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ABSTRACT

Inference on long memory processes

by

Hongwen Guo

This dissertation discusses regression models with a long memory het-

eroscedastic error process with long memory parameter H. When the

regression function is formulated nonparametrically and uniformly on

the unit interval, the consistency and the finite dimensional weak con-

vergence of the regression function and variance function estimators

are established. For the regression function estimators, the asymptotic

normality is established for the values of the long memory parameter

1/2 < H < 1; while for the heteroscedastic function estimators, the

asymptotic normality is established for 1/2 < H < 3/4, non-normality

for 3/4 < H < 1. We also establishes the uniform convergence rate

of the regression function estimators for a large class of innovations,

including bounded and Gaussian innovations. Additionally, the local

Whittle estimator of H based on the standardized nonparametric resid-

uals is shown to be log(n)-consistent and the finite dimensional distri-

butions of the studentized versions of the regression function estimators

are shown to be asymptotically normal.

While when the regression function is linear, the design is long mem-

ory Gaussian with the long memory parameter h, in some circumstance,

the first order asymptotic distribution of the least square estimator of

the slope parameter is observed to be degenerate. Under some addi-

tional mild conditions, the second order asymptotic distribution of



this estimator is shown to be normal whenever h+H < 3/2; non-normal

otherwise. The asymptotic distribution of the kernel type estimators

of the heteroscedasticity function is found to be normal whenever H <

(1 + h) /2, and non-normal otherwise. In addition, an estimator of H

based on pseudo residuals in a more general heteroscedastic regression

model is shown to be log(n)-consistent. We also discuss the consistency

of a cross validation type estimator of the heteroscedasticity function

in a more general regression model under the assumed long memory set

up.

All of these findings are then used to propose a lack—of-fit test of a

parametric regression model. Some simulations and an application to

currency exchange rate data sets are included in this study.
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Chapter 1

Introduction

The aim of inference is to recover a relationship between variables disturbed by ran-

dom noise. When the noise is an independent sequence, a large number of classical

results about large sample theory can be applied for inference of nonparametric or

parametric models. In particular, the Central Limit Theorem can be used to derive

the asymptotic distribution of the concerned statistic. Even with weak dependence

(including m-dependence, mixing ) in the noise, some of the above results still ap-

ply. Whence the degree the dependence exceeds certain point, new phenomena arise.

Long memory processes fall in this category. In such processes the autocorrelations

decay to zero so slowly that their sum diverges.

The work of Hurst (1951, 1956) on the Nile river data aroused the wide interest of

mathematicians, statisticians, econometricians, physicists and others in long memory

study. In 1968, Mandelbrot, Wallis, and van Ness published a series of papers, provid-

ing a solid mathematical model for a long memory process, which is called fractional

Brownian motion. Later, Granger and Joyeux (1980), and Hosking (1981) indepen-

dently proposed another model from the economics point of view, named fractional

autoregressive integrated moving average (FARIMA) model. Meanwhile, more and

more scientists have found the presence of long memory in their data in economics,



finance, hydrology. physics, telecommunication, and other sciences. Taqqu (1986)

cited more than 250 theoretical papers on long memory. Beran (1992, 1994) gives nu-

merous examples from a variety of scientific areas. The survey paper of Baillie (1996)

includes 138 papers on long memory processes and their applications, particularly in

economics and finance. Since long memory sequences have properties rather different

form those of classical independent sequences, even mixing sequences, it has been

under intensive studies, and a large variety of applications make them more exciting,

cf. Dehling, Mikosch, and Sorensoen (2002), Doukhan, Oppenheim and Taqqu (2003)

and Robinson (2003) .

1.1 Long memory processes

1.1.1 Mathematical models

There are two typical mathematical models for long memory stochastic processes:

fractional Brown motion (FBM) and fractional autoregressive integrated moving av-

erage (FARIMA).

In 1951-1956, Hurst studied the minimum water level of the Nile river from 622

to 1284 AD. He found there were long period behavior of the river: long time periods

of dryness were followed by long time periods of yearly returning floods. Floods had

the effect of fertilizing the soil so that in flood years the yield of crop was particularly

abundant, as described in the Bible: “Seven years of great abundance are coming

throughout the land of Egypt, but seven years of famine will follow them.” (ref.

Beran 1994). This is the so called “Hurst effect” or long memory effect.

Mandelbrot and Wallis (1968, 1969), and Mandelbrot and van Ness (1968b) for-

mulated fractional Brownian motion (FBM) to model the Hurst effect, which is a

self-similar Gaussian process with mean zero. Let {Ymn = 1,2, - -- ,} be a FBM,



X-n, = Yn+1 — Yn be the difference process. Then Xn is a stationary Gaussian pro-

cess (called fractional Gaussian noise). Its covariances satisfy the following condition:

Vak>m

2

7k z; cov(Xt,Xt+k) = 92—|(k +1)2H — 2sz + (k —1)2H|, o < H <1,

2
where a = EX% The parameter H is called the Hurst index or long memory index.

The covariance 7k and the spectral density function f(A) of this process satisfy

(1.1.1) 7k ~ Ck2H_2, k—+oo;

m) ~ CAI—2H, A—aO.

Note that for 1 /2 < H < 1, 2k 7k = 00. In this case, the process Xn is said to have

long memory (or long range dependence),

Another model is proposed by Granger and Joyeux (1980), Hosking (1981) in-

dependently. Let Xt be a stationary process generated by the following dynamic

system

(1.1.2) ¢<B><1 — B>dxt = we.

where ——1/2 < d := H — 1/2 < 1/2, 5t are i.i.d. random variables, B is the back

shift operator, and (Z) and 11) are p, q—polynomials with roots outside unit circles. The

process Xt is called an FARIMA(p, (1, q) process. When 0 < d < 1/2, It satisfies

(1.1.1), hence has long memory. By definition, we can see it is generated from the

classical ARIMA by allowing the difference order to be fractions. In the case f (0) is

finite and positive, we say the process has short memory.

The Nile river data posses these characteristics, see Figure 1.1, where ACF is the

sample auto-covariance of the data.
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Figure 1.1: Scatter plot and ACF of the Nile river data.
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1.1.2 Importance

In statistics and probability theory. a large number of limit theorems are based on the

assumption that the sequences are independent random variables. When the depen-

dence of observations are weak, where the covariances decay to zero exponentially,

these results may continue hold. Once the rate of decay is slow, hyperbolically, say,

the long memory phenomena arise. In this case, the covariances are not summable,

which leads to different results of large sample behaviors of various statistics. We

give a simple example to illustrate this point.

Let Xn be an i.i.d. sequence with mean a = EXl and 0 < EX12 < 00. By the

classical Central Limit Theorem, we have

7.1/20? — u) —>d Na). 01).

where X is the sample mean, 01 > 0 is some constant. We can see X converges to ,u

at a rate of ([73.

Now, if we assume Xn is a stationary long memory process, under some addi-

tional conditions, an available result from Avram and Taqqu (1987), Taqqu (1995) or

Davydov (1971) is

nl‘HU—f — p) _’d N(0,02), for 1/2 < H <1, and some 02 > 0.

Here, the convergence rate is slower than \/7_z. In some cases, the limit distribution

is not normal. What makes things more difficult is that because H is unknown

in practice, in order to conduct inference about a, we now have to find an log(n)-

consistent estimator of H.

1.2 Applications of long memory processes

Taqqu (1968), Beran (1994), Baillie (1996), Robinson (2003), and Doukhan et. al.

(2003), among others, have cited many applications of long memory processes. Here



we quote a few examples from the literature.

Geophysics: Besides the above Nile river data, Hurst (1951), Mandelbrot and

Wallis (1968) had two more data of FBM: Temperature data and Tree Ring series.

Figure 1.2 provides 5405 annual tree ring measurements observed at Mount Campito

from 3436 BC to 1969 AD. We can observe the slow decay of autocovariances from the

ACF plot, thus it also posses the Hurst effect. Hipel and Mcleod (1978) and Noakes

et al. (1988) provide analysis of other tree ring series, mud varvs on river floors, high

tides.

Economics and finance: In economics and finance, data sets, such as GNP, Asset

price, stock return, exchange rates, etc. have been analyzed by many researchers.

Some of these data are found to have long memory phenomena, see Baillie (1996)

and Robinson (2003). The most noted long memory phenomena lie in the absolute

returns and the volatility (square return) process of high frequency finance data.

Physiology: Among the models used in research for complex physiologic signals,

long memory time series models have been used to evaluate the heart beat rate, and

other physiological time series. A typical realization of fractional Brownian motion is

a fractal. Many physiological time series can be thought as fractals or multifractals.

See www.physionet.org/ and reference there for more on this.

Physics: Either for systems which are far from equilibrium (e.g., turbulent flows),

or in equilibrium but very close to a critical point (e. g., the transition from a solid to

liquid phase, or from a non-magnetic phase to a magnetized one), phase transitions

may have fluctuations which decay like power laws, and so do many non-equilibrium

systems. In physics, it is called 1/f noise.

Telecommunication: Long memory also finds its application in computer networks,

see Willinger et. a1. (1998). The web site www.cs.bu.edu/pub/barford/serd.html

provides links and very brief summaries for some of the work done in this area.
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Figure 1.2: Plot and ACF of Mount Campito annual tree ring measurements
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1.3 Main results in this research

In addition to the long memory phenomena in economics and finance data there is

another well known fact- “volatility smile”: the conditional variance function of the

time series varies upon time. To capture this phenomenon, Engle (1983) proposed

the parametric ARCH model, later it is generalized to GARCH by others. It is part

of the reason that Engle, together with Ganger, won the Nobel prize for economics

in 2003.

Because of the mixture of long memory processes with ARMA-type or ARCH-

type models, there is a need to develop a variety of consistent estimators and test

procedures to obtain statistical inference from some real data.

Many authors consider the regression models with long memory and homoscedas-

tic errors under fixed or random design, and established various asymptotic results

for the regression function estimators. In order to apply statistical methodology to

economic or financial data, especially to capture the changing conditional variance,

the model with heteroscedasticity shall be considered and developed. In addition,

without enough knowledge of the models, nonparametric regression methods shall be

investigated for estimating regression function or conditional variance function. The

study in this dissertation is aimed at solving the above problems and applying the

theoretical results to real data.

In this dissertation, we consider the heteroscedastic regression model,

(1-3-1) Yt = 7'(Xt) + 0(Xt)Ut, t = 1,2, - - - ,

where “t is the long memory moving average prOcess with the long memory parameter

H, and where Xt are either uniform design on [0, 1] or a long memory Gaussian process

and independent of “25- Chapter 2 discusses the first case while Chapter 3 discusses

the later case.



In Chapter 2, the consistency and the finite dimensional weak convergence of the

regression function and variance function estimators are established. For the regres-

sion function estimators. the asymptotic normality is established for the values of the

long memory parameter 1 /2 < H < 1; while for the heteroscedastic function esti-

mators, the asymptotic normality is established for 1/2 < H < 3/4, non-normality

for 3/4 < H < 1. This chapter also establishes the uniform convergence rate of

the regression function estimators to be (nb)1_H/ log2 n for 1/2 < H < 1 and for

a large class of innovations, including bounded and Gaussian innovations, where n

is series size and b is the bandwidth used in estimating regression function. Addi-

tionally, the local Whittle estimator of H based on the standardized nonparametric

residuals is shown to be log(n)-consistent and the finite dimensional distributions of

the studentized versions of the regression function estimators are shown to be asymp—

totically normal. These results thus generalize some of the results of Robinson (1997)

to heteroscedastic regression models with long memory moving average errors.

In Chapter 3, we discuss the asymptotic inference of the model (1.3.1) when r(:r)

is some linear function and Xt is a long memory (LM) Gaussian design with long

memory index 1/2 < h < l and 0(x) is still a nonparametric function. The first

order asymptotic distribution of the least square estimator of the slope parameter is

observed to be degenerate in some cases. Under some additional mild conditions, the

second order asymptotic distribution of this estimator is shown to be normal whenever

h + H < 3/2; non-normal otherwise. The asymptotic distribution of the kernel

type estimators of the heteroscedasticity function is found to be normal whenever

H < (1 + h) /2, and non-normal otherwise. In addition, an estimator of H based

on pseudo residuals in a more general heteroscedastic regression model is shown to

be log(n)-consistent. A small simulation study included in this chapter shows that

the above estimators of the regression parameters and the variance function are more



stable for the values of h, H in the range 0.6 - 0.85 compared to the values of h, H

larger than 0.85. We also discuss the consistency of a cross validation type estimator of

the heteroscedasticity function in a more general regression model under the assumed

LM set up. All of these findings are then used to propose a lack-of—fit test of a

parametric regression model, with an application to currency exchange rate data sets

that exhibit LM.

1.4 Main issues and technical problems related in

this research

In this section, we introduce some background material needed in this research, then

discuss some issues and main difficulties tackled in this dissertation.

1.4.1 Non-Gaussian distribution

Let Zt be a stationary Gaussian process with mean zero and variance one. Nonlinear

functionals of Gaussian processes with power asymptotic correlation function were

considered by Dobrushin and Major (1979), Taqqu (1975, 1979), Gorodetskii (1977),

etc. Beautiful theorems are proved based on the Hermite expansion of

9(I) = :01ka(1‘)

where g E L2 E {g : Eg(Z) = 0,Eg2(Z) < 00}. The functions Hk(:r) are the

Hermite Polynomial defined by :

k

kd ——:z:2/2
H.x = —-1 e ,

and “k = Eg(Z)Hk(Z), cf. Sansone (1959). Note that {Hk(x),k = 0,1,---} is a

complete orthogonal basis of L2, and satisfies EHl(Z)Hq(Z) = q! for l = q, = 0

10



otherwise. The Hermite rank of the function 9(1) is defined to be

m = mf"k=1.2.~-- {kfi'k 73 0}.

In many cases, for a function g() of the Hermite rank m, the partial sum of g(Z.,-)

is dominated by the Hermite polynomials Hm(Z,-),i = 1,--- ,n. Because of the

Gaussianity, moment bounds and a variety of inequalities can be used for the analysis

of statistical problems related to these processes.

When one generalizes the above results to linear processes, the counterpart of the

Hermite polynomials are the Appell polynomials, cf. Szegii (1959), Surgailis (1980,

1982), or Avram and Taqqu (1982). Define

dk

ek = E(d—$FG('T)I-T=X0)’ k = 1,2, - ~-

Then m = min{k,e/c 75 0} is called the Appell rank of G w.r.t. X. Since Appell

polynomials are not orthogonal, special care has to be taken when dealing with long

memory linear processes such as FARIMA.

1.4.2 Strong dependence and asymptotic properties

Consider the model

(1.4.1) )2 =r(X,-)+u,-, i=1,'°- ,n.

When the errors u,- are i.i.d. with Eul = 0 and finite variance, the following theorem

(cf. Theorem 4.2.1, Hardle 1990) states the asymptotic distribution of the Nadaraya-

Watson kernel estimator for one-dimensional predictor variables. Let K be a kernel

function, b be the bandwidth, and f be the density function of X.

Theorem 1.4.1 Suppose

(A1). f |K(u)|2+77du < 00 for some 77 > 0;

(A2). b ~ 71—1/5;

11



(A3). r and f are twice differentiable;

(A4) the distinct points $1,1‘2, - - - ,l‘k are continuity points ofc72(;r:) and E(|Y|2+77|X

= .r) and f(:rj) > 0,j = 1,2,--- ,k.

Then, the suitably normalized Nadaraya- Watson kernel smoother 7"(17j) at the k

difierent locations x1, - - - , :L‘;C converges in distribution to a multivariate normal ran-

dom vector with some mean vector B and identity covariance matrix,

, 1 2 7h($j)“m(~rj)

(nb) / {(aZapcK/flxjvl/Q} 2 MB”

Hall and Hart (1990) have shown that, in the model (1.4.1) with Xt = t/n,t =

 

1, - - - ,n, and long memory Gaussian moving average error {at} with covariance 73- ~

cj_a,0 < a := 2 — 2H < 1 , the optimal convergence rate of mm is n—2a/(4+a)

when the mean function has 2 derivatives. Thus the optimal bandwidth is b ~

n—I'Cfii, which is slower than that of the i.i.d. setup, and depends on the long

memory parameter H.

In our model (1.3.1), the error is a non-Gaussian and heteroscedastic long memory

moving average process, we use the technique of decomposition and truncation of a

linear process to achieve this optimal bandwidth, see Sections 2.2.4—5 below for details.

In addition to the estimation of the regression function, we also consider estimation

of conditional variance function. The derivation of the consistency and asymptotic

distribution of this estimator need weak convergence of some functional of long mem-

ory moving average processes. The corresponding results appear in Sections 2.2.3-4,

3.3.3. below.

1.4.3 Estimation of long memory parameter

As we have mentioned above, when one works with models with long memory errors,

there is a crucial hurdle to overcome for inference - the log(n)-consistency estimation

of the long memory index H. We use the local Whittle estimator method to solve

12



the problem

Consider a stationary process Xt with mean u and lag-j-autocovariance 73- and

spectrum f()\) = (27r) l :7}- cos((j/\) which satisfies the following condition.

“For some H E (51),

(1.4.2) f(/\)~ L( )Al2’" A—)0+_1_
A

where L(:r) is a so called slowly varying function satisfying L(t.1:)/L(:I:) —> 1, as

:r —+ 00, for any t E R”. Condition (1.4.2) forces some restriction on aj in (2.1.2)

below (cf. Surgailis 1982).

The spectral density function of fractional Brownian motion is (cf. Sinai 1976)

02 sin(H7r)

7r
f0) = F(2H+1)(1—cosA)Zl/\+27rj|‘2H-1,

and that of fractional ARIMA is (cf. Brockwell and Davis 1987 and Hosking 1981)

f(,)=:_2l,a|1_e2mw<__%'_e:>l:

7’ W62 )l

Both of them satisfy Condition (1.4.2).

Parametric models for f(A), A 6 (—7r, it] have been considered by many authors.

The asymptotic distributional properties of parameter estimates have been derived

by Fox and Taqqu (1986), Dahlhaus (1989) for the Gaussian process, and by Giraitis

and Surgailis (1990) for the linear process, in the case H E (1 /2, 1), and under some

regularity conditions. These properties are highly desirable ones: nl/z-consistency

and asymptotic normality. However, these properties also depend on the correct

specification of f(A), A E (—7r,7r]. In the event of any mis—specification, estimates

will be inconsistent. To overcome this problem, semi-parametric estimates of H have

been proposed. Robinson (1995b) showed that the two leading semi-parametric esti-

mates of H have desirable asymptotic properties in a broad setting, these are the log-

periodogram estimate which originated in Geweke and Porter-Hudak (1983), and the
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semiparametric Gaussian or local Whittle estimate which originated in Kiinsch (1987).

Both estimates depend on a smooth parameter m, the number of low-frequency pe-

riodogram ordinates employed in the estimation.

The other methods for estimating the index H include the R/S, Variogram,

wavelet method, cf. Beran (1994) and Abry et. al. (2002). Because the frequency-

domain approach seems much more elegant than the time-domain one in this semi-

parametric setting, and because simulation results of Taqqu and Teverovsky (1997)

show that the local Whittle estimator is more robust, we use the local Whittle esti-

mator to estimate H in the present setup. In order to obtain log(n)-consistency of

the estimator, Robinson (1997) provided some sufficient conditions under the model

(1.4.1) with uniform design and long memory moving average errors.

The new challenge in our study is that the estimator has to be based on residuals,

in which the conditional variance function estimator is involved. Derivation of these

results require uniform consistent estimation of regression and variance functions with

certain rates. Details are in Sections 2.2.6 and 3.3.4. In addition, in chapter 3, we

show that log(n)-consistency of the local Whittle estimator holds true even when the

design of the parametric regression model is a long memory Gaussian process.

14



Chapter 2

Nonparametric regression with

heteroscedastic long memory errors

2.1 Introduction

A stochastic process is said to have long memory, or to be long range dependent, if its

auto—covariances decay at a hyperbolic rate in the lag. Long memory processes have

been found to arise in a variety of physical and social sciences, see, e.g. Beran (1992,

1994), Baillie (1996), Dehling, Mikosch, and Sorensoen (2002), Doukhan, Oppenheim

and Taqqu (2003), Robinson (2003), and the references therein. On the other hand

nonparametric heteroscedastic regression models are also found to be very useful in

practice.

The focus of this chapter is to analyze the asymptotic behavior of some inference

procedures in these models with uniform non-random design and long memory errors.

More precisely, consider the model

t t

(2.1.1) Yt = r(;) +0(;)ut, t=1,2,--- ,n,

where r is a real valued function and o a positive function, both defined on [0, 1], and

15



where the errors at form the moving average process, i.e., for some 1/2 < H < 1,

0° 3

. - --( -H) - . . .
(2.1.0) .= Z a’th—jv aj ~ C] Q , for ] large and for some |c| < oo.

i=0

The innovations 5t are assumed to be i.i.d random variables (not necessary Gaussian)

with mean 0 and unit variance. Then the spectral density of ut’s satisfies

(2.1.3) m) ~ GA1‘2H as A —» 0+

where G is a positive constant. In this paper an ~ bn means that lImn—)oo an/bn =

1.

Robinson (1997) considered the homoscedastic version of the above model where

0(3) 5 o, a positive constant, but with the errors more general in that the innovations

are stationary martingale differences. Among many interesting results of his paper,

he gave a central limit theorem for certain weighted partial sums of a covariance

stationary process, and applied it to prove the asymptotic normality of the kernel

type regression function estimator 1" and its studentized version. In the presence of

long memory of the errors, an important element of this studentization is to have a

log(n)-consistent estimator of the parameter H. Such estimators are usually based

on the residuals {Yt -— r(t/n), 1 S t g 11}. But, Robinson showed that in the case of

long-range dependence the raw data {Yb 1 g t S n} can also be used to provide such

an estimator of H in homoscedastic models. One possible intuitive reason for this is

that under the homscedastic set up where o(i/n) = 0‘, a constant, the processes Yt

and at have the same covariance structure.

This chapter analyzes the asymptotic distribution of the kernel type estimators of

both 7‘, 0‘ and the local Whittle estimator of H based on the estimated residuals under

the above heteroscedastic setup. To proceed further, let K and W be density kernel

functions and b E bn and c E on be bandwidth sequences. The kernel estimators of
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r and a to be investigated here are

 

 

. _ _ 1 Z , 'n’I—t

n

,2 1 , nr—t - t 2
. = __ 4x _ _ _a (as) "Ct—11 ( m up]

Fan and Yao (1998) proved the finite dimensional asymptotic normality of the estima-

tors 6 for the stationary and absolutely regular errors. Under the above long memory

setup, we establish their finite dimensional asymptotic normality for 1/2 < H < 3/4.

For 3/4 < H < 1, these distributions are non-normal.

Since the parameters H and G appear in the standardization of these estimators

in such a way that it is necessary to have log(n)-consistent and consistent estimators

of H and G, respectively, in order to use 7", 6 for the large sample inference about r, 6.

Using the method of Robinson (1997), it is proved that the local Whittle estimators

H, G of H, G based on the residuals (Yt —i‘(t/n)) /6(t/n) have these properties, which

in turn make the studentization of 7" and 62 feasible.

This chapter has seven sections. Section 2.2 verifies the asymptotic properties

of 7“, sections 2.3 and 2.4 discuss the asymptotic properties of 6, while section 2.5

discusses the uniform convergence rate of 7“. Section 2.6 discusses the estimation of

H, G, and the asymptotic distributions of the studentized versions of 7“ and 6. Section

2.7 is an application, and Section 2.8 is the Appendix containing some preliminary

results from Robinson (1997), some other miscellaneous results and some proofs. In

the sequel, =d means equivalence in distribution.

2.2 Asymptotic normality of 6

Consider the Nadaraya—Watson estimate f(;r) based on the model (2.1.1) and (2.1.2).

We give additional needed conditions 011 the kernel, and the regression and variance

functions.

17



Assumption 2.1 Let K be an even positive differentiable density with support

{—1, 1], and with a bounded derivative.

Assumption 2.2 Either the function r satisfies a Lipschitz condition of degree 7,

0 < T S 1, or r is differentiable with derivative satisfying a Lipschitz condition of

degreer— 1,1 < T 32.

Assumption 2.3 The function or is continuous on [0, 1] and bounded away from 0.

Assumption 2.4 The function 0 satisfies Assumption 2.3 and is continuously twice

differentiable on [0,1].

To discuss the bias in 7‘", introduce the continuity modulus of a function g on [0, 1]:

w(5;g) = sup |9(3= + b) - 9(Ill, 5 > 0-

:r,|b|<6

Lemma 9.1 in Hardle, Kerkyacharian, Picard, and Tsybakov (1997) shows that

(2.2.1) w(a6;g) S (a +1)w(6;g), a > 0, 6 > 0.

We also need to recall, say from Beran (Theorem 2.1; 1998) or Zygmund (Chapter

V2, 1968), that for any long range dependent stationary process at with the spectral

density f, (2.1.3) holds if and only if, with 6(H) := 2F(2 — 2H) cos{7r(1 — H)},

(22.2)” I: COV(’U.0,uj) = L7; f(/\)ei)\jd)\ ~ G9(H)j—2(1—H), j _, 00.

Let kt(z)=K(%b——t), t2 1, 0<:r< 1.

1 n t) 1 n
2. . A( = — — .( 23) r(:1: nbtlktE—Mac)”: +nbt1kt(a‘_§ (-—)ut, ‘v’a:

Under (2.1.1) and Assumptions 2.1-3, a routine calculation shows that

(2.2.4) sup |E(f(:1:) — r(a:))| = 0(bT), 0 < r _<_ 1

0<x<1

1
= 0(bT+—), 1<r32,

71b
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Because for a: close to 0 or 1, f6” |K(u)bu{r’(;r+6bu)}|du = 0(b), under Assumptions

2.1-3 with T = 2, one obtains that

(2.2.5) sup |E(i‘(;r) — 7(:r))| = 0(b + —b).

03x31 n

In order that the bias is small enough to permit centering at r(:1:) in the central

limit theorem, we impose the following additional assumption on the bandwidth.

Assumption 2.5: With 7' as in Assumption 2.2,

(71b)—l + (nb)1_HbT ——+ 0, as n —> 00.

The following lemma gives the asymptotic behavior of the covariance structure of 1".

Let

p(H := (H)()//K(w)—|v w]2(1_—H)dwdv, D = G0(H).

Lemma 2.2.1 Under (2.1.1), (2.1.2), the Assumptions 2.1-3 and 2.5, we have

(MP—2” Gov(f"(:1:), f(y)) _. Gp(H)0(:r)o(y)1{x=y}, Vac, y 6 (0,1).

Proof. Using (2.2.3), we obtain, for :1: ¢ y,

(MP—”Ema — renew) — ram
71 n

= (”(1)21—2Hf (71thZ kt(1‘)7‘( gl— r(ér(CHM-”l—2M (3- 7‘((ill)

+2—b2 Smashed;-)001312111113}

saét

:2 I+II

By (2.2.4) and the Assumption 2.5, I = O((nb)2-2Hb27) ~—> 0.

Next, using (2.2.2), we obtain,

2—2H

11 ~ D n_—:_(I()b)2 [Tl f(kt(1".1")k3(1/)0(EM,—:—)|t s|_2(1—H)dtds
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~ D)r(1b22H//K(2)K 6(6x—bz)(y—b-w)

x |n(:1: — y) — nb(z — w)|_2(1_H)dzdw

b2-2—H

N DI-r—yl2—2H//K(.z))K(w)6(:r—bz)6(y bw)

I><|1 — b—:—y —2(1_H)dzdw

b2—2H

S DWUWldw

b2—2—H

+D IIE- W2———2—_H//:K(z)K((u7)6.1:——bz)6(y— bw)

x-—|(2 2H»: :ldzdw

= 0(1)?"2H)

where the last but one inequality follows from the fact that for any |a| < 1/2 and

1/2 < H <1, |(1+ a)—2(1-H) — 1| 3 |(2H — 2)a|.

Assuming :r = y,

mm1) = (nu-22k“(mm101301313 — t)

:r)6 6 3-2—(1HlsDn—,)—)2/1/:Ict(szr )£(n§l-)()It— | ddt

1 ‘5—1 '1:S(___§ 1 / _1_1((z)1<(w)|nb(z—w)|‘2(1‘H)(nb)2

TIL—e
X6(:L‘ — bz)6(;1: — bw)dzdw

~ <nb)‘2<1—H>GaQ(x1p(H).

This proves the lemma. CI

The proof of the asymptotic normality of 1" is facilitated by the following result

from Robinson (1997), reproduced here for the sake of completeness and easy refer-

ence. Let Nkm, 2) stand for a k variate normal distribution with mean vector u and

covariance matrix B, k a positive integer. Write N for N1. Consider the

Assumption RI. Let fij, j E Z :2 {0,:i:1,:l:2,---} be a set of square summable
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real numbers and {5b t E Z} be a sequence of r.v.’s such that E(€t|}'t_1) = 0,

E(et2|ft_1) = 1, as, t E Z, where ft := U-field{83, s S t}, t E Z.

Let wtn, 1 < t < 11. n > 1, be an array of constants, := Zt_1wtni3t—jv

ut = Egg—00 fijEt—ji t E Z, and Sn 2: 221:1 wtnut- Robinson (1997), we obtain

Lemma 2.2.2 Suppose Assumption RI holds. In addition, assume that there exists

a positive sequence a = an such that

00

2
(2.2.6) 2 vjn=1, VnZl,

J=—oo

1/2
(2.2.7) (tzwtzn 2132-) +lr<ntaicn|wm| Z lay—.0.

=1 |j|>a ‘“ leSa

Then, Sn => N(0,1), as n ——> 00.

The next result gives the limiting finite dimensional distribution of in, where

a = (011111)”?-

Theorem 2.2.1 Let (2.1.1) and the Assumptions 2.1-4 hold. Then for any inte-

ger t’ Z 1 and for any distinct 23,-, i = 1,--- ,f, in (0,1), the joint distribution of

(nb)1_H(fi6(:ri))—1{f(:ri) — r(:1:,-)},i = 1,-~- ,t’, converge weakly to Ng(0,.'l), as

n——>oo.

Proof. Fix an integer t 2 1 and real numbers h1,--- ,hg, not all zero. Let 0'7: =

6(1,). By the Cramer-Wold device, it suffices to prove

Tn.=Zh,————
_(____nb)(7)1H{ e 2

{1081) - 71%)} ==> MO, 2 h,- )-

i=1

Let

 Sn := (nbl)Hz_Z15112—7{t_z:1kt(xi)(7:1,)ut}

V31 = Var(Sn), 871:: —Sn.

V11
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In view of (2.2.3), (2.2.4), and the Assumption 2.5, Tn — Sn, = 019(1). It thus suflices

to prove the claimed result for S”. If we show that

5

(2.2.8) Sn => N(0,1), and VT? —> Z h2,

then, by Slutsky’s theorem, the claim will follow. But, by Lemma 2.2.1,

1

V3 ~ (nb)22”; £32—h——:2Var(——ankt(:r,-)“find-12h?-

2:

Now consider the claim about Sn. Rewrite Sn = Zt=1 wtnut, where

1: H” xwtn (nb)anz_2% )t( i)

In view of Lemma 22. 2 applied with these win, a—-— 1, and with flj—-— 01 j 2 0,
J,

flj = 0, j S ——1, to prove the first part of (2.2.8), it suffices to verify that

(21th Z 0101/2+ 1333,, WIZ |aj| *0
t==1j>1

But, because 62’s are square summable and the function 6 is bounded from below,

the left hand side of this expression is bounded above by a positive and finite constant

times

11
1 t 2 1/2 1

—— k :r- 6 — + —— a

(nb)HVn{t:Zl( t( z) (11)) } (111))an 1<t<n,a1<1<1kt1(a)2' 3'

=O((nb)1/2_H) + 0((nb)_H) —»0,

because 1 /2 < H < 1 and 11b ——> 00, thereby completing the proof of (2.2.8). D

Remark 2.2.1 Hall and Hart (1990) show that under the long memory Gaussian er-

rors setup the optimal bandwidth b for estimating r(.1:) is of the order n'_(1 "All/(3‘11)

and it is achieved by kernel smoothing method. If one uses this optimal b then

the bias in Theorem 2.2.1 is not negligible. However, if b is chosen proportional to

n_(1—H)/(3-H) times a sequence that tends slowly to zero, say 1/ log n, then the

bias vanishes asymptotically.
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2.3 Estimates of 62(:1:)

This section discusses the asymptotic behavior of bias and variance of the estimator

 

62. With 0 and 1V as in (2.1.4), let [(b := (t.' M) < t < n — nb}, and

1 11:1: ——t

wt(‘l:) ‘_ RW( 71C )1 -: nc—t—Zl tutti: @1112, :1: 6 [0,1].

The following decomposition of 62 is often used in the sequel.

(2.3.1) 62(1) = n1c{ 2+ 2: )w}t((T)[Yt—T(Itl)]2

tEI(b) 1921(1))

= 3+1:+2 }++<+>113—1312
tEI(b t¢I(b)

t . t -

3;: wt(a: —-r)ut[r(n) — r(—)] +62(:1:).

To proceed further, we need totintroduce additional assumption:

Assumption 2.6. The kernel W is another even positive differentiable density with

support [—1, 1], and with a bounded derivative, and the bandwidth c satisfies c —> 0

and nc —> 00.

We shall first analyze the bias and variance of 62. Recall that ”)0 = Eu?) =

9:0623" From now on we shall assume that the at ’s are standardized, i. e., '70-— 1.

Consider the bias of 62. Similar to (2.2.4), using Assumptions 2.4, 2.6, and the Taylor

expansion of 0'2, we obtain, uniformly in 0 < :1: < 1,

1752(2) = 7.12;th —

2 2

= /W(z()6 . —Cz:(0'2(1‘))(1) + %(02(IE — czv))(2))dz

01%,)

(2.3.2) = 62(132)+Cxc +61” ),
TC

where 62(:1: )(k) stands for the kth deIivative of 62:1"( ) and Cx=02($)(2)

x f W(z)z2dz/2.

23



Next, in order to compute the variance of 52(2), we need the following lemma

about the covariance structure of the stationary process 11%.

Lemma 2.3. 1 With {at} is as m (2 1. 2) and under the assumption that E50<

v1/2 < H < 1,

(23» Ema—nmg—n
2 2 2 4

271 + Zasat+s[550 ‘ 3]
8

2D2t2(2H—2) + 0(t2(2H_2)), as t —) 00.

Proof. Using the fact that {st} are standardized i.i.d. r.v.’s, we obtain

Bag—naE—n

= E( Z asalauav5—35_15t_u€t_v)—1

s,l,u,v

= E( Z agegaget2_u)+2E( Z asas+tegalal+t512)

s,u,s#u s,l,s;£l

+E(: agag+t535§+tl ‘ 1

= Z asau+2( Z asas+talal+t))HE0203‘”(”SH—1

s,u,s#u 3,1,3?“

2

= [(2013) "'2 asat2+3l + 2“(Z aSas+t)2 — Z asat+sl

s

2

+Ef“-0l1§:20‘$as+t _ 1

s

2 4

= 2711 + ZagaffilEgo _ 3]
s

2D2t2(2H—2),
ast—>oo.

The last statement follows because aJ ~ ch3/2 as j —* 00, and because

1 2 2 1 1

t4H—4zs:asas+t —O(?+ t2—2H) “’0’ 831—100. D

Remark 2.3.1 The term E54 — 3 is exactly zero in the case 5- are standard
0 2

normal random variables.
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Now, using (2.3.2), we obtain

 Var(c72(1: ;wt(I)wS (.1‘)0’2(:)0'02(%)E{(Ut2 — 1)(ug — 1)}.

=(nc)2s

Let Dn(I) denote the leading term on the right hand side of the above equation To

analyze it further, it is necessary to consider the two ranges of H, v.i.z., 1/2 < H <

3/4 and 3/4 < H < l separately. We define

”Wu2 :-—— fw2<v>dv, 61mm==E<u3—1>o4<r>uwng,

02(3):, H) 04cc) / / wean/(uni; — VIM-“41.1411, 62o, H) := 2D2C'1(I, H).

For 1/2 < H < 3/4, the process u? —- 1 is short-range dependent. Moreover, for an

0<I<1,

_ _1_ 21' 23 2_ 2_
nch(1:)— ”CZwaSW(n)a<n>E<us 1><ut 1)

s,t

= ——1— : th(I)a4(—)E(u?—l)

(nc)s=t,t=1

+(n—lc) wt($)ws($)02(%)02(%)E(ug — Mu? - 1)
s,t,s;£t

= E013 — 1)/W2(w)a4(:c — cw)dw

+ hZE/W(W)W(V)02($ _ w)02(x — CV)E(U(2)U727C(w_l/))d¢ddu + 007—32)

~ _ _ ~ 1 1

~ 01(x,H) + (nc)2(2H 2) 102(I,H) + 0(—) + 0(—)
nc nc

= 61(x,H) + 0(1).

For 3/4 < H < 1, the case of very long~range dependence, the sequence ut2 — 1

is still long-range dependent. Proceeding as above and using the continuity of a and

Lemma 2.3.1, we obtain,

Dn(33) ~ C'('nc)1+2D2 2 t 2 8 4H—4

(nc)2/1n /1nw3(
flu?”I”) (5)0 (gllt—SI dsdt

~ me)“4020:, H), v 0 < x < 1.
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The above discussion is summarized in the following

Lemma 2.3.2 Suppose (2.1.1) and (2.1.2) hold. In addition, suppose E53 < 00 and

the Assumption 2.4 holds. Then, for each I 6 (0,1), 52(13) -—> 02(13) in probability,

592(1) — 02(1)} = 0(,,l + c2), and

Var(52(:c)) = C~'1(I,H)(nc)—1, 1/2 < H < 3/4;

62mm (nc)_4(1_H), 3/4 < H <1.

Now we are ready to analyze the bias and variance behavior of 62(3). Re—

call the decomposition (2.3.1). By the proof of Lemma 2.2.1, E(7“(1:) — 7‘(:1:))2 =

0((nb)_2(1_H) + ()2) uniformly I 6 [0,1]. Also, the continuity of W and Assump-

tion 2.6 imply

O<I<1

1

p|7 2;“
I(b

Hence,

3;,2 wt( (>——r<—">12: 0((nb)20H),”; X W)

W“ two)

= o<<nb>—2<1-H> + b2),

so that the expected value of the first term in the right hand side of (2.3.1) is asymp-

totically equivalent to

31— 2: wt(nae?2< —)(nb)—2(1‘”’1

w teI((b) (n

”6(th

= (32(nb)_2(1_H){/ W<v>a2 (adv + 0(5)}

~ 52(nb)—2(1—H)a2(x), mean).
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By Lemma 2.3.2, the expected value of the third term in the right hand side of

(2.3.1) is 02(1‘) + C102 + 0%). Now consider the second term of (2.3.1). By (2.2.3),

(2.3.4) EE—ZEIM.(%(1)0 )ut(1(-:;)-'f(%))]

ngw«211—: 1:13)]
t=1s=1

_1 n 1 n
= .7; wt(I)o(-)—bzks(‘) ( )Eusut

t=1 s=1

Since for any fix N < n,

"legwtm0(2)}? 2 k3(%)0(%)Eusut(=0(%),

s:|s—t|<N

hence (2.3.4) is asymptotically

~ %§{ 2 + Z }Wt($)0(%)%st(%)0(%)|S-tl_2(l_H)
Dt€I(b) t¢1(b) 3:1

~ _123): wt<sr (INN/KW,-)(nb)2_(1_2H)lvl‘(1H>dv
C)(thI

~ —D(nb)_2))(1_H)02(I)/K(v)|v|—2(1—H)dv,

since, similar to the first term of 2.3.1 , —part is negligible compared to
t¢I(b)

Emma-part, as n -+ 00.

Combining the above approximations, we obtain that for each I E (0, 1), the bias

of 62(I) satisfies

(2.3.5) E(62(I) — 0%)) ~ emsa, H)(nb)_2(1—H) + CICZ,

where C1: is defined in (2.3.2),

Cause, H) = 002(x){ f / K(w)K(V)lw — 14‘2“”>dwdu

—2 / K(v)|v|_2(1—H)dr}.
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The following additional assumption is needed to obtain the asymptotic distribu-

tion of 62(2).

Assumption 2.7 Assume the bandwidth 0 = 0(b) and (nc)2(1—H)c2 ——1 0.

Note that under this assumption, the above asymptotic bias of 62(1) depends only

on the bandwidth b used for estimating 7', and not on the bandwidth 0.

Lemma 2.3.3 Under (2.1.1), (2.1.2), and the Assumptions 2.1-3 with 7' = 2, sup—

pose that c = 0(b). Then, for every 1: E (0, 1),

(2.3.6) (nc)_1Var(&2(1:) - 52(1)) = 0(1), % < H < 3;

(2.3.7) (nc)4(1_H) Var(&2(:r) — 5203)) = 0(1), 3 < H < 1.

The proof of this lemma is computationally involved and deferred to the Appendix.

Remark 2.3.2 In View of the above results, the mean square error of 62(13) satisfies

(2.3.8) E(&2(I) — 0%))2 = 0((nc)'“1 + 6‘), 1/2 < H < 3/4,

(2.3.9) = O((nc)4(H_1) + c4), 3/4 < H < 1.

From this one sees that if c = 0(n_(1—H)/(2’1”), then this mean square error tends

to zero and at the same time this 0 is of the smaller order than the optimal bandwidth

b selected in Remark 2.2.1. This is one reason for introducing the Assumption 2.7.

Another reason is that if c = b, then the result (2.3.7) of Lemma 2.3.3 for 231 < H < 1

is not true because in this case Var(&2(1:) — ~2(1')) = O((nb)4(H_1)).

2—2HC2
The requirement that (no) —* 0 will lead to centered asymptotic distri-

bution for 62 (I) discussed in the next section.

2.4 Asymptotic distribution of 62(1)

This sections discusses the finite dimensional asymptotic distribution of the variance

estimator 62(13). This is facilitated by using some results about the Appell polyno-

mials. Let Am denote the m-th Appell polynomial associated with the distribution
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of 21.0, 1/2 < fl := (3/2) — H < (m. +1)/2m, and assume that Eegm < 00. Theorem

2 of Avram and Taqqu (1987) shows that, as n —> oo,

[71']

__1) Z Aml’uk) => Zm(-). (in D[0,T]), uniform metric),

k=1

.1) 1

nf+m(H

 (2.4

for any constant T 6 (0,00), where, for t 2 O,

Zm(t) = m!//

—oo<w1<w2<---<wm

‘ m =6 w
X /{/()J£I1(V_WJ)+ }dB(w1) dB( m)

is the Hermite process, where B is the standard Brownian motion on [0, 00). Some

properties of this process are discussed in Hosking (1996) and Taqqu (1975, 1978).

In particular this is well defined for t E [0, T], for every T < oo.

Recall, say from Surgailis (1982), that 2-nd Appell polynomial associated with “0

is A2(1:) = I2 — 1. Since Euo = O,Eu(2) = 1, upon applying (2.4.1) with m = 2, and

noting that in this case 1/2 < B < 3/4, or equivalently, 3/4 < H < 1, we obtain

int]

" k=1

The next theorem discusses the asymptotic distribution of 62(1). For that purpose

we need

2

Y2 =/() W’(1 —- s)Z2(s)ds.

For completeness, we also recall the formula for the summation by parts which is often

used in the sequel. For any two sequences {aj,j = 1,2, - - } and {bj,j = 1,2, - - - },

and for any integers 1 S m < n,

m— 1 n — 1n j

(2.4.3) 2 ajbj = bn Z aj - bm Z aj + Z Z ak(bj " bj+1)-
. 3'21
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Lemma 2.4.1 Suppose (2.1.1), (2.1.2) and the Assumptions 2.1-4 and 2.6 hold.

Then, for every :1: 6 (0,1),

(2.4.4) (nc)2_2H {52(1) — 02(1)} => 02am, 3/4 < H < 1.

Proof. Define Sn(i(1)= Z:[1::011n]((ui—l) forO < v _<_1, Sn-— Sn(l.) Fix ans: 6 (0,1).

Then, 1071(1) E W((1: — 1)/c) = O, for all c < 1 — I. Hence, (2.4.3) yields that the

left hand side of (2.4.4) equals

1-2H n "fr-t 2 t 2
(n0) ZW(——)0 (3'th 71)

i=1 RC

= (n0)1_2H{5nwn($)02(%) — Sowl($)02(%)

n—l

+ Z Sn(%)[wt($)02(%) — 141.1(1):2<‘+1)]}
i=1

t__+1)]

n—l

: (nC)1—2H{ Z Sn(%)[wt(x)02t(—n2)—wt+1(1:)o ( )(}+op 1)

i=1

1

= (nc)1_2H £13710: — cu)[W(1/)o2(1: — cu)

—W(1/ — n—C)o2(1: — cu + %)] dV + 0p(1)

1

= (nc)1_2H{/ 1 Sn(1: — emu/[(1402 (I)d1/} + 013(1).

This fact, the stationarity of {ut}, combined with the fact that fll W’(V)du = 0,

yields that the leading term in the right hand side above is equal to

1

(nc)1—2H02(I) / 1 (sun: — cu) — snap — c))W’(1/)d1/

= (nc)1-2H02(.)/1 W’(u) Wig/)1 (.2 —1)d1/

_1 k=[n(I—c)] k

1

=d (nc)1_2Ho2(:c)/ W’(u)s,.I(,/)(1)du
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where r1~(u) = [n.(a: — CV)] — [11(1: — 6)] + 1. The last claim follows from (2.4.2) and the

continuous mapping theorem (Billingsley, 1968, Theorem 5.1). since W/() is bounded

and the functional T(f) = [02 W’(1 - t)f(t)dt for f E D[0._ 2] is continuous. C]

In view of Lemmas 2.3.3 and 2.4.1, the following theorem is immediate.

Theorem 2.4.1 Under (2.1.1), (2.1.2), and the Assumptions 2.1-’7, for each :1: E

(0,1),

(nc)2(1—H){62(1:)— 02(1)} => 02(I)Y2, 3/4 < H < 1.

Now consider the case % < H < %. By Lemma 2.2.1, in this case the covariances

of the process u? - 1 are absolutely summable. Hence this process is short range

dependent and suitably standardized 62(I) will be asymptotically normal. To prove

this, we use a result of Wu (2002), which in turn is based on some results of Maxwell

and Woodroofe (2000). For the sake of completeness, we state Corollary 1 in Wu

(2002) as Lemma 2.4.2 below. Let H - II denote L2-norm, and let

t—l

ut,+ = Z aiEt—iv ut,_ := ZaiEt—ii at = ut,+ + ut,__, t Z 1.

'=0 iZt

Let (p be a function from R to R, 9011(1) := E99(17 + un’+), Sn(<p) = 221:1 (p(ut).

Lemma 2.4.2 If EHcpn(u1)|]p < 00 and ||cpn(un,_)|| = 0(nH—1) for some p > 2

and n < %, then

{fis[nt](‘p)70 S t S 1} => {008(t)10 S t S 1},

in D[0, 1], with respect to the uniform metric.

Our needed result is given in

Lemma 2.4.3 Suppose (2.1.2) holds with Eleolp < 00, for some p > 4. Then, for

% < H < %,

[Rt]

1 2 1 B t ' D 0 2 ' t"W Z(uz- — )=> 00 (), (in [ , ], uniform me me),

i=1
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where B is the Browninan motion on [0,2] and

00

03 2: E018 — 1)2 + 2 Z E[(u(2) — 1)(uz2 — 1)]

i=1

oo oo oo 2

(2.4.5) = 2 +(EeO — 3) :0 2102asat2+8, 7t = (Z Oi0t+i) .

t=0 =0 s=1 i

Proof. The proof follows from lemma 2.4.2 applied to (p(I) = 1‘2 — 1. Note that for

this (p,

WM == E99013 + "t,+) = EKIB + ut,+)2 ~11 = 172 - 2022-

izt

According to Lemma 2.4.2, it suffices to verify that for some K, < %,

(2.4.6) 11491111-)“ = our—1).

But this is satisfied with n = 2H — 1, because

2

|l<19t(Ut,—)||=2 “[20151]?” 7:022]

iZt iZt

4 2 2

= EKZO‘iEi) —2:azzE(Zaiez-) +(Za22)]

2'21 iZt 2i>t 221

= EEéZaél—l—B Z 01sz2—202

iZt 1.751112%th i>t

= (E53 — 3) Z 0121+ 2: c112: O(t4H_4).

iZt iZt

The claim about 0% follows from (3.5.2). [I]

Theorem 2.4.2 Suppose (2.1.1), (2.1.2) with Eleolp < 00, for some p > 4, and the

Assumptions 2.1-7 hold. Then, for every 0 < I < 1,

.2 2 2 1 3

\/n—c{o (I)—o (I))}==>o (I)00Z, 2<H<4’

where Z := — f028 t)dW(1— t) has the N(0, 2]|W||2 ) distribution.
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Proof. Arguing as in the proof of Theorem 2.4.1,

marl/2:11" )02(%)(u§— 1)

= (nc)—Cl/2){Snwn(a:)o2(g) - Sow1(1')o2(l)

n

 + Z 5771;) [wt($)02(':;) — wt+1($)02(t+1)l}Tl

= <nc>‘1/2{ sn<§)[wt(x)oZ<—t-)— wt+1($)028:1)”

+op(1)

= (nc)_1/2{/;113n($—cu)[W(l/)02(:c—CV)

—W(u — ixflo — cu + %)]du + op(1)} + 0pm)

= <nc)‘1/2{ [__115n($—CV)W,(V)29:1,()du)}+op(>

Since Ill W’(z/)du = 0, the leading term in the right hand side above is equal to

1 [Mm—CV”

<nc)‘1/202(a:)/ 1w’<u){ Z (ui—mdv

_ k=[n(a:—c)]

1 1 S

___ no —l/202 :1: I 1/ u: 2 a: ’12 [nc](u) V

< ,) (>/_1W( )s.,(,,)(1>d do ( )/_1W( )——[nc]1/2d.

The theorem follows from this fact, Lemma 2.4.3 and the continuous mapping theo-

rem. C]

2.5 Uniform convergence rate of f

In this section, we consider the uniform convergence rate of r“ and uniform consistency

of (7. As is well known, under i.i.d. error setup, the point wise consistency rate of

the kernel type regression estimator 1“ is 1/an, and the uniform convergence rate is

nearly the same: log n/x/nb. As seen in Theorem 2.2.1, when errors are long range
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dependent, the point wise convergence rate is (nb)—(1_H). We shall next show that

if the innovations e,- satisfy the Cramer’s Condition, then the uniform consistency rate

of 7‘ is (nb)—(1_H) log n. Towards this goal we first recall the Bernstein inequality

from Doukan (1994).

Lemma 2.5.1 Let Xi,i = 1, - . - ,n, be mean zero finite variance independent random

variables. Assume, additionally, that they satisfy the Cramer’s Condition: For some

C' < 00,

(2.5.1) E|X,-|k g Ck—22!EX,? k = 2,3, . .., i = 1,2, . -. ,n.

Let Sn = 2?:1Xi) 5% = 2'2”“:1 VadXi). Then, for any 6 > 0,

—52

P S >6 S2ex _—
(| HI ) P{4S%+2C€

}.

Remark 2.5.1 A large class of random variables including bounded, Gaussian and

Gamma r.v.’s, satisfy this condition.

0 . ‘ ‘ _ m . ’ o . _

Rewrlte the movmg average process as at — Zj=_00 at_J e] by definmg a] -— 0

if j < 0. Then for some integer L > 0,

1 n L

FEW =—'LSL+S +SL 3L: 2 vnjsj’

—L 00 1 n t

— +
SL = Z an-ej, S = Z an-ej, vnj = a; Z kt(r)o(;)at_j

j=—oo j=L+1 t=1

Let 0* := SUP$E[0.1] 0(17). Observe that for large L, VarSZ' = 0

g.22321>>>2»?
j:_.cx)

0* 2 nan — 2

= (LM)—[m "b t)dt+0(%)) L2H—2 =O(L2H"2).

VarSI: |
/
\
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Consider SL Let Xj vnj ej. If ej s satisfy the Cramer’s Condition, then

ElXj-lk g |2>nj|kok—2(k!)E|s,-|2 s |z>,,j|k—20k—2(k!)Ex]2.

Moreover, using the fact a and K are bounded above and the Cauchy-Schwarz in-

equality, we obtain that for any 13 > 0,

'anl = 7.12“ 2+ 2 )W'" (n-latJI
It—jl>fi lt-J'l<fi

1 n 1/2 1/2
CE(Zk§(2)) ( Z 0]?) +olgltaén l—kt(:r)| Z lojl

i=1 |Jl>fi IJISB

1 H—1 1

C[mfi +217) :2 lajl]

IJISfi

I
A

I
A

Choosing fl = nb in this bound yields that for all sufficiently large n,

(2.5.2) lrsnjagn Ivnjl S C (nb)H-3/2.

Thus these Xj’s satisfy the Cramer’s condition for all sufficiently large n with C there

replaced by C2 = C (nb)H—3/2.

To apply the Bernstein’s inequality, we need to analyze the variance of these r.v.’s.

Towards that we have

2 (0*)2

oj 2: Vaer 3 (nb)2 :tkt(;r)k3(:r)|at_ja3_jl,

&

 

 

 

 

Tl 2 (0*)2

= ZUJ' = (nb)2 11"“(’3) 2L lat-Jas-J'
3:1 s,tk j:—

< (0*)2Zkt((1)}: (I) §L la a I

_ (rib)2 t 1 AS ' t_] 8—]s,t ’=—00

_ (0*)? ‘ _ 2H 2

— (72b)? th(T)bs(T)7|t 3| _ 0((nb) )
s,t
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Applying Bernstein’s Inequality with 6n, = (nb)H—1 log n, we get for n sufficiently

 

 

large,

P(|S |>e ) < 2exp{ —€% }n _ ,

L 4C(nb)2H—2 + 2C(nb)H—3/2€n

_1 2

(2.5.3) = 2exp{ 0g "

40 + 0((nb)-1/2) '

This inequality will be used to prove the following

Lemma 2.5.2 In addition to the Assumptions 2.1-3 with 7' = 2, suppose that {52-}

satisfy the Cramer’s Condition. Then, for any 0 < a0 3 a1 < 1,

sup |r()— m<>|=0p(<nb)(H1>Iogn>

madam]

where the constant in Op does not depend on a0 and a1.

Proof. Let N = Nn be a sequence of positive integers such that N = 0(n). Let

a0 = £0 < :61 < --- < xN_1 < 3N = a1 denote a partition of the interval [a,b] such

that xj — j—l g l/N, for all 1 Sj S N. By (2.2.4),

su |1‘(:r)—r(;r)| S su %)u|

$E[ci),b] I€[:b](l—b1:t=21kt($ t

1 n k ,. t

+172 dam—ran)
t=1

_ 8:1) ibzkdl‘fld-Ml

‘2 t=1

+max sup lin(kt(r.>—kt<m»(fiance?)
1 xi_1<x§xi

S 3:13p (ISL($i)l + ISZ—(Iifl + lSL1(‘ri)l)

Z

1 n
t

+m'dxzx SUp l— (kw?) — kt($))0(—)ut|
l —1 < 1‘ < 552' "ht-:1 l n

+0(b2)

I + II + 0(b2), say.
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Consider the term II. Using Lipschitz condition of the kernel function K, and the

Ergodic Theorem, we have

n
1 t

11 = max sup l— (kt(r) — kt(.r '))a(—)utl

OSJSNl‘j_1<.TSl‘-j nbtzzl J n

' ' bCIT-15'— I n.r+n

s ——————— Z w
0‘3“ xj-l < :r S xj tznm—nb

abC 1 n;r+n

S ma<xN s p N—b—h Z lutl

. . n
0<J 1:] 1 < a: < x] t=nx—nb

_ 1 _ H—l
— 0p(Nb> — opunb) >.

Consider the first term I. By choosing large L, say L = n2/(2"2H), the terms

involving SIT and S; are of smaller order than (nb)H’1 log n. In view of the assumed

Cramer’s condition for 52-, the lemma thus follows from (2.5.3) in a routine fashion.

[:1

2.6 Estimation of H

In practice, the parameters C and H appearing in the spectral density (2.1.3) are

unknown. In order to be able to use the studendized versions of Hz) and 6(1‘) to

make the large sample inference about T(IL') and 0(22), a ln(n) consistent estimator of

H and a consistent estimator of C under the model (2.1.1), (2.1.2) and (2.1.3) are

needed.

In the parametric case, i.e., when the spectral density is specified up to a finite

1/2-consistent anddimensional parameter, the Whittle estimators are known to be n

asymptotically normal, proved by Fox and Taqqu (1986) for the Gaussian processes,

and by Giraitis and Surgailis (1990) for linear processes. For semi-parametric models

where the spectral density is like in (2.1.3), the popular estimates are the local Whittle

estimates as in Robinson (1995a, 1995b, 1997).
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In a finite sample simulation study, Taqqu and Teverovsky (1995, 1997) observed

that the Whittle estimator of H based on a stationary observable process, where

there are no nuisance parameters except the mean, is by far the most accurate when

the correct parametric model is chosen, and robust against certain departures from

the correct model. Otherwise, judging from the simulation data, the local Whittle

estimator with an appropriate m is preferable over other estimators when the form

of the spectral density is not completely known, and in this case, its consistency

rate is ml/2 with m = 0(a). Taqqu and Teverovsky (1997) suggest a value of m z

n/32 if the length n of the time series is 10,000. Dalla, Giraitis and Hidalgo (2005)

recently give the convergence rate of the estimator H for some general stationary

processes satisfying (2.1.3) and “ergodicity” conditions, including linear processes

and functional Gaussian processes. It is thus desirable to develop their analogs that

will be useful for making inference in the model (2.1.1) and (2.1.2).

To define these estimates, for an arbitrary stationary process £t,t = l, 2, - - - ,n,

define the discrete Fourier transform and periodogram

n o

can) = (arm—”2 2 eel“. 1mm = lemon?
t=1

Let ét := yt — f(t/n). Fix 1/2 < A1 < A2 < 1. With Aj := 27rj/n and an integer

m E [Ln/2), define A13 w 3 A2,

- 1 m zit—1 - — m
Q(z/J) := — Z A- Ian, Rap) = log ow) —— (2w — 1) 2 log Aj.

.7
mj=1 j=1

The local Whittle estimates of G and H are defined to be

G = Q(H), H = arg min R(z,~”J).

wEIALA2l

Under some regularity conditions including the assumption that 0(1) is constant in

3:, Robinson (1997) proved that
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Among the conditions required by Robinson (1997) to prove (2.6.1) are the following

two conditions.

(2.6.2)There exist 13 E (0, 2] and G1 yé 0 such that the spectral density f satisfies

“1) = 11—21%: + 011/3 + 0M», as A _. 0+.

(2.6.3)a()\) = 23:1 ajei’j)‘ is differentiable for all A in a neighborhood of 0, and

(d/dA)a(/\) = O(Ia(x\)I/A), as A _. 0+.

In view of (2.1.2) and (2.3.11) of Zygmund (1968, page 70), (2.6.2) is satisfied in our

case with 6 = 2H — 1, while Li (2004) has shown that (2.6.3) is also satisfied here.

We shall now construct the analogs of C and H under the heteroscedastic re-

gression set up (2.1.1) and (2.1.2), where 0(33) may depend on :c, that will satisfy

(2.6.1).

Note that in the above estimators, the periodograms are based on the entire

sample. Here we shall construct analogs of these estimators that use periodograms

based on only a subset of the residuals. One of the reasons for doing this is to

eliminate the boundary effects of f(:r) and 6(23) on 131. More precisely, we first use

all observations Y1, - - - ,Yn to estimate 7(3) and 0(1), but with bandwidths dn and

en possibly different from those in sections 2.2-4. Then we use periodograms based

on a subset of residuals, say, fiko+1, - -- ,iiko+M, to construct H as follows, where

kg and M are some positive integers, with k0 + M < n, and where {it := (yt —

f(t/n))/&(t/n), t 2 1. Accordingly, for any process 5,, and 1/2 < 1,!) < 1, let

k0+M .

“’6.M<A)=(27rM)—1/2 Z hem, 1g,M(A)=|w§,1v1(A)|2v

t=k0+l

1 m 2111—1
Qg(J/J)==;Zfij [gm-

i=1
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With fij :2 27rj/1VI and an integer m E [1,]1/1/2), A1 s it) g A2, define

m

(264) W) := legend—(22124)Zlogfij,

j=1

(2.6.5) C := QMH), H=argmin¢,E[A1’A2]R(i/J).

We shall show that

(2.6.6) ln(M)(H - H) —»p 0, c”; — G —>p 0.

As will be seen later one can take [W = 72“ for some a < 1. Then the first claim of

(2.6.6) is equivalent to log(n)(H — H) ———)p 0.

One of the assumptions needed for proving (2.6.6) is

Assumption 2.8. For H 2 A1 > 1/2 , as n 2 M —> 00, m = 0(M) and

2
4 1 M (logm)

l M —-——(n ) ("2de n +
 +d+Md4+i2) —>0,

nd

where d E dn is the bandwidth used to estimate T(CII).

We shall use the following decomposition of fit in the sequel.

 
t

(2.6.7) {it = at + Vt, Vt 2: {t + vt + Ct, 6t := ut(0( /n) 1),

 

6(t/n) —

, 21%) -— 12%) awn)
’Ut . = w, Ct=vt(&(t/n)_1), and

._ Y —- 7°(,,t,—_)
at 2 at + vt - (%)

Let

m

RU) z= logQa(w)—(2w—1)Zlogfij.

j=1

G :2 Qfl(f:{), H=argmin¢E[A1,A2]R(w)°

The following proposition is helpful in proving (2.6.6).
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Proposition 2.6.1 Suppose the Assumptions 2.1-3 with 7' = 2 and 2.8 hold. Then,

(2.6.8) log(M)(H — H) _.p 0,

(2.6.9) 6: — G —»p 0.

The proof of this proposition is facilitated by the following two lemmas and the

inequalities

1 2
IIfi,M—Iu,Ml S 2l1u,MIV,M| / +IV,MJ

(2.6.10) HILM — Ionl

IV:M S 5(I€,A/I+IU,M+IC,M)J VMZI.

1 2
2|Iu,MIv,M|/ +Iv,M|

/
\

In the first lemma,

m

.= 1—2H <-< 922:!)H)
f3 C6] ,1_j_m. mj_1 6].

Lemma 2.6.1 Under conditions (2. 1. 2), (2. 1. 3) andm = 0(11/1), we obtain that

uniformly in 0 < t g 1,

 

[tm] I .

(2.6.11) [tm]_'1 ZW—>p 1, as. for 1 g j g m, m —> oo.

1:1 J

QuW} C(11))
2.6.12 2 .

( ) 1/2S:£<1i 0w ”1”“)

Proof. By assumption, at, t E Z, is a stationary and ergodic process. Hence the

claim (2.6.11) follows directly from the Proposition 2.4 in Dalla, Giraitis and Hidalgo

(2004). To prove (2.6.12), using the first claim, the facts that for [6| < 1 and for all

large m,

(m _1)6+1_ m6+1_M6+1[_1)5+1_1]~ m6, C(12): 0((%)2(w—H))
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and (2.4.3), we obtain

‘ _ C m 2(1/2—H) Iu.Avl(t‘3j)
QuW) — Ga) — 51—326,- {—77,—— — 11

C m Iu.,AII("3j) 2am 2 (Ly—H

=gZI—7f—‘1hjfl (1“ )

F1 J

G m—l k [thIO‘il 2k7r 2 ,5,_H 2(k+1)7r 2 w—H

“Lt; Sig—T4103?) (" )‘(T)( )l

_ L"; 2 III-H
— op<<M) ( >). 0

Lemma 2.6.2 For the moving average process ut of (2.1.2),

Mle
m 4b!“ v+1
2 ] —’—}——— = Op(m ), w > —1.

j=1 J

= Op(l), If) < —1.

Proof. Formula (2.4.3) and (2.6.11) give

m I (a) 1 "J1 (a) , "1—119'1 (A),

i=1 3 j=1 J j=1 i=1 1

m—l

= 0p(m¢+1+ 2 J4?) Cl

i=1

Proof of Proposition 2.6.1. The main idea of the proof here is similar to that of

Theorem 3 of Robinson (1997). The proof is given in several steps. We shall first

prove (2.6.8).

For an e e (0, % ln(M)), 6 e (e/ln(M),1/2), let M. = {v : |(lnM)(1/) — H)I < 6},

N5 = (w: w — HI < 5}, e = [A1,A2] with A1 > 1/2, and 5(6)) := 11(6) — 172(11).

For any subset A C R, let X denote its complement. We have

P(|1n(M)(H — H)I 2 e) = P(H e eflm)

=P( inf R(I¢)< inf R(u,y))gp( inf S(w)50)

Kane _Mefle 717.09

g P(_inf SW) 3 0) + P(_ inf 3(6) 3 0),
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where the third inequality above holds because H 6 Mg ()9. As in the proof of

Theorem 3 of Robinson (1997), the right hand side of the above expression tends to

0 if

  

.~ / ——C 4:":

) |+ (MA/[)2 sup IQUW) (L )| Hp 0,sup .

9'62" G111) 80 N1 061)

which in turn, in view of the triangle inequality, is implied by

  (2.6.13) sup |Q“(d’) Ml+ (1111(02 sup I6211(1J’)- C(w)

  

  

G11») 90 N6 C(11) ' 2P 0

‘ QaO/J) — QuW) 2 QafL/J) — Q1102) _,
(2.6.14) supl C(11)) I + (1n 1W) esfipvél C(11)) | p 0.

Let

(2.6.15) D- =: [u’Mmj) 1‘”ij) ’5' —- 10"M(/3j) — Iu’Mmj).
J f]. .7 f]-

2. Sufi‘icient conditions According to the proof of Theorem 3 in Robinson (1997),

to prove (2.6.13) and (2.6.14), it suffices to show that

m—l

(2.6.16) 2 (1)2(A1—HH132-IZ Djl —>p 0.

i=1 m 2 j=1

(2.6.17) (iogM)2 inm—i)1—125—|ZDlapo

i=1

for some arbitrarily small (5 > 0, and

(IogM)2 m

j=1

Towards verifying the above conditions, we first need to obtain a bound on
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Izghlel/fj- Recall that fj = 0131—219, 11, := (4%) —i‘(%))/o(%). we have

  

  

 

J

M t t 8 S1 r(+)—T(fi)7‘(fi)_’(fi)
lit—3MEl, A — E n

S
..11( ) 27,111 3.2.1 0%) 0(a) e

= 1 lg:(51222111162124606.11]?

27rM t=1
0(%)

M

n

1
1

t 5 I P
k )k (—) (—)0(-

27rM8t 10(%)0(%)n2d21,p2=1 l( P n <7 )

xEulu ez(t SM

(2.6.19) == AW‘LBW'

Consider the term B(A) first. By a change of variable, we obtain

 

 

M n l

t—l ”(fi) itA—ilw
J (w) :2 K(—)—e

A 121:1 "d 0%)

M _

2 K(£E)eisw Z ”('Ttié)eit(x\—w)

ISISnd i=1 0(2)

Hence,

2 2 —1 M 1 n t 8
86) = (szn d) f(w) Z t 8 2 WW?

“7' t,s=10(fi)0(fi) l,p=1

xo(%)a(g)ei(p—l wei(t 3))‘dw

= (271Mn2d2)_1/_7:rf(w)|J/\(w)|2dw

s <21Mn2a2r1131e> + 32(1) + 83611.

where

3A/2

B16) := (m |f(w)—f(A)l|J,\(w)l2dw.

1r A/2

326) == {(31/2+ /_ 7. }f(w)|J,\(w)l2dw,

D
o

c
o 3
: ll 16) j: |J1(w)l2c11». 1 e {—11.11-
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To bound Bj’s we first obtain some bounds on JA" Let Dk()\) = Zle eijA,

3k = Dk()\ — w). Recall from Zygmund (1968, page 51) that

(2.6.20) le(x\)| S C/A, VA 6 [—7r,7r], k 2 1.

For M S n, if we take aj = eiflA—w) and bk = 0((t — s)/n)/0(t/n), (2.4.3) yield

 

  

M M—1 i _

()t _. A/ ’

t=1 0613121110(2) 015—21)

C=M—- 1

g C|DM(A—al)|+; Z le(A—w)|.

k=1

Hence, using the fact |K(s/nd)ei3w| S C, for all 3,6), and by (2.6.20), we obtain

M—l

(2.6.21) |J,\(w)l s CndlDM(A—w)l+Cd Z le(A—w)l

k=1

< C—Eg— VA 612 6 [—7r 71]
_ lA—Wl, 3 3 '

Similarly, (2.4.3) applied with a,- = eijA, 6, = K((t __- s)/(nd))o(s/n)/0(t/n), and

Lipschitz properties of K and a yield

Jig)“ <0
lg“ (g—e) _X, VAE {—77,7T].

Since f7r “_klt)w1dw—- 0 of k 75 l, we obtain that for all /\ E [—1r,7r] and for all

n 2 1,

_ 2
(2.6.22) f; IJ,\(w<JJ)|2da2=27r:n:lZM-Wt 3) 0—(—————)—(Ze)eZt)‘ _<C%.

_ S: 1 t= 1

Now, we are ready to give bounds on Bj’3. Clearly, by (2.6.22),

3
|
“
-

330.) g Cf()\)min{1, (A/fnd2/\2)_1}), VA.

Next, consider 32. Note that 3/\/2 s w 3 7r, implies A/2 S w — /\ 5 7r — A and

—7r 3 w < /\/2 implies A/2 S A —— w 5 71’ + A. Hence, by (2.6.21),

n2d2

B200 __ A2 '
   

45



Finally, since supA/Zng3A/2Hf0i) — f(w)|/|)\ — col) = O(f()\)/A), as /\ —> 0+,

from (2.6.20) and (2.6.21), 310‘) is bounded above by

cm) 3W , , om) M2

M). ,\/2 IDO—WMWS MA 0

  |D(w)|dw.

This bound and Lemma 5 of Robinson (1994b) imply that uniformly in j = 1, ~ - . ,m,

B1(Bj) = 0(fj(1 + log j)/j), as M ——> 00. This fact in turn together with the above

bounds on B3 and 32 readily imply that uniformly in j = 1, - -- ,m,

. M 1 1+logj

(2.6.23) B(,8j) = Op(fj{m1n(l, 75272) + —T—}), M _. 66.

Next, consider the term A0.) in (2.6.19). Arguing as in Robinson (1997), we have

A(,\) 3 2.412(1) + 2A%(/\), where

 
 

 
 

M 1 n t t

_ 1 E121 1k1(fi)(7‘(n) 7(5)) ,t)‘

M 1 n L _ L
1 @231: kl(n) 1 Mn) i

A201) : 27ert2—l: ( 10(L ) e tAi'

By the two term Taylor expansion and the Assumption 2.3, we obtain

(2624) A (A) < J—gjlr’fifiikdxlifl

H 1 —mndt=1 "1:11" "

M n
C l- t 2 t

+—— E E — k — .

t=1l=1

The last term in the above bound is O(\/ Md2), since

M n M
l—t 2 t l-t 2 t

EET) lkz(;;)| ~ 1:;1/(7) lkl(;)|dl

M

~ 2 nd/d2w2|K(w)|dw = 0(Mnd3).

t=1
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Using f vK(v)dv = 0 and the boundedness of r’, the first term on the right of (2.6.24)

is seen to be bounded above by

n )(l—t 2 1 ,

\/1\EIndtZllgkflt7—1 )(T) — nd /_1vI’\(v)dv|

M (t+1— l)/nd _ _

£2,212: /,),. {<t.,.’>K<J—af>-w<<v>ldvl

for large 72.. By the Mean Value Theorem this is bounded by

l

%l§{_n2d2 gm
tn_dl) +711d/_1_ IUIdU} = 0(g).

Thus A%()\) = 0(Md4 + M/n2). Similarly 213(1) = 0(M/(n2d2)).

 

These bounds together with (2.6.19) and (2.6.23) imply that uniformly in 1 g j S

ma

2..625I——’—fj—J= m1n1,—— + . + + .

( ( n 612)?) J fj n2d2fj

 
ItMfl) 0p( . M 1 1+logj M614 M )

We are now ready to verify the sufficient conditions (2.6.16) — (2.6.18). By changing

the order of summation, the left-hand side of (2.6.16) is seen to be bounded above by

m

211;: Cm2(H—A1)—1 Zj2(A1—H)|Djl_

j=1

By (2.6.7) and the Cauchy-Schwarz inequality,

 

l 2

£32(—A141)le ls C :12(H1H)|111.M(5j)16,M(Bj)l / +1.),ij)

<C(i]_2(HAl—HH)IIudlfIfij)I>1/2(:J2<(HAI—1.1),,I111IIIBJ___)jl)1/2

m

+ j 1

Z3 1‘)—
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This bound together with Lemmas 2.6.1 and 2.6.2, (2.6.25), Assumption 2.8 and the

following calculations imply that A1 = 0p(1).

m

2(H——A )—-1 -2<A —H)M_ 1 E;
m 1 Z 3 1 n C123-2 n d2m2’

  

j=1

, 4

m2—(HA1)—1:12(—A1H)fld_=M2——2Hm2H—1d4£Md4,

J=1fj

2(H—A1)—1j2(A§ M .- jw2—2Hm2H—1 < 1

j=1H)n2d2fj n2d2 — nd2.

The left—hand side of (2.6.17) is bounded above by

C(log M)277126_1 Z j_26|DJ-|

1:1

m

s caog M>2m26-1 : r25{
1:1

which tends to zero in probability by applying Lemmas 2.6.1, 2.6.2, Assumption 2.8

(Iu,M<aj)Iv,M<fij))1/2 + 1.114%»

fj fj

 

}

and the Sinlilar calCUIatiOIlS for 0 < 6 < 1/2.

m f (g .)

(l g ) 1 J I r -

‘

m m

",2,inr m +M“I‘leH—1+7.,d2,,m2H--1}'
  g C(log M)2{
71

And the same argument implies that (2.6.18) tends to zero in probability. [3

We shall next show that (2.6.8) implies (2.6.9). To that effect, we have

lG-Gl S IQu(m- Q~u(H)l+|Qu(H)— Gu(H)|+lGu(H)-G|

i=1

1 m 2H 1
HRZB] T (Iajijwj) uMmjm

i=1

1 m 2H 1
“H; 2159- - Iu,1l'1(l‘13j)_ CI.

]=
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By (2.6.11), the last term in this bound is op(1). The middle term is exactly equal to

le"1 2377;1ij which is op(1) by (2.6.18). The first term is bounded above by

1 m _ _ _

l—ZfiJQ-H 111—52.“ musing)» s 11—3ng H)|Q~(H)-
"1].:1 1333172.

l\»’loreover,

I)’3J2.(H_H)—1|=|exp2(H — H)Infij — 1| 3 4|(H — I:I)| ln(.M).

This bound together with (2.6.11) and the fact that Qfi(H) ——)p Qu(H) implied by

(2.6.14) thus shows that (2.6.8) implies (2.6.9). This also completes the proof of the

Proposition 2.6.1.

Remark 2.6.1 If we let M = n“, m = n77 and d = 71-6, Assumption 2.8 holds when

a/4SJ<1/2and0<6<n§a§l.

Now, let k0 = 19071 be a sequence of positive integers such that k0 —+ 00, kO/n —+

k0+k eitfij

2:0 6 (0,1) and (k0+M)/n —> 2:1 6 (0,1), as n —+ 00. Let wkwj) = Eta-k0 “t

By Zygmund (1968, V2), for any integer M 2 k ——> 00, if m = 0(k),

, 2

(2.6.26) M = 010(1), 1gjgm
kfj

Let \Ilt = o(t/n)/&(t/n)—1. Using Lemma 2.8.3 and Lemma 2.8.4 in the Appendix

here, we obtain that uniformly for k0 S k S k0 + 1H,

1 1

(2.6.27) ‘Ilk -—>p 0, Siplq’k—‘Pk+1l =0p(Tn), Tn = EVE,

where h = hn is a bandwidth sequence for estimating o(t). We need the following

Assumption 2.9 Assume that 'm.410g4 M/M3 + TnM ——> 0.

Now we are ready to prove the following main theorem.

Theorem 2.6.1 Suppose Assumptions 2.1-4, 2.8 and 2.9 hold with T = 2. Then

(2.6.6) holds.
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Proof. For t = k0 + 1, k0 + 2, - -- ,k0 + M, recall the residuals can be written as

{it = at + {t + "Ut + "t as in (2.6.7) and (2.6.8). From the proof of Proposition 2.6.1,

we know the sufficient conditions are analogs of (2.6.16)-(2.6.17) with Dj replaced

by 123-. Using inequalities (2.6.10) and (2.6.11), we only need to show the following

claim: uniformly in 1 S j g m,

 

 

 

I (13‘) 1 (fi') 1 (13')
(2,628) _€_aM_J = 019(1). "_aM_J_ = 0mm).

fj fj fj

By (2.4.3), we obtain that uniformly for 1 S j S m,

k +M
I . 0

S’A/ij) = 2 Ill/I I Z utqltenfiJ‘g

fj 7T fj t—ko

k0+M—-1

27rM 1/2 k0+M 1/2 k k+1

fj k=k0 f]-

M—l
ij) C 2 lwk(fij)| 2

<C\IJ2 j—+— sup (Wk—Wk 1)
k0+M f]. MkoskS/CO‘FM + ([621 le/2 )

= I + II.

But, by (2.6.26) and (2.6.27), I = 0P(Iu,M(IBj)/fj) = op(1).

Next, consider the term II. For any positive integer N < M — 1, we have the

inequality

(2,13:3111.).(fly-m2 < 2125:, loamy->112 + 212%?“ Iwkmjm?

f1“ ’ fj fj '

By the Ergodic Theorem, supksN Iwk(fij)| = 0p(N), for any sequence of positive

   

integers N ——1 00. Using this fact we obtain that the first term in this upper bound is

Op(N4), for all 1 S j S m. For the second term we choose N = 0(mlog M). Then

by by (2.6.26), it is 0p(M3) for all 1 < j < m. Hence, in view of (2.6.27), 11 =

Op(N4T7%/M) + 0p(7'g—M2)— 0p'r(7gMZ) = 0p(1), by Assumption 2.9. Therefore

the first claim in (2.6.28) holds.
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Let 31:03] )—Zf0:k+11teitfij. Notice that in the proof of (2.6.25), the only

requirement is m = 0(M). Therefore we can similarly obtain that for N S k _<_ M,

uniformly for 1 _<_ j S m,

lamp? IUJ‘Jcaj)

ij =0P( fj )

Similarly to the proof of the first claim in (2.6.28), using the relation Ct = 'L’t‘l’t’ see

(2.6.29)

(2.6.8), we have

  

 

k +Il/I

___—IC’Almj) : 1___, 0E: vtwteZt’BJF

fj 27rIlIfj t: [CO

I: +M—1

_ |5M(fij)\p 0: skwflm _q} )lz

’ 2mm 1/2 k0+M+1/2 k k+1

fj k=k0 fj

I Man a ”llama: 2
< CW2 —v-1-———-j—+—sup(\1! —\I' )2 Z J
'- k M k k+10+ f]. M k (16:1 fJi/z )

= III+IV.

The term III = 0P(Iv,M(fij)/fj)- By (2.6.27), [Sk(fij)| = 0p(N), uniformly for all

k g N. Hence

(ZM_1_|Sk(.8)1)2 < 2<Z£V=1l3k(fij)l)2_l_2(2k=1(}+1lSk(B])I)2
   

fj — fj fj

I (13 -)
= 0p(N4) + 0p(M3_QL’M_J_),

fj

so that the second claim in (2.6.28) also holds. Cl

Remark 2.6.2 Let hn g dn. Then as defined in Remark 2.6.1, Assumption 2.8 and

2.9 hold simultaneously if a < 46 /\ (1 — 6), 6 < 1/2 and 6 < 1) < 3a/4. If we take

6 = 1/5, then a = 4/5, we still have a large proportion of residuals to estimate H

from.
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Based on H, we are now ready to state and prove the following corollary about

the studentized versions of f(.r) and 62(17) for 1/2 < A1 < H < A2.

Corollary 2.6.1 Let (2.1.1), (2.1.2) and the Assumptions 2.1-9 hold. Let II and C'

be as in (2.6.4). Then, for every fired integer k 2 1, and for any distinct 11:1,- - - ,xk

in (0,1),

(”ml—H

(2.6.30) 7—71“—

GP(HM171)

{f(ri) — r(n,)}, i: 1, - .. ,k,=> Nk(O,I),

Proof. Let z,- =(nh)1-H(1=(x,-)— ream/0,, 2' = 1, . .. ,k. Then, the left hand side

of (2.6.30) can be rewritten as

(MW—EMA, i: 1,~-k.

Gp(H)Ut'

By Lemma 5 in Robinson (1997), p(H) is continuous on (0,1). Hence, by (2.6.1),

p(IiI) —->p p(H). In view of the Slutsky’s theorem, the consistency of G and 62(33)

and Theorem 2.2.1, the result (2.6.30) follows from (2.6.1) and that the fact that

ln(nb) S ln(n), for all sufficiently large n. E]

Similarly, from Theorem 2.4.1, we obtain

Corollary 2.6.2 Let (2.1.1), (2.1.2) and the Assumptions 2.1-9, and H and G be

as in (2.6.4). Then,

(nc)2(1_H)6_2(x){62(1') — 02(r)} => Y2, :1: 6 (0,1), :— < H < 1.

In the case % < H < %, from Theorem 2.4.2 we obtain that the asymptotic dis-

tribution of (nc)1/2032(1) — 02(1‘» is normal with mean zero and standard deviaton

02(13) = 02(13)00 21/2llWII, where 00 is given at (2.4.5). Thus to studentize 62(13)

in this case, there is no need to estimate H, but one must estimate 00. Let 60 be

a consistent estimator of 00, and set 62(33) = 6201960 21/2||W||. Then by Theorem

2.4.2, we readily obtain M6§1(1‘){62(:r) — 02(ar)} => N(0,1).
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2.7 Application to the Nile river data

Now we apply the obtained results to analyze the Nile river data. In Figure 2.1, we

plot Robinson’s kernel (solid line) K (.13) = .5(1 + cos(:z:7r))I(l:L‘| S 1) and the normal

kernel (dashed line). Figure 2.2 is the kernel estimation of the regression function.

Figure 2.1: Kernel functions .

 

    
0.0 0.2 0.4 0.6 0.8 1.0

Kernel functions

There is no difference in the estimation of regression function by using Robinson’s

kernel or the normal kernel, which is depicted by the solid line, and as a comparison

we also try spline methods with different numbers of knots, which are dashed lines in

this figure. When the bandwidth b = .050bse, we observed that Robinson’s estimation

and normal kernel smoothing and smooth spline with df=20 are the same.

The evidence of Heteroscedasticity is presented in the Figure 2.3. The solid curve

is the kernel estimation of variance function with kernel K(1‘), which is similar to
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Regression function of Nile.river compared to splines
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Figure 2.2: Estimation of regression function.



that of smooth spline with df=20. For this small bandwidth b = c = .05, the local

Figure 2.3: Estimation of conditional variance function.
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Variance function of Nile.river compared to splines

Whittle estimators are less than a half for both residuals 21 = (Y — 7h(X))/&(X) and

s = Y — mar), Ha = 0.3945635 and 1115 = 0.3803844.

When we choose larger bandwidth, 0 = c = .1. say, we observe that all behaviors

of regression function and variance function estimations are similar, except Ha =

0.6497344 and H5 = 0.6570367. Note that HNilerive, 2 .9. The findings may

suggest that the long memory effect of the Nile river data may be partially caused

by the non stationary trend and variation with time, instead of the error process at.

The long /short memory effect are caused by different choices of bandwidth, which

agrees with the results in Robinson (1997). In either case (with many other choices
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of b and c). it is suggested that Yt = T(t/n) + o(t/n)ut with heteroscedasticity may

be a reasonable model for the Nile river data.

2.8 Appendix

This section contains some needed proofs of some of the results stated in the previous

sections. To prepare for the proof of Lemma 2.3.3, we compute the fourth order

moments of “t as follows, where 73- := 22:0 akaj+k, with aj’s in (2.1.2).

3
EuOut = E Z aiajakalg—iEt-jEt-kEt—l

z',j,k,l

= 3 Z Z ai0t+iai+3zaia§+t(Eeg—1l

—i=t—j,t—k=t—l 2'

(2-8-1) ~ 3% + 0(7t),

as t —> 00. Similarly, for 1 S s S t,

EuOusut2 = E Z aiajakalE—iES—jEt—kEt—l

z',j,k,l

2

= Z Z aiaS+iak+2 Z Z aiat+iajat—s+j
—27=s—j,t—k=t—l —z'=t——k,s—j=t—l

2 4

+ Zaias+iat+rE50

i

78 + 27t7t—s + Zaias+iat2+i(E53 — 3)

i

(2.8.2)~ 75 + 27t'7t—s as t — s —> 00,

since the third term in the last but one equality above is bounded above by

s
SH—3/2t2H-3{/ ch-:3/2(1+ §)H—3/2(1 + 3211—3613,}

0 s t

t

+/ $H—3/2(1+§)H—3/2d$

s

00
+/t 1,19r—3/2(1 + §)1t1r—3/2(1 + 3211—3,”

0(8—2(1—H)t2H—3+t4H—5+t4H—5) = 0(t4H—5).
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Hence we also obtain that

(2.8.3) E'u0u.3(ut2 — 1) ~ 27t7t—sa as t - s ——+ 00.

For 3, t, r such that It — 3|, lr — t| and Is — 7‘| are all large enough, we have

Euousutur = EZ aiajakale_ies_jet_ker_l

_ 4
— Z aias+iat+iar+iE50

2

+ Z Z: aias+iakar—t+k

——2'=s-j t—k=r—k

+ Z Z aiat+iajat—s+j

—2'=t-—k s—j=r—l

+ Z Z aiar+iajat—s+j

—z'=7'—l, s—jzt—k

(28-4) N WSW—t + 7t7r—s + ”ITIt—s-

Proof of Lemma 2.3.3. We begin with the following decomposition:

Var(62(x) — 5%))

= Var{-nl—C Z wt(:£) [{T‘t + 073% _ “)2 _ Ui2ufl}

t

= Einl? Z wax) [(Tt - 7‘02 + zatutm ‘ fill l2
t

—E2[&2(1:) — 5%)]

n

 

: El (72:)2 Z wt2($l(lrt — ftlZ + 2otut[7‘t - 7A102}

s=t=1

+E{ Z (—1-§wt($)ws($l (th — ftlz + 2015710775 _ ft1)83H nc)

x ([71,. — $5]? + 2032730.; — $31)} — 5262(6) —— 52(1)]

:2 I + II — III,

First note that, by (2.3.5), we obtain

(nb)4_4H111 = Cb2 (2:,H).
ias
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Next, consider the term I. For this, we consider the cross-product terms needed

in the calculations and use (2.8.1)-(2.8.4), (2.2.4) frequently. Also, recall (2.2.3) and

let

1 n 1 7’
Cnt z: E5 2: kJ-(t/n)rj — rt, Znt-:= E— 23114:]t(/n.])o-u- Vt.

]=1j1=

Then ft — rt = Cnt + Znt and

Engm — r312: 03,131., — 2CntEut22nt + Eufzg.

But, by (2.2.4), ma‘XlStSn lCntl = 0(b + 71,-). Moreover,

22t _ 2
Euth — 222k %)ozojEuz-juut

2 2 22 1 2t 2

222k ojEu-juug.

By Lemma 2.3.1, the first term on the r.h.s. of the above expression is seen to be

of the order 0(1/nb), while by expanding 02-2 using Assumption 2.4, one can verify

that the second term is approximately equal to a? f K2(v)01l'u/nb, both holding for

all 1 S t g n. Using (2.8.2), for all 1 S t S n, the third term is approximately equal

to

I t t

72‘ Z kiiglkflglwaflh—z‘ + ”em—j]
" b no

2
2 2

”CPU” (1+0 1 fl“K(u)u‘2(1‘Hld’“l2(1 +00»,(nb)2—2H ( ll+ (nb)4 4H

3 < H <1,

Gp(H) 1 1 3

("hp—2H ( b)’ " < H < "’



Note also that E23, = Var('f‘t). Thus, by the Cauchy-Schwarz inequality and by

Lemma 2.2.1 |E(ut2Znt)| < CnQH"2. Therefore, for all 1 S t S n,

(722(va2)dv 02Gp(H) 1 1

12 = +W+0(—)+O(W)77b (nb) 71b (77b)

1

+O(b + —).

n

 Eu? [rt — ft

Next, we need to evaluate EZ4t. For this purpose, let

vapq r= K(W)K(I’)K(p)K(CI), dvaq == dwdvdpdq

, and fj denote the product integral j-times, j = 2, 3, 4, and D = 06(H). Then,

323, = Tnb4 Z k-(Mm)km(—nu“; )0,-ajamalEu,ujumul

1',ij

1 1 3t t 3 3

0237.3) + 7.11719. 2 #1 "z‘ (521W,- ”153%“:
z—j-m

+6 2 k3(n)km (—”)02-20m[(Eu22ugn—1)+1]

i=j3£k=l

t t t

+4 2 k22(;)km(;)kl(5)0220m01Eu2-2umul

i=j¢m5£l

t t t t

+ Z ki(—)kj(;)km(;)kl(;)aiajomolEuZ-uujumul}

#hémaél

4 -2(1—H)
1 40, (nb) 3 —2(1—H)

= 0(-n3—b§)+ ”21,2 [2K (w)K(v)lw—v| dwdv

602 4 b4H—4

+ 03:21; AK2(w)K2(v)lw—v|_2(1—H)dwdv

 

 

+6_0_t

712b2

wig-[We v>KD<q>[(n22)2(1‘H)lv—ql_2(1‘H)

+202)(K7:))4H_4|w — q|_2(1_H) Iu — v|_2(1_H)]dwdvdq

/(K2(w)K2(v)dwdv

04192

+—— K(nb)4__4H 4 vaq

+(Ip — wl - Iv — ql)—2<1—H)+(.q — wl - Iv — pl)‘2(1‘H)]dvaq-

[aw — vl . lq — pl)"2(1—H)
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Therefore, using the invariance of the product szipq under permutation, we obtain

4

(2.8.5) E(rt — 7“,)

= 3213—2— (/K(w)K(v)|u2— L'|_2(1_H)dwdv)2
(nb)4—4H 2

1 1 1

+0(b + g) + 0(56 + m).

Similarly, we can obtain that, for all t,

A 3

Eat_(Tt - rt)

—3D203t —2(-—1-—H) —2(1—Hl
(W44——__—H—/K())le dw/ZIKHK(v —p| dvdp

+0 _—

0((nb)41_4H)

Hence, for all a: 6 (0,1), we obtain that

1 2 . 4 2 2 . 2 2 3
I = migwflrWfirt-W) +40tut(7‘t-Tt) +40tut(0tut) }

1 1

0((nc)(nb)2—2H + (71«b)(nc) + R

 

Now consider the second term II .

=—21-—C(1')22wt103

 

ssét

x1{n.4b4 Z W m9:)k1(-SIMUjamalEuz-ujumul

z,j,m,l

_ZUt—n3b3 2 ki( m1(s)0i0m01Eu'umulut

i,,ml

3

liJm

S

+40't0'3—”12b2 2191-kyn(n)O'iO’mE’ltiUm,Ut'lL3}

2,771

= 111 — 112 — 113 + 114.
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Consider 111. Decompose the second sum in 111 into five parts: 2' = j = k = l,

i=j=k7él,i=j7ék=l,i=j#k;£l,andi7éj#kyél. Thenthe

corresponding first four parts of 111 are readily seen to be of the order 0((nb)—3),

1 1 1 - . , , . ,
0(W), 0(W), and 0((nb)3"‘ ), respectnely. To analyze the last part,

let €(s, t,p,w) := Is — t + nb(p — w)|—2(1-H), for any positive integers s, t,p,w. This

part is then approximately equal to

1

_

— _

712C2 2 wt(-T)1L’S($)0t20§
A vapq [02(7Ib)4H

40w _ ,UI . lp _ ql) 2(1 H)

+£(s, t,p, w) ((3, t, q, 1)) + €(s, t, q,w) €(s, t,p, v)] dvaq

163—22 [1,, f1" ws(x)wt(x)at20§

{Avapq
[(nb)4H—4(|w

_ ”I . IP _ ql)—2(1—H)

+£(s, t,p,w) [(3, t, q, 11) + [(3, t, q,w) €(s, t,p, 22)] dvaq}dsdt

4 2 1 —2 1—H 2
~ 0 (on {W[/2K<p>K<q)Ip—ql ( )dpdq]

+2/W(((21)W22) [AKW q)z|nc(1—22)

_ _ 2

+nb(p — q)| 2“ H)dpdq] dzlsz}

304__a:__()D2[ 2(1—H) 2
~(_nb)4-—4-_H [/KW q)-|p ql dpdq] .

The last step follows from the Assumption 2.7: c/b ——+ 0.

In 112, the part for whichi = j = k is 0(W); the part for whichz’ = k 741

is 0(m); the remainder is when 2' 75 j 75 I, this part is approximately equal

to

71.2. 2: ws<x>wt(x>[2030?1 / K<u>K<v>K<p>02
n C taés 3

x [<nb)4”“1(le - Iv — pirm—H)
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+£(s, t,p, 0)[€(s, t,p, w) + (”(3, t, v,w)]] dwdvdp

~ 04(1)D2{ /K(v)lvl_2(1_H)dv
W

X [K(p)K(q)lp — q|_2(1_H)dpdq

+4//W(z1)W(z2)[/K(((v)|nc21 — 22) + n.bv|—2(1_H)dv

><p)K/K( q)(|nc(21 ~22) +nb(p— q)|2(1—H)dpdq]

(xd21d22}

3::4_—-—)4—-(_H/K(v)lvI+21_(mmdv/KK-q()|p ql2“H>dpdq

The last step above again uses the Assumption 2.7. The approximation to the term

II3 is the same as that for the term II2.

For the term II , we have the followin : the art for which i = k is 0 1 ;
4 g P ((716)3—2 )

the part for which 2' ;£ k is approximately equal to

—2——n1c2 Zwfix)()w5(z)40t203/K(w)K(v)D2[(|t— 5|-2_(1 H)€(s, t, w, v)

taés

+£(s, t,w, 0)€(s, t, v, 0) + (Inbvl - lnbul)_2(1~H)]dwdv

~ 404($)D2{ A W(21)W(22)|nc(21 — 22)|_2(1—H)

x [AK(w)K(v)|nc(zl — 22) + nb(v — w)|—2(1—H)dwdv] dzlsz

+/W(21)W(Z2)d21d22

 

H

x/2K1(w)K )(lnc(zl —22)nbw||nc(221—22)+nbv|)2+2 dwdv

—2 l—H

40‘4(1))(D2 —2+2H

~ (nc),__2H(nb)21-11) /2W(Z1)2W(22)|(1-22)l

X[/K(w)K(—v)|v wI—2+2Hdwdv]dzldz2
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+440:r__(_)__D2( 2(—1—H) 2
+()nb4—_4—————H— (((/K:)|v| (11).

Consequently, we obtain that for each a: E (0, 1),

Varogo) — 6%)) = 0((.nc)-4<1-H> +(ncr1),

which in turn completes the proof of the Lemma 2.3.3. [I]

The following two lemmas are needed for proving some uniform convergence results

about a? and ft given in the Lemmas 2.8.3 and 2.8.4 below.

Lemma 2.8.1 Let “t be defined in (2.1.2). Suppose Assumption 2.10 holds, then

max u =0 lo N,asN—roo.lgthltl 12(8)

Proof. The proof uses the Bernstein inequality given in Lemma 2.5.1 and the trun-

cation technique. Rewrite the moving average process as “t = 2;):_00-015—jej by

defining ozj = 0 if j < 0. Then for some integer L > 0,

L

“t=Tt,L+TL,L+TL,L Tt,L= Z (it—2'59“
j=—L+1

—L 00

- _ . . + _ . .

TL“ 2 (It—953’ Tt,L" Z at—fl’

jz—oo j=L+l

Note that Tt+L_— 0, if L > N. To use Bernstein’s inequality, we calculate the variance

Of Tt,L:

L 00

Var(Tt,L) = Z atZ—j S E a? < 00, for any L, t,

j=—L+l j=—oo

Hence by Bernstein’s inequality, we obtain that there exists a 00 > C3 > 0, such that

 

—021 2N
3 0g }< C_1__,

C+ClogN N2

P( InaxN |TtL|>C3logN) g 2 P(th,L|>C3logN)—+0,

1<t< lgth

P(|Tt‘L|>C3logN) g 2exp{
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for any positive integer L. Next because E(TtL)2 = 27L 02- $ CL2H_2, by

choosing L = Nl/(z-ZH), we obtain that

L2H—2

2 N

 P( max |thL| > Clog N) 3 CN

lgth log

The lemma follows. [:1

Lemma 2.8.2 Let “t be defined in (2.1.2). Suppose Assumption 2.10 holds, and

Lid, nh —+ 00. Then for any finite positive integer N0,

 

 

sup1<k<NOnd|N01ndlz ull Hp 0,8111) —1)|—+ 0.

13ng0nh lNolnhl2:31” p

Proof. By the Ergodic Theorem, we have

k

222” —*a.s.0 ask-+00,

1:1

that is , V6 > 0,

1 k 1

0 = PULEW'Z‘Si-O): P(NQM§N(W§ 45))

k00
1

= = lim P( U (I—Zull>5)).

-—+ k _

N 0° k=N l=1

By choosing N = log(NOnd), we obtain that

1

sup |—~ ull ——>p 0, which implies sup ull —>p 0,

kZN k [:21 NgngOnb "‘11::

as n —+ 00. On the other hand, by Lemma 2.8.1,

1 N Nlog(N)

sup I— uIS— supN |u|=0 (————)=o(1),asn—+oo.

Hence the first claim in the lemma follows.

The second claim is obtained by a similar argument and the fact that sup1<k<N

25:1 '“12 -— 1| = 0pm + N log2 N). [:1
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Let d and h be the bandwidth for estimating 1(512) and o(a:) respectively, and

d,h —> 0, nd,nh —+ 00 in the following. Let A0 = {k0 + 1,--- ,k0 + M}, where

kO/n —> 11:0, (k0 + M)/n ——+ 112 1‘0, with 110,11 6 (0,1), and A1 := {j E Z; [to +

l—nhgjgk0+h1+nh}.

Lemma 2.8.3 Suppose Assumptions 2.1-5’ and 2. 6, 2.10 hold. Then, under (2.1.1),

(2.1.2),

sup lot2 — 11%| 2 op(1).

tEAO

Proof. In view of the decomposition (2.3.1) of &2(:1:) with b and 0 replaced by d and

h, using Lemma 2.5.2, the first term in (2.3.1) is bounded above by

 
QC n i—t

sup [f-—r-] —— W( )—> 0.

iEAl z 2 7mg nh p

Consider the third term in (2.3.1). Let Sk(t) = ZE;;‘_h:’f(u12 — 1) for t 6 A0 and

1 S k S 2nh. Since

1 k0+2nh 1 t—nh—l

mam-— 2 (2112—1113 n—hl Z (u?—1>I

l=k0—2nh l=k0—2nh

1 k0+2nh

W' 2 (21,241,

l=t—nh+k+1

by Lemma 2.8.2, we obtain that supteA0 suP1§k§2nh Iggaggl —>p 0, which implies

that the third term in (2.3.1) is op( 1) uniformly in t 6 A0, since

n

1 t—l 2 _ 52nh(t)

nh l—El W(—nh)0l(ul — 1) : —nhW(1)

t+nh—1

1 t—k t—k—l

+5519 g: hSk(t)(W(—nh )ok —W(———nh)ok+1)

= —n

by (2.4.3). This also shows that the second term in (2.3.1) is 019(1) uniformly in

tEAo. C]
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The following “Lipschitz” properties are needed for estimating H. Let Tn =

(1/(nd) V 1/(nh))-

Lemma 2.8.4 Suppose Assumptions 2.1-4, 2. 6, 2.10 hold. Then

log n
 

. - »2 -2 2
sup |r-+1— r-| = Op( ). sup I0; 1— o-l = Op(rn log n).
jEAl .7 .7 nd jEAO ]+ J

Proof. By the decomposition of 1“ in (2.2.3), we consider

1 j-l

sup — K(—) 01 lul 1—olul

jEAl ndlé:1 nd l + + ll

1 ” j—l

S SUP — K(—)[01+1—01lu1 1|
jEAl ndlé:1 nd +

1 " j—l
+ sup — K(—)ol[ul l—ul].

By the Ergodic Theorem and the Lipschitz property of a, the first term in this bound

is Op(1/(nd)). To deal with the second term, let jo = j — nh, j1 = j + nh. Note that

Zf=j0(ul+1 — ul) = uk+1 —- u - . The second term is bounded above by

 

JO

.1_

(2.8.6) sup —1-&.(u .1 — uj0)K(—1)o.1l+ sup i-djzl |u1+1 — ujol

jEAln J J jEA n l-jO

—l j l 1

XIK<—d— W 1 Mal
k0+3nd

Clogn C

Op( nd (nd)2 2 log n) Hp 0’

k0—3nd

since max1<j<n Iujl = 0p(log n) by Lemma 2.8.1. Hence the first claim follows.

Now consider the second claim. By definition and the first claim,

2 2 1 ”—1 j -l 2 2
l5j+1— ‘33" = la 2 W(7,;‘){l(7‘1+1 — 71+1) — (7‘1 - 7‘1) l

l=1

2 2 2 2

+l"z+1“z+1 “ 0'1 “ll
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1 .

=%(33)dthvl)l%4 ”wfifl
 

HERE—fwdTj)"l(“l+1‘ ul)| =I+II+III.

By the Lipschitz property of or and the Ergodic Theroem,

n— 1

sup II < C(nnh)_1 Z Iul+1|-— 0p((nh) 1).

JEAO I: 1

Similar to (2.8.6), the term III is bounded above by

%l(u§1—u20)W(—1)02.1|

212 2-1 2 j-l-l 2

71:2 '“z+1 "'0'|W(‘;1T)"z ‘W(—nr—)"z+1-_jo

the above bound is op(1) uniformly in j by observing that

max u2-<<( maxnjlu |)2 =Op(log2n)

1<j<n J 1<fi

by Lemma 2.8.1, thus proves the second claim.
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Chapter 3

Asymptotic inference for some

regression models under

heteroscedasticity and long

memory design and errors

3. 1 Introduction

It has been of great interest for statisticians to analyze the statistical models with long

memory errors, from simple linear to nonparametric regression models, cf., Csorgo

and Mielniczuk (2000), Dahlhaus (1995), Ho and Hsing (1995), Koul (1992), Koul

and Mukherjee (1993), Robinson (1997) and Yajima (1988, 1991) among others. The

asymptotic distributional properties of numerous well known estimators of the un-

derlying parameters in these models are different from those when independent or

weakly dependent errors are assumed.

Baillie and Bollerslev (1994, 2000) , Cheung (1993) and Maynard and Phillips

(2001) noted that some times when regressing spot exchange rate returns on the

lagged forward premium, both the error and the covariate processes may have long
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memory. We also notice in section 6 below that some monthly currency exchange

rate data exhibit long memory. It is thus of interest to analyze statistical behavior

of some inference procedures for the underlying parameters in regression models with

long memory errors and long memory designs. To begin with we focus on a simple

linear regression model with nonparametric heteroscedastic errors.

Consider the model where one observes a strictly stationary bivariate process

(Xt, Yt), t E Z := {0, i1, - - ' }, both having finite and positive variances and obeying

the model

(3.1.1) Yt = 60 + 61Xt+ 0(Xt)ut, for some (130,61) 6 R2,

00

(3-1-2) at 3= Z bj€t_j, bj ~ Cj-(B/z—H),as j —1 00, for some % < H <1.

i=0

Here, 5t are standardized i.i.d. innovations, independent of the Xt-process. The

sequence bj is also assumed to be non-increasing in j and C is a constant such that

00 2 __

that an/bn —» 1, as n ——> 00. Note that under this set up, 02(x) = Var(Y|X = x),

Throughout this chapter, for any two sequences, on ~ bn means

a: 6 IR, where (X,Y) denotes a copy of (X0,Y0). We further assume that {Xt} is

a Gaussian process with zero mean, standard deviation one, and an auto—covariance

function 7X(k) that is non-increasing in k and satisfies

- —2(1—h) . .
(3.1.3) 7X0”) ~GX6(h)k , ask—>00, for some 1/2< h <1,

where 6(h) = 2F(2 — 2h) cos(7r(l — h)) and GX > 0 is a constant.

For any stationary second order process (t, t 6 Z, let f5 and 75 denote its spectral

density and auto-covariance functions, respectively. Let 0(A) = 233:0 bjeij’) Horn

(3.1.2) and Corollary 4.10.2 of Bingham, Goldie and Teugels (1987), we observe that

fu(/\) = |c1(/\)|2 / (2n) and that for some positive constant Cu,

(3.1.4) qu.) ~ GUM—2H, A —» 0+; 7-u(k) ~ enema—204), k —+ 00,

fx()\)~CX/\1—2h, A —+0+.
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Several authors have discussed regression models with long memory (LM) errors

when 0(2) E c, a constant. The asymptotic distributions of the least squares es-

timator (LSE) and M- and R— estimators in non-random design linear regression

models with LM errors are established in Giraitis, Koul and Surgailis (1996), Koul

and Mukherjee (1993), and Yajima (1988, 1991). The latter two papers observed that

a large class of M- and R— estimators are asymptotically equivalent to the LSE in the

first order. Similar results were obtained for nonlinear regression models with LM sub-

ordinate Gaussian errors in Koul (1996). Dahlhaus (1995) discussed the asymptotic

efficiency of the generalized LSE in linear regression models with certain polynomial

type designs and LM Gaussian errors. Robinson and Hidalgo ( 1997) discussed the

linear regression model with LM moving average (LMMA) processes in both design

and errors with the error spectral density known up to an unknown Euclidean pa—

1/2-consistentrameter vector. They showed that a class of generalized LSE’s are n

for 6 under some conditions. In addition, for the same model, Hidalgo and Robinson

(2002) removed the assumption of the error spectral density being parametric and

used semi-parametric methods to obtain similar results. Ho and Hsu (2005) obtained

asymptotic normality of a class of generalized LSE in polynomial trend regression

models with errors being subordinated to a LMMA process. All these papers, how-

ever, are dealing with homoscedastic errors only.

Here we analyze the asymptotic distribution of the LSE (60, 61), of (60, [31), in

the model (3.1.1) and (3.1.2) with heteroscedastic errors. In addition, we analyze the

asymptotic distributional properties of the kernel type nonparametric estimators of

02(x) and the log(n)-consistency of the local Whittle estimator H based on the least

square residuals, assuming the above model holds. We also provide an asymptotically

distribution free test for testing the lack-of-fit of a linear heteroscedastic regression

model under the assumed long memory set up. This chapter also contains a simulation
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study and an application to some foreign currency exchange rate data.

This chapter is organized as follows. Section 3.2 discusses the asymptotic distribu-

tion of (30,61)’. It turns out that n1_H(SO—L30) _’d N(0,a2) for all 1/2 < H, h <1,

while if EX0(X) = 0, then the first order asymptotic distribution of Bl — 61 is degen-

erate at 0, where a is given in Lemma 3.2.1 below. In this case we then consider the

second order properties of 61. We obtain that in the case H +h < 3/2, n1/2(61 — 101)

is asymptotically normal with mean zero and some positive variance. On the other

hand even when H /\ h > 3/4 and both at and Xt are Gaussian, [31 has non-normal

limit distribution with normalization 712"H—h .

Section 3.3 contains a discussion about the asymptotic distribution of the kernel

type estimators of 02(17) with long memory design. It is observed that for an ap-

propriately chosen bandwidth sequence, when H < (1 + h) /2, n1_h(62(a:) — 02(x))

is asymptotically normal with mean zero and some positive variance and when H >

(1 + h)/2, the asymptotic distribution of n2_2H (62(33) — 02(1):» is non—normal.

As is evident from the above discussion, to carry out the inference about 50, 61

and 02(23), we also need a ln(n)-consistent estimators of H. We address this issue in a

more general model Yt = B’m(Xt)+o(Xt)ut, where B is now a q x 1 parameter vector,

m(:1:) is a vector of some known q functions, and where 0(Xt) and ut are as before.

Section 3.4 adopts the approach in Robinson (1997) to obtain a log(n)-consistent

estimator of H based on the pseudo residuals Yt — 6’m(Xt) in this model, where 6

is the LSE. This is unlike the case of nonparametric heteroscedastic regression model

with non-random uniform design on [0, 1] and LMMA errors, where it is necessary to

base estimators of H on the standardized residuals that need a uniformly consistent

estimator of 0(22), see Section 2.2.6 in Chapter 2.

Section 3.5 constructs a test of lack-of-fit of a parametric regression model. Let

11(1) 2: E(Y|X = :r) and consider the problem of testing H0 : [1(1) 2 1’3’m(27), for
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some 6 E Rq and all :1: E R, against the alternatives that H0 is not true, where

m(a:) is a q x 1 vector of known functions such that A := Em(X)m(X)’ is positive

definite. In the presence of long memory in design and/or errors and when 0(3) 5 c,

Koul, Baillie and Sugailis (2004) (KBS) proposed a test for H0 based on the marked

empirical process

A n A _

vn(:c) = Z (Y, —- fi’m(Xt))I(Xt g 11:), a: e 11;: [—oo,oo],

t=1

where 6 is the least squares estimator of ,6 under H0. They showed that n’HVn

converges weakly to a process degenerated in 3:, thus making the implementation of

the tests based on this process relatively easier, compared to when the errors and/or

the design processes are i.i.d.

Under the current set up and some conditions, Theorem 3.5.1 below proves that

under H0, n_Hl)n (at) converges weakly to Ja(:r:)7'(H)Z in DUI?) and uniform metric,

where Z is a N(0, 1) r.v., 72(H) := (3'6l(H)(2H2 - H)—1, and

(3.1.5) Jae) ;= Fan—«3.440(3), 170(3) ;= E(0(X)I(ng)),

a(x) Em(X)I(X g 1:), :1: 6 IR; no := Eo(X)m(X).

To use this process for testing H0, we thus need a uniformly consistent estimator

of .10 (x) and a consistent estimator of T(H). Section 3.5 constructs uniformly con-

sistent estimator of Jg, under H0, based on the leave-one—observation—out or a cross

validation estimator of 0(23). The regular kernel type estimator is not useful here

because the behavior of 62(Xt) is not stable. The estimators of G and H constructed

in section 4 are used to provide a consistent estimator of T(H) under H0.

Section 3.6 includes a finite sample simulation and an application to some monthly

currency exchange rate data that exhibits long memory. Section 3.7 is the Appendix

consisting of some needed lemmas and proofs.
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In the sequel, _’d stands for the convergence in distribution of a sequence of r.v.’s

while => denotes the weak convergence of a sequence of stochastic processes, and

11])(1) denotes a sequence of stochastic processes that tends to zero uniformly over

its time domain, in probability. All limits are taken as n —+ 00, unless specified

otherwise.

3.2 Asymptotics of the LSE

In this section, we consider the asymptotic distribution of the LSE (30,31) in the

model (3.1.1) - (3.1.3). For this, we need the following assumption.

Assumption 3.1. Xt and ut are independent.

Let at := 0(Xt), et := otut, X := Z?=1Xt/n, a := 221:1 ut/n, 17 :=

2?:11’15/11, e := %Z?‘=1 et, 3% := 2?:1(Xt —— X)2/n. Then the least squares

estimators are

._ 2:31:1(Xt — XXYt — Y) + 1

3.2.1 ‘ _

( ) [31 Z?=1(Xt-X)2

 

1 n _
(ii 2: Xtet —- Xe).

T

5X t=1

. _ _. 1 -1 n —
(3.2.2) 130 ;= Y—Xfil=60+é——2—(X;:Xtet—(X)2€).

Note that 8% —’a.s. 7x(0) by the Ergodic Theorem.

To proceed further we need the following result. Let 11(1) be a function on IR with

Eu2(X) < 00. Let V0 = Eu(X). By Assumption 3.1 and (3.7.3) in the Appendix,

there is a C < 00 such that E[(V(X0) — u0)u0(u(Xt) -— 1x0)ut] g Ct—2(1—H)t2h—2,

for all sufficiently large and positive t. Hence,

n n n

(3.2.3) n—H : 1/(Xi)uz- = Von—H Z “2' + n—H Z(V(Xz‘) — V0)’U.z'

' i=1 i=1i=1

n

= Von-H 2: u,- + Op(l).

i=1
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Next, let Zl, Z2, be two independent r.v. ’s, Zj having 1V(0. 191-2) distribution,

3'2 1,2, where u’il = Gu6(H)/H(2H -1), 1212 = GX0(h)/h(2h — 1). From Davydov

(1970), we obtain

11 71

(3.2.4) n‘H Z 11.in Z1, n-h Z X,- —->d 22.

i=1 i=1

Now apply (3.2.3) and (3.2.4) to 11(2) E 0(1‘) to obtain that e = Op(n1_H). We

also have X = Op(n1—h) from (3.2.4). By (3.2.1)-(3.2.4), and Slutsky’s Theorem,

we thus obtain the following result where J0 = E0(X) and J = Eo(X)X.

Lemma 3.2.1 Suppose (3.1.1)-(3.1.3) and the Assumption 3.1 hold. Then,

"1—H(30 - 20,31- 51) “*d 7X(0)—1(J01 J)Zl-

Note that by the Cauchy-Schwarz inequality J2 S E02(X) EX2 < 00. The

result about 61 is useful only if J 75 0. But if a is an even function then J = 0. For

example, in financial econometrics, the volatility (the conditional variance function)

is often assumed to have the form a + (12:2. In these cases the limit distribution of

711—H (61 — 51) is degenerate. It is thus important to investigate the higher order

approximation to the distribution of a suitably standardized S1 under the following

Assumption 3.2. 0(x) is an even function of :1: 6 IR and 7X(0) = 1.

Let Hj’ j Z 1 denote the Hermite polynomials, see, e.g. Taqqu (1975). The

Hermite expansion of the function 20(1) is

(3.2.5) =20: = E<Xo<X>Hj<X>1 ,- 2 o.

9
:
5
3
8

Cj:

The Hermite rank of 230(1: ) is defined to be min{j > 1; cj ¢ 0}. Since c1 =

EX20(X) 31$ 0, the Hermite rank of 170(1) is 1. Let 61 := fi1:):1 Xtet and

32 ,___ (“If/01h —(—32H)/2( _12)—(3—2h)/2]
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xI(.171 < 3,212 < s)ds dBl($1)dBQ($2)1

C ._ x/GuGX

0(Hla(h)

a.(::) :2 fOOO 11T(3"22)/2(1 + v)_(3_22)/2dv, 1/2 < 2 <1,

where BI and 82 are two Wiener random measures. We are now ready to prove

Lemma 3.2.2 Suppose (3.1.1)-(3.1.3) and the Assumptions 3.1-2 hold, with the in-

novations Ej being standard Gaussian r. v. ’3. Then, for hAH > 3/4, n2_(H+h)SI _’d

6122, where BI and 82 in 22 of (3.2.6) are now two independent Wiener random

measures.

Proof. Using the above Hermite expansion, we obtain

1 TI. C1 TI. 71. oo CjH

; Z XtUtUt = 7; Z XtUt+ Z“t:27H]j(Xt)

t=1 = t=1j2=:
B
I
H

Under Assumption 3.1, VarSn = 0(n_4+2H+2h). Because of the orthogonality of

the Hermite polynomials,

n n 00

Var (Tn) = 42: EusutE(ZJC—ij')(Xs 2%Hk(xt))

s=1 t=1 j:—ZJ k=2 '

n

_<_ Cn—Q Z 2 IS _ tIZH—ZIS _ tl4h—4

s=1t=1

g Cn-4+2H+2h_(2—2h) lnn = 0(VarSn).

An application of Theorem 6.1 in Fox and Taqqu (1987) to the leading term Sn gives

the desired result.

The following lemma directly follows from (3.2.4) and the Hermite expansion.

Lemma 3.2.3 Suppose (3.1.1)-(3.1.3) and the Assumptions 3.1-2 hold. Then,

(3.2.7) 112—””We "*d 2122.
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Theorem 3.2.1 Under the conditions of Lemma 3.2.2,

(3.2.8) n24]"1(31 — 131) _.d c122 — 2122.

Moreover, the Correl(ZQ,Z1Z2) equals

 

 

  

(3.2.9) \/2(2H + 2h — 3)(2H + 2h — 2)\/ Hh

(2H+2h- 1) (2H—1)(2h— 1)‘

Proof. In view of (3.2.1), the claim (3.2.8) follows from Lemmas 3.2.2 and 3.2.3. To

prove (3.2.9), proceed as follows. Let K1 = GXGu6(H)6(h). By (3.2.3) and (3.2.6),

 

2 ZeqnanHHh—zl

v X ~ Var(1:21 tet) C1 in(-ngXtutl~ (2H + 2h _. 3)(2H + 2h — 2)’

J3K1n2H+2h—4

 

__ 2 -_

Var(Xe) ~ JOVar(Xu)~(2H—1)(2h_1)Hh.

Next, by the Hermite expansion of 170(1) and 0(1), we obtain

1 n

E - ’ ‘)
(n 2 XtetXC

t=1

n

~ 61.1071.“3 tzls

2 _~ 01J051”_—3+ H+2h—42:”: 2""3|2H—2|%_ nk|2h 2

t=13=1k=1

4n1c1J0n2H+2h—4

(2H —1)(2h —1)(2H + 211 — 1)‘

TI TI

;E(X1X3)E(utuk)

 

This proves (3.2.9). D

The above theorem considered the case of ut’s being Gaussian and 3/4 < H, h < 1.

We shall now discuss the asymptotic distribution of the LSE’s when ut’s form the

moving average (3.1.2) and when H + h < 3/2. This in turn is facilitated by the

following lemma where Vt := l/(Xt) and Un := n_1/2 221:1 ”tut-

Lemma 3.2.4 Suppose (3.1.I)-(3.1.3) and the Assumptions 3.1-2 hold. In addi-

tion, suppose 1/ is a measurable function such that Eu(X) = O, Eu2(X) < oo,
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max{0<r<ln n} |V(:r)|/n1/2”7l —+ 0 for some 0 < n < 1/2, and the Hermite rank of

V(X) is 1. Then, for H + h < 3/2, Un —’d N(0,rt2), where 5% = limEUTZ, < 00.

Proof. The proof uses the truncation method similar to the one used by Robinson

and Hidalgo (1997). The main idea here is to approximate Un by a weighted partial

sum of the independent innovations {52-}. Fix H, h such that H + h < 3/2. Let

M = Mn > n(2h-1)/(2—2H), and define

it n

. —1 2 ._
Un,M'=" / Zl/t Z bt—jgj’ Tn,M°“ [In—Um)”.

- 2'

Because the Hermite rank of l/t is 1 and by the Assumption 3.1 and (3.7.3),

—M——1 n

(3.2.10) ET2”M = ‘3; Z E(Zutbt_j)2 s Cn2h_1M—2+2H —> 0.

jz—oo t 1

Hence it suffices to show that the weak limit of Un M is a normal distribution. We

prove this by showing that the conditional distribution of Un,M1 given .7 :=

{Xt,t = 1,2,-n}, converges weakly to N(0,a), for some nonrandom a > 0. Let

dn,j := % zg=1tht-j- By the Lindeberg-Feller Theorem, this is equivalent to

showing that conditional on .77,

71

(3.2.11) 2: (1%)]. —>p a positive constant,

j=—M

3.2.12 P max (1 - > (5 —> 0 for all 6 > 0.< ) (_MSSHI ml )

Consider (3.2.11). Let 71/06) = EVol/k, recall 'yu(k) = EuOuk = Zj-Obj bj+k°

Let

2 U: .— .

—=Mt1 t=1

Thus proving (3.2.11) is equivalent to showing that

(3.2.13) 32 ——>p Kg.
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Rewrite s2 = A + 23, where

n 11—1 n

1 n n 1
24:; Z Zugb?_j, 8:; Z Z Z th/Sbt_jb3_j.

j=-1Mt=1 jz—llll s=1t=s+1

But A = A1 + A2, where

_7=—Mt=1

1 n 2 00 2 00 2= 52015-240)“: bk— 2 bk) —+p0,

t=1 k=0 k=t+M+1

1 71 TI.

A2 = ’71/(0l— Z Z ’93—]

j=—Mt=1

Tl oo oo
1

= WW); 2: ( Z bi — Z bi) —> 7u(0)’7u(0).

t=1 k=0 k=t+M+1

sinceZ°° b2 —+0 1:" <u2— <o>>~ Onnd 1:" 11/?— (0)1k=M k , n t=1 t 7" 0-8- n t=1 t 71/

-—>a,3,C < 00 by the Ergodic Theorem. Hence

(3.214) A _.p 7,,(0)7u(0).

_ —1 1 n—k +M _.Also, B _ 22:1 (,1 23:1 Vst+s 23:0 bk+jbj) _.B1— 32, where

”—1 1 71—k- n—l 1 n—k 00

BI = E (g 2 Vst+siu(k))s B2 = 2: (g E V3”k+s Z bk+jb')'
k=1 8:]. k=l 8:1 j=S+M+1

By (3.2.10), 82 —+p O. For the term Bl, we have

n—1 n—1

Bl = 2 (nc — 1u(k))'1u(k) + 2: meme) =2 1311 + 312.

kzl :

By applying Theorem 6 of Arcones (1994) and the fact that the Hermite rank of the

bivariate function VtVt+k — 71/(k) is 2, we obtain supk Ell‘k — ’71/(k)l S anh—Q for

1/2 < h < 1. Then

71—1

(32-15) ElBI1l S 2 711(klElrk — ”ll/(kll —’ 0-

k=1
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Thus (3.2.13) follows from (3.2.14) and (3.2.15) and the fact that limn 312 exists for

H+h<3fl.

Next, in order to prove (3.2.12), we recall that maxlgtsn lth = Op(ln n) from

Berman (1992). For some integer l > 0, by the Cauchy—Schwarz inequality, we obtain

that

1/2 "
max (1 - = max n— Vb_-It——'>l+I t—‘gl_Msmlwl 4299 gt. ,(u 3| > (I Jl >)

n n
_1/2 2 1/2 2 . 1/2

< . . __ n (t-Zlvt) —Allng}(gn(;bt-Jl(lt ]|>l))

n

—1/2 .
+n max 1/ max b_-I t— SlIStSnltl_MSant=21lt3l(l Jl )

= Op(l—1+H+n_1/2( max |V(x)|)lH_1/2).

{Ogrglnn}

In view of the assumption max{0£x£lnn} lu(:z:)|/n.1/2‘77 —+ 0, the above upper

bound tends to zero in probability for any I = 0(n277/(211—1)). Hence (3.2.12)

follows, thereby completing the proof of the lemma. C]

Now, take V(:r) = 10(1) in the above lemma. Assuming that EX202(X) < 00,

under Assumption 3.2, EX0(X) = 0, and the Hermite rank of this function is 1.

Also, since maxlgtsn lth = Op(ln n), and by Lemma 3.2.3, XE = op(n_1/2) for

H + h < 3/2, we readily obtain

Theorem 3.2.2 Suppose (3.1.1) - (3.1.3), and the Assumptions 3.1-2 hold. In ad-

dition, suppose EX202(X) < 00, and max{0<x<1n n} a(a:)/n1/2"'77 —> 0, for some

0 < 77 <1/2. Then, for H + h < 3/2, n1/2(/§1— fil) —>d 1V(0,K2).
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3.3 Asymptotic distribution of the variance func-

tion

In this section we investigate the asymptotic distribution of the kernel type estimator

of the conditional variance function 0201:) for every fixed :1: 6 1R. To introduce this

estimator, let K be a density function on [—1,1], b = bn be sequence of positive

numbers and (b denote the density of the N(0, 1) r.v. Let Kb(x) E K(1:/b) /b. The

kernel type estimator of 02(23) corresponding to the given K and b is defined to be

 

n

- 1 . . . .

02(17):: , E Kb(2: — Xt)e%, 5t := Yt - :80 — (31Xt.

cz>(:r:)t_1

Let 52(33): (71¢(x))—12t_1 Kb]: - Xt)(0’tut + 6)2. Note that

 (3.3.1) 0‘20")—)=n¢()t:L-:1Kb(x—Xt)[2(otut+é)

><(Xt- X)(fi1—fi1)+(Xt-XX)2(fil—Bl)2],

In view of (3.2.1), (3.2.2), and the facts 3% ——>p ”((0), and

n

1 -_ _ H+h-—2
n ; etXt Xe — Op(n ),

7—11- 2 Kbcn - X009 — X)2 = 019(1),

a
.

:
l
l p
-
A

1 Z Kb(s — thstut + swit — X) = 0,,(1),

t=1

by Theorems 3.2.1 and 3.2.2, we obtain

:
3

(3.3.2) (“72(27) — 62(27) —_- op(nH+h—2), v 27 e R.

As will be seen in the sequel na(&2(:r) —0'2(I)) = Op(1), with a = l—h or a = 2—2H,

depending on whether H < (1 + h)/2 or H > (1+ h)/2. In either case from (3.3.2) it

2( ~2
then follows that na(& .17) —0 (22)) = op(1). Thus, it suffices to obtain the asymptotic
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distribution of 02(2), for a given 2. Now fix an 2: 6 IR and consider the following

additional assumptions.

Assumption 3.3. Kernel function K is a smooth density symmetric around zero

and with a compact support {—1, 1].

Assumption 3.4. The variance function 02 is twice continuously differentiable in a

neighborhood of 2:, and satisfies infy 0(y) Z c > 0.

We claim that if b —+ 0, nb —s 00 and Assumptions 3.1-4 hold, then

(3.3.3) 1352(1) — 02(2) = 0(1)2 + nQH—Q).

To see this, rewrite 02(1) — 02(23) := An + By; + Cn, where

1 n 22 2
An = ”(1.))2Kb($-Xt)0tut_a (2:)

  

 

 

t=1

1 n 2

B = —Xn my); Kb(s 0(a)

l n

Cn = 2n¢>(2:) 2:1 Kb(:c — Xt)0tute.

First, by the Assumptions 3.3-4 and a routine argument, it can be seen that EA” =

009).

Next, let ¢t, s, k denote the joint density function of (Xt,X3,Xk). By the As-

sumptions 3.1 and 3.3,

EBn = —;——3())tgk E{Kb(2: —- Xt)030k}E(Ukus)

 2 ¢:(x)1tZ:/k//Kb($:—)0(z)0w(w)(f)t,s,k(y,z,w)dydzdwE(uku3)

: )tZk()0(///K1))0 0(w)(bt 3’ k(2: —vb,z,w)dvdzdw E(-'u.ku3)

(p(x

 

    
0(z)0(w)¢t s k(2:, z, ui)dzdw E(ukus)
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since f K(v)dv = 1. By Lemma 3.7.4, the double integral in the above expression

is uniformly bounded from above for sufficiently large It —- SI and It — kl. Hence

EBn < Cn—2221:22121Eukug = 0(n2H_2). A similar calculation implies

Cn = 0(n2H_2). These facts readily yield (3.3.3).

Next, to obtain the asymptotic distribution 52(2) — 02(2), we need to analyze

the order of magnitude of each term in the following decomposition:

(3.3.4) 52(1) — 0%) = 1 + II + III + 211/,

where

I = Tl—1_¢($)t=ZIKb($ _Xt))0t2(ut2—1),

 

 

 

  

_ 1 n , 2 2 _
II _ n¢($)t::1Kb(r—Xt)0t —0 (23)—111+112,

1 n 2 ._ 2111 = n¢($)t=:1(Kb(x—Xt)0t—Tb), Tb.— EKb(x—X)0 (X),

__ Tb _ 2
112 - @(1') U (17):

III — (6)2 iK(r—X)IV é(MiKb()2:—X

First consider the term II . Note that 112 g Cb2. To analyze the term 111, we need

one more assumption on the bandwidth.

Assumption 3.5. The bandwidth b satisfies n2—2hb —-> 00 for 3/4 < h < l, and

n2h—1(lnn)"lb ——> 00 for 1/2 < h S 3/4.

Note that the Assumption 3.5 implies that 112—2h = 0(nb). Let Z be the stan-

dard normal r.v.. Using the reduction principle of the kernel estimation presented in

Lemma 3.7.1 in Appendix, we obtain

Lemma 3.3.1 Suppose the Assumptions 3.1-5 hold. Then

711—,11I1 —>d 2: 02(2):,(912.
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To deal with the term I, using Lemma 3.5.1, (3.7.2) and that EI = 0, we ob-

tain that E12 = 0((nb)_l + n4H-4), for 3/4 < H < 1, and E12 = 0(('nb)_1),

for 1/2 < H < 3/4. From the proof of Lemma 3.7.1 one also obtains that I =

Op((nb)’1/21n1/2(n)), for H = 3/4. From (3.2.4), we can see III = Op(n2H—2).

And an argument similar to (3.7.1) yields that IV = Op(n2H-2). We summarize

these results here for a later use: Under the Assumption 3.5,

 

(33.5) 1 = 0p(—\/1;l——I; + n2H~2I(H > 3/4) + 32%)

0pm"-1 + b2), 111 = IV = op(n2H—2).

I(H = 3/4))

II

The following theorem gives the asymptotic distributions of 02(1), where 252 :=

n2_2HI, Zn = n2-2H(III + IV), and K3 := J3 + 2J002(2:).

Theorem 3.3.1 Suppose (3.1.1), (3.1.2), (3.1.3), and the Assumptions 3.1-5 hold.

(a). In addition, suppose

(3.3.6) H < (1+ h)/2, n1_hb2 —-> 0.

Then, n1_h(02(2:) — 02(2)) _’d 02(2)."c 1121 Z.

((2). In addition, suppose

(3.3.7) H > (1+ h)/2, nl—Hb _. 0.

Then,

(3.3.3) n2—2H(02(2:) — 02(2)) = 02(x)z;‘.;2 + K3222, + 019(1).

Moreover, 27:2 _’d Z; and Zn _’d Z, where Z; is the 22 of (3.2.6) with Bl = B2-

Furthermore,

* 2 2H 4H — 3

(3.3.9) Correl(Zn2, Zn) —s 4H _ 1” 2H _1.

Proof. In view of (3.3.2), it suffices to prove the above claims with 02 replaced by

52.
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PROOF OF (a). In this case, (3.3.5) implies that the term II is the dominating term

in the decomposition (3.3.4). Thus this claim follows from Lemma 3.3.1 and (3.3.3).

PROOF OF (b). Note that because h > 1/2, H > (1 + h)/2 implies that H > 3/4.

Hence here the terms I, III and IV are the dominating terms in the decomposition

(3.3.4). By (3.7.2), we obtain n2—2HI _’d 02(2)Z’2“.

Next, because %Z?=1 Kb(2: — Xi) — (22(2) = op(1), and 96(2) > 0, we obtain, in

view of Lemma 3.2.1, that n22H((nq§(2))12t1Kb2: — Xt) — 1)(e)2 = 019(1).

By (3.7.1), m<zll=l Kb(2: — Xt)et — Tb Zt=1 ut) = op(n_1+H). These fact

and Tb ——s ¢(2)02(2:) imply that n2_2H(III + IV) —+d K31/2%Z2, thereby completing

the proof of (3.3.8).

To prove (3.3.9), note that E(n1_Hu)2 —> 1&2, and by (3.5.4),

+1X(s2)1x(s1— s3) + 7X(83)2X(82 — nu}

1____20X9(H _ — (ii-02H 2 4H—4

N);181:_:XH(—2H1)~1n3¢

Hence Var(ug) ~ 2w¥n_4+4H. By (3.5.3), similar calculations yield

 

E( 21:71:012_1))~( 4G262(H) n—4+4H.
a .—

n 2H —1)2(4H — 1)
t=1

In addition,

 

1 n 2 2029201) —4 4H

Var(gtglwt ‘1))~ (4H — 3)(2H —1)"’ + '

This completes the proof of the theorem. [3
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Remark 3.3.1 Suppose we choose b = 0(n_6). Then the Assumption 3.5 and

(3.3.6) hold, for all (5 in the range 14511 < 6 < 2(1 — h) whenever h > 231; and for all 6

in the range l—Efi < 6 < 2h — 1, whenever h S g in case (a). Similarly, in case (b),

Assumption 3.5 and (3.3.7) hold for 1 — H < (5 < 2h — 1 whenever h < a; and for

1— H < (5 < 2 — 2h whenever h >%.

Remark 3.3.2 We remark here that by using the truncation method as in Andrews

(1995), the above Theorem 3.3.1 continues to hold for some symmetric density kernel

function K (normal density function, say) with infinite support and finite variance.

3.4 Estimation of the LM parameter

As is seen from the above results in order to carry out inference about the underlying

parameters in the above regression model or in order to carry out a lack-of-fit test

as is done in the next section, we need a log(n)-consistent estimators of H. In this

section we consider the regression model

(3.4.1) i2 = 2mm) + 0mm. is z.

where m(2) = (m0(2),m1(2), - -- ,mq-1(2:))’ with m0(2) E 1 and m1, - -- , mq_1

some known functions. The process th the function 0(2) and the errors ut are as

in (3.1.2) and (3.1.3). In what follows we prove the log(n)-consistency of the local

Whittle estimator of H based on the least square residuals 5,3 := Yt — B’m(Xt),

t = l, - -- ,n. To proceed further, we need the

Assumption 3.6. Em,(X) = o and Em22(X) < 00 for 2' = 1, - -- ,q — 1 and A :=

Em(X)m(X)’ is positive definite.

For a process 6t,t = 1,2, - - —, let

n .

115(1) -—- emu—W 2: as“, 1g(/\) = (not? A e 1—nn).

t=1

denote its discrete Fourier transform and periodogram, respectively.



Fix 1/2 < A1 < A2 < 1. With Aj := 27rj/n and an integer m E [1,n/2), for

A1 3 1,5; 3 A2. define

m m

.. 1 2 (“—1 , ,

12(1):: ;5 Z A,” 13(1)). R(i/i)=10gQ(w)-(2w — 1) Z lognj.

i=1 i=1

Then the local W'hittle estimates of G and H in the model (3.1.1) based on the

residuals 5t are defined to be

A A A

G = Q(H), H = argminwE[A1,A2]R(1/2).

Under some regularity conditions including the assumption that the regression model

is nonparametric with non-random uniform design on [0, 1] and homoscedastic (0(2) E

a constant) long memory moving average errors, Robinson (1997) proved the log(n)-

consistency of the analog of H and the consistency of the analog of C'. The following

theorem shows that these results continue to hold in the regression model (3.4.1)

under much simpler restrictions on the smoothing parameter m than those required

for non-random design.

Theorem 3.4.1 Suppose (3.1.2), (3.1.3), (3.4.1), and the Assumptions 3.1-2 and

3.6 hold. If, in addition,

2(H—h)

4 m 2H—1 111

Then

(3.4.3) ln(n)(H — H) —»p 0, e — Gu —sp 0.

Proof. The basic proof is the same as in Robinson (1997), with some difference in

technical details. So we shall be brief, indicating only the main differences. With

A ___1 A

J0 = E0(X), let 0t 1: 3t — Jout, 6;: == 30 - Bo and Ct 1= 23121“? - 53977131th-

Then 5t can be rewritten as 5t = 5t + Ct + 771 + JOut. Let fj = A}—2H, and Dj z;
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[1520]) — J81u()\j)] /f]-. According to the proof of Theorem 3 in Robinson (1997), to

prove (3.4.3) for 1/2 < H < 1, it suffices to verify the following three claims:

"1‘

1
(3.4.4) 211% 2(AlH)+1——|:Dj |—>p0,

m—l

(3.4.5) (log n)2 2%)126 1—| :7?J" —+p 0, for some small 5 > 0,

i=1

(1
(3.4.6) —°———(g")2 :1 1),—spa

To verify these conditions, we use the following elementary inequalities,

(3.4.7) IIg(A)—J81u(1)l s 2J0111.(A)Iv(n)11/2+Iv(i),

11/(*) |
/
\

3(I€(/\) + [c(A) + In()x)), VA 6 [-7T,7T],

where Vt 2: fit + Ct + "t In view of (3.4.7), it suffices to obtain upper bounds on

lg, [C and 177'

Recall that for the Dirichlet kernel Dk(/\) := Eli-.1 eit)‘, le()\)| _<_ C/A, for all

/\ 6 {—2, 71], k 2 1. Also, note that from (3.2.3) applied q-times to V(2) = mJ-(2)0(2),

j: 011,-” ,q — 1, we obtain that

(3.4.8) 111-1” 11B — (111 = 019(1).

These bounds imply that

1f(Aj) 1
3.4.9 = O

J

  ), uniformly for 1 Sj S 111..

Next, by Assumption 3.2, the function 0(X) — J0 has the Hermite rank r 2 1,

and hence by Lemma 3.7.2 , we obtain, uniformly for 1 g j S m,

I A-
(3.4.10) "(1) = op(/\'T(2‘2h)

If 3

 

), 0<r(2—2h)+(2—2H)<1

.—_ op(/\§H—1 log n), r(2 — 2h) + (2 — 2H) 2 1
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For the terms Ct, Assumption 3.6 implies that the Hermite ranks of mj(X), j =

1, 2, - - - ,q — 1, are at least one, therefore, by (3.4.8) and Corollary 4.10.2 of Bingham

et a] (1987), using (3.4.7), we obtain that uniformly for 1 Sj S m,

I A-

(3.4.11) d J) —0 (Ale’hlnH‘l).
. P'

f] J

 

Now we are ready to verify (3.4.4)-(3.4.6). By changing the order of summation,

the l.h.s. of (3.4.4) is bounded above by

m

Cm2(H—A1)—1 Z j2(A1—H)|Dj|,

i=1

for H > A1, and by Cmllogng-rf:1IDj’l for H = A1. But, by (3.4.7) and the

Cauchy-Schwarz inequality,

 

ij(__AlH)|Djl< C j:j2(A1_H)J0|Iu(»\J-)IV(Aj)|1/2+IV(AJ-)

_1 fJ
J:

m l1u( )| 1/2 H|1v(>\-)I 1/2
2(A -H 2(A

“(:21 > ,——,—'—(1 (g 1)——,.J>

m mLoj-il

”Z31“ 1.

This bound together with Lemma 3.7.3, (3.4.9)-(3.4.11) and the following calculations

imply (3.4.4) for H > A1:

m2(H—A1)-1 in: j2(A1_H) —I€(Aj) = 0p(1).

j=1 ff

m2(H—A1)—1 in: j2(A1—H)ITI;AJ‘) = 010(1)

1:1 J

m2(H-A1)—1 f: j2(A1“H)———IC.(f/lj) = 010(1).

3': J

The proof of (3.4.4) for H = A1 is similar. One can also verify other conditions using

the same method. Cl
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Remark 3.4.1 In Theorem 3.4.1, suppose m = Cna for 0 < a < 1. Then, the

condition (3.4.2) holds for H 2 h. In the case H < h, it holds for any a > (2h -

H — 1)/ (2h — 2H) In particular, as discussed in Henry and Robinson (1995), when

the spectral density function fu()\) of a Gaussian error process at satisfies some mild

conditions, the optimal bandwidth 171 = CH“, with a = 4/5. This choice of a always

satisfies (3.4.2).

3.5 Regression model diagnostics

In this section we investigate the weak convergence of 177; under H0 and the assump-

tions (3.1.2) and (3.1.3), where now Yt — fi'm(Xt) = 0(Xt)ut. Assume m(:1:)’ =

(m0(:r),m1(:1:), - -- , mq_1(:c)) with m0 E 1.

Recall the definition (3.1.5). Also, let An := %Z?=1m(Xt)m(Xt)’. By the

Ergodic Theorem, An, —*a.s. A. Let B be the LSE of B in this model and Zn =

221:1 m(Xt)atut, and for an a: E R,

ants) = %2 m(Xt)1(Xt s x),

t=1

Vn(:1:) := Z atutI(Xt g :12), 1),,(11) ;= Z (Y, — 3’m(xt))1(xt g 3:),

t=1 t=1

Next, we state a Glivenko—Cantelli type result that is used repeatedly in the sequel:

for a measurable real valued function g, with E |g(X)l < oo,

1 71.

(3.5.1) sup |— Z g(Xt)I(Xt g I) — Eg(X)I(X g 1') _ms, 0.

For a non-negative 9 this follows from the Ergodic Theorem and the classical Glivenko-

Cantelli argument where R is partitioned such that the oscillation of the measure

Eg(X)I(X _<_ 17) is small. The result for a general 9 is obtained from this result

applied to gi and the triangle inequality. We shall be also using the Ergodic Theorem

repeatedly without mentioning.
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We also need to recall that B— B: A_1—1,Zt___ 1 m(thatut- We are now ready

to state and prove

Theorem 3.5.1 Suppose (3.1.1)-(3.1.3), Assumptions 3.1 and 3.6 hold. Then,

n—anfir) => J0(I)T(H)N(0,1), in BUR), uniform metric.

Proof. First note Ruhr) = Vn(a:) — Z7’1Anén(.r). Moreover,

vn<x> = Fa<x12u++221{UtI(Xt<$)— 170(2)},
t=1 t1:

71.

Zn = K0 2 “t + Z ut{m(Xt)ot — 160)}.

t=1 t=1

Since Em(x) —>a,3, 01(1), by (3.2.3), (3.2.4), and (3.5.1), we obtain that

n‘HW~ n—H t2: ut(F0-(:1:) — K3A1a(x)) + up(1).

D

The above result18 useful only if Ja(3:) ,.=é 0. Observe that Ja(a: zf—oo (ay() —

”GA-1m(y)) ¢(y)dy. Hence, the condition JO 5 0 implies that the functions {0(22),

1, m1(:r), - - - ,mq(:r)} are linearly dependent, for almost all I 6 IR.

In the simple linear regression model, when m(;r) = (1, :r)’, Jg(;1:) E 0 if and only

if 0(x) E c, a constant. In this case,

J0(r) = Eo(X)I(X S r) — Eo(X)<I>(;r) + EXI(X S :r)EXo(X).

Clearly, 0(1‘) E c implies Ja(l‘) E 0. On the other hand, if Ja(:r) = 0 for all

:13, then upon differentiating the equation Ja'(.’L') = 0 with respect to .73, we have

o(:1:) = E0(X) + :cEXo(X), which contradicts the assumption that 0(13) > 0 for all

:r if EX0(X) 79 0, and which in turn implies that o(:1:) must be a constant.

In order to implement the above result, we shall require that Ja(:r) 7e 0 for some

:17 6 IR. We also need a uniformly consistent estimator of J0(:r) in order to apply tests
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based on the process Vn. The following condition is needed for this purpose:

Assumption 3.7. o(.r) 2 c > 0 and has a continuous first derivative function of

1' E IR.

Observe that the only unknown entity in J0 is 0(X). For technical reasons the

theory is much harder if we use the previous estimator of 02 in this process. We shall

use an alternate estimator based on the ideas of cross validation method that leaves

one observation out each time. Let

 

n

. 1 . .

113,-(x) := ”_lszu—xmg, .=1,... ,n.

taéi

Then, l/z-(zr) := A_z-(:r)qb_1/2(:z:) is an estimator of 0(1), and

. 1 n 1 n _ 1

Jn<x> = 5 t; mxouxt s x)— 5 t; mamas/4.: ants)

is an estimator of Jg(:r). Its uniform consistency is assessed by the following theorem.

Theorem 3.5.2 Suppose (3.1.1)-(3.1.3), and Assumptions 3.], 3. 6, and 3.7hold. In

addition, supposeb —) O,b—1n2h_2 = 0(1), E02(X)qb1/2(X) < oo, E02(X)m31.(X) <

00, and ElmJ-(2X)|2 < oo, forj =1,--- ,q — 1. Then, under H0, suPrEIR Ijn(:c) —

JU(IL‘)| = 019(1).

The proof of this theorem follows from several lemmas proved below. We begin with

stating some preliminary facts about some moments of the LMMA process at. Let

dt := E(113 ~— 1)(u% —— 1), t E Z. The following lemma is proved in Chapter 2.2.3.

Lemma 3.5.1 Suppose {ut} is as in (3.1.2) with E53 < 00. Then, for all 1/2 <

H < 1,

(3.5.2) d, = 2D2t2(2H‘2) + o(t2(2H‘2)), as t —> 00,

(3.5.3) Enousmg — 1) ~ 2mm, as It — 3| —. 00,

and for s, t, r such that It — 3], Ir — tI and Is — rl all tending to infinity, we have

(3.5.4) Euousutur ~ 737'r—t + VtVT—s + 77"lt-s'
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Next, let A2_t(:r) = (n. - 1)1 #1, Kb(:1: -— X0022212-

Lemma 3.5.2 Suppose the conditions of Theorem 3.5.2 hold. Then

max E(A2 (Xt) — 020(Xt))2 —+ 0.

lgtgn ‘t t ' '

Proof. It suffices to show

 

 

. . 2 2_ 2%
(3.5...) 12nfénE(n—1§Kbxt X])o](uj 1)) 0,

‘ — J

2

(3.5.6) 121taénE(n—12Kb(xt_ ij)02—ot2¢b(Xt)) —>O.

‘ ‘ J'sét

To prove (3.5.5), the expectation in the 1.h.s. of (3.5.5) equals An,t + Bn,ta where

 A”): _12213119)(Xt— Xj)a§}E(u§—1)2,

(n 1) J:t

Bn,t==n_(W: Z E{K5(Xt- Xj‘lKMXt XkIUJQ-Ug}

)2J'aétk75tkaéj

xE(u3— ”(11%,- 1).

Upon applying (3.7.7) below with g(Xt, Xj, Xk) = EKb(Xt —Xj)Kb(Xt —-Xk)o§012c

and using the fact that for this 9, Ilgll2 S Cb—l, we obtain that, uniformly in t,

 (3.5.7) BMW” CD22 2 {EOKb(Xt—Xj)Kb(Xt—2Xk)o]2-o,2c

#tksétkaéj

_1 1/2

+C” AIt—JI.It—kI}E(“JZ’ “‘ 1)
S Cn4H—4 + Cb—1/2nh—1+4H—4 _, 0,

by Lemma 3.5.1. Similarly, by (3.7.8) we obtain that uniformly in t, An,t g C(nb)_1

Hence (3.5.5) holds.
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To prove (3.5.6), rewrite the l.h.s of (3.5.6) as

2 2
(_Xt Xj)Kb(Xt - Xk)0’j0'k

    

j,k;£t

: 10)¢(2(X1<15(Xt) 2: Kb(Xt- X1,210 + E04(X1121X1

#t

71¢ — 2D,” + EU4(X)¢2(X), say.

    

Similar to the argument in (3.5.7), by (3.7.7) and (3.7.8), the terms Cn,t and Dn,t

tend to E04(X)¢2(X) uniformly in t, thereby proving (3.5.6). [3

By applying the simple inequality

(3.5.8) (111/2 — 111/2l2 g |a — 5|, a,b 2 0,

we obtain the following:

Corollary 3.5.1 Suppose the conditions of Theorem 3.5.2 hold. Then,

(3.5.9) max E|A_(Xt) — 5,51/2(X,)|4 —+ 0.
1<t<n

Lemma 3.5.3 Under the conditions of Theorem 3.5.2,

1 n 2 —1/2
52:11.MX11—_1X.1|¢ (X11 —»p 0.

Proof. Applying (3.5.8) again, it suffices to show that

Tl

(3.5.10) i:|A2_t(Xt)—A2_t(Xt)l¢—1/2(Xt) 3p 0.

:1

But |A2_t(Xt) — A2_t(Xt)’ is bounded above by

 

,112K11X1—X1|1<J—mm.11 +215— 111mm10,110,212.

#1
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Moreover, (3.7.8) in the Appendix implies that, for k = 0, 1, 2, 0 S j s q — 1,

         

 

El1.1,._.£3321... 11111.,m11x,,.—1121X,,

.1111, <1111k1-1/2<111.,.<1..11

1.711

xdrdy

(”_1)Z§://Kb((x—y)0y)j|m
(y)lk¢1/2($)1?(y)d:rdy

Czt1.911

”—1hb1/2n=0(1)'

(1,,_——1,Z_ZK.<X.—X.-11m,-<X.-11’E1—1/2<X11
t=1i7ét

_ ZZZ K1<1—111m,-<<11k11/2<1111<111111.1

CW1.7111

- C

+—_n1-hbl/2 = 0(1).

In the above we used the fact that Em§(X) < 00, which is implied by the assumption

E02(X)m§(X) < 00 and the Assumption 3.7, forj = 1, ~ -- ,q—l. Therefore, (3.5.10)

holds because fil — Bl —+p 0, (3 —-1p 0 and X ——>p 0. C)

In the sequel, for a y E Rq, lyl and My” stand, respectively, for the q-vector of

the absolute values of the coordinates of y and the Euclidean norm of y. For a finite

dimensional square matrix A, ”All stands for its Euclidean norm.

Corollary 3.5.2 Under the conditions of Theorem 3. 5. 2,

1 n

— Z |(Vt(Xt) - 0t)m(Xt)l H10 0-

"t=1

Proof. We only prove the claim for m1(:r), the proof for the other terms is similar.
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For this, it suffices to show that

 
(3-5-11) £ZlA—dxtl—A—MX1)|m1(Xt)|¢_1/2(Xt) = 019(1).

t=1

<3.5.121 £2:IL.<X.11“1/2<X11—1<X11l1m.<X11I = 0101.
t=1

By the Holder inequality, the expectation of the l.h.s. of (3.5.12) is bounded above

by

,1; 2 11/3 (A_.<X.1 — 1<X1111/2<X11)3122/3 (1113/2<X111—3/4<X11).
t=1

Since E|m1(X)|3/2/1.13/4(X) = E|m1(2X)|3/2 < 00, (3.5.12) follows from (3.5.9).

Next, by the Cauchy-Schwarz inequality, the l.h.s. of (3.5.11) is bounded above

by

1/2

n

n

{%2|1_,1x,1 _ 11-.<X.1 21—1/2<X.1 >< £2 1.111111“20%)}
t=1

t=1

But because ,1; 2:21 m%(Xt)(¢1(Xt))_1/2 —*a.s. Em1

00, (3.5.11) follows from this bound and Lemma 3.5.3. El

PROOF OF THEOREM 3.5.2. The proof consists of the following two parts. First,

The first term in this bound tends to zero in probability by Corollary 3.5.2. The

2<X1<1<X1-1/2 s CEm§<2X1 <

I



second term tends to zero almost surely by (3.5.1). Secondly,

..p|_§j(v,1x,)m1x,1"A,11.1-1.1x1m1X1'A—la111)|
t:1n n

l(;:(11,1x,1_1,)1111.1111, ”11 11 121111111111
n

+—Zot|lm(X,)11 “A, — 111—1111311111)“

t= 1
TL

1 _

+—Z 11111.1(X11 1111A 111111111111—1<1111

“
3
+

+ll§ £1,111.11 — 1111] 1111—111 1,11 11111.
t:

which tends to zero in probability by the facts

Sgpla($)| S V Ellm(X)||2 < 00.

supa; lance) — a(:r)| —*a.s. 0 by (3.5.1), and Corollary 3.5.2. [3

An immediate consequence of the above results is that in the case m(:r) = (1, 513),,

the test that rejects H0, whenever

1

(3.5.13) Dn := supIV-n(:r)I Z 201/2,

nHfiH) 811px |Jn(:1:)| “3

is of the asymptotic size a, where za is 100(1 — a)th percentile of the standard normal

 

distribution.

Now we consider the consistency of the proposed test under any fixed alternative

”(13) = 3(1), where ((17) is not a linear function, E€2(X) < 00 and suprR |E(flTm(X)—

€(X)) I(X g x)l aé 0. Then, under this alternative,

n_H1211;.)

H n

= — [(11(X,)11,1(X, < 1:) H: (€(X1/3Tm(X.))I(X. g .1)

t=1 t=1

= I(r)+II(a:), say.
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By (3.5.1). 11H 4111(1) = E{13Tm(X) — €(X)}I(X g .1.) +11,,(1). Also, by (3.2.3)

and (3.2.4), sup.r |I(r)| 2 011(1). Thus the power of the tests will tend to one against

any fixed alternative [(1‘) of the above type.

3.6 Empirical results

3.6.1 A small simulation study

In this section we report the findings of a finite sample simulation study. In this

simulation, for simplicity, we take m(1:) = (1,17)’, (30 = 0, [31 = 2 and 02(35) = 1 +122.

The processes {ut} is taken to be ARIMA(0, H — 1/2, 0) with standardized Gaussian

innovations and {Xt} is taken to be fractional Gaussian noise with long memory

parameter h. The values of H, h range in the interval [.6, .95] with increments of .05.

In order that the generated processes are stationary, we trim off the first 500 generated

observations of both {at} and {Xt} processes. These processes were generated using

the codes given in Beran (1994, Ch. 12).

We first concentrate on the properties of 31 and H. Table 3.1 provides the root

mean square errors (RMSE) of the LSE 31 with sample size 500 and 2000 replications.

As can be seen from this table, when H + h increases, so does the RMSE of 31.

Typically, when H + h < 3/2, the RMSE is small.

Table 3.2 provides the RMSE’S of the local Whittle estimator H of H based on the

samples of size 500 with 1000 replications. The calculation of if is based on pseudo

residuals ét = Yt — BIXt without estimating the variance function 02(22). From this

table, we observe that for H S 0.85, the overall RMSE is less than 0.072 and stable

regardless of the values of h.

Next, to asses the finite sample behavior of 132, we simulated the function estimator

(32(1) for the values of :1: in the grid 11 = —1.50, r2 = —1.49, - - -, 17301 = 1.50, and
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Table 3.1: RMSE of the LSE B, for sample size 1.. = 500.
 

 

  

H \ h .60 .65 .70 .75 .80 .85 .90 .95

.60 .0087 .0086 .0088 .0098 .0104 .0115 .0135 .0192

.65 .0084 .0095 .0107 .0117 .0123 .0134 .0176 .0247

.70 .0104 .0101 .0114 .0135 .0146 .0176 .0215 .0341

.75 .0108 .0121 .0135 .0154 .0194 .0227 .0304 .0465

.80 .0123 .0139 .0176 .0192 .0244 .0333 .0479 .0735

.85 .0141 .0177 .0218 .0283 .0362 .0487 .0704 .1254

.90 .0186 .0237 .0310 .0398 .0540 .0834 .1201 .2087

.95 .0257 .0340 .0519 .0647 .1137 .1762 .2738 .4962  
 

Table 3.2: RMSE of H based on Yt — BIXt for sample size n = 500.

 

 
 

  

H \ h .60 .65 .70 .75 .80 .85 .90 .95

.60 .0396 .0386 .0393 .0387 .0377 .0394 .0398 .0394

.65 .0428 .0427 .0440 .0426 .0433 .0451 .0416 .0432

.70 .0481 .0475 .0477 .0482 .0504 .0486 .0475 .0469

.75 .0536 .0548 .0554 .0547 .0538 .0507 .0529 .0494

.80 .0623 .0630 .0623 .0592 .0582 .0597 .0581 .0551

.85 .0708 .0720 .0707 .0670 .0658 .0631 .0622 .0577

.90 .0833 .0832 .0808 .0780 .07688 .0724 .0678 .0651

.95 .1129 .1109 .1089 .1030 .0946 .08520 .0782 .0672
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Table 3.3: Ranges for <5 of the bandwidths for estimation 0.

 

 

   

 

 

    

 

 

H \ h .65 .75 .85 .95

.65 (a) (.175, .3) (a) (.125, .5) (a) (.075, .3) (a) (.025, .1)

.75 (a) (.175, .3) (a) (.125, .5) (a) (.075, .3) (a) (.025, .1)

.85 (b) (.15, .3) (a) (.125, .5) (a) (.075, .3) (a) (.025, .1)

.95 (b) (.05, .3) (b) (.05, .5) (b) (.05, . (a) (.025, .1)

Table 3.4: Summary of ASE(62) for H = .65

h \S'ummary bandwidth Q1 Median Mean Q3

.65 31.—-2 .0261 .0369 .0424 .0512

.75 3.5..—-2 .0256 .0383 .0432 .0557

.85 4n—'2 .0273 .0417 .0595 .0617

.95 1.5117099 .0366 .0663 .1138 .1058

Table 3.5: Summary of ASE(62) for H = .75

h \Summary bandwidth Q1 Median Mean Q3

.65 4.1—-2 .0442 .0711 .0887 .1127

.75 4n—'2 .0465 .0652 .0888 .1076

.85 41.77-2 .04667 .0774 .1043 .1252

.95 2117099 .0627 .0995 .2190 .1902    
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Table 3.6: Summary of ASE(&2) for H = .85

 

 

 

h \Summary bandwidth Q1 Median Mean Q3

.65 4.5..—-2 .1562 .2724 .5402 .5584

.75 611—-2 .1594 .3113 .5449 .6330

.85 511*12 .1625 .3252 .5475 .6103

.95 2511—999 .1704 .3155 .7092 .6235   
 

Table 3.7: Summary of ASE(&2) for H = .95

 

 

 

   

h \Summary bandwidth Q1 Median Mean Q3

.65 6n—°2 1.153 3.214 16.24 11.83

.75 7n_'2 1.137 3.078 14.75 11.25

.85 7.5.1—'-2 1.018 2.611 12.77 11.59

.95 4511—099 1.136 3.374 12.57 11.85
 

for 0.65 S H, h S 0.95. We used the built-in smoothing function of R program with

the normal kernel and sample size 500 repeated 500 times. The ranges for 6 in the

bandwidths b = Cn_‘S are given in Table 3.3 according to the Remark 3.3.1. The

symbols (a) and (b) indicate ‘Case a’ and ‘Case b’ in Theorem 3.3.1, respectively.

Based on Table 3.3, for convenience we used 5 = 0.2, b = C'n‘“2 in our simulations

for all cases of H and h considered except when h = .95. In the case h = .95, we used

<5 = 0.099. The constant C is adjusted for different values of H and h according to the

average squared errors: ASE :2 2221(620616)/02(xk) — 1)2/301. We record those

C values which possibly make ASE the smallest. Some summary statistics of ASE

are reported in Tables 3.4-3.7. It can be seen that the estimator 62(2) is relatively

stable for the values of H, h S .85. Similar results are observed when we replace the

normal kernel by the kernel function K(2:) = .5(1+cos(:z:7r))[(|:r| g 1) or the uniform

kernel.
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3.6.2 Application to a foreign exchange data set

In this section we shall apply the above proposed regression model diagnostic test

to fit a simple linear regression model with heteroscedastic errors to some currency

exchange rate data obtained from

www.federalreserve.gov/releases/H10/hist/ .

The data are noon buying rates in New York for cable transfers payable in foreign

currencies.

In this example, we use the currency exchange rates of the United Kingdom

Pounds (UK.€) vs. US$ and the Switzerland Franc (SZF) vs. US$ from January

4, 1971 to December 2, 2005. We first delete missing values and obtain about 437

monthly observations. The symbols dlUK and dlSZ stand for differenced log exchange

rate of UK£ vs. US$ and SZF vs. US$, respectively. From the figure 3.1, we observed

that these two sequences appear to be stationary. Also,

mean(dlUK)= —0.0001775461, Stdev(dlUK)=0.001701488,

mean(dlSZ)=—0.00004525129, Stdev(dlSZ)=0.001246904.

The local Whittle estimated values of the LM parameters of dlUK and dlSZ pro—

cesses, respectively, are 0.6610273 and .7147475. In computing local Whittle estimator

the choice of the smoothing parameter m is crucial. Taqqu and Teverovsky (1997)

recommend m = n/4 and m = n/32 for sample sizes n = 100 and n = 10, 000, respec-

tively. Our sample size being in between these two, we chose m = n/8 in obtaining

the above local Whittle estimates.

Let Y = dlSZ and X =dlUK. Comparing the X—process with a simulated fractional

Gaussian noise with HX = 0.6610273 and n = 437, Figure 3.2 suggests that the

marginal distribution of X is Gaussian.
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Figure 3.1: The time series plots of dlUK and dlSZ.
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Figure 3.2: QQ-plot of dlUK.
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Figure 3.3: Regression estimation of r(;1:).
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Figure 3.4: Kernel estimation of 0(;r).
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Next, we regressed Y on X, using non-parametric kernel regression estimator and

parametric simple linear regression model of Y upon X. Both of these estimates

are depicted in Figure 3.3. They display a negative association between X and Y.

The estimated linear equation is Y = —0.000118775 — 0.4141107 X, with a residual

standard error of 0.00102992. Figure 3.4 provides the nonparametric kernel estimator

of 0(23) when regressing Y on X. The kernel function K(x) = .5(1 + cos(:r7r))1(|a:| g

1).

The estimators of the parameter H based on the residuals 5° 2 Y — 3X and

21 = (Y — hX)/&(X) are equal to 0.6046235 and 0.6246576, respectively. This again

suggest the presence of long memory in the error process.

Finally, to check if the regression of Y on X is linear, we obtained Dn = 0.4137897

with the asymptotic p—value 66%. As expected, this test fails to reject the null
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hypothesis that there exists a linear relationship between these two processes.

3.7 Appendix

We first state a result similar to the reduction principle of Taqqu (1975), but with

the kernel function Kb() involved. Let g := {V : EV2(X) < oo}. Recall the Hermite

expansion from (3.2.5) above. We have

Lemma 3.7.1 Let Xt be a stationary Gaussian process. Then,

n 02 1' 1‘ :L‘ n

%; (Kb((SE—X002—(Xt)-Tb)0 (;¢———(—)th

 
‘v’xElR.0 ( + 1 )

P \/1n_b N/b'n4—4h ,

Proof. Fix an a: 6 1R. Let Vn(X) := \/I)[Kb(a: — X)02(X) — Tn] with Tn = EKb(a: -—

X)02(X) Note that Eun(X) E 0, for each n 2 1. Moreover, by the change of

variable formula,

2 2 2 _ _ .
EVn(X) — [K (w)0 (:1: bw)¢(x bw)dw.

From this one sees that suanl E1172,(X) < 00, so that Vn(X) E g, for each n 2 1.

Thisin turn implies that supn>1 :00 2-/j! < 00, where

3':~10723'

em := fbe(x—y a2j<y>H <y>¢<y)dy

= fi/K(w)o2)(x—wb)Hj($—wb)¢(x—wb)dw

= «B{Hj(x>12(x>¢<x> + 0(1)}, w 2 1.
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Hence.

 

1 1 2

E(; Vn(Xt)_C1;ZXt)

t=1 t=1

2 n 00 C}?
= 11 Z Z Z (.I)2EHJ(X5)HJ(X,§)

s=l t=1j=2 1'

00 2, n

< Z C—J{l + n_2 2 Z 2 (It — s|)} < C'(1 +n4h_4)_ ., n 7X 1

j=2 t=1 s¢t

This proves the lemma. C]

Under the Assumption 3.5, a similar argument yields the following.

(3.7.1) E{% in: (Kw? - X00200) — Tb)ut}2

1

= 0(n_1b) +0(n—2_fi)-

(3.7.2) 1r:{1 2": (KW —- X90209) — Tb)(u§ — 1)}2

n t=1

=O($)+o( 1
7,4—4H)°
 

Now let 1/ be an arbitrary function such that El/(X) = 0, Eu2(X) = 1. Let

{t :2 u(Xt). For simplicity of the exposition, let Pk now stand for 7X(k) of (3.1.3),

and r 2 1 be the Hermite rank of V(X). Then, the auto-covariance function of the

process 5 is

 
c2 00 03H '+1 7‘a — r 7‘ _

75(k)—pk(rl +JZ_T(J’+1)!”/7c )

Because pk is decreasing in k, we readily obtain that 760:) is also decreasing in k.

Moreover, the second factor in 75 (k) is bounded above by 2J21 c? /j! = 1. Therefore,

there exists a constant C = C(r, G) free of k, such that

(3.7.3) 715(k) ~ sz.
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Lemma 3.7.2 Let 5t = 11(Xt). “t be defined as in (3.1.2), and [gu denote the peri-

odogram of {tut- Then, as A ——> 0,

E1€u().) 0(,\"(2—2h)+1—‘2H), 0 < 7‘(2 — 2h) + (2 — 2H) < 1;

= O(log n), r(2 - 2h) + (2 — 2H)21.

Proof. For the first case we use the Corollary 4.10.2 of Bingham et a1 (1987) which

says that for any 0 < a < l,

n

—a it/\ _, a—l _ ‘. Z . E

(3.7.4) Zt e /\ I‘(1 a)(s1n2a+zcosza), A—>0.

t=1

Using the fact that 'yu(k) ~ Ck2H_2, (see (3.1.4)), (3.7.3), (3.7.4) with 0 < a =

r(2 — 2h) + (2 — 2H) < 1, and the independence of {t and at, we obtain

1 " z'j—<k»1315.0) = 2——g:3le — kmu — Me”

n k—l

N 0211:gnt— 1'(—22h)+(2—2H)]em

n
11:12

S N(-

Otherwise, when r(2 — 2h) + (2 — 2H) _>_ 1, EI£u(/\) S Clogn for all A 6 [—7r, 7r]. E!

The following lemma in Dalla, Giraitis and Hidalgo (2006) is needed for the proof

of Theorem 3.4.1:

Lemma 3.7.3 Under (3.1.2) and when m = 0(n), then uniformly in 0 < v s 1,

(375) I 1‘1 if MAJ) 1. . vm —— ——> , a.3., m —> oo.

j=1 fj

The next lemma approximates the averages of certain covariances of a square inte-

grable function of a Gaussian vector by the corresponding average where the compo-

nents of the Gaussian r.v. are i.i.d. Accordingly, let E0 denote the expectation when a
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Gaussian random vector is standard normal random vector. Let A0,s,t be the covari-

ance matrix of X0,X3,Xt, 0 S s S t, and 80,81 = A0,s,t-13 = ((bi,j(32t) )), where

I3 is the 3 x 3 identity matrix. Let 9s,t denote the largest eigne value of 30,5115. From

Luenberger (1979) ( Ch. 62, page 194) we obtain that Qs,t s max,- 2321 lbi,j(3: t)|.

This in turn implies that

(376) 93¢ S 37X(t - S) V 7M8) V 7X0)-

We are now ready to state and prove the

Lemma 3.7.4 Let g be a function defined on R3 such that E92(X0,X1, X2) and

E092(X0,X1,X2) are finite. Then, uniformly in i = 1, - ~~ ,n,

1

(n _1)2 ZZ
(Eg(Xiva,Xt)

- E'Og(Xz-,XS,Xt))
_, 0_

taéi 379i

Proof. We use Theorem 2.1 of Soulier (2001). By the definition, the function

g(:1:,y, z) — EOg(X,~,X3,Xt) has the Hermite rank 1' Z 1. For sufficiently large Is —

2'], It — il and It — 3|, by Theorem 2.1 of Soulier (2001), there is a constant C < 00 free

of i, t, s, such that

2

Then the lemma follows from (3.7.6) and (3.1.3). D

By a similar argument, we can obtain that there exists C free of s, t, such that

2

(3.7.8) IEg<Xs.Xt) -— E09(Xs,Xt)l s CIIgIIv}! (t — s).
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