identified system and the original simulation system had similar chaotic

behavior. Then, the identification method was applied to an experimental chaotic



double pendulum under vertical base excitation. Several noisc reduction techniques
were applied to reduce the identification errors due to the noise contamination in
the experimental data and the strong nonlincarity. Meanwhile, an error optimiza-
tion process, based on the lincar regression and statistics, was proposed to improve
the identified parameters by selecting sub-harmonics of the unstable periodic orbits.
An cnergy balance method, as a sccond-step identification after the harmonic bal-
ance method, was applied to give a more accurate estimation of the small damping
coefficients.

It was also found that any chaotic orbit can be an approximated representation
of some UPO, and the longer the orbit the better the approximation. Thus, there
is an option between collecting UPOs for the extraction, and using longer arbitrary
data segments. The identification process can be simplified to a frequency domain
method. Examples were examined to show the success of the simplification.

The study then goes to parametric identification and the POM for building re-
duced order models of unknown systems. The special interest here is systems with
strong nonlinearity, where the reduced order models from experimental POM was
limited in simulating the unknown systems other than the neighborhood set plane
where the POM data is in the phase space. An added-constraint method was pro-
posed and examined by two simple systems: a two-mass system with nonlinear spring
and a mass-pendulum system. It showed that the added constraint can improve ap-
plicability of the POM reduced order model as well as increasing the accuracy of
the simulation result. Nevertheless, the method is to be tested by high dimensional
nonlinear systems, to which the proposed added constraint method can really make

a big difference in applications.
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CHAPTER 1

Introduction

1.1 Motivation

System identification, as an inverse question of dynamical systems analysis and quite
often a prerequisite of dynamics analysis, has been widely used and investigated in
industry, such as for the control and modeling of complex structures. There are

basically two classifications of system identification:

1. Non-parametric identification requires no actual governing dynamical equations
of a system, but rather an approximated model by a series of approximation
functions. Thus, no physical paremeters are identified, but coefficients of the
approximation functions. Some of the non-parametric identification methods
are bascd upon differential equations, which share many common features with
the parametric identification that we are going to discuss. On the other hand,
many more are based upon time-delay models, which are to be used in control
applications to approximate short-term behaviors of systems. The time-declay
models are also quite easy for instant, rcal time approximation of the dynamical

behavior.

2. Parametric identification is based upon governing differential equations, or re-



duced order models of the systems. Therefore, the identified parametric systems
can be better representations of the original unknown systems, and are often

used for dynamics analysis of the systems.

Our focus here is to use parametric identification to reconstruct a model which can
simulate an original unknown system. The advantages of a nonlinear mathematical
model over a linear one are quite obvious: more accurate description of the real phys-
ical systems and thus, more precise prediction of dynamical behavior, which satisfies
the requirements of modern technologies. For the nonlinear systems, chaotic systems
are among the most mysterious. Due to their random-like responses, they were once
considered stochastic systems, until “chaos theory” and chaotic data observation tech-
niques were developed. Chaos is generally considered as aperiodic time-asymptotic
behavior in a deterministic system which exhibits sensitive dependence on initial con-
ditions [1]. The phase-space trajectories of chaotic systems do not settle down to fixed
points or periodic orbits. Many developed identification methods are not suitable for
systems with chaotic responses. Therefore, this study here is aimed at developing
and perfecting an identification process which can be applied to general chaotic (also
nonlinear) systems. The systems in our scope include strongly nonlinear systems,
whirling systems, and high dimensional systems, because of their special features and
difficulty in accurate identification.

A general expression of a class of nonlinear oscillation systems is
MZ(t) + CZ(t) + KE(t) + fNL(E, D) + fnp(E, Dfp(t) = f(O), (L)

where T is a vector variable, matices M, K, C are mass, spring and damping matri-
ces, vectors fyr and fy p are nonlinear functions of displacement and velocity, and
fp(t) is the parametric excitation term. For simple systems, we can derive the math-

ematical model, and identify the actual physical parameters. However, for many high



dimensional systems, such as fluids and continuous structures, we tend to avoid the
exact diffcrential equation of the original system, but use a simplified reduced order

model based upon modal analysis. The benefits of reduced order modcls (ROMs) are:
1. ROMs are simple and require much fewer paramecters to identify.

2. Generally, only a few of the low order normal modes of that system show up in

the dynamics of an actual system.

3. Identification of partial diffcrential equations (PDEs) of continuous systems
is much more complex than ordinary differential equations (ODEs) and also

restricted by experimental data.
4. The ODEs are handier in simulation than the PDE, and thus, casier for analysis.

We can simplify nonlinear continuous or high dimensional systems by using either
assumed modes, lincar normal modes (LNMs), nonlincar normal modes (NNMs) [2]
or proper orthogonal modes (POMs) [3] to project the PDEs into the form of a scrics
of ordinary differential equations in modal coordinates. Then, since usually only few
of the normal modes (or orthogonal modes if POMs are uscd) are typically active
with some level of significance in the dynamical behavior of a system, a truncated
series of equations can be used to approximate the original system.

For linear systems, both NNMs and the weighted POMs [4] become the lincar
normal modes (LNMs). But, it should be noticed that the NNM method is more
fit to theoretical analysis which assumes known systems’ structures, and governing
equations. On the other hand, POM method is more of an experimental method,
which deals with orthogonal modes obtained from experimental or testing data, by
which the governing differential equations can be reconstructed.

Hence, the scheme of the dissertation involves two parts: parametric identification

and reconstruction of reduced order models by POD.



1.2 Literature review

Till now, most of the methods of parametric identification of nonlincar systems fo-
cused mainly on free vibration, random excitation or periodically forced steady state
vibration behavior. Mohammad (5] introduced a direct identification method by
using time-domain displacement, velocity and acccleration signals. The method is
simple, but also requires all of the displacement, velocity and acceleration informa-
tion, and is not noise-resistant. In [6], nonlinear resonances by random excitations
were utilized and part of the parameters were identified. Chen and Tomlinson (7]
proposed a time series acceleration, velocity and displacement model (AVD model)
with a narrowed investigation scope: dry Coulomb friction, viscous damping and
nonlinear stiffness. Also, many other mcthods are effective within limited dynami-
cal systems (8, 9, 10, 11, 12, 13, 14, 15]: weak non-linearity, complex algorithm and
time-consuming, non-chaotic behavior, single or two degree-of-freedom systems.
Some of the identification methods, though not originally proposed or examined
under chaotic systems, have potential application to be applied to chaotic nonlincar
systems. Plakhtienko [16, 17] introduced a special weight method for parametric iden-
tification, which is derived from orthogonal basis functions. If Fourier serics functions
are applied as the orthonormal basis, the method then becomes the harmonic balance
method. The inverse harmonic balance method has been applied to various nonlin-
car systems identification [18, 19, 20, 21] which are under forced excitation and have
stcady-state periodic responses. Thothadri [22] also developed a similar harmonic
balance identification on multi-degree-of-freedom nonlinear systems. A wavelet-based
approach was discussed by Ghanem and Romeo [23]. Both the discrete wavelet trans-
form and Fourier transform are based upon signal reconstruction by an orthonormal
basis, except that the wavelet transform is a localized time-frequency rcconstruction.

Meanwhile, the harmonic balance method is, in essence, a frequency domain method,



and much easier to apply than the wavelet method. Due to this property, Feeny and
Yuan [24, 25] proposcd a method for chaotic systems, which exploits the harmonic
balance of extracted unstable periodic orbits (UPOs), because one of the fundamen-
tal properties of deterministic chaos is that the chaotic set of a dynamical system
contains infinite number of unstable periodic orbits. It is the primary method used

in this the dissertation. There are several reasons for choosing this method:

e The identification process can be theoretically applied to any dynamical sys-
tem. For linear systems, it becomes the frequency response function method if
multiple excitation frequencies are tested. For non-chaotic nonlinear systems,

there have been successful applications of the harmonic balance method.

e The method exploits the existence of unstable periodic orbits, and has generated

satisfying identification results.

o Some possible developments exist for further improvement, including the friction

issue, experiments, and error reduction.

Parametric identification of large order systems is greatly facilitated in reduced or-
der models. A popular tool for reduced order modeling is proper orthogonal decompo-
sition. Proper orthogonal decomposition (POD), or Karhunen-Lot¢ve decomposition,
has been widely used for empirical modal analysis. As a statistical method utilizing
the correlation matrix derived from a set of measurement historics, POD produces
the empirical modes, which are known as proper orthogonal modes (POMs), from
the eigenvectors of the correlation matrix, and the corresponding energy levels of the
modes, known as proper orthogonal values (POVs), from the matrix eigenvalues.

For lincar systems with evenly distributed mass, POMs are actually the lincar
normal modes [26]. Therefore, it can be used as modal analysis tool {27, 28, 29, 4, 30,

31]. Mecanwhile, since its introduction, POD has been widely used in fluid, turbulence



areas as modal reduction tool (3, 32, 33], and recently in structural dynamics [34, 35,
36, 37, 38, 39, 40, 41, 42, 43]. Some used it to estimate the active dimension of a
dynamical system (33, 37, 38].

For reduced order models, combining POD with system identification is a very
promising area in the analysis of systems dynamics. For chaotic and nonlinear sys-
tems, the POM based reduced order models can approximate the systems’ behavior
by fewer modes than the models based upon linear normal modes [41], which implies
that the POM models are more efficient than the LNM models for reducing nonlinear
systems. POD’s applications in system identification and reduced order modeling
for nonlinear/chaotic systems has also gained some improvements in applications of
systems with simple nonlinearity (39, 44, 40, 42, 43]. In [39] the POM itself is also

part of the system identification process.

1.3 Outline of the dissertation

The purpose of this dissertation is to generate accurate and robust models of non-
linear and/or chaotic vibration systems. We can either do it by direct parametric
identification provided that the governing equations of the systems are handy, or
for large-order systems, by obtaining approximated reduced order models based upon
POMs or NNMs of the systems, and identifying parameters of the reduced order mod-
cls. Consequently, the dissertation consists of two major parts. The first part focuses
on parametric identification of single and two degree-of-freedom (d. o. f.) systems.
The systems studied are whirling pendulum systems. The second part is on the para-
metric identification of ROMs. POD is used for the reduced-order modeling, and we
focused attention on broadening the applicability of identified models to conditions
beyond those for which the POD was performed. Details are outlined below.

First, we will concentrate the focus on parametric identification method, e. g.



a harmonic balance based identification process for chaotic and nonlinear systems
[24]. Since the method has been tested on simple single d. o. f. systems, the goal of
this study ig to test it on systems with more complicated nonlinearity and multiple
d. o. f. systems. The pendulums, due to their whirling nature and trigonometric
nonlinearity, are distinctive from ordinary oscillatory systems, and thus are chosen
for the investigation. The pendulums are also easily examined by experiments due
to their simple structures. A simulated single pendulum was first examined. Then, a
base-excited double pendulum was selected for experimental application to whirling
and multi-degree-of-freedom systems. Once successfully tested, the follow-up goal is
to simplify and improve the current method. Hence, the identification investigation
will be divided into three separate chapters, and each with a different focus.
Chapter 2 deals with a simulation study of a chaotic single pendulum system. The
main contribution of this chapter is to apply the identification method to whirling
chaotic systems. A brief introduction will be given to explain special features, dynam-
ical behaviors and tools for analysis of chaotic systems. The purpose is to examine
the method on a whirling, chaotic and parametrically excited single degree-of-freedom
system. It is assumed that the system is unknown to us except that the pendulum
is parametrically excited with some known frequency. Meanwhile, to make the simu-
lation resemble an experiment setup, only the angular displacement signal was used.
An embedding technique was then applied to obtain the reconstructed phase space,
which is essential to extract the UPOs from the chaotic data. The extracted orbits
are actually not the true unstable periodic orbits, but their approximations, whose
accuracy can be mecasured by the tolerance error during the extraction. It is also
hoped that many UPOs can be obtained so as to increase the reliability of the iden-
tified results. Based upon the UPO, the harmonic balance method can be applied
to build the identification matrix equation, and the parameters can be identified si-

multaneously. Another aspect of the identification study is the use of function series



to approximate the unknown nonlinear functions. Two scts of function series were
used: the Fourier serics and the linear interpolation functions. Both approximations
showed good matches with the true values.

Chapter 3 upgrades the study to a experimental double pendulum system. This in-
vestigation was to examine the identification method by a experimental multi-degree-
of-freedom system, to develop noise reduction, optimization techniques to improve
the identification results, and to estimate damping terms more accurately by energy
balance method. Again, the system is chaotic, whirling and parametrically excited.
Since the collected angular displacements were noise contaminated, noise reduction
techniques were applied. The strong nonlinearity of the double pendulum was also
found to contribute to the errors in the identified parameters, especially those non-
linear terms with velocity and/or acceleration signals. To quantify and reduce error
in the identification results, an identification error was defined to indicate quantita-
tively how ‘good’ the identification is, and based upon it, an optimization process
was developed. The core of the optimization process is to obtain a smart choice of
sub-harmonics of the UPOs for harmonic balancing. Based upon the results of the
harmonic balance method, the energy method was developed as a follow-up to give
more accurate estimation of the damping parameters.

Chapter 4 describes a simplified identification process. The underlying reason
for the improvement is because UPOs become less available for extraction, as the
degrees of freedom of a system goes up. As a result, the identification result can
deteriorate with fewer UPOs. The idea comes from the unstable periodic orbits inside
the chaotic data. Since the UPOs are the ‘skeleton’ of the chaotic set, every chaotic
orbit is considered to be an approximated periodic orbit of large period. Thus, the
extraction step can be skipped, making the whole identification process look quite like
a frequency domain method for linear systems. The importance of the simplification

can not be underestimated. It actually makes it possible to identify all kinds of



systems in the frequency domain.

Ultimately, as the d. o. f. of systems increases, the need for reduced-order mod-
eling becomes mandatory. Thus, the sccond part of the dissertation is to combine
POD and parametric identification to build reduced order models for nonlinear sys-
tems. For high dimensional systems, reduced order models are effective replacements
of the original governing equations. POD provides a simple and theoretically appli-
cable vehicle for reduced order modeling through experimental data. Our focus is
on systems with strong nonlinearity, where the POM based models are limited to a
small neighborhood of the initial conditions where the POM comes from due to the
nonlincarity. A new added-constraint method was developed and tested to improve
the reconstructed reduced order models. Due to the complexity of this topic, the
study was only a beginning of a series of future studies.

Chapter 5 posecs the problem of reduced-order modeling with strongly nonlinecar
systems. By borrowing ideas from NNM analysis, a geometric constraint method was
proposed to accompany the POM models. The idea was tested on two simple systems:
a two-mass system with nonlinear spring and a mass-pendulum system. The analysis
was based upon simulation. It turned out that the added constraint method can not
only increase the accuracy of the POM models, but extend the applicability of those
models. Although it is not clear if this method will be as effective on high d. o. f.
systems as it is to the analyzed low d. o. f. examples., it gives us a possible direction
to improve the accuracy of the reduced order models.

Finally, Chapter 6 will conclude the dissertation with possible future research on
this topic. The improvements could be real-time identification of chaotic systems,
further identification of small parameters (i. e. frictions terms), POD for whirling
systems, and experiments or simulations of reduced order models of nonlinear high

dimensional systems.



CHAPTER 2

Simulation Study of a

Base-Excited Single Pendulum

2.1 Introduction

A simulated, horizontally base-excited pendulum is investigated as a first step for
whirling, chaotic system identification. A harmonic balance parametric identification
method is examined here, because of its simplicity and capacity for handling chaotic
data.

Pendulum systems are among the most thoroughly investigated dynamic systems
in chaotic, nonlinear system research [45, 46, 47, 48, 49, 50, 51] for their simplicity in
both theoretical expression and experimental validation. Water [45] studied the un-
stable periodic orbits of a vertically excited system. Jeong and Kim [46] investigated
the bifurcation phenomena and routes to chaos of a horizontally excited system. Fur-
thermore, Bishop [47] and Dooren [48] studied the regions of chaos of a parametrically
excited pendulum in parametric space. These works provide the general relationship
between chaotic behavior and the influence of parameters on the system, and facilitate
our investigation of the pendulum with horizontal base-excitation.

Mcanwhile, based upon the harmonic balance method (18, 19, 20, 21], Feeny and
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Yuan [24, 25] proposed a method for chaotic systems which exploits the extracted
unstable periodic orbits. This method was successfully applied to single degree of
freedom systems, and is theoretically applicable to chaotic or non-chaotic, strongly
nonlinear multi-degree-of-freedom systems.

Our purpose here is to apply the harmonic balance algorithm to the horizontally
excited pendulum system such that we can examine the algorithm’s applicability on
systems with chaotic whirling behavior and parametric excitation. The identification
method has been examined on smooth excitation single d. o. f. systems [24]. However,
the pendulum is a more complicated case. Since the single pendulum is both whirling
and under parametric excitation, the algorithm must be modified and can now be
improved partially. In the following sections, the single pendulum system and the
modified method will be introduced first. Pre-requisites for applying this method
will be discussed, primarily regarding the phase plane reconstruction. Then, the

simulation results will be presented and discussed.

2.2 Horizontally excited single pendulum & iden-
tification algorithm

Single pendulum systems have simple structures, but strong non-linearity due to
their whirling property. The governing differential equations can be simulated eas-
ily, and the experimental verification is also feasible. Based upon these advantages,
horizontally base excited single pendulums are chosen for investigation here. The

non-dimensional form of the differential equation is

é+2§/r9+1/r2sin0—fsintcosc9=0, (2.1)
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where ¢ = wT, w is the angular excitation veclocity, and 7 is the actual time; £ is
the viscous damping coefficient; r = w/wpy, wy = y/mge/J is the natural frequency
of the linearized system, m is the pendulum mass, e is the the centroid offset from
the pendulum hinge, J is the moment of inertia about the joint point. Mcanwhile
cocfficient f = mea/J is the non-dimensional excitation amplitude, and a is the
excitation amplitude. For simplicity, we denote ¢y = 2€/7 as the new non-dimensional
damping cocfficient. The function fsintcos@ is the nonlinear parametric excitation
term, and 1 /r2 sin@ is the autonomous nonlinear part. The angular displacement
9 is in S1 space (one dimensional sphere space), whereas the angular velocity and
acceleration are in R! space.

In the simulation study, it is assumed that we know little of the system exccpt
for the parametric identification. To apply the identification algorithm [24] to the
pendulum system, the following more general expression of a single d. o. f. system

can be assumed:

crt +kz + foni(z, ) + {d1 + fpni(z, 2)}p(t) = -2, (2.2)

where k is the lincar stiffness parameter, f,,,;(z,z) is the autonomous nonlinear
part, fpnl(:r, z) is the time-independent part of the parametric excitation term, and
coefficient @) is the amplitude of external excitation force. If d; is non-zero and fp,
equal to zero, the system becomes a nonlinear system with external excitation force.
On the contrary, if dj is zero and fpnl is non-trivial, it is then a parametrically excited
system. For the examined single pendulum, parameter k = 0 and d; = 0. Meanwhile,
since the non-linearity of the pendulum is caused by geometry, it is convenient to
assume f,,; and fpnl in cquation (2.2) as functions of only displacement, such that

it becomes

crt + fanl(r) + fpn[(l‘)p(t) = —1I. (23)
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Based on equation (2.3), the harmonic excitation term p(t) = aj coswt + 3] sinwt

with excitation frequency w. Unknown functions fpnl and f,,; can be approximated

by N
fot = 3 Pidi(x), (2.4)

1=1

N
fai = Y_ 4i%i(x), (2.5)

1=1

where {¢;(z)} is a set of orthogonal basis functions, and P;, ¢; arc unknown parame-
ters. Since the choice of basis functions can affect accuracy of the identified functions,
two sets of basis functions were tested in the simulation: linear interpolation functions
and Fourier series functions.

Substituting (2.4), (2.5) and the harmonic excitation into (2.3), we have

N N N
crT + Z q;9i(z) + z n;¢;(r) cost + Z pid;(z)sint = —Z, (2.6)
i=1 i=1 i=1

where n; = P;a; and p; = P;3;. With equation (2.6), harmonic balance identifica-
tion [24] can be applied after extracting unstable or stable periodic orbits from the
collected displacement data. For a period k orbit, if displacement = is in Rl (one
dimensional real space), the displacement, velocity and acceleration signals can be

approximated by the following truncated Fourier series expansions:

M

1 Jwt Jwt
T)(t) = 590,k + Z (a;  cos — p +bj i sin p —), (2.7)
M . .
Jw Jw Jwt
gT—Jksm Ic +b]k cos —— ) (2.8)
M . .
t t
ipt) = Y. —j2w2/k2(aj,k cos‘% +bj ksin %), (2.9)
J=1

where, for non-dimensional equation (2.6), w = 1. However, for z in S (onc di-
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Figure 2.1. A period-4 orbit (a) sampled signal; (b) actual continuous signal z; (c)
-+ - constant rotation part w,t, — oscillatory part zyqr.

mensional sphere space, e. g. the angular displacement 6 in the single pendulum),
Equations (2.7) - (2.9) are not applicable for whirling. The harmonic balance method
can still be applied here, but with proper modification. The issue is that the velocity
and acceleration are R! signals, and cannot be derived directly from the sampled S 1
displacement signal.

Consider an experiment in which whirling angle 8 signal is collected with an en-
coder such that the output z has valucs in the interval [, 7). Thus, z is discontin-

uous. According to the illustration in Figure 2.1 of a period four orbit of the single
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pendulum system, the sampled data {z} should be converted to a continuous signal

{zc} in R!, and then decomposed as

Tok = Wekt + Tyar ko

where w.t represents the constant rotating part of a whirling periodic orbit, and
Tyar k is the oscillatory part of the orbit signal, which can be approximated by the

truncated Fourier series expansion
M , .
1 Jwt Jwt
xvark(t)~—u0k+z (uj k cos —— = Ty K sin k)
]_.

Based upon z, the corresponding velocity and acceleration can be expressed as

wt jwt
Tp(t) = wep + Z ( qusm]k +v; kcosjlC )s (2.10)
M .
wt t
HUEDY -2 /K2 (u ]kCOS]k +v; kst:) (2.11)
j=1

Mecanwhile, for a period-k orbit, if ¢;(z) : st o C[-1,1], as in the case of the
pendulum, the continuous functions ¢;(z;), ¢;(x)) coswt and @;(z)sinwt can also

be approximated by

M . .
wt . Juwt
$ilz) ~ cigp/2+ 3 (c Ukcos]k +d;. ksm]T), (2.12)
Jj=1
d Juwt Juwt
¢;i(z)) cost = e;0 /2 + E €j,k €08 T~ + fij g sin =— k )s (2.13)
]:
M . :
t
¢;(z)sint =~ gzOk/2+ Z g,]kcosﬂ;: + h;; ksin]%). (2.14)
Jj=1
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Substituting (2.10)-(2.14) into (2.6), the differential equation can be transformed

into the following matrix equation for a period-k orbit

Wek €10,k/2 910k/2 cr0k/2 -+ enNok/2Z INOK/2 CNO,k/2\
ULk el 911k €k " N1k  9INLk  CN1k
“fuk  fuk  hux dux 0 fnix bk ANk
Movyk  emrk 91Mk CIMEk 0 ENME INMk CNMk
\"A%)'“M,k fiMme MiMrk dimr 0 INmMk RNME O ANME )

or )

ny ( 0 \

p1 wPuy g /K2

q w?vy /K2

ny M2u,v2u]\,[,k/k2

PN \ M2Pup /K2 )

\ 4N

(2.15)

For simplicity, Ay is denoted as the left-hand side matrix,
A=(e np pp @1 - nNy PN GN )7,
and
).

Br=1(0 wQUI,k/k‘2 w2vl,k/k2 MzuﬁuM,k/k2 M2“’2UM,k/k2

Equation (2.15) can then be cxpressed as ApA = B4.

For multiple periodic orbits, by combining the single periodic orbit matrices to-
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gether, we can obtain the following matrix equation

A) = B, (2.16)
where
=( AT T T \T
A (A1 e A e AK)’
T
5:(5{ g{ g}-’(’) ,

and A is a K(2M + 1) x (3N +1) identification matrix . When K(2M +1) > 3N +1,
the matrix can be solved by least mean square method. The least squares solution of
(2.16) is

A= (AT 4)~14T 3. (2.17)

The error of the identification algorithm can be affected by several factors, includ-
ing accuracy of unstable periodic orbits, noise contamination, system nonlinearity

and the choice of basis functions of approximation.

2.3 Introduction to phase plane reconstruction
and extraction of unstable periodic orbits

Usually in an experiment, only limited signals can be acquired accurately, e. g. the
angular displacement signal in this simulation. However, for the extraction of unstable
periodic orbits, phase plane information is necessary. It is then that the phase plane
reconstruction technique [52] is applied. Suppose that s(k) is the sampled smooth
signal from dynamical systems. Smooth dynamics in an n dimensional phase space

could be approximately represented by an embedding dimension space

S(k) = {s(k), s(k + Ty), ..., s(k + (d — 1)Ty)},
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where d is the dimension of the reconstructed phase space and Ty is the time delay
of the embedding dimension. Although the reconstructed phase space is a distorted
appearance of the real phase plane, it provides us information of phase orbits, at-
tractors, periodic orbits and other chaotic characteristics. To the pendulum system,
s(k) = 0(k), 0 € [—m,m) is actually a non-smooth observable. But the method can
also be applied here since the functions of angular displacement, speed and accelera-

tion are all smooth.

2.3.1 Choosing the time delay and embedding dimension

The time delay value Ty can be obtained from average mutual information function

[52], which is expressed as

I4B(t) = EPAB(a,b)IOQTI%)(—:B'%%» (2.18)
where t is the time lag, a is the sampled data s(z), A is the set of {s(i)}, k =i + T,
b is thus s(i + t), and B is considered as the set of {s(i + t)}. Meanwhile, P4(z) is
the probability function of observing z out of a sct A, Pg(y) is the probability of
observing y out of a set B, and P4pg(z,y) is defined as the probability of obscrving
function of (z,y) out of the set of AN B. After calculating I(t), the ‘best’ time delay
T4 is chosen when I(t) reaches its first minimum.
To determine the value of dg for minimum required delay dimensions, the false
nearest neighbors method was applied [52]. The false ncarest neighbors method iden-

tifies the embedding dimension for which false trajectory crossings do not occur.

2.3.2 Extracting unstable periodic orbits (UPOs)

There are numerous unstable periodic orbits in a chaotic signal. The UPO set is a

dense set within the chaotic orbits. The reconstructed phase space can be used to ex-
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tract the hidden UPOs. Since the horizontally excited single pendulum is excited by
a harmonic signal with period T, the UPOs will have the periodicitics of integral mul-
tiples of the excitation period T. Though theoretically, no exact UPO can be found
through the collected data, the theory proved that some very close approximation of
the UPO exists provided that the data is long enough. With the error tolerance e
set for UPQO extraction, we say that an approximated UPO of period k is extracted if
|S(n — kT) — S(n)| < e, where S(n — kT) is the starting point of the extracted orbit,
and S(n) is the end point. Usually e is set as 1-5% of the span of the data [24], and
the smaller e value is always desirable if possible, since the corresponding UPO will
be closer to the real periodic orbits.

Mecanwhile, a recurrence error between the starting and end points will occur in
the extracted UPQO by the choice of e, which is an exhibition of the accumulated error
compared to the ‘true’ periodic orbit. Generally, to acquire more accurate UPOs,

smaller e is used.

2.4 Numerical simulation of the horizontally ex-

cited pendulum

2.4.1 Phase space reconstruction

The simulation was based upon the non-dimensional differential equation (2.1). A
data set of 30000 points was gathered with a sampling rate fs = 25/T. Displayed in
Figure 2.2 (a) is the 2-D reconstructed phase space. The coefficients were chosen as
f =152 ¢=0.03, r = 0.8333. The actual minimum embedding dimension needed
for a complete phase space reconstruction was found to be four. However, since our
purpose of reconstructing phasc space is to extract UPOs, which compare points with

kT time interval (implying the addition of the S 1 dimension of time), the possibility
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Figure 2.2. Reconstructed phase plane (a) and Poincaré section plot (b); 6(t) is
represented by theta(t) in the plots.

of encountering a false ncarest neighbor is greatly reduced. Hence, two embedding
coordinates are adequate for this case, and are also simpler for display purposes.
According to Figure 2.3 of the average mutual information, the calculated best
time delay was T = 5. The phase portrait and the Poincaré section are displayed
in Figure 2.2 (a) and (b). The Poincaré section plot, obtained by plotting the cross-
section of the phase flow at a fixed periodic time position 7 = ¢ mod 2r since the
system is under periodic excitation, provides us a handy tool for visually comparing
chaotic properties of different systems. Similar Poincaré section plots give evidence

of similar dynamical behaviors of the systems.

2.4.2 Parametric identification

For simplicity, the data used in the identification process was noise-free, thus excluding
the noise-generated error in the identified parameters. The UPOs were extracted

before applying the identification algorithm. An error tolerance of e = 3% was
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Figure 2.3. Mutual information of the data; the first minimum is at dt=5.

applied in the extraction. The error tolerance can be made smaller if longer sampled
data is available. Conscquently, around 25 UPOs were extracted from period 1 to
period 16. Figure 2.4 shows a example of periodic orbits of period one and two. Some
are whirling orbits, whereas others are oscillating orbits. With the UPOs extracted,
in the identification process, two sets of basis functions were tested to approximate

the unknown nonlinear functions in the governing equation.
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Figure 2.4. (a)A period-1 orbit; (b) A period-2 orbit; (c) A period-2 orbit; (d) A
period-2 orbit.

Harmonic basis functions

If basis functions are set as ¢o)._1(z) = coskz, ¢oi(z) = sinkz, k=1, 2,3, ..., the

differential equation (4.12) is then converted to

crd + Zi(:l(”%-l cos kz + ngy sinkz) cost + EkK=1(P2k—1 cos kx + poy, sin kz) sin t

+ }:{4(:1("%—1 cos kx + goy sinkz) = —i.
(2.19)
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Table 2.1. The ny, p;. and g;, values when harmonic basis is applied.

- g | ng | Ing =gl | Pg P | Pk —Prl | Pr 9 | lgx — dil

cosk6 | 0.009 | 0.0 0.009 -1.526 [ -1.52 | 0.006 |-0.004 [ 0.0 0.004

sinkf | 0.003 | 0.0 0.003 -0.0 0.0 0.0 1.434 | 1.44 | 0.006

For the investigated pendulum, it is convenient to set K = 1, i. e. include only the
first harmonics, since the differential equation is simple and consists of harmonic type
non-linearity.

For systems like the single pendulum, where the non-lincarity comes from angular
rotation and the displacement variables belonging to the sphere space, a harmonic
basis can be a very good choice due to its capability of representing rotation and
periodic behaviors. Displayed in Table 2.1 are the identified coefficients of (2.19)
with 7y, P, gi representing the estimated values, and ng, pg, g; representing the
true values. The estimated ¢ value is 0.0339. Compared to the real values, all of the

parameters are quite accurate with minor errors less than 0.01.
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