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ABSTRACT 
 

HOW MULTI-FRAME MODEL FITTING AND DIFFERENTIAL MEASUREMENTS 
CAN IMPROVE LIDAR-BASED VEHICLE TRACKING ACCURACY 

 
By 

Steven J. Chao 

 Over the past few decades, much work has been done in the field of laser based (Lidar) 

vehicle tracking.  The most common approach is to fit a simple rectangular model to a point 

cloud of vehicle data, and then process the measurements using an Extended Kalman Filter.  In 

this study we explore the use of techniques which could improve tracking performance in 

situations with sparse data, system noise or clutter, difficult vehicle orientations, or poorly 

modeled vehicle shapes. 

 We specifically consider: Multi-Frame Measurements and Differential Measurements.  

Multiple-Frame Model Fitting can improve tracking accuracy through batch processing of 

multiple frames rather than the usual single-frame processing.  Differential Measurement 

tracking avoids estimating a vehicle's current pose and instead estimates change in pose 

between subsequent frames by comparing point clouds, and has the advantage that it does not 

require a prior vehicle shape model.  Since our goal is to focus specifically on these types of 

vehicle measurement, we ignore other important tasks such as background removal, object 

detection and classification, vehicle occlusion, and real-time speed considerations.  We 

ultimately show that each of these measurement techniques have different, complementary 

strengths, which can be combined to improve vehicle tracking performance in difficult 

situations.
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INTRODUCTION 

 

 

Over the past few decades, there has been much research done in the field of 

Autonomous Vehicles.  Many large automotive corporations, smaller research groups, and 

universities have devoted significant time and money into the advancement of this field, and 

self-driving cars are soon to be reality.  While this technology faces many huge hurdles, it will 

likewise provide numerous benefits, many of which are immediately apparent, but also some 

which could never have been expected.  For example, autonomous vehicles will be able to 

prevent accidents caused by drunk or distracted drivers, recover countless hours squandered in 

daily commutes, improve traffic flow and efficiency, and save lives by removing human error.  

On a broader scale, autonomous driving will redefine how we as a society commute, likely 

creating autonomous taxis, and provide other benefits currently unimagined. 

While autonomous vehicles could provide many benefits to society, creating this 

technology has many challenges.  These include detecting and classifying environmental 

objects, predicting where they will be in the future, understanding road signs and traffic laws, 

and making numerous decisions independently and in real time.   

In order to detect, classify, and track objects, sensors  are needed to measure the 

environment.  There has been significant work done researching sensors such as sonar, radar, 

and GPS, but two of the most commonly used types are cameras and Lidar (laser) scanners.  For 

the task of classifying what an unknown object may be, the most effective sensors are cameras.  

Computer Vision is a large field of research that explores techniques for processing camera 



2 

 

images, and classifying objects within them.  However, camera-based-methods have a very 

difficult time determining the precise location of an object, and from that extracting the velocity 

of the target.  A common solution is to use a combination of cameras and laser scanners within 

object tracking; image processing is used to initially classify objects, and the laser scanner is 

then used to track the known objects' position over time. 

For this study, we focus specifically on the issue of using laser scanners to track and 

predict vehicle movement over time.  We ignore other important fields such as background 

removal, object detection and classification, non-vehicle object tracking, and real-time 

computational constraints, in order to study this topic in detail.   

State of the art research in Lidar-based vehicle measurement focuses heavily on 

improving the Extended Kalman Filter or Particle Filter framework, which tracks vehicle 

movement over time, based on individual vehicle measurements.  A large part of this involves 

modeling the uncertainty of possible vehicle poses and selecting the most likely one.  This 

research compliments the ideas presented within of this paper, which are to fundamentally 

improve the vehicle measurements, which are then fed into these trackers.   

The laser scanner we use is a Velodyne HDL-32E Lidar sensor.  This Lidar operates by 

using 32 lasers arranged vertically at small, constant, angular intervals, mounted on a rotating 

platform.  The laser array spins at a variable rate of around ten Hertz, and returns over 700,000 

depth points per second, effectively creating a dense environmental point cloud map over a 360 

degree field of view. Examples of Lidar point cloud data are shown in the images below.  In the 

following chapters, we will describe and evaluate two different measurement techniques to 

estimate the position of a vehicle, based on the available point cloud data.   
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Figure 1: Image: The surrounding environment, as seen through a Lidar scanner, including 
ground, a building’s walls, and a target vehicle (in red) 

 

Figure 2: Image: The point cloud of a vehicle returned by a Lidar scanner  
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CHAPTER 1 

VEHICLE TRACKING FRAMEWORK 

 

 

Background 

Over the past few decades, multiple different approaches to vehicle tracking have been 

developed, most with a similar overall architecture.  For example, past research ( (Zhao & 

Thorpe, 1999), (Streller, Furstenberg, & Dietmayer, 2002), (Wang C. , 2004), (Morris, Colonna, & 

Haley, 2006), (Wender & Dietmayer, 2008), (Petrovskaya & Thrun, 2009), (Morris, Hoffman, & 

Haley, 2009)) has generally resulted in a three stage tracker approach:  data segmentation, data 

association, and Bayesian filter update.  During the data segmentation stage, sensor data is 

divided into meaningful pieces, which are often represented as line features or point clusters.  

During the data association stage, these pieces are assigned to currently tracked vehicle models.  

Finally a recursive Bayesian filter, generally an extended Kalman filter, is utilized to fit the targets 

to the data. 

The overall vehicle tracking framework is as follows.  At every time step, the extended 

Kalman filter (EKF) predicts the expected vehicle location, based on some kinematic vehicle 

model of the previous state.  The actual location of the vehicle is also measured, by optimizing 

the point cloud data to fit a rectangular vehicle model, and fed into the filter.  By using the 

measurement and prediction step’s associated covariance matrices, the EKF combines the two 

estimates, weighted according to their uncertainties.  The desired operation is for the tracker’s 
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estimated vehicle position to initially follow the Model-Based measurements, but eventually 

more closely follow the kinematic model predictions as the tracker improves in certainty.  This 

makes the tracker less susceptible to small measurement noises while also improving the 

accuracy of the vehicle track over time.  The components needed to build this tracker therefore 

include a model-fitting measurement component, the extended Kalman filter, and a kinematic 

model to predict vehicle motion.   

 

 

Vehicle Location Measurement 

The first component of vehicle tracking is Model-Based vehicle location measurement.  

Once vehicles have been detected and segmented, their 2D position and orientation need to be 

estimated using the visible point cloud data.  This is more difficult than it sounds, because with 

a Lidar sensor it is only possible to see two edges of a vehicle at a given instant, and because 

there exist many diverse vehicles of very different shapes.  This challenge is frequently solved by 

optimizing a rectangular model to the point cloud cluster ( (Zhao & Thorpe, 1999); (Wender & 

Dietmayer, 2008)).  Most vehicles are effectively represented by a rectangular model with the 

dynamic variables width and length (W, L).  Matching a general vehicle model to the point cloud 

data is a very powerful tool, because it is able to reliably estimate the position and orientation 

of the entire vehicle using only the visible portion of vehicle point cloud data. 

Generally, optimizing this dynamic rectangular model is a very accurate measurement 

technique, even for vehicles of diverse shapes.  This is extremely important, because such a 

descriptive yet simple model allows us to quickly and robustly estimate a vehicle’s position at 
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any given moment.  Since Lidar-based vehicle tracking involves processing hundreds of 

thousands of data points per second, utilizing this fast, consistent, and accurate rectangular 

model to estimate the vehicle’s location is a necessity. 

 

 

Extended Kalman Filter Framework 

Next, the location measurements found by fitting the rectangular vehicle model are fed 

into an extended Kalman filter (EKF).  The EKF uses kinematic predictive equations to estimate 

the vehicle’s current location using the previous state vector.  Using the equations shown in 

Appendix A, the EKF estimates a weighted combination of the measurement and model 

prediction steps to get the final tracker solution.   

In Figure 3, we can see all three of these EKF components, compared over time.  We 

recall that the overall model tracker is a combination of both the measurement and prediction 

inputs, weighted based on the covariance of each.  It can be seen that initially the tracker more 

closely follows the Model-Based measurement input, but as time passes and the tracker is 

refined, it begins to follow the kinematic model’s predictions.  This results in a smoother 

trajectory, thanks to the kinematic model predictions, that is still very accurate due to the 

individual measurements component.  Notice that the large measurement noise spike occurring 

at about 3.5s has very little effect on the overall EKF estimate, which is one of the major 

benefits of this filter. 
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Figure 3: Plot: A comparison of the performance of the three components of the EKF over time 

 

 

 

Single-Frame Model-Based Measurement Limitations 

This is the general flow of a vehicle tracking algorithm.  Individual measurements of a 

vehicle’s location are collected and fed into an EKF for processing.  While this method does track 

vehicles quite well in most cases, there are certain disadvantages to using a generic, rectangular 

model.  Specifically, grossly incorrect measurements can occur when the vehicle is matched to 

the vehicle point cloud incorrectly, such as when attempting to measure vehicles of non-

rectangular shapes, when the vehicle data is sparse, or in the presence of clutter, to name just a 
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few examples.  The EKF filter is capable of smoothing out small measurement errors and 

effectively ignoring them, but large measurement errors are a different story.  In many cases, 

even a single, grossly incorrect measurement is enough to cause the tracker to completely lose 

the true vehicle trajectory.   

While these incorrect measurements do not happen very often, they are enough of a 

problem to warrant significant further investigation.  If an autonomous vehicle completely lost 

the track of even a single oncoming vehicle, it could cause a very serious accident.  The current, 

widely used approach to deal with this issue is to couple the EKF with a Particle Filter.  Particle 

Filters sample the probability space of the vehicle state vector, rather than just modeling the 

most likely region as an EKF does.  Since they are capable of modeling multi-modal distributions, 

individual incorrect measurements can eventually be filtered out, after they have been shown 

to diverge drastically with the true vehicle point cloud data and additional measurement inputs.  

This has proven to be quite effective in filtering out individual grossly inaccurate measurements.  

However, challenges using particle filters include modeling higher dimensional spaces, as well as 

spaces whose probability is spread out widely, since in both cases many samples are needed. 

Significantly less research has been done approaching this problem from the other end, 

and attempting to improve the actual vehicle measurement process.  In this study we explored 

two additional methods with the potential to compensate for the gross measurement errors 

occasionally returned using Single-Frame Model-Based measurement techniques.  First we 

investigated how optimizing the measurements over multiple frames of data could be used to 

improve performance.  Second, we studied how Model-Free Differential Measurements could 

be used in combination with Model-Based methods to improve measurement performance. 
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CHAPTER 2 

SINGLE-FRAME VEHICLE MEASUREMENT 

 

 

In the first chapter, we discussed the general framework for vehicle tracking.  The bulk of 

our work in this study was focused on improving the measurement portion of this process, by 

comparing typical Single-Frame Model-Based (SFMB) measurements with our Multi-Frame 

Model-Based (MFMB) and Differential measurements. 

We began by building a simple SFMB measurement technique.  We first had to develop a 

rectangular vehicle model to fit the vehicle points to, as done by (Morris, Colonna, & Haley, 

2006).  In this study, we used a modified form of this technique that relies on 1D filters to 

improve computation speed.  The next step was to build a measurement filter to estimate the 

vehicle's position without any prior knowledge about the vehicle's current pose, using this 

rectangular vehicle model.  Once a rough estimate of the vehicle’s location was known, a more 

precise model optimization technique was needed to refine the pose measurement.  This gave 

us the finalized SFMB measurement, which could be fed into the EKF, or compared directly with 

the measurements of the two other techniques. 
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Vehicle Location Estimation 

Building the location estimation component was a challenging part of SFMB 

measurement process, due to the lack of any prior knowledge about the vehicle's position.  In 

order to quickly and accurately estimate the vehicle's position, we took advantage of a simple 

fact:  when the vehicle’s points are projected to a line perpendicular to an edge of the vehicle, 

we expect a unique distribution of points.  There should be a small uniform distribution of 

points over the width of the vehicle, except for a dense cluster where the edge of the vehicle 

projects to, as shown in Figure 4.  Points projected to a line that isn’t perpendicular to a vehicle 

edge would instead return a more uniform distribution, as shown in Figure 5.   

To utilize this knowledge, we created a cost function model that accurately represented 

this expected perpendicular point distribution.  Next, we rotated a series of 45 lines over the 

vehicle point cloud in a 180 degree span (4° resolution), and projected the vehicle points to 

each line.  Finally, we convolved the cost function model with each of these vehicle point 

projections.  This allowed us to determine which line projections best fit our expected 

perpendicular distribution, giving us both the vehicle’s orientation and also the location of the 

vehicle’s edges.  This is similar to the 2D model fitting described in (Morris, Colonna, & Haley, 

2006), but this novel 1D variation is extremely useful due to its quicker speed and reliable 

measurement accuracy. 
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Figure 4: Image: The distribution of the points (shown by the pink histogram) projected to this 

line, which is perpendicular to an edge of the vehicle 
 
 

 

Figure 5: Image: The distribution of the points (shown by the pink histogram) projected to this 
line, which is not perpendicular to an edge of the vehicle 
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Cost Function Optimization 

The cost function kernel designed to model perpendicular distributions is shown in 

Figure 6.  It can be seen that there is a small, uniform, negative cost over the entire width of the 

vehicle, which is where we expect most of the vehicle’s non-edge points to project to.  Near the 

expected vehicle edges is a large, parabolic, negative cost.  This does two things:  it estimates 

the location of the vehicle's edges, and it also picks which line is most perpendicular to the 

vehicle, in order to estimate the vehicle's orientation.  Finally, outside the edges of the vehicle is 

a large, positive cost, since we don’t expect any vehicle points outside this.  In the current cost 

function implementation, the vehicle length and width are user-specified parameters, but in the 

future it could be made into a dynamic variable.   

 

 

Figure 6: Diagram: The cost function kernel, designed to model the expected distribution of the 
perpendicular point cloud projections  
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 For each projected line (Equation 1), the points are binned to reduce computation time 

and discretely convolved (Equation 2) with a likewise discrete version of this cost function kernel 

over intervals (n, m).  This is done twice, convolving with a kernel of both parameters (w, L).  

Theta (𝜽) represents the relative direction of each projection.  By picking the two perpendicular 

projections with the minimum combined cost, we are able to both fit the vehicle edges to the 

point cloud data, and also determine the direction of vehicle.  The final equation is given in 

Equation 3.  This is a robust estimation technique, capable of consistently and quickly returning 

an approximate estimate of vehicle pose with no prior location knowledge.  An image of the 

final vehicle location estimation is shown below in Figure 7.   

 

 

Projection of Vehicle Points (V):   

 𝑽𝒑   =  cos(𝜽) ∙ |𝑽|      Eq. 1 

 

Discrete Convolution:    

 (𝑓 ∗ 𝑔)[𝒏]  ≝ ∑  𝑓[𝒎]𝑔[𝒏 − 𝒎]
∞

𝒎=−∞
   Eq. 2 

 

Overall SFMB Cost Function:   

 [𝜽, 𝒏, 𝒎] =    min
𝜽 𝜖 [0°,180°)

   (       min𝒏 (𝑘𝑒𝑟𝑛𝑒𝑙(𝒘) ∗ 𝑽𝒑   )[𝒏] 

                                                              + min𝒎 (𝑘𝑒𝑟𝑛𝑒𝑙(𝑳) ∗  𝑽𝒑   )[𝒎] ) Eq. 3 
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Figure 7: Image: An example of the cost function estimating a rectangular model to vehicle data 
 

 
 

Vehicle Location Refinement 

Once we have an initial estimate of the vehicle's pose, we can refine the estimate using 

nonlinear optimization.  For this we use MATLAB’s nonlinear minimization functions (see 

Appendix B).  Matlab’s optimization of a continuous cost function (Equation 15) is able to return 

much more precise measurements than the estimation (4° resolution) returned by our discrete 

technique.  This more powerful local optimization technique is run second because it needs an 

initial pose estimate to avoid local minima and correctly optimize the measurement.  

This summarizes the process of our Single-Frame Model-Based measurement technique, 

the performance of which will be described in Chapter 6, Results. 
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CHAPTER 3 

MULTIPLE-FRAME VEHICLE MEASUREMENT 

 

 

Objectives of Multi-Frame Measurement 

One potential solution to correct severe Model-Based Tracking errors is optimizing the 

best fit trajectory over multiple frames.  The idea behind this is that gross measurement errors 

often only occur sporadically, typically caused by insufficient data in a single frame of time.  If a 

measurement technique optimizes the best fit over multiple frames, the fitting process should 

be more robust and less susceptible to bad measurements in individual frames.   Additionally, a 

nonlinear optimization over multiple frames may be able to give more precise pose 

measurements than just a single frame measurement.  

In order to optimally match rectangular models to multiple frames of previous data, we 

needed to define certain constraints.  For our implementation, we assumed a constant speed 

and angular velocity between each previous set of data.  This is actually a reasonable 

assumption over short periods of time for true vehicle movement.  In the future, different 

constraints could be used, such as constant acceleration assumptions, or even higher order 

state variable optimizations, such as dynamic velocity and acceleration.  However, for this work, 

we optimize the measurements using a simple constant velocities constraint, in order to 

determine the potential of further exploration into Multi-Frame Model-Based (MFMB)  

measurement techniques.  We now need to discuss how predictive kinematic models can be 
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used to estimate future vehicle movement by using the current state vector variables. 

 

 

Predictive Kinematic Models 

A kinematic model is a method to predict the future state of a vehicle (which represents 

its future trajectory) based on the current state variables.  These models are needed for two 

reasons:  first, they are used by the EKF to predict future vehicle motion, and secondly are used 

here by our MFMB measurement technique, in order to constrain the vehicle measurement 

optimizations.  We model the vehicle’s 2D position using three state variables, the center-point 

of the vehicle (x, y) and the orientation of the vehicle (θ).  Next, the constant velocity 

assumptions are represented by the two constant state variables, speed (s), and angular velocity 

(θ̇).  The next component is to define how these five variables (x, y, θ, s, θ̇) predict their next 

state within each kinematic model. 

In the most basic model, the Center Point Steering Model, it is assumed that the vehicle 

rotates about the center point of the vehicle.  In this model, the next state is simply predicted 

by multiplying the estimated speed and angular velocity by the change in time, and adding 

them to the current location of the vehicle.  This is a simple kinematic model and generally real 

vehicles do not behave in this manner.  A more realistic model is called the Ackerman Steering 

Model, which assumes the vehicle actually rotates around a fixed back axle, which is defined by 

a user estimated parameter (La) that represents the distance from the vehicle center point to 

the rear axle.  In this case, the state vector will be identical (x, y, θ, s, θ̇), but the predictive 

equations will be adjusted account for the new point of rotation (La).  This model is significantly 
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more realistic than the Center-Point Steering model.  Finally, we implemented a Variable-axis 

Ackerman Steering Model (VASM), which is useful in situations where the location of the 

vehicle’s back axle is unknown.  In this kinematic model, the predictive equations are identical 

to the Ackerman Model, except that the location of the back axle is now a continuously refined 

variable within the state vector (x, y, θ, s, θ̇, La) (Morris, Haley, Zachar, & McLean, 2008).  With 

each of these models, which are depicted in Figure 8, as the complexity of the equations 

increase, so too does the overall predictive power of the model; in our studies we therefore use 

the best type of model for each situation.   

 

 

 

Figure 8: Diagram: Depiction of how the kinematic models predict vehicle trajectory 
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Multi-Frame Model-Based Measurement Technique 

In order to build this measurement technique, we incorporated many of the 

measurement techniques from the single-frame tracking algorithm.  First, a variable number of 

previous frames are chosen to optimize the measurement model fits over.  Next, the known 

poses of the two previous vehicle measurements are utilized to estimate the initial values of the 

state vector (x, y, θ, s, θ̇).  Then by maintaining our constant speed and angular velocity 

assumptions, we predict where the other vehicle models will be, by using the equations from 

the kinematic vehicle models.  We utilize the same rectangular vehicle model as discussed in 

the Single-Frame measurement chapter.  Finally, we use a nonlinear MATLAB minimization 

function (see Appendix B) to best optimize the fit of each model cost function to its respective 

point cloud, while maintaining constant velocities between consecutive frames of data.  This 

returns the optimized current pose, as well as the estimated speed and angular velocity 

between each of the frames in the optimization.  An example of this optimization is shown 

below in Figure 9.  This final MFMB measurement can be fed into an EKF for overall vehicle 

tracking.  The performance of this measurement technique will be discussed thoroughly in 

Chapter 6, Results. 
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Figure 9: Image: An example of how MFMB measurement optimizes over multiple 
frames of previous vehicle data   
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CHAPTER 4 

DIFFERENTIAL MEASUREMENT 

 

 

In order to compensate for the weaknesses of the Model-Based approaches, there has 

been significant research done on Model-Free tracking.  This is often accomplished by using a 

registration algorithm such as Iterative Closest Point (ICP), which is able to measure differences 

in frames without relying on a generic model.  This differential measurement works by 

optimizing the transformation that best describes the vehicle’s movement between two 

different frames in time.  However, this method too has downsides.  First and foremost, it loses 

the predictive power of a kinematic vehicle model, which is essential for our application of 

vehicle tracking and future trajectory prediction.  Additionally, ICP loses the tracking accuracy 

possible from a Model-Based method, in the situations where this method performs well.  

Therefore, in our investigations we considered how ICP can be used in conjuncture with existing 

Model-Based methods, to prevent gross measurement errors, while still retaining the strength 

of Model-Based measurements. 
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Iterative Closest Point Algorithm 

The Iterative Closest Point (ICP) algorithm is one of the most commonly used registration 

methods.  Significant research has been done studying this algorithm, on both improving its 

performance (Besl & McKay, 1992) and also using it in many model free tracking applications 

( (Wang, Posner, & Newman, 2015); (Pooja & Govindu, 2010)).  For a concise overview of the 

variations of ICP and its many applications, see (Rusinkiewicz & Levoy, 2001).   

ICP attempts to measure the transformation that best describes the movement of an 

object over time, by optimizing the transformation between two similar point clouds .  For our 

application, ICP uses two consecutive frames of vehicle points and estimates the optimal 

transformation between them.  ICP generally provides a quite a good estimate of the vehicle's 

movement, without needing any assumed vehicle model.  For this reason ICP is commonly used 

for tracking applications where a model is less descriptive, such as the tracking of pedestrians or 

other non-uniformly shaped objects. 

There are many minor variations of the ICP technique, but the general algorithm is the 

same.  Throughout the process, one point cloud, the reference, is kept fixed while the other, the 

source, is transformed to best match the reference. The algorithm iteratively updates the 

transformation to minimize the distance between the source and the reference.  The essential 

steps of the algorithm are as follows, and are depicted in Figure 10.  First, each point in the 

reference cloud is matched with the closest point in the source cloud.  Second, some sort of 

mean-squared cost function is used to estimate the rotation and translation that will best align 

the two point clouds.  Third, the source points are transformed using the above transformation.  

Finally, this process is iterated until a stopping criteria is met (the reference and source cloud 
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points are re-associated, and the algorithm is repeated).  There are many minor variations to 

this algorithm to improve its speed and performance, but this is the essential process.  An 

example of using ICP to estimate a vehicle’s transformation over time is shown in Figure 11. 

 

 

Figure 10: Diagram: A visual depiction of the Iterative Closest Point Algorithm 
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Figure 11: Image: An example of how ICP can be used to estimate vehicle movement 

 

 

 

Limitations of Local Minimization 

The ICP algorithm is an extremely powerful tool; it is capable of quickly returning a 

decent estimate of the transformation between two similar frames without any dependence on 

a given model.  That being said however, it also has severe limitations.  This is mainly because 

when it minimizes the cost function to find the best fit, it is not actually finding the global  best 
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fit, but instead the best local minima.  This is due to the point association step; if extreme 

differences exist between the two frames initially, the algorithm will match incorrect point pairs, 

and then the procedure will likewise optimize to a bad overall match.  This causes two major 

issues for our vehicle tracking application.  First, it is generally only effective when used over 

frames with similar times, when the vehicle hasn't drastically changed its pose.  Secondly, it 

performs very poorly when a vehicle turns, and a different edge of the vehicle becomes visible.  

This is because the algorithm will try to minimize the distance between the two opposite sides 

of the vehicle, greedily assuming they are the same side.  These are two significant issues that 

we will need to address in order for ICP to be useful to us. 

 

 

Three Degrees of Freedom Constraint 

To improve the performance of our ICP algorithm in the application of vehicle tracking, 

we constrained the freedom of vehicle motion.  Instead of allowing a six degree of freedom 

transformation through 3D space, we restricted vehicle motion to a single plane parallel to the 

ground.  We made this assumption because for normal vehicle operation, a vehicle is only 

capable of moving with its wheels touching the ground.  By limiting the possible vehicle 

transformations over time to three degrees of freedom (x, y, θ), we get rid of many cases where 

the ICP returns a meaningless and incorrect estimated transformation.  Below is an example of 

the improvement returned by constraining vehicle motion to three degrees of freedom.  
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Figure 12: Image: Operation of the vehicle tracking ICP with six degrees of freedom 
 

 
Figure 13: Image: Operation of the vehicle tracking ICP with three degrees of freedom 
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Differential Measurement Technique 

The ICP algorithm essentially measures the difference between two vehicle clouds over 

time.  Differential measurement therefore works rather differently than conventional Model-

Based measurement.  ICP doesn't require an assumed vehicle model; this can be a strength 

when the vehicle is not rectangular, but it isn't as accurate in cases when the model does fit 

well.  Secondly, ICP estimates the linear and angular velocity of a vehicle over a span of time, 

but it is incapable of estimating the actual pose of a vehicle at a single instant.  This actually 

makes integrating it within a typical vehicle tracking framework slightly more complicated.  In 

order to compensate for this difference, when we use differential measurements with our EKF 

filter, it is necessary to utilize a Model-Based measurement technique for the first frame of data, 

to get the initial first order variable measurements (x, y, θ).  Once we have these initial 

measurements, we can use the measurements ICP does return (s, θ̇) to extrapolate the precise 

pose measurements found by ICP over the rest of the vehicle trajectory. 

In order to compare ICP differential measurements (s, θ̇) with Model-Based position 

measurements (x, y, θ), we extract the delta position measurements from two frames of the 

Model-Based position measurements, which can then be directly compared to the differential 

measurements.  This performance will be summarized in Chapter 6, Results.  Since both of 

these algorithms work in different ways and have distinct strengths, we consider both methods 

in the hope to use them in a complementary fashion to improve overall vehicle tracking 

accuracy and precision. 
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CHAPTER 5 

MODEL SIMULATION 

 

 

In order to get meaningful results to compare the effectiveness of different methods, it 

is crucial we collect vehicle data with a known pose.  To initially test the trackers, we used 

physical vehicle data collected with an HDL-32E Lidar.  However, a large challenge to existing 

vehicle tracking research is the difficulty in getting effective, quantitative results to draw 

meaningful conclusions from.  This is because for accurate tracking method comparisons, we 

need point cloud vehicle data with a known ground-truth vehicle pose, which is a decidedly 

complicated task during real world data collections.  One study (Held, Levinson, & Thrun, 2013) 

cleverly simulated known vehicle movement by tracking stationary vehicles using a known, 

moving sensor trajectory.  This allowed them to collect physical data with precisely known 

ground-truth trajectories.  However, since our Lidar scanner is not yet mounted to a vehicle, we 

decided that the best way to achieve this was to build a program to simulate the point clouds 

from a vehicle moving in a user-specified path.  This provided us with the precise known 

trajectory of the vehicle, and also allowed us to simulate diverse vehicles. 

In order to build a vehicle point cloud simulator, we began with a vehicle mesh.  This is 

useful because there are large online warehouses full of diverse, free vehicle meshes, allowing 

the simulation of many different types of vehicles.  Next, we simulated a HDL-64E Velodyne 

Lidar by gathering the locations, angles, and frequency of lasers from data-sheets.  Then, by 
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placing the vehicle mesh at a specified location relative to the Lidar sensor, an accurate point 

cloud was created by intersecting the known lasers directions with the mesh's triangular facets, 

and filtering out any redundant intersections.  Finally, we also built in an additional feature to 

simulate Gaussian depth-noise, to further test the effectiveness of the measurement methods.   

 

 

 

Figure 14: Image: An example of a vehicle mesh available online 
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Figure 15: Image: A vehicle mesh with the Lidar points from the simulation algorithm 

 

 

The overall operation of the point cloud simulator involves feeding in any vehicle mesh 

and desired trajectory, based on one of our three kinematic models, and returns the exact point 

clouds and known pose at every point in time.  This is a powerful simulation algorithm; it allows 

us to generate any available vehicle mesh along any path we desire, uses various types of Lidar 

sensors, and returns a precise series of point cloud measurements with the corresponding 

known pose of the vehicle. 

Using this simulation algorithm allowed us to collect diverse datasets.  This included data 

at far distances, data with different amounts of noise, and test many different vehicle shapes.  It 

also returned a precise ground-truth pose in order to calculate the absolute error between the 

different measurement methods.  This point cloud simulator was essential for obtaining 

measurement data with ground truth poses needed to evaluate our methods. 



30 

 

CHAPTER 6 

RESULTS 

 

 

In order to summarize the relative strengths of the different tracking methods, they 

were tested under diverse situations.  The major findings and differences between each type of 

tracker are summarized below.  Because model-fitting performance is based on many factors 

including the type and shape of the vehicle, the sparsity of data, Lidar vision conditions, 

environmental clutter, and model accuracy, it is difficult to try to extract an overall quantitative 

grade of each method.  Instead we will focus on individual, diverse situations and compare how 

the trackers perform in each one, in order to draw general conclusions about the overall 

effectiveness and strengths of each. 

 

 

Gross Measurement Error Avoidance 

Our first goal for investigating these two additional measurement techniques was to 

better avoid gross measurement errors.  Gross errors are cases where the fitting process 

matches different parts of the vehicle data to the vehicle model, causing major a measurement 

error.  The reason we chose to study ICP and Multi-Frame measurements was because they are 

both inherently more robust than Single-Frame Model-Based measurements.  Below we show 

three cases under which the standard SFMB measurement technique fails , including cases with 
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vehicle clutter, sparse data points, and situations where pickup trucks or semi-truck cabs cause 

unusual point distributions.  It can be seen in each of the three figures below that both tracking 

methods ICP and MFMBT avoid these situational gross errors significantly better than SFMBT, 

confirming our hypothesis that these methods would be more robust. 

We notice that both ICP and MFMB are more robust, but in different ways.  MFMB 

measurements work better in situations where the model is generally a good representation of 

the vehicle, but there are individual frames where the model fails, often due to noise, sparse 

data, or the vehicle’s orientation. This can be seen in the example with a single frame of exhaust 

clutter above (Figure 16), and additionally in the case with very sparse data (Figure 17).  ICP on 

the other hand works better (relatively) when the true shape of the vehicle is  misrepresented 

by a rectangular 2D model, which can be seen in the example above of tracking a semi-truck cab 

(Figure 18).  In this case, since the model doesn’t accurately match the vehicle’s underlying 

shape, MFMB also returns an incorrect measurement. 
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Figure 16: Image: Clutter from the vehicle’s exhaust causes a gross measurement error 
 
 
 
 
 

 
Figure 17: Image: Sparse data from a distant vehicle causes Single-Frame measurement errors 
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Figure 18: Image: A semi-truck cab’s nonrectangular 3D shape causes gross measurement errors   

 

 

We have shown that both of these measurement techniques are capable of addressing 

this first objective:  improving our ability to avoid gross measurement errors.  On the other 

hand, both methods are generally more expensive in terms of computation time.  Therefore, a 

simple combined solution to avoid gross measurement errors would be to run a tracker that 

generally feeds SFMB measurements into the EKF, until we get a bad measurement (which we 

could determine from cases where the measurement and model prediction estimations are very 

different), and in this case use one of these two more robust measurement techniques.  This 

would offer the fastest overall performance, while also addressing the issue of gross 

measurement errors.  However, a general solution of how best to utilize all measurement 

techniques together is completely dependent on the desired application of the tracker.  
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Therefore, we will now attempt to characterize the strengths of both of these two 

measurement methods, so that they can be combined in a manner the user desires. 

 

 

Performance Metrics 

In order to analyze the effectiveness of our measurement techniques, we will compare 

both ICP and MFMB individually to the existing SFMB measurement method.  We do this 

because we need to use slightly different metrics for the ICP and MFMB comparisons.  The 

reason for this is that ICP inherently returns only differential measurements, whereas because 

both SF and MF are model-based, they return location measurements.  Additionally, our 

reference data of the known vehicle trajectory is also in terms of location measurements.  

Therefore, we will individually compare SFMB and MFMB performances in terms of location 

errors, and secondly we will compare SFMB and ICP in terms of pairwise differential errors.  

In order to compare the effectiveness of both measurement techniques, we first need to 

define the metrics we will be using to judge their performances.  For the location 

measurements we will plot the errors between the measured location, and the known true 

location.  We will plot this in local coordinates; that is we will measure the error between the 

measured and true vehicle locations in terms of the direction the vehicle is facing at the given 

instant.  Once we have all local errors, we will combine the x and y errors in a scatter plot to 

compare the performance and accuracy of both methods.  Comparing the performance of the 

differential measurements will be done in the same manner, except instead of calculating the 

location error, we will be calculating the differential position errors.   
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Measurement Bias 

 This introduces an important topic, measurement bias.  In a general error measurement 

situation, we would expect there to be some inherent difference between the center-point of 

our rectangular model and the center-point of the true vehicle location.  This is called the 

measurement bias.  Measurement bias is created because we are using a generically shaped 

rectangular model to represent unique vehicles with unknown true shapes.  An example of 

measurement bias is shown below (Figure 19). 

 

 

Figure 19: Image: An example of the measurement bias between the model and vehicle  
Center-Points  

 

 

When we measure the error between a given measurement and the true vehicle 

location, there can be two sources for error:  error due to the failures of the measurement 
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technique or error due to the inherent measurement bias.  This is why we represent the 

measurement errors with a scatter plot.  In the case where the measurement technique 

performs consistently and accurately, but there exists a constant measurement bias, we would 

expect the errors to be tightly clustered, but not necessarily around the origin (which represents 

zero error).  Therefore, it is misrepresentative to use accuracy alone to describe the 

performance of a measurement technique.  Precision is a significantly more useful metric to 

compare the performance of different techniques, because we want our techniques to provide 

consistent measurements over similar datasets.   For this reason, for each measurement 

method, we will create a scatter plot of the localized error, and compare the variance of the 

different measurement approaches, in order to determine which method performs best.  We 

also count the number of gross measurement errors each technique makes, but don’t include 

these errors within the standard deviation calculations, since they correspond to fitting 

incorrect portions of the vehicle. 

 

 

Multiple-Frame Model-Based Measurement Analysis 

First we will compare the two types of Model-Based fitting, both the single-frame 

implementation and our multi-frame version.  As previously mentioned, since both 

measurement approaches are model based, we are able to compare the localized position 

errors.  Since our MFMB implementation assumes constant speed and angular velocity, the 

vehicle trajectories we measured met those constraints.  Additionally, we used the same 

kinematic model (Center Point Steering) in both the MFMB measurement technique and the 
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trajectory of the vehicle point cloud simulation, in order to remove any possible error which 

could be caused by that inconsistency.   

In Figure 21, we see initial scatter plot comparisons of the SFMB and MFMB 

measurement techniques, compared over multiple data collections.  For each collection the 

vehicle and its trajectory were exactly the same; in each case, the vehicle drove in an equally 

sized circle, but different parameters were changed in order simulate various environmental 

conditions.  The below scatter plot summarizes cases with simple data, noisy data, sparse data , 

and data with missing points. 

 

Figure 20: Scatter Plot: Comparison of the Single and Multiple Frame Model-Based  

Measurement Techniques 
 

Measurement Method  Standard Deviation Number of Gross Errors  

Single-Frame MB  0.0658 2 

Multi-Frame MB  0.0608 0 

Table 1: Corresponding SFMB and MFMB measurement data 
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 Inspecting the scatter plot above and comparing the standard deviations of each 

technique, we can see that the Multi-Frame measurements were marginally more precise over 

a series of various data collections, although they had the significant advantage of not making 

any gross errors.  We also noticed that the overall point distribution of each technique was 

oddly shaped, without a well-defined center.  This was an unexpected result suggesting an 

unmodeled source of error.  In order to explain it we consider the effect of the measurement 

bias. 

 

 

Varying Measurement Bias 

 We have already discussed the effect of constant measurement bias on the accuracy of 

the measurement techniques:  a constant measurement bias would shift the center of the 

measurement errors by a constant amount, while leaving the precision of the measurements 

unaffected.  However, since we are measuring a circular vehicle trajectory, the measurement 

bias we see isn’t a constant value.  In the example below, the assumed vehicle model is smaller 

than the true size of the vehicle.  In this case, the model will be matched over the visible vehicle 

points, which will cause the model center-point to be closer to the visible corner than the 

vehicle’s true center-point, which creates measurement bias (Figure 21). However, as soon as a 

different corner of the vehicle is visible, the measurement bias shifts in that direction (Figure 

22).  This is because the center of the model is not also the center of the vehicle.  This could be 

fixed by adjusting the width of the 1D filters of the vehicle model for each unique vehicle. 
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Figure 21: Image: An example of the measurement bias between the model and vehicle centers, 
as seen from a certain vantage point 
 

 

Figure 22: Image: A second example of the measurement bias between the model and vehicle 
centers, as seen from a different vantage point 
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In order to account for this, we divided the above scatter plot measurement errors 

based on which corner of the vehicle is visible.  Since the vehicle trajectory is circular, this 

effectively means dividing the circular measurements based on which quadrant the vehicle is in, 

since each quadrant contains a different visible corner.  When we evaluate the same earlier 

results, separated based on which corner of the vehicle is visible, we get more meaningful 

results (Figures 23 and 24). 

 

 

 

Figure 23: Scatter Plot: A scatter plot of the local error measurements for the Single-Frame 

approach, separated based on the quadrant of the circle the vehicle is in 
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Figure 24: Scatter Plot: A scatter plot of the local error measurements for the Multi-Frame 

approach, separated based on the quadrant of the circle the vehicle is in 
 

 
Measurement Method Average Standard Deviation Total Number of Gross Errors  

Single-Frame MB 0.0577 2 

Multi-Frame MB 0.0534 0 

 
Table 2: The measurement data from the two scatter plots in Figures 24 and 25, with averaged 
standard deviation and the total gross measurement error count 
 
 

 In the above scatter plots, we first notice that the errors within each quadrant are much 

more precise, with each quadrant containing a distinct center-point.  This confirms our earlier 

hypothesis that the measurement bias does change based on the corner of the vehicle that is 

visible.  When we compare the results of the exact same data, separated based on the visible 

corner of the vehicle, we see that both the performances of the SFMB and MFMB improve, with 

the Multi-Frame optimization still performing better both in terms of measurement precision 

and gross error avoidance. 
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Removal of Measurement Bias 

In order to remove the issue of the varying measurement bias, we conducted another 

series of data collections all with the same vehicle corner visible, to minimize the measurement 

bias.  Additionally, we refined the rectangular model to fit the true vehicle size as best we could, 

in order to further minimize the measurement bias.  Next we compile a series of diverse 

measurements, including cases with sparse points, noisy data, and clutter, all over equivalent 

vehicle trajectories.  The local position errors are compared within Figure 25 and Table 3.  In 

these results, it can be seen that the local error scatter plot has a more typical distribution with 

a strong center point.  Overall, it can clearly be seen that MFMB performs better than SFMB in 

terms of local position error, orientation error, and gross error avoidance. 

 

 
Figure 25: Scatter Plot: Comparison of the Single and Multiple Frame Model-Based 

Measurement Techniques in a case with minimal measurement bias  
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Measurement Method Standard Deviation Number of Gross Errors 

Single-Frame MB 0.0514 2 

Multi-Frame MB 0.0432 0 

Table 3: Corresponding SFMB and MFMB measurement data with minimal bias 

 
 
 

 

 

Multi-Frame Performance Spectrum 

The previous results show that once bias is removed, Multi-Frame optimization reliably 

performs better than its Single-Frame counterpart.  We then wanted to further explore how the 

number of frames we optimize over affects the overall MFMB measurement performance.  In 

order to do this we collected a series of data sets over linear vehicle trajectories, under various 

noise and distance conditions.  Next MFMB measurements were collected while varying the 

number of optimized frames, and the results are summarized in the table below. 
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Figure 26: Plot: How optimizing Multi-Frame model fitting over different numbers of previous 

data frames affects measurement precision 
 

 

 

The above chart shows three distinct data sets.  For each one, the X-axis contains the 

number of frames the MFMB technique optimized over, and the Y-axis shows each 

measurement’s corresponding precision.  Note that the data optimized over 1 single frame 

corresponds to the SFMB technique.  It can be seen that in each of the cases, increasing the 

number of optimized frames increases the precision of the measurements, shown by the 

decreasing standard deviation, but with diminishing effect.  However, a drawback to increasing 

the number of optimized frames is that it significantly increases the time taken to solve the 

optimization. 
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Overall MFMB performs consistently with what we would expect.  Increasing the 

number of frames likewise increases the number of vehicle points optimized over, which 

therefore results in more consistent and robust measurements.  An example of the single and 

multiple frame operation is below, to showcase why and how MFMB works better (Figure 28).  

However, there is a trade-off between diminishing measurement improvement and increasing 

computation time.  Therefore future applications will need to decide on the number of 

optimized frames to achieve the desired balance between those two factors.  

 

 

Figure 27: Image: An example of Single and Multiple Frame Model-Based optimizations over a 

set of noisy data  
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Differential Measurement Analysis 

Now we will compare the overall performance of ICP versus traditional Model-Based 

tracking.  It is difficult to quantify how well Model-Based tracking performs, because it is 

inherently dependent on how well a specific vehicle can be represented by the generic 

rectangular model; its performance is completely situational. On the other hand, since ICP is 

model-independent, it performs significantly more consistently for vehicles with diverse shapes.  

Another major difference between ICP and Model-Based fitting is that ICP is a local 

minimization whereas SFMBT is global.   

In cases where a rectangular model accurately describes the true shape of a vehicle, 

SFMB is able to return significantly more accurate measurements.  As we did in the previous 

section, we compiled a series of diverse measurement cases and compared the effectiveness of 

the two measurement methods, SFMB and ICP.  However, recall that since ICP is a differential 

measurement, in this case the scatter plot is showing results of the pairwise differential errors.  

However, other than that slight distinction, the two comparison approaches are very similar.  
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Figure 28: Scatter Plot: Comparison of the Single-Frame Model-Based and ICP 
Measurement Techniques 
 
 
 

Measurement Method Standard Deviation Number of Gross Errors 

Single-Frame MB 0.0621 5 

Iterative Closest Point 0.0875 12 

 
Table 4: Corresponding SFMB and ICP measurement data 

 
 

 

 In the above results it can be seen that SFMB performs significantly more accurately that 

ICP, in cases where the model fits well.  However, that doesn’t necessarily mean SFMB is better 

overall.  As the true vehicle shape is represented less well using a rectangular model, ICP 
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performs better and better, relatively to SFMB, and at some point will even outperform Model-

Based measurements completely.  Additionally, even in cases where the rectangular model is 

generally a good description of the vehicle’s shape, in some instances ICP will still perform 

better than SFMB due to the inherent limitations of using a generic model.  For example in the 

below figure (Figure 30), SFMB returns a drastically worse measurement error than ICP, due to 

the vantage point at which the vehicle is seen. 

 

 

 

Figure 29: Image: Example of ICP outperforming SFMB with only one visible edge 
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We can draw three conclusions from this.  First, in every situation either Iterative Closest 

Point or Model-Based Tracking will provide more accurate results, based on how well the 

rectangular model fits the true vehicle shape.  Creating a combined measurement technique 

that will return either ICP or MBT measurements based on the shape of each individual vehicle 

would be a possible idea for future work.  Secondly, the fact that ICP is only a local minimization 

is quite limiting.  It can only be applied in situations where the two vehicle locations are 

relatively close, often being used in consecutive time steps.  Model-Based tracking however 

benefits from being able to find the global best measurement of a vehicle at any instant of time; 

this robustness will be extremely useful in dealing with other difficult vehicle tracking issues 

such as occlusion.  Finally, since ICP is only capable of providing relative, differential 

measurements, it has no way of estimating a vehicle’s current location at a single instant in 

time; therefore implementing an ICP only measurement technique would be extremely difficult.  
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CHAPTER 7 

CONCLUSION 

 

In this study we explored how Multi-Frame Model-Based and Differential measurement 

techniques can be used to improve vehicle measurement accuracy.  Increasing the accuracy and 

robustness of vehicle pose measurements is an important goal within autonomous vehicle 

research.  The techniques of batch processing multiple frames and the Iterative Closest Point 

algorithm have been studied and used in different fields of research, but haven’t been 

significantly explored in combination with model-based vehicle tracking. 

In difficult situations Single-Frame Model-Based (SFMB) fitting occasionally matches 

incorrect parts of the rectangular model to the true point cloud data.  These gross 

measurement errors are a major problem for vehicle tracking, and in some cases can be strong 

enough to completely derail the vehicle tracker.  However, by increasing vehicle measurement 

robustness, we can minimize the occurrence of these gross errors.  Increasing vehicle 

measurement accuracy is also important, because the extracted higher order parameters of 

velocity and acceleration are then likewise more accurate.  Throughout this study, we have 

found ways that both accuracy and robustness can be improved by leveraging Multi -Frame and 

Differential measurements. 

Multi-Frame Model-Based (MFMB) fitting provides a consistent way to increase both 

vehicle measurement accuracy and robustness, in cases where the rectangular model 

represents the true vehicle shape well.  In the Results section we saw that increasing the 
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number of optimized frames results in more accurate measurements, and also reduces the 

number of gross measurement errors.  MFMB is a very powerful tool for dealing with cases 

involving distant, noisy, or sparse data, or situations with individual frames of occlusion or 

inaccuracy.   

Differential or model-free measurements are much more useful in cases where the true 

vehicle shape is not represented well by a rectangular model.  In these situations both single 

and multi-frame model-based methods are ineffective and the best way to estimate vehicle 

movement is by using differential measurements.   

 By integrating multi-frame optimizations and differential measurements with 

conventional rectangular model based vehicle measurement, we provide additional tools to 

deal with difficult vehicle tracking situations.  Conventional SFMB measurements are very 

useful:  they often provide accurate measurements quickly, with low computational cost.  

However, the poor performance of SFMB in challenging situations can be improved using the 

two techniques we’ve introduced in this study.  Multi-Frame optimization uses additional 

computation power to improve measurement accuracy and robustness, and model-free ICP 

measurement provides a way to measure non-rectangular vehicle movement.  
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CHAPTER 8 

FUTURE WORK 

 

 

In the course of our investigations on differential and multi-frame measurement 

techniques, we discovered many areas for future work.  How each idea could benefit the 

measurement research we conducted will be explained in the following section, as well a brief 

description of implementation ideas. 

 

 

Multi-Frame Optimization of Higher Order Variables 

One major limitation of traditional single-frame measurements fed into an Extended 

Kalman Filter is that the filter optimizes a linear cost function.  For a single-frame measurement, 

the only input is a simple position and orientation estimate.  By tracking that over time, the best 

fit optimization only has the strength to optimize the vehicle's location and velocities.  However, 

this simplification loses a good deal of potential information, as true vehicle movement 

frequently includes acceleration and even changes in acceleration.  While this cannot be 

measured using only single-frame measurements, these could be estimated with the additional 

frames used by the Multi-Frame Model-Based measurement technique.  Similarly, it would also 

be possible to refine the vehicle length and width estimations, in order to minimize the effects 

of bias on MFMB. 
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Iterative Closest Point Unique Model Accumulation 

In general, ICP performs worse than Model-Based measurement methods, in situations 

where the vehicle fits the rectangular model relatively well.  However, that doesn't mean it 

doesn't have potential; aside from being crucial in situations where Model-Based fitting fails, 

one huge possible field for future research is a unique vehicle model accumulation.  The 

weakness with Model-Based fitting is that it assumes a generic model, which limits the 

effectiveness of the kinematic tracker for individual vehicles .  The main idea behind unique 

vehicle model accumulation is that by using ICP, we could combine points from multiple frames 

in time to estimate a unique vehicle model, which could be built up as a re-sampled 3D point 

cloud.  This would have numerous benefits, including very specific knowledge of the vehicle’s 

shape to avoid collision, it would prevent gross measurement errors caused by rectangular 

vehicle model assumptions, and would provide more accurate vehicle location measurement 

However as powerful as this technique would be, it comes with considerable challenges.  

First and foremost, it would be difficult to prevent ICP transformation errors from each frame 

from accumulating and creating an extremely incorrect combined model.  In order to deal with 

this issue, significant work would need to be done to create a robust method to remove or 

improve poor matches.  Secondly, clever algorithms must be designed to resample and 

condense redundant points, since our program’s memory is finite.  A possible solution could 

involve iteratively refining a vehicle mesh using each frame's point cloud data, starting from a 

basic rectangular box model.  A tool like this would be a powerful addition to the field of vehicle 

tracking. 
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Situationally Utilized Measurement Models 

Creating a combined measurement approach that will return either ICP or MBT 

measurements based on the shape of every unique vehicle would provide the most accurate 

measurements.  This idea would be to combine both Model-Based and model-free tracking and 

utilize the technique that will best measure the vehicle position.  Every vehicle would be 

classified based on how well it is represented by a rectangular vehicle model.  However once 

that is complete, by continuing to use that method to track the vehicle’s movement, a 

situationally unique technique would return the best possible measurements using the ICP or 

MB techniques. 
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Appendix A:  Extended Kalman Filter Equations 

 

The extended Kalman filter (EKF) is the nonlinear version of the Kalman filter, which 

linearizes about an estimate of the current mean and covariance.  These equations are widely 

known and there are many small variations to this process.  The EKF works in the following 

general manner.  The state transition and observation models do not need to be linear 

functions, and instead are represented as: 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1) +  𝑤𝑘−1  Eq. 4 

𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 Eq. 5 

 

Where 𝑤𝑘−1 and 𝑣𝑘 are the process and observation noises, which are both assumed to be zero 

mean value multivariate Gaussian noises with covariance Qk and Rk respectively. uk is the control 

vector.  At each time step, the Jacobian is evaluated with current predicted states.  These 

matrices can be used in the Kalman filter equations.  This process essentially linearizes the non-

linear function around the current estimate. 

  

The EKF equations are as follows: 

Predict  

Predicted state estimate 𝒙𝑘|𝑘−1 = 𝑓(𝒙̂𝑘−1|𝑘−1, 𝒖𝑘−1 ) Eq. 6 

Predicted covariance estimate 𝑷𝑘|𝑘−1 =  𝑭𝑘−1 𝑷𝑘−1|𝑘−1𝑭𝑘−1
T +  𝑸𝑘−1  Eq. 7 
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Update 

Innovation or measurement residual 𝒚𝑘 =  𝒛𝑘 − ℎ(𝒙̂𝑘|𝑘−1)  Eq. 8 

Innovation (or residual) covariance 𝑺𝑘 =  𝑯𝑘𝑷𝑘|𝑘−1𝑯𝑘
T +  𝑹𝑘  Eq. 9 

Near-optimal Kalman gain 𝑲𝑘 =  𝑷𝑘 |𝑘−1𝑯𝑘
T𝑺𝑘

−1 Eq. 10 

Updated covariance estimate 𝑷𝑘|𝑘 = (𝑰 − 𝑲𝑘𝑯𝑘)𝑷𝑘|𝑘−1 Eq. 11 

Updated state estimate    𝒙̂𝑘|𝑘 =  𝒙̂𝑘−1|𝑘−1 +  𝑲𝑘 𝒚𝑘 Eq. 12 

 

Where the state transition and observation matrices are defined to be the Jacobian Matrices: 

 𝑭𝑘 −1 =  
𝜕𝑓

𝜕𝑥
|

𝒙̂𝑘−1|𝑘−1,𝒖𝑘−1

   Eq. 13 

 𝑯𝑘 =  
𝜕ℎ

𝜕𝑥
|

𝒙̂𝑘|𝑘−1

   Eq. 14 
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Appendix B: Nonlinear Function Minimization 

 

An integral portion to the tracking algorithms we built was the nonlinear function 

minimization tool in MATLAB's Optimization Toolbox.  We used this function to optimize the 

model fit to point cloud data for both single and multi-frame trackers.  It works by accepting a 

user-defined cost function (func), certain variables used to minimize this cost (x), and their 

initial values (x0).  By using the gradient, which is either automatically derived or manually 

provided, it accurately returns the optimized variables (xf) to minimize the cost function.  Since 

this is a local minimization, we need relatively accurate initial values.  This tool minimizes the 

function equation: 

 𝑪 =  min 𝒙: 𝒙𝟎→𝒙𝒇  𝑓𝑢𝑛𝑐(𝒙)  Eq. 15 

 

For our purposes, we define the cost function as being the vehicle model cost function 

from chapter one, multiplied by the true point cloud data.  The optimizable parameters of the 

cost function are the pose of the vehicle's rectangular model, which includes its position and 

orientation.  The initial estimation of the vehicle’s position and orientation are used to initialize 

the cost function.  By tuning the estimated pose variables to minimize the overall cost function, 

the nonlinear minimization function is able to return the best estimation of the vehicle's true 

pose, based on the provided model. 
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