


# This is to certify that the dissertation entitled

# MECHANISTIC INVESTIGATIONS OF [1,4]-WITTIG REARRANGEMENTS OF $\alpha$ -ALKOXYSILANES

presented by

# **EDITH NWAKAEGO ONYEOZILI**

has been accepted towards fulfillment of the requirements for the

| Ph.D. | degree in   | CHEMISTRY         |
|-------|-------------|-------------------|
|       | lit? Mu     | leafy             |
|       | Major Profe | essor's Signature |
|       | May         | 13, 2005          |
|       |             | Date              |
|       |             |                   |
|       |             |                   |

MSU is an Affirmative Action/Equal Opportunity Institution

LIBRARY Michigan State University

# **PLACE IN RETURN BOX** to remove this checkout from your record. **TO AVOID FINES** return on or before date due. **MAY BE RECALLED** with earlier due date if requested.

| DATE DUE | DATE DUE | DATE DUE |
|----------|----------|----------|
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |
|          |          |          |

2/05 p:/CIRC/DateDue.indd-p.1

# MECHANISTIC INVESTIGATIONS OF [1,4]-WITTIG REARRANGEMENTS OF $\alpha$ -ALKOXYSILANES

By

Edith Nwakaego Onyeozili

## A DISSERTATION

Submitted to
Michigan State University
in partial fulfillment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Department of Chemistry

2005

#### **ABSTRACT**

# MECHANISTIC INVESTIGATIONS OF [1,4]-WITTIG REARRANGEMENTS OF $\alpha$ -ALKOXYSILANES By

#### Edith Nwakaego Onyeozili

The [1,4]-Wittig rearrangement pathway has remained a mechanism of many questions. Whether it is a one step concerted process or a stepwise radical-radical anion dissociation-recombination event and its synthetic capabilities are not fully explored.

This dissertation centers on the Wittig rearrangements of  $\alpha$ -trimethylsilyl allyl ethers. Key to this study was optimizing the [1,4]-Wittig rearrangement over competing Wittig rearrangements. In the course of this study, we have demonstrated that by employing a suitable substrate, reaction conditions could be tuned to give excellent selectivity of the [1,4]- over the [1,2]-pathway. We have also shown that the [1,4]-Wittig rearrangement of  $\alpha$ -alkoxysilanes could be made efficient in terms of yield.

In pursuing our goal in understanding the mechanism of [1,4]-Wittig rearrangement of  $\alpha$ -alkoxysilanes, we showed that  $\alpha$  deprotonation and bond reorganization were separate events by generating and trapping the intermediate carbanions prior to rearrangement. We also found that substitution at the migrating carbon erodes the [1,4]/[1,2] selectivity, from almost exclusive (>100:1) [1,4]-product for the reaction of unsubstituted substrate, to approximately 2:1 [1,4]/[1,2] when a substituent is present. Substitution at the terminal sp<sup>2</sup> carbon of the allyl moiety also impacts the [1,4]/[1,2] selectivity, albeit to a lower degree than substitution at the migrating carbon, from > 100:1 [1,4]/[1,2] in the absence of any substituent to

approximately 5:1 [1,4]/[1,2] when the terminal sp<sup>2</sup> carbon of the allyl moiety is substituted.

Among the interesting observations we made is the fact that stereochemistry of the Wittig substrate impacts the rearrangement. It was observed that for a pair of diastereomeric  $\alpha$ -trimethylsilyl allyl ethers, the *syn* diastereomer undergoes the Wittig rearrangement readily, whereas the *anti* diastereomer reacts very sluggishly, requiring severe conditions. A base such as *n*-BuLi allows the reactive *syn*-isomer to be completely consumed with no significant transformation of the less-reactive *anti*-isomer, kinetic resolution of diastereomeric ethers is feasible.

With respect to the stereochemistry, we determined that both the [1,2] and the [1,4] pathways occurred predominantly with a retention of stereochemistry at the migrating carbon. That said, enantiomeric ratio observed for the [1,4]-Wittig was lower than for the [1,2]-Wittig. The [1,2]-pathway occurred with lower retention of configuration (83% ee retention/92% er retention) than those typically found in [1,2]-Wittig of allyl ethers (> 90%). On the other hand, the [1,4]-pathway occurred with 75% ee (88% er) retention. In addition, the [1,4]-Wittig for both *syn* and *anti* substrates occurred with similar levels of retention of configuration (75% and 74% respectively) whereas there was significant difference in the levels of retention obtained for the [1,2]-pathway (88% and 69% respectively). This result was viewed as evidence of different mechanisms for both pathways.

To my parents
Late Clement Chukwuneke Ndubuaku
And
Paulina Nwannediuru Ndubuaku

#### **ACKNOWLEDGMENTS**

I would like to express my deep appreciation to Professor Robert E. Maleczka, Jr. for his guidance, and encouragement and patience throughout the course of my Ph.D. studies. I also want to thank Professors Babak Borhan, Gregory Baker and John McCracken for serving on my guidance committee.

I wish to express my gratitude to Professor Bill Wulff for the use of his chiral HPLC instrument. My very sincere appreciation goes to Professor Babak Borhan for his help. I wish to particularly thank Dr. William Reusch for his advice and encouragement. I am very grateful to the NMR staff- Le Long Dinh, Kermit Johnson and Dr. Daniel Holmes. My special thanks to Rui Huang who conducted the single crystal X-ray diffraction analysis. Without their support my work would be impossible. I must also thank our excellent and very supportive secretarial staff Lisa Dillingham, Nancy Lavrik, and DeAnn Pierce. Thanks to all my colleagues in Professor Maleczka's group for their friendship and help, especially Lamont Terrell and Eric Ruggles for their friendship and Feng Geng who started the Wittig chemistry. To my husband Ogbonna and my children Chioma, Nwamaka and Odinaka, thanks for your unconditional love and support. To my brother Chukwuenye, and my sisters Uzoamaka, Nwabugwu, Nkiruka and Chika, thanks for being there for me and for loving me. To my friends Tamiika, Glenn, Robson, Bani, Soong Hyun, Jason and Vijay, thanks for everything.

# TABLE OF CONTENT

| LIST OF TABLESLIST OF SCHEMES                                       |    |
|---------------------------------------------------------------------|----|
| LIST OF SCHEMES.                                                    |    |
| LIST OF SYMBOLS AND ABBREVIATIONS                                   |    |
|                                                                     |    |
| ABSTRACT                                                            | xx |
| 1                                                                   |    |
| CHAPTER 1                                                           |    |
| INRTRODUCTION                                                       |    |
| 1.1. Background to study                                            | 1  |
| 1.2. Relevant previous studies on Wittig rearrangements of ethers   |    |
| 1.3. Previous synthetic studies on [1,4]-Wittig rearrangement       | 11 |
| 1.4. Previous mechanistic studies on [1,4]-Wittig rearrangement     |    |
| REFERENCES                                                          |    |
| RDI BRDI VODO                                                       |    |
| CHAPTER 2                                                           |    |
| OPTIMIZATION OF [1,4]-WITTIG REARRANGEMENT OF MODEL                 |    |
| SUBSTRATE                                                           |    |
| 2.1. Introduction                                                   | 26 |
| 2.2. Yield Optimization                                             |    |
| 2.3. Conclusions                                                    |    |
| EXPERIMENTAL                                                        | 33 |
| REFERENCES                                                          | 35 |
|                                                                     |    |
| CHAPTER 3                                                           |    |
| PREPARATION OF ACYLSILANES: TRAPPING OF ENOLATE                     |    |
| OF MODEL SUBSTRATE                                                  |    |
| 3.1. Introduction.                                                  |    |
| 3.2. Electrophilic trapping of intermediate 7 enolate               |    |
| 3.3. Conclusions.                                                   |    |
| EXPERIMENTAL                                                        |    |
| REFERENCES                                                          | 56 |
| CHAPTER 4                                                           |    |
| IMPACT OF SUBSTITUTION ON WITTIG REARRANGEMENTS                     |    |
| OF α-ALKOXYSILYL ETHERS                                             |    |
| 4.1. Preparation of $\alpha$ -alkoxysilanes                         | 57 |
| 4.2. In search of new methods for accessing $\alpha$ -alkoxysilanes |    |
| 4.3. Impact of substitutions on Wittig rearrangements of            |    |
| α-alkoxysilanes                                                     | 73 |
| 4.4. Wittig rearrangements of α-alkoxysilanes: Effect of            |    |
| substitution at the migrating carbon                                | 76 |
| 4.5. Wittig rearrangement reaction of α-alkoxysilanes: Effect of    |    |
| 7.5. Wittig realization reaction of a alkonystianes. Little of      |    |

| substitution at the terminal sp <sup>2</sup> carbon of the allyl moiety  | 84  |
|--------------------------------------------------------------------------|-----|
| 4.6. Wittig rearrangement reaction of $\alpha$ -alkoxysilanes:           |     |
| Substitution at both the migrating carbon and the terminal               |     |
| sp <sup>2</sup> carbon of the allyl moiety                               | 85  |
| 4.7. Conclusions                                                         |     |
| EXPERIMENTAL                                                             | 93  |
| REFERENCES                                                               | 124 |
|                                                                          |     |
| CHAPTER 5                                                                |     |
| STEREOCHEMICAL REQUIREMENTS IN THE WITTIG                                |     |
| REARRANGEMENTSOF α-ALKOXYSILYL ETHERS                                    |     |
| 5.1. Stereochemical requirements for Wittig substrates                   | 126 |
| 5.2. Derivatization of α-alkoxysilane 44                                 | 126 |
| 5.3. NOE experiment                                                      |     |
| 5.4. Relative reactivities of a pair of diastereomeric Wittig substrates |     |
| 5.5. Cross metathesis of α-hydroxysilanes and α-alkoxysilanes            |     |
| 5.6. Conclusions.                                                        |     |
| EXPERIMENTAL                                                             |     |
| REFRENCES                                                                | 151 |
|                                                                          |     |
| CHAPTER 6                                                                |     |
| ON THE MECHANISM OF [1,4]-WITTIG REARRANGEMENT                           |     |
| OF α-ALKOXYSILANES                                                       |     |
| 6.1. Trapping of Carbanion of model substrate 7                          | 153 |
| 6.2. Trapping of the carbanion of compound 40                            |     |
| 6.3. Stereochemistry of the [1,4]-Wittig rearrangement of                |     |
| α-alkoxysilyl ethers                                                     | 161 |
| 6.4. Efforts towards accessing enantiopure Wittig substrate for          |     |
| mechanistic studies                                                      | 163 |
| 6.5. Accessing enantiopure α-hydroxysilane 33                            |     |
| 6.6. Asymmetric reduction of acylsilane                                  |     |
| 6.7. Kinetic resolution of by α-hydroxysilane 33 <i>Lipase</i>           |     |
| 6.8. Stereochemistry of Wittig products                                  |     |
| 6.9. Stereoselection in the [1,4]-Wittig rearrangement of                |     |
| $\alpha$ -hydroxysilanes: Relative stereochemistry at the newly          |     |
| formed adjacent stereocenters                                            | 183 |
| 6.10. On the mechanism of the [1,4]-alkyl shift in the Wittig            |     |
| rearrangement reaction of $\alpha$ -hydroxysilanes                       | 180 |
| 6.11. Conclusions.                                                       |     |
| EXPERIMENTAL                                                             |     |
| REFRENCES.                                                               |     |
| ICI ICIOCO                                                               | 41/ |
| CHAPTER 7                                                                |     |
| [1,2]-WITTIG REARRANGEMENT OF α-ALKOXYSILANES                            |     |
| 7.1. Introduction                                                        | 221 |
| 7.2. Observed [1,2]-alkyl shift/silyl migration in some α-alkoxysilanes  |     |
| color to [1,5] amy to misony implement in some wathony shalles           |     |

| 7.3. Stereochemistry of the [1,2]-Wittig rearrangement of $\alpha$ -hydroxysilanes | 226  |
|------------------------------------------------------------------------------------|------|
| 7.4. Conclusions                                                                   | 231  |
| EXPERIMENTAL                                                                       | 232  |
| REFERENCES                                                                         | .235 |
| CHAPTER 8                                                                          |      |
| CONCLUSIONS                                                                        | .236 |
| APPENDICES                                                                         | .238 |
| APPENDIX 1 ORTEP REPRESENTATION AND X-RAY DATA FOR COMPOUND                        | .238 |
| APPENDIX 2 ORTEP REPRESENTATION AND X-RAY DATA FOR COMPOUND                        | .249 |

# LIST OF TABLES

| Table 2.1. MeLi-mediated Wittig rearrangement reaction of 7- Effect of Temperature                  | .28 |
|-----------------------------------------------------------------------------------------------------|-----|
| Table 2.2. Effect of base on the selectivity of Wittig rearrangement of 7                           | .31 |
| Table 3.1. Allylation of the enolate of compound 7                                                  | .37 |
| Table 3.2. Ethylation of the enolate of 7                                                           | .40 |
| Table 3.3. Methylation of the enolate of 7                                                          | .41 |
| Table 3.4. Benzylation of the enolate of 7                                                          | .42 |
| Table 3.5. Silylation of the enolate of 7.                                                          | .43 |
| Table 3.6. Acetylation of the enolate of 7                                                          | 44  |
| Table 3.7. Trapping of the enolate of 7 with propyl iodide                                          | .44 |
| Table 3.8. One-pot Electrophilic Trapping of Enolate of 7: Preparation of Acylsilanes               | .48 |
| Table 4.1. Preparation of various α-alkoxysilanes                                                   | 63  |
| Table 4.2. Wittig rearrangements of all substrates                                                  | 89  |
| Table 6.1. Table 6.1. Buynak's asymmetric reductions of acylsilanes using  (-)-Ipc <sub>2</sub> BCl | 70  |
| Table 6.2. Lipase resolution of $\alpha$ -hydroxysilane 32                                          | 77  |
| Table 6.3. Kinetic resolution α-hydroxysilane 32 by Amano PS Lipase and Novozym 435                 | 78  |
| Table 6.4. Hydrolysis of acetic acid 1-trimethylsilyl ester 157                                     | 79  |

# LIST OF FIGURES

| Figure 1.1. | Substrates studied by Schlosser and Strunk                                                                             | 18 |
|-------------|------------------------------------------------------------------------------------------------------------------------|----|
| Figure 4.1. | Generalized Structure of α-alkoxysilanes5                                                                              | 59 |
| _           | Substrates designed to study electronic effects on the Wittig rearrangement of α-alkoxysilanes                         | 79 |
| Figure 4.5. | Wittig substrates bearing various substituents at the migrating carbon8                                                | 32 |
|             | X-ray crystal structure analysis ORTEP of <b>108</b> , 2,4-dintrophenylhydrazone derivative of reactive syn <b>44b</b> | 28 |
|             | X-ray crystal structure analysis ORTEP view of 110b, the 3,5-dinitrobenzoyl ester derivative of reactive syn 44b       | 30 |
| Figure 5.3. | NOSEY1D result showing relative stereochemistries in 113a/b                                                            | 32 |
| Figure 5.4. | Modeling studies of the Wittig substrate 44                                                                            | 35 |
| Figure 6.1. | Formation of dianion 138 from compound 4016                                                                            | 51 |

# LIST OF SCHEMES

| Scheme 1.1. | Representative [2,3]-Wittig rearrangement                                                                                                                            | . 1 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Scheme 1.2. | Representative [1,2]-Wittig rearrangement                                                                                                                            | 2   |
| Scheme 1.3. | Representative [1,4]-Wittig rearrangement                                                                                                                            | 2   |
| Scheme 1.4. | Wittig rearrangement of $\alpha$ -alkoxysilane via the [1,2]- and [1,4]-pathways, with a bias toward the [1,4]: formation of acylsilanes and $\beta$ -silyl ketones. | . : |
| Scheme 1.5. | [1,4]-Wittig rearrangement/electrophilic trapping                                                                                                                    | 3   |
| Scheme 1.6. | Generation of $\alpha$ -metalated ethers by direct deprotonation at the $\alpha$ -carbon.                                                                            | 4   |
| Scheme 1.7. | Wittig-Still rearrangement: initiation by Sn-Li exchange                                                                                                             | 5   |
| Scheme 1.8. | Application of the Wittig-Still rearrangement in the stereoselective synthesis of protected thymine polyoxin C Wittig rearrangement initiate by [1,5]-H transfer     | 5   |
| Scheme 1.9. | Application of the Wittig-Still rearrangement in the total synthesis of (+)-astrophylline Fluoride-promoted Wittig rearrangements of α-alkoxysilanes by Maleczka     | 6   |
| Scheme 1.10 | . Wittig rearrangement of O,S-acetals initiated by lithium Naphthalenide                                                                                             | 7   |
| Scheme 1.11 | . Wittig rearrangement initiated by SmI <sub>2</sub> mediated reduction of diallyl acetals                                                                           | 7   |
| Scheme 1.12 | 2. Wittig rearrangement initiated by [1,5]-H transfer                                                                                                                | 7   |
| Scheme 1.13 | 8. Fluoride-promoted thermal rearrangement of α-alkoxysilanes by Reetz and Greif                                                                                     | 8   |
| Scheme 1.14 | Fluoride-promoted Wittig rearrangements of α-alkoxysilanes prior to Maleczka's                                                                                       | 8   |
| Scheme 1.15 | Fluoride-promoted Wittig rearrangements of α-alkoxysilanes by Maleczka                                                                                               | 9   |

| Scheme 1.16. Wittig rearrangement of $\alpha$ -alkoxysilanes initiated by Si-Li exchange and direct $\alpha$ -deprotonation manifolds | 9  |
|---------------------------------------------------------------------------------------------------------------------------------------|----|
| Scheme 1.17. Wittig rearrangement of α-alkoxysilanes initiated by Si-Li exchange prior to Maleczka and Geng                           | 10 |
| Scheme 1.18. Wittig rearrangement of α-alkoxysilanes initiated by direct Deprotonation                                                | 10 |
| Scheme 1.19. [1,4]-Wittig rearrangement of 4-oxa-5-hexenyllithiums mediated by <i>t</i> -BuLi                                         | 13 |
| Scheme 1.20. Wittig rearrangement of allyl ethers by Felkin and Tambute                                                               | 14 |
| Scheme 1.21. Wittig rearrangement of $\alpha$ -alkoxyalkyl allyl ethers                                                               | 14 |
| Scheme 1.22. Wittig rearrangement of bis-γ,γ-(dimethyl)allyl ether                                                                    | 15 |
| Scheme 1.23. Wittig rearrangement of allyl $\alpha$ -phenylethyl ether                                                                | 16 |
| Scheme 1.24. Wittig rearrangement of cyclic allylic ether                                                                             | 16 |
| Scheme 1.25. Previous studies by Schlosser and Strunk                                                                                 | 17 |
| Scheme 1.26. Wittig rearrangement of stereochemically defined allyl cyclohexenyl ether by Nakai                                       | 19 |
| Scheme 1.27. Wittig rearrangement of dihydropyranyl anion via [1,4]-Wittig pathway                                                    | 20 |
| Scheme 1.28. Wittig rearrangement of carbanions from 4-thiacyclohexenyl systems                                                       | 21 |
| Scheme 1.29. Gas-phase rearrangement of allyl methyl sulfide by Kass                                                                  | 22 |
| Scheme 3.1. Eletrophilic trapping of enolate of model compound 7- formation of acylsilanes                                            | 36 |
| Scheme 3.2. Allylation of enolate of compound 7 in the presence of HMPA                                                               | 39 |
| Scheme 3.3. One-pot vs. two-pot Wittig rearrangement/allylation of 7                                                                  | 39 |
| Scheme 3.4. Methylation of enolate of 7                                                                                               | 41 |
| Scheme 3.5. Schematic of envisaged [1,4]-Wittig/electrophilic trapping/coupling reactions of model substrate 7                        | 45 |

| Scheme 3.6. Attempted synthesis of vinyl triflat                                 | e and vinyl nonaflate46                     |
|----------------------------------------------------------------------------------|---------------------------------------------|
| Scheme 3.7. Synthesis of the stannane coupling                                   | partner47                                   |
| Scheme 3.8. Attempted Wittig/nonaflation/Pd(0 Substrate 7                        | )-mediated coupling of model47              |
| Scheme 4.1. Preparation of various α-hydroxys                                    | silanes59                                   |
| Scheme 4.2. Preparation of $\alpha$ -(hydroxydimethy                             | hphenylallyl)silane 3360                    |
| Scheme 4.3. Formation of α-(dimethylphenylsi silyl ether <b>36</b>               | lyl)allyl alcohol 33 and vinyl61            |
| Scheme 4.4. Subjection of vinyl silyl ether to d retro-Brook reaction conditions | eprotonation/silylation/<br>62              |
| Scheme 4.5. Etherification of α-hydroxysilane of cinnamyl alcohol                | 32 with trichloroacetimidate64              |
| Scheme 4.6. Preparation of substrate 58 via Ry                                   | chnovsky's protocol65                       |
| Scheme 4.7. Attempted synthesis of $\alpha$ -(trimeth                            | ylsilyl)allyl butyl ether66                 |
| Scheme 4.8. Attempted synthesis of α-(trimeth Plausible mechanism                | ylsilyl)allyl butyl ether-<br>67            |
| Scheme 4.9. Independent synthesis of Wittig su                                   | abstrate <b>40</b> 68                       |
| Scheme 4.10. Attempted synthesis of 47 via an mesylate group                     | S <sub>N</sub> 2 displacement of a69        |
| Scheme 4.11. Pd(0)-mediated stereoselective for S <sub>N</sub> 2 type process    | ormation of C-O bonds via69                 |
| Scheme 4.12. Pd-catalyzed allylic etherification Nucleophile                     | n using Zn(II) alkoxide as70                |
| Scheme 4.13. Attempt at accessing α-alkoxysil ether synthesis                    | anes via the Williamson's                   |
| Scheme 4.14. Attempted preparation of α-alkor Displacement                       | cysilanes by direct S <sub>N</sub> 271      |
| Scheme 4.15. Attempt at accessing α-alkoxysil                                    | anes via direct S <sub>N</sub> 2 reaction72 |

| Scheme 4.16. Hoffmann and B      | rückner one-pot synthesis of O-S acetals72               |
|----------------------------------|----------------------------------------------------------|
| Scheme 4.17. Attempted adapt     | ation of Hoffmann and Bruckner protocol72                |
|                                  | ment of <b>41</b> : expected [1,2], [1,4], and [2,3]     |
| Scheme 4.19. Wittig rearrange    | ment of 41 mediated by <i>n</i> -BuLi75                  |
| Scheme 4.20. Wittig rearrange    | ment of 41: A Putative Mechanism76                       |
| Scheme 4.21. Substitution at the | ne migrating carbon: Wittig rearrangement of 4477        |
|                                  | Wittig rearrangement of 42 by Maleczka and80             |
| Scheme 4.23. Plausible pathwa    | ys for the Wittig rearrangement of 4281                  |
|                                  | nent of metalated allyl alky ether by runk83             |
|                                  | ne terminal sp <sup>2</sup> carbon: Wittig rearrangement |
|                                  | oth the migrating center and the terminal86              |
|                                  | ons for pre-Brook, Brook and retro-Brook                 |
| Scheme 4.28. Sterics in the 'in  | termediate' structures for 55 and E-5687                 |
| Scheme 4.29. Wittig rearrange    | ment of compound 58/oxidation of [1,4] product88         |
| Scheme 5.1. Hydroboration/ox     | idation of <b>44</b> 127                                 |
| Scheme 5.2. Derivatization of    | 44: conversion to 2,4-dinitrophenylhydrazone128          |
| Scheme 5.3. Attempted oxyme      | rcuration/demercuration of unreactive 44129              |
| Scheme 5.4. Derivatization of    | 44: conversion to 3,5-dinitrophenylbenzoyl ester130      |
| Scheme 5.5. Boc-glycine ester    | derivative of less reactive <b>105b</b> 131              |
| Scheme 5.6 Ring closing meta     | thesis of <b>51</b> and <b>52</b>                        |

| Scheme 5.7. Decomposition of metathesis product in the presence of CDCl <sub>3</sub> 133  |
|-------------------------------------------------------------------------------------------|
| Scheme 5.8. Cross metathesis reaction of <b>52</b> in sealed tube                         |
| Scheme 5.9. Ring closing metathesis of 42                                                 |
| Scheme 5.10. Attempted Dimerization of model substrate 7                                  |
| Scheme 5.11. Cross-Metathesis of model substrate 7 with Styrene                           |
| Scheme 5.12. Metathesis Dimerization of <b>32</b>                                         |
| Scheme 5.13. Ruthenium Catalyzed Addition of Chloroform to Styrene                        |
| Scheme 5.14. Mechanism of the Kharasch Addition Reaction                                  |
| Scheme 5.15. Preparation of undecanoic acid ester of 32                                   |
| Scheme 6.1. Generating and trapping the carbanion of model substrate 7153                 |
| Scheme 6.2. Trapping of carbanion of allyl ethers by Schlosser and Strunk154              |
| Scheme 6.3. Deprotonation and Trapping of carbanion of 7                                  |
| Scheme 6.4. Plausible fate of compound 125                                                |
| Scheme 6.5. Plausible pathway for the observed products                                   |
| Scheme 6.6. Room temperature electrophilic trapping of carbanion of 7                     |
| Scheme 6.7. Attempted Wittig rearrangement reaction of 40                                 |
| Scheme 6.8. Electrophilic trapping of the carbanion of 40                                 |
| Scheme 6.9. Plausible explanation for the formation of 131 and 132 from 40161             |
| Scheme 6.10. Preparation of α-alkoxysilanes bearing substituent at the migrating  Carbon  |
| Scheme 6.11. Preparation of α-alkoxysilanes from enantiopure starting materials163        |
| Scheme 6.12. Attempted kinetic resolution of α-hydroxysilane <b>34</b> by Kells' Protocol |
| Scheme 6.13. Enovidation of F-3-trimethylsilanyl-prop-2-en-1-ol with mCPRA 165            |

| Scheme 6.14. | Regioselective opening of epoxide 142                                                                             | 166 |
|--------------|-------------------------------------------------------------------------------------------------------------------|-----|
| Scheme 6.15. | Proposed derivatization and elimination reactions of 143                                                          | 166 |
| Scheme 6.16. | Attempted conversion of 142 to 32 mediated by Ti(IV) system                                                       | 167 |
| Scheme 6.17. | Telluride mediated double bond transposition in primary allylic alcohols                                          | 167 |
| Scheme 6.18. | Telluride mediated double bond transposition in secondary allylic alcohols                                        | 168 |
| Scheme 6.19. | Attempted preparation of 32 via telluride ion mediated reduction of glycidyl tosylate                             | 168 |
| Scheme 6.20. | Attempted preparation of $\alpha$ , $\beta$ -unsaturated $\alpha$ -silyl ketone 153-a repeat of Buynak's protocol | 171 |
| Scheme 6.21. | Oxidation of α-hydroxysilane 33 via the DeLuca protocol                                                           | 172 |
| Scheme 6.22. | Swern oxidation of α-hydroxysilane 33                                                                             | 173 |
| Scheme 6.23. | Attempted oxidation of $\alpha$ -hydroxysilane 33 via other routes                                                | 174 |
| Scheme 6.24. | Preparation of enantioenriched 45.                                                                                | 175 |
| Scheme 6.25. | Conversion of the [1,4]-Wittig product 82 into 3-Phenyl-pentanoic acid                                            | 180 |
| Scheme 6.26. | Preparation of 82 via an independent route                                                                        | 182 |
| Scheme 6.27. | Wittig rearrangement of E-56/ oxidation of [1,4]-Wittig product 165                                               | 184 |
| Scheme 6.28. | Diastereoselection in [2,3] Wittig rearrangement by Mikami et al                                                  | 185 |
| Scheme 6.29. | Proposed transition-state model for stereoselection by Mikami et al                                               | 186 |
| Scheme 6.30. | Frontal orbital representation of <i>E</i> -56                                                                    | 186 |
| Scheme 6.31. | Proposed transition-state model for stereoselection in the [1,4]-alkyl migration in <i>E</i> -56                  | 187 |
| Scheme 6.32. | Preparation of $Z$ - $\alpha$ -alkoxysilane $Z$ - $56$                                                            | 188 |

| Scheme 6.33. Radical-radical anion dissociation-recombination in 7189                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scheme 6.34. Radical-radical anion dissociation-recombination in α-alkoxysilane bearing a substituent at the migrating carbon190                                             |
| Scheme 6.35. Radical-radical anion dissociation-recombination in $\alpha$ -alkoxysilanes bearing a substituent at the terminal sp <sup>2</sup> carbon of the allyl moiety191 |
| Scheme 6.36. Carbanion formation in the [1,4]-pathway in α-alkoxysilanes bearing a substituent at the terminal sp <sup>2</sup> carbon of the allyl moiety191                 |
| Scheme 6.37. Wittig rearrangement of allyl α-phenylethyl by Felkin192                                                                                                        |
| Scheme 6.38. Stevens rearrangement of optically active allylic ammonium salt by Jenny and Druey                                                                              |
| Scheme 6.39. Felkin's comparison of his and Jenny and Druey's systems194                                                                                                     |
| Scheme 6.40. Comparison of Felkin's and our systems                                                                                                                          |
| Scheme 7.1. Plausible pathway for the [1,2]-Wittig rearrangement/silyl migration observed in compound 7                                                                      |
| Scheme 7.2. Previous work by Maleczka and Geng                                                                                                                               |
| Scheme 7.3. Present work: isolation of vinyl silyl ether <b>201</b> in the Wittig rearrangement/electrophilic trapping of <b>7</b>                                           |
| Scheme 7.4. Plausible mechanism of the [1,2]-Wittig rearrangement of α-alkoxysilanes                                                                                         |
| Scheme 7.5. Wittig rearrangement reaction of 48 mediated by sec-BuLi227                                                                                                      |
| Scheme 7.6. Synthesis of [1,2]-Wittig product by an independent route228                                                                                                     |
| Scheme 7.7. Determination of the stereochemistry of the [1,2]-Wittig product228                                                                                              |
| Scheme 7.8. Comparison of the [1,2]-Wittig of (S,R)-48 and (S,S)-48229                                                                                                       |
| Scheme 7.9. Wittig rearrangement of a pair of optically defined diastereomers by Nakai and co-workers                                                                        |
| Scheme 7.10. Possible racemization in the [1,2]-Wittig rearrangement of α-alkoxysilanes as a resonance of resonance                                                          |

#### LIST OF SYMBOLS AND ABBREVIATIONS

Ac acetyl

acac acetylacetonate

AIBN 2,2'-azobisisobutyronitrile

aq aqueous

CI chemical ionization

Cy cyclohexyl

DCC dicycloheylcarbodiimide

DBU 1,8-diazabicyclo[5,4,0]undec-7-ene

De diastereomeric excess

DIAD diisopropyl azodicarboxylate

DIBAL disiobutylaluminum hydride

DMAP 4-(dimethylamino)pyridine

DME dimethoxylethane

DMF N, N-dimethylformamide

DMSO dimethyl sulfoxide

EI electric ionization

eq equivalent

FAB fast atom bombardment

h hour

HMPA hexamethyl phosphoramide

HRMS high resolution mass spectrometry

HWE Horner-Wadsworth-Emmons reaction

KHMDS potassium bis(trimethylsilyl)amide

LHMDS lithium bis(trimethylsilyl)amide

mCPBA m-chloroperbenzoic acid

Mes 2,4,6-trimethyl phenyl

Mesyl methanesulfonyl

min minute

mL milliliter

mmol millimole

MOM methoxymethyl

MS molecular sieves

NaHMDS sodium bis(trimethylsilyl)amide

NBS N-bromosuccinimide

NMP N-methyl prolidinone

NOE nuclear Overhauser effect

PMB *p*-methoxybenzyl

Py pyridine

RCM ring closing metathesis

rt room temperature

TBAF tetrabutylammonium fluoride

TBS *t*-butyldimethylsilyl

TCT 2,4,6-trichloro-[1,3,5]triazine

Tf trifluoromethanesulfonyl

THF tetrahydrofuran

TMS trimethylsilyl

Tosyl toluenesulfonyl

Tr triphenylmethyl

TSA p-toluenesulfonic acid

#### CHAPTER 1

#### INTRODUCTION

### 1.1. Background to study

Bond reorganizations of  $\alpha$ -lithiated ethers to lithio alkoxides<sup>2</sup> were first described by Wittig and Löhmann in 1942. Termed Wittig rearrangements, these reactions have proven to be of importance in synthetic organic chemistry. Among these rearrangements the [2,3]-pathway (Scheme 1.1) has been most studied and has seen wide use as a tactic in organic synthesis.<sup>3</sup> In recent years, the [2,3]-Wittig rearrangement has been most often employed in the stereoselective formation of homoallylic alcohols from the corresponding  $\alpha$ -metalated allyl ethers.<sup>4</sup>

Scheme 1.1. Representative [2,3]-Wittig rearrangement<sup>3a</sup>

X = heteroatom, Y = anion stabilizing group

The utility of the [2,3]-Wittig rearrangement in synthetic organic chemistry arises from its ability to proceed with (a) regiospecific carbon-carbon bond formation and allylic transposition of the oxygen function, (b) stereospecific generation of olefins (c) the stereoselective creation of vicinal chiral centers, and (d) the transfer of chiralty.<sup>3a</sup>

The [1,2]-Wittig rearrangement, in contrast, has received less attention. Early studies on this isomerization pathway were mainly mechanistic in origin, with the synthetic utility of the [1,2]-Wittig rearrangement limited by the restricted range of

substrates and the tendency toward low product yields.<sup>5</sup> Over the past two decades, however, chemists have made the observation that this rearrangement proceeds with high diastereofacial selectivity.<sup>6,7</sup> This observation has drawn more attention to the [1,2]-Wittig rearrangement as a potential tool in forming *syn*-1,3-diol derivatives preferentially.<sup>7</sup>

Scheme 1.2. Representative [1,2]-Wittig rearrngement<sup>5a</sup>

In addition to the [2,3] and [1,2]-Wittigs allylic ethers are capable of a [1,4]-rearrangement. Even relative to the [1,2]-Wittig rearrangement, the [1,4]-pathway remains a reaction of many questions. For example, whether the mechanism is concerted or involves radical-radical anion dissociation-recombination is still debated. Some reports suggest the [1,4]-Wittig is likely to proceed via a stepwise mechanism similar to that of the [1,2]-rearrangement, while other reports describe the [1,4]-rearrangement of allylic ethers as a symmetry allowed, concerted process. The substrate scope of the [1,4]-Wittig is also not well documented and thus its potential in synthetic organic chemistry is unclear.

Scheme 1.3. Representative [1,4]-Wittig rearrangement <sup>3a</sup>

In the course of ongoing research on Wittig rearrangements in our laboratory, it was discovered<sup>9</sup> that an  $\alpha$ -alkoxysilane rearranged via the [1,2]- and [1,4]-pathways, with a bias toward formation of the [1,4] derived acysilanes (Scheme 1.4). This was interesting essentially given the synthetic utility documented for acylsilanes<sup>1</sup> and the [1,2]-derived  $\beta$ -silyl ketones also .<sup>10</sup>

Scheme 1.4. Wittig rearrangement of  $\alpha$ -alkoxysilane via the [1,2]- and [1,4]-pathways, with a bias toward the [1,4]: formation of acysilanes and  $\beta$ -silyl ketones

Since the [1,4]-Wittig proceeds via an enolate intermediate, the rearrangement could be followed by electrophilic trapping, affording access to diversely  $\alpha$ -functionalized acylsilanes (Scheme 1.5). These features, if harnessed, could confer upon the  $\alpha$ -alkoxysilanes and the [1,4]-Wittig rearrangement a high level of synthetic utility.

Scheme 1.5. [1,4]-Wittig rearrangement/electrophilic trapping

Given the mechanistic uncertainties surrounding the [1,4]-Wittig and the yet untapped synthetic potential of the [1,4]-Wittig, we decided to explore the [1,4]-Wittig rearrangement of  $\alpha$ -alkoxysilanes further.

### 1.2. Relevant previous studies on Wittig rearrangements of ethers

Wittig rearrangements of allylic ethers are typically initiated by the formation of an α-metalated ether which undergoes a subsequent bond reorganization. Several pathways for this rearrangement exist but usually come in the form of a [2,3]-, [1,2]-, or [1,4]-shift. The process of bond reorganization involves the breaking of a C–O bond and formation of a C–C bond (Scheme 1.6).<sup>3</sup> The [2,3]-Wittig rearrangement has long been established as a concerted, thermally allowed sigmatropic reaction, following the Woodward-Hoffman rules.<sup>3</sup> As previously stated, the [1,2]-rearrangement is generally accepted to proceed in a stepwise manner, through a radical-radical anion dissociation-recombination process.<sup>6</sup> Again, less is known about [1,4]-rearrangement, and whether its mechanism is concerted<sup>3</sup> or involves a radical-radical anion dissociation-recombination.<sup>8</sup>

Irrespective of the pathway, [1,2], [2,3], or [1,4], Wittig rearrangements are generally preceded by formation of an  $\alpha$ -metalated ether often through direct deprotonation at the ether's  $\alpha$ -carbon. This process is usually facilitated by the presence of anion stabilizing groups such as carbonyls, nitriles, as well as vinyl, phenyl, or alkynyl moieties (Scheme 1.6).<sup>2b,11</sup>

Scheme 1.6. Generation of  $\alpha$ -metalated ethers by direct deprotonation at the  $\alpha$ -carbon

Generation of  $\alpha$ -metalated ethers by direct deprotonation at the  $\alpha$ -carbon requires the presence of a conjugated diene or an electron withdrawing group to stabilize  $\alpha$ -anion.

A limitation to this direct deprotonation approach is that it is only applicable to those compounds possessing sufficiently acidic  $\alpha$ -hydrogens. This restriction can be overcome by generating the  $\alpha$ -alkoxy carbanion via tin-lithium exchange<sup>4d</sup> as shown by Still and Mitra in 1978 (Scheme 1.7).

Scheme 1.7. Wittig-Still rearrangement: initiation by Sn-Li exchange<sup>4d</sup>

Scheme 1.8. Application of the Wittig-Still rearrangement in the stereoselective synthesis of protected thymine polyoxin C<sup>12f</sup>

This Wittig-Still rearrangement has since attained the status of a useful synthetic tool, <sup>12</sup> and has enjoyed a number of impressive applications in the area of natural product synthesis. <sup>13</sup> For example, the Wittig-Still rearrangement was employed as a key transformation in the stereoselective synthesis of protected thymine polyoxin C<sup>12f</sup> (Scheme 1.8).

Another example of the application of the Wittig-Still rearrangement in synthetic organic chemistry is in the total synthesis of (+)-astrophylline by Schaudt and Blechert<sup>12b</sup>

(Scheme 1.9). In this instance the authors employed this rearrangement as a critical transformation in the stereocontrolled generation of the 1,2-trans configuration of a key cyclopentene intermediate.

Scheme 1.9. Application of the Wittig-Still rearrangement in the total synthesis of (+)-astrophylline<sup>12b</sup>

Despite its demonstrated potential, broad application of the Wittig-Still protocol has been governed by its call for use of relatively toxic organostannanes.<sup>14</sup> To get around this limitation, several research groups have sought "tin free" alternatives to the regioselective generation of α-ethereal carbanions. Successful solutions to this problem include the reductive cleavage of *O*,*S*-acetals with lithium naphthalenide (Scheme 1.10);<sup>15</sup> SmI<sub>2</sub> mediated<sup>16</sup> reduction of diallyl acetals (Scheme 1.11); and vinyl halides capable of 1,5-hydrogen transfer (Scheme 1.12).<sup>17</sup>

Scheme 1.10. Wittig rearrangement of O,S-acetals initiated by lithium naphthalenide

Scheme 1.11. Wittig rearrangement initiated by SmI<sub>2</sub> mediated reduction of diallyl acetals

Ph O 
$$\frac{3 \text{ eq. Sml}_2}{\text{CH}_3\text{CN}}$$
  $\frac{\text{CH}_3\text{CN}}{\text{reflux, 2 h}}$   $\frac{\text{Ph}_2' \text{O}}{\text{O}}$   $\frac{2}{3}$   $\frac{\text{[2,3]-Wittig}}{\text{Ph}_2' \text{3}}$ 

Scheme 1.12. Wittig rearrangement initiated by [1,5]-H transfer

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}\end{array} & \begin{array}{c} \\ \end{array} & \end{array} & \begin{array}{c} \\ \end{array} & \begin{array}{c$$

In the search for 'tin-free' alternatives to the regioselective generation of  $\alpha$ -ethereal carbanions, the possibility of replacing tin with silicon had been considered. However, this approach had received very limited consideration in the past. Reetz and Greif showed that the thermal rearrangement of fluorine derivatives could be facilitated by catalytic amounts (10 mol%) of tetrabutylammonium fluoride (TBAF) (Scheme 1.13).  $^{18a}$ 

Scheme 1.13. Fluoride-promoted thermal rearrangement of  $\alpha$ -alkoxysilanes by Reetz and Greif<sup>18a</sup>

Nearly a decade following Reetz's report, Nakai reported that Wittig rearrangement in  $\alpha$ -silylallyloxy esters could be initiated by the action of the fluoride ion (Scheme 1.14). Both Reetz's and Nakai's systems are activated (in addition to the  $\alpha$ -silyl group, both contain groups capable of stabilizing an anion).

Scheme 1.14. Fluoride-promoted Wittig rearrangements of  $\alpha$ -alkoxysilanes prior to Maleczka's

Several years later Maleczka and Geng<sup>19</sup> extended these studies and showed that the action of fluoride could trigger the desired rearrangements even in relatively unactivated substrates (Scheme 1.15).<sup>6e,6f</sup>

Scheme 1.15. Fluoride-promoted Wittig rearrangements of α-alkoxysilanes by Maleczka

In addition to serving as a carbanion mask, the silyl moiety in  $\alpha$ -alkoxysilanes can also function as an anion-stabilizing group.<sup>20</sup> Thus there are two Wittig rearrangement manifolds available to  $\alpha$ -alkoxysilanes in the presence of lithium bases, with deprotonation (e.g. by alkyl lithium bases) and Si/Li exchange being plausible ways to initiate the Wittig rearrangements on this class of compounds. Indeed, Maleczka and Geng<sup>9</sup> reported the Wittig rearrangement of  $\alpha$ -alkoxysilanes initiated by the direct metalation of the substrates as well as by Si/Li exchange (Scheme 1.16).

Scheme 1.16. Wittig rearrangement of  $\alpha$ -alkoxysilanes initiated by Si-Li exchange and direct  $\alpha$ -deprotonation manifolds

While the Si/Li exchange of  $\alpha$ -alkoxytrimethylsilanes appears to be a straightforward alternative to the Wittig-Still rearrangement, this approach has received little attention, despite such exchange reactions being well precedented. Prior to the work by Maleczka and Geng, only two examples (Scheme 1.17), both reported by Muzler and List, stood alone as the only [2,3]-Wittig rearrangements triggered by Si/Li substitution.

Scheme 1.17. Wittig rearrangement of  $\alpha$ -alkoxysilanes initiated by Si-Li exchange prior to Maleczka and Geng

Scheme 1.18. Wittig rearrangement of  $\alpha$ -alkoxysilanes initiated by direct deprotonation

Similarly, prior to the work by Maleczka and Geng (Scheme 1.18),  $^9$  few examples of initiating Wittig rearrangements of  $\alpha$ -silyl ethers by direct deprotonation were reported. This is surprising, in view of the fact that the deprotonation path would afford a unique access to the synthetically malleable silanes. Despite the lack of precedent, Maleczka and Geng $^9$  showed that upon deprotonation by MeLi (Scheme 1.18),  $\alpha$ -alkoxysilanes underwent Wittig rearrangement via [2,3]-pathway, which was then followed by Brook's rearrangement and subsequent [1,4]-silyl migration to furnish a  $\beta$ -silyl ketone(Scheme 1.18).

## 1.3. Previous synthetic studies on [1,4]-Wittig rearrangement

As already mentioned earlier in this dissertation, relative to the [1,2]-Wittig rearrangement, the [1,4]-rearrangement has received very little attention. The substrate scope of the [1,4]-Wittig is not yet well documented and thus its potential in synthetic organic chemistry is unclear.

As just discussed, Maleczka and Geng<sup>9</sup> reported the Wittig rearrangement of an  $\alpha$ -alkoxysilane, initiated by  $\alpha$ -deprotonation (Scheme 1.4). The substrate rearranged via the [1,2]- and the [1,4]-pathways to furnish a  $\beta$ -silyl ketone and an acylsilane in 1:2 ratio in a combined 80% yield. To the best of our knowledge, this report represented the first efficient and selective [1,4]-Wittig rearrangement of  $\alpha$ -alkoxysilanes.

Scheme 1.4. Wittig rearrangement of an  $\alpha$ -alkoxysilane

Subsequent to the reactions above, Wittig rearrangement of an α-metalated *O*-glycoside system was documented by Tomooka and co-workers.<sup>23</sup> The authors reported that treatment of a racemic 1-ethynylated propargyl acetal (both (*S*)-42 and (*R*)-42, R'=H) with *n*-BuLi (3.0 equiv) in THF at -78 °C afforded the [1,2] product as the major product (78%) and only 17-19% of the [1,4] product (Scheme 1.19). However, the introduction of a *tert*-butyldimethylsilyl group to the ethynyl unit at the C1 position (R'=TBDPS) led to a reversal in product distribution, affording the [1,4]-rearrangement product as the major product (73% yield), and the [1,2]-rearrangement product as the minor product (7-11%). This report represents the most selective and efficient [1,4]-Wittig documented to date.

Scheme 1.19. [1,4]-Wittig rearrangement of 4-oxa-5-hexenyllithiums mediated by *t*-BuLi<sup>23</sup>

TMS

TMS

$$\frac{R}{2}$$
 $\frac{R}{2}$ 
 $\frac{R}{2}$ 

 $E^+$  = H<sub>3</sub>O<sup>+</sup> β-ketone, R = H (73%)  $E^+$  = HCHO β-hydroxyketone, R = CH<sub>2</sub>OH (60% d.r. at C2') (60%)

Prior to the studies by Maleczka<sup>9</sup> and Tomooka,<sup>23</sup> Felkin and Tambute<sup>24</sup> had explored the Wittig rearrangements of metalated allyl aryl and allyl alkyl ethers and found that on treatment with an excess (30%) of an equimolar mixture of propyllithium and *N,N,N, 'N'*-tetramethylethylenediamine (TMEDA) in pentane (or THF in place of TMEDA), a series of ethers afforded aldehydes and ketones (via [1,4] rearrangement), and 1-alken-3-ol (via [1,2] rearrangement) (Scheme 1.20). The yields, however, did not exceed 30% for either component. The authors observed that the yields of the [1,4] products were insensitive to the substitution pattern in the allylic moiety of the ethers.

Scheme 1.20. Wittig rearrangement of allyl ethers by Felkin and Tambute<sup>23</sup>

Similarly, α-alkoxyalkyl allyl ethers have been shown to rearrange via the [1,2] and [1,4] pathways<sup>7a</sup> to afford secondary allyl alcohols (via the [1,2]-Wittig) and aldehydes (via the [1,4]-Wittig) respectively (Scheme 1.21). The *syn* [1,2] products were obtained in 14-32% yield with 90-95% diastereoselectivity. The [1,4]-product was found to predominate at low temperature, whereas at 0 °C the [1,2]-product was favored but the absolute yield remained the same. The authors noted however, that the extent of formation of the [1,4]-Wittig product was markedly dependent on reaction temperature and solvent polarity.

Scheme 1.21. Wittig rearrangement of  $\alpha$ -alkoxyalkyl allyl ethers

### 1.4. Previous mechanistic studies on [1,4]-Wittig rearrangement

As mentioned in the introductory part of this Chapter, whether the [1,4]-Wittig involves a one-step concerted process or a two-step radical-radical anion dissociation-

recombination event, or both remains an open question. Indeed, there have been reports in support of either mechanism and for both mechanisms being operative, depending on the substrate.

Some  $\alpha$ -metalated ether systems are capable of undergoing rearrangement via all four Wittig pathways viz [2,3]-, [1,2]-, [3,4]-, or [1,4]-shift. However, in general such systems (e.g. bis(allyl) and allyl 2-alkynyl ethers)<sup>3</sup> find the 2,3-mode of rearrangement is electronically<sup>25</sup> and geometrically,<sup>26</sup> favorable, and thus predominant over the 1,2-mode<sup>26b</sup> with the 1,4-<sup>26a</sup> and the 3,4-paths<sup>26b</sup> becoming competitive only in exceptional cases. This trend is illustrated by bis- $\gamma$ , $\gamma$ -(dimethyl)allyl ether (Scheme 1.22), which rearranges by all four pathways.<sup>26b,27</sup>

Scheme 1.22. Wittig rearrangement of bis-y,y-(dimethyl)allyl ether<sup>3</sup>

Felkin published the results of his mechanistic studies on the [1,4]-Wittig rearrangement in 1977, <sup>8d</sup> in which he showed that, on treatment with excess butyl lithium in THF at -25 °C, optically active allyl  $\alpha$ -phenylethyl ether underwent rearrangement to afford a mixture of anionic products via [1,2]- and [1,4]-rearrangements. Saturation of these products afforded a mixture of [1,2] and [1,4] derived isomers in 60% overall yield with a ratio of 16:20:64 in favor of the [1,4]-Wittig (Scheme 1.23). The authors observed

that all three rearrangement products favored retention of configuration with a similar extent of racemization (30±5%) observed for all products. This was said to suggest that reactions leading to both [1,2] and [1,4] products occurred via a non-concerted radical-radical anion cleavage-recombination mechanism.

Scheme 1.23. Wittig rearrangement of allyl α-phenylethyl<sup>8d</sup>

Further support for this conclusion was derived from observations made during the rearrangement of a cyclic allylic ether (Scheme 1.24). Despite its inability to adopt the cisoid conformation necessary for a concerted [1,4] alkyl shift, the compound afforded appreciable amounts of the [1,4] rearrangement product.<sup>8d</sup>

Scheme 1.24. Wittig rearrangement of cyclic allylic ether<sup>8d</sup>

In 1989, Schlosser and Strunk<sup>28</sup> reported that the rearrangement of metalated allyl alkyl ethers in the presence of potassium *tert*-butoxide, involves preferential migration of primary alkyl groups to the unsubstituted allylic terminus (γ-position), accompanied by alkyl migration to the α-position adjacent to the oxygen atom. This resulted in the formation of [1,4] and [1,2] products in an approximate ratio of 9:1 (Scheme 1.25). They obtained enolates [M=Si(CH<sub>3</sub>)<sub>3</sub>] with high (~90%) regioisomeric purity only when a resonance inactive primary alkyl group (such as butyl, 3-methylbutyl, or nonyl) was allowed to migrate. The migration of secondary or tertiary alkyl groups (1-ethylpropyl, *tert*-butyl) or even the cyclopropylmethyl moiety led to 2:3 or 1:1 mixtures of 1-alken-3-olates and enolates.

Scheme 1.25. Previous studies by Schlosser and Strunk<sup>28</sup>

Based on these data, they proposed a solvent caged 1-(alkoxy)-allyl radical/alkyl radical pair as a major transient species in the Wittig rearrangement of the allyl alkyl ethers (Scheme 1.25). They further proposed that this pair might be preceded by the

zwitterionic metallomer, an O-lithio(oxonia)-propenide, which could either collapse to the radical pair or, in borderline cases, directly isomerize to provide the rearrangement products.

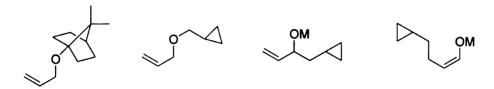
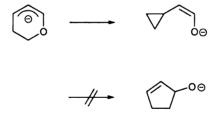



Figure 1.1. Substrates studied by Schlosser and Strunk<sup>28</sup>

The authors pointed out that a concerted process would imply the nucleophilic displacement of the migrating group from the alkoxy moiety, a process that would result in its transfer to the  $\alpha$ - or  $\gamma$ -allylic carbon atom without its bonding electrons and with retention of configuration. They argued this would be disfavored and provided the rational why the lithiated allyl 1-(7,7-dimethyl)bicyclo[2.2.1]heptyl ether (allyl 1-apocamphyl ether) (Figure 1.1) was unable to undergo Wittig rearrangement. Additional evidence for the radical-radical anion dissociation-recombination mechanism came from "radical clock" experiments, namely the isomerization of the cyclopropylmethyl allyl ether radical to a 3-butenyl ("homoallyl") radical. In these experiments the exclusive formation of cyclopropane derivatives (isolated as the *O*-silyl ethers, M=Si(CH<sub>3</sub>)<sub>3</sub>) (Figure 1.1) supported the radical mechanism.

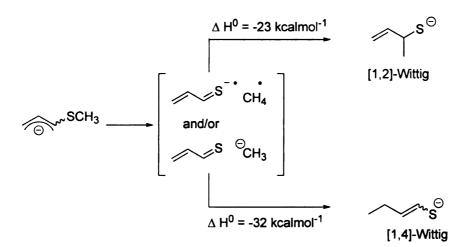
In contrast to the above reports in support of the radical-radical anion dissociation-recombination mechanism for the [1,4]-Wittig rearrangement of ethers, Nakai has reported that this reaction pathway is likely to be a one-step, symmetry-


allowed, concerted process.<sup>29</sup> In his investigation of the stereochemistry of the sigmatropic rearrangement of stereodefined *cis*-allyl cyclohexenyl ethers (*n*-BuLi, THF, -85 °C), he obtained a stereoisomeric mixture of secondary alcohols (via [2,3]- and [1,2]-alkyl shifts) in 62% isolated yield along with 14% of a *syn*-aldehyde (Scheme 1.26). The aldehyde is the result of [1,4]-rearrangement of the substrate ether, a process that occurred with retention of stereochemistry as required by orbital symmetry considerations. Based on the data from their stereochemical studies, the regio- and stereochemical outcomes of the [1,4]-shift are exactly the same as those of a tandem [2,3]-Wittig-oxy-Cope sequence of the same substrate. The authors also showed that the proportion of the [1,4]-product varies with the type of substituent, increasing with complexity of the substituent (Scheme 1.26).

Scheme 1.26. Wittig rearrangement of stereochemically defined allyl cyclohexenyl ether by Nakai<sup>29</sup>

Despite these earlier studies, the case for either a radical-radical anion dissociation-recombination or a concerted process cannot always be made. Indeed an admixture of pathways may operate depending on the substrate. The rearrangement of a

dihydropyranyl anion was reported to occur via [1,4]-pathway to give exclusively the (Z)-cyclopropyl enolate (Scheme 1.27).<sup>30</sup> The [1,4]-pathway for this substrate would require that the dihydropyranyl anion adopt a cis orientation to ensure that the two interacting ends are in close proximity for a concerted process. This requirement is fulfilled as the ring structure enforces a cis orientation of the allylic anion. The complete absence of cyclopentenyl ring ([1,2]-product) was taken as evidence for a concerted pathway. On the other hand, the analogous thioether compound did not afford the expected rearranged product.<sup>31</sup> However, on placement of resonance-stabilizing groups at C5 of this substrate, it rearranged to afford the expected product. The fact that resonance-stabilizing groups facilitated the bond reorganization suggested a stepwise mechanism (Scheme 1.28).


Scheme 1.27. Wittig rearrangement of dihydropyranyl anion via [1,4]-Wittig pathway<sup>30</sup>



Scheme 1.28. Wittig rearrangement of carbanions from 4-thiacyclohexenyl systems<sup>31</sup>

Kass and cowokers<sup>32</sup> tried to provide a rationale for the mechanistic contradictions and inconsistencies regarding these Wittig rearrangement pathways. They carried out an extensive gas-phase study on the thio-Wittig rearrangement of deprotonated allyl methyl sulfide, and found that 1-thiomethylallyl anion predominantly isomerizes to 1-butenyl thiolate, a [1,4]-Wittig product. In contrast methyl deprotonation in the gas phase leads to 3-butene-1-thiolate, a [2,3]-Wittig product. These authors found that both [1,2] and [1,4] pathways have similar energy requirements, and are thermodynamically accessible to allyl methyl sulfide on the basis of calculations at a high level of theory (QCISD(T)/6-331++G(d,p)/HF/6-31+G(d)). However, by these calculations, the [1,4] rearrangement is favored by 9 kcal mol<sup>-1</sup> (Scheme 1.29). They also explained that the observed selectivity for [1,2] and [1,4] could be most easily accommodated by a concerted process, but that the stepwise radical mechanism could also be operative.

Scheme 1.29. Gas-phase Wittig-rearrangement of allyl methyl sulfide by Kass<sup>32</sup>



### **REFERENCES**

- 1. For a general review see Weber, W. P. In Silicone Reagents for Organic Synthesis; Springer-Verlag: New York, 1983. (b) Bonini, B. F.; Comes-Franchini, M.; Fochi, M; Mazzanti, G.; Ricci, A. J. Organometal. Chem. 1998, 567, 181-189. (c) Maleczka, R. E. Jr.; Geng, F. Tetrahedron Lett. 1999, 40, 3113-3114, and reference cited therein.
- 2. Wittig, G.; Löhmann, L. Liebigs Ann. Chem. 1942, 550, 260-268.
- 3. (a) Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885-902. (b) Marshal, J. A., in Comprehensive Organic Synthesis, Pattenden, G., Ed.; Pergamon: London, 1991; Vol. 3, 975-1014.
- 4. (a) Schulte-Elte, K. H.; Rautenstrauch, V.; Ohloff, G. Hele. Chim. Acta 1971, 54, 1805. (b) Cazes, B.; Julia, S. Bull. Soc. Chim. Fr, 1977, 925. (c) Wade, M.; Fukui, A.; Nakamura, H.; Takei, H. Chem. Lett. 1977, 557. (d) Still, W. C.; Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927-1928. (e) Still, W. C.; McDonald, J. H.; Collum, D. B.; Mitra, A. Tetrahedron Lett. 1979, 593-594. (f) Mikami, K.; Kimura, Y.; Kishi, N.; Nakai, T. J. Org. Chem. 1983, 48, 279-281 and references cited therein. (g) Midland, M. M.; Kwon, Y. C. Tetrahedron Lett. 1985, 26, 5013-5016, and references cited therein. (h) Mikami, K.; Kishi, N.; Nakai, T.; Fujita, Y. Tetrahedron 1986, 42, 2911-2918.
- 5. (a) Katsuhiko, T.; Yamamoto, H.; Nakai, T. Liebigs Ann. 1997, 1275-1281. (b) Rautenstrauch, V.; Buchi, G.; Wuest, H. J. Am. Chem. Soc. 1974, 96, 2576-2580. (c) Lee, B. H.; Biswas, A.; Miller, M. J. J. Org. Chem. 1986, 51, 106-109.
- 6. (a) Schäfer, H.; Schöllkopf, U.; Walter, D. Tetrahedron Lett. 1968, 2809-2812, and references cited therein. (b) Evans, D. A.; Baillargeon, D. J. Tetrahedron Lett. 1978, 3315-3318. (c) Garst, J. F.; Smith, C. D. J. Am. Chem. Soc. 1976, 98, 1526-1537. (d) Azzena, U.; Denurra, T.; Melloni, G.; Piroddi, A. M. J. Org. Chem. 1990, 55, 5532-5535. (e) Tomooka, K.; Yamamoto, H.; Nakai, T. J. Am. Chem. Soc. 1996, 118, 3317-3318. (f) Tomooka, K.; Yamamoto, H.; Nakai, T. Liebigs Ann. Chem. 1997, 1275-1281. (g) Maleczka, R. E. Jr.; Geng, F. J. Am. Chem. Soc. 1998, 120, 8551-8552, and references cited therein.
- 7. (a) Schreiber. S. L.; Goulet, M. T. Tetrahedron Lett. 1987, 28, 1043-1046. (b) Verner, E. J.; Cohen, T. J. Am. Chem. Soc. 1992, 114, 375-337. (c) Hoffmann, R.; Brückner, R. Chem. Ber. 1992, 125, 1957-1963. (d) Tomooka, K.; Igarashi, T.; Nakai, T. Tetrahedron Lett. 1993, 34, 8139-8142. (b) Tomooka, K.; Igarashi, T.; Nakai, T. Tetrahedron 1994, 50, 5927-5932.
- 8. (a) Schollkopf, U. Angew. Chem. Int. Ed. Engl. 1970, 9, 763-773. (b) Schollkopf, U.; Fellenberger, K.; Rizk, M. Liebigs Ann. Chem. 1970, 734, 106-115. (c) Felkin, H.; Frajerman, C. Tetrahedron Lett. 1977, 39, 3485-3488, and references cited therein.

- 9. Maleczka, R. E. Jr.; Geng, F. Org. Lett. 1999, 1, 1111-1113.
- 10. For a general review see Weber, W. P. In Silicone Reagents for Organic Synthesis; Springer-Verlag: New York, 1983. (b) Flemming, I.; Mandal, a. K. J. Chem. Soc., Chem. Commun. 1999, 923-924. (c)Furin, G. G.; Vyazankina, O. A.; Gostevsky, B. A.; Vyazankin, N. S. Tetrahedron 1988, 44, 2675-2749. (d) Hsiao, C. N.; Shechter, H. J. Org. Chem. 1988, 53, 2688-2699, and references cited therein.
- 11. (a) Nakai, T.; Tomooka, K. Pure Appl. Chem. 1997, 69, 595-600. (b) Nakai, T.; Mikami, K. Organic Reactions 1994, 46, 105-209. (c) Brückner, R. In Comprehensive Organic Synthesis, Pattenden, G., Ed.; Pergamon: London, 1991; Vol. 6, 873-908.
- 12. (a) Caruana, P A.; Frontier, A. J. Tetrahedron 2004, 60, 10921-10926. (b) Schaudt, M.; Blechert, S. J. Org. Chem. 2003, 68, 2913-2920. (c) Abad, A.; Agullo, C.; Cunat, A. C.; Jimenez, D.; Perni, R. H. Tetrahedron 2001, 57, 9727-9735. (d) Sugimura, H.; Hasegawa, Y.; Osumi, K. Heterocycles 2000, 52, 99-102. (e) Ghosh, A. K.; Wang, Y. Tetrahedron 1999, 55, 13369-13376. (f) Ghosh, A. K.; Wang, Y. J. Org. Chem. 1998, 63, 6735-6738.
- 13. For examples, see (a) McGowan, G. Aust. J. Chem. 2002, 55, 799. (b) Marshall, J. A.; McNulty, L. M.; Zou, D. J. Org. Chem. 1999, 64, 5193-5200 and references therein. (c) Marshall, J. A. In Pattenden, G., Ed.; Comprehensive Organic Synthesis; Pergamon: London, 1991; Vol. 3, pp 975-1014. (X) Mulzer, H.; Riether, D. Org. Lett. 2000, 2, 3139-3141.
- 14. (a) Chemistry of Tin; Smith, P. J., Ed.; Blackie Academic & Professional: New York, 1998. (b) Davies, A. G. In Organotin Chemistry, VCH: New York, 1997. (c) Pereyre, M.; Quintard, J.-P.; Rahm, A. In Tin in Organic Synthesis; Butterworth: Toronto, 1987.
- 15. (a) Hoffmann, R.; Brückner, R. Chem. Ber. 1992, 125, 1471-1484. (b) Kruse, B.; Brückner, R. Tetrahedron Lett. 1990, 31, 4425-4428. (c) Kruse, B.; Brückner, R. Chem. Ber. 1989, 122, 2023-2025. (d) Broka, C. A.; Shen, T. J. Am. Chem. Soc. 1989, 111, 2981-2984.
- 16. Hioki, K.; Kono, K.; Tani, S.; Kunishima, M. Tetrahedron Lett. 1998, 39, 5229-5232.
- 17. Kunishima, M.; Hioki, K.; Kono, K.; Kato, A.; Tani, S. J. Org. Chem. 1997, 62, 7542-7543.
- 18. (a) Reetz, M. T.; Greif, N. Chem. Ber. 1977, 110, 2958-2959. (17). (b) Takahashi, O.; Maeda, T.; Mikami, K.; Nakai, T. Chem. Lett. 1986, 1355-1358. (c) Adam, S. Tetrahedron 1989, 45, 1409-1414.
- 19. Maleczka, R. E. Jr.; Geng, F. Org. Lett. 1999, 1, 1115-1118.

- 20. (a) Carey, F. A.; Court, A. S. J. Org. Chem. 1972, 37, 939-943. (b) Mulzer, J.; List, B. Tetrahedron Lett. 1996, 37, 2403-2404. (c) Magnus, P.; Roy, G. Organometallics 1982, 1, 553-559. (d) For a general review see Weber, W. P. In Silicone Reagents for Organic Synthesis; Springer-Verlag: New York, 1983.
- 21. For examples of the directed deprotonation and rearrangement of vinylogous α-alkoxysilanes see: (a) Mikami, K.; Kishi, N.; Nakai, T. *Chem. Lett.* **1989**, 1683-1686. (b) Greeves, N.; Lee, W.-M. *Tetrahedron Lett.* **1997**, 38, 6445-6448. For examples of initiation of [1,2]-Wittig rearrangement of (aryloxy)methylsilanes by deprotonation see: Eisch, J. J.; Galle, J. E.; Piotrowski, A.; Tsai, M.-R. *J. Org. Chem.* **1982**, 47, 5051-5056.
- 22. (a) Linderman, R. J.; Ghannam, A. J. Am. Chem. Soc. 1990, 112, 2392-2398. (b) Brook, A. G.; Bassendale, A. R. In Rearrangements in Ground and Excited States; de Mayo, P., Ed.; Academic Press; New York, 1980; Vol. 2, 149-227.
- 23. Tomooka, K.; Yamamoto, H.; Nakai, T. Angew. Chem. Int. Ed. 2000, 39, 4500-4502.
- 24. Felkin, H.; Tambute, A. Tetrahedron Letters 1969, 821-822.
- 25. (a) Woodward, R. B.; Hoffmann, R. Angew. Chem. 1969, 8, 797. (b) Woodward, R. B.; Hoffmann, R. Angew. Chem. Int. Ed. Engl. 1969, 8, 781-852.
- 26. (a) Hauser, C. R.; Kantor, S.W. J. Am. Chem. Soc. 1951, 73, 1437-1441. (b) Rautenstrach, V. J. Chem. Soc., Chem. Commun. 1970, 4-6.
- 27. Schlosser, M. J. Organomet. Chem. 1967, 8, 9-16.
- 28. Schlosser, M.; Strunk, S. Tetrahedron 1989, 45, 2649-2664.
- 29. Sayo, Kimura, Y.; Nakai, T. Tetrahedron Lett. 1982, 23, 3931-3934.
- 30. Rautenstrauch, V. Helv. Chim. Acta 1972, 55, 594-609.
- 31. (a) Biellmann, J. F.; Ducep, J. B.; Vicens, J. J. *Tetrahedron* **1976**, *32*, 1801-1805. (b) Biellmann, J. F.; Ducep, J. B. *Tetrahedron Lett.* **1970**, *11*, 2899-2902.
- 32. Ahmak, M. R.; Dahlke, G. D.; Kass, S. R. J. Am. Chem. Soc. 1996, 118, 1398-1407.

## **CHAPTER 2**

# OPTIMIZATION OF [1,4]-WITTIG REARRANGEMENT OF MODEL SUBSTRATE

## 2.1. Introduction

In the course of their study on the MeLi-promoted Wittig rearrangements of  $\alpha$ -alkoxysilanes, Maleczka and Geng<sup>1</sup> found that the Wittig rearrangements of  $\alpha$ -alkoxybenzysilanes were initiated by both direct metalation and Si/Li exchange (Scheme 1.16). For example, the rearrangement of compound 1 afforded product 3 arising from Si/Li exchange was obtained in 75% yield while the yield for compound 2 resulting from initiation by  $\alpha$ -deprotonation was 21%. They further observed that on moving from  $\alpha$ -alkoxylbenzylsilanes to  $\alpha$ -alkoxylallylsilanes, the extent of Si/Li exchange was significantly diminished. This is clearly demonstrated in the second reaction of Scheme 1.16 (rearrangement of 4). Si/Li exchange afforded 6, accounting for 20% of the product mixture and  $\alpha$ -deprotonation gave 60% of the corresponding  $\beta$ -silyl ketone product 5.

Scheme 1.16. Wittig rearrangement of  $\alpha$ -alkoxysilanes initiated by Si-Li exchange and direct  $\alpha$ -deprotonation manifolds

In addition, the Wittig rearrangements of two of their substrates were initiated exclusively by deprotonation (Scheme 1.4 and Scheme 1.18). One of these substrates, 10, rearranged exclusively via the [2,3]-Wittig pathway to afford 11 (Scheme 1.18). The other substrate 7 rearranged via a mixture of both [1,4]- and [1,2]-Wittig pathways, with the [1,4]-product  $8^{1,2}$  favored by a ratio of 3:1 (Scheme 1.4). Given the synthetic utility reported for both acylsilanes<sup>3</sup> and  $\beta$ -silyl ketones,<sup>4</sup> we decided to explore the Wittig rearrangement or this substrate further, focusing on optimizing the [1,4]-Wittig pathway.

The reaction of Scheme 1.4 formed the basis/starting point of this dissertation. At the start of our study we posed the following questions as a guide: (1) could the rearrangement be made to generally to favor the [1,4]- over the [1,2]-rearrangement? (2) Could the [1,4]-Wittig be made more efficient in terms of yield? (3) Could the synthetic utility of the [1,4]-Wittig rearrangement be expanded? (4) What is a plausible mechanism of this rearrangement? We believed that finding answers to the above questions would give insight into the mechanism and synthetic utility of the [1,4]-Wittig rearrangement of  $\alpha$ -alkoxysilanes.

## 2.2. Yield Optimization

#### Introduction

Our initial research focused on optimizing for the [1,4]-Wittig. On the basis of existing literature reports on the Wittig rearrangement of ethers<sup>1,3,4</sup> we reasoned that attempts at achieving selectivity of the Wittig rearrangement of  $\alpha$ -alkoxysilanes would be aided by a good knowledge of how reaction variables such as base (type and concentration), reaction temperature, solvent<sup>1</sup> and substrate structure,<sup>3</sup> (sterics and

electronics) impact the reaction. Using model compound 7, we systematically investigated the reaction under various base, temperature, and solvent conditions.

# 2.2.1. Wittig rearrangement of model substrate 7: Effect of temperature

Employing MeLi as base, the effect of temperature on the Wittig rearrangement of 7 was studied. On treatment with MeLi (1.5 eq),  $\alpha$ -alkoxysilane 7 underwent a facile isomerization reaction via both [1,4]- and [1,2]-pathways to afford 8 and 9. The results obtained (Table 2.1) showed that the rearrangement of 7, mediated by MeLi, was mildly selective for the [1,4]-pathway and that the selectivity is highly temperature dependent.

Table 2.1. MeLi-mediated Wittig rearrangement reaction of 7- Effect of temperature.

| <b>\</b> | O Ph<br>TMS | MeLi<br>THF | Phvia [1,  | TMS<br>8<br>4-Wittig] | +         | TMS 9 via [1,2]-\ | O<br>Ph |
|----------|-------------|-------------|------------|-----------------------|-----------|-------------------|---------|
|          | Entry       | Base equiv  | Temp (°C)  | Time (h)              | Yield (%) | [1,4]/[1,2]       |         |
|          | 1           | 1.5-2.0     | 18 to 20   | 1.0                   | 69        | 1.4:1 to 2:1      |         |
|          | 2           | 3.0         | -80 to -37 | 72                    | 68        | 4:1               |         |
|          | 3           | 3.0         | -80 to -50 | 72                    | 68        | >12:1             |         |
|          | 4           | 3.0         | -80 to -50 | 120                   | 66        | >12:1             |         |
|          | 5           | 4.0         | -80 to -37 | 65                    | 68        | 4:1               |         |
|          | 6           | 4.0         | -80 to -50 | 72                    | 60        | >12:1             |         |

Our findings can be summarized as follows: (1) the [1,2]-Wittig pathway was effectively suppressed when the reaction temperature was kept below (-60 °C). However,

at this temperature, the rate of conversion of the substrate to product was very slow and did not go to completion even after 72 h. (2) Complete consumption of the starting material took 65 to 72 hours with 3 to 4 equivalents of MeLi respectively, and required warming the reaction to -37 °C. Under these conditions the selectivity was 4:1 in favor of the [1,4]-Wittig product. (3) Use of less than 3 equivalents of base at temperatures below -60 °C resulted in less than 50% conversion of the substrate, and using more than 3 equivalents of MeLi did not give any additional advantage (compare entries 2 and 5, 3 and 6 of Table 2.1).

Employing 3 and 4 equivalents of MeLi at different temperatures -80 to -37 °C and -80 to -50 °C respectively for the same length of time resulted in [1,4]/[1,2] ratios of 4:1 (compare entries 2 and 3, 5 and 6 of Table 2.1), but the absolute yield of products remained the same. It is pertinent to mention that in these experiments, reproducibility of results was an issue. The outcome of the rearrangements varied with the rate of addition of the base. In summary, the rearrangement of compound 7, mediated by MeLi, is selective for the [1,4]-pathway and the degree of this selectivity is highly temperature dependent.

# 2.2.2. Effect of base on the Wittig rearrangement of model substrate 7

With our initial temperature studies complete, we turned to the effect of base on the rearrangement of model substrate 7. We tested different alkyllithium bases in the reaction. Our results are summarized in Table 2.2. *n*-BuLi, unlike MeLi afforded the [1,4]-product selectively at -78 °C (the [1,2]-product could not be detected by <sup>1</sup>HNMR). Adding *n*-BuLi at -78 °C and allowing the reaction to slowly warm up to -37 °C afforded

the [1,2] and [1,4]-Wittig products 8 and 9. These compounds were obtained in a combined 83% yield and 9:1 ratio in favor of the [1,4] product. However, at room temperature, the [1,4]/[1,2] selectivity was not improved over MeLi, and the yields were comparable. Nevertheless, n-BuLi proved to superior to MeLi. With 1.5 eq. of n-BuLi, at -78 °C, reaction was complete in about 5 h, as compared to MeLi that gave an incomplete reaction even beyond 72 h (compare entries 7 and 8 of Table 2.2). s-BuLi was found to be superior to both n-BuLi and MeLi in initiating the Wittig rearrangements of α-alkoxysilanes (results are shown in Table 2.2). Upon treatment of a cold (-78 °C) THF solution of the substrate ether with 1.5 equiv of sec-BuLi (1.3M in cyclohexane), Wittig rearrangement was complete in 30 min to afford the [1,4]-rearrangement product exclusively and in good yield (79-82%). The presence of the [1,2]-Wittig product was not detected (by using TLC, NMR and GC-MS). From these experiments, our optimum conditions for the Wittig rearrangements of our model substrate 7 were treatment with 1.5 eq. of s-BuLi at -75 °C in THF solvent for 30 minutes, and quenching of reaction with NH<sub>4</sub>Cl (sat. aq.). Table 2.2 also illustrates the effect of temperature on the Wittig rearrangement of our model substrate with all three bases. In general, [1.4]/[1.2] selectivity was greatest at lower temperature, with selectivity being eroded at warmer temperatures. To the best of our knowledge, this is the most selective and most efficient [1,4]-Wittig rearrangement of  $\alpha$ -alkoxysilanes in particular, and allyl benzyl ethers in general, to be reported.

Table 2.2. Effect of base on the selectivity of Wittig rearrangement of 7

| 7     | ^Ph            | Base P     | 0<br><b>8</b><br>via [1,4]-Wi | `TMS <sup>†</sup> | TMS ( §   | O<br>Ph<br>)-Wittig |
|-------|----------------|------------|-------------------------------|-------------------|-----------|---------------------|
| Entry | Base           | Base equiv | Temp (°C)                     | Time (h)          | Yield (%) | [1,4]/[1,2]         |
| 1     | MeLi           | 1.5-2.0    | 18 to 20                      | 1.0               | 69        | 1.4:1 to 2:1        |
| 2     | <i>n</i> -BuLi | 1.5        | 18 to 20                      | 1.0               | 68        | 2.45:1              |
| 3     | <i>s</i> -BuLi | -          | -                             | -                 | -         | -                   |
| 4     | MeLi           | 3.0        | -80 to -37                    | 72                | 68        | 4:1                 |
| 5     | <i>n</i> -BuLi | 1.5        | -80 to -37                    | 2                 | 83        | 9.1:1               |
| 6     | <i>s</i> -BuLi | 1.5        | -50 to -37                    | <0.1              | 79-83     | >20:1               |
| 7     | MeLi           | 3.0        | -80 to -50                    | 72                | 68        | >12:1               |
| 8     | <i>n</i> -BuLi | 1.5        | -80 to -75                    | <5                | 79-83     | >100:1 <sup>a</sup> |
| 9     | s-BuLi         | 1.5        | -80 to -75                    | <0.5              | 79-83     | >100:1 <sup>a</sup> |

a No [1,2]-Wittig product could be detected by <sup>1</sup>H NMR

# 2.3. Conclusions

In summary, we have demonstrated that the [1,4]-Wittig rearrangement of simple, unsubstituted  $\alpha$ -alkoxysilanes, representated by 7, could be efficient in terms of yield, and that the selectivity of the rearrangement could be improved to favor the [1,4]- over the [1,2]-pathway. Furthermore, the differential selectivities we obtained in the Wittig rearrangement of model substrate 7 could be an indication that [1,4-] and [1,2]-rearrangements of  $\alpha$ -alkoxysilanes probably have completely different mechanisms.

The [1,4]-Wittig of 7 results in the formation of an enolate imtermediate, which on protonation undergoes keto-enol tautomerism to afford the resultant acylsilane 8. Instead of protonating the enolate, the reaction could be quenched with a variety of electrophiles, an event that would put the electophile either on the oxygen to give a vinyl ether derivative or on  $\alpha$  carbon to afford  $\alpha$ -functionalized acylsilane. Chapter 2 will discuss the electrophilic trapping of the intermediate enolate in the [1,4]-Wittig pathway.

## **EXPERIMENTAL**

Preparation of α-alkoxysilane 7: Trichloroacetimidate of benzyl alcohol (2.0 equiv, 4.85 g, 19.20 mmol) (prepared following literature procedure)<sup>5</sup> was added to a stirred solution of  $\alpha$ -(trimethylsilyl)allyl alcohol (1.0 equiv, 1.32 g (10.13 mmol) in cyclohexane (0.2 M) at room temperature. A TMSOTf (0.055 equiv, 0.12 g, 0.55 mmol, 0.10 mL) solution in cyclohexane (0.1 mL/1.0 mL cyclohexane) was then added. White precipitate formed upon addition of the Lewis acid. The reaction mixture was stirred at room temperature overnight and filtered. The precipitate was then washed with pentane or hexane (precipitate is soluble in ether) and the filtrate diluted with ether. The diluted filtrate was subsequently washed with NaHCO<sub>3</sub> (sat. aq.) (x 2), 1N HCl (x 2), and lastly with brine (x 2). The organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, and concentrated to furnish the crude product. Note: the product was always accompanied by an ester by-product, which was removed by base hydrolysis (usually stirring with 2M NaOH at room temperature for about 2 h). Purification by column chromatography on silica gel (0-1% EtOAc in hexane gradient) afforded 56% of pure 7 as a colorless oil. [Geng Feng, Michigan State University, Ph.D. dissertation 2001]. IR (neat) 2959, 1454, 1383, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) & 7.37-7.24 (m, 5H), 5.89-5.77 (m, 1H), 5.12-5.04 (m, 2H), 4.71 (d, J = 12.4 Hz, 1H), 4.32 (d, J = 12.4 Hz, 1H), 3.64-3.60 (dt, J = 12.4 Hz, J =7.1, 1.4 Hz, 1H), 0.02 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 139.1, 137.2, 128.1, 127.5,

127.1, 112.5, 75.9, 71.8, -3.8. 7 is a known compound and has spectral data in accord with the reported ones. <sup>1a</sup>

Wittig rearrangement reaction of 7- preparation of acylsilane 8. A solution of 76 mg (0.34 mmol) of silane 7 in 4.5 mL of THF was cooled to -78 °C under nitrogen. s-BuLi (1.3 M in cyclohexane, 0.4 mL, 0.52 mmol) was added dropwise via syringe. The reaction mixture was stirred for 30 min. at -78 °C, and then quenched with saturated aqueous NH<sub>4</sub>Cl, diluted with diethyl ether, washed with water and brine. The organic phase was dried over MgSO<sub>4</sub> and concentrated. Silica gel chromatography (0 to 2% EtOAc in hexane gradient) afforded 63 mg (82%) of 8 as a light yellow oil. IR (neat) 2955, 1717, 1643, 1497, 1454, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27-.14 (m, 5H), 2.62-2.59 (apparent t, J = 7.3, 6.8 Hz, 2H), 2.58-2.55 (apparent t, J = 7.8, 7.3 Hz, 2H), 1.87-1.81 (m, 2H), 0.16 (s, 9H). <sup>13</sup>C (125 MHz, CDCl<sub>3</sub>)  $\delta$  248.1, 141.8, 128.4, 128.3, 125.8, 47.5, 35.2, 23.6, -3.2. 8 is a known compound and has spectral data in accord with the reported ones. <sup>1.2</sup>

## **REFERENCES**

- 1. Maleczka, R. E. Jr.; Geng, F. Org. Lett. 1999, 1, 1115-1118.
- 2. Yoshida, J.; Itoh, M.; Matsunaga, S.; Isoe, S. J. Org. Chem. 1992, 57, 4877-4882.
- 3. For a general review see Weber, W. P. In Silicone Reagents for Organic Synthesis; Springer-Verlag: New York, 1983. (a) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A. J. Organomet. Chem. 1998, 567, 181-189. (b) Maleczka, R. E., Jr.; Geng, F. Tetrahedron Lett. 1999, 40, 3113-3114, and reference cited therein.
- 4. For a general review see Weber, W. P. In Silicone Reagents for Organic Synthesis; Springer-Verlag: New York, 1983. (a) Fleming, I.; Mandal, A. K. Chem. Commun. 1999, 923-924. (b) Furin, G. G.; Vyazankina, O. A.; Gostevsky, B. A.; Vyazankin, N. S. Tetrahedron 1988, 44, 2675-2749. (c) Hsiao, C. N.; Shechter, H. J. Org. Chem. 1988, 53, 2688-2699, and referenced cited therein.
- 5. Tomooka, K.; Yamamoto, H.; Nakai, T. Liebigs Ann. 1997, 1275-1281.
- 6. Maleczka, R. E., Jr; Geng, F. J. Am. Chem. Soc. 1998, 120, 8551-8552 and references cited therein.
- 7. Felkin, H.; Tambute, A. Tetrahedron Lett. 1969, 10, 821-822.

## CHAPTER 3

# PREPARATION OF ACYLSILANES: TRAPPING OF ENOLATE OF MODEL SUBSTRATE

#### 3.1. Introduction

In Chapter 2 of this dissertation we showed that  $\alpha$ -alkoxysilanes, typified by model compound 7, undergo efficient and very selective [1,4]-Wittig rearrangement to afford affords acylsilanes via an enolate intermediate.<sup>1</sup> This discovery was made by Maleczka and Geng,<sup>1</sup> who, during the course of their study on the Wittig rearrangements of  $\alpha$ -alkoxylsilanes, isolated an acylsilane [Scheme 3.1, E = H, 8], from compound 7 that rearranged via both [1,4]- and [1,2]- pathways. This was the first time an acylsilane was prepared via a Wittig rearrangement of  $\alpha$ -alkoxylsilanes. The intermediacy of an enolate offers an attractive access to a variety of novel acylsilanes by trapping the enolate with suitable electrophiles. This was first demonstrated by Maleczka and Geng when they generated and trapped the [1,4]-enolate with allyl bromide to obtain the  $\alpha$ -allyl acylsilane in 15% yield (Scheme 3.1, E = allyl).

Scheme 3.1. Eletrophilic trapping of enolate of model compound 7-formation of acylsilanes

This discovery opened the door for a new route to these useful compounds, and we thus decided to develop viable and more efficient routes to the acylsilanes via the Wittig rearrangement reactions of  $\alpha$ -alkoxylsilanes (Scheme 3.1). Having gained control of the Wittig rearrangements of our model compound, we then turned our attention on the prospects of introducing various substituents at the  $\alpha$ -position of the carbonyl compounds resulting from the [1,4]-pathway

## 3.2. Electrophilic trapping of intermediate 7 enolate

We started enolate trapping studies by optimizing for the reaction illustrated in Scheme 3.1. After generating the enolate of 7 under our optimum conditions, it was transferred by canula into a THF solution of an appropriate electrophile. With allyl bromide as the electrophile, we observed that the mode of addition of the electrophile and the reaction temperature are two important factors that control the formation of as well as the yield of product (Table 3.1).

Table 3.1. Allylation of the enolate of compound 7

| O <sup>r</sup> | ^ <sub>Ph</sub>         |     | ıLi (1.5 e<br>78 °C, 0. | quiv)        | Ph          | O<br>TMS                  |  |
|----------------|-------------------------|-----|-------------------------|--------------|-------------|---------------------------|--|
| 7              | `TMS                    |     | bromide<br>MPA, TH      |              | 12 IM       |                           |  |
| EntryA         | llyl bromide<br>(equiv) |     | HMPA<br>(equiv)         | Temp<br>(°C) | Time<br>(h) | Yield<br>(%)              |  |
| 1              | 6.0                     | 6.0 | 3.0                     | -75 to rt    | 14          | No<br>product<br>isolated |  |
| 2              | 4.0                     | 4.0 | -                       | -75 to rt    | 6           | 55                        |  |

Addition of allyl bromide directly to the reaction mixture at 0 °C led to the recovery of the rearranged products, with little or no evidence of the expected allylated product. Use of TEA at room temperature proved advantageous, affording the desired product, 12, in 55% yield (Table 3.1, entry 2), with just some detection of a second product, which, from <sup>1</sup>H-NMR and <sup>13</sup>C-NMR, was an aldehyde. Substituting HMPA for TEA under the prevailing reaction conditions resulted in the reverse result, the aldehyde being obtained as the major product and 12 obtained in only 14% yield. However, addition of the electrophile in the presence of HMPA at lower temperature (0 °C) resulted in both 12 and this aldehyde being obtained in 2:1 ratio, accompanied by other byproducts. Two of these by-products (tentative structures given as 12 and 14) resulted from multiple allylations of the enolate and one (15) a monoallylation/desilylation compound (Scheme 3.2). These by-products could not be isolated and the NMR spectra of the product mixture were very complex. However, we were able to at least partially identify them by high resolution mass spectrometry<sup>3</sup> and the tentative structures in Scheme 3.2 suggested. As shown in Table 3.1, employing a 2:1 mixture of TEA and HMPA resulted in a messy reaction and no product was isolated (Table 3.1, entry 1).

A two-pot Wittig rearrangement/LDA deprotonation-allylation was carried out to compare to our one-pot process (Scheme 3.3). In this process, compound 7 was subjected to Wittig rearrangement and 8 isolated (83%). Acylsilane 8 was then deprotonated with LDA at low temperatures and the resulting enolate trapped with allylbromide. Our results indicate that the one-pot process is synthetically more efficient than the two-pot Wittig rearrangement/deprotonation-allylation route, both in terms of time and yield.

Scheme 3.2. Allylation of enolate of compound 7 in the presence of HMPA

Scheme 3.3. One-pot vs. two-pot Wittig rearrangement/allylation of 7

Ethylation was achieved by use of EtI and resulted in a mixture of *C*- and *O*-alkylated products (16 and 17) in a 3:1 ratio in favor of *C*-alkylation. Ethylation required the use of an additive, and HMPA proved to be superior to TEA in this case (Table 3.2).

Table 3.2. Ethylation of the enolate of 7<sup>a</sup>

### (a) Ratio of C-alkylation/O-alkylation was 3:1.

The methyl group was successfully installed at the  $\alpha$ -carbon using MeI as the electrophile (Scheme 3.4). This reaction was optimized, and the results are shown in Table 3.3. Slow addition of the trapping mixture (MeI/TEA) to a cold (0 °C) solution of the enolate resulted in the formation of three carbonyl compounds, one silylated compound 18, and two aldehydes 19 and 20<sup>4</sup>, respectively (Scheme 3.4). On the other hand, slow addition of a cold (-75 °C) THF-solution of the enolate to the trapping mixture (MeI (4.0 equiv.)/TEA (4.0 equiv.) in THF) at room temperature, and stirring for 50 min, afforded the desired  $\alpha$ -methylated acylsilane as a single product in 72% yield (Table 3.3, entry 2). Trapping at low temperatures (-75 to -45 °C) required a longer reaction time (7 h) and led to diminished yield (59%) (Table 3.3, entry 1). The feasibility of this reaction in the absence of TEA was also investigated, and it was found that at room temperature, and in the absence of TEA, trapping of the enolate was feasible and rate comparable to that with TEA; however, the yield was significantly lower (56%) (Table 3.3, entry 3). It

is apparent from Table 3.6 that low temperatures and prolonged reaction time are unfavorable for this reaction, and that TEA was an essential additive.

Scheme 3.4. Methylation of enolate of 7

Table 3.3. Methylation of the enolate of 7

|          | O^Ph  | 1. <i>s-</i> B<br>TH | uLi (1.5 equiv)<br>F, -78 °C, 0.5 h | Pł          | O TMS        |
|----------|-------|----------------------|-------------------------------------|-------------|--------------|
| <b>\</b> | TMS   |                      | I (4.0 equiv)<br>A, T °C            |             | Me<br>18     |
|          | Entry | TEA<br>(equiv)       | Temp<br>(°C)                        | Time<br>(h) | Yield<br>(%) |
|          | 1     | 4.0                  | -75 to 20 <sup>a</sup>              | 7           | 59           |
|          | 2     | 4.0                  | 20                                  | 0.83        | 72           |
|          | 3     | -                    | 20                                  | 1           | 56           |

(a)After addition at -78 °C, reaction was allowed to warm to -45 °C first. When no reaction was observed (by GC-MS) after 1 h 25 min, it was then allowed to warm to room temperature.

Reaction of the enolate with benzyl bromide was also found to be temperature dependent. Whereas the α-benzylated product, 21, was obtained in 66% yield in the presence of TEA at 20 °C (PhCH<sub>2</sub>Br (4.0 equiv.)/TEA (4.0 equiv.)) (Table 3.4, entry 2), carrying out the reaction at lower temperatures (-75 to -45 °C) resulted in an incomplete reaction even after 24 h, affording the product in only 36% yield (Table 3.4, entry 4). It was also determined that TEA is beneficial for this reaction, because, even though a 60%

yield of product was obtained in the absence of TEA (Table 3.4, compare entries 2 and 3), the reaction required 7 h to go to completion. TBAI also proved to be an effective additive, allowing a low temperature (-75 °C) trapping and affording the product in 59% yield. No *O*-alkylation was observed in these reactions. From the results in Table 3.4, HMPA is not a requirement in this reaction (Table 3.4, compare entries 1 and 2). The use of HMPA resulted in the formation of the desired product (in only 32% yield), accompanied by the formation of by-products (Table 3.4, entry 1).

Table 3.4. Benzylation of the enolate of 7.

| <b>&gt;</b> | O Ph TMS       | 2. B          | 1. s-BuLi (1.5 equiv)<br>THF, -78 °C, 0.5 h<br>2. BnBr<br>TEA, T °C |              |             | Bn <b>21</b>      | `TMS |
|-------------|----------------|---------------|---------------------------------------------------------------------|--------------|-------------|-------------------|------|
|             | Entry          | BnBr<br>(eq.) | TEA<br>(eq.)                                                        | Temp<br>(°C) | Time<br>(h) | Yield<br>(%)      | -    |
|             | 1 <sup>a</sup> | 6.0           | 6.0                                                                 | 0 to 20      | 4           | 32                |      |
|             | 2              | 4.0           | 4.0                                                                 | 20           | 1.5         | 66                |      |
|             | 3              | 4.0           | -                                                                   | 20           | 7           | 60                |      |
|             | 4              | 4.0           | 4.0                                                                 | -75 to 20    | 24          | 36 <sup>b,c</sup> |      |
|             | 5 <sup>d</sup> | 4.0           | -                                                                   | -78          | 3.5         | 59                | _    |

(a) 3.0 eq. of HMPA was employed. (b) The crude reaction mixture contained the rearranged and trapped products in 1:2.8 ratio. (c) 22% of [1,4] product 8 was isolated. (d) 4.0 eq. of TBAI added.

The silyl derivative 22 was prepared by trapping the enolate intermediate with TMSCI. The trapping was investigated under various reaction conditions and the results obtained are given in Table 3.5. The reaction afforded the *O*-silylated product, which was

expected. No C-silylation was detected. The reaction was facile at low temperatures (-75 to -45 °C), being complete in 50 minutes, and affording the desired product 22 in 85% yield (Table 3.5, entry 4). It is also clear from the Table that TMSCl was a good enough electrophile, so as not to require the use of any additives.

Table 3.5. Silylation of the enolate of 7.

|       | O^Ph              |             | 1. s-BuLi (1.5 equiv)<br>THF, -78 °C, 0.5 h |                |                 |              | ρт          | MS           |
|-------|-------------------|-------------|---------------------------------------------|----------------|-----------------|--------------|-------------|--------------|
| TMS   |                   |             | 2. TMSCI<br>TEA, T °C                       |                |                 | Ph TMS       |             |              |
| Entry | s-BuLi<br>(equiv) | Time<br>(h) | TMSCI<br>(equiv)                            | TEA<br>(equiv) | HMPA<br>(equiv) | Temp<br>(°C) | Time<br>(h) | Yield<br>(%) |
| 1     | 3.0               | 4           | 6.0                                         | 6.0            | 3.0             | -75 to -45   | 1           | 71           |
| 2     | 1.5               | 0.5         | 6.0                                         | 6.0            | 3.0             | -75 to 20    | 0.83        | 48           |
| 3     | 1.5               | 0.5         | 4.0                                         | 4.0            | -               | 20           | 0.67        | 54           |
| 4     | 1.5               | 0.5         | 4.0                                         | 4.0            | -               | -75 to -45   | 1.33        | 85           |

Acetylation of the enolate was accomplished with acetyl chloride (Table 3.6). The best conditions appeared to be addition of the cold (-75 °C) enolate solution to a solution of CH<sub>3</sub>COCl in THF at room temperature for 1 h 20 min. Under these conditions, the ester (23) was obtained in 69% yield (Table 3.6, entry 2). Trapping at low temperature was detrimental, as was the use of TEA.

Table 3.6. Acetylation of the enolate of 7

The propyl derivatives 24 and 25 were prepared by trapping the enolate with *n*-propyl iodide and the results obtained are given in Table 3.7. *n*-Propyl iodide proved to be a poor electrophile, requiring the use of an additive. In this case reaction gave a 3:1 mixture of both *C*- (24) and *O*-alkylation (25) products. Use of TEA (4.0 eq) significantly shortened the reaction time (from 52 h without to 24 h with TEA), but did not give much yield enhancement (Table 3.7, entry1). However, HMPA gave better results in terms of reaction time and product yield (Table 3.7, entries 3 and 4).

Table 3.7. Trapping of the enolate of 7 with propyl iodide.

|             | O Ph              |                                     | ILi (1.5 equiv)<br>78 °C, 0.5 h | Ph_          | 0           |              | 1      | Pr |
|-------------|-------------------|-------------------------------------|---------------------------------|--------------|-------------|--------------|--------|----|
| <b>&gt;</b> | <b>⊤</b> тмѕ<br>7 | 2. Prl (4.0 equiv)<br>TEA/HMPA, THF |                                 | TMS + Ph     |             |              | TMS 25 |    |
|             | Entry             | TEA<br>(equiv)                      | HMPA<br>(equiv)                 | Temp<br>(°C) | Time<br>(h) | Yield<br>(%) | Ratio  |    |
|             | 1                 | 4.0                                 | -                               | 20           | 24          | 39           | 3:1    |    |
|             | 2                 | -                                   | -                               | 20           | 52          | 32           | 2.6:1  |    |
|             | 4                 | -                                   | 4.0                             | 20           | 17          | 66           | 3:1    |    |

Benzaldehyde was also investigated as an electrophile for the trapping of the enolate. Trapping was facile at low temperatures (-78 °C) and resulted in the formation of 29 in 68% yield. This reaction did not require the use of Lewis acid catalysts.<sup>5</sup>

Vinyl perfluoroalkanesulfonates, e.g. vinyl triflates and vinyl nonaflates are widely utilized in organic synthesis due to the high leaving-group ability of the perfluoroalkanesulfonyloxy group. These compounds have often been used in transition metal-catalyzed cross-coupling reactions.<sup>6</sup> We envisaged that trapping the enolate generated from the Wittig rearrangement of model compound 7 would lead to a vinyl perfluoroalkanesulfonate, which when coupled with a suitable partner would result in a vinyl silyl compound. This could be amenable to further transformations (Scheme 3.5).

Scheme 3.5. Schematic of envisaged [1,4]-Wittig/electrophilic trapping/coupling reactions of model substrate 7

Attempts were also made to prepare the triflate by quenching a cold (-75 °C) solution of the enolate with a variety of triflating agents. With triflic anhydride, only the [1,4]-rearranged product 8 was isolated, with no evidence of the expected vinyl triflate. The use of PhNTf<sub>2</sub> did not allow for the isolation of the vinyl triflate 26, but gave trimethyl-(4-phenyl-but-1-ynyl)-silane, 28 (Scheme 3.6). The formation of 28 is envisaged to result from the expected vinyl triflate, which very likely underwent

elimination of the triflate and a vinyl proton to give the observed alkynylsilane (Scheme 3.6). Use of the nonaflating reagent (CF<sub>3</sub>(CF<sub>2</sub>)<sub>3</sub>SO<sub>2</sub>F) under similar reaction conditions resulted in the formation of the vinyl nonaflate, **27** (Scheme 3.6) (<sup>1</sup>H-NMR of the crude product was obtained). However, the nanoflate was sensitive to acidic conditions, and attempted purification by silica gel column chromatography resulted in the elimination of the nonaflate group to give **28**. In all cases, product identification was by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, and high resolution GC-MS.

Scheme 3.6. Attempted synthesis of Vinyl triflate and vinyl nonaflate

As mentioned above, vinyl triflates and nanoflates are known to be good coupling partners in coupling reactions. Since our vinyl triflates (or vinyl nonaflate) were unstable, we wanted to trap these species in situ, in a Stille or Heck coupling reaction. This however, was not realized as the attempted Stille coupling (Scheme 3.8) (for preparation of the stannane partner see Scheme 3.6) and Heck reaction (Scheme 3.8) failed to occur.

Scheme 3.7. Synthesis of the stannane coupling partner

Scheme 3.8. Attempted Wittig/nonaflation/Pd(0)-mediated coupling of model substrate 7

The summary of the results of the trapping experiments is given in Table 3.8.

Table 3.8. One-pot Electrophilic Trapping of Enolate of 7: Preparation of Acylsilanes

# 3.3. Conclusions

We have shown that the [1,4]-Wittig rearrangement of allyl ethers can be coupled with electrophilic trapping of the resultant enolate intermediate. This procedure provides unique access to  $\alpha$ -functionalized acylsilanes, which are synthetically versatile building blocks in organic chemistry. In some cases such as trapping with ethyl iodide and propyl iodide, the vinyl silyl ether resulting from O-alkylation features a vinyl silyl group and thus is a masked umpolung anion.

In Chapter 2 of this dissertation, we showed that for simple unsubstituted  $\alpha$ -alkoxysilanes such as 7 Wittig rearrangement could be very selective with careful control of reaction conditions. We also showed that the reaction could be efficient in terms of yield. In the present chapter, the efficiency of the [1,4]-Wittig of  $\alpha$ -alkoxysilanes was effectively harnessed, establishing the utility of the [1,4]-Wittig of this class of compounds. At this point an appropriate questions becomes "what would be the effect of substitution on the Wittig rearrangement of  $\alpha$ -alkoxysilanes?" This topic will be discussed in the next chapter.

### **EXPERIMENTAL**

Preparation of acylsilanes. Representative procedure: A solution of 7 in THF (0.065 M) was cooled to -78 °C under nitrogen. s-BuLi (1.3 M in cyclohexane, 1.5 equiv) was added dropwise via syringe. The reaction mixture was stirred for 30 min. at -78 °C. The resultant enolate solution was transferred via cannula to a THF solution of the appropriate electrophile at the appropriate temperature. Reaction was stirred for the required time, then quenched with saturated aqueous NH<sub>4</sub>Cl and diluted with diethyl ether. Phases were separated and the organic phase washed with water and brine. The organic phase was then dried over MgSO<sub>4</sub> and concentrated. Silica gel chromatography (0 to 2% EtOAc in hexane gradient) afforded the pure acylsilane.

Trapping of enolate of 7 with allyl bromide, preparation of acylsilane 12: Applying the Representative procedure to 106 mg (0.48 mmol) of 7, 323 mg (1.92 mmol) of allyl bromide, 195 mg (1.92 mmol, 0.27 mL) of TEA at -78 °C, and allowing the reaction to warm to room temperature for 7 h, after silica gel chromatography (0-2% EtOAc in hexane gradient), afforded 69 mg (55%) of pure 12 as a clear oil. IR (neat) 2953, 1715, 1640, 1454, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.31-7.11 (m, 5H), 5.70-5.61 (m, 1H), 5.01-5.61 (m, 2H), 3.03-2.97 (m, 1H), 2.53-2.43 (m, 2H), 2.39-2.33 (m, 1H), 1.98-1.89 (m, 1H), 1.62-1.55 (m, 1H), 0.16 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 250.5, 141.8, 135.8, 128.4, 128.3, 125.9, 116.6, 77.2, 54.6, 33.5, 30.6, -2.8. HRMS (EI) *m/z* 259.1528 [(M-H)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>23</sub>OSi, 259.1518].

Trapping of enolate of 7 with ethyl iodide- preparation of compounds 16 and 17: Applying the Representative procedure to 121 mg (0.55 mmol) of 7, 343 mg (2.2 mmol) of ethyl iodide, and 394 mg (2.2 mmol, 0.25 mL) of HMPA, after silica gel chromatography (0-2% EtOAc in hexane gradient), afforded 84 mg (61%) of 16 as a light yellow oil, and 28 mg (21%) of 17 as a clear oil (82% combined yield, 3:1 ratio). 16: IR (neat) 2961, 1713, 1639, 1454, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz CDCl<sub>3</sub>)  $\delta$  7.30-7.16 (m, 5H), 2.85-2.78 (m, 1H), 2.52-2.42 (m, 2H), 1.97-1.89 (m, 1H), 1.71-1.62 (m, 1H), 1.59-1.51 (m, 1H), 1.43-1.34 (m, 1H), 0.85 (t, J = 7.8, 6.8 Hz, 3H), 0.21 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  251.2, 142.0, 128.4, 128.3, 125.8, 57.1, 33.7, 30.6, 22.3, 11.7, -2.7. HRMS (NH<sub>3</sub> CI) m/z 249.1676 [(M+H)<sup>+</sup>; calcd for C<sub>15</sub>H<sub>25</sub>OSi, 249.1675]. 17: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33-7.16 (m, 5H), 5.10 (t, J = 7.3, 6.8 Hz, 1H), 3.67-3.62 (q, J = 7.3, 6.8 Hz, 2H), 2.39-2.25 (m, 2H), 1.86-1.78 (m, 2H), 1.20-1.17 (t, J = 7.3, 6.8 Hz, 3H), 0.12 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  161.2, 142.2, 128.4, 128.2, 128.1, 125.6, 66.2, 35.9, 27.2, 15.8, -0.66.

Trapping of enolate of 7 with methyl iodide preparation of acylsilane 18: Applying the Representative procedure to 98 mg (0.445 mmol) of 7, 252 mg (1.78 mmol) of methyl iodide, 180 mg (1.78 mmol, 0.25 mL) of TEA for 50 min, after silica gel chromatography (0-2% EtOAc in hexane gradient), afforded 92 mg (73%) of 18 as a

light yellow oil. IR (neat) 2963, 1713, 1639, 1604, 1454, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500MHz CDCl<sub>3</sub>)  $\delta$  7.27-7.13 (m, 5H), 2.94-2.87 (m, 1H), 2.60-2.47 (m, 2H), 2.03-1.96 (m, 1H), 1.51-1.1.44 (m, 1H), 1.00 (d, J = 6.8 Hz, 3H), 0.16 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  250.4, 141.9, 128.3, 125.8, 49.6, 33.4, 32.6, 14.3, -2.7. HRMS (EI) m/z 233.1356 [(M-H)<sup>+</sup>; calcd for C<sub>14</sub>H<sub>21</sub>OSi, 233.1362].

Trapping of enolate of 7 with benzyl bromide-preparation of acylsilane 21: Applying the Representative procedure to 99 mg (0.45 mmol) of 7, 307 mg (1.8 mmol) of benzyl bromide, 182 mg (1.8 mmol, 0.25 mL) of TEA for 1.5 h, after silica gel chromatography (0-2% EtOAc in hexane gradient), afforded 92 mg (66%) of 21 as a light yellow oil. IR 3026, 2951, 1713, 1639, 1603, 1496, 1454, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.32-7.13 (m, 10H), 3.43-3.33 (m, 1H), 3.12-2.94 (dd, J = 13.7, 7.8 Hz, 1H), 2.63-2.47 (m, 3H), 2.02-1.90 (m, 1H), 1.69-1.57 (m, 1H), 0.08 (s, 9H). <sup>13</sup>C (125 MHz, CDCl<sub>3</sub>)  $\delta$  251.8, 141.7, 139.9, 129.0, 128.4, 128.3, 126.1, 125.9, 56.3, 35.9, 33.4, 31.3, -3.2. HRMS (EI) m/z 309.1669 [(M-H)<sup>+</sup>; calcd for C<sub>20</sub>H<sub>25</sub>OSi, 309.1675].

Trapping of enolate of 7 with TMSCl-preparation of vinyl silyl ether 22: Applying the Representative procedure to 126 mg (0.572 mmol) of 7, 248 mg (2.29 mmol) of TMSCl, 231 mg (2.29 mmol, 0.32 mL) of TEA for 1.5 h, after silica gel chromatography (hexanes neat), afforded 142 mg (85%) of 22 as clear oil. IR (neat)

3028, 2959, 1614, 1496, 1454, 1250, 1121 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.29-7.16 (m, 5H), 5.07-5.02 (t, J = 6.7 Hz, 1H), 2.66-2.60 (t, J = 8.5, 7.4 Hz, 2H), 2.40-2.35 (m, 2H), 0.16 (s, 9H), 0.07 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  157.1, 142.2. 128.4, 128.3, 125.7, 124.4, 35.7, 27.6, 0.9, -1.7. HRMS (NH<sub>3</sub> CI) m/z 293.1747 [(M+H)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>29</sub>OSi<sub>2</sub>, 293.1757].

Trapping of enolate of 7 with acetyl chloride-preparation of vinyl acetate 23: Applying the Representative procedure to 89 mg (0.404 mmol) of 7, and 127 mg (1.62 mmol) of acetyl chloride for 1.5 h, after silica gel chromatography (0-2% EtOAc in hexane gradient), afforded 73 mg (69%) of 23 as a clear oil. IR 3086, 3026, 2955, 2922, 2849, 1745, 1603, 1496, 1454, 1369, 1230, 1089, 1039 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.30-7.15 (m, 5H), 5.51-5.48 (t, J = 7.1, 6.8 Hz, 1H), 2.68-2.64 (t, J = 8.4, 7.5 Hz, 2H), 2.36-2.31 (quintet, J = 8.4, 7.5, 7.1 Hz, 2H), 2.11 (s, 3H), 0.11 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  169.1, 155.3, 141.6, 130.5, 128.4, 128.3, 125.9, 35.0, 27.6, 20.5, -1.5. HRMS (EI) m/z 262.1387 [(M); calcd for C<sub>15</sub>H<sub>22</sub>O<sub>2</sub>Si, 262.1389].

Trapping of enolate of 7 with propyl iodide-preparation of compounds 24 and 25: Applying the Representative procedure to 129 mg (0.59 mmol) of 7, 398 mg (2.34 mmol) of propyl iodide, and 420 mg (2.34 mmol, 0.41 mL) of HMPA for 17 h,

after silica gel chromatography (0-2% EtOAc in hexane gradient), afforded pure 102 mg (66%) of 24 and 25 (3:1 ratio by <sup>1</sup>HNMR) as a light yellow oil.

**24**: IR (neat) 2957, 1717, 1638, 1454, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500MHz CDCl<sub>3</sub>)  $\delta$  7.29-7.12 (m, 5H), 2.92-2.86 (m, 1H), 2.52-2.44 (m, 2H), 1.95-1.88 (m, 1H), 1.65-1.51 (m, 2H), 1.32-1.17 (m, 3H), 0.86 (t, J = 6.8 Hz, 3H), 0.16 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  251.2, 142.0, 128.34, 128.32, 125.8, 55.3, 33.7, 31.5, 31.0, 20.6, 14.3, -2.7. HRMS (NH<sub>3</sub> CI) m/z 263.1821 [(M+H)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>27</sub>OSi, 263.1831].

25 was not isolated after chromatography.

Trapping of enolate of 7 with nonaflating agent-preparation of silyl acetylene 28: Applying the Representative procedure to 85 mg (0.39 mmol) of 7, and 128 mg (0.43 mmol) of perfluoro-1-butanesulfonyl fluoride for about 5 h, after silica gel chromatography (0-2% EtOAc in hexane gradient), afforded 45 mg (58%) of pure 28 as a clear oil. IR (neat) 2959, 2175, 1603, 1496, 1454, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.32-7.20 (m, 5H), 2.85-2.80 (t, J = 7.7 Hz, 2H), 2.51-2.46 (t, J = 7.7 Hz, 2H), 0.13 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  140.6, 128.5, 128.3, 126.2, 106.6, 85.2, 35.1, 22.1, 0.1. HRMS (EI) m/z 202.1174 [(M); calcd for C<sub>13</sub>H<sub>18</sub>Si, 202.1178].

Trapping of enolate of 7 with benzaldehyde-preparation of compound 29:

Applying the Representative procedure to 286 mg (1.3 mmol) of 7, 276 mg (2.6 mmol)

benzaldehyde and 3 mg (0.13 mmol) of TMSOTf for 4 h, after silica gel chromatography (0-10% EtOAc in hexane gradient), afforded 287 g (68%) of pure **29** as a clear oil. IR (neat) 3486, 2955, 1717, 1603, 1495, 1453, 1315, 1273, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.06 (d, J = 7.0 H, 2H), 7.59-7.56 (t, J = 7.5 Hz, 1H), 7.47-7.44 (t, J = 7.5 Hz, 2H), 7.39-7.26 (m, 6H), 7.23-7.20 (t, J = 7.5 Hz, 2H) 7.15-7.12 (apparent t, J = 7.5, 7.1 Hz, 1H), 6.95 (d, J = 8.0 Hz, 2H), 4.51 (t, J = 7.1, 5.7 Hz, 1H), 3.90-3.88 (dd, J = 5.7, 5.3, 3.1 Hz, 1H), 2.43-2.37 (m, 1H), 2.26-2.20 (dt, J = 12.4, 4.4 Hz, 1H), 2.06-2.03 (t, J = 7.5, 5.7 Hz, 1H), 0.06 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  168.6, 142.8, 142.2, 133.2, 129.9, 129.7, 128.5, 128.4, 128.3, 127.6, 126.8, 125.8, 74.2, 47.6, 30.4, -2.7. HRMS (EI) m/z 415.2079 [(M+H)<sup>+</sup>; calcd for C<sub>27</sub>H<sub>31</sub>O<sub>2</sub>Si, 415.2093].

#### **REFERENCES**

- 1. Maleczka, R. E. Jr.; Geng, F. Org. Lett. 1999, 1, 1115-1118.
- 2. 12 was obtained accompanied by a second product, which, based on <sup>1</sup>H-NMR and <sup>13</sup>C-NMR, was an aldehyde 15. Use of HMPA either alone or in combination with TEA (at 0 °C) resulted in more of this accompanying aldehyde being formed.
- 3. HRMS results for compounds 13, 14 and 15:

- 13: HRMS (EI) m/z 300.1911[(M); calcd for  $C_{19}H_{28}OSi$ , 300.1909].
- 14: HRMS (EI) m/z 340.2238 [(M); calcd for  $C_{22}H_{32}OSi$ , 340.2222].
- **15**: HRMS (EI) m/z 204.1174 [(M); calcd for  $C_{13}H_{16}O_2Si$ , 204.1150].
- 4. HRMS results for compounds 19 and 20:

- **19**: HRMS (EI) m/z 176.1207 [(M); calcd for  $C_{12}H_{16}O$ , 176.1201].
- **20**: HRMS (EI) m/z 162.1055 [(M); calcd for  $C_{11}H_{14}O$  162.1045].
- 5. We sought to improve on the yield of this reaction by employing TMSOTf as catalyst (0.01 equiv), however, this did not give any advantage.
- 6. For enol triflates in coupling reactions, see: (a) Li, ShengJian,; Dieter, R. K. J. Org. Chem. 2003, 68, 969-973 and references therein. (b) Scott, J. W.; McMurry, J. E. Acc. Chem. Res. 1988, 21, 47-54. For enol nonaflates in coupling reactions, see: (c) Lyapkalo, I. M.; Hogermeier, J.; Reissig, H-U. Tetrahedron 2004, 60, 7721-7729 and references therein. (d) Lyapkalo, I.M.; Webel, M.; Reissig, H-U. Eur. J. Org. Chem. 2002, 21, 3646-3658. (e) Wada, A.; Leki, Y.; Ito, M. Synlett 2002, 7, 1061-1064. (f) Ritter, K. Synthesis 1993, 735. (g) Stang, P. J.; Hanack, M.; Subramanian, L. R. Synthesis 1982, 85. (g) Stille, J. K. Angew. Chem. Int. Ed. 1986, 25, 508.

56

#### CHAPTER 4

## IMPACT OF SUBSTITUTIONS ON WITTIG REARRANGEMENTS OF $\alpha$ -ALKOXYSILYL ETHERS

### 4.1. Preparation of of $\alpha$ -alkoxysilanes

### 4.1.1. Introduction: Design of substrates

In chapter 2, we mentioned that attempts to achieve selective Wittig rearrangement of  $\alpha$ -alkoxysilanes would be highly dependent on understanding the reaction variables that impact the reaction such as base (type and concentration), reaction temperature, solvent<sup>1</sup> and substrate structure,<sup>2</sup> (sterics and electronics) impact the reaction. We then studied the effects of base, temperature and solvent and established optimum conditions for our substrates. Employing these optimum conditions, we were able to generate and trap the enolate of model compound 7 to functionalize the resultant acylsilane at the  $\alpha$ -carbon. In this chapter, we will discuss the results of our studies on the structural requirements for  $\alpha$ -alkoxysilanes in the Wittig rearrangement.

Model substrate 7 rearranged selectively via the [1,4]-Wittig pathway at low temperatures. However, as the temperature rose, there was gradual erosion in selectivity and at room temperature, [1,4]/[1,2] selectivity reached a ratio of 2:1 (Chapter 2). This result clearly showed that elevated temperature favors the [1,2]-Wittig. We wondered whether we could still control the [1,4]/[1,2] selectivity if we made structural changes (sterics and electronics) in the structure of model substrate 7.

From the beginning, we recognized that proper design of substrates was of key importance to the study of structural requirement<sup>2</sup> in this reaction. Tomooka and coworkers,<sup>2f</sup> established that in general, the scope and limitations of the [1,2]-Wittig

rearrangement are determined principally by the migratory aptitude of the alkyl group and the reactivity of the carbanion terminus as dictated by the nature of the carbanion stabilizing group (Scheme 4.1). They also determined that the migratory aptitude of the alkyl group increases in the order primary<secondary<tertiary-ally<br/>benzyl. This trend is consistent with the stability order of the corresponding radicals. Previous reports have also shown that the [1,2]-alkyl shift is promoted by a radical stabilizing migrating group and/or a terminal radical stabilizing group (Figure 4.1).<sup>2,3</sup> On the other hand, the yield of [1,4]-product has been reported to be remarkably insensitive to the substitution pattern within the allylic moiety of the ethers.<sup>1</sup> In a different study, it was shown that the concerted pathways available to a substrate are primarily determined by the geometry of the system and thus may be sensitive to steric effects.<sup>4</sup> In contrast these two factors have little or no effect on the stepwise pathways.<sup>4</sup>

Given the nature of these previous studies, we sought substrates to allow investigations of the different factors that are most likely to control the course of the Wittig rearrangements of  $\alpha$ -alkoxysilanes. These factors would include the influence of sterics, stereochemistry, and electronics and could be independently studied by the proper choice of  $R_1$  and  $R_2$  (Figure 4.1).

In investigating the structural requirements for the  $\alpha$ -alkoxysilanes in the Wittig rearrangement, we recognized that electronically, migrating alkyl groups that are activated (bearing an electron donating group), deactivated (bearing an electron withdrawing group) as well as unactivated (e.g. a simple alkyl group) would have different impacts on the Wittig rearrangement of this class of compounds.

Secondly, sterics could be introduced at either the migrating carbon, the terminal sp<sup>2</sup> carbon of the allyl moiety, or at both. We anticipated that at whatever position, sterics would alter the ratio of the [1,4]/[1,2]-rearrangement products, however, the magnitude of this impact could not be estimated.

Figure 4.1. Generalized Structure of  $\alpha$ -alkoxysilanes

## 4.1.2. Preparation of $\alpha$ -alkoxysilanes

To study a variety of Wittig substrates we first needed to prepare the precursor silyl-alcohols.  $\alpha$ -(Hydroxyallyl)silanes 32-34 were prepared following a procedure of Danheiser and co-workers<sup>5</sup> that involves the retro-Brook rearrangement<sup>6</sup> of appropriate alkylsilyl ethers (Scheme 4.1).

Scheme 4.1. Preparation of various  $\alpha$ -hydroxysilanes

The syntheses of 32<sup>7</sup> and 34<sup>8</sup> were uneventful, with both alcohols being obtained in 93% and 53% yields, respectively. However, the synthesis of 33 proved to be more complicated and was studied in some detail. Deprotonation of allyl alcohol with 1.06

equiv of *n*-BuLi in THF at -78 °C and trapping with phenyldimethylsilyl chloride proceeded reasonably well. However, we found that this reaction was highly dependent on the rate of addition of *t*-BuLi and the time following this addition. Variation in these conditions resulted in a mixture of three products 33, 35, 36 (Scheme 4.2).

Scheme 4.2. Preparation of  $\alpha$ -(hydroxydimethylphenylallyl)silane 33

Following addition of *t*-BuLi with long reaction times (1.5 h or more) gave approximately a 1:1 to 2:1 mixture of the desired α-hydroxisilane **33** and vinyl silyl ether **36** (Scheme 4.2). Rapid addition of *t*-BuLi was also not favorable for formation of the desired alcohol. Arresting the reaction five minutes after a rapid addition of base afforded the vinyl silyl ether **36** as the only product and in near quantitative yield. As illustrated in Scheme 4.3, the more stable resonance structure (featuring the more substituted double bond) either abstracts a silyl group from allyl silyl ether or is trapped by the PhMe<sub>2</sub>SiCl in the reaction mixture to give the observed product. Our best result (11:1 alcohol to vinyl silyl ether, 71% yield) was obtained when *t*-BuLi was added fairly slowly at 0.35 ml/min, with the subsequent reaction being allowed to stir at -78 °C for 40 minutes.

Scheme 4.3. Formation of  $\alpha$ -(dimethylphenylsilyl)allyl alcohol 33 and vinyl silyl ether 36

It is worth mentioning that when the vinyl silyl ether 36 was subjected to the reaction conditions of Scheme 4.2 it was recovered unchanged. Deprotonation of the vinyl silyl ether 36 would result in the formation of an allyl carbanion stabilized by an  $\alpha$ -silyl group, which could be captured by PhMe<sub>2</sub>SiCl to give 37 or result in the formation of an  $\alpha$ -hydroxysilane 38 bearing a vinyl silyl group (Scheme 4.4). However, none of these products were observed. This could mean that either the deprotonation did not happen or the  $\alpha$ -silyl carbanion is stable toward further reaction.

Scheme 4.4. Subjection of vinyl silyl ether to deprotonation/silylation/retro-Brook reaction conditions

Our model substrate 7 and the other Wittig substrates employed in this work<sup>9</sup> were prepared following the general method for the synthesis of  $\alpha$ -alkoxysilanes developed in our laboratory by Maleczka and Geng.<sup>10</sup> Their preparation involves Lewis acid catalyzed etherification of  $\alpha$ -hydroxysilanes (32-34) via the trichloroacetimidates<sup>11</sup> of the appropriate alcohols.<sup>12</sup> The Wittig substrates prepared are shown in Table 4.1.

Table 4.1. Preparation of various  $\alpha$ -alkoxysilanes<sup>a</sup>

| Entry | R  | R <sub>1</sub>            | R <sub>2</sub>                                                | silane               | Yield (%)       |
|-------|----|---------------------------|---------------------------------------------------------------|----------------------|-----------------|
| 1     | Ph | -CH=CH <sub>2</sub>       | -CH <sub>2</sub> Ph                                           | 39                   | 35              |
|       |    | _                         | -                                                             |                      |                 |
| 2     | Ме | -CH=CH <sub>2</sub>       | -CH <sub>2</sub> CH=CHSiMe <sub>3</sub>                       | 40                   | 59              |
| 3     | Ме | -CH=CH <sub>2</sub>       | -CH <sub>2</sub> CH=CHPh                                      | 41                   | 24              |
| 4     | Ме | -CH=CH <sub>2</sub>       | -CH(Ph)CH=CH <sub>2</sub>                                     | 42                   | 22              |
| 5     | Ме | -CH=CH <sub>2</sub>       | -CH(Me)Ph                                                     | 44                   | 78              |
| 6     | Ph | -CH=CH <sub>2</sub>       | -CH(Me)Ph                                                     | 45                   | 28              |
| 7     | Ph | -CH=CH <sub>2</sub>       | -CH(Me) $\rho$ -NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub> | 46                   | 35              |
| 8     | Ме | -CH=CH <sub>2</sub>       | -CH(Me)p-MeOC <sub>6</sub> H <sub>4</sub>                     | 47                   | 92 <sup>b</sup> |
| 9     | Ме | -CH=CH <sub>2</sub>       | -CH(Ph)CH <sub>2</sub> Me                                     | 48                   | 37              |
| 10    | Ph | -CH=CH <sub>2</sub>       | -CH(Ph)CH <sub>2</sub> Me                                     | 49                   | 38              |
| 11    | Ме | -CH=CH <sub>2</sub>       | -CH(Ph)CH <sub>2</sub> CH <sub>2</sub> Me                     | 50                   | 75              |
| 12    | Ph | -CH=CH <sub>2</sub>       | -CH(Ph)CH <sub>2</sub> CH=CH <sub>2</sub>                     | 51                   | 77              |
| 13    | Me | -CH=CH <sub>2</sub>       | -CH(Ph)CH <sub>2</sub> CH=CH <sub>2</sub>                     | 52                   | 80 <sup>c</sup> |
| 14    | Ме | -CH=CH <sub>2</sub>       | -CH(Ph)CHMe <sub>2</sub>                                      | 53                   | 59              |
| 15    | Ме | -CH=CH <sub>2</sub>       | -CH(Ph)(CH <sub>2</sub> ) <sub>3</sub> CH=CH <sub>2</sub>     | 54                   | 15              |
| 16    | Me | (E)-CH=CHCH <sub>3</sub>  | -CH <sub>2</sub> Ph                                           | 55                   | 36              |
| 17    | Ме | (E)-CH=CHCH <sub>3</sub>  | -CH(Me)Ph                                                     | E- <b>56</b>         | 49              |
| 18    | Me | (Z) -CH=CHCH <sub>3</sub> | -CH(Me)Ph                                                     | <i>Z</i> - <b>56</b> | <10             |
| 19    | Ме | (E) -CH=CHCH <sub>3</sub> | -CH(Ph)CH <sub>2</sub> CH=CH <sub>2</sub>                     | 58                   | 69              |

<sup>(</sup>a) Unless otherwise stated,  $\alpha$ -alkoxysilanes were obtain in approximate ratio of 1:1 (reactive syn:less reactive anti). (b) 3.3:1 ratio of less reactive:reactive diastereomeric 47 was obtained. (c) 2.6:1 ratio of less reactive:reactive diastereomeric 52 was obtained.

Etherification of **32** with the trichloroacetimidate of cinnamyl alcohol, catalyzed by both TMSOTf and triflic acid, respectively, afforded a mixture of four products.<sup>13</sup> These were **41** (23%), a near 1:1 pair of diastereomeric **42** (20%), and TMS-protected **32** (5%). All the compounds were fully characterized (<sup>1</sup>H NMR, <sup>13</sup>C NMR, DEPT) (Scheme **4.5**).

Scheme 4.5. Etherification of  $\alpha$ -hydroxysilane 32 with trichloroacetimidate of cinnamyl alcohol

Compounds 51, 52, and 58 were not accessed via the previously described route, but rather via Rychnovsky's protocol. As illustrated in Scheme 4.6, the silylation of 34 afforded the crotyl silyl ether 57 (90% yield). This compound was employed in a three component coupling reaction with allylsilane and benzaldehyde, catalyzed by TMSOTf to afford 58 as a 1:1 pair of diastereomers in 68% yield. Compound 51 was a clear oil obtained as a 1:1 pair of diastereomers in 77% yield and 52 was also a clear oil, obtained as a 1:2.6 pair of diastereomers in 80% yield.

Scheme 4.6. Preparation of substrate 58 via Rychnovsky's protocol

As illustrated in Table 4.1 we prepared a variety of  $\alpha$ -alkoxysilanes including those bearing activated migrating groups (e.g. benzyl and substituted benzyl), as well as those bearing substituents at the terminal carbon of the allyl moiety. However, this first set of compounds contained no substrates bearing unactivated migrating groups (simple alkyls). To investigate the behavior of simple unactivated alkyl groups, we decided to employ  $\alpha$ -(trimethylsilyl)allyl butyl ether as a prototype. The synthesis of  $\alpha$ -(trimethylsily)allyl butyl ether was attempted by Lewis acid-catalyzed etherification of  $\alpha$ -hydroxyallylsilane, 32, with the trichloroacetimidate of n-butyl alcohol<sup>11</sup> (Scheme 4.7). Unfortunately the target compound 59 was not observed. Nevertheless, two silylated compounds were isolated, 40 and 60, albeit in low yields.

Scheme 4.7. Attempted synthesis of  $\alpha$ -(trimethylsilyl)allyl butyl ether

In order to explain the formation of the observed compounds, the mechanism illustrated in Scheme 4.8 is proposed. Coordination of the Lewis acid to the acetimidate nitrogen makes the iminium carbon more electrophilic. The incoming nucleophile (32) would attack at the iminium carbon to form activated allylic acetimidate intermediate 61, liberating butanol in the process. A nucleophilic attack at the terminal olefinic carbon by another molecule of 32 would result in the formation of 40. On the other hand, a nucleophilic attack on the terminal olefinic carbon by a butanol molecule would lead to the formation of 60. The formation of the target compound would demand attack of a molecule of  $\alpha$ -hydroxysilane 32 at the  $\alpha$ -carbon of the butyltrichloroacetimidate. This process would require some kind of activation of the  $\alpha$ -carbon (e.g. by resonance stabilization), which is not possible with the butyl system. Though somewhat disappointing this result was interesting given the unique nature of compound 40.

Scheme 4.8. Attempted synthesis of α-(trimethylsilyl)allyl butyl ether-Plausible mechanism

Considering the unique nature of compound 40, we sought further confirmation of its structure. Independent synthesis of 40 was accomplished in 53% yield by the  $BF_3 \circ OEt_2$  mediated etherification of 32 with the trichloroacetimidate of  $\gamma$ -silylalcohol (3-trimethylsilyl-2-propen-1-ol), which was itself prepared following the method of Denmark and Jones (Scheme 4.9).<sup>14</sup>

Scheme 4.9. Independent synthesis of Wittig substrate 40

### 4.2. In search of new methods for accessing $\alpha$ -alkoxysilanes

We still desired to investigate the behavior of non-activated migrating centers under our Wittig rearrangement conditions. As the previous protocol for accessing the Wittig substrates was not amenable to the syntheses of  $\alpha$ -(trimethylsilyl)allyl alkyl ethers, <sup>15</sup> a nucleophilic substitution reaction between the alkoxide of 1-phenyl-1-propanol and the mesylate of 32 was considered (Scheme 4.10). The formation of 62, mesylate of 32 was very efficient, affording the desired mesylate in 96% yield. <sup>16</sup> However, reaction with a preformed acetimidate of 1-phenylpropan-1-ol in THF resulted in an  $S_N2'$ -displacement of the mesylate group to afford 62 in 70%, with no evidence of the desired  $S_N2$  product 47 observed.

# Scheme 4.10. Attempted synthesis of 47 via an $S_N2$ displacement of a mesylate group

Kim and Lee<sup>17</sup> reported a mild and efficient method for the stereoselective formation of C-O bonds via an  $S_N2$  type process, based on Pd-catalyzed allylic etherification using Zn(II) alkoxides as nucleophiles (Scheme 4.11). Fundamental to their protocol was the use of allylic acetate and a wide variety of alcohols (primary, secondary acyclic, secondary cyclic, allylic, propargylic, and aromatic). In this protocol,  $Et_2Zn$  served as the source of base and counter ion.

Scheme 4.11. Pd(0)-mediated stereoselective formation of C-O bonds via S<sub>N</sub>2 type process

The above protocol was adapted to acetyl ester of 32 and benzyl alcohol as coupling partners. Treating a THF solution of benzyl alcohol with  $Et_2Zn$  at room temperature and stirring for 50 min preformed the Zn benzyl oxide. Subsequent addition of the allyl acetate and  $Pd(PPh_3)_4$  and stirring for 2 h resulted in the complete consumption of the allyl acetate. However, the expected coupled product was not obtained. Instead, 65, resulting from an E2' elimination of the acetate group was isolated in 64% yield (Scheme 4.12). This result is similar to that obtained with the corresponding  $\alpha$ -(trimethylsilyl)allyl mesylate (Scheme 4.10). These results are clear indications that allylsilanes possessing substituents that are good leaving groups prefer to react by elimination of the leaving group via an E2' mode.

Scheme 4.12. Pd-catalyzed allylic etherification using Zn(II) alkoxide as nucleophile

An attempt was also made to access the α-alkoxysilanes via the classical Williamson's ether synthesis (Scheme 4.13). The caveat of this method is that deprotonation of the starting alcohol will very likely trigger a Brook rearrangement. However, we reasoned that a bulky group (such as phenyl) on silicon might help slow down this process and lead to the desired product. Thus, <sup>18</sup> PhMe<sub>2</sub>Si– was substituted for Me<sub>3</sub>Si– group. A catalytic amount of TBAI was also employed to facilitate benzylation.

Regretably, the expected  $\alpha$ -alkoxysilane was again not obtained. The reaction afforded  $(PhMe_2Si)_2O$  as the only product (quantitative crude yield). We also tried a direct  $S_N2$  displacement of a *sec*-bromide with a methoxide ion (Scheme 4.14). However, the expected allyl methyl ether was not isolated and neither was the starting *sec*-allyl bromide recovered.

Scheme 4.13. Attempt at accessing  $\alpha$ -alkoxysilanes via the Williamson's ether synthesis

Scheme 4.14. Attempted preparation of  $\alpha$ -alkoxysilanes by direct  $S_N 2$  displacement

In an attempt to get around the use of a strong base we contemplated accessing  $\alpha$ -alkoxysilanes via direct  $S_N2$  reaction between 32 and 1-bromoethyl benzene in the presence of a weak base (2.0 equiv of *i*-Pr<sub>2</sub>NEt, THF, rt). In the end though, this protocol did not give the expected product (Scheme 4.15).

Scheme 4.15. Attempt at accessing  $\alpha$ -alkoxysilanes via direct  $S_N2$  reaction

In 1992, Hoffmann and Brückner<sup>19</sup> reported the synthesis of two functionalized O-S acetals by a one-pot thioacetalization of the requisite aldehydes when they reacted the aldehydes, (trimethylsilyl)-prenol, (trimethylsilyl)thiophenol, and 2 equiv. of TMSOTf at -78°C in CH<sub>2</sub>Cl<sub>2</sub> (Scheme 4.16). When we tried to adapt this protocol to our system comprising crotonaldehyde, trimethylsilyl-protected crotyl alcohol, hexamethyl disilazane, and a catalytic amound (0.05 equiv) of TMSOTf, the desired compound 67 was not observed (Scheme 4.17).

Scheme 4.16. Hoffmann and Brückner one-pot synthesis of O-S acetals

Scheme 4.17. Attempted adaptation of Hoffmann and Bruckner protocol

In conclusion, due to our inability to access requisite substrates, we were unable to investigate the Wittig rearrangements of trimethylsilylallyl alkyl ethers possessing non-activated migrating alkyl groups and which are set up to undergo [1,4]-Wittig rearrangement.

### 4.3. Impact of substitutions on Wittig rearrangements of α-alkoxysilanes

#### 4.3.1. Introduction

With substrates in hand, we started to look at their rearrangement under our Wittig conditions. The purpose of this part of the research was to investigate the effect of sterics on the Wittig rearrangement of  $\alpha$ -alkoxysilanes. Toward this end we placed a substituent at (1) the migrating carbon, (2) the terminal olefinic carbon, and (3) both the migrating and the terminal olefinic carbons in some of these compounds. In the first two scenarios, if the reaction goes via both the [1,2] and the [1,4]-pathways, one stereocenter will be formed in each of the Wittig products. Installing substituents at both sites would in theory give a pair of diastereomeric products with two adjacent stereogenic centers. In both cases the issue of stereoselectivity has not been well addressed to date.

#### 4.3.2. Effect of groups on silicon on the Wittig rearrangement of $\alpha$ -alkoxysilanes

In Chapter 2 we presented our results on the Wittig rearrangement of our model substrate 7 featuring  $\alpha$ -trimethylsilyl group. Compound 7 underwent facile bond reorganization under our Wittig conditions. We desired to establish whether or not the groups on silicon have any effect on the Wittig rearrangement of  $\alpha$ -alkoxysilanes. Thus, compound 39 (possessing PhMe<sub>2</sub>Si group) was subjected to our conditions as already

described for 7. We were pleased to note that the substrate reacted very readily. At low temperatures (-78 °C) the rearrangement of 39 afforded only the [1,4]-Wittig product 68 in 69% yield (Table 4.2, entry 1). At elevated temperatures however the reaction proceeded via both [1,4] and [1,2]-pathways to give 68 and 69. As was observed for model substrate 7, the ratio of [1,4]/[1,2] products varied depending on the reaction temperature. In addition both 7 and 39 had comparable reaction rates (both reactions were done in about 30 minutes).

## 4.3.3. Effect of Electronics on the Wittig rearrangements of $\alpha$ -alkoxysilanes

## 4.3.3.1. Wittig rearrangement reaction of 41

Compound 41 is set up to undergo bond reorganization via the [1,2], [1,4], and [2,3] pathways as illustrated in Scheme 4.18. Theoretically, one would expect a mixture of some or all of the possible products.

Scheme 4.18. Wittig rearrangement of 41: expected [1,2], [1,4], and [2,3] products

Upon subjecting 41 to our standard Wittig conditions, it underwent facile bond reorganization. This resulted in an inseparable mixture of two products 70 and 71

(Scheme 4.19). We observed however that the outcome of this reaction was dependent upon the temperature at which the reaction was carried out. Treatment of a solution of 41 in THF with 1.5 equiv of *n*-BuLi (1.6 M solution in hexanes) at room temperature resulted in a very fast reaction that was complete in approximately 5 min to afford 70 and 71 (> 1:10 ratio). At low temperatures (-78 °C), this reaction took 2.5 h to go to completion and gave the reverse outcome, affording the [2,3] product as the major product (70/71 >10:1). Addition of base at -78 °C, and then allowing the reaction to warm to room temperature resulted in varying ratios of the products. Both 70 and 71 resulted from [2,3]-Wittig rearrangement of 41. No [1,2] and [1,4] products were observed in this reaction.

Scheme 4.19. Wittig rearrangement of 41 mediated by *n*-BuLi

We propose the mechanism in Scheme 4.20 to account for the products of this reaction. α-Deprotonation at low temperatures was followed by a facile [2,3] bond reorganization to give the [2,3] intermediate 72, which was accompanied by silyl migration to give 73 (possibly via [1,2]-migration of the silyl moiety from carbon to oxygen). At low temperatures, the isomerization of 70 (the kinetic product) to 71 (the thermodynamic product) was slow, and quenching the reaction at this temperature afforded 70 as the major product. However, at elevated temperatures, bond isomerization

was facile, an event driven by conjugation with the aromatic ring (Scheme 4.20), resulting in 71 as the major product. These reactions were clean and the crude yield was quantitative, however, upon purification by silica gel, the yield dropped significantly ( $\sim$ 51%), indicating sensitivity of the products to silica.

Scheme 4.20. Wittig rearrangement of 41: A Putative Mechanism.

## 4.4. Wittig rearrangements of $\alpha$ -alkoxysilanes: Effect of substitution at the migrating carbon

Our study of steric effects on the Wittig rearrangements of  $\alpha$ -alkoxysilanes started with diastereomeric  $\alpha$ -(trimethylsilyl)allyl sec-phenethyl ethers 44a and 44b. These compounds were synthesized as a 1:1.13 (anti/syn) mixture of diastereomers in 79% yield from  $\alpha$ -hydroxysilane 32 and the trichloroacetimidate of sec-phenethyl alcohol following our standard method. The pair of diastereomers were not separable by column chromatography, thus the product mixture was employed in the study. Though inconvenient, some of the proton signals were well resolved [ $\delta$  (Me<sub>3</sub>SiCH- 3.38-3.42, (td,

J = 6.8, 1.4 Hz, 1H); 3.77-3.81 (td, J = 5.5, 1.4 Hz, 1H) and  $CH_2$ CHCHSiMe<sub>3</sub> 4.90-5.00 (tq, J = 10.4, 7.9, 1.4 Hz, 2H); 5.02-5.09 (m, J = 3.5, 1.4 Hz, 2H)], thus, it was possible to monitor the rearrangement.

Scheme 4.21. Substitution at the migrating carbon: Wittig rearrangement of 44a/44b

When a cold (-78 °C) THF solution of 44a/44b was treated with 1.5 equiv of sec-BuLi, the clear solution turned deep purple, and after eight hours we were surprised to find that one diastereomer was completely consumed, as evidenced by the disappearance of one set of <sup>1</sup>H NMR signals ( $\delta$  3.77-3.81 (td, J = 5.5, 1.4 Hz, 1H) and 4.90-5.0 (tq, J = 10.4, 7.9, 1.4 Hz, 2H)). Separation of the unreacted diastereomer from the Wittig products was trivial, and afforded the [1,2] and [1,4] products (74 and 75) in a ratio of 1:1.5, in a combined 35% yield, with 42% recovery of the unreacted 'less reactive' anti 44a (Scheme 4.21) (details of determination of the relative stereochemistry of the reactive and less reactive diastereomers will be presented in Chapter 5). We observed that allowing the reaction to stir overnight resulted in increased yield (46%) as well as an increase in the [1,2]/[1,4] ratio from 1:1.5 to 1:1.7, with a corresponding decrease in the recovery of the unreacted diastereomer (26%). We were very surprised to observe the near complete erosion of the [1,4]-selectivity (> 100:1 in the 7). Also, the introduction of

a substituent at the migrating carbon resulted in reduced reactivity, as evidenced by a longer reaction time (approximately 8 h; 7 reacted completely within 30 min.).

The observed variations in product yield and percent recovery of unreacted 44a noted in the preceding paragraph could be due to one of two reasons: either that the other diastereomer reacted but very slowly (less reactive) or that it was undergoing some unproductive processes. To find out which, we carried out a qualitative NMR-tube experiment in which the pure unreactive 44a diastereomer was subjected to our Wittig conditions and the reaction was monitored by <sup>1</sup>H NMR. Here we observed a slow decrease in the signal at ( $\delta$  3.38-3.42), but the reaction reached a point where no further decrease in starting material could be detected. Thus, diastereomer 44a does undergo the Wittig rearrangement reaction under our conditions, albeit very sluggishly. This process offers a good route to kinetic separation of the pair of diastereomers (Scheme 4.21, after 8 h reaction time, 35% yield of product mixture and 42% of less reactive isomer recovered, compare with 46% yield of product mixture and 26% recovery of less reactive isomer after about 20 h).

Just as with our model substrate 7 (no substituent at the migrating carbon), we desired to establish the effect of silyl substituent on the Wittig rearrangement of a substrate bearing a substituent on the migrating carbon. Thus compound 45a and 45b were subjected to the Wittig conditions. The reactive diastereomer 45b readily underwent Wittig rearrangement to afford 76 and 77 (Table 4.2, entry 5). Thus establishing one more time that substitution on silicon was no issue on these reactions.

### 4.4.1. Wittig rearrangements of 46 and 47: Electronic factor

The presence of a substituent capable of stabilizing a negative charge (e.g., p-NO<sub>2</sub>) will lead to increased kinetic acidity of the benzylic proton, and its abstraction could become competitive with the tertiary  $\alpha$ -proton. This situation might be unfavorable for the cleavage of the C-O bond. On the other hand, the presence of an electron-donating substituent (e.g., p-OMe) would attenuate the kinetic acidity of the benzylic proton, and hence forestall dianion formation. To investigate this hypothesis, substrates **46** (bearing an electron withdrawing p-NO<sub>2</sub> group) and **47** (bearing an electron donating p-OMe group) were designed (Figure 4.2). **47** was synthesized in 92% yield as a 3.25:1 (GC-FID) mixture of diastereomers. The minor product (reactive **47**) readily underwent the Wittig rearrangement to afford both [1,4] and [1,2] products **78** and **79** in 22% in approximately 1.8:1 ratio based on total starting mixture (93% based on amount of starting reactive isomer). On the other hand, the rearrangement of **46** was very sluggish at low temperatures (-78 °C) and gave a complex mixture of compounds.

Figure 4.2. Substrates designed to study electronic effects on the Wittig rearrangement of  $\alpha$ -alkoxysilanes

The facile rearrangement of 47 (p-MeO-C<sub>6</sub>H<sub>4</sub>-) and the sluggish rearrangement of 47 could be indicative of a developing negative charge at the migrating center, which would be highly stabilized in the case of 46. To a first approximation, the feasibility of cleavage of the C—O bond would be expected to be less for a highly stabilized migrating group.

#### 4.4.2. Wittig rearrangement of 42

Maleczka and Geng<sup>20</sup> reported that **42** readily underwent the Wittig rearrangement mediated by MeLi to afford the 2,3-rearrangement products selectively (Scheme 4.22). We decided to revisit the Wittig rearrangements of this substrate under our reaction conditions.

Scheme 4.22. MeLi-mediated Wittig rearrangement of 42 by Maleczka and Geng<sup>1</sup>

Compound 42 is an analog of 44, with a vinyl group in place of a methyl group at the migrating carbon. Compound 42 did not undergo the Wittig rearrangement at low temperatures. Above -20 °C, the reaction required 4 equiv of n-BuLi and twelve hours for the complete consumption of the starting material. The reaction however afforded an intractable mixture of products. 42 has two acidic protons, thus, there arises the question of regioselective deprotonation. In the event that both protons ( $\alpha$  and  $\alpha'$ ) were abstracted under the reaction condition, then one would expect each carbanion to react as an independent entity, resulting in a mixture of products (Scheme 4.23). However, in the event that  $\alpha$ -deprotonation was favored over  $\alpha'$ -deprotonation, it would result in a migrating carbon that is benzylic as well as allylic. Such a structure would be expected to lead to increased kinetic acidity of the benzylic/allylic proton and stability for a developing negative charge, a situation that would be expected to lead to a decrease in the migratory ability of the C-O bond. If this was indeed the case, then moving the double

bond further away from the migrating center would be expected to give a different outcome.

Scheme 4.23. Plausible pathways for the Wittig rearrangement of 42

This was the case with substrate 48 (R = Et; synthesized in 64% yield as a 1:1.2 mixture of separable diastereomers) (Figure 4.5), which underwent facile Wittig rearrangement at low temperatures (-78 °C) to afford a mixture of both [1,4] and [1,2] rearranged products (82 and 83) in 47-63% yield and in the ratio of 1.5:1 to 1.8:1(Table 4.2, entry 7). Similarly, 49 (R = Et, R'<sub>3</sub>Si = PhMe<sub>2</sub>Si) (Figure 4.5) underwent the Wittig rearrangement to give 84 and 85 (Table 4.2, entry 7), illustrating that substitution on silicon is no issue in the Wittig rearrangement of our substrates. Under forcing (3.0 eq of sec-BuLi, THF, -78 °C to rt, 4 d), less reactive 48 underwent rearrangement to afford 14% of the rearranged products, with 43% recovery of the starting material.

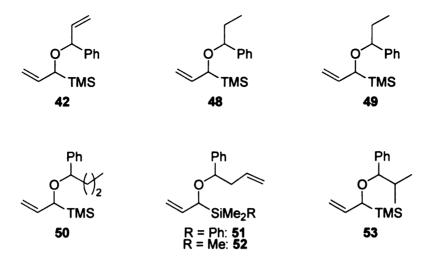



Figure 4.5. Wittig substrates bearing various substituents at the migrating carbon

To further investigate the effect of the proximity of olefin functionality to the migrating center, we studied the behaviors of substrates 50 and 52 (Figure 4.5) under our Wittig conditions. Both compounds underwent the Wittig rearrangement when treated with of *n*-BuLi in THF, to give the rearranged products, along with recovery of the unreactive diastereomers in each case. The Wittig rearrangement of 50 was facile, requiring only 1.5 equiv of base, and at -78 °C, goes to completion within 24 h to afford 86 and 87 (Table 4.2, entry 8). On the other hand, 52 required 4 equiv of base, elevated temperature conditions (-30 °C) and long reaction times (>24 h) to give 88 and 89 (Table 4.2, entry 9; 32% based on total 2.64:1 (unreactive *anti*/reactive *syn*) mixture of starting material). However, at room temperature, 52 underwent complete rearrangement in less than ten hours to afford the [1,2] and [1,4] products. The lower reactivity of 52 could be the result of the migrating carbon being benzylic and homoallylic, situations that would stabilize developing negative charge as well or a radical species.

Replacing the *n*-propyl group in substrate **50** with an isopropyl group in **53** (Figure 4.5) had a marked effect on reactivity. Compound **53** did not rearrangement at

low temperatures. However, at elevated temperatures (above -20 °C), the compound underwent the Wittig rearrangement to afford the [1,2] and [1,4] products 90 and 91 in 23% yield and 1.8:1 ratio (Table 4.2, entry 10).

Scheme 4.24. Wittig rearrangement of metalated allyl alkyl ether by Schlosser and Strunk<sup>21</sup>

 $OR' = OC_4H_9$ ,  $OCH_2CH_2CH(CH_3)$  (23:77);  $OC_9H_{19}$ ,  $OCH_2cPr$  (75:25);  $OCH(C_2H_5)_2$  (50:50);  $OC(CH_3)_3$  (70:30); yields = 73-85

So far we had shown that substitution at the migrating carbon of the α-alkoxysilanes resulted in erosion of the [1,4]/[1,2] selectivity. The loss of selectivity in the Wittig rearrangement of allyl ethers on placement of substitution at the migrating carbon is precedented. Schlosser and Strunk<sup>21</sup> reported the loss of regioisomeric purity in the Wittig rearrangement of metalated allyl alkyl ethers upon substitution at the migrating carbon. They observed that in the presence of potassium *tert*-butoxide, their substrates afforded [1,4] and [1,2] products in an approximate ratio of 9:1 (90% regioisomeric purity) (Scheme 4.24), but only when a resonance inactive primary alkyl group (such as butyl, 3-methylbutyl or nonyl) was allowed to migrate. They reported that the migration of secondary or tertiary alkyl groups (1-ethylpropyl, *tert*-butyl) or even the cyclopropylmethyl moiety led to 2:3 or 1:1 mixtures of 1-alken-3-olates and enolates. Thus our results were consistent with those of Schlesser and Strunk.<sup>21</sup>

# 4.5. Wittig rearrangement reaction of $\alpha$ -alkoxysilanes: Effect of substitution at the terminal sp<sup>2</sup> carbon of the allyl moiety

Next, we studied the effect of a substituent at the terminal  $sp^2$  carbon of the allyl moiety. Here we studied  $\alpha$ -alkoxysilane 55, which was prepared following our general protocol from  $\alpha$ -hydroxysilane 34 and the trichloroacetimidate of benzyl alcohol in 36% yield.

Scheme 4.25. Substitution at the terminal sp<sup>2</sup> carbon: Wittig rearrangement reaction of **55** 

When subjected to our Wittig conditions (1.5 equiv s-BuLi, THF, -78 °C, 40 min), 55 afforded a 4:1 ratio of two new compounds 92 and 93, resulting from [1,4]- and [1,2]-Wittig respectively, with a combined yield of 74% (Scheme 4.25). The observed (4:1) ratio shows an erosion of the [1,4]/[1,2] selectivity. We also observed that reaction time is significantly less than for 44a (40 min vs. 8 h). This decreased rate of reaction with substitution at the migrating carbon could be attributed to sterics (secondary vs. tertiary carbon). With 55 (featuring a substitution at the terminal sp<sup>2</sup> carbon of the allyl moiety), we did not observe the silyl migration that usually accompanies the [1,2]-Wittig of  $\alpha$ -alkoxysilanes bearing no such substituent (Scheme 4.25, compound 94).

From these data, we can conclude that substitution at the migrating center as well as the terminal  $sp^2$  carbon of the allyl moiety significantly impacts the [1,4]-Wittig rearrangement of  $\alpha$ -alkoxysilanes but to different degrees. Our results seem to be in disagreement with the literature report that [1,4]-alkyl shift is insensitive to the substitution pattern in the allylic moiety of the ethers.<sup>22</sup>

# 4.6. Wittig rearrangement of $\alpha$ -alkoxysilanes: Substitution at both the migrating carbon and the terminal sp<sup>2</sup> carbon of the allyl moiety.

An appropriate question at this point became, "What would be the effect of substitution at both the migrating center and the terminal sp<sup>2</sup> carbon of the allyl moiety?" To answer this question, α-alkoxysilanes E-56a and E-56b were prepared from α-hydroxysilane 34 and the trichloroacetimidate of sec-phenethyl alcohol following our general protocol. Here though TMSOTf catalysis did not work well for this system, giving less than 10% yield of the desired compound, BF<sub>3</sub>•OEt<sub>2</sub> proved to be a better Lewis acid in this case and employing 0.15 equiv of this catalyst afforded the desired compound as a 1:1.7 (anti E-56a/syn E-56b) pair of diastereomers in a combined 49% yield. We studied the rearrangement of E-56a and E-56b (Scheme 4.26) under various reaction conditions of temperature and base equivalents.

In theory, six compounds (three pairs of diastereomers) are expected from this reaction, a pair of diastereomeric [1,4]-products, a pair of [1,2]-products, and a pair of [1,2]-silyl migration products. On carrying out this reaction, it was found that this substrate reacted sluggishly, requiring up to 4.0 equiv of n-BuLi base, elevated

temperature (-30 °C), and up to 48 h reaction time. As before only one diastereomer underwent the Wittig rearrangement and 39% of the less reactive isomer was recovered. All six expected compounds were formed making the product isolation very tedious. The mixture of products 95, 96 and 97 were obtained in a combined 35-57% yield (Scheme 4.26). We were nevertheless able to obtain analytically pure samples of the products by silica gel chromatography, followed by preparatory HPLC. It was not possible to obtain the ratios of products from either <sup>1</sup>HNMR or HPLC, as the spectrum and chromatogram were too complex to allow for accurate measurements.

Scheme 4.26. Substitution at both the migrating center and the terminal sp<sup>2</sup> carbon

Combined yield of products **95**, **96** and **97** ranges from 35 to 57% depending on the temperature and reaction time

The isolation of [1,2]-Wittig/silyl migration products **96** from the reaction of E-**56** contrasted our earlier observation with **55**, where no migration product was observed (Scheme 4.25). We sought an explanation to these conflicting results and considered the stability of the retro-Brook intermediate. Ab initio calculations (Geometry Optimization

using RHF/6-31G\* model)<sup>23</sup> employing two models, molecular mechanics and density functional, reveal that the Brook rearrangement of both 55 and E-56 have the same energy requirement. However, the retro-Brook intermediate 100 from  $\alpha$ -alkoxysilane 55 was lower in energy (6 kcal/mol) than the retro-Brook intermediate 103 from  $\alpha$ -alkoxysilane E-56 (Scheme 4.27). This could explain in part the absence of silyl migration event accompanying the [1,2]-Wittig of 55 (Scheme 4.25). One could also argue steric difference in the pre-Brook intermediates from  $\alpha$ -alkoxysilanes 55 and E-56 (Scheme 4.28, structures 98 and 101) was responsible for this distinction. Sterics at the two adjacent stereogenic centers might provide enough driving force for the silyl migration in the 'presumed' intermediate for E-56.

Scheme 4.27. Energy calculations for pre-Brook, Brook and retro-Brook for **55** and *E*-**56** 

Scheme 4.28. Sterics in the 'intermediate' structures for 55 and E-56

Compound 58 required 4.0 eq. of *n*-BuLi, room temperature and a 7 h reaction time to undergo the Wittig rearrangement. Like the substrates bearing a substituent at the migrating carbon, only one diastereomer reacted to afford a complex mixture of products, which except for the unreacted starting material proved very difficult to separate. Thus, following the Wittig rearrangement reaction, aqueous workup, and column chromatography on silica gel, the products were collected as a mixture. Since our main interest was in the [1,4]-products, we decided to subject the mixture of products to oxidation condition (3 N NaOH, 30% H<sub>2</sub>O<sub>2</sub>, THF, 35 to 40 °C, 2 h) (Scheme 4.29).

Scheme 4.29. Wittig rearrangement of compound 58/oxidation of [1,4] product

We observed that the yield of the carboxylic acid products 104 was low (32%). It is pertinent to mention here that the low yield of 104 was due to loss of material during work up and isolation, and is not inherent to the reaction. We also observed that the mixture of compounds isolated from the organic phase was intractable and upon column chromatography, the alcohol 34 was isolated. From our results, it was obvious that the olefin functionality in all the products was being oxidized. The summary of the Wittig rearrangements of all the substrates is given in Table 4.2.

Table 4.2. Wittig rearrangements of all substrates<sup>a</sup>

| Entry | Wittig substrate                                                                                            | Wittig products                                                                                                                               |
|-------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | O Ph SiMe <sub>2</sub> Ph 39                                                                                | Ph SiMe <sub>2</sub> Ph Ph Ph Product not observed                                                                                            |
| 2     | SiMe <sub>3</sub> TMS                                                                                       | at low temperatures  Reaction very sluggigh and was not investigated further. However, the substrate was employed in mechanistic experiments. |
| 3     | O Ph TMS                                                                                                    | TMS 0 TMS 0 Ph 51% <sup>b</sup> Ph                                                                                                            |
| 4     | Ph<br>SiMe <sub>2</sub> R                                                                                   | 70 (10:1 at -78 °C) 71 (1:10 at 20 °C)  Reaction gave a complex mixture of products                                                           |
| 5     | O Ph SiMe <sub>2</sub> R 44: R=Me 45: R=Ph                                                                  | O RMe <sub>2</sub> Si O Ph SiMe <sub>2</sub> R Ph 74 R=Me: 35 - 42% (1:1.5 to 1>7) 75 76 R=Ph: 58.24% 77                                      |
|       | O Ar  TMS  46: Ar=p-NO <sub>2</sub> C <sub>6</sub> H <sub>4</sub> 47: Ar=p-MeOC <sub>6</sub> H <sub>4</sub> | Ar TMS 78 TMS 79  46: reaction sluggish; no products isolated. 47: 22% based on 3.25:1 mixture of diastereomers, 92% based on the reactive 47 |
| 7     | Ph<br>O<br>SiMe <sub>2</sub> R                                                                              | Ph SiMe <sub>2</sub> R RMe <sub>2</sub> Si O Ph                                                                                               |
|       | <b>48</b> : R=Me<br><b>49</b> : R=Ph                                                                        | <b>82</b> R=Me: 35 - 42% (1:1.5 to 1>7) <b>83 84</b> R=Ph: 58.24% <b>85</b>                                                                   |

| Entry | Wittig substrate     | Wittig products                                                                                                                                                                                                   |
|-------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8     | Ph<br>O<br>TMS<br>50 | Ph TMS Ph Ph 86 35 to 41% (~1.7:197                                                                                                                                                                               |
| 9     | Ph<br>O<br>TMS<br>52 | Ph TMS  32% based on total  32% based on total  2.64:1 (less reavtive/reactive) mixture of starting materal                                                                                                       |
| 10    | Ph<br>TMS<br>53      | Ph TMS Ph Ph 90 23% (1.8:1) 91                                                                                                                                                                                    |
| 11    | O Ph TMS 55          | Ph SiMe <sub>3</sub> TMS OH Ph 74% yield (4:1) 93                                                                                                                                                                 |
| 12    | O Ph TMS E-56        | TMS OH Ph 95 96 35-57% (syn/anti 1:3)                                                                                                                                                                             |
| 13    | Ph<br>TMS            | The products of this reaction were not isolated. The crude reaction mixture was oxidized (3N NaOH/30% H <sub>2</sub> O <sub>2</sub> ) and the carboxylic acids resulting from the [1,4]-Wittig products isolated. |

(a) All reactions were carried out in THF employing s-BuLi or n-BuLi (1.5 to 4.0 equiv depending on the substrate). Reaction temperature also depended on the substrate (see experimental). (b) Reaction was clean and crude yield was quantitative. However, when the compound was put on silica gel, yield decreased to 51%.

## 4.7. Conclusions

Substitution at the terminal sp<sup>2</sup> carbon of the allyl moiety (55) does not seem to have a significant effect on the rate of the reaction; rearrangement is complete in 40 min. Nevertheless, selectivity is drastically eroded, with a mixture of both [1,4]- and [1,2]-Wittig products obtained in approximately 4:1 ratio (74% yield). We observed that with this substrate, the subsequent silyl migration that usually accompanies the [1,2]-rearrangement of our model substrate 7 does not occur, and a tertiary alcohol [1,2]-rearrangement product is obtained (Schemes 4.25).

Introducing sterics at the migrating carbon (44) seems to have a far more reaching effect. We observed a longer reaction time (5-8 h), and erosion of [1,4]/[1,2] selectivity in favor of [1,2]- rearrangement ([1,4]/[1,2] = 1.7:1). With substitution at both the migrating and terminal sp<sup>2</sup> carbons (*E*-56), Wittig rearrangement becomes sluggish, and requires more forcing conditions (4.0 equiv of base, -30 °C, 24 h or more), and only one diastereomer rearranges to afford a mixture of six compounds (three pairs of diastereomers). As is observed with substitution at the migrating carbon, there is serious erosion of [1,4]/[1,2] regioselectivity (approx. 3:1), accompanied by a significant drop in yield. All the possible products were observed and isolated, amongst them the product resulting from [1,2]-rearrangement/silyl migration events.

The size and nature of substituent at the migrating carbon are factors to reckon with. The larger the group, the more difficult the reaction. Groups capable of stabilizing a developing negative charge at the migrating carbon are not favorable since they tend to retard the reaction. Radical stabilizing groups at the migrating carbon center, and or at the terminal sp<sup>2</sup> carbon of the allyl moiety promote [1,2]-Wittig.

Having established the existence of differential reactivities between a pair of diastereomeric  $\alpha$ -alkoxysilane (relative stereochemistry (anti) and (syn))under our Wittig conditions, we wanted to determine which of the two diastereomers was undergoing the Wittig rearrangement. The issue of stereochemistry of the Wittig substrates will be dealt with in Chapter 5 of this dissertation.

## **EXPERIMENTAL**

Preparation of α-(trimethylsilyl)allyl alcohols: [Danheiser, R. L.; Fink, D. M.; Okano, K.; Tsai, Y-M.; Szczepanski, S. W. J. Org. Chem. 1985, 50, 5393-5396.]

Preparation of 32: Representative Procedure A. To a cold (-78 °C), stirred solution of allyl alcohol (1.0 eq, 8.2 g, 141.18 mmol) in THF (350 mL) was added dropwise via cannula n-BuLi (1.6 M in hexanes, 1.08 eq, 95.3 mL, 152.48 mmol). Upon complete addition of base the reaction mixture was stirred for 1 h. Then, TMSCl (freshly distilled over CaH, 1.0 eq, 15.34 g, 141.34 mmol, 17.92 mL) was added dropwise via syringe. Following this addition, reaction was stirred further for 1.5 h, and then t-BuLi (1.7 M in hexanes, 1.2 equiv, 99.66 mL, 169.42 mmol) was added dropwise via cannula. After stirring for an additional 1.5 h, reaction was quenched by addition of sat. aq. NH<sub>4</sub>Cl, and diluted with ether. Phases were separated, and the aqueous phase extracted with ether (150 mL x 3). Combined organic phases were washed with H<sub>2</sub>O, and brine, and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Distillation at atmospheric pressure afforded 17.05 g (93%) of alcohol 32. Compound data match literature report.<sup>5</sup> IR (neat) 3430, 2959, 1634, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 6.06-5.95 (m, 1H), 5.08-5.01 (apparent dt, J = 17.0, 2.2, 1.6 Hz, 1H), 4.99-4.94 (apparent dt, J = 11.0, 2.2, 1.6 Hz, 1H), 3.97-4.01 (dt, J = 5.5, 2.2, 1.6 Hz, 1H), 0.029 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  139.7, 109.2, 68.9, -4.2. 32 is a known compound and has spectral data in accord with the reported ones.5,10,24

**Preparation of 33**: Applying the Representative Procedure **A** for **32** to allyl alcohol (10.0 g, 11.7 mL, 138.7 mmol), *n*-BuLi (1.6 M in hexanes, 146.3 mmol, 91.44 mL), chlorodimethylphenylsilane PhMe<sub>2</sub>SiCl (15.85 g, 145.8 mmol, 18.51 mL) and *t*-BuLi (1.7 M in pentane, 166.4 mmol, 97.89 mL) afforded 10.50 g (53%) of **33**. IR (neat) 2959, 1642, 1493, 1452,1248, 1078, 1053 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.58-7.55 (m, 2H), 7.39-7.34 (m, 3H), 6.04-5.93 (m, 1H), 5.09-5.27 (d, J = 17.8, 1H), 5.01-4.97 (d, J = 10.7 Hz, 1H), 4.23-4.20 (dt, J = 5.2 H, 1H), 0.35 (s, 3H), 0.33 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 139.2, 135.9, 134.1, 129.4, 127.7, 110.0, 68.4, -5.6, -5.9. **32** is a known compound and has spectral data in accord with the reported ones. <sup>25,26</sup>

**Preparation of 34**: Applying the Representative Procedure A to *trans*-crotyl alcohol (10.0 g, 138.7 mmol), *n*-BuLi (1.6 M in hexanes, 146.3 mmol, 91.44 mL), TMSCl (15.85 g, 145.8 mmol, 18.51 mL) and *t*-BuLi (1.7 M in pentane, 166.4 mmol, 97.89 mL) afforded 10.50 g (53%) of **34**. IR (neat) 3395, 2959, 2856, 1452, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.61-5.43 (m, 2H), 3.87 (m, 1H), 1.70-1.68 (dt, J = 6.3, 1.5 Hz, 3H), 0.01 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  132.3, 122.3, 68.5, 17.9, -4.2. **32** is a known compound and has spectral data in accord with the reported ones.<sup>27</sup>

Preparation of trichloroacetimidates: General Procedure B. [Wessel, H-P.; Iversen, T.; Bundle, D. R. J. Chem. Soc. Perkin Trans.I 1985, 2247-2250.] NaH (60% dispersion in oil, 0.105 eq) was suspended in anhydrous ether, and a solution of the appropriate alcohol (1.0 eq) in ether added dropwise with stirring. The reaction mixture was stirred for 20 to 30 min, and then cooled to 0 °C with a salt-ice bath. Trichloroacetonitrile (1.0 equiv) was added dropwise during 15 min and reaction mixture allowed to warm to 20 °C over 60 min, then concentrated to a syrup using rotary evaporator. A solution of anhydrous methanol (0.105 eq) in pentane (1.05 M) was then added to the syrup and the mixture shaken vigorously, filtered and the filtrate concentrated to afford the crude product which was used without further purification. Yields are generally in the range 73-100%. The trichloroacetimidates were usually stored as a solution in hexane in the freezer.

Preparation of  $\alpha$ -alkoxysilanes: General procedure C. Trichloroacetimidate of the appropriate alcohol (prepared according to literature procedure)<sup>11</sup> (2.0 eq) was added to a stirred solution of the requisite  $\alpha$ -(trimethylsilyl)allyl alcohol (1.0 equiv) in cyclohexane (0.2 M) at room temperature. A TMSOTf (0.055 equiv) solution in cyclohexane (usually 0.1 mL/1.0 mL cyclohexane) was then added. White precipitate formed upon addition of the Lewis acid. The reaction mixture was stirred at room temperature overnight and filtered. The precipitate was then washed with pentane or hexane (precipitate is soluble in ether) and the filtrate diluted with ether. The diluted filtrate was subsequently washed with NaHCO<sub>3</sub> (sat. aq.) (x 2), 1N HCl (x 2), and lastly with brine (x 2). The organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, and concentrated to furnish the crude product. Purification by column chromatography on

silica gel (0-2% EtOAc in hexane gradient) afforded the pure product. Note: for the synthesis of the model substrate 7 and 39, the products were always accompanied by an ester byproduct, which was removed by base hydrolysis (usually stirring with 2 M NaOH at room temperature for about 2 h).

Preparation of 7: Applying general procedure C to 1.32 g (10.13 mmol) of α-hydroxysilane 32, 4.85 g (19.20 mmol) of the trichloroacetimidate of benzyl alcohol (prepared following General procedure  $\mathbf{B}$ )<sup>11</sup> and 0.12 g (0.55 mmol, 0.10 mL) of TMSOTf afforded 1.23 g (5.59 mmol), 56% of pure 7 as a colorless oil: IR (neat) 2959, 1454, 1383, 1248 cm<sup>-1</sup>, <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.24-7.37 ( m, 5H), 5.77-5.89 (m, 1H), 5.04-5.00 (dt, J = 9.3, 1.6 Hz, 2H),4.97 (m, 1H), 4.68-4.73 (d, J = 12.4 Hz, 1H), 4.30-4.34 (d, J = 12.4 Hz, 1H), 3.60-3.64 (dt, J = 7.1, 1.4 Hz, 1H), 0.02 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>) δ 139.1, 137.2, 128.1, 127.5, 127.1, 112.5, 75.9, 71.8, -3.8. 7 is a known compound and have spectral data in accord with the reported ones. 7 is a known compound and has spectral data in accord with the reported ones.

Preparation of 39: Applying general procedure C to 0.24 g (2.33 mmol) of  $\alpha$ -hydroxysilane 33, 1.17 g (4.65 mmol) of the trichloroacetimidate of benzyl alcohol (prepared following General procedure B)<sup>11</sup> and 0.03 g (0.13 mmol, 0.02 mL) of TMSOTf overnight, afforded 0.23 g (35%) of the 39. IR (neat) 2959, 1628, 1496, 1454,

1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.55-7.21 (m, 10H), 5.84-5.72 (m, 1H), 5.10-5.06 (apparent dt, J = 8.2, 7.7, 1.6 Hz, 1H), 5.04 (d, J = 1.4 Hz, 1H), 4.70-4.66 (d, 1H, J = 12.1 Hz, 1H), 4.32-4.27 (d, J = 12.1 Hz, 1H), 3.84-3.81 (apparent dt, J = 7.1, 1.6, 1.1 Hz, 1H), 0.31 (s, 3H), 0.28 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  138.9, 136.7, 136.6, 134.2, 129.1, 128.0, 127.5, 127.5, 127.1, 113.1, 75.4, 71.9, -5.3, -5.6. HRMS (EI) m/z 282.1433 [(M-H)<sup>+</sup>; calcd for C<sub>18</sub>H<sub>22</sub>OSi, 282.1440].

Preparation of 40: Applying general procedure C to 0.78 g (6.03 mmol) of α-hydroxysilane 32, 2.0 g (7.24 mmol) of the trichloroacetimidate of trimethylsilylallyl alcohol (prepared following General procedure  $\mathbf{B}$ )<sup>11</sup> and 0.05 g (0.36 mmol, 0.05 mL) of BF<sub>3</sub>•OEt<sub>2</sub> afforded 0.77 g (52%) of pure 40 as a colorless oil. IR (neat) 2957, 1624, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 6.07-5.98 (dt, J = 18.7, 4.9 Hz, 1H), 5.87-5.70 (m, 2H), 5.05-4.96 (m, 2H), 4.18-4.11 (ddd, J = 13.7, 4.1, 1.6 Hz, 1H), 3.82-3.75 (apparent dd, J = 11.4, 7.1, 5.2 Hz, 1H), 3.59-3.56 (dt, J = 6.9, 1.4 Hz, 1H), 0.04 (s, 9H), 0.01 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 143.4, 137.5, 130.9, 112.1, 76.3, 73.3, 1.31, -3.9. HRMS (EI) m/z 242.1515 [(M):calcd for C<sub>12</sub>H<sub>26</sub>OSi<sub>2</sub>, 242.1522].

Preparation of 41 and 42: Applying general procedure C to 2.53 g (19.42 mmol) of α-hydroxysilane 32, 10.82 g (38.84 mmol) of the trichloroacetimidate of cinnamyl alcohol (prepared following General procedure B)<sup>11</sup> and 0.24 g (0.19 mL, 1.07 mmol) of

TMSOTf overnight gave a near 1:1 mixture of **41** and **42** which was readily separable by column chromatography on silica gel to afford 1.14 g (24%) of **41** and 1.07 g (22%) of a 1:1 diastereomeric pair of **42** as clear oils.

41: IR (neat) 2957, 1628, 1495, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.41-7.21 (m, 5H), 6.61-6.55 (d, J = 15.9 Hz, 1H), 6.31-6.22 (m, 1H), 5.89-5.77 (m, 1H), 5.13-5.05 (t, J = 14.3, 9.3 Hz, 2H), 4.36-4.30 (dd, J = 13.2, 4.9 Hz, 1H), 4.02-3.96 (dd, J = 12.6, 6.6, 6.0 Hz, 1H), 3.72-3.69 (d, J = 6.6 Hz, 1H), 0.07 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  137.4, 137.0, 131.6, 128.5, 127.4, 127.2, 126.4, 112.3, 76.0, 70.8, -4.0. HRMS (APCI) m/z 247.1516 [(M+H)<sup>+</sup>; calcd for C<sub>15</sub>H<sub>23</sub>OSi, 247.1518].

**42**: IR (neat) 2959, 1628, 1495, 1452, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.40-7.20 (m, 5H), 5.84-5.66 (m, 2H), 5.30-5.22 (m, 2H), 5.07-4.98 (m, 2H), 4.85-4.82 (d, J = 8.2 Hz, 1H), 3.93-3.90 (dt, J = 7.1, 6.6, 1.6 Hz, 1H), 0.07 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  142.4, 139.1, 137.3, 128.1, 127.0, 126.3, 117.3, 112.4, 80.81, 72.9, -3.9. HRMS (APCI) m/z 247.1522 [(M+H)<sup>+</sup>; calcd for C<sub>15</sub>H<sub>23</sub>OSi, 247.1518].

Preparation of 44: Applying general procedure C to 4.01 g (30.82 mmol) of α-hydroxysilane 32, 15.61 g (58.57 mmol) of the trichloroacetimidate of *sec*-phenethyl alcohol (prepared following General procedure B)<sup>11</sup> and stirring the reaction overnight afforded and 0.38 g (1.70 mmol) of TMSOTf, afforded 5.7 g (79%) of pure 1:1 diastereomeric pair of 44 as clear oils. IR (neat) 2972, 2928, 2899, 1628, 1493, 1452, 1248 cm<sup>-1</sup>.

Mixture of *syn/anti* **44a/44b**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) §7.36-7.10 (m, 10H), 5.83-5.68 (m, 2H), 5.06-4.87 (m, 4H), 4.56-4.46 (m, 2H), 3.82-3.80 (dt, J = 6.9, 1.4 Hz, 1H), 3.43-3.41 (dt, J = 6.9, 1.4 Hz, 1H), 1.40-1.32 (dd, 6H), 0.06 (s, 9H), 0.02 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  145.3, 144.2, 137.6, 128.4, 128.0, 127.9, 127.1, 126.7, 126.6, 125.8, 112.1, 111.7, 76.0, 75.6, 74.1, 73.2, 24.8, 22.3, -3.7, -3.8. HRMS (EI) m/z 234.1434 [(M); calcd for  $C_{14}H_{22}OSi$ , 234.1440].

Less reactive *anti-* **44a**: <sup>1</sup>HNMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35-7.21 (m, 5H), 5.82-5.70 (m, 1H), 5.05-4.95 (m, 2H), 4.56-4.49 (q, J = 6.6, 6.2 Hz, 1H), 3.43-3.40 (dt, J = 7.1, 1.3 Hz, 1H), 1.39-1.37 (d, J = 6.6 Hz, 3H), -0.001 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  144.4, 137.8, 128.2, 127.2, 126.8, 112.2, 75.7, 73.3, 24.6, -3.9. HRMS (EI) m/z 234.1428 [(M); calcd for C<sub>14</sub>H<sub>22</sub>OSi, 234.1440].

Preparation of 45: Applying general procedure C to 0.37 g (1.91 mmol) of α-hydroxysilane 33, 1.02 g (3.83 mmol) of the trichloroacetimidate of (*S*)-sec-phenethyl alcohol (prepared following General procedure B)<sup>11</sup> and 0.02 g (0.02 mL, 0.105 mmol) of TMSOTf overnight afforded 0.40 g (21%) of a 1.45:1 mixture of 45 as clear oils. IR (neat) 2972, 2928, 1628, 1452, 1248 cm<sup>-1</sup>; Mixture of syn/anti 45a/45b: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.61-7.06 (m, 20H), 5.77-5.63 (m, 2H), 5.05-5.45 (m, 4H), 4.55-4.48 (q, J = 6.6, 6.3 Hz, 1H), 4.45-4.38 (q, J = 6.3 Hz, 1H), 4.00-3.97 (dt, J = 6.6, 1.4 Hz, 1H), 3.62-3.59 (dt, J = 6.9, 1.4 Hz, 1H), 1.37-1.34 (d, J = 6.6 Hz, 3H), 1.28-1.26 (d, J = 6.3 Hz, 3H), 0.35 (s, 3H), 0.31 (s, 3H), 0.27 (s, 3H), 0.24 (s, 3H). <sup>13</sup>C NMR (125 MHz,

CDCl<sub>3</sub>)  $\delta$  145.2, 144.0, 137.2, 136.9, 134.3, 134.2, 129.1, 129.0, 128.1, 128.0, 127.6, 127.5, 127.1, 126.7, 125.9, 112.8, 112.3, 76.2, 75.6, 73.7, 73.7, 72.7, 24.6, 22.3, -5.4, -5.4, -5.6, -5.9.

Less reactive *anti*-**45a**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.49-7.06 (m, 10H), 5.77-5.65 (m, 1H), 5.03-4.93 (m, 2H), 4.55-4.48 (q, J = 6.6, 6.3 Hz, 1H), 3.62-3.58 (dt, J = 6.9, 1.4 Hz, 1H), 1.35 (d, J = 6.6 Hz, 3H), 0.27 (s, 3H), 0.23 (s, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  143.9, 137.2, 134.3, 128.9, 128.0, 127.5, 127.4, 127.0, 126.7, 112.8, 75.7, 72.8, 24.7, -5.3, -5.8.

Preparation of 46: The trichloroacetimidate of *p*-nitrophenethyl alcohol was prepared from 1.2 g (7.17 mmol) of *p*-nitrophenethyl alcohol, 0.03 g (0.72 mmol) NaH 0.98 g (6.81 mmol) of trichloroacetonitrile, 0.02 g (0.72 mmol) anhydrous methanol prepared following general procedure  $\mathbf{B}$ . Applying general procedure  $\mathbf{C}$  to 0.69 g (3.59 mmol) of α-hydroxysilane 33, the in situ generated trichloroacetimidate, and 0.08 g (0.36 mmol, 0.07 mL) of TMSOTf and stirring the reaction overnight afforded 46 as a 1:1 mixture of diastereomers which were obtained in a combined 0.43 g (36%) yield as colorless oils after purification by column chromatography on silica gel. IR (neat) 2975, 1628, 1607, 1523, 1427, 1348, 1248 cm<sup>-1</sup>. H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.19-8.16 (d, J = 8.8 Hz, 2H), 8.15-8.12 (d, J = 8.8 Hz, 2H), 8.01-7.98 (d, J = 8.8 Hz, 2H), 7.59-7.33 (m, 10H), 7.13-7.10 (d, J = 8.8 Hz, 2H), 5.80-5.60 (m, 2H), 5.08-4.87 (m, 4H), 4.63-4.57 (q, J = 6.6, 6.3 H, 1H), 4.53-4.47 (q, J = 6.6, 6.3 Hz, 1H), 4.0-3.98 (d, J = 6.8 H, 1H), 3.51-

3.49 (d, J = 6.8 Hz, 1H), 1.34 (d, J = 6.6 H, 3H), 1.27 (d, J = 6.3 Hz, 3H), 0.36 (s, 3H), 0.33 (s, 3H), 0.31 (s, 3H), 0.24 (s, 3H).  $^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  152.8, 151.8, 147.0, 146.8, 136.7, 136.6, 136.5, 136.4, 134.3, 134.2, 129.3, 127.64, 127.62, 127.2, 126.7, 126.5, 123.5, 123.4, 123.3, 113.4, 112.9, 75.4, 75.1, 74.4, 73.9, 24.5, 22.1, -5.4, -5.5, -5.8, -6.6. Calculated for HRMS (FAB+) m/z 341.1445 [(M)<sup>+</sup>; calcd for C<sub>19</sub>H<sub>23</sub>NO<sub>3</sub>Si, 341.1447].

**Preparation of 47**: The trichloroacetimidate of *p*-methoxyphenethyl alcohol was prepared from 2.00 g (13.14 mmol) of *p*-methoxyphenethyl alcohol, 0.06 g (1.38 mmol) NaH, 1.90 g (13.14 mmol) of trichloroacetonitrile, and 0.04 g (1.38 mmol) anhydrous methanol prepared following General procedure **B**.<sup>11</sup> Then applying general procedure **C** to 0.85 g (6.52 mmol) of α-hydroxysilane **32**, the in situ generated trichloroacetimidate, and 0.087 g (0.07 ml, 0.39 mmol) of TMSOTf, afforded **47** as a 3.25:1 mixture of *anti/syn* diastereomers which, after silica gel chromatography (0-2% EtOAc gradient in hexanes), was obtained in a combined 1.59 g (92%) yield as colorless oils. IR (neat) 2972, 1612, 1512, 1466, 1442, 1248 cm<sup>-1</sup>. Reactive*syn* **47**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.25-7.23 (d J = 8.8 Hz, 2H), 6.84-6.82 (d, J = 8.8 Hz, 2H), 5.78-5.69 (m, 1H), 4.96-4.94 (d, J = 11.7 Hz, 1H), 4.90-4.87 (d, J = 11.7 Hz, 1H), 4.45-4.41 (q, J = 6.8, 5.8 Hz, 1H), 3.78 (s, 3H), 3.76 (d, part of the doublet buried in the singlet at 3.78, 1H), 1.33-1.31 (d, J = 6.8 Hz, 3H), 0,03 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 158.4, 137.7, 137.5, 127.1, 113.3, 111.5, 75.6, 74.0, 55.2, 22.2, -3.9. Less reactive *anti* **47**: <sup>1</sup>H NMR (300

MHz, CDCl<sub>3</sub>)  $\delta$  7.18-7.16 (d, J = 7.8 Hz, 2H), 6.85-6.83 (d, J = 7.8 Hz, 2H), 5.78-5.69 (m, 1H), 5.02-4.97 (t, J = 13.7, 10.7 Hz, 2H), 4.49-4.43 (q, J = 6.8, 5.8 Hz, 1H), 3.79 (s, 3H), 3.39-3.38 (d, J = 6.8 Hz, 1H), 1.36-1.35 (d, J = 6.8 Hz, 3H), -0.06 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  158.7, 137.7, 136.3, 127.9, 113.4, 112.0, 75.0, 72.9, 55.2, 24.6, -4.0. HRMS (CI) m/z 265.1617 [(M+H)<sup>+</sup>; calcd for C<sub>15</sub>H<sub>25</sub>O<sub>2</sub>Si, 265.1624].

**Preparation of 48**: The trichloroacetimidate of α-phenylpropyl alcohol was prepared from 1.89 g (13.84 mmol) of α-phenylpropyl alcohol, 0.033 g (1.38 mmol) NaH, 1.90 g (13.15 mmol) of trichloroacetonitrile, and 0.044 g (1.90 mmol) anhydrous methanol prepared following general procedure  $\mathbf{B}$ . Then applying general procedure  $\mathbf{C}$  to 0.90 g (6.92 mmol) of α-hydroxysilane 32, the in situ generated trichloroacetimidate, and 0.015 g (0.01 mL, 0.069 mmol) of TMSOTf overnight afforded 0.612 g ( 36%) of a 1:1 mixture *anti/syn* 48 as a clear oil. IR 3069, 2961, 2934, 1626, 1491, 1452, 1427, 1253, 1118, 1049, 1026 cm<sup>1</sup>.

Less reactive *anti*-**48a**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.36-7.15 (m, 5H), 5.80-5.68 (m, 1H), 5.04-4.93 (m, 2H), 4.31-4.26 (dd, J = 7.7, 7.4, 1.1 Hz, 1H), 3.42-3.39 (dt, J = 7.4, 1.4, 1.1 Hz, 1H), 1.81-1.52 (m, 2H), 0.90-0.85 (t, J = 7.4 Hz, 3H), -0.03 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  143.1, 137.8, 127.9, 127.2, 127.0, 112.6, 80.9, 72.8, 31.6, 10.6, -3.8.

Reactive syn-48b: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.37-7.19 (m, 5H), 5.75-5.63 (m, 1H), 4.96-4.82 (m, 2H), 4.31-4.27 (t, J = 6.0, 5.8 Hz, 1H), 3.80-3.76 (dt, J = 7.1, 6.9,

1.6, 1.4 Hz, 1H), 1.85-1.64 (m, 2H), 0.84-0.79 (t, J = 7.1 Hz, 3H), 0.08 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  143.8, 137.9, 127.7, 126.6, 126.5, 111.53, 8.25, 75.4, 29.5, 9.5, -3.6. HRMS (APCI) m/z 249.1675 [(M+H)<sup>+</sup>; calcd for C<sub>15</sub>H<sub>24</sub>OSi, 249.1674].

**Preparation of 49**: The trichloroacetimidate of  $\alpha$ -phenylpropyl alcohol was prepared from 1.10 g (8.09 mmol) of α-phenylpropyl alcohol, 0.032 g (0.81 mmol) NaH, 1.11 g (7.68 mmol) of trichloroacetonitrile, and 0.03 g (0.81 mmol) anhydrous methanol prepared following general procedure B. 11 Applying general procedure C to 0.78 g (4.05 mmol) of  $\alpha$ -hydroxysilane 33, the in situ generated trichloroacetimidate, and 0.09 g (0.40 mmol) of TMSOTf and stirring overnight afforded 0.47 g (38%) of a 1:1.2 mixture of 49a and 49b as clear oils. IR (neat) 2963, 1628, 1427, 1248 cm<sup>-1</sup>. Reactive syn-49b: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ 7.60-7.16 (m, 10H), 5.68-5.56 (m, 1H), 4.92-4.78 (m, 2H), 4.16 (t, J = 6.0, 5.8 Hz, 1H), 3.95-3.92(dt, J = 6.9, 1.6, 1.4 Hz, 1H), 1.80-1.52 (m, 2H), 0.67 (t, J = 7.4 Hz, 3H) 0.36 (s, 3H), 0.31 (s, 3H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  143.5. 137.4, 136.9, 134.2, 132.9, 129.0, 127.67, 127.6, 127.5, 126.6, 126.5, 112.1, 82.39, 74.8, 29.5, 9.4, -5.1, -5.5. HRMS (CI) m/z 295.1517  $[(M-CH_3)^+]$ ; calcd for  $C_{20}H_{26}OSi$ , 295.1518].Less reactive anti-49a: <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz) δ7.50-7.12 (m, 10H), 5.74-5.62 (m, 1H), 5.01-4.90 (t, 2H), 4.28 (t, J = 6.9, 6.3 Hz, 1H), 3.6-3.57 (d, J = 7.4 Hz, 1H), 1.80-1.66 (m, 1H), 1.64-1.50 (m, 1H), 0.85 (t, J = 7.4 Hz, 3H), 0.26 (s, 3H), 0.23 (s, <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>) δ 142.6, 137.3, 136.8, 134.3, 128.9, 127.9, 127.3,

127.2, 127.0, 113.2, 80.8, 72.4, 31.6, 10.6, -5.1, -5.8. HRMS (CI) m/z 295.1521[(M-CH<sub>3</sub>)<sup>+</sup>; calcd for C<sub>19</sub>H<sub>23</sub>OSi, 295.1518].

Preparation of 50: Applying general procedure C to 0.88 g (6.73 mmol) of 32, 3.96 g (13.45 mmol) of the acetimidate of 1-phenylbutan-1-ol (prepared following general procedure B)<sup>11</sup> and TMSOTf (catalyst) (0.07 mL, 0.04 mmol) and stirring the reaction mixture overnight afforded 50 as a 1:1 mixture of diastereomers which were readily separable by silica gel chromatography (0-2% EtOAc gradient in hexanes), and obtained in a combined 1.32 g (75%) yield as colorless oils, accompanied by 0.33 g, 37% of 1-phenylbut-1-ene. IR (neat) 2959, 1628, 1454, 1248 cm<sup>-1</sup>.

Less reactive *anti*-**50a**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.32-7.20 (m, 5H), 5.79-5.67 (m, 1H), 5.03-4.91 (m, 2H), 4.38-4.34 (dd, J = 8.0, 7.7, 5.2 Hz, 1H), 3.40-3.37 (dt, J = 7.4, 1.4 Hz), 1.80-1.68 (m, 1H), 1.57-1.34 (m, 2H), 1.32-1.15 (m, 1H), 0.87 (t, J = 7.1 Hz, 3H), 0.04 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  143.3, 137.8, 127.9, 127.2, 127.0, 112.7, 79.3, 72.8, 41.0, 19.4, 14.2, -3.8. HRMS (EI) m/z 263.1844 [(M+H)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>26</sub>OSi, 263.1831]. Reactive *syn*-**50b**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.37-7.19 (m, 5H), 5.74-5.62 (m, 1H), 4.94-4.81 (ddt, J = 17.6, 13.7, 10.4, 2.2, 1.65 Hz, 2H), 4.34-4.30 (t, J = 6.0 Hz, 1H), 3.78-3,75 (dt, J = 7.1, 1.6 Hz, 1H), 1.83-1.71 (m, 1H), 1.68-1.56 (m, 1H), 1.37-1.18 (m, 2H), 0.91-0.86 (t, J = 7.7, 7.1 Hz, 3H), 0.08 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  144.2, 138.0, 127.7, 126.6, 126.5, 111.4, 81.4, 75.5, 39.4, 18.5, 14.3, -3.4. HRMS (EI) m/z 263.1840 [(M+H)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>27</sub>OSi, 263.1831].

Preparation of 51: General procedure **D**. Allyltrimethylsilane (0.12 g, 0.16 mL, 1.02 mmol), benzaldehyde (0.11 g, 0.10 mL, 1.02 mmol), and TMSOTf ((0.04 g, 0.03 mL, 0.19 mmol) were successively added to a stirred cold (-78 °C) solution of α-(dimethylphenylsilyl)allyl dimethylphenylsilyl ether (0.30 g, 0.93 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (9.3 mL). The reaction was stirred for 70 min and then quenched with NaHCO<sub>3</sub> (aq. sat.). The aqueous phase was extracted with CH<sub>2</sub>Cl<sub>2</sub> (10 mL x 4), and the combined organic layers were washed with NaHCO<sub>3</sub> (10 mL x 2), brine (10 mL x 2), and then dried (MgSO<sub>4</sub>). Filtration and concentration afforded the crude product as a 1:1 mixture of diastereomers which were readily separated by silica gel chromatography (0-1% EtOAc gradient in hexanes) to give a combined 0.21 g (77%) yield of pure **51** as colorless oils.

IR (neat) 3063, 1628, 1248 cm<sup>-1</sup>. Reactive *syn*-**51**:  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.59-7.56 (m, 2H), 7.38-7.32 (m, 3H), 7.27-7.18 (m, 5H), 5.64-5.53 (m, 2H), 4.90-4.79 (m, 4H), 4.27 (t, J = 6.3, 5.9 Hz, 1H), 3.98-3.96 (dt, J = 6.8, 1.5 Hz, 1H), 2.46-2.41 (m, 1H), 2.37-2.31 (m, 1H), 0.35 (s, 3H), 0.30 (s, 3H).  $^{13}$ C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  143.3, 137.4, 136.9, 134.7, 129.15, 127.8, 127.6, 126.9, 126.6, 116.8, 112.3, 81.0, 75.1, 41.5, -5.3, -5.6. HRMS (APCI) m/z 323.1830 [(M+H)<sup>+</sup>; calcd for C<sub>21</sub>H<sub>26</sub>OSi, 323.1831]. Less reactive *anti*-**51**:  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.50-7.02 (m, 10H), 5.81-5.73 (m, 1H), 5.70-5.63 (m, 1H), 5.00-4.91 (m, 4H), 4.43-4.40 (dd, J = 7.8, 5.8 Hz, 1H), 3.60-3.58 (dt, J = 7.3, 1.5 Hz, 1H), 2.52-2.46 (m, 1H), 2.33-2.28 (m, 1H), 6, 0.26 (s, 3H), 0.23 (s, 3H).  $^{13}$ C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  142.1, 137.1, 136.8, 135.4, 134.4, 129.0, 128.1, 127.4,

127.3, 127.2, 116.4, 113.5, 79.1, 72.4, 43. 1, -5.3, -6.0. HRMS (APCI) m/z 323.1834 [(M+H)<sup>+</sup>; calcd for C<sub>21</sub>H<sub>26</sub>OSi, 323.1831].

Preparation of 52: Applying the general procedure D described for the preparation of 51 to allyltrimethylsilane 1.26 g, (11.0 mmol, 1.75 mL), benzaldehyde 1.67 g (11.0 mmol, 1.12 mL), and TMSOTf 0.36 mL (2.0 mmol, 0.44 g) and  $\alpha$ -(trimethylsilyl)allyl trimethysilyl ether 2.0 g (10.0 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (100 mL), gave al:2.56 mixture of diastereomers. After silica gel chromatography 1.96 g (7.58 mmol) of the pure products were obtained in a combined yield of 69%. The pair of diastereomers is separable by column chromatography on silica gel. IR (neat) 2959, 1641, 1248, 1060 cm<sup>-1</sup>. Less reactive anti-52: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.35-7.22 (m, 5H), 5.88-5.69 (m, 2H), 5.05-4.95 (m, 4H), 4.46-4.42 (dd, <math>J = 13.5, 7.7, 5.8 Hz, 1H),3.44-3.42 (d, J = 7.4 Hz, 1H), 2.59-2.49 (quintet, J = 7.7 Hz, 1H), 2.39-2.30 (quintet, J =6.86, 1H), -0.01 (s, 9H). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>) δ 142.5, 137.7, 135.4, 128.1, 127.4, 127.4, 116.3, 112.9, 79.3, 73.0, 43.03, -4.0. HRMS (CI) m/z 261.1664  $[(M+H)^{+}]$ : calcd for C<sub>16</sub>H<sub>24</sub>OSi, 261.1675. Reactive syn-52: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.30-7.20 (m, 5H), 5.79-5.60 (m, 2H), 5.01-4.80 (m, 4H), 4.39-4.35 (t, J = 6.2 Hz, 1H), 3.82-3.78 (dt, J = 7.1, 1.3 Hz, 1H), 2.54-2.40 (m, 2H), 0.05 (s, 9H). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>) §143.6, 137.9, 134.9, 127.8, 126.9, 126.6, 116.8, 111.9, 81.1, 75.8, 41.5, -3.7. HRMS (CI) m/z 261.1681  $[(M+H)^{+}]$ ; calcd for  $C_{16}H_{24}OSi$ , 261.1675].

Preparation of 53: The trichloroacetimidate of α-phenylisopropyl alcohol was prepared from 2.88 g (19.19 mmol) of α-phenylisopropyl alcohol, 0.08 g (1.92 mmol) NaH, 2.63 g (18.23 mmol) of trichloroacetonitrile, 0.06 g (1.92 mmol) anhydrous methanol following general procedure B.<sup>11</sup> Then applying general procedure C to 1.25 g (9.59 mmol) of α-hydroxysilane 32, the in situ generated trichloroacetimidate, and 0.03 mL (0.04 g, 0.19 mmol) of TMSOTf, afforded 53 as a 1:1 mixture of diastereomers which were readily separable by silica gel chromatography (0-2% EtOAc gradient in hexanes), and obtained in a combined 1.47 g (5.62 mmol), 59% as colorless oils. IR (neat) 2959, 1628, 1452, 1248 cm<sup>-1</sup>.

Less reactive *anti*-53a: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.31-7.19 (m, 5H), 5.77-5.70 (m, 1H), 5.03-4.92 (dd, J = 17.2, 11.48, 10.6 Hz, 2H), 4.07-4.06 (d, J = 7.5 Hz, 1H), 3.39-3.37 (d, J = 8.0 Hz, 1H), 1.91-1.85 (m, 2H), 1.01-1.00 (d, J = 6.6 Hz, 3H), 0.72-0.70 (d, J = 7.1 Hz, 3H), -0.01 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  141.8, 138.0, 128.7, 128.1, 127.8, 127.1, 113.1, 84.7, 72.6, 35.0, 19.2, 19.0, -4.0. HRMS (APCl) m/z 263.1821 [(M+H)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>26</sub>OSi, 263.1831]. Reactive *syn*-53b: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.35-7.17 (m, 5H), 5.64-5.53 (m, 1H), 4.89-4.72 (dd, J = 16.7, 10.7 Hz, 2H), 4.01-3.99 (d, J = 6.0 Hz, 1H), 3.72-3.68 (d, J = 7.4 Hz, 1H), 1.89-1.99 (m, 1H), 0.93-0.91 (d, J = 6.9 Hz, 3H), 0.77-0.74 (d, J = 6.9 Hz, 3H), 0.05 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  142.6, 138.2, 127.4, 127.3, 126.5, 111.4, 87.5, 76.6, 34.5, 18.7, -3.5. HRMS (APCl) m/z 263.1821 [(M+H)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>26</sub>OSi, 263.1831].

Preparation of 54: Applying general procedure C to 0.74 g (5.68 mmol) 32, 3.46 g (10.79 mmol) of the trichloroacetimidate of 1-phenyl-5-hexen-1-ol (prepared following general procedure  $\bf B$ )<sup>11</sup> and TMSOTf (catalyst) (0.10 mL, 0.57 mmol) in cyclohexane and stirring reaction overnight afforded a 1:1 pair of diastereomeric 54 as colorless oils in a combined 0.25 g (15%) yield. IR (neat) 2941, 1641, 1454, 1248 cm<sup>-1</sup>. Reactive *syn*-54:  $^{1}$ H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.30-7.20 (m, 105H), 5.82-5.58 (m, 4H), 5.04-4.78 (m, 8H), 4.39-4.35 (dd, 1H), 4.32-4.28 (t, 1H), 3.74-3.72 (d, 1H), 3.41-3.38 (d, 1H), 2.07-1.97 (m, 4H), 1.81-1.51 (m, 6H), 1.42-1.24 (m, 2H), -0.33 (s, 9H), -0.05 (s, 9H). Less reactive *anti*-54:  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>) δ (7.33-7.20 (m, 5H), 5.80-5.69 (m, 2H), 5.02-4.88 (m, 4H), 4.37-4.34 (dd, J = 7.8, 4.9 Hz, 1H), 3.39-3.37 (dt, J = 4.9, 2.4 Hz, 1H), 2.05-2.00 (q, J = 8.3, 6.3 Hz, 2H), 1.79-1.70 (m, 1H), 1.62-1.48 (m, 2H), 1.37-1.27 (m, 1H), -0.05 (s, 9H).  $^{13}$ C NMR (300 MHz, CDCl<sub>3</sub>) δ 143.2, 138.9, 137.8, 128.1, 127.2, 127.2, 114.3, 112.8, 79.3, 72.8, 38.07, 33.7, 25.3, -4.0. HRMS (APCI) *m/z* 289.1983 [(M+H)<sup>+</sup>; calcd for C<sub>18</sub>H<sub>29</sub>OSi, 289.1987].

Preparation of 55: Applying general procedure C to 6.75 g (46.86 mmol) of 34, 17.75 g (70.29 mmol) of the trichloroacetimidate of benzyl alcohol (prepared following

literature procedure),<sup>11</sup> and BF<sub>3</sub>•OEt<sub>2</sub> (catalyst) (0.65 mL, 5.15 mmol) in cyclohexane afforded 2.11 g (34%) of **55** as a colorless oil. IR (neat) 2959, 1497, 1454, 1246 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.35 (m, 5H), 5.55-5.39 (m, 2H), 4.69-4.65 (d, J = 12.4, 1H), 4.37-4.28 (d, J = 12.4, 1H), 3.52-3.50 (d, J = 7.1, 1H), 1.74-1.72 (d, J = 4.7, 3H), 0.01 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  139.4, 129.7, 128.0, 127.5, 127.0, 125.1, 75.1, 71.3, 18.0, -3.7. HRMS (CI) m/z 252.1775 [(M+NH<sub>4</sub>)<sup>+</sup>; calcd for C<sub>14</sub>H<sub>22</sub>OSi, 252.1784].

**Preparation of** *E***-56**: Applying general procedure C to 3.60 g (24.98 mmol) of α-hydroxysilane **34**, 13.32 g (49.50 mmol) of the trichloroacetimidate of phenethyl alcohol (prepared following general procedure **B**)<sup>11</sup> and 0.47 mL (0.53 g, 3.74 mmol) of BF<sub>3</sub>•OEt<sub>2</sub>, afforded 3.07 g (49%) of *E***-56** as a 1:1 mixture of *anti/syn* diastereomers. IR (neat) 2963, 1493, 1452, 1246, 1082, cm<sup>-1</sup>. Mixture of *anti/syn E***-56**: Less reactive *anti E***-56**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.34-7.21 (m, 5H), 5.43-5.33 (m, 2H), 4.55-4.49 (q, J = 6.6, 6.3 Hz, 1H), 3.30-3.28 (d, J = 6.0 Hz, 1H), 1.72-1.70 (d, J = 4.9 Hz, 3H), 1.36-1.34 (d, J = 6.3 Hz, 3H), -0.5 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 144.5, 130.1, 128.0, 126.9, 126.7, 124.5, 75.0, 72.3, 24.8, 18.1, -3.7. HRMS (CI) m/z 248.1591 [(M); calcd for C<sub>15</sub>H<sub>24</sub>OSi, 248.1596].

**Preparation of (Z)-56**: Applying general procedure **C** to 1.50 g (10.41 mmol) of α-hydroxysilane (Z)-34, 5.55 g (20.82 mmol) of the trichloroacetimidate of *sec*-phenethyl alcohol, 11 and 0.17 mL (0.14 g, 0.62 mmol) of TMSOTf afforded 0.91 g of a mixture of products including (Z)-56. 14 NMR (300 MHz, CDCl<sub>3</sub>) δ 7.35-7.19 (m, 10H), 5.92-5.87 (apparent dd, J = 11.8, 11.0, 6.6, 5.2 Hz, 1H),5.86-5.80 (apparent dd, J = 11.8, 11.0, 6.6, 5.2 Hz, 1H), 5.71 (dd, J = 3.2, 1.1 Hz, 1H), 5.64 (dd, J = 3.2, 1.1 Hz, 1H), 4.54-4.47 (q, J = 6.5 Hz, 1H), 4.48-4.41 (q, J = 6.5 Hz, 1H), 1.41 (d, J = 6.3 Hz, 3H), 1.39 (d, J = 6.3 Hz, 3H), 1.22 (d, J = 6.3 Hz, 3H), 1.15 (d, J = 6.3 Hz, 3H), 0.07 (s, 9H), -0.3 (s, 9H). 13C NMR (75 MHz, CDCl<sub>3</sub>) δ 148.2, 147.5, 144.6, 144.2, 131.1, 129.4, 128.2, 128.1, 127.1, 127.0, 126.2, 76.1, 75.7, 75.1, 74.5, 24.8, 24.0, 21.7, 20.4, -1.1, -1.3.

Preparation of 58: Applying the general **D** to 0.59 g (0.82 mL, 5.18 mmol) of allyltrimethylsilane, 0.55 g (0.53 mL, 5.18 mmol) of benzaldehyde, 0.21 g (0.17 mL, 0.94 mmol) of TMSOTf, and 1.02 g (4.71 mmol) of α-(trimethylsilyl)allyl trimethylsilyl ether in CH<sub>2</sub>Cl<sub>2</sub> (47 mL), after about 3 h reaction time afforded **58** as a 1:1 mixture of diastereomers, which were readily separable by silica gel chromatography (0-1% EtOAc gradient in hexanes), and obtained in a combined 0.65 g (51%) yield as colorless oils. IR (neat) 2959, 1642, 1493, 1452,1248, 1078, 1053 cm<sup>-1</sup>. Less reactive *anti-58*: <sup>1</sup>H NMR

(300 MHz, CDCl<sub>3</sub>)  $\delta$  7.34-7.17 (m, 5H), 5.85-5.64 (m, 1H), 5.42-5.20 (m, 2H), 5.01-4.93 (tm, 2H), 4.44-4.35 (m, 1H), 3.31-3.29 (d, J = 6.0 Hz, 1H), 2.55-2.38 (m, 2H), 1.71-1.69 (d, J = 5.5 Hz, 3H), -0.4 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  142.6, 135.5, 129.9, 127.9, 127.2, 127.1, 125.1, 116.1, 78.6, 72.0, 43.1, 18.1, -3.7. Reactive *syn*-58: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.28-7.17 (m, 5H), 5.80-5.64 (m, 1H), 5.38-5.20 (m, 2H), 4.99-4.93 (t, J = 2H), 4.43-4.30 (m, 1H), 3.7 (d, J = 7.4 Hz, 1H), 2.54-2.36 (m, 2H), 1.54 (d, J = 5.5 Hz, 3H), 0.02 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.7, 134.8, 130.4, 127.7, 126.6, 126.5, 124.1, 116.6, 80.1, 74.7, 41.3, 17.9, -3.5. HRMS (CI) m/z 275.1823 [(M+H)<sup>+</sup>; calcd for C<sub>17</sub>H<sub>26</sub>OSi, 275.1831].

Preparation of 63: formation of mesylate of 32 - to a cold (0 °C) THF solution of 32 (0.1 M) were added MsCl (0.87 g, 0.59 mL, 7.59 mmol), followed by Et<sub>3</sub>N (0.77 g, 1.05 mL, 7.59 mmol), and the mixture stirred for 2.5 h. Then, the reaction was quenched with NaHCO<sub>3</sub> (sat, aq), diluted with ether, phases separated. The organic phase was washed with NH<sub>4</sub>Cl (sat, aq), dried over MgSO<sub>4</sub> and concentration with rotary evaporator to afford 0.76 g (96%) of the crude product which was employed in the next step without purification.

To a stirred suspension of NaH (0.02 g, 0.40 mmol) in THF (1.5 mL) at room temperature, was added a solution of  $\alpha$ -phenylpropyl alcohol (0.53 g, 3.9 mmol) in THF (2.0 mL) via syringe, followed by a THF wash (1.0 ml; total volume of THF became 3.0 ml). The reaction mixture was stirred at room temperature for 30 min, and transferred via

syringe, to a solution of the crude mesylate in THF (7.0 mL; 0.5 M) at room temperature. The reaction was stirred for additional 2 h, quenched with NH<sub>4</sub>Cl, washed with brine, dried over MgSO<sub>4</sub>, and concentrated to give 1.15 g of crude product. Purification on silica gel afforded 0.61 g (2.44 mmol, 70%) of **63** as a colorless oil. IR (neat) 2963(s), 2934(m), 1622(m), 1452(s), 1248(m) cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.35-7.15 (m, 5H), 6.09-6.00 (dt, J = 18.8, 5.2, 4.6 Hz, 1H), 5.87-5.80 (dt, J = 18.7, 1.5 Hz, 1H), 3.94-3.87 (ddd, J = 4.4, 1.6 Hz, 1H), 3.80-3.74 (ddd, J = 12.9, 5.2, 1.4 Hz, 1H), 1.90-1.50 (m, 2H), 0.89 (t, J?, 3H), 0.04 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  142.6, 142.4, 131.4, 128.1, 127.3, 126.7, 83.3, 71.7, 31.1, 10.4, -1.2.

Preparation of 65: To a solution of BnOH (0.31 g (2.88 mmol) in THF at room temperature was added dropwise Et<sub>2</sub>Zn (1.0 M in heptane, 1.44 mmol, 1.44 mL) via syringe. The resulting mixture was stirred for about 50 min, resulting in the formation of cloudy white precipitate. To this suspension were added the acetate of 32 (0.50 g, 2.89 mmol) and Pd(PPh<sub>3</sub>)<sub>4</sub> (5 mol%, 0.17 g, 0.15 mmol), and reaction stirred at room temperature for 2 h. The reaction mixture was passed through a short plug of silica gel, elute concentrated, and product purified by flash chromatography on silica gel (0 to 2% EtOAc in hexane gradient) to afford 0.41 g (64%) of 65 as a clear oil. IR (neat) 2955, 1622, 1496.95, 1454, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>) δ 142.1, 138.2, 132.0, 128.3, 127.7, 127.6, 127.5, 73.1, 72.4, -1.24. 65 is a known compound and have spectral data in accord with the reported ones.<sup>28</sup>

Wittig rearrangements of  $\alpha$ -alkoxysilanes- Representative procedure E. A solution of  $\alpha$ -alkoxysilane (1.0 equiv) in freshly distilled anhydrous THF (0.06 – 0.07 M) was cooled to the desired temperature under nitrogen. The required amount of s-BuLi (1.5 – 4.0 equiv, 1.3 M in cyclohexane) was added dropwise via syringe. The reaction mixture was stirred at the reaction temperature for the desired length of time, then quenched with saturated aqueous NH<sub>4</sub>Cl and diluted with ether. Phases separated and the organic phase was washed with water and brine. The organic phase was dried over MgSO<sub>4</sub> and concentrated. Silical gel chromatography (0 to 2% EtOAc in hexane gradient) afforded the rearranged products usually as a light yellow oil.

Wittig rearrangement of 39: preparation of 68: Applying the representative procedure **E** for the Wittig rearrangement of α-alkoxysilanes to 57 mg (0.20 mmol) of silane 39, 0.37 mL (0.30 mmol) s-BuLi and THF (3.0 mL) at -78 °C for 45 min afforded, after silical gel chromatography (2% EtOAc in hexanes), 39 mg (69%) of pure **II-05** as a clear oil. IR cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.56-7.54 (m, 2H), 7.45-7.38 (m, 3H), 7.26-7.07 (m, 5H), 2.62-2.59 (apparent t, J = 7.5, 7.1 Hz, 2H), 2.51 (apparent t, J = 8.0, 7.5 Hz, 2H), 1.82-1.79 (quintet, J = 8.0, 7.5, 7.1 Hz, 2H), 0.49 (s, 6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 245.9, 141.8, 133.9, 129.9, 128.4, 128.3, 128.2, 128.1, 125.8, 47.9, 35.7, 23.7, -4.8. 68 is a known compound and have spectral data in accord with reported ones.<sup>29</sup>

Applying representative procedure **E** for Wittig rearrangement of  $\alpha$ -alkoxysilanes to 93 mg (0.34 mmol) of **41** and 0.35 mL (1.5 equiv, 0.49 mmol) of *n*-BuLi (1.6 M in hexane) at -78 °C fo5 2.5 h, afforded 47 mg (51%) of **70** as a colorless oil. IR (neat) 2955, 2897, 1717, 1635, 1495, 1454, 1410, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.35-7.20 (m, 5H), 6.27-6.20 (m, 1H), 5.20-5.17 (dt, J = 10.2, 1.1 Hz, 1H), 5.08-5.03 (d, J = 17.1, 1.2 Hz, 1H), 4.41-4.39 (d, J = 8.2 Hz, 1H), 2.41-2.38 (dd, J = 10.1, 8.8 Hz, 2H), 0.73-0.66 (m, 2H), -0.09 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  209.7, 136.3, 128.9, 128.2, 127.3, 117.3, 62.5, 36.2, 10.2, -1.9.

Applying representative procedure **E** for Wittig rearrangement of  $\alpha$ -alkoxysilanes to 153 mg (0.621 mmol) of **41** and 0.58 mL (1.5 equiv, 0.932 mmol) of *n*-BuLi (1.6 M in hexane) at room temperature, after silica gel chromatography (1% EtOAc in hexanes) afforded 80 mg (52%) of pure **71** as light yellow oil. IR (neat) 2953, 2895, 1694, 1624, 1493, 1445, 1410, 1354, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33-7.19 (m, 5), 6.02-5.98 (q, J = 7.2 Hz, 1H), 2.41-2.37 (dd, J = 8.7, 8.1 Hz, 2H), 1.88 (d, J = 7.2 Hz, 3H), 0.76-0.73 (t, J = 8.7, 8.1 Hz, 2H), 0.09 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  208.0, 144.0, 138.1, 129.4, 128.6, 127.6, 126.8, 37.5, 15.5, 10.2, -1.9. HRMS (EI) m/z 246.1433 [(M-H)<sup>+</sup>; calcd for C<sub>15</sub>H<sub>22</sub>OSi, 246.1440].

Wittig rearrangement of 44: Applying representative procedure **E** for Wittig rearrangement of α-alkoxysilanes to 360 mg (1.53 mmol) of 44 and 1.8 mL (2.30 mmol) of s-BuLi (1.3 M in cyclohexane) at -78 °C overnight, afforded 162 mg (46%) of a 1.68:1 mixture of 74 and 75 as a colorless oil. 74: IR (neat) 2957, 2899, 1643, 1603, 1495, 1452, 1410, 1375, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.33-7.12 (m, 5H), 2.67-2.57 (m, 1H), 2.54-2.41 (m, 1H), 1.89-1.67 (m, 2H), 1.24-1.21 (d, J = 7.1 Hz, 3H), 0.11 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 248.2, 146.6, 128.4, 127.0, 126.0, 46.4, 39.3, 30.2, 22.4, -3.2. HRMS (EI) m/z 233.1358 [(M-H)<sup>+</sup>; calcd for C<sub>14</sub>H<sub>21</sub>OSi, 233.1362].

75: IR (neat) 2955, 2895, 1717, 1601, 1495, 1452, 1414, 1373, 1248, 1180 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.33-7.19 (m, 5H), 3.82-3.75 (q, J = 7.1, 6.9 Hz, 1H), 2.34-2.28 (m, 2H), 1.38 (d, J = 6.9 Hz, 3H), 0.77-0.55 (m, 2H), -0.11 (s, 9H). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  211.8, 140.8, 128.8, 127.8, 127.0, 52.3, 35.6, 17.7, 10.3, -1.9. HRMS (CI) m/z 234.1466 [(M); calcd for C<sub>14</sub>H<sub>22</sub>OSi, 234.1440].

Applying representative procedure **E** for Wittig rearrangement of  $\alpha$ -alkoxysilanes to 76 mg (0.25 mmol) of **45** and 0.38 mL (0.38 mmol) of s-BuLi (1.0 M in cyclohexane) and stirring for 4 h at -78 °C afforded 37 mg (49%) of a 1.3:1 mixture of **76** and **77** as light yellow oils. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.49-7.02 (m, 20H), 3.75-3.68 (q, J =

7.1, 6.8 Hz, 1H), 2.59-2.20 (m, 4H), 1.96-1.60 (m, 2H), 1.35, d, J = 7.1, 3H), 1.16 (d, J = 6.8 Hz, 3H), 1.05-0.95 (m, 1H), 0.91-0.80 (m, 1H), 0.42 (s, 3H), 0.41 (s, 3H), 0.18 (s, 3H), 0.16, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  246, 211.3, 146.4, 140.6, 138.3, 133.8, 133.4, 129.7, 128.8, 128.7, 128.4, 128.2, 128.0, 127.7, 127.6, 126.9, 126.8, 125.9, 52.4, 46.8, 39.2, 35.6, 30.4, 22.3, 17.7, 9.5, -3.0, -3.2, -4.6.

Wittig rearrangement of 47: Applying representative procedure **E** for the Wittig rearrangement of α-alkoxysilanes to 154 mg (0.582 mmol) of a 1:3.25 (reactive *syn*/less reactive *anti*) mixture of 47 afforded a mixture of both [1,2]- and [1,4]-rearrangement products 78 and 79 in approximately 1.8:1 ratio and in 93% yield IR (neat) 2959, 1717(w), 1643, 1613, 1515, 1456, 1248 cm<sup>-1</sup>. 78: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.04 (d, J = 8.8 Hz, 2H), 6.81 (d, J = 8.8 Hz, 2H), 3.77 (s, 3H), 2.62-2.55 (m, 1H), 2.52-2.46 (m, 1H), 2.43-2.37 (m, 1H), 1.82-1.75 (m, 1H), 1.72-1.65 (m, 1H), 1.20-1.18 (d, J = 6.8 Hz, 3H), 0.11 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 248.3, 157.8, 138.7, 127.8, 113.7, 55.2, 46.5, 38.5, 30.4, 22.6, -3.2. HRMS (EI) m/z 264.1542 [(M)<sup>+</sup>; calcd for C<sub>15</sub>H<sub>24</sub>O<sub>2</sub>Si, 264.1546].

79: IR (neat) 2953, 1715, 1611, 1513, 1456, 1250, 1178 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.11 (d, J = 8.3 Hz, 2H), 6.8 (d, J = 8.8 Hz, 2H), 3.77 (s, 3H), 3.75-3.70 (q, J = 7.3, 6.8 Hz, 1H), 2.35-2.24 (m, 2H), 1.34 (d, J = 6.8 Hz, 3H), 0.73-0.67 (m, 1H), 0.63-0.56 (m, 1H), -0.11 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  212.1, 158.6, 132.9,

128.8, 114.2, 55.2, 51.4, 35.5, 17.8, 10.4, -1.9. HRMS (EI) m/z 264.1547 [(M)<sup>+</sup>; calcd for  $C_{15}H_{24}O_2Si$ , 264.1546].

Applying representative procedure **E** for Wittig rearrangement of  $\alpha$ -alkoxysilanes to 530 mg (2.15 mmol) of reactive **48** and 2.30 mL (3.23 mol) of *s*-BuLi (1.4 M in cyclohexane) and stirring overnight at -78 °C afforded 347 mg (65%) of **82** and **83** in approximately 2:1 ratio. IR (neat) cm<sup>-1</sup>. **82**: IR (neat) 2957, 2930, 1717, 1643, 1495, 1452, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27-7.06 (m, 5H), 2.49-2.42 (m, 1H), 2.37-2.31 (m, 1H), 1.95-1.88 (m, 1H), 1.70-1.60 (m, 2H), 1.58-1.49 (m, 1H), 0.74 (t, J = 7.5 Hz, 3H), 0.08 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  248.5, 144.9, 128.3, 128.2, 127.7, 126.0, 47.1, 46.4, 29.7, 28.4, 12.1, -3.2. HRMS (FAB+) m/z 249.1677 [(MH)<sup>+</sup>; calcd for C<sub>15</sub>H<sub>25</sub>OSi, 249.1675].

83: IR (neat) 2957, 1715, 1601, 1493, 1454, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.31-7.19 (m, 5H), 3.56-3.53 (t, J = 7.5, 7.1 Hz, 1H), 2.33-2.25 (m, 2H), 2.06-2.00 (m, 1H), 1.72-1.66 (m, 1H), 1.41-0.81-0.78 (t, J = 7.5, 7.1 Hz, 3H), 0.74-0.68 (m, 1H), 0.61-0.55 (m, 1H), -0.11 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  211.5, 139.2, 128.7, 128.2, 127.0, 60.1, 36.5, 25.5, 12.2, 10.1, -1.9. HRMS (CI) m/z 248.1590 [(M)<sup>+</sup>; calcd for C<sub>15</sub>H<sub>24</sub>OSi, 248.1596].

Applying representative procedure **E** for Wittig rearrangement of α-alkoxysilanes to 156 mg (0.60 mol) of a 1:1.35 mixture of **50** and 0.6 mL *n*-BuLi (1.6 M in hexane, 0.90 mmol) at -78 °C for 24 h afforded 65 mg (41%) of a mixture of **86** and **87** as light yellow oils. **86**: IR (neat) 2957, 2930, 1719, 1643, 1459, 1452, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.27-7.07 (m, 5H), 2.48-2.42 (m, 2H), 2.37-2.32 (m, 1H), 1.93-1.86 (m, 1H), 1.69-1.62 (m, 1H), 1.60-1.48 (m, 2H), 1.22-1.10 (m, 2H), 0.81 (t, J = 7.3 Hz, 3H), 0.08 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 248.4, 145.1, 128.3, 127.7, 126.0, 46.4, 45.0, 39.2, 28.8, 20.6, 14.1, -3.2. HRMS (CI) m/z 263.1824 [(M+H)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>27</sub>OSi, 263.1831]. **87**: IR (neat) 2957, 1717, 1493, 1454, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.32-7.20 (m, 5H), 3.67 (t, J = 7.8, 7.3 Hz, 1H), 2.38-2.27 (m, 2H), 2.03-1.96 (m, 1H), 1.72-1.64 (m, 1H), 1.27-1.14 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H), 0.76-0.69 (m, 1H), 0.64-0.57 (m, 1H), -0.09 (s, 9H). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>) δ 211.5, 139.4, 128.7, 128.2, 127.0, 58.1, 36.5, 34.5, 20.7, 14.0, 10.2, -1.9. HRMS (CI) m/z 262.1756 [(M)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>26</sub>OSi, 262.1753].

Applying representative procedure E for Wittig rearrangement of  $\alpha$ -alkoxysilanes to 165 mg (0.638 mmol) of **52** and 1.6 mL (2.55 mmol) of *n*-BuLi (1.6 M in hexanes) at -78 °C, allowing the reaction to warm to -30 °C and stirring at this temperature for about 30 h, after purification by column chromatography on silica gel afforded 45 mg (32%) of

a 4.53:1 mixture of **88** and **89** as light yellow oils. Note: the reported yield is based on 2.64:1 ratio of less reactive *anti*/reactive *syn* starting mixture of substrates.

88: IR (neat) 2955, 2926, 1717, 1643, 1495, 1452, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.34-7.16 (m, 5H), 5.78-5.60 (m, 1H), 5.00-4.89 (m, 2H), 2.58-2.52 (m, 1H), 2.50-2.45 (m, 1H), 2.39-2.31 (m, 3H), 2.00-1.93 (m, 1H), 1.72-1.64 (m, 1H), 0.09 (6H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 248.1, 144.4, 136.8, 128.4, 127.7, 126.2, 116.0, 46.1, 45.1, 41.4, 27.9, -3.2.

**89**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.31-7.08 (m, 5H), 5.68-5.60 (m, 1H), 5.00-4.91 (m, 2H), 3.72 (t, J = 7.7, 7.4 Hz, 1H), 2.81-2.75 (m, 1H), 2.65-2.59 (m, 1H), 2.09-2.02 (m, 1H), 1.86-1.78 (m, 1H), 0.74-0.68 (m, 1H), 0.62-0.56 (m, 1H), -0.11 (s, 9H). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  210.6, 135.9, 128.8, 128.2, 128.1, 127.2, 116.6, 58.1, 36.7, 36.5, 10.1, -1.9.

Applying representative procedure **E** for Wittig rearrangement of  $\alpha$ -alkoxysilanes to 66 mg (0.252 mmol) of **53** and 0.39 mL (0.63 mmol) of *n*-BuLi (1.6 M in hexane) at – 78 °C and allowing the reaction to warm up to 4 °C for 24 h afforded 22 mg (33%) of a 1.8:1 mixture of **90** and **91** as light yellow oils. **90**: IR (neat)2957, 1719(w), 1643, 1493, 1452, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.26-7.03 (m, 5H), 2.39-2.35 (m, 1H), 2.30-2.24 (m, 1H), 2.20-2.15 (m, 1H), 2.08-2.02 (m, 1H), 1.80-1.73 (m, 1H), 1.71-1.63 (m, 1H), 0.94 (d, J = 6.8 Hz, 3H), 0.68 (d, J = 6.8 Hz, 3H), 0.06 (s, 9H). <sup>13</sup>C NMR (125

MHz, CDCl<sub>3</sub>)  $\delta$  248.6, 143.8, 128.4, 128.1, 126.0, 52.4, 33.7, 25.2, 20.9, 15.3, -3.3. HRMS (APCI) m/z 263.1840 [(M+H)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>27</sub>OSi, 263.1831]. **91**: IR (neat) 2957, 1715, 1454, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.29-7.20 (m, 5H), 3.3 (d, J = 10.2 Hz, 1H), 2.42-2.25 (m, 3H), 0.94 (d, J = 6.3 Hz, 3H), 0.74-0.67 (m, 1H), 0.63 (d, J = 6.8 Hz, 3H), 0.61-0.54 (m, 1H), -0.11 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  211.7, 138.4, 128.7, 128.6, 127.0, 66.4, 37.8, 30.7, 21.7, 20.4, 9.9, -1.9. HRMS (CI) m/z 262.1755 [(M)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>26</sub>OSi, 262.1753].

Applying representative procedure **E** for Wittig rearrangement of  $\alpha$ -alkoxysilanes to 141 mg (0.60 mmol) of **55** and 0.69 mL (0.90 mmol) of s-BuLi (1.3 M in cyclohexane) at -78 °C for for 30 min, after purification by column chromatography on silica gel, afforded 106 mg (75%) of a 4:1 mixture of both [1,4]- and [1,2]-rearrangement products **92** (a light yellow oil) and **93** as a colorless oil.

**92**: 2959, 2928, 1709, 1641, 14961454, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.32-7.17 (m, 5H), 2.61-2.50 (m, 2H), 2.47-2.30 (m, 3H), 0.84-0.81 (d, J = 6.6 Hz, 3H), -0.13 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  248.59, 140.59, 129.20, 128.17, 125.91, 54.94, 43.28, 29.58, 19.90, -3.25. HRMS (EI) m/z 233.1355 [(M-H)<sup>+</sup>; calcd for C<sub>14</sub>H<sub>21</sub>OSi, 233.1362].

93: IR 3432, 2978, 2926, 1454, 1381, 1248, 1121 (neat) cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.26-7.10 (m, 5H), 5.60-5.56 (dq, J = 15.4, 1.6 Hz, 1H), 5.19-5.12 (apparent dq, J = 15.4, 6.6, 6.0 Hz, 1H), 2.88-2.79 (apparent q, J = 13.2, 7.7 Hz, 2H),

1.64-1.62 (dd, J = 6.6, 1.6 Hz, 3H), 0.05 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  136.2, 135.4, 130.6, 127.9, 126.3, 121.62, 70.4, 43.1, 17.8, -4.2. HRMS (EI) m/z 234.1435 [(M)<sup>+</sup>; calcd for C<sub>14</sub>H<sub>22</sub>OSi, 234.1440].

Applying representative procedure **E** for Wittig rearrangement of  $\alpha$ -alkoxysilanes to 2.91 g (11.62 mmol) of *E*-56 and 29.05 mL (4.0 equiv, 46.48 mmol) of *n*-BuLi (1.6 M in hexanes) at -78 °C and allowing the reaction to warm to -30 °C for 4 d, after purification by column chromatography on silica gel, afforded 1.66 g (57%) of a mixture **95** and **96** and **97** as colorless oils.

95 (mixture of diastereomers):  $^{1}$ H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.33-7.13 (m, 10H), 5.76-5.69 (dq, J = 15.4, 1.6 Hz, 1H), 5.62-5.57 (dq, J = 15.4, 1.6 Hz, 1H), 5.33-5.22 (dq, J = 15.4, 6.6, 6.0 Hz, 1H), 5.18-5.06 (dq, J – 15.4, 6.6, 6.0 Hz, 1H), 3.08-3.00 (q, J = 7.1 Hz, 2H), 3.03-2.96 (q, J = 7.1 Hz, 2H), 1.73-1.70 (dd, J = 6.6, 1.6 Hz, 3H), 1.61 (dd, J = 6.0, 1.6 Hz, 3H), 1.37 (d, J = 7.1 Hz, 3H), 1.32 (d, J = 7.1 Hz, 3H), -0.3 (s, 9H), -0.09 (s, 9H).  $^{13}$ C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  HRMS (CI) m/z 249.1666 [(M+H)<sup>+</sup>; calcd for  $C_{15}H_{24}OSi$ , 249.1675].

**96**: IR 2955, 1715, 1495, 1452, 1250 (neat) cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.32-7.18 (m, 10H), 3.80-3.76 (q, J = 7.3, 6.8 Hz, 1H), 3.74-3.70 (q, J = 7.3, 6.8 Hz, 1H), 2.38-2.36 (dd, J = 3.9, 3.4 Hz, 1H), 2.34-2.33 (dd, J = 3.9, 3.4 Hz, 1H), 2.10-2.06 (m, 2H), 1.39-1.36 (t, J = 6.8, 6.3 Hz, 6H), 1.35-1.10 (m, 2H), 0.82 (d, J = 7.3 Hz, 3H), 0.69 (d, J = 7.3 Hz, 3H), -0.11 (s, 9H), -0.16 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  211.4, 210.8, 140.58, 140.55, 128.81, 128.76, 127.95, 127.88, 127.03, 127.01, 53.5, 52.1, 43.4,

43.3, 17.5, 17.4, 15.4, 15.2, 14.6, 14.0, -3.57, -359. HRMS (EI) m/z 248.1594 [(M)<sup>+</sup>; calcd for  $C_{15}H_{24}OSi$ , 248.1596]. **97** was oxidized to the corresponding carboxylic acid and data are given in Chapter 6.

Preparation of 104: Applying representative procedure E for Wittig rearrangement of α-alkoxysilanes to 6.66 g (2443 mmol) of E-58 and 61.10 mL (4.0 equiv, 97.74 mmol) of n-BuLi (1.6 M in hexanes) at -78 °C and allowing the reaction to warm to -30 °C for 4 d, after purification by column chromatography on silica gel, afforded 2.49 g (37%) of a mixture of all possible Wittig products. 0.60 g of this mixture was dissolved in THF (4.40 mL) and 3N NaOH (0.4 mL/mmol starting material, 0.88 mL) added. The mixture was heated to 35-40 °C, and then oxidized by adding dropwise 30% H<sub>2</sub>O<sub>2</sub> (0.20 mL/mmol starting material, 0.44 mL), while maintaining the reaction temperature below 50 °C for 2 h. The aqueous phase was cooled to 0 °C, and acidified to pH of 1-2 with 6 N HCl.. The resulting aqueous material was extracted with ether (5 x 20 mL), and the ether solution dried with MgSO<sub>4</sub>. Filtration and concentration afforded 69 mg of 104 as a thick colorless oil. Purification by column chromatography on silica gel (hexane/EtOAc (0-10%) afforded 104a and 104b as a near 1:1 mixture of diastereomers (ratio by <sup>1</sup>HNMR). IR (neat) 3100-2500 (vs, v br), 2973, 1709, 1642, 1495, 1452, 1414, 1296, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 11.70 (br, 1H), 7.29-7.12 (m, 10H), 5.65-5.01 (m, 2H), 4.99-4.85 (m, 4H), 2.67-2.63 (m, 1H), 2.56-2.22 (m, 9H), 2.08-2.03 (dd, J = 15.1, 8.8 Hz, 1H), 1.95-1.90 (dd, J = 15.1, 9.3 Hz, 1H), 1.05 (d, J = 6.3 Hz, 3H),

0.83 (d, J = 6.3 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  179.9, 179.8, 142.7, 141.5, 136.8, 136.7, 128.9, 128.5, 128.3, 128.1, 126.4, 126.37, 116.1, 116.0, 51.0, 49.8, 39.7, 39.3, 37.1, 36.9, 35.0, 34.2, 17.9, 16.3. HRMS (FAB+) m/z 219.1383 [(MH)<sup>+</sup>; calcd for  $C_{14}H_{19}O_2$ , 218.1307].

### REFERENCES

- 1. Tomooka, K.; Yamamoto, H.; Nakai, T. Liebigs Ann. 1997, 1275-1281.
- 2. Maleczka, R. E., Jr; Geng, F. J. Am. Chem. Soc. 1998, 120, 8551-8552 and references cited therein.
- 3. Felkin, H.; Tambute, A. Tetrahedron Lett. 1969, 10, 821-822.
- 4. Rautenstrauch, V. Helv. Chim. Acta 1972, 55, 594-609.
- 5. (a) Danheiser, R. L.; Fink, D. M.; Okano, K.; Tsai, Y-M.; Szczepanski, S. W. *Organic Synthesis* 1988, 66, 14-21. (b) Danheiser, R. L.; Fink, D. M.; Okano, K.; Tsai, Y-M.; Szczepanski, S. W. *J. Org. Chem.* 1985, 50, 5393-5396.
- 6. Brook, A. G.; Pascoe, J. D. J. Am. Chem. Soc. 1971, 93, 6224-6627. (b) Brook, A. G. Acc. Chem. Res. 1974, 7, 77-84.
- 7.  $\alpha$ -Hydroxyallylsilane 32 was obtained in 93% yield when the alcohol was isolated by distillation at atmospheric pressure.
- 8. The yield of this alcohol is generally moderate. Kamimura prepared 34 in 43% yield, see Kamimura, A.; Kaneko, Y.; Ohta, A.; Matsuura, K.; Fujimoto, Y.; Kakehi, A.; Kanemasa, S. *Tetrahedron* 2002, 9613-9620.
- 9. Compounds 51, 52 and 58 were prepared following Rychnovsky's protocol: Cossrow, J.; Rychnovsky, S. D. Org. Lett. 2002, 4, 147-150.
- 10. Maleczka, R. E. Jr.; Geng, F. Org. Lett. 1999, 1, 1111-1113.
- 11. Wessel, H. P.; Iversen, T.; Bundle, D. R. J. Chem. Soc., Perkin Trans. 1 1985, 2247-2250.
- 12. In the preparation of E-56 we found that  $BF_3$ • $OEt_2$  gave better results than TMSOTf.
- 13. Maleczka and Geng reported that this same reaction catalyzed by TMSOTf-catalyzed afforded 67% of 42 and the formation of any other compounds was not reported. Maleczka, R. E. Jr.; Geng, F. Org. Lett. 1999, 1, 1115-1118.
- 14. (a) Jones, T. K.; Denmark, S. E. Org. Synth., Coll. Vol. VII, 1990, 524. (b) Denmark, S. E.; Jones, T. K. J. Am. Chem. Soc. 1982, 104, 2642.
- 15. The etherification of an alcohol via the trichloroacetimidate requires for the alcohol part of the trichloroacetimidate to be activated (benzyl or allyl).

- 16. Reaction of alcohol 32 with MsCl in the presence of Et<sub>3</sub>N in THF at 0 °C afforded the corresponding mesylate (96%).
- 17. Kim, H; Lee, C. Org. Lett. 2002, 4, 4369-4371.
- 18. Aspinall, H. C.; Greeves, N.; Lee, W-M.; Mclver, E. G.; Smith, P. M. Tetrahedron Lett. 1997, 38, 4679-4682.
- 19. Hoffmann, R.; Brückner, R. Chem. Ber. 1992, 125, 1471-1484.
- 20. Maleczka, R. E. Jr.; Geng, F. Org. Lett. 1999, 1, 1115-1118.
- 21. Schlosser, M.; Strunk, S. Tetrahedron 1989, 45, 2649-2664.
- 22. Felkin, H.; Tambute, A. Tetrahedron Lett. 1969, No 10, 821-822.
- 23. Ab initio calculations (Geometry Optimization using RHF/6-31G\* Model) were performed by Courtney Olmsted; Chemistry Department, Michigan State University.
- 24. Aizupurua, J. M.; Palomo, C. Science of Synthesis 2002, 4, 595-632.
- 25. Takai, K.; Yamada, M.; Odaka, H.; Utimoto, K.; Fujii, T.; Furukawa, I. Chem. Lett. 1995, 4, 315-316.
- 26. Buynak, J. D.; Strickland, J. B.; Lamb, G. W.; Khasnis, D.; Modi, S.; Williams, D.; Zhang, H. J. Org. Chem. 1991, 56, 7076-7083.
- 27. (a) Panek, J. S.; Sparks, M. A. Tetrahedron: Asymmetry 1990, I, 801-816. (b) Picard, J. P.; Ekouya, A.; Dunogues, J.; Duffaut, N.; Calas, R. J. Organometal. Chem. 1975, 93, 51-70. (c) Dunogues, J.; Ekouya, A.; Duffaut, N.; Calas, R. J. Organometal. Chem. 1974, 66, C36-C38.
- 28. (a) Akira, S.; Sylke, P.; Takeo, T. Tetrahedron Lett. 1997, 38, 5537-3340. (b) Kenji, Y.; Hideaki, O.; Akitami, I. J. Bioscience, Biotechnology, and Biochemistry 1997, 61, 1038-1040. (c) Hisanaka, I.; Toakanori, N.; Takeo, T.; Yuji, H. Tetrahedron 1995, 51, 4507-4518. (d) Mori, M.; Watanabe, N.; Kaneta, N.; Shbasaki, M. Chem. Lett. 1991, 9, 1615-1618.
- 29. Fleming, I.; Mwaniki, J. M. J. Chem. Soc., Perkin Trans. 1. 1998, 1237-1247.

## CHAPTER 5

# STEREOCHEMICAL REQUIREMENTS IN THE WITTIG REARRANGEMENTS OF α-ALKOXYSILYL ETHERS

## 5.1. Stereochemical requirements for Wittig substrates

#### Introduction

As noted in Chapter 4, those Wittig substrates with substitution at the migrating center were prepared as diastereomeric pairs, in near equal amounts (ratios ranging from 1:1 to 1.3:1.)<sup>1</sup> It was also noted in the same chapter that under our conditions, a pair of diastereomers have differential reactivities, with only one diastereomer readily undergoing the Wittig rearrangement. The appropriate question at this point became, "Which diastereomer (syn or anti) was undergoing the Wittig rearrangement?" In an effort to identify the two isomers we resorted to derivatization.

## 5.2. Derivatization of α-alkoxysilanes 44a and 44b

# 5.2.1. Synthesis of 2,4-dinitrophenylhydrazone derivatives of 44a and 44b

Carbonyl compounds (aldehydes and ketones) are known to form crystalline hydrazone derivatives with 2,4-dinitrophenylhydrazine, which are often employed in the identification of this class of compounds. In order to convert compounds **44a** and **44b** into their corresponding 2,4-dinitrophenylhydrazones, we oxidized the double bond to primary alcohols **105a** and **105b** (97% yield) by hydroboration/oxidation<sup>2</sup> (Scheme 5.1).

Scheme 5.1. Hydroboration/oxidation of diastereomeric 44a/44b

Diastereomeric alcohols 105a and 105b were converted into their corresponding aldehydes 106a and 106b via a modified Swern oxidation.<sup>3</sup> The crude aldehydes were subsequently converted into hydrazones by reaction with acidified 2,4-dinitrophenyl-hydrazine at room temperature (Scheme 5.2).<sup>4</sup>

The two diastereomeric α-alkoxysilanes anti-44a and syn-44b showed different behaviors with regard to hydrazone formation. Of the two hydrazones formed, one was the expected product (107) and the other (108) was an elimination product in which the benzyloxy group was lost. Since 44a could be obtained pure from the Wittig rearrangement reaction, it was converted to the corresponding alcohol 105a, and subsequently into the 2,4-dinitrophenyl hydrazone derivatize. We observed that the less reactive 44a afforded the desired hydrazone 107 as an amorphous solid in 58% yield (mp 129-130 °C) (Scheme 4.31). The reactive 44b, on the other hand, formed the conjugated hydrazone 108 in 32% yield (reaction was not optimized), bearing a vinyl silyl group (Scheme 5.2). Recrystallization of 108 from EtOAc afforded the pure compound (m.p. 199.5-200.5 °C). NMR, and single crystal x-ray analysis revealed the presence of the two double bonds (see Figure 5.1 for ORTEP of 108).

Scheme 5.2. Derivatization of 44a/44b: conversion to 2,4-dinitrophenylhydrazone

Figure 5.1. Single x-ray crystal structure analysis ORTEP view of 108, 2,4-dintrophenylhydrazone derivative of reactive syn 44b

The difficulty in recrystallizing compound 107 (hydrazone of the less reactive anti 44a) was an impetus to explore alternatives. We hoped that the hydrazone of the ketone derivative (rather than the aldehyde derivative) might give better crystals for single crystal x-ray analysis. Thus, pure anti 44a was subjected to oxymercuration/demercuration conditions for the purpose of making the secondary alcohol. However, this venture only led to the hydrogenolysis of the ether to give sec-

phenethyl alcohol in 73% yield. The desired secondary alcohol **109** was not obtained (Scheme 5.3).

Scheme 5.3. Attempted oxymercuration/demercuration of anti 44a

# 5.2.2. Synthesis of 3,5-dinitrobenzoyl ester of α-alkoxysilanes 44a and 44b

In a further attempt towards establishing the stereochemistry of the reactive and less reactive Wittig substrates via single crystal x-ray analysis, we converted the diastereomeric alcohol 105a,b into the corresponding 3,5-dinitrophenyl ester 110a,b, in 55% yield (Scheme 5.4). The ester products 110a,b were obtained as a oil/solid mixture. Recrystallization from a 1:1 mixture of absolute ethanol:hexanes afford colorless crystals of 110a (ester of the reactive 44) and an oily mother liquor containing 110b (ester of the less reactive 44). Converting the alcohol from less reactive 44 to the corresponding ester gave an oil. This established that the reactive diastereomer gave the crystalline ester product (mp 74.5-75.5 °C). We obtained the single crystal X-ray structure of this compound (Figure 5.2), which revealed the relative stereochemistry of reactive 44 to be syn (syn with respect to TMS and Me groups).

Scheme 5.4. Derivatization of 44a/44b: conversion to 3,5-dinitrophenylbenzoyl ester

**110a**: *anti*-ester, clear oil **110b**: *syn* ester, solid (m.p. 74.5-75.5 °C)

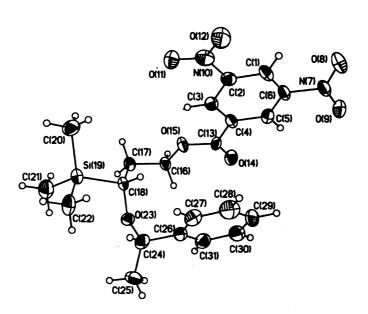



Figure 5.2. X-ray crystal structure analysis ORTEP view of 110b, the 3,5-dinitrobenzoyl ester derivative of reactive syn 44b

Though we had secured the relative stereochemistry of reactive 44b and could infer the opposite relative stereochemistry for the less reactive diastereomer, we still wished to obtain solid evidence to corroborate our results. Amino acids are known to give crystalline ester derivatives with organic alcohols. Thus, we hoped that the ester from N-(tert-butoxycarbonyl)glycine and the alcohol from the less reactive 44a would be

crystalline, enabling us get the single crystal x-ray analysis on that diastereomer. DCC mediated esterification of 105a with N-(tert-butoxycarbonyl)glycine in the presence of a catalytic amount of DMAP afforded the desired ester 111 in 81% yield (Scheme 5.5). However we were unable to obtain the sought after single crystal x-ray as the ester was a thick oil.

Scheme 5.5. Boc-glycine ester derivative of less reactive 105a

## 5.3. NOE Experiment

In a further attempt to establish the stereochemical requirement for the Wittig rearrangements of α-alkoxysilanes, we reasoned that if we could tie up an acyclic Wittig substrate into a ring, then we could use NMR experiments (NOE) to determine the stereochemistries of the reactive and less reactive pair of diastereomers. Toward this aim we utilized compounds 51 and 52. Compound 52, as reported in section 4.4.2 (and Table 4.2) undergoes rearrangement when its solution in THF is treated with 4.0 equiv. of *n*-BuLi at temperatures above -40 °C for 48 h. Only one diastereomer reacts under these conditions, furnishing the [1,2] and [1,4] products. We found that when a dilute solution (0.1-0.2 M) of 51 in benzene was heated to 70-80 °C in the presence of a catalytic amount (10-15 mol%) of Grubbs second generation catalyst, it underwent ring closing metathesis

(RCM) to afford six-membered cyclic ethers 112a/b in 94-96% yield (Scheme 5.6). Diastereomeric 52 was similarly converted to the corresponding six-membered cyclic ethers 113a/b in 97-99% yield. Then, each of the diastereomers, syn-52 and anti-52, was subjected to the ring closing metathesis conditions. The spectral data from their respective products were compared. Stereochemical evidence was obtained from NOESY1D experiments (Figure 5.3) that revealed NOE (1%) between Ha and Hb in the RCM product resulting from the less reactive diastereomer (113b), an indication of syn stereochemistry (both protons are on the same face of the molecule). On the other hand, there was no NOE seen between Ha and Hb in the cyclic ether resulting from the RCM of the reactive isomer (113b), indicating that the two protons are anti (Figure 5.3).

Scheme 5.6. Ring closing metathesis of 51 and 52

Figure 5.3. NOSEY1D result showing relative stereochemistries in 113a/b

Compound 113 stored well in the freezer (no evidence of decomposition was seen after three months). However, we observed that the cyclic ether was acid sensitive, decomposing completely within seven days when left in CDCl<sub>3</sub> (from NMR analysis). Upon isolation of the decomposition product 114<sup>8</sup>, we were able to elucidate its structure by NMR spectroscopy, and it is as shown in Scheme 5.7. The new product is a cyclic enol ether which features a carbonyl functionality (incorporation of an extra oxygen atom). The mechanism of this reaction is not clear to us at this point.

Scheme 5.7. Decomposition of metathesis product in the presence of CDCl<sub>3</sub>

In the course of our investigation of the ring closing metathesis reaction of 52, we found that carrying out the reaction in a sealed tube afforded 113 (45%) and a second product 115 (34%) yield. We elucidated the structure of 115 by <sup>1</sup>H NMR, <sup>13</sup>C NMR, and DEPT experiments and is as shown in Scheme 5.8. This compound shows incorporation of an extra oxygen atom. It also features a carbonyl group conjugated to a double bond and a vinyl trimethylsilyl group.

Scheme 5.8. Cross metathesis reaction of 52 in sealed tube

# 5.4. Relative reactivities of a pair of diastereomeric α-alkoxysilanes

In an effort to understand the marked difference in reactivity between the *syn* and *anti* diastereomers under our Wittig rearrangement reaction conditions, a modeling study was undertaken. For this study,  $\alpha$ -alkoxysilane 44 was employed for simplicity and modeled using the Spartan Ab initio program.

Geometry Optimization using RHF/6-31G\* Model showed that the anti isomer is lower in energy by 1.44 kcal/mol. The modeling study did not reveal much in terms of the conformations of the pair of anti/syn diastereomeric 44a/44b. However, analysis of the data from this study showed that the two diastereomers have slightly different conformations (Figure 5.4). The dihedral angles were similar ( $C_1C_2C_3\alpha H$  of 6° in the syn conformer and C<sub>1</sub>C<sub>2</sub>C<sub>3</sub>αH of 11° in the anti conformer), thus no deductions could be made base on it. However, the data revealed that the aromatic ring and the double bond are on the same side of the molecule in syn 44b (Figure 5.4). This suggests a possibility of  $\pi$ -stacking (C<sub>1</sub>-C<sub>7</sub> = 3.2 Å; C<sub>2</sub>-C<sub>6</sub> = 4.3 Å) (Figure 5.4). On the other hand, in the *anti* diastereomer 44a, the aromatic ring and the double bond are on opposite sides of the molecule, with no possibility of  $\pi$ -stacking (C<sub>1</sub>-C<sub>7</sub> = 4.4 Å; C<sub>2</sub>-C<sub>6</sub> = 6.1 Å) (Figure 5.4). It appears there is some steric interaction between the TMS group and the aromatic ring that could result in the molecule being slightly out of plane. Non-planarity means that the negative charge on the  $\alpha$ -carbon (from deprotonation) will not be effectively delocalized over the pi system (little or no resonance stabilization). The implication of this is that the  $\alpha$ -H in the less reactive anti 44a (dihedral angle  $C_1C_2C_3\alpha H = 11^\circ$ ) will be less acidic than in the reactive syn diastereomer (dihedral angle  $C_1C_2C_3\alpha H$  of 6°). It also would appear

that there is some crowding around the  $\alpha$ -H that could possibly result in the alkyllithium base having less access to that proton.

Reactive syn **44b** (syn with respect to TMS and Me groups). Structure shows possibility of pi stacking and the accessibility ofH $\alpha$  proton to base. Minimum steric interaction illustrated.

Less reactive anti **44a** (anti with respect to TMS and Me groups). TMS and phenyl ring on same face of the molecule. Structureshows no possibility of pi stacking. Steric interaction between TMS and phenyl groups as well as diaxial interaction between Me and  $H\alpha$  are also illustrated.

$$(syn)-44b \\ C_1C_2C_3H\alpha \text{ dihedral angle = 6}^\circ \\ C_2-C_6=4.3 \text{ Å} \\ C_2-C_6=6.1 \text{ Å}$$

Figure 5.4. Modeling studies of the Wittig substrates 44a and 44b

The single crystal x-ray picture of the ester 110b show the two aromatic rings facing each other, a conformation that would promote *pi*-stacking in the molecule, and corroborates the result from the ab initio calculations for the *syn* isomer in the preceding paragraph. However, we were unable to obtain the single crystal x-ray analysis of the less reactive *anti* diastereomer for comparison. Nevertheless, from our NOE and single x-ray analysis results, we can say with certainty that the reactive diastereomer is the *syn* isomer (TMS and alkyl groups on same side of the molecule).

# 5.5. Cross metathesis of $\alpha$ -hydrosilanes and $\alpha$ -alkoxysilanes

We would like to point out from the start that this part of the report has little or nothing to do with the stereochemical requirements of  $\alpha$ -akoxysilanes in the Wittig rearrangement. The opportunity presented itself and we could not let it pass. Following our success with the ring closing metathesis of compounds 51 and 52, we subjected 42 to similar metathesis reaction conditions and we were pleased to observe that this substrate underwent cyclization to afford the expected five-membered cyclic ether 116 in 50-55% yield (Scheme 5.9). The formation of the five-membered ring product, however, was less efficient than the formation of six-membered counterparts 112 and 113 from the cyclization of 51 and 52, respectively (Scheme 5.6, over 95% yield in each case).

Scheme 5.9. Ring closing metathesis of 42

We were encouraged by the above results and we wanted to apply cross metathesis to one of the aims of this research, which was to expand the synthetic utility of  $\alpha$ -alkoxysilanes by developing methods for generating a wide variety of these compounds for use in Wittig rearrangement reactions. Cross-metathesis with the terminal olefin of monosubstituted  $\alpha$ -silyl ethers would generate  $\alpha$ -alkoxysilanes with internal olefins. Several attempts were made at dimerizing our model substrate 7, as well as cross-metathesis of this substrate with a number of partners. Dimerization using first generation Grubbs catalyst (bis(tricyclohexylphosphine) benzylidine ruthenium (IV)

dichloride) did not give the expected dimer 117, instead a non-silylated, heavily chlorinated compound 118 was isolated, the structure of which was elucidated by <sup>1</sup>H NMR, <sup>13</sup>C NMR and DEPT and is as shown in Scheme 5.10.

Scheme 5.10. Attempted Dimerization of model substrate 7

Cross-metathesis of compound 7 with styrene<sup>10</sup> in the presence of second generation Grubbs catalyst (tricyclohexylphosphine[1,3-bis(2,4,6,-trimethylphemyl)-4,5-dihydroimidazol-2-ylidene][benzylidine]ruthenium(IV)dichloride) resulted in the quantitative formation of trans-stilbene. No crossed product **119** was observed (Scheme 5.11).

Scheme 5.11. Cross-Metathesis of model substrate 7 with Styrene

Cross-metathesis of compound 7 with acrylonitrile<sup>11</sup> was also attempted, but no product was observed.

We thought that a good alternative route to  $\alpha$ -alkoxysilanes possessing internal double bonds would be to employ  $\alpha$ -hydroxysilanes 32 in the cross-metathesis reaction to produce new  $\alpha$ -hydroxysilanes featuring internal double bonds, which we could then etherify to obtain the  $\alpha$ -alkoxysilanes. When 32 was treated with first generation Grubbs catalyst (10 mol%, 0.005M in CH<sub>2</sub>Cl<sub>2</sub>, 40-44 °C), the product isolated was identical (<sup>1</sup>H-NMR, <sup>13</sup>C-NMR and GC-MS) to the product (118) isolated from the attempted dimerization of 7 (Scheme 5.12). This time, the formation of the product required less catalyst loading (10 mol%) and shorter reaction time (78 h), than with 7 (35 mol% and 118 h).

The observation that the attempted dimerization of both  $\alpha$ -alkoxysilane 7 and  $\alpha$ -hydroxysilane 32, mediated by the same catalyst, gave the same product, seemed to indicate that the product might be either coming from the catalyst, and since the product is heavily chlorinated (from GC-MS), the solvent,  $CH_2Cl_2$ , might be participating in the reaction.

Scheme 5.12. Metathesis Dimerization of 32

A search of the literature revealed the ability of low-valent ruthenium complexes to catalyze electron transfer reactions is known. <sup>12-16</sup> Ru(II) catalyzes the radical addition of carbon tetrachloride or chloroform to olefins (Kharasch addition reaction). <sup>12</sup> The first report of this reaction employed (Ph<sub>3</sub>P)<sub>2</sub>RuCl<sub>2</sub> as the catalyst. <sup>13</sup> Subsequently Grubbs ruthenium catalyst, <sup>14</sup> Cp\*Ru(Ph<sub>3</sub>P)<sub>2</sub>Cl, <sup>15</sup> and ruthenium-carborane phosphine complexes have been used. <sup>16</sup> For example, Grubbs first generation catalyst has been reported to catalyze the addition of chloroform to styrene to afford the product **121** quantitatively (Scheme 5.13).

Scheme 5.13. Ruthenium Catalyzed Addition of Chloroform to Styrene

In Kharasch addition reaction, the ruthenium acts as the carrier of the halogen in a reversible redox process. Initially, the transition metal species, M<sup>n</sup>, abstracts a halogen atom X from the organic halide, R-X, to form the oxidized species, M<sup>n+1</sup>X, and the carbon-centered radical R\*. Subsequently, the radical, R\*, reacts with alkene with the formation of the intermediate radical species R-R<sub>1</sub>\*. The reaction between M<sup>n+1</sup>X and R-R<sub>1</sub>\* results in the target product R-R<sub>1</sub>-X, and regeneration of the reduced transition-metal species, M<sup>n</sup>, which further reacts with R-X and promotes a new redox cycle (Scheme 5.14).

Scheme 5.14. Mechanism of the Kharasch Addition Reaction

$$R-X + M^{n} \longrightarrow R^{\bullet} + M^{n+1}X \xrightarrow{R_{1}}$$

$$R \longrightarrow R_{1} + M^{n+1}X \longrightarrow R \longrightarrow R_{1}$$

One of the coupling partners we investigated in the cross-metathesis reaction is undec-10-enoic acid ethyl ester. However, this too, did not undergo the desired cross-metathesis. Following our success in the ring closing metathesis of 42, 51, and 52, we decided to lock the two reacting olefins in one molecule and look to effect an RCM of the resulting compound. The requisite substrate 122<sup>17</sup> was prepared in two steps starting from undec-10-enoic acid ethyl ester. Hydrolysis of the ester with 10% NaOH, followed by coupling of the resulting carboxylic acid and 32 afforded the desired ester 122 in 92% yield (Scheme 5.15). However, when this ester was employed in the cross metathesis reaction, the expected reaction failed to occur. A plausible explanation could be the ring size of the expected lactone product. If the intramolecular cross metathesis occurred, the resulting product would be a 13-membered ring lactone, which in our opinion would not be very favorable.

Scheme 5.15. Preparation of undecanoic acid ester of 32

## 5.6. Conclusions

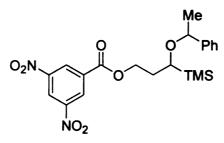
We have been able to establish the relatively stereochemistry of the pair of diastereomeric α-alkoxysilanes undergoing the Wittig rearrangement. The reactive diastereomer has the syn relative stereochemistry ( $\alpha$ -TMS and benzylic alkyl substituent on the same face of the molecule) while the less reactive diastereomer has the anti relative stereochemistry. We could do this as a result of the differential reactivities of a pair of diastereomers which we observed in the course of this research. Under our standard Wittig conditions, the anti diastereomer undergoes the rearrangement while the syn diastereomer does so only very sluggishly, thus affording an efficient tool for separation of the two diastereomers. The difference in the chemical properties between the pair of diastereomers also extends to their reactions with other compounds. In this chapter, we noted that the reactive 44b formed a crystalline hydrazone after eliminating the sec-phenethyl group whereas the less reactive diastereomer formed the expected hydrazone as an amorphous solid. With regard to the formation of 3,5-dinitrobenzoate, the reactive diastereomer (anti stereochemistry) formed a crystalline solid whereas the ester of the less reactive diastereomer (syn stereochemistry) was a clear oil.

We were also able to accomplish the Ru-catalyzed ring closing metathesis of  $\alpha$ -alkoxysilanes using Grubbs catalyst efficiently. This is an important addition to literature considering that such cyclizations are usually difficult to effect under Ru catalysis.

At this point in our study we thought that we were ready to tackle the issue of the mechanism of the Wittig rearrangements of  $\alpha$ -alkoxysilanes. We were particularly interested in the mechanism of the [1,4]-Wittig. As mentioned in Chapter 1 of this dissertation, very little is known about the mechanism of the [1,4]-Wittig rearrangement

of allyl alkyl ethers as this pathway is still beclouded by many controversies. In Chapter 6 we will discuss our results in this regard.

## **EXPERIMENTAL**


Preparation of 105a/b: A 100 mL round-bottomed flask equipped with a magnetic stir bar and a N<sub>2</sub> line was charged with 9-BBN (0.5 M solution in THF, 2.04 mL, 1.02 mmol) and the mixture refluxed. The substrate 44 (671 mg, 2.85 mmol) was then added as a THF solution (0.57 M) and the reaction refluxed at oil bath temperature of 90 °C, for 10 h. Reaction mixture was cooled to 55 to 65 °C and EtOH (2.0 mL), NaOH (6 M, 0.5 mL) and H<sub>2</sub>O<sub>2</sub> (30%, 1.0 mL) added. The reaction was stirred at 55 to 65 °C for 1 h and cooled to room temperature. The aqueous phase was saturated with K<sub>2</sub>CO<sub>3</sub>, phases were separated, organic phase dried over anhydrous K<sub>2</sub>CO<sub>3</sub> and concentrated to afford the crude product. Purification by silica gel (hexanes/EtOAc (0-10%)) gave 702 mg of pure 105a/b in combined 97% yield. IR (neat) 3370, 2955, 2928, 1452, 1371, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.38-7.26 (m, 10H), 4.59-4.53 (q, J = Hz, 1H), 4.39-4.32 (q, J = Hz, 1H), 3.89-3.75 (m, 2H), 3.52-3.44 (m, 2H), 3.20-3.20 (m, 2H), 2.21-2.09 (m, 3H), 1.68-1.59 (m, 5H), 1.43-1.41 (d, 7H), 0.09 (s, 9H), -0.07 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>) δ 143.53, 143.47, 128.5, 128.2, 127.8, 127.5, 126.8, 126.7, 77.9, 76.4, 70.0, 69.0, 62.3, 61.3, 34.6, 33.7, 31.7, 27.4, 23.6, 23.5, 22.6, -2.5, -2.8. Reactive: HRMS (EI) m/z 253.1627 [(M+H)<sup>+</sup>; calcd for C<sub>14</sub>H<sub>25</sub>O<sub>2</sub>Si, 253.1624]. Less reactive anti-105b: IR (neat) 3358, 2955, 2928, 1493, 1452, 1371, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.34-7.22 (m, 5H), 4.58-4.54 (apparent q, J = 6.8, 6.3 Hz, 1H),

3.89-3.84 (m, 1H), 3.80-3.75 (m, 1H), 3.23 (t, J = 5.4, 4.9 Hz, 1H), 2.20-2.12 (m, 1H), 1.67-1.60 (m, 1H), 1.42 (d, J = 6.8 Hz, 3H), -0.7 (s, 9H). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  143.5, 128.2, 127.5, 126.8, 76.4, 70.1, 62.5, 34.6, 31.7, 23.7, -2.8. HRMS (EI) m/z 253.1618 [(M+H)<sup>+</sup>; calcd for C<sub>14</sub>H<sub>25</sub>O<sub>2</sub>Si, 253.1624].

Preaparation of hydrazone 107 and 108: To a cold (-35 to -30 °C) solution of 2,4,6-trichloro[1,3,5]-triazine(cyanuric chloride) (158 mg, 0.86 mmol) in THF, was added DMSO (0.30 mL, 328 mg, 4.20 mmol) and the mixture stirred for 30 min. A 0.1M THF solution of the substrate 105 (181 mg, 0.72 mmol) was added very slowly and the reaction stirred for 30 min. Then TEA (0.48 mL, 345 mg, 3.41 mmol) was added. After stirring for additional 20 min, the reaction was warmed to room temperature. The solvent was removed under vacuum and Et<sub>2</sub>O added to the solid formed. Reaction was quenched by adding HCl (1 M, 2.0 mL). Phases were separated and the organic phase washed with NaHCO<sub>3</sub> (aq, sat), followed by brine, dried over Na<sub>2</sub>SO<sub>4</sub> and the solvent evaporated to yield an aldehyde intermediate, which was treated with an acidic solution of 2,4-dinitrophenylhydrazine to afford 80 mg (25%) of a mixture of hydrazones (yellow amorphous and orange crystals). Recrystallization from EtOAc afforded orange crystals.

**107**: IR (neat) 3287, 2955, 2918, 1618, 1593, 1520, 1335, 1306, 1271, 1072 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  11.02 (s, 1H), 9.11 (d, J = 2.7 Hz, 1H), 8.30-8.27 (dd, J = 9.5, 2.6 Hz, 1H), 7.92-7.89 (d, J = 9.5 Hz, 1H), 7.54 (t, J = 6.0, 5.7 Hz, 1H), 7.34-7.26 (m, 5H), 4.54-4.50 (q, J = 6.6, 6.4 Hz, 1H), 3.24 (t, J = 5.7, 5.5 Hz, 1H), 2.89-2.83 (m, 1H), 2.62-2.56 (m, 1H), 1.39 (d, J = 6.4 Hz, 3H), -0.04. <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  151.5, 130.0, 128.4, 127.7, 126.9, 123.5, 116.4, 76.6, 67.4, 33.5, 24.2, -3.1. HRMS (EI) m/z 431.1749 [(MH)<sup>+</sup>; calcd for  $C_{20}H_{27}N_4O_5Si$ , 431.1751]. (mp 199.5-200.5 °C).

108: IR (neat) 3291, 1618, 1516, 1416. 1371, 1321, 1267, 1080 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  11.10 (s, 1H), 9.11 (d, J = 2.4 Hz, 1H), 8.31-8.29 (dd, J = 10.2, 8.8, 1.9 Hz, 1H), 7.94 (d, J = 9.3 Hz, 1H), 7.72 (d, J = 9.3 Hz, 1H), 6.79-6.73 (dd, J = 19.0, 18.5, 9.3, 8.8 Hz, 1H), 6.52-6.48 (d, J = 18.5 Hz, 1H), 0.15 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  151.0, 146.2, 144.7, 138.9, 130.0, 123.4, 116.7, -1.7. HRMS (EI) m/z 308.0935 [(M)<sup>+</sup>; calcd for C<sub>12</sub>H<sub>16</sub>N<sub>4</sub>O<sub>4</sub>Si, 308.0941]. (mp 129-130 °C)



110a/110b Mixture of diastereomers

Preparation of the ester 110 (mixture of diastereomers): A mixture of the substrate alcohol, 105 (201 mg, 0.80 mmol), 3,5-dinitrobenzoyl chloride (366 mg, 1.59 mmol) in pyridine as solvent, was heated to reflux for 52-55 h. Then the solvent was removed under reduced pressure and the crude product purified by chromatography on silica gel (hexanes/EtOAc (0-10%) to afford 194 mg, 55% of the expected ester 110 as a solid/oil mixture. Separation by crystallization from a 1:1 EtOH/hexane mixed solvent afforded product as colorless crystals. IR 2961 1732, 1630, 1547, 1462, 1344, 1279, 1250, 1167 cm<sup>-1</sup>.

Reactive syn **110b**: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  9.22-9.16 (m, 2H), 8.88 (d, J = 2.2 Hz, 1H), 7.33-6.96 (m, 10H), 4.59-4.46 (m, 3H), 4.37-4.29 (m, 2H), 4.19-4.10 (m, 1H), 3.25-3.20 (dd, J = 8.2, 7.7 Hz, 1H), 3.16-3.13 (apparent t, J = 6.6, 5.0 Hz, 1H), 2.30-2.20 (m, 1H), 2.03-1.95 (m, 1H), 1.90-1.83 (m, 2H), 1.43-1.40 (dd, J = 6.6, 6.0 Hz, 6H), 0.15 (s, 9H), 0.02 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  162.2, 148.4, 143.8, 134.0, 129.2, 128.2, 127.4, 126.7, 122.0, 78.1, 66.7, 64.4, 30.6, 23.6, -2.7. (Mp. 74.5 – 75.5 °C).

Less reactive *anti*-110a: m.p. 74.5-75.5 °C. IR (neat) 2957, 1728, 1630,1543, 1348, 1279, 1246 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  9.17 (t, J = 2.2 Hz, 1H), 8.88 (d, J = 2.2 Hz, 2H), 7.29-6.99 (m, 5H), 4.36-4.29 (m, 2H), 4.18-4.10 (m, 1H), 3.25-3.20 (dd, J = 8.0, 6.0 Hz, 1H), 1.90-1.83 (m, 2H), 1.41 (d, J = 6.3 Hz, 3H), 0.15 (s, 9H). <sup>13</sup>C NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  162.2, 148.4, 143.9, 134.0, 129.2, 128.2, 127.4, 126.7, 122.1, 78.1, 66.7, 64.4, 30.6, 23.6, -2.7. HRMS (Electrospray) m/z 447.1599 [(M+H)<sup>+</sup>; calcd for C<sub>21</sub>H<sub>27</sub>N<sub>2</sub>O<sub>7</sub>Si, 447.1587].

Preparation of ester 111: A solution of less reactive *anti*-105 (128 mg, 0.506 mmol), *N*-(*tert*-butoxycarbonyl)glycine (1.5 equiv, 133 mg, 0.758 mmol), and DMAP (10 mol%, 6 mg, 0.051) in CH<sub>2</sub>Cl<sub>2</sub> 57.0mL) was cooled to 0 °C. Then a solution of DCC (1.5 equiv, 157 mg, 0.758 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL) was added slowly via syringe. Following this addition, the cold bath was removed and reaction warmed to room temperature. Reaction was stirred at room temperature overnight, then filtered to remove the urea by-product. The filtrate was washed with 0.5 M HCl and NaHCO<sub>3</sub> (aq. sat.), and

dried over MgSO<sub>4</sub>. Filtration and removal of solvent in vacuo, and then purification by column chromatography on silica gel afforded 167 mg of *anti*-111 as a thick colorless oil in 81% yield. IR (neat) 3374, 2976, 2932, 1753, 1721, 1512, 1454, 1368, 1250, 1169 cm<sup>-1</sup>. 7.31-7.24 (m, 5H), 5.00 (bs, 1H), 4.45-4.39 (q, J = 12.9, 6.6, 6.3 Hz, 1H), 4.27-4.22 (t, J = 7.4, 7.1 Hz, 2H), 3.90 (d, J = 5.5 Hz, 2H), 3.05-3.01 (t, J = 6.3, 5.5 Hz, 1H), 2.09-1.97 (m, 1H), 1.87-1.76 (m, 1H), 1.44 (s, 9H), 1.37, (d, J = 6.6 Hz, 3H), -0.9 (s, 9H). 170.2, 155.5, 143.8, 128.1, 127.3, 126.7, 80.0, 76.5, 66.5, 63.3, 42.5, 29.6, 28.4, 23.9, -2.9. HRMS (EI) m/z 410.2370 [(M+H)<sup>+</sup>; calcd for C<sub>21</sub>H<sub>35</sub>NO<sub>5</sub>Si, 410.2363].

Preparation of 112: General method F for metathesis reactions. A mixture of less reactive *anti*-51 (89 mg, 0.28 mmol) and Grubbs second generation Ru catatyst (15 mol%, 35 mg, 0.04 mmol) in benzene (2.0 mL, 0.14 M) was heated to 70-77 °C for 10 h. Reaction mixture was allowed to cool to room temperature, concentrated on the rotavap and purified on silica gel to afford 88 mg (0.26 mmol, 94%) of trimethyl-(6-phenyl-5,6-dihydro-2H-pyran-2-yl)-silane, 112. IR (neat) 3069, 3028, 2957, 2920, 1620, 1495, 1452, 1427, 1248, 1113 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 0.40, (s, 3H), 0.42 (s, 3H), 2.11-2.29 (m, 2H), 4.42-4.46 (m, 2H), 5.75-5.96 (m, 2H), 7.23-7.75 (m, 10H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>) δ -5.79, -5.00, 34.10, 71.25, 75.49, 121.46, 125.54, 126.89, 127.59, 127.63, 128.03, 129.14, 134.11, 136.61, 143.76. HRMS (FAB+) *m/z* [(M<sup>†</sup>) 294.1441; calcd for C<sub>19</sub>H<sub>22</sub>OSi, 294.1440].

Preparation of 113: Applying general method F to 162 mg (0.63 mmol) of a 2.64:1 (*cis/trans*) diastereomeric 52 (ratio determined by GC-FID), and 80 mg (15 mol%, 0.094 mmol) of catalyst in 6.0 mL of benzene (0.104 M) at 75-80 °C for 10 h afforded, after silica gel chromatography, 146 mg (quant) of 3.31:1 diastereomeric 113. IR 2957, 2774, 1604, 1493, 14521383, 1248 (neat) cm<sup>-1</sup>.

Less reactive *anti*-113a: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.40-7.23 (m, 5H), 5.85-5.76 (m, 2H), 4.75-4.71 (t, J = 5.7, 5.3 Hz, 1H), 4.04-4.02 (m, 1H), 2.43-2.39 (m, H), 0.1 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  142.0, 128.1, 128.0, 127.1, 126.5, 119.9, 72.3, 70.1, 30.2, -2.8. HRMS (FAB+) m/z [(M-H)<sup>+</sup> 231.1206; calcd for C<sub>14</sub>H<sub>19</sub>OSi, 231.1205].

Reactive syn-113b: <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.36-7.21 (m, 5H), 5.85-5.57 (m, 2H), 4.42-4.37 (dd, J = 9.7, 3.5 Hz, 1H), 4.19-4.15 (m, 1H), 2.28-2.10 (m,2H), 0.09 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.9, 128.02, 127.97, 126.9, 125.5, 121.0, 75.3, 711.6, 34.2, -3.9.

Formation of 114: Allowing a CDCl<sub>3</sub> solution of 113 to sit on the bench for about 7 days resulted in complete conversion to decomposition product 114.<sup>8</sup> IR 2912, 1721, 1495, 1454, 1383, 1248 (neat) cm<sup>-1</sup>. <sup>1</sup>HNMR (CDCl<sub>3</sub>, 500 MHz)  $\delta$  7.41-7.32 (m, 5H), 6.97-6.93 (m, 1H), 6.14-6.11 (ddd, J = 9.9, 2.5, 1.1 Hz, 1H), 5.45-5.42 (dd, J = 11.3,

4.7 Hz, 1H), 2.57-2.69 (m, 2H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  164.2, 145.1, 138.3, 128.6, 128.5, 125.9, 121.4, 79.2, 31.5. HRMS (Methane CI) m/z 174.0680 [(M)<sup>+</sup>; calcd for C<sub>11</sub>H<sub>10</sub>O<sub>2</sub> 174.0681].

Cyclization product 115: Applying representative procedure **F** to 235 mg (0.91 mmol) of **52** and 110 mg (0.130 mmol) of Grubbs second generation Ru catalyst in  $C_6H_6$  in a sealed tube and heating to 80 °C for about 30 h, gave a mixture of 113 and 115 which was readily separable by column chromatography on silica gel (hexanes/EtOAc 0-5%) to afford 94 mg (45%) of **113** and 75 mg (34%) of **115** as colorless oils. **115**: IR (neat) 2959, 1667, 1557, 1497, 1454, 1304, 1250, 1234 1070 (neat) cm<sup>-1</sup>. <sup>1</sup>HNMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  7.41-7.33 (m, 5H), 5.72 (d, J = 1.0 Hz, 1H), 5.33-5.30 (dd, J = 14.6, 3.5 Hz, 1H), 2.81-2.74 (dd, J = 16.8, 14.1 Hz, 1H), 2.64-2.0 (ddd, J = 16.8, 3.5, 1.3 Hz, 1H), 0.21 (s, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  191.7, 185.7, 139.0, 128.7, 128.4, 125.9, 114.1, 80.6, 43.4, -3.02. HRMS (EI) m/z 246.1068 [(M)<sup>+</sup>; calcd for  $C_{14}H_{18}O_{2}Si$ , 246.1076].

Preparation of 116: Applying the above representative method to 325 mg (1.32 mmol) of 42, and 112 mg (0.132 mmol) of catalyst in 7.0 mL of benzene (0.19 M) at 75-78 °C for 36-48 h afforded 198 mg (69%) of the five-membered cyclic ether 116.

116a: A clear oil. IR (neat) 2957, 2929, 1599, 1493, 1449, 1250, 1097 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.39-7.21 (m, 5H), 5.54-5.47 (dd, J = 10.7, 7.7 Hz, 1), 5.14 (t, J = 2.5 Hz, 1H), 3.14-3.04 (ddd, J = 11.0, 2.5 Hz, 1H), 2.59-2.50 (dd, J = 8.0, 7.7, 2.7 Hz, 1H), 0.20 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  162.1, 144.1, 128.3, 127.2, 125.3, 109.9, 82.9, 39.8, -2.1. HRMS (FAB+) m/z [(M+H)<sup>+</sup> 219.1204; calcd for C<sub>13</sub>H<sub>19</sub>OSi, 219.1205].

116b: A shiny white fluffy solid. IR (neat) 2957, 1597, 1495, 1452, 1248, 1072 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.37-7.27 (m, 5H), 6.05-6.01 (dt, J = 6.04, 2.0 Hz, 1H), 5.73-5.70 (dt, J = 7.1, 6.7, 2.2 Hz, 1H), 5.67-5.63 (ddd, J = 3.0, 2.7 Hz, 1H), 4.80-4.75 (ddd, J = 3.9, 2.8, 1.9 Hz, 1H), 0.09 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  137.2, 128.9, 128.3, 127.5, 126.5, 126.4, 88.6, 82.7, -3.7.

#### REFERENCES

- 1. Except in the case of 47 which was obtained in 3.25:1 ratio in favor of the less reactive diastereomer.
- 2. Brown, H. C.; Knights, E. F.; Scouten, C. G. J. Am. Chem. Soc. 1974, 96, 7765-7770.
- 3. De Luca, L; Giacomelli, G; Porcheddu, A. J. Org. Chem. 2001, 66, 7907-7909.
- 4. (a) Karabatsos, G. J.; Graham, J, D.; Vane F. M. J. Am. Chem. Soc. 1962, 84, 753-755. (b) Karabatsos, G. J. Shapiro, B. L.; Vane, F. M.; Fleming, J. S.; Ratka, J. S. J. Am. Chem. Soc. 1963, 85, 2784-2788. (c) Binding N.; Muller, W.; Witting, U. Fresenius J. Anal. Chem. 1996, 356, 315-319 (d) Behforouz, M.; Bolan, J. L.; Flynt, M. S. J. Org. Chem. 1985, 50, 1186-1189.
- 5. Single crystal x-ray analysis was performed by Dr. Rui Huang of the Chemistry Department, Michigan State University.
- 6. John A. Landgrebe, *Theory and Practice in the Organic Laboratory*. Second Edition. D. C. Heath and Company. Lexington, Massachusetts, Toronto. P. 472.
- 7. Brown, H. C.; Ikegami, S.; Vander Jagt, D. L. J. Org. Chem. 1985, 50, 1165-1171.
- 8. (a) Tezuka, K.; Inoue, I. J. Mol. Catalysis A: Chemical 1998, 129, 199-206. (b) Sumida, S.; Ohga, M.; Mitani, J.; Nokami, J. J. Am. Chem. Soc. 2000, 122, 1310-1313. (c) Ghosh, A. K.; Cappiello, J.; Shin, D. Tetrahedron Lett. 1998, 39, 4651-4654.
- 9. Ab initio calculations were performed by Courtney Olmstead; Chemistry Department, Michigan State University.
- 10. Crowe, W. E.; Zhang, Z. J. J. Am. Chem. Soc. 1993, 115, 10998-10999.
- 11. Crowe, W. E.; Goldberg, D. R. J. Am. Chem. Soc. 1995, 117, 5162-5163.
- 12. Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067-2096.
- 13. (a) Bland, W. J.; Davis, R.; Durrant, J. L. A.; J. Organometal. Chem. 1985, 280, 397. (b) Matsumoto, H.; Naleano, T.; Takasu, K.; Nagai, Y. J. Org. Chem. 1978, 43, 1734. (c) Matsumoto, H.; Nikaido, T.; Nagai, Y. Tetrahedron Lett. 1975, 899. d) Matsumoto, H.; Nikaido, T.; Nagai, Y. Tetrahedron Lett. 1973, 5147.
- 14. (a) Tallarico, J. A.; Malnick, L. M.; Snapper, M. L. N. J. Org. Chem. 1999, 64, 343. (b) Simal, F.; Dempnceau, A.; Noels, A. F. Tetrahedron Lett. 1999, 40, 5689.
- 15. Simal, F.; Wlodarczk, L.; Demonceau, A. Tetrahedron Lett. 2000, 41, 6071.

16. Simal, F.; Sebille, S.; Demonceau, A.; Noels, A. F.; Nunez, R.; Abad, M.; Teixidon, F.; Vinas, C. Tetrahedron Lett. 2000, 41, 5347.

## CHAPTER 6

# ON THE MECHANISM OF [1,4]-WITTIG REARRANGEMENT OF α-ALKOXYSILANES

# 6.1. Trapping of Carbanion of model substrate 7

In Chapter 2 of this dissertation we showed that the Wittig rearrangement of  $\alpha$ -alkoxysilane 7 was initiated by deprotonation of the  $\alpha$ -proton with alkyllithium bases. Thus we asked if deprotonation was concurrent with rearrangement? If the two events were not concurrent, the next question would be if it were possible to hold the intermediate carbanion 123 (Scheme 6.1) long enough to trap it with an electrophile?

Scheme 6.1. Generating and trapping the carbanion of model substrate 7

To answer the question of whether or not deprotonation and rearrangement of  $\alpha$ -alkoxysilanes are concurrent or separate events we searched the literature for precedence. We found that in 1989 Schlosser and Strunk<sup>1</sup> had reported experimental conditions that allow virtually quantitative metalation of allyl ethers without simultaneous [1,2] and [1,4] rearrangements. This involved generating organometallic intermediates 124 [M = Li] with sec-BuLi in THF at -75 °C for 1 h, and trapping with TMSCl (addition of TMSCl at

-75 °C and allowing to warm to 25 °C for 1 h) to afford alkyl 3-trimethylsilyl-1-propenyl ethers with high yields (Scheme 6.2). They also reported that when the solutions containing intermediate 124 were stored 2 h at -25 °C before being acidified, no allyl or propenyl ethers remained. However in these cases only small quantities of the putative product aldehydes or alcohols were detected. Moreover many attempts to improve the mass balance failed.

Scheme 6.2. Trapping of carbanion of allyl ethers by Schlosser and Strunk<sup>1</sup>

Taking a lead from the above named authors, we decided to employ TMSCl as our electrophile. However, the rearrangement of 7 at -78 °C was very facile, being complete in about 30 min, and attempted trapping only afforded 8. We were able to get around this problem by initiating the Wittig rearrangement reaction in the presence of the electrophile (Scheme 6.3). Thus, treatment of a cold (-78 °C) mixture of 7, and TMSCl (2.0 equiv)/TEA (2.0 equiv) with *sec*-BuLi (2.0 equiv; very slow addition), stirring at this temperature for 1 h, followed by an aqueous workup, resulted in the formation of three products. The ratio of these products depended on the mode of addition of the base.

Slow addition of base (1.0 mL/70 min) gave a very clean reaction that resulted in the formation of a single product 125 in 55% yield (Scheme 6.3). Formation of the observed product could be rationalized as arising from  $\alpha$ -deprotonation leading to a

resonance-stabilized allylic anion, followed by selective capture of the electrophile at the less hindered carbon (second reaction of Scheme 6.3).

Scheme 6.3. Deprotonation and Trapping of carbanion of 7

More rapid addition of base (approximately 1.0 mL/35 min) resulted in the formation of a mixture of three compounds, 125, 126, and 127 in a combined 66% yield, with 125 as the major product. However, fast addition of the base (beyond 1.0 mL/35 min) under similar reaction conditions led to the formation of a mixture of three compounds, with 127 as the major product, followed by 126. It is likely that on slow addition of base, compound 125 is formed initially, and subsequently undergoes further deprotonation to afford 126 and 127 (Scheme 6.3). Once 125 is formed, there seems to be competition for the removal of protons Hb and Hc (refer to Scheme 6.4). Compound 126 could result from two pathways (Scheme 6.4): (1) selective removal of Hc followed by silylation (path a) or (2) selective removal of Hb, [1,5]-Hc migration, perhaps promoted by the ability of the two silyl groups to stabilize the resulting anion followed by silylation (path b). It should be noted that formation of a dianion from 125 is a possibility

that we are not ruling out at this time. However, generation of a dianion would result in the formation of a tetrasilylated product 128, which was not observed (Scheme 6.4).

Scheme 6.4. Plausible fate of compound 125

The selective formation of 127 following fast addition of base prompted us to propose the intermediacy of a dianionic species 130, which could be generated if  $k_1 > k_2$ . Also as shown in Scheme 6.5, compound 127 could result from two possible pathways both of which could be operative at the same time. Compounds 126 and 127 were unexpected, but helped shed some light on the deprotonation process and that was the possibility of dianion formation. Dianion formation could account for the problems we had earlier in this study, which was non-reproducibility of the Wittig rearrangement results of our model substrate 7 when the study was carried out with excess of base (in this case MeLi).

We ran a parallel control experiment consisting of 7, TMSCl (4.0 eq)/TEA (4.0 eq), THF, -78 °C, but excluding *sec*-BuLi, and no reaction occurred, ruling out the possibility that TEA might, in anyway, be involved/aiding the initiation of the Wittig rearrangement reaction.

Scheme 6.5. Plausible pathway for the observed products

In all the above experiments, Wittig products were not evident. In addition, the complete absence of rearranged products suggests that at low temperatures, rearrangement was not fast enough to compete with electrophile capture, thus permitting trapping of the deprotonated species before it can rearrange. This observation could be interpreted to imply that the breaking of the O–C bond is the slow (rate limiting) step in this reaction. This experiment was conclusive evidence that in the Wittig rearrangement of our model substrate, α-deprotonation and cleavage of C–O bond, and hence rearrangement, are not concurrent events.

A pertinent question at this point then became<sup>2</sup> "could rearrangement compete favorably with electrophilic trapping at elevated temperatures?" The above experiment

was repeated at room temperature, and resulted in the formation of all three compounds 125, 126, and 127, in addition to the [1,4]-, [1,2]-products (8, 9), and vinylsilyl ether 22 resulting from the electrophilic trapping of the enolate from the [1,4]-Wittig pathway (Scheme 6.6). From these results, it was apparent that at room temperature, the breaking of the O-C bond was more facile, and Wittig rearrangement of 7 competes favorably with electrophilic capture of the intermediate carbanion. The structures of these compounds were assigned based on data from <sup>1</sup>H NMR, <sup>13</sup>C NMR, HRMS, and DEPT.

Scheme 6.6. Room temperature electrophilic trapping of carbanion of 7

## 6.2. Trapping of the carbanion of compound 40

We wanted to obtain further evidence in support of our results which showed that deprotonation and bond reorganization of  $\alpha$ -alkoxysilanes were separate events. Compound 40 was employed for this purpose. Compound 40 was generated during our attempt to prepare  $\alpha$ -(trimethylsilyl)-allyl butyl ether via the TMSOTf-mediated etherification of  $\alpha$ -hydroxysilane 32 with the trichloroacetimidate of butyl alcohol (Scheme 4.8). Even though its formation was unexpected, 40 nevertheless is a potential

Wittig substrate. Considering the unique nature of **40**, there is the question of the relative acidities of protons Ha and Hb (Scheme 6.7), and of selective deprotonation by a base, or whether, in fact, both protons could be removed simultaneously.

Scheme 6.7. Attempted Wittig rearrangement reaction of 40

The rearrangement of 40 under our conditions was sluggish, even at room temperature and produced a complex mixture of products (from <sup>1</sup>H NMR). The sluggishness of 40 to undergo the Wittig rearrangement may be due to the stabilization of the resulting carbanion. We sought to understand the nature of the species undergoing the rearrangement by trapping the carbanion with a suitable electrophile. Thus, treatment of a cold (-78 °C) mixture of 40, TMSCl, and TEA in THF under N<sub>2</sub> atmosphere with s-BuLi, for 2 h afforded compounds 131 and 132 (1:3.44), which were isolated in a combined 86% yield after column chromatography on AgNO<sub>3</sub>-impregnated silica gel<sup>3</sup> (Scheme 6.8). This result reveals that 40 undergoes deprotonation under our Wittig conditions; however, the event is not accompanied by concomitant bond reorganization. This result thus provided further evidence that deprotonation and C-O bond breaking are separate events.

Scheme 6.8. Electrophilic trapping of the carbanion of 40

The formation of the two observed products 131 and 132 could be explained in two ways: (1) stepwise deprotonation-electrophilic trapping process and (2) formation of a dianionic species, followed by electrophilic attack (Scheme 6.9). Both routes are possible; however, dianion formation (Figure 6.1) would explain the inability of this particular compound to undergo the Wittig rearrangement reaction readily. We speculate that formation of a dianionic intermediate, which is resonance stabilized, would very likely suffer from a high-energy demand for the breaking of the O-C bond following deprotonation.

Scheme 6.9. Plausible explanation for the formation of 131 and 132 from 40

Figure 6.1. Formation of dianion 138 from compoun 40

# 6.3. Stereochemistry of the [1,4]-Wittig rearrangement of $\alpha$ -alkoxysilyl ethers

Having established that deprotonation and bond reorganization are not concurrent but separate events in the Wittig rearrangement of  $\alpha$ -alkoxysilanes, we then addressed the next question regarding the mechanism of the [1,4]-Wittig, which was "does the [1,4]-

Wittig rearrangement of  $\alpha$ -alkoxysilanes occur with retention or inversion of configuration at the migrating center?" Answering this question would require a substrate bearing a stereodefined migrating center which could be accessed via an enantiomerically pure  $\alpha$ -hydroxysilane.

Scheme 6.10. Preparation of  $\alpha$ -alkoxysilanes bearing substituent at the migrating carbon

We already determined that the coupling of a racemic  $\alpha$ -hydroxysilane and the trichloroacetimidate of a secondary alcohol produces a set of diastereomers in an approximate ratio of 1:1 to 1:1.3 in favor of the less reactive *anti* isomer (Scheme 6.10). In theory, employing an enantiopure  $\alpha$ -hydroxysilane, for instance (S)-32, and a racemic trichloroacetimidate would result in only one pair of optically active diastereomers (S,S and S,R) (Scheme 6.11). During our earlier studies, if R = Et, Pr, *i*-Pr, or allyl the two diastereomers were separable by column chromatography on silica gel. Thus we could access enantiomerically pure substrate either by employing enantiomerically pure starting materials (alcohol and acetimidate) or an enantiopure  $\alpha$ -hydroxysilane and a racemic trichloroacetimidate. Each of these two routes would in principle result in only one pair of optically active  $\alpha$ -alkoxysilanes (Scheme 6.11).

Scheme 6.11. Preparation of α-alkoxysilanes from enantiopure starting materials

# 6.4. Efforts towards accessing enantiopure Wittig substrate for mechanistic studies

### 6.1.2.1. Exploratory ventures into accessing enantiopure $\alpha$ -hydroxysilanes

We explored a number of routes to access enantiomerically pure  $\alpha$ -hydroxysilanes. Kells et al<sup>4</sup> reported the successful resolution of  $\alpha$ -hydroxystannanes via norephedrine carbamates in a two-phase acetonitrile-hexanes solvent system. In this case,  $\alpha$ -hydroxystannanes were converted into mixed carbonates with *p*-nitrophenyl chloroformate. Treatment with norephedrine then afforded the carbamates which were converted back to  $\alpha$ -hydroxystannane by reduction with AlH<sub>3</sub>.

We carried out a model study to determine the compatibility of the trimethylsilyl group with the above procedure. In doing so we substituted ethylchloroformate for p-nitrophenylchloroformate. Thus, stirring a mixture of  $\alpha$ -hydroxysilane 34, ethylchloroformate, and pyridine in hexane/acetonitrile at 0 °C for 2 h, and then quenching with water, afforded the carbonate derivative 139. The first step of this reaction proceeded well (Scheme 6.12). However, the subsequent step, which involves

the replacement of the carbonate functionality with a carbamate, did not proceed, and only 139 was recovered.

Scheme 6.12. Attempted kinetic resolution of α-hydroxysilane 34 by Kells' protocol<sup>4</sup>

The failure of the second step may be due to the poor leaving ability of the ethoxide group. To overcome this problem *p*-nitrophenyl chloroformate was employed in step one of the reaction, affording the mixed carbonate 141 as a dirty white solid after 45 minutes. A mixture of this crude carbonate 141, (1S,2R)-(+)-norephedrine, and diisopropyl amine, in hexane/acetonitrile (1:1 v/v) was stirred at room temperature for 24 h, followed by aqueous workup to give 140 (Shemen 6.12) as an inseparable mixture of diastereomers (Scheme 6.12). The difficulty in separation forced us to abandon this route.

Next we explored the possibility of employing an elimination reaction to install the terminal double bond in  $\alpha$ -hydroxysilanes. We reasoned that elimination of a

suitably derivatized diol **143** could lead to the desired alcohol (Scheme 6.13). Compound **143** could be derived from the epoxy alcohol (glycidol) **142**, which would come from the epoxidation of *E*-3-trimethylsilanyl-prop-2-en-1-ol. Thus, silylation of propargyl alcohol (2.0 equiv *n*-BuLi, Et<sub>2</sub>O, -20 °C, 2.2 equiv TMSCl, H<sub>2</sub>O/AcOH), followed by reduction of the triple bond with Red-Al afforded the requisite allyl alcohol, *E*-3-trimethylsilanyl-prop-2-en-1-ol<sup>5</sup>. Epoxidation of this was readily accomplished by reacting the alcohol with 2.0 equiv of *m*CPBA in CH<sub>2</sub>Cl<sub>2</sub> to obtain the glycidol in 66% yield (Scheme 6.13).

Scheme 6.13. Epoxidation of E-3-trimethylsilanyl-prop-2-en-1-ol with mCPBA

We then explored conditions for selective opening of the epoxide to furnish the desired diol 143. Red-Al has been reported to react with epoxy cinnamyl alcohol in dimethylethane, and open the epoxide from the less hindered side to furnish the corresponding 1,3-diol.<sup>6</sup> However, when a DME solution of glycidol 142 was treated with 1.05 equiv of Red-Al at 0-25 °C for 4.5 h, 1,2-diol 144 was obtained in 60% yield (Scheme 6.14). The expected 1,3-diol was not observed under this reaction condition. Interestingly, an entirely different result was obtained with LiB(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>H (superhydride). Treatment of a THF solution of 142 with 2.0 equiv of superhydride at room temperature for 1 h, resulted in the opening of the epoxide from the less hindered side to afford the desired 1,3-diol 143 in 91% yield (Scheme 6.14). The next step was tosylation of the

primary hydroxyl group of diol 143. However, selective tosylation was not achieved (Scheme 6.15) and we did not pursue this procedure any further.

Scheme 6.14. Regioselective opening of epoxide 142

Scheme 6.15. Proposed derivatization and elimination reactions of 143

The conversion of glycidols to allyl alcohols bearing terminal olefins by Ti  $(IV)(C_5H_5)_2Cl_2/Zn/ZnCl_2$  has been reported in the literature.<sup>7</sup> This process involves the Ti(IV) induced homolysis of the C—O bond of a 2,3-epoxy alcohol, with deoxygenation occurring exclusively from the least substituted carbon end to produce terminal alkenic alcohol in high yield. However, when this protocol was adapted to glycidol **142** (Scheme 6.16), the expected product was not obtained.

Scheme 6.16. Attempted conversion of 142 to 32 mediated by Ti(IV) system

TMS
OH
$$\frac{(C_5H_5)_2Ti^{IV}Cl_2 (1.2 \text{ equiv})}{Zn \text{ dust (5 equiv)}}$$

$$\frac{Zn \text{ dust (5 equiv)}}{ZnCl_2 (1.2 \text{ equiv})}$$

$$\frac{ZnCl_2 (1.2 \text{ equiv})}{THF, \text{ rt, overnight, 2 h}}$$

$$\frac{32 (0\%)}{32}$$

Also documented in the literature<sup>8</sup> is the finding that the telluride ion (generated by in situ reduction of elemental Te by sodium hydroxymethanesulfinate dihydrate (Rongalite) or by NaBH<sub>4</sub>) can mediate the transposition of a primary allylic alcohol to a tertiary homochiral allylic alcohol via the tosylate ester of a homochiral glycidol obtained by the Sharpless asymmetric epoxidation (Scheme 6.17). The site of attack of the tellurium ion is at the carbon atom of a primary tosylate. The authors of this report also reported successful application of this protocol to a terminal allylic alcohol<sup>8</sup> via the mesylate of the glycidol (Scheme 6.18)

Scheme 6.17. Telluride mediated double bond transposition in primary allylic alcohols

Scheme 6.18. Telluride mediated double bond transposition in secondary allylic alcohols

In adapting the above protocol, the telluride ion<sup>9</sup> was first preformed by reacting 2 equiv of Te (200 mesh) and 4 equiv of NaBH<sub>4</sub> in DMF at 70-80 °C for 30 min. The glycidyl tosylate **148** reacted readily with the preformed telluride complex at room temperature. Sampling after 2 h revealed the complete absence of the starting tosylate (Scheme 6.19). However, upon quenching (exposure to air, followed by treatment with a few drops of H<sub>2</sub>O<sub>2</sub> to to oxidize the telluride) and aqueous work up, no product was isolated.

Scheme 6.19. Attempted preparation of **32** via telluride ion mediated reduction of glycidyl tosylate

## 6.5. Accessing enantiopure $\alpha$ -hydroxysilane 33

So far, our efforts toward accessing enantiopure  $\alpha$ -hydroxysilane 32 had proved unsuccessful. In prior studies on asymmetric reductions of acylsilanes with chiral borane reagents, \$^{10,11,12}\$ high enantiomeric purities (95% ee or better) were obtained with substrates in which the  $\alpha$ -carbon bore a phenyl ring or saturated alkyl groups.  $\alpha,\beta$ -Unsaturated acylsilanes were reduced effectively provided they contain bulky groups on silicon. However  $\alpha,\beta$ -unsaturated acylsilanes with small groups on silicon afforded alcohols with lower enantiomeric purity (80-89% ee).  $^{9,10,11}$  Such trends are evident in the work of Buynak and coworkers,  $^{10}$  who explored the reduction of acylsilanes by (-)-Ipc<sub>2</sub>BCl.  $^{14}$  Their results are shown in Table 6.1 below (Table 6.1, compare entries 4 and 8 to entries 6, 7 and 9).  $\alpha$ -Silyl allyl alcohols bearing a TMS group are clearly missing from Table 6.1.

Nonetheless we were happy to find that alcohol 33 was one of the  $\alpha$ -hydroxysilanes formed by Buynak (Table 6.1, entry 7). Although its enantiomeric excess was not very high, it afforded us a starting point for our work. Buynak reported making the  $\alpha$ -hydroxysilane 33 in 35% yield via a sequence of reactions involving synthesis, silylation, and finally acid hydrolysis of allenyl ether 152 to give the  $\alpha$ ,  $\beta$ -unsaturated acylsilane 153, which was subsequently subjected to asymmetric reduction of (Scheme 6.20).

Table 6.1. Buynak's asymmetric reductions of acylsilanes using (-)-Ipc<sub>2</sub>BCl<sup>10</sup>

We needed alcohol 33 as a substrate in our work, thus we wanted to repeat Buynak's protocol. We prepared 1-(1-ethoxy-ethoxy)-propa-1,2-diene 149 by stirring a cold (0 °C) mixture of propargyl alcohol and vinyl ether in the presence of p-toluenesulfonic acid (pTSA) under an atmosphere of N<sub>2</sub> for 30 min. After quenching with a saturated solution of  $K_2CO_3$ , phase separation and distillation of the crude product under reduced pressure gave the compound 149 in 60% yield. Silylation of 149 with chloromethyldiphenylsilane (Ph<sub>2</sub>MeSiCl) was carried out in the presence of radical inhibitor BHT (1.5 mg/mmol substrate)<sup>16</sup> and quantitatively afforded the expected product 150 as a thick brown oil. However, acid hydrolysis of 150 with 2N H<sub>2</sub>SO<sub>4</sub> failed to give the expected  $\alpha$ , $\beta$ -unsaturated  $\alpha$ -silyl ketone. Instead, the  $\alpha$ -silylallenyl alcohol

151 was isolated quantitatively (Scheme 6.20) (IR (neat) 3323 cm<sup>-1</sup> HO–C=•=C and 2178 cm<sup>-1</sup> C=•=C). Compound 151 was subjected to chromatography on silica gel with the expectation of possible isomerization to the  $\alpha,\beta$ -unsaturated carbonyl isomer. However, no isomerization was observed and we recorded over 90% recovery of the pure compound.<sup>13</sup>

Scheme 6.20. Attempted preparation of  $\alpha$ ,  $\beta$ -unsaturated  $\alpha$ -silyl ketone 153-a repeat of Buynak's protocol

An attempt was also made at silylating the 1-(1-ethoxy-ethoxy)-propa-1,2-diene 149 with chlorodimethylphenylsilane. However, like the above case, acid hydrolysis of 152 failed to afford the desired  $\alpha,\beta$ -unsaturated  $\alpha$ -silyl ketone 153 (Scheme 6.20). The reaction of Scheme 6.20 afforded the 1-(dimethylphenylsilanyl)-propa-1,2-dien-1-ol, 154,

in over 70% yield after purification by silica gel chromatography. The structures of these compounds were elucidated by NMR (<sup>1</sup>H and <sup>13</sup>C), DEPT, and IR data.

With no success from the above route, we next considered making racemic α-hydroxysilane 33, oxidizing the racemic alcohol to the acylsilane 153 and subsequently carrying out asymmetric reduction of acylsilane 153 to obtain the requisite chiral 33. We explored several methods to oxidize alcohol 33. DeLuca's protocol, <sup>17</sup> which involves the use of cyanuric acid (TCT) in the activation of DMSO (Scheme 6.21) was first attempted. However, this route afforded the desired enone 153 in only 6% yield, accompanied by other by-products including 155 which was obtained in 17% yield.

Scheme 6.21. Oxidation of  $\alpha$ -hydroxysilane 33 via the DeLuca protocol

 $\alpha$ -Silyl alcohols have been shown to undergo facile Swern oxidation to afford the corresponding enones in good to excellent yields. However, Swern oxidation was not our first choice method because of concern over how the phenyldimethylsilyl group would behave under such conditions. Despite these reservations, our lack of progress in this endeavor prompted us to take  $\alpha$ -hydroxysilane 33 through the typical Swern reaction. Disappointingly this resulted in the formation of  $\alpha$ -chloro- $\alpha$ ,  $\beta$ -unsaturated acyl silane 156 (22%) accompanied by some disilyl ether (PhMe<sub>2</sub>Si)<sub>2</sub>O (6%). No trace of the desired product 153 was observed (Scheme 6.22).  $\alpha$ -Chlorination during Swern oxidation is documented in the literature. Smith and Leenay<sup>20</sup> and Kende and co-

workers<sup>21</sup> have independently reported observing  $\alpha$ -chlorination during the Swern oxidation of secondary alcohols.

Scheme 6.22. Swern oxidation of racemic  $\alpha$ -hydroxysilane 33

#### (a) Reaction was accompanied by formation of (PhMe<sub>2</sub>Si)<sub>2</sub>O obtained in 6% yield

While the  $\alpha$ -chlorination product posed a problem, we were somewhat encouraged by the fact that the oxidation did take place. Thus we decided to study the reaction conditions further in an effort to make the desired alcohol without the adventitious chlorination. Our results are summarized in Scheme 6.22. We were pleased to observe that by simply varying the reaction temperature from -78 to -55 °C, the above procedure afforded a 3:1 mixture of the desired product and the  $\alpha$ -chlorinated acylsilane in 77% yield. We obtained our best result, combined 91% yield of **153** and **156**, and 10:1 ratio in favor of the desired acylsilane, by carrying out the Swern oxidation at -50 °C.

We also explored other oxidation methods, including use of PCC,<sup>22</sup> IBX,<sup>23</sup> and chemical  $MnO_2^{24}$  (Scheme 6.23). The generally observed pattern with all these reagents was that the substrate got completely consumed, but that the only isolable product was  $PhMe_2SiOSiMe_2Ph$ .

Scheme 6.23. Attempted oxidation of  $\alpha$ -hydroxysilane 33 via other routes

#### 6.6. Asymmetric reduction of acylsilane

Reduction of  $\alpha,\beta$ -unsaturated acylsilane 153 was achieved (-)-Ipc<sub>2</sub>BCl by applying literature procedure<sup>10</sup> (treatment of an approximately 0.34 M solution of the acylsilane in THF (at -35°) with 1.1 equiv of (-)-Ipc<sub>2</sub>BCl). The downside to this method is the very low yield associated with it. Buynak<sup>10</sup> reported a 25% yield of alcohol (*R*)-33 (83% ee). We obtained the desired alcohol 33 in 39% yield (Scheme 6.24). The alcohol was converted to its MPA ester<sup>25</sup> and the diastereomeric excess (84% de) was established by <sup>1</sup>H NMR.

Although the level of enantiomeric purity of the (-)-Ipc<sub>2</sub>BCl reduction was lower than we would have liked for our mechanistic study, it was good enough for us to investigate the etherification of enantioenriched  $\alpha$ -hydroxysilane with enantioenriched trichloroacetimidate.

Scheme 6.24. Preparation of enantioenriched 45

The TMSOTf catalyzed etherification of (R)-(-)-33 with the (S)-(-)-benzyl trichloroacetimidate<sup>26</sup> afforded a 1:1.45 mixture of diastereomeric ethers 45 (Scheme 6.24). At this point, it was clear to us that all we needed was enantiopure  $\alpha$ -hydroxysilane and we could access both diastereomers of  $\alpha$ -alkoxysilane in optically pure form.

### 6.7. Kinetic resolution of $\alpha$ -hydroxysilane 32 by *Lipase*

The problems associated with the Swern oxidation of 33 and the low enantiomeric purity offered by the asymmetric reduction of same made us look for alternative routes to the enantioenriched Wittig substrates. This search took on a particular urgency given the yet to be resolved problem of reducing  $\alpha,\beta$ -unsaturated acylsilane where the silicon bears non-bulky groups such as Me, Et, and Pr.

As part of this search we considered kinetic resolution of 32. Most of the work on kinetic resolution of  $\alpha$ -silyl alcohols has been done with  $\alpha$ -silyl benzyl alcohol, and  $\alpha$ -

silvl allyl alcohols in which the silicon bears bulky groups such as t-Bu, Ph, and i-Pr. 10 In addition, Lipase-mediated resolutions of secondary propargyl alcohols bearing silyl substituents leading to high enantiomeric purity are documented in the literature.<sup>27</sup> Even though the substrates in these previous studies are significantly different from ours, we thought that kinetic resolution was worth investigating since this would offer a useful route to the less studied  $\alpha$ -silvl alcohols. We investigated the enzymatic resolution of  $\alpha$ hydroxysilane 32 under various conditions (enzyme loading, acylating agent, and temperature). The process involves stirring a mixture of the substrate alcohol, the enzyme, vinyl acetate and 3Å MS in pentane, and monitoring the reaction by chiral GC. Our results are summarized in Table 6.2 below. From Table 6.2, it is clear that Amano AK Lipase effectively resolves  $\alpha$ -hydroxysilane 32 with synthetically useful levels of enantiomeric differentiation. In the course of this study, we established that 1.0 wt. equiv of Amano AK Lipase was optimal, and anything beyond this did not afford any advantage. For instance, use of 2.0 wt. equiv of the enzyme under similar conditions gave 81-83% ee at best. Temperature is a very important factor in this process. The reaction is facile at elevated temperatures (33 h at 35-38 °C). It is worth noting that when this reaction was run neat, it was slower than when run in solvent.

Table 6.2. Lipase resolution of  $\alpha$ -hydroxysilane 32

Two other enzymes, Amano PS Lipase and Novozym 435, were also investigated in the kinetic resolution of 32 (Table 6.3). Amano PS Lipase (1.0 wt equiv of Lipase, 5.0 equiv of vinyl acetate, pentane 3 Å MS, rt, 168 h) afforded the desired acetate of 96% ee. Novozym 435 proved to be the best of the three enzymes investigated. Employing 0.015 g of Novozym 435 per mmol of alcohol (5.0 equiv of vinyl acetate, 27 pentane 3Å MS, rt, 168 h) gave acetic acid 1-trimethylsilanyl-allyl ester of 98% ee (Table 6.3). It was observed that very long reaction time is detrimental to the level of enantiomeric excess of the resulting acetate, and secondly, we determined that the use of a large excess of vinyl acetate is not necessary in the reaction. Thus, carrying out this reaction at elevated temperatures (35-38 °C), employing 1.5 equiv of vinyl acetate afforded the desired acetate 157 in 30% yield and 98-99% ee after 33 h (Table 6.3). The enriched alcohol was recovered in 33% yield. On the other hand, employing only 0.01 g of Novozym 435/mmol alcohol afforded similar results in terms of enantiomeric excess (99% ee), but

the reaction required 84 h, and product yield was 26%, and the enriched alcohol was obtained in 24% yield after chromatographic separation on silica gel.

Table 6.3. Kinetic resolution α-hydroxysilane **32** by *Amano PS Lipase* and *Novozym 435* 

With the requisite chiral acetate 157 in hand, we turned our attention to finding procedures for its hydrolysis to obtain the desired chiral alcohol. The results of this investigation are summarized in Table 6.4 below. A variety of reagents were investigated for the hydrolysis. Many of these led to erosion of enantiomeric excess (Table 6.4, entries 1-6). A look at Table 6.4 reveals DIBALH as the reagent of choice, and the best conditions for the hydrolysis of the silyl acetate to be 1.05 to 1.1 equiv of DIBALH, hexane, -78 °C, 2 h 20 min. (entries 8 and 9). Beyond 3 h reaction times erosion of enantiomeric excess was observed (entry 10), and it is also worth mentioning that use of excess DIBALH resulted in erosion of % ee of the resulting alcohol (entry 11; 3.15 equiv of DIBALH, hexane, -78 °C; 86% ee).

Table 6.4. Hydrolysis of acetic acid 1-trimethylsilyl ester 157

reagent

|       | OAc                                   |       | solvent                         |           | OH<br>. I         |             |           |
|-------|---------------------------------------|-------|---------------------------------|-----------|-------------------|-------------|-----------|
|       | TMS<br>(S)-(-)- <b>157</b><br>98% ee) |       | temperature<br>time             |           | TMS<br>(S)-(-)-32 |             |           |
| Entry | Reagent                               | Equiv | Solvent                         | T (°C)    | Time (h)          | % ee \      | /ield (%) |
| 1     | K <sub>2</sub> CO <sub>3</sub>        | 5     | MeOH                            | 20        | 4                 | 85          | а         |
| 2     | LiOH                                  | 5     | MeOH-H <sub>2</sub> O           | 20        | 5                 | 85          | а         |
| 3     | LAH                                   | 1.2   | Ether                           | reflux    | 2                 | 80          | а         |
| 4     | $LiBH(C_2H_5)_3$                      | 2     | THF                             | 0         | 2                 | Inconclusiv | e a       |
| 5     | Red-Al                                | 1.05  | THF                             | 0 to rt   | 1.75              | 81          | а         |
| 6     | LiAIH(Ot-Bu) <sub>3</sub>             | 1.05  | THF                             | -78 to rt | 48                | 87          | а         |
| 7     | DIBALH                                | 1.1   | CH <sub>2</sub> Cl <sub>2</sub> | -78       | 3                 | 84          | а         |
| 8     | DIBALH                                | 1.05  | Hexane                          | -78       | 2.5               | 98          | 82        |
| 9     | DIBALH                                | 1.1   | Hexane                          | -78       | 2.33              | 98          | 90        |
| 10    | DIBALH                                | 1.2   | Hexane                          | -78       | 5                 | 94          | b         |
| 11    | DIBALH                                | 1.5   | Hexane                          | -78       | 20                | 94          | b         |

a. The experiments in entries 1 through 7 were qualitative in nature and the yields were not determined

#### 6.8. Stereochemistry of the Wittig products.

Compound (S)-(-)-32 was employed in the preparation of desired diastereopure substrate (S,R)-48. TMSOTf-mediated etherification of enantiomerically pure (S)-(-)-32 with the trichloroacetimidate of *sec*-phenylpropyl alcohol afforded a 1:1 mixture of (S,R)-48 and (S,S)-48, which were readily separable by column chromatography on silica gel. The reactive isomer (S,R)-48, on treatment with 1.5 equiv of n-BuLi in THF at -78 °C

b. The experiments in entries 10 and 11 were carried out to determine the effect of long reaction time on the enantiomeric excess of the chiral alcohol product

overnight, afforded the Wittig products, which were separated by column chromatography on silica gel. We had earlier determined that the racemic [1,4]-Wittig product *rac-82* (Table 4.2, entry 7) was not resolvable by chiral GC and chiral HPLC. However, we were pleased to observe that after oxidation of the acylsilane (Scheme 6.25), the resulting carboxylic acid 158 was resolvable by chiral HPLC.<sup>28</sup>

Scheme 6.25. Conversion of the [1,4]-Wittig product 82 into 3-Phenyl-pentanoic acid

We also subjected the less reactive anti diastereomer (S,S)-48 to our Wittig conditions, and the reaction took about 3 days at -10 to 5 °C to go to completion. The [1,4]-product from this reaction was also converted into the corresponding carboxylic acid and analyzed by chiral HPLC.

For reference, we accessed the [1,4]-Wittig product via an independent route starting from L-(-)-ephedrine (Scheme 6.26). The reaction of L-(-)-ephedrine and transcinnammoyl chloride in the presence of Proton Sponge® followed by treatment of the resulting amide with EtMgBr in ether, afforded the corresponding adduct via 1,4-conjugate addition of the Grignard reagent to the amide. Mukaiyama<sup>29</sup> has presented a plausible mechanism to explain the stereoselectivity of the reaction. The reaction between

the amide and the Grignard reagent forms an initial internal chelate complex 159 (Scheme 6.26) that would rigidly fix the conformation of the molecule owing to the planarity of the amide group. Excess Grignard reagent would approach the molecule from the less sterically hindered side (i.e. opposite side of the phenyl and methyl groups on the asymmetric carbon) by means of strong interaction with the Mg salt. Quenching of this Mg complex with dilute acid solution afforded the addition product, and removal of the chiral auxiliary by acid hydrolysis (H<sub>2</sub>SO<sub>4</sub>/AcOH, heat) furnished the carboxylic acid, which was subsequently converted in two steps to the corresponding alkyl bromide (Scheme 6.26). Reaction of this alkyl bromide with 1-timethylsilyl-1,2-dithiane lithium species afforded the corresponding 1,1-disubstituted 1,3-dithiane. Deprotection with NBS and oxidation of the resulting acylsilane converted the 1,3-dithiane into the corresponding carboxylic acid. The [1,4]-products from the two different routes were analyzed by chiral HPLC and compared. By this analysis, we determined that the [1,4]-Wittig product from the rearrangement of reactive (S,R)-48 was obtained with retention of configuration at the migrating carbon (% ee retention = 75%; % er retention = 88%). The [1,4]-product from the less reactive (S,S)-48 was also obtained with predominant retention of configuration (% ee retention = 74%; % er retention = 87%). Comparison of the results obtained with both (S,R)-48 and (S,S)-48 show that both substrates afforded [1,4] products with similar level of retention of configuration at the migrating carbon.

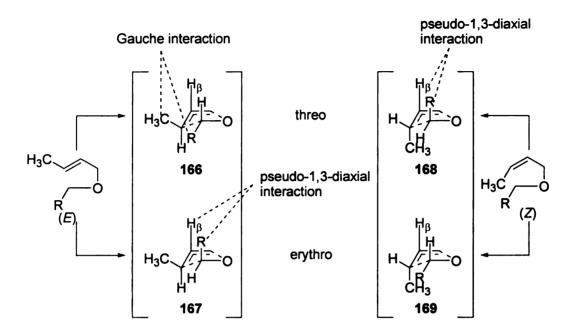
Scheme 6.26. Preparation of 82 via an independent route

# 6.9. Stereoselection in the [1,4]-Wittig rearrangement of $\alpha$ -alkoxysilanes: Relative stereochemistry of the newly formed adjacent stereocenters.

We were next interested in determining the relative stereochemistry of two newly formed stereogenic centers (Scheme 6.27) in cases where substituent was present at the terminal sp<sup>2</sup> carbon of the allyl moiety.  $\alpha$ -Alkoxysilane *E*-56 was employed in this investigation. The diastereomeric [1,4]-Wittig product 97 resulting from the rearrangement reaction of *E*-56 was oxidized to the known<sup>30</sup> diastereomeric carboxylic acid 165 (Scheme 6.27). The diastereomeric acids were not separable by column chromatography on silica gel. Nevertheless, the methyl signals were well resolved by <sup>1</sup>H NMR spectroscopy and by integrating the signal peaks, the *anti/syn* acids were formed in a ratio of 2.8:1 to 3:1 in favor of the *anti* isomer.

Scheme 6.27. Wittig rearrangement of E-56/oxidation of [1,4]-Wittig product 165

Combined yield of products ranges from 35 to 57%, depending on the temperature and reaction time


In 1983, Nakai and co-workers<sup>31</sup> reported their efforts in acyclic diastereoselection in the [2,3]-Wittig rearrangement of a series of isomeric crotyl ethers (Scheme 6.28). The authors noted such general trends in terms of the sense and degree of diastereoselection as: (1) Erythro selection by Z substrates (with low erythro selectivity when R is Ph group) and threo selection by E substrates; (2) the dependence of the degree of stereoselection upon the kind of substituent (R), which according to the authors indicates that carbanion structure conferred by a given R plays a significant role in dictating reaction stereoselectivity, and (3) the decrease in threo selectivity with

changing R for E substrates in the order: C=C>CH=CR' (R' = H, Ph)  $>CR'=CH_2$  (R' =  $CH_3$ ,  $Me_3Si$ ) > Ph.

Scheme 6.28. Diastereoselection in [2,3] Wittig rearrangement by Mikami et al<sup>31</sup>

On the basis of the widely accepted postulate that the [2,3]-sigmatropic rearrangement proceeds via envelope transition state, the authors proposed the transition-state model shown in Scheme 6.29, which best accommodates both the sense and degree of stereoselection described in the preceding paragraph, and which provides a logical basis for explaining and predicting the stereoselection over a range of substrates. In their system, they explained the observed sense of stereoselection in terms of the pseudo-1,3-diaxial interaction between R and  $H_{\beta}$  in 167 and 168 (Scheme 6.29). The marked dependence of the threo selectivity on the R group was rationalized by assuming an additional  $R \leftrightarrow CH_3$  steric parameter (gauche interaction) in the preferred transition state 166. The gauche interaction is enhanced by a bulky R group. Furthermore, based on the postulate that the oxybenzylic carbanion possesses preferentially a pyramidal configuration (depending largely on the solvent),  $^{32}$  for R = Ph, the  $CH_3 \leftrightarrow Ph$  gauche interaction would be greatly enhanced, eventually leading to very low stereoselectivities as the authors actually observed in their systems.

Scheme 6.29. Proposed transition-state model for stereoselection by Mikami et al 31



We have tried to adapt the above model to our system in an effort to explain the observed stereochemical outcome of the [1,4]-alkyl shift in the Wittig rearrangement of E-56 (Scheme 6.31). In doing so we presumed that the [1,4]-pathway is a one-step concerted process, which is allowed by orbital symmetry<sup>33</sup> as illustrated in Scheme 6.30. The orbitals and methyl groups on silicon are left out for simplicity of presentation.

Scheme 6.30. Frontal orbital representation of *E*-56

Pseudo-1,3-diaxial interaction exists in both transitions states 170 and 171. However, the effect is greater in 171 (Ph $\leftrightarrow$ H<sub> $\beta$ </sub>) than in 170 (CH<sub>3</sub> $\leftrightarrow$ H<sub> $\beta$ </sub>), thus favoring 170 Now, assuming an additional R-R' gauche interaction, this would be enhanced in 170

(Ph $\leftrightarrow$ CH<sub>3</sub>) relative to 171 (CH<sub>3</sub> $\leftrightarrow$ CH<sub>3</sub>), making transition state 171 more favorable. The fact that the Wittig rearrangement reaction of *E*-56 gives *anti/syn* selectivity of 2.8:1 would suggest that the pseudo-1,3-diaxial interaction outweighs the effect of gauche interaction. However, the gauche effect would explain the low selectivity observed.

Scheme 6.31. Proposed transition-state model for stereoselection in the [1,4]-alkyl migration in E-56

In the case of Z-56, pseudo-1,3-diaxial intearaction favors 173 ( $CH_3 \leftrightarrow H_\beta$ ) over 172 ( $Ph \leftrightarrow H_\beta$ ). On the other hand, steric parameters (gauche interactions) favor 172 ( $CH_3 \leftrightarrow CH_3$ ) over 173 ( $Ph \leftrightarrow CH_3$ ). Assuming that the pseudo-1,3-diaxial interaction outweighs the gauche interaction, then, we would expect a reversal in the outcome of the reaction employing Z-56, that is, a reversal in *anti/syn* stereoselection, if the mechanism of the [1,4]-alkyl shift were a concerted event. Thus, our next plan was to employ the geomeric Z-56 in the Wittig rearrangement reaction.

Scheme 6.32. Preparation of Z- $\alpha$ -alkoxysilane Z-56

The synthesis of Z-56 as outlined in Scheme 6.32 started with reduction of propargyl alcohol with Lindlar catalyst to afford the Z-crotyl alcohol (85% crude yield), which was employed in the next step without purification. The Z-crotyl alcohol was converted to trimethylsilyl ether by deprotonation with 1.08 equiv of n-BuLi and trapping with TMSCI. Subsequent treatment with t-BuLi afforded the desired Z-α-hydroxysilane Z-34 in 71% yield. Etherification with the trichloroacetimidate of sec-phenethyl alcohol, mediated by BF<sub>3</sub>•OEt<sub>2</sub> afforded less than 10% of the desired product Z-56, accompanied by numerous by-products which included 174, which presumably is the result of transacetimidation/S<sub>N</sub>2' by the liberated sec-phenethyl alcohol (Scheme 6.32). Given the difficulty in accessing Z-56 no attempt was made to optimize the reaction conditions at this point. This will be for future studies.

# 6.10. On the mechanism of the [1,4]-alkyl shift in the Wittig rearrangement reaction of $\alpha$ -alkoxysilanes

Although we recognize that more work has to be done before we can make conclusive statement on the mechanism of the [1,4]-Wittig pathway, we venture to draw some tentative conclusions based on the results of the present research.

In the Wittig rearrangement of our model substrate 7, the [1,2]-alkyl shift is effectively suppressed at low temperatures, and the [1,4] product is obtained as a single product. However, at elevated temperatures, the [1,2]-pathway becomes competitive and the [1,4]/[1,2] ratio increases to 2:1. We submit that if both rearrangement pathways were proceeding via the radical-radical anion dissociation-recombination mechanism, implicating a common intermediate 175 (Scheme 6.33), then complete suppression of the [1,2]-alkyl shift at low temperatures is unlikely. The two rearrangement pathways most likely have different mechanisms.

Scheme 6.33. Radical-radical anion dissociation-recombination in 7

On introducing a substituent at the migrating carbon, [1,2]-Wittig becomes competitive even at low temperatures (-78 °C). This observation is in agreement with the generally observed characteristics of this reaction pathway, which is that the [1,2]-alkyl shift is promoted by a radical stabilizing migrating group and / or a terminal radical stabilizing group.<sup>34</sup> R  $\neq$  H implies a relatively stable secondary benzylic radical 176 which is a good intermediate and promotes [1,2]-alkyl shift (Scheme 6.34). This is

evident in the rearrangement reaction of compound 44, in which a [1,4]/[1,2] ratio of (1.5:1 to 1.7:1) was observed, contrary to a ratio of >100:1 for 7.

Scheme 6.34. Radical-radical anion dissociation-recombination in  $\alpha$ -alkoxysilane bearing a substituent at the migrating carbon

On introduction of a substituent at the terminal sp<sup>2</sup> carbon of the allyl moiety as in  $\alpha$ -alkoxysilane 55, the [1,2]-alkyl shift becomes competitive even at low temperatures (at -78 °C, [1,4]/[1,2] ratio is 4:1). Even though the migrating radical intermediate is benzylic, the allylic radical is resonance stabilized (Scheme 6.35). Theoretically, one would expect that the radical  $\alpha$  to TMS (180) would be the less contributing resonance structure relative to the structure in which the radical is  $\beta$  to TMS (181) ( $\beta$ -effect of silicon). If this argument is reasonable, then one will expect a higher ratio of [1,4]/[1,2] than the observed 4:1. On the other hand, if the [1,4] shift is a concerted event, then, the reaction would involve a carbanionic intermediate (182) as shown in Scheme 6.36. 179 is expected to be the more stable resonance contributor ( $\alpha$ -anion stabilization by silicon) than 182 and is invariably expected to furnish more [1,2]-Wittig product. That this was not the observation could be taken as further evidence that both [1,2] and [1,4] processes follow different pathways. Evidently the anionic nature of the [1,4]-Wittig pathway was supported.

Scheme 6.35. Radical-radical anion dissociation-recombination in  $\alpha$ -alkoxysilanes bearing substituent at the terminal sp<sup>2</sup> carbon of the allyl moiety

TMS 
$$CH_3$$
  $CH_3$   $CH_$ 

Scheme 6.36. Carbanion formation in the [1,4]-pathway in  $\alpha$ -alkoxysilanes bearing a substituent at the terminal sp<sup>2</sup> carbon of the allyl moiety

Felkin reported in 1977<sup>35</sup> that, on treatment with excess butyl lithium in THF at -25 °C, optically active allyl  $\alpha$ -phenylethyl ether **184** underwent rearrangement to afford a mixture of anionic products via [1,2]- and [1,4]-rearrangements, which were converted to a mixture of the saturated products in 60% overall yield in a ratio of 16:20:64 (Scheme 6.37). The authors observed that all three rearrangement products **187**, **188**, and **189** were predominantly formed with retention of configuration and the extent of racemization was similar (30±5%). This suggested that reactions leading to both [1,2] and [1,4] products occurred via the non-concerted radical-radical anion cleavage-recombination mechanism. This observation is in contrast to our results- [1,2] and [1,4] products were formed with different levels of retention of configuration (95% ee and

97% er retention for [1,2] and 73% ee and 88% er retention for [1,4]). This too could be interpreted as suggesting different mechanisms for both types of Wittig rearrangements.

Scheme 6.37. Wittig rearrangement of allyl α-phenylethyl by Felkin<sup>35</sup>

Scheme 6.38. Stevens rearrangement of optically active allylic ammonium salt by Jenny and Druey

In contrast to Felkin's system, the Stevens rearrangement of optically active allylic ammonium salt 190, analogous to Felkin's S-allyl  $\alpha$ -pheneyethyl ether 184, was studied by Jenny and Druey,<sup>36</sup> who found that the [1,4]-shift of the phenylethyl group is accompanied by considerable racemization, whereas the [1,2]-migration, the major process, is stereospecific (Scheme 6.38).

Felkin<sup>35</sup> explained that the difference in the stereochemical course of the two reactions could be due to a difference in the configurations of the two ions 185 and 191 and hence of the radical pairs 186 and 192 (Scheme 6.39). The authors<sup>35</sup> argued that the preference of allylic anions for the cis configuration<sup>37</sup> leads to a radical pair 186 in which the migrating α-phenylethyl radical is situated somewhere near the middle of the allylic moiety, a situation that results in approximately equal amounts of [1,2] and [1,4] rearrangement products and a similar racemization. The ammonium zwitterion in the Stevens rearrangement, on the other hand, adopts the trans configuration 191. This scenario leads to a radical pair 192 in which the migrating radical is placed close to the carbon atom bearing the nitrogen, and remote from the terminal carbon of the allyl moiety, resulting in a predominance of [1,2] over [1,4] rearrangement<sup>36</sup> and a greater racemization in the [1,4] product. According to Felkin<sup>35</sup> the migrating radical has farther to go in order to react.

Scheme 6.39. Felkin's comparison of his and Jenny and Druey's systems

Our system is analogous to Felkin's (Scheme 6.40), however, we obtained results very different from his. Our [1,4]-rearrangement product is obtained with 73% (ee) retention/88% (er) retention and our [1,2] product with approximately 95% (ee) retention/97% (er) retention of configuration at the migrating carbon. If Felkin's argument on the position of the migrating  $\alpha$ -phenylethyl radical held in our case, then we could argue that the [1,2] and [14]-alkyl shifts in  $\alpha$ -alkoxysilanes do not have the same mechanism. This is additional evidence in support of different reaction mechanisms for the two types of alkyl shifts.

Scheme 6.40. Comparison of Felkin's and our systems

### 6.11. Conclusions

From our electrophilic trapping experiments we obtained conclusive evidence that in the Wittig rearrangement of  $\alpha$ -alkoxysilanes,  $\alpha$ -deprotonation and cleavage of C-O bond, and hence rearrangement, are not concurrent events. Our results could also be interpreted to imply that the breaking of the O-C bond is the slow (rate limiting) step in the Wittig rearrangement of this class of compounds.

In the Wittig rearrangement of a stereodefined  $\alpha$ -alkoxysilane, the [1,4]-pathway occurred with predominant retention of configuration at the migrating carbon. We observed that the [1,4]-pathway in a pair of diastereomeric  $\alpha$ -alkoxysilanes occurred with similar levels of retention of configuration. On the other hand, the [1,2]-Wittig in the same pair of diastereomeric substrates occurred with different levels of retention of configuration (details to be presented in Chapter 7). This result is evidence that the [1,2] and the [1,4]-Wittig rearrangements of  $\alpha$ -silyl ethers proceed via different mechanisms.

[2,3]-Alkyl migration is a concerted, thermally allowed sigmatropic process following the Woodward Hoffmann rule<sup>28a</sup> or the Fukui's frontier orbital theory.<sup>33</sup> In the [2,3]-alkyl shift in E substrates, the resulting [2,3] product has predominantly anti stereochemistry at the two newly formed stereocenters. We made a similar observation in the [1,4]-Wittig rearrangement reaction of  $\alpha$ -alkoxysilane E-56. However, the experiment with Z-substrate would be very necessary for an unequivocal statement on the mechanism of the [1,4]-Wittig rearrangement of  $\alpha$ -alkoxysilanes. This part of the study remains on of the areas for future study.

### **EXPERIMENTAL**

Electrophilic trapping of carbanion of 7-preparation of 125, 126, and 127: A mixture of 612 mg (2.78 mmol) of 7, 1208 mg (11.12 mmol) of TMSCl, and 1124 mg (11.12 mmol) of TEA in 43 mL of THF, was cooled to below -78 °C. Then, 7.40 mL (6.95 mmol) of s-BuLi (0.94 M in cyclohexane) was added slowly via syringe. Following the addition of base, reaction was stirred at -78 °C for 3-4 h, and then quenched by adding saturated aqueous solution of NH<sub>4</sub>Cl. Phases were separated and the organic phase was washed with water, and brine, then dried over anhydrous MgSO<sub>4</sub>. Filtration, followed by concentration gave the crude product as a mixture, which, after silica gel chromatography (0 to 1% EtOAc in hexane gradient) afforded 125, 126 and 127 in a combined 82% yield. Compounds 125, 126 and 127 were readily separable by column chromatography on silica gel (hexanes neat).

125: IR (neat) 2955, 1609 1454, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.42-7.25 (m, 5H), 5.25-5.21 (t, J = 8.4 Hz, 1H), 4.75 (s, 2H), 1.68-1.66 (d, J = 8.4 Hz, 2H), 0.21 (s, 9H), 0.03 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  159.0, 139.0, 128.3, 127.3, 127.1, 123.7, 72.3, 16.5, -0.3, -1.7. HRMS (EI) m/z 292.1686 [(M)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>28</sub>OSi<sub>2</sub>, 292.1679].

126: IR (neat) 2955, 1591, 1304, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.38-7.26 (m, 5H), 5.06-5.03 (d, J = 12.7 Hz, 1H), 4.71 (s, 2H), 1.93-1.91 (d, J = 12.2 Hz, 1H),

0.16 (s, 9H), 0.00 (s, 18H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  158.0, 139.2, 128.2, 127.2, 126.9, 125.5, 72.0, 18.3, -0.2, -0.4. HRMS (EI) m/z 364.2078 [(M)<sup>+</sup>; calcd for C<sub>19</sub>H<sub>36</sub>OSi<sub>3</sub>, 364.2074].

127: A white semi solid, melting near room temperature. IR (neat) 2955, 1601, 1495, 1448, 1408, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.26-7.03 (m, 5H), 4.97-4.91 (dd, J = 9.7 Hz, 1H), 4.70 (s, 1H), 2.07-2.00 (dd, J = 12.8, 9.7 Hz, 1H), 1.43-1.36 (dd, J = 12.4, 12.8 Hz, 1H), 0.01 (s, 9H), 0.00 (s, 9H), -0.02 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  159.0, 141.9, 127.7, 125.3, 125.2, 120.1, 76.5, 16.9, 0.2, -1.5, -3.8. HRMS (EI) m/z 364.2078 [(M)<sup>+</sup>; calcd for C<sub>19</sub>H<sub>36</sub>OSi<sub>3</sub>, 364.2074].

A mixture of 187 mg (0.77 mmol) of 40, 333 mg (3.07 mmol) of TMSCl, and 310 mg (3.07 mmol) of TEA in 43 mL of THF, was cooled to below –78 °C. Then, 1.48 mL (1.92 mmol) of s-BuLi (1.3 M in cyclohexane) was added slowly via syringe. Follow addition of base, reaction was stirred at -78 °C for 3-4 h, then quenched by adding saturated aqueous solution of NH<sub>4</sub>Cl. Phases were separated, the organic phase washed with water, and brine, then dried over anhydrous MgSO<sub>4</sub> and concentrated to give the crude product as a mixture, which, after silica gel chromatography (0 to 1% EtOAc in hexane gradient) afforded the 131 and 132 in a combined 86% yield. IR (neat) 2955, 1640, 1616, 1377, 1248 cm<sup>-1</sup>.

131: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.00 (d, J = 5.7 Hz, 1H), 5.24 (t, J = 8.8, 8.4 Hz, 1H), 4.19-4.15 (dd, J = 12.4, 5.7 Hz, 1H), 1.60-1.58 (d, J = 8.8 Hz, 2H), 1.57-1.55 (d,

J = 12.4 Hz, 1H) 0.11 (s, 9H), 0.03 (s, 18H), -0.01 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  158.6, 142.4, 125.0, 103.2, 16.7, 15.6, -0.3, -1.1, -1.7. HRMS (EI) m/z 386.2321 [(M)<sup>+</sup>; calcd for C<sub>18</sub>H<sub>42</sub>OSi<sub>4</sub>, 386.2313].

132: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.0-5.94 (dd, J = 19.0, 5.7 Hz, 1H), 5.54-5.50 (dd, J = 19.0, 1.8 Hz, 1H), 4.96-4.92 (apparent dd, J = 9.3, 8.8, 7.9, 7.5 Hz, 1H), 4.19-4.17 (dd, J = 5.7, 1.8 Hz, 1H), 1.82-1.77 (dd, J = 12.8, 9.3 Hz, 1H), 1.42-1.38 (dd, J = 13.2, 12.8, 8.0, 7.5 Hz, 1H), 0.07 (s, 9H), 0.03 (s, 9H), 0.01 (s, 9H), -0.02 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  159.4, 146.4, 125.6, 120.1, 77.9, 16.5, 0.2, -1.1, -1.5, -3.8. HRMS (EI) m/z 386.2309 [(M)<sup>+</sup>; calcd for C<sub>18</sub>H<sub>42</sub>OSi<sub>4</sub>, 386.2313].

Preparation of 139: Ethylchloroformate (1.13 g, 10.41 mmol) was added to a cold (0 °C) solution of 34 (1.0 g, 6.94 mmol) in hexane/acetonitrile (1:1 v/v, 20 mL), followed by pyridine (1.70 mL, 20.82 mmol), and the reaction stirred at 0 °C for 2 h (TLC showed absence of starting material). The reaction was quenched by the addition of H<sub>2</sub>O (30 mL), diluted with CH<sub>3</sub>CN (50 mL), and then hexanes (150 mL). Layers separated and the hexane/acetonitrile layer was washed with brine (30 mL), dried with Na<sub>2</sub>SO<sub>4</sub>, and concentrated under reduced pressure to give the crude product, which was employed in the second step without further purification. To a solution of the crude carbonate in hexane/acetonitrile (1:1 v/v, 30 mL) at 0 °C, was added (1*R*,2*S*)-(+)-norephedrine (1.3 equiv, 1.36 g, 9.0 mmol), followed by diisopropylethylamine (3.63 mL, 20.82 mmol). The reaction was allowed to warm to room temperature overnight,

then quenched by the addition of  $H_2O$ . Phases were separated and the organic phase (hexane/acetonitrile) washed with brine, dried with  $Na_2SO_4$ , and concentrated under reduced pressure to yield the desired product as a clear oil. The second step did not go, and after purification by column chromatography on silica gel (3% EtOAc in hexanes), 632 mg (42%) of 139, the product of the first step, was obtained as a clear oil. IR (neat) 2961, 1744, 1451, 1370, 1277, 1252 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  5.58-5.41 (m, 2H), 4.87-4.85 (d, J = 6.3 Hz, 1H), 4.18-4.11 (q, J = 7.1 Hz, 2H), 1.67 (d, J = 5.5 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H), 0.03 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  155.7, 127.1, 125,6, 74.5, 63.8, 17.9, 14.3, -4.0. HRMS (EI) m/z 216.1184 [(M+H)<sup>+</sup>; calcd for  $C_{10}H_{20}O_3Si$ , 216.1182].

Preparation of carbonate 141: p-Nitrophenylchloroformate (629 mg, 3.12 mmol) was added to a cold (0 °C) solution of 34 (300 mg, 2.08 mmol) in hexane/acetonitrile (1:1 v/v, 11 mL), followed by pyridine (0.51 mL, 6.25 mmol), and the reaction stirred at 0 °C for 2 h (TLC showed absence of starting material). The reaction was quenched by the addition of  $H_2O$  (5 mL), diluted with  $CH_3CN$  (10 mL), and then hexanes (20-25 mL). Layers separated and the hexane/acetonitrile layer was washed with brine (30 mL), dried with  $Na_2SO_4$ , and concentrated under reduced pressure to afford 294 mg (0.95 mmol, 46% yield) of the pure carbonate 141 (mp 58.5-59.5 °C). IR (neat) 2961, 1763, 1616, 1595, 1526, 1493, 1348, 1252, 1213 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.26-8.23 (d, J = 9.1 Hz, 2H), 7.37-7.34 (d, J = 9.3 Hz, 2H), 5.68-5.61 (m, 1H),

5.59-5.50 (m, 1H), 4.99-4.96 (d, J = 7.7 Hz, 1H), 1.72 (d, J = 6.3 Hz, 3H), 0.09 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  155.9, 152.9, 145.2, 127.4, 126.2, 125.2, 121.8, 77.1, 17.9, -4.0. HRMS (FAB+) m/z 308.0957 [(M-H)<sup>+</sup>; calcd for C<sub>14</sub>H<sub>18</sub>NO<sub>5</sub>Si, 308.0955].

Preparation of 3-trimetylsilanyl-oxiranyl)-methanol 142: To a cold (-20 °C) solution of *n*-BuLi (1.6 M in hexanes, 2.0 equiv, 160.0 mmol, 100 mL) in a round-bottom flask was added propargyl alcohol (1.0 equiv, 80 mmol, 4.66 mL) as a solution in THF (5 M, 16 mL Et<sub>2</sub>O). Subsequently TMSCl (2.2 equiv, 176 mmol, 19.12 g, 22.34 mL) was added over 30 min (-15 to -20 °C). Reaction was stirred for additional 2 h at room temperature, poured into an excess of 1N H<sub>2</sub>SO<sub>4</sub> solution, and stirred for 2 h at room temperature. Phases were separated and the aqueous phase was extracted with Et<sub>2</sub>O (4 x 50 mL). The combined ethereal solutions were washed with NaHSO<sub>4</sub> (sat, aq) to neutralize the H<sub>2</sub>SO<sub>4</sub>, then dried over anhydrous MgSO<sub>4</sub>, filtered, and the solvent removed under reduced pressure to give the crude product, (*E*)-3-Trimethylsilanyl-prop-2-en-1-ol. Distillation through a 40-cm Vigreux column under reduced pressure gave

m-CPBA (2.0 equiv, 3.0 g, 23.03 mmol) solution in CH<sub>2</sub>Cl<sub>2</sub> (140 mL) was added to a cold (0 °C), stirred solution of the *E*-3-trimethylsilanylprop-2-en-1-ol from step one above (1.0 equiv, 0.22 g, 1.66 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50 mL) via syringe, and the reaction mixture stirred at 0 °C and monitored by GC-FID and TLC. After 6 h, the reaction mixture was filtered to remove precipitated m-chlorobenzoic acid. The solvent was removed in vacuo; the resultant massive white solid was dissolved in the minimal amount

of hexanes, filtered and washed with a minimal amount of hexanes. The solvent was removed in vacuo to give a colorless oil, which was purified by silica gel column chromatography using hexanes/EtOAc (20%) as eluent to give the pure epoxide 142 in 66% yield. IR (neat) 3418, 2959, 1720, 1410, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  4.00-3.94 (d, J = 13.0 Hz, 1H), 3.56 (d, J = 12.1 Hz, 1H), 3.01 (m, 1H), 2.25 (d, J = 3.7 Hz, 1H) 0.05 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  63.5, 56.1, 48.3, -3.8. 142 is a known compound and has spectral data in accord with the reported ones.<sup>39</sup>

Preparation of 1-trimetylsilanyl-propane-1,3-diol 143: To a solution of 3-trimethylsilanyl-2,3-epoxypropan-1-ol (1.0 equiv, 220 mg, 1.50 mmol) in THF (2.0 ml) was added dropwise via syringe, a 1.0 M solution of LiB(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>H (superhydride) (2.0 equiv, 3.01 mmol, 3.0 ml) in THF. The reaction was stirred at room temperature for 1 h, at which time sampling by GC-MS revealed the complete consumption of the starting epoxyalcohol. Then water was added to quench the reaction, followed by washing with NaHSO<sub>4</sub> (sat, aq), and brine. The organic phase was dried over anhydrous MgSO<sub>4</sub>, filtered, and concentrated to furnish the crude product. Purification by silica gel column chromatography using hexanes/EtOAc (20%) afforded 200 mg (90% yield) of 143 as a clear oil. IR (neat) cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 4.52-4.46 (m, 1H), 4.23-4.20 (dd, J = 8.8, 7.5 Hz, 1H), 3.64-3.61 (dd, J = 8.8, 7.5 Hz, 1H), 1.10-1.06 (dd, J = 14.1, 7.1 Hz, 1H), 0.89-0.84 (dd, J = 14.1, 7.9 Hz, 1H), 0.02 (s, 9H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>) δ 73.0, 25.4, 7.6, -1.0. 143 is a known compound and has spectral data in accord with the reported ones.<sup>40</sup>

Preparation of 3-trimethylsilanyl-propane-1,2-diol 144: To a cold (0 °C) solution of 3-trimethyl-silanyl-2,3-epoxypropan-1-ol (1.0 equiv, 0.10 g, 0.684 mmol) in dimethoxyethane (DME) (3.5 ml) was added a 65+% solution of sodium bis(2methoxyethoxy)aluminum hydride (Red-Al) in toluene (1.05 equiv, 0.718 mmol) dropwise under N<sub>2</sub>. Following this addition, the reaction was allowed to warm to room temperature and stirred for 4.5 h. The reaction mixture was diluted with ether and quenched with 5% HCl solution. Phases were separated and the aqueous phase washed with ether. The combined organic phase was dried with anhydrous MgSO<sub>4</sub>, filtered, and concentrated to give the crude product, which was clean (60% yield). Purification by silica gel column chromatography using hexanes/EtOAc (20%) as eluent afforded 144 in almost the same condition as the crude. This reaction was not optimized. IR (neat) 3358, 2952, 2919, 1420, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 3.89-3.77 (m, 1H), 3.61-3.56 (dd, J = 11.0, 2.7 Hz, 1H), 3.35-3.29 (dd, J = 11.0, 8.2 Hz, 1H), 2.58 (bs, 2H), 0.83-0.76 (dd, J = 14.3, 8.2 Hz, 1H), 0.72-0.65 (dd, J = 14.8, 14.3 Hz, 1H). <sup>13</sup>C NMR (300) MHz, CDCl<sub>3</sub>)  $\delta$  70.3, 69.1, 21.6, -0.8. 144 is a known compound and has spectral data in accord with the reported ones.41

Preparation of toluene-4-sulfonic acid 3-trimethylsilanyl-oxiranylmethyl ester 148: To a cold (0 °C) solution of 3-trimethylsilanyl-2,3-epoxypropan-1-ol 1.0 equiv, 0.40 g, 2.74 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) were added TsCl (1.05 equiv, 0.55 g, 2.87

mmol), followed by Et<sub>3</sub>N (2.5 equiv, 0.69 g, 6.83 mmol). The reaction mixture was allowed to warm to room temperature and stirred overnight. Reaction was quenched with NaHCO<sub>3</sub> (sat, aq), and diluted with CH<sub>2</sub>Cl<sub>2</sub>. Phased separated and the organic phase was washed with NH<sub>4</sub>Cl (sat, aq) and brine, then dried over MgSO<sub>4</sub>. Filtration and concentration under reduced pressure afforded 0.73 g (89%) of tosylate **148**. IR (neat) 2957, 1599, 1450, 1364, 1250, 1176 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 7.7 Hz, 2H), 4.27-4.24 (dd, J = 11.2, 3.3 Hz, 1H), 3.90-3.87 (apparent dd, J = 11.5, 11.0, 6.6, 6.1 Hz, 1H), 3.03-3.00 (m, 1H), 2.43 (s, 3H), 2.03 (d, J = 3.3 Hz, 1H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  145.0, 132.8, 129.9, 127.9, 72.3, 52.4, 49.0, 21.6, -3.8.

Preparation of [1-(1-ethoxy-ethoxy)-propa-1,2-dienyl]-methyldiphenylsilane 150: A dry 100 mL round-bottomed flask was flushed with N<sub>2</sub>, and charged with ethyl vinyl ether (20.94 g, 0.29 mmol, 28 mL) and cooled to 0 °C. Then *p*-toluenesulfonic acid (13 mg, 0.07 mmol) was added with stirring, followed by dropwise addition of propargyl alcohol (11.63 g, 0.21 mol, 12.08 mL) over 20 min, while keeping the reaction temperature close to 0 °C. After stirring for additional 30 min, K<sub>2</sub>CO<sub>3</sub> (sat, aq) was added with vigorous stirring. Phases were separated and the organic phase was dried over anhydrous K<sub>2</sub>CO<sub>3</sub>, filtered and excess vinyl ether removed by evaporation on a rotavap. The residue was then distilled under reduced pressure (oil bath temperature approx. 60 °C) to afford 16.02 g, 60% of the pure 1-(1-ethoxy-ethoxy)-propa-1,2-diene.

A solution of 1-(1-ethoxy-ethoxy)-propa-1,2-diene (10.18 g, 79.45 mmol) and BHT (1.5 mg/mmol substrate, 0.12 g, 0.54 mmol) in 320 mL THF in a 1 L round bottom flask was cooled to -80 °C, with stirring, and n-BuLi (1.5M solution in hexanes, 84.22 mmol, 56.15 mL) was added dropwise via a syringe over 1.5 h. After stirring for additional 30 min, a solution of Ph<sub>2</sub>MeSiCl (19.98 g, 85.81 mmol, 18 mL) in THF (30 mL) was added dropwise via a syringe, followed by addition of a solution of HMPA (15.66 g, 87.40 mmol, 15.2 mL) in THF (30 ml). The reaction mixture was stirred at -80 °C overnight. then Et<sub>3</sub>N (12 mL) was added and the mixture stirred vigorously for 10 min, then poured into NaHCO<sub>3</sub> (sat, aq) (200 mL) and ether/pentane (1:1 v/v) added. Phases were separated and the aqueous phase washed with ether/pentane (1:1) (x 2). The combined organic phases were subsequently washed with H<sub>2</sub>O and brine, passed through anhydrous Na<sub>2</sub>SO<sub>4</sub>, and then dried over K<sub>2</sub>CO<sub>3</sub>. Filtration, evaporation of solvent with a rotavap, and removal of the rest of the volatile components by distillation gave quantitative yield (29.22 g) of the product 150 as a thick brown oil. IR: (neat) 2978, 2178, 1589, 1429, 1385, 1254 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.64-7.34 (m, 10H), 4.90-4.87 (q, J =5.3 Hz, 1H), 4.35-4.27 (q, J = 5.0 Hz, 2H), 3.70-3.63 (m, 1H), 3.53-3.47 (m, 1H), 1.35-1.34 (d, J = 5.3 Hz, 3H), 1.20-1.17 (t, J = 7.1 Hz, 3H), 0.70 (s, 3H). <sup>13</sup>C NMR (75 MHz,  $CDCl_3$ )  $\delta$  135.0, 134.5, 129.7, 127.9, 105.4, 98.8, 87.1, 61.1, 53.4, 19.8.15.2, -2.1.

Preparation of 1-(methyldiphenylsilanyl)-propa-1,2-dien-1-ol 151: [1-(1-ethoxy-ethoxy)-propa-1,2-dienyl]-dimethylphenylsilane 150 (28.58 g, 88 mmol) was

added to 2N H<sub>2</sub>SO<sub>4</sub> (13.2 mL in 88 mL THF) and stirred at room temperature overnight. Reaction was poured into H<sub>2</sub>O and extracted with ether/pentane (1:1). The combined organic fractions were washed with H<sub>2</sub>O (x 3) and brine (x 1), poured through anhydrous Na<sub>2</sub>SO<sub>4</sub>, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure to give the crude 1-(diphenylmethylsilanyl)-propa-1,2-dien-1-ol **151**, which was purified by chromatography on silica gel (0-5% EtOAc in hexane gradient) to give a quantitative yield of the pure product. IR (neat) 3327, 2961, 2178, 1429, 1254, 1115, 1041 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) & 7.70-7.40 (m, 10H), 4.34 (s, 2H), 2.23 (bs, 1H), 0.76 (s, 3H). <sup>13</sup>C NMR (300 MHz, CDCl<sub>3</sub>) & 134.74, 134.42, 129.73, 127.93, 107.17, 86.94, 51.55, -2.24. HRMS (EI) *m/z* 252.0959 [(M)<sup>+</sup>; calcd for C<sub>16</sub>H<sub>16</sub>OSi, 252.0970].

Preparation of [1-(1-ethoxy-ethoxy)-propa-1,2-dienyl]-dimethylphenylsilane, 152: A dry 100 ml round-bottomed flask was flushed with N<sub>2</sub>, and charged with ethyl vinyl ether (20.94 g, 0.29 mol, 28 mL) and cooled to 0 °C. Then p-toluenesulfonic acid (13 mg, 0.07 mmol) was added with stirring, followed by dropwise addition of propargyl alcohol (11.63 g, 0.21 mol, 12.08 mL) over 20 min, while keeping the reaction temperature close to 0 °C. After stirring for additional 30 min, K<sub>2</sub>CO<sub>3</sub> (sat, aq) was added with vigorous stirring. The organic phase was dried over anhydrous K<sub>2</sub>CO<sub>3</sub>, filtered and excess vinyl ether removed by rotavap. The residue was then distilled under reduced pressure (oil bath temperature approx. 60 °C) to afford 16.02 g, 60% of the pure 1-(1-ethoxy-ethoxy)-propa-1,2-diene. A solution of 1-(1-ethoxy-ethoxy)-propa-1,2-diene

(5.10 g, 39.73 mmol) and BHT (1.5 mg/mmol substrate, 0.06 g, 0.27 mmol) in 160 mL THF was cooled to -80 °C, with stirring, and n-BuLi (1.5 M solution in hexanes, 42.11 mmol, 28.1 mL) was added dropwise via a syringe over 1 h. After stirring for additional 30 min, a solution of PhMe<sub>2</sub>SiCl (7.33 g, 42.90 mmol, 7.20 mL) in THF (15 mL) was added dropwise via a syringe, followed by addition of a solution of HMPA (7.831 g, 43.70 mmol, 7.6 mL) in THF (15 mL). The reaction mixture was stirred at -80 °C overnight, then Et<sub>3</sub>N (6 mL) was added and the mixture stirred vigorously for 10 min, then poured into NaHCO<sub>3</sub> (sat, aq) (100 mL) and ether/pentane (1:1 v/v) added. Phases were separated and the aqueous phase washed with ether/pentane (1:1) (x 2). The combined organic phases were subsequently washed with H<sub>2</sub>O and brine, passed through anhydrous Na<sub>2</sub>SO<sub>4</sub>, and then dried over K<sub>2</sub>CO<sub>3</sub>. Filtration, removal of solvent by rotavap, and removal of the rest of the volatile components by distillation gave 8.35 g (80%) of the product 152 as thick brown oil. IR (neat) 2974, 2176, 1428, 1384, 1251, 1116, 1056 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.63-7.35 (m, 5H), 4.89-4.83 (q, 1H), 4.24 (s, 2H), 3.71-3.43 (m, 2H), 1.34-1.32 (d, 3H), 1.21-1.17 (m, 3H), 0.41 (s, 6H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 136.6, 133.62, 129.45, 127.84, 103.60, 98.61, 88.64, 60.88, 53.32, 19.71, 15.21, -1.05. **152** is a known compound. 19a

Preparation of 1-(dimethylphenylsilanyl)-propa-1,2-dien-1-ol 154: [1-(1-ethoxy-ethoxy)-propa-1,2-dienyl]-dimethylphenylsilane was added to 2N H<sub>2</sub>SO<sub>4</sub> (4.7 mL in 31 mL THF) and stirred at room temperature overnight. Reaction was poured into

H<sub>2</sub>O and extracted with ether/pentane (1:1). The combined organic fractions were washed with H<sub>2</sub>O (x 3) and brine (x 1), poured through anhydrous Na<sub>2</sub>SO<sub>4</sub>, dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure to give 6.65 g (88%) of the crude 1-(dimethylphenylsilanyl)-propa-1,2-dien-1-ol, which was purified by chromatography on silica gel (0-5% EtOAc in hexane gradient) to give the product **154** in 71% yield. IR (neat) 3324, 2961, 2178, 1492, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.63-7.36 (m, 5H), 4.28 (s, 2H), 1.78 (bs, 1H), 0.42 (s, 6H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  136.4, 133.6, 129.5, 127.9, 105.4, 88.7, 51.7, -1.1. HRMS (EI) m/z 190.0817 [(M)<sup>+</sup>; calcd for C<sub>11</sub>H<sub>14</sub>OSi, 190.0814].

Preparation of 153 and 155-oxidation of oxidation of α-hydroxysilane 33: To a cold (-35 to -30 °C) solution of 2,4,6-trichloro[1,3,5]-triazine (cyanuric chloride) (8.23 g, 44.65 mmol) in THF (150 mL), was added DMSO (12.4 mL, 174.74 mmol) and the mixture stirred for 40 min. A 0.1 M THF solution of 1-(dimethylphenylsilanyl)-prop-2-en-1-ol (5.72 g, 29.76 mmol) was added very slowly and the reaction stirred for 2 h, followed by the addition of TEA (19.80 mL, 142 mmol). After stirring for an additional 1 h, the reaction was warmed to room temperature. The solvent was removed under vacuum and Et<sub>2</sub>O added to the resulting solid residue. Reaction was quenched by adding HCl (1M, 2.0 mL). Phases were separated and the organic phase washed with NaHCO<sub>3</sub> (aq, sat), followed by brine, dried over Na<sub>2</sub>SO<sub>4</sub> and the solvent evaporated to give the oxidation products 153 (371 mg, 6% yield) and 155 (1.61 g, 17% yield). 155: IR (neat)

2959, 1630, 1427, 1252 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.55-7.31 (m, 10H), 5.87-5.80 (m, 1H), 5.04-5.00 (d, J = 17.8 Hz, 1H), 4.91-4.88 (d, J = 10.3 Hz, 1H), 4.18 (d, J = 2.4 Hz, 1H), 0.27 (s, 3H, 0.26 (s, 6H), 0.23 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  138.8, 134.3, 133.6, 129.3, 129.1, 127.7, 127.6, 110.5, 69.3, -1.1, -1.2, -5.9, -6.0. HRMS (FAB+) m/z 326.1521 [(M)<sup>+</sup>; calcd for C<sub>19</sub>H<sub>26</sub>OSi<sub>2</sub>, 326.1522].

Preparation of 153: Swern oxidation of 33: To a cold (-50 °C) solution of oxalyl chloride (1.32 mL, 15.06 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (18.30 mL) was added via syringe, DMSO (2.15 mL, 30.13 mmol) solution in CH<sub>2</sub>Cl<sub>2</sub> (4.56 mL) and the reaction stirred for 20 min. Then, the substrate alcohol 33 (2.63 g, 13.70 mmol) solution in CH<sub>2</sub>Cl<sub>2</sub> (4.56 mL) was added via syringe and the reaction stirred at -50 °C for 20 min. Et<sub>3</sub>N (7.63 mL, 54.79 mmol) was added by syringe (reaction turned yellow and massive precipitate formed). The cold bath was removed and the reaction allowed to warm to room temperature over 1 h. Aqueous workup, and purification by column chromatography on silica gel (0 to 2% EtOAc in hexane gradient) afforded 153 and 155 (10:1) in 91% yield. IR (neat) 2961, 1726, 1640, 1601. 1429, 1252 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.54-7.35 (m, 5H), 6.44-6.38 (dd, J = 18.0, 11.0 Hz, 1H), 5.95 (d, J = 17.2), 5.81 (d, J = 11.0, 1H), 0.52 (s, 6). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  235.5, 141.1, 135.2, 133.9, 129.8, 128.9, 128.2, -3.7. **153** is a known compound and have spectral data in accord with the reported ones. <sup>10</sup>

**156**: IR (neat) 2963, 1699, 1626,1429, 1252, 1111 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.53-7.36 (m, 5H), 6.25 (d, J = 2.2 Hz, 1H), 6.11 (d, J = 2.2 Hz, 1H), 0.57 (s, 6H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  224.5, 144.4, 134.5, 133.9, 130.2, 128.4, 127.8, -3.2.

Enzymatic resolution of 1-trimethylsilanyl-prop-2-en-1-ol 32-preparation of (S)-(-)-32: To a solution of racemic α-hydroxysilane 32 (7.71 g, 59.27 mmol) in pentane (20 mL, 4.0 M) were added *Novozym 435* (0.015 g/mmol racemic alcohol, 0.89 g) and vinyl acetate (1.5 equiv, 7.65 g, 88.90 mmol, 8.2 mL). The reaction was stirred at to 38 °C and monitored by chiral GC (BETA DEX TM 325 capillary column, 30 m x 0.25 mm x 0.25 um film thickness, Catalog No. 24308; Program 30 to 100 °C, at 5 °C/min, hold at 100 °C for 2 min.). Then reaction mixture was filtered through a pad of Celite 503, concentrated, and purified by silica gel column chromatography. Optical rotation IR (neat) 2961, 1742, 1636, 1370, 1235 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 5.84-5.77 (m, 1H), 5.26-5.14 (dt, J = 6.0, 2.0 Hz, 1H), 4.98-4.93 (m, 1H), 2.05 (s, 3H), 0.02 (s, 9H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 170.6, 134.9, 111.2, 70.6, 20.9, -4.1. **157** is a known compound and has spectral data in accord with the reported ones.<sup>42</sup>

Preparation of 4-phenyl-hexanoic acid 158. 30% H<sub>2</sub>O<sub>2</sub> (1.0 mL) and 3N NaOH (0.50 mL) were added to a solution of 4-phenyl-1-trimethylsilanyl-hexan-1-one (0.32 mmol, 0.08 g) in MeOH (3.0 mL) and the mixture turned cloudy, which dissipated on stirring at room temperature for 20 min. The mixture was extracted with ether, and concentrated. Purification by column chromatography on silica gel (hexane/EtOAc (0-10%) gave 0.022 g (0.116 mmol, 36%) of 4-phenyl-hexanoic acid 158. IR (neat) cm<sup>-1</sup>. <sup>1</sup>HNMR (CDCl<sub>3</sub>, 300 MHz) δ 0.76 (t, 3H), 1.50-1.72 (m, 2H 3H), 1.75-1.88 (m, 1H), 1.95-2.07 (m, 1H), 2.15 (t, 2H), 2.37-2.47 (m, 1H). <sup>13</sup>CNMR (CDCl<sub>3</sub>, 125 MHz) δ 179.1, 144.2, 128.4, 127.7, 126.3, 47.1, 32.0, 31.1, 29.6, 12.1. **158** is a known compound and have spectral data in accord with the reported ones.<sup>43</sup>

Preparation of 3-phenyl-pentanoic acid 161. *N*-(2-Hydroxy-1-methyl-2-phenyl-ethyl)-*N*-methyl-3-phenyl-acrylamide: A solution of cinnamoyl chloride (1.15 equiv, 22.80 mmol, 3.8 g) in THF (8.0 mL, 2.85 M) was added via cannula over 10 min to an ice-cold solution of L-(-)-ephedrine•HCl (1.0 equiv, 19.83 mmol, 4.0 g) and proton-sponge in THF (47 M, 0.42 M L-(-)-ephedrine). Reaction was stirred at 0 °C and allowed to warm to rt for 24 h. The reaction mixture was partitioned between EtOAc (79 mL) and brine (6.0 mL). Phases were separated and the aqueous phase extracted with EtOAc to afford 6.95 g of the crude product, which was passed through silica gel column to give 6.03 g (18.17 mmol, 92%) of and excess phenylacetyl *N*-(2-Hydroxy-1-methyl-2-phenyl-ethyl)-*N*-methyl-3-phenyl-acrylamide. This amide was employed in the following step.

Alkylation of N-(2-hydroxy-1-methyl-2-phenyl-ethyl)-N-methyl-3-phenylacrylamide: A 3-necked round-bottomed flask equipped with a condenser (carrying a drying tube), an addition funnel, and a magnetic stir bar was charged with Mg (7.95 g. 327.12 mmol) and ether (80 mL). The flask was immersed in an oil bath and a solution of EtBr (11.88 g, 109.04 mmol) in ether (50 mL) added slowly. Reaction was stirred at reflux for 3 h and transferred via cannula to a cold (-78 °C) solution of N-(2-hydroxy-1methyl-2-phenyl-ethyl)-N-methyl-3-phenyl-acrylamide (from step one above) (6.03 g, 18.17 mmol) in ether/THF (1:1.5 v/v, 280 mL). Following the transfer, reaction was allowed to warm from -78 to -40 °C and stirred at this temperature for 48 h. The reaction was filtered (to remove insoluble materials), residue washed with EtOAc. The aqueous phase was extracted with EtOAc, combined organic extract dried over MgSO4, filtered, concentrated, and purified by column chromatography on silica gel (hex/EtOAc (0-40%) to afford 160 in >100% yield. Acid hydrolysis: Compound 160 was dissolved in AcOH (43 mL) and 6N H<sub>2</sub>SO<sub>4</sub> (86 mL), and refluxed for 3 h. The reaction mixture was cooled to room temperature, diluted with ether, and phases separated. The aqueous phase was extracted with ether (40 mL x 3) and the combined ethereal extracts was washed with brine, and dried over MgSO<sub>4</sub>. Filtration and concentration under reduced pressure afforded 2.63 g of the crude 161. Purification by column chromatography on silica gel (hexanes/EtOAc (0-50%) afforded 1.87 g (10.52 mmol, 58% yield) of the pure acid (yield was over 2 steps). IR (neat) 3400-2500, 1709, 1933, 1605, 1495, 1452, 1412, 1285 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  11.31 (bs, 1H), 7.32-7.16 (m, 5H), 3.04-2.94 (m, 1H), 2.71-2.56 (m, 2H), 1.80-1.53 (m, 2), 0.78 (apparent t, J = 7.7, 7.1 Hz, 3H). <sup>13</sup>C NMR (75)

MHz, CDCl<sub>3</sub>)  $\delta$  178.7, 143.4, 128.3, 127.3, 126.4, 43.5, 41.2, 29.1, 11.9. **161** is a known compound and have spectral data in accord with the reported ones.<sup>44</sup>

Preparation of 3-phenyl-pentan-1-ol 162. To a solution of LAH (0.98 g, 25.87 mmol) in THF (80 mL) was added a solution of 3-phenyl-pentanoic acid 161 (1.80 g, 10.14 mmol) in THF (50 mL), and the reaction refluxed for 18-20 h. The reaction was quenched by very careful addition of H<sub>2</sub>O. Phases were separated and the aqueous phase was extracted with ether (50 mL x 3). The combined ethereal layer was washed with H<sub>2</sub>O and brine, dried over MgSO<sub>4</sub>, filtered and concentrated to give 1.88 g of crude 3phenyl-pentan-1-ol as a light yellow, thick oil. Purification by column chromatography on silica gel (hexanes/EtOAc (0-10%) afforded 1.28 g (7.81 mmol, 74%) of alcohol 162 as a thick colorless oil.  $[a]_{D}^{20}+11$ , (c. 1.21, PhH). IR (neat) 3331, 2963, 2930, 1603, 1495, 1452, 1372 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.30-7.12 (m, 5H), 3.54-3.39 (m, 2H), 2.62-2.51 (m, 1H), 1.99-1.87 (m, 1H), 1.83-1.72 (m, 1H), 1.70-1.50 (m, 3H), 0.77 (t, J = XX Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  144.8, 128.3, 127.5, 126.0, 61.2, 44.3, 39.3, 29.8, 12.2. 162 is a known compound and have spectral data in accord with the reported ones.45

Preparation of (3-Bromo-1-ethyl-propyl)-benzene 163. A 100 mL 2-necked round-bottomed flast was charged with 3-phenyl-pentan-1-ol 162 (1.0 equiv, 3.05 mmol,

0.50 g), CBr<sub>4</sub> (1.25 equiv, 3.81 mmol, 1.26 g) and CH<sub>2</sub>Cl<sub>2</sub> (to make a 0.1 M solution of 3-phenyl-pentan-1-ol. The flask was capped under N<sub>2</sub> and cooled to 0 °C. Then, a solution of PPh<sub>3</sub> (1.5 equiv, 4.57 mmol, 1.2 g) in CH<sub>2</sub>Cl<sub>2</sub> (10 mL, 0.45 M) was added at the rate of 0.86 ml/min, and reaction stirred at 0 °C for 1.5 h. Reaction mixture was allowed to warm to room temperature, and diluted with ether. White precipitates formed. Filtration, concentration of the filtrate, and purification by column chromatography on silica gel afforded 0.69 g (3.04 mmol, 99.80%) of (3-Bromo-1-ethyl-propyl)-benzene **163.**<sup>46</sup> IR (neat) 2961, 2926, 1603, 1493, 1452, 1254 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.30-7.13 (m, 5H), 3.31-3.23 (m, 1H), 3.14-3.05 (m, 1H), 2.7-2.60 (m, 1H), 2.24-2.01 (m, 2H), 1.73-1.51 (m, 2H), 0 78 (t, J = 7.1 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  143.5, 128.4, 127.6, 126.3, 46.1, 39.5, 32.3, 29.4, 12.2. [a]<sup>20</sup>

Preparation of trimethyl-[2-(3-phenyl-pentyl)-[1,3]dithian-2-yl]-silane 164. To a cold (-25 °C) THF solution of 2-silyl-1,3-dithiane (0.5 M, 1.0 equiv, 2.55 mmol, 0.49 g, 0.5 M in THF) was added dropwise over 20 min, *n*-BuLi (1.6 M solution in hexane, 1.05 equiv). Reaction was stirred for 2 h, and transferred to a THF solution of 3-bromo-1-ethyl-propyl)-benzene 163 (1.0 equiv, 2.55 mmol, 0.58 g, 0.5 M in THF). Reaction was stirred at -25 °C for 58 h, and allowed to warm to room temperature for 10 h, and quenched by the addition of ether/water (4:3 v/v). Phases were separated, and the organic layer washed with brine (x 2), dried over MgSO<sub>4</sub> and concentrated on the rotavap to give crude trimethyl-[2-(3-phenyl-pentyl)-[1,3]dithian-2-yl]-silane 164. Purification

by column chromatography on silica gel (hexanes/EtOAc (0-1%) delivered 0.68g (2.03 mmol, 80%) of the pure product. IR (neat) 2959, 1603, 1493, 1452, 1423, 1250 cm<sup>-1</sup>. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.30-7.14 (m, 5H), 2.84-2.74 (m, 1H), 2.66-2.56 (m, 1H), 2.41-2.21 (m, 3H), 2.10-2.00 (m, 2H), 1.90-1.57 (m, 6H), 0.78 (t, J = 7.7, 7.1 Hz, 3H), 0.13 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  145.3, 128.2, 127.8, 125.9, 48.3, 38.8, 34.6, 34.3, 29.8, 25.5, 23.1, 22.9, 12.2, -2.6. HRMS (EI) m/z 338.1544 [(M)<sup>+</sup>; calcd for  $C_{18}H_{30}S_2Si$ , 338.1558].  $a_{10}^{20}$ 

Preparation of 4-phenyl-1-trimethylsilanyl-hexan-1-one 82. A solution of trimethyl-[2-(3-phenyl-pentyl)[1,3]- dithian-2-yl]-silane 164 (1.0 equiv, 0.88 mmol, 0.30 g) in acetone (8.0 mL) was added slowly to a cold (0 °C) stirred suspension of *N*-bromosuccinimide (6.0 equiv, 5.29 mmol, 0.94 g) in 80% aqueous acetone. Reaction was stirred at 0 °C for 2 h. The ice bath was removed and Na<sub>2</sub>S solution wa rapidly added, and product extracted with ether. The combined organic layers were washed with H<sub>2</sub>O, brine, dried with MgSO<sub>4</sub>, and concentrated on the rotary evaporator. Purification by column chromatography on silica gel (hexanes/EtOAc (0-1%) afforded 0.14 g (0.56 mmol, 64%) of 4-Phenyl-1-trimethylsilanyl-hexan-1-one 82. IR (neat) cm<sup>-1</sup>. <sup>1</sup>HNMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  7.29-7.06 (m, 5H), 2.49-2.42 (m, 1H), 2.38-2.31 (m, 2H), 1.95-1.88(m, 1H), 1.70-1.61 (m, 2H), 1.5801.49 (m, 1H), 0.76-0.73 (t, J = 7.5 Hz, 3H), 0.08 (s, 9H). <sup>13</sup>CNMR (CDCl<sub>3</sub>, 125 MHz)  $\delta$  248.5, 144.8, 128.3, 127.7, 126.0, 47.1, 46.4, 29.8, 28.4, 12.1, -3.2.  $[a]_{i}^{20}$ 

Preparation of 158: The [1,4]-Wittig product 97 from the Wittig rearrangement of α-alkoxysilane of E-56 (217 mg, 0.87 mmol) was dissolved in THF (0.24 M, 3.6 mL), and 3N NaOH (0.83 mL/mmol starting material, 0.72 mL) added. The mixture was heated to 35-40 °C, and then oxidized by adding dropwise 30% H<sub>2</sub>O<sub>2</sub> (0.42 mL/mmol starting material, 0.36 mL), while maintaining the reaction temperature below 50 °C for 2 h. The aqueous phase was cooled to 0 °C, and acidified to pH of 1-2 with 6 N HCl.. The resulting aqueous material was extracted with ether (5 x 20 mL), and the ether solution dried with MgSO<sub>4</sub>. Filtration and concentration afforded 158 mg (94% yield) of 158a and 158b as thick colorless oils. Purification by column chromatography on silica gel (hexane/EtOAc (0-10%) afforded 158a and 158b as a 2.8:1 mixture of diastereomers (ratio by ¹HNMR). IR (neat) 3100-2500 (s, v br), 2967, 1707, 1495, 1452, 1412, 1290 cm<sup>-1</sup>.

Major *anti*-**158a**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  11.49 (br s, 1H), 7.31-7.18 (m, 5H), 2.72-2.65 (quintet, J = 7.1, 6.6 Hz, 1H), 2.53-2.48 (dd, J = 14.8, 4.4 Hz, 1H), 2.28-2.18 (m, 1H), 2.14-2.09 (dd, J = 15.1, 9.1 Hz, 1H), 1.28-1.26 (d, J = 7.1 Hz, 3H), 0.88 (d, J = 6.6 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  179.8, 144.8, 128.2, 127.6, 126.2, 44.4, 38.9, 36.2, 18.3, 17.5. HRMS (EI) m/z xxx.yyyy [(M-H)<sup>+</sup>; calcd for C<sub>12</sub>H<sub>16</sub>O<sub>2</sub>, xxx.yyyy].

Minor syn-158b: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  11.49 (br s, 1H), 7.33-7.18 (m, 5H), 2.63-2.56 (quintet, J = 7.1, 6.6 Hz, 1H), 2.35-2.31 (apparent dd, J = 15.4, 14.8, 4.4, 3.8 Hz, 1H), 2.28-2.18 (m, 1H), 2.04-1.99 (dd, J = 14.8, 9.3 Hz, 1H), 1.27-1.24 (d, J = 7.1

Hz, 3H), 1.04 (d, J = 6.6 Hz, 3H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  179.8, 145.7, 128.2, 127.5, 126.1, 44.7, 39.8, 36.4, 18.3, 17.2. *Anti* **158a** and *syn* **158b** are known compounds and have spectral data in accord with the reported ones. <sup>47</sup>

#### REFERENES

- 1. Schlosser, M.; Strunk, S. Tetrahedron 1989, 45, 2649-2664.
- 2. Reusch, W. H. Department of Chemistry, Michigan State University. Personal communication, April 26, 2003.
- 3. (a) Morris, L. J. Chem. Ind. London, 1962, 1238-1240. (b) Lawrence, B. M. J. Chromatogr. 1968, 38, 535-537. (c) Gibbons, G. F.; Mitropoulos, K. A.; Ramananda, K. J. Lipid Res. 1973, 14, 589-592. (d) J. Lipid Res. 1989, 30, 1471
- 4. Kells, K. W.; Hielsen, N. H.; Amstrong-Chong, R. J.; Chong, J. M. *Tetrahedron*, **2002**, *58*, 10287-10291.
- 5. E-3-trimethylsilanyl-prop-2-en-1-ol was prepared by silylation of propargyl alcohol (2.0 equiv n-BuLi, Et<sub>2</sub>O, -20 °C, 2.2 equiv TMSCl, H<sub>2</sub>O/AcOH), followed by reduction of the triple bond with Red-Al. For silylation of propargyl alcohol see (a) Brandsman, L.; Verkruijsse, H. D. Synthesis of Acetylenes, Allenes and Cumulenes, A Laboratory Manual; Elsevier: New York, 1981; p. 58. For reduction of triple bond by Red-Al see Hwu, J.R.; Furth, P. S. J. Am. Chem. Soc. 1989, 111, 8834-8841.
- 6. Gao, Y.; Sharpless, K. B. J. Org. Chem. 1988, 53, 4081-4084.
- 7. Yadav, J. S.; Shekharam, T.; Gadgil, V. R. J. Chem. Soc., Chem. Commun. 1990, 843-844.
- 8. Discordia, R. P.; Murphy, C. K.; Dittmer, D. C. Tetrahedron Letters 1990, 31, 5603-5606.
- 9. Telluride ion was preformed by reacting 2 equiv of Te (200 mesh) and 4 equiv of NaBH<sub>4</sub> in DMF at 70-80 °C for 30 min.
- 10. Buynak, J. D.; Strickland, J. B.; Lamb, G. W.; Khasnis, D.; Modi, S.; Williams, D.; Zhang, H. J. Org. Chem. 1991, 56, 7076-7083.
- 11. Soderquist, J. A.; Anderson, C. L.; Miranda, E. I.; Rivera, I. *Tetrahedron Lett.* **1990**, 31, 4677-4680.
- 12. Kamimura, A.; Kaneko, Y.; Ohta, A.; Matsuura, K.; Fujimoto, Y.; Kakehi, A.; Kanemasa, S. *Tetrahedron* **2002**, 9613-9620.
- 13. (a) Chandrasekharan, J.; Ramachandran, P. V.; Brown, H. C. J. Org. Chem. 1985, 50, 5446 (b) Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V. J. Am. Chem. Soc. 1988, 110, 1539.

- 14. Hart, H. Chem. Rev. 1979, 79, 515-528.
- 15. Hoff, S.; Brandsma, L.; Arrens, J. F. Rec. Trav. Chim. 1968, 87, 916-925.
- 16. Reich, H. J.; Kelly, M. J. Olson, R. E.; Holtan, R. C. Tetrahedron 1983, 39, 949-960.
- 17. DeLuca, L.; Giacomelli, G.; Porcheddu, A. J. Org. Chem. 2001, 66, 7907-7909.
- 18. Danheiser, R. L.; Fink, D. M.; Okano, K.; Tsai, Y-M.; Szczepanski, S. W. J. Org. Chem. 1985, 50, 5393-5396.
- 19. (a) Reich, H. J.; Eisenhart, E. K.; Olson, R. E.; Kelly, M. J. J. Am. Chem. Soc. 1986, 108, 7791-7800. (b) Paredes, M. D.; Alonso, R. J. Org. Chem. 2000, 65, 2292-2304.
- 20. Smith A. B. III; Leenay, T. L. Tetrahedron Lett. 1988, 29, 49-52.
- 21. Kende, A. S. et al. J. Am. Chem. Soc. 1986, 108, 3513-3515.
- 22. Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 2647-2750.
- 23. (a) Surendra, K.; Krishnaveni, N. S.; Reddy, M. A.; Nageswar, Y. V. D.; Rao, K. R. J. Org. Chem. 2003, 68, 9119-9121. (b) Surendra, K.; Krishnaveni, N. S.; Reddy, M.A.; Nageswar, Y. V. D.; Rao, K. R. J. Org. Chem. 2003, 68, 2058-2059. (c) Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A. V. Tetrahedron 2004, 60, 2131-2135. (d) Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T. Angew. Chem. Int. Ed. 2003, 42, 4077-4082.
- 24. (a) Abul-Hajj, Y. J. J. Steroid Biochem. 1984, 21, 621-622. (b) Gorlitzer, K.; Bartke, U. Pharmazie 2002, 10, 679-681. (c) Brimble, M. A.; McEwan, J. F. ARKIVOC 2000, 1, 909-916. (d) Aoyama, T.; Sonoda, N.; Yamaguchi, M.; Toriyama, K.; Anzai, M.; Ando, a.; Schioiri, T. Synlett, 1998, 35-36. See also refs. 4-8 therein for former work by these authors. (e) Hirano, M.; Yakabe, S.; Hikamori, H.; Clark, J. H.; Morimoto, T. J. Chem. Res. Synop. 1998, 308-309. (f) Hirano, M.; Yakabe, S.; Hikamori, H.; Clark, J. H.; Morimoto, T. J. Chem. Res. Synop. 1998, 310-311. (g) Hirano, M.; Yakabe, S.; Hikamori, H.; Clark, J. H.; Morimoto, T. J. Chem. Res. Synop. 1998, 770-771.
- 25. (a) Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org. Chem. 1986, 51, 512- (b) Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M. J. Org. Chem. 1986, 51, 2370-2374. (c) Latypov, S. K.; Seco, J. M.; Quinoa, E.; Riguera, R. J. Org. Chem. 1996, 61, 8569. (d) Latypov, S. K.; Seco, J. M.; Quinoa, E.; Riguera, R. J. Am. Chem. Soc. 1998, 120, 877-
- 26. Resolution of sec-phenethyl alcohol was done by stirring a mixture of the racemic alcohol, 1.0 equiv of acetic anhydride and Amano AK Lipase in benzene at room temperature for 55 h  $[([a]_D^{20} -51.6 \, ^{\circ} (c 1.294, CHCl_3); Lit[a]_D^{25} -41.0 \, ^{\circ} (neat)).]$  This

reaction also afforded 45.81 of (R)-(+)-1-phenylethanol acetate  $[a]_D^{20}$  +94.4 ° (c 1.104, CHCl<sub>3</sub>); Lit.  $[a]_D^{23}$  +106 °, (c 1, ether)). The trichloroacetimidate of (S)-(-)-phenethyl alcohol was prepared following literature procedure and obtained in 88% enantiomeric excess ( $[a]_D^{20}$  -51.6 ° (c 1.2, CHCl<sub>3</sub>)).

- 27. Marshall, J. A.; Chobanian, H. R.; Yanik, M. M. Org. Lett. 2001, 3, 3369-3372.
- 28. ProStar particulars
- 29. Mukaiyama, T.; Iwasawa, N. Chemistry Letters 1981, 913-916.
- 30. (a) Darcel, C.; Flachsmann, F.; Knochel, P. Chem. Commun. 1998, 205-206. (b) Boudier, A.; Darcel, C.; Flachsmann, f. Micouin, L. Oestreich, M.; Knochel, P. Chem. Eur. J. 2000, 6, 2748-2760.
- 31. Mikami, K.; Kimura, Y.; Kishi, N.; Nakai, T. J. Org. Chem. 1983, 48, 279-281.
- 32. Cram, K. J. Fundamentals of Carbanion Chemistry; Academic Press: New York, 1965; Chapters III, IV.
- 33. (a) Woodward, R. B.; Hoffmann, R. The Conservation of Orbital Symmetry; Academic: New York, 1970. (b) Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885-902.
- 34. Felkin, H.; Tambute, A. *Tetrahedron Lett.* **1969**, *10*, 821-822. (b). Tomooka, K.; Yamamoto, H.; Nakai, T. *Liebigs Ann.* **1997**, 1275-1281.
- 35. Felkin, H.; Frajerman, C. Tetrahedron Lett. 1977, 3485, and references cited therein.
- 36. Jenny E. F.; Druey, J. Angew Chem. 1962, 87, 152.
- 37. Broaddus, C. D. J. Am. Chem. Soc. 1965, 87, 3706.
- 38. (a) Fukui, K. *Theory of Orientation and Stereoselection*; Springer-Verlag: Berlin, 1971. (b) Fleming, I. *Frontier Orbitals and Organic Chemical Reactions*; Wiley: New York, 1976.
- 39. Kobayashi, Y.; Ito, T.; Yamakawa, I.; Urabe, H.; Sato, F. Synlett 1991, 11, 813-815.
- 40. Paetow, M.; Ahrens, H.; Hoppe, D. Tetrahedron Lett. 1992, 33, 5323-5326.
- 41. (a) Mehltretter, G. M.; Bhor, S.; Klawonn, M.; Dobler, C.; Sundermeier, U.; Eckert, M.; Militzer, H.; Beller, M. Synthesis 2003, 2, 295-301. (b) Soderquist, J. A.; Rane, A. M.; Lopez, C. J. Tetrahedron Lett. 1993, 34, 1893-1896.

- 42. (a) Trost, B. M.; Ariza, X. J. Am. Chem. Soc. 1999, 121, 10727-10737. (b) Lorsbach, B. A.; Prock, A.; Giering, W. P. Organometallics 1995, 14, 1694-1699. (c) Aicher, T. D.; Keith, R.; Fang, F. G.; Forsyth, C. J.; Jung, S. H.; Kishi, Y.; Scola, P. M. Tetrahedron Lett. 1992, 33, 1549-1552.
- 43. (a) Brienne, M. J.; Quannes, C.; Jacques, J. Bulletin de la Societe Chimique de France 1967, 32, 613-623. (b) Din, L. B.; Meth-Cohn, Otto; Walshe, N. D. A. Tetrahedron Lett. 1979, 49, 4783-4786. (c) Reinheckel, H.; Sonnek, G.; Gendike, R. Journal fuer Praktische Chemie (Leizig) 1975, 317, 273-283.
- 44.[(a) Chiacchio, U.; Corsaro, A.; Gambera, G.; Rescifina, A.; Piperno, A.; Romeo, R.; Romeo, G. Tetrahedron: Asymmetry 2002, 13, 1915-1921. (b) Alexakis, A.; Benhaim, C. Tetrahedron: Asymmetry 2001, 12, 1151-1157. (c) Mani, N. S.; Wu, M. Tetrahedron Asymmetry 2000, 11, 4687-4691. (d) Sekio, M.; Yoshihiro, K. Chemistry & Industry (London, United Kingdom) 1965, 9, 381-382.
- 45. (a) Sekio, M.; Yoshihiro, K. Chemistry & Industry 1965, 9, 381-382. (b) Soeta, T.; Kuriyama, M.; Tomioka, K. J. Org. Chem. 2005, 70, 297-300.
- 46. Giovannini, R.; Studemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. Org. Chem. 1999, 64, 3544-3553. Compound employed, however no spectral data were provided.
- 47. (a) Boudier, A.; Darce;. C.; Flachsmann, F.; Micouin, L.; Oestreich, M.; Knoechel, P; Chem. Eur. J. 2000, 6, 2748-2761. (b) Darcel, C.; Flachsmann, F.; Knochel, P. Chem. Commun. 1998, 205-206.

### **CHAPTER 7**

# [1,2]-WITTIG REARRANGEMENT OF $\alpha$ -ALKOXYSILANES

#### 7.1. Introduction

As reported in previous chapters of this dissertation, the Wittig rearrngements of  $\alpha$ -alkoxysilanes studied in this work were initiated by deprotonation  $\alpha$  to the silyl group and afforded [1,2] and [1,4] products. Product distribution depended largely on the structure of the starting alkoxy ether and the temperature of the reaction. We showed that for a simple  $\alpha$ -alkoxysilane 7 bearing no substituent at the migrating carbon center and at the terminal sp<sup>2</sup> carbon of the allyl moiety, product formation could be controlled simply by careful control of reaction temperature and that the [1,2]-rearrangement pathway could be effectively suppressed. We also showed that compounds featuring a substituent either at the migrating center or at the terminal sp<sup>2</sup> carbon, or at both sites, afforded the [1,2] and [1,4] products in approximately 1:2 ratio, regardless of the reaction temperature.

As reported in Chapter 4, substitution at the migrating carbon resulted in a pair of diastereomeric compounds with different reactivities. We also reported that the Wittig products formed a new chiral center. We reported the determination of the relative stereochemistries of the reactive and less reactive diastereomer pair of  $\alpha$ -alkoxysilanes in Chapter 5 and in Chapter 6 we discussed the mechanism of the [1,4]-Wittig. At this point we were poised to investigate further the [1,2]-Wittig reaction of  $\alpha$ -alkoxysilanes.

## 7.2. Observed [1,2]-alkyl shift/silyl migration in some $\alpha$ -alkoxysilanes

Maleczka and Geng<sup>1</sup> first showed that the Wittig rearrangement of our model substrate 7 afforded the products 8 and 9 via the [1,4] and [1,2] pathways (Scheme 7.1). A close look at this Scheme reveals that while 8 is the [1,4]-Wittig product, 9 is not the expected [1,2]-product, but is obtained via the [1,2]-pathway.

Scheme 7.1. Plausible pathway for the [1,2]-Wittig rearrangement/silyl migration observed in compound 7

Scheme 7.1 shows our explanation of the observed [1,2]-products from the Wittig rearrangement of compound 7. The [1,2]-Wittig pathway for the carbanion of 7 (123) via radical-radical anion dissociation-recombination event would afford the tertiary alkoxide 195, which could undergo a subsequent silyl migration via two possible routes. First, the silyl group could do a 1,2-Brook rearrangement, placing the negative charge on the carbon, and a subsequent 1,4-shift to give an enolate intermediate 197. The second route would involve a direct [1,3]-silyl migration, also

giving the enolate 197. Looking at these two scenarios more closely, the first route involves breaking a weaker Si-C bond (Si-C bond in Me<sub>4</sub>Si is 318 kJmol<sup>-1</sup>/75.967 kcalmol<sup>-1</sup>, bond length 0.189 nm) and making a stronger O-Si bond [approximate bond dissociation energies: Si-O bond in Me<sub>3</sub>SiOMe is 531 kJmol<sup>-1</sup>/126.851 kcalmol<sup>-1</sup>; in (Me<sub>3</sub>Si)<sub>2</sub>O 812 kJmol<sup>-1</sup>/193.98 kcalmol<sup>-1</sup>; bond length in (H<sub>3</sub>Si)<sub>2</sub>O is 0.163 kJmol<sup>-1</sup>/)].<sup>2</sup> However, this process would result in going from an alkoxide anion to a carbanion. The question here is whether the gain in energy (ΔE) could offset the loss in going from an alkoxide to a carbanion. In the second route, there is breaking of a C-C bond and making of a new C-C bond, a process that is energetically neutral, but maintains an alkoxide anion throughout.

In their previous work, Maleczka and Geng<sup>1</sup> reported isolation of an alkyl silyl ether 199, which would arise from a [1,2]-Brook rearrangement on deprotonation of the tertiary alcohol 198 (Scheme 7.2). This result seems to support the first pathway as the operative mechanism.

Scheme 7.2. Previous work by Maleczka and Geng

In the present work, we isolated a vinyl trimethylsilyl ether 201 from the Wittig rearrangement/electrophilic trapping of 7 (Scheme 7.3). The formation of compound 201 could be explained by either Brook rearrangement/[1,4]-silyl migration or direct [1,3]-silyl migration, as both routes result in the requisite enolate intermediate 197

(Scheme 7.1). Thus, this result does not give information as to which mechanism is operative.

Scheme 7.3. Present work: isolation of vinyl silyl ether 201 in the Wittig rearrangement/electrophilic trapping of 7

In Chapter 4, we reported the Wittig rearrangement of 55, featuring a substitution at the terminal sp<sup>2</sup> carbon of the allyl moiety. Here, we did not observe the silyl migration that usually accompanies the [1,2]-Wittig of  $\alpha$ -alkoxysilanes bearing no such substituent (Scheme 4.26).

Scheme 4.26. Substitution at the terminal sp<sup>2</sup> carbon: Wittig rearrangement reaction of 55

The isolation of 92 from the Wittig rearrangement of 55 seems to support the second route. If Brooks rearrangement precedes silyl migration, and if substitution at the terminal sp<sup>2</sup> carbon of the allyl moiety suppresses silyl migration, then one would

expect the formation of the allyl trimethylsilyl ether **202** (Scheme 7.4), which we did not observe. Although we have no direct evidence of any *O*-silyl products, we are not completely ruling out the possibility that the [1,3]-silyl migration could occur via Brook rearrangement of **195** (Scheme 7.1).<sup>3</sup>

Scheme 7.4. Plausible mechanism of the [1,2]-Wittig rearrangement of  $\alpha$ -alkoxysilanes

In the Wittig rearrangement of E-56 (Scheme 4.26), we isolated two products arising from [1,2]-rearrangement 95 and [1,2]-rearrangement/silyl migration 96. Steric congestion at the two vicinal stereocenters could be the driving force for the silyl migration leading to 96.

Scheme 4.26. Substitution at both the migrating center and the terminal sp<sup>2</sup> carbon

Combined yield of products **95**, **96** and **97** ranges from 35 to 57% depending on the temperature and reaction time

# 7.3. Stereochemistry of the [1,2]-Wittig rearrangement of $\alpha$ -alkoxysilanes

For an α-alkoxysilane bearing an alkyl substituent at the migrating center, there arises the question of stereochemistry at the newly formed stereocenter of the [1,2]-Wittig product. The Wittig rearrangement of enantiodefined substrate 48 afforded 82 and 83, arising from [1,4] and [1,2]-Wittig pathways respectively (Scheme 7.5). Unlike the [1,4]-Wittig product 82, 83 was amenable to analysis by chiral HPLC.<sup>4</sup> The racemic [1,2] product was analyzed first to determine the retention times for the two enantiomers (for reference purposes).

Scheme 7.5. Wittig rearrangement reaction of 48 mediated by sec-BuLi

Next enantiomerically enriched [1,2] product **83** was prepared by an independent route as illustrated in Scheme 7.6. The preparation started with the formation of the amide **203**<sup>5</sup> (81% yield), by the reaction between pseudoephedrine and phenylacetyl chloride, in the presence of TEA. Deprotonation of this amide by LDA, trapping with EtI, and removal of the chiral auxiliary by acid hydrolysis afforded the expected 2-phenyl-butyric acid (42%). This compound was subsequently converted to the corresponding 2-phenyl-butyryl chloride. Lewis acid mediated acetylation of 2-phenyl-butyryl chloride<sup>6</sup> followed by catalytic hydrogenation afforded the expected [1,2]-Wittig product **83** (81% yield, 87% ee). The HPLC traces of the [1,2]-Wittig products (from both sources) were obtained and compared. It was found that the [1,2]-pathway proceeded with retention of configuration at the migrating carbon (% ee retention = 83%, % er retention = 92%) (Scheme 7.7).

Scheme 7.6. Synthesis of [1,2]-Wittig product by an independent route

Scheme 7.7. Determination of the stereochemistry of the [1,2]-Wittig product

We subjected the less reactive (S,S)-48 to the Wittig conditions and it reacted completely in about three days to give the [1,2] and [1,4] rearranged products. On analysis by chiral HPLC, we found that the [1,2]-Wittig product was obtained with a lower level of retention of stereochemistry (69% ee retention/85% er retention) than the

level obtained with the reactive diastereomer (S,R)-48 (83% ee retention/~92% er retention).

Scheme 7.8. Comparison of the [1,2]-Wittig of (S,R)-48 and (S,S)-48

[1,2]-Wittig rearrangement of allyl alkyl ethers is known to occur with inversion of configuration at the metal bearing center and with retention of configuration at the migrating carbon. In the Wittig rearrangement of  $\alpha$ -alkoxysilanes investigated in this study, we observed predominant retention of configuration at the migrating carbon. Following deprotonation, there is weakening and breaking of the C-O bond. With the breaking of the C-O bond there is inversion of configuration at the  $\alpha$  carbon (metalbearing center) from (S) to (R) in both the reactive and less reactive diastereomers. It would appear that recombination between (R)-207 and (R)-benzylic radical is more rapid in the reactive (S,R)-48 than recombination between (R)-208 and (S)-benzylic radical in less reactive (S,S)-48. This is evident in the different levels of retention of configuration observed for both cases. This observation is in contrast to the results obtained by Nakai (Scheme 7.9).

Wittig rearrangement of compound 209 was studied by Nakai and co-workers who found that the (S,R)-209 afforded 211 with lower level of retention at the migrating center (90%) and lower level of inversion at the metal-bearing center (74%) than (S,S)-209 that afforded 213 with 98% retention at the migrating center and 90% inversion at the metal-bearing center.<sup>8</sup> According to the authors, the difference in stereospecificity means that a substantial level of mutual recognition of radical enantiomers takes place during the recombination process.

Scheme 7.9. Wittig rearrangement of a pair of optically defined diastereomers by Nakai and co-workers

The lower degree on retention of configuration at the migrating carbon observed for  $\alpha$ -alkoxysilanes relative to Nakai's results could be explained by resonance (Scheme 7.10). Resonance in the carbanion could result in partial racemization, and thus lower level of retention. The metal-bearing center in Nakai's study is resonance inactive.

Scheme 7.10. Possible racemization in the [1,2]-Wittig rearrangement of  $\alpha$ -alkoxysilanes as a resonance of resonance

### 7.4. Conclusions

[1,2]-Wittig rearrangement of α-alkoxysilanes occurred with predominant retention of configuration at the migrating center. We obtained 83% ee/92% er retention with the reactive syn diastereomer and 69% ee/85% er retention with the less reactive anti diastereomer. The lower level of retention we obtained with the syn 48b compared to literature reports<sup>8</sup> for allyl alkyl ethers could be accounted for by the significant difference in the structures studied. The metal-bearing center in the literature subtrates were resonance inactive in contrast to our systems that were susceptible to resonance. The significant difference in stereoselectivity observed for the syn 48b and anti 48a was in disagreement with Nakai's results. Whereas his system showed mutual recognition of radical enantiomers during the recombination, our system gave the opposite outcome.

### **EXPERIMENTAL**

Preparation of 2-phenyl-butyric acid 204: A 3-necked round-bottomed flask (500 mL) equipped with a mechanical stirrer was charged with LiCl (6.0 equiv, 132.98 mmol, 5.63 g), *i*Pr<sub>2</sub>NH (2.25 equiv, 49.87 mmol, 5.04 g, 7.0 ml), and THF (27 mL, 0.8 M substrate). The resulting suspension was cooled to -78 °C, and *n*-BuLi (1.6 M in hexane, 2.08 equiv, 46.10 mmol, 30.73 mL) was added via syringe. The reaction was warmed hriefly to 0 °C and cooled back to -78 °C. An ice-cold solution of *N*-(2-hydroxy-1-methyl-2-phenyl-ethyl)-*N*-methyl-2-phenyl-acetamide (1.0 equiv, 22.16 mmol, 6.28 g) in a minimal amount of THF was added to the reaction via cannula. The reaction mixture was stirred at -78 °C for 1 h, at 0 °C for 15 min, and at room temperature for 5 min, and cooled back to 0 °C. Then EtI (1.5 equiv, 33.24 mmol, 5.18 g, 2.66 mL) was added and the reaction stirred at -78 °C for 7 h.

The crude product was taken up in 10 M  $H_2SO_4$  (50 mL) and 1,4-dioxane (50 mL). The biphasic mixture was heated at reflux (oil bath temperature 130 °C) for 3 h and then cooled to 0 °C. The mixture was adjusted to  $pH \ge 10$  by the slow addition of 50% aqueous NaOH solution, and the resulting mixture was portioned between  $H_2O$  and  $CH_2Cl_2$  (2 x 100 mL). The aqueous layer was acidified to  $pH \le 2$  by the slow addition of 6 N  $H_2SO_4$  (aq) and then extracted with  $CH_2Cl_2$  (100 mL x 3). The combined organic extract was concentrated to about 50 mL, the concentrate washed with 1 N HCl (aq) to remove residual dioxane, dried over  $Na_2SO_4$ , and concentrated to afford crude 2-phenyl-

butyric acid. Purification by column chromatography on silica gel, eluting with hexanes/EtOAc (100-90%) afforded 0.92 g (5.62 mmol, 25%) of the pure acid. Note: A repeat of this reaction starting from (+)-norephedrine afford the pure acid **204** in 42% starting from (+)-norephedrine.  $[a]_{D}^{20}$  +54.5 (c. 1.63, CHCl<sub>3</sub>). IR (neat) 3400-2400, 2969, 1707, 1601, 1497, 1456, 1414, 1287, 1223 cm<sup>-1</sup>. <sup>1</sup>HNMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  11.54 (bs, 1H), 7.34-7.21 (m, 5H), 3.46-3.41 (t, J = 7.7 Hz, 1H), 2.16-2.01 (m, 1H), 1.87-1.72 (m, 1H), 0.91-0.86 (t, J = 7.4 Hz, 3H). <sup>1</sup>HNMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  180.3, 138.2, 128.5, 128.0, 127.3, 53.3, 26.3, 12.2.  $[a]_{D}^{20}$  +55 (c.1.63, CHCl<sub>3</sub>). **204** is a known compound and has spectral data in accord with the reported one. <sup>9</sup>

Preparation of 205: A mixture of 2-phenyl-butyric acid (1.0 equiv, 3.20 mmol, 0.52 g) and SOCl<sub>2</sub> (2.0 equiv, 6.39 mmol, 0.76 g, 0.47 mL) in benzene was stirred at 80 °C for 48 h, and excess solvent removed under reduced using a rotavap. The resulting 2-phenyl-butyryl-chloride was taken up in CH<sub>2</sub>Cl<sub>2</sub> and bis(trimethylsilyl)acetylene (1.12 equiv, 3.58 mmol, 0.61g, 0.81 mL) added. This mixture was cooled in ice water and anhydrous AlCl<sub>3</sub> (1.12 equiv, 3.58 mmol, 0.48 g) added in portions. After stirring for about 5.0 min, the cold bath was removed, and reaction stirred at RT for 10 h. The reaction mixture was poured into 20 ml of ice-cold water, and extracted with ether (50 mL x 4). The ethereal extract was dried over anhydrous MgSO<sub>4</sub>, filtered and concentrated on a rotary evaporator to five the 0.60 of crude product. Purification by silica column chromatography on silica gel (2% EtOAc in hexanes) afforded 0.60 mg

(77%) of pure **205**.  $[a]_D^{20}$  +45.0 (c. 1.092, CHCl<sub>3</sub>). IR (neat) 2964, 2151, 2093, 1676, 1454, 1254 1140 cm<sup>-1</sup>. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 300 MHz)  $\delta$  7.34-7.21 (m, 5H), 3.63-3.57 (t, J = 7.7, 7.4 Hz, 1H), 3.24-2.09 (m, 1H), 1.88-1.73 (m, 1H), 0.90-0.85 (t, 7.4 Hz, 3H), 0.14 (s, 9H). <sup>13</sup>C NMR (CDCl<sub>3</sub>, 75 MHz)  $\delta$  187.6, 137.3, 128.6, 128.5, 127.3, 101.4, 99.9, 62.5, 24.6, 12.1, -0.8. OR +45 (c. 1.0925, CHCl<sub>3</sub>). HRMS (CI) m/z 244.1279 [(M)<sup>+</sup>; calcd for C<sub>15</sub>H<sub>20</sub>OSi, 244.1283].

Preparation of 83: 10% Pd/C was added to a solution of 4-phenyl-1-trimethylsilanyl-hex-1-yn-3-one (1.73 mmol, 0.42 g) in EtOAc at RT. The flask was evacuated, and filled with  $H_2$  gas at 1 atm ( $H_2$  balloon). The flask was evacuated and this process repeated 4 times. The reaction was then stirred under  $H_2$  atmosphere for 36 h. The reaction was filtered on Celite 503, the Celite thoroughly washed, and the combined organic phases concentrated to give the crude product. Purification by column chromatography on silica gel (hexanes/EtOAc (0-1%) afforded 0.30 g (1.35 mmol, 78%) of pure product 4-phenyl-1-trimethylsilanyl-hexan-3-one 83. IR (neat) 2957, 1715, 1601, 1493, 1454, 1248 cm<sup>-1</sup>. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.31-7.19 (m, 5H), 3.56-3.53 (t, J = 7.5, 7.1 Hz, 1H), 2.33-2.25 (m, 2H), 2.06-2.00 (m, 1H), 1.72-1.66 (m, 1H), 1.41-0.81-0.78 (t, J = 7.5, 7.1 Hz, 3H), 0.74-0.68 (m, 1H), 0.61-0.55 (m, 1H), -0.11 (s, 9H). <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  211.5, 139.2, 128.7, 128.2, 127.0, 60.1, 36.5, 25.5, 12.2, 10.1, -1.9.

## **REFERENCES**

- 1. Maleczka, R. E. Jr.; Geng, F. Organic Letters 1999, 1, 1115-1118.
- 2. Silicon in Organic Synthesis by E. Colvin. 1981. Publishers: Butterworths.
- 3. (a) Kuwajima, I. J. Organomet. Chem. 1985, 285, 137-148. (b) Still, W. C. J. Org. Chem. 1976, 41, 3063-3064.
- 4. Information on chiral HPLC.
- 5. Myers, A. G.; Yang, B. H.; Chen, H.; McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997, 119, 6496-6511.
- 6. Newman, H. J. Org. Chem. 1973, 38, 2254-2255.
- 7. (a) Verner, E.J.; Cohen, T; J. Am. Chem. Soc. 1992, 114, 375-377. (b) Hoffman, R.; Brukner R. Chem. Ber. 1992, 125, 1957-1963. (c) (a) Tumooka, K.; Igarashi T.; Nakai, T. Tetrahedron Lett. 1993, 34, 8139-8142. (b) Tumooka, K.; Igarashi T.; Nakai, T. Tetrahedron 1994, 50, 5927-5932.
- 8. Tomooka, K.; Yamamoto, H.; Nakai, T. Liebigs Ann. 1997, 1275-1281.
- 9. (a) Fujiwara, T.; Sasaki, M.; Omata, K.; Kabuto, C.; Kabuto, K.; Takeuchi, Y. Tetrahedron: Asymmetry 2004, 15, 555-563. (b) Nieuwenhuijzen, J. W.; Grimbergen, R. F. P.; Koopman, C.; Kellogg, R. M.; Vries, T. R.; Pouwer, K.; van Echten, E.; Kaptein, B.; Hulshof, L. A.; Broxterman, Q. B. Angew. Chem. Int. Ed. 2002, 41, 4281-4286.

## **CHAPTER 8**

### **CONCLUSIONS**

We have demonstrated that the [1,4]-Wittig rearrangement of simple, unsubstituted  $\alpha$ -alkoxysilanes, representated by 7, could be efficient. The selectivity of the rearrangement was improved to favor the [1,4]- over the [1,2]-pathway. We also showed that the [1,4]-Wittig rearrangement of allyl ethers could be coupled with electrophilic capture of the resultant enolate intermediate. This procedure provides unique access to  $\alpha$ -functionalized acylsilanes, which are synthetically versatile building blocks in organic chemistry.

The relative stereochemistries of a pair of diastereomeric  $\alpha$ -alkoxysilanes undergoing Wittig rearrangement were established employing such techniques as 1H NMR (NOE) experiments and single crystal x-ray analysis. We determined that the reactive diastereomer has the *syn* relative stereochemistry and the less reactive has the anti-relative stereochemistry. We also showed that a pair of diastereomeric  $\alpha$ -alkoxysilanes have different chemical properties with regard to the formation of hydrazone and ester derivatives.

Efficient ring closing metathesis of  $\alpha$ -alkoxysilanes using Grubbs second generation Ru catalyst was achieved. We made five and six-membered cyclic ethers and observed the formation of six-membered silyl ethers to be more efficient than the formation of five-membered ones. This is an important contribution to the field considering that cyclization of  $\alpha$ -alkoxysilanes is not trivial.

In the area of mechanism of the Wittig rearrangement, we found that  $\alpha$ deprotonation and cleavage of C–O bond in the Wittig rearrangement of  $\alpha$ -alkoxysilanes are not concurrent but separate events. That the [1,2]-pathway could be effectively suppressed at low temperatures was evidence that the [1,4-] and the [1,2]-rearrangements of  $\alpha$ -alkoxysilanes have different mechanisms. The [1,4]-Wittig rearrangement of stereochemically defined  $\alpha$ -alkoxysilanes occurred with predominant retention of configuration (75% ee ret.) at the migrating carbon as required by orbital symmetry considerations. The [1,4]-Wittig rearrangement of  $\alpha$ -alkoxysilanes bearing substituents at the migrating center and the terminal olefinic carbon formed acysilanes with approximately 3:1 anti selectivity. This result is in agreement with Nakai's results for the [2,3]-Wittig rearrangement of E allyl ethers. This could interpreted as implying the concertedness of the [1,4]-Wittig of  $\alpha$ -alkoxysilanes. That [1,4]-pathway for the syn and the anti substrates acylsilanes occur with similar levels of retention of configuration (75% and 74% respectively) on one hand and [1,2]-products with significantly different levels of retention of configuration (83% and 69%) on the other hand is conclusive evidence that these two rearrangement pathways have different mechanisms. At low temperatures, the less reactive anti diastereomer was undergoing deprotonation as evidenced by the formation of yellow reaction mixture, however, at this temperature, no rearrangement occurred. This provided further conclusive evidence that the breaking of the C-O bond is the limiting step of this reaction.

# APPENDIX 1

ORTEP REPRESENTATION AND X-RAY DATA FOR COMPOUND 108

Table 1. Crystal data and structure refinement for p1

| Identification code                         | p1                                                                                                                                |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Empirical formula                           | C24 H32 N8 O8 Si2                                                                                                                 |
| Formula weight                              | 616.76                                                                                                                            |
| Temperature<br>Wavelength                   | 173(2) K<br>0.71073 A                                                                                                             |
| Crystal system                              | Triclinic                                                                                                                         |
| Space group                                 | P1                                                                                                                                |
| Unit cell dimensions                        | a = 6.2212(12) A<br>b = 11.574(2) A<br>c = 11.576(2) A<br>alpha = 110.73(3) deg.<br>beta = 99.03(3) deg.<br>gamma = 95.56(3) deg. |
| Volume<br>Z                                 | 759.3(3) A^3                                                                                                                      |
| Density (calculated)                        | 1.349 Mg/m <sup>3</sup>                                                                                                           |
| Absorption coefficient                      | 0.176 mm^-1                                                                                                                       |
| F(000)                                      | 324                                                                                                                               |
| Crystal size                                | ? x ? x ? mm                                                                                                                      |
| Theta range for data collection             | 1.91 to 28.26 deg.                                                                                                                |
| Index ranges -8<=h<=8, -15<                 | =k<=11, -14<=l<=14                                                                                                                |
| Reflections collected / unique 4723 / 402   | 2 [R(int) = 0.0117]                                                                                                               |
| Completeness to theta = 28.26 90.1%         |                                                                                                                                   |
| Refinement method Full-matrix l             | east-squares on F^2                                                                                                               |
| Data / restraints / parameters 4022 / 3 / 4 | 11                                                                                                                                |
| Goodness-of-fit on F <sup>2</sup> 0.779     |                                                                                                                                   |
| Final R indices [I>2sigma(I)] R1 = 0.032    | 29,  wR2 = 0.0951                                                                                                                 |
| R indices (all data) $R1 = 0.0436$ , w      | R2 = 0.1029                                                                                                                       |
| Absolute structure parameter 0.0(3)         |                                                                                                                                   |
| Largest diff. peak and hole 0.235 and -0    | 0.253 e.A^-3                                                                                                                      |

Table 2. Atomic coordinates (x 10<sup>4</sup>), equivalent isotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>), and occupancies for p1

|        | х         | у       | Z        | U(eq) | Occ. |
|--------|-----------|---------|----------|-------|------|
| Si(1)  | 14281(2)  | 1821(1) | 6722(1)  | 28(1) | 1    |
| C(2)   | 16559(12) | 3071(7) | 7870(7)  | 44(2) | 1    |
| C(3)   | 15381(10) | 442(6)  | 5784(7)  | 39(2) | 1    |
| C(4)   | 12257(10) | 1311(7) | 7571(6)  | 38(2) | 1    |
| C(5)   | 12733(11) | 2481(6) | 5600(6)  | 28(1) | 1    |
| C(6)   | 10638(10) | 2144(6) | 5161(6)  | 28(1) | 1    |
| C(7)   | 9430(9)   | 2568(6) | 4199(5)  | 20(1) | 1    |
| N(8)   | 7416(9)   | 2102(5) | 3717(5)  | 29(1) | 1    |
| N(9)   | 6428(9)   | 2544(5) | 2806(5)  | 27(1) | 1    |
| C(10)  | 4352(9)   | 2091(6) | 2212(5)  | 23(1) | 1    |
| C(11)  | 3183(9)   | 2536(5) | 1361(5)  | 22(1) | 1    |
| N(12)  | 4187(9)   | 3545(5) | 1036(5)  | 27(1) | 1    |
| O(13)  | 6158(8)   | 3937(5) | 1437(4)  | 37(1) | 1    |
| O(14)  | 3014(8)   | 4008(5) | 419(4)   | 35(1) | 1    |
| C(15)  | 977(9)    | 2062(5) | 741(5)   | 23(1) | 1    |
| C(16)  | -74(9)    | 1067(6) | 1019(5)  | 23(1) | 1    |
| N(17)  | -2367(8)  | 580(5)  | 395(5)   | 28(1) | 1    |
| O(18)  | -3264(8)  | 976(5)  | -357(5)  | 46(1) | 1    |
| O(19)  | -3299(7)  | -256(5) | 646(5)   | 39(1) | 1    |
| C(20)  | 987(10)   | 613(6)  | 1865(6)  | 27(1) | 1    |
| C(21)  | 3159(10)  | 1117(6) | 2436(5)  | 26(1) | 1    |
| Si(22) | 2166(2)   | 7036(1) | -2327(1) | 26(1) | 1    |
| C(23)  | 4177(13)  | 7492(9) | -3160(8) | 52(2) | 1    |
| C(24)  | -149(12)  | 5842(8) | -3417(7) | 45(2) | 1    |
| C(25)  | 1118(10)  | 8467(6) | -1372(6) | 34(1) | 1    |
| C(26)  | 3605(10)  | 6389(6) | -1239(6) |       | 1    |
| C(27)  | 5840(9)   | 6686(5) | -725(6)  | 27(1) | 1    |
| C(28)  | 6959(10)  | 6280(6) | 168(6)   | 31(1) | 1    |
| N(29)  | 9044(8)   |         | 681(5)   | 26(1) | 1    |
| N(30)  | 9950(8)   | 6286(5) | 1549(5)  | 24(1) | 1    |
| C(31)  | 12122(9)  | 6778(6) | 2181(5)  | 22(1) | 1    |
| C(32)  | 13294(10) |         | 3076(5)  |       | 1    |
| N(33)  | 12289(8)  | 5316(5) | 3342(5)  | 26(1) | 1    |
| O(34)  | 13451(8)  | 4870(5) | 3991(5)  | 41(1) | 1    |
| O(35)  | 10249(8)  | 4920(5) | 2941(5)  | 41(1) | 1    |
| C(36)  | 15483(9)  | 6839(6) | 3636(5)  | 24(1) | 1    |
| C(37)  | 16525(9)  | 7745(6) | 3408(5)  | 24(1) | 1    |
| N(38)  | 18822(9)  | 8301(5) | 4032(5)  | 32(1) | 1    |
| O(39)  | 19772(8)  | 9116(5) | 3739(5)  | 38(1) | 1    |
| O(40)  | 19732(8)  | 7879(6) | 4799(5)  | 49(2) | 1    |
| C(41)  | 15428(10) |         | 2569(5)  |       | 1    |

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 3. Bond lengths [A] and angles [deg] for p1

| Si(1)-C(3)   | 1.848(7) |
|--------------|----------|
| Si(1)-C(2)   | 1.876(7) |
| Si(1)-C(2)   | 1.885(6) |
| Si(1)-C(5)   | 1.911(6) |
| C(5)-C(6)    | 1.289(9) |
| C(6)-C(7)    | 1.498(7) |
| C(7)-N(8)    | 1.268(8) |
| N(8)-N(9)    | 1.412(6) |
| N(9)-C(10)   | 1.323(8) |
| C(10)-C(11)  | 1.404(7) |
| C(10)-C(21)  | 1.412(8) |
| C(11)-C(15)  | 1.402(7) |
| C(11)-N(12)  | 1.463(7) |
| N(12)-O(13)  | 1.220(7) |
| N(12)-O(14)  | 1.230(6) |
| C(15)-C(16)  | 1.428(7) |
| C(16)-C(20)  | 1.378(7) |
| C(16)-N(17)  | 1.451(7) |
| N(17)-O(18)  | 1.207(7) |
| N(17)-O(19)  | 1.225(7) |
| C(20)-C(21)  | 1.377(8) |
| Si(22)-C(23) | 1.840(8) |
| Si(22)-C(24) | 1.840(8) |
| Si(22)-C(26) | 1.843(6) |
| Si(22)-C(25) | 1.878(6) |
| C(26)-C(27)  | 1.382(8) |
| C(27)-C(28)  | 1.398(8) |
| C(28)-N(29)  | 1.310(8) |
| N(29)-N(30)  | 1.357(7) |
| N(30)-C(31)  | 1.390(7) |
| C(31)-C(42)  | 1.430(8) |
| C(31)-C(32)  | 1.445(7) |
| C(32)-C(36)  | 1.386(8) |
| C(32)-N(33)  | 1.427(7) |
| N(33)-O(34)  | 1.236(6) |
| N(33)-O(35)  | 1.260(7) |
| C(36)-C(37)  | 1.308(8) |

1.425(7)

| C(27) N(20)           | 1 466(7) |
|-----------------------|----------|
| C(37)-N(38)           | 1.466(7) |
| N(38)-O(40)           | 1.246(7) |
| , , , , ,             | • •      |
| N(38)-O(39)           | 1.239(7) |
| C(41)-C(42)           | 1.360(8) |
|                       | • • •    |
| C(3)-Si(1)-C(2)       | 111.2(3) |
| C(3)-Si(1)-C(4)       | 109.0(3) |
|                       |          |
| C(2)-Si(1)-C(4)       | 110.8(4) |
| C(3)-Si(1)-C(5)       | 108.7(3) |
|                       | ` '      |
| C(2)-Si(1)-C(5)       | 108.9(3) |
| C(4)-Si(1)-C(5)       | 108.2(3) |
| C(6)-C(5)-Si(1)       | 121.7(5) |
|                       |          |
| C(5)-C(6)-C(7)        | 122.4(5) |
| N(8)-C(7)-C(6)        | 118.9(5) |
|                       |          |
| C(7)-N(8)-N(9)        | 114.8(5) |
| C(10)-N(9)-N(8)       | 119.9(5) |
|                       |          |
| N(9)-C(10)-C(11)      | 124.0(5) |
| N(9)-C(10)-C(21)      | 120.2(5) |
|                       |          |
| C(11)-C(10)-C(21)     | 115.8(5) |
| C(10)-C(11)-C(15)     | 123.9(4) |
|                       |          |
| C(10)-C(11)-N(12)     | 122.4(4) |
| C(15)-C(11)-N(12)     | 113.7(4) |
|                       |          |
| O(13)-N(12)-O(14)     | 122.1(5) |
| O(13)-N(12)-C(11)     | 118.4(5) |
| O(14)-N(12)-C(11)     | 119.4(5) |
|                       | ` '      |
| C(11)-C(15)-C(16)     | 115.9(5) |
| C(20)-C(16)-C(15)     | 122.4(5) |
| C(20)-C(16)-N(17)     | 121.2(5) |
|                       |          |
| C(15)-C(16)-N(17)     | 116.4(5) |
| O(18)-N(17)-O(19)     | 122.7(5) |
|                       | ` '      |
| O(18)-N(17)-C(16)     | 120.3(5) |
| O(19)-N(17)-C(16)     | 117.0(5) |
| C(16)-C(20)-C(21)     | 118.6(5) |
|                       | • •      |
| C(20)-C(21)-C(10)     | 123.3(5) |
| C(23)-Si(22)- $C(24)$ | 112.2(4) |
| C(23)-Si(22)-C(26)    | 108.0(3) |
|                       | ` '      |
| C(24)-Si(22)-C(26)    | 108.6(3) |
| C(23)-Si(22)- $C(25)$ | 109.2(4) |
|                       | ` '      |
| C(24)-Si(22)- $C(25)$ | 110.3(3) |
| C(26)-Si(22)-C(25)    | 108.4(3) |
| C(27)-C(26)-Si(22)    | 124.8(4) |
|                       |          |
| C(26)-C(27)-C(28)     | 126.3(5) |
| N(29)-C(28)-C(27)     | 120.3(6) |
|                       | ` '      |
| C(28)-N(29)-N(30)     | 115.2(5) |
| N(29)-N(30)-C(31)     | 118.3(5) |
| N(30)-C(31)-C(42)     | 119.8(5) |
|                       | , ,      |
| N(30)-C(31)-C(32)     | 123.1(5) |
|                       |          |

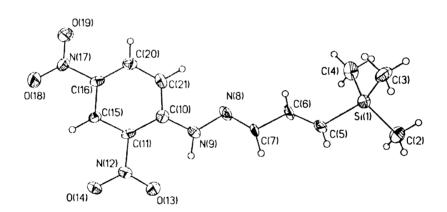
| C(42)-C(31)-C(32) | 117.1(5) |
|-------------------|----------|
| C(36)-C(32)-N(33) | 118.7(4) |
| C(36)-C(32)-C(31) | 119.8(5) |
| N(33)-C(32)-C(31) | 121.5(5) |
| O(34)-N(33)-O(35) | 121.8(5) |
| O(34)-N(33)-C(32) | 118.6(5) |
| O(35)-N(33)-C(32) | 119.6(5) |
| C(37)-C(36)-C(32) | 121.9(5) |
| C(36)-C(37)-C(41) | 120.7(5) |
| C(36)-C(37)-N(38) | 121.5(5) |
| C(41)-C(37)-N(38) | 117.7(5) |
| O(40)-N(38)-O(39) | 123.8(6) |
| O(40)-N(38)-C(37) | 117.0(5) |
| O(39)-N(38)-C(37) | 119.1(5) |
| C(42)-C(41)-C(37) | 120.6(5) |
| C(41)-C(42)-C(31) | 119.9(5) |
|                   |          |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for p1

| Ţ      | U11   | U22   | U33   | U23   | U13    | U12    |
|--------|-------|-------|-------|-------|--------|--------|
| Si(1)  | 27(1) | 28(1) | 27(1) | 13(1) | 1(1)   | 3(1)   |
| C(2)   | 43(4) | 31(3) | 38(3) | 2(3)  | -19(3) | -6(3)  |
| C(3)   | 29(3) | 37(3) | 46(4) | 17(3) | 2(3)   | -9(2)  |
| C(4)   | 32(3) | 64(4) | 32(3) | 30(3) | 17(2)  | 15(3)  |
| C(5)   | 35(3) | 28(3) | 24(3) | 18(2) | -3(2)  | 3(2)   |
| C(6)   | 28(3) | 35(3) | 25(3) | 20(2) | -2(2)  | 11(2)  |
| C(7)   | 20(2) | 25(3) | 20(3) | 15(2) | -1(2)  | 7(2)   |
| N(8)   | 36(3) | 34(3) | 24(3) | 20(2) | 2(2)   | 9(2)   |
| N(9)   | 32(2) | 28(3) | 28(3) | 19(2) | 2(2)   | 3(2)   |
| C(10)  | 22(3) | 23(3) | 23(3) | 6(2)  | 6(2)   | 6(2)   |
| C(11)  | 23(2) | 17(3) | 24(3) | 6(2)  | 7(2)   | -5(2)  |
| N(12)  | 31(3) | 24(3) | 29(3) | 15(2) | 3(2)   | 1(2)   |
| O(13)  | 27(2) | 41(3) | 44(3) | 25(2) | -3(2)  | -6(2)  |
| O(14)  | 34(2) | 37(3) | 43(3) | 30(2) | 1(2)   | -1(2)  |
| C(15)  | 24(2) | 18(2) | 22(3) | 7(2)  | 1(2)   | -3(2)  |
| C(16)  | 25(3) | 18(2) | 26(3) | 8(2)  | 8(2)   | -2(2)  |
| N(17)  | 23(3) | 28(3) | 27(3) | 10(2) | -1(2)  | -4(2)  |
| O(18)  | 30(2) | 54(3) | 56(3) | 36(3) | -11(2) | -11(2) |
| O(19)  | 23(2) | 38(3) | 56(3) | 25(2) | 3(2)   | -4(2)  |
| C(20)  | 26(3) | 26(3) | 31(3) | 13(3) | 9(2)   | 1(2)   |
| C(21)  | 30(3) | 29(3) | 20(3) | 11(2) | 4(2)   | 13(2)  |
| Si(22) | 23(1) | 31(1) | 25(1) | 13(1) | 0(1)   | 6(1)   |
| C(23)  | 48(4) | 69(5) | 51(4) | 39(4) | 0(3)   | 15(4)  |
| C(24)  | 45(4) | 44(4) | 45(4) | 19(3) | -2(3)  | 13(3)  |
| C(25)  | 38(3) | 28(3) | 40(3) | 12(3) | 11(3)  | 19(2)  |
| C(26)  | 22(2) | 30(3) | 34(3) | 12(3) | 9(2)   | 3(2)   |
| C(27)  | 30(3) | 19(3) | 31(3) | 10(2) | 9(2)   | -3(2)  |

| C(28) | 35(3) | 25(3) | 31(3) | 7(2)  | 9(3)   | 0(2)   |
|-------|-------|-------|-------|-------|--------|--------|
| N(29) | 19(2) | 28(3) | 31(3) | 12(2) | 2(2)   | 2(2)   |
| N(30) | 17(2) | 27(3) | 29(2) | 14(2) | -1(2)  | 2(2)   |
| C(31) | 26(3) | 24(3) | 21(3) | 12(2) | 5(2)   | 4(2)   |
| C(32) | 29(3) | 26(3) | 24(3) | 16(2) | 3(2)   | 12(2)  |
| N(33) | 27(3) | 25(3) | 25(3) | 12(2) | 0(2)   | 1(2)   |
| O(34) | 38(2) | 35(3) | 54(3) | 30(3) | -9(2)  | 2(2)   |
| O(35) | 28(2) | 45(3) | 55(3) | 37(3) | -6(2)  | -9(2)  |
| C(36) | 28(3) | 29(3) | 22(3) | 15(2) | 6(2)   | 13(2)  |
| C(37) | 21(2) | 29(3) | 21(3) | 9(2)  | 0(2)   | 7(2)   |
| N(38) | 31(3) | 29(3) | 38(3) | 14(2) | 8(2)   | 7(2)   |
| O(39) | 37(3) | 31(2) | 43(3) | 17(2) | 4(2)   | -10(2) |
| O(40) | 35(3) | 61(4) | 55(3) | 37(3) | -13(2) | 1(2)   |
| C(41) | 32(3) | 20(3) | 27(3) | 13(2) | 9(2)   | 5(2)   |
| C(42) | 27(3) | 23(3) | 36(3) | 20(2) | 8(2)   | 1(2)   |


The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a\*^2 U11 + ... + 2 h k a\* b\* U12 ]

Table 5. Hydrogen coordinates (x 10<sup>4</sup>), isotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>), and occupancies for pl

|               | х у      | Z        | U(eq)     | O     | cc.     |   |
|---------------|----------|----------|-----------|-------|---------|---|
| H(2A)         | 15943    | 3772     | 8349      | 66    | 1       |   |
| H(2B)         | 17543    | 3336     | 7417      | 66    | 1       |   |
| H(2C)         | 17358    | 2744     | 8431      | 66    | 1       |   |
| $\dot{H}(3A)$ | 14186    | -175     | 5194      | 58    | 1       |   |
| $\hat{H(3B)}$ | 16141    | 93       | 6337      | 58    | 1       |   |
| H(3C)         | 16388    | 691      | 5334      | 58    | 1       |   |
| H(4A)         | 11100    | 677      | 6968      | 56    | 1       |   |
| H(4B)         | 11635    | 2017     | 8035      | 56    | 1       |   |
| H(4C)         | 13005    | 980      | 8144      | 56    | 1       |   |
| H(5)          | 13630(11 | 0) 2870( | (70) 542  | 0(60) | 50(20)  | 1 |
| H(6)          | 9750(80) | 1710(5   | 50) 5430  | (40)  | 15(13)  | 1 |
| H(7)          | 10550(90 | 3090(    | 60) 3990  | 0(50) | 56(19)  | 1 |
| H(9)          | 6980(150 | 3160(9   | •         | 0(80) | 150(30) | 1 |
| H(15)         | 243      | 2377     | 183       | 27    | 1       |   |
| H(20)         | 252      | -21      | 2046      | 32    | 1       |   |
| H(21)         | 3875     | 800      | 2997      | 31    | 1       |   |
| H(23A)        | 5339     | 8125     | -2560     | 78    | 1       |   |
| H(23B)        | 3455     | 7814     | -3749     | 78    | 1       |   |
| H(23C)        | 4788     | 6773     | -3607     | 78    | 1       |   |
| H(24A)        | -1180    | 5652     | -2948     | 68    | 1       |   |
| H(24B)        | 399      | 5096     | -3859     | 68    | 1       |   |
| H(24C)        | -873     | 6154     | -4014     | 68    | 1       |   |
| H(25A)        | 2344     | 9092     | -827      | 52    | 1       |   |
| H(25B)        | 178      | 8249     | -872      | 52    | 1       |   |
| H(25C)        | 297      | 8791     | -1928     | 52    | 1       |   |
| H(26)         | 2810(80) | 5690(5   | 50) -920  | (40)  | 26(12)  | 1 |
| H(27)         | 6790(10  | 0) 7520( | (60) -860 | 0(50) | 79(19)  | 1 |
| H(28)         | 6330(60) | 5640(4   | 40) 420   | (30)  |         | 1 |
| H(30)         | 9150(50) | 5730(3   | 30) 1680  | 0(30) | 0(6)    | 1 |
| H(36)         | 16234    | 6526     | 4192      | 29    | 1       |   |
| H(41)         | 16179    | 8914     | 2434      | 30    | 1       |   |
| H(42)         | 12594    | 8113     | 1410      | 32    | 1       |   |

Table 6. Torsion angles [deg] for p1



# APPENDIX 2

ORTEP REPRESENTATION AND X-RAY DATA FOR COMPOUND 110b

Table 1. Crystal data and structure refinement for p1

| <br> |  |
|------|--|

| Identification code | 1 |
|---------------------|---|
|---------------------|---|

Empirical formula C21 H26 N2 O7 Si

Formula weight 446.53

Temperature 293(2) K

Wavelength 0.71073 A

Crystal system ?

Space group ?

Unit cell dimensions a = 8.3919(17) A

b = 12.006(2) Ac = 12.492(3) A

alpha = 112.91(3) deg. beta = 93.78(3) deg. gamma = 91.95(3) deg.

Volume 1154.3(4) A^3

Z 2

Density (calculated) 1.285 Mg/m<sup>3</sup>

Absorption coefficient 0.145 mm<sup>-1</sup>

F(000) 472

Crystal size ? x ? x ? mm

Theta range for data collection 1.85 to 28.28 deg.

Index ranges -8<=h<=11, -15<=k<=15, -15<=l<=16

Reflections collected / unique 7332 / 6098 [R(int) = 0.0095]

Completeness to theta = 28.28 - 90.4%

Refinement method Full-matrix least-squares on F<sup>2</sup>

Data / restraints / parameters 6098 / 3 / 559

Goodness-of-fit on F<sup>2</sup> 0.925

Final R indices [I>2sigma(I)] R1 = 0.0326, wR2 = 0.1051

R indices (all data) R1 = 0.0390, wR2 = 0.1119

Absolute structure parameter 0.0(2)

Largest diff. peak and hole 0.247 and -0.221 e.A^-3

Table 2. Atomic coordinates ( x 10<sup>4</sup>), equivalent isotropic displacement parameters (A<sup>2</sup> x 10<sup>3</sup>), and occupancies for p1

|      | x y     | z       | U(eq)   | Occ.  |   |
|------|---------|---------|---------|-------|---|
| C(1) | -336(6) | 3490(4) | 6289(5) | 31(1) | 1 |
| C(2) | -82(6)  | 4535(4) | 6081(4) | 28(1) | 1 |
| C(3) | 906(6)  | 5540(4) | 6853(4) | 26(1) | 1 |
| C(4) | 1613(6) | 5471(4) | 7830(4) | 26(1) | 1 |
| C(5) | 1382(6) | 4417(4) | 8061(4) | 28(1) | 1 |
| C(6) | 408(6)  | 3467(4) | 7271(4) | 28(1) | 1 |
| N(7) | 205(6)  | 2347(3) | 7498(4) | 34(1) | 1 |
| O(8) | -831(6) | 1594(3) | 6887(4) | 49(1) | 1 |
| O(9) | 1050(6) | 2273(3) | 8306(4) | 46(1) | 1 |

| N(10)  | -847(5)  | 4645(4)  | 5044(3) | 35(1) | 1 |
|--------|----------|----------|---------|-------|---|
| O(11)  | -796(5)  | 5615(3)  | 4953(3) | 37(1) | 1 |
| O(12)  | -1508(6) | 3692(3)  | 4262(4) | 51(1) | 1 |
| C(13)  | 2608(5)  | 6504(4)  | 8711(4) | 27(1) | 1 |
| O(14)  | 3266(5)  | 6528(3)  | 9628(3) | 34(1) | 1 |
| O(15)  | 2676(4)  | 7460(3)  | 8385(3) | 30(1) | 1 |
| C(16)  | 3582(6)  | 8571(4)  | 9156(4) | 26(1) | 1 |
| C(17)  | 3615(6)  | 9378(4)  | 8465(4) | 26(1) | 1 |
| C(18)  | 4553(6)  | 8843(4)  | 7381(4) | 23(1) | 1 |
| Si(19) | 4224(1)  | 9629(1)  | 6312(1) | 28(1) | 1 |
| C(20)  | 2025(7)  | 9450(6)  | 5805(5) | 43(1) | 1 |
| C(21)  | 4837(8)  | 11267(5) | 7061(5) | 48(1) | 1 |
| C(22)  | 5453(8)  | 8916(5)  | 5040(4) | 40(1) | 1 |
| O(23)  | 6232(4)  | 8973(3)  | 7796(3) | 28(1) | 1 |
| C(24)  | 7189(6)  | 7987(4)  | 7086(5) | 34(1) | 1 |
| C(25)  | 8921(7)  | 8514(5)  | 7439(7) | 52(2) | 1 |
| C(26)  | 6819(6)  | 6847(3)  | 7290(4) | 27(1) | 1 |
| C(27)  | 6000(7)  | 5853(4)  | 6369(5) | 36(1) | 1 |
| C(28)  | 5633(8)  | 4797(5)  | 6517(6) | 52(2) | 1 |
| C(29)  | 6050(8)  | 4686(5)  | 7566(7) | 47(1) | 1 |
| C(30)  | 6849(7)  | 5712(5)  | 8513(5) | 42(1) | 1 |
| C(31)  | 7222(7)  | 6739(5)  | 8315(5) | 38(1) | 1 |
|        |          |          |         |       |   |

| C(33)  | 1045(6)  | 6676(4)  | 1739(4) | 30(1) | 1 |
|--------|----------|----------|---------|-------|---|
| C(34)  | 79(6)    | 5706(4)  | 935(4)  | 28(1) | 1 |
| C(35)  | -146(6)  | 4666(4)  | 1148(4) | 25(1) | 1 |
| C(36)  | 603(6)   | 4624(4)  | 2188(4) | 29(1) | 1 |
| C(37)  | 1544(6)  | 5576(4)  | 2926(4) | 29(1) | 1 |
| N(38)  | 1304(6)  | 7789(4)  | 1518(4) | 37(1) | 1 |
| O(39)  | 440(5)   | 7892(3)  | 738(4)  | 43(1) | 1 |
| O(40)  | 2315(5)  | 8577(3)  | 2150(4) | 48(1) | 1 |
| N(41)  | 2337(5)  | 5534(3)  | 4016(4) | 34(1) | 1 |
| O(42)  | 3005(6)  | 6431(4)  | 4723(4) | 56(1) | 1 |
| O(43)  | 2264(5)  | 4528(3)  | 4088(3) | 40(1) | 1 |
| C(44)  | -1177(5) | 3591(3)  | 282(4)  | 25(1) | 1 |
| O(45)  | -1799(5) | 3599(3)  | -595(3) | 34(1) | 1 |
| O(46)  | -1224(4) | 2706(3)  | 642(3)  | 30(1) | 1 |
| C(47)  | -2171(6) | 1591(4)  | -106(4) | 31(1) | 1 |
| C(48)  | -2179(6) | 795(4)   | 576(4)  | 27(1) | 1 |
| C(49)  | -3083(6) | 1299(4)  | 1672(4) | 26(1) | 1 |
| Si(50) | -2756(1) | 525(1)   | 2713(1) | 28(1) | 1 |
| C(51)  | -621(7)  | 699(5)   | 3243(5) | 41(1) | 1 |
| C(52)  | -3863(7) | 1280(5)  | 4042(4) | 36(1) | 1 |
| C(53)  | -3408(7) | -1126(4) | 1954(5) | 36(1) | 1 |
| O(54)  | -4768(4) | 1187(3)  | 1243(3) | 29(1) | 1 |
| C(55)  | -5689(6) | 2123(4)  | 1910(4) | 30(1) | 1 |

| C(56) | -7424(7) | 1654(5) | 1556(7) | 49(2) | 1 |
|-------|----------|---------|---------|-------|---|
| C(57) | -5311(6) | 3309(4) | 1768(4) | 30(1) | 1 |
| C(58) | -5731(7) | 3388(5) | 677(5)  | 34(1) | 1 |
| C(59) | -5346(7) | 4495(5) | 583(6)  | 47(1) | 1 |
| C(60) | -4591(8) | 5416(6) | 1420(7) | 51(2) | 1 |
| C(61) | -4139(7) | 5372(4) | 2482(6) | 43(1) | 1 |
| C(62) | -4514(7) | 4290(5) | 2639(5) | 37(1) | 1 |

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 3. Bond lengths [A] and angles [deg] for p1

| C(1)-C(6)    | 1.350(8)  |  |
|--------------|-----------|--|
| C(1)-C(2)    | 1.390(7)  |  |
| C(2)-C(3)    | 1.412(6)  |  |
| C(2)-N(10)   | 1.462(7)  |  |
| C(3)-C(4)    | 1.355(7)  |  |
| C(4)-C(5)    | 1.413(6)  |  |
| C(4)-C(13)   | 1.480(6)  |  |
| C(5)-C(6)    | 1.378(7)  |  |
| C(6)-N(7)    | 1.485(6)  |  |
| N(7)-O(9)    | 1.229(7)  |  |
| N(7)-O(8)    | 1.215(6)  |  |
| N(10)-O(11)  | 1.213(6)  |  |
| N(10)-O(12)  | 1.260(5)  |  |
| C(13)-O(14)  | 1.227(6)  |  |
| C(13)-O(15)  | 1.361(5)  |  |
| O(15)-C(16)  | 1.456(5)  |  |
| C(16)-C(17)  | 1.529(6)  |  |
| C(17)-C(18)  | 1.538(6)  |  |
| C(18)-O(23)  | 1.451(6)  |  |
| C(18)-Si(19) | 1.924(4)  |  |
| Si(19)-C(21) | 1.855(6)  |  |
| Si(19)-C(20) | 1.888(6)  |  |
| Si(19)-C(22) | 1.881(5)  |  |
| O(23)-C(24)  | 1.474(5)  |  |
| C(24)-C(26)  | 1.512(7)  |  |
| C(24)-C(25)  | 1.530(8)  |  |
| C(26)-C(31)  | 1.359(7)  |  |
| C(26)-C(27)  | 1.412(6)  |  |
| C(27)-C(28)  | 1.378(8)  |  |
| C(28)-C(29)  | 1.392(10) |  |
| C(29)-C(30)  | 1.439(8)  |  |
| C(30)-C(31)  | 1.379(7)  |  |
| C(32)-C(37)  | 1.390(7)  |  |
| C(32)-C(33)  | 1.410(8)  |  |
| C(33)-C(34)  | 1.393(7)  |  |
| C(33)-N(38)  | 1.477(6)  |  |
| C(34)-C(35)  | 1.384(6)  |  |
| C(35)-C(36)  | 1.426(7)  |  |
| C(35)-C(44)  | 1.516(6)  |  |
| C(36)-C(37)  | 1.342(7)  |  |
| C(37)-N(41)  | 1.495(6)  |  |
| N(38)-O(40)  | 1.230(6)  |  |
| N(38)-O(39)  | 1.225(7)  |  |
| - 117 - 12-7 | ( · )     |  |

| N(41)-O(42)       | 1.186(6)  |
|-------------------|-----------|
|                   | ` ,       |
| N(41)-O(43)       | 1.245(5)  |
| C(44)-O(45)       | 1.186(6)  |
| C(44)-O(46)       | 1.304(6)  |
| O(46)-C(47)       | 1.467(5)  |
| C(47)-C(48)       | 1.507(7)  |
| C(48)-C(49)       | 1.529(7)  |
|                   | • •       |
| C(49)-O(54)       | 1.462(6)  |
| C(49)-Si(50)      | 1.883(5)  |
| Si(50)-C(51)      | 1.845(6)  |
| Si(50)-C(53)      | 1.877(4)  |
| Si(50)-C(52)      | 1.878(5)  |
| O(54)-C(55)       | 1.404(6)  |
|                   | • •       |
| C(55)-C(56)       | 1.516(8)  |
| C(55)-C(57)       | 1.527(6)  |
| C(57)-C(62)       | 1.368(7)  |
| C(57)-C(58)       | 1.425(7)  |
| C(58)-C(59)       | 1.408(7)  |
| C(59)-C(60)       | 1.297(9)  |
| C(60)-C(61)       | 1.377(10) |
|                   | ` '       |
| C(61)-C(62)       | 1.416(7)  |
| C(6)-C(1)-C(2)    | 117.1(4)  |
| C(1)-C(2)-C(3)    | 122.3(5)  |
| C(1)-C(2)-N(10)   | 120.9(4)  |
| C(3)-C(2)-N(10)   | 116.8(4)  |
| C(4)-C(3)-C(2)    | 118.1(4)  |
| C(3)-C(4)-C(5)    | 120.9(4)  |
| C(3)-C(4)-C(13)   | 121.5(4)  |
| C(5)-C(4)-C(13)   | 117.6(4)  |
|                   | , ,       |
| C(6)-C(5)-C(4)    | 118.2(5)  |
| C(1)-C(6)-C(5)    | 123.4(4)  |
| C(1)-C(6)-N(7)    | 118.4(4)  |
| C(5)-C(6)-N(7)    | 118.1(5)  |
| O(9)-N(7)-O(8)    | 125.4(4)  |
| O(9)-N(7)-C(6)    | 117.9(4)  |
| O(8)-N(7)-C(6)    | 116.7(5)  |
| O(11)-N(10)-O(12) | 123.0(4)  |
| O(11)-N(10)-C(2)  | 120.1(4)  |
| , , , , , , ,     | ` '       |
| O(12)-N(10)-C(2)  | 116.9(4)  |
| O(14)-C(13)-O(15) | 123.4(4)  |
| O(14)-C(13)-C(4)  | 125.9(4)  |
| O(15)-C(13)-C(4)  | 110.7(4)  |
| C(13)-O(15)-C(16) | 118.6(3)  |
| O(15)-C(16)-C(17) | 105.1(3)  |
| C(16)-C(17)-C(18) | 112.1(4)  |
| O(23)-C(18)-C(17) | 106.8(4)  |
| O(23) O(10)-O(17) | 100.0(4)  |

| O(23)-C(18)-Si(19)    | 110.0(3) |
|-----------------------|----------|
|                       | 113.1(3) |
| C(17)-C(18)-Si(19)    | ` '      |
| C(21)-Si(19)- $C(20)$ | 109.0(3) |
| C(21)-Si(19)- $C(22)$ | 109.7(3) |
| C(20)-Si(19)-C(22)    | 110.7(3) |
|                       | • •      |
| C(21)-Si(19)- $C(18)$ | 109.8(2) |
| C(20)-Si(19)- $C(18)$ | 108.6(2) |
| C(22)-Si(19)- $C(18)$ | 109.2(2) |
|                       | ` '      |
| C(18)-O(23)-C(24)     | 114.5(3) |
| O(23)-C(24)-C(26)     | 110.5(4) |
| O(23)-C(24)-C(25)     | 104.1(4) |
|                       | ` '      |
| C(26)-C(24)-C(25)     | 114.9(4) |
| C(31)-C(26)-C(27)     | 118.6(5) |
| C(31)-C(26)-C(24)     | 123.3(4) |
|                       | ` '      |
| C(27)-C(26)-C(24)     | 118.0(5) |
| C(28)-C(27)-C(26)     | 120.0(5) |
| C(29)-C(28)-C(27)     | 121.3(5) |
|                       |          |
| C(28)-C(29)-C(30)     | 118.5(5) |
| C(31)-C(30)-C(29)     | 118.0(5) |
| C(26)-C(31)-C(30)     | 123.4(5) |
|                       | ` '      |
| C(37)-C(32)-C(33)     | 115.4(4) |
| C(34)-C(33)-C(32)     | 122.9(4) |
| C(34)-C(33)-N(38)     | 119.4(5) |
|                       | 117.7(5) |
| C(32)-C(33)-N(38)     | ` '      |
| C(35)-C(34)-C(33)     | 118.9(5) |
| C(34)-C(35)-C(36)     | 119.1(4) |
| C(34)-C(35)-C(44)     | 120.1(4) |
|                       |          |
| C(36)-C(35)-C(44)     | 120.8(4) |
| C(37)-C(36)-C(35)     | 119.7(4) |
| C(36)-C(37)-C(32)     | 124.1(5) |
|                       |          |
| C(36)-C(37)-N(41)     | 119.9(4) |
| C(32)-C(37)-N(41)     | 116.1(4) |
| O(40)-N(38)-O(39)     | 123.6(4) |
| O(40)-N(38)-C(33)     | 119.0(5) |
|                       | , ,      |
| O(39)-N(38)-C(33)     | 117.3(5) |
| O(42)-N(41)-O(43)     | 125.3(4) |
| O(42)-N(41)-C(37)     | 118.8(4) |
| O(43)-N(41)-C(37)     | 115.9(4) |
|                       | , ,      |
| O(45)-C(44)-O(46)     | 127.6(4) |
| O(45)-C(44)-C(35)     | 122.1(4) |
| O(46)-C(44)-C(35)     | 110.4(4) |
|                       |          |
| C(44)-O(46)-C(47)     | 117.1(3) |
| O(46)-C(47)-C(48)     | 105.8(4) |
| C(47)-C(48)-C(49)     | 113.5(4) |
| O(54)-C(49)-C(48)     | 105.1(4) |
|                       | ` '      |
| O(54)-C(49)-Si(50)    | 111.2(3) |
|                       |          |

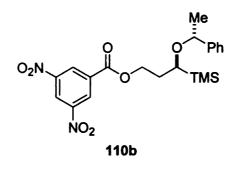
| C(48)-C(49)-Si(50)    | 114.8(3) |
|-----------------------|----------|
| C(51)-Si(50)-C(53)    | 109.8(3) |
| C(51)-Si(50)- $C(52)$ | 105.9(3) |
| C(53)-Si(50)-C(52)    | 111.5(2) |
| C(51)-Si(50)- $C(49)$ | 109.9(2) |
| C(53)-Si(50)-C(49)    | 109.6(2) |
| C(52)-Si(50)- $C(49)$ | 110.1(2) |
| C(55)-O(54)-C(49)     | 115.2(4) |
| O(54)-C(55)-C(56)     | 106.3(4) |
| O(54)-C(55)-C(57)     | 112.5(4) |
| C(56)-C(55)-C(57)     | 113.2(4) |
| C(62)-C(57)-C(58)     | 118.3(5) |
| C(62)-C(57)-C(55)     | 122.2(5) |
| C(58)-C(57)-C(55)     | 119.4(4) |
| C(59)-C(58)-C(57)     | 117.4(5) |
| C(60)-C(59)-C(58)     | 123.3(6) |
| C(59)-C(60)-C(61)     | 121.2(5) |
| C(60)-C(61)-C(62)     | 118.2(5) |
| C(57)-C(62)-C(61)     | 121.5(5) |
|                       |          |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for p1

|       | U11      | U22     | U33   | U23   | U13   | U12    |
|-------|----------|---------|-------|-------|-------|--------|
| C(1)  | ) 32(2)  | 21(2)   | 36(3) | 7(2)  | 6(2)  | -6(2)  |
| C(2)  |          |         |       | 5(2)  | 0(2)  | -1(2)  |
| C(3)  |          |         |       | 5(2)  | 0(2)  | -1(2)  |
| C(4)  |          |         | 31(2) | 10(2) | 8(2)  | -1(2)  |
| C(5)  |          |         | 27(2) | 12(2) | 7(2)  | 6(2)   |
| C(6)  |          |         | 37(3) | 13(2) | 11(2) | 0(2)   |
| N(7   |          |         |       | 15(2) | 10(2) |        |
| O(8   |          |         |       |       | 5(2)  | -12(2) |
| O(9   |          |         |       | 35(2) | 6(2)  | 5(2)   |
| N(1   |          |         |       |       |       |        |
| O(1   |          |         |       |       |       | 5(2)   |
| O(1:  |          |         |       |       |       |        |
| C(1:  | •        |         |       |       |       |        |
| O(1   |          |         |       |       |       |        |
| O(1:  |          |         |       |       |       |        |
| C(10  |          |         |       |       |       | -6(2)  |
| C(1'  |          |         |       |       | 7(2)  | 1(2)   |
| C(18  |          |         |       |       |       | -2(2)  |
| Si(1  |          |         |       |       |       | 0(1)   |
| C(20  |          |         |       |       |       | 2(2)   |
| C(2)  |          |         |       |       |       | 5(2)   |
| C(22  |          |         |       |       |       |        |
| O(2:  |          |         |       |       | 4(1)  |        |
| C(24  | 4) 36(3) |         |       |       | 14(2) |        |
| C(2:  |          |         |       |       |       |        |
| C(20  | 5) 27(2) | 18(2)   |       |       | 1(2)  | 1(2)   |
| C(2)  |          |         |       |       | -4(2) | 4(2)   |
| C(28  |          |         |       |       | 0(3)  | 2(2)   |
| C(29  | 9) 44(3) | 23(2)   | 78(4) | 21(2) |       |        |
| C(30  | 0) 36(3) | 51(3)   | 47(3) | 26(2) | 3(2)  | 2(2)   |
| C(3)  | 1) 35(3) | 34(2)   | 42(3) | 13(2) | 2(2)  | 4(2)   |
| C(32  | 2) 30(2) | 30(2)   | 31(2) | 8(2)  | 2(2)  | 4(2)   |
| C(33  | 3) 28(2) | 27(2)   | 37(3) | 14(2) | 4(2)  | 4(2)   |
| C(34  |          | 30(2)   | 34(2) |       | 4(2)  | 0(2)   |
| C(3.5 | 5) 23(2) | 30(2)   | 25(2) | 12(2) | 1(2)  | 2(2)   |
| C(36  |          |         |       |       | 7(2)  | 4(2)   |
| C(37  |          |         |       |       |       | 4(2)   |
| N(38  | 39(2)    | ) 29(2) | 48(3) | 18(2) | 11(2) | 9(2)   |

```
O(39)
        44(2)
                                           5(2)
                 40(2)
                         53(2)
                                  26(2)
                                                   7(2)
O(40)
        46(2)
                 31(2)
                         65(3)
                                  19(2)
                                           1(2)
                                                  -7(2)
N(41)
        35(2)
                 32(2)
                                  18(2)
                                          -2(2)
                                                   3(2)
                         37(2)
O(42)
        72(3)
                 47(2)
                         39(2)
                                  12(2)
                                          -22(2)
                                                  -19(2)
O(43)
                         39(2)
                                  23(2)
                                          -4(2)
        41(2)
                 44(2)
                                                   3(2)
C(44)
        26(2)
                20(2)
                         22(2)
                                  0(1)
                                          2(2)
                                                  -5(1)
O(45)
        39(2)
                 32(2)
                         34(2)
                                  15(2)
                                          -4(2)
                                                  -1(1)
                                  14(1)
                                          -3(1)
O(46)
        36(2)
                 28(2)
                         28(2)
                                                  -6(1)
C(47)
        35(2)
                 32(2)
                         21(2)
                                  7(2)
                                          3(2)
                                                  -7(2)
C(48)
        26(2)
                23(2)
                         32(2)
                                  10(2)
                                          -1(2)
                                                  -1(2)
C(49)
        24(2)
                24(2)
                         30(2)
                                  9(2)
                                          1(2)
                                                  0(2)
                25(1)
Si(50)
        33(1)
                         29(1)
                                 14(1)
                                           4(1)
                                                  2(1)
C(51)
        44(3)
                37(2)
                         42(3)
                                  16(2)
                                           3(2)
                                                   8(2)
C(52)
        39(2)
                39(2)
                         32(2)
                                  15(2)
                                          11(2)
                                                   -5(2)
                         40(3)
                                  11(2)
C(53)
        50(3)
                 16(2)
                                           5(2)
                                                  -7(2)
O(54)
        28(2)
                 25(1)
                         33(2)
                                  9(1)
                                          1(1)
                                                  1(1)
C(55)
        36(3)
                24(2)
                         35(2)
                                  15(2)
                                           6(2)
                                                   0(2)
C(56)
                         85(4)
                                 26(3)
                                          25(3)
        39(3)
                30(2)
                                                   10(2)
C(57)
        28(2)
                                           7(2)
                33(2)
                         35(2)
                                  19(2)
                                                  11(2)
C(58)
        36(3)
                36(2)
                         34(2)
                                  19(2)
                                          -4(2)
                                                   3(2)
C(59)
        49(3)
                47(3)
                         66(4)
                                 43(3)
                                          11(3)
                                                   21(2)
C(60)
        42(3)
                45(3)
                         83(4)
                                 41(3)
                                          20(3)
                                                   13(2)
C(61)
        35(3)
                27(2)
                         64(3)
                                  14(2)
                                          10(2)
                                                   -2(2)
C(62)
        35(3)
                39(2)
                         38(3)
                                  17(2)
                                           5(2)
                                                   7(2)
```


The anisotropic displacement factor exponent takes the form:

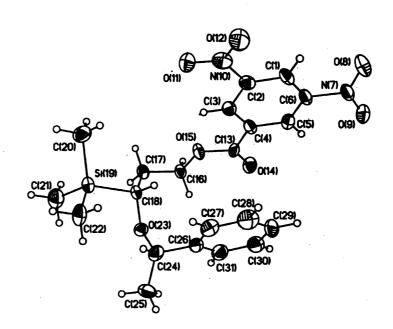

-2 pi^2 [ h^2 a\*^2 U11 + ... + 2 h k a\* b\* U12 ]

Table 5. Hydrogen coordinates (  $\times$  10<sup>4</sup>), isotropic displacement parameters (A<sup>2</sup>  $\times$  10<sup>3</sup>), and occupancies for p1

| H(52A) | -3494 | 2119  | 4416 | 55 | 1 |
|--------|-------|-------|------|----|---|
| H(52B) | -3672 | 889   | 4574 | 55 | 1 |
| H(52C) | -4989 | 1218  | 3815 | 55 | 1 |
| H(53A) | -2814 | -1487 | 1286 | 54 | 1 |
| H(53B) | -4530 | -1212 | 1708 | 54 | 1 |
| H(53C) | -3215 | -1523 | 2480 | 54 | 1 |
| H(55)  | -5455 | 2265  | 2733 | 36 | 1 |
| H(56A) | -7595 | 919   | 1679 | 74 | 1 |
| H(56B) | -7672 | 1495  | 747  | 74 | 1 |
| H(56C) | -8104 | 2250  | 2020 | 74 | 1 |
| H(58)  | -6241 | 2734  | 52   | 41 | 1 |
| H(59)  | -5648 | 4570  | -115 | 56 | 1 |
| H(60)  | -4350 | 6118  | 1300 | 61 | 1 |
| H(61)  | -3601 | 6036  | 3081 | 52 | 1 |
| H(62)  | -4213 | 4245  | 3351 | 44 | 1 |
|        |       |       |      |    |   |

Table 6. Torsion angles [deg] for p1



