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ABSTRACT

CLUSTERINC, DIMENSIONALITY REDUCTION, AND SIDE

INFORMATION

By

Hiu Chung Law

Recent advances in sensing and storage technology have created many high«

volume, high-dimensional data sets in pattern recognition, machine learning, and data

mining. Unsupervised learning can provide generic tools for analyzing and summariz-

ing these data sets when there is no well-defined notion Of classes. The purpose of this

thesis is to study some of the Open problems in two main areas Of unsupervised learn-

ing, namely clustering and (unsupervised) dimensionality reduction. Instance-level

constraint on Objects, an example of side—information, is also considered to improve

the clustering results.

Our first contribution is a modification to the isometric feature mapping

(ISOMAP) algorithm when the input data, instead of being all available Simulta-

neously, arrive sequentially from a data stream. ISOMAP is representative of a class

of nonlinear dimensionality reduction algorithms that are based on the notion of a

manifold. Both the standard ISOMAP and the landmark version of ISOMAP are

 



_m I i, 5-; ._ m

considered. Experimental results on synthetic data as well as real world images

demonstrate that the modified algorithm can maintain an accurate low—dimensional

representation of the data in an efficient matmer.

We study the problem of feature selection in model-based clustering when the

number Of clusters is unknown. we propose the concept of feature saliency and intro—

duce an expectation-maximization (EM) algorithm for its estimation. By using the

minimum message length (MML) model selection criterion, the saliency of irrelevant

features is driven towards zero, which corresponds to performing feature selection.

The use Of MML can also determine the number Of clusters automatically by pruning

away the weak clusters. The proposed algorithm is validated on both synthetic data

and data sets from the UCI machine learning repository.

We have also developed a new algorithm for incorporating instance—level con-

straints in model-based clustering. Its main idea is that we require the cluster label

Of an Object to be determined only by its feature vector and the cluster parameters.

In particular, the constraints should not have any direct influence. This consideration

leads to a new objective function that considers both the fit to the data and the sat-

isfaction of the constraints simultaneously. The line—search Newton algorithm is used

to find the cluster parameter vector that Optimizes this Objective function. This ap-

proach is extended to simultaneously perform feature extraction and clustering under

constraints. Comparison of the proposed algorithm with competitive algorithms over

eighteen data sets from different domains, including text categorization, low—level im-

age segmentation, appearance-based vision, and benclunark data sets from the UCI

machine learning repository, shows the superiority of the proposed approach.
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Chapter 1

Introduction

The most important characteristic of the information age is the abundance of data.

Advances in computer technology, in particular the Internet, have led to what some ‘

people call “data explosion”: the amount of data available to any person has increased

so much that it is more than he or she can handle. According to a recent study1

conducted at UC Berkeley, the amount of new data stored on paper, film, magnetic,

and Optical media is estimated to have grown 30% per year between 1999 and 2002. In

the year 2002 alone, about 5 exabytes of new data have been generated. (One exabyte

is about 1018 bytes, or 1000000 terabytes). Most of the original data are stored in

electronic devices like hard disks (Table 1.1). This increase in both the volume and

the variety of data calls for advances in methodology to understand, process, and

summarize the data. From a more technical point of view, understanding the structure

of large data sets arising from the data explosion is of fundamental importance in

data mining, pattern recognition, and machine learning. In this thesis, we focus on

 

 

1http://www.Sims.berkeley.edu/research/projects/how-much-info-2003/

1



Table 1.1: Worldwide production of original data, if stored digitally, in terabytes

(TB) circa 2002. Upper estimates (denoted by “upper”) assume the data are digitally

scanned, while lower estimates (denoted by “lower”) assume the digital contents have

been compressed. It is taken from Table 1.2 in http://www.sims.berkeley.edu/

research/projects/how-much-info-2003/execsum.htm. The precise definitions of

“paper,” “film,” “magnetic,” and “optical” can be found in the web report.

 

 

 

 

 

    

storage upper, lower, upper, lower, % change,

medium 2002 2002 1999—2000 1999-2000 upper

Paper 1,634 327 1,200 240 36%

Film 420,254 74,202 431,690 58,209 -3%

Magnetic 5,187,130 3,416,230 2,779,760 2,073,760 87%

Optical 103 51 81 29 28%

Total 5,609,121 3,416,281 3,212,731 2,132,238 74.5%    
 

two important techniques for data analysis in pattern recognition: dimensionality

reduction and clustering. We also investigate how the addition Of constraints, an

example of side—information, can assist in data clustering.

1.1 Data Analysis

The word “data,” as simple as it seetns, is not easy to define precisely. We shall

adopt a pattern recognition perspective and regard data as the description of a set of

Objects or patterns that can be processed by a computer. The objects are assumed

to have some commonalities, so that the same systematic procedure can be applied

to all the objects to generate the description.

1.1.1 Types Of Data

Data can be classified into different types. Most often, an Object is represented by

the results of measurement of its various properties. A measurement result is called



“a feature” in pattern recognition or “a variable” in statistics. The concatenation of

all the features of a single object forms the feature vector. By arranging the feature

vectors of different Objects in different rows, we get a pattern matrix (also called

“data matrix”) of size n by d, where n is the total number of objects and d is the

number of features. This representation is very popular because it converts different

kinds of objects into a standard representation. If all the features are numerical, an

object can be represented as a point in Rd. This enables a number of mathematical

tools to be used to analyze the objects.

Alternatively, the similarity or dissimilarity between pairs Of objects can be used

as the data description. Specifically, a dissimilarity (Similarity) matrix of size n by n

can be formed for the n Objects, where the (2, j)-th entry of the matrix corresponds

to a quantitative assessment of how dissimilar (similar) the 2-th and the j-th Objects

are. Dissimilarity representation is useful in applications where domain knowledge

suggests a natural comparison function, such as the Hausdorff distance for geometric

shapes. Examples of using dissimilarity for classification can be seen in [132], and

more recently in [202]. Pattern matrix, on the other hand, can be easier to obtain than

dissimilarity matrix. The system designer can simply list all the interesting attributes

of the objects to obtain the pattern matrix, while a good dissimilarity measure with

respect to the task can be difficult to design.

Similarity/dissimilarity matrix can be regarded as more generic than pattern ma—

trix, because given the feature vectors of a set of objects, a dissimilarity matrix of

these Objects can be generated by computing the distances among the data points

represented by'these feature vectors. A similarity matrix can be generated either



by subtracting the distances from a pie-specified number, or by exponentiating the

negative Of the distances. Pattern matrix, 011 the other hand, can be more flexible

because the user can adjust the distance function according to the task. It is easier to

incorporate new information by creating additional features than modifying the sim—

ilarity/dissimiliarity measure. Also, in the common scenarios where there are a large

number of patterns and a moderate number of features, the size of pattern matrix,

0(nd), is smaller than the size Of similarity/dissimilarity matrix, 0(n2).

A third possibility to represent an object is by discrete structures, such as parse

trees, ranked lists, or general graphs. Objects such as chemical structures, web pages

with hyperlinks, DNA sequences, computer programs, or customer preference for

certain products have a natural discrete structure representation. Graph-related rep—

resentations have also been used in various computer vision tasks, such as object

recognition [145] and shape-from-shading [217]. Representing structural objects using

a vector of attributes can discard important information on the relationship between

different parts of the Objects. On the other hand, coming up with the appropriate

dissimilarity or similarity measure for such Objects is Often difficult. New algorithms

that can handle discrete structure directly have been developed. An example is seen

in [154], where a kernel function (diffusion kernel) is defined on different vertices in a

graph, leading to improved classification performance for categorical data. Learning

with structural data is sometimes called “learning with relational data,” and several
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Figure 1.1: Comparing feature vector, dissimilarity matrix and a discrete structure

on a set of artificial objects. (Left) Extracting different features (color, area, and

shape in this case) leads to a pattern matrix. (Center) A dissimilarity measure on

the objects can be used to compare different pairs of Objects, leading to a dissimilarity

matrix. (Right) If the user can provide relational properties on the objects, a discrete

structure like a directed graph can be created.

workshops2 have been organized on this theme.

In Figure 1.1, we provide a simple illustration contrasting feature vector, dissimi-

larity matrix, and discrete structure representatirm for a set of artificial objects. Each

of the representations corresponds to a different view of the objects. III practice, the

system designer has to choose the representation that he or She thinks is the most

relevant to the task.

 

2A NIPS workshop in 2002 (http://Inlg.anu.edu.au/unrealdata/) and several ICML work-

shops (2004:http://www. cs.umd. edu/projects/sr12004/) (2002zhttp: //demo.cs.brandeis.

edu/icm102ws/) (20002http : //www. informatik . uni-freiburg . de/ml/icm12000_worksh0p .

html) have been held on how to learn with structural or relational data.

5



In this thesis, we focus on feature vector representation, though dissimilar—

ity/similarity information in the form of instance-level constraints is also considered.

1.1.2 Types of Features

Even within the feature vector representation, descriptions Of an Object can be clas-

sified into different types. A feature is essentially a measurement, and the “scale of

measurement” [244] proposed by Stevens can be used to classify features into different

categories. They are:

Nominal: discrete unordered. Exam )les: “a ) )le ” “orange,” and “banana.”
7 i O .

Ordinal: discrete, ordered. Examples: “conservative,” “moderate,” and “liberal”.

Interval: continuous, no absolute zero, can be negative. Examples: temperature in

Fahrenheit.

Ratio: continuous, with absolute zero, positive. Examples: length, weight.

This classification scheme, however, is not perfect [256]. One problem is that a

measurement may not fit well into any of the categories listed in this scheme. An

example for this is given in chapter 5 in [191], which considers the following types of

measurements:

Grades: ordered labels such as Freshmen, Sophomore, Junior, Senior.

Ranks: starting from 1, which may be the largest or the smallest.

Counted fractions: bounded by zero and one. It includes percentage, for example.



Counts: non—negative integers.

Amounts: non-negative real numbers.

Balances: unbounded, positive, or negative values.

Most people would agree that these six types of data are different, yet all but the

third and the last would be “ordinal” in the scheme by Stevens. “Counted fractions”

also do not fit well into any of the category proposed by Stevens.

Consideration of different types of features can help us to design appropriate

algorithms for handling different types of data arising from different domains.

1.1.3 Types Of Analysis

The analysis to be performed on the data can also be classified into different types.

It can be exploratory/descriptive, meaning that the investigator does not have a

specific goal and only wants to understand the general characteristics or structure of

the data. It can be confirmatory/inferential, meaning that the investigator wants to

confirm the validity of a hypothesis/model or a set of assumptions using the available

data. Many statistical techniques have been proposed to analyze the data, such

as analysis of variance (ANOVA), linear regression, canonical correlation analysis

(CCA), multidimensional scaling (MDS), factor analysis (FA), or principal component

analysis (PCA), to name a few. A useful overview is given in [245].

In pattern recognition, most Of the data analysis is concerned with predictive mod—

eling: given some existing data (“training data”), we want to predict the behavior of

the unseen data (“testing data”). This is often called “machine learning” or simply
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“learning. Depending on the type of feedback one can get in the learning process,

three types of learning techniques have been suggested [68]. In supervised learning,

labels on data points are available to indicate if the prediction is correct or not. In

unsupervised learning, such label information is missing. III reinforcement learning,

only the feedback after a sequence Of actions that can change the possibly unknown

state of the system is given. In the past few years, a hybrid learning scenario between

supervised and unsupervised learning, known as semi—supervised learning, transduc-

tive learning [136], or learning with unlabeled data [195], has emerged, where only

some of the data points have labels. This scenario happens frequently in applica-

tions, since data collection and feature extraction can Often be automated, whereas

the labeling of patterns or objects has to be done manually and this is expensive

both in time and cost. In Chapter 5 we shall consider another hybrid scenario where

instance-level constraints, which can be viewed as a “relaxed” version of labels, are

available on some of the data points.

1.2 Dimensionality Reduction

Dimensionality reduction deals with the transformation of a high dimensional data

set into a low dimensional space, while retaining most of the useful structure in

the original data. An example application Of dimensionality reduction with face

images can be seen in Figure 1.2. Dimensionality reduction has become increasingly

important due to the emergence of many data sets with a large number of features.

The underlying assumption for dimensionality reduction is that the data points do
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Figure 1.2: An example of dimensionality reduction. The face images are converted

into a high dimensional feature vector by concatenating the pixels. Dimensionality

reduction is then used to create a set of more manageable low-dimensional feature

vectors, which can then be used as the input to various classifiers.

not lie randomly in the high-dimensional space; rather, there is a certain structure in

the locations of the data points that can be exploited, and the useful information in

high dimensional data can be summarized by a. small number of attributes.

1.2.1 Prevalence of High Dimensional Data

High dimensional data have become prevalent in different applications in pattern

recognition, machine learning, and data mining. The definition of “high dimensional”

has also changed from tens of features to hundreds or even tens of thousands of

features [101].

Some recent applications involving high dimensional data sets include: (i) text

categorization, the representation Of a text document or a web page using the pop-

ular bag-Of-words model can lead to thousands of features [277, 254], where each



feature corresponds to the occurrence of a keyword or a key-term in the document;

(ii) appearance—based computer vision approaches interpret each pixel as a feature

[253, 22]. Images of handwritten digits can be recognized using the pixel values by

neural networks [170] or support vector machines [255]. Evert for a small image with

size 64 by 64, such representation leads to more than 4,000 features; (iii) hyperspectral

images3 in remote sensing lead to high dimensional data sets: each pixel can contain

more than 200 spectral measurements in different wavelengths; (iv) the characteris-

tics of a chemical compound recorded by a mass spectrometer can be represented by

hundreds of features, where each feature corresponds to the reading in a particular

range; (v) microarray technology enables us to measure the expression levels of thou-

sands Of genes simultaneously for different subjects with different treatments [6, 273].

Analyzing microarray data is particularly challenging, because the number of data

points (subjects in this case) is much smaller than the number of features (expression

levels in this case).

High dimensional data can also be derived in applications where the initial num-

ber of features is moderate. In an image processing task, the user can apply different

filters with different parameters to extract a. large number of features from a localized

window in the image. The features are then summarized by applying a dimensional-

ity reduction algorithm that matches the task at hand. This (relatively) automatic

procedure contrasts with the traditional approach, where the user hand-crafts a small

number of salient features manually, often with great effort. Creating a large feature

 

3Information on hyperspectral images can be found at http: //backserv. gsfc.nasa. gov/

nips2003hyperspectra1 . html and http : //www . eoc . csiro . au/hswww/Overview . htm.

10



set and then summarizing the features is advantageous when the domain is highly

variable and robust features are hard to obtain, such as the occupant classification

problem in [78].

1.2.2 Advantages Of Dimensionality Reduction

Why should we reduce the dimensionality of a data set? In principle, the more

information we have about each pattern, the better a learning algorithm is expected

to perform. This seems to suggest that we should use as many features as possible for

the task at hand. However, this is not the case in practice. Many learning algorithms

perform poorly in a high dimensional space given a small number of learning samples.

Often some features in the data set are just “noise” and thus do not contribute to

(sometimes even degrade) the learning process. This difficulty in analyzing data

sets with many features and a small number of samples is known as the curse of

d2mens2onal2ty [211].

Dimensionality reduction can circumvent this problem by reducing the number of

features in the data set before the training process. This can also reduce the compu-

tation time, and the resulting classifiers take less space to store. Models with small

number of variables are often easier for domain experts to interpret. Dimensionality

reduction is also invaluable as a visualization tool, where the high dimensional data

set is transformed into two or three dimensions for display purposes. This can give

the system designer additional insight into the problem at hand.

The main drawback of dimensionality reduction is the possibility of information

11



loss. When done poorly, dimensionality reduction can discard useful instead of irrel-

evant information. No matter what subsequent processing is to be performed, there

is no way to recover this information loss.

1.2.2.1 Alternatives to Dimensionality Reduction

In the context of predictive modeling, (explicit) dimensionality reduction is not the

only approach to handle high dimensional data. The naive Bayes classifier has

found empirical success in classifying high dimensional data sets like webpages (the

WEB—’KB project in [50]). Regularized classifiers such as support vector machines

have achieved good accuracy for high dimensional data sets in the domain Of text

categorization [135]. Some learning algorithms have built-in feature selection abilities

and thus (in theory) do not require explicit dimensionality reduction. For example,

boosting [90] can use each feature as a “weak” classifier and construct an overall

Classifier by selecting the appropriate features and combining them [261].

Despite the apparent robustness of these learning algorithms in high dimensional

data sets, it can still be beneficial to reduce the dimensionality first. Noisy features

can degrade the performance of support vector machines because values of the kernel

function (particular RBF kernel that depends on inter-point Euclidean distances)

become less reliable if many features are irrelevant. It is beneficial to adjust the

kernel to ignore those features [156], effectively performing dimensionality reduction.

Concerns related to efficiency and storage requirement of a classifier also suggest the

Use of dimensionality reduction as a preprocessing step.

The important lesson is: dimensionality reduction is useful for most applications,

12



yet the tolerance for the amount Of information discarded should be subject to the

judgement Of the system designer. In general, a more conservative dimensionality

reduction strategy should be employed if a classifier that is more robust to high

dimensionality (such as support vector machines) is used. The dimensionality Of the

data may still be somewhat large, but at least little useful information is lost. On the

other hand, if a more traditional and easier-to—understand classifier (like quadratic

discriminant analysis) is to be used, we should reduce the dimensionality of the data

set more aggressively to a smaller number, so that the classifier can competently

handle the data.

1.2.3 Techniques for Dimensionality Reduction

Dimensionality reduction techniques can be broadly divided into several categories:

(i) feature selection and feature weighting, (ii) feature extraction, and (iii) feature

grouping.

1.2.3.1 Feature Selection and Feature Weighting

Feature selection, also known as variable selection or subset selection in the statistics

(particularly regression) literature, deals with the selection of a subset Of features

that is most appropriate for the task at hand. A feature is either selected (because

it is relevant) or discarded (because it is irrelevant). Feature weighting [271], on the

other hand, assigns weights (usually between zero and one) to different features to

indicate the saliencies of the individual features. Most of the literature on feature

Selection/weighting pertains to supervised learning (both classification [122, 151, 26,

13



 

101] and regression [186]).

Filters, Wrappers, and Embedded Algorithms Feature selection/weighting

algorithms can be broadly divided into three categories [26, 151, 101]. The filter

approaches evaluate the relevance of each feature (subset) using the data set alone,

regardless of the subsequent learning task. RELIEF [147] and its enhancement [155]

are representatives of this class, where the basic idea is to assign feature weights based

on the consistency of the feature value in the k nearest neighbors of every data point.

Wrapper algorithms, on the other hand, invoke the learning algorithm to evaluate

the quality Of each feature (subset). Specifically, a learning algorithm (e.g., a nearest

neighbor classifier, a decision tree, a naive Bayes method) is run using a feature sub—

set and the feature subset is assessed by some estimate related to the classification

accuracy. Often the learning algorithm is regarded as a “black box” in the sense that

the wrapper algorithm Operates independent of the internal mechanism of the clas-

sifier. An example is [212], which used genetic search to adjust the feature weights

for the best performance of the k nearest neighbor classifier. In the third approach

(called embedded in [101]), the learning algorithm is modified to have the ability to

perform feature selection. There is no longer an explicit feature selection step; the

algorithm automatically builds a classifier with a small number of features. LASSO

(least absolute shrinkage and selection operator) [250] is a good example in this cat-

egory. LASSO modifies the ordinary least square by including a constraint on the

L1 norm of the weight coefficients. This has the effect Of preferring sparse regression

coefficients (a formal statement for this is proved in [65, 64]), effectively perform-
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ing feature selection. Another example is MARS (multivariate adaptive regression

splines) [91], where choosing the variables used in the polynomial splines effectively

performs variable selection. Automatic relevance detection in neural networks [177]

is another example, which uses a Bayesian approach to estimate the weights in the

neural network as well as the relevancy parameters that can be interpreted as feature

weights.

Filter approaches are generally faster because they are classifier-independent and

only require computation of simple quantities. They scale well with the number of

features, and many of them can comfortably handle thousands of features. Wrapper

approaches, on the other hand, can be superior in accuracy when compared with

filters, which ignore the properties of the learning task at hand [151]. They are, how-

ever, computationally more demanding, and do not scale very well with the number

of features. It is because training and evaluating a classifier with many features can

be slow, and the performance of a traditional classifier with a large number of fea-

tures may not be reliable enough to estimate the utilities of individual features. To

get the best results from filters and wrappers, the user can apply a filter-type tech-

nique as preprocessing to cut down the feature set to a moderate size, and then use

a wrapper algorithm to determine a small yet discriminative feature subset. Some

state-Of—the-art feature selection algorithms indeed adopt this approach, as Observed

in [102]. “Embedded” algorithms are highly specialized and it is difficult to compare

them in general with filter and wrapper approaches.
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Quality of a Feature Subset Feature selection/weighting algorithms can also be

classified according to the definition of “relevance” or how the quality of a feature

subset is assessed. Five definitions of relevance are given in [26]. Information—theoretic

methods are Often used to evaluate features, because the mutual information between

a relevant feature and the class labels should be. high [15]. Non-parametric methods

can be used to estimate the probability density function Of a continuous feature, which

in turn is used to compute the mutual information [159, 251]. Correlation is also used

frequently to evaluate features [278, 104]. A feature can be declared irrelevant if it

is conditionally independent of the class labels given other features. The concept

of Markov blanket is used to formalize this notion Of irrelevancy in [153]. RELIEF

[147, 155] uses the consistency of the featurevalue in the k nearest neighbors of every

data point to quantify the usefulness of a feature.

Optimization Strategy Given a definition of feature relevancy, a feature selec-

tion algorithm can search for the most relevant feature subset. Because of the lack Of

monotonicity (with respect to the features) of many feature relevancy criteria, a com-

binatorial search through the space of all possible feature subsets is needed. Usually,

heuristic (non-exhaustive) methods have to be adopted, because the size of this space

is exponential in the number Of features. In this case, one generally loses any guaran-

tee Of Optimality of the selected feature subset. Different types of heuristics, such as

sequential forward or backward searches, floating search, beam search, bi-directional

search, and genetic search have been suggested [36, 151, 209, 275]. A comparison

of some of these search heuristics can be found in [211]. III the context of linear
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regression, sequential forward search is often known as stepwise regression. Forward

stagewise regression is a generalization of stepwise regression, where a feature is only

“partially” selected by increasing the corresponding regression coefficient by a fixed

amount. It is closely related to LASSO [250], and this relationship was established

via least angle regression (LARS), another interesting algorithm on its own, in [72].

Wrapper algorithms generally include a heuristic search, as is the case for filter

algorithms with feature quality criteria dependent on the features selected so far.

Note that feature weighting algorithms do not involve a heuristic search because the

weights for all features are computed simultaneously. However, the computation of

the weights may be expensive. Embedded approaches also do not require any heuristic

search. The optimal parameter is often estimated by optimizing a certain Objective

function. Depending on the form of the objective function, different Optimization

strategies can be used. In the case of LASSO, for example, a general quadratic

programming solver, homotopy method [198], a modified version of LARS [72], or the

EM algorithm [80] can be used to estimate the parameters.

1.2.3.2 Feature Extraction

In feature extraction, a small set of new features is constructed by a general map—

ping from the high dimensional data. The mapping Often involves all the available

features. Many techniques for feature extraction have been proposed. In this section,

we describe some of the linear feature extraction methods, i.e., the extracted features

can be written as linear combinations Of the original features. Nonlinear feature ex-

traction techniques are more sophisticated. In Chapter 2 we shall examine some Of
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the recent nonlinear feature extraction algorithms in more detail. The readers may

also find two recent surveys [284, 34] useful in this regard.

Unsupervised Techniques “Unsupervised” here refers to the fact that these fea-

ture extraction techniques are based only on the data (pattern matrix), without

pattern label information. Principal component analysis (PCA), also known as

Karhunen-Loeve Transform or simply KL transform, is arguably the most popular

feature extraction method. PCA finds a hyperplane such that, upon projection to the

hyperplane, the data variance is best preserved. The optimal hyperplane is spanned

by the principal components, which are the leading eigenvectors Of the sample covari—

ance matrix. Features extracted by PCA consist of the projection of the data points

to different principal components. When the features extracted by PCA are used for

linear regression, it is sometimes called “principal component regression”. Recently,

sparse variants of PCA have also been proposed [137, 291, 52], where each principal

component only has a small number Of non-zero coefficients.

Factor analysis (FA) can also be used for feature extraction. FA assumes that the

Observed high dimensional data points are the results of a linear function (expressed

by the factor loading matrix) on a few unobserved random variables, together with

uncorrelated zero-mean noise. After estimating the factor loading matrix and the

variance of the noise, the factor scores for different patterns can be estimated and

serve as a low-dimensional representation of the data.
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Supervised Techniques Labels in classification and response variables in regres-

sion can be used together with the data to extract more relevant features. Linear

discriminant analysis (LDA) finds the projection direction such that the ratio of

between-class variance to within-class variance is the largest. When there are more

than two classes, multiple discriminant analysis (MDA) finds a sequence of projection

directions that maximizes a similar criterion. Features are extracted by projecting

the data points to these directions.

Partial least squares (PLS) can be viewed as the regression counterpart of LDA.

Instead of extracting features by retaining maximum data variance as in principal

component regression, PLS finds projection directions that can best explain the re—

sponse variable. Canonical correlation analysis (CCA) is a closely related technique

that finds projection directions that maximize the correlation between the response

variables and the features extracted by projection.

1.2.3.3 Feature Grouping

In feature grouping, new features are constructed by combining several existing fea-

tures. Feature grouping can be useful in scenarios where it can be more meaningful

to combine features due to the characteristics of the domain. For example, in a text

categorization task different words can have similar meanings and combining them

into a single word class is more appropriate. Another example is the use of power

spectrum for classification, where each feature corresponds to the energy in a certain

frequency range. The preset boundaries of the frequency ranges can be sub-Optimal,

and the sum of features from adjacent frequency ranges can lead to a more meaningful
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feature by capturing the energy in a wider frequency range. For gene expression data,

genes that are Similar may share a common biological pathway and the grouping of

predictive genes can be of interest to biologists [108, 230, 59].

The most direct way to perform feature grouping is to cluster the features (instead

of the Objects) of a data set. Feature clustering is not new; the SAS/STAT procedure

“varclus” for variable clustering was written before 1990 [225]. It is performed by ap-

plying the hierarchical clustering method on a similarity matrix of different features,

which is derived by, say, the Pearson’s correlation coefficient. This scheme was prob-

ably first proposed in [124], which also suggested summarizing one group of features

by a single feature in order to achieve dimensionality reduction. Recently, feature

clustering has been applied to boost the performance in text categorization. Tech-

niques based on distribution clustering [4], mutual information [62], and information

bottleneck [238] have also been proposed.

Features can also be clustered together with the objects. As mentioned in [201],

this idea has been known under different names in the literature, including “bi-

clustering” [41, 150], “cqclustering” [63, 61], “double-clustering” [73], “coupled clus-

tering” [95], and “simultaneous clustering” [208]. A bipartite graph can be used to

represent the relationship between objects and features, and the partitioning of the

graph can be used to cluster the objects and the features simultaneously [281, 61].

Information bottleneck can also be used for this task [237].

In the context of regression, feature grouping can be achieved indirectly by favoring

similar features to have similar coefficients. This can be done by combining ridge

regression with LASSO, leading to the elastic net regression algorithm [290].
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(a) Original data (b) Clustering Result

Figure 1.3: The three well-separated clusters can be easily detected by most clustering

algorithms. Images in this thesis/dissertation are presented in color.

1.3 Data Clustering

The goal of (data) clustering, also known as cluster analysis, is to discover the “nat-

ural” grouping(s) of a set of patterns, points, or objects. Webster4 defines cluster

analysis as “a statistical classification technique for discovering whether the individ-

uals of a population fall into different groups by making quantitative comparisons of

multiple characteristics.” An example of clustering can be seen in Figure 1.3. The

unlabeled data set in Figure 1.3(a) is assigned labels by a clustering procedure in

order to discover the natural grouping of the three groups as shown in Figure 1.3(b).

Cluster analysis is prevalent in any discipline that involves analysis of multivariate

data. It is difficult to exhaustively list the numerous uses Of clustering techniques.

Image segmentation, an important problem in computer vision, can be formulated

as a clustering problem [94, 128, 234]. Documents can be clustered [120] to generate

topical hierarchies for information access [221] or retrieval [20]. Clustering is also

 

4http://www.m-w . com/
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(a) Original data (b) Clustering Result

Figure 1.4: Diversity of clusters. The seven clusters in this data set (denoted by

the seven different colors), though easily identified by human, are difficult to detect

automatically. The clusters are of different shapes, sizes, and densities. The presence

of background noise makes the clustering task even more difficult.

used to perform market segmentation [3, 39] as well as to study genome data [6] in

biology.

Clustering, unfortunately, is difficult for most data sets. A non—trivial example of

clustering is shown in Figure 1.4. Unlike the three well-separated, spherical clusters

in Figure 1.3, the seven clusters in Figure 1.4 have diverse shapes: globular, circular,

and spiral in this case. The densities and the sizes of the clusters are also different.

The presence of background noise makes the detection of the clusters even more

difficult. This example also illustrates the fundamental difficulty of clustering. The

diversity of “good” clusters in different scenarios make it virtually impossible for one

to provide a universal definition of “good” clusters. In fact, it has been proved in [149]

that it is impossible for any clustering algorithm to achieve some fairly basic goals

simultaneously. Therefore, it is not surprising that many clustering algorithms have
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been proposed to address the different needs of “good clusters” in different scenarios.

In this section, we attempt to provide a taxonomy of the major clustering tech-

niques, present a brief history of cluster analysis, and present the basic ideas of some

popular clustering algorithms in the pattern recognition community.

1.3.1 A Taxonomy Of clustering

Many clustering algorithms have been proposed in different application scenarios.

Perhaps the most important way to classify clustering algorithms is hierarchical versus

partitional. Hierarchical clustering creates a tree of objects, where branches merging

at the lower levels correspond to higher similarity. Partitional clustering, on the

other hand, aims at creating a “flat” partition of the set Of objects with each object

belonging to one and only one group.

Clustering algorithms can also be classified by the type of input data used (pattern

matrix or similarity matrix), or by the type of the features, e. g. numerical, categorical,

or special data structures, such as rank data, strings, graphs, etc. (See Section 1.1.1

for information on different types of data.) Alternatively, a clustering algorithm

can be characterized by the probability model used, if any, or by the core search

(optimization) process used to find the clusters. Hierarchical clustering algorithms

can be described by the clustering direction, either agglomerative or divisive.

In Figure 1.5, we provide one possible hierarchy of partitional clustering algorithms

(modified from [131]). Heuristic-based techniques refer to clustering algorithms that

0 timize a certain notion of “Good” clusters. The O'oodness function is constructed
0 C)
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by the user in a heuristic manner. Model-based clustering assumes that there are

underlying (usually probabilistic) models that govern the clusters. Density-based

algorithms attempt to estimate the data density and utilize that to construct the

clusters.

One may further sub-divide heuristic-based techniques depending on the input

type. If a pattern matrix is used, the algorithm is usually prototype-based, i.e.,

each cluster is represented by the most typical “prototype.” The k-IIIGaIIS and the

k-medoids algorithms [79] are probably the best known in this category. If a dis-

similarity or similarity matrix is used as the input, two sub-categories are possible:

those based on linkage (single-link, average—link, complete-link, and CHAMELEON

[142]), and those inspired from graph theory, such as min-cut [272] and spectral clus-

tering [234, 194]. Model-based algorithms Often refer to clustering by using a finite

mixture distribution [184], with each mixture component interpreted as a cluster.

Spatial clustering can involve a probabilistic model Of the point process. For density-

based methods, the mean-shift algorithm [45] finds the modes of the data densities

by the mean-Shift operation, and the cluster label is determined by which “basin of

convergence” a point is located. DENCLUE [111] utilizes a kernel (non—parametric)

estimate for the data density to find the clusters.
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Figure 1.5: A taxonomy of clustering algorithms.

1.3.2 A Brief History Of Cluster Analysis

According to the scholarly journal archive JSTORE’, the first. appearance of the word

“cluster” in the title of a scholarly article was in 1739 [11]: “A Letter from John

Bartram, M. D. to Peter Collinson, F. R. S. concerning a Cluster of Small Teeth

Observed by Him at the Root of Each Fang or Great Tooth in the Head Of a Rattle-

Snake, upon Dissecting It”. The word “cluster” here, though, was used only in its

general sense to denote a group. The phrase “cluster analysis” first appeared in 1954

and it was suggested as a tool to understand anthropological data [43]. In its early

days, cluster analysis was sometimes referred to as grouping [48, 85], and biologists

called it “numerical taxonomy” [242].

Early research on hierarchical clustering was mainly done by biologists, because

these techniques helped them to create a hierarchy of different Species for analyz-

ing their relationship systematically. According to [242], single-link clustering [240],

 

5http://www.jstor.org
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complete-link clustering [213], and average-link clustering [241] first appeared in 1957,

1948, and 1958, respectively. W'ard’s method [266] was proposed in 1963. Partitional

clustering, on the other hand, is closely related to data compression and vector quan-

tization. This link is not surprising because the cluster labels assigned by a partitional

clustering algorithm can be viewed as the compressed version of the data. The most

popular partitional clustering algorithm, k—means, has been proposed several times

in the literature: Steinhaus in 1955 [243], Lloyd in 1957 [174], and MacQueen in 1967

[178]. The ISODATA algorithm by Ball and Hall in 1965 [8] can be regarded as an

adaptive version of k-means that adjusts the number of clusters. The k-means algo-

rithm is also attributed to Forgy (like [140] and [99]), though the reference for this [88]

only contains an abstract and it is not clear what Forgy exactly proposed. The his-

torical account of vector quantization given in [99] also presents the history of some

of the partitional clustering algorithms. In 1971, Zahn proposed a graph—theoretic

clustering method [280], which is closely related to single-link clustering. The EM

algorithm, which is the standard algorithm for estimating a finite mixture model for

mixture-based clustering, is attributed to Dempster et al. in 1977 [58]. Interest in

mean-shift clustering was revived in 1995 by Cheng [40], and Comaniciu and Meer

further popularized it in [45]. Hoffman and Buhmann considered the use of deter-

ministic annealing for pairwise clustering [115], and Fischer and Buhmann modified

the connectedness idea in single-link clustering that led to path-based clustering [84].

The normalized cut algorithm by Shi and Malik [233] in 1997 is often regarded as the

first spectral clustering algorithm, though similar ideas were considered by spectral

graph theorists earlier. A summary of the important results in spectral graph theory
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can be found in the 1997 book by Chung [42]. The emergence of data. mining leads to

a new line of clustering research that emphasizes efficiency when dealing with huge

database. DBSCAN by Ester ct al. [77] for density—based clustering and CLIQUE

by Agrawal et al. [2] for subspace clustering are two well-known algorithms in this

community.

The current literature 011 cluster analysis is vast, and hundreds of clustering al—

gorithms have been proposed in the literature. It will require a tremendous effort to

list and summarize all the major clustering algorithms. The reader is encouraged to

refer to a survey like [130] or [79] for an overview of different clustering algorithms.

1.3.3 Examining Some Clustering Algorithms

In this section, we will examine two very important clustering algorithms used in

the pattern recognition community: the k-means algorithm and the EM algorithm.

Other clustering algorithms that are used regularly in pattern recognition include the

mean-shift algorithm [45, 44, 40], pairwise clustering [115, 116], path-based clustering

[84, 83], and spectral clustering [234, 139, 269, 194, 258, 42].

Let {y1, . . . , yn} be the set of n d—dimensional data points to be clustered. The

cluster label of y, is denoted by 22:. The goal of (partitional) clustering is to recover

2,, with z,- E {1, . . . , k}, where 1.: denotes the number of clusters specified by the user.

The set of y,- with z, = j is referred to as the j-th cluster.
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1.3.3.1 The k-means algorithm

The k-means algorithm is probably the best known clustering algorithm. In this algo-

rithm, the j-th cluster is represented by the “cluster prototype” 143- in Rd. Clustering

is done by finding z, and #j that minimize the following cost function:

n n k

2 - 2

1km -—— Z My.- — uni = 221(4- = J)||yi — iujll . (1.1)

i=1 i=1j=1

Here, [(2,- = j) denotes the indicator function, which is one if the condition 2,- = j

is true, and zero otherwise. To optimize Jk—means» we first assume that all uj are

specified. The values of 3,- that minimize Jkfineaus are given by

i = o i — ' ' °
2 arUme J 2 12

On the other hand, if z,- is fixed, the optimal pj can be found by differentiating

Jk—means with respect to ”3' and setting the derivatives to zero, leading to

k .

. __ Zj=11(zi =J)uj __ 23:1,sz “j (1 3)

H] _ 2.1721192. : j) _ number ofz' with z,- = j‘ °

  

Starting from an initial guess on 11,], the k-means algorithm iterates between Equa—

tions (1.2) and (1.3), which is guaranteed to decrease the k-means objective function

until a local minimum is reached. In this case, pj and 2,: remain unchanged after

the iteration, and the k-means algorithm is said to have converged. The resulting z,-

and 143- constitute the clustering solution. In practice, one can stop if the change in
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successive values of Jk—means is less than a threshold.

The k-means algorithm is easy to understand and is also easy to implement. How—

ever, k-means has problems in discovering clusters that are not spherical in shape. It

also encounters some difficulties when different clusters have a significantly different

number of points. k-means also requires a good initialization to avoid getting trapped

in a poor local minimum. In many cases, the user does not know the number of clus-

ters in advance, which is required by k—means. The problem of determining the value

of It automatically still does not have a very satisfactory solution. Some heuristics

have been described in [125], and a recent paper on this is [106].

Because the k-means algorithm alternates between the two conditions of optimal-

ity, it is an example of alternating optimization. The k-means clustering result can

be interpreted as a solution to vector quantization, with a codebook of size k and a

square error loss function. Each pj is a codeword in this case. The lit—means algorithm

can also be viewed as a special case of fitting a Gaussian mixture, with covariance

matrices of all the mixture components fixed to be 021 and 0 tends to zero (for the

“hard” cluster assignment). The k—medoid algorithm is similar to k-means, except

that pj is restricted to be one of the given patterns yi.

There is also an online version of k—means. When the i-th data point yz- is observed,

the cluster center pj that is the nearest to y,- is found. pj is then updated by

new

it] = m +06% ~15). (1-4)

where a is the learning rate. This learning rule is an example of “winner—take—all” in
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competitive learning, because only the cluster that “wins” the data point can learn

from it.

1.3.3.2 Clustering by Fitting Finite Mixture Model

The k-means algorithm is an example of “hard” clustering, where a data point is

assigned to only one cluster. In many cases, it is beneficial to consider “soft” cluster-

ing, where a point is assigned to different clusters with different degrees of certainties.

This can be done either by fuzzy clustering or by n‘iixture-based clustering. We prefer

the latter because it has a. more rigorous foundation.

In mixture-based clustering, a finite mixture model is fitted to the data. Let Y

and Z be the random variables for a data point and a cluster label, respectively. Each

cluster is represented by the component distribution p(Y|6,-), where 6]- denotes the

parameter for the j-th cluster. Data points from the j—th cluster are assumed to follow

this distribution, i.e., [)(YlZ = j) = p(Y|9j). The component distribution p(Y|9,-) is

often assumed to be a Gaussian when Y is continuous, and the corresponding mixture

model is called “a mixture of Gaussians”. If Y is categorical, multinomial distribution

can be used for [DO/[6,). Let a, = P(Z = j) be the prior probability for the j-th

cluster. The key idea of a mixture model is

k

pme) =ZP(Y|Z—j)P( -Za,p(Y|6,) (1.5)

jzl

where O = {91,...,6k,a1,...,ak} contains all the model parameters. The mix-

ture model can be understood as a two-stage data. generation process. First, the
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hidden cluster label Z is sampled from a multinomial distribution with parameters

(01, . . . , ak). The data point. Y is then generated according to the mixture distribu-

tion determined by Z, i.e., Y is sampled from p(Y|0,-) if Z = j.

The degree of membership of y,- to the j—th cluster is determined by the posterior

probability of Z equals to j given yi, i.e.,

MZ=$Y=yd_ WMYWD
MZ=flY=y-= — -

2) 60’ = 3’2“) 23L, a,p(Y|6,-)

  (1.6)

If a “hard” clustering is needed, y,- can be assigned to the cluster with the highest

posterior probability P(Z|Y = y,).

The parameter 9 can be determined using the maximum likelihood principle. We

seek O that minimizes the negative log-likelihood:

n I;

Jrnixture Z — :10g2 ajp(Yil6j)- (1'7)

i=1 j=1

For brevity of notation, we write p(y,~|6,-) to denote ])(Y = yildj).

The EM algorithm can be used to optimize Jmixture- EM is a powerful technique

for parameter estimation when some of the data are missing. In the context of a

finite mixture model, the missing data are the cluster labels. Starting with an initial

guess of the parameters, the EM algorithm alternates between the “E—step” and the

“M—step”. Let 1",, = P(Z = j [Y :2 y,,(-)°ld), where OOld is the current parameter

estimate. In the E—step, we compute the expected complete data log-likelihood, also
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known as the Q-function:

Q<elie°‘“) = E

 

n n 1:

2103666. 26)] = 2: Zn) (log; a) +108P<Yil6j)) (1-8)

i=1j=1

Note that the expectation is done with respect to the old parameter value via 73,-.

Computationally, E—step requires calculation of 73,-. In the M-step, O that maximizes

Q(OI]O°Id) is found:

Onew = arg InéixQ(€-)]|(-)Old). (1.9)

The M-step is guaranteed to decrease Jmixture- By repeating the E-step and the

M-step, the negative log-likelihood continues to decrease until a local minimum is

reached.

Convergence Proofs on the EM algorithm In this section, we shall state the

well-known proof in the literature that the M-step indeed decreases Jmixturea thereby

showing that the EM algorithm does converge to a local minimum of Jmixture- We

consider the correctness of the EM algorithm in a more general setting, where Y and

Z are redefined to mean “observed data” and “missing data,” respectively. Note that

the data points and the missing labels are examples of observed data and missing

data, respectively.

In this general setting, Q(O|IOOld) can be written as

Q(@ll9‘”d) = Zpizmeddnogpm ZIG) (1.10)

Z
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Our first proof is based on the concavity of the logarithm function. Because M-step

maximizes Q(e), Q(e"0W) — c.2(eold) 2 0. Observe that

Q(@new) _ Q((_)old)

= ZpiZIY, 60‘“) (108414)”, ZI<->""'W) — 10W, ZI<->°”>)
Z

 

_ O, ne v . ld oll ~p(Z[Y,@neW)

—Io.,p<Yie ‘)—logp(Yl@" >+§ijizme ‘>10%,(Zly,eom,

(Zn/,eneW)

 

<13 Yenew _1g, Y901d+lg ZY,@Old P

_ 0 P( l ) O P( l ) O Ez:p( l )p(Z]Y,@Old)

= 10g 6(YIG""W) - log axle“).

The inequality is due to the cmicavity of logaritlun, and the fact that p(Z IY, 8”“)

can be viewed as “weights” because they are non—negative and ZZ p(Z IY, Odd) = 1.

Since Q(O"ew) — Q(OOld) 2 O, the above implies log p(Y|(-new) — log p(Y|(-)Old) Z 0.

So, the update of parameter from 6°” to Omw indeed improves the log—likelihood of

the observed data. When OOH = 9’10“", the inequality becomes an equality, and we

reach a local minimum of log p(Y|(-)).

Note that the above argument holds as long as Q(Onew) — (AC-901“) Z 0. Thus

it suffices to increase (instead of maximizes) the expected complete log-likelihood

in the M-step. The resulting algorithm that only increases the expected complete

log-likelihood is known as the generalized EM algorithm.

It is interesting to note a variant of the EM algorithm used in [80] for Bayesian

parameter estimation. The goal is to find 8 that maximizes log p((-)|Y). Since the

missing data in [80] are continuous, the expectation is performed by integration in-
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stead of summation. The E—step computes f p((-)|Z, Y) log 1)(Z]O°ld, Y) dZ, and the

M-step solves Onew = argmaxe f p(Z IOOId, Y) log p((-)|Z , Y) dZ. The correctness of

this variant of the EM algorithm can be seen by the following:

/p(ZIGO'd, Y) logaem’w, Y) dz — / p(ZIeok', Y) 1066(90‘dIZ. Y) dz

: [p(ZIQOId, Y)(logp((-)new]Y) + logp(Z|(-)new, Y) — log P(Z|Y)

-— log p(OOldlY) — log p(zleo‘d, Y) + log P(Z|Y)) dZ

p(Zlane‘”, Y)
=lg @"ewY—lg eO'dY+/ zeO‘d,Y1g dZo p( I ) opi l ) p( i )0 “2'60”,”

 

s IogpieneuY) — losp(@O‘“lY)

Note that p(OIZ, Y) = p(OIY)p(Z]O, Y)/p(Z]Y).

Our second proof of the EM algorithm is to regard it as a special case of variational

method. Here, we follow the presentation in [205]. Let T(Z ) be an unknown variable

distribution on the missing data Z. Since p(Y|O) = p(Y, Z|O)/p(Z|Y, O), we have

10gp(YIO)——— 0sp(Y.Zl0)-10sp(ZlY 9)

p(Yle): ZIP(2 p(YZIG) ZTZ) ”(W
Z

p(,Y Z 0)“22:2,_(_Z')_ + DKL(T<Z)i)p(ZIY.®))

Here, DKL(T(Z)]|p(Z[Y)) is the Kullback Leibler divergence defined as

TZ)
DKL(TQ(Z)||P( ZIYl) =ZTQ(Z))logp(ZlY)
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Note that the divergence is always nonnegative, meaning that S =

ZZ T(Z) log 1%???) is a lower bound of log p(Y[O). Variational method maximizes

log p(YIO) indirectly by finding 9 and T(Z) that maximizes 5, under a restriction on

the form of T(Z). The EM algorithm can be regarded as a special case of variational

method, which does not put any restriction on T(Z). It is easy to show that in this

case 3 is maximized with respect to T(Z) if T(Z) = p(ZlY,O). With this choice

of T(Z), s is no longer a lower bound but exactly equals log p(YIO), because the

divergence term is zero. Maximizing s with respect to O is the same as maximizing

Zz PfZlY, 9) 10g p(Y, ZIO), which is the Q-function.

1.4 Side-Information

In many pattern recognition problems, the performance of advanced classifiers like

support vector machines and simple classifiers like k-nearest neighbors are more or

less the same. It is the “quality” of the input information (in terms of discrimination

power), instead of the type of the classifier, that is the determining factor in the

classification accuracy. However, research effort in pattern recognition and machine

learning has focused on devising better classifiers. One is more likely to improve the

performance of practical systems by incorporating additional domain/contextual in—

formation, than by improving the classifier. Side-information, i.e., information other

than what is contained in feature vectors and class labels, is relevant here because

it provides alternative means for the system designer to input more prior knowledge

into the classficiation/clustering system, therefore boosting its performance.



Side-information arises because some aspects of a pattern recognition problem

cannot be specified via the class labels and the feature vectors. It can be viewed as a

complement to the given pattern or proximity matrix. Examples of side—information

include alternative metrics between objects, known data groupings or associations,

additional labels or attributes (such as soft biometric traits [123]), relevance of dif—

ferent features, and ranks of the objects.

Side-information is particularly valuable to clustering, owing to the inherent arbi-

trariness in the notion of a cluster. Given different possibilities to cluster a data set,

side information can help us to identify the cluster structure that is the most appropri-

ate in the context that the clustering solution will be used. A set of constraints, which

specify the relationship between different cluster labels, is probably the most natural

type of side—information in clustering. Constraints arise naturally in many clustering

applications. For example, in image segmentation one can have partial grouping cues

for several regions in the image to assist in the overall clustering [279]. Clustering of

customers in a market-basket database can have multiple records pertaining to the

same person. In video retrieval tasks different users may provide alternative annota-

tions of images in small subsets of a large database [110]. Such groupings may be used

for semi-supervised clustering of the entire database. “Orthogonality” to a known or

trivial partition of the data set is another type of side—information for clustering, and

this requirement can be incorporated via a variant of information bottleneck [97].



1 .5 Overview

In the remainder of this thesis, we shall first provide an in—depth survey of some non-

linear dimensionality reduction methods in Chapter 2. We then present our work on

how to convert ISOMAP, one of the algorithms described in Chapter 2, to its incre-

mental version in Chapter 3. In Chapter 4, we present our algorithm on the problem

of estimating the relevance of different features in a clustering context. Chapter 5

describes our proposed approach to perform model-based clustering in the presence

of constraints. Finally, we conclude with some of our contributions to the field and

outline some research directions in Chapter 6.



Chapter 2

A Survey of Nonlinear

Dimensionality Reduction

Algorithms

In section 1.2 we described the importance of dimensionality reduction and presented

an overall picture of different approaches for dimensionality reduction. This chapter

continues the discussion in section 1.2.3.2, where linear feature extraction methods

like principal component analysis (PCA) and linear discriminant analysis (LDA) were

mentioned. Linear methods are easy to understand and are very simple to implement,

but the linearity assumption does not hold in many real world scenarios. Images of

handwritten digits do not conform to the linearity assumption [113]; rotation, shear-

ing, and variation of stroke widths can at best be approximated by linear functions

only in a small neighborhood (as in the use of tangent distance [68]). A transformation
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as simple as translating an object on a. uniform background cannot be represented as

a linear function of the pixels. This has motivated the design of nonlinear mapping

methods in a general setting. Note, however, that a globally nonlinear mapping can

often be approximated by a linear mapping in a local region. In fact, this is the

essence of many of the algorithms considered in this chapter.

In this chapter, we shall survey some of the recent nonlinear dimensionality re-

duction algorithms, with an emphasis on several algorithms that perform nonlinear

mapping via the notion of learning the data manifold. Since we are mostly interested

in unsupervised learning, supervised nonlinear dimensionality methods such as hier-

archical discriminant regression (HDR) [118] are omitted from this survey. Some of

the methods considered in this chapter have also been surveyed recently in [284] and

[34).

2. 1 Overview

The history of nonlinear mapping is long, tracing back to Sammon’s mapping in 1969

[223]. Over time, different techniques have been proposed, such as projection pursuit

[93] and projection pursuit regression [92], self organizing maps (SOM) [152], principal

curve and its extensions [107, 249, 239, 144], auto—encoder neural networks [7, 57],

generative topographic maps (GTM) [24], and kernel principal component analysis

[228]. A comparison of some of these methods can be found in [180].

A new line of nonlinear mapping algorithms has been proposed recently based on

the notion of manifold learning. Given a data set that is assumed to be lying ap—
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proximately on a (Riemannian) manifold in a high dimensional space, dimensionality

reduction can be achieved by constructing a mapping that respects certain properties

of the manifold. Isometric feature mapping (ISOMAP) [248], locally linear embed—

ding (LLE), Laplacian eigenmap [16], semidefinite embedding [268], charting [29], and

co—ordination-based ideas [220, 257] are some of the examples. The utility of manifold

learning has been demonstrated in different applications, such as face pose detection

[103, 172], face recognition [283, 276], analysis of facial expressions [75, 38], human

motion data interpretation [133], gait analysis [75, 74], visualization of fiber traces

[32], and wood texture analysis [196].

In this chapter, we shall review some of these algorithms, with an emphasis towards

the manifold-based nonlinear mapping algorithms. It is hoped that this exposition

can help the reader to become familiar with these recent exciting developments in

nonlinear dimensionality reduction. Table 2.1 provides a comparison of the algorithms

we are going to discuss. We want to point out that there are many other interesting

manifold-related ideas that have been omitted in this chapter. Examples include

stochastic embedding [112], locality preserving projections [109], Hessian eigenmap

[67], semidefinite embedding [268] and its extension [267], the co—ordination type

methods described in [257], [134] and [285], as well as the method in [31] which is

related to Laplacian eigenmap. Robust statistics techniques can be used too [214]. It

is also possible to learn a Parzen window along the data manifold [260].

The rest of this chapter is organized as follows. We first define our notation and

describe some properties of a manifold in Section 2.2. Sammon’s mapping, probably

the earliest nonlinear mapping algorithm, is discussed in Section 2.3. Auto—associative
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Figure 2.1: An example of a manifold. This example is usually known as the “Swiss

roll”. (a) Surface of the manifold. (b) Data points lying on the manifold.

neural network [7], also known as auto—encoder neural networks [57], is described in

Section 2.4. Kernel PCA is described in Section 2.5, followed by ISOMAP in Section

2.6, LLE in Section 2.7, and Laplacian eigenmap in Section 2.8. Three closely related

ideas that involve combining different local co—ordinates are described in Section 2.9.

We then Show some results of running these algorithms on simple data sets in Section

2.10. Finally, we summarize our survey in Section 2.11.

2.2 Preliminary

Let y = {y1, . . . ,yn} be the high—dimensional data set, where y,- 6 RD and D is usu-

ally large. Let Y = [y1, . . . ,yn] be the D x 11 data matrix. We seek a transformation

of 32 that maps yi to its low dimensional counterpart x,, where x,- 6 Rd and dis small.

Let X = [x1, . . . ,xn] be the d x 72 matrix. We shall assume that different y,- do not

lie randomly in RD, but approximately on a manifold, which is denoted by M. The

manifold may simply be a hyperplane, or it can be more complicated. An example of
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a “curved” manifold with the data points lying on it can be seen in Figure 2.1. This

manifold assumption is reasonable because many real world phenomena are driven by

a small number of latent factors. The high dimensional feature vectors observed are

the results of applying a (usually unknown) mapping to the latent factors, followed

by the introduction of noise. Consequently, high dimensional vectors in practice lie

approximately on a low dimensional manifold.

Strictly speaking, what we refer to as “manifold” in this thesis should properly be

called “Riemannian manifold.” A Riemannian manifold is smooth and differentiable,

and contains the notion of length. We leave the precise definition of Riemannian

manifold to encyclopedias like Mathworld1 and VVikipedia2, and describe only some

of its properties here. Every y in the manifold M has a neighborhood N(y) that is

homeomorphic3 to a set S, where S is either an open subset of Rd, or an open subset

on the closed half of Rd.

This mapping 66y : N(y) i—> S is called a co—ordinate chart, and ¢y(y) is called

the “co—ordinate” of y. A collection of (to-ordinate charts that covers the entire M is

called an atlas. If y is in two co—ordinate charts 65,, and on, y will have two (local)

co—ordinates ¢y1(y) and 653,2 (y) These two co—ordinates should be “consistent” in

the sense that there is a map to convert between oyl (y) and (63,2 (y), and the map

is continuous for any path in N(yl) F) N(yg). For any y,- and y, in M, there can

be many paths in M that connect y,- and y,. The shortest of such paths is called

 

1http://mathwor1d.wolfram.com

2http://en2.wikipedia.org/

3Two (topological) spaces are homeomorphic if there exists a continuous and invertible function

between the two spaces, and that the inverse function is also continuous.
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Great C' cle

Figure 2.2: An example of a geodesic. For two points A and B on the sphere, many

lines (the dash-dot lines) can be drawn to connect them. However, the shortest of

these lines, which is the solid line joining A and B, is called the geodesic between A

and B. In the case of a sphere, the geodesic is simply the great circle.

the geodesic4 between y,- and y,. For example, the geodesic between two points on a

sphere is an arc of a “great circle”: a circle whose center coincides with the center of

the sphere (Figure 2.2). The length of the geodesic between y, and y,- is the geodesic

distance between y,- and yj.

To perform nonlinear mapping, one can assume that there exists a mapping

¢global(-) that maps all points on M to Rd. The “global co—ordinate” of y, de-

noted by x = ¢global(Y)a is regarded as the low dimensional representation of y. In

general, such a mapping may not exist5. In that case, a mapping that preserves a

certain property of the manifold can be constructed to obtain x.

 

4Strictly speaking, geodesics are curves with zero covariant derivatives of their velocity vectors

along the curve. A shortest curve must be a geodesic, whereas a geodesic might not be a shortest

curve.

5For example, there is no such map (homeomorphism) between all points on a sphere and R2.

However, if we exclude the north pole of a sphere, we can construct such a mapping.

44



Many of the nonlinear mapping algorithms that are manifold—based require a

concrete definition of N(y,), the neighborhood of y,. Two definitions are commonly

used. In e-neighborhood, y, E N(y,) if Hy,- —— yJ-l] < 6, where the norm is the

Euclidean distance in RD. In krill-neighborhood, yj E N(yi) if y, is one of the k

nearest neighbors of y, in y, or vice versa. In both cases, 6 or k is a user-defined

parameter. knn neighborhood has the advantage that it is independent of the scale

of the data, though it can lead to too small a neighborhood when the number of data

points is large. Note that the neighborhood can be defined in a data-driven manner

[29] instead of being specified by a user.

2.3 Sammon’s mapping

Sammon’s mapping [223], which is an example of metric least square scaling [49], is

perhaps the most well-known algorithm for nonlinear mapping. Sammon’s mapping

is an algorithm for multidimensional scaling and it maps a set of n items into an Eu-

clidean space based on the dissimilarity values. This problem is related to the metric

embedding problem considered by theoretical computer scientists [119]. Sammon’s

mapping can be used for dimensionality reduction if the dissimilarity matrix is based

on the Euclidean distance between the data points in the high dimensional space.

Given a n by n matrix of dissimilarity values {6,,}, where 62-,- denotes the dissim-

ilarity between the i-th and the j-th items, we want to map the n items to n points

{x1, . . . ,xn} in a low dimensional space, such that the distance between x,- and x,-

is as “close” to 6,,- as possible. Many different definitions of closeness have been
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proposed, with the “Sammon stress” ,defined by Sammon, being the most popular.

The Sammon’s stress S is defined by

S:E(ll—7+”226,, (2.1)

i<j Oil i<j

where {1,-,- = lle‘ - jll is the distance between x,- and x,. The quantity (dij -

6,-,-)2 measures the discrepancy between the observed dissimilarities with the actual

distances. It is weighted by 62731 because if the dissimilarity is large, we should be more

tolerant to the discrepancy. The division by Z 6,, makes S scale free. Sammon
i<j

proposed the following iterative equation to find x,- that minimize S

. 625

fl?“ = :11- #:8/]— ], 2.2

where MF is a “magic factor”, usually set to 0.3 or 0.4. Now, differentiating (1,2, =

Zk/(rik/ — xjk’)2 with respect to Tika we get

2dij0dij = 2(232'k — xjk)axik

3er _ $2); - $31;
 

(9:1?szC — dij

So, the gradient of S is

BS ( 2 m (12:) — 5:)

‘—,. = —- ~ ' (1‘71: _ ll 'k)

0336!: Zi<j (’2') ._ . . dzjozj l J
]_19]#2 2 3

__2___ m 1 1 ( ' )

l(166516?“ I] '7']
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where 1%,), is the k-th component in xi. For the second order information, note that

—1

__2__ 6 as

Zi<j 6i] (91.111.101ng

=1(6=n in: (g—i)u<u:))—uu=j))

 

 
 

1:167“ ‘7' “’7'

m 1 .l?- — :r- :13- — :r-

+ Z 7(a). — rji.)(1(u = )—,—-——J— + I(u aé 21)I(u = j)—i"7,——’—”)

j=1,j7éi “26' ‘ ij ij

771.

1 1 1 1

= 112k qui ————— —Iu7€i)(—.—-———)

( ) ( L337“ ((2‘) dij) ( 0m (166

m

. (Til: — Ijkxxiv " fjv) . (I‘ll: —$uk)(1‘llv — l‘w)
+ I(u = z) . Z . (13: + I(u # 2) d3

3:1».79‘91 i] w

(2.4)

where I () is the indicator function defined as

I(true) : 1 I(false) = 0.

One can use a nonlinear optimization algorithm other than Equation (2.2) to minimize

S. It is also possible to implement Sammon’s mapping by a feed-forward neural

network [180] or in an incremental manner [129]. Note that Sammon’s mapping is

“global” and considers all the interpoint distances between the 71 items. This can be

a drawback for data like the Swiss roll data set, where Euclidean distances between

pairs of points that are far away from each other do not reveal the true structure of

the data.
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2.4 Auto-associative neural network

A special type of feed-forward neural network, “auto—associative neural network”

[7, 57], can be used for nonlinear dimensionality reduction. An example of such a

network is shown in Figure 2.3. The idea. is to model the functional relationship

between x,- and y,- by a neural network. If x, is a good representation for yi, it

should contain sufficient information to reconstruct y,- via a neural network (decoding

network), with the “decoding layer” as its hidden layer. To obtain x,- from yi, another

neural network (encoding network) is needed, with the “encoding layer” as its hidden

layer. The encoding network and the decoding network are connected so that the

output of the encoding network is used as the input of the decoding network, and

both of them correspond to xi. The high-dimensional data points y, are used as both

the input and the target for training in this neural network. Sum of square error

can be used as the objective function for training. Note that the neural network in

Figure 2.3 is just an example; alternative architecture can be used. For example,

multiple hidden layers can be used, and the number of neurons in the encoding and

decoding layers can also be different.

The advantage of this approach is that mapping a new y to the corresponding x is

easy: just feed y to the neural network and extract the output of the encoding layer.

Also, there exists a number of software packages for training neural networks. The

drawback is that it is difficult to determine the. appropriate network architecture to

best reduce the dimension for any given data set. Also, training of a neural network

involves an optimization problem that is considerably more difficult than the eigen-
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Figure 2.3: Example of an auto—associative neural network. This network extracts x,

with 3 features from the given data y,- with 8 features.

decomposition required by some other nonlinear mapping methods like ISOMAP,

LLE, or Laplacian eigenmap, which we shall examine later in this chapter.

2.5 Kernel PCA

The basic idea of kernel principal component analysis (KPCA) is to transform the

input patterns to an even higher dimensional space nonlinearly and then perform

principal component analysis in the new space. It is inspired from the success of the

support vector machines (SVM) [189].
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2.5.1 Recap of SVM

Consider a mapping 6 : 1RD i——> H, where H is a Hilbert space. H can be, for example,

a (very) high dimensional Euclidean space. By convention, RD and H are called the

input space and the feature space, respectively. The point y,- in RD is first transformed

into the Hilbert space H by ¢(y,j). SVM assumes a suitable transformation g6(.) such

that the transformed data set is more linearly separable in H than in RD, and a large

margin-classifier in H is trained to separate the transformed data. It turns out that

the large margin classifier can be trained by using only the inner product between

the transformed data (o(y,-) gfi(y,)), Without knowing (,5(.) explicitly. Therefore, in

practice, the kernel function K(yi, y,) is specified instead of ¢(.), where

Kb’nfi) = (“WM/903))-

Specifying the kernel function K(. .) instead of the mapping o(.) has the advantage

of computational efficiency when H is of high dimension. Also, this allows us to

generalize to infinite dimensional H, which happens when the radial basis function

kernel is used. This use of kernel function to replace an explicit mapping is often

called “the kernel trick”. Intuitively, the kernel function, being an inner product,

represents the similarity between y,- and y,.

The kernel trick can be illustrated by the following example with D = 2. Let

¢(y,-) E (y?1,\/2y,1y,2,y222)T, where y, = (yi1,y,t2)T. The kernel function corre-



SPODding to this 05(-) is K()’:\ yj) = (“Hui/)1 +Ll/7T‘21l/j2)2v because

, 2
1‘ (Yian) = (611.7111 + yell/)2)

2 2 2 2
Z gill/,1 'l' Zyillljll/i2yj2 + yigljfl

2 2 2 2 T
= (ya, fiynyia 31,2)(‘yJ-1, N/Zyj1yj2, 11,2)

’1’.
).

= (My. @(yj).

Many different kernel functions have been proposed. Polynomial kernel, defined as

K(y,, y,) = (ygiyj + 1)r with r as the parameter (degree) of the kernel, corresponds

to a polynomial decision boundary in the input space. The radial basis function

), where w is the width(RBF) kernel is defined by Ix’(y,~,y,) = exp(w||y, — lel2

parameter. SVM classifiers using RBF kernel are related to RBF neural networks,

except that for SVM, the centers of the basis functions and the corresponding weights

are estimated by the quadratic programming solver simultaneously [229]. The choice

of the appropriate kernel function in an application is difficult in general. This is still

an active research area, with many principles being proposed [121, 154, 227].

2.5.2 Kernel PCA

One important lesson we can learn from SVM is that a linear algorithm in the feature

space corresponds to a nonlinear algorithm in the input space. Different types of

nonlinearity can be achieved by different kernel functions. Kernel PCA [228] utilizes

this to generalize PCA to become nonlinear. For ease of notation, we shall assume H
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is of finite dimension6.

KPCA follows the steps of the standard PCA, except the data set under consid-

eration is {¢(y1), . . . ,o(yn)}. Let 69(yi) be the “centered” version of c6(y,~),

7 1 l ,

(6(3'2‘) = (MY-i) -" I, 200%)-

The covariance matrix C is Given by

1 - 2

= — Z 6(y.)¢<y.)T

“' i

The eigenvalue problem /\v 2 CV is solved to find the (kernel) principal component

v. Because

V=-C =ARZ¢Yz (QYi)1W),

v is in the subspace spanned by 0(yi), and it can be written as

V = Zaj§g(YJ)'

j

Denote a = (011, . . . , on). Let K be the symmetric matrix such that its (2', j )-th entry

[(2, is 66(yi)Tgf)(yj). Rewrite /\v 2 CV as

AZQJ‘QM(Yj) :%Zj:ajKij@(le (2'5)

 

6The case for infinite dimensional H is similar, with operators replacing matrices and eigenfunc-

tions replacing eigenvectors.
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By multiplying both sides with (6(yl)T, we have

3 1 ~, ~,
.

Azajhlj = gzajhijhli Vl, (2.6)

j i]

which, in matrix form, can be written as

/\7IRQ = K20. (2.7)

Since K is symmetric, K and K2 have the same set of eigenvectors. This set of eigen-

vectors is also the solution to the generalized eigenvalue problem in Equation (2.7).

Therefore, a, and hence v, can be found by solving /\a -=: Ka. For projection pur-

poses, it is customary to normalize v to norm one. Since “V”2 = aTKa, we should

divide a by V aTKa. To perform dimensionality reduction for y, it is first mapped

to the feature space as p(y), and its projection on v is given by

6<y)Tv = Z ay)Ta.-c3<y.) = aTiéy. (2.8)

2'

.. ~ ~ T

where ky = ($(Y)T¢(y1), . . . , p(y)T¢(yn)) . Finally, by rewriting the relationship

Rij = 95(Y1)T¢3(yj')
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1 ,

— as<y.)T¢<y,) — — ¢<y))T<:><y,)
Tl

’ 1:1

1 Ti 1 72

— g 2 6m )Tem) + 533- : Z ¢(Y1)T¢(Yk)

' A21 k=1l=1

in matrix form, we have

R = HnKHn, (2.9)

where Hn = I — %1n,n is a centering matrix with In," denoting a matrix of size n

by n with all entries one, and K is the kernel matrix with its (2', j)-th entry given by

K(y,-, yj). A similar expression can be derived for 66(y)T6>(yj).

KPCA solves the eigenvalue problem of a n by a matrix, which may be larger

than the D by D matrix considered by PCA. Recall D is the dimension of y,. The

number of possible features to be extracted in KPCA can be larger than D. This

contrasts with the standard PCA, where at most D features can be extracted. An

interesting problem related to KPCA is how to map 2, the projection of (fly) into

the subspace spanned by the first few kernel principal components, back to the input

space. This can be useful for, say, image denoising with KPCA [185]. The search for

the “best” y' such that (p(y') as z is known as the pre—image problem and different

solutions have been proposed [160, 5].

In summary, KPCA consists of the following steps.

1. Let K be the kernel matrix, where Ki,- 2 p(y,,y,). Compute K by

K : HnKHn.
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2. Solve the eigenvalue problem A0: = Ka and find the eigenvectors corresponding

to the largest few eigenvalues.

3. Normalize a by dividing it by V aTKa.

4. For any y, its projection to a principal component can be found by aTky, where

~ 1

ky = Hn(ky _ gKan),

ky = (K(y,y1), . . . , K(y,yn) and 1,1,1 is a n by 1 vector with all entries equal

to one.

2.6 ISOMAP

The basic idea of isometric feature map (ISOMAP) [248] is to find a mapping that

best preserves the geodesic distances between any two points on a manifold. Recall

that the geodesic distance between two points on a manifold is defined as the length of

the shortest path on the manifold that connects the two points. ISOMAP constructs

a mapping from y,- to the x,- (x,- 6 Rd) such that the Euclidean distance between x,-

and x,- in IR“ is as close as possible to the geodesic distance between y, and y,- on

the manifold.

Geodesic distances are hard enough to find when the manifold is known, let alone

in the current case where the manifold is unknown and only points 011 the manifold

are given. So, ISOMAP approximates the geodesic distances by first constructing a

neighborhood graph to represent the manifold. The vertex v, in the neighborhood
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graph G = (V, E) corresponds to the high dimensional data point yi. An edge 6(2, 3)

between v,- and v,- exists if and only if y,- is in the neighborhood of y,, N(y,), and

the weight of this edge is Hy,- — lel- Details of N(yj) are described in section 2.2.

An example of a neighborhood graph is shown in Figure 2.4(b) for the data shown

in Figure 2.4(a). ISOMAP approximates a path on the manifold by a path in the

neighborhood graph. The geodesic between y,- and y,- corresponds to the shortest

path between 1),- and 21,-. The estimation problem of the geodesic distances between

all pairs of points y,- and y,- thus becomes the all-pairs shortest path problem in the

neighborhood graph. It can be solved [46] either by the Floyd-VVarshall algorithm,

or by Dijkstra’s algorithm with different source vertices. The latter is more efficient

because the neighborhood graph is sparse. An example of how the shortest path

approximates the geodesic is shown in Figure 2.4(c). It can be shown that the shortest

path distances converge to the geodesic distances asymptotically [18].

The next step of ISOMAP finds x,- that best preserve the geodesic distances. Let

g, denote the estimated geodesic distance between y,- and y], and write G = {g,~,} as

the geodesic distance matrix. The optimal x,- can be found by applying the classical

scaling [49], a simple multi—dimensional scaling technique. Let dij = lle' —- xJ-I].

Without loss of generality, assume 2, x, = 0. We have the following:

T 2 2 T
(Xi - Xj) = llxill + lllel — 2X2“ Xj

2 2 2
2:612) = E :llxill +nlllel

2' 2'

2 2

Eda = 2‘": “Xi“
ij 1
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Figure 2.4: Example of neighborhood graph and geodesic distance approximation.

(a) Input data. (b) The neighborhood graph and an example of the shortest path.

(c) This is the same as (b), except the manifold is flattened. The true geodesic (blue

line) is approximated by the shortest path (red line).
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If we replace (1.1-J- with the estimated geodesic distance gij in Equation (2.10), bij, the

target inner product between x,- and x_,-, is given by

1 2 1 2 1 2 ‘2

gzgijd'529ij‘pZQu—gij ~ (2'11)

j 2' ‘ if

Let A = {GU} with aij = ’flz.‘1i2j~ Equation (2.11) means that B = HnAHn, where

B = {bl-j}, Hn = I — 711-17232 and 17m denotes a n by n matrix with all entries one.

Computing HnAHn is effectively a centering operation on A, i.e., each column

is subtracted by its corresponding column mean, and each row is subtracted by its

corresponding row mean. Because multiplication of Hn has this effect of “zeroing” the

means for different rows and columns, Hn is often referred to as the centering matrix.

The centering operation is also seen in other embedding algorithm such as KPCA

(section 2.5). Since B is the matrix of target. inner product, we have B 2 XTX,

where X = [x1, . . . ,xn]. We recover X by finding the best rank—d approximation

for B, which can be obtained via the eigen—decomposition of B. Let A1, . . . , Ad be

the d largest eigenvalues of B with corresponding eigenvectors v1, . . . ,vd. We have

= [\//\1v1,..., Advd]T. Here, we assume /\i > 0 for all ‘1'. = 1, ...,(1. Unlike



Sammon’s mapping, the objective function for the optimal X is less explicit: it is the

sum of the square error (squared Frobenius norm) between the target inner product

(bl-j) and the actual inner product (xz-ij).

One drawback of ISOMAP is the 0(712) memory requirement for storing the dense

matrix of geodesic distances. Also, solving the eigenvalue problem of a large dense ma—

trix is relatively slow. To reduce both the computational and memory requirements,

landmark ISOMAP [55] sets apart a subset of y as landmark points and preserves

only the geodesic distances from yz- to these landmark points. A similar idea has been

applied to Sammon’s mapping before [25]. A continuum version of ISOMAP has also

been proposed [282]. ISOMAP can fail when there is a “hole” in the manifold [66].

We also want to note that an exact isometric mapping of a manifold is theoretically

possible only when the manifold is “flat”, i.e., when the curvature tensor is zero, as

pointed out in [16].

To summarize, ISOMAP consists of the following steps:

1. Construct a neighborhood graph using either the e neighborhood or the knn

neighborhood.

2. Solve the all pair shortest path problem on the neighborhood graph to obtain

an estimate of the geodesic distances gij.

3. Compute A = {dz-j}, where aij = —%gi2j, and B = HnAHn.

4. The d largest eigenvalues and the corresponding eigenvectors of B are found

and X =[\/X1-V1,. . ., \/)‘dvd]T~
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2.7 Locally Linear Embedding

In locally linear embedding (LLE) [219, 226], each local region on a manifold is

approximated by a linear hyperplane. LLE maps the high dimensional data points

into a low dimensional space so that the local geometric properties, represented by

the reconstruction weights, are best preserved.

Specifically, yz- is reconstructed by its projection yi on the hyperplane H passing

through its neighbors N(yi) (defined in section 2.2). Mathematically,

yz‘ % it = Zwinja

j

with the constraint 23' 'wz-j = 1 to reflect the translational invariance for the recon-

struction. By minimizing the sum of square error of this approximation, we can also

achieve invariance for rotation and scaling. The weights wij reflect the local geomet-

ric properties of yi. This interpretation on wij, however, is reasonable only when y,-

is well approximated by 32,, i.e., when yz- is close to H. The weights are found by

solving the following optimization problem:

{min} Hyi — ZwinjH2 subject to Zwij = 1, 2qu z 0 if yj é N(yi) for all i.

“”1 j 1'

(2.12)

Now, write N(yi) = {yT1,.. ”yTL} and denote zj = y—rj. Note that yi ¢ N(yi). The

optimization problem (2.12) can be solved efficiently by first constructing a L by L

matrix F such that fjk = (zj — xi)T(zk — xi). Equivalently, F = (Z — xi11,L)T(Z —

Xi11,L): where F = {fjk}, 1qu is a 1 by L vector with all entries one, and Z =
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[21, . . . , 21]. The next step is to solve the equation

Fu = 11,1 (2.13)

, ' 7 ' ~. _ . _ . ~.
and then we normalize the solution u by u] — 117/Z:7 u]. The values of u] are

assigned to the corresponding wij, i.e., wi, = uj, and the rest of wZ-j are set to zero.
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Sometimes, F can be singular. This can happen when the neighborhood size L is

larger than D, the dimension of y. In this case, a small regularization term 61L is

added to F before solving the Equation (2.13). This regularization has the effect of

preferring values of mi]- with small 23' wig]. Finding uj is efficient because only small

linear systems of equations are solved. Note that uj can be negative and y;- can be

outside the convex hull of N(y,).

In the second phase of LLE, we seek X = [x1, . . . ,xn] such that x,- z Zj wijxj,

and xi 6 Rd. To make the problem well-defined, additional constraints Zixi = 0

and 2.1-xix? = Id are needed. The second constraint has the effect of both fixing

the scale and enforcing different features in xi to carry independent information by

requiring the sample covariances between different variables in xi to be zero. The

optimization problem is now

inn; [Ixz- — Ewijlelz subject to in = O and 2X2“? = Id. (2.14)

X1“ . . .

J z 2

Note the similarity between Equations (2.12) and (2.14). Let x“) denote the i-th row

 

7 . . . . _ -1
The normalization IS valid because 23‘ uj — 11,mF 1171.1 and hence Ej uj cannot be zero,

by the positive definiteness of F’1.
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of X. Equation (2.14) can be rewritten as

ngn trace(X(I—W)T(I —W)XT) subject to 11,mx(i) = 0 and Xmem == (SI-j.

(2.15)

This can be solved by eigen-decomposition on M = (I — W)T(I —- W). Note that M

is positive semi-definite. Let vj be the eigenvector corresponding to the (j + 1)-th

smallest eigenvalue. The optimal X is given by X 2 [v1, . . . , vd]T. The first constraint

is automatically satisfied because 1,1,1 is the eigenvector of M with eigenvalue 0. This

eigenvalue problem is relatively easy because M is sparse and can be represented as

a product of sparser matrices (I — W)T and (I — W).

The above exposition of LLE assumes the pattern matrix as input. LLE can

be modified to work with a dissimilarity matrix [226]. There is also a supervised

extension of LLE [53, 54], which uses the class labels to modify the neighborhood

structure. The kernel trick can also be applied to LLE to visualize the data points

in the feature space [56]. The case when LLE is applied to data sets with natural

clustering structure has been examined in [206].

In summary, LLE includes the following steps:

1. Find the neighbors of each yz- according to either e-neighborhood or knn neigh—

borhood.

2. For each yi, form the matrix F and solve the equation Fu 2 111,1. After

normalizing u by iij = uj/ Zj uj, set nil-,7]. = 213- and the remaining wij to zero.

3. Find the second to the (d + 1)-th smallest eigenvalues of (I — W)T(I — W) by
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a sparse eigenvalue solver and let {V1, . . . ,vd} be the eigenvectors.

4. Obtain the reduced dimension representation by X 2 [v1, . . . ,vd]T.

2.8 Laplacian Eigenmap

The approach taken by Laplacian eigenmap [16] for nonlinear mapping is different

from those of ISOMAP and LLE. Laplacian eigenmap constructs orthogonal smooth

functions defined on the manifold based on the Laplacian of the neighborhood graph.

It has its roots in spectral graph theory [42].

As in ISOMAP, a. neighborhood graph G = (V, E) is first constructed. Unlike

ISOMAP, where the weight 10,-]- of the edge (0,3115) represents the distance between

v,- and vj, the weight in Laplacian eigenmap represents the similarity between v,- and

vj. The weight 10,-]- can be set by

2x- _ x-

wij = exp ——|—[——2——4t——J—H— , (2.16)

with t as an algorithmic parameter, or it can be simply set to one. The use of the

exponential function to transform a distance value to a similarity value can be justified

by its relationship to the heat kernel [16].

The nonlinear mapping problem is recast as the graph embedding problem that

maps the vertices in the neighborhood graph G to Rd. The first step is to find a

“good” function f() : V H R that maps the vertices in G to a real number. Since

the domain of f() is finite, f () can be represented by a vector u, with f (22,-) = 11,-.
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According to spectral graph theory, the smoothness of f can be defined by

1 2
S E 2 Zu’ijfui — uj) . (2.17)

The intuition of S is that, for large wij, the vertices v,- and vj are “similar” and hence

the difference between f (11,-) and f ('01-) should be small if f () is smooth. A smooth

mapping f () is desirable because a faithful embedding of the graph should assign

similar values to v,- and 1)} when they are close. We can rewrite S as

1 2 2
S = 5 :0qu + 'wijuj — 2'uiuj)

2']

= §(Z Uz- 2100+ 2213-2112,)- - 2 L wijuiuj) (218)

i j j i ii

= 211,22 'wjj — Z'wijuiuj = uTLu,

i j ij

where L is the graph Laplacian defined by L = D — W, W = {102-j} is the graph

weight matrix, and D is a diagonal matrix with (12:,- = 23' wij. The matrix L can

be thought of as the Laplacian operator on functions defined on the graph. Since

{1,-,- can be interpreted as the importance of vi, the natural inner product between

two functions f1(.) and f2(.) defined on the graph is (f1, f2) = ufDUQ. Because

the constant function is the smoothest and is uninteresting, we seek f() to be as

smooth as possible while being orthogonal to the constant function. The norm of f()
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is constrained to be one to make the problem well—defined. Thus we want to solve

11311 uTLu subject to uTDu = 1 and uTD1nJ = 0. (2.19)

This can be done by solving the generalized eigenvalue problem

Ln = ADu, (2.20)

after noting that 171.1 is a solution to Equation (2.20) with A = 0. Here, 172,1 denotes

a n by 1 vector with all entries one. As L is positive semi-definite, the eigenvector

corresponding to the second smallest eigenvalue of Equation (2.20) yields the desired

f(.). In general, (1 orthogonal8 functions {f1(.), . . ..,fd()} that are as smooth as

possible are sought to map the vertices to Rd. The functions can be obtained by

the eigenvectors corresponding to the second to the (d + 1)-th smallest. eigenvalues

in Equation (2.20). The low dimensional representation of y,- is then given by x,- =

(f1(v,'), f2(v,-), . . .,fd(v,-))T. In matrix form, X = [u1, . . . , ud]T.

The embedding problem of the neighborhood graph and the embedding problem

of the points in the manifold is related in the following way. A smooth function f ()

that maps the point y,- in the manifold to x,- 6 Rd is preferable, because a faithful

mapping should give similar values (small Hx, — xJ||) to y,- and yj when ”3’1 — lel is

small. A small [[ij — yJII corresponds to a large urij in the graph. Thus, intuitively,

a smooth function defined on the graph corresponds to a smooth function defined

 

8Orthogonality is preferred as it suggests the indeptmdence of informatirm. Also, in PCA, each

of the extracted features is orthogonal to the others.
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on the manifold. I11 fact, this relationship can be made more rigorous, because the

graph Laplacian is closely related to the Laplace-Beltrami operator on the manifold,

which in turn is related to the smootlmess of a f1mction defined on the manifold. The

eigenvectors of the graph Laplacian correspond to the eigenfunctions of the Laplace-

Beltrami operator, and the eigenfunctions with small eigerwalues provide a “smooth”

basis of the functions defined on the manifold. The neighborhood graph used in

Laplacian eigenmap can thus be viewed as a discretization tool for computation on

the manifold.

There is also a close relationship between Laplacian eigenmap and spectral clus-

tering. In fact, the spectral clustering algorithm in [194] is almost the same as first

performing Laplacian eigenmap and then applying k-means clustering on the low di-

mensional feature vectors. The manifold structure discovered by Laplacian eigenmap

can also be used to train a classifier in a semi—supervised setting [182]. The Laplacian

of a graph can also lead to an interesting kernel function (as in SVM) for vertices in

a graph [154]. This idea of nonlinear mapping via graph embedding has also been

extended to learn a linear mapping [109] as well as generalized to the case when a

vector is associated with each vertex in the graph [31].

To sum up, the steps for Laplacian eigenmap include:

1. Construct a neighborhood graph of y by either the e-neighborhood or the knn

neighborhood.

2. Compute the edge weight m]- by either exp([|y,- — yj||2/(4t)), or simply set wij

to 1.
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3. Compute D and the graph Laplacian L.

4. Find the second to the ((1 + 1)—th smallest eigenvalues in the generalized eigen-

value problem Lu = /\Du and denote the eigenvectors by 111, . . . , ud. The low

dimensional feature vectors are given by X = [111, . . . , ud]T.

2.9 Global Co-ordinates via Local Co—ordinates

Recall that in section 2.2, an atlas of a manifold M is defined as a collection of co-

ordinate charts that covers the entire M, and overlapping charts can be “connected”

smoothly. This idea has inspired several nonlinear mapping algorithms [220, 29, 247]

which construct different local charts and join them together.

There are two stages in these type of algorithms. First, different local models are

fitted to the data, usually by the means of a mixture model. Each local model gives

rise to a local co—ordinate system. A local model can be, for example, a Gaussian

or a factor analyzer. Let Zis be the local co—ordinate given to yi by the s-th local

co-ordinate system. Let Tis denote the suitability of using the s-th local model for

y. We require rm 2 O and 23 rm 2 1. The introduction of rig can represent the

fact that only a small number of local models are meaningful for each yi. Typically,

rig is obtained as the posterior probability of the s-th local model, given y,-.

In the second stage, different local co—ordinates of y,- are combined to give a global

co-ordinate. Let g:S be the global co—ordinate of y1- due to the s-th local model, and

let gi 6 R“ be the corresponding “combined” global co—ordinate. In the three papers

we have considered here, gig is simply the affine transform of the local co—ordinate,
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gis = Lsiis. Here, 223,. is the “augmented” zik, 2,7,, = [zfl, 1]T. L3 is the (unknown)

transformation matrix with (1 rows for the s-th local model. Note that it is desirable

for neighboring local models to be “similar” so that. the global co-ordinates are more

consistent. An inmortant characteristic of the algorithms in this section is that, unlike

ISOMAP, LLE, or Laplacian eigenmap, extension for a point y that is outside the

training data. 32 is easy after computing zs and 7‘8 for different 3.

2.9.1 Global Co—ordination

In the global co-ordination algorithm in [220], the first and the second stages are

performed simultaneously by the variational method. The first stage is done by

fitting a mixture of factor analyzers. Under the s—th local model, a data point is

modeled by

Yi = ”'3 + Aszis + Gisa (2.21)

where “S is the mean, A3 is the factor loading matrix, and 6,3,. is the noise that

follows N(0, \I’ S), a multivariate Gaussian with mean 0 and covariance \113. By the

definition of factor analyzer, \Ils is diagonal. The hidden variable. Zis is assumed to

follow N(0, I). The scale of Zis is unimportant because it can be absorbed by the

factor loading matrix. Let as be the prior probability of the s—th factor analyzer.
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The parameters are (as, us, As, \I's}, and the data density is given by

aw=Z/pmmamwwwa
s zis

2 Z (r3(27r)_D/2(det(AsAZ + earl/E (2.22)

S

l _

eXl)(—§(Yi _ H.S)T(ASAZ + \Ils) I(Yi — #3))-

VVe define ris as the posterior probability of the s-th local model given yi, P(s|yi),

and it can be computed based on Equation (2.22). Equation (2.22) also gives rise

 
to p(zis s,y,~) and hence p(gi3[s,y,j), because gig is a function of Zis and L3. The

posterior probability of the global co—ordinate is defined as

MMW=ZHWM®WM1 em

Equation (2.23) assumes that the overall global co-ordinate g,- is selected among

different gZ-S, with s stochastically selected according to the posterior probability of

the s-th model. In the case where yi is likely to be generated either by the j-th or the

k-th local model, the corresponding global co—ordinates gu- and Si]: should be similar.

This implies that the posterior density p(g,|yi) should be unimodal. Enforcing the

unimodality of p(gilyi) directly is difficult. So, the authors in [220] instead drive

p(gilyi) to be as similar to a Gaussian distribution as possible by adding an extra

term to the log-likelihood objective function to be maximized:

(I) = 2109; (Yi) - Z DKL((I(gia SlYiHIPfgis 3|Yi))~ (2-24)

2' is
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Here, DKL(QI|P) is the Kullback-Leibler divergence defined as

DKLfQIIP)=/Q(Y)10g%% dy, (225)

and q(g,-, s|y,-) is assumed to be factorized as

 (Ifgz', 8 w) = q’ifgilxi)Qi(3[Yi)

with qi(g,-|y,-) as a Gaussian and (“(slyi) as a multinomial distribution. This addition

of a divergence term between a posterior distribution and a factorized distribution is

commonly seen in the literature on the variaticmal method. The objective function

in Equation (2.24) can be maximized by an EM-type algorithm, which estimates the

parameters {03, us, A3, ‘113, L3} as well as the parameters for q,j(g,-|y,-) and q,(s|y,-).

Since the first and the second stages are carried out simultaneously, local models that

lead to consistent global co—ordinates are implicitly favored.

2.9.2 Charting

For the charting algorithm in [29], the first and the second stages are performed

separately. This decoupling decreases the complexity of the optimization problem

and can reduce the chance of getting trapped in poor local minima. In the first stage,

a mixture of Gaussians is fitted to the data,

an = [am/(u... 2.). (2.26)
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with the constraint that two adjacent Gaussians should be “similar”. This is achieved

by using a prior distribution on the mean vectors and the covariance matrices that

encourages the similarity of adjacent Gaussians:

p({us},{Es}) O< exp(-Z Z AsfflleKLfA/(l‘w28)][Nfujv2j)))a (227)

s was

where As(,uj) measures the closeness between the locations of the s-th and the j—th

Gaussian components. It is set to A3023) oc exp(—|[us — “J'H2/(202))’ where a is

a width parameter determined according to the neighborhood structure. The prior

distribution also makes the parameter estimation problem more well-conditioned. In

practice, n Gaussian components are used, with the center of the i-th component. {1,:

set to y,- and the weight of each component set to l/n. The only parameters to be

estimated are the covariance matrices. The MAP estimate of the covariance matrices

can be shown to satisfy a set of constrained linear equations and they are obtained

by solving this set of equations.

In the second stage, the local co—ordinate Zis is first obtained as Zis = VT(x,- —us),

where V consists of the (1 leading eigenvectors of 23. we can regard zis as the feature

extracted from y,- using PCA on the s-th local model. The local model weight rig

is, once again, set to the posterior probability of the s-th local model given yi. The

transformation matrices L are found by solving the following weighted least square

problem:

. ~ - 2
mm X TijrikHszij — LkrzikllF- (2.28)

{LS} i.j,k
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Here, “X“? denotes the square of the Frobenius norm, [[XHF E trace(XTX). Intu-

itively, we want to find the transformation matrices such that the global co—ordinates

due to different local models are the most consistent in the least square sense, weighted

by the importance of different local models.

Equation (2.28) can be solved as follow. Let K and h be the number of lo-

cal models and the length of the augmented local co-ordinate 2,3, respectively.

Define is = [21,,...,2,,,.] as the h by 72 matrix of local co—ordinates using the

s-th local model for all the data. points. Define the Kh by 12 matrix T3 by

T3 = [On,(8_1)h,ZZ,Om<K_S)h]T, where 0mm denotes a zero matrix with size n

by 171. Let P, be a n by 12. diagonal matrix where the (i,i)-th entry is 7'2‘3- The

solution to Equation (2.28) is given by the d trailing eigenvectors of the Kh by Kh.

matrix QQT, where Q = 2]“ Zk,j;él.-((Tj — Tk)PJ-Pk). Note that the second stage

is independent of the first stage. In particular, alternative collection of local models

can be used, as long as 2,3 and ms can be calculated.

2.9.3 LLC

The LLC algorithm described in [247] concerns the second stage only. Given the

local co—ordinates Zis and the model confidences 13,3 computed from the first stage,

the LLC algorithm finds the best Ls such that the local geometric properties are best

preserved in the sense of the LLE loss function. The global co—ordinate g, is assumed
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to be a weighted sum in the form

gi = Zrz'sgis = risLsiis' (2'29)

8 8

Suppose there are K local models, each of which gives a local co—ordinate Zis in a.

h — 1 dimensional space”. We stack 2,373,, for different 5 to get a vector of length

Kh, u,- = [Tl-ligiJQil-TQ, . . . , riKZEAT, and concatenate different L3 to form a d by

Kh matrix J = [L1,L2, . . .,LK]. (Each L3 is of size d by h.) Equation (2.29) can

be rewritten as g, = Jui. The global co—ordinate matrix, G = (g1, . . . ,gn), is thus

given by G = JU, where U is a Kit by 71 matrix U = [u1, . . . , un]. Denote the i-th

row of J by j“). If we substituteG as Y in the LLE objective function in equation

(2.15), we have

min trace(JU(I — W)T(I — W)UTJT)

J (2.30)

subject to j‘i’Uan = 0 and j(i)UUTj(j)T = 6a

where W is defined in the same way (the neighborhood reconstruction weight) as

in section 2.7. Here, 1,“ denotes a n by 1 vector with all entries one. Note that

obtaining W is efficient (see section 2.7 for details). The value of j“) can be obtained

as the solution of the generalized eigenvalue problem (U(I — W)T(I — W)UT)v =

A(UUT)V. The authors in [247] claim that the jm thus obtained satisfies the con-

straint j(i)U1m,1 = 0 automatically because Ulm‘l is an eigenvector of the general-

 

9In general, different local models can give local co—ordinates with different lengths, as emphasized

in [247]. Here we assume a common 11 for the ease of notation.
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ized eigenvalue problem with eigenvalue 0. However, this is not true in general. In

any case, the authors in [247] use the eigenvectors corresponding to the second to

the (d + 1)-th smallest eigenvalues as the solution of J. Note that this generalized

eigenvalue problem is about a Kh by Kh. matrix, instead of a large n. by n matrix

in the original LLE. After finding j“), J and hence Ls are reconstructed. The global

co-ordinate is obtained via equation (2.29).

The idea of this algorithm is somewhat analogous to the locality preserving pro-

jection (LPP) algorithm [109]. LPP simplifies the eigenvalue problem by the extra

information that the projection should be linear, whereas the current algorithm sim-

plifies the eigenvalue problem by the given mixture model.

2.10 Experiments

We applied some of these algorithms on three synthetic 3D data sets. The data

manifold and the data points can be seen in Figure 2.5. The first data set, parabolic,

consists of 2000 randomly sampled data points lying on a paraboloid. It is an example

of a nonlinear manifold with a simple analytic form — a. second degree polynomial in

the co—ordinates in this case. The second data set swiss roll and the third data set

S—curve are commonly used for validating manifold learning algorithms. Again, 2000

points are randomly sampled from the “Swiss roll” and the S-shaped surface to create

the data sets, respectively. KPCA, ISOMAP, LLE, and Laplacian eigenmap were run

on these 3D data sets to project the data to 2D. We have implemented KPCA and
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Laplacian eigemnap ourselves, while the impleinentations for ISOMAP10 and LLE11

were downloaded from their respective web sites. For ISOMAP, LLE, and Laplacian

eigenmap, knn neighborhood with k = 12 is used. The edge weight is set to one

for Laplacian eigenmap. For KPCA, polynomial kernel with degree 2 is used. For

comparison, the standard PCA and Sammon’s mapping were also performed on these

data sets. Sammon’s mapping is initialized by the result of PCA.

The results of these algorithms can be seen in Figures 2.6, 2.7, and 2.8. The

data points are colored differently to visualize their locations on the manifold. We

intentionally omit the “goodness-of-fits” or “error” on the projection results, because

the criteria used by different algorithms (Sammon’s stress in Sammon’s mapping,

correlation of distances in ISOMAP, reconstruction error in LLE, residue variance

in PCA and KPCA, to name a few) are very different and it can be misleading to

compare them.

For the parabolic data set, we can see in Figures 2.6(b) and 2.6((:) that both

ISOMAP and LLE recover the intrinsic co—ordinates very well, because the changes

in the color of the data points after embedding are smooth. Since this manifold

is quadratic, we expect that KPCA with a quadratic kernel function should also

recover the true structure of the data. It turns out that the first two kernel principal

components cannot lead to a clean mapping of the data points. Instead, the second

and the third kernel principal components extract the structure of the data (Figure

2.6(a)). The first two features extracted by Laplacian eigenmap cannot recover the

 

10ISOMAP web site: http://stanford. isomap.edu

11LLE web site: http://www.cs.toronto.edu/~roweis/lle/
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Figure 2.5: Data sets used in the experiments for nonlinear mapping. The manifold
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desired trend in the data. The target structure with slight. distortion can be recovered

if the second and the third extracted features are used instead (Figure 2.6(d)). PCA

and Sammon’s mapping cannot recover the structure of this data set (Figures 26(0)

and 2.6(f)). The similarity of the results of PCA and Sammon’s mapping can be

attributed to the fact that Sammons mapping is initialized by the PCA solution.

The initial PCA solution is already a good solution with respect to Sammon’s stress

for this low-dimensional data set.

For the data set swiss roII, we can see from Figures 2.7(b) and 2.7(c) that ISOMAP

and LLE performed a good job “unfolding” the manifold. For Laplacian eigenmap,

once again, the first two extracted features cannot be interpreted easily, though the

structure of the data set is revealed if the second and the third features are used

(Figure 2.7(d)). KPCA cannot recover the intrinsic structure of the data set no

matter which kernel principal component is used. An example of the poor result of

KPCA is shown in Figure 2.7(a). PCA and Sammon’s mapping also cannot recover

the underlying structure (Figures 2.7(c) and 2.7(f)). The results for the third data

set S-curve (Figure 2.8) are similar to those of swiss roll, with the exception that

Laplacian eigenmap can recover the desired structure using the first two extracted

features.

In addition to these synthetic data sets, we have also tested these nonlinear map-

ping algorithms on a high—dimensional real world data set: the face images used in

[175] The task here is to classify a 64 by 64 face image in this data set as either

the “Asian class” or the “non-Asian class”. This data. set will be described in more

details in Section 3.3. The results of mapping these 4096D data points to 3D can be
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seen in Figure 2.9. Data points from the two classes are shown in different colors.

The (training) error rates using quadratic discriminant analysis are also computed

for different mappings. As we can see from Figures 2.9(a), 2.9(d), 2.9(e) and 2.9(f),

the mapping results by Laplacian eigenmap, KPCA, PCA and Sammon’s mapping

are not very useful. The two classes are not well-separated, and the error rates are

also high. ISOMAP maps the two classes more separately and has smaller error rates

(Figure 2.9(b)). For LLE (Figure 2.9(e)), although the mapping results look a bit

unnatural, the error rate turns out to be the smallest, indicating the two classes are

reasonably separated. It should be noted that the intrinsic dimensionality of this

data set is probably higher than 3. So. mapping the data to 3D, while good for

visualization, can lose some information and is suboptimal for classification.

From these experiments, we can see that both ISOMAP and LLE recover the

intrinsic structure of the data sets well. The performance of Laplacian eigenmap

is less satisfactory. We have attempted to set the edge weight by the exponential

function of distances (Equation (2.16)) instead of one, but the preliminary results

suggest that a good choice of the width parameter t is hard to obtain. The standard

PCA and Sammon’s mapping cannot recover the target structure of the data. It is

not surprising, because PCA is a linear algorithm and the underlying structure of

the data cannot be reflected by any linear function of the features. For Sammon’s

mapping, it does not give very good results because Sammon’s mapping is “global”,

meaning that the relationship between all pairs of data points in the 3D space is

considered. Local properties of the manifold cannot be modeled. The reason for the

failure of KPCA is that the parametric representation of the manifold for swiss roll
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and S-curve and the face images is hard to obtain, and is certainly not quadratic. So,

the assumption in KPCA is violated and this leads to poor results.

2.11 Summary

In this chapter, we have described different approaches for nonlinear mapping based

on fairly different principles. The algorithms ISOMAP, LLE, and Laplacian eigenmap

are non-iterative and require mainly eigen-decomposition, which is well understood

with many off-the-shelf algorithms available. ISOMAP, LLE, and Laplacian eigen—

map are basically non-parametric algorithms. While this provides extra flexibility to

model the manifold, more data points are needed to give a good estimate of the low

dimensional vector]. The basic version of some of the algorithms (Sammon’s mapping,

ISOMAP, LLE, and Laplacian eigenmap) cannot generalize the mapping to patterns

outside the training set y, though an out-of-sample extension has been proposed [17].

There are interesting connections between some of these algorithms. ISOMAP,

LLE, and Laplacian Eigenmap can be shown to be the special cases of KPCA [105].

The matrix M in LLE can be shown to be related to the square of the Laplacian

Beltrami operator [16], an important concept in Laplacian eigenmap. While these

techniques have been successfully applied to high dimensional data sets like face

images, digit images, texture images, motion data, and textual data, the relative

merits of these algorithms in practice are still not clear. More comparative studies

like the one in [196] would be helpful.
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Chapter 3

Incremental Nonlinear

Dimensionality Reduction By

Manifold Learning

In Chapter 2, we discussed different algorithms to achieve dimensionality reduction

by nonlinear mapping. Most of these nonlinear mapping algorithms operate in a

batch model, meaning that all the data points need to be available during train-

ing. In applications like surveillance, where (image) data are collected sequentially,

batch method is computationally demanding: repeatedly running the “batch” ver-

sion whenever new data points become available takes a long time. It is wasteful to

discard previous computation results. Data accumulation is particularly beneficial to

manifold learning algorithms due to their non-parametric nature. Another reason for

 

1Sammon’s mapping can be implemented by a feed-forward neural network [180] and hence can

be made online if an online training rule is used.
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developing incremental (non-batch) methods is that the gradual changes in the data

manifold can be visualized. As more and more data points are obtained, the evolution

of the data manifold can reveal interesting properties of the data stream. Incremental

learning can also help us to decide when we should stop collecting data: if there is

no noticeable change in the learning result with the additional data collected, there

is no point in continuing. The intermediate result produced by an incremental algo—

rithm can prompt us about the existence of any “problematic” region: we can focus

the remaining data collection effort on that region. An incremental algorithm can

be easily modified to incorporating “forgetting”, i.e., the old data points gradually ‘

lose their significance. The algorithm can then adjust the manifold in the presence of

the drifting of data characteristics. Incremental learning is also useful when there is

an unbounded stream of possible data to learn from. This situation can arise when

a continuous invariance transformation is applied to a finite set of training data to

create additional data to reflect pattern invariance.

In this chapter, we describe a modification of the ISOMAP algorithm so that it

can update the low dimensional representation of data points efficiently as additional

samples become available. Both the original ISOMAP algorithm [248] and its land—

mark points version [55] are considered. We are interested in ISOMAP because it

is intuitive, well understood, and produces good mapping results [133, 276]. Fur-

thermore, there are theoretical studies supporting the use of ISOMAP, such as its

convergence proof [18] and the conditions for successful recovery of co-ordinates [66].

There is also a continuum extension of ISOMAP [282] as well as a spatio—temporal

extension [133]. However, the motivation of our work is applicable to other mapping
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algorithms as well.

The main contributions of this chapter include:

1. An algorithm that efficiently updates the solution of the all-pairs shortest path

problems. This contrasts with previous work like [193], where different shortest

path trees are updated independently.

2. More accurate mappings for new points by a superior estimate of the inner

products.

3. An incremental eigen-decomposition problem with increasing matrix size is

solved by subspace iteration with Ritz acceleration. This differs from previ-

ous work [270] where the matrix size is assumed to be constant.

4. A vertex contraction procedure that improves the geodesic distance estimate

without additional memory.

The rest of this chapter is organized as follows. After a recap of ISOMAP in section

3.1, the proposed incremental methods are described in section 3.2. Experimental

results are presented in section 3.3, followed by discussions in section 3.4. Finally, in

section 3.5 we conclude and describe some topics for future work.

3.1 Details of ISOMAP

The basic idea of the ISOMAP algorithm was presented in Section 2.6. It maps a high

dimensional data set y1,. . . , yn in RD to its low dimensional counterpart x1, . . . ,xn

in R“, in such a way that the geodesic distance between y,- and yj on the data manifold
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is as close to the Euclidean distance between xi and xJ- in IR.“ as possible. In this

section, we provide more algorithmic details on how the mapping is done. This also

defines the notation that we are going to use throughout this chapter.

The ISOMAP algorithm has three stages. First, a neighborhood graph is con-

structed. Let AU be the (Euclidean) distance between y,- and yj. A weighted undi—

rected neighborhood graph 9 = (V, E) with the vertex v,- E V corresponding to yz- is

constructed. An edge e(i, j) between vi and vj exists if and only if y,- is a neighbor

of yj, i.e., yz- E N(yj). The weight of e(i,j), denoted by wij, is set to Aij. The set

of indices of the vertices adjacent to v,- in Q is denoted by adj (2)

ISOMAP proceeds with the estimation of geodesic distances. Let gij denote the

length of the shortest path sp(z', 3') between vi and vj. The shortest paths are found

by the Dijkstra’s algorithm with different source vertices. The shortest paths can be

stored efficiently by the predecessor matrix wij, where 7n]- = k if vk is immediately

before 223- in sp(i, j ) If there is no path from v,- to U], 7%- is set to O. Conceptually,

however, it is useful to imagine a shortest path tree T(i), where the root node is v,-

and sp(z', 3') consists of the tree edges from v, to vj. The subtree of T(Z) rooted at va

is denoted by T(z'; a). Since gij is the approximate geodesic distance between yz- and

yj, we shall call gij the “geodesic distance”. Note that G = {gij} is a symmetric

matrix.

Finally, ISOMAP recovers x,- by using the classical scaling [49] on the geodesic

distance. Define X = [x1,...,xn]. Compute B = —1/2HCH, where H = {hij},

hij = 6ij —1/n and 6,7- is the delta function, i.e., dij = 1 ifi = j and 0 otherwise. The

entries 5”),- - of C are simply 9.2.. We seek XTX to be as close to B as possible in the least
.7 2]
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square sense. This is done by setting X = [\//\1v1 . . . (/)\dvd]T, where /\1, . . . , Ad are

the (1 largest eigenvalues of B, with corresponding eigenvectors v1, . . . ,vd.

3.2 Incremental Version of ISOMAP

The key computation in ISOMAP involves solving an all-pairs shortest path problem

and an eigen-decomposition problem. As new data arrive, these quantities usually do

not change much: a new vertex in the graph often changes the shortest paths among

only a subset of the vertices, and the simple eigenvectors and eigenvalues of a slightly

perturbed real symmetric matrix stay close to their original values. This justifies

the reuse of the current geodesic distance and co—ordinate estimates for update. we

restrict our attention to knn neighborhood, since e-neighborhood is awkward for incre-

mental learning: the neighborhood size should be constantly decreasing as additional

data points become available.

The problem of incremental ISOMAP can be stated as follows. Assume that the

low dimensional co-ordinates x,- of yi for the first n points are given. We observe

the new sample yn+1. How should we update the existing set of x, and find xn+17

Our solution consists of three stages. The geodesic distances gij are first updated in

view of the change of neighborhood graph due to en“. The geodesic distances of the

new point to the existing points are then used to estimate xn+1. Finally, all xi are

updated in view of the change in gij.

In section 3.2.1, we shall describe the modification of the original ISOMAP for

incremental updates. A variant of ISOMAP that utilizes the geodesic distances from
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a fixed set of points (landmark points) [55] is modified to become incremental in

section 3.2.2. Because ISOMAP is non-parametric, the data points themselves need

to be stored. Section 3.2.3 describes a. vertex contraction procedure, which improves

the geodesic distance estimate with the arrival of new data without storing the new

data. This procedure can be applied to both the variants of ISOMAP. Throughout

this section we assume (1 (dimensionality of the projected space) is fixed. This can be

estimated by analyzing either the spectrum of the target inner product matrix or the

residue of the low rank approximation as in [248], or by other methods to estimate

the intrinsic dimensionality of a manifold [143, 171, 47, 35, 33, 259, 207].

3.2.1 Incremental ISOMAP: Basic Version

We shall modify the original ISOMAP algorithm [248] (summarized in section 3.1)

to become incremental. Details of the algorithms as well as an analysis of their time

complexity are given in Appendix A. Throughout this section, the shortest paths are

represented by the more economical predecessor matrix, instead of multiple shortest

path trees T(i).

3.2.1.1 Updating the Neighborhood Graph

Let A and ’D denote the set of edges to be added and deleted after inserting on“ to

the neighborhood graph, respectively. An edge 6(i, n + 1) should be added if (i) v,- is

one of the k: nearest neighbors of v , , or ii 22 re )laces an existino‘ vertex and
o n+1 n+1 o
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becomes one of the k: nearest neighbors of 11,-. In other words,

A = {C(i,n+1) 3 An+1,i S An+1,‘rn+1 0r Ai.n+1 S Ain’t-la (3'1)

where ”r,- is the index of the k-th nearest neighbor of 22,-.

For D, note that a necessary condition to delete the edge e(2', j) is that vn+1

replaces v,- (vj) as one of the k nearest neighbors of vj (12,-). So, all the edges to be

deleted must be in the form e(z', Ti) with Ai,n+1 g ALT," The deletion should proceed

if v,- is not one of the k nearest neighbors of ”Ti after inserting vn+1. Therefore,

D = {(30%) 2 Am,- > A21.n+1 and ATM > ATM}, (3-2)

where L,- is the index of the k-th nearest neighbor of on. after inserting vn+1 in the

graph. Note that we have assumed there is no tie in the distances. If there are ties,

random perturbation can be applied to break the ties.

3.2.1.2 Updating the Geodesic Distances

The deleted edges can break existing shortest paths, while the added edges can

create improved shortest paths. This is much more involved than it appears, because

the change of a single edge can modify the shortest paths among multiple vertices.

Consider e(a,b) E D. If sp(a, b) is not simply e(a,b), deletion of e(a, b) has no

effect on the geodesic distances. Hence, we shall suppose that sp(a, 1)) consists of the

single edge e(a, b). We propagate the effect of the removal of e(o,b) to the set of
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1: Input: e(a, b), the edge to be removed; {$11)}: {7W}

2: Output: 17(0),), set of "affected” vertex pairs

3: Rab := (Z); Q.enqueue(a);

4: while Q.notEmpty do

5: t3: Q-popiRab = Rab U It}?

6: for all u E adj(t) do

7: If nub = a, enqueue u to Q;

8: end for

9: end while{Construction of Rab finishes when the loop ends.)

10: F(a,b) :2 0;

11: Initialize ’1", the expanded part of T(a; b), to contain vb only;

12: for all u 6 Rob do

13: Q.enqueue(b)

14: while Q.notEmpty do

15: t := Q.pop;

16: if not = 7r“, then

171 F(a,b) = F(a.b) U {(1% t)};

18: if v; is a leaf node in T’ then

19: for all 123 in adj(t) do

20: Insert vs as a child of wt in T’ if was 2 t

21: end for

22: end if

23: Insert all the children of m in 7" to the queue Q;

24: end if

25: end while

26: end for{V uERab,V sET(u; b), sp(u, 3) uses e(a. b).}

 

Algorithm 3.1: ConstructFab: F(a,b), the set of vertex pairs whose shortest paths

are invalidated when e(a, b) is deleted, is constructed. Rab is the set of vertices such

that if u E Rab, the shortest path between a. and it contains e(a, b).

vertices Rab (Figure 3.1). Rab is used in turn to construct 14101,), the set of all (i, j)

pairs with e(a,b) in sp(z',j). This is done by ConstructFab (Algorithm 3.1), which

finds all the vertices of under T(a; b) such that sp(u, t) contains vb, where u E Rab-

The set of vertex pairs whose shortest paths are invalidated due to the removal of

edges in D is thus F = U€((I--.b)EDF(H-.b)' The shortest path distances between these

vertex pairs are updated by ModifiedDijkstra (Algorithm 3.2) with source vertex vu

and destination vertices C(11). It is similar to the Dijkstra’s algorithm, except that

only the geodesic distances from 2.7., to C(u) (instead of all the vertices) are unknown.
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1: Input: u; C(11); {9.5}; {we}

2: Output: the updated geodesic distances {guv}

3: for all j 6 C(11) do

4: H := adj(j) fl (V/C(u));

5: 6(3) = minke” (gu;c + win), or 00 if H = 0;

6: Insert 6(j) to a heap with index j;

7: end for

8: while the heap is not empty do

9: k := the index of the entry by “Extract Min” on the heap;

10= 0(a) == C(U)/{k};guk == 6(k);gku := 506);

11: for all j E adj(k) 0 C(11) do

12: dist 1: guk + wk];

13: If guk + wkj < 6(j ), perform “Decrease Key” on 6(j) to become dist;

14: end for

15: end while
 

Algorithm 3.2: ModifiedDijkstra: The geodesic distances from the source vertex u

to the set of vertices C(u) are updated.

   
 

 

(a) An example of neighborhood graph (b) The shortest path-tree T(a) and

Rab

Figure 3.1: The edge e(o,b) is to be deleted from the neighborhood graph shown

in (a). The shortest path tree 7(a) is shown as directed arrows in (b). Rab (c.f.

Algorithm 3.1) consists of all the vertices on such that sp(b, u) contains e(a, b), i.e.,

’ITub = a.

Note that both on and C(u) are derived from F.

The order of the source vertex in invoking A’IodifiedDijkstra can impact the run

time significantly. An approximately optimal order is found by interpreting F as an

auxiliary graph 8 (the undirected edge e(z', j ) is in 8 iff (2', j ) E F), and removing the

vertices in B with the smallest degree in a greedy manner (OptimalOrder, Algorithm

3.3). When on is removed from B, ModifiedDijkstra is called with source vertex 1).,

and C(u) as the neighbors of on in B.
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1: Input: Auxiliary graph 8

2: Output: None. The geodesic distances are updated as a. side-effect

3: [[2] := an empty linked list, for i = 1, . . . ,n;

4: for all on E 8 do

5: z: degree of vu in 8. Insert on to l[f];

6: end for

7: pos := 1;

8: foriz=1tondo

9 If l[pos] is empty, increment pos one by one and until [bios] is not empty;

10: Remove on, a vertex in l[pos], from the graph 8;

11: Call ModifiedDijkstra(u, adj(u) in B);

12: for all vj that is a neighbor of v.“ in 3 do

13: Find f such that vj 6 l [f] by an indexing array;

14: Remove vj from l[f] if f = 1, and move :23- from l[f] to l[f — 1] otherwise;

15: pos = min(pos,f — 1);

16: end for

17: end for

 

Algorithm 3.3: OptimalOrder. a greedy algorithm to remove the vertex with the

smallest degree in the auxiliary graph 8. The removal of on corresponds to the

execution of ModifiedDijsktra (Algorithm 3.2) with u as the source vertex.

The next stage of the algorithm finds the geodesic distances between vn+1 and

the other vertices. Since all the edges in A (edges to be inserted) are incident on

on“, we have

-= = min :-+u2-. . Vi. 3.3
gn+1,z 92,rz.+1 j such that (91] J,n+1) ( )

e(n+1.j)€A

 

   
S: the set of of v, with

sp(b,t) improved by Vnn

Figure 3.2: Effect of edge insertion. T(a) before the insertion of vn+1 is represented by

the arrows between vertices. The introduction of vn+1 creates a better path between

va and vb. S denotes the set of vertices such that t E 5' iff sp(b, t) is improved by "on“.

Note that vt must be in T(n+1; a). For each u E S, UpdateInsert (Algorithm 3.4)

finds t such that sp(u, t) is improved by vn+1, starting with t = b.
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1: Input: a; b; {a}; {...,}
2: Output: {9,3} are updated because of the new shortest path 1)., -—+ 1),,“ -—> vb.

3: S := 0; Q.enqueue(a);

4: while Q.notEmpty do

5: t 2: Q.pop;S :2 S U {t};

6: for all on that are children of v; in T(n + 1) do

7: if gu,n+1 + tun-+11) < gu,b then

8: Q.enqueue( u);

9: end if

10: end for

11: end while{S has been constructed}

12: for all u E S do

13: Q.enqueue(b);

14: while Q.notEmpty do

151 t 3: 62-901); gut 1: gtu 3: Qu,n+1 + 9n+1,t;

16: for all US that are children of U, in T(n + 1) do

171 if gs.n+1 + wa+l.rz < 93,0 then

18: Q.enqueue( s);

19: end if

20: end for

21: end while

22: end for{V u E S, update sp(u.,t) if on“ helps}

 

Algorithm 3.4: UpdateInsert: given that va -+ vn+1 ——> vb is a better shortest

path between va and 'Ub after the insertion of 'vn+1, its effect is propagated to other

vertices.

Finally, we consider how A can shorten other geodesic distances. This is done

by first locating all the vertex pairs ('va, vb), both adjacent to vn+1, such that vb ——>

vn+1 —> va is a better shortest path between ed and vb. Starting from va and ob,

UpdateInsert (Algorithm 3.4) searches for all the vertex pairs that can use the new

edge for a better shortest path, based on the updated graph.

For all the priority queues in this section, binary heap is used instead of the

asymptotically faster Fibonacci’s heap. Since the size of our heap is typically small,

binary heap, with a smaller time constant, is likely to be more efficient.
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3.2.1.3 Finding the Co—ordinates of the New Sample

The co—ordinate xn+1 is found by matching its inner product with x,- to the values

derived from the geodesic distances. This approach is in the same spirit as the classical

scalin [49] used in ISOMAP Define "-- - ||x — x-|[2 — “X“2 + “X“2 — 2xTx-( g a - ' 7L] _ Z J _ 1 J 2 .7

Since 2?:1 x,- = 0, summation over j and then over 2' for :1’ij leads to

1 ~

“x.”2 = 5(2)..- - lelefi).

1 j

lexfllz = 3221...
J 1.7

Similarly, if we define '7,- 2 [[xi — xn+1||2, we have

1 TI. TI.

2 2

”...,,” ——- #237.- — Dix.” ),

' i=1 i=1

T 1 2 2 .
xn+1x7 : _§(’72 — [Ixn+1[l — “X7” ) V2.

If we approximate 31-]: by gig]- and 7,: by 92-2 T, +1, the target inner product f,- between

xn+1 and x,- can be estimated by

 

2 2 2

~ 23' 91'1“ le glj + 2197,72le 2

N— _ 2
n 77, TI.

xn+1 is obtained by solving XTxn+1 = f in the least-square sense, where f 2

(f1,..., fn)T. One way to interpret the least square solution is by noting that

X = (\/)\1v1 . . . (//\dvd)T, where (M, v,) is an eigenpair of the target inner product
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matrix. The least square solution can be written as

1 T 1 T T
x,,+1=(fivl f,...,—\/-/\—_dvdf) . (3.5)

The same estimate is obtained if Nystrom approximation [89] is used.

A similar procedure is used to compute the out-of-sample extension of ISOMAP

in [55, 17]. However, there is an important difference: in these studies, the inner

product between the new sample and the existing points is estimated by

n 9.2.
" 7

2f,- = 2 :71] ._ gin“. (3.6)

1:1

It is unclear how this estimate is derived. This estimate is different from that in

Equation (3.4) because :1 912,11+1/n — sz glzj/n2 does not vanish in general; in fact,

most of the time this is a large number. Empirical comparisons indicate that our

inner product estimate given in Equation (3.4) is much more accurate than the one

in Equation (3.6).

Finally, the new mean is subtracted from :r,,z' = 1,...,(n + 1), to ensure

23:11 x,- = 0, in order to conform to the convention in the standard ISOMAP.

3.2.1.4 Updating the Co-ordinates

The co-ordinates x,- should be updated in view of the modified geodesic distance

matrix Gnew. This can be viewed as an incremental eigenvalue problem, as x,- can

be obtained by eigen—decomposition. However, since the size of the geodesic distance
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matrix is increasing, traditional methods (such as those described in [270] or [30])

cannot be applied directly. We update X by finding the eigenvalues and eigenvectors

of Bnew by an iterative scheme. Note that gradient descent can be used instead [168].

A good initial guess for the subspace of dominant eigenvectors of Bnew is the

column space of XT. Subspace iteration together with Rayleigh-Ritz acceleration

[96] is used to find a better eigen-space:

1. Compute Z = BnewV and perform QR decomposition on Z, i.e., we write

Z = QR and let V = Q.

2. Form Z = VTBnewV and perform eigen-decomposition of the d by (1 matrix Z.

Let A; and u,- be the i-th eigenvalue and the corresponding eigenvector.

3. Vnew = V[u1 . . . ud] is the improved set of eigenvectors of Bnew.

Since d is small, the time for eigen-decomposition of Z is negligible. We do not

use any variant of inverse iteration because Bnew is not sparse and its inversion takes

0(n3) time.

3.2. l .5 Complexity

In Appendix A.4, we show that the overall complexity of the geodesic distance update

can be written as O(q(|F|+lH|)+iw log u+ IAI2), where F and H contain vertex pairs

whose geodesic distances are lengthened and shortened because of vn+1, respectively,

q is the maximum degree of the vertices in the graph, it is the number of vertices

with non-zero degree in B, and I/ = maxim. Here, n,- is the degree of the i-th

vertex removed from the auxiliary graph 8 in Algorithm 3.3. We conjecture that u,
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on average, is of the order 0(Iog it). Note that ,u, g 2|F|. The complexity is thus

O(q([F| + |H|) + [1. log it. log log it + |A|2). In practice, the first two terms dominate,

leading to the effective complexity O(q(|F| + [H I).

We also want to point out that Algorithm 3.2 is fairly efficient; its complexity to

solve the all-pairs shortest path by updating all geodesic distances is 0(n2logn+n2q).

This is the same as the complexity of the best known algorithm for the all-pairs

shortest path problem of a sparse graph, which involves running Dijkstra’s algorithm

multiple times with different source vertices. For the update of co-ordinates, subspace

iteration takes 0(722) time because of the matrix multiplication.

3.2.2 ISOMAP With Landmark Points

One drawback of the original ISOMAP is its quadratic memory requirement: the

geodesic distance matrix is dense and is of size ()(n2), making ISOMAP infeasible

for large data sets. Landmark ISOMAP was proposed in [55] to reduce the memory

requirement while lowering the computation cost. Instead of all the pairwise geodesic

distances, landmark ISOMAP finds a mapping that preserves the geodesic distances

originating from a small set of “landmark points”. This idea is not entirely new,

and the authors in [25] refer to it as the “reference point approach” in the context of

embedding.

Without loss of generality, let the first m points, i.e., y1,. . . ,ym, be the land-

mark points. After constructing the neighborhood graph as in the original ISOMAP,

landmark ISOMAP uses the Dijkstra’s algorithm to compute the m X n landmark
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geodesic distance matrix C = {gij}, where gij is the length of the shortest path

between v,- (a landmark point) and vj. In [55] the authors suggest that X can be

found by first embedding the landmark points and then embedding the remaining

points with respect. to the landmark points. This is similar to the modification of the

Sammon’s mapping made by Biswas et al. in [25] to cope with large data sets. How-

ever, our preliminary experiments indicate that this is not very robust, particularly

when the number of landmark points is small. Instead, we follow the implementation

of landmark ISOMAP2 and decompose B = HmCHn by singular value decompo—

sition, B = USVT = (U(S)1/2)(V(S)1/2)T, where UTU and VTV are identity

matrices of corresponding sizes, and S is a diagonal matrix of singular values. The

vectors corresponding to the largest d singular values are used to construct a low-rank

approximation, B a: QTX.

3.2.2.1 Incremental Landmark ISOMAP

After updating the neighborhood graph, the incremental version for landmark

ISOMAP proceeds with the update of geodesic distances. Since only the shortest

paths from a small number of source vertices are maintained, the computation that

can be shared among different shortest path trees is limited. Therefore, we update

the shortest path trees independently by adopting the algorithm I presented in [193],

instead of the algorithm in section 3.2.1.2. First, Algorithm 3.5 is called to initialize

the edge weight increase, which includes edge deletion as a. special case. Algorithm

 

2We are referring to the “official” implementation by the authors of ISOMAP in http : //isomap.

stanford.edu.
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I := (0;

for all (Ti, 3,, wfld, 111?”) in the input do

Swap 7‘: and 3,- if or, is a child of vs, in T(a);

if '03, is a child of or, in T(a) then

J := {vs,}U descendent of v3I in T(a);

gaj = gaj + w?” — w?“ W E .7;

IzIUJ;

end if

end for

for all j E J do

b 2: minkeadflj) gak + 'wkj; {Find a new path to 12]}

Q.enqueue(j, arg minkeadjm gak + wkj, b) if b < gaj

end for
 

Algorithm 3.5: InitializeEdgeWeightIncrease for the shortest path tree from va,

T a . The inputs are the four tuples r-,s:,w91d,wflew , meaning the weiO‘ht of
2 ’l 1 2 C)

6(7‘2',Tj) should increase from to?“ to wzf‘ew. Q is the queue of vertices to be pro—

cessed in Algorithm 3.7.

3.7 is then executed to rebuild the shortest path tree. Algorithm 3.6 is then called

to initialize the edge weight decrease, which includes edge insertion as a special case.

Algorithm 3.7 is again called to rebuild the tree. Deletion of edges is done before the

addition of edges because this is more efficient in practice.

The co—ordinate of the new point xn+1 is determined by solving a least-square

problem similar to that in section 3.2.1.3. The difference is that the columns of Q,

instead of X, are used. So, QTxn+1 = f is solved in the least-square sense. Finally,

we use subspace iteration together with Ritz acceleration [236] to improve singular

vector estimates. The steps are

1. Perform SVD on the matrix BX, U181V{ = BX

2. Perform SVD on the matrix BTUl, U282vg‘ = BTU1

3. Set xnew = U2(S2)1/2 and Qnew = U1(S2)1/2

As far as time complexity is concerned, the time to update one shortest path tree
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I := 9;

for all (Ti, 3,, 112?“, my”) in the input. do

Swap 1', and 3.- if gay, > 90‘s,;

diff := gay, + 111.?“ — 971,35

if diff < 0 then

Move vs, to be a child of or, in T(a);

J :2 {223,}U descendent of Us, in T(a);

903' = gaj + diff W E J;

I = I U J;

end if

end for

for all j E .7 do

for all k E adj(j) do

Q.enqueue(k,j,gaj + wjk) if 903- + wjk < gak

end for

[ end for

algorithm 3.6: InitializeEdgeVVeightDecrease for the shortest path tree from va,

7(a). The inputs are the four tuples (ri,si,wfld,w?ew), meaning the weight of

e(rbrj) should decrease from w?“ to 10:19.va Q is the queue of vertices to be pro-

cessed in Algorithm 3.7..

 
 

is 0(6d log 6d + (16d), where 6d is the minimum number of nodes that must change

their distance or parent attributes or both [193], and q is the maximum degree of

vertices in the neighborhood graph. The complexity of updating the singular vectors

is 0(nm), which is linear in 77., because the number of landmark points m is fixed.

3.2.3 Vertex Contraction

Owing to the non-parametric nature of ISOMAP, the data points collected need to

be stored in the memory in order to refine the estimation of the geodesic distances

92‘3- and the co-ordinates xi. This can be undesirable if we have an arbitrarily large

data stream.

One simple solution is to discard the oldest data point when a pre—determined

I1leber of data points has been accumulated. This has the additional advantage of
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while Q.notEmpty do

(i,j,d) :2 “Extract Min” on Q;

de=d-%s
if diff < 0 then

Move v.- to be a child of v]- in T(a):

gai = d;

for all k E adj(i) do

new = 9m- + wa;

Q.enqueue(k,i,newd) if newd < gak;

end for

end if

end while

Algorithm 3.7: Rebuild T(a.) for those vertices in the priority queue Q that need

to be updated.

  
 

making the algorithm adaptive to drifting in data characteristics. The deletion should

take place after the completion of all the updates due to the new point. Deleting the

vertex v,- is easy: the edge deletion procedure is used to delete all the edges incident

on v; for both ISOMAP and landmark ISOMAP.

We can do better than deletion, however. A vertex contraction heuristic can

be used to record the improvement in geodesic distance estimate without storing

additional points. Most of the information the new vertex vn+1 contains about the

geodesic distance estimate is represented by the shortest paths passing through vn+1.

Suppose sp(a,b) can be written as ea w v,- ——> on+1 ——> vb. The geodesic distance

between va and vb can be preserved by introducing a new edge e(z', b) with weight

(102-[n+1 + urn+1,b), even though on“ is deleted. Both the shortest path tree T(a)

alld the graph are updated in view of this new edge. This procedure cannot create

irlConsistency in any shortest path trees, because the subpath of any shortest path is

also a shortest path. This heuristic increases the density of the edges in the graph,

11()wever.
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W'hich vertex should be contra.('7ted'? A simple choice is to contract the new vertex

vn+1 after adjusting for the change of geodesic distances. Alternatively, we can delete

the vertices that are most “crowded” so that the points are spread more evenly along

the manifold. This can be done by contracting the non-landmark point whose nearest

neighbor is the closest to itself.

3.3 Experiments

we have implemented our main algorithm in Matlab, with the graph theoretic parts

written in C++. The running time is measured on a Pentium IV 3.2 GHz PC with

512MB memory running Windows XP, using the profiler of Matlab with the java

virtual machine turned off.

3.3.1 Incremental ISOMAP: Basic Version

We evaluated the accuracy and the efficiency of our incremental algorithm on sev-

eral data sets. The first experiment was on the Swiss roll data set. It is a typical

benchmark for manifold learning. Because of its “roll” nature, geodesic distances

are more appropriate in understanding the structure of this data set than Euclidean

distances. Initialization was done by finding the co—ordinate estimate x,- for 100 ran-

dOInly selected points using the “batch” ISOMAP, with a [run neighborhood of size

6‘ Random points from the Swiss roll data set were added one by one, until 1500

I)Qims were accumulated. The incremental algorithm described in section 3.2.1 was

Ilged to update the co-ordinates. The first two dimensions of x,- corresponded to the
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true structure of the manifold. The gap between the second and the third eigenvalues

is fairly significant and it is not difficult to determine the intrinsic dimensionality as

two for this data set. Figure 3.3 shows several snapshots of the algorithm3. The black

dots (REM) and the red circles (XE-n) ) correspond to the co—ordinates estimated by the

incremental and the batch version of ISOMAP, respectively. The red circles and the

black dots match very well, indicating that the co—ordinates updated by the incre-

mental ISOMAP follow closely with the co—ordinates estimated by the batch version.

This closeness can be quantified by an error measure defined as the square root of the

En) and x(n), normalized by the total sample variance:mean square error between it i

 

1 (.,, (n
2111):.- ~x.)112

5,, = ’7? (3.7)

1221;. new”?

 

Figure 3.4(a) displays 5,, against the number of data points 71 for Swiss roll. We can

see that the proposed updating method is fairly accurate, with an average error of

0.05%. The “spikes” in the graph correspond to the instances where many geodesic

distances change dramatically because of the creation or deletion of “short-cuts” in

the neighborhood graph. These large errors fade very quickly, however, as evident

from the graph.

Table 3.1 shows the computation time decomposed into different tasks. Our in-

cremental approach has significant savings in all three aspects of ISOMAP: graph

11Ibdate, geodesic distance update, and co—ordinate update. The computation time for

tlle distances is not included in the table, because both batch and incremental ver-

\

3The avi files can be found at http://www. cse .msu.edu/prip/ResearchProjects/iisomap/.
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sions perform the same number of distance computations. Empirically, we observed

that for moderate number of data. points, the time to update the geodesic distances

is longer than the time to update the co—ordinates, whereas the opposite is true when

a large number of points have been collected. This is probably due to the fact that

the geodesic distances change more rapidly when only a moderate amount of data

are collected, whereas the time for matrix multiplication becomes more significant

with a larger number of co—ordinates. We have also run the batch algorithm once for

different numbers of data points (71). Table 3.2 shows the measured time averaged

over 5 identical trials, after excluding the time for distance computation. The time

for computing the distances for all the n points, together with the time to run the

incremental algorithm once to update when the n—th point arrives, is also included in

the table. See Section 3.4 for further discussion of the result.

The co—ordinates estimated with different number of data points are also compared

with the co—ordinates estimated with all the available data points. This can give us

an additional insight on how the estimated co—ordinates evolve to their final values

as new data points gradually arrive. Some snapshots are shown in Figure 3.5.

A similar experimental procedure was applied to other data sets. ”The “S—curve”

data set, another benchmark for manifold learning, contains points in a 3D space lying

on a “S”-shaped surface, with an effective dimensionality of two. The “rendered face”

data set4 contains 698 face images with size 64 by 64 rendered at different illumination

and pose conditions. Some examples are shown in Figure 3.6. The “MNIST digit 2”

 

4http://isomap.stanfordedu
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data set is derived from the digit images “2” from MNISTS, and contains 28 by 28

digit images. Several typical images are shown in Figure 3.7. The rendered face data

set and the MNIST digit 2 data sets were used in the original ISOMAP paper [248].

Our last data set, ethn, contains the face images used in [175]. The task of this data

set is to classify a 64 by 64 face image as Asian or non-Asian. This database contains

1320 images for Asian class and 1310 images for non—Asian class, and is composed

of several face image databases, including the PFOl database6, the Yale database7

the AR database [181], as well as the non—public NLPR databases. Some example

face images are shown in Figure 3.8. For all these images, the high dimensional

feature vectors were created by concatenating the image pixels. The neighborhood

Size for MNIST digit 2 and ethn was set to 10 in order to demonstrate that the

proposed approach is efficient and accurate irrespective of the neighborhood used.

The approximation error and the computation time for these data sets are shown in

Figure 3.4 and Table 3.1. We can see that the incremental ISOMAP is accurate and

Efficient for updating the co—ordinates for all these data sets.

Since the ethn data set is from a supervised classification problem with two classes,

We also want to investigate the quality of the ISOMAP mapping with respect to classi-

fication. This is done quantitatively by computing the leave-one-out nearest neighbor

(With respect to L2 distance) error rate using different. dimensions of the co—ordinates

eStimated by incremental ISOMAP with 1500 points. For comparison, we project

5http://yann.1ecun.com/exdb/mnist/.

6http://nova.postech.ac.kr/archives/imdb.html.

7http://cvc.yale.edu/projects/yalefaces/yalefaces.html.

8Provided by Dr. Yunhong Wang, National Laboratory for Pattern Recognition, Beijing.
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Figure 3.5: Evolution of the estimated co—ordinates for Swiss roll to their final values.

The black dots denote the co—ordinates estimated with different number of samples,

Whereas red circles show the co—ordinates estimated with all the 1500 points. The

(lo-ordinates have been re—scaled to better observe the trend.

 

Figure 3.6: Example images from the rendered face image data set. This data set can

be found at the ISOMAP web-site.
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Figure 3.7: Example “2” digits from the MNIST database. The MN1ST database can

be found at http://yann. lecun.com/exdb/mnist/.
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Figure 3.9: Classification performance on ethn database for basic ISOMAP.
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the data linearly to the best hyperplane by PCA and also evaluate the corresponding

leave-one-out error rate. Figure 3.9 shows the result. The representation recovered by

ISOMAP leads to a smaller error rate than PCA. Note that the performance of PCA

can be improved by rescaling each feature so that all of them have. equal variance,

though the rescaling is essentially a post-processing step, not required by ISOMAP.

3.3.2 Experiments on Landmark ISOMAP

A similar experimental procedure was applied to the incremental landmark ISOMAP

described ill section 3.2.2 for Swiss roll, S-curve, rendered face, MNIST digit 2, and

ethn data sets. Starting with 200 randomly selected points from the data set, random

9 accumulated. Forty points from thepoints were added until a total of 5000 points

initial 200 points were chosen randomly to be the landmark points. Snapshots com-

paring the (to—ordinates estimated by the batch version and the incren’lental version

for Swiss roll are shown ill Figure 3.10. The approximation error and the computa-

tlion time are shown in Figure 3.11 and Table 3.3, respectively. The time to run the

batch version only once is listed ill Table 3.4. Once again, the co—ordinates estimated

by the incremental version are accurate with respect to the batch version, and the

COIIlputation time is much less. We also consider the classification accuracy using

Iandmark ISOMAP on all the 2630 images ill the ethn data set. The result is shown

in Figure 3.12. The co—ordinates estimated by landmark ISOMAP again lead to a

Slllaller error rate than those based on PCA. The difference is more pronounced when

\

9When the data set has less than 5000 points, the experiment stopped after all the points have

Gen used.

113



 

114

T
a
b
l
e

3
.
3
:
R
u
n

t
i
m
e

(
s
e
c
o
n
d
s
)

f
o
r
b
a
t
c
h
a
n
d

i
n
c
r
e
m
e
n
t
a
l
l
a
n
d
m
a
r
k
I
S
O
M
A
P
.

F
o
r
b
a
t
c
h
I
S
O
M
A
P
,

c
o
m
p
u
t
a
t
i
o
n

o
f
x
n
+
1

a
n
d

u
p
d
a
t
i
n
g

o
f

x
,
-
a
r
e
p
e
r
f
o
r
m
e
d

t
o
g
e
t
h
e
r
.
H
e
n
c
e

t
h
e
r
e

i
s
o
n
l
y
o
n
e
c
o
m
b
i
n
e
d
r
u
n

t
i
m
e
.

 
S
w
i
s
s

r
o
l
l

S
-
c
u
r
v
e

R
e
n
d
e
r
e
d

f
a
c
e

M
N
I
S
T

2
e
t
h
n

B
a
t
c
h

I
n
c
r
.

B
a
t
c
h

I
n
c
r
.

B
a
t
c
h

I
n
c
r
.

B
a
t
c
h

I
n
c
r
.

B
a
t
c
h

I
n
c
r
.

N
e
i
g
h
b
o
r
h
o
o
d
g
r
a
p
h

8
7
4
5
.
7

6
.
6

8
6
9
2
.
7

7
.
1

2
0
.
2

0
.
5

8
7
4
2
.
9

7
.
6

1
2
9
6
.
0

3
.
3

G
e
o
d
e
s
i
c
d
i
s
t
a
n
c
e

8
2
4
.
3

3
8
.
9

8
7
9
.
9

3
9
.
2

6
.
5

0
.
5

9
1
3
.
3

1
6
.
9

2
1
7
.
3

6
.
0

C
o
m
p
u
t
i
n
g
x
n
+
1

0
.
5

0
.
9

0
.
1

0
.
9

0
.
5

9

U
p
d
a
t
i
n
g

x
,
-

1
9
9
1

6
1
.
4

2
0
0
8

6
2
.
5

6
'
6

1
.
2

2
1
0
'
"

4
3
.
0

6
9
'
5

1
7
.
1

 

    
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

T
a
b
l
e

3
.
4
:
R
u
n

t
i
m
e

(
s
e
c
o
n
d
s
)

f
o
r
e
x
e
c
u
t
i
n
g
b
a
t
c
h
a
n
d
i
n
c
r
e
m
e
n
t
a
l
l
a
n
d
m
a
r
k
I
S
O
M
A
P

o
n
c
e

f
o
r
d
i
f
f
e
r
e
n
t
n
u
m
b
e
r

o
f
p
o
i
n
t
s

(
7
1
)
.

“
D
i
s
t
”
c
o
r
r
e
s
p
o
n
d
s

t
o
t
h
e
t
i
m
e

f
o
r
d
i
s
t
a
n
c
e
c
o
m
p
u
t
a
t
i
o
n

f
o
r

a
l
l
t
h
e
n

p
o
i
n
t
s
.

 
S
w
i
s
s

r
o
l
l

S
-
c
u
r
v
e

R
e
n
d
e
r
e
d

f
a
c
e

M
N
I
S
T

2
e
t
h
n

D
i
s
t
.

B
a
t
c
h

I
n
c
r
.

D
i
s
t
.

B
a
t
c
h

I
n
c
r
.

D
i
s
t
.

B
a
t
c
h

I
n
c
r
.

D
i
s
t
.

B
a
t
c
h

I
n
c
r
.

D
i
s
t
.

B
a
t
c
h

I
n
c
r
.

5
0
0

0
.
0
9

0
.
1
4

0
.
0
1

0
.
0
9

0
.
2
1

0
.
0
3

0
.
1
6

0
.
2
2

0
.
0
2

0
.
2
8

0
.
1
5

0
.
0
2

1
.
1
9

0
.
1
6

0
.
0
2

2
0
0
0

1
.
5
3

1
.
5
6

0
.
0
2

1
.
5
0

1
.
5
4

0
.
0
3

N
/
A

N
/
A

N
/
A

4
.
2
5

1
.
5
5

0
.
0
1

1
7
.
7
0

1
.
5
7

0
.
0
2

3
5
0
0

4
.
6
1

1
1
.
9
0

0
.
0
3

4
.
6
4

1
2
.
9
1

0
.
0
6

N
/
A

N
/
A

N
/
A

2
1
.
7
2

7
.
7
7

0
.
0
4

N
/
A

N
/
A

N
/
A

5
0
0
0

2
0
8
.
5
2

1
6
8
.
0
1

0
.
0
5

3
3
8
.
1
2

1
7
4
.
6
3

0
.
0
6

N
/
A

N
/
A

N
/
A

5
0
1
.
8
1

2
2
6
.
2
5

0
.
0
5

N
/
A

N
/
A

N
/
A

 

     
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 



115

 

I

If)

,-

  
 
 

—
2
0

—
1
5

—
1
0

—
5

0
1

(
8
)

I
n
i
t
i
a
l
,
n
2

2
0
0

(
c
)

I
n
i
t
i
a
l
,
n
=

2
0
0

 

LO

 
 
 

(
d
)
n
=

1
0
0
0

(
e
)
n
=

1
0
0
0

(
f
)
n
=

1
0
0
0

F
i
g
u
r
e

3
.
1
0
:
S
n
a
p
s
h
o
t
s
o
f
“
S
w
i
s
s

r
o
l
l
”

f
o
r
i
n
c
r
e
m
e
n
t
a
l
l
a
n
d
m
a
r
k
I
S
O
M
A
P
.

I
n
t
h
e
fi
r
s
t
c
o
l
u
m
n
,
t
h
e

c
i
r
c
l
e
s
a
n
d
d
o
t
s

i
n
t
h
e
fi
g
u
r
e
s

r
e
p
r
e
s
e
n
t
t
h
e
c
o
—
o
r
d
i
n
a
t
e
s
e
s
t
i
m
a
t
e
d
b
y

t
h
e
b
a
t
c
h
a
n
d

t
h
e
i
n
c
r
e
m
e
n
t
a
l

v
e
r
s
i
o
n
,

r
e
s
p
e
c
t
i
v
e
l
y
.

T
h
e

s
q
u
a
r
e
a
n
d

a
s
t
e
r
i
s
k
d
e
n
o
t
e

t
h
e

c
o
—
o
r
d
i
n
a
t
e
s

o
f
t
h
e
n
e
w
l
y
a
d
d
e
d

p
o
i
n
t
,

e
s
t
i
m
a
t
e
d
b
y

t
h
e
b
a
t
c
h
a
n
d

t
h
e
i
n
c
r
e
m
e
n
t
a
l

a
l
g
o
r
i
t
h
m
,

r
e
s
p
e
c
t
i
v
e
l
y
.

T
h
e

s
e
c
o
n
d

c
o
l
u
m
n

c
o
n
t
a
i
n
s
s
c
a
t
t
e
r

p
l
o
t
s
,
w
h
e
r
e
t
h
e
c
o
l
o
r
o
f
a
p
o
i
n
t
c
o
r
r
e
s
p
o
n
d
s
t
o
t
h
e
v
a
l
u
e
o
f
t
h
e
m
o
s
t
d
o
m
i
n
a
n
t

c
o
—
o
r
d
i
n
a
t
e
e
s
t
i
m
a
t
e
d

b
y
I
S
O
M
A
P
.
T
h
e

t
h
i
r
d
c
o
l
u
m
n

i
l
l
u
s
t
r
a
t
e
s
t
h
e
n
e
i
g
h
b
o
r
h
o
o
d

g
r
a
p
h
s
,
f
r
o
m
w
h
i
c
h

t
h
e

g
e
o
d
e
s
i
c

d
i
s
t
a
n
c
e
s

a
r
e
e
s
t
i
m
a
t
e
d
.

I
t

i
s

s
i
m
i
l
a
r
t
o
F
i
g
u
r
e

3
.
3
,
e
x
c
e
p
t
t
h
a
t
t
h
e
l
a
n
d
m
a
r
k

v
e
r
s
i
o
n
o
f
I
S
O
M
A
P

i
s
u
s
e
d

i
n
s
t
e
a
d
.



116

 v-  
 

 
 

 
L

-

 

 
 

-
2
0

—
1
5

—
1
O

—
5

O
5

0
)

F
i
n
a
l
,

71
=

5
0
0
0

F
i
g
u
r
e
3
.
1
0
(
c
o
n
t
i
n
u
e
d
)

(
k
)

F
i
n
a
l
,
n
=

5
0
0
0

 
(1

)
F
i
n
a
l
,

11
=

5
0
0
0



  

 

     

 

 

  

0x ‘04 Average: 0.000010 “x 10-5 Average: 0.000003

1" 1 r v r Y r T a 1 1 v r r v r

8.

1 1

7»

0.8- 6

“J:

0.6- 4

0.4: 1

0.2

.m. A A A A l J_ 0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

n n

(a) Swiss roll (b) S-curve

-3 Average: 0.000212 Average: 0.001685
)1 10

2 r 1 v f r Y 0.04 V T v v r 1 1 1

1.8

1.6:

 

  
 

   
 

 

”400 500 600 c500100015002000250930003500400045005000

2(c) Renderned Faces (d) MNIST digit 2

Average: 0.001990

0.04 . w T r
 

0.035 r 1

0.03 r

0.025

m:

0.02 g .

  
0.015

I

0.01 l j ]

] l

 
 

‘ 1  0.005 , _ ]

c A A -..MAAAA..-.

500 1000 n 1500 2000 2500

(e) ethn

Figure 3.11: Approximation error (8n) between the co—ordinates estimated by the

incremental landmark ISOMAP and the batch landmark ISOMAP for different num-

bers of data points (71). It is similar to Figure 3.4, except that incremental landmark

ISOMAP is used instead of the basic. ISOMAP.
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Figure 3.12: Classification performance on ethn database, landmark ISOMAP.

the number of dimensions is small (less than five).

3.3.3 Vertex Contraction

The utility of vertex contraction is illustrated in the following experiment. Consider

a manifold of a 3-dimensional unit hemisphere embedded in a lO-dimensional space.

The geodesic on this manifold is simply the great circle, and the geodesic distance

between x1 and x2 on the manifold is given by COS—I(XCITXZ). Data points lying on

this manifold are randomly generated. With K = 6, 40 landmark points and 1000

points in memory, vertex contraction is executed until 10000 points are examined.

The geodesic distances between the landmark points XL and the points in memory

XM are compared with the ground-truth, and the discrepancy is shown by the solid

line in Figure 3.13. As more points are encountered, the error decreases, indicating

that vertex contraction indeed improves the geodesic distance estimate. There is,
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Figure 3.13: Utility of vertex contraction. Solid line: the root-mean-square error

(when compared with the ground truth) of the geodesic distance estimate for points

currently held in memory when vertex contraction is used. Dash-dot line: the cor—

responding root—mean—square error when the new points are stored in the memory

instead of being contracted.

however, a lower limit (around 0.03) on the achievable accuracy, because of the finite

size of samples retained in the memory. When additional points are kept in the

memory instead of being contracted, the improvement of geodesic distance estimate

is significantly slower (the dash-dot line in Figure 3.13). We can see that vertex

contraction indeed improves the geodesic distance estimate, partly because it spreads

the data points more evenly, and partly because more points are included in the

neighborhood effectively.

3.3.4 Incorporating Variance By Incremental Learning

One interesting use of incremental learning is to incorporate invariance by “hallucinat—

,. I .ing” training data. Given a training sample yi, additional training data yzll), yzf?)
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can be created by applying different invariance transformations on yi. The amount of

training data can be unbounded, because the number of possible invariance transfor-

mations is infinite. This unboundedness calls for an incremental algorithm, which can

accumulate the effect of the data generated. This idea has been exploited in [235] for

improving the accuracy in digit classification. Given a digit image, simple distortions

like translation, rotation, and skewing are applied to create additional training data

for improving the invariance property of a neural network.

We tested a similar idea using the proposed incremental ISOMAP. The training

data were generated by first randomly selecting an image from 500 digit “2” images

in the MNIST training set. The image was then rotated randomly by 6 degree, where

6 was uniformly distributed in [—30, 30]. The image was used as the input for the

incremental landmark ISOMAP with 40 landmarks and a memory size of 10000, with

vertex contraction enabled. The training was stopped when 60000 training images

were generated. We wanted to investigate how well the rotation angle is recovered

by the nonlinear mapping. This was done by using an independent set of digit “2”

images from the MNIST testing set, which was of size 1032. For each image y“), it

was rotated by 15 different angles: 30j/7 for j = —7, . . . ,7. The mappings of these

15 images, 2(1),“ .. ,xgi), were found using the out—of—sample extension of ISOMAP.

If ISOMAP can discover the rotation angle, there should exist a linear projection

direction h such that thEi) % c,- +l for all z' and l, where c, is a constant specific to

5,0). This is equivalent to

hT (if) — 5(8)) 2:1, (3.8)
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Figure 3.14: Sum of residue square for 1032 images in 15 rotation angles. The larger

the residue, the worse the representation. “PCA” and “ISOMAP” correspond to the

nonlinear mapping obtained by PCA and ISOMAP when 10000 generated images are

used for training, respectively. “ISOMAP II”/ “PCA II” and “ISOMAP III”/ “PCA

III” correspond to the result when the learning stops after 20000 and 50000 images

are generated, respectively.

which is an over-determined linear system. The goodness of the mapping it“) in terms

of how well the rotation angle is recovered can thus be quantified by the residue of

the above equation. For comparison, a similar procedure was applied for PCA using

the first 10000 generated images. Figure 3.14 shows the result. We can see that

the residue for ISOMAP is smaller than PCA, indicating that ISOMAP recovers

the rotation angle better. The residue is even smaller when additional images are

generated to improve the mapping.

3.4 Discussion

We have presented algorithms to incrementally update the co—ordinates produced by

ISOMAP. Our approach can be extended to other manifold learning algorithms; for

example, creating an incremental version of Laplacian eigenmap requires the update
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of the neighborhood graph and the leading eigenvectors of a matrix (graph Laplacian)

derived from the neighborhood graph.

The convergence of geodesic distance is guaranteed since the geodesic distances

are maintained exactly. Subspace iteration used in co-ordinate update is provably

convergent if a sufficient number of iterations is used, assuming all eigenvalues are

simple, which is generally the case. The fact that we only run subspace iteration once

can be interpreted as trading off guaranteed convergence with empirical efficiency.

Since the change in target inner product matrix is often small, the eigenvector im-

provement due to subspace iterations with different number of points is aggregated,

leading to the low approximation error as shown in Figures 3.4 and 3.11.

W'hile running the proposed incremental ISOMAP is much faster than running.

the batch version repeatedly, it is more efficient to run the batch version once using

all the data points if only the final solution is desired (compare Tables 3.1 and 3.2, as

well as Tables 3.3 and 3.4). It is because maintaining intermediate geodesic distances

and co—ordinates accurately requires extra computation. The incremental algorithm

can be made faster if the geodesic distances are updated upon seeing p subsequent

points, p > 1. We first embed yn+1, . . . , yn+p independently by the method in section

3.2.1.3. The geodesic distances among the existing points are not updated, and the

same set of x, is used to find xn+1, . . . ,xn+p. After that, all the geodesic distances are

updated, followed by the update of x1, . . . ,xn+p by subspace iteration. This strategy

makes the incremental algorithm almost p—times faster, because the time to embed

the new points is very small (see the time for “computing xn+1” in Tables 3.1 and

3.3). On the other hand, the quality of the embedding will deteriorate because the
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embedding of the existing points cannot benefit from the new points. This strategy is

particularly attractive with large 77., because the effect of yn+1, . . . ,yn+p on yn+p+1

is small.

Also, for a fixed amount of memory, the solution obtained by the incremental

version can be superior to that of the batch version. This is because the incremental

version can perform vertex contraction, thereby obtaining a better geodesic distance

estimate. The incremental version can be easily adopted to an unbounded data stream

when training data are generated by applying invariance transformation, too.

3.4.1 Variants of the Main Algorithms

Our incremental algorithm can be modified to cope with variable neighborhood def-

inition, if the user is willing to do some tedious book-keeping. We can, for example,

use c-neighborhood with the value of 6 re-adjusted whenever, say, 200 data points

have arrived. This can be easily achieved by first calculating the edges that need to

be deleted or added because of the new neighborhood definition. The algorithms in

sections 3.2.1 and 3.2.2 are then used to update the geodesic distances. The embedded

co—ordinates can then be updated accordingly.

The supervised ISOMAP algorithm in [276], which utilizes a criterion similar to the

Fisher discriminant for embedding, can also be converted to become incremental. The

only change is that the subspace iteration method for solving a generalized eigenvalue

problem is used instead. The proposed incremental ISOMAP can be easily converted

to incremental conformal ISOMAP [55]. In conformal ISOMAP, the edge weight wij is
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Aij / \/ 111(i)1\»[(j), where 111(2) denotes the distance of y,- from its k nearest neighbors.

The computation of the shortest path distances and eigen-decomposition remains the

same. To convert this to its incremental counterpart, we need to maintain the sum

of the weights of the kt nearest neighbors of different vertices. The change in the edge

weights due to the insertion and deletion of edges as a new point comes can be easily

tracked. The target inner product matrix is updated, and subspace iteration can be

used to update the embedding.

3.4.2 Comparison With Out-of-sample Extension

One problem closely related to incremental nonlinear mapping is the “out—of-sample

extension” [17]: given the embedding x1, . . . ,xn for a “training set” yl, . . . , yn, what

is the embedding result (xn+1) for a “testing” point y.n+1? This is effectively the

problem considered in section 3.2.1.3. In incremental learning, however, we go beyond

obtaining xn+1z the co—ordinate estimates x1, . . . ,xn of the existing points are also

improved by yn+1. In the case of incremental ISOMAP, this amounts to updating

the geodesic distances and then applying subspace iteration.

The out-of-sample extension is faster because it skips the improvement step. How-

ever, it is less accurate, and cannot provide intermediate embedding with good quality

as points are accumulated. Incremental ISOMAP, on the other hand, utilizes the new

samples to continuously improve the co—ordinate estimates. Out—of—sample extension

may be more appealing when a large number of samples have been accumulated and

the geodesic distances and x1, . . . ,xn are reasonably accurate. Even in this case,
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though, the strategy of updating x1, . . . ,xn after p new points (with p > 1) have

been embedded works equally as well. The updating of geodesic distances and co—

ordinates occurs infrequently in this case, and its amortized computational cost is

very low.

Incremental ISOMAP is also preferable to out-of-sample extension when there is

a drifting of data characteristics. In out—of—sample extension, the n points collected

are assumed to be representative of all future data points that are likely to be ob-

served. There is no way to capture the change of data characteristics. In incremental

ISOMAP, however, we can easily maintain an embedding using a window of the points

recently encountered. Changes in data characteristics are captured as the geodesic

distances and co—ordinate estimates are updated. Vertex contraction should be turned

off if incremental ISOMAP is run in this mode, to ensure that the effect of old data

points is erased.

3.4.3 Implementation Details

The subspace iteration in section 3.2.1.4 requires that the eigenvalues corresponding

to the leading eigenvectors have the largest absolute values. This can be violated

if the target inner product matrix has a large negative eigenvalue. To tackle this,

we shift the spectrum and find the eigenvectors of (B + 01) instead of B. Subspace

iteration on (B + 01) can proceed in almost the same manner, because (B + aI)v =

B + av. ‘While a large value of a guarantees that all shifted eigenvalues are positive,

this has the adverse effect of reducing the rate of convergence of the eigenvectors,
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because the shift reduces the ratio between adjacent eigenvalues. We empirically set

a = max(—0.7Amin(B) — 0-3’\d-th(B).~.0)- where Amin(B) and Ad,th(B) denote the

smallest (most negative) and the d—th largest eigenvalues, respectively. The later is

being maintained by the incremental algorithm, while the former can be found by,

say, residual norm bounds or Gerscligoren disk bounds. In practice, Amin(B) is found

at the initialization stage. This estimate is updated only when a large number of data

points have been accumulated.

During the incremental learning, the neighborhood graph may be temporarily dis-

connected. A simple solution is to embed only the largest graph component. The

excluded vertices are added back for embedding again when they become reconnected

as additional data points are encountered. Alternatively, an edge can be added be-

tween the two nearest vertices to connect the two disconnected components in the

neighborhood graph.

3.5 Summary

Nonlinear dimensionality reduction is an important problem with applications in pat-

tern recognition, computer vision, and machine learning. We have developed an algo-

rithm for the incremental nonlinear mapping problem by modifying the well-known

ISOMAP algorithm. The core idea. is to efficiently update the geodesic distances

(a graph theoretic problem) and re-estimate the eigenvectors (a numerical analysis

problem), using the previous computation results. Our experiments on synthetic data

as well as real world images validate that the proposed method is almost as accurate
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as running the batch version, while saving significant computation time. Our algo-

rithm can also be easily adopted to other manifold learning methods to produce their

incremental versions.
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Chapter 4

Simultaneous Feature Selection

and Clustering

Hundreds of clustering algorithms have been proposed in the literature for Clustering

in different applications. In this chapter, we examine a different aspect of clustering

that is often neglected: the issue of feature selection. Our focus will be on partitional

clustering by a mixture of Gaussians, though the method presented here can be easily

generalized to other types of mixtures. We are interested in mixture-based clustering

because its statistical nature gives us a solid foundation for analyzing its behavior.

Also, it leads to good results in many cases. \Ne propose the concept of feature saliency

and introduce an expectation-maximization (EM) algorithm to estimate it, in the

context of mixture-based clustering. We adopt the minimum message length (MML)

model selection criterion, so the saliency of irrelevant features is driven towards zero,

which corresponds to performing feature selection. The MML criterion and the EM

algorithm are then extended to simultaneously estimate the feature saliencies and the
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number of clusters.

The remainder of this chapter is organized as follows. We discuss the challenge

of feature selection in unsupervised domain in Section 4.1. In Section 4.2, we review

previous attempts to solve the feature selection problem in unsupervised learning.

The details of our approach are presented in Section 4.3. Experimental results are

reported in Section 4.4, followed by comments on the proposed algorithm in Section

4.5. Finally, we conclude in Section 4.6.

4.1 Clustering and Feature Selection

Clustering, similar to supervised classification and regression, can be benefited by

using a good subset of the available features. One simple example illustrating the

corrupting influence of irrelevant features can be seen in Figure 4.1, where the irrel-

evant feature makes it hard for the algorithm in [81] to discover the two underlying

clusters. Feature selection has been widely studied in the context of supervised learn-

ing (see [101, 26, 122, 151, 153] and references therein, and also section 1.2.3.1), where

the ultimate goal is to select features that can achieve the highest accuracy on unseen

data. Feature selection has received comparatively very little attention in unsuper-

vised learning or clustering. One important reason is that it is not at all clear how

to assess the relevance of a subset of features without resorting to class labels. The

problem is made even more challenging when the number of clusters is unknown,

Since the optimal number of clusters and the optimal feature subset are inter-related,

as illustrated in Figure 4.2 (taken from [69]). Note that methods based on variance
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Figure 4.1: An irrelevant feature ($2) makes it difficult for the Gaussian mixture

learning algorithm in [81] to recover the two underlying clusters. Gaussian mixture

fitting finds seven clusters when both the features are used, but identifies only two

clusters when the feature an is used. The curves along the horizontal and vertical

axes of the figure indicate the marginal distribution of 1:1 and mg, respectively.

(such as principal components analysis) need not select good features for clustering,

as features with large variance can be independent of the intrinsic grouping of the

data (see Figure 4.3). Another important problem in clustering is the determination

of the number of clusters, which clearly impacts and is influenced by the feature

selection issue. Most feature selection algorithms (such as [36, 151, 209]) involve a

combinatorial search through the space of all feature subsets. Usually, heuristic (non-

exhaustive) methods have to be adopted, because the size of this space is exponential

in the number of features. In this case, one generally loses any guarantee of optimality

of the selected feature subset.

We propose a solution to the feature selection problem in unsupervised learning by

casting it as an estimation problem, thus avoiding any combinatorial search. Instead
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Figure 4.2: The number of clusters is inter-related with the feature subset used. The

optimal feature subsets for identifying 3, 2, and 1 clusters in this data set are {5131, $2},

{2:1}, and {1:2}, respectively. On the other hand, the optimal number of clusters for

feature subsets {£121,132}, {11}, and {2:2} are also 3, 2, and 1, respectively.

of selecting a subset of features, we estimate a set of real—valued (actually in [0, 1])

quantities (one for each feature), which we call the feature saliencies. This estimation

is carried out by an EM algorithm derived for the task. Since we are in the presence

of a model-selection-type problem, it is necessary to avoid the situation where all the

features are completely salient. This is achieved by adopting a minimum message

length (MML, [264, 265]) penalty, as was done in [81] to select the number of clusters.

The MML criterion encourages the saliencies of the irrelevant features to go to zero,

allowing us to prune the feature set. Finally, we integrate the process of feature

saliency estimation into the mixture fitting algorithm proposed in [81], thus obtaining

a method that is able to simultaneously perform feature selection and determine the

number of clusters.

This chapter is based on our journal publication in [163].
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Figure 4.3: Deficiency of variance-based method for feature selection. Feature 171,

although it explains more data variance than feature 2:2, is spurious for the identifi-

cation of the two clusters in this data set.

, 4.2 Related Work

Most of the literature on feature selection pertains to supervised learning (see Sec-

tion 1.2.3.1). Comparatively, not much work has been done for feature selection in

unsupervised learning. Of course, any method conceived for supervised learning that

does not use the class labels could be used for unsupervised learning; this is the

case for methods that measure feature similarity to detect redundant features, using,

e. g., mutual information [221] or a maximum information compression index [188]. In

[70, 71], the normalized log-likelihood and cluster separability are used to evaluate the

quality of clusters obtained with different feature subsets. Different feature subsets

and different numbers of clusters, for multinomial model-based clustering, are evalu—

ated using marginal likelihood and cross-validated likelihood in [254]. The algorithm

described in [218] uses a LASSO-based idea to select the appropriate features. In [51],

the clustering tendency of each feature is assessed by an entropy index. A genetic
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algorithm is used in [146] for feature selection in k—means clustering. In [246], feature

selection for symbolic data is addressed by assuming that irrelevant features are un-

correlated with the relevant features. Reference [60] describes the notion of “category

utility” for feature selection in a conceptual clustering task. The CLIQUE algorithm

[2] is popular in the data mining community, and it finds hyper-rectangular shaped

clusters using a subset of attributes for a large database. The wrapper approach can

also be adopted to select features for clustering; this has been explored in our earlier

work [82, 165].

All the methods referred to above perform “hard” feature selection (a feature

is either selected or not). There are also algorithms that assign weights to different

features to indicate their significance. In [190], weights are assigned to different groups

of features for k-means clustering based on a score related to the Fisher discriminant.

Feature weighting for k-means clustering is also considered in [187], but the goal

there is to find the best description of the clusters, after they are identified. The

method described in [204] can be classified as learning feature weights for conditional

Gaussian networks. An EM algorithm based on Bayesian shrinking is proposed in

[100] for unsupervised learning.

4.3 EM Algorithm for Feature Saliency

In this section, we propose an EM algorithm for performing mixture-based (or model-

based) clustering with feature selection. In mixture-based clustering, each data point

is modelled as having been generated by one of a set of probabilistic models [125, 183].

133



Clustering is then done by learning the 1i)arameters of these models and the associated

probabilities. Each pattern is assigned to the mixture component that most likely

generated it. Although the derivations below refer to Gaussian mixtures, they can be

generalized to other types of mixtures.

4.3.1 Mixture Densities

A finite mixture density with 1: components is defined by

k

My} = :0} P0491), (4-1)

j=1

where V409 2 0; 2j a]- = 1; each GJ- is the set of parameters of the j-th com-

ponent (all components are assumed to have the same form, e.g., Gaussian); and

0 E {91, ...,Ok,al. ...,ak} will denote the full parameter set. The goal of mixture

estimation is to infer 0 from a set of n data points 32 = {y1, ...,yn}, assumed to

be samples of a distribution with density given by (4.1). Each y,- is a d—dimensional

feature vector [y,-1,y,-d]T. In the sequel, we will use the indices i, j and l to run

through data points (1 to n), mixture components (1 to k), and features (1 to (1),

respectively.

As is well known, neither the maximum likelihood (ML) estimate,

BML = arg mgx {log p(y]9)} a
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nor the maximum a posteriori (MAP) estimate (given some prior p(6))

8M“) = arg mgx {log [JO/[9) + log p(0)} ,

can be found analytically. The usual choice is the EM algorithm, which finds local

maxima of these criteria [183]. This algorithm is based on a set Z = {z1, ..., zn} of n

missing (latent) labels, where z, = [3,71, Zikla with 25,]- : 1 and zip = 0, for p 75 j,

meaning that y, is a sample of p(-]0j). For brevity of notation, sometimes we write

z,- = j for such 2,. The. complete data log-likelihood, i.e., the log-likelihood if Z were

observed, is

n k

102.1101, ZIB) = ZZ Zij log [a'jpfinBfl] - (42)

i=1j=1

The EM algorithm produces a sequence of estimates {5(t), t = 0, 1, 2, ...} using two

alternating steps:

0 E-step: Compute W = E[Z [31, 805)], the expected value of the missing data given

the current parameter estimate, and plug it into log p(y, Z [0), yielding the so—called

Q-function Q(0, 8(0) 2 log p (y, W] 0). Since the elements of Z are binary, we have

6.0) pone-(a)

k

Xat) mam»

j=1

 ww- E E [z.,-j|y,8(t)] 2 Fr [Zij = 1|y,,§(t)] = (4.3)

Notice that 03- is the a priori probability that 25,]- : 1 (i.e., that. y,- belongs to cluster

j), while wij is the corresponding a posteriori probability, after observing yi.
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e M-step: Update the parameter estimates,

A

0(t + 1) = arg maax {Q(0,F(t)) + logp(0)},

in the case of MAP estimation, or without log p(0) in the ML case.

4.3.2 Feature Saliency

In this section we define the concept of feature saliency and derive an EM algorithm

to estimate its value. We assume that the features are conditionally independent

given the (hidden) component label, that is,

dk k

P(Y|9) = 2051304939 = 2% HPUJZIOjllv (4-4)

1:1 1:1 (=1

where p(-|6fl) is the pdf of the l-th feature in the j-th component. This assumption

enables us to utilize the power of the EM algorithm. In the particular case of Gaussian

mixtures, the conditional independence assumption is equivalent to adopting diagonal

covariance matrices, which is a common choice for high—dimensional data, such as in

naive Bayes classifiers and latent class models, as well as in the emission densities of

continuous hidden Markov models.

Among different definitions of feature irrelevancy (proposed for supervised learn-

ing), we adopt the one suggested in [210, 254], which is suitable for unsupervised

learning: the l-th feature is irrelevant if its distribution is independent of the class

labels, i.e., if it follows a common density, denoted by q(yl|/\l). Let (I) = ($1, (15d)
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Figure 4.4: An example graphical model for the probability model in Equation (4.5)

for the case of four features ((1 = 4) with different indicator variables. 05) = 1 corre-

sponds to the existence of an are from 2 to y], and a] = 0 corresponds to its absence.

be a set of d binary parameters, such that a, = 1 if feature I is relevant and <25] 2 0,

otherwise. The mixture density in (4.4) can then be re—written as

11(YI‘1’, {aj}1{0jl}1{’\l}:aj Hlplyzl91)“’l(1(?/rl/\zl1”l (4.5)

1:111:

A related model for feature selection in supervised learning has been considered in

[197, 210]. Intuitively, <I> determines which edges exist between the hidden label z

and the individual features y] in the graphical model illustrated in Figure 4.4, for the

case d = 4.

Our notion of feature saliency is summarized in the following steps: (i) we treat

the (W’s as missing variables; (ii) we define the feature saliency as p] = p(gbl = 1),

the probability that the l-th feature is relevant. This definition makes sense, as it is

difficult to know for sure that a certain feature is irrelevant in unsupervised learning.

The resulting model (likelihood function) is written as

p(YIB) =

M
»

d

aj 111(0)}? (LI/zl9jz) +)(1-pz)<2(yzl/\z)) (4-6)

H
.
.
_
:

.7

Where 0 = {{0}}, {OJ-l}, {Al}, {[21]} is the set of all the parameters of the model.
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Equation (4.6) can be derived as follows. We treat ,0] = p(qbl = 1) as a set of

parameters to be estimated (the feature saliencies). we assume the 951 s are mutually

independent and also independent of the hidden component label 2 for any pattern

y. Thus,

p(y, (1)) =1v(y|<1>)11(<1>

d
_ <1 _

= (:01 151(1)(.9111!j)1))“”(((1(y1|/\1)))1 (”1) HPNU —P1)1 1” (47)

j: 1 1:1

, d

= 2013' H(1011?(M11 ”(((1 — 101)(1(.1/1|A1))1—¢’-

j=1 1:1

The marginal density for y is

d d

= 219031)): 2% 21101119(91119]' “(((1 - Pi)(1(y1l/\1))1_“l

<I> 3:1 <1) 1:1

k d 1

= :09- H Z(11110(1/1lj“’((1— 101)q(1/1|/\1))1—“l (4.8)

jzl 1:1 (1)1:0

k d

= 2013' I10?(9119j1)1>1 + q(yzl/\1)(1- pd),

j=1 1:1

Whlch 1S just Equation (4.6). Another way to see how Equation (4 6) IS obtained 1S to

. ,. . . . . 1—notlce that the conditional densrty of y] given 2 = j and (251, [p(ylldfl)]¢l[q(yll)q)] “51,

Can be written as ¢1p(y1|6fl) + (1 — (b])q(g1|)\1), because at is binary. Taking the

expectation with respect to Q51 and 2 leads to Equation (4 6)

The form of q( | ) reflects our prior knowledge about the distribution of the non-

Sallent features. In principle it can be any 1-D distribution (e.g., a Gauss1an, a

Student t or even a mixture). We shall limit q(..|) to be a Gauss1an, since this leads
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Figure 4.5: An example graphical model showing the mixture density in Equa-

tion (4.6). The variables 2, ¢I,¢2,¢3,¢4 are “hidden” and only y1,y2,y3,y4 are

observed.

to reasonable results in practice.

Equation (4.6) has a generative interpretation. As in a. standard finite mixture, we

first select the component label j by sampling from a multinomial distribution with

parameters (01, . . . ,ak). Then, for each feature 1 = 1, ..., d, we flip a biased coin whose

probability of getting a head is pl; if we get a head, we use the mixture component

p(jdfl) to generate the l—th feature; otherwise, the common component q(.[)\l) is used.

A graphical model representation of Equation (4.6) is shown in Figure 4.5 for the case

61:4.

4.3.2.1 EM Algorithm

8)" treating Z (the hidden class labels) and (I) (the feature indicators) as hidden

Variables, one can derive an EM algorithm for parameter estimation. The complete-

data log—likelihood for the model in Equation (4.6) is

d

1301,21 = 13(1)) = “j H(prp(;l/11|()J'1))“l((1 — 191)(1(y11|/\1))1_“l- (4-9)

1:1
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Define the following quantities:

1011 = 11(31: jlyi), '11111=I)(31=J}¢1=1ly1’)1 v1:11 = 1431:1190: Olyz‘)

They are calculated using the current. parameter estimate 0110‘”. Note that (11,-)! +

1),-fl) = wij and 2:121 Zle 1110 = n. The expected complete data log-likelihood

based on 0mm” is

Egnow[l0g p(y, Z, (1’)]

= 2 11(21 =1.<1>ly1)(10saj+ Z(¢1(10sp(y11|911)+10gp1)

1‘,j.<D 1

+11 — 11111101111111.1111) +Iog<1 -— 11)»)

1

=vai=1|w>10gei+ Z: 2: 19(31‘ =J}¢1IY1)(951(10gI)(3/1119j1)+10gp1)

+ (1 - «11)(10sq(y11|11) +10g(1 - p1)))

= Z]: 1013') 108 “j + ZZUm 10gP(3/11|9j 1) + Z 23 ”1'31 10% (1(y11|/\1)

j 2' 1 1',j

   

 

1 3,1

part 1 part 2 part 3

+ 2(108p1 Z 11131 + 108(1 — P1) 21511)-

1 is]. 2.1.7

pa‘rt 4

(4.10)

The four parts in the. equation above can be maximized separately. Recall that the

dellsities p(.) and q(.) are univariate Gaussian and are characterized by their means

and variances. As a result, maximizing the expected complete data log-likelihood
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leads to the M-step in Equations (4.18)—(4.23). For the E—step, observe that

11(961=1,y1|zi=j)

11(3’1131 =1)

* 11111011911) H11,11(pyp(yy|0,- 11) + (1 - 1),/mom)»

_ H1’(01/P(yzll9j 1') + (1 ‘ P1/)9(3/1'l)‘1’))

pzp(y1|9]'1) __ M

p111(.I/1|9j1) + (1 — 101)(1('!/1|)\1) T 6131'

 

11(01 = 1|31 =11y1') =

 

 

Therefore, equation (4.16) follows because

“11,1 = 17(951: 1|21' = j1Yi)P(zi =j|y1') = —'—‘wzj- (4-11)

So, the EM algorithm is

e E—step: Compute the following quantities:

 

01-131 = 11(951 = 11y11|31 =1) = P1 P(?J11|9j1) (4-12)

(1111: 11(01: 0.y11lzz'= 1') = (1 - 111) (1011101) (413)

Cm = P(.I/11|21 = j) = 0131+ bijl (4-14)

' GUI—[10.1

wij = 11(31' = Mi): 3 __ I], (415)

2:311] H1¢1j1

. 0'11'1 ,

“11'! = PM = 1, 21' = lez') = 3710171 (4-16)
“11

vijl = P091 = 0» 31' =jIY1) = wij ‘11111 (417)

e M-step: Re-estimate the parameters according to following expressions:
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:5 _ 2111113' _ :1 'wz‘j
a] — ——1-- — ————f

2,] 11,] 71

Mean 1n 6]) =w

2111111

A u. 1: —— Meflfl- 2
Var in 611: 21 131 (.111 ( gll) (4.20)

:1 uijl

21(21' ”0131) 3111

(4.18)

(4.19)

 

 

 

119m A) : (4.21)

213' U131

A ,- -v-- 1- — Mem A 2Var in /\1= 21(2) 1J1)(J11 ( 1)) (4.22)

:1]: Um

. .u- 1 . .u. .

51 Z"? ”I _ Ell—.131 (423) 

_ Em "151+Zaj 11131 — ’n

In these equations, the variable 11,-]- , measures how important the i-th pattern is

to the j—th component, when the l-th feature is used. It is thus natural that the

estimates of the mean and the variance in Ofl are weighted sums with weight uijl-

A similar relationship exists between Zj 11,13) and A). The term Zij ”a,“ can be

interpreted as how likely it is that (b, equals one, explaining why the estimate of pl is

proportional to 213' riij 1-

4.3.3 Model Selection

Standard EM for mixtures exhibits some weaknesses, which also affect the EM algo-

rithm introduced above: it requires knowledge of k: (the number of mixture compo—

nents), and a good initialization is essential for reaching a good local optimum (not to

mention the global optimum). To overcome these difficulties, we adopt the approach

in [81], which is based on the minimum message length (l\»’Il\v‘IL) criterion [265, 264].

The MML criterion for our model consists of minimizing, with respect to 0, the
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following cost function (after discarding the order one term)

(1d k

117+ d r s

— long/lO) + 2 log n + 2 [E E 110g(7l(1j/)l) + é IE log(n(1— pl)), (4.24) 

where r and s are the number of parameters in 63-) and A], respectively. If p(.[.) and

q(..|) are univariate Gaussians (arbitrary mean and variance), r = s = 2. Equation

(4.24) is derived by considering the minimum message length. (MML) criterion (see

[81] for details and references)

‘ ~ . l c. E 0i9 = a1gm01n{— logp(0) — 10011046) + 2 100 [1(0)] + 2(1‘1‘10012l]: (4.25)

where 0 is the set of parameter of the model, c is the dimension of 0, 1(0) 2

—E[Dg log p(yl6)] is the (expected) Fisher information matrix (the negative expected

value of the Hessian of the log-likelihood), and [1(9)] is the determinant of I(9). The

information matrix for the model (4.6) is very difficult to obtain analytically. There-

fore, as in [81], we approximate it by the information matrix of the complete data

log-likelihood, 16(0). By differentiating the logarithm of equation (4.9), we can show

that

l I

—— ,—-—--,a 1011911),---,a'1919 ,

91(1—111) Pd(1—Pd) 1 ( d ( 1”)

gee.16(0) : block-diag[M,

0'21011(921)1---,O'2p(11(9211)1---,C11~.011(921)1-~,akp111(92d), (4'26)

(banal)...,(1-11.1>I<Ad>],

where M is the information matrix of the multinominal distribution with parameters
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(a1, . . . , ak). The size of 1(0) is (k + (1+ kdr + (15), where r and s are the number

of parameters in 0]) and Al, respectively. Note that (p[( 1 — pl))_1 is the Fisher

information of a Bernoulli distribution with parameter p1. Thus we can write

(1 k d

log M9)! = legume) + 210ng,) + T 2: Dog(am)
1:1 j=11 .__1

k d d d (4.27)

+ZZlogI(01-l)+s:10g(l—pl) +Zlogl(Al)

j=11=1 1:1 [:1

For the prior densities of the parameters, we assume that different groups of parame-

ters are independent. Specifically, {0}}, pl (for different values of l), 03-, (for different

values of j and l) and Al (for different values Of 1) are independent. Furthermore, since

we have no knowledge about. the parameters, we adopt non-informative Jeffrey’s pri-

ors (see [81] for details and references), which are proportional to the square root

of the determinant of the corresponding information matrices. When we substitute

p(0) and |I(0)| into equation (4.25), and drop the order-one term, we obtain our final

criterion, which is equation (4.24).

From a parameter estimation viewpoint, Equation (4.24) is equivalent to a masti-

mum a posterior? (MAP) estimate,

k. d d
. d "k

0 = arg mgx{logp(y|0) — :2— 2 log aJ- — g E log(1 — p1) — 1—2— 2 log pl}, (4.28)
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with the following (Dirichlet-type, but improper) priors 011 the o-j’s and pl’s:

1101”, a. a n7“”,

—k2(1 _

I)(Pi,-..,p(1) 0< Hp r/ m) 3/2-

Since these priors are conjugate with respect to the complete data likelihood, the EM

algorithm undergoes a minor modification: the M—step Equations (4.18) and (4.23)

are replaced by

, l
’5 _ max(zi 'wij — :29, O) (4 29)

“3‘2 (2 --—-"’o>' ‘J max 1 wt] —2—,

mama-111.11 — £10)
max(Z,-J um - £35, 0) + max(Z,-J vifl —— 3. 0)

 

 if] = (4.30)

111 addition to the log—likelihood, the other terms in Equation (4.24) have simple

interpretations. The term—2—k+d log n is a standard MDLtype [215] parameter code-

length corresponding to k 03' values and d p] values. For the l—th feature in the j-th

component, the “effective” number of data points for estimating 0]) is najpl. Since

there are 7‘ parameters in each 03-], the corresponding code-length is 3log(nplo1j).

Similarly, for the l—th feature in the common component, the number of effective data

points for estimation is n(1 — pl). Thus, there is a term 3 log(n(1 — p1)) in (4.24) for

each feature.

One key property of Equations (4.29) and (4.30) is their pruning behavior, forcing

some of the aj to go to zero and some of the pl to go to zero or one. This pruning
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behavior also has the indirect benefit of protecting us from almost singular covariance

matrix in a mixture component: the weight of such a component is usually very small,

and the component is likely to be pruned in the next few iterations. Concerns that

the message length in (4.24) may become invalid at these boundary values can be

circumvented by the arguments in [81]: when p] goes to zero, the l-th feature is no

longer salient and p] and 011, . . . 19117 are removed; when Pl goes to 1, A] and pl are

dropped.

Finally, since the model selection algorithm determines the number of components,

it can be initialized with a large value of k, thus alleviating the need for a good

initialization, as shown in [81]. Because of this, a component-wise version of EM can

be adopted [37, 81]. The algorithm is summarized in Algorithm 4.1.

 

 

Input: Training data y = {y1, . . . ,yn}, minimum number of components kmin

Output: Number of components 1:, mixture parameters {01-1}, {aj}, parameters of

common distribution {Al} and feature saliencies {pl}

{Initialization}

Set the parameters of a large number of mixture components randomly

Set the common distribution to cover all data

Set the feature saliency of all features to 0.5

{Initialization ends; main loop begins}

while k > kmin do

while not reach local minimum do

Perform E—step according to Equations (4.12) to (4.17)

Perform M-step according to Equations (4.19) to (4.22), (4.29) and (4.30)

If aj becomes zero, the j-th component is pruned.

If pl becomes 1, q(yllAl) is pruned.

If pl becomes 0, p(yll0fl) are pruned for all j

end while

Record the current model parameters and its message length

Remove the component with the smallest weight

end while

Return the model parameters that yield the smallest message length

 

Algorithm 4.1: The unsupervised feature saliency algorithm.
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4.3.4 Post-processing of Feature Saliency

The feature saliencies generated by Algorithm 4.1 attempt to find the best way to

model the data, using different component densities. Alternatively, we can consider

feature saliencies that best discriminate between different components. This can be

more appropriate if the ultimate goal is to discover well-separated clusters. If the

components are well-separated, each pattern is likely to be generated by one com-

ponent only. Therefore, one quantitative measure of the separability of the clusters

is

J = Zlogpe. =1,1y,), (4.31)

where t,- = argmaxj p(zi = jlyi). Intuitively, J is the sum of the logarithms of the

posterior probabilities of the data, assuming that each data point was indeed gener-

ated by the component with maximum posterior probability (an implicit assumption

in mixture-based clustering). .1 can then be maximized by varying ,0) while keeping

the other parameters fixed.

Unlike the MML criterion, .1 cannot be optimized by an EM algorithm. However,

by defining

P(:I/11|9jz) - (I(yzl/Vl
 h'l' = ,

I J PlP(l’/ill9jl) + (1 - p1)(1(’y11|/\1)

k

911: Zu'ijhilja

1:1
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we can show that

0

8—_ 1081011 = ’11: lj — 9111

P1

(92 n k

—— 100‘ mix = 2(9-192 - Zw- hm) -h- ) for l 95 m
1 r, o ._j 1 1m 2] 2 J 2771] 7 a

0pzdpm 1:1 3.21

82 n 2 2
$108211)”: 2(91-1 — h1- U)'

1 1:1

The gradient and Hessian of J can then be calculated accordingly, if we ignore the

dependence of t,- on pl. We can then use any constrained non—linear optimization

software to find the optimal values of p, in [0,1]. We have used the MATLAB opti-

mization toolbox in our experiments. After obtaining the set of optimized pl, we fix

them and estimate the remaining parameters using the EM algorithm.

4.4 Experimental Results

4.4.1 Synthetic Data

The first synthetic data set consisted of 800 data points from a mixture of four

equiprobable Gaussians N(mi,I),i = {1,2,3,4}, where m1 = [3], m2 = [3)],

m3 = [2], m4 = [7],] (Figure 4.6(a)). Eight “noisy” features (sampled from a

.
_
_
A

N(O, 1) density) were then appended to this data, yielding a set of 800 10—dimensional

patterns. We ran the proposed algorithm 10 times, [each initialized with k = 30; the

common component was initialized to cover the entire set of data, and the feature

saliency values were initialized at 0.5. A local minimum was reached if the change in
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description length between two iterations was less than 1077. A typical run of the al-

goritlnn is shown in Figure 4.6. In all the ten random runs with this mixture, the four

components were always correctly identified. The saliencies of all the ten features,

together with their standard deviations (error bars), are shown in Figure 4.7(a). We

can conclude that, in this case, the algorithm successfully locates the true clusters

and correctly assigns the feature saliencies.

In the second experiment, we considered the Think data [122, 252], consisting of

two 20—dimensional Gaussians N(ml, I) and N(mg, I), where m1 = (1, :35, . . . , Viz—6),

m2 2 —m1. Data were obtained by sampling 5000 points from each of these two

Gaussians. Note that the features are arranged in descending order of relevance. As

above, the stopping threshold was set. to 10’”7 and the initial value of k was set to

30. In all the 10 runs performed, the two components were always detected. The

feature saliencies are shown in Figure 4.7(b). The lower the rank number, the more

important was the feature. We can see the general trend that as the feature number

increases, the saliency decreases, in accordance with the true characteristics of the

data.

4.4.2 Real data

VVe tested our algorithm on several data sets with different characteristics (Table 4.1).

The wine recognition data set (wine) contains results of chemical analysis of wines

grown in different cultivars. The goal is to predict the type of a wine based on its

Chelnical composition; it has 178 data points, 13 features, and 3 classes. The VVis-
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Figure 4.6: An example execution of the proposed algorithm. The solid ellipses

represent the Gaussian mixture components; the dotted ellipse represents the common

density. The number in parenthesis along the axis label is the feature saliency; when

ft 1'eaches 1, the common component is no longer applicable to that feature. Thus,

1n (d), the common component degenerates to a line; when the feature saliency for

ea‘ture 1 also becomes 1, as in Figure 4.6(f), the common density degenerates to a

point at (0,0).
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Figure 4.7: Feature saliencies for (a) the 10-D 4 Gaussian data set used in Fig-

ure 4.6(a), and (b) the Trunk data set. The mean values plus and minus one standard

deviation over ten runs are shown. Recall that features 3 to 10 for the 4 Gaussian

data set are the noisy features.

consin diagnostic breast cancer data set (wdbc) was used to obtain a binary diagnosis

(benign or malignant) based on 30 features extracted from cell nuclei presented in

an image; it has 576 data points. The image segmentation data set (image) con-

tains 2320 data points with 19 features from seven classes; each pattern consists of

features extracted from a 3 x 3 region taken from 7 types of outdoor images: brick-

face, sky, foliage, cement, window, path, and grass. The texture data set (texture)

consists of 4000 19-dimensional Gabor filter features from a collage of four Brodatz

textures [127]. A data set (zernike) of 47 Zernike moments extracted from images of

handwriting numerals (as in [126]) is also used; there are 200 images for each digit, to-

taling 2000 patterns. The data sets wine, wdbc, image, and zernike are from the UCI

machine learning repository (http : //www. ics . uci . edu/~m1earn/MLSummary . html).

This repository has been extensively used in pattern recognition and machine learning

studies. Normalization to zero mean and unit variance is performed for all but the

texture data set, so as to make the contribution of different features roughly equal a
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Table 4.1: Real world data sets used in the experiment. Each data set has 71 data

points with (1 features from 0 classes. One feature with a constant value in image

is discarded. Normalization is not needed for texture because the features have

comparable variances.
 

 

 

 

 

 

      

Abbr. Full name 71 d 6 Normalized?

wine wine recognition 178 13 3 yes

wdbc Wisconsin diagnostic breast cancer 569 30 2 yes

image image segmentation 2320 18 7 yes

texture Texture data set 4000 19 4 no

zernike Zernike moments of digit images 2000 47 10 yes 
 

priori. We do not normalize the texture data set because it is already approximately

normalized. Since these data sets were collected for supervised classification, the

class labels are not involved in our experiment, except for the evaluation of clustering

results.

Each data set was first randomly divided into two halves: one for training, another

for testing. Algorithm 4.1 was run on the training set. The feature saliency values can

be refined as described in Section 4.3.4. We evaluated the results by interpreting the

fitted Gaussian components as clusters and compared them with the ground truth

labels. Each data point in the test set was assigned to the component that most

likely generated it, and the pattern was classified to the class represented by the

component. We then computed the error rates on the test data. For comparison, we

also ran the mixture of Gaussian algorithm in [81] using all the features, with the

number of classes of the data set as a lower bound on the number of components.

This gives us a fair ground for comparing Gaussian mixtures with and without feature

Saliency. In order to ensure that we had enough data with respect to the number of

features for the algorithm in [81], the covariance matrices of the mixture components



Table 4.2: Results of the algorithm over 20 random data splits and algorithm ini-

tializations. “Error” corresponds to the mean of the error rates on the testing set

when the clustering results are compared with the ground truth labels. E denotes

the number of Gaussian components estimated. Note that the post-processing does

not change the number of Gaussian components. The numbers in parenthesis are the

standard deviation of the corresponding quantities.
 

 

 

Algorithm 4.1 With post-processing Using all the features

error (in ‘76) 8 error (in %) error (in %) 8

wine 6.61 (3.91) 3.1 (0.31) 6.61 (3.23) 8.06 (3.73) 3 (0)
 

 

wdbc 9.55 (1.99) 5.65(0.75) 9.35 (2.07) 10.09 (2.00) 2.70 (0.57)

image 20.19 (1.54) 23.1 (1.74) 20.28(1.60) 32.84 (5.1) 13.8 (1.94)

an... 4.04 (0.76) 36.17 (1.19) 4.02 (0.74) 4.85 (0.98) 31.42 (2.81)

...-.11.. 52.09 (2.52) 11.3 (0.98) 51.99 (2.32) 56.42 (3.62) 10(0)

 

 

       
 

were restricted to be diagonal, but were different for different components. The entire

procedure was repeated 20 times with different splits of data and initializations of the

algoritlun. The results are shown in Table 4.2. We also show the feature saliency

values of different features in different runs as gray-level image maps in Figure 4.9.

For illustrative purpose, we contrast the clusters obtained for the image data set with

the true class labels in Figure 4.8, after using PCA to project the data into 3D.

From Table 4.2, we can see that the proposed algorithm reduces the error rates

when compared with using all the features for all five data sets. The improvement is

more significant for the image data set, but this may be due to the increased number

of components estimated. The high error rate for zernike is due to the fact that digit

images are inherently more difficult to cluster: for example, “4” can be written in a

manner very similar to “9”, and it is difficult for any unsupervised learning algorithm

to distinguish among them. The post-processing can increase the “contrast” of the

feature saliencies, as the image maps in Figure 4.9 show, without deteriorating the

acCuracy. It is easier to perform “hard” feature selection using these post-processed
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Figure 4.8: A figure showing the clustering result on the image data set. Only the

labels for the testing data are shown. (a) The true class labels. (b) The clustering

results by Algorithm 4.1. (c) The clustering result using all the features. The data

points are reduced to 3D by PCA. A cluster is matched to its majority class before

plotting. The error rates for the proposed algorithm and the algorithm using all the

features in this particular run are 22% and 30%, respectively.

feature saliencies, if this is required for the application.
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4.5 Discussion

4.5. 1 Complexity

The major computational load in the proposed algorithm is in the E—step and the

M-step. Each E-step iteration computes 0(ndkt) quantities. As each quantity can be

computed in constant time, the time complexity for E—step is also 0(ndk). Similarly,

the M-step takes 0(ndk) time. The total amount of computation depends on the

number of iterations required for convergence.

At a. first sight, the amount of computation seems to be demanding. However,

a close examination reveals that each iteration (E—step and M-step) of the standard

EM algorithm also takes ()(ndk) time. The value of k in the standard EM, though, is

usually smaller, because the proposed algorithm starts with a larger number of com-

ponents. The number of iterations required for our algorithm is also in general larger

because of the increase in the number of parameters. Therefore, it is true that the

proposed algorithm takes more time than the standard EM algorithm with one param-

eter setting. However, the proposed algorithm can determine the number of clusters

as well as the feature subset. If we want to achieve the same goal with the standard

EM algorithm using a wrapper approach, we need to re—run EM multiple times with

a different number of components and different feature subsets. The computational

demand is much heavier than the proposed algorithm, even with a heuristic search

to guide the selection of feature subsets. Another strength of the proposed algorithm

is that by initialization with a large number of Gaussian components, the algorithm

is less sensitive to the local minimum problem than the standard EM algorithm. we
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can further reduce the complexity by adopting optimization techniques applicable to

standard EM for Gaussian mixture, such as sampling the data, compressing the data

[28], or using efficient data structures [203, 224].

For the post-processing step in Section 4.3.4, each computation of the quantity J

and its gradient and Hessian takes 0(ndk) time. The number of iterations is difficult

to predict, as it depends on the optimization routine. However, we can always put an

upper bound on the number of iterations and trade speed for the optimality of the

results.

4.5.2 Relation to Shrinkage Estimate

One interpretation of Equation (4.6) is that we “regularize” the distribution of each

feature in different components by the common distribution. This is analogous to the

shrinkage estimator for covariance matrices of class-conditional densities [68], which

is a weighted sum of an estimate of the class-specific covariance matrix, and the

“global” covariance matrix estimate. In Equation (4.6), the pdf of the l-th feature

is also a weighted sum of a component-specific pdf and a common density. An im-

portant difference here is that the weight [)1 is estimated from the data, using the

MML principle, instead of being set heuristically, as is commonly done. As shrinkage

estimators have found empirical success to combat data scarcity, this “regularization”

viewpoint is an alternative explanation for the usefulness of the proposed algorithm.
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4.5.3 Limitation of the Proposed Algorithm

A limitation of the proposed algoritlnn is the feature independence assumption (con-

ditioned on the mixture component). While, empirically, the violation of the in-

dependence assumption usually does not affect the accuracy of a classifier (as in

supervised learning) or the quality of clusters (as in unsupervised learning), this has

some negative influence on the feature selection problem. Specifically, a feature that

is redundant because its distribution is independent of the component label given

another feature cannot be modelled under the feature independence assumption. As

a result, both features are kept. This explains why, in general, the feature saliencies

are somewhat high. The post-processing in Section 4.3.4 can cepe with this problem

because it considers the posterior distribution and therefore can discard features that

do not help in identifying the clusters directly.

4.5.4 Extension to Semi-supervised Learning

Sometimes, we may have some knowledge of the class labels of different Gaussian

components. This can happen when, say, we adopt a procedure to combine different

Gaussian components to form a cluster (e.g., as in [216]), or in a semi-supervised

learning scenario, where we can use a small amount of labelled data to help us identify

which Gaussian component belongs to which class. ”This additional information can

suggest combination of several Gaussian components to form a single class/cluster,

thereby allowing the identification of non-Gaussian clusters. The post-processing step

can take advantage of this information.
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Suppose we know there are C classes and the posterior probability that pattern

y,- belongs to the c—th class, denoted Tic: can be computed as Tic 2 23:1 HCJP(z,- =

j]y,j). For example, if we know that the components 4, 6, and 10 are from class 2, we

can set 132,4 = 1321, = 13210 = 1/3 and the other 13% to be zero. The post-processing

is modified accordingly: redefine t,- in Equation (4.31) to t,- = arg maxc Tic» i.e., it

becomes the class label for y,- in view of the extra information; replace log P(z,- =

tilYi) in Equation (4.31) by log "it,” The gradient and Hessian can still be computed

easily after noting that
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We can then optimize the modified J in Equation (4.31) to carry out the post-

processmg.

4.5.5 A Note on Maximizing the Posterior Probability

The sum of the logarithm of the maximum posterior probability considered in the

post—processing in Section 4.3.4 can be regarded as the sample estimate of an un-

orthodox type of entropy (see [141]) for the posterior distribution. It can be regarded

as the limit of Renyi’s entropy 120(1)) when (1 tends to infinity, where

 

I;

1 .

MP) = 1 _ 010ng (4.33)

1:1



When this entropy is used for parameter estimation under the maximum entropy

framework, the corresponding procedure is closely related to minimax inference.

Other functions on the posterior probabilities can also be used, such as the Shan-

non entropy of the posterior distribution. Preliminary study shows that the use of

different types of entropy does not affect the results significantly.

4.6 Summary

Given n points in (I dimension, we have presented an EM algorithm to estimate the

saliencies of individual features and the best number of components for Gaussian-

mixture clustering. The proposed algorithm can avoid running EM many times with

different numbers of components and different feature subsets, and can achieve better

performance than using all the available features for clustering. By initializing with a

large number of mixture components, our EM algorithm is less prone to the problem

of poor local minima. The usefulness of the algorithm was demonstrated on both

synthetic and benchmark real data sets.
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Figure 4.9: Image maps of feature saliency for different data sets with and without

the post—processing procedure. Feature saliency of 1 (0) is shown as a pixel of gray

level 255 (0). The vertical and horizontal axes correspond to the feature number and

the trial number, respectively.
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Chapter 5

Clustering With Constraints

In Section 1.4, we introduced instance—level constraints as a type of side-information

for clustering. In this chapter, we shall examine the drawbacks of the existing clus-

tering under constraints algorithms, and propose a new algorithm that can remedy

the defects.

Recall that there are two types of instance-level constraints: a must-link/positive

constraint requires two or more objects to be put in the same cluster, whereas a must-

not-link/negative constraint requires two or more objects to be placed in different

clusters. Often, the constraints are pairwise, though one can extend them to multiple

objects [231, 167]. Constraints are particularly appropriate in a clustering scenario,

because there is no clear notion of the target classes. On the other hand, the user can

suggest if two or more objects should be included in the same cluster or not. This

can be done in an interactive manner, if desired. Side-information can improve the

robustness of a clustering algorithm towards model mismatch, because it provides

additional clues for the desirable clusters other than the shape of the clusters, as
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suggested by the parametric model. Side-information has also been found to alleviate

the problem of local minima of the clustering objective function.

Clustering with instance—level constraints is different from learning with partially-

labeled data, also known as transductive learning or semi-supervised learning [136,

288, 157, 169, 289, 287, 98, 195], where the class labels of some of the objects are

provided. Constraints only reveal the relationship among the labels, not the labels

themselves. Indeed, if the “absolute” labels can be specified, the user is no longer

facing a clustering task, and a supervised method should be adopted instead.

We contrast different learning settings according to the type of information avail-

able in Figure 5.1. At one end of the spectrum, we have supervised learning (Fig-

ure 5.1(a)), where the labels of all the objects are known. At the other end of the

spectrum, we have unsupervised learning (Figure 5.1(d)), where the label information

is absent. In between, we can have partially labeled data (Figure 5.1(b)), where the

true class labels of some of the objects are known. The main scenario considered in

this paper is depicted in Figure 5.1(c): there is no label information, but must-link

and must-not-link constraints (represented by solid and dashed lines, respectively)

are provided. Note that the settings exemplified in Figures 5.1(a) and 5.1(b) are

classification—oriented because there is a clear definition of different classes. On the

other hand, the setups in Figures 5.1(c) and 5.1(d) are clustering-oriented, because

no precise definitions of classes are given. The clustering algorithm needs to discover

the classes.
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5.0. 1 Related Work

Different algorithms have been proposed for clustering under instance—level con-

straints. In [262], the four primary operators in COBVVEB were modified in view

of the constraints. The k-means algorithm was modified in [263] to avoid violating

the constraints when different objects are assigned to different clusters. However, the

algorithm can fail even when a solution exists. Positive constraints served as “short-

cuts” in [148] to modify the dissimilarity measure for complete—link clustering. There

can be catastrophic consequences if a single constraint is incorrect, because the dis-

similarity matrix can be greatly distorted by a wrong constraint. Spectral clustering

was modified in [138] to work with constraints, which augmented the affinity matrix.

Constraints were incorporated into image segmentation algorithms by solving the

constrained version of the corresponding normalized cut problem, with smoothness of

cluster labels explicitly incorporated in the formulation [279]. Hidden Markov random

field was used in [14] for k-means clustering with constraints. Constraints have also

been used for metric-learning [274]; in fact, the problems of metric-learning and It‘-

means clustering with constraints were considered simultaneously in [21]. Because the

problem of k-means with metric-learning is related to EM clustering with a common

covariance matrix, the work in [21] may be viewed as related to EM clustering with

constraints. The work in [158] extended the work in [21] by studying the relation-

ship between constraints and the kernel k-means algorithms. Ideas based on hidden

Markov random field have also been used for model-based clustering with constraints

[14, 176, 161]; the difference between these three methods lies in how the inference is
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Distance edit- Modify the distance/proxin‘iity matrix due to the [148, 138]

ing constraints

Constraints on The cluster labels are inferred under the restriction [262, 263,

labels that the constraints are always satisfied 279]

Hidden Cluster labels constitute a hidden Markov random [14, 21, 12,

Markov field; feature vectors are assumed to be independent 158, 176,

random field of each other given cluster labels 161, 286]

Modify genera— Generation process of data points that participate [231, 166,

tion model in constraints is modified 167]

Constraints Clustering solution is obtained by resolving con- [10]

resolution straints only   
 

Table 5.1: Different algorithms for clustering with constraints.

conducted. In particular, the method in [14] used iterative conditional mode (ICM),

the method in [176] used Gibbs sampling, and the method in [161] used a mean-field

approximation. The approach in [286] is similar to [161], since both used mean-field

approximation. However, the authors of [286] also considered the case when each

class is modeled by more than one component. A related idea was presented in [231],

which uses a graphical model for generating the data with constraints. A fairly differ-

ent route to clustering under constraints was taken by the authors in [10] under the

name “correlation clustering”, which used only the positive and negative constraints

(and no information on the objects) for clustering. The number of clusters can be

determined by the constraints.

Table 5.1 provides a summary of these algorithms for clustering under constraints.

In most of these approaches, clustering with constraints has been shown to improve

the quality of clustering in different domains. Example applications include text

classification [14], image segmentation [161], and video retrieval [231].
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5.0.2 The Hypothesis Space

An important issue in parametric clustering under constraints, namely the hypoth-

esis space, has virtually been ignored in the current literature. Here, we adopt the

terminology from inductive learning and regard “hypothesis space” as the space of all

possible solutions to the clustering task. Since partitional clustering can be viewed

as the construction of a mapping from a set of objects to a set of cluster labels, its

hypothesis space is the set of all possible mappings between the objects (or their rep-

resentations) and the cluster labels. In a non-parametric clustering algorithm such

as pairwise clustering [114] and methods based on graph-cut [234, 272], there is no

restriction on this hypothesis space. A particular non-parametric clustering algorithm

selects the best clustering solution in the space according to some criterion function.

In other words, if a poor criterion function is used (perhaps due to the influence of

constraints), one can obtain a counter-intuitive clustering solution such as the one

in Figure 5.3(c), where very similar objects can be assigned different cluster labels.

Note that objects in non-parametric clustering, unlike in parametric clustering, may

not have a feature vector representation. They can be represented, for example, by

pairwise affinity or dissimilarity measure with higher order [1]

The hypothesis space in parametric clustering is typically much smaller, because

the parametric assumption imposes restrictions on the cluster boundaries. While

these restrictions are generally perceived as a drawback, they become advantageous

when they prevent counter-intuitive clustering solutions such as the one in Fig-

ure 5.3((:) from appearing. These clustering solutions are simply outside the hy-
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pothesis space of parametric clustering, and are never attainable irrespective of how

the constraints modify the clustering objective function.

An example contrasting parametric and non-parametric clustering is shown in

Figure 5.2. The particular parametric family considered in this example is a Gaussian

distribution with common covariance matrix, resulting in linear cluster boundaries.

5.0.2.1 Inconsistent Hypothesis Space in Existing Approaches

The basic idea of most of the existing parametric clustering with instance-level con-

straints algorithms [263, 14, 21, 12, 158, 176, 161, 286] is to use some variants of

hidden Markov random fields to model the cluster labels and the feature vectors.

Given the cluster label of the object, its feature vector is assumed to be independent '

of the feature vectors and the cluster labels of all the other objects. The cluster

labels, which are hidden (unknown), form a Markov random field, with the potential

function in this random field related to the satisfiability of the constraints based on

the cluster labels.

There is an unfortunate consequence of adopting the hidden Markov random field,

however. For objects participating in the constraints, their cluster labels are deter-

mined by the cluster parameters, associated feature vectors and the constraints. On

the other hand, for data points without constraints, the cluster labels are determined

by only the cluster parameters and associated feature vectors. We can thus see that

there is an inconsistency in how the objects obtain their cluster labels. In other

words, two identical objects, one with a constraint and one without, can be assigned

different cluster labels! This is the underlying reason for the problem illustrated in
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Figure 5.3(d), where two objects with almost identical feature vectors are assigned

different labels due to the constraints.

From a generative viewpoint, the above inconsistency is caused by the difference

in how data points with and without constraints are generated. For the data points

without constraint, each of them is generated in an identical and independent manner

according to the current cluster parameter value. On the other, all the data points

with constraints are generated simultaneously by first choosing the cluster labels

according to the hidden Markov random field, followed by the generation of the

feature vectors based on the cluster labels. It is a dubious modeling assumption

that “posterior" knowledge such as the set of instance—level constraints, which are

solicited from the user after observing the data, should control how the data are

generated in the first place.

Note that this inconsistency does not exist if all the objects to be clustered are

involved in some constraints determined by the properties of the objects. This is

commonly encountered in image segmentation [128], where pixel attributes (e.g. in-

tensities or filter responses) and spatial coherency based on the locations of the pixels

are considered simultaneously to decide the segment label. In this case, the clus-

ter labels of all the objects are determined by both the constraints and the feature

vectors.

5.0.2.2 Proposed Solution

We propose to eliminate the problem of inconsistent hypothesis space by enforcing a

uniform way to determine the cluster label of an object. we use the same hypothesis
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space of standard parametric clusterng for parametric clustering under constraints.

The constraints are only used to bias the search of a clustering solution within this

hypothesis space. Since each clustering solution in this hypothesis space can be

represented by the cluster parameters, the constraints play no role in determining the

cluster labels, given the cluster parameters. The quality of the cluster parameters

with respect to the constraints is computed by examining how well the cluster labels

(determined by the cluster parameters) satisfy the constraints. However, cluster

parameters that fit the constraints well may not fit the data well. We need a tradeoff

between these two goals. This can be done by maximizing a weighted sum of the data

log-likelihood and a constraint fit term. The details will be presented in Section 5.3.

5.1 Preliminaries

Given a set of 71 objects y = {y1, . . . ,yn}, (probabilistic) parametric partitional clus-

tering discovers the cluster structure of the data under the assumption that data in

a cluster are generated according to a certain probabilistic model p(yldj), with 6]-

representing the parameter vector for the j—th cluster. For simplicity, the number of

clusters, k, is assumed to be specified by the user, though model selection strategy

(such as minimum description length [81] and stability [162]) can be applied to de-

termine k, if desired. The distribution of the data can be written as a. finite mixture

distribution, i.e.,

k

p(y) = Zp(y|z)p(Z) = Zajmylflj). (5-1)

z j:1
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Here, 2 denotes the cluster label, ozj denotes p(z = j) (the prior probability of cluster

j), and p(yIOJ) corresponds to p(ylz = j). Clustering is performed by estimating

the model parameter 9, defined by 0 = (01, . . .,Ct'k,(91,...,6k). By applying the

maximum likelihood principle, 9 can be estimated as 6 = argmaxgz £(6’; y), where

the log—likelihood £(6; y) is defined as

n n k

w. y) = Z Iogpm) = 2: log Zajp(yl6j)- (52)

2'21 i=1 j=1

This maximization is often done by the EM algorithm [58] by regarding Z, (the cluster

label of y,) as the missing data. The posterior probability p(z = j [y) represents

how likely it is that y belongs to the j-th cluster. If a hard cluster assignment is

desired, the MAP (maximum a posteriori) rule can be applied based on the model in

Equation (5.1), i.e., the object y is assigned to the j-th cluster (2 = j) if

0110(3’191)

21' 011004911 (53)

 ] = arg max

5.1 . 1 Exponential Family

While there are many possibilities for the form of the probability distribution p(yl6j),

It is Very common to assume that p(yldj) belongs to the exponential family. The

dlstribution p(ylflj) is in the exponential family if it satisfies the following two criteria:

the Suppert of p(yIOj) (the set of y with non-zero probability) is independent of the
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value of 6], and that p(yldj) can be written in the form

pole.) = exp (e(y)T¢(9j) — Aw») . (5.4)

Here, p(y) transforms the data y to become the “sufficient statistics”, meaning that

(My) encompasses all the relevant information of y in the computation of p(ylfij).

The function A(6j), also known as the log-partition function, normalizes the density

so that it integrates to one over all y. The function 119(93) transforms the parameter

and enables us to adopt different parameterizations of the same density. When 1“.)

is the identity mapping, the density is said to be in natural parameterization, and

6]- is known as the natural parameter of the distribution. The function A(0j) then

becomes the cumulant generating function, and the derivative of A(6j) generates

the cumulant of the sufficient statistics. For example, the gradient and Hessian of

A(f)J-) (with respect to Bj) lead to the expected value and the covariance matrix for

the sufficient statistics, respectively. Note that A(6j) is a convex function, and the

domain of Bj where the density is well-defined under natural parameterization is also

COIIVQX .

As an example, consider a multivariate Gaussian density with mean vector p and

covariance matrix 2. Its pdf is given by

My) = exp(_g10g(2.)+ graders-1 — go —- “FE-1e — m) , (5.5)

where d is the dimension of the feature vector y. If we define T = 2‘1 and V =
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23’1”, the above can be rewritten as

1 1

2 logdet T — éuTT—lup(y) = exp (trace (—%nyT) + yTV — glog(27r) +

(5.6)

From this, we can see that the sufficient statistics consist of —%ny and y. The set

of natural parameter is given by (T, V). The parameter V can take any value in Rd,

whereas T can only assume values in the positive-definite cone of d by d symmetric

matrices. Both these two sets are convex, as expected. The log-cumulant function is

given by

d 1

A(6) 2 2 log(27r) — 2 log det T + éuT_lu, (5.7)

which can be shown to be convex within the domain of T and V, where the density

is well-defined.

It is interesting to note that the exponential family is closely related to Bregman

divergence [27]. For any Bregman divergence Dp(., .) derived from a strictly convex

function p(.), one can construct a function fp such that

226') = eXP (—Dp()’» u)) fp(y)

is a member of the exponential family. Here, [1. is the moment parameter, meaning

1
that it is the expected value of the sufficient statistics . The cumulant generating

function of the density is given by the Legendre dual of p(.). One important con-

 

1The strict convexity of A(.) implies that there is an one-to—one correspondence between mo-

ment parameter and natural parameter. While the existence of such a mapping is easy to show,

constructing such a mapping can be difficult in general.
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sequence of this relationship is that soft-clustering (clustering where an object can

be partially assigned to a cluster) based on any Bregman divergence can be done

by fitting a mixture of the corresponding distribution in the exponential family, as

argued in [9]. Since Bregman divergence includes many useful distance measures2 as

special cases (such as Euclidean distance and Kullback-Leibler divergence, and see [9]

for more), a mixture density, with each component density in the exponential family,

covers many interesting clustering scenarios.

5.1.2 Instance-level Constraints

We assume that. the user has provided side-information in the form of a set of instance—

level constraints (denoted by C). The set of must-link constraints, denoted by (3+,

is represented by the indicator variables rim, such that (im- = 1 iff y,- participates in

the h-th must—link constraint. For example, if the user wants to state that the pair

(y2, y8) participates in the fifth must-link constraint, the user sets (15,2 2 1, 95,8 = 1,

and (i572- : 0 for all other 2'. This formulation, while less explicit than the formulation

in [161], which specifies the pairs of points participating in the constraints directly,

allows easy generalization to group constraints [166]: we simply set 51),,- to one for all

y, that are involved in the h-th group constraint. We also define ah,- 2 51h, / Z,- (1,”,

where ah,- can be perceived as the “normalized” indicator matrix, in the sense that

Zia)”- = 1. The set of must-not-link constraints, denoted by C‘, is represented

similarly by the variables 6),,- and bin" Specifically, 6),,- = 1 if y,- participates in the

 

2Strictly speaking, Bregman divergence can be asynunetric and hence is not really a distance

function.
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h-th must-not-link constraint, and bh, = f),,,-/ 2,,- 6,,,-. Note that {am} and {bhi} are

highly sparse, because each constraint provided by the user involves only a small

number of points (two if all the constraints are pairwise).

5.2 An Illustrative Example

In this section, we describe a simple example to illustrate an important shortcoming

of parametric clustering under constraints methods based on hidden Markov random

field — the approach common in the literature [263, 14, 21, 12, 158, 176, 161, 286]. In

Figure 5.3, there are altogether 400 data points generated by four different Gaussian

distributions. The task is to split this data into two clusters.

Suppose the user, perhaps due to domain knowledge, prefers a “left” and a “right”

cluster (as shown in Figure 5.3(c)) to the more natural solution of a “top” and a

“bottom” cluster (as shown in Figure 5.3(b)). This preference can be expressed

via the introduction of two must-link constraints, represented by the solid lines in

Figure 5.3(a). When we apply an algorithm based on hidden Markov random field to

discover the two clusters in this example, we can get a solution shown in Figure 5.3(c).

While cluster labels of the points involved in the constraints are modified by the

constraints, there is virtually no difference in the resulting cluster structure when

compared with the natural solution in Figure 5.3(b). This is because the change in

the cluster labels of the small number of points in constraints does not significantly

affect the cluster parameters. Not only are the clusters not what the user seeks, but

also the clustering solution is counter-intuitive: the cluster labels of points involved
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in the constraints are different from their neighbors (see the big cross and plus in

Figure 5.3(c); the symbols are enlarged for clarity).

Similar phenomena of “non-smooth” clustering solution have been observed in

[279] in the context of normalized cut clustering with constraints. A variation of the

same problem has been used as a motivation for the “space—level” instead of “instance-

level” constraints in [148]. One way to understand the cause of this problem is that the

use of hidden Markov random field effectively puts an upper bound on the maximum

influence of a constraint, irrespective of how large the penalty for constraint violation

is. So, the adjustment of the tradeoff parameters cannot circumvent this problem.

Since this problem is not caused by the violation of any constraints, the inclusion of

negative constraints cannot help.

5.2.1 An Explanation of The Anomaly

In order to have a better understanding of why an “um‘iatural” solution depicted in

Figure 5.3(d) is obtained, let us examine the hidden Markov random field approach

for clustering under constraints in more detail. In this approach, the distribution of

the cluster labels (represented by 2,) and the feature vectors (represented by y,-) can

be written as

p(yla' " aynlzlv' ° .,Zn,6) = Hp(YIlZ?)
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One typical choice of the potential function H(21, . . . , 2n, C+,C—) of the cluster labels

is to count the number of constraint violations:

H(z1,...,.~,,,c+,c—) = /\+ Z I(z, ¢ z,) + A“ Z 1(z,= z,), (5.8)

(i‘j)€C+ (MEC—

where A+ and z\‘ are the penalty parameters for the violation of the must-link and

must—not-link constraints, respectively. This potential function can be derived [161]

by the maximum entropy principle, with constraints (as in constrained optimization)

on the number of violations of the two. types of instance-level constraints. The as-

sigmnent of points to different clusters is determined by the posterior probability

p(21,. . . ,z,-,|y1,.. . .yn,6). Clustering is performed by searching for the parameters

that maximize the log-likelihood p(y1,. . . ,yn|6). Because

p(yli ' ° ' 7y72l0) Z Z p(y17° ' 'iY7llzli ° - -:Zn36)p(31a- ' 'aznlgl

21,...,Zn (59)

z arg max, p(yl‘) ' - '1ynlzli ' ' -,Zna6)p(zla ' - wznlg),

21,-H.411

the result of maximizing p(y1,...,yn[6) is often similar to the re-

sult of maximizing the “hard assignment log-likelihood”, defined by

arg max p(y1,...,yn|zl,...,zn,6)p(21,...,zn|6). This illustrates the rela-

21,...,Zn

tionship between “hard” clustering under constraints approaches (such as in [263])

and the “soft” approaches (such as in [161] and [14]).

For ease of illustration, assume that p(ylz = j) is a Gaussian with

mean vector ,uj and identity covariance matrix. The maximization of
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p(yl, . . . ,ynlzl, . . . , 2n, 9);)(21, . . . , znld) for the clustering under constraints example

in Figure 5.3 is equivalent. to the minimization of

n 2

22m.- =J')lly. — “jug +,\+ X It... a .,),

611:1 <z‘.j)ec+

where the potential function of the Markov random field is as defined in Equa-

tion (5.8), and C+ contains the two must-link constraints. Note that the first term,

the sum of square Euclidean distances between data points and the corresponding

cluster centers, is the cost function for standard k-means clustering.

We are going to compare two cluster configurations. The configuration “LR”,

which consists of a. “left" and a “right” cluster, can be represented by ”ER 2 (—2, 0)

and “in = (2,0), and this corresponds to the partition sought by the user in Fig-

ure 5.3(c). The configuration “TB”, which consists of a “top” and a “bottom”

cluster, can be represented by [.1ng = (0,~8) and ”2TB = (0,8), and this corre-

sponds to the “natural” solution shown in Figure 5.3(b). When X“ is very small,

the natural solution “TB” is preferable to “LR”, because the points, on average,

are closer to the cluster centers in “TB”, and the penalty for constraint viola-

tion is negligible. As /\+ increases, the cost for selecting “TB” increases. When

(A+ + lle‘ — MEBHQ) > My, — ”TB”? (y,- is the point under constraint in the upper

left point clouds), switching the cluster label of y, from “x” to “+” leads to a lower

cost for the “TB” configuration. This switching of cluster label affects the cluster

centers in the “TB” configuration. However, its influence is minimal because there

is only one such point, and the sum of the square error term in the objective func-
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tion is dominated by the remaining points that are not involved in constraints. As a

result, the sum of square term is minimized when the cluster centers are effectively

unmodified from the “TB” configuration. This leads to the counter—intuitive cluster—

ing solution in Figure 5.3(c). where the constraints are satisfied, but the cluster labels

are “discontinuous” in the sense that the cluster label of an object in the middle of a

dense point cloud can assume a cluster label different from those of its neighbors. A

related argument has been used to motivate “space-level” constraints in preference to

“instance-level” constraints in [148]: the influence of instance-level constraints may

fail to propagate to the surrounding points. This problem may also be attributed

to the problem of the inconsistent hypothesis space discussed in Section 5.0.2.1, be-

cause the cluster labels of points under constraints are determined in a way that is

different from the points without constraints. When Al” increases further, the cost

for this counter-intuitive configuration remains the same, because no constraints are

violated. Let C denote the cost of this counter-intuitive configuration.

We are now in a position to understand why it is not possible to attain the de-

sirable configuration “LR”. By pushing the vertical and horizontal point clouds away

from each other, we can arbitrarily increase the cost of the “LR” configuration, while

keeping the cost of the “TB” configuration the same. While the cost for the counter-

intuitive configuration also increases when the two point clouds are pushed apart,

such an increase is very slow because only the distance of one point (as in the term

Hy,- — prerH2) is affected. Consequently, the cost of “LR” configuration can be made

larger than C, which is indeed the case for the example in Figure 5.3. Therefore,

assuming that the clustering under constraints algorithm finds the clustering solu-
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tion that minimizes the cost function, the desired “LR” configuration can never be

recovered.

Note that specifying additional constraints (either must-link or must—not-link) on

points already participating in the constraints cannot solve the problem, because none

of the constraints are violated in the counter-intuitive configuration. This problem

remained unnoticed in previous studies, because it is a consequence of a small number

of constraints. When there are a large number of data points involved in constraints,

the sum of the square error is no longer dominated by data points not involved in

constraints. The enforcement of constraints changes the cluster labels, which in turn

modifies the cluster centers significantly during the minimization of the sum of error.

The counter—intuitive configuration is no longer optimal, and the “LR” configuration

will be generated because of its smaller cost. Note that this problem is independent

of the probabilistic model chosen to represent each cluster: the same problem can

arise if there is no restriction on the covariance matrix, for example.

There are several ways to circumvent this problem. One possibility is to increase

the number of constraints so that the constraints involve a large number of data

points. However, clustering under constraints is most useful when there are few

constraints, because the creation of constraints often requires a significant effort on

the part of the user. Instead of soliciting additional constraints from the user, the

system should provide the user an option to increase arbitrarily the influence of the

existing constraints —— something the hidden Markov random field approach fails to

do. One may also try to initialize the cluster parameters intelligently [13] so that a

desired local minimum (the “LR” configuration in Figure 5.3(c)) is obtained, instead
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of the global minimum (the counter—intuitive configuration in Figure 5.3(d) or the

“TB” configuration in Figure 5.3(b), depending on the value of /\+). However, this

approach is heuristic. Indeed, the discussion above reveals a problem in the objective

function itself, and we should specify a more appropriate objective function to reflect

what the user really desires. The solution in [161] is to introduce a parameter (in

addition to X“ and /\_) that can increase the influence of data points in constraints.

However, this approach introduces an additional parameter, and it is also heuristic.

An alternative potential function for use in the hidden Markov random field has been

proposed in [14] to try to circumvent the problem.

Because the main problem lies in the objective function itself, we propose a prin-

cipled solution to this problem by specifying an alternative objective function for

clustering under constraints.

5.3 Proposed Approach

Our approach begins by requiring the hypothesis space (see Section 5.0.2) used by

parametric clustering under constraints to be the same as the hypothesis space used

by parametric clustering without constraints. This means that the cluster label of an

object should be determined by its feature vector and the cluster parameters according

to the MAP rule in Equation (5.3) based on the standard finite mixture model in

Equation (5.1). The constraints should play no role in deciding the cluster labels.

This contrasts with the hidden Markov random field approaches (see Section 5.2),

where both the cluster labels and the cluster parameters can freely vary to minimize
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(c) Partially constrained

Figure 5.1: Supervised, unsupervised, and intermediate. In this figure, dots corre-

spond to points without any labels. Points with labels are denoted by circles, asterisks

and crosses. In (c), the must-link and must-not-link constraints are denoted by solid

and dashed lines, respectively.
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Figure 5.2: An example contrasting parametric and non-parametric clustering. The

particular parametric family considered here is a mixture of Gaussian with a common

covariance matrix. This is reflected by the linear cluster boundary. The clustering

solutions in (a) to (c) are in the hypothesis space induced by this model assumption,

and the clustering solutions in (d) to (f) are outside the hypothesis space, and thus

can never be obtained, no matter which objective function is used. On the other

hand, all of these six solutions are within the hypothesis space of non-parametric

clustering. It is possible that the clustering solutions depicted in (d), (e), and (f)

may be obtained if a poor clustering objective function is used.
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the cost function.

The desirable cluster parameters should (i) result in cluster labels that satisfy the

constraints, and (ii) explain the data well. These two goals, however, may conflict with

each other, and a compromise is made by the use of tradeoff parameters. Formally, we

seek the parameter vector 6 that maximizes an objective function J(0; y, C), defined

by

3(9;y,C) = 5093’) +.7-"(0;C), (5.10)

m+ m—

f(M) -—— -Zx\;§f+(6;Cf{) — Zip—(mg), (5.11)

h=1 h=1

where 17(6; C) denotes how well the clusters specified in 0 satisfy the constraints in C.

It consists of two terms: f+(0;C,:') and f“(6;Cil— ). The loss functions f+(6;C;]') and

f‘(9;C,: ) correspond to the violation of the h—th must-link constraint (denoted by

Cg”) and the h-th must-not-link constraint (denoted by C}: ), respectively. There are

altogether m+ must—link constraints and m- must-not-link constraints, i.e., [CI-fl =

m+ and [Ch— ] = m‘. The log-likelihood term £(6; 32), which corresponds to the fit

of the data 32 by the. model parameter 9, is the same as the log-likelihood of the

finite mixture model used in standard parametric clustering (Equation (5.2)). The

parameters A17“ and A; give us flexibility to assign different weights on the constraints.

In practice, they are set to a common value A. The value of /\ can either be specified

by the user, or it can be estimated by a cross—validation type of procedure. For

brevity, sometimes we drop the dependence of J on 6, y and C and write J as the

objective function.
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How can this approach be superior to the HMRF approaches? A counter-intuitive

clustering solution such as the one depicted in Figure 5.3(d) is no longer attainable.

The cluster boundaries are determined solely by the cluster parameters. So, in the

example in Figure 5.3(d), the top—left “big plus” point will assume the cluster label

of “x”, whereas the bottom-right “big cross” point will assume the cluster label of

“+”, based on the value of the cluster parameters as shown in the figure. The sec-

ond benefit is that the effect of the instance-level constraints is propagated to the

surrounding points automatically, thereby achieving the effect of the desirable space-

level constraints. This is because parametric cluster boundaries divide the data space

into different contiguous regions. Another advantage of the proposed approach is that

it can obtain clustering solutions unattainable by HMRF approaches. For example,

the “TB” configuration in Figure 5.3(b) can be made to have an arbitrarily high cost

by increasing the value of the constraint penalty parameter )0”. Since the cost of

the “LR” configuration is not affected by /\+, the “LR” configuration will have a

smaller cost than the “TB” cm‘ifiguration with a large )9”. When the cost function is

minimized, the “LR” configuration sought by the user will be returned.

5.3.1 Loss Function for Constraint Violation

What should be the form of the loss functions f+(6;C,:') and f”(6;C;)? Suppose

the points y,- and yj participate in a must-link constraint. This must—link constraint

is violated if the cluster labels 2,- (for y,) and zj (for yj), determined by the MAP

rule, are different. Define z, to be a vector of length k, such that its l-th entry
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is one if z,- = l, and zero otherwise. The number of constraint violations can be

represented by (1(z,,zj) if (1 is a distance measure such that d(z,-, 2]) = 1 if z,- # z]-

and zero, otherwise. Similarly, the violation of a must-not-link constraint between

y-* and yjav can be represented by 1 — (1(z,*, z1 Wk), where yiat and yja: are involved in
J

a must-not-link constraint.

Adopting such a distance function (1(., .) as the loss functions f+() and f’() is,

however, not a good idea because d(z,-, 2)) is a discontinuous function of 6, due to the

presence of arg max in Equation (5.3). In order to construct an easier optimization

problem, we “soften” z,- and define a new vector 5,- by

 
__ (01P(yz'|91))7 _ qu

5:!
— — —————, (5.12)

21’ (OI/p(in911))T 21’ (15’

where (12'! = am(y,-|91), and 7' is the smoothness parameter. When 7' goes to infinity,

5,- approaches zi, whereas a small value of 7' leads to a smooth loss function, which,

in general, has a less severe local optima problem.

Another issue is the choice of the distance function d(s,j,sJ-). Since 3,, 2 0 and

21 3,1 = 1, 5,, has a probabilistic interpretation. A divergence is therefore more

appropriate than a common distance measure such as the Minkowski distance for

comparing 5‘ and s'. We adopt the Jensen-Shannon divergence D 3,8» 173
2 3 JS 1 j
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with a uniform class prior as the distance measure:

k k
3:) Sjl

DJSfSi,Sj) = — :8“ log 7,31- + 23].) log ..t_l_

121 [:1

(5.13)

1

where t) = '2‘(5il + 3],).

There are several desirable properties of Jensen-Shannon divergence. It is symmetric,

well—defined for all s,- and sj, and its square root can be shown to be a metric [76, 199].

The minimum value of 0 for DJS(., .) is attained only when s,- = sj. It is upper-

bounded by a constant (log 2), and this happens only when s, and sj are farthest

apart, i.e., when 5,]: 1 and 5]), = 1 with l 75 h. Because lo—glggDJS(Zi,Zj) = 1 if z,- 75

zj and 0 otherwise, the Jensen—Shannon divergence satisfies (up to a multiplicative

constant) the desirable property of a distance measure as described earlier in this

section. Note that Kullback—Leibler divergence can become unbounded when s,- and

sj have different supports, and thus it is not an appropriate choice.

Jensen-Shannon divergence has an additional appealing property: it can be gen-

eralized to measure the difference between more than two distributions. This gives

a very natural extension to constraints at the group level [231, 166]. Suppose 6 ob-

jects participate in the h-th group-level must-link constraint. This is denoted by the

variables ah,- introduced in Section 5.1.2, where ah, = 1/e if y,- participates in this

constraint, and zero otherwise. The Jensen-Shannon divergence for the h-th must-link
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constraint D+SUI.) is defined as

ziahiz921103—

i=1

n

where flit = Zahisz‘l-

i=1

n k k

=2; ah,- :1881'] log Sil - Z: ”Ill log ”lil’ (5.14)

i=1 [=1 [=1till

Similarly, the Jensen—Shannon divergence for the h-th must-not-link constraint

D;S(h) is defined as

n k k

s; _. _
DJS(([2) =2 bh, El ,1 logt—: = E bh, E 3,) logsil— E thllogthl’ (5.15)

i:n1 [Ll i=1 [=1 [=1

where {[7, = ZI),,,s,-l.l

i=1

Here, bh, denotes the nurst-not-link constraint as discussed in Section 5.1.2. The

proposed objective function in Equation (5.10) can be rewritten as

.7 = 13(6)?) +T(B;C)

m+ m— (5'16)

- cameraman) — 2 50302.) + Z Agngso)

h=1 h=1

where the annealed log—likelihood cannealedwmn), defined in Equation (B2), 18 a

generalization of the log—likelihood intended for deterministic annealing. When 7 = 1,

Cannealed(6;y,7) equals may). Note that both D}5(1).) and D150?) are functions

of 6.
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5.4 Optimizing the Objective Function

The proposed objective function (Equation (5.16)) is more difficult to optimize than

the log-likelihood (Equation (5.2)) used in standard parametric clustering. We can-

not derive any efficient convex relaxation for J, meaning that a bound-optimization

procedure such as the EM algorithm cannot be applied. We resort to general non-

linear optimization algorithms to optimize the objective function. In Section 5.4.1,

we shall present the general idea of these algorithms. After describing some details

of the algorithms in Section 5.4.2, we present the specific equations used for a mix-

ture of Gaussians in Section 5.4.3. Note that these algorithms are often presented in

the literature as minimization algorithms. Therefore, we minimize —J rather than

maximizing ,7 in practice.

5.4.1 Unconstrained Optimization Algorithms

Different algorithms have been attempted to optimize the proposed objective function

,7. They include conjugate gradient, quasi-Newton, preconditioned conjugate gradi—

ent, and line-search Newton. Because these algorithms are fairly well-documented in

the literature [87, 23], we shall only describe their general ideas here. All of these

algorithms are iterative and require an initial parameter vector 6(0).

5.4.1.1 Nonlinear Conjugate Gradient

The key idea of nonlinear conjugate gradient is to maintain the descent directions

d“) in different iterations, so that different d“) are orthogonal (conjugate) to each
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other with respect to some approximation of the Hessian matrix. This can prevent

the inefficient “zig-zag” behavior encountered in steepest descent, which always uses

the negative gradient for descent. Initially, d(0) equals the negative gradient of the

function to be minimized. At iteration t, a line-search is performed along d“), 1e

we seek 7) such that the objective function evaluated at 6“) + ndm is minimized,

where 6“) is the current parameter estimate. The parameter is then updated by

6““) = 6m + rjdm. The next direction of descent d(t+1) is found by computing

a vector that is (approximately) conjugate to previous descent directions. Many

different schemes have been proposed for this, and we follow the suggestion given

in the tutorial [232] and adopt the Polak—Ribiére method with restarting to update

 

(1+1) T ()t+1 (1‘)

(1+1): (r ) (r( —r )
C max (1” (r(t1)Tr(t) ,0)

d(t+1) : r(1+1) + (“+911“).

Note that line-search in conjugate gradient should be reasonably accurate, in order

to ensure that the search directions d“) are indeed approximately conjugate (see the

discussion in Chapter 7 in [23]).

The main strength of conjugate gradient is that its memory usage is only linear

with respect to the number of variables, thereby making it attractive for large scale

problems. Conjugate gradient has also found empirical success in fitting a mixture of

Gaussians [222], and is shown to be more efficient than the EM algorithm when the

clusters are highly overlapping.
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5.4.1.2 Quasi-Newton

Consider the second-order Taylor expansion for a real-valued function f (x), which is

1c»uremi+w—6Wfléwmi+ge—efiflHwae—e”1 (5N)

where g(x) and H(x0) denote the gradient and the Hessian of the function f ()

evaluated with x = x0. For brevity, we shall drop the reference to 60") for both

g and H. Assuming that H is positive definite, the right-hand-side of the above

approximation can be minimized by 6 = 6“) — H‘lg.

The quasi—Newton algorithm does not require explicit knowledge of the Hessian

H, which can sometimes be tricky to obtain. Instead, it maintains an approximate

Hessian H, which should satisfy the quasi-Newton condition:

9(1+1) _ 9(1) : H-1(g(t+1) _ gm).

Since the inversion of the Hessian can be computationally expensive, G“), the inverse

of the Hessian is approximated instead. W'hile different schemes to update G“) are

possible, the de facto standard is the BFGS (Broyden-Fletcher-Goldfarb—Shanno)

procedure. Below is its description taken from [23]:

p 2 9ft“) _ 9(1)

v=-eW“-gm>
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Gt“) 2 G“) + ——;pp — mevaGm + (vTG(‘>V)uuT.

Given that Gm is positive-definite and the round-off error is negligible, the above up—

date guarantees that GUH) is positive-definite. The initial value of the approximated

inverse Hessian Gm) is often set to the identity matrix. Note that an alternative ap-

proach to implement quasi-Newton is to maintain the Cholesky decomposition of the

approximated Hessian instead. This has the advantage that the approximated Hes-

sian is guaranteed to be positive definite even when the round-off error cannot be

ignored.

In practice, the quasi-Newton algorithm is accompanied with a line—search pro—

cedure to cope with the error in the Taylor approximation in Equation (5.17) when

6 is far away from 6”). The descent direction used is —H_1g(t). Note that if H is

positive definite, —-g(t)H‘—1g(t) will be always negative and —H"1g(t) will be a valid

descent direction.

The main drawback of the quasi-Newton method is its memory requirement. The

approximate inverse Hessian requires O(|6|2) memory, where [6] is the number of

variables in 6. This can be slow for high-dimensional 6, which is the case when the

data y, is of high dimensionality.

5.4.1.3 Preconditioned Conjugate Gradient

Both conjugate gradients and quasi-Newton require only the gradient information of

the function to be minimized. Faster convergence is possible if we incorporate the

analytic form of the Hessian matrix into the optimization procedure. However, what
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really can help is not the Hessian, but the inverse of the Hessian. Since the inversion

of the Hessian can be slow, it is common to adopt some approximation of the Hessian

matrix so that its inversion can be done quickly.

Preconditioned conjugate gradient (PCG) uses an approximation to the inverse

Hessian to speed up conjugate gradient. The approximation, also known as the

preconditioner, is denoted by M. PCG essentially creates an optimization problem

_ _ 9 ,. . . . . .

that has M 1/2HM 1/“ as the “effective” Hes31an matrlx and apphes conjugate

gradient to it, where H is the Hessian matrix of the original optimization problem. If

the “effective” Hessian matrix is close to the identity, conjugate gradient can converge

very fast.

We refer the reader to the appendix in [232] for the exact algorithm for PCG.

Practical implementation of PCG does not require the computation of M—1/2. Only

the multiplication by M“1 is needed. Note that the preconditioner should be positive

definite, or the descent direction computed may not decrease the objective function.

We can see that there are three requirements for a good conditioner: positive defi—

nite, efficient inversion, and good approximation of the Hessian. The first and the

third requirements can contradict. with each other, because the true Hessian is often

not positive-definite unless the objective function is convex. Finding a good precon-

ditioner is an art, and often requires insights into the problem at hand. However,

general procedures for creating a preconditioner also exist, which can be based on

incomplete Cholesky factorization, for example.

192



5.4.1.4 Line-search Newton

Line-search Newton is almost the same as the quasi-Newton algorithm, except that

the Hessian is provided by the user instead of being approximated by the gradients.

There is, however, a catch here. The true Hessian may not be positive-definite,

meaning that the 11'1inimization problem on the right-hand—side of Equation (5.17)

does not have a solution. Therefore, it is common to replace the true Hessian with

some approximated version that is positive—definite. Since H_1g is to be computed,

such an approxin‘iation should admit efficient inversion, or at least multiplication by its

inverse should be fast. There are two possible ways to obtain such an approximation.

We can either add 6I to the true Hessian, where (S is some positive number determined

empirically, or we can “repair” H by adding some terms to it to convert it to a

positive-definite matrix.

Note that for both line-search Newton and PCG, the approximated inverse of the

Hessian, which takes O(|6|2) memory, need not be formed explicitly. The only thing

needed is the ability to be multiplied by the approximated inverse.

5.4.2 Algorithm Details

There are several issues that are common to all these optimization algorithms.

5.4.2.1 Constraints on the Parameters

The algorithms described in Section 5.4.1 are all unconstrained optimization algo-

rithms, meaning that there are no restrictions 011 the values of 6. However, our
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optimization problem contains the constraint that the mixture weights ozj are pos-

itive and sum to one, and the fact that the precision matrix Tj is symmetric and

positive definite. For {0].}, we re-parameterize by introducing a set of variables {63-}

and set

exp(/3j)

For Tj, we can either re-parameterize by introducing Fj such that Tj = FjF31-”,

or we can modify our optimization algorithm to cope with the constraints. The

positive-definite constraint is enforced by modifying the line-search routine so that

the parameters are always feasible. This is a feasible approach because the precision

matrices in a reasonable clustering solution should not become near singular. For

the symmetric constraint, it is enforced by requiring that the descent direction in

line-search always has symmetric precision matrices.

5.4.2.2 Common Precision Matrix

A common practice of fitting a mixture of Gaussian is to assume a common precision

matrix, i.e., the precision matrices of all the k Gaussian components are restricted

to be the same, i.e., T1 = = Tk = T. Instead of the gradient with respect to

different Tj, we need the gradient of ._7 with respect to T. This can be done easily

because

”8.7

1:1 er,-
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Consequently, Equation (B.12) should be modified to

0 1

6—T—‘7z— 2:617)”le +Z(-12-ujp]T +—%‘T1)Zc,j (5.19)

2'

whereas Equation (B20) should be modified to

t} 1 _ 1

—,,T.7= é*r 12cm- — 529-161 was. we? (5.20)

ij ij

The case for Cholesky parameterization is similar. We set F1 = = Fk = F, and

Equation (B.15) should be modified to

0

DFJ:_ Z(iniyiF+Z(Hjuj +T1)FZ(32]1 (5'21)

i] .7

and Equation (B21) should be modified to

(‘9 -

515-..7 = T 1F200— Zcijf)’i - Mjllyz' - MleF- (5-22)

5.4.2.3 Line Search Algorithm

The line-search algorithm we used is based on the implementation in Matlab, which is

in turn based 011 section 2.6 in [86]. Its basic idea is to perform a cubic interpolation

based on the value of the function and the gradient evaluated at two parameter

values. The line search terminates when the VVolfe’s condition is satisfied. Following

the advice in Chapter 7 of [23], the line-search is stricter for both conjugate gradient

and preconditioned conjugate gradient in order to ensure conjugacy. Note that when
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the Gaussians are parameterized by their precision matrices, the line search procedure

disallows any parameter vector that has non-positive definite precision matrices.

5.4.2.4 Annealing the Objective Function

The algorithms described in Section 5.4.1 find only the local minima of J based

on the initial parameter estimate 6(0). One strategy to alleviate this problem is to

adopt a deterministic-annealing type of procedure and use a “smoother” version of

the objective function. The solution of this “smoother” optimization problem is used

as the initial guess for the actual objective function to be optimized. Specifically, we

adjust the two temperature—like parameters 7 and T in J defined in Equation (5.16).

When 7 and T are small, J is smooth and is almost convex, therefore it is easy to

optimize. The annealing stops when 7 reaches one and T reaches a pre-specified value

Tfinal
, which is set to four in our experiment. This is, however, a fairly insensitive

parameter. Any number between one and sixteen leads to similar clustering results.

5.4.3 Specifics for a Mixture of Gaussians

All the algorithms described in Section 5.4.1 require the gradient information of the

objective function. In Appendix B.1, we have derived the gradient information with

the assumption that each mixture component is a Gaussian distribution. Recall that

qz-j = log p(yil6j), and sij has been defined in Equation (5.12). Define the following:

7

- (113'

Zj’ qij,
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(1’)] = E Afah,— Zh/\— bhi 81] log 823'

[2:1

"1+ m—

— 3”- Z1+(1),,- log1+=2: 51111-1015,-

h=1

C16 = 7”,} - T(Zl’ij — Sij 220,1).

[=1

The partial derivative of J with respect to 63- is

(7

0‘37]: 2‘C21“ (.11 2.7-:6”.

2

f
!
-

(5.23)

Under the natural parameterization u) and T) for the parameters of the l-th cluster,

we have

g_l;7: ZCCile" “[ZCC2[

59!- = AZ Cuyz-yf + % (uzuf + 21) 2 C11-

1' 1'
(9T) 2

If the Cholesky parameterization F1 is used instead of T1, we have

(9.7 :r T
O—F] = - Zcztlyiyz' F1+ (WM + 201712011-

2 i

If the moment parameterization #1 and T) are used instead, we have

0.7

._— = r E : -—

2
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(5.24)

(5.25)

(5.26)

(5.27)



197,: El:6‘2"! g; 011(y1 - uz)T(y1 - m) (5.28)

and the corresponding partial derivative if Cholesky parameterization is used is

ar, =(21Z CH ‘ 201-16' )T(y1 — 121)) F1. (5.29)

The Hessian of J is clumsier to present, and the reader can refer to Appendix B.2

for its exact form under various parameterizations.

5.5 Feature Extraction and Clustering with Con-

straints

It turns out that the objective function introduced in Section 5.3 can be modified to

simultaneously perform feature extraction and clustering with constraints. There are

three reasons why we are interested in performing these two tasks together.

First, the proposed algorithm does not perform well for small data sets with

a large number of features (denoted by (1), because the d by d covariance matrix

is estimated from the available data. In other words, we are suffering from the

curse of dimensionality. The standard solution is to preprocess the data by reducing

the dimensionality using methods like principal component analysis. However, the

resulting low-dimensional representation may not be optimal for clustering with the

given set of constraints. It is desirable to incorporate the constraints in seeking a

good low-dimensional representation.
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The second reason is from a modeling perspective. One can argue that it is inap-

propriate to model the two desired clusters shown in Figurc 5.3(d) by two Gaussians,

because the distribution of the data points are very “non—Gaussian”: there are no

data points in the central regions of the two Gaussians, which are supposed to have

the highest data densities! If the data points are projected to the one-dimensional

subspace of the :r-axis, the resulting two clusters follow the Gaussian assumption well

while satisfying the constraints. Note that PCA selects a projection direction that is

predominantly based on the y-axis because the data variance in that direction is large.

However, the clusters formed after such a projection will violate the constraints. In

general, it is quite possible that given a high dimensional data set, there exists a

low—din1ensional subspace such that the clusters after projection are Gaussian-like,

and the constraints are satisfied by those clusters.

The third reason is that the projection can be combined with the kernel trick to

achieve clusters with arbitrary shapes. A nonlinear transformation is applied to the

data set to embed the data in a high-dimensional feature space. A linear subspace

of the given feature space is sought such that the Gaussian clusters formed in that

subspace are consistent with the given set of constraints. Because of the non-linear

transformation, linear cluster boundaries in that subspace correspond to nonlinear

boundaries in the original input space. The exact form of the nonlinear boundaries

is controlled by the type of the nonlinear transformation applied. Note that such

transformation need not be performed explicitly because of the kernel trick (see Sec-

tion 2.5.1). In practice, kernel PCA is first performed 011 the data in order to extract

the main structure in the high dimensional feature space. The number of features
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returned by kernel PCA should be large. The feature extraction algorithm in this

section is then applied to the result of kernel PCA.

5.5.1 The Algorithm

Let x, be the result of projecting the data point y,- into a d’-dimensional space, where

d’ is small and d’ < (1, and d is the dimension of y,. Let PT be the d’ by d projection

matrix, i.e., x,- = PTyi, and PTP = I. Let PTuj and T be the cluster center of the

j-th Gaussian component and the common covariance matrix, respectively. Let R be

the Cholesky dect imposition of T, i.e., T = RRT. We have

1

p(X1lz1 =1) = (2112172151 r1”? exp (—-,—(x.- — PTpJ-1Tnx. — 13%)) . (5.30)

Because T = RTPTPR, we can rewrite the above as

losp(X1lz1 = j)

I
I

= —% log(271) + glog det T — -2—(y,- — pj)TPTPT(y,- — 12]), (5-31)

I

(l 1 1
2 _§ log(27r) + —2— log 1191 FTF — 5m — 11,-)TFFT(y1 - 1a)).

where F = PR. Note the similarity between this expression and that of log p(yilz, =

j) if we adopt the parameterization T = FFT as discussed in Section 5.4.2.1. We

have

6 .

5’71 losp(xx1lz1 = J) = FFT(y1' — Hjl1 (5.32)
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a

'
I _

0—F10gpfxil31' :
J) : F(FTF) 1 — (Yi _ “110% __ Hj)TF-

(533)

While P has an orthogonality constraint, there is no constraint on F, and thus we cast

our optimization problem in terms of F. The parameters F, pj and 63- can be found

by optimizing J, after substituting Equation (5.31) as log qij into Equation (5.16).

In practice, the quasi-Newton algorithm is used to find the parameters that minimize

the objective function, because it is difficult to inverse the Hessian efficiently.

It is interesting to point out that this subspace learning procedure is related to

linear discriminant analysis if the data points y,- are standardized to have equal vari-

ance. If we fix T to be the identity matrix, maximizing the log-likelihood is the same

as minimizing (y, -— pj)TPTP(y,- — 22]). This is the within-class scatter of the j-th

cluster. Since the sum of between-class scatter and the within-class scatter is the

total data scatter, which is constant because of the standardization, maximization of

the within-class scatter is the same as maximizing the ratio of between-class scatter

to the within-class scatter. This is what linear discriminant analysis does.

5.6 Experiments

To verify the effectiveness of the proposed approach, we have applied our algorithm

to both synthetic and real world data sets. we compare the proposed algorithm

with two state-of—the-art algorithms for clustering under constraints. The first one,

denoted by Shental, is the algorithm proposed by Shental et al. in [231]. It uses

“chunklets” to represent the cluster labels of the objects involved in must—link con-
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straints, and a l\-"‘Iarkov network to represent the cluster labels of objects participating

in must-not—link constraints. The EM algorithm is used for parameter estimation,

and the E-step is done by computations within the Markov network. It is not clear

from the paper the precise algorithm used for the inference in the E—step, though

the Matlab implementation3 provided by the authors seems to use the junction tree

algorithm. This can take exponential time when the constraints are highly coupled.

This potential high time complexity is the motivation for the mean-field approxi-

mation used in the E-step of [161]. The second algorithm, denoted by Basu, is the

constrained k-means algorithm with metric learning4 described in [21]. It is based

on the idea of hidden Markov random field, and it uses the constraints to adjust the

metrics between different data points. A parameter is needed for the strength of the

constraints. Note that we do not compare our approach with the algorithm in [161],

because its implementation is no longer available.

5.6.1 Experimental Result on Synthetic Data

Our first experiment is based 011 the example in Figure 5.3(a), which contains 400

points generated by four Gaussians centered at [g], l—28l’ [:g] and [”82], each

with identity covariance matrix. Recall that the goal is to group this data set into

two clusters — a “left” and a “right” cluster —- based on the two must—link constraints.

Specifically, points with negative and positive horizontal co—ordinates are intended

to be in two different clusters. Note that this synthetic example differs from the

 

3The url is http : //www . cs . huj i . ac . il/~tomboy/code/ConstrainedEM_p1usBNT . zip.

4Its implementation is available at http://www.cs .utexas .edu/users/ml/risc/code/.

202



similar one in [161] in that the vertical separation between the top and bottom point

clouds is larger. This increases the difference between the goodness of the “left/right”

and “top/bottom” clustering solutions, so that a small number of constraints is no

longer powerful enough to bias one clustering solution over the other as in [161]. The

results of running the algorithms Shental and Basu are shown in Figures 5.4(a) and

5.4(b), respectively. For Shental the two Gaussians estimated are also shown. Not

only did both algorithms fail to recover the desired cluster structure, but also the

cluster assignments found were counter-intuitive. This failure is due to the fact that

these two approaches represent the constraints by imposing prior distributions on the

cluster labels, as explained earlier in Section 5.2.

The result of applying the proposed algorithm to this data set. with )1 = 250 is

shown in Figure 5.4(c). The two desired clusters have been almost perfectly recov-

ered, when we compare the solution visually with the desired cluster structure in

Figure 5.3(c). A more careful comparison is done in Figure 5.4(d), where the cluster

boundaries obtained by the proposed algorithm (the gray dotted line) is compared

with the ground-truth (the solid green line). We can see that these two boundaries

are very close to each other, indicating that the proposed algorithm discovered a good

cluster boundary. This compares with the similar example in [167], where the cluster

boundary there (as inferred from the Gaussians shown) is quite different5 from the

desired cluster boundary. An additional cluster boundary obtained by the proposed

algorithm when T took the intermediate value of 1 is also shown (the magenta dashed

 

5Note that the synthetic data example in [167] is fitted with a mixture model with different

covariance matrices per class. Therefore, comparing it with the proposed algorithm may not be the

most fair.
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line). (The final cluster boundary was produced with T = 4.) This boundary is signif-

icantly different from the ground—truth boundary. So, a large value of T improves the

clustering result in this case. This improvement is the consequence of the fact that

a large T focuses on the cluster assignments of the objects and reduces the spurious

influence of the exact locations of the points. The Jensen-Shannon divergence mea-

sures the constraint violation/satisfaction more accurately. Note that a larger value

of T does not have any further visible effect on the cluster boundary.

The Gaussian distributions contributing to these cluster boundaries are shown in

Figure 5.4(e). We observe that the Gaussians recovered by the proposed algorithm

(dotted gray lines) are slightly “fatter” than those obtained with the ground—truth

labels (solid green lines). This is because data points not in a particular cluster

can still contribute, though to a smaller extent, to the covariance of the Gaussian

distributions due to the soft-assignment implied in the mixture model. This is not

the case when the covariance matrix is estimated based on the ground-truth labels.

While the proposed algorithm is the only clustering under constraints algorithm

we know that can return the two desired clusters, we want to note that a sufficiently

large A is needed for its success. If A = 50, for example, the result of the proposed

algorithm is shown in Figure 5.4(f). This is virtually identical to the clustering

solution without any constraints (Figure 5.3(b)). While the constraints are violated,

the clustering solution is more “reasonable” than the solutions shown in Figures 5.4(a)

and 5.4(b). Note that it is easy to detect that A is too small in this example, because

the constraints are violated. We should increase A until this is no longer the case.

The resulting clustering solution will effectively be identical to the desired solution
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shown in Figure 5.4(c).

5.6.2 Experimental Results on Real World Data

We have also compared the proposed algorithm with the algorithms Shental and Basu

based on real world data sets obtained from different domains. The label information

in these data sets is used only for the creation of the constraints and for performance

evaluation. In 1;)articular, the labels are not used by the clustering algorithms.

5.6.2.1 Data Sets Used

Table 5.2 summarizes the characteristics of the data sets used. The following prepro-

cessing has been applied to the data. whenever necessary. If a data set has a nominal

feature that can assume 0 possible values with c > 2, that feature is converted into

0 continuous features. The 2-th such feature is set to one when the nominal feature

assumes the 2-th possible value, and the remaining c— 1 continuous features are set to

zero. If the variances of the features of a data set are very different, standardization

is applied to all the features, so that the variances or the ranges of the preprocessed

features become the same. If the number of features is too large when compared with

the number of data points 72, principal component analysis (PCA) is applied to reduce

the dimensionality. The number of reduced dimension d is determined by finding the

largest d that satisfies n > 3d”, while the principal components with negligible eigen-

values are also discarded. The difficulty of the classification tasks associated with

these data sets can be seen by the values of the F-score and the normalized mutual

information (to be defined in Section 5.6.2.3) computed using the ground—truth labels,
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Figure 5.4: The result of running different clustering under constraints algorithms

for the synthetic data set shown in Figure 5.3(a).

and Basu failed to discover the desired clusters ((a) and (b)), the proposed algorithm

The resulting cluster boundaries and Gaussians are

When

succeeded with A = 250 (0).

compared with those estimated with the ground-truth labels ((d) and (e)).

   
(f) Result of proposedalgorithm, A = 50

A = 50, the proposed algorithm returned the natural clustering solution (f).
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under the assummion that the class conditional densities are Gaussian with common

covariance matrices.

Data Sets from UCI The following data sets are obtained from the UCI machine

learning repository6. The list below includes most of the data sets in the repository

that have mostly continuous features and have relatively balanced class sizes.

The dermatology database (derm) contains 366 cases with 34 features. The goal

is to determine the type of Erythemato-Squamous disease based on the features ex-

tracted. The age attribute, which has missing values, is removed. PCA is performed

to reduce the resulting 33 dimensional data to 11 features. The sizes of the six classes

are 112, 61, 72, 49, 52 and 20.

The optical recognition of handwritten digits data set (digits) is based on nor-

malized bitmaps of handwritten digits extracted from a preprinted form. The 32x32

bitmaps are divided into non-overlapping blocks of 4x4 and the number of pixels are

counted in each block. Thus 64 features are obtained for each digit. The training

and testing sets are combined, leading to 5620 patterns. PCA is applied to reduce

the dimensionality to 42 to preserve 99% of the total variance. The sizes of the ten

classes are 554, 571, 557, 572, 568, 558, 558, 566, 554, and 562.

The ionosphere data set (ion) consists of 351 radar readings returned from the

ionosphere. seventeen pulse numbers are extracted from each reading. The real part

and the imaginary part of the complex pulse. numbers constitute the 34 features per

pattern. There are two classes: “good“ radar returns (225 patterns) are those showing

 

6The url is http://www. ics .uci . edu/mlearn/MLRepository.html
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evidence of some type of structure in the ionosphere, and “bad” returns (126 patterns)

are those that do not; their signals pass through the ionosphere. PCA is applied to

reduce the dimensionality to 10.

The nuilti-feature digit data set consists of features of handwritten numerals ex—

tracted from a collection of Dutch utility maps. Multiple types of features have been

extracted. we have only used the features based on the 76 Fourier coefficients of the

character shapes. The resulting data set is denoted by mfeat-fou. There are 200

patterns per digit class. PCA is applied to reduce the dimensionality to 16, which

preserves 95% of the total energy.

The Wisconsin breast cancer diagnostic data set (wdbc) has two classes: benign

(357 cases) and malignant (212 cases). The 30 features are computed from a digitized

image of the breast tissue, which describes the characteristics of the cell nuclei present

in the image. All the features are standardized to have mean zero and variance one.

PCA is applied to reduce the dimensionality of the data to 14.

The UCI image segmentation data set (UCI-seg) contains 19 continuous attributes

extracted from random 3x3 regions of seven outdoor images. One of the features has

zero variation and is discarded. The training and testing sets are combined to form

a data set with 2310 patterns. After standardizing each feature to have variance one,

PCA is applied to reduce the dimensionality of the data to 10. The seven classes

correspond to brick-face, sky, foliage, cement, window, path, and grass. Each of the

classes has 330 patterns.

208



Data Sets from Statlog in UCI The following five data sets are taken from the

Statlog section7 in the UCI machine learning repository.

The Australian credit approval data set (austra) has 690 instances with 14 at-

tributes. The two classes are of size 383 and 307. The continuous features are stan-

dardized to have standard deviation 0.5. Four of the features are non-binary nominal

features, and they are converted to multiple continuous features. PCA is then applied

to reduce the din‘iensionality of the concatenated feature vector to 15.

The German credit data (german) contains 1000 records with 24 features. The

version with numerical attributes is used in our experiments. PCA is used to reduce

the dimensionality of the data to 18, after standardizing the features so that all of

them lie between zero and one. The two classes have 700 and 300 records.

The heart data set (heart) has 270 observations with 13 raw features in two

classes with 150 and 120 data points. The three nominal features are converted

into continuous features. The continuous features are standardized to have standard

deviation 0.5, before applying PCA to reduce the data set to 9 features.

The satellite image data set (sat) consists of the multi-spectral values of pixels

in 3x3 neighborhoods in a satellite image. The aim is to classify the class associated

with the central pixel, which can be “red soil”, “cotton crop”, “grey soil”, “damp

grey soil”, “soil with vegetation stubble” or “very damp grey soil”. The training and

the testing sets are combined to yield a data set of size 6435. There are 36 features

altogether. The classes are of size 1533, 703, 1358, 626, 707 and 1508.

 

7The url is http://www. ics.uci.edu/mlearn/databases/statlog/
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The vehicle silhouettes data set (vehicle) contains a set of features extracted

from the silhouette of a vehicle. The goal is to classify a vehicle as one of the four

types (Opel, Saab, bus, or van) based on the silhouette. There are altogether 846

patterns in the four classes with sizes of the four classes as 212, 217, 218, and 199.

The features are first standardized to have standard deviation one, before applying

PCA to reduce the dimensionality to 16.

Other Data Sets We have also experimented the proposed algorithm with data

sets from other sources.

The texture classification data set (texture) is taken from [127]. It consists of

4000 patterns with four different types of textures. The 19 features are based on

Gabor filter responses. The four classes are of sizes 987, 999, 1027, and 987.

The online handwritten script data set (script), taken from [192], is about a

problem that classifies words and lines in an online handwritten document into one of

the six major scripts: Arabic, Cyrillic, Devnagari, Han, Hebrew, and Roman. Eleven

spatial and temporal features are extracted from the strokes of the words. There are

altogether 12938 patterns, and the sizes of the six classes are 1190, 3173, 1773, 3539,

1002, and 2261.

The ethnicity recognition data set (ethn) was originally used in [175]. The goal

is to classify a 64x64 face image into two classes: “Asian” (1320 images) and “non-

Asian” (1310 images). It includes the PF01 databaseg, the Yale databaseg, the AR

 

8http://nova.postech.ac.kr/archives/imdb.htm1.

9http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
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(a) Asians

215721
  curtain-o:

....Wu .

. A(b) Non-Asians

  

Figure 5.5: Example face images in the ethnicity classification problem for the data

set ethn.

database [181], and the non-public NLPR database“). Some example images are

shown in Figure 5.5. 30 eigenface coefficients are extracted to represent the images.

The clustering under constraints algorithm is also tested on an image segmenta-

tion task based on the l\r’fondrian image shown in Figure 5.6, which has five distinct

segments. The image is divided into 101 by 101 sites. Twelve histogram features

and twelve Gabor filter responses of four orientations at three different scales are

extracted. Because the histogram features always sum to one, PCA is performed to

reduce the dimension from 24 to 23. The resulting data set Mondrian contains 10201

patterns with 23 features in 5 classes. The sizes of the classes are 2181, 2284, 2145,

2323, and 1268.

The 3-newsgroup database11 is about the classification of Usenet articles from

different newsgroups. It has been used previously to demonstrate the effectiveness of

clustering under constraints in [14]. It consists of three classification tasks (diff -300,

Sim-300, same-300), each of which contains roughly 300 documents from three dif-

ferent topics. The topics are regarded as the classes to be discovered. The three

classification tasks are of different difficulties: the sets of three topics in diff-300,

 

10Provided by Dr. Yunhong Wang, National Laboratory for Pattern Recognition, Beijing.

11It can be downloaded at http://www. cs .utexas.edu/users/ml/risc/.
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Figure 5.6: The Mondrian image used for the data set Mondrian. It contains 5

segments. Three of the segments are best distinguished by Gabor filter responses,

whereas the remaining two are best distinguished by their gray-level histograms.

Sim-300, and same-300 respectively have increasing similarities. Latent semantic

indexing is applied to the tf—idf normalized word features to convert each newsgroup

article into a feature vector of dimension 10. The three classes in diff—300 are all of

sizes 100, whereas the number of patterns in the three classes in Sim-300 is 96, 97,

and 98. The sizes of the classes in same-300 are 99, 98, and 100.

Notice that the data sets ethn, Mondrian, diff-300, Sim-300, and same-300

have been used in the previous work [161]. The same preprocessing is applied for

both ethn and Mondrianas in [161], though we reduce the dimensionality of the data

set from 20 to 10 for the diff-300, Sim-300, and same-300 data sets based on our

“n > 3d2” rule.
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5.6.2.2 Experimental Procedure

For each data set listed in Table 5.2, a constraint was specified by first generating

a random point pair (yi, yj). If the ground—truth class labels of y, and yj were the

same, a must-link constraint was created between y, and yj. Otherwise, a must-

not-link constraint was created. Different numbers of constraints were created as a

percentage of the number of points in the data set: 1%, 2%, 3%, 5%, 10%, and 15%.

Note that the constraints were generated in a “cumulative” manner: the set of “1%”

constraints was included in the set of “2%” constraints, and so on.

The line—search Newton algorithm was used to optimize the objective function ,7

in the proposed approach. The Gaussians Were represented by the natural parameters

VJ' and T, with a common precision matrix among different Gaussian components.

This particular choice of optimization algorithm was made based on a preliminary

efficiency study, where this approach was found to be the most efficient among all the

algorithms described in Section 5.4.1. Because the gradient is available in linesearch

Newton, convergence was decided when the norm of the gradient was less than a

threshold of the norm of the initial gradient. Note that this is a stricter and more

reasonable convergence criteria than the one typically used in the EM algorithm,

which is based on the relative change of log-likelihood. However, in order to safe-

guard against round-off error, we also declare convergence when the relative change

of the objective function is very small: 10““), to be precise. Starting with a random

initialization, line-search Newton was run with y = 1 and T = 0.25, with the conver-

gence threshold set to 10‘2. Line-search Newton was run again after increasing 7' to

214



1, with the convergence threshold tightened to 10’3. Finally, ’7' and the convergence

threshold were set to 4 and 10‘“, respectively. The optimization algorithm was also

stopped if convergence was not achieved within 5000 Newton iterations. Fifteen ran-

dom initializations were attempted. The solution with the best objective function

value was regarded as the solution found by the proposed algorithm.

The above procedure, however, assumes the constraint strength A is known. The

value of A was determined using a set of validation constraints. The constraints for

training set and the constraints for validation set were obtained using the following

rules. Given a data set, if the number of constraints was less than 3k, It being the

number of clusters, all the available constraints were used for training and valida-

tion. This procedure, while risking overfitting, is necessary because a too small set of

constraints is poor for training the clusters as well as the estimation of A. When the

number of constraints was between 3k and 6k, the number of training constraints and

validation constraints were both set to 3k. 80, the training constraints overlapped

with the validation constraints. When the number of constraints was larger than 6k,

half the constraints were used for training and the other half were used for valida—

tion. Starting with A = 0.1, we increased A by multiplying it by «T0. For each A,

the proposed algorithm was executed. A better value of A was encountered if the

number of violations of the validation constraints was smaller than the current best.

If there was a tie, the decision was made on the number of violations of the training

constraints. If the best value of A did not change for four iterations, we assumed

that the optimal value of A was found. The proposed algorithm was executed again

using all the available constraints and A value just determined. The resulting solution
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was compared with the solution obtained using only the training constraints, and the

one with the smaller total number of constraint violations was regarded as our final

clustering solution. If there was a tie, the solution obtained with training constraints

only was selected.

The algorithms Shental and Basu were run using the same set of data and con-

straints as input. For Shental, we modified the initialization strategy in their soft-

ware, which involved a two step process. First, five random parameter vectors were

generated, and the one with the highest log-likelihood was selected as the initial

value of the EM algorithm. Convergence was achieved if the relative change in the

log-likelihood was less than a threshold, which is 10’6 by default. This process

was repeated 15 times, and the parameter vector with the highest log-likelihood was

regarded as the solution. For easier comparison, we also assumed a common co-

variance matrix among the different Gaussian components. For the algorithm Basu,

the authors provided their own initialization strategy, which was based on the set

of constraints provided. The algorithm was run 15 times, and the solution with the

best objective function was picked. The algoritlnn Basu requires a constraint penalty

parameter. In our experiment, a wide range of values were tried: 1, 2, 4, 8, 16, 32,

64, 128, 256, 500, 1000, 2000, 4000, 8000, 16000. We only report their results with

the best possible penalty values. As a result, the performance of Basu reported here

might be inflated.
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5.6.2.3 Performance criteria

A clustering under constraints algorithm is said to perform well on a data set if

the clusters obtained are similar to the ground-truth classes. Consider the k by k

“contingency matrix” {EU}, where Eij denotes the number of data points that are

originally from the i-th class and are assigned to the j-th cluster. If the clusters

match the true classes perfectly, there should only be one non-zero entry in each row

and each column of the contingency matrix.

Following the common practice in the literature, we summarize the contingency

matrix by the F-score and the normalized mutual information (NMI). Consider the

“recall matrix” {fl-j} in which the entries are defined by Fij = éij/ :34 513’- Intu—

itively, fij denotes the proportion of the i-th class that is “recalled” by the j-th cluster.

The “precision matrix” {fiij}, on the other hand, is defined by fiij = 515/ :1" 6213-. It

represents how “pure” the j-th cluster is with respect to the i-th class. Entries in the

F-score matrix {fl-j} are simply the harmonic mean of the corresponding entries in

the precision and recall matrices, i.e., fij = 275,713“ / (fij + 132-3). The F-score of the

i-th class, F}, is obtained by assuming that the i-th class matches12 with the best

cluster, i.e., F,- = maxj 1%. The overall F-score is computed as the weighted sum of

the individual F,- according to the sizes of the true classes, i.e.,

k k ~
.— C. . ~

F-score = E E—J—T—l—QFZ' (5.34)

, TL

121

 

12Here, we do not require that one cluster can only match to one class. If this one-to-one corre-

spondence is desired, the Hungarian algorithm should be used to perform the matching instead of

the max operation to compute Fi-
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Note that the precision of an empty cluster is undefined. This problem can be circum-

vented if we restrict that empty clusters, if any, should not contribute to the overall

F-score.

The computation of normalized mutual information interprets the true class label

and the cluster label as two random variables U and V. The contingency table,

after dividing by n (the number of objects), forms the joint distribution of U and V.

The mutual information (MI) between U and V can be computed based on the joint

distribution. Since the range of the mutual information depends on the sizes of the

true classes and the sizes of the clusters, we normalize the MI by the average of the

entropies of U and V (denoted by H(U) and H(V)) so that the resulting value lies

between zero and one. Formally, we have

k 2’6 ~.. ’6 ~..

'21 0,] 2 '=1 CI]
H(U)=—:—Ln—log—Jn—

i=1

1: k ~ k ~
.__ Cl. . .._. C. .

i=1

P
?

k

H(U,V)=—Zzir:llog%

i=1j=1

(5.35)

MI = H(U) + H(V) — H(U, V)

 

For both F-score and NMI, the higher the value, the better the match between

the clusters and the true classes. For a perfect match, both NMI and F-score take the

value of 1. When the cluster labels are completely independent of the class labels,

NMI takes its smallest value of 0. The minimum value of F-score depends on the sizes
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of the true classes. If all the classes are of equal sizes, the lower bound of F-score is

1/k. In general, the lower bound of F-score is higher, and it can be more than 0.5 if

there is a. dominant class.

5.6.2.4 Results

The results of clustering the data sets mentioned in Section 5.6.2.1 when there are no

constraints are shown in Table 5.3. In the absence of constraints, both the proposed

algorithm and Shental effectively find the cluster parameter vector that maximizes

the‘log-likelihood, whereas Basu is the same as the k-means algorithm. One may be

surprised to discover from Table 5.3 that even though the proposed algorithm and

Shental optimize. the same objective function. their results are different. This is

understandable when we notice that the line-search Newton algorithm used by the

proposed approach and the EM algorithm used by Shental can locate different local

optima. It is sometimes argued that maximizing the mixture log-likelihood globally

is inappropriate as it can go to infinity when one of the Gaussian components has an

almost singular covariance matrix. However, this is not the case here, because the

covariance matrices all have small condition numbers as seen in Table 5.3. Therefore,

among the two solutions produced by the proposed approach and by Shental, we

take the one with the larger log-likelihood. In the remaining experiments, the no—

constraint solutions found by the proposed algorithm were also used as the initial

value for Shental. It is because we are interested in locating the best possible local

optima for the objective functions.

The results of running our proposed algorithm, Shental, and Basu, with 1%
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constraint level, 2% constraint level, 3% constraint level, 5% constraint level, 10%

constraint level, and 15% constraint level are shown in Tables 5.4, 5.5, 5.6, 5.7,

5.8, and 5.9, respectively. In these tables, the columns under “Proposed” correspond

to the performance of the proposed algorithm. The heading A denotes the value

of the constraint strength as determined by the validation procedure. The heading

“Shental, default init” corresponds to the performance when the algorithm Shental

is initialized by its default strategy, whereas “Shental, special init” corresponds to

the result when Shental is initialized by the no—constraint solution found by the

proposed approach. The heading “log-lik” shows the log-likelihood of the resulting

parameter vector. Among these two solutions of Shental, the one with a higher

log-likelihood is selected, and its performance is shown under the heading “Shental,

combine” .

From these tables, we can see that Shental with default initialization often yields

a higher performance than Shental with the special initialization. However, the

log-likelihood of Shental with default initialization is sometimes smaller. By the

principle of maximum likelihood, such a solution, though it has a higher F-score

and/or NMI, should not be accepted. This observation has the implication that the

good performance of Shental as reported in comparative work such as in [161] might

be due to the initialization strategy instead of the model used. The fact that we

are more interested in comparing the model used in Shental with that used in the

proposed approach, instead of the strategy for initialization, is the reason why we run

Shental with the special initialization. We have also tried to do something similar

with Basu, but its initialization routine is integrated with the main clustering routine
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so that it is non-trivial to modify the initialization strategy.

The numbers listed in Tables 5.3 to 5.9 are visualized in Figures 5.7 to 5.13.

For each data set, we draw the F-score and the NMI with an increasing number of

constraints. The horizontal axis corresponds to different constraint levels in terms of

the percentages of the number of data points, whereas the vertical axis corresponds

to the F-score or the NMI. The results of the proposed algorithm, Shental, and

Basu are shown by the (red) solid lines, (blue) dotted lines, and (black) dashed lines,

respectively. For comparison, the (gray) dashdot lines in the figures show the F-score

and the NMI due to a classifier trained using the labels of all the objects in the data

set under the assumption that the class conditional densities are Gaussian with a

common covariance matrix. The data sets. are grouped according to the performance

of the proposed algorithms. The proposed algorithm outperformed both Shental and

Basu for the data sets shown in Figures 5.7 to 5.9. The performance of the proposed

algorithm is comparable to its competitors for the data sets shown in Figures 5.10

to 5.12. For the data sets shown in Figures 5.13, the proposed algorithm is slightly

inferior to one of its competitors. We shall examine the performance on individual

data sets later.

Perhaps the first observation from these figures is that the performance is not

monotonic, i.e., the F-score and the NMI can actually decrease when there are ad-

ditional constraints. This is counter-intuitive, because one expects improved results

when more information (in the form of constraints) is fed as the input to the algo—

rithms. Note that this lack of monotonicity is observed for all the three algorithms.

There are three reasons for this. First, the additional constraints can be based on
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data points that are erroneously labeled (errors in the ground truth), or they are

“outlier” in the sense that they would be nus-classified by most reasonable super-

vised classifiers trained with all the labels known. The additional constraints in this

case serve as “mis—information”, and it can hurt the performance of the clustering

under constraints algorithms. This effect is more severe for the proposed approach

when there are only a small number of constraints, because the influence of each of

the constraints may be magnified by a large value of A. The second reason is that

an algorithm may locate a poor local optima. In general, the larger the number of

constraints, the greater the number of local optima in the energy landscape. So, the

proposed algorithm as well as Shentaland Basu is more likely to get trapped in poor

local optima. This trend is the most obvious for Basu, as the performance at 10% and

15% constraint levels dropped for more than half of the data sets. This is not surpris-

ing, because the iterative conditional mode used by Basu is greedy and it is likely to

get trapped in local optima. The third reason is specific to the proposed approach. It

is due to the random nature of the partitioning of the constraints into training set and

validation set. If we have an unfavorable split, the value of A found by minimizing

the number of violations on the set of validation constraints can be suboptimal. In

fact, we observe that whenever there is a significant drop in the F-score and NMI,

there often exists a better value of A than the one found by the validation procedure.

Performance on Individual Data Sets The result on the ethn data set can be

seen in Figures 5.7(a) and 5.7(b). The performance of the proposed algorithm im-

proves with additional constraints, and it. outperforms Shental and Basu at all con-
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straint levels. A similar phenomenon occurs for the Mondrian data set (Figures 5.7(c)

and 5.7(d)) and the ion data set (Figures 5.7(c) and 5.7(f)). For Mondrian, note that

1% constraint level is already sufficient to bias the cluster parameter to match the re—

sult using the ground-truth labels. Additional constraints only help marginally. The

performance of the proposed algorithm for the script data set (Figures 5.8(a) and

5.8(b)) is better than Shental and Basu for all constraint levels except 1%, where the

proposed algorithm is inferior to the result of Basu. However, given how much better

the k-means algorithm is when compared with the EM algorithm in the absence of

constraints, it is fair to say that the proposed algorithm is doing a decent job. For the

data set derm, the clustering solution without any constraints is pretty good: that

solution, in fact, satisfies all the constraints when the constraint levels are 1% and 2%.

Therefore, it is natural that the performance does not improve with the provision of

the constraints. However, when the constraint level is higher than 2%, the proposed

algorithm again outperforms Shental and Basu (Figures 5.8(c) and 5.8(d)). The per-

formance of the proposed algorithm on the vehicle data set is superior to Shental

and Basu for all constraint levels except 5%, where the performance of Shental is

slightly superior. For the data set wdbc, the performance of the proposed algorithm

(Figures 5.9(a) and 5.9(b)) is better than Shental at all constraint levels except 5%.

The proposed algorithm outperforms Basu when the constraint level is higher than

1%.

The F-score of the proposed algorithm on the UCI-seg data (Figures 5.10(a)) is

superior to Shental at three constraint levels and is superior to Basu at all but 1%

constraint level. On the other hand, if NMI is used (Figure 5.10(b)), the proposed
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algorithm does not do as well as the others. For the heart data set, the proposed

algorithm is superior to Shental at all constraint levels, but it is superior to Basu

at only 3% constraint level (Figures 5.10(c) and 5.10(d)). Note that the performance

of Basu might be inflated because we only report its best results among all possible

values of constraint penalty in this algorithm. we can regard the performance of

the proposed algorithm on the austra data set (Figures 510(0) and 5.10(f)) as a

tie with Shental and Basu, because the proposed algorithm outperforms Shental

and Basuat three out of six possible constraint levels. For the german data set, the

proposed algorithm performs the best in terms of NMI (Figure 5.11(b)), though the

performances of all three algorithms are not that good. Apparently, this is a difficult

data set. The performance of the proposed algorithm is less impressive when F—score

is used, however (Figure 5.11(a)). The proposed algorithm is superior to Shental

in performance for the Sim-300 data set (Figures 5.11(c) and 5.11(d)). While the

proposed algorithm has a tie in performance when compared with Basu based on the

F-score, Basu outperforms the proposed algorithm on this data set when NMI is used.

The result of the diff-300 data set (Figures 5.11(e) and 5.11(f)) is somewhat similar:

the proposed algorithm outperforms Shental at all constraint levels, but it is inferior

to Basu. Given the fact that the k-means algorithm is much better than EM in the

absence of constraints for this data set, the proposed algorithm is not as bad as it first

seems. For the sat data set (Figures 5.12(a) and 5.12(b)), the proposed algorithm

outperforms Shental and Basu significantly in terms of F-score when the constraint

levels are 10% and 15%. The improvement in NMI is less significant, though the

proposed method is still the best at three constraint levels. The result of the digits
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data set (Figures 5.12(c) and 5.12(d)) is similar: the proposed method is superior to

its competitors at three and four constraint levels if F-score and NMI are used as the

evaluation criteria, respectively.

It is difficult to draw any conclusion on the performance of the three algorithms on

the mfeat-fou data set (Figures 5.13(a) and 5.13(b)). The performances of all three

algorithms go up and down with an increasing number of constraints. Apparently

this data set is fairly noisy, and clustering with constraints is not appropriate for

this data set. For the data set same-300, the proposed algorithm does not perform

well: it has a tie with Shental, but it is inferior to Basu at all constraint levels,

as seen in Figures 5.13(e) and 5.13(d). The performance of the proposed algorithm

is better than Shental only at the 15% constraint level for the data set texture ‘

(Figures 5.13(e) and 5.13(f)). The proposed algorithm is superior to Basu for this

data set, though this is probably due to the better performance of the EM algorithm

in the absence of constraints. Note that this data set is a relatively easy data set for

model-based clustering: both k—means and EM have a F-score higher than 0.95 when

no constraints are used.

5.6.3 Experiments on Feature Extraction

We have also tested the idea of learning the low-dimensional subspace and the clusters

simultaneously in the presence of constraints. Our first experiment in this regard is

based on the data set shown in Figure 5.3. The two features were standardized to

variance one before applying the algorithm described in Section 5.5 with the two
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Figure 5.7: F-score and NMI for different algorithms for clustering under constraints

for the data sets ethn, Mondrian, and ion. The results of the proposed algorithm,

Shental, and Basu are represented by the red solid line, blue dotted lines and the

black dashed line, respectively. The performance of a classifier trained using all the

labels is shown by the gray dashdot line. The horizontal axis shows the number of

constraints as the percentage of the number of data points.
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Figure 5.8: F-score and NMI for different algorithms for clustering under constraints

for the data sets script, derm, and vehicle. The results of the proposed algorithm,

Shental, and Basu are represented by the red solid line, blue dotted lines and the

black dashed line, respectively. The performance of a classifier trained using all the

labels is shown by the gray dashdot line. The horizontal axis shows the number of

constraints as the percentage of the number of data points.
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Figure 5.9: F-score and NMI for different algorithms for clustering under constraints

for the data sets wdbc. The results of the proposed algorithm, Shental, and Basu

are represented by the red solid line, blue dotted lines and the black dashed line,

respectively. The performance of a classifier trained using all the labels is shown by

the gray dashdot line. The horizontal axis shows the number of constraints as the

percentage of the number of data points.
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Figure 5.10: F—score and NM1 for different algorithms for clustering under constraints

for the data sets UCI-seg, heart and austra. The results of the proposed algorithm,

Shental, and Basu are represented by the red solid line, blue dotted lines and the

black dashed line, respectively. The performance of a classifier trained using all the

labels is shown by the gray dashdot line. The horizontal axis shows the number of

constraints as the percentage of the number of data points.
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Figure 5.11: F-score and NMI for different algorithms for clustering under constraints

for the data sets german, Sim-300 and diff-300. The results of the proposed algo—

rithm, Shental, and Basu are represented by the red solid line, blue dotted lines and

the black dashed line, respectively. The performance of a classifier trained using all

the labels is shown by the gray dashdot line. The horizontal axis shows the number

of constraints as the percentage of the number of data points.
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Figure 5.12: F-score and NMI for different algorithms for clustering under constraints

for the data sets sat and digits. The results of the proposed algorithm, Shental,

and Basu are represented by the red solid line, blue dotted lines and the black dashed

line, respectively. The performance of a classifier trained using all the labels is shown

by the gray dashdot line. The horizontal axis shows the number of constraints as the

percentage of the number of data points.
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Figure 5.13: F—score and NMI for different algorithms for clustering under constraints

for the data sets mfeat—fou, same—300 and texture. The results of the proposed

algorithm, Shental, and Basu are represented by the red solid line, blue dotted lines

and the black dashed line, respectively. The performance of a classifier trained using

all the labels is shown by the gray dashdot line. The horizontal axis shows the number

of constraints as the percentage of the number of data points.
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must-link constraints. Based on the result slmwn in Figure 5.14(a), we can see that a

good projection direction was found by the proposed algorithm. The projected data

follow the Gaussian distribution well, as evident from Figure 5.14(b).

Our second experiment. is about the combination of feature extraction and the ker-

nel trick to detect clusters with general shapes. The two-ring data set (Figure 5.15(a))

considered in [158], which used a hidden Markov random field approach for cluster-

ing with constraints in kernel k-means, was used. As in [158], we applied the REF

kernel to transform this data set of 200 points nonlinearly. The kernel width was

set to 0.2, which was the 20-percentile of all the pairwise distances. Unlike [158],

we applied kernel PCA to this data set and extracted 20 features. The algorithm

described in Section 5.5 was used to learn a good projection of these 20 features into

a 2D space while clustering the data into two groups simultaneously in the presence

of 60 randomly generated constraints. The result shown in Figure 5.15(b) indicates

that the algorithm successfully found a 2D subspace such that the two clusters were

Gaussian-like, and all the constraints were satisfied. When we plot the cluster labels

of the original two-ring data set, we can see that the desired clusters (the “inner”

and the “outer” rings) were recovered perfectly (Figure 5.15(c)). Note that the algo-

rithm described in [158] required at least 450 constraints to identify the two clusters

perfectly, whereas we have only used 60 constraints. For comparison, the spectral

clustering algorithm in [194] was applied to this data set using the same kernel ma-

trix as the sii‘nilarity. The two desired clusters could not be recovered (Figure 5.15(d)).

In fact, the two desired clusters were never recovered even when we tried other values

of kernel widths.
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Figure 5.14: The result of simultaneously performing feature extraction and clustering

with constraints simultaneously on the data set in Figure 5.3(a). The blue line in

(a) corresponds to the projection direction found by the algorithm. The projected

data points (which is ID), together with the cluster labels and the two Gaussians,

are shown in (b).

5.7 Discussion

5.7.1 Time Complexity

The computation of the objective function and its gradient requires the calculation

of Fij, sij, wij, and the weighted sum of different sufficient statistics with rij and

wij as weights. When compared with the EM algorithm for standard model-based

clustering, the extra computation by the proposed algorithm is due to sij, wij, and the

accumulation of the corresponding sufficient statistics. These take O(kd(m+ + m‘" +

n*)) time, where k, d, m+, m", n* denote the number of clusters, the dimension of

the feature vector, the number of must-link constraints, the number of must-not-link

constraints, and the number of data points involved in any constraint, respectively.

This is smaller than the 0(kdn) time required for one iteration of the EM algorithm,

with n indicating the total number of data points. Multiplication by the inverse of the
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Figure 5.15: An example of learning the subspace and the clusters simultaneously.

(a): the original data and the constraints, where solid (dotted) lines correspond to

must-link (must-not-link) constraints. (b) Clustering result of projecting 20 features

extracted by kernel PCA to a 2D space. (c) Clustering solution ((1) Result of applying

spectral clustering [194] to this data set with two clusters, using the same kernel used

for kernel PCA.
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function evaluation because of the line-search.

Each iteration in the algorithm Shental is similar to that in the standard EM

algorithm. The difference is in the E—step, in which Shental involves an inference

for a Markov network. This can take exponential time with respect to the number of

constraints in the worst case. The per-iteration computation cost in Basu is in general

smaller than both Shental and the proposed algorithm, because it is fundamentally

the lat—means algorithm. However, the use of iterative conditional mode to solve the

cluster labels in the hidden Markov random fields, as well as the metric learning based

on the constraints, becomes the overhead due to the constraints.

In practice, the proposed algorithm is slower than the other two because of the

cross-validation procedure to determine the optimal A. Even when )1 is fixed, however,

the proposed algorithm is still slower because (i) the optimization problem considered .

by the proposed algorithm is more difficult than those considered by Shental and

Basu, and (ii) the convergence criteria based on the relative norm of gradient is

stricter.

5.7.2 Discriminative versus Generative

One way to view the difference between the proposed algorithm and the algorithms

Shental and Basu is that both Shental and Basu are generative, whereas the pro-

posed approach is a combination of generative and discriminative. In supervised

learning, a classifier is “generative” if it assumes a certain model on how the data

from different classes are generated via the specification of the class conditional den-
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sities, whereas a “discriminative” classifier is built by optimizing some error measure,

without any regard to the class conditional densities. Discriminative approaches are

often superior to generative approaches when the actual class conditional densities

differ from their assumed forms. On the other hand, incorporation of prior knowl-

edge is easier for generative approaches because one can construct a generative model

based on the domain knowledge. Discriminative approaches are also more prone to

overfitting.

In the context of clustering under constraints, Shental and Basu can be regarded

as generative because they specify a hidden Markov random field to describe how

the data are generated. The constraint violation term f(6;C) used by the pro—

posed algorithm is discriminative, because it effectively counts the number of Vio-

lated constraints, which are analogous to the number of misclassified samples. The

log-likelihood term £(6; y) in the proposed objective function is generative because

it is based on how the data are generated by a finite mixture model. Therefore, the

proposed approach is both generative and discriminative, with the tradeoff parameter

/\ controlling the relative importance of these two properties. One can think that the

discriminative component enables the proposed algorithm to have a higher perfor-

mance, whereas the generative component acts as a regularization term to prevent

overfitting in the discriminative component.

This discussion provides a new perspective in viewing the example in Figure 5.3.

Shental and Basu, being generative, failed to recover the two desired clusters because

their forms differ significantly from what Shental and Basu assume about a cluster.

On the other hand, the discriminative property of the proposed algorithm can locate
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the desired vertical cluster boundary, which can satisfy the constraints.

The discriminative nature of the proposed algorithm is also the reason why the

proposed algorithm, using constraints only, can outperform the generative classifier

using all the labels. This is surprising at. first, because, after all, constraints carry less

information than labels. Incorporating the constraints on only some of the objects

therefore should not outperform the case when the labels of all objects are available.

However, this is only true when all possible classifiers are considered. When we restrict

ourself to the generative classifier that. assumes a Gaussian distribution with common

covariance matrix as the class conditional density, it is possible for a discriminative

algorithm to outperform the generative classifier if the class conditional densities are

non-Gaussians. In fact, for the data sets ethn, Mondrian, script, wdbc, and texture,

we observed that the proposed algorithm can have a higher F-score or NMI than that

estimated using all the class labels. The difference is more noticeable for script and

wdbc. Note that for the data set austra, the generative algorithm Shental can also

out-perform the classifier trained using all the labels, though the difference is very

small and it may be due to the noisy nature of this data set.

5.7.3 Drawback of the Proposed Approach

There are two main drawbacks of the proposed approach. The optimization problem

considered, while accurately representing the goal of clusterng with constraints, is

more difficult. This has several consequences. First, a more sophisticated algorithm

(line—search Newton) is needed instead of the simpler EM algorithm. The landscape
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of the proposed objective function is more “rugged”. So, it it is more likely to get

trapped in poor local optima. It. also takes more iterations to reach a local optimum.

Because we are initializing randomly, this also means that the proposed algorithm is

not very stable if we have an insufficient number of random initializations.

The second difficulty is the determination of A. (Note that the algorithm Basu has

a similar parameter.) In our experiments, we adopted a cross-validation procedure

to determine )1, which is computationally expensive. Cross-validation may yield a

suboptimal /\ when the number of informative constraints in the validation set is

too small, or when too many constraints are erroneous due to the noise in the data.

Here, a constraint is informative if it provides “useful” information to the clustering

process. So, a must—link constraint between two points close to each other is not very

informative because they are likely to be in the same cluster anyway.

Another problem is that we may encounter an unfavorable split of the training

and validation constraints when the set of available constraints is too small. When

this happens, the number of violations for the validation constraints is significantly

larger than that of the training constraints. Increasing the value of /\ cannot reduce

the violation of the validation constraints, leading to an optimal constraint strength

of zero. When this happens, we should try a different split of the constraints for

training and validation.
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5.7.4 Some Implementation Details

We have incorporated some heuristics in our optimization algorithm. During the

optimization process, a cluster may become almost empty. This is detected when

2, fij/n. falls below a threshold, which is set to 4 x 10‘3/k. The empty cluster is

removed, and the largest cluster that can result in the increase in the .7 value is

split to maintain the same number of clusters. If no such cluster exists, the one that

can lead to the smallest decrease in j is split. Another heuristic is that we lower-

bound aj by 10-8, no matter what the values of {flj} are. This is used to improve

the numerical stability of the proposed algorithm. The ozj are then renormalized to

ensure that they sum to one.

5.8 Summary

We have presented an algorithm that handles instance-level constraints for model-

based clustering. The key assumption in our approach is that the cluster labels are

determined based on the feature vectors and the cluster parameters; the set of con-

straints has no influence here. This contrasts with previous approaches like [231] and

[21] which impose prior distribution on the cluster labels directly to reflect the con-

straints. This is the fundamental reason for the anomaly described in Section 5.2. The

actual clustering is performed by the line-search Newton algorithm under the natural

parameterization of the Gaussian distributions. The strength of the constraints is

determined by a hold—out set of validation constraints. The proposed approach can

be extended to handle simultaneously feature extraction and clustering under con—
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straints. The effectiveness of the proposed approach has been demonstrated on both

synthetic data sets and real-world data sets from different. domain. In particular, we

notice that the discriminative nature of the proposed algorithm can lead to superior

performance when compared with a generative classifier trained using the labels of

all the objects.
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Chapter 6

Summary

The primary objective of the work presented in this dissertation is to advance the

state-of-the-art in unsuj'1ervised learning. Unsupervised learning is challenging be-

cause its objective is often ill—defined. Instead of providing yet another new unsuper-

vised learning algorithm, we are more interested in studying issues that are generic

to different unsupervised learning tasks. This is the motivation behind the study of

various topics in this dissertation, including the modification of the batch version of

an algorithm to become incremental, the selection of the appropriate data representa-

tion (feature selection), and the incorporation of side—information in an unsupervised

learning task.

6. 1 Contributions

The results in this thesis have contributed to the field of unsupervised learning in

several ways, and has led to the publication of two journal articles [163, 164]. Several
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conference papers [168, 161, 167, 165, 82] have also been published at different stages

of the research conducted in this thesis.

The incremental ISOMAP algorithm described in Chapter 3 has made the follow-

ing contributions:

0 Framework for incremental manifold learning: The proposed incremental

ISOMAP algorithm can serve as a general framework for converting a mani-

fold learning algorithm to become incremental: the neighborhood graph is first

updated, followed by the update of the low-dimensional representation, which

is often an incren‘iental eigenvalue problem similar to our case.

0 Solution of the all-pairs shortest path problems: One component in the incre—

mental algorithm is to update the all-pairs shortest path distances in View of the

change in the neighborhood graph due to the new data points. We have devel-

oped a new algorithm that. performs such an update efficiently. Our algorithm

updates the shortest path distances from multiple source vertices simultane-

ously. This contrasts with previous work like [193], where different shortest

path trees are updated independently.

0 Improved embedding for new data points: We have derived an improved esti-

mate of the inner product between the low-dimensional representation of the

new point and the low—dimensional representations of the existing points. This

leads to an improved embedding for the new point.

0 Algorithm for incremental eigen-decomposition with increasing matrix size:

The problem of updating the low-dimensional representation of the data points

250



is essentially an incremental eigen-decomposition problem. Unlike the previous

work [270], however, the size of the matrix we considered is increasing.

0 Vertex contraction to memorize the effect of data points: A vertex contrac-

tion procedure that improves the geodesic distance estimate without additional

memory is proposed.

Our work on estimating the feature saliency and the number of clusters simulta—

neously in Chapter 4 has made the following contributions:

0 Feature Saliency in unsupervised learning: The problem of feature selec-

tion/feature saliency estimation is rarely studied for unsupervised learning. We

tackle this problem by introducing a notion of feature saliency, which is able to

describe the difference between the distributions of a feature among different

clusters. The saliency is estimated efficiently by the EM algorithm.

0 Automatic Feature Saliency and Determination of the Number of Clusters: The

algorithm in [81], which utilizes the minimum message length to select the

number of clusters automatically, is extended to estimate the feature saliency.

The clustering under constraints algorithm proposed in Chapter 5 has made the

following contributions:

0 New objective function for clustering under constraints: We have proposed a

new objective function for clustering under constraints under the assumption

that the constraints do not have any direct influence on the cluster labels. Ex-

tensive experimental evaluations reveal that this objective function is superior



to the other state—of—the—art algorithms in most. cases. It is also easy to extend

the proposed objective function to handle group constraints that involve more

than two data points.

Avoidance of Counter-intuitive Clustering Result:

The proposed objective function can avoid the pitfall of previous clustering

under constraints algorithms like [231] and [21], which are based on hidden

Markov random field. Specifically, clustering solutions that assign the cluster

label to a data point that is different from all its neighbors is possible for

previous algorithms, a situation avoided by the proposed algorithm.

Robustness to model-mismatch:

The proposed objective function for clustering under constraints is a combina-

tion of generative and discriminative terms. The discriminative term, which

is based on the satisfaction of the constraints, improves the robustness of the

proposed algorithm towards mismatch in the cluster shape. This leads to an

improvement in the overall performance. The improvement can sometimes be

so significant that the proposed algorithm, using constraints only, outperforms

a generative supervised classifier trained using all the labels.

Feature extraction and clustering with constraints: The proposed algorithm has

been extended to perform feature extraction and clusterng with constraints

simultaneously by locating the best low-dimensional subspace, such that the

Gaussian clusters formed will satisfy the given set of constraints as well as
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they can. This allows the proposed algorithm to handle data sets with higher

dimensionality. The combination of this notion of feature extraction and the

kernel trick allows us to extract clusters with general shapes.

0 Efficient implementation of the Line-search Newton Algorithm:

The proposed objective function is optimized by the line—search Newton al-

gorithm. The multiplication by the inverse of the Hessian for the case of a

Gaussian mixture can be done efficiently with time complexity 0(d3) without

forming the 0(d2) by 0(d2) Hessian matrix explicitly. Here, d denotes the num-

ber of features. A naive approach of inverting the Hessian would require 0(d6)

time.

6.2 Future work

The study conducted in this dissertation leads to several interesting new research

possibilities.

0 Improvement in the efficiency of the incremental ISOMAP algorithm

There are several possibilities for improving the efficiency of the proposed in-

cremental ISOMAP algorithm. Data structures such as led-tree, ball-tree, and

cover-tree [19] can be used to speed up the search of the k nearest neighbors.

The update strategy for geodesic distance and co—ordinates can be more aggres-

sive; we can sacrifice the theoretical convergence property in favor of empirical

efficiency. For example, the geodesic distance can be updated approximately



using a scheme analogous to the distance vector protocol in the network routing

literature. Co—ordinate update can be made faster if only a subset of the co-

ordinates (such as those close to the new point) are updated at each iteration.

The co—ordinates of every point would be finally updated if the new points came

from different regions of the manifold.

Incrementalization of other manifold learning algorithms

The algorithm in Chapter 3 modifies the ISOMAP algorithm to become incre-

mental. We can also modify similar algorithms, such as locally linear embedding

or Laplacian eigenmap to become incremental.

Features dependency in dimensionality reduction and unsupervised learning:

The algorithm in Chapter 4 assumes that the features are conditionally in-

dependent of each other when the cluster labels are known. This assumption,

however, is generally not true in practice. A new algorithm needs to be designed

to cope with the situation when features are highly correlated in this setting.

Feature selection and constraints:

The main difficulty of feature selection in clustering is the ill-posed nature of

the problem. A possible way to make the problem more well-defined is to intro-

duce instance-level constraints. In Section 5.5, we described an algorithm for

performing feature extraction and clustering under constraints simultaneously.

One can apply a similar idea and use the constraints to assist in feature selection

for clustering.



o More efficient algorithms for clustering with constraints

The use of line-search Newton algorithm for optimizing the objective function

in Chapter 5 is relatively efficient when compared with alternative approaches.

Unfortunately, the objective function, which effectively uses Jensen-Shannon

divergence to count the number of violated constraints, is difficult to optimize.

It is similar to the minimization of the number of classification errors directly in

supervised learning, which is generally perceived as difficult. Often, the number

of errors is approximated by some quantities that are easier to optimize, such as

the distances of nus-classified points from the separating hyperplane in the case

of support vector machines. In the current context, we may want to approximate

the number of violated constraints by some quantities that are easier to opti-

mize. A difficulty can arise, however, when both must-link and must-not-link

constraints are considered. If the violation of a must—link constraint is approx—

imated by a convex function g(.), the violation of a must—not-link constraint is

naturally approximated by ——g(.), which is concave. Their combination leads

to a function that is neither concave nor convex, which is difficult to optimize.

Techniques like DC (difference of convex functions) programming [117] can be

adopted for global optimization.

0 Number of clusters for clustering with constraints

The algorithm described in Chapter 5 assumes that the number of clusters is

known. It is desirable if the number of clusters can be estimated automatically

from the data. The presence of constraints should be helpful in this process.
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In fact, correlation clustering [10] considers must-link and must-not-link con—

straints only, without any regard to the feature vectors, and it can infer the

optimal number of clusters by minimizing the number of constraint violations.
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Appendix A

Details of Incremental ISOMAP

In this appendix, we present the proof for the correctness of the algorithms in chapter 3

as well as analyzing their time complexity.

A.1 Update of Neighborhood Graph

The procedure to update the neighborhood graph has been described in section

3.2.1.1, where A, the set of edges to be added, and ’D, the set of edges to be deleted,

are constructed upon insertion of vn+1 to the neighborhood graph.

Time Complexity For time complexity, note that for each i, the conditions in

Equations (3.1) and (3.2) can be checked in constant time. So, the construction of .A

and ’D takes 0(n) time. The calculation of L, for all i can be done in O( le deg(v,-) +

[AD or O(|E I + IAI) time by examining the neighbors of different vertices. Here,

deg(v,j) denotes the degree of vi. The complexity of the update of neighborhood graph

can be bounded by ()(nq), where q is the maximum degree of the vertices in the graph
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after inserting -v,,+1. Note that L,- becomes the r, for the updated neighborhood graph.

A.2 Update of Geodesic Distances: Edge Deletion

A.2.1 Finding Vertex Pairs For Update

In this section, we examine how the geodesic distances should be updated upon edge

deletion. Consider an edge e(a, b) E D that is to be deleted. If ”ab 75 a, the shortest

path between va and vb does not contain e(a, b). Deletion of e(a, b) does not affect

sp(a, b) and hence none of the existing shortest paths are affected. Therefore, we have

Lemma A.1. Ifndb # a. deletion of e(a, b) does not affect any of the eristing shortest

paths and therefore no geodesic distance gij needs to be updated.

we now consider the case ”ab = a. This implies 7Tba = b because the graph is

undirected. The next lemma is an easy consequence of this assumption.

Lemma A.2. For any vertex vi, sp(i, b) passes through va ijf sp(i, b) contains e(a,b)

iff ”it; = a.

Before we proceed further, recall the definitions of T(b) and T(b; a.) in section 3.1:

T(b) is the shortest path tree of vb, where the root node is vb and sp(b, j) consists of

the tree edges from vb to vj, and T(b; a) is the subtree of T(b) rooted at va.

Let Rab E {i : 7m, = a}. Intuitively, Rab contains vertices whose shortest paths

to vb include e(a, b). We shall first construct Rabv and then “propagate” from Rab to

get the geodesic distances that require update.
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Because sp(t, b) passes through the vertices that are the ancestor of vt in T(b),

plus 2),, we have

Lemma A.3. Rab = { vertices in T(b;a) }.

Proof.

vt E T(b; a.)

<:> va is an ancestor of U) in T(b), or va = vt

1:) sp(t, b) passes through va

¢> 7m, -— a (lemma A.2)

42> t E Rab 5

El

If vt is a child of vu in T(b), vu is the vertex in sp(b, t) just before vt. Thus, we

have the lemma below.

Lemma AA. The set of children of vu in T(b) = {vt : vt is a neighbor of vu and

”bi = U} '

Consequently, we can examine all the neighbors of vu to find the node’s children

in T(b) based on the predecessor matrix. Note that the shortest path trees are not

stored explicitly; only the predecessor matrix is maintained. The first nine lines in

Algorithm 3.1 perform a tree traversal that extracts all the vertices in T(b; a) to form

Rab, using Lemma A4 to find all the children of a node in the tree.
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Time Complexity At any time, the queue Q contains vertices in the subtree

T(b;a) that have been examined. The while-loop is executed [Rabl times because

a new vertex is added to Rab in each iteration. The inner for-loop is executed a

total of 2,,{,6 Rab deg(vt), which can be bounded loosely by (llRabl Therefore, a loose

bound for the first nine lines in Algorithm 3.1 is 0((IlRabll-

A.2.2 Propagation Step

Define F(a,b) E {(i,j) : sp(i,j) contains e(a, b)}. Here, (a,b) denotes the unordered

pair a and b. So, F(a,b) is indexed by the unordered pair (a,b), and its elements

are also unordered pairs. Intuitively, F(a,b) contains the vertex pairs whose geodesic

distances need to be recomputed when the edge e(a, b) is deleted. Starting from "’b

for each of the vertex in Rabv we construct F(a,b) by a search.

Lemma A.5. If (i,j) E F(a,b).~ eitheri orj is in Rab-

Proof. (i,_j) E Fm“ is equivalent to sp(i, j) contains e(a, b). The shortest path

sp(i,j) can be written either as sp(i,j) = v,- w va —> vb w vj, or sp(i,j) = v,- w

vb -—> va w vj, where «M denotes a path between the two vertices. Because the

subpath of a shortest path is also a shortest path, either sp(i,b) or sp(j, b) passes

through va. By lemma A.2, either 7% = a or 7rJ-b = a. Hence either i or 3' is in

Rab:
El

Lemma A.6. F011,) 2 U {(u, t) : vt is in T(u;b)}.

uERab

Proof. By lemma A.5, (u, t) E F(a,b) implies either u or t is in Rab- Without loss of

generality, suppose it E Rab. So, sp(u, t) can be written as vu w va —> vb w vt. Thus

261



  

 

 
...

OOH

T(a; b)

Figure A.1: Example of T(u;b) and T(a;b)_. All the nodes and the edges shown

constitute T(a; b), whereas only the part of the subtree above the line constitutes

T(u; b). This example illustrates the relationship of T(u; b) and T(a; b) as proved in

Lemma A.7.

  

vt must be in T(u; b). On the other hand, for any vertex vt in the subtree of T(u; b),

sp(u,t) goes through vb. Since sp(u,b) goes through va (because u E Rab), sp(u,t)

must also go through va and hence use e(a, b). El

Direct application of the above lemma to compute F((1,1)) requires the construction

of T(u; b) for different u. This is not necessary, however, because for all u E Rab:

T(u;b) must be a part of T(a;b) in the sense that is exemplified in Figure A.1.

This relationship aids the construction of T(u; b) in Algorithm 3.1 (the variable 7")

because we only need to expand the vertices in T(a; b) that are also in T(u; b).

Lemma A.7. Consider u E Rab- The subtree T(u;b) is non-empty, and let vt be

any vertex in this subtree. Let vs be a child of vt in T(u;b), if any. We have the

following:
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1. vt is in the subtree of T(a; b).

2. v, is a child of vt in the subtree of T(a; b).

3- 71'us 2 7ras : t

Proof. The subtree T(u; b) is not empty because vb is in this subtree. For any vt in this

subtree, sp(u, t) passes through vb. Hence sp(u, b) is a subpath of sp(u, t). Because

u E Rab, sp(u, b) passes through va. So, we can write sp(u, t) as vu w va —> vb w vt.

So, sp(a, t) contains vb, and this implies that vt is in T(a; b).

Now, if US is a child of vt in T(u; b), sp(u, s) can be written as on w va ——> vb w

vt —> vs. So, was 2 t. Because any subpath of a shortest path is also a shortest path,

sp(a, s) is simply va —+ vb w vt —> vs, which implies that us is also a child of vt in

T(a; b), and was 2 t. Therefore, we have rug 2 was = t. Cl

Let F be the set of unordered pair (i, j) such that a new shortest path from v,-

to vj is needed when edges in D are removed. So, F = Ue(a,b)€D F(a,b)- For each

(a. b) E D, Rab constructed in the first nine lines in Algorithm 3.1 is used to construct

F(a,b) from line 11 until the end of Algorithm 3.1. At each iteration of the while-loop

starting at line 15. the subtree T(a; b) is traversed, using the condition nus 2 was to

check if vs is in T(u; b) or not. The part of the subtree T(a; b) is expanded only when

necessary, using the variable T’.

Time Complexity If we ignore the time to construct T’, the complexity of the

construction of F is proportional to the number of vertices examined. If the maximum

degree of T’ is q’, this is bounded by O(q’|F|). Note that q' S q, where q is the
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maximum degree of the vertices in the neighborhood graph. The time to expand T'

is proportional to the number of vertices actually expanded plus the number of edges

incident 011 those vertices. This is bounded by q times the size of the tree, and the

size of the tree is at most 0(lF(a,b)l)' Usually, the time is much less, because different

u in Rab can reuse the same T’. The time complexity to construct F(a,b) can be

bounded by O(q|F(a.b)|) in the worst case. The overall time complexity to construct

F, which is the union of F(a,b) for all (a,b) E D, is O(q|F|), assuming the number

of duplicate pairs in F(a,b) for different (a, b) is 0(1). Empirically, there are at most

several such pairs. Most of the time, there is no duplicate pair at all.

A.2.3 Performing The Update i

Let Q’ = (V, E/D), the graph after deleting the edges in D. Let B be an auxiliary

undirected graph with the same vertices as 9, but its edges are based on F. In other

words, there is an edge between v,- and vj in the graph 8 if and only if (i, j) is in F.

Because F contains all the vertex pairs whose geodesic distances need to be updated,

an edge in 8 corresponds to a geodesic distance value that needs to be revised.

To update the geodesic distances, we first pick a vu in B with at least one edge

incident on it. Define C(u) = {i : e(u, i) is an edge of B}. So, the geodesic distance

gm- needs to be updated if and only if i E C(u) These geodesic distances are updated

by the modified Dijkstra’s algorithm (Algoritlnn 3.2), with v", as the source vertex

and C(u) as the set of “unprocess vertices”, i.e., the set of vertices such that their

shortest paths from v.” are invalid. Recall the basic idea of Dijkstra’s algorithm is that,
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starting with an empty set of “processed vertices” (vertices whose shortest paths have

been found), different vertices are added one by one to this set in an ascending order

of estimated shortest path distances. The ascending order guarantees the optimality

of the shortest paths. Algorithm 3.2 does something similar, except that the set of

“processed vertices” begins with V/C(u) instead of an empty set. The first for-loop

estimates the shortest path distances for j E C(u) if sp(u, j ) is “one edge away” from

the processed vertices, i.e., sp(u,j) can be written as vu w va ——> v, with a E V/C(u).

In the while loop, the vertex vk (k E C(u)) with the smallest estimated shortest path

distance is examined and transferred into the set of processed vertices. The estimates

of the shortest path distances between 22,, and the adjacent vertices of 2);, are relaxed

(updated) accordingly. This repeats until C(u) becomes empty, i.e., all vertices have

been processed.

When the modified Dijkstra’s algorithm with vu as the source vertex finishes, all

geodesic distances involving vu have been updated. Since an edge in 8 corresponds

to a geodesic distance estimate requiring update, we should remove all edges incident

on vu in B. We then select another vertex vu/ with at least one edge incident on it in

B, and call the modified Dijkstra’s algorithm again but with uni as the source vertex.

This repeats until 8 becomes an empty graph.

Time Complexity The for-loop in Algorithm 3.2 takes at most O(q|C(u)|) time.

In the while—loop, there are |C(u)[ Extracth’lin operations, and the number of De-

creaseKey operations depends on how many edges are there within the vertices in

C(u). A upper bound for this is q|C(u)]. By using Fibonacci’s heap, ExtractMin
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can be done in ()(log |C(u)|) time while DecreaseKey can be done in 0(1) time, on

average. Thus the complexity of algorithm 3.2 is O(|C(u)| log|C(u)I + q]C(u)|). If

binary heap is used instead, the complexity is 0((1]C(u)[ log |C(u)|).

A.2.4 Order for Performing Update

How do we select vu in B to be eliminated and to act as the source vertex for the

modified Dijkstra’s Algorithm (Algorithm 3.2)? We seek an elimination order that

minimizes the time complexity of all the updates. Let f,- be the degree of ”“1” the

i-th vertex removed from B. So, f, = |C(K,-)|. The overall time complexity T for

running the modified Dijkstra’s algorithm (with. Fibonacci’s heap) for all the vertices

in B with at least an incident edge is 0(T), with

T: Z(fi103fi+(1fi)- (All

Because Ell-:1 f,- is a constant (twice the number of edges in B) with respect to dif-

ferent elimination order, the vertices should be eliminated in an order that minimizes

2,- fi log f,. If binary heap is used, the time complexity is O(T*), with

T* = (1212103 fi- (A?)

In both cases, we should minimize 2, f,- log fi. Finding an order that minimizes this

is difficult, unfortunately. Since this sum is dominated by the largest fi, we instead

minimize max, f,. This minimization is achieved by a greedy algorithm that removes

266



the vertex in B with the smallest degree. The correctness of this greedy approach

can be seen from the following argument. Suppose the greedy algorithm is wrong.

So, at some point the algoritl'n‘n makes a mistake, i.e., the removal of vt instead of vu

leads to an increase of max,- f,-. This can only happen when deg(vt) > deg(vu). We

get a contradiction, since the algorithm always removes the vertex with the smallest

degree.

Because the degree of each vertex is an integer, an array of linked lists can be

used to implement the greedy search (Algorithm 3.3) efficiently without an explicit

search. At any time of the instance, the linked list l [I] is empty for i < pos. So, the

vertex in [[1] has the smallest degree in B. The for—loop in lines 10 to 18 removes all

the edges incident 011v]- in B by reducing the degree of all vertices adjacent to vj by

one, and moving pos back by one if necessary.

Time Complexity The first. for-loop in Algorithm 3.3 takes O(|F]) time, because

|F| is the number of edges in B. In the second for-loop, pos is incremented at most 2n

times, because it can move backwards at most n steps. The inner for-loop is executed

altogether ()(lFl) time. Therefore, the overall time complexity for algorithm 3.3

(excluding the time for executing the modified Dijkstra’s algorithm) is O(]F|).

A.3 Update of Geodesic Distances: Edge Insertion

In Equation (3.3), we describe how the geodesic distance between the new vertex vn+1

and v, is computed, after updating the geodesic distance in view of the edge deletion.
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Since all the edges in A, the set of edges inserted into the neighborhood graph, are

incident on vn+1, any improvement in an existing shortest path must involve vn+1.

Let L z {(i. j) : “’th + U’n+1,j < gij}. Intuitively, L is the set of unordered pairs

adjacent to vn+1 with improved shortest paths due to the insertion of vn+1.

For different (a,b) E L, Algorithm 3.4 is used to propagate the effect of the

improvement. in sp(a, b) to the vertices near va and ”b- First, lines 1 to 9 construct

a set Sab that is similar to Rab in Algorithm 3.1, and it consists of vertices whose

shortest paths to vb have been improved. For each vertex v,- in Sub, lines 11 to 22

search for other shortest paths starting from v,- that can be improved, and update the

geodesic distance according to the improved shortest path just discovered. Its idea is

analogous to the construction of F011,) in Algorithm 3.1, but now sp(a, b) is improved

instead of destroyed as in the case of F011,).

The correctness of Algorithm 3.1 can be seen by the following argument. Without

loss of generality, the improved shortest path between v,- and vj can be written as

v,- wva ——>v,,+1 —> 7’1) wvj. So, 1:,- is a vertex in T(n + 1;a), and vj must be in

both T(i;b) and T(n + l;b). If v1 is a child of 'vj in T(i;b), 2)) is also a child of

v, in T(n + 1;b), and (gmfl + g.,,+1,1) < 911 should be satisfied. In other words,

the relationship between T(i;b) and T(n + 1;b) here is similar to the relationship

between T(u; b) and T(a; b) depicted in Figure A1. The proof of these properties is

similar to the proof given for the relationship between F(a,b) and Rab: and hence is

not repeated.
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Time Complexity The set L can be constructed in 0(IAI2) time. Let H = {(i, j) :

A better shortest path appears between v, and vj because of vn+1 }. By an argument

similar to the complexity of constructing F, the complexity of finding H and revising

the corresponding geodesic distances in Algorithm 3.4 is 0(qIH I + IA]2).

A.4 Geodesic Distance Update: Overall Time

Complexity

Updating the neighborhood graph takes 0(nq) time. The construction of Rab and Fab

(Algorithm 3.1) takes 0(quabl) and 0(quabl) time, respectively. Since [Fab]? [Rab], -

these steps take 0((1lFabl) time together. As a result, F can be constructed in O(q|F|)

time. The time to run the modified Dijkstra’s algorithm (Algorithm 3.2) is difficult to

estimate. Let u be the number of vertices in B with at least one edge incident on it,

and let 1/ E max,- f, with f, defined in Appendix A.2.4. In the highly unlikely worst

case, 11 can be as large as u. The time of running Algorithm 3.2 can be rewritten

as 0(up log 1/ + qIFl). The typical value of V can be estimated using concepts from

random graph theory. It is easy to see that

z/ = Inlax{8 has a l-regular sub-graph}, (A.3)

where a l-regular sub-graph is defined as a subgraph with the degree of all ver-

tices as l. Unfortunately, we fail to locate the exact result 011 the behavior of the

largest l-regular sub-graph in random graph theory. On the other hand, the largest
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l-complete sub-graph, i.e., a clique of size l, of a random graph has been well stud-

ied. The clique number (the size of the largest clique in a graph) of almost ev-

ery graph is “close” to 0(log u) [200], assuming the average degree of vertices is

a constant and u is the number of vertices in the graph. Based on our empirical

observations in the experiments, we conjecture that, on average, I/ is also of the or-

der 0(log ,u). 'With this conjecture, the total time to run the Dijkstra’s algorithm

can be bounded by ()(uloguloglogu + qul). Finally, the time complexity of al-

gorithm 3.4 is 0(qIHI + IA|2). So, the overall time complexity can be written as

0(qIFl + qul + u logu log log it + ]A|2). Note that u s 2|F|. In practice, the first

two terms dominate, and the complexity can be written as O(q(|F I + |H|)).
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Appendix B

Calculations for Clustering with

Constraints

The purpose of this appendix is to derive the results in Chapter 5, some of which are

relatively involved.

B.1 First Order Information

In this appendix, we shall derive the gradient of the objective function j. The

differential of a variable or a function x will be denoted by “d x”. We shall first

compute the differential of J, followed by the conversion of the differentials into the

derivatives with respect to the cluster parameters.
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B.1.1 Computing the Differential

The differential of the log-likelihood can be derived as follows:

 

k k 1 .. dl ..

(l .C( 9; 3?): Ed (10g Zexp(Iong‘j)> = ZZCXP( 0g€th( quU)

3'21 i=lj=1 Zi'eXpaquij’’)

n k (3.1)

= 22% (d logql-j).

i=1j=1

Here, rij = exp(log(1,]~)/ 2]»: exp(log (lift) = (“j/2ft gift is the usual posterior

probability for the j-th cluster given the point y,. The annealing version of the

log-likelihood, which is needed if we want to apply a deterministic-annealing type of

pro<edure to optimize. the log-likelihood, is defined by

£an'lwled(9;y,7 =ZZrUlogql-J— 22731100737” (B2)

i=1j=1 7i=1j=1

where y is the inverse temperature parameter. Note that £annealed(9; y, '7) becomes

the log-likelihood £(9; y) when '7' is one. The temperature invtemp is different from

the smoothness parameter r: y is related to all the data points, whereas r is only

concerned with objects involved in the constraints. The “fuzzy” cluster assignment

fij is defined as

7

.. qu’
I -= -—————. (13.3)

U :3" (1ng

A small value of '7 corresponds to a state of high temperature, in which the cluster

assignments are highly uncertain. The first term in Equation (8.2) can also be un-

derstood as a weighted sum of distortion in coding theory, with fij as the weights
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and log gij as the distortion. The second term in Equation (B2) is proportional to

the sum of the entropy of fij. Because

r )‘

~

1
~

1
~

I

£<11111eale(l(6; y, ,7) = Z: Tij 10g (lij _ g E: 7.2,]. log ([27]. + 3 Z: Tij 10g2 (1,71

ij ij '7 I

1

= 3 :1: log2 exp (7 10s (1171) ,

l

the differential of the annealed log-likelihood is similar to that of the log-likelihood,

which is

d Emma; 32, 1) = Zn, (d log (1..) (13.4)

if

Our next. step is to derive the differential for the constraint satisfaction function

f(9; C) Based on the definition of sij in Equation (5.12), we can obtain its differential

88

(1 log sij = d (7' log {1,-j) — d logZexp(rlog (1,1)

l

= 7' (d log qij) - T2311 ((1 10g (12'!)

l

d 32.1.: T«Sij(d10g(1ij_ 2813' (d 108Gij))

j

(l t);- = :ahi ((180)

i

d 15):]. = thi ((1 Sij)

’i

. k ..._ k +_ k —_ .._ k +._
Note that 213.1(1sz -— ijl d thj — ijl d thj — 0 because Zj 3,] — Zj=1thj —

k _ . . . ‘ g . + __

Zj=1thj = 1. The differential for the negative entropy of 51'3" thj and thj can be
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The differential of the loss functions of constraint violation can thus be written as

m+ m—

(1f(6;C) = d (3121 AZDjSUz) + ZA;D;S(h))

= —TZ(1mZ )‘h (111191]- (logtij —Zs18110g Ell)

2]
thj 1 hl

‘12)‘1; bhisij (10:j——§[:S81110g —))—1j(d logqij)

thl

=—TZ(:Z+:}1)‘ (111151le

2] gthj

“7%: A1; b11181jl (B-5)

gtIJ’

_32jZE)‘h”I125521100871.

I h=1 thl

+ s11 23‘);(3111311 lent/3:4) ((1 10%))

l h=1

—TZ (u’ij - Suzuki) (d 103 (11'1“)

2'1 1

where we define

771+

1 + . +
U11: 2 /\h (1111 ‘Sij 10g 81]“ - Sij 2 Ah (1.111 log thj

h=1

_ m—

~WZ )‘h b111 .31]- loorgsij + 511 E: )‘h bhi logUthj

h=1 h: 1

(BG)

m—

: ZA+(11,1- ZA;b1”- 32] log 91]

Izzl

m—771+

+ .
—sij ZAham-logth.—lgAflb11110g311tJ.

h=1
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It is interesting to note that

n k

2:Z
z—ljzl

n k m—

:2 <::A;lL a111s1jlogs1j— ZAgb111-s1jlogs1-j

i:lj=1 h=1

m+ m

— Aid/1,181.1 log {7;}- + Z AgbhiS-ij log :3.) (8'7)

I221 I121

=23A22%log:— -2_:A 2391231109,—
h=1i=1j=l thj — i=1j=1tIlj

m+ m

__ +— + — — ._ .
_. Ah 015m) — 2A1 01502.) —f(6,C)

I221 I221

Therefore, summing all m1] provides a way to compute the loss function for constraint

violation.

We are now ready to write down the differential of j:

n k I;

(I J = ZZ<f1j- T(‘m1j —- 81'j 21011)) (d log (1U) (13.8)

[:1i=1j=1

B.1.2 Gradient Computation

Since the only differentials in Equation (8.8) are (d log q1j), the gradient of j can be

obtained by converting these differentials into derivatives. Recall that (11]- : ajp(y1|0).

So,

______1
a 1' :1 1.21

810ng
00(111

(J ),
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where I () is the indicator function, and is one if the argument is true and zero

otherwise. To enforce the restriction that a‘j > 0 and Zj aj = 1, we introduce new

variables (33' and express 03' in terms of {3}}:

exp(,BJ-)

013' = k I, .

2.1/:1 €Xp(,t3jl)

 

We then have

 

 

0 ('9 . . exptfil)
T—r—loga'zr— fl—log ex [j- =1 =l — ‘

0W! J (Ml L] g p( 3’) (J ) Zjl GXPWJ-I)

=IU=0-0z

k ,

a 0100‘ q l 0100' (1771 ,

.._—7—10g_: bl {0 = E [[2711 17112 —O
(Adj (Ill "1:1 810g a," a’flj m ( ) ( ( J) J)

=Io=n—aj

If p(yz-Wj) falls into the exponential family (Section 5.1.1), and 03- is the natural

parameter, the derivative of log qt-j with respect to 61 can be written as

8 (9

aiqu=nr=00mo-5Ema0. chm

Note that Qb(y.,-) -— Egg/4(6)!) is zero when the sufficient statistics of the observed data

(represented by ¢(y,j)) equal to its expected value (represented by 5%A(91)). In this

case, the convexity of A(Ol) guarantees that the log-likelihood is maximized.

Before going into the special case of the Gaussian distribution, we want to note
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that for any number cij, we have

0 .

E“ Cij'.0_3l 1000(1ij: E_:Cij(1(l:])_al):§:Cil—alzczj

i ij2.7 2]

(‘9 a , (9

%:Cij_‘66110g0(1ij: ;L~11567110gq.i1 = 21:0“ (((d)/i)“ 676—114(01))

, 8

= Z Cil‘pb’i) — 551/1091) :02!

i i

The gradient of J can be computed by substituting cij = fij — T(wij — sij 2L1 wig).

B.1.3 Derivative for Gaussian distribution

Consider the special case that p(yz-IGZ) is a Gaussian distribution. Based on Equa-

tion (5.6), we can see that the natural parameters are T1 and V1, the sufficient

statistics consist of yz- and —%yiy;-F, and the log-cumulant function A(61) is given by

Equation (5.7). In this case, we have

Buljz :0CzlYi" “1:021 (B'll)

1 T l T 1

5%..7—— _§ ZCiIYiyi + (EHH‘I + 52!) 262'! (B-12)

2' 2'

Note that the above computation implicitly assumes that Tl is symmetric. To ex-

plicitly enforce the constraints that T1 is symmetric and positive definite, we can

re-pararneterize by its Cholesky decomposition:

r1 = F,F,T, (13.13)
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Note, however, with this set. of parameters, the density is no longer in its natural

form. The gradient with respect to V1 remains unchanged, and it is not hard to Show

that

0 . T T

517110;)(113‘ = 1(J = 1) —Yiyi + mm + 231 Fl- (B-14)

O—FZJ— Z011Y1ygF1 + (#1H1T+ 21) F1 2 Cu (315)

1 1

Alternatively, the Gaussian distribution can be parameterized by the mean #3-

and the precision matrix Tj as in Equation (5.5). Because

(3

——lU,--=I"=lT -— B.16
dill ()0 (1U (J ) [(3% M)

( )

3 . 1 1 T

(7.1.; 10% (Iij = 10 =1) (2‘21 — g(yz' - #1)(yz' - #1) ) (B-17)

(‘3 , T

513:! 10% <11} = 1(J =1) (St-(Y1 - mm - H1) )an (318)

the corresponding gradient of ,7 is

———J= T y: — p ) (B19)0H1 1122:0111d 1 1

g‘fij—z— 1212621 _ :26011(3’ MDT (B'ZO)

apl =(EIZCil ZiC
zlmyiT)F1-u1)

(B21)
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B.2 Second Order Information

The second-order information (Hessian) of the proposed objective function J can be

derived in a manner similar to the first order information. We shall first compute

the second-order differentials and then convert them to the Hessian matrix. Let d2 2:

denote the second-order differential of the variable :13.

B.2.1 Second-order Differential

By taking the differential on both sides of Equation (B4), we have

d2 Cammw(9;y,‘1') = 2W 7‘13“) (d 10g (113') + Zfztj (d2 109; (113') - (B22)

z'j 13'

To compute d 731-, we take the differentials of the logarithm of both sides of Equa-

tion (B3):

k

d log fij = d log (13 — longg

[=1

1 k

= '7' d log {1,-j — —7€——§— Z: q?! d log q?! (B23)

1’21 “111’ 1:1

k

= 7 d 103011 — 27711 d 10% (111

1:1

Because of the identity that d .T = a: d logs: for I > O, we have

(1 fij = fij d log 'fij (13.24)
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The differential of this expression yields (12 f(6;C). So, we need to find (1 111,,- and

d2 log Sij‘ The definition of 111,,- in Equation (B.6) means that its differential is

  

 

171+ m—

d 111, :12},\+(1,,,-— Z Agbh, (log 11,-,- + n.1,,- d log 3,,-

+ _

m + m —

Ahahi /\ b '
- ‘0‘ + _ h h? _

5,, Zht+ d thj E: t‘. d thj

h=1hJ 11:1 12.]

m+ m"

- 11,-,- Z A311,”- log-1;, — Z Agbh, log 1;, d logsij

h=l h=1

h: 1 h] h=1thJ

where we define 11'?)- = 111',~,-+-(Zh’f__+_1 hJ“(1,,,— 2’21 Agbhi) sij. Taking the differen-

tials of both sides of Equation (B27), we have

I:
k.

([2 logSz‘j = T(d2 log (lij _ 232'! d2 log (11" _ 251101 log8i1)(d 109111))
[=1 [21

k

2 .

= T(d 10% (Iz'j - Z 811 d2 101%(111)

[=1

k k

— Z 3,1(d log 3,1)(d log 8,1 + T 2 3,11 d 10?; qil’)

1:1 1’=1

k k

: T(dz log qi, — :3” (12 00" (1,,) 2311((1 log 8,-1 )(d log 3,1)
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0 log q- - , . .

T119111 , and define ‘1!" to be the [GUI by 11 matrix [111111, - - -1¢m1l1 where lgztl 13 the

number of parameters in 61,. Let Duv be a 11 by 71 diagonal matrix such that its

(2', '1')-th entry is 7(6)”, — f,,,)f,-,,. Let 11,” denote a 1 by n matrix with all its entries

equal to one. Let Hfi be the Hessian matrix of (log qz-j) with respect to the fins, i.e.,

the (‘u,1,1)-th entry of H5 is given by

43—1 -- - ._‘0—100 — a <1 —«1 1——a (1 -111
8,131,,0,13v Oqu — alt/3110,11) C J — 8‘82) ]U u _ u U?) 'U -

 

Here, (51,11 is the Kronecker delta, which is 1 if u: v and 0 otherwise. Note that Hg

does not depend 011 the value of '1' and j in log (1,]; Let Hi,- denote the Hessian of

log p(y,|(9,) with respect to (9,. Its exact form for the case of Gaussian distributions

will be derived in the next section.

3.2.2.1 Hessian of the Log-likelihood

Based on Equation (B25), we have

068—35; cannealedw y ,7)

u v

*2? 0211,1011 B611 @1011 1111 61011-111 T

ij lj 0911891) +7 0611 861;

- ~ 82 log q- - ~ ..

= 011.?) Z Tilt—(30.7,” + “1' 20511.11 — Tirfihflbiu‘pgfi

i ' U. 2'

Z 6111) 'fiuHi'u + \IIILDUU‘p’lYl‘
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a2

, Lannealed 9; ‘ A,

0.1111061; ( ,y I)

- ~ - 010g (1,1 T ~ ~ T

: ’7 2(6jl — 7111)]ij (Suj — 0'11. a“) _—06 = ’7 Z<6uv —' Ti11’)7'iuwiv

1'jl U 1'

= 11.11D11v‘1’5

‘92 1 d, Cannea e 0; ,

0.1.3110/31) ( y ’7)

= Z 'fijO'ufO'v — 511v) + ‘1' 20511 — fillfij(611j — au)(5»111 — 011)

1'j 131

: nQu<()'v — 6111)) + ’7 2(6UU ‘- fit/07:2.“ 2: Tl-au(av _ 6112)) + 11,-nDu‘Ulin

1

Define HL, the “expected Hessian" of the annealed log-likelihood, by

Ht: 2 blk-diag(nH,3, Z “fl-1H“, . . . , Z fikHikl- (B30)

2 i

It can be viewed as the expected value of the Hessian matrix of the complete-data

log-likelihood. Define a k(1 + |01I) by air matrix A and partition it into 2k by k

blocks, so that the (j,j)-th block is 11,,“ and the (j + k,j)-th block is \I',, where

1 g 1 _<_ k. All other entries in A are zero. In other words,

- 1 - .,

11,11 11,11

A = ’ = ' (B.31)

‘1’1 l¢11---¢nll

    WA: [#111- 140111],

 



Let D be a 1119 by nk matrix and we partition it into I: by k blocks, so that the (u, v)-th

block is DW. With these notation, the Hessian of the annealed log-likelihood is

02

06

D is symmetric because the (i, i)—th element of both DW and DW are 7(61”; —f,u)f,-v.

Also, the sum of each of the column of D is 0 because 2,, 7(51111 - 7'1‘u)’”iv = 0.

B.2.2.2 Hessian of the Constraint Violation Term

By converting the differentials in Equation (B27) into derivatives, we have

310g 9

75;] = T(6jut/’iu— 23216111¢111)—_ T((Sju _Siulwzu

. 11

k

010gs~

T111] — T(Cju — 011- Z 811(5111 - 011)) = T(Cju ‘ Ci")

[=1

This implies

dlogs Blogsa- T

Z( 111:,-— Sljzwi1)(ax—_—Ljuj)(—aj—Q)

.v

i]

k2

T
——T Z: :00:'1 '_' Sij $11.11)“)ju “3111)(6jv- 811)) : 11,72EUU11JI

121

Similarly, we have

A“ 1 T

()log 9 ()log 8;.-

ZW‘ 2"“(113lf—51—1l =11~‘”E“”‘I'3
1']
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0 log is, 8100' 3,-- T
J O 1] T

“.._S TU r =‘I’_E‘I’

2.] ’32 ”)(_—aeu )( 09,. l u “U U
U

Here, 72 (Zj (11);]- -— .sz-j :3le 11.1”)(61-1, — 3iu)(5jv — 3,“) is the (2', i)-th element of the

n. by 11 diagonal matrix Em. Let ahju. denote a vector of length n such that its i-th en-

try is given by TahZ-siJ-(ciju — Siul Because d t3]. 2: 2,- “hi (1 sij = Z,- Ohisij d log 81]"

we have

 

(NI-:7- 810g S‘I’]

, = Zahisz‘je—— TZahiSijwju_Szu)1/Jiu: ‘I’uahju
(991, 2' 06a

. +(3th].
 

81311 = TZ ahisijwju - Sin) 2 11.nahju

i

This means that

+ T
m k A+ 01+ &+

227:37: will?‘ 11:21,!“+:ahJuath ‘1’3
h=1j=1th h=1j=1hj

T
= quuL+Av 113‘,

where we concatenate different ahju to form a n by km+ matrix Au, defined by

A“ : [31,1411 32.1,“? ' ’ ° ’am+d,u’ 21112911” "’a1'n+,2,u’ ° ' "alakdt" ' ' ’am‘l’Jcml'

Note that An has similar sparsity pattern as the matrix {am}. The diagonal matrix

/\+

L+ is of si7e km+ by Am..+ Its diagonal entries are given by—— ,and the ordering of

hi

these diagonal entries matches the ordering of ahju in Au. By similar reasoning, we
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have

 

"1+ k + + T
)‘h . 8th.

J _ + T T

ZZ—t+ (0;) (39v) — 11,71AUL Av ‘I’v

h=1j=1hJ

m+ k +

)‘h 8th
J _ + T T

EZt—h; (33”) (83:) _ anAuL Avllfl

h=1j=1hj

 

 

The case for til“), which corresponds to to must-not—link constraints, is similar. So,

we define bhju to consist of Tl);,,-.9,-j(6ju —— sin) for different i, and concatenate bhju

A-

to form B“. L‘ is a diagonal matrix with entries {in Substituting all these into the

hj

result derived in Equation (B29), we have

0 0

d—6u~ ; Ull'J 59; log 13,-]-

02 8 T

:Tguijd—ifludf):log(111+; —siij,-l)(aulog 35])(0—9U10g 8“)

0 agutt) —t )(—a—t )T
—§Zi\% _u'thj)(— +2:Jag” hJ' 09v hj

h: 1 j

- ~ 02log - _

= 701w 2 url-ru——-8:2:“ + name}; — \IJUA,,L+A$"1:{+ \IIuBuL 33,"qu

2' ll.

_ ‘~. 02 log (1m. + T _ T T

— 7611.1) IUMW + ‘I'U Euv — AUL Av + BUL Bv ‘I’v

'lt

Similarly, we have

r)

.

— V

6182!, 210006
1? 10g Sij 11,71 (Euv AUL+AU + BU BU ) ‘I’T;

. ij .

I;
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071;“le“’J_T§“’Jddudt+

11,n (E1111 '_ A-11L+AT + BULTBT) lTJz

Let HC denote the “expected” hessian of the complete data log-likelihood due to the

constraints, i.e.,

 

H0 = blk-diag(0, T Z mum-1,. ..,7-: ar,kH,k). (13.33)

i 2'

Note that there are no Hessian terms corresponding to the 1% because Zj 1172']- = 0.

Let E be a 71k by 721; matrix. We partition it into k. by k blocks, such that the (U, v)-th

block is EW. Let A be a nk by km+ matrix and B be a 71k by km- matrix, such

that

    L- a- L _1

we are now ready to state the Hessian term corresponding to the constraints:

771+ m

—::J\,j‘j5(0 )+Z.\,‘;D;S(h)

[1:1

2 _HC — AEAT + AAL+ATAT — ABL‘BTAT (3.34)

Note that the sum of each of the columns of A is 0, because Em non-SUM)” — 3,“) =

Z,- Tahisij 21,051,, — Sin) 2 0. Combine Equation (B34) with Equation (B32), we

289  



have the Hessian of the objective function j in matrix form:

._2 ~ ~

.35 = HL — H6 + ADAT — AEAT + AAL+ATAT — ABL“BTAT

W (3%)

= H“ + A (D — E + AL+AT — BL—BT) AT.

Here, H56 2 £15 — H6 is the combined expected Hessian.

B.2.3 Hessian of the Gaussian Probability Density Function

Computation of HLZC requires Hij, which is the result of differentiating log p(yilélj)

with respect to the parameter 03- twice. We shall derive the explicit form of Hij when

log p(inBJ) is the Gaussian pdf. For simplicity, we shall omit the reference to the

object index i and the cluster index j in our derivation.

We shall need some notations in matrix calculus [179] in our derivation. Let vec X -

denote a vector of length pq formed by stacking the columns of a p by q matrix X.

Let Y be a 'r by .9 matrix. The Kronecker product X®Y is a pr by qs matrix defined

by _ -

:EllY :13ng . . . (13qu

:5le :rggY . . . ngY

X®Y= . . (3%)

:rplY . . . 1:qu  
The precedence of the operator 69 is defined to be lower than matrix multiplication,

i.e., XY 6'9 Z is the same as (XY) 63> Z. The following identity is used frequently in
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this section:

vec(XYZ) = (zT <59 X) vec Y. (13.37)

Let Kd denote a permutation matrix of size (12 by d2, such that

Kd vec Z : vec ZT, (B38)

where Z is a d by (1 matrix. Note that K5 2 K51 2 Kd.

 

B.2.3.1 Natural Parameter

When the density is parameterized by its natural parameter as in Equation (5.6), we

have

0 1
_ U, ___ __ __ -l —T

auloopm y 2 (T +r )u

3 , _ 1 T 1 —T 1 —:r T —:r
8T10°p(y) — 2yy + 2T + 2T 1111 T

5% log p(y) = —nyF + F“T + T—TVVTT‘TF,

where T-T denotes the transpose of T—l. Therefore,

82

517 10%]’(Y) = —

02

Ovec T 011 10gp(y)
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02

———— (rr' 2 T —1 "A _T T —1 —T

dvecF 0111001)“) F T @T V+F T ”(8T

= (F_1®E)(Id®u+l’®ld)

The last term in the Hessian matrix requires more work. We first take the differential

with respect to T:

l

d 5%.— logp(y) = —§T'T(d YT)T_T

1 1

— ET'TWTWFTM TT)‘I“‘T — Ear-Tm 'rT)r—TuuTr—T.

By using the identity in Equation (8.37), the Hessian term can be obtained as

82

_ 1 —1 —T

_ g (r—1 69 T—TVVTT—T) Kd — é- (T—IVVTT—l ® T—T) Kd

Similarly, the Hessian term corresponding to F can be obtained if we note that

a
(1 5? log p(y) = —ny(d F) — F‘T(d FT)F“T — T—TVVTF_T(d FT)F"‘T

— r—T(F(d FT) + (d F)FT)r—TWTF‘T

02

M10$ p(y) = -Id 9’9 ny — (F"1 8) F4) Kd - (F"1 <8 MMTF) Kd

—— (FTppT 69 FT) Kd -— FTupTF e) 2
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In the special case that T is always synnnetric, we can have a simpler Hessian term.

This amounts to assuming that TT 2 T and (aIT)T 2 ((1T). We have

82
1 1 T 1 T

_l 0‘ r: ——2 )3 2 — _2 _ — 2

0(vec r)2 GDP”) 2 g 2 QM“ 2”“ ®

1
2 _5 ((23 + muT) ® (23 + ##T) - (n ® (QUIT ® Mill)

B.2.3.2 Moment Parameter

When moment parameter is used as in Equation (5.6) for the density, we have

a 1 T

alosp(y)—§(T+T )(y—u)

a ., _ 1 T 1 _T

filosmyb 2(y u)(y u) +2T

8

Ef loamy) = —(y - u)(y - MTF + F‘T

The second—order terms include

 

a? _ 1 :r

WIOQPffl—‘é (TWLT )

a? 1...()_1 I I('3vecT0p. oopy —2(d®(y-u)+(y-u)® d)

1

= 50,12 + Kd)(1d ® (3' - M)

= (FT a Iaadg + K.) (I. e (y — u»
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As in the case of natural parameter, we have

a 1 —T T —T
+1 ... = _—(10 ogp(y) 2r ((lT )r

a? 1 _1 _T
___—__1 or = __ .,

0(vec 1r)2 0" pm 2 (T 3 T )Kd

a _ ._

d 51-1ng00: —<y — My — u)T(d F) — F W FT>F T

<92 . . _ T —1 -—T
WIOOMY) - ‘Id ’3) (Y — u)(y — H) — (F ‘59 F )Kd

If we assume both T and d T are always symmetric, we have

(92
1

WlOgP(Y) = "—"'2 ® 2

2
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