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ABSTRACT

EMPIRICAL LIKELIHOOD BASED FUNCTIONAL DATA ANALYSIS AND
HIGH DIMENSIONAL INFERENCE WITH APPLICATIONS TO BIOLOGY

By

Honglang Wang

High dimensional data analysis has been a rapidly developing topic in statistics with
various applications in areas such as genetics/genomics, neuroscience, finance, social sci-
ence and so on. With the rapid development of technology, statistics as a data science
requires more and more innovations in methodologies as well as breakthroughs in mathe-
matical frameworks. In high dimensional world, classical statistical methods designed for
fixed dimensional models are often doomed to fail. This thesis focuses on two types of high
dimensional data analysis. One is the study of typical “large p small n” problem in linear
regression with high dimensional covariates X € RP but small sample size n, and the other
is the functional data analysis. Functional data belong to the class of high dimensional data
in the sense that every data object consists of a large number of measurements, which may
be larger than the sample size. But the key characteristic is that functional objects can be
modeled as smooth curves or surfaces. We make use of Empirical Likelihood (EL) introduced
by [Owe01], to solve some fundamental problems in these two particular high dimensional
problems.

The first part of the thesis considers the problem of testing functional constraints in a
class of functional linear regression models where both the predictors and the response are
functional data measured at discrete time points. We propose test procedures based on
the empirical likelihood with bias-corrected estimating equations to conduct both pointwise

and simultaneous inference. The asymptotic distributions of the test statistics are derived



under the null and local alternative hypotheses, where sparse and dense functional data are
considered in a unified framework. We find a phase transition in the asymptotic distributions
and the orders of detectable alternatives from sparse to dense functional data. Specifically,
the proposed tests can detect alternatives of root-n order when the number of repeated
measurements per curve is of an order larger than n'0 with n being the number of curves.
The transition points 7y are different for pointwise and simultaneous tests and both are
smaller than the transition point in the estimation problem.

In the second part of the thesis, we consider hypothesis testing problems for a low-
dimensional coefficient vector in a high-dimensional linear model under heteroscedastic er-
ror. Heteroscedasticity is a commonly observed phenomenon in many applications including
finance and genomic studies. Several statistical inference procedures have been proposed for
low-dimensional coefficients in a high-dimensional linear model with homoscedastic noise.
However, those procedures designed for homoscedastic error are not applicable for mod-
els with heteroscedastic error and the heterscedasticity issue has not been investigated and
studied. We propose a inference procedure based on empirical likelihood to overcome the
heteroscedasticity issue. The proposed method is able to make valid inference under het-
eroscedasticity model even when the conditional variance of random error is a function of
the high-dimensional predictor. We apply our inference procedure to three recently proposed
estimating equations and establish the asymptotic distributions of the proposed methods.

For both of the two parts, simulation studies and real data analyses are conducted to

demonstrate the proposed methods.
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Chapter 1

Introduction

1.1 Empirical Likelihood

In Statistics, the likelihood principle is the primary principle as stated in [Edw84],

Within the framework of a statistical model, all the information which the data provide

concerning the relative merits of two hypotheses is contained in the likelihood ratio of

those hypotheses on the data. ...For a continuum of hypotheses, this principle asserts

that the likelihood function contains all the necessary information.
However, for the inference procedure to be more widely applicable, some non-parametric
version of the likelihood is desirable so that we can not only gain robustness and flexibility
but also keep the effectiveness as well as some other merits of the likelihood principle. In the
late eighties, Professor Art B. Owen proposed the great idea, “Empirical Likelihood” (EL)
[Owe88, Owe90], which is a non-parametric likelihood. The well known “Wilks Phenomenon”
belonging to the parametric likelihood still holds for EL [Owe90, Owe01]. EL also enjoys the
Bartlett correction property [DHR91, CCO06]. Besides, it produces more natural data driven
shape of confidence regions.

We consider the univariate mean inference problem to introduce the EL idea. Given

n IID observations {X; € R;i = 1,2,---  n} from an unknown underlying distribution Fj
with finite first two moments, we want to conduct the inference for the univariate mean

po = Ep, (X;). A natural point estimation of pg is the sample mean X, but how to get



an efficient confidence interval with a given confidence level is not that simple since we have
no idea about the underlying distribution up to the first two finite moments. According
o [Owe90], the empirical likelihood for p is the product of the probability weights, say
{0 < p; <1,i=1,2,--- n}, sitting on the sample points {X;,i = 1,2,--- ,n}, that is

[Ti2; pi, with the first moment constraint Y ;' | p;X; = p, i.e.

{piti

Lrr(p) = maX {le Zpl—1p2>0 sz _o}. (1.1.1)

Actually, we can derive the above formulation (1.1.1) in the following formal way. The
statistical model with the first moment restriction could be phrased formally as the set of all
probability measures that are compatible with the first moment condition, i.e. P = {J, P(n),
where

P(p) = {probability measure P on R : /(X — p)dP = 0} .

Note that it is correctly specified if and only if P includes the true measure dFy(x) as its
member. The following function could be regarded as a measure for the divergence between

two probability measures P and Q:

D(P.Q) = / ¢<%)dc2,

as long as ¢ is chosen to be convex. And we know that the Kullback-Leibler (KL) divergence
between probability measures P and @ is a special case by taking ¢(z) = —log(z).

If the model is correctly specified, we have the following nice property at the population
level

po =inf inf D(P, Fp).
H PeP(p)



Hence a natural statistical procedure for the estimation of the mean can be obtained by
replacing the unknown F{y with the empirical measure Fj, and searching over the restricted

statistical model P = (J,, B(n), where

Bu) = {Fp =Y pidy, : /(X — p)dry = 0} :
i=1

And then the estimation of the mean is defined as the minimizer of the following optimization

problem

1
inf inf D(Fp, Fy) = inf inf — Y o(np;). (1.1.2)
B FpeP(u) By pi(Xj—p)=0, T ; '

In particular, with the KL divergence in (1.1.2), we have

1 n
inf inf - — log(np;),
i pi(X—p)=0, 1 ;

which naturally leads to the log empirical likelihood as defined in (1.1.1)

z 1

lgr(p) = log Ly, (p) = (o {Zlogpz sz =1,p; >0 sz —p) = 0}-
Most importantly, [Owe90] proved the following Wilks property
d 2
—20py,(1o) — 2nlogn = X7.

Based on this asymptotic result, we can not only perform hypothesis testing but also con-

struct confidence interval for the mean parameter with data driven shape.



An overview of the EL methods can be found in [Owe01] and [CVKO09].

1.2 Big Data Analysis

In the age of information and technology, along with the advancement of technological rev-
olution, information acquisition is becoming easy and cheap, which leads to the explosion
of data collection through automated data collection processes. From various fields such
as biomedical sciences, engineering and social sciences, massive data characterized by high
dimensionality are popping up all the time. For example, with the rapid next generation
sequencing technology development, hundreds of thousands of genetic variants such as single
nucleotide polymorphisms (SNPs), are potential features in genome wide association studies
(GWAS). Time series with very dense time points can be collected from hundreds of thou-
sands of regions in economics, earth sciences, as well as neuroscience. In the Big Data era,
documents, images, videos and other objects can all be regarded as forms of massive data.
Statisticians have been also proposing new statistical methodologies to discover knowledge
from those big data. For example, from studying data points in the finite Euclidean spaces
to studying curves (i.e. functional data analysis), surfaces, even manifolds directly in infinite

dimensional spaces.

1.2.1 Functional Data Analysis

We consider the following general functional linear regression model,

Yi(tij) = B (tij)Xi(tij) + eiltiy), i =1,--- ,n;j=1,---,m (1.2.3)



where X;(t) ~ {u(t), (s, 1)}, t;j ~ f(t) and €;(t) ~ {0,€(s,t)} are mutually independent.
For convenience, assume that with m;’s (1 < i < n) are all of the same order as m = n'l
for some n > 0. Data with n = 0, are called sparse functional data, i.e. longitudinal data;
those satisfying n > ng, where 7 is a transition point to be specified, are referred as dense
functional data. The scenarios with n € (0,79) are in a grey zone in the literature and we

refer them as ¢

‘moderately dense”.

Historically, sparse and dense functional data were analyzed with different methodologies.
For dense functional data, one can smooth each curve separately and proceed with further
estimation and inference based on the pre-smoothed curves. A partial list of recent literature
on dense functional data includes [CLS86], [RS91], [ZC07], [EHO08] and [BHK'09]. For
sparse functional data, the pre-smoothing approach is not applicable and, instead, one needs
to pool all data together to borrow strength from individual curves [YMWO05a, YMWO05b].
[HMWO06] investigated the theoretical properties of functional principal component analysis
based on local linear smoothers. They found that, for dense functional data with n > 1/4,
the pre-smoothing errors are asymptotically negligible and quantities such as the mean,
covariance and eigenfunctions can be estimated with a parametric root-n rate, while these
quantities can only be estimated with a nonparametric convergence rate for sparse functional
data with n = 0. Since sparse and dense functional data are asymptotic concepts and
are hard to distinguish in reality, [LH10] proposed an estimation procedure treating all
types of functional data under a unified framework including the moderately dense cases.
More recently, [KZ13] proposed a unified, self-normalizing approach to construct pointwise
confidence intervals for the mean function of functional data. The aforementioned papers

established 7y = 1/4 as the transition point to parametric convergence rate.

In contrast to estimation, less is known about the inference for functional data, with a



few exceptions such as [ZC07] and [KZ13]. In Chapter 2 and 3 of the thesis, we propose
pointwise and simultaneous inference procedures for the functional linear model under a
unified framework for all types of functional data and investigating the phase transition
from sparse to dense data. We are not only the first one to propose an unified inference
procedure in the regression setup which can cover all types of functional data, but also the
first one to investigate the transition phase from sparse to dense functional data, for the

following very broad hypothesis testing problem

Hy: H{Bo(t)} =0 vs Hy,: H{Bo(t)} = bpd(t) (1.2.4)

where H(-) is any specified functional with some regular condition and b, is the detectable
order of local alternatives to be specified (Table 1.1). In Chapter 2 and 3, we not only
derive the asymptotic distributions under the null hypothesis and local alternatives, but also
propose a wild bootstrapping approach to unify the inference procedure in practice along

with a nice bandwidth selection method.

Table 1.1: Transition phase point from sparse to dense data and optimal de-
tectable order of local alternatives for both pointwise and simultaneous infer-
ence. Note that we lowered the transition phase point 79 which was 1/4 in the existing
literature.

Pointwise Inference ny = 1/8 Simultaneous Inference 79 = 1/16
0<n<mno n=m 0<n<mno n=m
by 0N/ 12 S 8(F/17 12




1.2.2 High Dimensional Data Analysis

Rapid progress has been made during the past decade in high dimensional statistics, es-
pecially in linear regression model as one of the classical models in statistical theory. The
vast majority of existing literature has been pursued for estimation under sparsity and ho-
moscedasticity based on regularization with different penalties, either convex or noncon-
vex. The most popular representative of convex penalties is the Lasso penalty [Tib96].
The theoretical properties of the Lasso estimator such as the oracle property, which refers
to consistently recovering the sparse pattern and estimating the parameters of the coeffi-
cient vector, and selection consistency have been investigated by [MY09, BRT09, BTW 07,
VdGO8, Zha09, NRWY12] and [MB06, ZY06, Wai09]. The nonconvex representatives include
SCAD [FLO1], MCP [Zhal0], among others. A comprehensive overview of high dimensional
estimation for homoscedastic regression models can be found in [BVDG11].

Despite its prevalence in statistical data sets, heteroscedasticity has been largely ignored
in high dimensional statistics literature. [WWL12| analyzed the heteroscedasticity in high
dimensional case by using quantile regression. [DCL12] proposed a methodology that allows
nonconstant error variances for high dimensional estimation but with a parametric form of
the variance function. And recently, [BCW14] came up with a self-tuning v/Lasso estimation
method that solved this important problem in high dimensional regression analysis.

Although people have made significant progress towards understanding the estimation
theory for high dimensional models, very little work has been done for constructing confidence
intervals, statistical testing and assigning uncertainty for penalized estimators in high dimen-
sional sparse models. In an early work, [KF00] showed that the limiting distribution of the

Lasso estimator is not normal even in the low dimensional setting. Recently, [GVHF11] and



[CG14] considered global testing with high dimensional alternative. [MMB09] and [WR09]
considered p-values based on the sample splitting technique. Stability selection [MB10] and
its modification [SS13] provide another procedure to estimate error measures for false posi-
tive selections in general high dimensional settings. For the lasso estimator, [LTTT14] and
[TLTT14] considered an interesting conditional inference with random hypothesis, which is
philosophically different with the traditional unconditional inference.

In terms of testing the significance of one single regression coefficient, the classical z—test
(or t—test) is no longer applicable because the high dimensionality. People have been propos-
ing low-dimensional projection procedure to conduct hypothesis testing and construct con-
fidence regions [ZZ14, BT13, JM13, vdGBR13, LZL%13, NL14]. The way to select the
projection variables varies from method to method. Some of them use node-wise Lasso pro-
cedure to select the projection variables, and some of them use the so called Key conFounder
Controlling (KFC) method motivated by screening approaches [FLOS].

However, all the above inference procedures assumed homoscedasticity for the error term,
in particular, the conditional variance of the error is a constant. This is essential for their
inference procedure to be valid since they require the accurate estimation of the error vari-
ance. Without homoscedasticity, it is hard for them to carry out the estimation of the error
variance in high dimensional settings. But this hardly holds in practice. There is rarely
good cause to have strong belief in the assumption that the errors are homoscedastic and
similarly there is rarely sufficient information to enable accurate specification of the variance
function. The use of incorrect variance models will, in general, lead to inferences that are
not asymptotically valid [Bel02]. [WD12] generalized the asymptotic results of [KF00] for
the case of a fixed parameter dimension under heteroscedasitic errors. But there is little

work in dealing with heteroscedasticity under growing dimension along with sample size. To



bridge this gap, in Chapter 4 of this thesis, we propose to use Empirical Likelihood (EL) to
test statistical hypotheses and construct confidence regions for low dimensional components

in high dimensional liner models with heteroscedastic noise.



Chapter 2

Unified pointwise empirical likelihood
ratio tests for functional linear models
and the phase transition from sparse

to dense functional data

2.1 Introduction

We consider statistical inference problems under a general functional linear regression model,
where both the response Y (¢) and the covariate X(¢) = {X1(¢),..., XP)(£)}T are defined

continuously on a time interval [a, b]. The relationship between Y (¢) and X(t) is given by
Y(t) = BJ(6)X(t) + €(t), (2.1.1)

where Gy(t) = (ﬁlo(t), cee Bpo(t))T is a p-dimensional vector of unknown functions and
€(t) is a zero mean error process, independent of X and with a covariance function Q(s,t) =
Cov{e(s),e(t)}. The model in (2.1.1) is also referred as the concurrent functional linear model
in [SRO5], which includes the varying coefficient models and functional analysis of variance

(FANOVA) models [MC06, ZHM T 10] as special cases. In many fANOVA applications, some

10



components of X(t) are random indicators of treatment assignments with complicated cross
or nested structures, see [FZ00] for more discussions on the relationship and difference be-
tween model (2.1.1) and the varying coefficient models. Without loss of generality, we allow
X(t) to be a multivariate random process with mean function p(t) = E{X(¢)} and covariance
function I'(s,t) = Cov{X(s), X(t)}.

Let {Y;(t),X;(t)}, i = 1,...,n, be independent realizations of {Y (¢), X(t)}. Instead of
observing the entire trajectories, one can only observe Y;(t) and X;(¢) on discrete time points
{tij,j =1...,m;}. For convenience, denote Y;; = Y;(t;;) and Xi(jl?) = X;k) (tij), and assume
that m;’s (1 < ¢ < n) are all of the same order as m = n'l for some > 0. That is m;/m are
bounded below and above by some constants. Functional data are considered to be sparse
or dense depending on the order of m [HMWO06, LH10]. Data with bounded m, or n = 0,
are called sparse functional data; those satisfying n > ng, where 7g is a transition point to
be specified below, are referred as dense functional data. The scenarios with n € (0,7g) are
in a grey zone in the literature and we refer them as “moderately dense” in this chapter.

As we mentioned in Section 1.2.1, sparse and dense functional data were analyzed with
different methodologies. But sparse and dense functional data are asymptotic concepts and
are hard to distinguish in practice, [LH10] proposed an estimation procedure treating all
types of functional data under a unified framework including the moderately dense cases and
they found 79 = 1/4 is the transition point to parametric convergence rate in the estimation.
In contrast to estimation, less is known about the inference for functional data, with a few
exceptions such as [ZC07] and [KZ13]. The focus of the chapter is on proposing pointwise and
simultaneous inference procedures for the functional linear model in (2.1.1) under a unified

framework for all types of functional data and investigating the phase transition from sparse

11



to dense data. We are interested in testing

Ho: H{Bo(t)} =0 vs Hy: H{Bo(t)} #0 (212)
where H{z} is a ¢-dimensional function of z = (21,--- ,2p)T € RP such that C(z) := agz(TZ)

is a ¢ x p full rank matrix (¢ < p) for all z.

The test problem in (2.1.2) is very broad, including many interesting hypotheses as special
cases. For instance, if H{z} = z, the null hypothesis is equivalent to Hy : Sio(-) = 0 for all k.
If H{z} = (21— 22,2023, -+, 2p—1 —2p)T, then (2.1.2) is essentially an ANOVA hypothesis
for the coefficient functions (). If H{z} = Az — ¢ for a ¢ x p known constant matrix
A and a known vector ¢, then (2.1.2) becomes Hy : ABy(+) = cq, which is a test for linear
constraints on By(-). Similar hypothesis testing problems have been studied by [ZC07] and
[Zhall]. However, their methods only apply to dense functional data with n > 5/4.

In this chapter, we propose nonparametric tests based on the empirical likelihood (EL) to
test (2.1.2) pointwisely. We show the EL-based tests enjoy a nice self-normalizing property
such that we can treat both sparse and dense functional data under a unified framework.
There have been some works on ELL methods for sparse functional data with 7 = 0. Among
them, [XZ07] proposed an EL method for constructing pointwise confidence interval and
a Bonferroni type simultaneous confidence band for the mean function. [CZ10] studied an
EL-based method for testing ANOVA type hypotheses in partial linear models with missing
values.

To investigate the power of the tests, we consider the local alternatives

Hyp - H{Bo (1)} = bnd(?), (2.1.3)

12



where by, is a sequence of numbers converging to 0 at a rate to be specified later and d () # 0 is
any g-dimensional function. For a given test, by, is the smallest order of the local alternatives
so that the test has a non-trivial power for any fixed non-zero d(-). Thus b,, quantifies the
order of signals that a test can detect. For the sparse data with n = 0, it is known that the
EL method using a global bandwidth & [CZ10] can detect alternatives of order by, = (nh)~ /2
for pointwise tests. Since h — 0 in a typical nonparametric regression setting, the detectable

-1/2, However, for dense data with n > 0, the detectable order

order here is larger than n
by, is still largely unknown. One key interest in this chapter is to understand the effect of
n on by in the pointwise test. The optimal b, is obtained by maximizing the power of the
test (i.e., minimizing the order of by, ) while controlling the type I error at the desired level.
Under some mild conditions, we find that, for the pointwise test, the optimal rate b, is larger
than n~1/2 for n < 1/8 and equals to n=1/2 for n > 1/8. The transition point 1/8 will be
refereed as ng for the pointwise tests. Once 1 > ng, with a properly chosen bandwidth, the
proposed tests can detect a signal at a parametric rate.

The rest of the chapter is organized as follows. In Section 2.2, we present a bias-corrected
estimator and some preliminary results. We propose the unified pointwise EL test in Section
2.3 where we investigate the asymptotic distributions of the test statistic under both the
null and local alternatives, and the transition phases for b,. In Section 2.4, we address
implementation issues such as bandwidth selection and covariance estimation. Simulation

studies are presented in Section 2.5. All the technical details are relegated to the Section

2.6.
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2.2 A bias-corrected estimator and some preliminary

results

In this section, we will first introduce an initial local linear estimator B(t) [FG96] for Bo(t)

and then introduce a bias-corrected estimator 3(t) and some preliminary results.

2.2.1 A bias-corrected estimator

Let K(-) be a symmetric probability density function that we use as a kernel, A be a band-
width, and denote K},(-) = K(-/h)/h. For any t in a neighborhood of tgy, [.9(t) can be

approximated by

Bro(t) = Brolto) + %k%t(t())(t —tg) = ap + bRt —to),k=1,2,--- ,p.

t;

—t
Denote 9 = (ay,...,ap, hby, ..., hby)T and D;;(t) = (Xz'ij Z]h XZ.TJ.)T. Put

Yi = (Y:ila YviQ? cee 7Y:L'm7;)T7Y = (YI’Y-QF’ T 7YT-I;>T7
D;(t) = (Dj1(t), Dia(t), -+, Dy, (1)) T, D(t) = (D] (t), D} (t), - , Dy (t))T,
L ..
Wi(t) = ——diag{Kp(tin — ). Kp(tiz = 1), - Kn(tim; =)},
(3

and W (t) = diag(W1(£),Wa(t), ..., Wn(t)).

An estimator for 1 is obtained as

A

9 = arg mlgn[Y — D(tg)9]TW (tg)[Y — D(tp)9], (2.2.4)

= [DT(ty)W(to)D(to)] ' DT(to)W(t) Y.
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Thus the local linear estimator for Bq(tg) is

~

B(to) =(I,0p)9 =(Ip,0,)[DT(to) W (to)D(t0)] DT (tg)W(to)Y, (2.2.5)

where I, is a p X p identity matrix and 0y is a p X p zero matrix. It is shown in Lemma 1

in Section 2.6.2 that

3(8) — Bo(t)] = 0 4 h2 4 (1987 | 1ogn )2
tgl[fb}’ﬁ(t) ﬁo(t)]—O{h + ( - —i—nmh) } a.s. (2.2.6)

Since the bias of B(t) is of order A2, undersmoothing is typically needed for an unbiased
testing procedure based on B(t) [XZ07]. To avoid undersmoothing and reduce the estima-
tion bias in 3(t), we define B(t) as the solution of the following residual-adjusted [XZ07]

estimating equation for 3(t)
1 n
BB} = =S g8} =0, 227)
=1

with g;{B(1)} = mi St Vi = BT(OXs; — 1B(t) — BW)YTXG; X Kp(tiy — 1), where

B(t) is the local linear estimator for Bg(t).

2.2.2 Regularity conditions and preliminary results

We now present some preliminary results regarding the asymptotics of B(t) Assume that

t;j are i.i.d. random variables following a probability density function f(t). For convenience,
define I'(t) = I'(¢,t), Q(t) = Q(t, 1), C(t) = C{By(t)} and A(t) = T'(t)f(t). We will also use

op and Op to represent that, respectively, o, and O) hold uniformly for all ¢ € [a,b]. The
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following conditions are needed for our asymptotic results.

(C1): The kernel function K(-) is a symmetric probability density function with a bounded

support in [—1,1].

(C2): Assume that [ {SUPte[a,b] ||X(t)\|/\1} < oo and E {SUPte[a,b] |e(t)|)‘2} < oo for some

A1, A2 > 5 where || - || is the Ly norm for a vector.

(C3): Assume that f(t) and I'(¢) have continuous second derivatives on [a,b], By(t) has

continuous third derivatives on ¢ € [a, ], and C(¢) is uniformly bounded on ¢ € |a, b].

(C4): Define A\ = min{\{, Ao} and let h = n~%0 with ag € (0,1) being the order of the
bandwidth. Assume that (i) g <1 —n—2/Xifn € [0,1/8] and g < 1/2 — 1/ if

n>1/8; (i) (14+4n)/9<ayifne[0,1/8 and 1/8 < ag <nifn > 1/8.

Conditions (C1) and (C3) are commonly used regularity conditions in nonparametric
regressions. Condition (C2) is similar to that in [LH10]. The upper bounds on the bandwidth
hin (C4)(i) are adapted from [LH10]. Detailed explanation on the restrictions on A in (C4)(ii)
will be given in Remark 2 after Proposition 2. Selecting a bandwidth that satisfies (C4) will
be discussed in Section 2.4.

The following proposition provides an asymptotic expansion for B(t).

Proposition 1. Under conditions (C1)-(C3) and (C4)(1),

B(t) — Bo(t) = —~A~ ()& (1) {1 + 5p(1)} + Op(h?), (2.2.8)
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where &n(t) = n~ 1S &(t) and &(t) = mi_1 Z;nzzl Xij€ijKp(tij —t). Let
n
F= lim n ! Zm/mi,,uts = /usKt(u)du,
1=1

then

g+ LR M o) (229)

Var{€a(t)} = TR /(1)
The proof of Proposition 1 is provided in Section 2.6.2.

Remark 1. Proposition 1 implies that the mean square error (MSE) of B(t) is MSE{B(t)} =
O{h8 + ﬁ + %} Hence the optimal hept that minimize the MSE of B(t) is hopt ~

(mn) Y9 = =40/ 1t follows that
B(t) — Bo(t) = Op{hgp + (mnhopt)_% + n_%} — Op{n 12 4 n40HM/9y,

Then the optimal convergence rate of B(t) is of order n—4A4n)/9 iy < 1/8 and of order
n~1/2 if n > 1/8. Thus, ng = 1/8 is the transition point for the convergence rate of 3(t).

When n > ng, B(t) is no longer sensitive to the choice of h and its the convergence rate

remains at Op(n_1/2) as long as h = O(n=Y8) and h > m=1 =n~".

The following proposition provides the asymptotic distribution of B(t) and its proof is

provided in Section 2.6.2.

Proposition 2. Suppose mh — kg € [0, 00], define

{n/(mh)}V/2, " if ko < oo;
Cn.agn = (2.2.10)

nl/Q, if kg = 00
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and B(t) = T(t)Qt) f(t) {(Fuoo + rof(t)I (kg < 00) + f(t)I(kg = 00)}. Under conditions
(C1)-(C4), we have

nCpy b 1B = Bo(D)} % N(0, V(). (2.2.11)
where V(t) = A=) B(t)A~L(1).

Remark 2. By Proposition 1, the bias in nCTZ}lO,n{B(t)—,BO(t)} is of order Op(nh4/0n7a0m).
Since the bias can lead to invalid tests, we use Condition (C4) (ii) to ensure that the bias is
asymptotically negligible. When n < ng = 1/8, the condition og > (1 + 1)/9 warrants that
mh < oo and hence nh4/Cn,Oéoﬂ7 = n12mb/2p9/2 = n(1+1=900)/2 = 5(1). Whenn > 19, the

condition that 1/8 < o < n implies mh — oo and nh4/C’n7O[O7,7 = nl/2pt = pl/2-4ag .

By Proposition 2 and the Delta method, we can show that, under Hy),

nCpyho nH{B(1} % N(O,R71(1)) (2.2.12)

where R(t) = {C(t)V(t)C(t)T} 1. The asymptotic variances of H{3(t)} are different under
sparse and dense cases. A Wald-type test statistic may be constructed using (2.2.12) if an
appropriate estimator for the variance of H{3(t)} can be obtained. But we will not pursue
this direction because the estimation of the asymptotic variance involves many nonparametric
functions e.g. T'(¢),Q(t) and f(¢), which requires properly selecting several bandwidths.
Instead, we propose a self-normalizing EL method in the next section which avoids estimating

the asymptotic variance explicitly.
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2.3 A unified pointwise test

In this section, we will introduce a unified test for Hy at any fixed time ¢, which is based
on the empirical likelihood ratio (ELR) statistic. To construct an ELR statistic for testing
(2.1.2), we first define the EL function at 3(t) for a fixed t € [a, b]. Following [Owe90], the

empirical likelihood for B3(t) is defined as

L{B(t)} = max {sz‘ > pi=1p; >0, pigi{B(t)} = 0} :
PLP2sPn i—1 i=1

1=1

Applying the Lagrange multiplier, the log-EL function becomes

HB()} ==log L{B(t)} = = > log {1+ ~T(t)gi{B(t)}} — nlogn

where (t) is a solution to the following equation

RO () i gy 1 C10) S—— (2.3.13)

n 2= TH AT (0g: ()

The maximum log-EL without any constraint is [{3(t)} = —nlogn. It follows that the

negative log-ELR for testing Hy : H{By(t)} =0 is

0t) = i lo{B(1)}, (2.3.14)

where [p{B(t)} = > i log {1 +~T(¢)g;{B(t)}}. To solve (2.3.14), we minimize the following
objective function [QL95]
M{B(), w(1)} = 1018} + T (1 HIB()),
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where v(t) is a ¢ x 1 vector of Lagrange multipliers. Differentiating M (-, ) with respect to

B and v and setting them to zero, we have

_ 1o{B(t)}

Qan{B(1) v(0) (1)} = 557

+ OB w(t) = 0 and H{B(t)} = 0.

Combining equation (2.3.13) for ~(t), the constrained minimization problem in (2.3.14) is

equivalent to solving the following estimating equation system

Quu{B(t),v(1)} =0;  Q2n{B(t),7(1), (1)} =0 and H{B(t)} = 0. (2.3.15)

We show in Section 2.6.2.3 that a consistent solution to (2.3.15), denoted as (3(t), ¥(t), (1)),
exists almost surely. We call ,é(t) the Restricted Maximum Empirical Likelihood Estimator

(RMELE). Then the test statistic in (2.3.14) becomes

0(t) = 1p{B(t)}. (2.3.16)

The following proposition provides an asymptotic expansion for 2¢(t).

Proposition 3. Under conditions (C1)-(C4), and under Hy, we have, for each t € |a, b,

20(t) = Un(t)TUn(t) + Op(nh*/Cr.agm), (2.3.17)

where Up(t) = nCﬁ}lOmG(t)én(t), G(t) = RY2(1)C(t)A~L(t) and R(t) and A(t) are the

same as defined in (2.2.12).

The asymptotic expansion in (2.3.17) makes a connection between 2((t) and the bias-

corrected estimator B3(t) described in Section 2.2. By Proposition 1 and (2.2.12), Up(t) =
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nCy, ‘13‘0’77R1/ 2()H{B(t)} + 0p(1) and asymptotically follows a g-dimensional multivariate
standard normal distribution. Naturally, 2¢(t) ﬁ) x§ under the null hypothesis. The fact
that the asymptotic distribution of 2¢(t) does not depend on m (or n) proves that it is a
self-normalized test statistic no matter the data are sparse or dense. This is a very appealing
property because the test procedure is the same for all types of functional data and solving
(2.3.15) does not require estimating the variance of H{3(t)}.

The following Theorem summarizes the asymptotic distribution of 2¢(¢) under both Hj

and the local alternative (2.1.3).

Theorem 1. Under conditions (C1)-(C4) and suppose H{By(t)} = bpd(t) for t € [a,bl,

where by, = n_lCn,ao,n and d(t) is any fized real vector of functions, we have
d
20(t) % xg{dT(HR()d(¢)}

where dT(¢)R(t)d(t) is the noncentrality parameter.
A proof of Theorem 1 is provided in the Section 3.5.1.

Remark 3. Under Hy, d(t) = 0 and Theorem 1 suggests that 2((t) follows a X(Q] distribution
asymptotically. An asymptotic « level test is given by rejecting Hy at a fixed point t if
20(t) > Xg,a where Xaa is the upper o quantile of x%- By taking a special function H{B} =
Bj(t), we can also construct a (1 — a)100% confidence interval for B;(t) (j = 1,---,p)
as Clo = {B;(t) : 2¢(t) < Xg,a}, which can be computed numerically. This provides an
alternative self-normalized confidence interval to those based on a self-normalized normal
approzimation [KZ13]. Comparing to Kim and Zhao’s method, our method does not require

estimating the bias because we use bias-corrected estimating equations.
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We define the size of the detectable signal b}, as the smallest order by, in (2.1.3) that the

proposed test can detect. For a given significant level «,

by = m}in by, subject to (i) Type I error < o under Hy (2.3.18)

and (ii) the power is non-trivial under Hy,,.

Theorem 1 guarantees that the proposed test controls the Type I error at the nominal
level asymptotically. For the sparse and moderate dense cases (n < 1/8), Condition (C4)

implies mh — 0 and hence b, = (nmh) /2 by Theorem 1. In this case, b is equivalent to
m}in by = (nmh)_l/2 subject to condition (C4) on h.

The optimal A that solves the minimization problem above is hy = n~(1H0+0)/9 for an

4(1+n)/9+0/18  \which results in

arbitrarily small 6 > 0. This implies the optimal b, is n™
¥ = n~41H+M/9 by letting 6 — 0. For dense data (n > 1/8), (C4) leads to mh — oc.

Theorem 1 implies that the proposed test has a non-trivial power under a local alternative

of size b}, = n~1/2 which is the detectable order of a parametric test.

2.4 Implementation issues

2.4.1 Bandwidth selection

The performance of the estimation and test procedures depends on the bandwidth A and our
asymptotic theory relies on h falling in the range defined in Condition (C4). For longitudinal

data (sparse functional data) where subjects are assumed to be independent, one may apply
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a “leave-one-out” cross-validation strategy [RS91] to choose bandwidth. However, cross-
validation is time-consuming and in general, its performance for dense functional data is
unknown.

We propose to select the bandwidth through minimizing the conditional integrated mean
squared error (IMSE) of the local polynomial estimator 3(t). By (2.2.5), the bandwidth &
that minimizing the IMSE of 3(t) is at the order of n~(1T7)/5 which satisfies condition (C4)
for both sparse and dense cases. Let D = {(t;;,X;j), j = 1,2,--- ,m;, i =1,2,--- ;n}. It

is not difficult to show that for any fixed ¢,

MSE(B(1)|P) = bT(t)b(t) + tr{Cov(B(t)|D)}

~

where b(t) = Bias(8(t)|D). The IMSE is defined as

A

b
IMSE(3(-)|D) = / MSE(B()| D) (t) (1)t

where w(t) is a known weight function and f(t) is the probability density function of ;.

The conditional bias is
b(t) = (I,0)(DT ()W (t)D(t)) ' DT ()W (1)1(t),
where l(t) = (lll(t)a T 7l1m1 (t)7 l21(t)v T ,lnmn (t))T with

Lij(t) = XLB(tij) — X[;[Bo(t) + (tij — HB8W (1))

= XL [B(tij) — Bo(t) — (ti; — 1B ()] = XLBH (1) (ti; — 1)/2,
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and B05) (1) = {ﬁf)(t), e ,61(,3) (t)}T, s = 1,2, is the s-th derivative of By(¢). The conditional

covariance is

Cov(B(1)|D) = (LO)(DT(HW()D (1)) 'DT ()W (1)

x W(t)D(t)(DT(t)W(t)D(t) ™" I ,

0

m;
jk=1

An estimator of the covariance (s, t) is described in Section 2.4.2. To estimate B2 (¢),

where © = Cov(Y|D) = diag(€, Q9. -+ , Q) and Q; = (Q(tij, tik)>

we use a higher order local polynomial estimator of By(t) with a pilot bandwidth h*. The
pilot bandwidth is obtained by minimizing the residual squares criterion in [ZL00]. By
replacing 3(2) (t) and © with their estimators ﬁ/(\z)(t) and €2, we obtain estimators of the
conditional mean and covariance, b(t) and @(B(t)ﬂ)) Then the bandwidth A is chosen

by minimizing the empirical IMSE

. [ L A
h = arg min z; 231 MSE{B(t;;)|D}w(t;j)
i=1j=

where N = 37 m; and MSE(B(£)|D) = bT(t)b(t) + tr{Cov(8(t)|D)}.

2.4.2 Covariance Estimation

The covariance function €(-,-) can be estimated by the nonparametric kernel estimator of
[YMWO05a], which is uniformly consistent [LH10]. However, the nonparametric covariance
estimator is not necessarily positive semi-definite. Instead, we adopt the semiparametric

covariance estimation of [FHLO7]. Suppose the covariance function can be decomposed as
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Q(s,t) = o(s)p(s,t)o(t), we model the variance function o2(t) nonparametrically and the
correlation function p(s,t) parametrically. For estimation, we first apply the nonparametric
kernel estimators of Q(s,t) and o2(t) [YMWO05a] to get information about the parametric
structure of p(s,t). Then we fit a parametric model to p(s,t) using the quasi maximum
likelihood estimator of [FHL0O7]. The parametric structure guarantees the positive semi-
definiteness of the estimated correlation function. For more details of the implementation,

see Section 2.5.

2.5 Simulation studies

Simulation studies were conducted to evaluate the performance of the proposed unified in-

ference procedures. We generated data from the following model

Yiltij) = B1(ti) X (1) + Batip) X1 (t) + ealti) (2.5.19)
fori=1,2,--- ,nand j=1,2,--- ,m where t;;’s are IID Unif[0,1] distributed, XZ-(l)(tij) =
1+26tij+vij and X;z)(tij) = 3—4tz2j+uij~ Here u;; and v;; are IID N (0, 1) random variables,
which are independent with ¢;; and €;(t;;). The random error ¢;(t;;) was generated from
a zero mean AR(1) process such that Var{e(t)} = 1 and Cov{e(t),e(t — 5)} = p'0% for
some p € (0,1). To evaluate the proposed methods for both sparse and dense data, we set
m = 5,10 and 50. The sample sizes were chosen to be 100 and 200. The Epanechnikov
kernel K(z) = %(1 — 22)4 was used for estimation, where (a); = max(a,0). Bandwidth

selection was conducted for every simulated data set using the method proposed in Section

2.4.
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We first set 81(t) = %Sint and fo(t) = 2sin(t + 0.5) in Model (2.5.19) and applied the
procedure in Section 2.3 to construct pointwise Cls for f1(¢). Table 2.1 summarizes the
empirical coverage probability (CP) in percentage and the average length (AL) of the CIs
(in parentheses) for 51(t) at t = 0.3,0.5 and 0.7 based on 1000 simulation replicates. These
results were obtained using the data-driven bandwidth. As we can see from the table, the
CPs are close to the nominal level 95% in both sparse and dense cases and the ALs are
shorter under a larger sample size. In addition, the ALs improve as m increases from 5 to

50.

Table 2.1: Empirical coverage probability (%) and average length of pointwise confidence
intervals (in parenthesis) for f1(¢) at t = 0.3,0.5 and 0.7.

m =25 m = 10 m = 50
t n p=0.2 p=0.5 p=0.2 p=0.5 p=0.2 p=0.5

0.3 100 92.1(0.272) 92.9(0.268) 92.9(0.203) 92.5(0.203) 93.7(0.107) 93.9(0.107)
200 92.3(0.205) 92.3(0.205) 93.5(0.152) 93.0(0.152) 94.7(0.081) 94.4(0.081)
0.5 100 92.9(0.270) 93.5(0.267) 94.5(0.210) 94.0(0.209) 93.3(0.107) 93.1(0.108)
200 93.6(0.201) 93.3(0.200) 94.6(0.152) 94.4(0.152) 94.0(0.083) 93.8(0.081)
0.7 100 92.1(0.273) 92.5(0.272) 92.2(0.211) 92.1(0.208) 93.4(0.106) 92.8(0.106)
200 92.3(0.201) 92.4(0.201) 94.1(0.153) 93.3(0.153) 93.9(0.083) 93.8(0.081)

To further demonstrate the performance of the proposed bandwidth selection method in
Section 2.4, we show in panels (a) and (b) of Figure 2.1 the box plots of & selected for model
(2.5.19) with pi(t) = %sin(wt) and [o(t) = 2sin(nt + 0.5) based on 500 replicates. Both
the median and spread of h decreased as the n and m increased and the correlation p had
little impact on the bandwidth selection result. These plots also show that our bandwidth
selection procedure is very stable as there are very few outliers in each case. In panels (c)

and (d) of Figure 2.1, we plot the logarithm of Median(h) against the logarithm of nm for

each value of p. These plots show clear linear decreasing trends, confirming the selected
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bandwidth decreases in a polynomial order of nm.
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Figure 2.1: Panels (a) and (b) are box plots for bandwidths selected for model (2.5.19) with
Bi(t) = Lsin(rt) and Bo(t) = 2sin(mt + 0.5) using the proposed bandwidth selection method in
Section 2.4. Panels (c) and (d) are the plots of the logarithm of median(h) vs log(nm).

~
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2.6 Technical Details

This section contains the proofs for the main theorems in Section 2.3. Proofs for the propo-

sitions can be found in the next section.

2.6.1 Proof of Theorem 1

Proof of Theorem 1. For convenience, we suppress the argument of all the functions on t.

Define
-B1+B1APAB"! B !AP B lAQT

»l= PAB! P Q|
QAB! Q -R
where P = V(I — CTQ) and Q = RCV. By Taylor expansion of the equations (2.3.15) at

(3,0,0) as in Lemma 4 in Section 2.6.2, we have

Cragm™ A —n 13 9i(Bo) + op(An)
B-p, |[=="" op(An)
1% _H(BO) + Op(An)

~-B~! + B"'APAB™!
= PAB! {—% angz'(ﬁo)}
QAB~! -
B 1AQT
+ QT {=H(Bo)} + op(An),

-R
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where A, = ||B—B0||+||7||+]|#||. Then under local alternative hypothesis Hy : H{Bq(t)} =

n_ICn,aO,nd(t) , we have

An=118=0y |l < B8 — By | < Op(Cn,ag,n/m) + op(An),

Whlch lmpheS that An = Op<0n7a0’n/n)

Thus for v, we have

7= ~QATB (S gi(B0)} + RH(Bo) + 0plCragn /)
=1

- —RCA_l{% > " 6i(Bo)} + RH(By) + 0p(Cragn/n)-
1=1

(2.6.20)

Accordingly, we have an’éo’nR_lm{ﬁ — RH(By)} 4 N(0,1;). Under local alternative

hypothesis Hy : H{By(t)} = n_lCn,aomd(t), we have

nCpy o R0 4 NRY2d 1)),

2
Thus 20(t) = ——5TR L + 0p(1) % \2(dTRA). O
n,an,n

2.6.2 Proofs of Propositions

In this section, we provide the proofs for all the propositions in this chapter and the existence
of the RMELE B(t). An asymptotic expression for the Lagrange multiplier 4(¢) in (2.3.13)

is also included.
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2.6.2.1 Some Useful Lemmas

We present some useful lemmas and their proofs before the proofs for the Propositions.

1
Denote 5% = 6711 —+ h2, 5n1 = (%)7 where dn = h2 + Fh/m
n

Lemma 1. Under assumptions (C1)-(C3) and (C4)(i), we have

sup |B(t) = Bo(t)| = O(n) a.s..

tela,b]

Proof. By the expression of B(t), using a Taylor expansion, we have

~

B(t) — Bo(t) =(I,0,){DT(H)W(H)D(t)} D)W ()Y — By (t)
=(1,,0,){ > DZT(t)Wi(t)Dz'(t)}_l{ Z D! (t)W;(t)Y;} — Bo(t)
i=1 :

=(Ip,0p){ >_ D] (()W;()D;(1)} - {ZDT Bi(t) +€il},
=1
where B;(t) = ((t 02X1 B (t5) /2, (tim, — 1?x],, 8 2 2 )/2) with f; be-
tween ¢ and ¢;; and €; = (€1, €12, - - - Gimi)T-

Observe that for denominator I(t) := Z ' DI (t)W;(t)D;(t), we have

t;.—t
() 1 i 1 X X Kh( ij — 1) Xij X Kp(ti; —t) Uh
S nm t t
i=1""j=1 ngXZ'Tth(tw t) ”h XinszKh(tJ t)(—5 )?

Io1(t) Ioo(t)

In order to get the uniform bound for I(¢), we use Lemma 2 in [LH10] for I;;(¢),,5 = 1, 2.
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For 111(t), we have

mnm»E{% ;%EI&UJ Rnltij =)
i=1" "t j=1

E{ %Zmizxz ij X (m)Kh( ij )’tm]

i=1""j=1
1% 1 m;
E{EZEZF@U Kh ij )
it Z/r (5K (s — 1) (3)ds =/r< VK (s — 1) f(s)d
i=1 Zj:1

_ /I‘(t +uh) K () f(t + ub)du = T(#) £(£) + O(h2),

as long as 12 < oo which is true by condition (C1) and [['(¢)f(t)]”

is uniformly bounded
on t € [a,b] by (C3), where O denote uniform order for all ¢ € [a, b] and also for the & below.
Hence, under the condition that E {SUPte[a,b] HX(t)HM} < oo for some 5 < A\; < o0, and

dgl(lo%)l_z/)‘l = 0(1), which is true under (C4)(i), by Lemma 2 in [LH10], we have

sup |;Z wax Kp(tij —t) —T(t)f(t)] = O(n), a.s..
J

tela,b]

By similar calculations for other three terms, we have

s—1 ~

f(s)ds = O(h),

Eﬂu@}z/F@Kﬂ&%)

under p19 < oo and [['(¢)f(¢)]" uniformly bounded on t € [a,b], which are true under (C1)
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and (C3) respectively. And

s—t

E{Ips()} = / T(s) 5 (s — 1) )2 f(s)ds = T() £ (t)jurz + O(h2),

under [['(t)f(t)]” is uniformly bounded on t € [a,b] by (C3). Hence in summary, we have

under conditions (C1)-(C3) and (C4)(i),

L(t)f(t) + O(6n) O(6n1 + h)
I(t) = , a.S..

O(6p1 +h)  T(t)f(t)ma + O(0n)

Then we have

-1
I'(t)f(t 0 ~
1'(t) = 70 +O(6p1 + 1), as.. (2.6.21)
0 T@)ft)p2
For the numerator II(t) := % o DZ-T(t)WZ-(t)BZ-(t), we have
(2) (4%
s By (t7;)
i XXt — 1) 0 Ky (ti; — 1) ITy (1)

1~ 1
— (tij_t) /60 ( 7,]>Kh<t . t)
)

ndl II5(¢t
XZJXij h 9 ( )

Similar as the denominator, under the condition that By(t) has continuous second derivative
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on t € [a,b] (C3), we have

n ) (2) *
1 1 (t7;)
E{I1;(¢)} E{EZH X XL (4 — 1) O 0t t)}
i=1 " j=1
1h 1 tii—t .
—E {E Y —> XX Jh V2K (tij — t)} O(h?)
i=1"" j=1

E{IIy(¢)} = E{%Z%ZXUXT Uiy ; bl BO ;ij)Kh(tij —t)}
i=1" " j=1
1L 1 & tii—t i
—F {E > — > XX fh V3K (tij — t)} O(h3)
i=1"""j=1

if 114 < oo (C1) and [['(¢) f(¢)]" uniformly bounded on ¢ € [a, b] (C3).
By Lemma 2 in [LH10], under the condition E{SUPte[a,b} HX(t)HAl} < oo for some

5 < A1 < oo, and d;l(lo%)l_w)‘l = 0(1) which is true under (C4)(i), we can have

L85
sup Z ZXUX tij — t) T”Kh(tij — i)l = h20<5n1 +1),a.s
t€(a,b] n i=1 ml

and

£
Kp(ti; — )|l = h*0(3,1 + h), a

an 12303 ]

|_
tE[ab] nz 1 Z'
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Note that

.
a1 < Xj€iiKp(ti; —t)

T
) L3 plowi 0= L3 L3
=

: t
=1 =1\ Xjei K (ti; — 1)),

Similarly, by condition (C2) and (C3), we have the following due to Lemma 2 in [LH10]

sup H_Z ZXzyezth ij — )] = O(6n1), a-s.,

teab i= 1 ] 1
and
1L 1 & tii—t

sup ||_Z ZXZJEZ]Kh( ij t) Jh | = O(dn1), as..

tE[a,b] nl 1 -1
Thus we have

—1
L(t)f(t) 0

B(t) — Bo(t) =(Tpxp: Opxp)

O(dp1 +1) O(6p1) - - ~
x { h? b + ' = h?0(0p1 +1) +O(051) = O(6y), ..,

O(5n1 + h) O(énl)

since 8, = 6,1 + hZ.

Lemma 2. Under conditions (C1)-(C3) and (C4)(i), we have E(g;{Bo(t)}) = O(h*) and

L r () ftum +

Var(gi{Bo(t)}) — {
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Proof. By the definition of g;{By(t)}, we decompose ¢;{By(t)} as the following two parts

gi{Bo(t)} = m; ! ZXz‘jXZ-Tj{[B(t) — Bo(t)] = [B(tij) — Bo(tij) |} Kp(tij — 1)
=

my
Y XK€ Kty — t) = Lii(t) + &(t).
=

To analyze the first term L1;(t) in the above expression, we further obtain the expansion

for B(t)— By (t) in the following. By the expression of B(t) and a Taylor expansion, we obtain

B(6) = Bo(t) =(Tpep. Oprp) {n ' S DIOW,(OD,(1)}
i=1

x {’ffl i D] (t)W;(t)(B;(t) + Ti(t) + ei)}a
=1
where By(t) = (X187 (1)t — )2, - - 7X2Tmi,3(()2)(t)(timi —1)%)T and

Ti(r) = SO () — 102, XD B8 (6 i, — 0T

with t;‘j is between ¢ and ¢;;. It then follows that

n mp
(B() = Bo(t) = (Blteg) = Bolt) = 1 30 oS {mat) = myult)
k=1 =1

+ (2, k1(t) = m2, 51 (tif) + (03 3 (8, 11) — 3 1 (2, 753))}{1 +op(1)}
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where ] is between ¢ and ;; and t3 is between ¢;; and t},; and

m(t) = fH O (6 X e Ky (g — t)
Mok (t) = %f_l(t)l“_l(t)xklezl (th — t>25(()2)(t)Kh(tk;l —1)

1
M t) = 2 OD ™ OX X (b — 085 () K (b — 1),

Then we can write Ly;(t) = {I1;(t) + I2;(t) + I3;(t) }{1 + 0p(1)} where

A U
I(t) = — Z - > — mk D XX (8 Kp (ti — 1)
s i
m; n mk
1 «—1 1
) > p DX X g (i) K (tij — ) = Ty i(t) — Tz (),
7 — k—
P R
1 «—1 1
bit)=—) ~ > o D XX o (8) Kp (ti — 1)
Li=1"k=1 =1
1 «—1 1
- > . ZXin,‘TjW,kl(tij)Kh(tij — 1) := Ip14(t) — Ipg;(t) and
=1 k=1 k=
mi n mk
I3i(t) = Lyl > - X Xm0 (8 67) = m3, 1 (i, 15) YKy (t5 — 1),

For Iy;(t), we have E{I;(t)} = 0 and

Var{I1;(t)} = { e Z )10
R > mikszl(m(t)f(tmo

+ S P20y (00(1) () {1+ (1)

where Qq(t) = E{Xi(t)XiT(t)I‘*l(t)Xi(t)XZ-T(t)}. The leading order variance of I9;(t) is
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the same as that of Iy1;(¢). In summary, we have Var{ly;(t)} = O(TZ)]I(KO < o0) +

By condition (C3), By (t) has continuous third derivative, and T'(¢) f(¢), [T(¢) f(t)], [T(t) f(t)]”,

L), f(t), f~1(t) are uniformly bounded on [a, b], we have

n—1
2n
n—1
2n

BT (0) = { 500+ "5 20 | 08 Oat? + O(h) and

Bl ) = { 50 + "3 00 | 108 0t + O(h)

Therefore E{I5;(t)} = E{I1 ;(t)} —E{I29;(t)} = O(h%). To evaluate the variance of Io;(t),

we first evaluate the variance of Io ;(¢). Note that

m; m;
1 i i
W Z Z X231X131772 zll( )JEKp(t ij; )X2j2X1j2n2 zlg( )Kh(tijg —1)
v g1,J0= lll lp=1
mg

1
+ Z Z > mXijIXileW,kzll(t>Kh<tijZ- = 1) Xy X M.kt () K (tijy — 1)
k‘(;ﬁi)=1j1,j2:1 Zl 12—1 k

mi "k My

+ Z > ZZ XZTj1772,k111(t)Kh(t¢ji—t)

(k1#k9)=1J1.J2=111=11p= "
x XijQXZ'TjQWQ,kZZQ () Kn(tijy —t)

= (nm){J1 (1) + Ja(t) + I3(t)}.

Let Q9(t) = ]E{Xz(t)XzT(t)Xz(t)XlT(t)} It is easy to see that the dominant term of

37



E{I ;(t)1], Z( )} is E{J3(t)}. Careful derivation shows that, up to a scale constant,

B30} = {000 f(1)dmah® + a(0) (1o 1 + 0(1)}

1

Similar derivation shows that Var{Iss ;(t)} is of the same order as Var{Is1 ;(t)}. Therefore,
in summary, we have Var{I;(t)} = O(h3 /m)1 (kg < 00) + O(h*)1 (kg = o). For I3;(t), it

can be shown that IE{I3;(t)} = O(h*) and
Var{I3 ;(t)} = O(h®/m)1 (kg < 00) + O(h")1 (kg = o0).

Finally, we evaluate the order of &;(¢). It is clear that E{(¢)} = 0 and

L ra) ftpm + T

var{g; (1)} = { rOO M HI+6)}) (2622)

In summary, E (¢;{Bo(t)}) = O(h*) and by comparing the variance of &;(t) to the variances
of Iy ;(t) to I3;(t), we have Var (g;{Bo(t)}) = Var{&;(t)} {1+ 06(1)}. This completes the

proof of this Lemma. O

Lemma 3. Under conditions (C1)-(C4), we have for true Bo(t)

naonzgz{ﬁo }_>N(0 B(1)),

where Cp,aq,n and B(t) are defined in Proposition 2 in Section 2.2.

Proof. Let &;(t) := mi_1 Z;nzzl X;j€ijKp(ti; —t) and using the proof of Lemma 2,

9i{Bo(t)} = &(t){1 + p(1)} + Op(h*), (2.6.23)

38



and V;(t) := Var{&(t)} = O{(mh) "} (kg < 00) + O{1}1 (kg = o).

We will show that the asymptotic normality of > 1" ; ¢g;{Bo(¢)} is the same as the asymp-
totic normality of Y1 &(1).

First consider the case kg < 0o, i.e. mh — [0,00), with (2.6.23) and condition (C4), we

have

1/2 n 1/2 n
Zgz{ao _ (m @ SO6() + (1), (2.6.24)
=1

As above, we can check that ]E{(mh)l/2 L 52(15)/\/%} =0 and

1/2 & " m m; — 1
Ll )} = 5 S+ P IO ()1 + (1)}

=1 ¢

Var {

= [P0 + ko f(OIT (1)) f(t) = B(?).

Next, we consider the case kg = 0o, i.e. mh — 0o. Again by (2.6.23) and condition (C4)

T oot} = = Dol + (1) (2625
i=1 i=1
Similarly, it can be checked that ]E{ Yo & )/\/_} =0 and
vard S0/} = - S0 A0 A0 {1 +o(1)}
i=1 i=1 !

To show the asymptotic normality under both cases, applying the cramer-wold device, it

is enough to show the asymptotic normality of Y 1 | OT&;(t)/ Chn,aq,n for any 6 € RP at any
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fixed time point ¢. It remains to check the Lyapunov condition. To this end, note that
n
= Var{) 07 (1)} = ZOTV 0 ~ Ci ag
1=1 i=1
And on the other hand, for m — oo,

Zn:]E{ <9T§i >2+50} = zn:E{ (mfl gOTXz’jeinh(tij - t)>2+60}

<C E{sup 0TX (¢ >|2+50}E{sup| (H)[>T0} ~n
=1

i
)
-

by taking Ao = 2 + Jp in the assumption (C2). Thus we have

2+(5O n
T ~—_—— — 00

And similarly, for m is bounded,

n

SB{(676(0) "} < - Bfsup 07X O} Efsup ()0} ~ /2.
1=1

Then, it follows that

2+4() n/h%+% 1
2+5 Z {(9T§Z > }N 2+50 ~ n(G0—200-000)/2"
(n/h) 2~

The above ratio goes to 0 if and only if ag < dg/2 + dg. By taking Ay = 244, this condition

is equivalent to ag < 0g/2 + dg = 1 — 2/A9. By assumption (C4), this condition is satisfied

because ag < 1 — 2/\ < 1 —2/X9. This completes the proof of this Lemma.

Lemma 4. Under assumptions (C1)-(C4), and for each t € |a,b] under the null hypothesis
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Hy: H{By(t)} =0, we have

20(t) % 2.

Proof. First, for convenience we suppress the argument ¢ in the functions 3(t), ,[;’(t) and
A(t), since we fix t € [a, b] in this proof. The proof is similar to that in [QL95].

We first obtain their derivatives with respect to the three variables 3,~ and v.

dg;(B) 99,(B)
0BT n (1 +77(8)gi(8))? ’
0Qu(B.y) 1 Z”: 9 (B) 9Qu(B,7) _
4T n—=(1+ 7T gz(B))” ot
>9] (B) 99/ (B) __-09:(B)

9Qon(B.y, 1) Z 98703 YA +~7(8)9:(B)) — 5= i ocT(@)
0BT i (1+~7(8)g:(8))? 0BT
ag;(ﬂ) . ag;r(ﬁ) T(ﬁ)
0Qan(B,7.v) 1i ogT__ opT i 0Q2n(8:7:%) _ (7

N nE 1T (B)aB) T
IH(B) OH(B) . OH(B) _
6/81- - C(/B)a 8’}’1- - 07 aI/T -

Hence, we have the following Taylor expansions of the system of equations at (3, 0,0). Let
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Ay =18~ Boll + 171 + lIZ].

0=Q1n(B.7,7)
— Qun(.0,0)+ THPLD (5 ) 4 HPDD) 5
+ an”éf?’ 0,0) (7 — 0) + 0p(Ap)
-1 gm(ﬂo) . ; 2 - o) - = Zz:giwo)gg (B0 + opl)
0= Q2n(B.7,7)
— Qun(.0,0)+ ZEEPLD (5 ) 4 Kl PeDD) 5
+ aQ?”éf?’ 0.0) 5 _ 0) + 0p(Ay)
Sy 892';(50% +CT(B0)0 + 0p(An),

and 0 = H(B) = H(Bo) + C(B0)(B — Bo) + 0p(An) = C(Bo)(B — Bo) + 0p(An). Putting the

above equations into a matrix form, we obtain

—n~ 1 Z?:l 9i(Bo) + OP(AH) C?%,ao,nn_lﬁl
op(Ap) =X B - Bo
op(Ap) v

where

_ B .
~CiZon i 0i(Bo)gl (Bo) i, 2 g

_ g1 (3
= n 3T 9%530) 0 CT(Bo)

0 C(Bo) 0
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Then we have

By calculation, we have

-B1+B1APAB~! B !AP B lAQT
»l= PAB~! P Q|

QAB! Q -R

where P = V(I - CTQ), R = (CVCT)"!, Q = RCV, V = (AB~1'A)~!. Thus we have

the following

Cv%ozo,nn_l:y _n_l Zznzl gi(ﬁo)
B - Bo =3 0 + 0p(An)
v 0

= ||2_1 0 {_ﬁ Zgz(ﬂo)} + Op(An)H < Op(cn,ao,n/n) + Op(An),
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which implies that Ay, = Op(Ch,ag,n/1)-

In summary of the above results, we have

Chagm™ A ~B~'+B !APAB™!
) 1<
B-By, |= PAB~! {_E Zgi(ﬁo)} + 0p(Ch,ag.n/n)-
1=1
7 QAB!
(2.6.26)
Thus we have the asymptotic expression for v,
1 n
v = —RCA_l{E > 9i(B0)} + 0p(Cagn/m)- (2.6.27)
=1
For the asymptotic expression of 3 — B, (2.6.26) together with (2.6.27) gives
. 1 &
BB =[-A""+ VCTRCA™{= 3" 6i(B0)} + 0p(Cragn/n)
=1
1< 1 &
= —ATY= 3 0i(B0)} + VOTRCA™H= 3" 6i(Bo)} + 0p(Cragn/n)  (2:6.25)
1=1 =1
1 n
= —A_l{ﬁ Zgi(ﬁo)} — VCT& + 0p(Cn,ag,n/n)-

1=1

Using the expression of 4 in (2.6.40) and the above asymptotic expression for B — Bo,
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the empirical log-likelihood ratio statistic can be written as

20(t) =2 AT6i(B) = > _AT9:(B)g] (B)F + op(1)
: i=1

=1
I~ « 5. 7 e
ZH(EZQJ(B))@ B_l(ﬁzgi(ﬁ)) +0p(1)
=1 n,Q0,7 =1
n2 n2
= ——0TCVAB 'AVCTi + 0y(1) = TR 5 + 0p(1).
CnaaOan Cn7a07n
By (2.6.27), we have
1 n n
20(t) = > 0i(B0)}TATICTRCATI{Y _gi(B0)} + 0p(1). (2.6.29)
Q0,1 =1 =1

We see that E(R1/2CA_1{Z?:1 9i(Bp)) = 0 and as n — oo,

n
077,(110777\/&1" (R1/2CA_1{Z gi(ﬁo)}> — RY2cA~'BAICTR!/?
i=1

= RY2C{ABA} 'CTR!/? = RY2CVCTRY? = RYV?RIRY? = I,
Thus, by central limit theorem, we have Rl/QCAfl{C',;éOJ7 Soi19i(Bo)} LN N(0,1;). Then
by (2.6.29), we have 20(t) & 2. O
1
Denote 67, = (dnnl%)?_ﬁ + 27" for some 0 < K < %

Lemma 5. Under assumptions (C1)-(C3) and (C4)(i), we have the solution B(t) to the

estimating equation (2.2.7) satisfies
(a) supreia 18(E) — Bo(®)]| = Oy + Y, as..

(b) And for each t € [a,b], in the sphere {ﬁ(t) L suPgefqp) [1B(E) — Bo(t)]| < 5;}, where
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Bo(t) is the true parameter, we have

20(t) = n2C5 2, HH{BW YR LB} + 0p(nh?/Cragn).
Proof. We first prove (a). Using the estimating equation (2.3), one obtain
1 ¢s A
== g{BM)}y == € XKy (tij — 1)
A R

ms
1~ 1
T X P
+ n E_:E;_l Agvij(t)XszyKh(tzy t),

where Aﬁ ”( )= [B(t) — Bo(t)] — [B(t) — Bo(t)] — [B(tu) — Bo(tij)]

It follows that

{%Zﬂi N XTI XKt - )}[B(t) = Bo(t)]
i=1""j=1
1 1
ZEZEZEUXM[% ij — 1)
i=1""j=1
Jr%zmi { (] = [Bltiy) — Boltig)]} XiXij Kty — 1) = 5{Bo(0)}
i=1"""j=1
(2.6.30)

Since we have gn{Bo(t)} = Op(dn1 + h*), and we also know that from the proof of Lemma

L,
my

1~ 1
sup ||~ — " Xy XKy (ti; — 1) = DO (1) = O(6n). a.s..
te[(hb] n i=1 my _7 1
Thus (2.6.30) gives sup;c(q 18(t) — Bo(t)|| = O(6p1 + h*),a.s.. This completes the proof

of part (a).
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For (b), we have the following Taylor expansion for %Z?:l gi{B(#)} by (a) for each

t € [a,8], we have [|B(t) — Bo(t)| = Op(Craga/n + hY)

0= 3w (BO} =Ygl + 3 B0 — o] + ap(Crag/n + )
1=1 =1 1=1

— LS 06800} + AWDIBIE) — Boft)] + 0p(Crg/-+ ).
=1

(2.6.31)

which gives

B(t) — Bolt) = A O D g:{Bo(}} + 0plCragun/n + 1. (26:32)
1=1

The Taylor expansion for H{B3(t)} around Bg(t) can be expressed as follows by plugging in

(2.6.32)

H{B(t)} = H{Bo(t)} + C(H)B(1) = Bo(t)] + 0p(Cnagn/n + h?)

= H{Bo()} ~ COA (O D" 6i{Bo(}} + 0p(Crag/n + 1)
i=1 (2.6.33)

= H{Bo(1)} + R~ ()5 (t) — H{Bo(1)} + 0p(Criagn/n + h?)

= R_l(t)l}(ﬂ + Op(cn,ao,n/n + h4)’

where the second-to-last equality is due to similar result as (2.6.27) for general H{By(t)}.
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Thus we could easily see from the proof of Lemma 4 that

n2

2
Cn,ao
n2

2
CnaOé()ﬂ?

20(t) TR0 + 0p(nh*/Chag.m)

)7

HY{BOYREH{B(1)} + op(nh*/Cragn).

2.6.2.2 Proof of Propositions
In this section, we provide the proof for the Propositions in this chapter.

Proof of Proposition 1. By (2.6.32), we have

B(t) — Bot) = ~A~ - D" 6i{Bo(t)}} + 0p(Crag/n + 1Y),
1=1

And by Lemma 2, we have

9i{Bo()} = &){1 +6,(1)} + Op(hY).

Combining these two results together, we have B(t) — By(t) = —A ()& (t){1 + op(1)} +
Op(h%).
And for Var{&,(t)}, from (2.6.22) in the proof of Lemma 2, we can easily get (2.2.9)

defined in the proposition.

]

Proof of Proposition 2. By Lemma 3, and Proposition 1, and under the bandwidth condition
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(C4) which makes the bias negligible, we have

nCpy b 1B(1) = Bo(t)} 4 N(0,V (1))

where V(t) = A=Y t)B(t)A71(1). O
Proof of Proposition 3. By (b) of Lemma 5, we have

n2

C%7a0777

2(t)

HT{B() YR H{B(t)} + op(nh*/Cpag.n)-

From (2.6.33), we have that under Hy : H{By(t)} = 0,

RUZ(0H(B()} = ~RY2OCHA (1 B} +6p(1))
1=1
= —RY2(1)CHAT ()& (1) {1 + 5p(1)} + Op(h?)

= —G (&1 {1 + (1)} + Op(h?).

By Uy(t) = nC’,z}lO’nG(t)fn(t), we have

20(t) = Up(t)TU(t) + Op(nh* /Crag.m)-

2.6.2.3 Existence of RMELE and the asymptotic expression for ¥
In this section, we study the existence of RMELE B(t) and the order of the Lagrange

1
multiplier ’Sf(t) To this end, define (5;; = (dnnl%)éiﬁ 4+ h2=F for some 0 < Kk < % where
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dp = h? +Fh/m.

Lemma 6. Under assumptions (C1)-(C3) and (C4)(i), in the sphere

{B(t) : sup [|B(t) = Bo(®)]| < 5?;},

t€(a,b]

where Bo(t) is the true parameter, we have (a) supy [n=t S0 g {8}

supy max; |lgi{B(t)}H| = 0p(0y ) with 8, = nd}/C3 o < 657 and (c)

1 —

lim IP( mfcn aonzgz{ﬁ }g {B1)}>0)=1

n—oo

Proof. For (a), notice that % S 9i{B#)} = T1(t) + Ta(t) where

n

1A 1 &
— g Z E Z Eininh(tij — t)
1=1 7j=1

and

where Ag;i(t) = [B(t) — Bo(t)] — [B(t) — Bo(t)] — [B(ti;) — Boltij)].

- Op(

(2.6.34)

65); (b)

For T(t), by Lemma 1 in [LH10] for the process €(¢)X(t), under the condition (C2), as

we proved in Lemma 1, we have since E{T(¢)} = 0 and hence sup; | T1(¢)|| = O
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For T(t), by Lemma 1 and the assumption for 3(t) in (2.6.34),

-
Iem 1 5
up [ To)l] Ssup -~ 14 55 (D15 Kt — )
i=1 ' j=1

<(2 Sup 18(t) — Bo(t)]| + Sup 18(t) — Bo®)])

e
lem 1

X sup > p— D X I2K (i — t) = Op(53).
i=1 " j=1

Thus we have sup; [|[n=1 S8 gi{B(1)}|| = Op(55). This finishes the proof for part (a).

For proving part (b), note that,

sup g {B)} ]

my; m
R 1 —
< sup 1= D e XKty — )| + Sup 1= > AL G OX XKty — )]
1 - 7 .
J=1 J=1

.
1 (3
< sup [|e; ()X (1) sup — >~ K (tij —t)
t t My =1
1
+ {250 18(0)  Bo(0)] + 500 18(0) ~ o] psup 1Kl swp - 3 Kilt
1 .
j=1
1
< (sup lei®Xi(0)]| + O sup [Xi (D)) sup — >~ Kt — 1)
t t L Rt
If m;’s are bounded, then we have sup; m; ! Z;nzll Kp(tij —t) = Op(1/h). And if m;’s tend

to infinity, then by the theorem in [Sil78] we have sup; m; ! Z;n:ll K, (ti;—t) = Op(1) under

the regularity conditions of the kernel function in (C1).

51



For the case m;’s bounded, we have §], = hd;; and

-
1 1

sup llgi B < sup = > Kp(ti; - Hisup e (OXi(0)] + €197 sup X5 ()17}
bi=1

< Gup (01X (0] + 5 sup [X, (1))
t

Then we have, for any € > 0, by assumption (C4),

€
P(lrgggnsgp lgi{B()}] > %)

<o { S X0 + 57 swp I 07) > 15}

)+ nP(sup | X, (¢ t)? >

San(Slip le@)X @) > )

€
20(5* 205*2

<nE{[sup (01X (1) ) +nE{[supHX<>||P1}< O /2

Sn(<2(’f*>AE{supu O} + CZEN ) B ¢ Wl}

<Cn{(05) + (65)M} < Cn(85)* = 0,

where A = min{A1, A9 }. This implies sup; max; ||g;{B(t)}|| = op((5 —1).

For the case that m;’s tend to infinity,we have

e
1 1
sup lgi{ B} < sup - > Knltij - t){SItlp lea ()X ()] + C16p Sup 1% (0117}

<C {sutlp e ()X, ()] + 6 Sup IIXi(t)HQ} :
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Then we have, for any € > 0, by assumption (C4),

P { x suplla BN > 5 b < Cn {6+ @074} < Culai

where A = min{\;, \o}. This implies sup, max; |g;{B(t)}| = op(6i™1) = op(él_l). This

n

completes the proof of part (b).

For (c), we need to show that, for any u € RP,

Jim Pt €2 > uTgi(8(0)g] (B(t)u > 0) = 1. (2:6.35)
1=1

In fact, note that
2, nzgz{ﬁ T B0}
Ch ao n Z Z EZ]EZZXZJX Kp(t ij ) Kp(tiy —t)

= Z]ll

m;
_ 1 .
+Cy aonz Z Aﬁ ij )XZJXZJXZleleh( ij Kyt —t)

1=1 l jl 1
i=1 Z jl 1

+ Cﬁao nz " Z AL OXig AL ()X X X K (tij — Kty — )

i=1 m; 7,0=1
my
Ch O‘O n Z 2 Z EZJEZZXZ]XZlKh( ij = t) Kty —t) + op(1),
i=1 m; J,=1
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by Lemma 1, and the assumption (2.6.34) for 3(¢). Thus we have for any €, > 0,

P(inf Cragun z; uTgi{B(t)}g] {B(t)}u > 0)

P(inf 2, > wiai{Bos] B0} >

m;
1 _
=P(inf C;, 30,7 § 5 > uTegje X XT Ky (tij — ) Kp(ty — tu+6p(1) > )
1=1 Z jl 1

1nf 077040 " Z Z u EUEZZXZJleKh( ij — D ER(ti — t)u > 2ey, Jop(1)] < €y)

1=1 l 7,0=1
1
—IP(lnf C’,;ao 772 Z u e”eleUX Kp(tij — ) Kp(ty — t)u > 2¢y)
i=1 l 7,0=1
m
(mf Cgao 772 Z u EZJGZZXZJX,ZKh( ij KRty — thu > 2ey, [op(1)| > €u)
1= 1?71Z 7,0=1
m;
1nf Cﬁao nz Z u eljeleZ]Xz[Kh( ij — KRty — t)u > 2ey) — P(lop(1)] = €u).
i=1 1 J,0=1

Now since limy, 00 P(Jop(1)| > €4) = 0, for proving (2.6.35) we only need to prove that for

some €, > 0,

my

_ 1
nl;rréo ]P(lnf C,2 00, 772 — Z u e”edXZdeKh( ij — KRty —thu>e,) =1. (2.6.36)
=1 "1 jl=1
To this end, note that
1 &
E — > eijenXi XKy (ti; — ) Ky (ty —t) ¢ = Var(§(1))
tg,l=1

— O{(mh) 1} 1{ky = 0} + O(1)1{rg = oo}.
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By the strong law of large numbers, we have

Cn ao,n Z Z €ijeinXij X Ky (tij —

KRty —t) = L(1),a.s
1=1 Z J,l=1

where L(t) =

FL(O)Q() f(DpaoL{rg = 0} + DR F2(1)1{q

%inft uTL(t)u > 0, we have

oo}. By taking €, =

nlggOIP{mf—Z Z uTe;jen X XT Ky (t; —

KRty —tha>e,} = 1.
= Z 7,0=1

Hence (c) is proved.

Lemma 7. Under assumptions (C1)-(C3) and (C4)(i), in the sphere

{ﬂ(t) - sup [|B(8) — Bo(t)[| < 5;2} 7 (2.6.37)
t€(a,b]

where By(t) is the true parameter, the equation Q1,{B(t),v(t)} = 0 almost surely has root

v(t) = H{BW®)} and sup;c iy 1Y) = Op(8,) where &, = néy, /CF o 5 < 0

Proof. Similar to the proof in [Owe90], let ~(t) := p(t)@(t) with ||@(¢)|| = 1 and p(t) > 0,

and then from the equation

Qun{B(t), Y(1)} = %Z g{B1)}

T AT 0]
we have
pOOTOSWOE) L I
T 0(0) supy max, g BT o ;gZ{’B(t)H <0, (2.6.38)

where S(t) = % 1 9i{B()}g]{B(t)}. By applying (a)-(c) in Lemma 6 and (2.6.38)
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have

p(6)BT (1)nCr g, S(H)B(E) < {1+ p(t) Sup max lgi (BN}

67(1) > 9:{B(1)}
i=1

— {1+ p(1)p(5, ) }Op(3L) = Op(3h) + p(t)dp(1),

2
Cn Q)57

which implies
Op(67,)
OT(t)nCr 2. S(1)0(t) + 0p(1)

p(t) < ~ Op(6y,),

since S(t) ~ 072%040,77/” uniformly for ¢ € [a,b]. Namely we proved sup; [|¥(t)|| = Op(d},). O

Remark 4. For v{By(1)}, we have sup; ||[v(Bo(1))| = Op(nd,/C2 This is because

)
Lemma 1, Lemma 6 and Lemma 7 are still true if we replace B(t) by Bo(t) and o) by 6n. This

implies that supy ||[v(Bo(t))| = Op{(log(n)/nh)l/Q} for sparse data and supy ||v(Bo(t))|| =

Op{(log(n)/n)1/2} for dense data.

Expression for v(¢): From the equation Q1,, we have

B {B(t)}
0= Q1,{B(t), ' Z 1+ PfT (t)gi{B(t)}

:n_lzgi{ﬁ —nlzgz{ﬁ ) raT{B(t) (1)

» T Ow BN
Z (B} T B (2.6.39)

In the following, we want to show that the order of the third term is 6,(d7,). To this end, we

firstly observe that

¥ ()gi{BM}] < supmaxlg:{BE)}H| sup -y (] = op(0,")Op(5) = Gp(1).
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Thus we have

— T()gi{B(t) —
12 9i{B(t) 1_‘_71-( )91{;3 lzgz{:@ (t)gi{B(t )}]

Let yT(t) = (1(t),72(8), -, (1)) and g {B()} = (9a{BO)}, -, 9ip{BWO)}), i = 1,2, -+,

Then u-th component of n™t S g {B()}AT(1)g:{B(1)}]? is

n p
Tty ; v (O giu{Bt) i {B) gir AB()}

=1 j,k=1

whose absolute value can be bounded by

n p
Y ; v (O g {B) i {BE) }9ir 1B}

=1 j,k=1

<(sup (1)) sup e g B0} [~ 3

1=1 5,k=1

p

> 0 (B0 {80}
k=

p

<(sup [y (1)) sup mac g B [n ™ DD 03 (81

=1 j5=1

SC(Sltlp Iy (#)])? SUp max 19:{B () ] sup % > llg{BE}H?
=1

—0p{(6,)2}6,(51)0, (1) = 6,(8),

This means that the third term in (2.6.39) is of order 6,(d},). It then follows that

{ Zgz{ﬁ )}ol{ ()}} {1291{5 }+op() (2.6.40)

57



Lemma 8. Under assumptions (C1)-(C3) and (C4)(i), in the sphere

{ﬁ(t) : sup [|B(t) = Bo(t)]| < 5?;},

t€la,b]

the equation system (2.3.15) almost surely has root in

Usy, = LB (1) w(1))  sup BL1) — Bolt) + (1) + v(B)] < 7).

And any solution is indeed a solution to the minimization problem (3.2).

Proof. Since we have already proved in Lemma 7 that for every 8(t) € {B(?) : supse(q ) [18(t)—

Bo)|l < 65}, the equation Q1,(B8(),~(t)) = 0 almost surely has root v(t) = v(8(t)) =

O(0"), we only have to prove the following:

(a) For every B(1) € {B(1) : sup; |B(t) — Bo(t)]| < 63}, v(t) = v{B(t)} = O(5) could be

solved from the equations Qo (8(t),~(t),v(t)) = 0.
b) And there almost surely exists a solution B(t) € Usx to the equation system (3.3).
on
(c¢) Any solution is indeed a solution to the minimization problem (3.2).

In order to prove (a), recall the expression in (2.6.40) and the asymptotic variance B(t)

in Lemma 3, by the uniformly strong law of large numbers (SLLN), we have

Co2o 0 S gdBU}gT{BL)} = B(t) + 5p(L).
=1
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Thus

—1 n
{B(®) { ’1291{5 )yold ()}} {nlzgi{ﬂ<t)}}+6p<57/1>
B~

(2.6.41)
= { Zgz{ﬁ } ( )
n A0 =1
and
{Bo(t)} = Op(n(STL/CTQL,aO,n) (né* /07% ,QQ, 77) = 61)(57/1)- (2.6.42)
We have
0 t dg;{B(t) ,
géfgt;} - {cn 30772 %;{3? t }} 5(01). (2.6.43)

Because the uniformly SLLN gives n=! 3% 4 6932%2;;)} = A(t) + 0p(1) where A(t) =

I'(t) f(t), we have the following

0v{Bo()} _ 2 99i{BoM} | . ;
9BT(t) {Cn o Z 98T (1) } viin) (2.6.44)
= nCpag B~ ()A() +6p(57).
T
Let S{B(1)} =n"" Xy 135%%%2)}’ then
Qon{B(1), (1), v(t)} = S{BH) v {B(1)} + CT{B({) I (t). (2.6.45)
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For the taylor expansion of Q2,{3(t),~v(t),v(t)} at By(t), we need the following:

B ‘li 997 {B(1)}/0B(1)

S180) T AT (B} (B0
_ agZT {6 YT{B(t)}9:{B(1)}
Z { I WT{B(t)}gi{ﬁ(t)}} (2.6.46)
noo T
Z (992 {B (5/ ),
which implies that
S{Bo(t)} = A(t) + Op(dy,). (2.6.47)
Hence we have
05 {ﬁ t -l Z O] {6 ) } +0(3L), (2.6.48)

0BT (t)

9S{Bo(1)} %91 {Bo(1)} o .
667~ “opiiop() T = PO O (2.6.49)

Let W{B(t)} = S{B(t)}¥{B(t)} and define S{B(t)} = (S1,Ss2,--- ,Sp) where S; is the j-th

column of S{B(¢)}. Then by (2.6.42), (2.6.44), (2.6.47), (2.6.49) and the assumption about
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B(t) we have

W{B(0) = W (Bo(0)} + 510} R 800 - o)

P5g. ~
+j§:1 Wfét)')’j{ﬁo(t)}(,@(t) — Bo(t)) + Op{(é’;kl)2}

= {A(t) + Op(67,)}op (57,)

+{[A(t) + Op(8,)][nCr 2y 4B~ (DA() + 3p(37,)]

+ [D(#) + Op(37,)13p(57,)}B(t) = Bo(0)] + Op{(65)%}

= nCy % A B  OADB() — Bo(t)] + 5p()).

By plugging the above into (2.6.45), we get

0= nCy 2, nAWB  OAWDIBE) - Bo(t)] + CTHBWOW) +3p(8}).  (2:6.50)

Since A(t)B71(t)A(t) is invertible, by multiplying C(t){A(t)B~1(t)A(t)}~! on both side

of (2.6.50) we have

0 =nCp a0 nCHIBE) = Bo(t)] + CHHAMB (AN} CT{BE)}w(t) + 5(5),).

(2.6.51)

From the third equation of the equation system (3.3),

0=H{B(t)} = H{By(t)} + C(1)[B(t) — Bo(t)] + 5(5,)
= C()[B(t) — Bo(t)] + (3,
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we have

CH)IB(t) — Bo(t)] = 3(8)). (2.6.52)

Combine (2.6.51) and (2.6.52),

CHIAMB (AN} CT{BE (1) = —nCray ,COIBE) — Bo(t)] + 0p(8],) = 0p(87,),

That is

v(t) = {C(t){A(t)B_l(t)A(t)}_lcT{ﬁ(t)}}1 op(37,) = op(0y,).- (2.6.53)

Hence we proved (a).

For proving (b), from (2.6.50) and (2.6.53), we have

0 = nCpan nAOBTH(DAMB(E) — Bo(t)] + CT{B(E) v (t) + 0p(0],)

= nCy oo AB (OA®)B(H) — Bo(t)] + 0p(0],).

which implies that
0= —A()B (H)A®)B() — Bo(t)] + 0p(37)- (2.6.54)

Now consider the above equation (2.6.54) and define a function ¢ on the the unit disk in RP

by

B(t) — Bo(t)
o (20300

n

):_A@BA@A@mw—ﬁwﬂ+%@»
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We know that ¢ is a continuous function on the unit disk. Also we have

R CORO =

O,

=— 6 B() — BoTA(HBH(t)A®)B(E) — Bo(t)] + 0p(37;).

Hence on the circle ||3(t) — Bo(t)|| = 9;;, we have

55 1B(t) — Bo(t)]To (M)

op
= — 6, [B(t) = Bo()]TA(DB ™ () AD)B(t) — Bo(D)] + 0p(7,)

< —0570(t) + 0p(dy,) < 0, if n big enough,

where 79(t) > 0 is the smallest eigenvalue of A(t)B~1(¢)A(t), which is positive definite.
Thus by the lemma in [AS58], there exists a point B(t) € Usx and qb{ﬁ(t)g—;()(t)} = 0, which
means B(t) is a solution to the equation system (3.3).

Next we have to prove (c). Assuming that B(t) is a solution in Us , we let B(t) be a point
in a neighborhood of B(t) contained in Usx such that H{B(t)} = 0 and ||B(t)—B(t)|| > & > 0.

Then by expanding lp{B(t)} at B(t) we have

_Olp{B(1)} 5

(B0} - 0B} = T2 B() - A0
~ 2 * ~
+ 5180 - BT b O 18(6) - () (2:6.59

where 5*(t) € Usx . We wish to show that

0{B®)} — b{B(t)} > 0.
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Next, we approximate the two terms on the right side of (2.6.55): For the first term, note
that

Olo{B(t)}
oBT(t)

1 T 8’7{6@)}
T+ TB B0} B} 9BT(t)

MﬁEM:

+

1 - 0gi{B(1)}
T yBOaaa;” PO asr

)

(2.6.56)

M=

1 - gBW)
SRy PRy TR i

= ny{B(1)}ST{B()} = nWT{B(1)}.

)

By (2.6.45), we have

WTH{B(1)} = 2T (HC{B(1)}. (2.6.57)

From the taylor expansion of H{B(t)} at 3(t), we have

0= H{B(t)} — H{B(t)} = C{B(1)}[B(t) — B(t)] + d(5},),
from which we could obtain

C{BM}B() — B(1)] = 6(0,)- (2.6.58)

Thus, for the first term of (2.6.55), combining (2.6.56)-(2.6.58) we have

8@2@(%)} (1) = B(1)) = nWT{B(1)}[B(1) — (1)

(2.6.59)
= —ndT(OCLBWB() — B(1)] = —n2C 2, 15p{(55)%).

n,0(),1
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For the second term of (2.6.55), we have

{1} OWT{B )} [OVTB D} ary o L OST{B (1))
BwopTw) " o " { O a7y }
= n[nCh g AOBT(E) + 6p(07)][A(E) + Op(57,)]
+n0p(8,)[D(t) + Op(6),)]
= n{nCp 20 ALBTHHA() + Op(a),)}-
It follows that
1 - P {B4 (1)) -
2180) = B 55 535 A0 — AW)
—%[ﬂ(t) — B Tn{nCy 2, ,AMB LA + Op(8,) HB() — B(1)] (2.6.60)
n2 ~ 5 2
=5 1Bt — BUITAMB (AWIB(L) — B(1)] + =5 —5p{(57)}
n,a(),n n,a0,n

Hence, plugging (2.6.59) and (2.6.60) into (2.6.55), we have

(B} - (A1)
n2 ~ ~
{1<ﬁ<t> BO)TAMB T (HAMBE) — BH) + 5p{<5;';>2}}

07217@077] 2
n2 ) 1
> —5 (65){z70(t) + 0p(1)} > 0, if n big enough,
Cnaa()an 2

where 79(t) > 0 is the smallest eigenvalue of A (t)B~1(¢)A(t), which is positive definite. [J
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Chapter 3

Unified simultaneous empirical
likelihood ratio tests for functional
linear models and the phase transition

from sparse to dense functional data

3.1 Introduction

In this chapter, we continue to consider the same model (2.1.1) as we discussed in Chapter

2. And we are interested in the same hypothesis testing problem as in (2.1.2),

Ho: H{Bo()} =0 vs Hy:H{Bo(")} #0. (3.1.1)

But instead of testing the coefficient functions at a fixed point ¢ as in Chapter 2, we would
like to test the functions simultaneously on the whole support [a, b)].

In this chapter, we propose nonparametric test based on the pointwise empirical likelihood
ratio test in Chapter 2, to test (2.1.2) simultaneously. Since in Chapter 2, we showed the
EL-based pointwise tests enjoy a nice self-normalizing property such that both sparse and

dense functional data can be treated under a unified framework, the simultaneous testing
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procedure to be developed here can also treat all types of functional data with different
denseness in a unified way.
To investigate the power of the tests, we consider the same local alternatives (2.1.3) as

in Chapter 2 for the entire functions Bg(-) simultaneously

Hyp - H{Bo(-)} = bnd("), (3.1.2)

For the sparse data with n = 0, it is also known that the EL method using a global bandwidth
h [CZ10] can detect alternatives of order b, = n~1/2p=1/4 for simultaneous test, which is

also larger than n~1/2

. Similarly as in the pointwise case in Chapter 2, for dense data with
n > 0, the detectable order by, is still largely unknown. This leads to the same key interest
in this chapter as in the last chapter, understanding the effect of n on b,,. We use the same
principle to get the optimal b, by maximizing the power of the test (i.e., minimizing the order
of by,) while controlling the type I error at the desired level. Under some mild conditions, we
find that, for the simultaneous test, by, is larger than n=1/2 for n < 1/16 and equals to n~1/2
for n > 1/16. The transition points 1/16 will be still refereed as 7y as in the pointwise case
for this simultaneous test. Once n > 7, with a properly chosen bandwidth, the proposed
tests can detect a signal at a parametric rate. This phase transition result echoes the similar
phenomena discovered by [LH10] for estimation problems.

The rest of the chapter is organized as follows. We propose the unified simultaneous test
in Section 3.2 where we investigate the asymptotic distributions of the test statistic under
both the null and local alternatives, and the transition phases for b,. Simulation studies

are presented in Section 3.3, followed by two real data analysis examples, one for sparse and

one for dense functional data, in Section 3.4. All the technical details are relegated to the
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Section 3.5.

3.2 A unified simultaneous test

We assume the same regularity conditions (C1)-(C4) for kernel function, moments of the
underlying processes, smoothness of the related functions and the selection of bandwidth as
in 2.2.2 in Chapter 2.

We now consider a simultaneous test on Hy in (3.1.1) for all ¢t € [a,b]. By Lemma 5 in

Section 2.6.2 in Chapter 2
20(t) = n*Cp g HTH{BO YR H{B(1)} + Gp(1).

Intuitively, 2¢(¢) measures the distance between H{B3(t)} and 0 at any ¢ € [a,b]. To test

the hypothesis (3.1.1) simultaneously, we propose a Cramér-von Mises type test statistic

T, = / b 26(t)w(t)dt, (3.2.3)

where w(-) is a known probability density function. The construction of T}, allows us to
borrow information across the time domain and yield a more powerful test than the pointwise
test. Similar constructions were used by [HM93| and [CZ10]. The weight function w(t)
is a subjective choice of the practitioner. The most commonly used weight function is a
uniform density to put equal weights on all points, but if there is prior knowledge on the
importance of a particular subinterval one can change w(t) to put more weights on the

important subinterval.
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3.2.1 Null distribution and local power

By the asymptotic decomposition of 2¢(¢) in Proposition 3 in Chapter 2, we need to first un-
derstand the covariance structure of the process Uy (t) in order to investigate the distribution

of T),.
Proposition 4. Under Conditions (C1)-(C4) and Hy, Cov{Up(s), Un(t)} = Xp(s,t) x
{1+ 0p(1)} where

(

pog K2 (501, if m2h — 0,

Yin(s,t) = I,I(s =t) + mhZg(s,t)I(s #t) if m*h — oo and mh — 0,

20(57t)7 meh — OQ,
\

K3 (z) = [ K(y)K(x —y)dy and So(s,t) = G(s)T(s, )GT(£)s, 1) f(s)f (1).

Obviously, the leading term in the covariance of Uy, (t) is different under different asymp-
totic scenarios. In the second case in the expression of 3, (s, t), the I;I(s = t) term seems to
dominate but is only non-zero in an area with Lebesgue measure 0; the mhXg(s,t)I(s # t)
term is nonzero almost everywhere and produces the leading order variance of T}, in this
case.

Suppose the covariance function ¥, (s, t) has the following spectral decomposition [Bal60]

Sn(s,t) = 3521 VnkPnk(5) @, (t) for any st € [a, ],

where 7,1 > v,2 > -+ > 0 are the ordered eigenvalues and ¢,1(t), ¢pa(t), -+ are the

associated eigenfunctions. The eigenfunctions are vector valued orthonormal functions sat-
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isfying f; qblk(t)q&nl(t)w(t)dt = 5;6 where 52 = 1if £k = [ and 0 otherwise. Even though
the eigenvalues 7, change under different asymptotic scenarios, it is easy to verify that
S oreq Yak = tr{[ Bp(t, t)w(t)dt} = ¢ for all cases in Proposition 4. Also note that in the
third case of Proposition 4, ¥, = 3 does not depend on n and therefore v, = 7 and
Dni(t) = ¢p(t) for all k.

To establish the asymptotic distribution of 7T7,, we need all the conditions in Chapter 2

with replacing the condition (C4)(ii) by
(C4)(ii"): 2(1+1n)/17 < o if n € [0,1/8] and 1/8 < ag < nif n > 1/8.

Under the null hypothesis, we can define a g-dimensional Gaussian process U(t), with mean
0 and covariance Cov(U(s), U(t)) = X,(s, ), as a counterpart of the process Uy, (t). We will
show that the limiting distribution of T}, is the same as that of Z, = [ f UT(t)U(t)w(t)dt,
which follows a y2-mixture distribution. This result is described in the following theorem,

the proof of which is provided in the Section 3.5.1.

Theorem 2. Under Hy in (3.1.1) and Conditions (C1)-(C3), (C4)(i) and (C4)(ii’), Tn d
Zn x {14+ 0p(1)}, where Zy 4 Ezozﬁnk)(%k and x% w bk =1,2,..., are independent chi-

square random variables with one degree of freedom.

Remark 5. The asymptotic x2-mizture distribution in Theorem 2 is quite different from
the asymptotic normal distribution for classic empirical likelihood ratio tests for independent
data, time series or sparse longitudinal data [CHL03, CZ10]. In fact, for dense functional
data, our calculation shows the B{(T, —ET,)*} # 3var®(Ty,), and hence Ty, can behave quite
differently from a Gaussian variable. However, for sparse or moderately dense functional
data with n < 1/16, the x2-mizture is also asymptotically normal. This result is collected in

the following corollary, the proof of which is given in Section 3.5.1.
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Corollary 1. Under the same conditions as those in Theorem 2, if n < 1/16, we have
YT, — g) & N(0,god)

where 0(2) = Q,MQ_OZ fci) w?(t)dt fEQ{K(Q)(u)}2du.

Corollary 1 makes a connection between our general results in Theorem 2 with the classic
results. The null distribution of T, is different under different asymptotic scenarios and may
depend on some unknown quantities such as 7,,;, which makes it difficult to use in practice.
In the next subsection, we will propose a bootstrap method unanimously applicable to all
types of functional data to estimate this null distribution. Next, we study the power of the

simultaneous test under the local alternatives.

Theorem 3. Suppose that the local alternative hypothesis in (3.1.2) holds and Conditions

(C1)-(C3), (C4)(i) and (C4)(ii’) are satisfied.

(a) If n < 1/16 and b, = n~Y2(m2h)" Y4, then = Y2(T;, — q) 4 N(uo,qag), where

o = fé) dT(t)R(t)d(t)w(t)dt and 08 is defined in Corollary 1.

(b) If 1/16 < n < 1/8, ag < 21 and by, = n~Y/2%€ for an arbitrarily small € > 0, then

O’l_l(Tn — g — nb2mhypg) 4, N(0,1) where a% = 4nb2 (mh)?uy and
b rb
(i1 = / / dT(ORY2(H)20 (¢, s)RY2(s)d(s)w(t)w(s)dtds.
a a

(¢) Ifn > 1/8 and by = n~Y2, let up = [PRY2(6)d(t)]Tpp(t)w(t)dt. Then T,

S e g (/).
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We can use Theorem 3 to examine the power and size of detectable signals of the simul-
taneous test under different scenarios. We use the same principle (2.3.18) in Chapter 2 to
determine the optimal rate for b,. When n < 1/16, following part (a) in Theorem 3, the
asymptotic power of the test is Z(d) = ® ( — Za+ o/ \/600> where po and og are defined in
Theorem 3 and ®(-) is the CDF of a standard normal distribution. The test has nontrivial
powers for signals of size b, = n~/2(m2h)~1/4. Under the constraints (C4)(i) and (C4)(ii’)

2(14++0) /17 g0 any arbitrary small o > 0 such that

on h, b, attains its minimum at hy = n"—
by = n—8(14n)/17+5/34 By letting 6 — 0, the optimal detectable order is b}, = n—81+n)/17,

When 1/16 < n < 1/8, by our calculations in Proposition 4 and Theorem 2 the null distri-
bution of T}, is a x2 mixture with mean o5y Ynk) x{1+0(1)} = ¢x{1+0(1)} and variance
(231720 < {14+o(1)} = tr{ [ B2 (s, 1) w(s)w(t)dsdt} x {1+0(1)} = O(mh). Therefore, the

threshold for an a-level test is of the form ¢+ ¢y q, Where ¢;.0 < (27 77%k/a)1/2 = O(mh)

by Chebyshev’s inequality. By part (b) of Theorem 3, the asymptotic power is

Cn,a Ho
Ad) = — : b 1
(d) < 2\/nbpmh. /i1 + 2,//“\/5 n) 5

for by, = n~1/2%€ with an arbitrarily small e > 0. This also means that the test has nontrivial
for signals of size b, = n~1/2
powers for signals of size by, =n )

Similarly, the power of the test under case (c) is

B(d) = P( >t g (ui /) > a+ cO‘)
=1

where ¢ + ¢ is the a-th quantile of Y72 7kx% ;- In this case, #(d) is a constant as long

as d(t) is a fixed non-zero function, which implies that the test has a non-trivial power if
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~1/2_ Combining parts (b) and (c), the optimal detectable order of the simultaneous

b =n
test is bX = n~"1/2 when 7 > 1/16.

Note that the optimal detectable order for the simultaneous test is smaller than that
of the pointwise test we obtained in Chapter 2 when n < 1/8. This is understandable
because the simultaneous test borrow information over the entire time domain and is more

powerful. Both the pointwise and simultaneous tests can detect signals of root-n order for

dense functional data with n > 1/8.

3.2.2 Wild bootstrap procedure

The asymptotic distributions of T}, are different for sparse and dense functional data, but
the boundary between different scenarios is defined only in the asymptotic sense, making
different asymptotic scenarios very difficult to distinguish in practice. To unify the inference
procedure, we propose a wild bootstrap procedure [Mam93]. Some residual based bootstrap
procedures have also been proposed in [Far97] and [ZC07] for dense functional data, but
the consistency of such procedures was not investigated. The proposed bootstrap procedure

consists of the following steps:

) 0

Step 1: Generating bootstrap samples {Yi;(b oy ,ng)}le according to the following

model:

YZ? = ,BT(tZJ)XZ] + 62}

where 3 (t;j) is the solution of the estimating equations in (2.3.15) in Chapter 2. The resid-

ual vector € = (€, ,e;‘mi)T is generated from an mj;-dimensional multivariate normal
distribution with mean 0 and covariance ; = (Q(tij, tik));rflizl where Q(t, s) is a consistent

estimator of Q(t, s) described in Section 2.4.2 in Chapter 2.
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Step 2: Based on the b-th bootstrapped sample, compute a bootstrapped version of T},
denoted as T, ;(b).

Step 3: Repeat Steps 1 and 2 a large integer B times to obtain B bootstrap values
{Tﬁk(b)}le and then find the 100(1 — a)% quantile of {Tﬁk(b)}f:l, denoted as 4. Reject the
null hypothesis if Ty, > tq.

The following theorem justifies the above Bootstrap procedure

Theorem 4. Let X, = {(Yj;, X;j,ti5), 7 =1,...,m;, i = 1,...,n} denotes the original
data and £ (Ty) be the asymptotic distribution of Ty, under the null hypothesis. Under the
same conditions as Theorem 2 and suppose Q(s,t) 18 a consistent covariance estimator, the

conditional distribution of Ty given Xy, ZL(T;|X,) converges to £ (Ty) almost surely.

3.3 Simulation studies

For the simulation studies for simultaneous inference, we consider the same setup as in the
simulation studies for the pointwise inference in Section 2.5 in Chapter 2. We considered
two scenarios A and B, corresponding to two hypotheses on 3(t). In scenario A, we used

H{(z1,29)T} = 21 — 29 to test

Hyp: B1(1) = B2() vs Hya:pBi() # Ba(o),

where we set 51 (t) = %sint and fa(t) = (%+a) sint for a = 0,0.1,0.2,0.3 and 0.4 in (2.5.19)

in Chapter 2 to evaluate the empirical size (when a = 0) and powers (when a > 0). In

74



scenario B, we set H{(z1,29)T} = 29 to test

Hop: B2(-) =0 vs Hyp:Ba() #0,

where we chose [1(t) = %sint and fa(t) = ¢ for ¢ = 0,0.02,0.04,--- ,0.14. In the con-
struction of the test statistic T}, we chose the weight function w(t) =1 for ¢ € (0,1) and 0
otherwise. The covariance function was estimated by the quasi maximum likelihood method
of [FHLO7]. All simulation results below were based on 500 simulation replicates and the
critical value of the test was estimated by 500 bootstrap samples in each simulation run. We
performed the same bandwidth selection procedure in each bootstrap sample to take into
account the extra variation in the test caused by bandwidth selection.

Table 3.1 summarizes the empirical sizes and powers for hypothesis Hy4 at the 5%
nominal level. It can be seen that the empirical sizes are reasonably controlled around the
nominal level. As we expected, the empirical power increases as the increase of the sample
size n and the number of repeated measurements m, which confirms our theoretical results
in Section 3.2. In addition, the correlation p does not have a clear impact on the power,
indicating that the proposed procedure is robust with respect to the covariance structure of
the random error.

The simulation results for scenario B are illustrated in Figure 3.1. The results under
n = 100 and n = 200 are represented by solid and dashed lines, respectively. We observed a
very similar pattern as that under scenario A. The size is well controlled at the 5% nominal
level and the power increases as the value of ¢ increases. At each value of ¢, the power

increases as we increase n or m.
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Table 3.1: Empirical size and power for testing Hy4 : 51(-) = f2(+) under scenario A.

m =25 m =10 m = 50
a n p=02 p=0.5 p=0.2 p=05 p=0.2 p=05
0.0 100 0.062  0.058 0.064  0.048 0.070  0.054
200  0.060  0.052 0.068  0.044 0.058  0.066
0.1 100 0.134 0.132 0.188  0.212 0.772  0.764
200 0.224  0.228 0.388  0.344 0.984  0.966
0.2 100 0.344  0.406 0.676  0.708 1.000  1.000
200 0.724  0.734 0.948  0.948 1.000  1.000
0.3 100 0.746  0.748 0.976  0.982 1.000  1.000
200 0.974  0.974 0.998  1.000 1.000  1.000
0.4 100 0.962  0.960 1.000  1.000 1.000  1.000
200 1.000  1.000 1.000  1.000 1.000  1.000

1.00

0.754

0.50

power

0.25+

0.05 4

power

1.00 4

0.75

0.50

0.25

0.05

(b) p=0.5

Figure 3.1: Empirical size and power for testing Hyp : S2(-) = 0 at the 5% nominal level under
scenario B. The left panel is for p = 0.2 and the right panel is for p = 0.5.

76




3.4 Real data analysis

We applied our proposed methods to two real functional data sets, one is sparse and the

other is dense.

3.4.1 CD4 data analysis

This data set was collected from a randomized double-blinded study of AIDS patients with
advanced immune suppression (CD4 counts < 50 cells/mm3) conducted by the AIDS Clinical
Trial Group (ACTG) Study 193A. Patients were randomly assigned to dual or triple combi-
nations of HIV-1 reverse transcriptase inhibitors. Specifically, patients were randomized to
one of four daily regimens containing 600mg of zidovudine: zidovudine alternating monthly
with 400mg didanosine (treatment I); zidovudine plus 2.25mg of zalcitabine (treatment II);
zidovudine plus 400mg of didanosine (treatment III); or zidovudine plus 400mg of didano-
sine plus 400mg of nevirapine (treatment IV). There was a total of 1309 patients included
in the study and 325, 324, 330 and 330 patients were, respectively, assigned to treatments
[-IV. Measurements of CD4 counts were collected at baseline and at 8-week intervals during
follow-up. But due to various reasons, such as dropout and skipped visits, the repeated
measurements were unbalanced. The number of repeated measurements during the first 40
weeks of follow-up varied from 1 to 9, with a median of 4. Thus, the data can be considered
as sparse functional data. More details of the study can be found in [KACT98].

Our interest is to study the treatment effects on the CD4 counts. We consider the response
variable to be log(CD4 counts + 1). To test for treatment effects, we set treatment IV as

the baseline and defined three dummy variables 77,75 and T3 as indicators of treatments
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[-111, respectively. Then, we fit the data with the following functional linear model:

Yi(tij) =Bo(tij) + B1(tij)T1i + Ba(tij)Toi + B3(tij) 15

+ Ba(tij)Age;(tij) + B5(ti;)Gender; + Bg(t;;)PreCD4; + €;(t;5),

fori=1,---,1309 and j = 1,--- ,m; where Y (¢) = log(CD4 counts + 1) is the response, ¢
is the time (in weeks). We also included Age, Gender and PreCD4 as the covariates in the
model and allowed Age change over t.

To test for treatment effects, we first considered the global hypotheses

Ho1 : B1(+) = B2(-) = B3(-) = 0 vs Hyp : at least one of Gi.(+) #0, k=1,2,3.

We applied the proposed simultaneous test based on 1000 bootstrap replicates. The band-
width was selected by the proposed procedure in Section 2.4. We got a p-value of < 0.001
indicating that the treatment effects are indeed significant. To further dissect differences
between treatments, we conducted pairwise comparison among treatments. The results are
summarized in Table 3.2. All the p-values for the pairwise comparisons except the one for
comparing treatment II and IIT are less than 5%. The results indicate that pairwise differ-
ences in time effects between different treatment groups are statistically significant except

for treatment II vs III.

3.4.2 Ergonomics data analysis

As part of a study of the body motions of automobile drivers, researchers at the Center for

Ergonomics at the University of Michigan collected data on the motion of a single individual
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Table 3.2: P-values for pairwise comparison among different treatment groups.

Comparison Hypothesis p-value
I vsII Hps : 61( )= pP2(-) 0.040
[ vs III Hos : 51(-) = B3(-)  0.000
[vs IV Hog: 51() =0 0.000
IT vs III Hos : B2(-) = B3(+)  0.078
IIvs IV Hog : f2(-) =0 0.000
III vs IV Ho7:63() =0 0.002

to 20 target locations within a test car. For each location, the researchers measured 3 times
the angle formed at the right elbow between the upper and lower arms, which yielded a
sample of size 20x3=60. The angle of each motion was recorded repeatedly from the start
to the end of each test drive. The time period of each motion varied in length because of
the targets being at different distances from the driver and the driver may reach them at
different speeds. The objective of the study was to model the shape of the motion but not
the speed at which it occurred. Thus in this study, ¢ is used to represent the proportion, not
the time, of the motion between the start and the end. See [Far97] and [SF04] for a more
detailed description of this data set.

Let Y'(t) represent the angle at a proportion ¢ for ¢ € [0,1]. For a given motion, Y(¢) is
observed on an equally spaced grid of points. Although the number of such points in the
original data varies from observation to observation, the number of repeat measurements
for each motion is 20 after imputation, which was considered as dense functional data as in
[Zhall]. The purpose of our study was to find a model for predicting the right elbow angle
curve Y'(t),t € [0,1] given the coordinates (cz, ¢y, ;) of the target, where c; represents the
“left to right” direction, ¢y represents the “close to far” direction, and c; represents the “down
to up” direction. The coordinates (cz, ¢y, cz) of each of the 20 targets in the experiment were

known and used as predictors in our model. [SF04] compared a linear model, a quadratic
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model and a one-way ANOVA model. They found that a quadratic model of the following

form fit the data adequately

Yi(tij) =B1(tij) + cziBa(tij) + cyiB3(tij) + c2iBaltis)
+ s (tij) + ciBs(tiy) + 2B (tij)

+ caicyiBs(tij) + cyicziBo(tis) + czicziBro(tij) + €iltiy)- (3.4.4)

fore=1,---,60and j=1,---,20.

We started with model (3.4.4), and tested each of the coefficient functions gy (t), k =
1,---,10 to check which term could be dropped from the model. Table 3.3 summarizes
the p-values for testing each coefficient function. At the 5% significant level, we can see
that (7(t), Bg(t) and B1¢(t) are not significant, suggesting to delete them from the quadratic

model (3.4.4). We then obtained the final reduced model

Y (t) =B1(t) + cafa(t) + cyB3(t) + czBalt)

+ 2 B5(t) + ¢ Bs(t) + cocyBs(t) + €(t).

From the above reduced model, we could see that the angle curve Y (¢) has a significant linear
relationship with the “down to up” coordinate z, but a significant quadratic relationship with
the “left to right” coordinate x and the “close to far” coordinate y. The model selected above

is consistent with the model chosen by [Zhall].
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Table 3.3: P-values for testing each coefficient function in the quadratic model (3.4.4).

Hypothesis p-value Hypothesis p-value
Hop: 51(-) =0 0.000 Hyg : ﬁ(;( )= 0.032
Hpo : B2(1) =0  0.006 Ho7: B7(+) = 0 0.050
Hpsz : 83(-) =0  0.006 Hpg : Bs(-) =0 0.004
Hoq: B4(-) =0  0.005 Hyg : Bg(+) = 0 0.080
Hos : B5(1) =0  0.038 Hoa0: B10() =0 0.109

3.5 Technical Details

This section contains the proofs for the main theorems in Section 3.2. Proofs for the propo-

sitions can be found in the next section.

3.5.1 Proofs of Main Theorems
3.5.1.1 Proof of Theorem 2

Proof of Theorem 2. We first prove the case with n € [0,1/8], under which we choose the
bandwidth h = n~®0 from 2(1 +7)/17 < ag < 1 —n — 2/A. In this scenario, it is easy to

see that mh — 0. In this case, we have the decomposition for T}, T}, = T);1 + 11,2, where

cn%mZ T(O)G ()& (Hw(t)dt
1= 1 a

= 02,30 / T HGTOGOEu(t)dl
1=1 k#i
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It then can be shown that

/,7

TH20

B(Th1) = ¢+ qh—

b
/ F(Ow(t)dt + O(h?)

Var(Tp1) = {q +

el ARAGL (t)dt}? + O(h% + 1/n)

-
— L w 2 2) = 2 n
{wmmmlﬂwwM+mm O +1/n),

and F(Ty2) =0,

2 b
Var(Tpa) = 2qhpin? /_ 2[K<2>(u)]2du / w?(t)dt

b b
+ 2(mh)? / / tr{ 2o (£, )Xo (s, t) bw(t)w(s)dtds + O(mh? + h/n).
a a
Hence we have Var(Tj,1) = O(h? 4+ 1/n) = o{Var(Tj2)}. It follows that
Ty — E(Tn) =Th1 — E(Tnl) +Tho = Tn2{1 + Op(l)}'

Thus, to study the asymptotic property of T;,, we only need to study that of T;,5.

In fact, we can write T},9 as

n b
1= [ 20z
i#k?

where Z;(t) = vmhG(t);(t). Let Uy, = %Tng = ﬁ Y 1<i<k<n K(Zi, Z1;), where the
symmetric kernel (Z;, Z;.) = f Z1(t)Z5,(t)w(t)dt. We define an operator Ay associated
with the kernel K as Axg(z) = [0 K(z,v)g(y)dF(y), where F is the distribution of Z;.

Then we have the associated eigenvalues and eigenfunctions, denoted as {\p,¥p}72 ;. By
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U-statistic theory [Ser80], we have

=Y A0d k- 1) = op(1),

k=1

where {X% k}zozl are independent chi-square distributed random variables with 1 degree of
freedom. That is Tpo—> 72 )\k(X%’k —1) = 0p(1). Now we only need to prove that {\;}7
is the same as {7y, }72 from X.

In fact, Cov(Z;(s), Z;(t)) = Tn(s,t) = D peyq Vnkd)nk(s)ﬁb;k(t) Then we have the K-L

representation of the random process Z(t) = > 721 £7 ¢k (t). Then

Arcéin = ) /C(x Y)emdr (y) biifﬁ%ﬁi(ﬂ(ﬁm(t)wﬂ mdtdF (y)
J

a ;7 5=1
p 00 00
/ IPIRCING / €Y dF (o)
@ j=1j=1
p 00 00
=/ S5 EEGT (1) (Bt 0t
@ j=1j=1

= '7an§1:/ ¢ (t)Prm (t)w(t)dt = 'Vnm.z;gzx(szm = Vnmgrxn'

That is {Ang: Ynkdie) = (s &edaeye Thus we have Tpo — 302 1r(xi — 1) = op(1),
and then T, — E(T,) = Tpo +o0p(1) = D72, ”ynk(xik — 1) +o0p(1). It follows that T3, — ¢ =
>R k(XD — 1)+ 0p(1). Since 32304 g = ¢, we have T = Y3321 yexi {1 + 0p(1)}.

We finally prove the result for the dense case, i.e. 7 > 1/8. In this case, we choose
then bandwidth h = n=%0 from 1/8 < ap < min{n,1/2 — 1/A}. Under this scenario, we
have mh — oo. By Lemma 9 in Section 3.5.2, we know Uy (t) asymptotically converges to
a Gaussian process U(t;n) with mean 0 and covariance function X(s,t). Thus the limit-

ing distribution of T}, is the same as the distribution of Z = [U(t;n)TU(¢; n)w(t)dt. We
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only need to show the distribution of Z. To this end, using the following Karhunen-Loeve

representation for U(t;n) [Bal60)]
0
U(tin) = &rop(t),
k=1

where &, = ng(t; )T (t)w(t)dt are independent (k = 1,2,---,00) normal with mean 0
and variance 7. Here 7. and ¢ (t) are, respectively, the k-th ordered eigenvalue of 3(s, t)

and the corresponding eigenfunctions in R?. Then we have

oo o0 b (e.¢]
2= 366 [ s auti =3¢
“ k=1

k=11=1

Since &, are independent N(0,7;), we have Ty, Ly - PRy WkX% - Thus by combining

the above two cases together, we complete the proof of part (b). O

3.5.1.2 Proof of Corollary 1

Proof. From Theorem 2, T, has the same distribution as Z, = Y po %kx%,k' Thus we
only need to show the asymptotical normality of Y 7> ; 7]{;)(% ;.- By Lyapunov central limit

theorem, if the following condition hold

> i/ Q) =0, (3.5.5)
k=1

k=1

Then we have
Zn — 22021 Tnk 4,

> — N(0,1).
\/ 222021 Tnk
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sing Proposition 4, 3i,(s,t) = Lo = and 1n particular >, (¢,7) = 1,, we in
Using Proposition 4, 3 201K<2>5ht1q d i icular 3 I, we find

that Y 720 vk = tr(2) = qf t)dt = q and

Z’Ynk::q/ / Mzo

where 08 was defined in the corollary. Therefore, the conclusion in this Lemma holds. It

>}2 (s)w(t)dsdt = qhal /2,

remains to show the condition (3.5.5). Let v(s,t) = ,ugolK(z)(sT*t). Then

o

Sat=a [ [ [ [ 26 000r@mpm, et ety oum)dsdddn

k=1

3 4 b 4
= qh”Copg / w™(t)dt
a

where Cp = [ K@ (u) K@ (ug) K@ (u3) K@) (ug + ug + uz)duidugdug is a constant. Thus
the condition (3.5.5) holds. This completes the proof of this corollary. O

3.5.1.3 Proof of Theorem 3

Proof of Theorem 3. First notice that 2((t) = 207;&()77 (t)R_l(t)l)(t) + op(hl/Q) and

under local alternative,
#(t) = ~R(OCHA (D { - a:{Bo(0)}} + ROFLB(0)} + 6y(00).
=1

We then define Uy (1) = G()Cyy o S0 &6(1) — nCy L RYZ(OH{Bo(1)}.
First considering the proof for part (a) with 0 < n < ny = 1/16, under which we choose

the bandwidth h = n=? with 2(1 4+ 7)/17 < a9 < 1 —n — 2/A. In this scenario, we have
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m2h — 0. We have

Tn:/bQE(t)w(t)dt:/bU,?tT(t)U;;(t)w(t)dt+Op(h1/2)

naonzz G ()& (t)w(t)dt

21k1a

—2nCp 20 Z (t)RY2(1)H{Bo(t) bw(t)dt

Z].a

b
122y [ HTBIROB B (Ot -+ oy

‘= Ry — 2Rp + Rz + op(h/?).

Then by the result in Corollary 1, we have h_l/Q{Rln - q} 4, N(O,qag). And for Ry,

obviously we have E(Rs,) = 0, and

m
Var(Ray,) = n?biCrybe niiz —E / / XLGT(HR!Y2(t)d(t)
i—1j=1=1""
X XZ'TZGT(3)R1/2(S)d(s)eijeilKh(tij — ) Kt — s)w(t)w(s)dtds
= O(n°b;,Crrag) = Ofn(bpmh)?}.
Since in this case b, = (nm) Y/2h=1/4 we have Var(Rg,) = O(mh3/2). Thus we have
h1/ 2Ron L5 0 since we have mh/2 — 0 under this case. And for R3,, which is non-random,
we have h™1/2Rg3, = fé) dT(t)R(t)d(t)w(t)dt. Thus we have h~Y/2(T;, — ¢) LA N(uo,q03),
where g = [2dT(#)R()d(t)w(t)dt.
For part (b) with 1/16 < n < 1/8, under which we choose the bandwidth A = n~?0 with

2(14+1)/17 < ag < 1 —n —2/X. In this scenario, we also make to have m?h — oo and
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mh — 0. We write

10 = Oy S {GOGH — bR 0d(0)} = —= > ZH (),
i=1 '

\/ﬁ =1
where Z+ =vm {G )i (t) — b Rl/2 } Then we have
b
a
— = Z Z / ZIT( 25 (w(t)dt + op(mh) == T + T + op(mh),
z 1 k=1
where T, = L 2T 2 wt)dt and T = 350 [P 2T () 2 (w(t)dt. By
similar calculation as in the null hypothesis for 7}, , we have E(T;rl) n;ﬁ M;th f f(t)w(t)dt+
mhb? g + O(h?) and Var(T}}) = O(h% + 1/n).
For T;é, we define the U-statistic as follows
T 1 i PR + zH),
= _—Ns Z"N 2] (¢ (2" 2
R ey n(n—n#zk/a STOZ O = s ZK:

where the kernel function C is the same as in the proof for the null case. It is easy to show
0 = EK(Z], 2) = mhbZpuo. And the first projection K1(2;) = E{K(2], 25)|2{} =

—bpVmh ff ZfrT(t)Rl/Q(t)d(t)w(t)dt has the variance (1, which can be obtained by
b rb
EK3(ZF) = b2mh / / dT(ORY2(OE(ZF (1) 2T ()} RY2(5)d(s)w()w(s)deds.

Therefore, we have (1 = b2 (mh)?u1 + O(b2mh?), where pq is defined in Theorem 3.
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We also have (o = Var{K(Z;, 2,)} = (mh)2V 4+ O(h + b2m?h?), where

b b
Vz?/ / tr{Xg(s, )Xo (t, s) }w(t)w(s)dtds.

Thus by U-statistic theory, if (3 = o(n¢1), which is equivalent to b ' = o(y/n), we have Uy, ~
AN(0, %) provided that the first projection sequence {1 (Z;L )} satisfy the Lyapunov’s
condition, which can be verified as follows. Since EX; (Z;L ) =0, \/'ar{lCl(ZiJr )} = (1 and
E{K1(Z]) — 0}* ~ bt (mh)* up to a constant, we have

S E{K(ZN) -0t nbimh)t 1

{Z;'lzl Var2{]C1(Zi+>}}2 ~ TlQb%(mh)Zl = E — 0.

Thus if b, ! = o(y/n), we have T;LE ~ AN (nb2mhyg, 4nb2 (mh)?p1). Then the conclusion in
part (b) holds.
For part (¢) with n > 1/8, under which we choose the bandwidth A = n~®0 with

1/2

1/8 < ag < 1/2 —1/A. In this scenario, we have mh — oo. Since b, = n~ /¢ and

Cn@oﬂ? = n1/2, we have

U0 = 6ot S 6 - RV @),
=1

By Lemma 9 in Section 3.5.2 in Chapter 2, we know U,! () asymptotically converges to
a Gaussian process U™ (t;7) with mean —RY2(¢)d(t) and covariance function (s, t). Thus
the limiting distribution of T}, is the same as the distribution of Z1 := fc? Ut (t;n)TU (¢ n)w(t)dt.
We only need to show the distribution of ZT. To this end, using the following eigenvalue de-
composition for U™ (¢; 1) [Bal60] U™ (t;n) = 72,4 fl;"gbk(t), where fl;" = f; U™ (t;n) T (t)w(t)dt

are independent (k = 1,2,---,00) normal with mean —u;, and variance 7. Here ~;, and
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¢;.(t) is the k-th ordered eigenvalue of 3 (s, t) and corresponding eigenfunctions in R?. Then

we have

k=11=1

ZSZ&“Z / or ()T (w(t)dt = &
k=1

Because 5,: are independent N(—uy,~;), we have T, 4, PRy vkx% k(u%/w) This com-

pletes the proof of part (c). O

3.5.1.4 Proof of Theorem 4

Proof of Theorem 4. Conditional on the data X, = {Y;;, X;j,t;;}7—, the bootstrapped sam-

ple was generated according to Y;i; = BT(t; j)X;j + €;:,which can be regarded an analog of

ij’
the model (2.1.1) with the true coefficient function B(t) and e - has mean 0 and covari-
ance Q(s,t). Let 0p(1) and Op(1) be the stochastic order with respect to the conditional
probability measure given the original samples.

Based on this bootstrapped sample { () i, X rio =1, n;j = 1,--- m;}, we
first estimate the true B(t) by local linear smoothing with the estimator 8*(t), which differs

from the original B(t) only via the error. And then our estimating equation is constructed

as following

9:{B()} = mi > {Yf; — BT(1) X5 — {B* (i) — ﬁ*(t)}TXij} X Kp(tij —1).

) =1

Since we have proved the following results in the proof of Lemma 1 in Section 2.6.2,

sup 1231 waxmxh i~ 0~ TOFD)] =0 as.

teab Z 1 _7 1
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and by the similar proof as Lemma 2 in Section 2.6.2, we have

gH{BMY =&ML+ a5} + O as.

where () = mL Z XZJ K n(tij —t) and here and below, the almost surely convergence
1

holds with respect to the original probability measure, which is true almost surely for all the

sample points in the sample space of X;,, when n is sufficient large. Then by the fact that

sup |B(t) — Bo(t)|| = O(6,1 + h*) a.s.. Thus, similar to (2.6.29), we have the following

results almost surely

205 (t) = {Zgl NTATICTRCA™ 1{292 )} + 05(1) + O(d,1 + Y
naon i= 1 =1
{Zgz }TGTG{Z% )} + 05(1) + O(6p1 + 1)
"0‘077 i=1

= U URB{1 + 0(1)} + 061 + 1Y),

where Uj(t) = Cp by nG (1) S0y & () with G(t) = RY2()C(H) AT (1),

Thus the bootstrapped version test statistic 7;; can be represented as

/ Ut Yw(t)dt{1 + o5(1)} + o(1) aus. (3.5.6)

Let d(F,G) be the maximum norm distance between two distribution functions F' and
G such that d(F,G) = sup,, |F(x) — G(x)|. From the proof of Theorem 2, we know that the
required conditions for showing the convergence of d(.Z f U () Up(Hw(t)dt), £ (Ty)) — 0
are the independence between X;(t) and €;(t), €;(t) are independent with E{¢;(¢)} = 0 and

finite A moments for i =1,--- ,n.
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To show that d(Z(fab U,T(HOUE (Dw(t)dt|Xy), Z(Ty)) — 0,n — oo, we note the dif-
ference between | 5 U, (1)U% (t)w(t)dt and f UL (O Uy (Hw(t)dt is that €(t) is replaced
by €;(t), which has mean 0 and covariance Q(s,t). Since Q(s,t) is a consistent estima-
tor of Q(s,t), and from our construction of € (¢) in the wild bootstrap procedure, given
Xy, we have the independence between X;(t) and € (t), E{e;(t)} = 0 and €;(t) has fi-
nite A\ moments. Thus, based on the standard modification of the proof of Theorem 2,
we have d(.i”(f; U, (UL (Hw(t)dt|Xy), £ (Ty)) — 0. This together with (3.5.6), we have

d(L(Ty| X)), Z(T,)) — 0 almost surely. O

3.5.2 Proofs of Proposition and Lemma

Lemma 9. Under assumptions (C1)-(C4), for the dense functional data, Up(t) converges
to a multivariate Gaussian process &(t) with mean 0 and covariance matriz 3 defined in

Proposition 4 in Section 3.2.

Proof. Tt is clear that E{U,(t)} = sz}lom Yo GOE{&(t)} =0 and

Cov{Uy(s), Uy(t)} =

{ZG JE{&(s)E] (1)}GT(t >}

naon

For computing E{&;(s)&] (¢)}, by similar calculation as before, we have the following result,

(2) (st s .
BGEIE 0} = ST 6) + LT, 0006056550 + 00),
where K(2 = [K(y)K(y — z)dy and T'(s,t) = E{X(s)XT(t)},Q(s,t) = E{e(s)e(t)}.
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Then we have

n

s—t 1 1

)
b C2 g & i

Cov{Up(s), Un(t)} = G(s)T(5)Q(s)GT(¢) f(s) K

+ G(s)D(s, )Qs, )GT (1) £ () F () (3.5.7)

nO(h?)

CT%,O{O,T]

G(s)GT(t).
By the definition of On,aoﬂ?v we have the following result,
Cov{Un(s), Un(t)} ~ G(s)L'(s,t)(s, t)GT(2) f(s) f(t) = (s, ).

Thus we have Cov{Uy/(s), Uy (t)} = Xo(s,t)+06(1). The proof in Lemma 3 proves the central
limit theorem the joint distribution of {Uy, (1), -, Up(ts)} at finite time points {¢t1,- - ,ts}.

Weak convergence of Uj,(t) now follows (Billingsley (1968), page 95) if Va € RY,
aTE {[Un(s) — Un(t)][Un(s) = Un(t)]T}a < C(s - 1)°
can be established. To this end, we note that

alE {[Up(s) — Up()][Un(s) — Up(t)]T} a

=alG(s)B(s)GT(s)a—aTX(s,t)a — aTXy(t,s)a+ aTG(t)B(t)GT(t)a
0X(s, s) 923 (s, s*)
o T Tl

2 *
~ {aTSg(t,0) + (s — ) 00D 4 (1 2P E0G g

0%(s, s) _ 0%(t,t)
ot 0s

=2aTa — {aT[X(s, s) + (t — s)

<|s — t||aT{ Ya| 4+ Ci(s — )2 < C(s —t)?,
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where we used (s, s) = 3q(t,t) = I; and the last two inequalities follow from the conti-

nuity condition (C3). O

Proof of Proposition 4. By (3.5.7) in the proof of Lemma 9, and the definition of Cn,aqg,n, We
have the following result, up to a factor 1+ op(1), Cov{Uyp(s), Up(t)} = MEOIK(Z)(%)Iq +
mh3q(s,t) for mh — 0, and Cov{U(s), Uy (t)} = Xg(s,t) for mh — oco.

Since K(Q)(ST_t) = poo when s = ¢, we can further have, up to a factor 1 + op(1),

(

pipg K (501, if m2h — 0,

Cov{Un(s), Un(t)} = I,I(s =t) + mhZg(s,t)I(s #t) if m*h — oo and mh — 0,

(s, t), if mh — oo,

\

which complete the proof of the proposition. O
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Chapter 4

Empirical Likelihood in Testing
Coefficients in High Dimensional

Heteroscedastic Linear Models

4.1 Introduction

As mentioned in Section 1.2.2, people have made significant progress towards understanding
the estimation theory, but very little work has been done for statistical inference for high
dimensional linear models, especially with heteroscedastic noise. Empirical likelihood has
the ability of internal studentizing to avoid variance estimation, which can help solve the
heteroscedasticity issue.

In Section 4.2, we study the asymptotic normality of Wald type statistic for the existing
methods under the heteroscedastic noise. In Section 4.3, we propose the general empiri-
cal likelihood framework for analyzing the estimating equations proposed in different ways,
although they all follow the low dimensional projection idea. In Section 4.4, we provide
implications of the general results on three different cases, projection via lasso estimation,
projection via inverse regression and projection via KFC set selection. Section 4.5 provides

numerical results and Section 4.6 shows some real data analysis. We refer all of the proofs
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to the Technical Details 4.7.

The following notation is adopted throughout this chapter. For v = (vy,v9,--- ,vg)T €
R?, we define ||v||, = (Zgzl 0] 1)1/ for 0 < ¢ < o0, ||v]jg = |supp(v)| where supp(v) = {j :
vj # 0} and |A| is the cardinality of a set A, and v = max<;<g|v;|. For a symmetric
matrix M = ((Mj)), Amin(M) and Apax(M) are the minimal and maximal eigenvalues of
M. For any matrix M = ((M;)), let [[M|lmax = max;y [M;g|, [[M|1 = maxy >, [Mjp],

IM||2 = /Amax(MTM), and ||M]|oc = max; Y . |Mi|. We denote I as the d x d identity
matrix, and if the dimension is obvious from the context, we just omit the subscript d. For
SC{l,2---,d}, let vg = {v; : j € S} be a subvector of v. And for any & € {1,2,--- ,d},
let Mjs = {Mj;,l € S} as a row vector and Mg; = {M;; : | € S} as a column vector.
Denote \k = {1,2,--- Jk — 1,k +1,--- ,d}. For a sequence of random variables X,,, we
write X, i) X for some random variable X, if X, converges to X in distribution, and write
Xn L 4 for some constant a, if X, converges in probability to a. For notational simplicity,
we use C,C’,C",C1,Cy, C3 to denote generic constants, whose values can change from line

to line.

4.2 Preliminary and Existing Methods

We consider a linear regression model:
Y = X8° + ¢, (4.2.1)

where Y = (Y1,Y2, -+ ,Y,)T € R” is a response vector, X = ((X;;)) € R™*P is a random

design matrix with columns {X; € ]R"}?:l and rows {X; € RP}! , which are assumed
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to be independent and identically distributed (IID) with E(X;) = 0 and Var(X;) = X,
and B € RP is a vector of unknown true regression coefficients. The error term satisfies
E(¢;|X;) = 0, and Var(¢;|X;) = 02(X;), which allows heteroscedasticity. Note that with
these assumptions, X; and ¢; are uncorrelated, i.e. E(X;e) = 0. In addition, we assume the
Hereafter we assume that p > n. Denote s = ||3°||g be

marginal variance Var(e;) = o2.

the number of non-zeros of BY and we assume sparsity with s < n. Let Z; = ¢X; be a

2

random vector with mean 0 and covariance matrix © = ((¢;;)). And assume Var(ef) = x
and Cov(e?, Z;) = w.

In practice, among hundreds of thousands of regressors, people want to test whether
some target features are significant or not. For example, one may want to know whether a

particular gene effect is significant or not among thousands of genes. To assess the significance

of a single coefficient, we test the following hypothesis for any given j € {1,2,--- ,p},
Hy : 5? =0 wvs. Hip: 6? # 0. (4.2.2)

Statistical inference for low-dimensional coefficients in high dimensional linear model with
homoscedastic noise has received increasing attention. Low dimensional projection method
has been introduced by [ZZ14] and [B*13].

Under (4.2.1), and in low dimensional scenario, i.e. p < n, we have the ordinary least

square (OLS) estimator for 59,

g EDY QKT (QuX)T(QyY)  XjoyY
O (QUEDTE (QUE)TQX)  XTQX;

(4.2.3)

where XjL is the projection of X; to the orthogonal complement of the column space spaned
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by {X\;}, and Q\; is as defined below for general Qg with S C {1,2---,p} and |S| < n,
Qs =1-Pg=1-Xg(X[Xg) 'XL € R™",

However in the high dimensional linear model with p > n, the OLS estimator is no longer
valid. Instead of projection onto the space spanned by all of the rest covariates, people select

the projection space based on the correlations between X; and the others.

4.2.1 Lasso Projection

In [ZZ14, vdGBR13, NL14], they used the linear sparse regularized regression procedure such

as Lasso to select the projection space. Define n;; := X;; — Xg\jz\_jl\jz\j,j‘ That is
o xT &0 g
Xij = Xi W i

with W? = 2\_]-1\]-2\]',3'» which leads to the following generalized version of (4.2.3) with

relaxed projection

A (T 7Y
j(hn) = J where Zj = Xj — X\jo (4.2.4)

Tx.’
ZIX;

(lin)

with w; as an estimator of W?. However, B } is biased. To solve this issue, [ZZ14] proposed

the de-biased estimator as follows,

T T 5
s(de) _ 2 = 2 2 Xnn
J ZJT-XJ-

: (4.2.5)
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where ,é is some initial estimator of 3°. This de-biased estimator (4.2.5) can be regarded

as the solution to the estimating equation, which is based on the population subject 7;;€e; =

{Xij — BE(X35X; 0 ) HYi = X] 8%}, that is

Z Uasso) 3. . Z{XU XT, Wi HYi = X538, = X B} =0. (4.2.6)

And by simple algebra, we have

meSSO)(@?): iy +zh‘j(/3\] Bu)TX 0 + (W) — W) Xi,\j{n_Xijﬁg_Xi\jB\j}J-
Wr(LliaSSO) R(l;m,sso)

By simple calculation, we have E(W(l‘asso)) =E{¢(X

1
i i — T2 X)) b = 0 and

sl X,

E[(18s50)y2) _ E{ef (Xij — 3, (Y ARVAV ! \3> J

ni

= B{e] (X} — 2X353;\,3), \+2j7\j2fjl,\jxi,\j TS0 Sua

2

~1
Zi %030 %+ Zau 2 g S

. oy vl o el el 2
= 0j; 22]7\32\3}\]’@]7\] + zJJ,\JE\j,\j@\%\Jz\j,\jz\J,J "~ n,lasso’

Note that if we assume the independence between the error term and the covariates, we have

the following simplified form

BWS™)) = 02(05 — 5, E0 D)

This shows the difference between our heteroscedastic case and the homoscedastic case.

For the homoscedastic case, as discussed in [ZZ14] [vdGBR13], the inference proce-
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dure based on asymptotic normality needs to estimate the asymptotic variance 062 /(o) —
-1 . . . .
b i\ \j,\jz\j,j)' Under the heteroscedastic noise, we can still show the following asymp-

totic normality but with much more complicated asymptotic variance.

Proposition 5. Under model (4.2.1) with heteroscedastic noise, if Assumption 1 in the

appendix holds, we have

VBl — 89) & M0, 03,) (4.2.7)

where the asymptotic variance is defined as follows

-1 -1
2O\ T, \jz\j GOV, \;E\J

n—o00 (Ujj

(4.2.8)
J\J \] \]E\J )

Such complex asymptotic variance (4.2.8) makes it hard to use Wald type inference
procedure in practice since it is difficulty to get a good estimate for the asymptotic variance.
Thus naively using the Wald type test procedure proposed by [ZZ14] in the heteroscedastic
case will lead to invalid results, which will be demonstrated in the simulation study in Section

4.5.

4.2.2 KFC Projection

[LZLT13] proposed another way to select the projection space, which is based on the so
called KFC set S = {l # j : |oj;| > c} for some pre-specified threshold value ¢ > 0. That

is essentially the set of all key confounders associated with X;. And then the estimator can
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be obtained by the projection with respect to the covariates indexed by S,

T TV
T T XTI -
J Xj QSX] Xij

with the profiled response and target predictor as Y = QsY, Xj = 9OsX;.

Based on the de-bias idea, we propose the following de-biased KFC estimator

5 (Ife-do) XTY — Y pes XiXpfy,
} = e , (4.2.10)

where S* = ST¢, i.e. the complement of ST := {1} US, and BS* is an initial estimator.
In fact, the above de-biased KFC estimator is the solution to the estimating equation

based on the population subject 7;; s€; := {Xi; — E(X;|X;s) }H{Y; — Xz.T,BO}, that is

n

S m®(8)) = SOV - X8 - XTguBse) Xij = 0, (42.11)

=1 =1

(kfe)

where my, (B?) can be decomposed as

kf _
¢ (ﬁo) = €158 T {E]SE X XZ]}XZS(XE‘XS> IXEG

+ {ei = X[(XEXs) X eH{ T T g5 Xis — X Xg(XEXs) ™' Xy}

+ { X35 — XIXs(XEXs) ™ ZS}{X — XTo(XIXs) I XTX g+ }[BR+ — Bss).

kfc)

We denote the first term as WT(LI;fC) and all the others are denoted by R( And for

simplicity we assume the normality of X; ~ N(0,X) for the KFC projection section. Now
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WY — fe(X; — 8,68 5hXis) Y, are TID with B9 = 0 and

ni ni -

B2 = B{ (X - 2,551 X5)2)

2 2 -1 -1 -1
= BE{q (Xj; — 2X;; %52 55Xis + TjsBgsXis X s X5 Ts;)}
_ 2 Sy oyl ol 7T 1 .
—_p.. 3 lg. o1 -1 .
= 9” — 2235288638 + 23528563525‘525]‘

W(ka))2] 2

Note that if we assume independence between ¢; and X;, we have E[(W

-1
Thus if we assume independence between ¢; and X;, we have the simple asymptotic
5 (kfc-de

variance for 3

. ), a?/(ajj — Ejgzgézsj) as discussed in [LZLT13]. But under model

(4.2.1) with heteroscedastic error term, we have the following asymptotic normality with

more complicated variance.

Proposition 6. Under the Assumption 3 in the appendix, we have
~(kfe-d N 2
VBt g9 4 No, o2y, (4.2.12)
where the asymptotic variance is defined as

2 : —1 -1 —1 -1 2
kac = lim (ij — QEjSESSGJS + EjSESSGSSESSZSj)/(Ujj — EjSESSESj) .

(4.2.13)

Similarly, since the expression (4.2.13) for the asymptotic variance is really complicated,

which makes such Wald type statistic hard to use in practice.
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4.2.3 Inverse Projection

So far we construct estimators for the target coefficient parameter 3; directly. However, to
conduct the hypothesis testing problem (4.2.2), [LL14] proposed an equivalent test based on

the projection of X;; onto (Y, XZ.T\].)T,

Xij = (Y, X[\ )5 + i (4.2.14)

where 7;; ,, satisfies En;;, = 0, Cov(n;;,, (Y;,XZ.T\].)) = 0. Under the linear model (4.2.1)
with heteroscedastic noise, as long as Cov(X;,€) = 0, we can still show that the vector 'yjo

satisfies 'yJQ = —0'2.y( — é, "+ Q\j’j)T, where U%jy = Var(mjy) = ((59)2 + wjj)_l

)

with @ = 2~ = ((wj)). Because Cov(e;, X;) = 0, we have
Cov(ei, nijy) = V1 Cov(e;, —Y;) = —op . B = —bY. (4.2.15)

"y

Hence the test (4.2.2) is equivalent to Hy : b? = 0. Based on the idea proposed in [LL14],

we can have the estimation for b?

:__Z{Y XTBH X — (Ve XJ\ )5} (4.2.16)

where [‘3 and <, are some initial estimators for B° and 7?.
Observe that b ;j 1s the solution to the estimating equation based on 7;; ,€; + b? = {Xij —

E( zg‘Xz \jo ti )}{Yz - Xgﬁo} + U%j’yﬂo, that is
Z ) (0g) =S {vi - XIBH{ G - (Y3, XT\ )4} +nbj =0, (4.2.17)
=1
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and also by simple algebra, we have

mU(69) = {emizy + B9} + (Vi XT, )0 = 47) + XT(8° - B){Xij — (. XT )}
——

(inv)

inv
Wni R( 1 )

With simple calculations, we have E(W,,;) = 0 and

Var(Wy,;) = Var(einij,) = Var(e;(Xij; — X] 890 — einfh — XZ-T’\ﬂ?,\l))
.. 0\2 470 0 0\2 OT 0
= 9]] + ('le) B Tes” + (7j1) K+ '7j7\1@\j,\j'7j7\1
0 20 0 0 0\2 40

0 20 0 0 .07 2
+ 2’}/]1/8 T®',\j7j,\1 + 2’)/]1')’]7\172'\] = Jn,inv'

Note that if we assume the independence between ¢; and X;, we have the following simplified
variance expression. Since X;; = Xg,@ovg)l + 6@7?1 + XZT\j’y?\l + 1jj,y and Cov(e;, X;) = 0,

we have Cov(e;, 62"791 +Mijy) =0, ie. —7?1Var(ei) = Cov(ej; mij,y)- Hence

Var(W,;) = Var(e;(n;;,, + 62”7?1) - 6127?1)

= Var(e;) Var(n;.) + (791)2(\/&1"(612) — Var?(¢;)).

If furthermore we assume normality for the error term then we have Var(elz) — Var?(¢;) =

E(ef) — 2[E(622>]2 = 30% — 20% = Var?(;), which leads to the same result in Theorem 3.1
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from [LL14], i.e.

Var(W,;) = Var(e;)Var(n;j,,) + (451)*(Var(e}) — Var?(¢;))

2 2 2 2 4
= Var(ei)varmij,y) + [Cov(e;, nij,y)} = O¢ Unj,y + (’7})1) O¢

2 2 0y2 4
= 00y + (B5) 7y

which is more likely to be estimable.

But we can still get the asymptotic normality as stated in the following proposition.

Proposition 7. Under Assumption 2 in the appendix, we have

Vi(b; — %) % N0,02,,) (4.2.18)

mu

2

_ 1 2
oy = My 5000

where o iy
But we see that the asymptotic variance of b j is too way complicated, which makes such

Wald type statistics hard to use in practice with heteroscedastic noise.

4.3 Empirical Likelihood Based Approach

To avoid the complexity of estimating asymptotic variance under heteroscedasitic case, we
propose EL based approach. Note that the above three procedures in Sections 4.2.1, 4.2.2
and 4.2.3 correspond to three estimating equations (4.2.6), (4.2.11) and (4.2.17) of the form
mn (X, Y;, Bj, ,8\ o é), where the nuisance parameters B\ j and the other nuisance parameters
denoted as @ replaced by their estimators B\j and 0. To keep it simple, we write mm(ﬂj) =
mn(Xi, Y5, B, ,é\j, é) in general.

Note that the estimating equations (4.2.6), (4.2.11) and (4.2.17) have the same structure,
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i.e. the first term is the population level term, which will be shown to be dominant and
asymptotically normal, while the other terms are all about estimation errors, which need
to be controlled. We propose the following general framework by assuming the estimating

equations evaluated at the truth B? can be decomposed as follows,
mi(B)) = mn(X;, Y, B, B\ j,0) := Wi + Ry (4.3.19)

where {Wp; }1*_; which are IID and {R,,;}}"_; need to satisfy the following conditions:

(C1) W,,;’s are IID with mean 0 and finite variance o2 with 02 — 02;

(C2) =371y Ryi = 0p(1) and maxi i<y | Rn| = 0p(n'/?).

According to [Owe01], with estimating equations, we can construct empirical likelihood
to make the inference. Define the following empirical likelihood ratio function of the target

parameter [3;

EL.(55) = maX{ [Lrmwiipi >0 pi=1) pimni(B;) = 0}- (4.3.20)
i=1 i=1

1=1

Under this unified framework with the above general conditions, we have the following pow-

erful Wilks theorem.

Theorem 5. If (C0)-(C2) hold, then

d
—2log ELn(ﬁ?) — X%-
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Based on Theorem 5, an asymptotic « level test is given by rejecting H if —2 log ELy, ( 6?) >
X% o Where X% o, 18 the upper a quantile of X%- We can also construct a (1—a)100% confidence
interval for 8; as Cly = {8} : —2log ELy(8;) < X%,a}' Since the asymptotic distribution is
chi-square, we do not need to estimate any additional parameters, such as the asymptotic

variance.

4.4 Theoretical Examples

This section outlines three examples as we discussed above in Sections (4.2.1), (4.2.2) and
(4.2.3) to demonstrate interesting and powerful applications of Theorems 5. We need to
check the conditions (C0)-(C2) for these problems.

From Proposition 5, 6 and 7, we see that Wald type inference procedure is hard to
implement due to the complex asymptotic variance. Fortunately we do not need to estimate
that variance in order to conduct inference by using the self studentized EL procedure. And
in fact, we already verified condition (C1) for the three procedures in Section (4.2.1), (4.2.2)
and (4.2.3), respectively. We can control the second term R,,;s under certain assumptions,

which leads to the following theorems.

4.4.1 Lasso Projection

The first example is about using Lasso estimation to get the low dimensional projection as

we discussed in Section 4.2.1.

Theorem 6. Under some typical conditions for the initial estimators as in Assumption 1 in
the appendiz and assume that X; and €; are both sub-Gaussian. As long as slogp/+/n = o(1),

the conditions (C0) and (C2) can be satisfied. Assume U%Jasso — 012%80 for some 012&880 < 00,
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and then we have

—2log ELS"“O)(@) L\ X%-

Notice that under the homoscedastic noise case, [Z2Z14] and [vdGBR13] used the Wald
type test statistic for testing H( based on the same estimation equation as we used here. And
in [NL14], with the same estimating equation, they instead proposed the Score test statistic
for testing Hy. Although they are asymptotically equivalent, the differences between these
two can be found in [NL14]. We are using the same estimating equation to construct the
likelihood ratio type statistic for testing Hp. Since we are using empirical likelihood, it
not only enjoys the Wilks phenomenon, but also has other nice properties, such as the
shape of the confidence interval is data driven and our procedure is more robust to the
distribution assumption for the error term since it only requires moment assumptions. The
key advantage of our method is that we allow heteroscedasticity for the error term due to the
self studentization property of the empirical likelihood. Please refer to the empirical studies
in the simulation section for the performance comparison of our method with the Wald type

test and Score test.

4.4.2 Inverse Projection

The second example is about using inverse regression to get the low dimensional projection

as we discussed in Section 4.2.3.

Theorem 7. Under some conditions for the initial estimators as in Assumption 2 in the
appendiz, and assume (XZ-T,EZ-)T is sub-Gaussian. As long as slogp/\/n = o(1), the condi-

tions (CO) and (C2) can be satisfied. Assume 0721 i a?m} for some UZZM < 00, and then
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we have

~21og ELY™ (69) 5 3.

Note that since we are doing an equivalent test, from this inference procedure, we can

not get the confidence interval for 6;.).

4.4.3 KFC Projection

The third example is about the projection by selecting the KFC set as we discussed in Section

4.2.2.

Theorem 8. Under Assumption 3 in the appendiz, the conditions (C0) and (C2) can be
satisfied. Assume 07% kfe Ul%fc for some U/%fc < 00, and then we have

—2log EL%ka)(ﬁg) i) X%-

About the KFC set selection, we propose the following procedure. Based on normality
assumption of the predictors, we have the well known conditional distribution result for any
give subset S:

1
pjk(S) = Corr(X;j, Xk X;s) = ok — 5B 555 sk

The sample partial correlation can be evaluated by, p;1(S) = X}Xk /n. For testing whether

a partial correlation is zero or not, we could apply Fisher’s z-transformation

- 1 L+ pjx(S)
Fip = ~logd — LIk 27 L
T Og{l—ﬁjk(s)

Classical decision theory yields the following rule when using the significance level a. Reject
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the null hypothesis Hy : p;j;(S) = 0 against the two-sided alternative Hy : pj1,(S) # 0 if

Vn =18 =3|Eji| > 21— /0

So we could then select the smallest size of & such that

max \/n — |S| — 3|ij| < Z1_q/2-

keS*

And in order to make this KFC set selection more stable, we adopt the stability selection
proposed by [MB10] and [SS13]. According to [SS13], we split the data into half for B times

and select the final KFC set with variables shown at least 50% of those 2B KFC sets.

4.5 Simulation Studies

In this section, we conduct simulation studies to investigate the finite sample performance

of the proposed empirical likelihood ratio test, as well as comparing the performances for

different estimating equations proposed in the existing literature. In particular, to gen-

erate the covariates, we simulate n = 200,400 independent samples from a multivariate

Gaussian distribution N;(0, %) where p = 100,200,500. We consider 3 different covari-

ance matrices ¥ = ((0j)), banded matrix with o = pli=kl1(|j = k| < 2), Toeplitz ma-
1 p p?

trix with o, = p‘j_k| and block diagonal matrix with unit block | , 1 p |, where
PPl

= 0.2,0.5. We consider five scenarios for the error distribution, standard normal N(0, 1),

mixture normal distribution 0.7N(0,1) + 0.3N(0,5%), t distribution with degrees of free-
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dom 3, and two heteroscedastic distributions 0.7.X7Z and p—lIXlZ Z§Z2 X;1X,; where
Z ~ N(0,1) independent of X. Note that for the two heteroscedastic distributions, we have
Cov(X, €) = E(eX) = 0, although € is not independent with X. For the first heteroscedastic
case the conditional variance only depends on a low dimensional covariates and the con-
ditional variance for the second heteroscedastic case depends on the the entire vector of
covariates. The true coefficients B satisfies B? =0,0.1,0.2,0.3,0.4,0.5 (0 for the size and

others for the power analysis), ,82 = 1.5, 5(7) = 2 and all others are 0. Our goal is to test
. A0 . A0
Hy:pB{ =0, vs. Hy : ] #0.

The number of simulations is 500.

For the initial estimators such as ﬁ, 41 and w1, we just use the scaled Lasso [SZ12],
which has the advantage of being tuning insensitive. “EL-KFC” corresponds to the KFC
Projection example, “EL-INV” corresponds to the Inverse Projection example, and “EL-
LASSO” corresponds to Lasso Projection example. And “Wald” corresponds to the Wald
type test as proposed in [ZZ14] and [vdGBR13], while “Score” corresponds to the Score type
test as proposed in [NL14] with Lasso estimation for wy.

And for the “EL-KFC”, in order to stabilize the KFC set selection, we used the stability
selection procedure through sub-sampling proposed by [MB10] and [SS13]. According to
[SS13], we split the data into half for 10 times and select the final KFC set with variables
shown at least 50% of those 20 KFC sets.

For illustration, we only show some of the cases here. In Table 4.1 with Toeplitz matrix
with p = 0.2 as the covariance matrix for the predictors and standard normal error, we can

see that all of the procedures has reasonably well controlled type I error around « level at
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5%. And for the empirical likelihood based approach with different estimating equations,
they have pretty much similar power performance. An interesting comparison among the
holy trinity, i.e. Wald type test, Score test and the likelihood ratio test, which correspond
to the last three sections in Table 4.1, shows that the likelihood ratio test has overall better
power performance than the other two, especially in the low sample size situation.

The most exciting part is about the heteroscedasticity. In Table 4.2, we simulate the
predictors with the Toeplitz covariance matrix with p = 0.2 and the heteroscedastic noise
0.7X1N(0,1). Under this case, we could see clearly that all of the empirical likelihood based
inference procedures, which corresponds to the first four sections in Table 4.2, are valid, i.e.
they have reasonably well controlled type I error. The same results are also demonstrated
in Figure 4.1a for p = 100. But for the Wald type test and Score test, their type I errors are
largely inflated, which indicates that these two procedures are invalid. We can clearly see the
patterns in Figure 4.1b for p = 100. For the other heteroscedastic noise with conditional error
variance depending on high dimensional covariates, that is ]%X 1 Z§:2 X;_1X;N(0,1), we
can observe similar performances in Table 4.3, as well as in Figure 4.2 for p = 500. This

shows the advantage of the empirical likelihood based inference procedures.
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Figure 4.1: Empirical Size and Power Comparison among Empirical Likelihood
based approaches and among Holy Trinity and p = 100. (a) “EL-KFC” represents EL
approach with KFC projection, “EL-INV” represents EL approach with inverse projection
and “EL-LASSO” represents EL approach with Lasso projection; (b) “Wald” represents
Wald type test, “Score” represents Score test and “EL” represents likelihood ratio test.
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Figure 4.2: Empirical Size and Power Comparison among Empirical Likeli-
hood based approaches and among Holy Trinity with Heteroscedastic Noise
p—lIXl Z?:Q X;-1X;N(0,1) and p = 500. (a) “EL-KFC” represents EL approach
with KFC projection, “EL-INV” represents EL. approach with inverse projection and “EL-
LASSO” represents EL approach with Lasso projection; (b) “Wald” represents Wald type
test, “Score” represents Score test and “EL” represents likelihood ratio test.
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Table 4.1: Power comparison. Covariate: Toeplitz matrix with p = 0.2; Error: N(0, 1).

ﬁO

Method p n 0 0.1 0.2 : 0.3 04 0.5
EL-KFC 100 200 0.054 0.304 0.760 0.984
400 0.052 0.482 0.964 1.000

200 200 0.052 0.294 0.762 0.976

400 0.044 0.460 0.980 1.000

500 200 0.064 0.292 0.760 0.972

400 0.040 0.488 0.972 1.000

EL-INV 100 200 0.040 0.296 0.748 0.984
400 0.054 0.470 0.962 1.000

200 200 0.044 0.290 0.774 0.976

400 0.038 0.458 0.980 1.000

500 200 0.048 0.276 0.784 0.978

400 0.034 0.490 0.972 1.000

EL-LASSO 100 200 0.052 0.312 0.770 0.990
400 0.054 0.490 0.970 1.000

200 200 0.048 0.308 0.786 0.982

400 0.038 0.462 0.978 1.000

500 200 0.056 0.300 0.788 0.980

400 0.042 0.512 0.976 1.000

Wald 100 200 0.048 0.266 0.748 0.964 1.000
400 0.048 0.502 0.970 1.000 1.000

200 200 0.064 0.270 0.742 0.972 1.000

400 0.038 0.486 0.978 1.000 1.000

500 200 0.052 0.284 0.794 0.968 0.998

400 0.040 0.486 0.978 1.000 1.000

Score 100 200 0.050 0.264 0.746 0.962 1.000
400 0.052 0.480 0.966 1.000 1.000

200 200 0.062 0.268 0.740 0.970 1.000

400 0.040 0.474 0.978 1.000 1.000

500 200 0.062 0.272 0.794 0.970 0.998

400 0.038 0.498 0.976 1.000 1.000

UG TG A T VG T G G G T T T ST O SR O

—_

U Gy VNG VUG VG VA | VG VG VU G VG VG G GGG G (GG T T T T T SN U W

114



Table 4.2: Power comparison.

0.7X1N(0, 1).

Covariate:

Toeplitz matrix with

p:

0.2; Error:

Method

p

By

0

0.1

0.2

0.3

0.4

0.5

EL-KFC

100

200

200

200
400
200
400
200
400

0.062
0.040
0.070
0.076
0.060
0.058

0.244
0.366
0.230
0.350
0.254
0.402

0.624
0.916
0.652
0.890
0.636
0.902

0.924
0.998
0.920
0.990
0.900
0.992

0.986
1.000
0.990
1.000
0.986
1.000

1.000
1.000
1.000
1.000
0.996
1.000

EL-INV

100

200

200

200
400
200
400
200
400

0.058
0.040
0.058
0.066
0.060
0.050

0.230
0.356
0.222
0.342
0.236
0.402

0.620
0.918
0.652
0.880
0.624
0.902

0.910
0.998
0.910
0.990
0.898
0.992

0.986
1.000
0.988
1.000
0.980
1.000

1.000
1.000
1.000
1.000
0.996
1.000

EL-LASSO

100

200

500

200
400
200
400
200
400

0.056
0.046
0.062
0.072
0.068
0.052

0.244
0.376
0.232
0.356
0.250
0.412

0.634
0.926
0.668
0.890
0.640
0.902

0.922
1.000
0.926
0.988
0.912
0.992

0.988
1.000
0.990
1.000
0.986
1.000

1.000
1.000
1.000
1.000
0.996
1.000

Wald

100

200

500

200
400
200
400
200
400

0.256
0.210
0.234
0.236
0.208
0.234

0.496
0.706
0.464
0.680
0.516
0.736

0.860
0.986
0.848
0.968
0.874
0.986

0.986
1.000
0.980
1.000
0.978
1.000

—_

—_

Score

100

200

200

200
400
200
400
200
400

0.256
0.218
0.234
0.234
0.204
0.230

0.490
0.700
0.470
0.672
0.518
0.728

0.860
0.986
0.846
0.968
0.870
0.984

0.986
1.000
0.980
1.000
0.978
1.000

—_ o = = = | = e e e
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Table 4.3: Power comparison. Covariate: Toeplitz matrix with p = 0.2; Error:
1 p
EX]' Z]:QXj—lXJN(()?l)

ﬁO

Method p n 0 0.1 Oé 0.3 0.4 0.5
EL-KFC 100 200 0.066 0.886 0.998
400 0.048 0.988 1.000

200 200 0.076 0.932 1.000

400 0.068 0.988 1.000

500 200 0.060 0.942 1.000

400 0.054 1.000 1.000

EL-INV 100 200 0.062 0.872 0.998
400 0.038 0.988 1.000

200 200 0.074 0.936 1.000

400 0.064 0.988 1.000

500 200 0.056 0.938 1.000

400 0.042 1.000 1.000

EL-LASSO 100 200 0.066 0.876 0.998
400 0.046 0.988 1.000

200 200 0.078 0.934 1.000

400 0.064 0.988 1.000

500 200 0.064 0.944 1.000

400 0.046 1.000 1.000

Wald 100 200 0.222 0.982
400 0.214 1.000

200 200 0.244 0.990

400 0.214 0.998

500 200 0.260 0.990

400 0.240 1.000

Score 100 200 0.226 0.984
400 0.208 1.000

200 200 0.236 0.990

400 0.206 0.998

500 200 0.260 0.990

400 0.232  1.000

—_
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4.6 Real Data Analysis

Microarray expression experiments and array-based comparative genomic hybridization (ar-
ray CGH) experiments have been conducted for more than 170 primary breast tumor spec-
imens in a few recent breast cancer cohort studies, collected at multiple cancer centers
[FFS10].

We used a total of 172 tumor samples with both cDNA expression microarray and CGH
array data. In our study, we used the copy number alteration intervals (CNAIs), which
are defined as basic CNA units (genome regions) in which all genes tend to be amplified or
deleted simultaneously in a sample. For each CNAI in each sample, the mean value of the
estimated copy numbers of the genes falling into this CNAI was calculated. This resulted
in a 172 (samples) by 384 (CNAIs) numeric matrix. After global normalization for each
expression array, we focused on a set of 654 breast cancer related genes, which was derived
based on seven published breast cancer gene lists. This resulted in a 172 (samples) by 654
(genes) numeric matrix. See model details about the data processing in [PZB110].

Our study tends to reveal the subtle and complicated regulatory relationships among
DNA copy numbers and RNA transcript levels. The dependence of RNA levels on DNA copy
numbers can be modeled through a straightforward multivariate linear regression model with
the RNA levels as responses and the DNA copy numbers as predictors. While multivari-
ate linear regression is well studied in statistical literature, the current problem bears new
challenges due to high-dimensionality in terms of both predictors and responses. We will
adopt some dimension reduction procedures for the RNA expressions followed by significant

association detect using the proposed methods.
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4.6.1 WGCNA of correlated genes

In order to deal with the correlation patterns among genes across microarray samples, we
adopted the Weighted Gene Co-expression Network Analysis (WGCNA) [LHO8] which can
be used for finding clusters (modules) of highly correlated genes.

By using of WGCNA with minModuleSize=10, we identified 5 modules labeled 1 through
5 in order of descending size as listed in Table 4.4. The label 0 is reserved for genes outside of

all modules. And we can see that in Figure 4.3a there are pretty clear 5 modules clustered.

Table 4.4: Module Sizes.

module 0 1 2 3 4 5
size 204 316 53 33 25 23

For summarizing such cluster, we use the module eigengene by conducting PCA for
each of the five modules to select the first principal component as our response to do the
association analysis. But since we have missing values in the expression data matrix, we
impute the missing values by using impute.knn [HTST99]. And we choose prcomp in R to

perform PCA.

4.6.2 Significance Test

After doing WGCNA, imputation and PCA, we have first principal component for each of 5
modules. We regressed each module eigengene onto the predictors (CNAIs, totally we have
384) separately to conduct the single coefficient significance study.

For illustration, we just demonstrate the results for Module 3 and see others in the

appendix. In Figure 4.3b, we could see that although different methods have different power
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performance, the significance spots are very much consistent all over the methods. And the
Score method is kind of powerless in this data analysis among all 6 different methods.

For each inference procedure testing for all covariates, we can get a sequence of p-values
{pj 2;-:1. With the ordered p-values, Py SP@) < S PGy S S P(p), we adopt the
Benjamini-Hochberg (BH) algorithm: for a fixed value o = 0.01%, let jmax be the largest

index for which P(j) < ZlJa’ and reject Ho(j)7 the null hypothesis corresponding to P(j)s if
7 < Jmax, accepting Ho(j) otherwise. Take Module 3 as an example, we found that all of

the empirical likelihood based approaches detected one consistent signal which is the 269-th

CNAI on Chromosome 15 with Cytoband “15q11.2-15q11.2”.

Cluster Dendrogram

o _
—
. EL—KFC RNA: Module 3: 1st PC
0 N | EL-inv *
d ] + EL-LASSO
o + Wald N
- X Score
E -
2 ©o | S o
O O <
T 2
S ©
(o)
o
< B
o
~
N
i N o
© T T T T
odule colors 0 100 200 300
] index of CNAI (384 in total)
(a) Clustering (b) Manhattan Plot

Figure 4.3: Breast Cancer Cohort Studies. (a) Clustering dendrogram of genes, with
dissimilarity based on topological overlap, together with assigned module colors. (b) Man-
hattan plot for Module 3.
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4.6.3 Presence of Heteroscedasticity

We test for the presence of heteroscedasticity in this data set for each of the 654 genes using
the Goldfeld-Quandt test [GQ65]. The Goldfeld-Quandt test is one of the most widely used
test for heteroscedasticity. It compares the variances of two submodels divided by a specified
breakpoint and rejects if the variances differ. The Goldfeld-Quandt test is not directly
applicable when p > n. To reduce the dimensions, we apply the v/Lasso to select CNAIs
that are predictive of gene expression levels and CNAIs that are explanatory of variability.
These variables are then applied in the Goldfeld-Quandt test to specify predictors on the
response. Since the v/Lasso is not that sensitive to the selection of the tuning parameter
and we are also durable to select more variables, we just set the tuning parameter to be

We found that 19 out of 654 genes demonstrate heteroscedasticity at the significance
level 0.05/654. The presence of heteroscedasticity for these genes suggests the need to use
our method for identifying the CNAIs that are associated with gene expression. As further
evidence for the existence of heteroscedasticity, we apply the “wandering schematic plot”
[Tuk77]. This slices the predicted value into bins and uses m-letter summaries (generaliza-
tions of boxplots) to show the location, spread, and shape of the residuals for each bin. The
m-letter statistics are further smoothed in order to emphasize overall patterns rather than
chance deviations. Figure 4.4 presents the “wandering schematic plots” for genes PDK3
(Chr 23), TPST2 (Chr 22), ELF3 (Chr 1) and SNRPE (Chr 22), which are the top 4 genes

for the heteroscedasticity.
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4.6.4 Results for Top 4 Genes with Heteroscedasticity

We apply our Empirical Likelihood based approach to the four genes discussed in the previous
section and demonstrated in Figure 4.5 and compare its performances with those of Wald
type test and Score type test. For example, we use gene TPST2 on Chr 22 as shown in
Figure 4.5b for demonstration. For each inference procedure testing for all covariates, we
can get a sequence of p-values {pj}gzl. With the ordered p-values, Py Spe) < S
Py <+ < D(p), we adopt the Benjamini-Hochberg (BH) algorithm to make the decision.
As a result, we found that only EL-INV and EL-LASSO can detect signals and all of the
other procedures found nothing significant. Moreover EL-INV and EL-LASSO found two
consistent signals at the 305-th CNAI and 307-th CNAI, both of which are on Chromosome

17 with Cytoband “17q12-17q12”.
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Figure 4.4: Wondering Schematic Plot for Top 4 Genes with Heteroscedasticity.
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Figure 4.5: Manhattan Plot for Top 4 Genes with Heteroscedasticity.
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4.7 Technical Details

4.7.1 Assumptions for Theoretical Examples
Assumption 1. (1) Assume the initial estimator 3 satisfying ||B3—B°||1 = Op(sy/logp/n).

(2) Suppose the initial estimators W satisfy maxi<j<, [|W; —W9||1 = Op(an), where ap =

o(1/1og D).

(3) The prediction errors satisfy ||X(,é—ﬂ0)||%/n = Op(slogp/n) and maxy <<y [|IX ;(W;—
W?)H%/n = Op(bn), where X, ; is the design matriz X with the j-th column deleted and

bn = o(1/y/n).

(4) X; and ¢; are all sub-Gaussian.

(5) slogp/vn=o(1).

Remark 6. 1. With (4) that X; and €; are all sub-Gaussian, we have X;.€; sub-exponential
with E(€;X;;.) = 0. By Bernstein inequality [Ver10] and union bound inequality, we

have

P> Xl 2 1) < Crpesp(-Comin(e? o, 1/Con).
1=1

/
By taking t = C' 10% for some positive constant C' such that CC' 2 > Cy, we have

1\ log p
1= Xieilloo = Op(y/ =>5). (4.7.21)
=1

2. For mj; = X5 — E(Xij’X@\j)} we have n;; sub-gaussian since X; is sub-gaussian.

And for any k # j, we have E(Xym;;) = E{ X[ Xi5 — E(Xi5(X; 0\ )1} = B{ X Xi5 —
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E[Xp Xij| X0\ 41} = 0. Simalarly, we have for any t >0 and 1 < j # k < p,

1 & :
P(|=>" Xymij| > t) < Crpexp(—Cmin(t?/Cy, t/C3)n),
" =1

which leads to

BN logp
Hmein,\jHoonp(\/ >5). (4.7.22)
=1

3. For the properties of the initial estimators in (1), (2) and (3) under the heteroscedasitic
noise case, we can use the v/ Lasso estimator as in [BCW14]. According to Theorem 7

in [BCW14], we have that the v/ Lasso estimators under certain conditions have these

properties satisfied.

Assumption 2. (1) Assume the same assumption as Lasso projection case for the initial
estimator |8 — B°||; = Op(s+/log p/n).
(2) Assume similar assumption as Lasso projection case for the initial estimators vj, i.e.
maxi<j<p ||; — ’)’?”1 = Op(an), where ap = o(1/+/logp).

(8) Assume similar assumption as Lasso projection case for the prediction errors, i.e.
IX(8 = BY)13/n = Op(slogp/n) and maxi<j<p [|(Y,X\;)(F; — ¥)lla/n = Op(bn)

and by, = o(1/+/n).
(4) (Xl-T,ei)T is sub-Gaussian.

(5) slogp//n=o(1).

Remark 7. For the condition (2) above, if we assume a = maxi<j<ps; with s; = H’yg)Ho
and then the \/ Lasso estimators for 'y? satisfy this condition with a, = ay/logp/n. For the
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condition (3) above, since we assume that (X],€;)T is sub-Gaussian (which makes BYTX;
also sub-Gaussian), then due to Cou(8°TX;, ¢;) = E(e;8°TX;) = 0, we have ¢;8°TX; sub-

exponential and by the Bernstein inequality, we have for any t > 0,
L S T 40 22
P(\EZXzﬂ ei| > t) < 2exp{—Cynmin(t*/C5,t/Cy)}.
1=1

This also leads to

n

LS XT8% = 0y(Viogp/n), (4.7.23)

1=1

as long as logp/n — 0. And with the same arqument, we have

1 n
- > Xigijy = Op(v/logp/n), (4.7.24)
i=1
n

1
- > i, X{\j)j?mj,y = Op(v/1ogp/n). (4.7.25)
=1

Assumption 3. (1) For the eigenvalues of X, there exist some constants Apin and Amax

such that
0 < Amin < Amin () < Amax(E) < Amax < 0o
(2) Assume X; ~ N(0,3X) and €; to be sub-Gaussian.
(3) Assume the same as the Lasso projection for the initial estimator ||3—B°); = Op(sy/logp/n).

(4) m*1ogpfn = o(1), s\ ELEIE — o(1), s [EDERE _ o),

(5) Assume 51/10g pSupg.|s|<p MaXpc s+ |Ujk _EjSEEéESk:‘ = o(1) to control the partial

correlation between the target covariate X;; and X;gx.

126



4.7.2 Proof of Theorems

Proof of Theorem 5. Asin [Owe01], by (CO0), with probability tending to 1, —2log ELn(B?) =

251 1 log(1 + Amy,;) where A satisfies

n

P
] 1+ )\ng

(4.7.26)

The next step is to bound the magnitude of A\. Let A = |A|u where u = sign(\) € {—1,1}.

Now by > 1, 1;&%@ = 0, we have
D DL N (1
= 1+ dmyy,; = i 1+ Amyy;
which implies

uAm; AlmZ2. m2.
um — ___nt __ L om A ne .
Z i Z 1+ )\mm ; 1+ Amy; — A ; 1+ |\ maxy<j<p [my;]

Thus we have

1o S Al I 9
“ﬁ;mm—uwma . T 2 M

X1<i<n M| =1

which implies

1 & 1 <
i= i=
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From (C1), by Lemma 3 in [Owe90], we have maxj<j<p |Wy;i| = op(n1/2), and together with
(C2), we have
max |my;| = op(n'/?). (4.7.28)

1<i<n

And since for any € > 0,

TLU ZE{ ‘Wnl‘ > 6\/_Un)} = o’n2E{ 1]1 ’Wnl‘ > e\/_o-n)}

where obviously W2 1(|Wp1| > ey/noy) L0 due to P(|Wy1| > ey/non) — 0, we have by

Dominated Convergence Theorem,

n02 ZE{ L(|Wyi| > ev/noy)} — 0.

Thus by Lindeberg-Feller Central Limit Theorem, we have

i N(0,02). (4.7.29)

-

By (4.7.29) and together with (C2), we have

1 & 1 & 1 & 1 & d
=1 =1 =1 =1

And by (C1) and (C2) we have

1 1< 1< 1 &

- > mi = - > WEi+ - > R+ 2 > WyiRy; = Z -+ op(1) = 02, (4.7.31)
' i=1 i=1 i=1
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Actually the above follows from checking the WLLN for triangular arrays. First of all

oy P(VV2 >n) =nP(W2 >n) <E{W21(W2 >n)} - 0; and

n=?2 ZE{ W2 <n)}= nilE{Wéll(ng <n)}
=n1 / 2yP(Wn1 > y)dy — 0
0

since yP(W21 > y) < E(VV2 (W21 >y)) — 0asy— 0.

Thus by (4.7.27), (4.7.28), (4.7.30) and (4.7.31), we have
A me +op(1)) = Op(n~1/?)
and hence
Al = Op(n~1/?). (4.7.32)

Then it follows from (4.7.28), we have maxj<;<y, ’HT} = 0p(1). Therefore, from (4.7.26),
ni

we have

1o Amp; 1 — A1)
— - N {1 A ni }
0 ngl—l—)\mm n; Mni Mmi + 14+ Amyy,
1 (14 0p(1)] &
= " Z; Ay np z;[)‘mm]Qa
1= 1=

which leads to

. > A = L+ op(1) Zn:[kmm]? (4.7.33)
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Again by using (4.7.26) and together with (4.7.30), we have

n

m 1 [Am ,]2
0-2 & - -{1_>\ . #}
Z L+ >‘mm n: mm M 14+ Amy;

2
_ L mm[)‘mm]
=1 =1
n mp P m Pli<icn 1 + >\ng n e~ m

1y A 2 1/2y21 2
—mem—;mew{n ;me‘}
i=1 i=1 i=1
Ly A, o “1/2
:ﬁzmm‘_ﬁzmm’_}'op(n / )

which leads to
1 — 11
A= {Ezmiz} Ezmm’ +0p(n_1/2). (4.7.34)
i=1 i=1
Finally, by Taylor expansion together with (4.7.30), (4.7.31), (4.7.33) and (4.7.34), we have

—2log ELn(ﬂO = QZlog (14 Amy,;)
1=1

n n
=2 Z Ay — [1 4 0p(1 Z )\mm
=1 i=1
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This completes the proof of the theorem. O]

Proof of Theorem 6. We only need to control the term R,,;, which will be controlled one by
one.

By (3) in Assumption 1, we have (4.7.21) and (4.7.22), which leads to

= )% > = XI8%)(w] - Wj)TXi,\j‘

1=1

1 n
i v |
= )(Wj =) =D X
=1

‘_ ml

1 n

0 -

< lwj = Wil = > Xieilloo
=1

log p log p

= Op(an)Op( ) = Oplan

n n

).

In order to have ’% Y1 Ryin| = op(n_l/Q) we need to have a, = o(1/+/logp), which is

true according to (2) in Assumption 1.

For Ry; o, we have

1 . .
- ;0@ —WTX;)XT (80 - B

1 n
— Z Rpio| =
n 4

=1

1 & . 1 & X .
= o Znin{\j(ﬁ{)j - ﬁ\j) + n Z(Wg - Wj)T z’,\jXZ\j(ﬁ(\)j - B\j)’

| /\
3

Lm0, )| [0 XX )

IN

‘ﬁ ;WXZT,\J'HOOH[’% -8y,
+ J %é{(“’? - Wj)TXi,\j}Q\l %é{xl\j(lggj - B\j)}2

=0p(\/1og p/n)Oy(s\/log p/n) + Op(1/s10g p/n)Op(~/bn)
=Op(slogp/n+ /bypslogp/n).
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In order to have %Z?:l Rpio| = op(n_l/Q) we need to have slogp/y/n = o(1) and b, =
o(1/4/n). Thus with (3) and (5) in Assumption 1, we have verified the first half condition
in (C2), 101 Ry = op(n1/2).

Now for the second half of the condition in (C2),

] = - XT80YwW0 - WX\ | = 0 WX, \ e
e |Rojp| = max [(V; = X80 (wj —W;)TX; ;| = max [(w) —w;)TX; e

IN

w5 = Willy max 1K seillo = 1w =%l masx max | Xipeil.

Now since X; and ¢; are all sub-Gaussian and then we have X;.¢; sub-exponential, and

then by the union bound, we have

e e —Cot
P( 121%}(” 11;12;{}) |XZ]€€Z’ >t) < 1<Zz<n1<zk<pP(|szez‘ >t) < pnCie :

By taking t = log(pn)/C with C' < Cs, we have max)<j<;, maxj<j<, | Xikei| = Op(log(pn)).

Hence we have

0 ~
(20, ni ] = w3 = iy pma o [Xikei] = Oplan og(pr))

In order to make maxj<;<y |Rpi 1| = op(nl/g), we need ay, log(pn)//n = o(1), which is true

under assumption (2) for a, in Assumption 1 since ap log(pn)/+/n = o(log(pn)/+/nlogp) =

o(y/logp/n) = o(1).
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ol = o wiIx., \XT 0 _ 3 .
Note that 1réliagxn |Rpiol = 1réllagxn (X W XZ,\])Xi,\j (/3\3 /3\])|

. )
< joax |(Xij —wi X\ )X (8 = By

0w \TX.. . XT 0 _ 3 .

+1I£%Xn|(wj W]) Xz,\in’\j(g\j B\])|
O —_— 3 . .. .

< 118y; = Byl max. @ggplijml

0 0 A )2
v = W) 80 = Byl (max max X))

Now since 7;;’s and X; are all sub-Gaussian, and then by similar analysis as above we have

max | R = Op(sv/log p/n)Op(log(pn)) + Op(ans+/logp/n)Op(log(pn))
= Op(sy/logp/nlog(pn)).

In order to make maxj<;<y, [Ry;2| = op(nl/Q), we need
sy/log plog(pn)/n = op(1),

which is true under assumption (5) in Assumption 1 since sv/log plog(pn)/n = o(y/logp/n) =

o(1). Thus we have maxj<;<p |Rpi| = op(n1/2), which verifies the second half in the condi-
tion (C2).

Now we need to check out condition (C0). From the above analysis, we have maxj<;<y, |Rp;| =
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op(maxi<j<p |Wy;|). Thus we only need to prove that

P( min W,; <0< max Wy;) — 1,
1<i<n 1<i<n

which just follows from the Gilvenko-Gantelli theorem over half-spaces as in page 219 in

[Owe01]. 0

Proof of Theorem 7. Notice that

n

1 — IR 0.0 _ %
EZRni,l = Z 7]1 Y1) + nZEinTﬁ (vj1 — 1)
i=1

z =1

1 -
+5262 @\3(7]\1 Yi\)-

1=

By condition (2) in Assumption 2 and (4.7.23) implied from condition (4) in Assumption 2,

‘— GzXTﬁ (5 — 731)’2‘(7?1—ﬁj1)"%i61 = Op(an loip),
i=
and
" X105 = %0 < g =l H—Z Koyl = Onteny/ 2D

Thus we have

1 — 1< )

=" Ruia = = >0 0% = A1) + Oplany/log /) = Oplany/1/n).

i=1 i=1

134



So in order to have 1 Sy Rpi1 = op(n n~1/2) we need a, = op(1). Note that
0 _ 4 TR0.0 4
max |Rpi] < max (71 = A1)l +1r£g§xnleiXiﬁ (vj1 — Y1)l

0 N
+ max ;X ,L\j(vj,\l =i\

0 A 0 ~
=1 — A1l max 5 |+ oax |61XTB I} + ||7j7\1 — Yl 1r£;t§xn||6ixi,\jl|oo

_1~0 A 2 ~xT30 0 2
=1 — Al max. €7 ] + max. X871} + v — Yjalh oA max |€: Xij]-

And by the assumption that X; and ¢; are sub-Gaussian, we have XZ.TBO is sub-Gaussian

and e%, eiXZ-T BY and X;j€; are all sub-exponential. Then we have

2 2 —Cot
P(lrél%xnk“ >t) <nP(lef| > t) <nCre” 2

which implies that max;<;<j, |el2| = Op(logn). Thus we have maxq<;<y, |Ry; 1| = Op(anlog(pn)).
In order to achieve maxj<;<y [Rp; 1| = op(nl/z), we need ap log(pn)/+/n = o(1), which is

true since a, = o(1/+/logp).

For Rpio = 1ij,X] (8% — B) = m'j,y{Xij(ﬁ]Q —Bj) + Xl\j(ﬁ(\)j — B\j)}
= Niyj, y{ Yz’XZ \]) + Mg, y](ﬁo B )+ Z\](ﬁ\] B\])}

= 15 (87 = B7) + iy (Vi XT\ )5 (87 = B7) + gy XT 5 (BY; = B ).
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similarly as Ry; 1, by condition (1) and (4.7.24), (4.7.25), we have

1 & 1 & .
- D Ryio= - > 07y (B) = Bj) + Op(s\/log p/n/log p/n)
=1 =1
1 & .
=~ > (8] = Bj) + Op(slogp/n)
i=1

(s\/logp/n\/1/n) + Op(slogp/n) = Op(s\/logp/n).

So in order to have %Z?:l Ryio = op(n_l/Q), we need to have sy/logp/n = op(n_1/2)7 ie

sy/logp/n = op(1). Note that

U T 0020 A
112a<x |RTLZ 2| < 1maX ’77@] y(ﬁ Bj)‘ + maX |T]ij(Y XZ \])Pyj (6] _Bj)|

+ max [n;;,,X Z\j(ﬁgj —B\j)y = Op(sv/log p/nlog(pn)) = op(v/n)

1<i<n

since sy/log p/nlog(pn)/+/n = o(y/logp/n) = o(1).
Now for Ry; 3 = X1 (8" — B){(v;, XT \j)( —4)} = (8% - B)TX;(v;, XT W 7 —4;),

we have by (3) in Assumption 2

\—szg _ )gz BTXi(Y: XT, )(r) — )
=1
< J %Zw&o - ,éwxz-PJ %Z[(Y XT ) =4
1=1 i=1

= Op(V/s10g p/n)Op(v/bn) = Op(v/byslogp/n).

SO in order to have %Zgl:]_ R?’Ll,3 = OP(TL_I/Q), we need to have /bns logp/n — OP(n_l/Q),
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i.e. v/bpslogp = op(1). And we also have

-
Joax | R 3| <18 — Bl - Fillt ax max X1 ( max Yl + max max | Xij1)

= Op(s\/log p/nay log(pn)) = op(n'/?).

Now we need to check out condition (C0). From the above analysis, we have maxj<;<j, |Rp;| =

op(maxj<j<p |[Wy;|). Thus we only need to prove that

P( min W,; <0< max W,,;) — 1
(1<z<n ni 1<i<n ni) = 1.

which just follows from the Gilvenko-Gantelli theorem over half-spaces as in page 219 in

[Owe01]. O

Proof of Theorem 8. Recall that

1 n
% Z Rm’ = Rln + RQn + R3n + R4n
=1
where
n
-1 -1
Rin = Z zS XSXS XS":{XZJ SZSSXiS}v
1 T T 1T T T
Ron = —= > {ei — X[o(XEXs) ' XEeH{ D)5 D55 Xis — X Xs(XEXs) ™ Xys ),
1 _ _ .
Rgpn = —= Z {Xij - EJ'SZ&%XiS}{XZTS* - XZ'TS(X}XS) 1X‘T3X3*}[Bg* — Bgx],
1 n
Rin = —= Y {ZjsT5sXis — XIXs(XEXs) ' Xis )
1 A
x {X T = XTg(XFXs) ' XX 5 } [Bgr — Bsw-
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Now for Ry, we have

L -1 T (xTx\~-1xT
Rip = _%Z {Xij — 2585 Xis | X (XTX5) "' XTe
=1

n
— {3 (X - ZisEskXus X H{ viateExs) 'xGe).
1=1

Now we need to bound the two terms % S {Xij_EjSEEéXiS}XiS and \/ﬁ(XgXS)_lxge.
In fact, for every k € §, we have that the two Gaussian random variables X;; —33; ngéxi S

and X have the following properties:

1
E(Xi) = BE(Xjj — Xjs¥55Xis) = 0;
2 g 2 1
E(X;) = op, E[(XGj — 2j5355Xis)"] = 055 — EjsX55¥sy;
Cov(Xik, Xij — BjsBgsXis) = E[Xip(Xij — 85855Xis)] = 0 — Bjs S5 Ssk

-1
= Ukj — Ejgzsszggek = O‘kj — Ejgek = Ukj — Ujk =0.

Thus we have

Xik

ok ’ ) . (4.7.35)

~N (0,
Xij — Bjs855Xis 0 0jj — BjsE5sTs;

Under (1) in Assumption 3, by Lemma A.3 from [BLO8|, we have there exists constants

C,Cq,Cy > 0 such that

n
P{% > X - BjsB5§Xis} Xij| >t} < Crexp(—Cant?), for 0 <t < C.
=1
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By union inequality, we then have

P{ siax ||— Z {Xij — 25855 Xis }Xis|| o, =t} < Crmp™ exp(—Cont?),

for 0 <t < C, where |[{S C{1,2,,---,p}:|S| <m}| <p™.

For mp™ eXp(—CQTLt2) = exp(—C’gnt2 + mlogp + logm), take

1 1 1
2

and then we have

1 _
max || {Xij — 2jsT55Xis}Xis |, = Op(v/mlogp/n).

S:|SI<m 1

Now in order to control ﬁ(X}XS)_IXge, first notice that by the following matrix

equality [HS81]

(XIXg/n) ™! = {Zss + (XIXg/n — Sgs)}

B ) (4.7.36)
:ZSé SS{I+ X XS/TL—ZSS 53} XTXS/H—ESS)ESS,

As
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we have

IVn(XEXs) ' XGellr = [|(X5Xs/n) "' XEe/Vnlly
< |255X5e/Vall + [ AsXGe/ vl
< VIS[I1=55X5e/Vnll2 + V18]l AsXEe/vnll2
< VISlIEgsXGe/Vallz + VISIIAs 2l XEe/ vVl

One of the most important results in matrix analysis is the Cauchy (eigenvalue) inter-
lacing theorem. It asserts that the eigenvalues of any principal submatrix of a symmetric
matrix interlace those of the symmetric matrix. For example, if an n X n symmetric matrix

S can be partitioned as

A B
S = ,
BT C
in which A is an r X r principle submatrix, then for each ¢ € 1,2,--- ,r, we have

Ai(S) < Ni(A) < Ay gi(S).

In particular, we have Apin(2) < Apin(Bss) and Amax(X) > Amax(Xss). Thus by the

definition of maximum eigenvalue, we have

1 -1
IZ5sX5e/vVnll2 < App, IX5e/v/nlla.
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So

IVr(xEXs) ™ Xell < VISIA,IXEe/Vallz + VST Asllz2 XS e/ vl
= VISI{Amin + | Asl2}XGe/Val.

Now we have to control ||Xge/\/ﬁ||2 and ||Ag|lo. In order to control the first one, by the

sub-Gaussian tailed condition (2) in Assumption 3,

P(_max [[XZe/v/nlla > tv/n) < P(_max maX|—Zng€z|>t/\/_)

S:|S|<m S|S|<m jeS§ 'n

< p"mexp(—Cnt*/m),

followed from the Bernstein inequality for ¢ small. For p™m exp(—Cnt2/m) = exp(mlogp+

logm — Cnt®/m), take t = \/m mlogp—&—log;n—i—Cl logp vVm?logp/n. Then we have the

following order

XT =0 1
ST IX§e/Vnlla = Op(m+/logp).

Now for |Agll2 with Ag = Sce{I+ (XIXg/n — Sss) 288} (XIXs/n — Xss)Egs
we have to control Xng/n — X gg first. Note that
P( sup ||XEX5/n —X¥sslle > e) < P< sup maX|XTXk/n — ol > e/m)
S:|S|<m S:|S|<m Ik

§m2me<|XjT-Xk/n —ojil = e/m> < Oym2p™ exp(—Coyne? /m?)

where the last inequality is also followed from Lemma A.3 in [BL0O8| with constants C, Cy >

m log p+-2log m+C1 log
Con

0. For m?p™ exp(—Cone?/m?) = exp(2log m+m log p—Cone® /m?), by taking € = m\/
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vm3logp/n, we have

sup || XEXs/n — Bssll2 = Op(y/m3logp/n).

S:|S|<m

It follows then

-1 —1
[Asl2 = 1E5g{I+ (X;Xs/n — Bss) 55} (XIXs/n — Bss)Egsll2

_ _ —1
< |Z5LIBIT+ (XEXs/n — Bs55)S5a ) 2l XIXs/n — Essll2

= Op(y/m3logp/n),

' _ 1/2
since HZSéHQ = /\n{ax(285> <AL 1111

Thus we have

IVn(XEXs) " XGel < VISHAmin + 1As]12}1XEe/vall2

= Op(y/m?logp/n),

ie. supg.(sj<m [VR(XEXs) ' XEell1 = Op(v/m3logp/n).

In summary, we then have

n
(X - s T8 Xis X]s H{ va(xEXs) X e

=1

1 ~1
S _Sup H_ > X — ZjsZssXis X
S |S\<m n i=1

=0p(v/mlogp/n)Op(1/m3logp/n) = Op(m2 logp/n).

S|

sup ‘{
S:|S|<m

:S

‘ sup "\/E(XEXS>_1XT9€
X 8:|S|<m 1

And hence Ry, = op(1).
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For Ry, we have

R%_IZ{Q To(XIXg) XL} {25555 Xis - XTXs(XFXs)~ IX;s}

n

= {ZjsT55 — X[ Xs(XEXs)™ Z X;s€6i — XisXIg(XIXg) "' XLe}

n

n
= {2555k — XTXs(X;Xs)™ Z is€i — {EZXiSXZTS}\/H(XgXS)*Xge}
=1

f—’H

= {85855 - XIXs(X5Xs) X;g6; — Xge/\/ﬁ} —0.

%T
1 M: I

Observe that we can rewrite Rs,, as

1 o ~1 -1 0 3
Bgn =7 > X — 2jsBgsXis H{X g — X[(XTXs) T XX g }[Bgx — Bo]
=1

1 . A
==X {1 - Xs(XXs) ™ XE} X+ 83+ — Bs]
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where L XTIT — Xo(XTX 1XT Xex can be controlled as follows
Vi SIASAS S

1 1
o xT _ T —1IwT T _
|1 = X5 (K5Xs) ™ KE K geloe = s | X {1

T -1 T —1
Sﬁ}f&%’i {\ijk/n — k| + ok — BjsEgsSsk| + | [X]Xs/n — Bjs| S5 s Ssk|

—1
XS(X}XS XT }Xk|

+ |85 855[XEXy /n — Bep]] + | ZjsAsSsy]
+ |25 As[X5Xy/n — Bg]| + | [X]Xs/n — ¥;5] 855 XEX,/n — S|
+ |[XIXs/n — 5] AsTsk| + |[X]Xs/n - 2] As[XEXp/n — S| |
<Vl max {IXIXk/n = o] + |oji = s 5 Tar| + X[ Xs/n = Zjslloov/ IS\ Amas
VIS A IXE X /m = Selloc + Nax | Asl2

+ VI8 Amaxl| As [2IX§Xg /1 — Bk lloo + [IX[ X /n — ¥ sl IXEX /1 — Sl

+VIS[IX]Xs/n — Zjsllool| Asll2dmax + [X]Xs/n — Zjs 2] As 2] X§Xg /n — 2$k||2}-
And we have that

1
P( sup max | — —XIX 26)
s max o — - XXy

1
< m+1P<| ik — —X Xk| > e) < C1p"™ L exp(—Cane?)

where the last inequality is also followed from Lemma A.3 in [BLO8] with constants C7,Cy >

(m+1)log p+C1 logp N
Con

0. For pm+l exp(—C’Qnez) = exp((m+1) log p—Cone?), by taking e = \/

v/mlogp/n, we have

1
sup  max |ojy, — EX;XH = Op(v/mlogp/n).

S:|S|<m kES*
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Similarly, we have

1
sup ||Ej$ - EX}XSHOO = Op(y/mlogp/n)

S:|S|<m
sup  max [|XgXy/n — Bgglloo = Op(yv/mlogp/n)
S:|S|<m k€S

By supg:|s|<m |Agll2 = Op(y/m3logp/n), we have
1 -1
sup || —=XI{T — Xs(X§Xs) X5} Xs oo
S:|S|<m V17 S S

<y/n sup max {’X}Xk/n — Ujk‘ + ’Ujk - EjSEEéESk
S:|S|<m keS*

+ HX}XS/H = 35lloov ’S‘)\r_niln)\max

+/]SIA-L

min

)\maXHXE‘Xk/n - z]SkHOO + A%naXHASHQ

+ VIS Amax | As [2IXEXE /1 — Bsglloo + VIS[IIX[Xs/n — Zjslloo ]| Asll2Amax
1
+[X]Xs/n = EjsllaA i IXEXy/n — Ssill2

+ IX]Xs/n — Sjsllall Asll2IXEXx/n — Sz |

=y/n sup max |ij - Ej32§é23k| + Op{v/ny/m3log p/n},
S:|S|<m kES™

since y/m3logp/n = o(1). Under condition (4) and (5) in Assumption 3, we have that
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R?m - Op(l)-

1 & B ~
Note that fiay = == > A{ZsEssXis — X[ Xs(XEXs) Xis }
=1
X {X;,!-S* - XZ'TS(XTSXSYIXE‘XS*}[B‘%* - Bs*]
1 & ~ .
- % Z {EjSESéXiSng*}[ﬁg* — ,88*]
=1
- Ejgzgé(XgXS*/\/ﬁ) [Bg* - Bs*]
1 & B )
- ﬁ Z {X}X8<XE‘X8) 1XiSXg8*}[,Bg** — ,68*]
=1
+ {XIXs(XEXs) T X X g+ /v } B+ — Bsx] = 0.

Thus we have verified that %2?21 R, = op(nfl/ 2).

And for Ry; 1, we have

R 1l = [[(XTXc) 1xT X — oMol X o 1XT
121;’%”’ m,1| ( S ) 5€||11T£%Xn||{ ij jS&SS ZS} zSHoo

1 1
= |(X§Xs) ™ XGel . max {Xij — ZjsEgsXis | Xik|

where supg.|s|<m ||(X:£-XS)_1XE.6H1 = Op(v/m3logp/n). And since X;; — EjSEEéXiS
is Gaussian under the assumption that X is Gaussian, we have {Xij - EjSEEéXiS}Xik

sub-exponential. So
. yoly : m
P( sup max max |{X;; — Z]SESSXZS}X’L]C‘ > t> < p"'mmC1 exp(—Cat)

S:|S|<m 1<i<n keS8

which leads to supg.|s|<y, Maxi<j<p MaxXges }{Xl-j — EjSEEéXiS}XiH = Op(mlogp).
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Thus we have

sup  max |Ry;1| = Op(mlogpy/m3logp/n) = op(n'/?)
§18l<m =11

since (mlogp/n)\/m3logp/n = o(1).

And for Ry; 9, we have

, o3l T T -1 o — X.oXT T —1xT
11%1262(” |Rm,2’ < ”E]SESS Xj XS(XSX$> [ 1I£za§Xn [ Xise€i XZSXZ'S(XSXS) X‘5"5||C>O7

where

1 1 11 1
1Zjs25s — X[ Xs(XEXs) 1 = [1Zjs85s —n X[ Xs(X5Xs/n) [
11 1
:szsz&g_” X}XS(ESS_AS)Hl
-1 —1 -1
<[[(Zjs —n" X[Xg)Eggll + In” X[ XsAgll

<I(Zjs — n_IX]T-Xs)EE(%Hl + H(n_lij-Xs —Xis)Asll + [[ZsAs]1-

And by simple algebra, we have

sup  |[(Xjs — n_IX}XS)Egéﬂl = Op(y/m3logp/n),

S:|S|<m

sup ||(n_1X]T-X$ — 3,5)Agll1 = Op(m?logp/n),

S:|S|<m
sup  [|2j5Asll1 = Op(m?/logp/n).
S:|S|<m
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Now for
e X T (T oy~ IxeT
1réliagxn IIX;s€i XZSXiS(XSXS) XSEHOO

NG . T T —1IxT
= lréliaﬁxn HXZSEZ”OO + fél%xn HXZSXz'S(XSXS) X56“00

ol T —1IxT XT
< 1?@.32(” [Xis€illoo + ||(XSXS) XSGHOO lfélfgn ||XZSX¢3HOO,

since X;1.€; is sub-exponential, we have
P( su max || X;g€; >t> :P< su max max |X;r€; >t>
S:|S|I;m 1§i§n|| iS ZHOO S:\Sém 195 e | ik z|

< pMmnCye 2t

which leads to supg.|sj<,, maxi<i<n [[X;s€illoo = Op(mlogp). And since Xy X; is sub-
exponential, we have
P( su max || X;sX] >t) <P< su max /m max | X;;X; >t>
5;|32m1§iSnH isXjslloc < 3;|5\2m19§”\/ k:,leS‘ ik Xl

< pmeTlCleiCQt

which leads to supg.|s|<y, maxi<i<n HXiSXZTSHOO = Op(y/mm]logp).

Since supg.|s|<m ||(XLXS)_1Xge||1 = Op(v/m3logp/n), we have

su max || X;s6; — X;s X o(XIXs) X e
S;|5|2m1§,-§n” is€i — XisX;s(XsXs) " Xgello

=0p(mlogp + v/mmlogp\/m3logp/n) = Op(mlogp(1 + m2\/logp/n)).
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In summary,

sup  max Ry ol = Op{m® log py/log p/n(1 +m2y/log p/n)},

SﬂStgnllgiSn

since logp/n — 0. In order to have SUD S| §|<m MaX] <j<p |Rpiol = op(n1/2), we need

to have m3(logp/\/ﬁ)\/logp/n = o(1), which is true under (4) in Assumption 3 since

m?3(log p//n)\/log p/n = \/m3log p/n+/(log p)>m3 /n = o(1).

Observe that Rpis| < [|B% —
serve tha 1Iélzagxn| i3l < IBgx — Bs*ll

x max 1{X5 — 25856 Xis HX T — XTo(XTXs) T XX g Hloo-

Since

-1 -1 -1
|’X,T3<XLXS) X‘TSXS* oo < ;?é%}i {|X2323328k’ + ’XZ*TSZSAX‘TQXk/n — Xsi)|

+ [XTcAsEsr] + XTgAS(XTXy /n — B},

(4.7.37)

we have

Jmax | {Xij — 2js855XKis HXTw — XTg(XIX ) ' XX g Hloc

< max max [{X:: — 3. eDoiX VX0 |+ max max [{ X — 3 e0oiX . IXT . 2ly
_1§ignkes*|{ ij — Bjs Vs Xis } Xixl 1Si§nk68*’{ i~ BjsEssXis 1 X[ s ¥ g5 Bsk]

Xji— 00l Xio L X |2 (XIX, /n — 2
+ max max max | {Xy; - Bjs s Xis} Xl [Sgs(X5Xx/n = Bl

Xij— 25855 Xis X Aglla=
+ max max max |{Xy; — 255 Xis } XalvVm| Asll2l|Zsxll2

X =2 Nl X A X AXIX, /n — 5 .
+1r£g§xnl§é%§rln€6g<!{ ij — 2jsEgsXis Xl As(X§Xp/n — Bsp)h

149



Now since

s —Cyt
P( sup - max max [{Xj - 25855 Xis } X, >t> < p"HnCre 02,
S:|S|§m1§i§nkes*|{ 4 JSESS %S} ik|

we have

su max max |{X;; — :¢XctX,s  X;1| = O mlogp).
S:Sémlﬁiénkes*’{ L JS=SS 23} ik] p( )

Similarly, we have
su max max |[{X;: — X eXaiX e 1 XT .23l = Op(mlogp),
S:|82m1§i§nk68*|{ 4 JS=S8S zS} iS5 555 Sk] o( )

sup  max max |[{X;; — £;s8ccX;s} Xy = Op(mlogp).
S:|S\2m1§i§n leS|{ & IS=S8S 18} ill o ( gp)

And then by simple algebra, we have

sup max [[(Zrs — n—lxgxg)zgg||1 = Op(y/ m3logp/n),

S:|S|<m keS*

sup  max [|(n” X[ Xg — Bps)Agll1 = Op(m®logp/n).
S:|S|<m keS

Thus we have

X — oDl WIXT . — XT(XTXe) IXIX
S:Eéllzmlgz‘agxnu{ ij isZssXis iS* 15 (X5Xs) ™ X§Ksx }loo

150



which leads to

sup  max |Rp; 3| = Op(sy/logp/nmlogp(1+ 1/ m3logp/n + m?logp/n)).

S:\S|§m1§i§n

In order to have supg.|s|<y, maxj<i<n |Rpi 3l = op(nl/Q), we need

sy/log p/n(mlog p/v/n)(1 +\/m3logp/n +m*logp/n) = o(1),

which is true under (4) in Assumption 3.

And f R =18% — 3
nd lor 1r£za§Xn’ m,4| Hﬁg* BS*Hl

X max {Z)sT55 — X Xs(XEXs) ™} Xis { X]gw — X[o(XEXs) T XEX g }oo-

And for

~1 -1 -1
[ax | {Ejszss - X]T.XS/n(ESS - AS)}XiS{XZ-TS* - XZTS(XLXS) XEXS*}‘|w

+ max [|(X]Xs/n = Bjs) AsXKis {X]gr - X]5(XEXs) 7 XX }loo

+max 125 AsXis{X]ge — X[g(XEXs) ™ XEX g Hloo,
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by (4.7.37), we have

-1 -1
max [[(Bjs = X[Xs/n)EgsXis {Xjge — Xig(X5Xs) T X§Xge oo

= s — XTXg/n) S ekl |XX;
_121?§n]£2%§r?€a§(||( JSs j s/n) S$||1| Xkl

Yis — XIXs/m)Ese1 X3 Ese D
+1??§nﬁ%§%6}§4”( is = X Xs/n) B g5l Xl EssEskll

o XT -1 2 —1/~T o
+1??§nlgé%§r?£§<”(zjs XjXS/n)ESSH1Xzz||233(X$Xk:/n Ysi)llh

s — XIXg/n) Yokl X2|AgE
+1I£?§n;?é?g}irzn€a§<”( is — X;Xs/n)Ygslh Xl AsZsklh

Yoo — XTXe/mEL I X2 A XEX, /n— 3
 oax max max [|(s - XjXs/n)Bgs 1 X1 As (XsXy/n — Zsp)lh

= Op(m3log py/logp/n),

under the condition that m? log p/n — 0. Similarly we have

XTXe/n—3:)AX, o {XT . — XT (XTXo) IXTxX
s e IOGKs/n = s) AsXis {(Xis. = Xs(K5xs) X5 K o

= O0p{m"/?(logp)?/n}

SocAX IXT - XT(XTX) IXTX
G ma [958 Xis (X[ XI5(5%s) ™ K Kge o

= Op{m"/?1og py/log p/n}

if m3logp/n — 0. In summary, if m?3logp/n — 0,

sup  max |Ry;a| = Op{sm™?(logp)?/n}.
S:|S|<m I<i<n
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Thus in order to have supg.|s|<,, Maxi<i<n |Rpi 4l = op(nl/Q), we need

m/2(log p)* /n®/? = o(1),

(logp)dmT _

which is true under the condition (4) in Assumption 3 since sm7/2(log p)2/n®/% = s
n

2,3
s\/ MmQ logp/n = o(1).
From the above analysis, we have maxj<j<y, |Rp;i| = op(maxj<;<y |Wpy;|). Thus we only
need to prove that

P( min W,; <0< max W,,;) — 1
(1<’L<TL e 1<i<n nz) ’

which just follows from the Gilvenko-Gantelli theorem over half-spaces as in page 219 in

[Owe01]. 0

For the proof of the three propositions, they are just followed from the proof of the

corresponding theorems. We here just prove the Proposition 2.

(kfc-de)

Proof of Proposition 6. In order to get the asymptotic normality of ﬁ , we have to deal

with 1 37 | X2 Now since

(ISP R _ 2
- Z;XZQJ = zi} {Xij — XIXs(XEXs) " Xy}
1= 1=

1 1 ~ 1
_ 5X]T.Xj - EXJTXS(X}XS) IXTX; = EX]T{I — Xs(XTXs)IXL1X;,
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we have

1~ o 1
=D X5 = ()5 — ZjsZgsZs))|
=1

1 1 -1 —1

:yﬁx}xj — EX]T.XS(X‘TSXS/n) XIX;/n—(0j; — ZjsT5s2s;)]
-1

g{ XTX; /n — 0] + 21X X g /n — oo v/ [STA i Amax

+ Mmaxll As 2 + 2v/[Smaxl| As 21 XEX; /n — Sgjlloc

-1 2 2
A IXEX; /n = B3 + | Asl2XEX; /n — B3 }-

min

And since
1
P< sup oy — =X0X| > e)
S:|S|<m n
1
éme<!0jj - EXJT-le > 6) < C1p" exp(—Cone?)
we have
1
sup  |ojj — —X]T.Xﬂ = Op(v/mlogp/n).
S:|S|<m n

Now for the term |35 — %X]T.XSHOO, we have proved above that

1 _
sup H(Ejg — EXJT.XS)ES;,HOO = Op(v/mlogp/n).

S:|SI<m
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By SUPS:|S|<m [Asll2 = Op(\/ m3 logp/n), we have
s |- i~ ZisE55Zs))]
S:|S|<m ™ ; J J

< sup 1[XIX;/n - o] + 21X X s /n — Bjslloov/ISI A, Amax
S:S|<m & 7 J

+ Nl Aslls + 2/ max | As 12 [XEX;/n — Bsjloc
2
F A IXEX/n = Sg113 + 1A 5 ]12IXEX /n — Ss;113}

= sup {Op(\/mlogp/n)+Op(\/mlogp/n)\/|8)\m}n)\max

S:|S|<m

+ /\?naXOp(\/m?’ logp/n) + \/E)\max()p(\/m?’ logp/n)Op(v/mlogp/n)
+ 1S10p(v/mIog p/n)2 Ak, + 1S10p(v/mlog p/m)*0p(y/m3 log p/m) |

=0p{y/m3logp/n}.

Thus we have

n

1 ~ _
sup ‘— ZXEJ (0jj — EjSE&%ESj)‘ = Op{ m3logp/n} = op(1). (4.7.38)

Hence we have the following asymptotic normality by Slutsky’s theorem

(kfc)
f ZZ 1 ni

1
n Z’L:]. Xz]

(50)

V(A — g9y = % N0, o),

: -1 -1 —1 -
where 02;, = limp 00 (0j; — 28,55 580 5 + 25855055556 25;)/(0j; — ZisEsaXs;)-

[]
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Chapter 5

Conclusions and Future Directions

In this chapter, we aim to reiterate the main contributions of this thesis, and to outline some
of the things that could possibly follow as future developments on the results presented here.
In Section 5.1, we start with the summary of the main ideas in the thesis, especially from

Chapters 2, 3 and 4. Section 5.2 layouts some natural extensions of the ideas in this thesis.

5.1 Summary and Contributions

In Chapter 2 and 3, we proposed EL based procedures to make pointwise and simultaneous
inferences on functional linear models, treating sparse and dense functional data in a unified
framework. We showed that EL is a nice tool to accomplish this goal. We studied the
asymptotic distributions of the EL based test statistics under the null and local alternative
hypotheses for both sparse and dense functional data. We established the transition phase in
7, the order of repeated measurements, for pointwise and simultaneous tests. The transition
point 7y was shown to be 1/8 for the pointwise test and 1/16 for the simultaneous test. If
n < ng, we showed that the proposed method is able to detect alternatives of size b} =
n~41+M/9 for the pointwise test and of order by, = n~8+M/17 for the simultancous test.
For dense functional data such that n > 7y, we found that the proposed tests are able to
detect alternatives of magnitude n~12 both pointwisely and simultaneously, which is the

same order of alternative a parametric test can detect. Moreover, we proposed a practical
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bandwidth selection method for functional data. Many bandwidth selection methods were
proposed for independent or weakly dependent data, but bandwidth selection for functional
data remained a challenging problem, see [ZPW13] for a recent study. Numerical experiments
in Chapter 2 showed that the proposed bandwidth selection method works well in practice.

In Chapter 4, we proposed a unified framework for high dimensional inference based on
the empirical likelihood which is constructed with estimating equations. It can be used to
test statistical hypothesis and construct confidence intervals, which have more natural data
driven shape. To broaden the applicability of the method, the general theory was presented
with the general conditions to be satisfied. In principal, all of the methods proposed in
the existing literature can be re-considered under our framework and make fair comparison
among them, although the technical details can be different case by case. Moreover, the
key advantage of our proposed likelihood ratio based method comparing with others such
as Wald type method and Score based method is that it can allow heteroscedastic error
noise. This is largely due to the nice self normalization property of the empirical likelihood
formulation. In particular, we did not assume independence between the error term and the
covariates, which is a common assumption in the existing literature, although we made the

uncorrelatedness assumption.

5.2 Future Directions

This thesis focused on applying empirical likelihood to solve some fundamental problems
in simple statistical models, especially linear models. Hence a natural direction for future
research is to generalize our methodologies to more complicated statistical models, such as

generalized linear models and survival models. For functional linear models in Chapter 2
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and 3, we gained the robustness in terms of the correlation structure of the error process.
But if we have prior knowledge of the error process, how to incorporate the error correlation
information into the estimation and inference procedures to increase the efficiency is a very
interesting topic for future investigation. We only considered one general type of hypothesis
in Chapter 2 and 3. There is another hypothesis problem, goodness of fit testing, which could
be another promising research problem. For the high dimensional linear model in Chapter
4, we only focused on one estimating equation. But when we have more than one estimating
equations, how to combine all of the estimating equations to make more efficient inference is
worthy of further investigation. In general, the self-normalization property of EL is powerful

and we should make use of it to solve some problems in various statistical analysis.
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