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ABSTRACT

RESAMPLING METHODS FOR ADAPTIVE
DESIGNS

By

Hui Zhang

In clinical trials, the estimation of effects difference is often of primary importance.
Proper resampling methods will provide second order correct estimates, which will
outperform the traditional normal approximation. Bootstrapping has been known
for a long time for i.i.d. random variables. Unfortunately, traditional bootstrapping
methods are not appropriate because the observations of adaptive designs are depen-
dent due to adaptive allocation. We address this problem by developing and studying
resampling methods for dependent data in adaptive designs including theoretical re-

sults and simulations.
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Chapter 1

Introduction

In clinical trials, it is often desirable that design be adaptive using past information
to allocate present subjects. For better statistical inference, resampling methods are
often used to provide second order correct estimates. This dissertation is motivated by
these two issues. The dissertation will focus on introducing and analyzing resampling
methods for adaptive designs. Adaptive designs will be introduced in Section 1.1, and
a short review of resampling methods for adaptive designs will be given in Section

1.2.

1.1 Introduction to Adaptive Designs

The main focus of this section is to introduce adaptive design and to review some
of the adaptive designs that have already been proposed in the literature. Consider
a clinical trial to evaluate the relative effectiveness of two treatments, A and B.

It is assumed that patients arrive sequentially and each of the patients must be



assigned to exactly one of the two treatments. We assume that the response will be
observed immediately. It may be desirable that the treatment assignment takes into
consideration the information obtained from the past observations. A design that
incorporates in the allocation rule the information obtained from past observations is
called an Adaptive Design (For the benefit of readers, an index of definitions is given
in Appendix A). A common use of adaptive designs is to compromise between two
major yet conflicting goals: (i) to draw reliable statistical inference for the benefit
of future subjects, which is the utilitarian goal; (ii) to maximize the total number of
patients receiving the better treatment, which is the individualistic goal. Some early
adaptive designs can be found in Thompson (1933) and Robbins (1952).

Adaptive designs can be divided into two groups: allocation adaptive and response

adaptive designs.

e In allocation adaptive designs, the allocation rules are based only on the allo-
cation of previous patients. For example, the Biased Coin Design, proposed by

Efron (1971), is an allocation adaptive design.

e In response adaptive designs, the allocation rules are based on the responses
as well as the allocations of previous patients. The allocation rules are either
based on intuitive motivation, such as the Randomized Play-the-winner Rule,
proposed by Wei and Durham (1978), or based on optimal target allocations,
for instance, the Doubly Adaptive Biased Coin Design, proposed by Eisele(1994)

and Eisele and Woodroofe (1995).

Applications of adaptive designs in many different disciplines are discussed in



Flournoy and Rosenberger (1995).

In the remainder of this dissertation, unless otherwise noted, we will consider an
adaptive model in which two treatments are compared and the responses are binary.
In Section 1.1.1, notation is introduced. Allocation adaptive designs are covered in

Section 1.1.2, and response adaptive designs are covered in Section 1.1.3.

1.1.1 Notation

To better explain later work, it is necessary to introduce notation. In the setting of
clinical trials, suppose there are two competing treatments, A and B. Each one of k
sequentially arriving patients must be allocated to either treatment A or treatment B.
Let X and Y; represent the jth patient’s immediate potential responses to treatments
A and B, respectively, even though in practice only one of them will be observed. For
simplicity, here and below, unless otherwise mentioned, we assume binary responses.
Let pg and pg be the underlying probabilities of success of treatments A and B,
respectively. It is assumed that the vectors {Xj’}3}§=l are i.i.d., where X; ~
Bernoulli(py),Y) ~ Bernoulli(pg). Note that there may be dependence within
pairs. A sequential allocation procedure is given by a sequence of random variables

o; E_ . where
{ ]}_)-1

1 if X jis observed;
bj = (1.1)

0 if Y; is observed.
The observation at stage j is given by Z; = §;X; + (1 — 4;)Y;. Let {Uj}§=1

be a sequence of i.i.d. uniformly distributed random variables on [0, 1], independent



of the other variables {5 N }I;=l and {X ijj}?=1~ The sequence of Uj’s is used to
achieve randomization in the allocation. Let F; be the sigma-algebra generated by
X1y X5, Y15, Y5,01,..., 05, here Fy is the trivial sigma algebra. It is useful to
consider the sigma-algebra

G; =.7:jV0’{Uj+1}. (1.2)

where U;,; is the auxiliary randomization. Hence, {gj, Jj > 1} is an increasing
sequence of sigma-algebras such that {X;,Y;} is G; measurable for every j > 1. Note
that ;41 is G; measurable and the random vector {X,,1,Y;41} is independent of
Gj. Let Ny and Np ;. denote the numbers of patients allocated to treatment A and

B through stage k, then

k
Nak=)_0; (1.3)
=1
and
k
Npp=3 (1-68;)=k—Nyy. (1.4)
=1

Note that N4 x/k, Np i /k are the proportions of patients allocated to treatment
A and B, respectively, by stage k. In practice, adaptive designs typically have nonzero
equal initial sample sizes, so that N4 ; and Np are not equal to zero. Also note
that, due to adaptive allocation, N . and Np \ are random variables.

Further let S4 4 and Spj denote the numbers of successes from treatment A or
B through stage k. Then

k

Sak=>_0;X; (1.5)
i=1



and
k

Spr = (1-5)Y;. (1.6)
j=1

Hence the maximum likelihood estimators of p4 and pg are

SAk
PAk= v — (1.7)
Ny k
and
SB.k
7 = — 1.8
PBk Nox (1.8)
respectively.

1.1.2 Allocation Adaptive Designs

In allocation adaptive designs, the allocation of each patient depends only on the
allocations of the previous patients. These designs do not consider the response of the
patients, so the individualistic issue is not addressed. A common goal of allocation
adaptive designs is to achieve some degree of balance in terms of the number of
patients assigned to each treatment.

Complete Randomization consists of assigning each patient to either of the two
treatments with equal probability. As discussed in Efron (1971), complete random-
ization is used as a baseline for statistical inference while minimizing the possibility
of conscious or unconscious selection bias. Sometimes, especially when the number of
patients in the trial is small, complete randomization may result in some unpleasant
imbalances.

The Biased Coin Design proposed by Efron (1971) is a modification of complete



randomization, which allocates patients to one of the two treatments according to
a biased coin-tossing. Let p be a constant in [0.5,1). Let D; denote the difference

Na,j/i— Np,j/j at stage j. Then the rule is described by:

¢

o if D; <0

Pljy1=1)=41/2 if Dj =0 (1.9)

\1 -p if D; > 0.
The allocation rule tends to balance the number of patients allocated to both treat-
ments.

Wei (1978) noted a disadvantage of this procedure in that the allocation rule
neither takes into consideration the number of patients treated thus far, nor does
it discriminate between small or large absolute values of D;. He proposed a new
procedure of the biased coin type, Adaptive Biased Coin Design, that takes these
issues into consideration. This design allocates patients according to the following
rule. Let h : [-1,1] — [0, 1] be a non-increasing function such that h(x) =1 — h(-1)
for any z € [-1,1]. Then P(6;41 = 1) = h(D;). The allocation rule will force an

imbalanced experiment to be balanced in the limit.

1.1.3 Response Adaptive Designs

Recall that response adaptive designs are such that the allocation rules are based
on the responses as well as the allocations of previous patients. Such designs are
used when some compromise is sought between both the individualistic goal and the

utilitarian goal or when some other considerations make it desirable to have unequal



numbers of patients assigned to treatments. For example, it is very natural in clinical
trials to want to assign more patients to better treatment out of the two competing
ones.

Zelen (1969) proposed the Play-the-winner Rule, where a success on one treatment
results in the next patient’s assignment to the same treatment, and a failure on one
treatment results in the next patient’s assignment to the opposite treatment.

The allocation of Play-the-winner Rule is deterministic, while randomness is of
importance in adaptive designs. Randomization not only guards against researcher
bias, but also provides probabilistic basis for an inference from the observations (See
Rosenberger and Lachin, 2002). Wei and Durham (1978) incorporated randomness
into the design by proposing the Randomized Play-the-winner Rule (RPW Rule). We
consider an urn model with initial composition of p balls of two different types, A
and B. When a patient comes in, a ball is drawn and replaced. If the ball chosen is
of type i = A, B, treatment i is assigned. The response is observed immediately, a
success results in the addition of 3 balls of the same color and a balls of the opposite
color, a failure results in the addition of 3 balls of the opposite color and a balls of
the same color, where 3 > a > 0. This design is denoted by RPW (i, a, 3). Different
choices of the triple (u, a, 3) give different levels of compromise between balance and
allocation to the better treatment. In simulation, RPW (1,0, 1) is popular because
of its simple implementation. There is one major disadvantage of RPW (1,0, 1) rule,
the initial urn composition g =1 is small. g is an important parameter whose effect
can be explored by simulation. As Rosenberger and Hu (1999) addressed, starting

with just one ball of each color in the urn may lead to a higher chance that the urn



could be overwhelmed by a treatment that is very successful early on. Having a few
more balls of each color to start will lead to more stable results.

So far, the designs we discussed are established with intuitive motivation, but
not in terms of a target. A target is typically unknown and expressed in terms
of limiting proportion, but the limit designed is motivated in different ways, e.g.
precision. (See Rosenberger and Lachin, 2002). So another approach for adaptive
design is based on an optimal allocation target. A large class of such rules are based
on an estimate of such target by current stage. Let v4 and vg = 1 — v4 denote the
desired (limiting) allocation proportion of treatment A and B, and V4 ; and 0 ; be
the estimates at stage j. Eisele (1994) and Eisele and Woodroofe (1995) introduced a
Doubly Adaptive Biased Coin Design , where the allocation rules depend on both the
current proportions on each treatment and the current estimate of desired allocation

proportion. The allocation rules can be generally described by:

Naj .
dj+1=TqUj41 <o 7 ag) e (1.10)

where ¢, the allocation function which satisfies certain regularity conditions, is a
function from [0,1]2 to [0,1], so that the (j + 1)%t patient is allocated to A with
probability ¢(Ny4 /7,74, ;)-

Another example is the Randomized Adaptive Design (Melfi, Page (1998) and
Melfi, Page, Geraldes (2001)), where ¢(xr,y) = y in this design. In the spirit of
Neyman allocation, the target allocation is proposed to be v4 = /paqa/(\/Pada +
vPBYp) to minimize the variance of p4 r — pp k-

Recently, Hu and Zhang (2004) modified Eisele and Woodroofe'’s design with



weaker and simpler conditions on the allocation function ¢ and proposed a family

of allocation functions aimed at minimizing the variation of proportion N4 r/k.

1.2 A Short Review of Resampling Methods for

Adaptive Designs

This dissertation is a study of resampling methods for adaptive designs. We had a
literature review of adaptive designs in the previous section. We will focus on a short
review of resampling methods, which we will use for adaptive designs, in this section.

The resampling method has been applied to a variety of statistical problems and
often outperformed other statistical methods, more specifically the normal approxi-

mation. Resampling methods have two major advantages:

e The resampling principle allows estimation of the sampling distribution without
obtaining full knowledge of the underlying population distribution. Hence, it
can be applied to any statistic, not just the sample mean. For example, if we
want to estimate the variance of median, the traditional normal approximation
does not work for this problem because we don’t have a formula like s/y/n to
provide estimated standard errors. Instead, we can calculate the variance of
median from R resample observation vectors as an estimate. (See Efron and

Tibshirani (1993) for more examples).

e The resampling estimate is second order correct. Singh (1981) was the first

to show the second order correctness property of resampling, i.e. the rate of



resampling approximation to the sampling distribution is faster than the rate
of the traditional normal approximation. In this milestone paper, he derived an
almost sure Edgeworth Expansion for the distribution of the resample statistic.
The work showed the resample statistic corrects the skewness of the underly-
ing distribution and thus attains a better approximation than the normal law
provides. Hence resampling estimates are more accurate compared to normal

approximation.

Resampling methods are particularly useful in the context of adaptive designs. In
a clinical trial, we assume patients will come in sequentially. We will allocate patients

to two competing treatments A and B.

e First, note that the observation units are patients. So usually the sample size
is small. For small sample size, normal approximation may not be so efficient.
Resampling methods often have better results than normal approximation due

to second order correctness property.

e Second, usually we are evaluating two competing treatments. Resampling meth-
ods are particularly successful when effects of treatment A and B are close.
Babu (1989) illustrate this point in details by examining the second term of

Edgeworth Expansions.

e Third, traditional resampling methods usually do well for i.i.d. cases, but they
are not appropriate for adaptive designs. The observations of adaptive design

are dependent due to adaptive allocation. We will show later in Chapter 5

10



that the confidence interval constructed by resampling method assuming i.i.d.
responses has lower coverage probability than interval based on normal approx-
imation. So we are looking for appropriate resampling methods to account for

the dependent structure in adaptive designs.

Resampling methods for dependent data are developed as a consequence of the
rapid growth of dependent data studies. Lahiri (2003) gave a review of resampling
methods for dependent data. Politis, Romano and Wolf (1999) discussed subsampling,
which is a special case of resampling, where the resample size is smaller than the
sample size. Second order Properties were shown by Lahiri (2003) for normalized and
studentized statistics under weak dependence.

In the context of adaptive design, we have some early work. Rosenberger and
Hu (1999) showed for the first time some parametric resampling results in construct-
ing confidence intervals for proportions in adaptive design. Their method does not
involve resampling the original data. Instead, by computing observed estimates of
the success probabilities from a clinical trial, they simulated additional trials using
these estimates as the underlying probabilities. Hence, this method is called Naive
Parametric Resampling.

In this dissertation, we will study resampling methods broadly. The major con-

tributions of this dissertation are:

e We examine three resampling methods taking the dependence structure of adap-

tive design into consideration.

e Resampling consistency of resampling estimators are shown for the distribution

11



of sample binomial difference.

e Our simulations show that confidence intervals constructed from these resam-

pling methods often outperform the intervals based on normal approximation.

Two basic assumptions that are in force throughout this dissertation, and will be

repeated as needed, are that:

(A1) Ask — 0o, Ny — 00, Np j — oo almost surely .

(A2) As k — 00, Ny /k — va, Npi/k — vp almost surely, where v4,vp € (0,1),

and vg +vp = 1.

The rest of the paper is organized as follows. In Chapter 2, 3, and 4, we describe
three proposed resampling methods for adaptive designs. They are Non-overlapping
Block Bootstrap, Martingale Based Bootstrap, and Sequential Likelihood Resam-
pling. Consistency of Non-overlapping Block Bootstrap and Martingale Based Boot-
strap resampling estimators will be proved respectively. Simulation results are pre-
sented in Chapter 5. We make concluding remarks and discuss future work in Chapter

6.

12



Chapter 2

Non-overlapping Block Bootstrap

2.1 Introduction of Bootstrap

We will first introduce some notation for resampling methods. Let Zy = {Z), ..., Z}}'
be a vector of random variables with joint distribution Gi. The observed data is a
realization of Zj. Suppose we like to estimate the population mean 6 based on the
observations Zj. Let §j be the sample mean, and Hy. denote the sampling distribution
of the centered and scaled estimator T, = Vk(f; — 0). If {Z1, ..., Z;} are i.i.d. with

finite mean and variance, it is well known that

Vi, — 8) L N(0.02), (2.1)

2 is the population variance. This is so called Normal Approrimation for

where o
sampling distribution. The statistical inference of 8, such as constructing a confidence

interval for 6, is based on precise estimation of the sampling distribution Hj.. Since

13



the joint distribution Gy is unknown, Hj remains unknown. Resampling methods
tvpically apply to estimation for Hy..

The general procedure for resampling can be described as following:

e First, an estimator G'k of the joint distribution Gj is constructed from the

observations Zj,.

e Second, we simulate R resample vectors, which are i.i.d. distributed as Gk. We
denote the generic resample vector by Z; = {Z1*, ..., Z*}’, which is the sample
for the resampling version of the original problem. Then we draw statistical

inference for the sampling distribution Hj. based on R resample vectors.

Bootstrap is a particular type of resampling method, where the resampling dis-
tribution G k. is the product of estimators of a single marginal distribution F %, such
that

Gk = F’k X ... X Fk . (2.2)
k

Hence, the components of the resample vector Z; = {Z,*, ..., Z;*}' are i.i.d. Fp. A

common choice of F}, is the empirical distribution function

k
7 — 1.—1
F()=k1> 1(Z5<). (2.3)
J=1
In this case, resamples are simply with replacement samples from the original obser-
vations.
The bootstrap method has been proposed in the context of dependent data.

Different from i.i.d. case, the population is not characterized by the identical

14



marginal F only, but rather depends on the joint distribution G of the whole vector
Zy ={Zy,...,Z}. The Block Bootstrap methods take care of the dependence struc-
ture by keeping the dependence within the block and taking the blocks as resampling
units. For simplicity, we will focus on Non-overlapping Block Bootstrap and apply

NBB method for estimation of p4 and pg separately.

2.2 Weak Dependence and Stationary

Lahiri (2003) discussed in details the resampling methods for dependent data. Two
basic conditions are needed for applying Non-overlapping Block Bootstrap in adaptive
designs: The observation sequence is weakly dependent and strictly stationary.

Let (X,.n € N) be a sequence of random variables. Note that these X's are

general notation for introduction of definitions. Weak Dependence essentially says

segments {X; : i < k} and {X; : 4 > k + m + 1} increases. We first introduce the
most commonly used standard measures of weak dependence: Strong Mizing. Let
(2, F,P) be a probability space and let A and B be two sub o fields of F.

Definition 2.1: The measure for strong mixing or a mixing is given by

a(A,B) =sup{|P(ANB) — P(A)-P(B)|: A€ A, B¢ B}. (2.4)

Definition 2.2: Let (Xp,n € N) be a sequence of random variables on (2, F, P).

Let .73 =o0({X;:a<i<b}),1<a<b< oo The strong mixing coefficient of

15



{Xi}52, is defined by

a(m) = sup{a(ff“,ffimﬂ) :keN}, m>1, (2.5)

where a(-, -) is defined above. The process {X;};>] is called Strong Mizing if a(m) —
0 as m — oo.

Definition 2.3: A stochastic process {X¢,t € T}, whose index set T is linear, is
said to be

(1) strictly stationary of order k, where k is a given positive integer, if for any k

points t1,...,t; in T, and any h in T, the k-dimensional random vectors
(X(t1),.... X(ty)) and (X(t1+h),....X(tp +h)) (2.6)

are identically distributed;

(ii) strictly stationary if for any integer k it is strictly stationary of order k.

In the context of adaptive design, since Non-overlapping Block Bootstrap will be
done for N4 treatment A observations and Np ) treatment B observations sep-
arately from the original sample Z;, we will check stationarity assumption for se-
quences of treatment A and B respectively. Let F; be the sigma-algebra generated
by Xi,..., X, Y1.....Yj,01,...,d}, here Fy is the trivial sigma algebra. It is useful. in

the proofs that follow, to consider the sigma-algebra

where U, is the auxiliary randomization we mentioned in Chapter 1. Hence,

{Gj,j > 1} is an increasing sequence of sigma-algebras such that {X; Y;} is G;

16



measurable for every j > 1. Note that d,,; is G; measurable and the random vector

{X;+1,Yj+1} is independent of G;. We need a theorem from Melfi and Page (2000).

Theorem 2.2.1. Suppose that (X;11,Yj41) is independent of G; for every j > 1.
Then

(i) (X1,X2,...) are i.i.d. with common distribution Fx;

(i) (Y1,Ya,...) are i.i.d. with common distribution Fy;

(iit) The above two sequences are independent of one another.

Hence, weak dependence and stationarity assumptions are both satisfied. Note
that in the context of adaptive design, dependence structure is induced by adaptive
allocations. Hence, N4 and Npgj are random numbers, where Ny + Ng = k.
Once the sequence (X, Xo,...) is truncated as (X, Xo, '“’XNA,k)’ the components
are no longer i.i.d.. However, strong consistency and asymptotic normality for un-
known parameter 0y = pj4 still hold. (See Melfi and Page (2000)). Thus, this
wouldn’t hurt in proving consistency of NBB estimator. We will demonstrate this in

Section 2.4 in proofs of Theorem 2.4.2 and Theorem 2.4.4.

2.3 Introduction for Non-overlapping Block Boot-

strap

We restrict our discussion to the case of Non-overlapping Block Bootstrap (NBB)
method in the context of adaptive designs for estimation of p4. Similar results will

hold for estimation of pg. Estimation of p4 — pg follows from asymptotic inde-

17



pendence of sample binomial difference estimator p4 x — pp x- (See Melfi and Page
(2000)).

First, we obtain the sample vector Zy, where Ny, Np are the numbers of
observations from treatment A and B respectively. Let Xy Ak denote the subgroup
of Zj;, which is composed of N4 x treatment A responses. Let G 4 x denote the exact
distribution of XNA,k' Let pgr = Sak/Nax be an estimator of pg based on the

sample X Statistical inference of p4 is based on approximating the sampling

N Ak
distribution of Tgn,, , = Nk 2(pax —pa)-

Under NBB method, the given vector of observations XNA,k = {X}, ""XNA,k},
is partitioned into non-overlapping blocks. Let ! denote the block length, b denote
the total number of blocks. And suppose that [ is an integer such that both ! and
Ny /U are large, and [ tends to infinity with N4t but at a slower rate. For ex-
ample, [ = |N AJC‘SJ for 0 < § < 1. Let b > 1 be the largest integer satisfying
Ib < Ny k. Then, let By, ..., By denote the b blocks of length [ under the NBB, given
by By = (X1,.X1)'s s By = (X(p—1)141, - Xp1)'- A set of b blocks are resam-
pled with replacement from these observed blocks to generate the resample vector
Xp* = (BY,... By) = {X{,...,X};}'. Let S}, denote the numbers of successes from
resamples X« for treatment A. Let p4 x , denote the sample proportion of the first

bl observations of X then

Nak

bl

Paks =00 X (2.8)
j=1

which equals to p 4 i if N4 x is a multiple of [. The NBB version of TA,NA L I8 defined

18



as Ty yy = VO . — Paksp) where Py = Spy/bl.

The idea of Non-overlapping Block Bootstrap is: because of the strict stationar-
ity, each block has the same [-joint distribution G;; because of the weak dependence,
these blocks are approximately independent for large values of I. Hence, we could
take these blocks as approximately i.i.d. units. Let G’f’ = G X ... x Gy, which is close
to the exact joint population distribution G4 ;. By resampling from (Bj, ..., By)
randomly with replacement, the relation between Xy Ak = {X1,... XN Ak } and
the exact joint distribution G 4 ; can be reproduced by the relation between Xgl =
(Bf, ...,Bg)’ = {X}, ...,Xgl}’ and élb, where C.?f’ denotes the empirical joint distri-
bution of (By,..., By)’. Let E, Var, denote the expectation and variance of the
resampling distribution, which are conditional on observation vector Xy Ak

Let pgr = Ny k_l E,I.v:Al’k X be the sample proportion. The bootstrap version

: ) J
is py = b1 0L X
Note that the resample blocks {B;}Ll are i.1.d. conditional on data X AR with

distribution

. 1
P.(Bf = B) = 7. (2.9)

fori=1,..0b

The NBB method for estimation of p4 can be described as the following steps:

e Obtain the sample vector Zj, divide it into two vectors X and Y

Ngk NB g

where Xy 4 contains the N4  treatment A responses.
e Partition XNA k into b blocks of length I, By, .., By,.
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Resample b blocks from By, .., B, with replacement.

Calculate p% . from the resamples.

Repeat steps 3 and 4 R times.

Draw statistical inference based on R ﬁ;tk'

2.4 Theoretical Properties of NBB Estimator

2.4.1 Resampling Consistency of NBB Variance Estimator
for Sample Proportions

Let Xy Ak be the vector of responses from treatment A. In this section, it is shown
the variance of NBB estimator p% , is strong consistent. Similar results extend to

P Let Ty n Ak denote the centered and scaled sample proportion, such that

Tangy =/ NarPar—pa)- (2.10)

Suppose b = [Ny x/l] blocks are resampled, thus the resample size is bl. The

bootstrap version of T4 n Ak is given by

Tho = VOB k ~ Paks). (2.11)
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The bootstrap estimator of V“"'(TA,NA.k) is given by Var«(T} ). Let W; =
(X(i—1)141 + - + Xi)/l,1 < 7 < b be the average of the it block and Wt =
(X(*z'—1)1+l + ...+ X))/l 1 <1 < b be the average of the ith resampled block under
NBB method. Let Wy; = VI(W;—pg) = VI((X(j_1y141 + -+ Xa) /I -pa) 1 <i < b
be the scaled and centered sample proportion of the it" block. Note that p Akb =
b1 Z?:l Wj. Since Bf,1 <i < bare i.i.d. conditional on Z; and

1

P«(B] = B;) = > 1<i<b. (2.12)

We have p% , = b1y, W}, Thus,

Vary(Th ) = Vard VOBl j — Paks))
bVars (6~ S0 (W = pa)) — (Paks — Pa)) (2.13)
= U3 S0 (Wi —pa)? = (Paks —Pa)?)-

To prove consistency, we need the following lemma. Under mild moment condition,
which is satisfied for Bernoulli responses, and two major assumptions we mentioned
in Chapter 1, Melfi, Page and Geraldes (2001, Theorem 2) showed a central limit

theorem for sample proportions, such that

Lemma 2.4.1. As k — oo,

(\/NA,I:{I}A,k—PA}) iN(H [PAQA 0 D (2.14)
VNB{bBr —PB} of'| 0 pgas

Hence we have

21



Jim Var(Tany ) = pada. (2.15)

To prove consistency, essentially we need to show that the bootstrap estimator

Var.(T} ;) is an estimator of the population parameter p4q4. We claim

Theorem 2.4.2. In the contert of adaptive designs, if |1 +N;.lkl =o0(1) as k — o0,

then
Vard(Thy) — paga as., as k—oo. (2.16)
Proof:
Recall that
1 b
Vary(Th ) = I( EZ —pa)? = (Baks—pa)’) (2.17)

Since \/Ng k(Pak —Pa) LA N(0,p4q4), in addition, p4 x p is the sample propor-

tion of the first bl observations of X it follows that I(pq p — p4)2 =0(1/b) —

Ny

0 a.s.. Hence, it remains to show that

O'I'—‘

b
Z (W; —pa)® — paqa. as.. (2.18)

Note that by definition, Wj; = VI(W; — p4) is the scaled and centered sample
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proportion of the it" block. In addition, note that | — oo as k — co. Hence, for each

i,1<i<b,
d
Wi — N(0.pagqa) (2.19)
Thus,
L&
E(z > WE) — pada, (2.20)
i=1

Equation (2.18) holds because (W; — p4)? > 0. This finishes proof of theorem

24.2. 0

This theorem shows the consistency of Var«(T7) ;,), as long as ! tends to infinity
with N4 ;. but at a slower rate. There are many research work show that the optimal
block length, which minimizes the asymptotic MSE of V“‘r*(TZ,bI)’ is of the form
l = CNX:(I +0(1)) as Ngx — oo a.s., where C is a constant depends on some
population parameters. For estimating the distribution function and quartiles of
TAvNA,k’ the optimal block length is of the form [ = C'NX:(I + o(1)). (See Hall,
Horowitz and Jing (1995), Lahiri (1999c, 2005)).

Our final goal is to estimate the binomial difference py — pg. We prove the
resampling consistency for i):i. = [3*3, - Let by, bp denote the total number of blocks
from vectors XNA,k and YNB.k respectively. Let T} = \/E((pg’k _ﬁ}‘B,k) - (f)A,th -

PB.kb B)) be the centered and scaled resample binomial difference. We then have:
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Theorem 2.4.3. Under same conditions of Theorem 2.4.2, then

PAdA4 +PB‘IB
Vg VB

Vard VE((9ly x=Ppx)~(PAakby—PBrbg)) — as, as k— oo

(2.21)

Proof:
Result follows from Theorem 2.4.2, assumption 2, independent separate resam-

pling for p4 and pg, and Slutsky’s Theorem. O

2.4.2 Resampling Consistency of NBB Estimator for the Dis-
tribution of Sample Proportions

Recall that Hy = P(T4q N Ak < r) denotes the sampling distribution of T4 x Ak Let
H = Py(T} y; < z) denote the distribution of T:&,bl' We attempt to approximate Hj,
by Hy.

We establish the consistency of the NBB estimator for sampling distribution of

TanN Ak by following theorem:

Theorem 2.4.4. Under the same condition of Theorem 2.4.2,

sua IP*(T:LM <z)- P(TA,NA p < )] — 0, as. as k— oo (2.22)
Ie '

Proof:

Since Ty N 4 ) Converges in distribution to N(0,p4q4), which is continous, by
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Polya’s Theorem, we have

sug |P(TA,NA i S z) — ®(x;p494)] — 0 uniformly, as k — oo. (2.23)
TE ’

Thus, it suffices to show

sup |Pu(T) yy < ) — ®(2;p494) — 0, as. as k — oo. (2.24)
reR ’

Let W} = (X(*l—l)i+1 + ...+ X};)/l,1 < i < b denote the average of the ith
resampled block under NBB method. Note that WY, ..., W} are i.i.d. conditional on

Zk,and

b

b
. , 1 P ! 5
Thp = VOBl —DPaks) = \/b—l(g S W —baks) = \/;(Wf —PAkp) (2.25)
i=1

1=1

For all 5 > 0, let Ay, , = 50 Eo(W] — pans)2I/3W7 — haksl > 6).
Note that Bf,1 < i < b are i.i.d. conditional on Z;. As b — oo, by asymptotic

normality of pg x p, we have

LS B = pars)TGSHWE — pasl > 6)
= FZ Wi~ ViBaks =P TWi = ViBaks —pa)l > 0) o0
= (Wiu = Vi(aks— a2 I(IWn = VI(baks — pa)l > b9)
— 0 a.s..



By the Central Limit Theorem for independent random variables, the distribution
of T ,; converge to N(0,p4q4) almost surely as k — oo. This finishes the proof of
Theorem 2.4.4. O

Finally, we will show the resampling consistency of NBB centered and scaled
binomial difference T}'. Let T} = VEk((Par—pa) - (PB.x —PB)) be the centered and

scaled binomial difference. We have:

Theorem 2.4.5. Under the same condition of Theorem 2.4.2,
sup |Po(Tf <) = P(T}, <z)] — 0, as. as k — oo. (2.27)

zeR

Proof:
Result follows from Theorem 2.4.4, independent separate resampling for p4 and

pp. assumption 2, and Slutsky’s Theorem. O
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Chapter 3

Martingale Based Bootstrap

3.1 Introduction of Martingale Based Bootstrap

Martingale Based Bootstrap was introduced by Lin et al (1993) for checking the
normality of Cox model. Later, Lin and Spiekerman (1996) also applied it for model
checking in a parametric regression. Wang and Jing (2000) applied this method to
inference for a class of functionals of survival distributions and termed it Martingale
Based Bootstrap, abbreviated as MBB method. Recently, Wang and Wang (2001)
applied it to inference for the mean difference in the two sample random censorship
model.

Compared with other resamplng methods, an obvious advantage of MBB method
is its simple implementation involving only resampling from a normal distribution.
Suppose we want to estimate the binomial difference p4 — pg. Typical resampling

methods are conducted by resampling with replacement from the original sample
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observations, and then calculating p* , — p% .. based on resamples as an estimate of
8Pak ~ PRk

pA — pp- Martingale Based Bootstrap follows following steps:

e First, based on the asymptotic normality of the scaled and centered sample
binomial difference p4 . — Pp k, wWe construct an estimate for the asymptotic

variance of p4 . — PB k-

e Second, the martingale based bootstrap estimates will based on simulations

from a normal distribution with mean zero and this variance estimate.

In this chapter, we will show that MBB method works well in the setting of adaptive
design if we can show the martingale structure of the p4 — pp i and prove the

asymptotic normality accordingly.

3.2 Central Limit Theorem for Martingales

We first demonstrate the martingale structure of the sample binomial difference p 4 4 —
pB k- Recall from Section 1.1.1, all the moments of X;’s and Y}’s are finite because
they are binary responses. We want to estimate p4, pg and the binomial difference
pA —pB- We consider py — pg and note that it is easy to extend the results to p4 or
pB- In this section, it is shown that asymptotic normality of p4  — pp & holds when
the following two assumptions are satisfied.

As we mentioned in Chapter 1, two basic assumptions are in force throughout:

e Assumption 1: Ny — 00,k — N4 — oo almost surely as k — oo.
P Ak Ak
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e Assumption 2: Ny /k — vy, Ngi/k — vp, almost surely as k — oo, where
va,vg € (0,1),vq4 +vg =1.
Recall that F; is the sigma-algebra generated by X1, ..., X, Y1,..., Y}, 6y, ...,6;. It

is useful, in the proofs that follow, to consider the sigma-algebra

Gj =.7:jVU{Uj+1}. (3.1)

Hence, {G;,j > 1} is an increasing sequence of sigma-algebras such that (X;,Y})
is Qj measurable for every j > 1. Note that 6j+1 is gj measurable and the random
vector (X;41,Yj41) is independent of G;.

The sample proportions are defined by :

) Sk 16X,
Pag = T (3:2)
Z]:l 6]
and
Y-8y
Pk = =2 L (3.3)

- 25::1(1—51') .

Melfi, Page and Geraldes (2001) proved a central limit theorem in the context of
adaptive designs for general difference of sample means X — Y. Follow their spirit of

proof, we have

Theorem 3.2.1. Under assumptions 1 and 2, as k — oo,

VE((ak = Ppa) = (Pa=pp) & N, P24 + E2AE), (3.4
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Proof:

Fix real constants a and b, define for each k > 1and j =1,...,k

Wi = (1/VE){a(X; = pa)d; + b(Y; — pp)(1 - 6,)}. (3.5)

Note that Vij is gj measurable. In addition, note that 5j is Qj_l measurable

and X, Y; are independent of G;_j, then

EWjIGi—1] = E[(1/VK){a(X; — pa)s; + b(Y; — pp)(1 = §;)|G;-1]
(1/Vk){ad;E(X; — pa) + b(1 - §;)E(Y; — pB)} (3.6)
- 0.

Hence, {ij : k> 1,1 < j <k} is a martingale difference array. Let Si; =
Z§=1W’k]~ for i = 1,...,k. Therefore, {S; : K > 1,1 < i < k} is a zero mean
martingale array with differences {ij :k>1,1<j <k} . Note that E(Ski)2 <
a? + b% < o0, hence {Sy; : k > 1.1 <7 < k} is square integrable.

By the martingale central limit theorem, see Theorem 3.2, Hall and Heyde (1980),

it will follow that

k

.
> Wy; S N(0,a’paqava + b*ppapvp) (3.7)
j=1

if the following three conditions are satisfied:

max [Wp;| 2o, (3.8)
J
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2 P
Z Wl?j L a®pagava + V’ppaprp. (3.9)
J

E(mafoj) is bounded in k. (3.10)
J

Note that E(S;)? < a? + b2 implies condition (3.8). For condition (3.10), note

that

max [Wy;| < 1/Vk(la| + b)) 550, as k — oo. (3.11)
J
Finally, for verifying condition (3.9), note that

YW — (a®paqava +bPppapvp) = a®{} T5-1(Xj — pa)26; — padava}

+6%{1 Ef:](yj - pB)%(1-6;) — ppapve}-
(3.12)

It suffices to show that both terms on the right converge almost surely to 0.
Now, write the first term as

a? Njk

k
T 2((Xj = pa) = paga)dj + @’ paga(—= — va). (3.13)
j=1

By the assumption 2, the second term in this equation converges almost surely to

For the first term, define, for each & > 1,
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My = Z ~((X; = pa)* — Paga)S;. (3.14)

Note that {My,k > 1} is a martingale. In addition, all the moments for binary

response are finite. Then we have
k
E(M) < E{(X; - pa)® - pag)2 Y 3 <o (3.15)
j=1

Hence, sup; E(Mf) < 00. By Lo convergence theorem, M) converges almost
surely to an almost finite limit. Kronecker’s lemma implies the first term converges
to 0 almost surely. The term involve b2 in turn converges to 0 almost surely.

Let a = 1/vy4, b= —1/vpg, we have

Wij = (1/VE{((X; —pa)dj)/va — ((Y; — pB)(1 = §;))/vB}, (3.16)
such that,
k
PA9A | PBIB
ZW"’ N(0, s on 2578, (3.17)
Note that

Vk((pak —PBk) — (A —PB)] = Z§=1(1/ﬁ){ (X - PA)(S')N;—Jc

(3.18)
—((Y; - pB)(1 - N—}

Hence, By assumption 2 and Slutsky’s theorem, we finished this proof. [J
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This is so called normal approximation of the sampling distribution of sample
binomial difference p4 x — pp k- The above normal distribution can used for general
statistical inference, e.g. constructing a confidence interval for p4 — pp.

In Martingale Based Bootstrap method, this normal distribution can be justified
as our resampling distribution. We will look at the asymptotic variance of sample
binomial difference, i.e. paga/va + PB9B/VB, construct an estimate of asymptotic
variance, and then resample from a normal distribution with mean zero and this vari-
ance estimate. Note that, the second condition of central limit theorem for martingale,
i.e. equation (3.9), provides us an natural estimator of the asymptotic variance.

By equation (3.18), replace p4, pp with their consistent estimators p4 . and pp -
Strong consistency of p4 x and pp ; have been shown by Melfi and Page (2000), hence
the error introduced here is of o(k'l/ 2), which is negligible as we calculate the variance

estimator. Let

(% - ppR)A ) ) (319

Wij = (1/VI((X; = Dak)d)) Ak

k
Nak
Then we have,

>r W, = Nﬁck Y1 6(X —pag)?+ N};'?kk Y11= 8)(Y; — Pp )’
= ENZAI( - par)®Sak +0% 1 (Nak — Sap)]
+ ENBA((1 - pBr)2Spk +Pp i (Npk — SBA))-

(3.20)
By Theorem 3.2.1, as k — oo, we have
£ i p
> Wi & paga/va+ppas/ve. (3.21)
Jj=1
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From now on, we let T} denote the centered and scaled sample binomial difference,

such that

Ty = Vk|{(pak — PBx) — (P4 — PB)) (3.22)

with asymptotic variance 0%, = paqa/va + PBIB/VB.

Denote the bootstrap version of T} by

Ty = VE((plyx — Ppi) — (Pak — DBk (3:23)

where [3:1’ k= ﬁ*B, ;. are based on resamples from the normal distribution, i.e. N(pg x —
5Bk N22l(1=Pax)2Sax+i% i (Nar—Sar)+Ng2(1-ppr)2Spi+p%  (Npx—
PBx- N3 (1=Pax) San+54  (Nak—Sak Bxl(1=PB k)" SBk+Pp £ (NBk

Spk)])- In the spirit of bootstrapping, we assume the relation between sample and
population can be reproduced by the relation between resample and sample. Hence,

we hope that T} converges to the same normal distribution as T does, i.e.

. - - - d paq PB1q
VRl = Ppa) = (ag = ppa)l S NOZPE+ E0E). (3:24)

We will prove this in Theorem 3.3.2.
Let & be a random variable from the resampling distribution which is conditional

on Zy, such that

& ~NON(L - Pak)®Sak + i (Nag — San)]

o S g (3.25)
+Np (1= PBr)*Spk + Ppx(NB Kk — SBA)))
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Clearly, ﬁ*A, x — DB can obtained as

Pax —Ppr=Pak—PBk +&- (3.26)

This will be used in the proofs in Section 3.3.

3.3 Theoretical Properties of MBB Estimator

3.3.1 Resampling Consistency of MBB Variance Estimator

for the Binomial Difference

Let Var, denote the variance of the resampling distribution, which is conditional on

observation vector Z;. The bootstrap estimator of Var(T}) is given by Var«(T}).

Note that,
= Vk(&).
Hence we show the consistency of Var«(T}):
Theorem 3.3.1. If Ny x/k — v4 almost surely as k — oo, then
Var,(Ty) £ 2494 | PBIB (3.28)
VA vp

35



Proof:

Var (Ty) = Var,(ﬂ({i))
= k(Var«(§;)) (3.29)

L PAYA + PB‘IB.
VA B

3.3.2 Resampling Consistency of MBB Estimator for the
Distribution of the Binomial Difference

Theorem 3.3.2. Under assumptions 1 and 2,

sup |[Pu(Tf <) = P(T, < 2)| 550 as k— o0 (3.30)
r€R

Proof:

Since T} converges in distribution to N(0,02,), it suffices to show

sup |Pu (T < z) — ®(u; o) 2,0, as k— oo. (3.31)
reR

Note that,

T} = Vk(S}), (3.32)

where 6; is a normal variable. It suffices to show the consistency of MBB variance
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estimate for the binomial difference. Followed by Theorem 3.3.1, we have

Vary(T7) 5 o%.. (3.33)

This finishes the proof of Theorem 3.3.2. O
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Chapter 4

Sequential Likelihood Resampling

4.1 Introduction of Resampling

In this chapter we will focus on Sequential Likelihood Resampling, abbreviated as
SLR method. Recall that, as we mentioned in Chapter 2, when the observations
are dependent, the underlying joint population distribution Gy is not equal to the
product of i.i.d. marginal distributions F. Let C'k be an estimator of the joint
population distribution G}, constructed from the observations Zy = {Z1,...,Z;}.
Resampling generalizes bootstrapping by eliminating the requirement that G} be
the product of identical marginal estimators. It allows the estimator G} to be the
product of a group of conditional distribution estimators based on the observations
Z;.. Resampling methods aim at capturing the underlying data generating process,
which gives the dependence structure of the observations.

Recall G; = F; Vo(Ujy1),1 < j < k are the nested increasing sigma-algebras

as we defined in Chapter 1, such that é;,1 is G; measurable and the random vector
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{Xj+1.Yj41} is independent of G;. Let Zy = {Z), Zy, ..., Z}' be the vector of sample
observations with joint population distribution Gi. We write the joint distribution

Gy as the product of the one step ahead conditional distributions Fj;,1 < j < k.

Gi(Zy,-2Zy) = FI(ZI)H§=2 Fi(Z;lG;-1)

4.1)
P (

= Hj:l F_’]
Let f} =F (Z;1Gj-1),1 < j < k be an estimator of one-step ahead conditional

distribution Fj. Accordingly,

G(Z1,.,2Zx) = F(Z) TT¥=2 F(21G,-1)
=[5, F;.

(4.2)
Let Z; = {Z{, ..., Zx*} denote a resample vector from {Gj }le. Resamples are

obtained by simulating from F j sequentially and independently, i.e.

1<j<k (4.3)

The major idea here is that we will update the estimate of the conditional distri-
bution F; based on the information we obtained by stage j. The actual conditional
distribution Fj is hard to estimate, we are going to construct the estimator I:"J intu-
itively based on the above idea. We propose to resample from a particular choice of

F;, that imposes the conditional moment restrictions.
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4.2 Introduction of Sequential Likelihood Method

Sequential Likelihood Resampling method applies empirical likelihood method at each
stage j, 1 < j < k, sequentially. Empirical Likelihood Method was first introduced
by Owen (1988). The idea of empirical likelihood is very natural and appealing.
Let p4,pp be our parameter of interest. Let {Z1,Z3, ..., Z;}' be observations from
joint distribution Gy. Let F(Z;) be the probability mass of observation Z;. The
empirical distribution function f:'k assigns equal probability mass to each observation
and is often considered a nonparametric maximum likelihood estimate of Fj because

it maximizes the likelihood function
k
L(pa.pp) = [[{F(2))} (4.4)
j=1
over all distribution functions F. Hansen in his milestone General Method of Mo-
ments (GMM) paper (1982) addressed that for small samples or dependent process,
it is often advantageous to profile the maximum likelihood estimator by conditional
moments which are based on current observations. The empirical likelihood method
is used to numerically calculate the probability mass under linear constraints, i.e.
Zle{F (Z;)} = 1 and the conditional moments constraints. These are so called the
Profile Maximum Empirical Likelihood Estimators.
With this in mind, we define the empirical likelihood function in the context of

adaptive design. Note that in the context of adaptive design, we have 4 distinct

outcoines:

e patients assigned to treatment A and we observe a success.
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e patients assigned to treatment A and we observe a failure.
e patients assigned to treatment B and we observe a success.

e patients assigned to treatment B and we observe a failure.

At stage j, define multinomial distribution of Z; with cell probabilities W} =
(r1j,72j,73j,74j). Here j is fixed and ry; is the probability of observing a suc-
cessful treatment A, ro; is the probability of observing a failed treatment A, r3;
is the probability of observing a successful treatment B, r4; is the probability of
observing a failed treatment B, such that for each 1 < j < k, Z?:l rij = 1. Let
nij,t = 1,2,3,4 be the number of assignment to four cells by stage j. Note that
nyj = Sak n2j = Nakx — Sar.n3j =SBk, nyj = Ngr — Sp in previous notation.
Our goal is to estimate p4 and pg, which are given by
i

pa=——, and pp=
Ty + roj

1‘3j

ML — (4.5)
T3j + T4j

Note that since {X;,Y;} is independent of G;_1, r;;’s depend on j, but r1;/(ry; +
72j),73;/(r3; + 745) do not depend on j. We impose a conditional moment condition
to incorporate the information from the current observations. For each 1 < j < k,

let ¢; be martingale difference

tj = 6.1(’\,.1 - pA) +(1- 5})(}/_] - pB)' (4.6)
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We have shown in Chapter 4 that the ¢; satisfy the conditional moment restriction

E(tj|gj_1) =0. (4.7)

We will include this as a linear constraint as our method of profiling for finding
the maximum empirical likelihood estimator (MELE) of Fj, 1 < j < k.
Note that our observations fall into four distinct cells, accordingly let g; denote

the four possible values ¢; could take, such that
g1=1-pa, 92=-pa. 93=1-pp, 94=-pB (4.8)

Thus, for each 1 < j < k, the profile maximum empirical likelihood estimator of
(115,725,735, T4j) will maximize

4
Empirical Likelihood;(pa,pB) = H r,-jn'l (4.9)
=1

subject to linear constraints

4

4
Zr,-j =1, and Zg,rij =0. (4.10)
=1

i=1

Let Fj =F i(Z;1Gj—1),1 < j < k be an estimator of one-step ahead conditional

distribution Fj, which can be described as a multinomial distribution with cell prob-
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abilities:

4
"Vj = (flj» ’I_‘Qj, 7.‘3]'. f4j) = argma;r,-lj.,~2j,,~3j,r4j Z nijlog(rij),

i=1

where Z?:l rij = 1. Numerically, the profile MELE for r;;’s are given by

n,'j

oo ,
Y i+ Mg

1< <4

where A is the Lagrange multiplier, which solves equation

ﬁA,] = '_—,,', and ﬁB.} = TT:;J_*_—f"i;.

(4.11)

(4.12)

(4.13)

(4.14)

As a nonparametric method, the empirical likelihood method is best known for

its advantage of conveniently accommodating auxiliary information containing in the

adaptive allocation 6;. See, for example, Qin and Lawless (1994, 1995), Chen and

Qin (1993), and Chen and Sitter (1999).

Sequential Likelihood Resampling method can be described in some simple steps:

e Calculate W’j, 1 < j < k, by the numerical method in equations (4.11) and

(4.12) described above.

e Simulate resamples Z ]* sequentially and independently from F},l <j<k.
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e Calculate Aﬁjl,k and ﬁg,k from the resamples, where ﬁ*A,k = S:l,k/N.Z,k’ and
Pk = Spx/NB i
e Repeat steps 2 and 3 R times.

e Draw statistical inference based on R p% , and p% ;.
Ak B,k

To prove the resampling consistency of the Sequential Likelihood Resampling es-
timator 13:‘4, P ﬁ%,k’ we need to solve for the Lagrange multiplier A. The solution is
complicated, see equation (4.13), so we will explore the theoretical property of SLR

estimator in our future work.
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Chapter 5

Simulations and Results

5.1 Constructing Confidence Intervals

Many statistical inferences can be drawn from resampling methods. In this chapter,
we will focus on constructing a two-sided 100(1 — @)% confidence interval for the
binomial proportion p4, and the binomial difference p4 — pg. We want to compare
the simulation results of normal approximation with each of these the resampling
methods we examined in our previous chapters respectively.

There are two criteria to evaluate a confidence interval:

e Coverage Probability: Given a nominal confidence level, the coverage probability
of the interval should be close to the nominal. Given deviance from the nominal,
we prefer conservative confidence intervals rather than anti-conservative ones.
Conservative means that the coverage probability of the interval is at least as

large as the nominal.
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o Interval Length: Fix the coverage probability, the shorter the interval length

the better the confidence interval.

Hence, an ideal confidence interval should have at least nominal coverage proba-
bility and shorter interval length.

Many intervals based on normal approximation have been proposed. In particu-
lar, for binary responses, the Agresti Interval is recommended as the gold standard
confidence interval for binomial proportions. See Brown, Cai and DasGupta (2001).
Denote SA,k =S4k +2, SB,k =S +2, NA,k =N +4, NB,k = Np +4. We

recenter the maximum likelihood estimators p4 x and pp 1 as:

'§A k SB k
ﬁA,k = .—’, and ﬁB,k = —.r— (5.1)
Nak Npk

We will compare confidence intervals constructed from our proposed three resam-
pling methods with Agresti Interval to show the merit of resampling. In the context
of adaptive designs, the procedures for constructing confidence intervals can be de-
scribed as following:

Agresti Interval
o We obtain our sample vector Zy..

e A 100(1 — a)% confidence interval for p4 — pg is given by

PAKGAK 4 PBAB.K
Ngk Np i

(Pak —PBK) £ Zu/2\/( ), (5.2)

where Z,, /9 is the a/2 cutoff point of a standard normal distribution.

Confidence Interval Using Resampling Methods
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e Based on Z;, simulate from the resampling distribution R times, obtaining R

sequences of treatment responses Z}*C.

e Compute p} , — Pp i from the resamples, these are R resampling estimates of

PA — PB-
e Order these R ﬁ:&,k - ﬁzi’,k as (13:1 k pB k) pA k ﬁ,l},k)(R)‘
e A 100(1 — a)% percentile confidence interval is given by
(B~ P D, (Bl g = P ) /D). (53)

5.2 Resampling Procedure and Simulation Results

Simulations are done for various adaptive designs, such as Randomized Play-the-
winner Rule, Adaptive Randomized Design, Doubly Adaptive Weighted Design, etc.
Since the simulation results are similar, we only include here RPW(1,0,1) rule for its
simple implementation. Recall that, RPW(1,0,1) rule can be described by an urn

model, such that

e We have initial composition of 1 ball of each of two different colors.
e When a patient comes in, a ball is drawn and replaced.

o If the ball chosen is of color A, treatment A is assigned. If the ball chosen is of

color B, treatment B is assigned.

e A success results in addition of 1 ball of the same color, a failure results in

addition of 1 ball of the opposite color.
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We keep allocating patients with this rule. We obtained our sample vector Zj.
Then we will apply our three resampling methods based on this sample.

Simulations are run for a wide range of values of parameters p4 and pg. Results
are reported for p4 and pg = 0.1 through 0.9 in increments of 0.1. The sample
size kK = 100, and for each sample we choose resample size R = 2000. We calculate
coverage probability and interval length based on N = 10000 iterations.

Tables 5.1-5.12 show the results of coverage probability and average interval length
of p4 and pgq — pp using NBB, MBB, and SLR methods. The numbers in the
parentheses are coverage probabilities of Agresti method. For each combination of
parameters, three dimensional plots for coverage probability and interval length of
pa and py — pp are included here (Figures 5.1-5.12). The dark surface indicates
resampling method, the light surface indicates Agresti method.

In viewing the simulation results, it is useful to recall the numerator § of the
coeflicient k3 of the second term of Edgeworth Expansion for sample proportions.

See Brown, Cai and DasGupta (2002). We have

5 (24— pg)mfm _laB - P2B)PB(IB, (5.4)
va Vg

In particular, k3 goes to zero when py ~ pg or pgq ~ 1/2, pg ~ 1/2. The
resampling methods will perform better in these cases.
The simulations support the expected large sample behavior. In terms of coverage

probability, the resampling methods have higher coverage probability than the Agresti
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Interval when p4 and ppg are close or when p4 and pg are moderate or large. Note
that this explains that resampling methods are especially useful in clinical trials,
where we commonly evaluate two competing treatments, so that p4 and pg are close.

In terms of interval length, note that NBB and SLLR methods have uniformly
shorter interval length than Agresti. While MBB method has similar interval length
as Agresti, the difference is in the third decimal place.

It is worth noting that from the three dimensional plots, the Agresti Interval is
very stable for all combinations of p4 and pg. MBB behaves similarly to Agresti
because MBB is a resampling method based on normal approximation. NBB and
SLR do not behave well on the boundaries, i.e. when p4 or pg are extremely small
or extremely large. In addition, boundary behavior is different for NBB and SLR.
For instance, NBB method does not do well when the difference p4 — ppg is large.
SLR method is bad when p4 ~ 0 and pg ~ 0. This can be explained in terms of two

factors: the nature of the design and the nature of the resampling methods.

e The nature of RPW rule. The Randomize Play-the-winner Rule, RPW (u, a, 3)
is designed to account for the ethical issue. The allocation rule will assign more
patients to better treatment. If p 4 or pg are extremely small or extremely large,
especially when the difference p4 — pp is large, observations from the better
treatment will dominate the inferior treatment, which will cause bad inference
for the inferior treatment. For example, in Table 5.1, when p4 = 0.1, pg = 0.9,
the coverage probability of p4 is low. We propose two possible solutions: (i)

increase the initial urn composition. In general, starting with few more balls of
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each color will lead to more stable results; (ii) increase the sample size.

e The nature of Sequential Likelihood Resampling method. SLR method is based
on estimation of sequential multinomial probabilities. The Profile Maximum
Empirical Likelihood Estimator is based on Maximum Likelihood Estimator
with conditional moment corrections. The case when py and pg are both
small will lead to a higher chance that the conditional moment restriction may

overcorrect the Maximum Likelihood Estimator.

5.3 Summary and Conclusion

In summary, in the context of adaptive design, under two major assumptions, al-
though the components of observation vector Zj are not i.i.d., the sample binomial

difference converges to a normal distribution

. « d PAq. PBYq
VEl(bax = ppR) = (Pa = pp) S N(O, 55 + 27 0). (5.5)

Let p% , and pp . be the resampling estimators, if

%K ~ ~ ~ d < 4
VElak — Ppa) — Gax —ppp) S NOEFE 22, ()

the resampling estimator is resampling consistent in distribution. Hence, the corre-
sponding resampling method is theoretically applicable.

With this in mind, we can give a list of possible resampling methods. Note that,
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the first three methods are not discussed in this dissertation:

e [.I.D. Bootstrap. This traditional resampling scheme is not appropriate for
adaptive designs, because the treatment assignments and response are not ex-
changeable. The dependence structure is not accounted for. Especially, when
sample size is small, the rate of convergence is too slow to lead to reasonable

results. (See Tables 5.13-5.16, Figures 5.13-5.16.)

e [.I.D. Bootstrap for py and pg separately. Dependent structure is accounted

for by bootstrapping vectors of responses from treatment A and B separately.

e Naive Parametric Resampling. Proposed by Rosenberger and Hu (1999). the
dependence structure is accounted for by simulating the adaptive rule R times
using p4 x and ppx as the underlying success rates. They demonstrated by

simulation that this resampling method works well for adaptive designs.

e Non-overlapping Block Bootstrap. Blocking technique is applied. Dependency

is kept within the blocks. (See Tables 5.1-5.4, Figures 5.1-5.4.)

e Martingale Based Bootstrap. Martingale technique is used to estimate the vari-

ance in the limit. (See Tables 5.5-5.8, Figures 5.5-5.8.)

o Sequential Likelihood Resampling. Dependency information is captured by re-
sampling sequentially from a group of conditional empirical likelihood. (See

Tables 5.9-5.12, Figures 5.9-5.12.)

To compare the performance of these resampling methods, we also include the
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simulation results of I.1.D. Bootstrap, the only resampling method in the above list
ignores the dependence structure of adaptive design.

Keep the setting of simulation same, Tables 5.13-5.16 and Figures 5.13-5.16 present
the simulated coverage probability and average interval length of I.1.D. Bootstrap
method comparing with Agresti method. In most cases, the coverage probability is
lower than Agresti Interval. So the estimate of I.I.D. Bootstrap is not reasonable for
adaptive designs.

In conclusion, there are many resampling methods that are theoretically applicable
in the context of adaptive designs. Resampling methods that appropriately account

for dependence structure usually will outperform the others.

52



Tables

53



PA

PB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0804 0929 0949 0962 0963 0955 0944 0928 0.856
(0.969) (0.957) (0.953) (0.953) (0.947) (0.952 (0.951% (0.952) (0.955)
0.2 0.80 0.92 0.95 0.96 0.96 0.95 0.94 0.92 0.854
(0.966) (0.957 (0.953} (0.952) (0.948) (0.952) (0.952) (0.955) (0.955
03 0.79 0.92 0.95 0.96 0.96 0.95 0944 0924 084
(0.968) (0.959) (0.954) (0.954) (0.948) (0.952) (0.952) (0‘9532' (0.956
04 077 0.92 0.94 0.96 0.964  0.95 0.944 0.92 0.83
(0.970) (0.959 (0.954} (0.955) (0.945) (0.951) (0.951) (0.953) (0.956
0.5 073 0.92 0.95 0.96 0.96 0.95 0.94 0.92 0.83
(0.972) (0.959) (0.956) (0.954) (0.946) (0.950) (0.949) (0.953) (0.956)
0.6 0.68 0.91 0.95 0.96 0.96 0.95 0.94 0.92 0.824
(0.972 (0.9622 (0.955) (0.955) (0.948) (0.951) (0.949) (0.955) (0.957
0.7 061 0.91 0.95 0.96 0.96 0.95 0.94 0.91 0.80
(0.975) (0.964) (0.960 (0.955{ (0.949) (0.950) (0.950) (0.952) (0.958)
0.8 0474 0.89 0.95 0.97 0.97 0.95 0.94 0.90 0.774
(0.975 (0.9702 (0.963% (0.958) (0.954) (0.952) (0.950) (0.953) (0.955
0.9 0.16 0.85 0.95 0.97 0.98 0.96 0.934 0.88 0.70
(0.972) (0.972) (0.968) (0.963) (0.957) (0.953) (0.948) (0.951) (0.957)
Table 5.1. NBB method, coverage probability of p4
* Numbers in the parentheses are Agresti results.
P4
DB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0166 0203 0223 0231 0229 0218 0.199 0.170 0.128
(0.1761 (0.213) (0.272) (0.240) (0.237 (0.225{ (0.205) (0.175) (0.232
0.2 017 0.20 0.22 0.23 0.23 0.22 0.20 0.17 0.12
(0.182 (0.2392, (0.238) (0.245{ (0.242) (0.230) (0.209) (0.178 (0.134}
0.3 017 0.21 0234 0.24 0.23 0.22 0.20 0.17 0.13
(0.1895)) (0.226) (0.245) (0.252) (0.248) (0.235 (0.2132 (0.181) (0.136
04 0.18 0.22 0.24 0.24 0.24 0.23 0.21 0.17 0.13
(0.199) (0.236) (0.254) (0.261) (0.256) (0.242) (0.219) (0.178) (0.138
0.5 0194 0.23 0.25 0.25 0.254 0.24 021 0.184 0.13
(0.211) (0.248) (0.266 (0.2722 (0.266 (0.251{ (0.226 (0.1912 (0.142
0.6  0.20 0.24 0.26 0.27 0.26 0.25 0.22 0.19 0.14
(0.228) (0.264) (0.282) (0.287) (0.280) (0.263) (0.236 (0.1992 (0.148
0.7 0.22 0.264  0.28 0.28 0.28 0.26 0.23 0.20 0.14
(0.254) (0.288 (0.306& (0.309) (0.300) (0.281) (0.252) (0.211 (0.156}
0.8 0.25 0.29 0.31 0.314  0.30 0.28 0.25 0.21 0.16
(0.296) (0.327) (0.342) (0.343) (0.332) (0.310 (0.2762 (0.231) (0.171
09 030 0.33 0.35 0.35 0344 0.32 0.29 0.24 0.18
(0.380) (0.400) (0.408) (0.404) (0.388) (0.360) (0.321) (0.268) (0.200)

Table 5.2. NBB method, interval length of p4

* Numbers in the parentheses are Agresti results.
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PA
PB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

01 0987 0975 0953 0920 0883 0.819 0.703 0.484 0.053

(0.9821 (0.971 (0.961} (0.955 (0.954{ (0.948) (0.941) (0.937) (0.931
02 0971 0977 0971 0956 0941 0914 0877 0815  0.68
(0.970) (0.966) (0.964) (0.963) (0.961) (0.956) (0.956) (0.948) (0.952
03 0952 0972 0972 0965 0954 0945 0927 0907  0.88
(0.964) (0.963) (0.962) (0.958 (0.9532 (0.956) (0.956) (0.953) (0.958
04 0924 0955 0967 0967 0961 0955 0946 ~ 0.942  0.93
(0.958) (0.958) (0.958) (0.956) (0.953) (0.951) (0.952) (0.951) (0.957)
05 088 0936 0958 0963 0964 0959 0957 0950  0.954
(0.953% (0.955) (0.957) (0.955) (0.954) (0.953) (0.953) (0.955) (0.956
06 0821 0915 0945 0957 0960 0959 0955  0.953  0.95
(0.952) (0.955) (0.957) (0.954) (0.954) (0.951) (0.953) (0.952) (0.954
07 0703 0876 0928 0947 0956 0956 0952 0948  0.94
(0.945} (0.954) (0.955) (0.951) (0.953 (0.951{ (0.953) (0.953) (0.953
08 0491 0815 0906 0937 0949 0951 0945 0940  0.91
(0.941) (0.952 (0.953% (0.9532 (0.953} (0.953 (0.952} (0.957) (0.955
09 0056 0692 0881 0931 0951 0952 0941 0920  0.86

(0.938) (0.954) (0.957) (0.953) (0.951) (0.952) (0.951) (0.959) (0.966)

Table 5.3. NBB method, coverage probability of p4 — pg

* Numbers in the parentheses are Agresti results.

PA
PB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 0240 0270 0288 0299 0305 0307 0309 0317 0.344
0.250) (0.281) (0.300) (0.312) (0.318) (0.322) (0.328 (0.347% (0.404

0.2 (0.26 0298 0316 0326 0332 0334 0337 0345  0.36
(0.281) (0.310) (0.329) (0.341) (0.347 (0.351} (0.358) (0.375) (0.424
03 0288 0316 0333 0344 0349 0351 0353 0360  0.38
(0.300) (0.329) (0.348) (0.359) (0.365) (0.369) (0.374) (0.389) (0.442
04 0299 0326 0344 0354 0358 0360 0360 0366  0.38
(0.312g (0.341) (0.359) (0.369) (0.374 (0.3772 (0.381) (0.329) (0.430
05 0305 0332 0349 0358 0362 0361 0360 0362  0.37
(0.318) (0.347) (0.365% (0.374 (0.378% (0.378)  (0.379) (0.386{ (0.417
06 0307 0334 0351 0360 0361 0358 0354 0351  0.36
(0.322) (0.351) (0.369 (0.3772 (0.378) (0.375) (0.371) (0.372) (0.394
07 0309 0337 0353 0361 0360 0353 0343 0334 033
(0.328) (0.357) (0.374) (0.380) (0.338 (0.370{ (0.360) (0.353) (0.362)

08 0317 0344 0360 0366 0362 0351 0334 0316  0.304
(0.346) (0.374) (0.389) (0.392) (0.386) (0.372) (0.352) (0.333) (0.327
09 0344 0367 0380 0382 0376 0359 0334 0304 027
(0.404) (0.424) (0.432) (0.429) (0.416) (0.393) (0.362) (0.326) (0.297)

Table 5.4. NBB method, interval length of p4 — pp

* Numbers in the parentheses are Agresti results.
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PA

DB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.944 0.951 0954 0959 0955 0956 0952 0.945 0.931
(0.966{ (0.9582 (0.954) (0.955 (0.95) (0.951) (0.949) (0.945 (0.94
0.2 095 0.95 0.95 0.95 0.95 0954 0.95 0.94 0.92
(0.967) (0.958) (0.954) (0.954) (0.951) (0.951) (0.949) (0.943) (0.938
03 095 0.95 0.95 0.95 0.95 0.95 0.95 0.944 0.92
(0.969) (0.958) (0.954) (0.952) (0.948) (0.951) (0.95) (0.944) (0.936
04 094 0.954 0.95 0.95 0.95 0.954 0.95 0.94 0.92
(0.969) (0.959) (0.956) (0.951) (0.947) (0.949) (0.948) (0.943) (0.936
05 0944 095 0.95 0.95 0.95 0.95 0.95 0.94 0.92
(0.972) (0.959) (0.955) (0.952 (0.9452 (0.947 (0.947g (0.942) (0.936
0.6 0.93 0.95 0.95 0.95 0.95 0.95 0.9 0.94 0.92
(0.973) (0.962) (0.957) (0.955) (0.944) (0.946) (0.943) (0. 941} (0.936
0.7 094 0.95 0.9 0.9 0.95 0.95 0.9 0.94 0.92
(0.977) (0.966) (0.961) (0.956 (0.948} (0.944{ (0.943) (0.939) (0.932
0.8 0.9 0.95 0.9 0.95 0.95 0.95 0.95 094 0.92
(0.978) (0.972) (0.963) (0.957) (0.946 (0.941% (0.94) (0. 934} (0.928
09 0.98 0.95 0.9 0.95 0.95 0.95 0.94 0.94 0.92
(0.976) (0.976) (0.971) (0.957) (0.947) (0.936) (0.932) (0.929) (0.923)
Table 5.5. MBB method, coverage probability of p4
* Numbers in the parentheses are Agresti results.
P4
DB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.158 0.208 0.234 0.244 0.243 0.231 0.210 0.179 0.132
(0.173) (0.210) (0.230) (0.238) (0.236) (0.226) (0.207) (0.179) (0.138)
0.2 0.16 0.214  0.23 0.25 0.24 0.23 0.214 0.18 0.134
(0.179) (0.216) (0.235) (0.243) (0.241) (0.230) (0.211) (0.182) (0.140
0.3 0.16 0.22 0.24 0.25 0.254 0.24 0.21 0.18 0.13
(0.185) (0.222) (0.242) (0.249) (0.247) (0.235) (O. 215g (0.186) (0.142
04 0.17 0.22 0.25 0.26 0.26. 0.24 0.22 0.19 0.13
(0.194{ (0.231) (0.250) (0.257) (0.254) (0.242) (0.221) (0.190) (0.146
0.5 0.18 0.23 0.26 0.27 0.27 0.25 0.23 0.19 0.14
(0.205) (0.242) (0.261) (0.268) (0.264 (0.251{ (0.228) (0.196) (0.150
0.6 0.19 0.25 0.28 0.29 0.28 0.27 0.24 0.204 0.4
(0.220) (0.256) (0.275) (0.281) (0.277) (0.262) (0.238) (0.204) (0.156
0.7 0.20 0.27 0.30 0.31 0.30 0.28 0.25 0.21 0.15
(0.241) (0.276) (0.294) (0.300) (0.294) (0.277) (0.251) (0.215) (0.164
0.8 0.22 0.29 0.33 0.34 0.33 0.31 0.28 0.23 0.16
(0.273) (0.306) (0.323) (0.326) (0.318) (0.300) (0.271) (0.232) (0.178
09 0.26 0.34 0.38 0.394 0.38 0.35 0.31 0.26 0.19
(0.331) (0.356) (0.369) (0.370) (0.359) (0.337) (0.303) (0.259) (0.199)

Table 5.6. MBB method, interval length of p4

* Numbers in the parentheses are Agresti results.
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PA

PB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0965 0956 0953  0.949 094 0933 0925 0912 0914
(0.981) (0.967) (0.96) (0.953) (0.942) (0.938) (0.93 (0.919{ (0.924
0.2 095 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94
(0.9682 (0.961) (0.958) (0.955) (0.953) (0.951) (0.949 (0.9431 (0.947
03 095 0.95 0.9 0.95 0.95 0.95 0.95 0.95 0.94
(0.958) (0.957) (0.957) (0.953) (0.952) (0.952) (0.955) (0.95) (0.954)
04 094 0.95 0.9 0.95 0.95 0.95 0.95 0.95 0.954
(0.952) (0.955) (0.957) (0.952) (O. 951} (0.954) (0.952) (0.953) (0.954
0.5 094 095 0.95 0.95 0.96 0.95 0.9 0.95 0.95
(0.944) (0.953) (0.953) (0.952) (0.953) (0.949) (0.953) (0.951) (0.951
0.6 0.9 0.94 0.95 0.95 0.95 0.95 0.95 0.9 0.95
(0.936) (0.947) (0.952) (0.952) (0.951) (0.95) (0.951) (0.952) (0.945)
0.7 092 0.94 0.95 0.95 0.95 0.95 0.954  0.95 0.954
(0.933) (0.947) (0.951) (0.951) (0.9 ?} (0.948) (0.945) (0.953) (0.95
0.8 091 0.944  0.95 0.95 0.95 0.95 0.954  0.95 0.95
(0.9242 (0.947) (0. 9522 (0.949) (0. 948% (0. 9462 (0.947) (0.952 (0.9512
09 091 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.96
(0.925) (0.946) (0.955) (0.95) (0.947) (0.944) (0.946) (0.953) (0.961)
Table 5.7. MBB method, coverage probability of p4 — pp
* Numbers in the parentheses are Agresti results.
PA
PB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
01 0226 0266 028 0301 0305 0303 0.298 0294  0.302
(0.246) (0.276) (0.296) (0.308) (0.313) (0.316) (0.319 (0.328{ (0.3602
0.2 0.26 0.30. 0.32 0.33 0.34 0.34 0.34 0.35 0.37
(0.276) (0.305) (0.324) (0.336) (0.342) (0.345) (0.348) (0.357) (0.384
03 0.28 0.32 0.34 0.36 0.36 0.37 0.374  0.38 0.40
(0.296) (0.324) (0.342) (0.354) (0.360) (0.363) (0.366) (0.373) (0.397
04 0301 033 0.36 0.37 0.38 0.38 0.38 0.394 0.41
(0.308 (0.336% (0.354) (0.365) (0.370) (0.372) (0.373) (O. 379{ (0.398
05 030 0.34 0.36 0.38 0.38 0.38 0.38 0.39 0.41
(0.314) (0.342) (0.360) (0. 37(?, (0.374) (0.374) (0.373) (0.375) (0. 390}
06 0304 0.34 0.37 0.38 0.38 0.38 0.38 0.37 0.39
(0.316) (0.345) (0.363) (0.372) (0.374) (0.372) (0.367) (0.365) (0.373
0.7 0.29 0.34 0.37 0.38 0.38 0.38 0.36 0.35 0.35
(0.319) (0.349) (0.366) (0.373) (0.3732 (0.367) (0.358) (0.349) (0.349
08 029 0.35 0.38 0.394  0.39 0.37 0.35 0.335 0.1
(0.329 (0.357% (0.373) (0.379) (0.376) (0.365) (0.349) (0.332) (0.319
09 030 0.37 0.40 0.41 0.41 0.39 0.35 0.31 0.27
(0.336) (0.384) (0.397) (0.399) (0.391) (0.374) (0.349) (0.319) (0.290)

Table 5.8. MBB method, interval length of p4 — pp

* Numbers in the parentheses are Agresti results.
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PA

PB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
01 0051 0416 0826 0976 0999 0999 0999 0.998 0.992
(0.968) (0.957) (0.952) (0.952) (0.949) (0.952) (0.950) (0.955) (0.957
0.2 0.18 0.64 0.91 0.98 0.99 0.99 0.99 0.99 0.98
(0.966) (0.956) (0.953) (0.951) (0.950) (0.952) (0.952) (0.954) (0.960
03 0.34 0.78 0.94 0.98 0.99 0.99 0.994  0.99 0.98
(0.966) (0.960) (0.952) (0.953) (0.948) (0.953) (0.952) (0.953) (0.956
04 046 0.85 0.95 0.98 0.99 0.99 0.99 0.98 0.97
(0.969 (0.960g (0.955} (0.955) (0.946) (0.951) (0.950) (0.953 (0.957{
0.5 0.58 0.89 0.96 0.98 0.98 0.98 0.98 0.98 0.97
(0.970) (0.958) (0.954 (0.955g (0.947} (0.950) (0.951) (0.953) (0.957
0.6 0.66 0914  0.95 0.97 0.98 0.98 0.97 0.97 0.95
(0.972) (0.959) (0.955) (0.952) (0.947) (0.953 (0.9482 (0.956) (0.957
0.7 0.73 0.92 0.95 0.96 0.97 0.97 0.97 0.97 0.94
(0.973) (0.962) (0.958 (0.951} (0.948) (0.949) (0.952) (0.955) (0.959
08 0.77 0914  0.93 0.95 0.96 0.95 0.96 0.954 0.92
(0.973% (0.964) (0.960) (0.954 (0.951? (0.9493 (0.955) (0.954) (0.959)
09 079 0.89 0.91 0.92 0.94 0.93 0.94 0.94 0.904
(0.974) (0.969) (0.962) (0.958) (0.954) (0.949) (0.951) (0.954) (0.961)
Table 5.9. SLR method, coverage probability of py
* Numbers in the parentheses are Agresti results.
P4
PB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.147 0.18 0.213 0226 0229 0.222 0.206 0.178 0.133
(0.176) (0.214) (0.234) (0.242) (0.240) (0.229) (0.210 (0.1802 (0.137
0.2 0.14 0.194  0.22 0.23 0.23 0.22 0.21 0.18 0.13
(0.181) (0.219) (0.239) (0.247 (0.2452 (0.233) (0.213) (0.183) (0.139
03 0.15 0.20 0.22 0.23 0.24 0.23 0.21 0.18 0.13
(0.188) (0.226) (0.245) (0.253) (0.250) (0.239) (0.218) (0.187) (0.142
04 0.15 0.20 0.23 0.24 0.24 0.23 0.22 0.18 0.14
(0.196) (0.233) (0.253) (0.260) (0.257) (0.245) (0.223) (0.191) (0.145
0.5 0.16 0.21 0.24 0.25 0.254 0.24 0.22 0.19 0.14
(0.206) (0.243) (0.263 (0.270} (0.266) (0.252 (0.229% (0.196) (0.149
06 0.164 0.21 0.24 0.26 0.26 0.25 0.23 0.19 0.14
(0.218) (0.256) (0.275 (0.281{ (0.277) (0.262) (0.238) (0.203 (0.154%
0.7 0.16 0.22 0.25 0.27 0.27 0.26 0.24 0.20 0.15
(0.236) (0.272) (0.291) (0.297) (0.291) (0.275) (0.249) (0.212) (0.161
08 0.17 0.234  0.26 0.28 0.28 0.27 0.25 0.21 0.15
(0.260) (0.295) (0.313) (0.317) (0.310) (0.292) (0.264) (0.224) (0.170
09 0.17 0.24 0.27 0.29 0.29 0.28 0.26 0.22 0.16
(0.299) (0.330) (0.345) (0.347) (0.338) (0.317) (0.265) (0.242) (0.184)

Table 5.10. SLR method, interval length of p4

* Numbers in the parentheses are Agresti results.
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PA

DB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0487 0815 0964 0990 0983 0971 0947 0899 0.782
(0.983 (0.9712 (0.961) (0.955) (0.954) (0.950) (0.943) (0.939 (0.930}
02 0.73 0.91 0974 0984 0.98 0.97 0.95 0.93 0.89
(0.969) (0.967) (0.963) (0.962) (0.961) (0.954) (0.955) (0.947) (0.949
0.3 0.82 0.93 0974  0.98 0.97 0.97 0.964  0.94 0.92
(0.963) (0.961 (0.9602 (0.956) (0.953) (0.953) (0.953) (0.955) (0.949
04 086 0.94 0.97 0.97 0.97 0974  0.96 0.95 0.94
(0.955) (0.959) (0.959) (0.956) (0.955) (0.953) (0.949) (0.952 (0.950}
0.5 0.87 0.93 0.96 0.97 0974 097 0.97 0.96 0.95
(0.953) (0.955 (0.9592 (0.955) (0.957) (0.953) (0.954) (0.955) (0.951
06 0.87 0.93 0.96 0.97 0974 0974 097 0.96 0.95
(0.952) (0.954) (0.957) (0.954) (0.954) (0.956) (0.954) (0.953) (0.954
0.7 084 0.91 0.94 0.96 0.96 0.96 0.96 0.96 0.95
(0.944) (0.952) (0.954 (0.951% (0.951) (0.953) (0.954) (0.957) (0.957
0.8 0814 0.89 0.92 0.94 0954  0.95 0.96 0.96 0.95
(0.940) (0.949) (0.950) (0.950) (0.952) (0.953) (0.954) (0.961) (0.960
09 0.74 0.86 0.89 0.92 0934 0.94 0.95 0.95 0.95
(0.936) (0.951) (0.947) (0.949) (0.952) (0.952) (0.955) (0.961) (0.972)
Table 5.11. SLR method, coverage probability of p4 — pp
* Numbers in the parentheses are Agresti results.
PA
PB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0223 0250 0269 0281 0284 0.281 0272 0.257 0.235
(0.250) (0.281) (0.301) (0.312) (0.317) (0.318) (0.318) (0.319 (0.331}
02 0.25 0.284 0.30 0.31 0.31 0.31 0.31 0.29 0.28
(0.281) (0.310) (0.329) (0.340) (0.346) (0.347 (0.3472 (0.350) (0.360)
0.3 0274 0.30 0.32 0.33 0.34 0.33 0.33 0.32 0.304
(0.301) (0.329) (0.348) (0.359) (0.364) (0.365 (0.365{ (0.366) (0.375
04 0.28 0.31 0334 0.34 0.35 0.34 0.34 0.32 0.31
(0.312) (0.340) (0.358) (0.369) (0.374) (0.3742 (0.373) (0.373) (0.379
0.5 0.28 0.31 0.33 0.34 0.354  0.35 0.34 0.32 0.30
(0.317) (0.346) (0.364) (0.373) (0.377) (0.376) (0.373) (0.370) (0.372
06 027 0.31 0.33 0.34 0.35 0.34 0.33 0.32 0.29
(0.318% (0.347g (0.365) (0.374 (0.376% (0.373) (0.366) (0.359) (0.356
0.7 0.26 0.30 0.32 0.34 0.34 0.34 0.32 0.30 0.27
(0.317) (0.347) (0.365) (0.372) (0.372) (0.366) (0.355) (0.342) (0.331
0.8 0.24 0.29 0.32 0.33 0.33 0.32 0.31 0.28 0.25
(0.319) (0.349) (0.366) (0.372) (0.369) (0.358) (0.342) (0.322) (0.301
09 0.22 0.27 0.30 0.32 0.32 0.31 0.29 0.264 0.21
(0.330) (0.359) (0.374) (0.378) (0.371) (0.355) (0.331) (0.300) (0.266)

Table 5.12. SLR method, interval length of p4 — pg

* Numbers in the parentheses are Agresti results.
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PA

PR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0938 0948 0947 0952 0954 0954 0939 0937 0.939
(0.955) (0.960 (0.9502 (0.952) (0.956) (0.954) (0.943) (0.944) (0.959
02 093 0.96 0.94 0.95 0.95 0.94 0.94 0.93 0.93
(0.958) (0.963) (0.949) (0.952) (0.954) (0.948) (0.952) (0.946) (0.958
03 093 0.95 0.94 0.94 0.95 0.94 0.94 0.94 0.93
(0.963) (0.961) (0.957) (0.951) (0.951) (0.943) (0.951) (0.947) (0.962
04 093 0.95 0.94 0.94 0954 0.93 0.94 0.94 0.94
(0.968{ (0.964{ (0.948) (0.954 (0.9553 (0.941) (0.951) (0.945) (0.957
0.5 0.93 0.94 0.94 0.94 0.95 0.94 0.94 0.92 0.93
(0.962) (0.955) (0.942) (0.950) (0.954) (0.946) (0.949) (0.938) (0.960)
06 0934 0.94 0.93 0.94 0.95 0954 095 0.92 0.934
(0.968) (0.954) (0.946) (0.951) (0.958) (0.953) (0.953) (0.937) (0.965
0.7 0.92 0944 0.94 0.94 0954 0.94 0954 0.93 0.93
(0.971) (0.958) (0.950 (0.950; (0.955g (0.951) (0.960) (0.934) (0.960
0.8 0.99 0.93 0.93 0.93 0.95 0.95 0.94 0.93 0.93
(0.967 (0.957{ (0.946) (0.946) (0.954) (0.953) (0.955) (0.942) (0.961
09 088 0.93 0.93 0.94 0954 0.94 0.94 0.94 0.92
(0.970) (0.964) (0.954) (0.949) (0.951) (0.949) (0.960) (0.948) (0.955)
Table 5.13. IID Bootstrap method, coverage probability of p4
* Numbers in the parentheses are Agresti results.
PA
PB 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
01 0110 0145 0163 0.170 0.168 0.160 0.145 0.122 0.088
(0.121) (0.152) (0.167) (0173 (0.1712 (0.163) (0.148) (0.126) (0.093
02 0.11 0.14 0.16 0.17 0.17 0.16 0.14 0.124  0.08
(0.125) (0.156 (0.171} (0.177) (0.175) (0.166) (0.151) (0.128) (0.094
0.3 0.11 0.15 0.17 0.17 0.17 0.16 0.15 0.12 0.0
(0.129% (0.161) (0.176) (0.182 (0.179} (0.1702 (0.154) (0.130) (0.096
04 0.12 0.15 0.17 0.18 0.18 0.17 0.154 0.12 0.09
(0.135) (0.167) (0.183) (0.1882 (0.185) (0.175) (0.158) (0.133) (0.098)
0.5 0.12 0.16 0.184 0.19 0.18 0.17 0.15 0.13 0.094
(0.143) (0.175) (0.191) (0.196) (0.192) (0.181) (0.163) (0.137) (0.100
06 0.13 0.174 0.194 0.20 0.19 0.18 0.16 0.13 0.09
(0.152{ (0.185) (0.201) (0.206) (0.201) (0.189) (0.170) (0.142) (0.103
0.7 014 0.18 0.20 0.21 0.20 0.19 0174 0.14 0.10
(0.166) (0.200) (0.216) (0.220) (0.214) (0.200) (0.179) (0.149) (0.108
0.8 0.154 0.20 0.224 0.23 0.224 0.21 0.18 0.15 0.10
(0.188) (0.221) (0.236) (0.239) (0.232) (0.216) (0.192) (0.160) (0.115)
09 017 0.22 0.25 0.25 0.25 0.23 0.204 0.16 0.114
(0.226) (0.258) (0.271) (0.271) (0.261) (0.241) (0.213) (0.176) (0.125)

Table 5.14. IID Bootstrap method, interval length of p4

* Numbers in the parentheses are Agresti results.
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PA

R 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0957 0951 0947 0946 0939 0937 0937 0921 0.862
(0.978) (0.962) (0.961) (0.957) (0.955) (0.952) (0.962) (0.961 (0.957?
02 094 0.95 0.954  0.95 0.95 0.95 0.94 0.93 0.92
(0.949) (0.968) (0.964) (0.968) (0.961) (0.960 (0.956} (0.951) (0.949
03 093 0.95 0.95 0.95 0.94 0.95 0.95 0.94 0.93
(0.954) (0.960 (0.957{ (0.964) (0.954) (0.960 (0.955) (0.958) (0.949
04 094 0.95 0.95 0.95 0.95 0.95 0.94 0.93 0.93
(0.957) (0.954 (0.9532 (0.954) (0.957) (0.958) (0.953) (0.945) (0.945
0.5 092 0.94 0.95 0.94 0.93 0944 0.94 0.93 0.94
(0.951% (0.957) (O. 9582 (0.957) (0.944) (0.950) (0.946) (0.938) (0.947
06 093 0.93 0.94 0.94 0.94 0.95 0.94 0.93 0.93
(0.958) (0.950) (0.952 (0.9492 (0.953) (0.962) (0.947) (0.941) (O. 9412
0.7 092 0934 0.93 0.94 0.94 0944 0.93 0934 0.92
(0.954) (0.945) (0.946) (0.950) (0.956) (0.954) (O. 945} (0.941) (0.936
0.8 0.89 0.92 0.93 0.93 0.94 0.93 0.94 0.92 0.94
(0.948) (0.951) (0.943 (0.9412 (0.949) (0.946) (0.950) (0.945) (0.960
09 085 0.92 0.92 0.93 0.93 0.94 0.93 0.93 0.92
(0.948) (0.953) (0.948) (0.942) (0.945) (0.949) (0.952) (0.958) (0.961)
Table 5.15. IID Bootstrap method, coverage probability of p4 — pg
* Numbers in the parentheses are Agresti results.
PA
PB 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
0.1 0.157 0.186 0.201 0.209 0.211 0.209 0.203 0.198 0.197
(0.172) (0. 197} (0.212) (0.220) (0.223) (0.223) (0.223) (0.227) (0.246
02 0.18 0.21 0.22 0.23 0.23 0.23 0.23 0.23 0.24
(0. 197} (0.221) (0.235 (0.244} (0.247) (0.249) (0. 250g (0.256) (0.275
03 0.20 0.22 0.24 0.25 0.25 0.25 0.25 0.25 0.26
(0.212) (0.235) (0.250) (0.258) (0.262) (0.264 (0.2652 (0.271) (0.288
04 0.28 0.31 0.334 0.34 0.35 0.34 0.34 0.32 0.31
(0.220{ (0.244 (0.258% (0.266) (0.270) (0.270) (0.271) (0.275) (0.290
0.5 0.21 0.23 0.25 0.26 0.26 0.264  0.26 0.26 0.26
(0.223) (0.248) (0.262) (0.270) (0.272) (0.271) (0.269 (0.270{ (0.281
06 0.20 0.23 0.25 0.26 0.26 0.26 0.25 0.25 0.25
(0.224) (0.249) (0.264) (0.270) (0.271) (0.268) (0.263) (0.259) (0.264
07 0204 0.23 0.25 0.26 0.26 0.25 0.24 0.23 0.22
(0.223) (0.251) (0.265) (0.271) (0.2692 (0.263) (0.254) (0.244) (0.240
08 0.19 0.23 0.25 0.264  0.26 0.25 0.23 0.21 0.19
(0.227) (0.256 (0.270g (0.274) (0.270) (0.260) (0.244) (0.227) (0.212
09 0.19 0.24 0.26 0.274  0.26 0.25 0.22 0.20 0.16
(0.245) (0.275) (0.288) (0.289) (0.280) (0.264) (0.240) (0.212) (0.181)

Table 5.16. IID Bootstrap method, interval length of p4 — pp

* Numbers in the parentheses are Agresti results.
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Coverage Probability of pA

Coverage Probability

Figure 5.1. NBB method, RPW(1,0,1) rule, coverage probability of p4.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.

Interval Length of pA

Interval Length

Figure 5.2. NBB method, RPW(1,0,1) rule, interval length of p4.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.
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Coverage Probability of pA-pB

Coverage Probability

Figure 5.3. NBB method, RPW(1,0,1) rule, coverage probability of p4 — pp.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.

Interval Length of pA-pB

Figure 5.4. NBB method, RPW(1,0,1) rule, interval length of p4 — pp.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.
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Coverage Probability of pA

Coverage Probability

Figure 5.5. MBB method, RPW(1,0,1) rule, coverage probability of p4.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.

Interval Length of pA

Figure 5.6. MBB method, RPW(1,0,1) rule, interval length of p4.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.
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Coverage Probalility of pA-pB

Figure 5.7. MBB method, RPW(1,0.1) rule, coverage probability of p4 — pp.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.

Interval Length of pA-pB

Figure 5.8. MBB method, RPW(1,0.1) rule, interval length of p4 — pp.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.
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Coverage Probability of pA

Coverage Probability

Figure 5.9. SLR method, RPW(1,0,1) rule, coverage probability of p4.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.

Interval Length of pA

o8 o8

04 04

B RS 02 PA

Figure 5.10. SLR method, RPW(1,0,1) rule, interval length of p4.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.
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Coverage Probability of pA-pB

Coverage Probability

Figure 5.11. SLR method, RPW(1,0,1) rule, coverage probability of p4 — pp.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.

Interval Length of pA-pB

GRS
LS

Interval Length
ckE

Figure 5.12. SLR method, RPW(1,0,1) rule, interval length of p4 — pp.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.
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Coverage Probability of pA

Figure 5.13. 1ID Bootstrap method, RPW(1.0,1) rule, coverage probability of p4.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.

Interval Length of pA

Figure 5.14. 1ID Bootstrap method, RPW(1,0,1) rule, interval length of p4.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.
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Coverage Probability of pA-pB

Coverage Probability
g

-E 83

Figure 5.15. IID Bootstrap method, RPW(1,0,1) rule, coverage probability of p4—pp.
* The dark surface indicates resampling method,
the light surface indicates Agresti method.

Interval Length of pA-pB
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Figure 5.16. IID Bootstrap method, RPW(1,0,1) rule, interval length of p4 — pp-
* The dark surface indicates resampling method,
the light surface indicates Agresti method.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we have investigated the resampling methods of adaptive design.
The dependence structure is accounted for by blocking or estimating of the data
generating process. The martingale structure of binomial difference was explored
extensively. We proved resampling consistency for Non-Overlapping Block Bootstrap
and Martingale Based Bootstrap. Confidence intervals based on resampling methods
are shown to outperform the traditional ones based on normal estimation for realistic
p4 and pp in clinical trials. The results of this dissertation can be extended beyond

binary response under mild assumptions of the distributions.
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6.2 Future Work

Further work based on this study could take several directions. First, as we mentioned
in Chapter 4, we will explore the theoretical properties of Sequential Likelihood Re-
sampling estimator.

Second, a common tool in exploring the merit of resampling methods is the Edge-
worth Expansion. The major finding is that the resampling estimator is second order
correct. Edgeworth Expansion has been developed for a long time for i.i.d. observa-
tions. Basic work can be found in Hall (1988). In the context of adaptive designs,
we need to go above and beyond that because the observations are dependent due to
adaptive allocation. The validity of using Edgeworth Expansion needs to be checked.

Third, there are other resampling methods that could be explored in the setting of
adaptive designs. The Sequential Likelihood Resampling method could be extended
from simple empirical likelihood estimates to the inversion of empirical likelihood
ratio test. The frame-work of empirical likelihood is natural and appealing. It is
a nonparametric method but has likelihood theoretic foundations. The maximum
empirical likelihood estimator is transition invariant, and a nonparametric analog
of Wilks’ theorem also holds: take the log-empirical likelihood rati6 estimate by
—2, we obtain the empirical likelihood ratio statistic (ELR) that converges to a x2
distribution. This is an important point, since the ELR-based test achieve asymptotic
pivotalness without explicit studentization. Pivoting is theoretically important when
applying bootstrap. It is often advantageous to select a pivotal statistic because the

distribution of a pivotal statistic is independent of all parameters. Implicit pivotalness
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is very useful when estimating the variance of the studentized statistic is difficult.
Subsampling technique may be incorporated into the resampling. Subsampling is
another branch of resampling methods, where the resample size is smaller than the
original sample size. It is known that subsampling may achieve better coverage when
full resampling is not.

Fourth, we use the percentile confidence interval in our simulation. There are many
other non-parametric intervals can be applied in adaptive design, such as percentile-t
method and BC, method. In the BC,; method, the confidence interval incorporates
the biased correction derived from Edgeworth Expansion.

Fifth, as we observed from the simulation results, the interval length is similar
but not exactly the same for resampling methods vs. the Agresti Interval. We think
that if we fix the interval length and then observe the coverage probability, the merit
of resampling methods will be more apparent and persuasive.

Sixth, in the spirit of the empirical likelihood method, we may view some adaptive
design processes as Markov Chain with four possible states. The ergodic theorem may
be applied and a Monte Carlo Markov Chain (MCMC) can be used for transition
probabilities. Statistical inference can be conducted based on the limiting transition
probabilities.

Finally, as we mentioned in Chapter 1, in simulation, RPW(1, 0, 1) is popular
because of its simple implementation. The initial urn composition is an important
parameter whose effect could be explored by further simulations. We would expect
more stable results by having a few more balls of each color to start with. These will

be areas of further research.
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Appendices

Appendix A: Definition Index

Adaptive Biased Coin Design, 6
Adaptive Design, 2

Agresti Interval, 46

Allocation Adaptive Designs, 2
Biased Coin Design, 5

Bootstrap, 14

Complete Randomization, 5

Doubly Adaptive Biased Coin Design, 8
Empirical Likelihood Method, 40
Martingale Based Bootstrap, 27
Naive Parametric Resampling, 11
Non-overlapping Block Bootstrap, 17
Normal Approximation, 13
Play-the-winner Rule, 7

Profile Maximum Empirical Likelihood Estimators, 40
Randomized Adaptive Design, 8
Randomized Play-the-winner Rule, 7
Resampling Method, 38

Response Adaptive Designs, 2
Sequential Likelihood Resampling, 40
Strict Stationary, 16

Strong Mixing, 16

Weak Dependence, 15
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