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ABSTRACT

STOCHASTIC MODELING OF COMPLEX NONSTATIONARY

GROUNDWATER FLOW SYSTEMS

By

Chuen-Fa Ni

Although the ”stochastic revolution” has produced an enormous number of theo-

retical publications and influenced significantly how we think about the aquifer het-

erogeneity, it has had relatively little impact on practical modeling community. A

number of recent review articles provided the following reasons and the potential

solutions: (1) Stochastic modeling is incompatible with the available measurement

technologies. New measurement technologies, and new sources of data of much better

resolution to characterize aquifer heterogeneity are urgently needed[9, 10, 59, 87, 57].

(2) Stochastic analytical theories are based on too many restrictive requirements

to be practically useful. The assumptions of stationarity, ergodicity, mean uniform

flow, gaussian distribution, and small perturbation must be substantially relaxed

[9, 47, 42, 43, 62, 59, 87, 19]. (3) Stochastic numerical theories are computationally

impractical for most problems of realistic sizes. One must recognize and remove these

tough computational bottlenecks before meaningful stochastic modeling applications

are possible [9, 59].

Motivated by these critical assessments, this research addressed a number of con-

ceptual, computational, and implementation issues in the modeling of subsurface

heterogeneity. In particular, this study deveIOped, tested, and implemented the con-

ceptually improved, nonstationary stochastic methods for predicting velocity uncer-

tainty in two-dimensional flows. An approximate and analytically-based spectral

method was presented for predicting velocity variances under mildly nonstationary

flow situations. This approximate spectral method (ASM) rely on a linearization of



the groundwater flow equation but do not require the common statistical stationar-

ity assumptions. To provide general insight into the ASM for mildly nonstationary

flows, this study performed intensive numerical experiments to assess the accuracy of

ASM under a number of nonstationary situations. The illustrative examples involved

nonstationary situations caused by hydraulic conductivity trends, composite media,

nonlinear head distributions in unconfined aquifers, transient flows, and deterministic

sources and sinks applied in modeling areas. The surprising results in the assessment

showed that ASM can reproduce well the solutions of corresponding first-order nu-

merical analysis and Monte Carlo simulation except in the proximity of prescribed

boundaries and well locations. These regions, however, are limited in 3 to 5As (lnk

correlation length) from boundaries and in 5 to 10As from wells.

Due to the inherent limitations of the analytically-based ASM, the detail dynam-

ics of strongly nonstationary regions such as prescribed head boundaries and strong

stresses are not well described. This study further presented a hybrid spectral method

(HSM) to predict velocity variances in strongly nonstationary flows. The proposed

hybrid method, based on solving stochastic perturbation equations, involves two ma-

jor computational steps after solving the mean flow equation. The first step applies

the analytically-based ASM to predict the nonstationary variances for the entire mod-

eling area. Then the second step employs numerically-based nonstationary spectral

method (NSM) to correct the ”regional solution” in localized areas where the vari-

ance distribution is considered to be strongly nonstationary. The boundary conditions

for the localized numerical solutions are adopted from reginal ASM solutions. This

study then illustrated HSM with two steady, two-dimensional, and complex nonsta-

tionary flow problems. The results showed that the proposed hybrid method, which

takes major advantages of analytical and numerical techniques, can efficiently handle

large modeling areas and can accurately predict the detail dynamics around highly

nonstationary locations.
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CHAPTER 1

Introduction

It is now generally agreed that natural subsurface environment is very heterogeneous.

Soil heterogeneities, in particular, cause dramatic variation in hydraulic conductivity

from point to point within a groundwater formation. Such variation sometimes ap-

pear to be random, although many sites also exhibit trends which are related to the

sedimentation processes that create stratified deposits of contrasting soils, alluvial

fans, deltas, and glacial outwash plains. At first glance it may seem that small-scale

variation in hydrogeologic properties should have relatively little effect on the larger-

scale movement of contaminants. In reality, small—scale fluctuations in hydraulic

conductivity can have significant large—scale consequences, primarily because of the

nonlinear relationship which exists between conductivity and concentration [16, 7].

Over the years a number of stochastic techniques have been proposed for ana-

lyzing the role of spatial heterogeneity in groundwater flow systems [e.g.[74, 75, 17,

8, 61, 24, 95, 69, 100, 42, 43] ]. Generally, they assume that heterogeneous physical

parameters such as hydraulic conductivity are random spatial functions with known

statistical properties. It follows that environmental variables which depend on these

parameters are also random. So, for example, uncertainty in hydraulic conductiv-



ity induces uncertainty in pore velocity which, in turn, induces uncertainty in solute

concentration. The flow equations provide a physical basis for relating the moments

of random dependent variables (e.g. mean head and velocity, and their associated

variances and covariances) to the hydrogeological parameters which are the original

source of uncertainty. In practice, however, it is very difficult to derive these mo-

ments without making approximations of one kind or another. The art of stochastic

groundwater modeling lies in knowing which approximations are most appropriate

for a given application.

1.1 Stochastic Analytic Solutions and Limitations

One of the most important approximations introduced in stochastic groundwater anal-

ysis is the assumption of statistical stationarity. The technical definitions of station-

arity are concerned with the behavior of the statistical properties of spatial random

function when its time and space origin is shifted [65]. A spatial random function

is, for example, wide-sense (or weakly) stationary when its mean and covariance do

not depend on absolute location. Most hydrologic and geological variables are not

truly stationary since their means can vary over the scales of interest. If these mean

variations are small compared to random fluctuations about the mean (i.e. if the

mean is nearly constant over many correlation scales), stationarity may be assumed

to hold in an approximate or “local” sense. This concept of “local stationarity” is

frequently encountered in groundwater applications [17, 95].

When the concept is justified, stationarity assumptions are advantageous both

methodologically and conceptually. They enable us to use a variety of analyti-

cal techniques to solve stochastic flow and transport problems [see, for example,

[18, 8, 95, 69]]. More importantly, they enable us to invoke the ergodic hypothesis,



which establishes an equivalence between spatial heterogeneity and uncertainty. The

stationarity-based stochastic theories have produced a number of insightful results

on field-scale flow and transport and unified the recent stochastic and classical deter-

ministic modeling framework [see reviews by [16, 7]]. In particular, the stationarity-

based stochastic theories show that “randomly” heterogeneous groundwater forma-

tion may be equivalently represented, at field-scale, as a more homogeneous medium

characterized by a set of mean effective properties. These eflective properties can

be related by stochastic theories to the statistical structure of media heterogeneity

[17, 8, 95, 69]. Consequently, one can model field—scale flow and transport using a

conventional deterministic model as if there were no small-scale heterogeneity as long

as soil properties (e.g., hydraulic conductivities) are replaced by their corresponding

effective values. As shown in numerous publications dealing with field-scale flow and

transport at the well known Bordon site [79, 17] and the Cape Code site [14, 17] and

several synthetically-generated heterogeneous sites using large-scale numerical simu-

lation [86, 17, 69], stochastic theories accurately predict effective hydraulic conduc-

tivities and field-scale mean flow, longitudinal solute macrodispersion, and evolution

of spatial moments of the tracer plume, given a reasonable estimate of the statistical

and geostatistical parameters of the hydraulic conductivity field.

However, groundwater flow at most sites are statistically nonuniform and, in some

cases, strongly nonuniform in response to one or more of the following factors: 1)

nonstationarity (or vertical and/or horizontal trends) in hydraulic conductivity, 2)

internal and external sources/sinks (e.g. pumping and injection wells), 3) distributed

recharge, 4) geologic and hydrologic boundaries and the associated nonstationary

stresses imposed, 5) systematically-varying aquifer thickness, and 6) transient mean

flow effects. If stochastic modeling is to become a viable tool for real-world ground-

water investigations, it must be able to accommodate these nonstationarities and

complex sources and sinks in addition to just ”random” small-scale heterogeneity



since they are part of almost every realistic applications.

1.2 Stochastic Numerical Solutions and Computa-

tional Challenges

There are a number of numerical approaches that can be used to analyze general non-

stationary flow problems under complex field conditions. These include, for example,

Monte Carlo methods [e.g., [74, 75, 20, 21, 61, 37, 28, 29, 95, 69]] and perturbation

approaches, such as the moment equation methods [e.g.,[20, 21, 99, 96, 95, 50, 97]],

Green’s function methods [e.g.,[8, 61, 83, 84, 85, 24, 25, 95, 69]], and the so called

first-order second-moment methods based on Taylor’s expansions [e.g.,[80, 11, 93, 95,

47, 102, 3, 92]]. All of these methods, however, are computationally demanding when

applied to flow or transport problems of realistic size [20, 21, 17, 54, 47, 42, 43, 62, 64],

mostly because they all require very fine spatial discretizations in order to resolve (ei-

ther directly or indirectly) the underlying small—scale heterogeneous dynamics. The

Monte Carlo method has to solve large numbers of numerically-difficult flow equations

with highly fluctuating coefficients. The moment method has to solve for at least N

coupled large covariance matrices that have a limiting spatial scale similar to that

of small-scale heterogeneity and requires 0(N2) words of on-line memory (note the

exponential growth with Nl), N being the total number of discrete computational

nodes. The Green’s function is obtained from a numerical solution of the linearized

flow equation, with the forcing term replaced by a Dirac delta function [24, 25].The

Green’s function method has to solve N Green’s function equations that are basically

equivalent to the covariance equations. The major computational cost involved in the

first-order second moment methods lies in the calculation of the so-called sensitivity

derivatives. These coefficients can be obtained directly by the sensitivity equation



method [94] or by the adjoint state method [80, 81, 28, 40]. Both methods are expen-

sive when applied to flow problems. The sensitivity equation method has to solve N

sensitivity derivative equations. These equations are also equivalent to the covariance

equation equations. The adjoint state method has to solve for N fast-varying adjoint

functions and resolve a singular Dirac delta function at every computational node.

Note the usual advantage of the adjoint state method over the direct sensitivity equa-

tion method is lost when the head sensitivity coefficients are required everywhere, as

is the case when we need to quantify the effects of scale interactions on large-scale

flow (i.e. need to calculate the closure covariances) and/or when we need to quantify

the uncertainty associated with the mean predictions throughout the computational

domain. Figure 1.1 presents the solutions of Monte Carlo simulation and different

perturbation approaches when solving a simple uniform flow problem [47]. The mod-

eling area is 50 A by 50 A with constant head gradient 0.1 from the west boundary

to the east boundary, where A is the correlation length of log hydraulic conductiv-

ity. The profile in Figure 1.1 represents the centerline from the west side to the

east side of the modeling area. It is clear that under the simple flow condition these

methods all need fine grids over entire modeling domains to capture rapidly changing

variations and transfer functions. Investigators who introduce classical perturbation

approaches as alternative to Monte Carlo method, expect them to be useful for prac-

tical applications. However, many researchers fail to realize that the sensitivity of

the computational cost to the domain size makes classical perturbation approaches

impractical for most realistic problems.

The numerical difficulty in calculating the moment, Green’s function, and sensi-

tivity equations was pointed out in [47, 42, 43]. The implementation difficulty in the

moment equation methods were stressed by [55, 55, 20, 21, 47, 42, 43]. In order to ex-

pect accurate solutions by any of these techniques, the discretization required would

have to be significantly smaller than the typical scales of variation of the hydraulic
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Figure 1.1. The solution types for different stochastic methods, (a) Monte Carlo

method solves a series of realizations, (b) Moment equation method solves the cross

covariance function over the modeling domain, (0) Green’s function method solves

the Green’s function equation over the modeling domain, (d)Sensitivity derivative

method solves the sensitivity derivative function over the modeling domain. (Source:

Li et al., 2003)



parameter (often order(s) of magnitude smaller than that used in a corresponding

deterministic model). As a result, computational effort involved often becomes pro-

hibitively expensive, and thus applications of these methods to field situations have

been very limited [17 , 9, 47, 42, 43, 59]. Table 1.1 summarizes some important cases

that have been demonstrated in the past research. Note that all modeling problems

in Table 1.1 are restricted to a relatively small domain size, i.e, the ratio of domain

size to the correlation length is very small.

Table 1.1: Some selected stochastic groundwater studies.

 

 

 

Stochastic Numerical Problem Description Domain Grid No. Source

Model Scheme Size(L) MC(Nr)

MM FE Flow and transport 44x24 m, 34x23 [20]

problem,conditioning on A=2 m

conductivity and head

SM FE Flow, inverse problems, 560x240 m, 14x16 [80]

conditioning on head and A2200 m

Ink

SM FD Cape Cod site, multi-scale 800x40 m, 120x20 [11]

transport problem, A=3.2,3.5

conditioning on tracer data

GM,MC FE Flow problem with pumping L—22 A, 120x20 [61]

well A—2, 5, 8

NSM,MC FD Flow problem with linear L—8 A, NA [45]

conductivity trend

SM FE Unsaturated flow, 80x80 cm, 20x20 [39]

conditioning on head A=20 cm

MC FE Flow, conditioning on head 40x40 20x20, [28]

A=2 Nr=400

MM FD Unsaturated flow L=10 A, NA [98]

A=10 cm

MC FD Saturated flow and 64x40 A, 256x400, [30]

transport problem A=l Nr=2400

MC FD Transport problem 5x3x0.1 km, 100x60x50, [53]

Ah=250 m, Nr=NA

Av=10 m

MM,MC FD Flow problem 200x100, NA, [99]

A=17.5, 16.6 Nr=NA

MC FE Vertical unsaturated flow 24x12.8 m, 80x128, [29]

and transport A, =3 Nr=300

Az=0.5

SM FE Flow and transport 40x200 cm, 10x50 , [40]

Continued on Next Page...



Table 1.1 —- Continued

 

 

 

Stochastic Numerical Problem Description Domain Grid No. Source

Model Scheme Size(L) MC(Nr)

conditioning on head A=40cm

GM FE Flow and conditioning 18x8, 180x80 , [24]

on head A=1 Nr=4000

MM FD Saturated and unsaturated 120x360, 20x60 , [96]

flow A=30

MC FE Vertical unsaturated flow 20x20 m, 50x50 , [38]

and transport Ay=5 m Nr=50

Az =3 m

MC FE Flow problem 12x12 m, 60x60 , [88]

A=1 m Nr=5000

MC FE Unsaturated flow problem 4x8A, 20x40 , [49]

Nr=3000

MM FE Unsaturated flow problem 40x3A, 40x30 , [82]

A=40,4

MC FD Transport problem 53x25.6A, 256x128 , [32]

A=1 Nr=2000

NSM,SM, FD Flow problem 50x50A, Ax=0.5-2 , [47]

GM,MM, A=1 Nr=20000

MC

MC FE Unsaturated flow and 120x360 cm, 20x60 , [50]

transport problem A=30 cm Nr=NA

TE,MC FD Unsaturated flow problem 10x10A 100x100 , [102]

Nr=10000

TE,SM FE Flow inverse problem 400x200 m, 40x20 , [3]

A=50 111

MC FD Transport problem 1x2x4 A 128x64x64 , [100]

Nr21600

AM FE Plume travel time, 100x50 m, 1000x500 , [6]

conditioning on head two zones,

and Ink A=2 and 10 m

GM,MC FE Flow problem, conditioning 8x4 A 40x20 , [92]

on Ink Nr=2500

NSM,MC FD Flow problem 100x100 A, Ax=l,2 A, [43]

200x200 A Nr=20000

MM,MC FE Flow problem 10x10 A 40x40, [97]

Nr=5000

MM,MC FE Water-oil two-phase 3x0.96 m, 50x16, [4]

problem A=0.3 m Nr=2000

MM FD 'h‘ansport problem 20x10 A, 41x41, [91]

A=1 m

SM FE Transient Flow, 15x15x15 m, 15x15x15, [103]

inverse problem A=1 m
 

 

The listed cases consider solely Ink as the source of uncertainty.

Continued on Next Page. . .



Table 1.1 — Continued

 

 

Stochastic Numerical Problem Description Domain Grid No. Source

Model Scheme Size(L) MC(Nr)
 

MM: Moment equation method, MC: Monte Carlo simulation,

SM: Sensitivity equation method, GM: Green’s function method,

TE: Taylor expansion method, NSM: Nonstationary spectral method,

FD: Finite difference numerical scheme, FE: Finite element numerical scheme,

Nr: Number of realizations in Monte Carlo simulation. NA: Information is not available.

Over the past few years, Li and his co—workers have developed a new stochastic

modeling approach, a nonstationary spectral method, for predicting nonstationary

flows [45, 47, 42, 43]. This approach is based on an extension of the classical spectral

method for stationary flow problems [2, 27, 56, 18, 23, 22, 41, 17] and has several

advantages over other methods for analyzing nonstationary groundwater problems.

The new approach allows for the first time modeling general field-scale processes

and uncertainty without having to resolve numerically the small-scale dynamics, sig-

nificantly increasing the size and expanding the range of site characterization prob-

lems that can be analyzed with stochastic methods. This nonstationary spectral

method combines the best features of analytical and numerical techniques. The sta-

tistically stationary small-scale portion of natural variability is described with a com-

pact spectral (Fourier) representation while the remaining nonstationary component

is described as a larger-scale spatial process driven by mean gradients. The numeri-

cal computations focus on departures from stationarity. The division of labor is not

prescribed explicitly but is handled naturally with transfer functions that depend on

both wave number and location. Discretized numerical computations are performed

on spatial grids that are comparable in size to the grids used in traditional deter-

ministic modeling applications. The results, as illustrated in Figures 1.2 and 1.3,

dramatically decrease the required computational effort to compute statistics such as

head and velocity variances.
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Figure 1.2. The comparison of CPU time for different methods, where L represents

the domain length and A represents the correlation length of log hydraulic conduc-

tivity.(Source: Li et al., 2003)

However, the nonstationary spectral method is still significantly more expensive

than deterministic methods, especially for large unsteady problems, primarily because

the method still requires solving large numbers of partial differential equations.

1.3 Research Objective and Basic Approaches

The objective of the proposed research is to further improve the nonstationary spectral

method so that it can be routinely applied in site-specific groundwater investigations.

We are particularly concerned with the design of a characterization tool that can

adapt to complex and general nonstationary environmental conditions in complex
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Figure 1.3. The comparison of memory requirement for diflerent methods, where L

represents the domain length and A represents the correlation length of log hydraulic

conductivity.(Source: Li et al., 2003)

geometries and trending lithologies.

The improved approach is based on the following observations:

0 Most groundwater systems are only weakly to moderately nonstationary ex-

cept in localized areas (e.g., around wells, across disconituities, and prescribed

boundaries) .

0 There is a significant scale disparity between the mean variation and the small-

scale heterogeneity in these weakly or moderately nonstationary areas.

0 One can dramatically simplify the general nonstationary spectral method if the

scale disparity is taken advantage of and a highly efficient, closed form solution

11



can be derived.

0 The more intensive nonstationary spectral modeling only needs to be applied

in localized areas where the variance dynamics is strongly nonstationary.

Given these observations, we propose in this study a hybrid spectral method

(HSM) for stochastic groundwater modeling. The improved “hybrid” spectral mod-

eling will proceed in two steps: First, the approximate closed form spectral method

(ASM) is applied to obtain a “regional” screening level uncertainty analysis. Second,

the nonstationary spectral method (NSM) is applied to locally refine or correct the

solution where the variance dynamics are rapidly varying. The boundary conditions

for the local nonstationary spectral solutions will be based on the “regional” closed

form solution. The regional solution and the numerical corrections are both expected

to be highly efficient and the computational process will be virtually instantaneous

since the former is in closed form and the latter are only applied in very small areas.

Figure 5.1 illustrates the concept of hybrid spectral method.

1.4 Organization of the Dissertation

This dissertation will be organized in six sections including this introductory chap-

ter that reviews where we are in stochastic groundwater modeling, motivates the

research, and explains the source of difficulties in applying existing stochastic meth-

ods to realistic field problems. Chapter 2 to 5 are written in the form of technical

paper. Chapter 2 present the capability of ASM for predicting flow uncertainty in

complex, heterogeneous trending media. In this paper, the nonstationary flows were

driven solely by the conductivity trends. The small-scale statistical structure of the

log conductivity was kept uniform in the modeling areas. In Chapter 3, the ASM was

12
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Figure 1.4. The conceptual diagram of the Hybrid Spectral Method (HSM).

employed to predict the flow uncertainty for composite porous media. In the compos-

ite porous media, the small-scale statistical structure of the log conductivity became

nonuniform. Chapter 4 provides a systematical comparison of ASM for flow under

complex flow conditions. These conditions include:(1) groundwater flow with sources

and sinks in confined and unconfined aquifers, and (2) transient flow in confined and

unconfined aquifer with complex trends and multiple sources and sinks. The general

concept and associated applications of the HSM were demonstrated in Chapter 5.

Two examples were presented to show the eflectiveness and accuracy of the HSM. In

the end of this dissertation, I organized the overall conclusion in Chapter 6 for this

study.
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CHAPTER 2

Simple Closed-Form Formulas for

Predicting Groundwater Flow

Model Uncertainty in Complex,

Heterogeneous Trending Media

2.1 Abstract

This paper presents approximate, closed form formulas for predicting groundwater

velocity variances caused by unmodeled small-scale heterogeneity in hydraulic con-

ductivity. These formulas rely on a linearization of the groundwater flow equation

but do not require the common statistical stationarity assumptions. The formulas are

illustrated with a two-dimensional analysis of steady state flows in complex, multi-

dimensional trending media and compared with a first-order numerical analysis and

Monte Carlo simulation. This comparison indicates that, despite the simplifications,

the closed-form formulas capture the strongly nonstationary distributions of the ve-
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locity variances and match well with the first order numerical model and the Monte

Carlo simulation except in the immediate proximity of prescribed head boundaries

and mean conductivity discontinuities. The complex trending examples illustrate that

the closed-form formulas have many of the capabilities of a full stochastic numerical

model while retaining the convenience of analytical results.

2.2 Introduction

It is now widely recognized that hydrogeological properties such as hydraulic con-

ductivity vary significantly over a wide range of spatial scales [17]. This variability

reflects the aggregate effect of different geological processes acting over extended

time periods. It is tempting for analytical reasons to adopt a simplified description

of spatial variability which imposes some sort of regular structure on the subsurface

environment. Such a description can be deterministic (e.g., the subsurface consists of

homogeneous layers) or stochastic (e.g., the subsurface properties are stationary ran-

dom fields). Although these simplified descriptions do not capture the true nature of

hydrogeologic variability, they may provide reasonable approximations for particular

applications.

In certain situations, variables such as hydraulic conductivity exhibit local trends

that extend over scales comparable to the overall scale of interest in a given problem.

Trends are a natural result of the sedimentation processes that create deltas, alluvial

fans, and glacial outwash plains [1]. In such cases it seems reasonable to represent

hydrogeologic variability as a stationary random field superimposed on a deterministic

trend [60, 67]. This paper is concerned with predicting the velocity variances caused

by unmodeled small-scale heterogeneity in the presence of systematic trends in mean

hydraulic conductivity.

15



Stochastic approaches for analyzing groundwater flow in heterogeneous trending

media generally divide into (1) analytical techniques (e.g., [48, 72, 45, 61, 33]), which

provide convenient closed-form expressions for quantities such as the velocity vari-

ances and effective hydraulic conductivities but depend on restrictive assumptions

(e.g., linear trends) and (2) numerical techniques (e.g., [74, 55, 47, 42]), which make

fewer assumptions but are more difficult to apply in practice. Here we present sim-

ple, closed-form analytical solutions that relax the assumptions required in existing

analytical theories of stochastic groundwater flow. This enables us to account for the

effect of general trends while retaining the convenience of closed-form results.

2.3 Problem Formulation

To illustrate the basic concept we consider steady flow in a heterogeneous multidi-

mensional porous medium with a systematic trend in the log hydraulic conductivity.

There are many ways to partition a particular log conductivity function into a ”trend”

and a ”random fluctuation.” Here we require that the fluctuation have a spatial aver-

age of zero and no obvious nonstationarities. The trend should vary more smoothly

than the fluctuation. In practice, the trend can be estimated from a sample conductiv-

ity function by applying a low-pass or moving window filter [67]. Given these general

requirements, we assume that the log hydraulic conductivity is a locally isotropic, '

random field with a known spatially variable ensemble mean equal to the value of the

trend at each point in space. We also assume that the fluctuation about the log con—

ductivity mean is a wide-sense stationary random field with a known spectral density

function. The random log conductivity fluctuation is approximately related to the

piezometric head and velocity fluctuations by the following first-order, mean-removed
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flow equations:

  

 

62h’ Bh’ 6f’

aha,“ + lit-(Kla—x; — Ji(x) 6.1:,- x E D, (2 1)

, 8h’

21 = Kg(x) [J,-( ) — Bari] x E D, (2 2)

h'(X) = 0 X 6 PD

Vh’(x) -n(x) = 0 x E [‘10,

where J,(x) = —6}-z/6:1:,- is the mean head gradient and 71,-(x) = {if/8x,- is the mean

log conductivity gradient. The notation Kg(x) is the geometric mean conductiv-

ity. These equations are written in Cartesian coordinates, with the vector location

symbolized by x and summation implied over repeated indices. The point values of

the log hydraulic conductivity fluctuation f’ (x), head fluctuation h’ (x), and velocity

fluctuation u§(x),i = 1, 2, 3, are defined throughout the domain D. A homogeneous

condition is defined on the specified head boundary I‘D and the specified flux bound-

ary FN. Note that we consider f is solely the source of uncertainty applied in the

aquifer system.

2.4 Spectral Solution

Spectral methods offer a particularly convenient way to derive velocity statistics from

linearized fluctuation equations. Taking advantage of scale disparity between the

mean and fluctuation processes and invoking locally the spectral representation, one

can solve (3.1) and (3.2) and obtain the following expression for predicting nonsta-

tionary velocity variances in heterogeneous trending media:

0'3..(X) = C(lit-(3<))<7j(x)Kg2 (301200, (2-3)
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where

C(“i‘x” Z I:A: (1 ‘ w? 52:11.10) (1’ .12 Sill-(xi) S”‘“"“"‘“’
(2.4)

  

Note sf; is the dimensionless spectral density function of f’ (x), 3,, = Sfffir}, 0,2. is

the log conductivity variance, w,- is the wave number, 022 = 02? +03, 031 and 032 are

respectively the longitudinal and transverse velocity variances. The detailed deriva-

tion process of (3.9) is very similar to that used in Gelhar (1993) for homogeneous

media and is not repeated here.

2.5 Approximate Closed Form Solution

Equation (3.9) applies to flows in general, mildly heterogeneous trending media. To

obtain explicit results, one must in general evaluate the associated double integrals

numerically. In most cases, these evaluations can be quite difficult. Most prior

research focused on limited special cases for which (3.10) can be reduced to a form

that allows exact, closed-form integration [48, 45, 17].

In this paper, we evaluate (3.10) approximately under general trending conditions.

Our approximate solution is based on the following observations:

1. Tmnds in conductivity influence the variance dynamics through C(u,(x)) and

Kg(x)J(x) (see (3.9)).

2. It is the evaluation of C(p,(x)) for a general, multi-dimensional trend distribu—

tion 17,-(x) that is difficult. The zuj(x)kj(x) term in (3.10) makes the integration

analytically intractable.
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3. It is, however, predominantly K9(x)J(x) that controls the nonstationary spatial

variance dynamics.

4. For most trending situations, change in the mean log conductivity over the

characteristic length of small-scale heterogeneity (a correlation scale A) is small

(or u§A2 << 1) since the mean conductivity is expected to be much smoother

than the fluctuation [17].

To enable variance modeling under general, complex conditions, we propose approx-

imating C(ui(x)) via the following Taylor’s expansion-based expression:

60(0)
C(ui(X)) = 0(0) + a”, u,- + z C(O) (2.5)

Essentially we suggest that the small, but hard-to—evaluate contribution to variance

nonstationarity from C(p, (x)) be ignored relative to the more important contribution

from K9(x)J(x). This assumption may seem quite crude at first sight but proves to be

highly effective and makes general, approximate variance modeling in nonstationary

trending media possible. Previous studies investigating the effects of trending are all

based on full rigorous integration of (3.10) or full solution of (3.1) that is intractable

unless the trends are assumed to be of special forms [44, 45, 48, 17]. These highly

restrictive assumptions severely limit the practical utilities of the results.

Substituting (3.11) into (3.9), we obtain:

 0?...(x) = 0i(x)K§(x)J2(x) f:f: (1— fit)? slitwldwtdwg (2.6)

Equation (3.12) can be easily integrated in the polar coordinate system. The result

is the following explicit expressions:

2 _ 2 2 2
an1 (x) — 0.3750f(x)Kg(x)J (x), (2.7)

0'2 (x) = 0.1250}(x)K§(x)J2(x). (2.8)
“2
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These expressions are independent of the specific form of the log conductivity spec-

trum or covariance function for the isotrOpic case.

Note that (3.13) and (3.14) are of the same form as the equations derived by

previous researchers (e.g., [56, 17]) for statistically uniform flow, except that Kg and

J are now allowed to vary over space as a function of the mean log conductivity

gradient. These general equations are simpler than the nonstationary expressions

deveIOped by Li and McLaughlin [1995], Loaiciga [1993], and Gelhar [1993] for simple

linear trending media.

In the following section, we illustrate how these simple closed-form expressions can

be used to quantify robustly groundwater velocity uncertainty with surprising accu-

racy, even in the presence of complex and strongly nonstationary trending hydraulic

conductivity.

2.6 Illustrative Examples

Our examples consider two-dimensional steady-state flows in a confined aquifer. The

hydraulic conductivity is assumed to exhibit both a randomly varying small-scale

fluctuation and a systematic large-scale nonstationarity. The small-scale fluctuation

is represented as a random field characterized by a simple exponential and isotropic

covariance function with a log conductivity variance of 1.0 and a correlation scale A

of 1.0. The large—scale nonstationarity is represented as a deterministic trend.

To systematically test the effectiveness of the closed-form solutions, we consider a

range of trending conductivity situations, from relatively simple and mild trends to

trends that are much stronger, more complex, strongly multi-dimensional, and even

discontinuous. For each problem, we first solve the mean deterministic groundwater
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flow equation without accounting for the small-scale heterogeneity, use the resulting

head to evaluate the mean hydraulic gradient, and then substitute it into the ex-

plicit expressions in (3.13) and (3.14) to obtain the local variance values. We verify

the accuracy of the closed-form variance solutions by comparing them with the cor-

responding numerical solutions obtained from the first-order nonstationary spectral

method [44, 42, 43] and Monte Carlo simulation (based on 10,000 realizations). In

all test examples, the simple closed-form solutions proves to be robust, can capture

complex spatial nonstationarities, and match well with the corresponding numerical

perturbation solutions and Monte Carlo simulation.

We present in this section results from two selected examples involving relatively

difficult trending situations. We select these examples because we believe that if a

methodology is able to handle such distinctly different mean log conductivity trends,

it should be able to handle perhaps most trends that can be practically represented

using field data in real-world groundwater modeling. Table 2.6 presents detailed

information defining the large-scale mean trends, statistics describing the small-scale

heterogeneity, and other inputs used in the examples.

The first example involves complex multi-dimensional trends artificially generated

by a random field generator with a large correlation scale. We have purposely made

the trends more complicated than that may typically be delineated with scattered field

data in order to test the robustness of the closed-form formulas. The second example

involves discontinuous trends in the mean conductivity. Although we do not expect

the closed-form solutions to apply right at the discontinuities where the trending slope

u,(x) is infinite, we are interested in determining if and to what degree the closed-form

solutions apply overall and away from the discontinuities. The ability for a stochastic

method to model discontinuous trends is important since many practical applications

require working with zones of distinct materials, sharp geological boundaries, and
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Table 2.1. Parameter definitions for the examples

 

 

 

Continuous trend Discontinuous trend

an variance 1 1

an correlation scale A 1 1

Geometric mean hydraulic A replicate from a random (see Figure 2.7)

conductivity field with a correlation scale

40A and variance: 0.5

(see Figure 2.7)

Domain length 80A 80A

West boundary condition Const Head 100m Const Head 92m

East boundary condition Const Head 100m Const Head 92m

North boundary condition No flow No flow

South boundary condition No flow No flow
 

 

multiple aquifers with different mean conductivities.

2.7 Results

Figures 2.7 and 2.7 illustrate the mean conductivity distributions for the trending

examples and the distributions of corresponding steady state, mean head distribu-

tions. Although the driving head difference in both examples is uniform, the strong

trends in the mean log conductivity yield nonuniform flow patterns which in turn

cause strong nonstationarity in the velocity variances.

Figures 2.7 and 2.7 show the complex, nonuniform distributions of the predicted

velocity standard deviations for, respectively, the continuous and discontinuous trend-

ing examples. The results are presented in a profile along the domain centerline and

obtained using the approximate closed-form formulas, the numerically-oriented non-

stationary spectral method, and the Monte Carlo simulation. These plots clearly

show that, despite the simplifications and the strong multi-dimensional trending non-

stationarities, the simple closed-form solutions reproduce well the corresponding first-

order, nonstationary spectral solutions and allow capturing both the spatial structure

and the magnitude of the highly nonstationary, complex uncertainty distributions.
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Figure 2.1. Spatial distribution of the geometric mean conductivity and corresponding

mean head distribution for the continuous trending case.

The closed-form predictions of the velocity uncertainty also match reasonably well

with those obtained from the Monte Carlo simulation for both examples. For the

discontinuous trending case, the results becomes inaccurate at the discontinuities but

the inaccuracies appear to be very localized.
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Figure 2.2. Spatial distribution of the geometric mean conductivity and corresponding

mean head distribution for the discontinuous trending case.

2.8 Conclusions

In this paper, we have developed and demonstrated approximate closed-form formulas

to predict velocity variances for flow in heterogeneous porous media with systematic

trends in log conductivity. Examples involving nonstationary flows in complex trend-

ing media are used to illustrate the approximate methodology. The results reveal

that, despite the gross simplifications, the closed-form expressions are highly effective

and can reproduce the corresponding numerical, nonstationary spectral and Monte

Carlo solutions. The results also show how trends in hydraulic conductivity produce

complex structural changes in the spatial distributions in the velocity variances. The

closed form formulas make it possible to model the velocity uncertainty in nonsta-
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Figure 2.3. Centerline profile of the predicted velocity standard deviations using the

closed-form formulae, nonstationary numerical spectral method, and Monte Carlo

simulation for continuous trending case.
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Figure 2.4. Centerline profile of the predicted velocity standard deviations using the

closed-form formulae, nonstationary numerical spectral method, and Monte Carlo

simulation for discontinuous trending case.
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tionary trending media. The analysis represents a step closer to our ultimate goal to

include a systematic uncertainty analysis as a part of routine groundwater modeling.

We are currently in the process of extending the approximate methodology to general

unsteady flow in both confined and unconfined aquifers in the presence of complex

sources and sinks.
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CHAPTER 3

Modeling Groundwater Velocity

Uncertainty in Nonstationary

Composite Porous Media

3.1 Abstract

In this paper I present approximate, closed-form equations that allow modeling

2D nonstationary flows in statistically inhomogeneous aquifers, including compos-

ite aquifers containing multiple zones characterized by diflerent statistical models.

The composite representation has the efl'ect of decreasing the variance of deviations

from the mean, relaxing the limitation of the small-perturbation assumption. The

simple formulas are illustrated with a number of examples and compared with a cor-

responding first-order nonstationary numerical analysis and Monte Carlo simulation.

The results show that, despite the gross simplifications, the closed-form equations

are robust and able to capture complex variance dynamics, reproducing surprisingly

well the first-order numerical solutions and the Monte Carlo simulation even in highly

28



nonstationary, variable situations.

3.2 Introduction

Probabilistic theories of subsurface flow and transport have had a significant impact

on the way we think about uncertainty and heterogeneity. However, they have not

had much impact on the way that predictions are generated and reported in practical

groundwater modeling studies [101]. One major reason for this significant gap lies in

that most existing stochastic theories require that the aquifer of interest be statis-

tically homogeneous, the hydraulic gradient statistically uniform, and the deviation

from the uniform mean small [47, 42, 43].

A number of recent review articles stressed that if stochastic modeling is to become

a viable practical tool, it must be made much more general and flexible [101, 47, 42,

43]. Specifically, a stochastic model must be able to easily incorporate site-specific

aquifer structure before it can be routinely applied in practice. It must allow modeling

flexible zonations, layering, and general trending as most real-world aquifers exhibit

both ”structural” and ”random” variability and the statistics characterizing aquifer

heterogeneity can vary (e.g., from region to region and layer to layer) in response to

systematic changes in the distribution of aquifer materials.

The research, for example by Loaiciga et. al., 1993[48], Li and McLaughlin,

1995[45], Rubin, 1995[68], Indelman and Rubin, 1995,1996[34, 36], Winter and

Tartakavosky, 2002[88], and Lu and Zhang, 2002[51], represents first steps in this

direction. These studies investigated flows in heterogeneous trending media and pre-

sented explicit, special analytical solutions in illustration of the effect of nonstation-

arity. derived closed-form solution for flow in special composite media that consist of

multiple zones with nonstationary fluctuation statistics. These illustrative solutions
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provided useful insight into how large-scale nonuniformity and zonations interact with

small-scale heterogeneity, although they must be generalized before they can have a

significant practical impact.

There are a number of numerical approaches that can be used to analyze statis-

tically nonuniform flow and transport in more general, statistically inhomogeneous

aquifers. These include, for example, Monte Carlo methods [74, 75, 61, 47] and per-

turbation techniques, such as the moment equation methods [20, 21, 99, 89, 90, 97]

and the so called first-order second-moment methods based on Taylor’s expansions

[80, 93, 6]. All of these methods, however, are computationally demanding when ap-

plied to flow and transport problems of realistic size [17, 59], mostly because they all

require solving large numbers of partial differential equations on very fine spatial dis-

cretizations in order to predict the impact of the small-scale heterogeneous dynamics

[47, 43].

In this paper we present a general, approximate methodology for modeling two

dimensional groundwater systems in complex, composite media. In particular, we

apply the popular spectral technique to derive a set of closed-form formulas for pre-

dicting nonstationary velocity variances in aquifers that consist of complex zonations

characterized by different statistical models. These formulas provide nonstationary

predictive capabilities of a stochastic numerical model while retaining the convenience

of analytical solutions. We demonstrate the eflectiveness of the simple closed-form

formulas using a number of examples involving complex material zonations and non-

stationary conductivity statistics.
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3.3 Problem Formulation

We can make our presentation and discussion more specific by considering a rela-

tively simple problem: steady-state simulation of hydraulic heads and groundwater

velocities in a saturated region. Here we assume that the region is composed of multi-

ple subregions containing systematically different materials characterized by different

statistical models. We further assume that fluctuation in each subregion is locally

isotropic and statistically uniform but their statistics can vary from region to region

and the means trends vary more smoothly than the fluctuations. In practice, the

trend can be estimated from a sample conductivity function by applying a low-pass

or moving window filter [67].

The random log conductivity fluctuation is approximately related to the piezo—

metric head and velocity fluctuations by the following first-order, mean-removed flow

 

 

equations:

3271' 8h’ Bf’

627,63,- + #4305; — J’(x)6_x,- x E D, C“)

, , Bh’

u,- = Kg(x) J,(x)f —— x E D, (3.2)

83:,-

h’(X) = 0 X 6 PD

Vh’(x) - n(x) = 0 x 6 FN,

where J,-(x) = ~8Ir/8x, is the mean head gradient, ,u,(x) = Bf/Bzc, is the mean log

conductivity gradient, and Kg(x) is the geometric mean conductivity. Both m, K,

are in general spatially variable and may be discontinous across internal subregion

boundaries. These equations are written in Cartesian coordinates, with the vector

location symbolized by x and summation implied over repeated indices. The point

values of the log hydraulic conductivity fluctuation f’ (x), head fluctuation h’ (x),

and velocity fluctuation u;(x),z’ = 1, 2, 3, are defined throughout the domain D. A
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homogeneous condition is defined on the specified head boundary I‘D and the specified

flux boundary I‘N. Note that we consider f is solely the source of uncertainty applied

in the aquifer system and is locally (within an individual subregion) stationary and

globally (across different regions) nonstationary.

3.4 Spectral Solution in Composite Media

Spectral methods offer a particularly convenient way to derive groundwater velocity

statistics from linearized fluctuation equations such as (3.1) and (3.2). Invoking the

spectral representation in each subregion for the locally stationary log conductivity

perturbation gives

+oo

f’(x) = / exp(zk,-a:,~)de(k,x), (3.3)
—00

where z = (—1)1/2, k,- is component 2' of the wave number k, and de(k,x) is the

random Fourier increment of f’(x), evaluated at k. The x dependence in the spectral

amplitude reflects the fact that it is in generall globally nonstationary and can vary

from region to region. The Fourier representation can be viewed as the continuous

version of a Fourier series expansion of f(x) The random Fourier increment at a

particular wave number is analogous to the random amplitude of one of the terms

in the Fourier integral. Stationary Fourier increments within each region satisfy the

following orthogonality property [66, 17]:

 

de(k, x)dZ;(k’, x) = 3,,(k, x)6(k — k’)dkdk’ (3.4)

where the asterisk superscript represents the complex conjugate, 6(.) is the Dirac

delta function, and Sff(k,X) is the spectral density function of the log hydraulic

conductivity [66, 17].
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[65] shows that the output (e.g., h’, 11.1) of linear transformations such as (3.1) and

(3.2) are stationary only if the input (e.g., f’) is stationary and the transformations

are spatially invariant. In the problem of interest here, spatial invariance implies

that the fluctuation equations (3.1) and (3.2) should have constant coefficients with

the boundaries sufficiently distant having no effect on velocity fluctuations in the

region of interest. Such spatial invariance requirement is clearly not met because, for

heterogeneous composite media, the coefficients u,(x) and J,(x) may both vary with

x, [20, 21, ?, 70, 61, 33, 45, 88, 26, e.g.].

Like many investigators [2, 56, 17] and following the pioneering work of [17], here

we seek approximate solutions to (3.1) and (3.2). Taking advantage of the scale

disparity between the fluctuation process and the mean process, we further assume

that the input log-conductivity, the dependent head, and velocity output fluctuation

be stationary in a local sense (and away from the immediate proximity of boundaries),

so that they also have an approximate spectral representation defined in terms of a

location-dependent spectral amplitude

+oo +oo

h'(x) = [00 exp(zk,—x,~)th(k,x); u3(x) = [00 exp(zk,-:r,-)dZ,,J.(k,x). (3.5)

This local homogeneity assumption implies that we regard u,(x) and J,-(x) in (3.1) and

(3.2) as varying slowly in space relative to the characteristic scale of the fluctuation,

that is, that they do not change significantly over distance corresponding to the

correlation scale of h. Note that 17,-‘1 will be a typical length scale for change in the

mean gradient, so that the notion of local statistical homogeneity will be meaningful

when the product of it, and the correlation scale is small relative to 1 [17]. By using

the local spectral representations (3.5) in (3.1), the spectral amplitude for head in

two-dimensional problems is

—’Iki J,‘ (X)

th(k, X) : k2 _ zkjuj (x) de(k,x); k2 = k? + kg, (3.6) 
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Substituting (3.5) and (3.6) in (3.2), we obtain the following spectral amplitude of

velocity:

dZu, (k, x) = Kg(x)J,-(x) (1 — k2 _l:;:::‘j(x)) de(k,x). (3.7) 

Now, if the x1 coordinate is selected to be aligned with the local mean hydraulic gra-

dient (J1(x) = J(x), J2(x) = 0), then the spectral density functions in each geological

face for velocity become

Sum]. (k, x) = Kg2(x)J2(x)

kikl raj/c,

(1 k2 — 2kmum(x)) (1 k2 + 2kmum(x) Sff(k’x)° (3'8)

Integrating in the wave number domain, one obtains the following integral expression

  

for evaluating the velocity variance:

of... (x) = 0.. (u)a}(X)K2(x)J2(x), (3.9)

where

C()—/+°°/+°° 1— ““1 1— ”“2 (kx)dkk
u.- ” — -—oo —oo k2~2kjlllj(X) k2+lkjpj(X) 8‘” , 1 2,

(3.10)

  

Note sff is dimensionless spectral density function, Sff = Sff /0;.0’31 and 032 repre-

sent respectively the longitudinal and transverse velocity variances.

3.5 Approximate Spectral Method

To obtain explicit results, one must in general evaluate the associated double integrals

numerically. In most cases, these evaluations can be quite difficult. Most prior

research focuses on some very special cases for which (3.10) can be reduced to a form

that allows exact, closed-form integration [8, 17, 95, 69]. In this paper, we evaluate
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(3.10) approximately under more general conditions. Our approximate solution is

based on the following observations:

0 Trends in conductivity influence the variance dynamics through Cu,(u) and

Kg(x)J(x) (see (3.9)).

o It is the evaluation of Cu, for a general, multi-dimensional trend distribution

u,(x) that is difficult. More specifically, it is the presence of the zkjuj(x) term

in (3.10) that makes the integration analytically intractable.

o It is, however, predominantly K9(x)J(x) that controls the nonstationary spatial

variance dynamics.

0 For most trending situations, change in the mean log conductivity over the

characteristic length of small-scale heterogeneity (a correlation scale A) is small

(or u§A2 << 1) since the mean conductivity is expected to be much smoother

than the fluctuation [17].

To enable variance modeling under general, complex conditions, we propose approx-

imating Cui(u) via the following Taylor’s expansion-based expression:

60”, (O)

3M

 Cu,(u) = Cu,(0) + M + z Cu,(0) (3.11)

Essentially we suggest that the small, but hard-to-evaluate contribution to variance

nonstationarity from Cu, be ignored relative to the much more important contribution

from Kg(x)J(x). This assumption may seem quite crude but proves to be highly

effective and makes general, approximate variance modeling in nonstationary media

possible. Previous studies investigating the effects of trending are all based on full

integration of (3.9) through (3.10) or full solution of (3.1) that is intractable unless

the trends are assumed to be of special forms [44, 17, 34, 35]. These highly restrictive

assumptions severely limit the practical utilities of the results.
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Substituting (3.11) into (3.9), we obtain:

0,2“(x) = a}(x)K§(x)J2(x) [:0 [:0 (1 — k;:1)23ff(k,X)dk1dk2 (3.12) 

Equation (3.12) can be easily integrated in the polar coordinate system. For the

statistically isotropic case, the result is the following simple, explicit expressions,

independent of the specific form of the MK spectrum:

03,, (x) = 0.3750§(x)K§(x)J2(x), (3.13)

02 (x) = 0.1250;(x)K§(x)J2(x). (3.14)
“2

Note these expressions are of the same form as those derived by many previous re-

searchers [56, 17, e.g.] for statistically uniform flow, except that Kg and J are now

allowed to vary over space as a function of the trending and a} can vary from zone

to zone. These general equations are simpler than the nonstationary expressions de-

veloped by [45] and [17] for simple linear trending media. In the following section,

we illustrate how these simple analytical expressions can be used to quantify robustly

and quite accurately groundwater velocity uncertainty in complex, nonstationary hy-

draulic conductivity fields.

3.6 Illustration Examples

To systematically test the effectiveness, robustness, and generality of the closed-form

solutions, we consider a range of nonstationary, composite media configurations and

use different statistical models to represent the small scale heterogeneity. Our first

example considers a relatively simple situation in which the overall domain of interest

contains two embedded, rectangular areas of distinctly different materials. Our sec-

ond example is patterned after a real situation involving more complex zonations of
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irregular shapes delineated based on a map of surficial deposits. Our third example

considers fan-shaped deposits of water-transported material (alluvium) that forms at

the base of fractured mountain blocks where there is a marked break in slope. The

alluvial fan is coarse-grained and very permeable at the mouth and becomes gradually

finer-grained towards the edge as it meets with a large surface water body.

In all three examples, the overall conductivity distributions are strongly nonsta-

tionary both in the mean and fluctuation. The mean conductivity varies within the

zones (example 3) and between them (examples 1 through 3) and these large-scale

nonstationarities are represented as deterministic trends. The fluctuation statistics

in each zone are characterized by an independent statistical model with a zone-

dependent variance and correlation scale. It is our opinion that if a methodology

is able to predict the groundwater velocity uncertainty in such different composite

media configurations, it should be able to handle perhaps most situations that can

be realistically represented using field data in real-world groundwater modeling.

Table 3.1 presents detailed information defining the aquifer parameters, boundary

conditions, and other inputs used in the three examples. Figures 3.1 presents real-

izations of the conductivity distributions along the domain center line for example 1

through example 3 respectively. Figures 3.2 through 3.4 illustrate the distributions

of the mean conductivity, prescribed stresses, and corresponding steady state mean

head. The strong trends and irregular zonations in the mean log hydraulic conduc-

tivities yield nonuniform flow patterns which in turn cause strong nonstationarity in

the velocity variances.

To compute the velocity variances and demonstrate their accuracy, we follow the

following three step procedure. First, we solve the mean deterministic groundwater

flow equation without accounting for the small-scale heterogeneity. We then use the

computed head to evaluate the mean hydraulic gradient and substitute it into (3.13)
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Table 3.1. Parameter definitions for three test examples

 

 

 

Example 1 Example 2 Example 3

lnITcorrelation structure Exponential/Hole Exponential/HoTe Exponential]Hole

an variance 05,10, and 2.0 0.5,0.8,1.0, and 1.5 1.0 and 2.0

an correlation scale A (m) 05,10, and 2.0 0.5,0.8,1.0, and 1.5 5.0 and 10.0

Mean conductivity K9 5,25, and 125 5,25,50, and 100 2.0 and kriged K field

(m/day) (see Figure 3.2) (see Figure 3.3) (see Figure 3.4)

Domain length (m) 80x80 160x160 2000x1500

Grid number[A8M{NSM) 81x81 161x161 251x186

Grid number MCS 256x256 512x512 1024x768

Global recharge (m/day) No recharge No recharge 0.002

West boundary condition Const Head 100m Const Head 100m No flow

East boundary condition Const Head 99.2m Const Head 98.4m No flow

North boundary condition No flow No flow No flow

South boundary condition No flow No flow No flow
 

 

ASM:approximate spectraFmethod; NSMmonstaHonary spectral method;

MCS:Monte Carlo simulation.

and (3.14) to obtain the local variance values. Finally, we compare the closed-form

solutions with the corresponding numerical solutions obtained from the first-order

nonstationary spectral method [44, 45, 46, 42, 43] and Monte Carlo simulation (based

on 10,000 realizations).
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Figure 3.1. A realization of nonstationary conductivity distribution plotted along

the domain centerline in the horizontal direction for a) example 1, b) example 2, c)

example 3

3.7 Results and Discussion

Figures 3.5 through 3.13 present the comparative results for all three examples. Fig-

ure 3.5 to 3.7 present contour maps showing the complex, nonuniform distributions of

the predicted velocity standard deviations. The results are obtained using the approx-

imate spectral method (left column), the numerical nonstationary spectral method

(middle column), and the Monte Carlo simulation (right column) based on the simple

exponential covariance model. Figure 3.8 to 3.10 show the same results in a profile
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Figure 3.2. Spatial distribution of the geometric mean conductivity and the corre-

sponding mean head distribution for example 1
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Figure 3.3. Spatial distribution of the geometric mean conductivity and the corre-

sponding mean head distribution for example 2
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Figure 3.4. Spatial distribution of the geometric mean conductivity and the corre-

sponding mean head distribution for example 3
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along the domain centerline. The results clearly show that, despite the simplifications

and the strong multi-dimensional medium nonstationarities, the simple closed-form

solutions reproduce well the corresponding first-order, nonstationary spectral solu-

tions and allow capturing both the spatial structure (see Figure 3.5 to 3.7 ) and the

magnitude (see Figure 3.8 to 3.10) of the highly nonstationary, complex uncertainty

distributions. The closed-form predictions of the velocity uncertainty also match very

well with those obtained from the Monte Carlo simulation for three examples.

Figure 3.11 to 3.13 presents similar comparisons between the closed-form and

numerical solutions based on an alternative an covariance model - the hole expo-

nential covariance model. Although the hole-type model looks similar to the simple

exponential model in the physical space domain, it is very different in the frequency

domain at low wave numbers. Gelhar (1993) suggested that a hole-exponential model

may represent the field data better than the simple exponential model. The results

show that the closed-form solutions based on this hole model also match very well for

all three examples with the corresponding numerical perturbation and Monte Carlo

solutions.

The surprisingly robust performance of the closed-form solutions for various highly

nonstationary situations involving different media zonations, mean conductivity dis-

tributions, flow and uncertainty patterns, boundary conditions, and conductivity

covariance models suggests that the seemingly crude simplifying assumptions and

empirical observations made in deriving the analytical formulas are highly effective.

These simple assumptions can indeed capture the dominant factors controlling the

spatial uncertainty distributions and make it possible to model velocity uncertainty

in complex, nonstationary groundwater systems.

The closed-form formulas do introduce errors near media interfaces as they make

no explicit use of boundary conditions. The solutions become inaccurate near the zone
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discontinuities, especially at the prescribed head boundaries (see Figures 3.5 through

3.13). However, these errors are limited to the immediate proximity (within 2 log-

conductivity correlation scales) of the discontinuities. We feel these very localized

errors are quite acceptable, especially considering what we have gained out of the

simplifying assumptions - the enormous flexibility and efficiency in our ability to

model complex, composite media systems.

It should also be pointed out that our ability to model composite media has the

effect of decreasing significantly the variance of deviations from the mean. This is why

our first-order solutions match so well with the Monte Carlo simulations even under

highly variable conditions. Large-scale changes in log conductivity that increase the

variance around a constant mean are now treated as nonstationarities (e.g. trends)

since the method does not require that the log conductivity mean be constant. There-

fore, the small perturbation assumption becomes much less limiting an assumption

as in other stationarity-based perturbation methods.

The method’s requirement that all uncertainty must ultimately be related to sta-

tionary random fluctuations in each medium component (zone) may still seem to be

a significant limitation. In reality, this requirement reflects a very important tacit

assumption of stochastic groundwater hydrology. To be specific, suppose we wish to

know how predicted velocity uncertainty is affected by spatial variations in hydraulic

conductivity. A number of probabilistic methods, including the one described here

may be used to infer the (possibly nonstationary) ensemble statistics of velocity from

the ensemble statistics of hydraulic conductivity. In order to apply any stochastic

methods to practical problems, we need to obtain zone specific estimates of the con-

ductivity statistics which form the basis for our stochastic analysis. In practice, these

statistics are typically derived from a limited number of field measurements available

in a zone. In most situations the only type of parameter nonstationarity that we can
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hope to infer from field data is a large-scale trend in the local mean (both within

the zones or between them). The closed-form formulas can accommodate such trends

since they require that the mean removed parameter within a zone be stationary.

This suggests that the method’s requirement that uncertainty be related to station-

ary random parameters within a zone is really not a practical limitation. We need to

do this any way if we want our composite media analysis to rely on data gathered in

the field.
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3.8 Conclusions

In this paper we have developed and demonstrated closed-form formulas to predict

velocity variances for two-dimensional flow in complex composite media. Three ex-

amples were used to illustrate the approximate methodology. The results reveal that,

despite the gross simplifications, the analytical expressions are highly effective and

robust and reproduce surprisingly well the solutions of corresponding first-order and

Monte Carlo predictions. The results also show how the nonuniform log conductivity

structure changes significantly the spatial distributions of the velocity variances.

In summary, the approximate spectral method makes it possible to model the ve-

locity uncertainty in complex composite media. The analysis represents a step closer

to our ultimate goal to include a systematic uncertainty analysis as a part of routine

groundwater modeling. We are currently in the process of extending the approxi-

mate methodology to general 3D, strongly unsteady flow in confined/unconfined and

anisotropic aquifers in the presence of complex sources and sinks.
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Figure 3.5. Spatial distribution of the predicted velocity variances using the closed-

form formulas, nonstationary spectral method, and Monte Carlo simulation based on

the simple exponential covariance model (example 1)
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Figure 3.6. Spatial distribution of the predicted velocity variances using the closed-

the simple exponential covariance model (example 2)
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form formulas, nonstationary spectral method, and Monte Carlo simulation based on

Figure 3.7. Spatial distribution of the predicted velocity variances using the closed-

the simple exponential covariance model (example 3)

49



 0.4

' Approximate Spectral Method

-............ Nonstationary Spectral Method   

  

 

 
 

 

0.3 Monte Carlo Method Nr=10l.

o3 021 .......

0.1”" "

0.0

0.4 _

-— Approximate Spectral Method

I ------------- Nonstationary Spectral Method

0'3 .' 0 Monte Carlo Method Nr=10000

  I.‘‘‘‘‘‘‘

T55 80

X1(m)

   

. g 1
rrrrrr

50
  

C

Figure 3.8. Centerline profile of the predicted velocity standard deviations using the

closed-form formulas, numerical spectral method, and Monte Carlo simulation based

on the simple exponential covariance model(example 1)
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Figure 3.9. Centerline profile of the predicted velocity standard deviations using the

closed-form formulas, numerical spectral method, and Monte Carlo simulation based

on the simple exponential covariance model(example 2)
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Figure 3.10. Centerline profile of the predicted velocity standard deviations using the

closed-form formulas, numerical spectral method, and Monte Carlo simulation based

on the simple exponential covariance model(example 3)
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Figure 3.11. Centerline profile of the predicted velocity standard deviations using the

closed-form formulas, numerical spectral method, and Monte Carlo simulation based

on a hole-type covariance model (example 1)
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Figure 3.12. Centerline profile of the predicted velocity standard deviations using the

closed-form formulas, numerical spectral method, and Monte Carlo simulation based

on a hole-type covariance model (example 2)
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Figure 3.13. Centerline profile of the predicted velocity standard deviations using the

closed-form formulas, numerical spectral method, and Monte Carlo simulation based

on a hole-type covariance model (example 3)
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CHAPTER 4

Quantifying Flow Uncertainty in

Stochastic Groundwater Models

4.1 Abstract

Solving the full version of stochastic perturbation equations is generally considered

to be computationally expensive and analytically intractable. This paper presents

approximate, closed-form formulas for predicting velocity variances in the presence of

nonstationarity caused by hydraulic conductivity trends, nonlinearity of unconfined

head distributions, nonstationary transient flows, and deterministic sources and sinks

in modeling areas. These formulas rely on a linearization of stochastic nonstationary

perturbation equations but do not require the common statistical stationary assump-

tions. The formulas are illustrated with a number of two-dimensional flow exam-

ples and compared with a corresponding first-order nonstationary numerical analysis

(based on solving the full version of perturbation equations) and Monte Carlo simu-

lation. The intensive numerical experiments indicate that the closed-form formulas

can reproduce well the corresponding solutions of first-order numerical method under
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presented nonstationary flow situations, except in the proximity of prescribed head

boundaries and well locations. These localized regions are limited in 2 to 3 As from

the boundaries and in 5 to 10 As from the well locations, where A represents the

correlation length of the log hydraulic conductivity.

4.2 Introduction

Over the years a number of stochastic techniques had been proposed for analyzing

the role of spatial heterogeneity in groundwater flow systems [e.g.,[74, 75, 17, 8,

61, 24, 95, 69, 100, 42, 43] ]. The most important approximations introduced in

stochastic groundwater analysis is the assumption of statistical stationarity. The

technical definitions of stationarity are concerned with the behavior of the statistical

properties of a spatially random function when its time and space origin is shifted

[65]. When the concept is justified, stationarity assumptions are advantageous both

methodologically and conceptually. More importantly, they enable us to use a variety

of analytical techniques to solve stochastic flow problems (see, for example, [18, 8, 95,

69]). The stationarity-based stochastic theories have produced a number of insightful

results on field-scale flow and transport and have unified the recent stochastic and

classical deterministic modeling framework (see reviews by [16, 7]).

However, groundwater flows at most sites are statistically nonuniform and, in

some cases, strongly nonuniform in response to one or more of the following factors:

1) nonstationarity (or vertical and/or horizontal trends) in hydraulic conductivity, 2)

internal and external sources/sinks (e.g., pumping and injection wells), 3) distributed

recharge, 4) geologic and hydrologic boundaries and the associated nonstationary

stresses imposed, and 5) transient mean flow efl'ects. If stochastic modeling is to

become a routine tool for real-world groundwater investigations [9, 10], it must be able
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to accommodate these nonstationarities and complex sources and sinks in addition to

just ”random” small-scale heterogeneity since they are parts of almost every realistic

application[47, 42, 43, 62,64, 59, 87, 19] .

Many studies had derived improved closed-form formulas for predicting flow un-

certainty in the presence of nonstationarity such as that caused by linear hydraulic

conductivity trends[45, 34], nonlinearity of head in unconfined aquifer flows[15, 17],

prescribed head boundaries [71], global recharge based on the known statistical struc-

ture of recharge distributions[70, 23], and transient flows [83, 95, 69, 92, 52]. These

derived formulas, however, are only applicable in the highly restrictive situations.

Previous work in Ni and Li [2005a,2005b] focused on the quantification of the local-

ized simple closed form formulas for predicting velocity uncertainty in the presence

of complex trending and composite media. Their studies indicated that the formulas

can reproduce well the corresponding first-order numerical method and Monte Carlo

solutions except in the proximity of prescribed head boundaries.

In this study we extend the study of Ni and Li[62, 64] to include more gen-

eral nonstationary flow situations such as complex hydraulic conductivity trends,

nonstationary transient flows, and deterministic sources and sinks in the uncon-

fined aquifers. The approximate closed-form formulas are illustrated with a num-

ber of two—dimensional flows and compared with a corresponding numerical spectral

method[44, 47] and Monte Carlo simulation.

4.3 Problem Formulation

Consider general unsteady flows in heterogeneous multidimensional porous media

with multiple source/sinks and log hydraulic conductivity trends. The random log

conductivity fluctuations can be approximately related to the piezometric head and
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velocity fluctuations by the following first-order, mean-removed flow equations:

 

3271' _ of S 077 21,- ah' 71).],- 5, , ,

W‘ 1oz, +1, 6t (”3 i. as, +( i. + ii)" ”I “I" “'1’

6h’ J-
u'-(x) = —T (— — 7W — J-f’) , (4.2)
J 9 8x,- h J

h’(X) : 0 X 6 PD)

Vh'(x) ~ n(x) = 0 x 6 FN.

for unconfined aquifers. These equations are written in Cartesian coordinates. In

two-dimensional flow x is the position vector for the point ($1,152) in the domain of

interest D. A homogeneous condition is defined on the specified head boundary I‘D

and the specified flux boundary FN. Note that we consider log hydraulic conductivity

f is solely the source of uncertainty applied in the aquifer systems. In equation (4.1),

S = S(x) denotes the storage coefficient and T9 = Tg(x) represents the geometric

mean of aquifer transmissivity. We assign notations Jj(X) = -672/627,- for mean

head gradient in aquifers and uJ-(x) = 6f/ij for the spatial variation of mean log

conductivity. 6, = 8272/611:? shown in equation (4.1) represents the second derivative

of mean hydraulic head. The notation U = (S - aft/(9t — q) /Tg represents the source

and sink terms that combine the effects of transient mean head and deterministic

sources and sinks. In two dimensional problems, q = q(x) represents the vertical

inflow rate.

Equations (4.1) and (4.2) represent the full version of perturbation equations for

general two-dimensional flows. It is important to relate the physical properties to

the terms shown in equation (4.1). In equation (4.1), the aquifer storage term S/Tg

controls the transient processes, u]- term reflects the hydraulic conductivity trend

that contributes to the small-scale variability. U term reflects the contribution of
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sources/sinks and the transient mean flow to the small-scale variability. Three more

terms 2Jj/Iz, riij/Iz, and 63/72 in equation (4.1) are created to reflect the nonlinear

flows in unconfined aquifers to the small-scale variability.

The assumption that products of fluctuations can be neglected can only be justified

when the fluctuation variances are small [8, 17, 95, 47, 69]. Here the perturbation

equations describes the linear, nonstationary transformation from f’ to h’ to 11;.

4.3.1 Approximate Perturbation Equations

Equations (4.1) and (4.2) apply to flows in general heterogeneous confined and un-

confined aquifers. To obtain explicit results, one must in general evaluate these equa-

tions numerically. Most prior research focused on limited special cases for which

(4.1) through (4.2) can be reduced to simple equations that allow deriving closed

form formulas analytically [48, 17, 70, 23, 45, 83, 95, 69, 92, 52].

In this paper, we evaluate (4.1) and (4.2) approximately under general flow con-

ditions. Our approximate solutions are based on the following observations:

1. Although the full versions of perturbation equations contain many terms, their

relative importance on the final predicted solutions of variances is quite different.

2. The evaluation of equations (4.1) and (4.2) for general, multi-dimensional flows

is difficult. The consideration of the secondary terms in equations (4.1) and

(4.2) makes the derivation analytically intractable.

3. All the effects of transient flows, hydraulic conductivity trend, source/sink

terms, and unconfined flows influence the variance dynamics through these sec-

ondary terms and the mean head gradient J(x, t). (see (4.2)).
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4. The predominantly J(x, t) terms in equation (4.1) control the nonstationary

spatial variance dynamics.

Given these observations we propose to perform a major “surgery” on (4.1) and

(4.2). In particular, we proposed to drop all secondary terms, retaining only terms

that contribute significantly to the velocity variances. This converts the original

perturbation equations (4.1) and (4.2) to the following simple equations:

62H 8f’

W— Jj‘a'x—J X E D, (4.3)

Bh'

u'-(x, t) = -—T (— —- J-f’) . 4.4)
J 9 0233' J (

Note that the mean head gradient J,(x, t) in equations (4.3) and (4.4) are obtained

from transient mean flow solutions.

4.3.2 Spectral Solutions (Approximate Spectral Method)

Spectral methods offer a particularly convenient way to derive velocity statistics from

linearized fluctuation equations. Taking advantage of scale disparity between the

mean and fluctuation processes and invoking locally the spectral representation, one

can solve the approximate perturbation equations (4.3) and (4.4) and obtain the

following expression for predicting nonstationary velocity variances in heterogeneous

unconfined aquifers [17, 62]:

 

0,2,..(x, t) = C - 0J2,(x)Tg2(x)J2(x, t), (4.5)

HIT/.2?(1—“;°:1)2s.,odw.dw. to

Note Sff is the dimensionless spectral density function of f’ (x), Sff _-= Sff /a}, a}
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is the log conductivity variance, w,- is the wave number, 002 = w? +02%, 0,2,1 and 032 are

respectively the longitudinal and transverse velocity variances. The detailed deriva-

tion process of (4.5) is very similar to that used in Gelhar (1993) for homogeneous

media and is not repeated here.

Equation (4.5) can be easily integrated in the polar coordinate system. The result

is the following explicit expressions:

03(x) = 0.3750§(x)T§(x)J2(x), (4.7)

03(x) = 0.1250}(x)Tg2(x)J2(x), (4.8)

where 0?, denote the longitudinal velocity variance and 03, represents the transverse

velocity variance. These expressions are independent of the specific form of the log

conductivity spectrum or covariance function for the isotropic case.

In the following section, we use a set of examples to show how these approximate

closed form expressions can be used to quantify robustly groundwater velocity un-

certainty with surprising accuracy, even in the presence of strongly nonstationary in

steady/transient confined and unconfined aquifers.

4.4 Illustrative Examples and Numerical Consid-

eration

In our test examples we consider two-dimensional flows in bounded and rectangular

areas. The general flow direction for each example is driven by two constant head

boundary conditions at the east and west boundaries. The domain sizes for examples

are either 80A by 80A or 160A by 160A depending on the complexity of flow patterns.

We apply same statistical structure in all test examples to describe the small-scale
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variability in the aquifers. Here the small-scale fluctuation is modeled stochastically

by the exponential spectral density function with a Ink variance of 1.0 and a isotropic

correlation scale A of 1.0 m. We divided the test examples into steady and unsteady

two major groups (see Table 4.1). In steady state flows, we model a set of examples

for both confined and unconfined aquifers. These conditions include uniform flows,

trending conductivity fields, sources and sinks, and a more complex flow system

involving a strong conductivity trend and sources/sinks in the modleing area. In

unsteady flow examples, we apply a periodic head fluctuation at west boundaries

to create the transient situation in both confined and unconfined aquifers. We only

apply the Monte Carlo simulation in examples 4 and 6, which are considered to be

the relatively complex situations in steady state flow and transient state flows. In

order to provide appropriate grid space in Monte Carlo simulation to resolve small-

scale variability, the grid numbers in Monte Carlo are adjusted to A/3. The number

of realizations are 10000 in example 4 and 5000 in example 6. Table 4.1 details the

input parameters used for these comparison examples.

4.5 Results and Discussion

4.5.1 Steady state situation

Our aim in the first example is to quantify the efl'ect of an unconfined aquifer con-

tributing to the estimation errors when we apply approximate spectral method to

unconfined steady, and uniform two-dimensional flow problems. Figures 4.1 shows

the comparison results of velocity standard deviations along the domain centerline

for an unconfined aquifer. The results show that the approximate solutions for veloc-

ity STDs inside the domain area have slightly overestimation in longitudinal velocity

STDs and underestimation in transverse velocity STDs. Note that the nonlinear be-
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Table 4.1. The definitions of physical and first-order numerical parameters for six

examples

 

 

 

Example description Size Grids

(In)

Steady State

Example 1 lnk=2 (see Figure 4.1) 80 81

Example 2 Conductivity trend (see Figure 4.2) 80 81

Example 3 Source and sinks 80 81

Global recharge: (see Figure 4.3)

R=0, 0.05 and 0.1 m/day

Local recharge: (see Figure 4.4)

R=0.1, 1,and 2 m/day

Pumping wells (see Figure 4.5)

Q=-200 and -1000 m3/day

Example 4 Complex flow (see Figure 4.6): 160 81

Global recharge R=0.001 m/day

Local recharge R=1 m/day

Lake stage=56m, leakance=10 day—l

Pumping wells Q=-2000 m3/day

Transient State

Example 5 lnk=2 (see Figure 4.7): 160 81

Specific yield:Sy=0.01 and 0.1

Example 6 gomplex flow (see Figure 4.9): 160 81

=0.1
0

Global recharge R=0.001 m/day

Lake stage=56m, leakance=2 day"l

Pumping wells Q=-2000 m3/day
 

 

havior of unconfined aquifer(J is not a constant) makes the STDs gradually increase

with the increase of 331 direction. When we apply the approximate spectral method

to an unconfined aquifer, the head gradients J used for calculating approximate so-

lutions are obtained from the head gradients of unconfined aquifers. As the results

shown here, the contributions of the extra terms produced by unconfined situation

in equation (4.1) are not significant. The unconfined effect has been predominately

taken into account by mean head gradients J. We found that there are inaccurate ar-

eas near two constant head boundaries. The ranges of the boundary efl'ect are about

3 As from boundaries.
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In the second example we consider a complex trending situation in steady flow

systems. Figure 4.2(a) shows the spatial distribution of large scale mean hydraulic

conductivity and the corresponding mean head distributions for confined and uncon-

fined aquifers. On top of the trend, the structure of small scale fluctuation is the same

as the first example. Our objective in this example is to analyze the trending effects

introduced in the confined and unconfined aquifers. Figure 4.2(b) and (c) show the

profiles of velocity STDs modeled by approximate spectral method and nonstationary

spectral method. In addition to the boundary effects, the results are acceptable. We

found that the approximate solutions in the high conductivity area produced more

error(in the central area of modeling domain, see Figure 4.2). This is because approx-

imate solutions solely rely on the head gradient to predict the propagation of the flow

uncertainty, in high conductivity area, the head gradient becomes very small and the

trending effect becomes relatively strong.

Our third example focuses on quantifying the effects of the sources and sinks

in steady confined and unconfined aquifers. Although there are many types of

sources/sinks existing in groundwater flow systems, we are especially interested in

those that directly contribute to the source/sink terms in equation (4.1). Here we

consider individual aquifer system including global recharge, local recharge, or pump-

ing wells. Other mixing type sources/sinks such as lakes or rivers will be discussed

in other examples. The locations of local recharge area and the well location are

defined in the central area (see Figure 4.4 and 4.5). The comparisons of approxi-

mate spectral method and nonstationary spectral method for each model are based

on applying different recharge rates or different pumping rates in the modeling area.

Figure 4.3 shows the results for different global recharge rates applied in the entire

modeling area; while Figure 4.4 and 4.5 show the examples involving local recharge

and pumping wells. For the recharge examples, the approximate spectral method and

nonstationary spectral method show identical results even though the recharge rate

65



is increased to an extremely high value(36.5m/year). Figure 4.5 shows the selected

results that the recharge situations are replaced by pumping wells located at the do-

main center point. Although there are significant differences between approximate

and numerical solutions near well locations, we found that the differences are lim-

ited in a range about 5A from the well location even though the pumping rate was

increased to an extremely high value 2000m3/day (in our example, 2100 m3/day pro-

duces dry cells in unconfined aquifer). Away from the well location the approximate

spectral method can accurately predict the velocity uncertainties.

In example 4, we considered a complex conductivity trend, a local recharge with

strong recharge rate at 1 m/day, a lake with extremely high leakance of 10 day—1, and

a pumping well at strong pumping rate (2000m3/day) in the modeling area. Figure

4.6(a) shows the conceptual model and the corresponding mean head distributions

for confined and unconfined aquifers. Although the driving head difference in this

example is fixed, the trend and strong source/sinks introduced in the modeling area

yield nonuniform flow patterns. In addition to the approximate spectral method

and the first-order numerical method, we apply the Monte Carlo simulation in this

example for comparison purpose. Our Monte Carlo simulation includes two major

processes: a random field generator based on Fast Fourier Transform algorithm [12, 5]

and a efficient flow equation solver using Algebraic Multigrid method (AMG) [73, 77,

13, 58, 76, 31, 78] .

Figure 4.6(b) and (c) show the profiles of predicted velocity STDs using approxi-

mate spectral method, nonstationary spectral method, and Monte Carlo simulations.

Except for the areas near boundaries and well locations, the results indicate that

the solutions of approximate spectral method match well with the solutions of cor-

responding first-order numerical method and Monte Carlo simulation. Although the

approximate spectral method creates solutions based on ignoring secondary terms
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produced by trend, nonlinearity of unconfined flows, and sources/sinks, the results

indicate that these terms are relatively insignificant comparing to the mean head gra-

dient J. Except for the special locations such as well and boundaries the mean head

gradient are capable to accurately predict the velocity uncertainty.

4.5.2 Transient state situation

In example 5 and example 6 we simply apply a periodic head boundary condition

on west boundaries to produce a transient state flow pattern. The total modeling

time for each example is 4 days. To satisfy the stability requirement for numerical

nonstationary spectral method, we use a constant time step 0.1 day to model the

transient processes in confined and unconfined aquifers.

Figure 4.7 shows the conceptual model for example 5. In general, the storage coef-

ficients for confined and unconfined aquifers have few orders of magnitudes differences.

In this example these storage coefficients are selected to cover general properties of

unconfined aquifers (see Table 4.1 for detail). Figure 4.8 shows the transient processes

of predicted velocity STDs at two monitoring points. The results show that the ap-

proximate spectral method can predict well the corresponding first-order numerical

solutions. Note that the nonstationary spectral method solves the full version of

perturbation equation (4.1), not the approximate perturbation equation (4.3). This

surprising result emerges the issue of computational efficiency in stochastic modeling.

Based on our modeling experience in this example, the approximate spectral method

needs few seconds to calculate the results by our Intel Xeon 3.6GHz workstation;

however, using nonstationary spectral method takes about 1 hour to calculate the

confined solutions and about 1.5 hour to obtain the final unconfined solutions.

Figure 4.9 shows the conceptual model that are used for example 6. In this
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example we include the Monte Carlo simulation to compare the first-order solutions

(approximate spectral method and numerical nonstationary spectral method). Figure

4.10 shows transient processes of predicted velocity STDs at two monitoring points.

The results clearly show that approximate spectral solutions match well with the cor-

responding first order numerical solutions, however, two first-order methods all fail

to capture the Monte Carlo solutions especially near high permeability area (moni-

toring point (80,40)). Figure 4.11 shows the velocity STDs along the profile defined

in Figure 4.9. Although the solutions obtained by approximate spectral method and

nonstationary spectral method show identically, the inconsistent results also exhibit

between first-order methods and the Monte Carlo simulation. If we compare the dif-

ference between example 4 and current example, the difference is only the transient

effect introduced in this example. First-order methods match well in example 4, how-

ever, first-order results in this example are away from Monte Carlo solutions. For

some locations, the Monte Carlo results show totally different patters of predicted

velocity STDs. The great difference may come from the high-order terms that are

truncated by first-order methods. This issue is beyond the scope of this study and

was not discuss here.

4.6 Conclusion

This study was designed to extend our ability to predict the uncertainty of ground-

water flows in realistic complexity and sizes. We have performed a series of example

studies that covered the most possible situations generally exhibited in groundwater

flow problems. The approximate spectral method, which was derived locally based

on the approximate perturbation equation, can reproduce well the solutions of first-

order numerical method except for the locally strong stress areas such as hydrological

boundaries and well locations. The inaccurate regions were limited to few correlation
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Figure 4.1. The conceptual model and solutions for example 1: (a) the conceptual

model and the corresponding mean head distribution in an unconfined aquifer, (b)

the longitudinal velocity (al.,) standard deviation along domain centerline (x2 2 40m),

and (c) the transverse velocity (0”) standard deviation along domain centerline
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Figure 4.2. The conceptual model and solutions for example 2: (a) the spatial distri-

bution of the geometric mean conductivity and the corresponding mean head distri-

bution in an unconfined aquifer, (b) the longitudinal velocity (on) standard deviation

along domain centerline, and (c) the transverse velocity (0,) standard deviation along

domain centerline

70



 

 

   

    

            
 

80

- (a)[ ]

: glogéggechdarge rate

l'"i” 1
IE] I?! or ’51, g, 53 SI NE

A
“Q

’ o

E 40 ALA”... -._.l,._.-[_ _ _ _._.2.[.‘l.’

XN 1%

g

.5

E

20-

I

" Noflfiv

ol—a—h-i—l
HLl—F—l]

l . . j

0 2° 4(0) 60 80

X m

1.0_ (D)
1

08[
——ASM

.
.........

.. NSM

, R= 0.05 m/day
  

  

  

 

 

  
 

E (c) —— ASM

:’ ........... NSM

R= 0.05 m/day  
 

Figure 4.3. The conceptual model and solutions for example 3(global recharge):

(a) the conceptual model and the selected mean head distribution in an unconfined

aquifer, (b) the longitudinal velocity (on) standard deviation along domain centerline

(3:2 = 40m), and (c) the transverse velocity (0,) standard deviation along domain

centerline
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Figure 4.4. The conceptual model and solutions for example 3 (local recharge): (a) the

conceptual model and the selected mean head distribution in an unconfined aquifer,

(b) the longitudinal velocity (on) standard deviation along domain centerline (2:2 =

40m), and (c) the transverse velocity (0”) standard deviation along domain centerline
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Figure 4.5. The conceptual model and solutions for example 3 (well): (a) the concep-

tual model and the selected mean head distribution in an unconfined aquifer, (b) the

longitudinal velocity (on) standard deviation along domain centerline ($2 2 40m),

and (c) the transverse velocity (0,) standard deviation along domain centerline
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Figure 4.6. The conceptual model and solutions for example 4: (a) the conceptual

model and the mean head distribution, (b) the longitudinal velocity (on) standard

deviation along profile A—A’, and (c) the transverse velocity (0”) standard deviation

along profile A-A’
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Figure 4.7. The conceptual model for example 5. The transient flow is driven by the

west boundary where the head values are changed with time based on a sinusoidal

function.
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Figure 4.8. The modeling results for example 5: (a) the mean head time series at two

monitoring wells, (b) the time series of longitudinal velocity (on) standard deviation

at two monitoring wells, and (c) the time series of transverse velocity (0”) standard

deviation at well locations
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situation, a conductivity trend and multiple source/sinks are applied to the modeling

area.
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Figure 4.10. The simulation results for example 6: (a) the mean head time series

at two monitoring wells, (b) the time series of longitudinal velocity (on) standard

deviation at two monitoring wells, and (c) the time series of transverse velocity (0,)

standard deviation at well locations
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Figure 4.11. The solutions at t = 2.0 (day) for example 6: (a) the mean head

distribution along profile A-A’, (b) the longitudinal velocity (on) standard deviation

along profile A-A’, and (c) the transverse velocity (0”) standard deviation along profile

A-A’
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scales of log hydraulic conductivity.

The results in this study also suggested that the secondary terms in confined

and unconfined aquifers had relatively weak effects to the final predictions of flow

uncertainty. In most flow situations, mean head gradients J are capable to capture

the major small-scale dynamics. The capability of closed form formulas turns to

computational advantages especially for the examples with realistic nonstationarity

and sizes. It is appropriate here to mention the computation time for the presented

numerical experiments. When we model the transient state and unconfined aquifer

in example 5, the time scale for the approximate spectral method is in the order

of minutes (totally 40 time steps), however, the time scale for the nonstationary

spectral method was extent to the order of hours. The Monte Carlo simulation

was the most expensive one that required few days to obtain 1000 replicates. By

adjusting the balance between the accuracy and computational cost, the approximate

spectral method represents a step closer to our ultimate goal to include a systematic

uncertainty analysis as a part of routine tools in stochastic groundwater modeling.

We found that two first-order methods, the approximate spectral method and

nonstationary spectral method, all matched well with the solutions of Monte Carlo

simulation in steady state flows but failed to capture the solutions of Monte Carlo

simulation in transient state flows. The essential differences between first-order and

Monte Carlo solutions may require further study to identify the key effects for these

differences. This issue is out of the scope of this study and was not discussed here.

Due to the complex theories and the highly computational cost, stochastic models

are rarely considered in solving realistic flow problems. Most groundwater applica-

tions are still using the deterministic model such as MODFLOW. The results in this

study provide an opportunity to add one advance feature, the prediction of flow un-

certainty, to current deterministic models. Although these simplified descriptions do
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not capture the true nature of hydrogeologic variability, they may provide reasonable

approximations for particular applications.

Our current study focuses on developing an adaptive processes to interactively cor-

rect the highly nonstationary areas, which are usually not captured by using the ap-

proximate spectral method. Taking the advantage of the first-order numerical method

that can capture the highly nonstationary dynamics and the advantage of closed form

formulas that can efficiently predict moderate nonstationarity, the developed method

should has the capability to handle the problems with realistic nonstationarity and

sizes.
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CHAPTER 5

Prediction of Velocity Uncertainty

in Complex, Nonstationary, and

Heterogeneous Porous Media - A

Hybrid Spectral Method

5.1 Abstract

In our three previous papers, we developed and tested the approximate closed-form

formulas to predict the velocity uncertainty under a number of nonstationary flow

situations. The intensive numerical experiments revealed that the closed-form formu-

las can reproduce well the first-order numerical solutions except in the proximity of

prescribed head boundaries and well locations. Based on these findings, this paper

presents an efficient hybrid nonstationary spectral method for predicting uncertainties

(e.g., velocity variances caused by unmodeled small-scale conductivity variability) in

complex groundwater flow systems. This method involves two major computational
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steps after the deterministic mean flow equation is solved. The first step is to apply

a set of closed form formulas (named approximate spectral method in this study) to

predict the nonstationary variances for the entire modeling area. Then the first-order

numerical spectral method is employed in the second step to correct the ”regional

solution” in localized areas where the variance distribution is consider to be highly

nonstationary. We illustrate the hybrid method with two synthetic examples. In

each example the solutions of hybrid method were compared with the corresponding

solutions of approximate spectra method, nonstationary spectral method and Monte

Carlo simulation. The results reveal that the hybrid spectral method can efficiently

handle large modeling areas and can accurately predict the detail dynamics of high

nonstationarity

5.2 Introduction

It is now generally agreed that natural subsurface environment is very heterogeneous.

Soil heterogeneities, in particular, cause dramatic variation in hydraulic conductivity

from point to point within a groundwater formation. Such variation sometimes ap-

pear to be random, although many sites also exhibit trends which are related to the

sedimentation processes that create stratified deposits of contrasting soils, alluvial

fans, deltas, and glacial outwash plains. At first glance it may seem that small-scale

variation in hydrogeologic properties should have relatively little effect on the larger-

scale flows. In reality, small-scale fluctuations in hydraulic conductivity can have

significant large-scale consequences, primarily because of the nonlinear relationship

which exists between conductivity and groundwater flows [16, 7].

Over the years a number of stochastic techniques have been proposed for ana-

lyzing the role of spatial heterogeneity in groundwater flow systems [e.g.[74, 75, 17,
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8, 61, 24, 95, 69, 100, 42, 43] ]. Generally, they assume that heterogeneous physical

parameters such as hydraulic conductivity are random spatial functions with known

statistical properties. It follows that environmental variables which depend on these

parameters are also random. For example, uncertainty in hydraulic conductivity in-

duces uncertainty in hydraulic head and pore velocities. The flow equations provide

a physical basis for relating the moments of random dependent variables (e.g. mean

head and velocity, and their associated variances and covariances) to the hydrogeo—

logical parameters which are the original source of uncertainty. In practice, however,

it is very difficult to derive these moments without making approximations of one

kind or another. The art of stochastic groundwater modeling lies in knowing which

approximations are most appropriate for a given application.

One of the most important approximations introduced in stochastic groundwater

analysis is the assumption of statistical stationarity. When the concept is justified,

stationarity assumptions are advantageous both methodologically and conceptually.

They enable us to use a variety of analytical techniques to solve stochastic flow and

transport problems [see, for example, [18, 8, 95, 69]]. However, groundwater flow at

most sites are statistically nonuniform and, in some cases, strongly nonuniform in re-

sponse to one or more of the following factors: 1) nonstationarity (or vertical and/or

horizontal trends) in hydraulic conductivity, 2) internal and external sources/sinks

(e.g. pumping and injection wells), 3) distributed recharge, 4) geologic and hydro—

logic boundaries and the associated nonstationary stresses imposed, 5) systematically-

varying aquifer thickness, and 6) transient mean flow effects. If stochastic modeling

is to become a viable tool for real-world groundwater investigations, it must be able

to accommodate these nonstationarities and complex sources and sinks in addition

to just ”random” small-scale heterogeneity since they are parts of most realistic ap-

plications.
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Numerical analysis can be used to analyze general nonstationary flow problems

under complex field conditions. However, those numerical methods are computation-

ally demanding when applied to flow problems of realistic size [20, 21, 17, 54, 47,

42, 43, 62], mostly because they all require very fine spatial discretizations in order

to resolve (either directly or indirectly) the underlying small-scale heterogeneous dy-

namics. The numerical difficulty in calculating the moment, Green’s function, and

sensitivity equations was pointed out in [47, 42, 43]. The implementation difficulty in

the moment equation methods were stressed by [55, 55, 20, 21, 47, 42, 43]. In order to

expect accurate solutions by any of these techniques, the discretization required would

have to be significantly smaller than the typical scales of variation of the hydraulic

parameter (often order(s) of magnitude smaller than that used in a corresponding

deterministic model). As a result, computational effort involved often becomes pro-

hibitively expensive, and thus applications of these methods to field situations have

been very limited [17, 9, 47, 42, 43, 59].

Due to the restrictive applications of analytical methods and the high cost of nu-

merical methods, there must be a way to take the major advantages of analytical and

numerical methods. Previous studies in Ni and Li[62, 64, 63] had focused on iden-

tifying the accuracy of approximate closed form formulas in complex nonstationary

flows. Their systematic analysis suggests that the approximate closed form formulas

are actually very efficient and can capture most nonstationary dynamics except for

the proximity boundary and strong sources/sinks locations.

Motivated by the critical assessments in Ni and Li[62, 64, 63], we present in

this paper a hybrid spectral method for predicting velocity uncertainty in highly

nonstationary groundwater flow systems. This method, based on solving stochastic

perturbation equations, involves two major computational steps after solving the de-

terministic mean flow equation. We first apply a set of closed form formulas to predict
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the nonstationary variances for the entire modeling area. We then employ first-order

numerical spectral method to correct the ”regional solution” in localized areas where

the variance distribution is highly nonstationary (e.g., around inner boundaries and

strong sources/sinks). The boundary conditions for the local numerical solutions are

based on the closed-form formulas. We illustrate the hybrid method with two syn-

thetic two-dimensional flow problems and compare that with corresponding numerical

spectral method[44, 47] and Monte Carlo simulation.

5.3 Problem Formulation

We consider a unsteady flow in a heterogeneous multidimensional porous medium with

multiple source/sinks and systematic trends in the log hydraulic conductivity. The

random log conductivity fluctuation is approximately related to the piezometric head

and velocity fluctuations by the following first-order, mean-removed flow equations:

5 3h’ 62H ah' 3f' ,

, ah'
UJ-(X) = —Tg (a—x' — Jbf) (5.2)

h'(x) = O x 6 F01

Vh’(x) - n(x) = 0 x 6 FN,

for confined aquifers, and

  
S 012' am 2.],- 6h 11,1, 5,- af’

EatHang-ax,” h an, ( h E)”- J’a_x,+Uf’ “1963)

, Bh’ J , ,
“J(X) = ‘Tg (5;; " 73h Jaf) , (5 4)
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h'(x) = 0 x 6 PD,

Vh’(x) - n(x) = 0 x 6 FN.

for unconfined aquifers. These equations are written in Cartesian coordinates. In two-

dimensional flow x is the position vector for the point (2:1, 3:2) in the domain of interest

D. A homogeneous condition is defined on the specified head boundary I‘D and the

specified flux boundary FN. Note that we consider the log hydraulic conductivity f

is solely the source of uncertainty applied in the 'aquifer systems. In equation (5.1)

and (5.3), S = S(x) denotes the storage coefficient and T9 = Tg(x) represents the

geometric mean of aquifer transmissivity. We assign notations Jj(X) = —072/6:c,~ for

mean head gradient in either confined or unconfined aquifers and pJ-(x) = 0f/0:12,- for

the spatial variation of mean log conductivity. 6,- : 8271/63:; shown in equation (5.3)

is the second derivative of mean hydraulic head. The notation U = (S - ail/at — q) /Tg

includes the combination effects of time-varying mean head and deterministic sources

and sinks. In two dimensional problems, q = q(x) represents the vertical inflow rate.

Note that the head gradient JJ- in equation (5.1) to (5.4) are different in values

because of the nonlinearity of head distribution in unconfined aquifer. The assump—

tion that products of fluctuations can be neglected can only be justified when the

fluctuation variances are small [8, 17, 95, 47, 69]. Here the perturbation equations

describes the linear, nonstationary transformation from f’ to h’ to 211.

5.3.1 The Nonstationary Spectral Method (NSM)

Spectral methods offer a particularly convenient way to derive head and velocity

statistics from linearized fluctuation equations such as (5.1)-(5.4). The traditional

stationarity-based spectral approach [2, 18, 17] is applicable only when the indepen-

dent variable fluctuation (f’) as well as dependent variable fluctuations (h’, u’) are
1
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all wide-sense stationary. Papoulis [65] shows that the output (e.g., h’, 21;) of linear

transformations such as (5.1)-(5.4) are stationary only if the input (e.g. f’) is sta-

tionary and the transformations are spatially invariant. In the problem of interest

here, spatial invariance implies that the fluctuation equations (5.1)-(5.4) should have

constant coefficients with the boundaries sufficiently distance to have no effect on

head and velocity fluctuations in the region of interest. Such a spatial invariance

requirement is clearly not met because of real—world complexities, the heterogeneous

trending media, boundary effects, and sources/sinks introduced into aquifer systems.

The NSM is a perturbation approach and does not require dependent fluctua-

tions to be stationary. This method differs from other classical perturbation meth-

ods primarily in the form of the spectral representation of the output variable fluc-

tuation. More precisely, the dependent fluctuations are represented as a stochas-

tic integral expanded in terms of a set of unknown complex-valued ”transfer func-

tions” 21th (x, k, t). The fluctuations have the following Fourier-Stieltjes representation

[66, 44, 17, 45, 47, 62, 64, 63]:

+00

f’(X) = /_ exp<zijj)dzf(k), (5.5)

+00

”(39 t) = #th09191?) €XP(ij$j)de(k), (5.6)

and

+00

“3 (X, t) : ijf(xt k: t) (”(1)0195“)de (R), (5'7)

where z = (—1)1/2, k, is component j of the wave number k, and de(k) is the random

Fourier increment of f’ (x), evaluated at k. The Fourier representation can be viewed

as the continuous version of a Fourier series expansion of f(x) The random Fourier

increment at a particular wave number is analogous to the random amplitude of

one of the terms in the Fourier integral. The symbols 112;,f, I/Juj f are unknown head

and velocity transfer functions introduced to account for possible nonstationary flow
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transformations. These transfer functions must be selected such that h’, u; satisfy the

governing perturbation equations. Substituting (5.5)-(5.7) into (5.1)-(5.4) we obtain

the following transfer function equations:

 

  

 

S 3W] _ 321/01; _ . awhf

T, at ‘ arm, + (22"? + “1) 6x,-

+(zkjpj — k2)2,l)hf — sz-Jj + U, (5.8)

8

wujf : T9 (‘5' Ti? zkj’v/th) (5-9)

for a confined aquifer, and

S 620),; _ 821/)hf . 2Jj 6_z_/1_,,f

T9 at — 83,-8x]- + (22k) +HJ— —hJ—_—-)8x,-

+(ijflj— ijz—IL'L— k2 — JTM— fi__j—)'l,[)hf— ijJj + U, (5.10)

_ 3th
qu-f _ 719.7(‘1 axj + (£3;h _2kj)whf) (5.11)

for an unconfined aquifer. Equations (5.8)-(5.11) are deterministic and complex-

valued differential equations. Unlike the classical stationary spectral method, which

requires transfer functions to be spatially invariant, the transfer functions introduced

here are spatially variant. The transfer functions whf, $11,} obtained from (5.8)-(5.11)

can then be used to derive the head and velocity variances in the same way as the

classical stationary spectral method (e.g, [56, 17]):

+oo

0,2, (X, t) : whfh‘: k: ”wa (x, k, t)Sff(k)dka (5'12)

+00

0121,- (X, t) : wuif(xa k: t)¢;,f(xa k: t)Sff (k)dka (513)

where Sff (k) is the spectral density function of the log hydraulic conductivity [66, 17].

In this study we are especially interested in the velocity variances because the head

variance is usually very small and, only some special spectral density functions that

exhibit closed form formula for head variance.
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5.3.2 Stochastic Modeling of Moderately Nonstation-

ary Groundwater Systems - Approximate Spectral

Method(ASM)

Equations (5.1) to (5.4) represent the full version of perturbation equations. In order

to introduce further approximations, one needs to clarify the hydrogeologic properties

that are corresponding to the terms shown in equations (5.1) - (5.4) . In equation

(5.1) and (5.3), )1,- reflects the trend effect that contributes to the small-scale vari-

ability. u,- /B term reflects the effect caused by varied aquifer thickness in confined

aquifers. U term reflects the contribution of sources/sinks and the transient mean

flow to the small-scale variability. For the unconfined aquifer system, three more

terms 2Jj /5,11ij /h, and 6,]72 in equation (5.3) are added to reflect the contribution

of unconfined aquifer flow to the small-scale variability. Mathematically, we can treat

these terms as the extra stresses that are added on to a very simple flow situation.

If we consider a quasi-steady flow situation and follow the observations in Ni and

Li [2005c], we can aggressively ignore the secondary terms that are not significant

in a moderately nonstationary flow situations. Giving these requirements, equations

(5.1) - (5.4) can be reduced to the following simple formation:

82h’ Bf'

W— Jib}; X E D, (5.14)

Bh’1...): _T (_ .. HI),
J 9 8133‘ J ( )

Taking advantage of scale disparity between the mean and fluctuation processes

and invoking the spectral representation, one can solve (5.14) and (5.15) to obtain

the following expression for predicting velocity variances in a heterogeneous porous
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media [17, 62, 64, 63]:

 aux) = oi<x)T:<x>J2<x) f:f: (1 — 2‘31)? 3H(w)dwldw2 (5.16)

Note Sff is the dimensionless spectral density function of f’(x), Sff = Sff/afi, a} is

2
the log conductivity variance, w,- is the wave number, 0) = 02? + 01%, 031 and 03,2 are

respectively the longitudinal and transverse velocity variances. The detailed deriva-

tion process of (5.16) can be found in Gelhar (1993) or Zhang (2002) for statistically

homogeneous media and is not repeated here.

Equation (5.16) can be easily integrated in the polar coordinate system. The

result is the following explicit expressions:

03(x) = 0.3750§(x)Tg2(x)J2(x), (5.17)

03(x) = 0.1250§(x)Tg2(x)J2(x), (5.18)

where 0?, denote the longitudinal velocity variance and 0?, represents the transverse

velocity variance. These expressions are independent of the specific form of the log

conductivity spectrum or covariance function for the isotropic case.

5.3.3 Stochastic Modeling of Strongly Nonstation-

ary Groundwater Systems - Hybrid Spectral

Method(HSM)

Previous studies in Ni and Li [62, 64, 63] reveal that the closed form formulas (5.17)

and (5.18) can capture the major small-scale dynamic except for the locally high stress

areas such as hydrological boundaries or wells. Given these observations, we propose

in this study a hybrid spectral method (HSM) for stochastic groundwater modeling.

The improved “hybrid” spectral modeling will be proceeded in two steps: First, the
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approximate spectral method (ASM) is applied to obtain a “regional” screening level

uncertainty analysis. Second, the nonstationary spectral method (NSM) is applied to

locally refine or correct the solution where the variance dynamics are rapidly vary-

ing. The boundary conditions for the local nonstationary spectral solutions (transfer

function 10),, in equations (5.8)-(5.11) ) will be based on the “regional” closed form

solution. The regional solution and the numerical corrections are both expected to be

highly efficient and the computational process will be virtually instantaneous since

the former is in closed form and the latter are applied only in very small areas. Figure

5.1 illustrates the concept of hybrid spectral method.

To complete the evaluation of numerical solutions, the boundaries for each local

model must be defined appropriately. Based on the concept of the hybrid spectral

method, within an appropriate region the known transfer functions at the boundaries

of local NSM models have the following formation:

‘3ijj(x)
WAX, 1‘, t)|NSM = k2 (5.19)

5.4 Illustrative Examples and Numerical Consid-

eration

In our test examples we consider steady and two-dimensional flows in bounded and

rectangular areas. The general flow direction for each case is driven by two constant

head boundary conditions at the east and west boundaries. The domain sizes for

examples are either 80A by 80A or 160A by 160).. Figure 5.2 shows the conceptual

model that are used to illustrate the concept of hybrid spectral method. The con-

ceptual model for application case is shown in figure 5.3. We apply same statistical
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structure in two test cases to describe the small-scale variability in the aquifers. Here

the small-scale fluctuation is modeled stochastically by the exponential spectral den-

sity function with a lnk variance of 1.0 and a isotrOpic correlation scale A of 1.0 m.

For each case we calculate the solutions for four different methods including approx-

imate spectral method, nonstationary spectral method, hybrid spectral method and

the Monte Carlo simulation ( based on 10000 replicates). The grid space used for the

first order methods are 1/\ in basic example and 2A in the application example. In or-

der to provide appropriate grid space in Monte Carlo simulation to resolve small-scale

variability, the grid spaces in Monte Carlo simulation are adjusted to x\/3.

5.5 Results and Discussion

The basic case was used to illustrate the concept of the hybrid spectral method. In

this case we consider a simple flow situation: a constant head driven flow from west

boundary to east boundary and a well located at the central point of the modeling

areas(see Figure 5.2). Around the well location, we select a correction area 20 by 20

A where the nonstationarity is considered to be very high and can not be accurately

evaluated by the approximate spectral method (based on the results in Ni and Li[62,

64, 63], the selected area can be reduce to 10 by 10 A). The numerical grid for the

big modeling area and the small correction areas are the same. They are fairly on

the basis of same mean flow solutions. For practical applications, the local correction

areas can have finer grids to resolve local solutions in a more detail manner.

Figure 5.4 shows the velocity variances that are plotted along the domain center

line. The results clearly show that the nonstationary spectral method, the hybrid

spectral method and the Monte Carlo simulation obtain identical solutions for whole

modleing area. The approximate spectral method overestimate the values of longi-
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tudinal velocity STD and underestimate the transverse velocity STD near the well

location, however, the inaccuracy for transverse velocity STD is very small. As we

can see in Figure 5.4, the hybrid method does improve the solution around the well

location and only require the numerical calculation in a small area. In this example,

the grid requirement in numerical calculation reduces from 81x81 (the nonstationary

spectral method) to 21x21 (the hybrid spectral method).

We extent the modeling area to 160A by 160A in the application example and

increased the flow complexity by adding a systematical trend and sources and sinks.

Although the background head gradient from the west to the east boundaries is fixed,

the introduced conductivity trend and sources and sinks significantly change the flow

pattern (see Figure 5.3). In this example we select two correction areas that are

supposed to be highly nonstationary. The correction area for the well locations is

a 50). by 40A area. We defined a 40A by 40A NSM correction area for the lake,

where a constant head was specified (see Figure 5.3). After the correction areas were

defined for hybrid spectral method, we ran four different models individually on our

Intel Xeon 3.6GHz Workstation. The approximate time scales to obtain the solutions

are second, minute, hour, and day for approximate spectral method, hybrid spectral

method, nonstationary spectral method, and Monte Carlo simulation respectively.

Figures 5.5 through 5.8 show the contour of velocity STD for four different meth-

ods in the correction areas. Figure 5.9 and 5.10 show the profiles along 2:2:80 m

(Figure 5.9) and $22110 m (Figure 5.10). The results reveal that the approximate

spectral method has capture the major pattern of the velocity STDs by comparing to

the full version of first-order numerical method, the nonstationary spectral method

(second columns). However, when the areas close to wells and lake locations, the

closed form solutions become inaccurate. With the local correction procedures, the

hybrid spectral method significantly improves the solutions around wells and lake
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Figure 5.1. The conceptual diagram of the Hybrid Spectral Method (HSM).

locations (third columns). There are slightly inaccurate for hybrid spectral method

near the boundaries of correction areas. We found the inaccuracy is caused by the

flow directions and the direction we account for the velocity variances. However, the

inaccuracy is very limited.

5.6 Conclusion

We have proposed a conceptually improved approach called hybrid spectral method

that combines analytical spectral method and numerical spectral method in the solv-

ing procedures to predict flow uncertainties in the complex, heterogeneous porous

media. Following the major observations in Ni and Li [62, 64, 63], we created two
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Figure 5.2. Spatial distribution of the mean head distributions for pumping well

example
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Figure 5.4. Centerline profiles of predicted velocity standard deviations using the ap-

proximate spectral method, numerical nonstationary spectral method, hybrid spectral

method, and Monte Carlo simulation
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Figure 5.5. Spatial distribution of the predicted longitudinal velocity variances using

the approximate spectral method, nonstationary spectral method, hybrid spectral

method, and Monte Carlo simulation (the correction area near well locations)
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Figure 5.8. Spatial distribution of the predicted longitudinal velocity variances using

the approximate spectral method, nonstationary spectral method, hybrid spectral

method, and Monte Carlo simulation (the correction area near the lake location)
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examples to illustrate the basic concept of the hybrid spectral method and its appli-

cation in a complex flow system. The illustrative examples reveal that the proposed

method can efficiently handle large modeling areas and can accurately predict the

detail dynamics of high nonstationarity.

Stochastic theories had been developed for years but still have gaps between the-

ories and practical applications. These stochastic theories are either too restrictive

to be applied in the problems of realistic complexity or too expensive to be applied

in the problems of realistic size. The proposed hybrid method conceptually takes

the advantage of analytical and numerical theories. Most importantly, this method

provide an opportunity to include stochastic model to be the routine tools used for

modeling practical groundwater problems.

The solving processes in the hybrid spectral method, as we described in this study,

it requires defining the correction areas depending on the complexity of problems.

If a flow problem includes many highly nonstationary areas, it is cumbersome to

routinely define these areas and the processes may introduce some operation errors.

Our current study focus on embedding the new developed method in an interactive

software environment that can be easily perform the modeling processes.
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CHAPTER 6

Summary

The pr0posed study is designed to improve our ability to predict the flow uncertainty

in aquifers, especially for the problems with realistic complexity and sizes. In partic-

ular, the processes of this research have made a number significant contributions to

the field of stochastic groundwater modeling:

1. This study pr0posed a conceptually improved approach called hybrid spectral

method that incorporates analytical spectral method and numerical spectral

method in the solving procedures to predict flow uncertainty in the complex,

heterogeneous porous media. This method introduced what we believe to be

a methodological improvement that will dramatically increase the size and ex-

pand the scale of groundwater problems that can be analyzed and modeled

with stochastic methods. Specifically, it allows predicting, under realistic con-

ditions, the field-scale impact of small-scale heterogeneities and its associated

uncertainty without having to compute numerically the small-scale dynamics,

removing a major stumbling block to the stochastic modeling of groundwater

flow in heterogeneous soils.
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2. The proposed hybrid spectral method can efficiently handle large modeling ar-

eas and can accurately predict the detail dynamics of high nonstationarity. It

takes the major advantages of analytical and numerical theories. Most impor-

tantly, this method provide an opportunity to include stochastic model to be

the routine tools used for modeling practical groundwater problems.

3. The intensive numerical experiments in quantifying the accuracy of approxi-

mate spectral method delivered important information about using the local-

ized analytical methods to predict the uncertainty in general groundwater flow

problems. In most flow conditions, the approximate spectral method, which de-

rived locally based on the simple uniform flow situation, can reproduce well the

solutions of first-order numerical method and Monte Carlo simulation except

for the locally strong stress areas such as geological boundaries or well locations.

These localized inaccurate regions for the inner boundaries are about 3 to 5).

from boundaries and are about 5 to 10). from wells.

4. The results in this study also suggest that the secondary terms in confined and

unconfined aquifers have relatively weak effects to the final predictions of flow

uncertainty. In most flow situations, mean head gradients J are capable to

capture the major small-scale dynamics. By adjusting the balance between the

accuracy and computational cost, the approximate spectral method represents

a step closer to our ultimate goal to include a systematic uncertainty analysis

as a part of routine tools in groundwater modeling.

5. Due to the complex theories and the highly computational cost, stochastic mod-

els are rarely considered in realistic flow problems. Most groundwater applica-

tions are still using the deterministic model such as MODFLOW. The results

in this study provide an opportunity to add one advance feature, the prediction

of flow uncertainty, to current deterministic models. Although these simplified
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descriptions do not capture the true nature of hydrogeologic variability, they

may provide reasonable approximations for particular applications.

. This study provided a conceptual framework that can be used for future study in

calculating other statistical moments such as covariances and cross covariances.

As was shown in current inverse modeling studies, the conditioning process re-

quires heavy computation to calculate these covariances and cross covariances

at measurement points. If the correction process in hybrid method can be justi-

fied by the research procedure of present study, the improvement in estimating

these moments will directly contribute to the efficiency of solving processes in

these inverse problems.

. The comparison results in Chapter 5 showed that two first-order methods, the

approximate spectral method and nonstationary spectral method, all match well

the solutions of Monte Carlo simulation in steady state flows in confined and

unconfined aquifers, but fail to capture the solutions of Monte Carlo simulation

in transient state situations in both confined and unconfined aquifers. The

essential differences between first-order and Monte Carlo solutions may require

further study to identify the key effects that produce the differences.

The proposed study addressed tough conceptual and practical implementation

problems in stochastic modeling of nonstationary flow in heterogeneous soils. The

research especially emphasized computational issues because numerical limitations

have greatly restricted the application of stochastic methods to real-world problems.

Although the research did not directly address the data issue, the methodology it

produces may indirectly benefit geostatistical parameter estimation through inverse

stochastic groundwater modeling. In addition, the conceptually improved method

can be extended to predict the flow covariances or other statistical moments that
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relate to contaminant transport. However, the capability of the hybrid method to

predict these moments may require further study to quantify the accuracy.

At present most useful stochastic techniques are still based on closed form solutions

which depend on stationary assumptions or other specialized requirements. Numeri-

cally based methods for solving stochastic groundwater problems need to explore new

solution techniques which make better use of the special structure of the governing

equations. In a sense, this situation is analogous to the state of deterministic ground-

water modeling a few decades ago, before efficient numerical methods became widely

popularized. We believe that the proposed method provides a promising and exciting

possibility which deserves further consideration.
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