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ABSTRACT

EMPIRICAL LIKELIHOOD BASED FUNCTIONAL DATA ANALYSIS AND
HIGH DIMENSIONAL INFERENCE WITH APPLICATIONS TO BIOLOGY

By

Honglang Wang

High dimensional data analysis has been a rapidly developing topic in statistics with

various applications in areas such as genetics/genomics, neuroscience, finance, social sci-

ence and so on. With the rapid development of technology, statistics as a data science

requires more and more innovations in methodologies as well as breakthroughs in mathe-

matical frameworks. In high dimensional world, classical statistical methods designed for

fixed dimensional models are often doomed to fail. This thesis focuses on two types of high

dimensional data analysis. One is the study of typical “large p small n” problem in linear

regression with high dimensional covariates X ∈ Rp but small sample size n, and the other

is the functional data analysis. Functional data belong to the class of high dimensional data

in the sense that every data object consists of a large number of measurements, which may

be larger than the sample size. But the key characteristic is that functional objects can be

modeled as smooth curves or surfaces. We make use of Empirical Likelihood (EL) introduced

by [Owe01], to solve some fundamental problems in these two particular high dimensional

problems.

The first part of the thesis considers the problem of testing functional constraints in a

class of functional linear regression models where both the predictors and the response are

functional data measured at discrete time points. We propose test procedures based on

the empirical likelihood with bias-corrected estimating equations to conduct both pointwise

and simultaneous inference. The asymptotic distributions of the test statistics are derived



under the null and local alternative hypotheses, where sparse and dense functional data are

considered in a unified framework. We find a phase transition in the asymptotic distributions

and the orders of detectable alternatives from sparse to dense functional data. Specifically,

the proposed tests can detect alternatives of root-n order when the number of repeated

measurements per curve is of an order larger than nη0 with n being the number of curves.

The transition points η0 are different for pointwise and simultaneous tests and both are

smaller than the transition point in the estimation problem.

In the second part of the thesis, we consider hypothesis testing problems for a low-

dimensional coefficient vector in a high-dimensional linear model under heteroscedastic er-

ror. Heteroscedasticity is a commonly observed phenomenon in many applications including

finance and genomic studies. Several statistical inference procedures have been proposed for

low-dimensional coefficients in a high-dimensional linear model with homoscedastic noise.

However, those procedures designed for homoscedastic error are not applicable for mod-

els with heteroscedastic error and the heterscedasticity issue has not been investigated and

studied. We propose a inference procedure based on empirical likelihood to overcome the

heteroscedasticity issue. The proposed method is able to make valid inference under het-

eroscedasticity model even when the conditional variance of random error is a function of

the high-dimensional predictor. We apply our inference procedure to three recently proposed

estimating equations and establish the asymptotic distributions of the proposed methods.

For both of the two parts, simulation studies and real data analyses are conducted to

demonstrate the proposed methods.
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Chapter 1

Introduction

1.1 Empirical Likelihood

In Statistics, the likelihood principle is the primary principle as stated in [Edw84],

Within the framework of a statistical model, all the information which the data provide

concerning the relative merits of two hypotheses is contained in the likelihood ratio of

those hypotheses on the data. ...For a continuum of hypotheses, this principle asserts

that the likelihood function contains all the necessary information.

However, for the inference procedure to be more widely applicable, some non-parametric

version of the likelihood is desirable so that we can not only gain robustness and flexibility

but also keep the effectiveness as well as some other merits of the likelihood principle. In the

late eighties, Professor Art B. Owen proposed the great idea, “Empirical Likelihood” (EL)

[Owe88, Owe90], which is a non-parametric likelihood. The well known “Wilks Phenomenon”

belonging to the parametric likelihood still holds for EL [Owe90, Owe01]. EL also enjoys the

Bartlett correction property [DHR91, CC06]. Besides, it produces more natural data driven

shape of confidence regions.

We consider the univariate mean inference problem to introduce the EL idea. Given

n IID observations {Xi ∈ R, i = 1, 2, · · · , n} from an unknown underlying distribution F0

with finite first two moments, we want to conduct the inference for the univariate mean

µ0 := EF0
(Xi). A natural point estimation of µ0 is the sample mean X̄, but how to get

1



an efficient confidence interval with a given confidence level is not that simple since we have

no idea about the underlying distribution up to the first two finite moments. According

to [Owe90], the empirical likelihood for µ is the product of the probability weights, say

{0 ≤ pi ≤ 1, i = 1, 2, · · · , n}, sitting on the sample points {Xi, i = 1, 2, · · · , n}, that is∏n
i=1 pi, with the first moment constraint

∑n
i=1 piXi = µ, i.e.

LEL(µ) = max
{pi}ni=1

{
n∏
i=1

pi :
n∑
i=1

pi = 1, pi ≥ 0,
n∑
i=1

pi(Xi − µ) = 0

}
. (1.1.1)

Actually, we can derive the above formulation (1.1.1) in the following formal way. The

statistical model with the first moment restriction could be phrased formally as the set of all

probability measures that are compatible with the first moment condition, i.e. P =
⋃
µP(µ),

where

P(µ) =

{
probability measure P on R :

∫
(X − µ)dP = 0

}
.

Note that it is correctly specified if and only if P includes the true measure dF0(x) as its

member. The following function could be regarded as a measure for the divergence between

two probability measures P and Q:

D(P,Q) =

∫
φ(
dP

dQ
)dQ,

as long as φ is chosen to be convex. And we know that the Kullback-Leibler (KL) divergence

between probability measures P and Q is a special case by taking φ(x) = − log(x).

If the model is correctly specified, we have the following nice property at the population

level

µ0 = inf
µ

inf
P∈P(µ)

D(P, F0).

2



Hence a natural statistical procedure for the estimation of the mean can be obtained by

replacing the unknown F0 with the empirical measure Fn and searching over the restricted

statistical model P =
⋃
µP(µ), where

P(µ) =

{
Fp :=

n∑
i=1

piδXi :

∫
(X − µ)dFp = 0

}
.

And then the estimation of the mean is defined as the minimizer of the following optimization

problem

inf
µ

inf
Fp∈P(µ)

D(Fp, Fn) = inf
µ

inf∑n
i=1 pi(Xi−µ)=0,∑n
i=1 pi=1,pi≥0

1

n

n∑
i=1

φ(npi). (1.1.2)

In particular, with the KL divergence in (1.1.2), we have

inf
µ

inf∑n
i=1 pi(Xi−µ)=0,∑n
i=1 pi=1,pi≥0

1

n

n∑
i=1

− log(npi),

which naturally leads to the log empirical likelihood as defined in (1.1.1)

`EL(µ) := logLEL(µ) = max
{pi}ni=1

{
n∑
i=1

log pi :
n∑
i=1

pi = 1, pi ≥ 0,
n∑
i=1

pi(Xi − µ) = 0

}
.

Most importantly, [Owe90] proved the following Wilks property

−2`EL(µ0)− 2n log n
d→ χ2

1.

Based on this asymptotic result, we can not only perform hypothesis testing but also con-

struct confidence interval for the mean parameter with data driven shape.

3



An overview of the EL methods can be found in [Owe01] and [CVK09].

1.2 Big Data Analysis

In the age of information and technology, along with the advancement of technological rev-

olution, information acquisition is becoming easy and cheap, which leads to the explosion

of data collection through automated data collection processes. From various fields such

as biomedical sciences, engineering and social sciences, massive data characterized by high

dimensionality are popping up all the time. For example, with the rapid next generation

sequencing technology development, hundreds of thousands of genetic variants such as single

nucleotide polymorphisms (SNPs), are potential features in genome wide association studies

(GWAS). Time series with very dense time points can be collected from hundreds of thou-

sands of regions in economics, earth sciences, as well as neuroscience. In the Big Data era,

documents, images, videos and other objects can all be regarded as forms of massive data.

Statisticians have been also proposing new statistical methodologies to discover knowledge

from those big data. For example, from studying data points in the finite Euclidean spaces

to studying curves (i.e. functional data analysis), surfaces, even manifolds directly in infinite

dimensional spaces.

1.2.1 Functional Data Analysis

We consider the following general functional linear regression model,

Yi(tij) = β
ᵀ
0 (tij)Xi(tij) + εi(tij), i = 1, · · · , n; j = 1, · · · ,mi (1.2.3)

4



where Xi(t) ∼ {µ(t),Γ(s, t)}, tij ∼ f(t) and εi(t) ∼ {0,Ω(s, t)} are mutually independent.

For convenience, assume that with mi’s (1 ≤ i ≤ n) are all of the same order as m = nη

for some η ≥ 0. Data with η = 0, are called sparse functional data, i.e. longitudinal data;

those satisfying η ≥ η0, where η0 is a transition point to be specified, are referred as dense

functional data. The scenarios with η ∈ (0, η0) are in a grey zone in the literature and we

refer them as “moderately dense”.

Historically, sparse and dense functional data were analyzed with different methodologies.

For dense functional data, one can smooth each curve separately and proceed with further

estimation and inference based on the pre-smoothed curves. A partial list of recent literature

on dense functional data includes [CLS86], [RS91], [ZC07], [EH08] and [BHK+09]. For

sparse functional data, the pre-smoothing approach is not applicable and, instead, one needs

to pool all data together to borrow strength from individual curves [YMW05a, YMW05b].

[HMW06] investigated the theoretical properties of functional principal component analysis

based on local linear smoothers. They found that, for dense functional data with η ≥ 1/4,

the pre-smoothing errors are asymptotically negligible and quantities such as the mean,

covariance and eigenfunctions can be estimated with a parametric root-n rate, while these

quantities can only be estimated with a nonparametric convergence rate for sparse functional

data with η = 0. Since sparse and dense functional data are asymptotic concepts and

are hard to distinguish in reality, [LH10] proposed an estimation procedure treating all

types of functional data under a unified framework including the moderately dense cases.

More recently, [KZ13] proposed a unified, self-normalizing approach to construct pointwise

confidence intervals for the mean function of functional data. The aforementioned papers

established η0 = 1/4 as the transition point to parametric convergence rate.

In contrast to estimation, less is known about the inference for functional data, with a

5



few exceptions such as [ZC07] and [KZ13]. In Chapter 2 and 3 of the thesis, we propose

pointwise and simultaneous inference procedures for the functional linear model under a

unified framework for all types of functional data and investigating the phase transition

from sparse to dense data. We are not only the first one to propose an unified inference

procedure in the regression setup which can cover all types of functional data, but also the

first one to investigate the transition phase from sparse to dense functional data, for the

following very broad hypothesis testing problem

H0 : H{β0(t)} = 0 vs H1n : H{β0(t)} = bnd(t) (1.2.4)

where H(·) is any specified functional with some regular condition and bn is the detectable

order of local alternatives to be specified (Table 1.1). In Chapter 2 and 3, we not only

derive the asymptotic distributions under the null hypothesis and local alternatives, but also

propose a wild bootstrapping approach to unify the inference procedure in practice along

with a nice bandwidth selection method.

Table 1.1: Transition phase point from sparse to dense data and optimal de-
tectable order of local alternatives for both pointwise and simultaneous infer-
ence. Note that we lowered the transition phase point η0 which was 1/4 in the existing
literature.

Pointwise Inference η0 = 1/8 Simultaneous Inference η0 = 1/16
0 ≤ η < η0 η ≥ η0 0 ≤ η < η0 η ≥ η0

bn n−4(1+η)/9 n−1/2 n−8(1+η)/17 n−1/2

6



1.2.2 High Dimensional Data Analysis

Rapid progress has been made during the past decade in high dimensional statistics, es-

pecially in linear regression model as one of the classical models in statistical theory. The

vast majority of existing literature has been pursued for estimation under sparsity and ho-

moscedasticity based on regularization with different penalties, either convex or noncon-

vex. The most popular representative of convex penalties is the Lasso penalty [Tib96].

The theoretical properties of the Lasso estimator such as the oracle property, which refers

to consistently recovering the sparse pattern and estimating the parameters of the coeffi-

cient vector, and selection consistency have been investigated by [MY09, BRT09, BTW+07,

VdG08, Zha09, NRWY12] and [MB06, ZY06, Wai09]. The nonconvex representatives include

SCAD [FL01], MCP [Zha10], among others. A comprehensive overview of high dimensional

estimation for homoscedastic regression models can be found in [BVDG11].

Despite its prevalence in statistical data sets, heteroscedasticity has been largely ignored

in high dimensional statistics literature. [WWL12] analyzed the heteroscedasticity in high

dimensional case by using quantile regression. [DCL12] proposed a methodology that allows

nonconstant error variances for high dimensional estimation but with a parametric form of

the variance function. And recently, [BCW14] came up with a self-tuning
√

Lasso estimation

method that solved this important problem in high dimensional regression analysis.

Although people have made significant progress towards understanding the estimation

theory for high dimensional models, very little work has been done for constructing confidence

intervals, statistical testing and assigning uncertainty for penalized estimators in high dimen-

sional sparse models. In an early work, [KF00] showed that the limiting distribution of the

Lasso estimator is not normal even in the low dimensional setting. Recently, [GVHF11] and
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[CG14] considered global testing with high dimensional alternative. [MMB09] and [WR09]

considered p-values based on the sample splitting technique. Stability selection [MB10] and

its modification [SS13] provide another procedure to estimate error measures for false posi-

tive selections in general high dimensional settings. For the lasso estimator, [LTTT14] and

[TLTT14] considered an interesting conditional inference with random hypothesis, which is

philosophically different with the traditional unconditional inference.

In terms of testing the significance of one single regression coefficient, the classical z−test

(or t−test) is no longer applicable because the high dimensionality. People have been propos-

ing low-dimensional projection procedure to conduct hypothesis testing and construct con-

fidence regions [ZZ14, B+13, JM13, vdGBR13, LZL+13, NL14]. The way to select the

projection variables varies from method to method. Some of them use node-wise Lasso pro-

cedure to select the projection variables, and some of them use the so called Key conFounder

Controlling (KFC) method motivated by screening approaches [FL08].

However, all the above inference procedures assumed homoscedasticity for the error term,

in particular, the conditional variance of the error is a constant. This is essential for their

inference procedure to be valid since they require the accurate estimation of the error vari-

ance. Without homoscedasticity, it is hard for them to carry out the estimation of the error

variance in high dimensional settings. But this hardly holds in practice. There is rarely

good cause to have strong belief in the assumption that the errors are homoscedastic and

similarly there is rarely sufficient information to enable accurate specification of the variance

function. The use of incorrect variance models will, in general, lead to inferences that are

not asymptotically valid [Bel02]. [WD12] generalized the asymptotic results of [KF00] for

the case of a fixed parameter dimension under heteroscedasitic errors. But there is little

work in dealing with heteroscedasticity under growing dimension along with sample size. To
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bridge this gap, in Chapter 4 of this thesis, we propose to use Empirical Likelihood (EL) to

test statistical hypotheses and construct confidence regions for low dimensional components

in high dimensional liner models with heteroscedastic noise.
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Chapter 2

Unified pointwise empirical likelihood

ratio tests for functional linear models

and the phase transition from sparse

to dense functional data

2.1 Introduction

We consider statistical inference problems under a general functional linear regression model,

where both the response Y (t) and the covariate X(t) = {X(1)(t), . . . , X(p)(t)}ᵀ are defined

continuously on a time interval [a, b]. The relationship between Y (t) and X(t) is given by

Y (t) = β
ᵀ
0 (t)X(t) + ε(t), (2.1.1)

where β0(t) =
(
β10(t), · · · , βp0(t)

)ᵀ
is a p-dimensional vector of unknown functions and

ε(t) is a zero mean error process, independent of X and with a covariance function Ω(s, t) =

Cov{ε(s), ε(t)}. The model in (2.1.1) is also referred as the concurrent functional linear model

in [SR05], which includes the varying coefficient models and functional analysis of variance

(fANOVA) models [MC06, ZHM+10] as special cases. In many fANOVA applications, some
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components of X(t) are random indicators of treatment assignments with complicated cross

or nested structures, see [FZ00] for more discussions on the relationship and difference be-

tween model (2.1.1) and the varying coefficient models. Without loss of generality, we allow

X(t) to be a multivariate random process with mean function µ(t) = E{X(t)} and covariance

function Γ(s, t) = Cov{X(s),X(t)}.

Let {Yi(t),Xi(t)}, i = 1, . . . , n, be independent realizations of {Y (t),X(t)}. Instead of

observing the entire trajectories, one can only observe Yi(t) and Xi(t) on discrete time points

{tij , j = 1 . . . ,mi}. For convenience, denote Yij = Yi(tij) and X
(k)
ij = X

(k)
i (tij), and assume

that mi’s (1 ≤ i ≤ n) are all of the same order as m = nη for some η ≥ 0. That is mi/m are

bounded below and above by some constants. Functional data are considered to be sparse

or dense depending on the order of m [HMW06, LH10]. Data with bounded m, or η = 0,

are called sparse functional data; those satisfying η ≥ η0, where η0 is a transition point to

be specified below, are referred as dense functional data. The scenarios with η ∈ (0, η0) are

in a grey zone in the literature and we refer them as “moderately dense” in this chapter.

As we mentioned in Section 1.2.1, sparse and dense functional data were analyzed with

different methodologies. But sparse and dense functional data are asymptotic concepts and

are hard to distinguish in practice, [LH10] proposed an estimation procedure treating all

types of functional data under a unified framework including the moderately dense cases and

they found η0 = 1/4 is the transition point to parametric convergence rate in the estimation.

In contrast to estimation, less is known about the inference for functional data, with a few

exceptions such as [ZC07] and [KZ13]. The focus of the chapter is on proposing pointwise and

simultaneous inference procedures for the functional linear model in (2.1.1) under a unified

framework for all types of functional data and investigating the phase transition from sparse
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to dense data. We are interested in testing

H0 : H{β0(t)} = 0 vs H1 : H{β0(t)} 6= 0 (2.1.2)

where H{z} is a q-dimensional function of z = (z1, · · · , zp)ᵀ ∈ Rp such that C(z) :=
∂H(z)
∂zᵀ

is a q × p full rank matrix (q ≤ p) for all z.

The test problem in (2.1.2) is very broad, including many interesting hypotheses as special

cases. For instance, if H{z} = z, the null hypothesis is equivalent to H0 : βk0(·) = 0 for all k.

If H{z} = (z1−z2, z2−z3, · · · , zp−1−zp)ᵀ, then (2.1.2) is essentially an ANOVA hypothesis

for the coefficient functions βk0(·). If H{z} = Λz − c0 for a q × p known constant matrix

Λ and a known vector c0, then (2.1.2) becomes H0 : Λβ0(·) = c0, which is a test for linear

constraints on β0(·). Similar hypothesis testing problems have been studied by [ZC07] and

[Zha11]. However, their methods only apply to dense functional data with η > 5/4.

In this chapter, we propose nonparametric tests based on the empirical likelihood (EL) to

test (2.1.2) pointwisely. We show the EL-based tests enjoy a nice self-normalizing property

such that we can treat both sparse and dense functional data under a unified framework.

There have been some works on EL methods for sparse functional data with η = 0. Among

them, [XZ07] proposed an EL method for constructing pointwise confidence interval and

a Bonferroni type simultaneous confidence band for the mean function. [CZ10] studied an

EL-based method for testing ANOVA type hypotheses in partial linear models with missing

values.

To investigate the power of the tests, we consider the local alternatives

H1n : H{β0(t)} = bnd(t), (2.1.3)
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where bn is a sequence of numbers converging to 0 at a rate to be specified later and d(t) 6= 0 is

any q-dimensional function. For a given test, bn is the smallest order of the local alternatives

so that the test has a non-trivial power for any fixed non-zero d(·). Thus bn quantifies the

order of signals that a test can detect. For the sparse data with η = 0, it is known that the

EL method using a global bandwidth h [CZ10] can detect alternatives of order bn = (nh)−1/2

for pointwise tests. Since h→ 0 in a typical nonparametric regression setting, the detectable

order here is larger than n−1/2. However, for dense data with η > 0, the detectable order

bn is still largely unknown. One key interest in this chapter is to understand the effect of

η on bn in the pointwise test. The optimal bn is obtained by maximizing the power of the

test (i.e., minimizing the order of bn) while controlling the type I error at the desired level.

Under some mild conditions, we find that, for the pointwise test, the optimal rate bn is larger

than n−1/2 for η ≤ 1/8 and equals to n−1/2 for η > 1/8. The transition point 1/8 will be

refereed as η0 for the pointwise tests. Once η > η0, with a properly chosen bandwidth, the

proposed tests can detect a signal at a parametric rate.

The rest of the chapter is organized as follows. In Section 2.2, we present a bias-corrected

estimator and some preliminary results. We propose the unified pointwise EL test in Section

2.3 where we investigate the asymptotic distributions of the test statistic under both the

null and local alternatives, and the transition phases for bn. In Section 2.4, we address

implementation issues such as bandwidth selection and covariance estimation. Simulation

studies are presented in Section 2.5. All the technical details are relegated to the Section

2.6.
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2.2 A bias-corrected estimator and some preliminary

results

In this section, we will first introduce an initial local linear estimator β̂(t) [FG96] for β0(t)

and then introduce a bias-corrected estimator β̌(t) and some preliminary results.

2.2.1 A bias-corrected estimator

Let K(·) be a symmetric probability density function that we use as a kernel, h be a band-

width, and denote Kh(·) = K(·/h)/h. For any t in a neighborhood of t0, βk0(t) can be

approximated by

βk0(t) ≈ βk0(t0) +
∂βk0(t0)

∂t
(t− t0) := ak + bk(t− t0), k = 1, 2, · · · , p.

Denote ϑ = (a1, . . . , ap, hb1, . . . , hbp)
ᵀ and Dij(t) = (X

ᵀ
ij ,

tij−t
h X

ᵀ
ij)

ᵀ. Put

Yi = (Yi1, Yi2, . . . , Yimi)
ᵀ,Y = (Y

ᵀ
1 ,Y

ᵀ
2 , · · · ,Y

ᵀ
n)ᵀ,

Di(t) = (Di1(t),Di2(t), · · · ,Dimi
(t))ᵀ,D(t) = (D

ᵀ
1(t),D

ᵀ
2(t), · · · ,Dᵀ

n(t))ᵀ,

Wi(t) =
1

mi
diag{Kh(ti1 − t),Kh(ti2 − t), . . . , Kh(timi − t)},

and W(t) = diag(W1(t),W2(t), . . . ,Wn(t)).

An estimator for ϑ is obtained as

ϑ̂ = arg min
ϑ

[Y −D(t0)ϑ]ᵀW(t0)[Y −D(t0)ϑ], (2.2.4)

= [Dᵀ(t0)W(t0)D(t0)]−1Dᵀ(t0)W(t0)Y.
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Thus the local linear estimator for β0(t0) is

β̂(t0) =
(
Ip,0p

)
ϑ̂ =

(
Ip,0p

)
[Dᵀ(t0)W(t0)D(t0)]−1Dᵀ(t0)W(t0)Y, (2.2.5)

where Ip is a p × p identity matrix and 0p is a p × p zero matrix. It is shown in Lemma 1

in Section 2.6.2 that

sup
t∈[a,b]

|β̂(t)− β0(t)| = O

{
h2 + (

log n

n
+

log n

nmh
)1/2

}
a.s. (2.2.6)

Since the bias of β̂(t) is of order h2, undersmoothing is typically needed for an unbiased

testing procedure based on β̂(t) [XZ07]. To avoid undersmoothing and reduce the estima-

tion bias in β̂(t), we define β̌(t) as the solution of the following residual-adjusted [XZ07]

estimating equation for β(t)

ḡn{β(t)} :=
1

n

n∑
i=1

gi{β(t)} = 0, (2.2.7)

with gi{β(t)} =
1

mi

∑mi
j=1

{
Yij − βᵀ(t)Xij − {β̂(tij)− β̂(t)}ᵀXij

}
XijKh(tij − t), where

β̂(t) is the local linear estimator for β0(t).

2.2.2 Regularity conditions and preliminary results

We now present some preliminary results regarding the asymptotics of β̌(t). Assume that

tij are i.i.d. random variables following a probability density function f(t). For convenience,

define Γ(t) = Γ(t, t), Ω(t) = Ω(t, t), C(t) = C{β0(t)} and A(t) = Γ(t)f(t). We will also use

õp and Õp to represent that, respectively, op and Op hold uniformly for all t ∈ [a, b]. The
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following conditions are needed for our asymptotic results.

(C1): The kernel function K(·) is a symmetric probability density function with a bounded

support in [−1, 1].

(C2): Assume that E
{

supt∈[a,b] ‖X(t)‖λ1
}
< ∞ and E

{
supt∈[a,b] |ε(t)|λ2

}
< ∞ for some

λ1, λ2 ≥ 5 where ‖ · ‖ is the L2 norm for a vector.

(C3): Assume that f(t) and Γ(t) have continuous second derivatives on [a, b], β0(t) has

continuous third derivatives on t ∈ [a, b], and C(t) is uniformly bounded on t ∈ [a, b].

(C4): Define λ = min{λ1, λ2} and let h = n−α0 with α0 ∈ (0, 1) being the order of the

bandwidth. Assume that (i) α0 < 1 − η − 2/λ if η ∈ [0, 1/8] and α0 < 1/2 − 1/λ if

η > 1/8; (ii) (1 + η)/9 < α0 if η ∈ [0, 1/8] and 1/8 < α0 < η if η > 1/8.

Conditions (C1) and (C3) are commonly used regularity conditions in nonparametric

regressions. Condition (C2) is similar to that in [LH10]. The upper bounds on the bandwidth

h in (C4)(i) are adapted from [LH10]. Detailed explanation on the restrictions on h in (C4)(ii)

will be given in Remark 2 after Proposition 2. Selecting a bandwidth that satisfies (C4) will

be discussed in Section 2.4.

The following proposition provides an asymptotic expansion for β̌(t).

Proposition 1. Under conditions (C1)-(C3) and (C4)(i),

β̌(t)− β0(t) = −A−1(t)ξ̄n(t){1 + õp(1)}+ Õp(h
4), (2.2.8)
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where ξ̄n(t) = n−1∑n
i=1 ξi(t) and ξi(t) = m−1

i

∑mi
j=1 XijεijKh(tij − t). Let

r̄ = lim
n→∞

n−1
n∑
i=1

m/mi, µts =

∫
usKt(u)du,

then

Var{ξ̄n(t)} = Γ(t)Ω(t)f(t)
{ r̄

mnh
µ20 +

m− r̄
nm

f(t)
}
{1 + õ(1)}. (2.2.9)

The proof of Proposition 1 is provided in Section 2.6.2.

Remark 1. Proposition 1 implies that the mean square error (MSE) of β̌(t) is MSE
{
β̌(t)

}
=

O{h8 + 1
mnh + 1

n}. Hence the optimal hopt that minimize the MSE of β̌(t) is hopt ∼

(mn)−1/9 = n−(1+η)/9. It follows that

β̌(t)− β0(t) = Op{h4
opt + (mnhopt)

−1
2 + n−

1
2} = Op{n−1/2 + n−4(1+η)/9}.

Then the optimal convergence rate of β̌(t) is of order n−4(1+η)/9 if η ≤ 1/8 and of order

n−1/2 if η > 1/8. Thus, η0 = 1/8 is the transition point for the convergence rate of β̌(t).

When η > η0, β̌(t) is no longer sensitive to the choice of h and its the convergence rate

remains at Op(n
−1/2) as long as h = O(n−1/8) and h� m−1 = n−η.

The following proposition provides the asymptotic distribution of β̌(t) and its proof is

provided in Section 2.6.2.

Proposition 2. Suppose mh→ κ0 ∈ [0,∞], define

Cn,α0,η =


{n/(mh)}1/2, if κ0 <∞;

n1/2, if κ0 =∞
(2.2.10)
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and B(t) = Γ(t)Ω(t)f(t) {(r̄µ20 + κ0f(t))I(κ0 <∞) + f(t)I(κ0 =∞)}. Under conditions

(C1)-(C4), we have

nC−1
n,α0,η

{
β̌(t)− β0(t)

} d−→ N(0,V(t)). (2.2.11)

where V(t) = A−1(t)B(t)A−1(t).

Remark 2. By Proposition 1, the bias in nC−1
n,α0,η

{β̌(t)−β0(t)} is of order Op(nh
4/Cn,α0,η).

Since the bias can lead to invalid tests, we use Condition (C4) (ii) to ensure that the bias is

asymptotically negligible. When η ≤ η0 = 1/8, the condition α0 > (1 + η)/9 warrants that

mh <∞ and hence nh4/Cn,α0,η = n1/2m1/2h9/2 = n(1+η−9α0)/2 = o(1). When η > η0, the

condition that 1/8 < α0 < η implies mh→∞ and nh4/Cn,α0,η = n1/2h4 = n1/2−4α0 → 0.

By Proposition 2 and the Delta method, we can show that, under H0,

nC−1
n,α0,η

H{β̌(t)} d→ N(0,R−1(t)) (2.2.12)

where R(t) = {C(t)V(t)C(t)ᵀ}−1. The asymptotic variances of H{β̌(t)} are different under

sparse and dense cases. A Wald-type test statistic may be constructed using (2.2.12) if an

appropriate estimator for the variance of H{β̌(t)} can be obtained. But we will not pursue

this direction because the estimation of the asymptotic variance involves many nonparametric

functions e.g. Γ(t),Ω(t) and f(t), which requires properly selecting several bandwidths.

Instead, we propose a self-normalizing EL method in the next section which avoids estimating

the asymptotic variance explicitly.
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2.3 A unified pointwise test

In this section, we will introduce a unified test for H0 at any fixed time t, which is based

on the empirical likelihood ratio (ELR) statistic. To construct an ELR statistic for testing

(2.1.2), we first define the EL function at β(t) for a fixed t ∈ [a, b]. Following [Owe90], the

empirical likelihood for β(t) is defined as

L{β(t)} = max
p1,p2,...,pn

{
n∏
i=1

pi :
n∑
i=1

pi = 1, pi ≥ 0,
n∑
i=1

pigi{β(t)} = 0

}
.

Applying the Lagrange multiplier, the log-EL function becomes

l{β(t)} := logL{β(t)} = −
∑

log {1 + γᵀ(t)gi{β(t)}} − n log n

where γ(t) is a solution to the following equation

Q1n{β(t),γ(t)} :=
1

n

n∑
i=1

gi{β(t)}
1 + γᵀ(t)gi{β(t)}

= 0. (2.3.13)

The maximum log-EL without any constraint is l{β̌(t)} = −n log n. It follows that the

negative log-ELR for testing H0 : H{β0(t)} = 0 is

`(t) := min
H{β(t)}=0

l0{β(t)}, (2.3.14)

where l0{β(t)} =
∑n
i=1 log {1 + γᵀ(t)gi{β(t)}}. To solve (2.3.14), we minimize the following

objective function [QL95]

M{β(t),ν(t)} =
1

n
l0{β(t)}+ νᵀ(t)H{β(t)},
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where ν(t) is a q × 1 vector of Lagrange multipliers. Differentiating M(·, ·) with respect to

β and ν and setting them to zero, we have

Q2n{β(t),γ(t),ν(t)} :=
1

n

∂l0{β(t)}
∂βᵀ(t)

+ Cᵀ{β(t)}ν(t) = 0 and H{β(t)} = 0.

Combining equation (2.3.13) for γ(t), the constrained minimization problem in (2.3.14) is

equivalent to solving the following estimating equation system

Q1n{β(t),γ(t)} = 0; Q2n{β(t),γ(t),ν(t)} = 0 and H{β(t)} = 0. (2.3.15)

We show in Section 2.6.2.3 that a consistent solution to (2.3.15), denoted as (β̃(t), γ̃(t), ν̃(t)),

exists almost surely. We call β̃(t) the Restricted Maximum Empirical Likelihood Estimator

(RMELE). Then the test statistic in (2.3.14) becomes

`(t) = l0{β̃(t)}. (2.3.16)

The following proposition provides an asymptotic expansion for 2`(t).

Proposition 3. Under conditions (C1)-(C4), and under H0, we have, for each t ∈ [a, b],

2`(t) = Un(t)ᵀUn(t) +Op(nh
4/Cn,α0,η), (2.3.17)

where Un(t) = nC−1
n,α0,η

G(t)ξ̄n(t), G(t) = R1/2(t)C(t)A−1(t) and R(t) and A(t) are the

same as defined in (2.2.12).

The asymptotic expansion in (2.3.17) makes a connection between 2`(t) and the bias-

corrected estimator β̌(t) described in Section 2.2. By Proposition 1 and (2.2.12), Un(t) =
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nC−1
n,α0,η

R1/2(t)H{β̌(t)} + op(1) and asymptotically follows a q-dimensional multivariate

standard normal distribution. Naturally, 2`(t)
d→ χ2

q under the null hypothesis. The fact

that the asymptotic distribution of 2`(t) does not depend on m (or η) proves that it is a

self-normalized test statistic no matter the data are sparse or dense. This is a very appealing

property because the test procedure is the same for all types of functional data and solving

(2.3.15) does not require estimating the variance of H{β̌(t)}.

The following Theorem summarizes the asymptotic distribution of 2`(t) under both H0

and the local alternative (2.1.3).

Theorem 1. Under conditions (C1)-(C4) and suppose H{β0(t)} = bnd(t) for t ∈ [a, b],

where bn = n−1Cn,α0,η and d(t) is any fixed real vector of functions, we have

2`(t)
d→ χ2

q{dᵀ(t)R(t)d(t)}

where dᵀ(t)R(t)d(t) is the noncentrality parameter.

A proof of Theorem 1 is provided in the Section 3.5.1.

Remark 3. Under H0, d(t) = 0 and Theorem 1 suggests that 2`(t) follows a χ2
q distribution

asymptotically. An asymptotic α level test is given by rejecting H0 at a fixed point t if

2`(t) > χ2
q,α where χ2

q,α is the upper α quantile of χ2
q. By taking a special function H{β} =

βj(t), we can also construct a (1 − α)100% confidence interval for βj(t) (j = 1, · · · , p)

as CIα = {βj(t) : 2`(t) < χ2
q,α}, which can be computed numerically. This provides an

alternative self-normalized confidence interval to those based on a self-normalized normal

approximation [KZ13]. Comparing to Kim and Zhao’s method, our method does not require

estimating the bias because we use bias-corrected estimating equations.
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We define the size of the detectable signal b∗n as the smallest order bn in (2.1.3) that the

proposed test can detect. For a given significant level α,

b∗n = min
h
bn subject to (i) Type I error ≤ α under H0 (2.3.18)

and (ii) the power is non-trivial under H1n.

Theorem 1 guarantees that the proposed test controls the Type I error at the nominal

level asymptotically. For the sparse and moderate dense cases (η ≤ 1/8), Condition (C4)

implies mh→ 0 and hence bn = (nmh)−1/2 by Theorem 1. In this case, b∗n is equivalent to

min
h
bn = (nmh)−1/2 subject to condition (C4) on h.

The optimal h that solves the minimization problem above is h∗ = n−(1+η+δ)/9 for an

arbitrarily small δ > 0. This implies the optimal bn is n−4(1+η)/9+δ/18, which results in

b∗n = n−4(1+η)/9 by letting δ → 0. For dense data (η > 1/8), (C4) leads to mh → ∞.

Theorem 1 implies that the proposed test has a non-trivial power under a local alternative

of size b∗n = n−1/2, which is the detectable order of a parametric test.

2.4 Implementation issues

2.4.1 Bandwidth selection

The performance of the estimation and test procedures depends on the bandwidth h and our

asymptotic theory relies on h falling in the range defined in Condition (C4). For longitudinal

data (sparse functional data) where subjects are assumed to be independent, one may apply
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a “leave-one-out” cross-validation strategy [RS91] to choose bandwidth. However, cross-

validation is time-consuming and in general, its performance for dense functional data is

unknown.

We propose to select the bandwidth through minimizing the conditional integrated mean

squared error (IMSE) of the local polynomial estimator β̂(t). By (2.2.5), the bandwidth h

that minimizing the IMSE of β̂(t) is at the order of n−(1+η)/5, which satisfies condition (C4)

for both sparse and dense cases. Let D = {(tij ,Xij), j = 1, 2, · · · ,mi, i = 1, 2, · · · , n}. It

is not difficult to show that for any fixed t,

MSE(β̂(t)|D) = bᵀ(t)b(t) + tr{Cov(β̂(t)|D)}

where b(t) = Bias(β̂(t)|D). The IMSE is defined as

IMSE(β̂(·)|D) =

∫ b

a
MSE(β̂(t)|D)$(t)f(t)dt

where $(t) is a known weight function and f(t) is the probability density function of tij .

The conditional bias is

b(t) = (I,0)(Dᵀ(t)W(t)D(t))−1Dᵀ(t)W(t)l(t),

where l(t) = (l11(t), · · · , l1m1
(t), l21(t), · · · , lnmn(t))ᵀ with

lij(t) = X
ᵀ
ijβ(tij)−X

ᵀ
ij [β0(t) + (tij − t)β(1)(t)]

= X
ᵀ
ij [β(tij)− β0(t)− (tij − t)β(1)(t)] ≈ X

ᵀ
ijβ

(2)(t)(tij − t)2/2,
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and β(s)(t) = {β(s)
1 (t), · · · , β(s)

p (t)}ᵀ, s = 1, 2, is the s-th derivative of β0(t). The conditional

covariance is

Cov(β̂(t)|D) = (I,0)(Dᵀ(t)W(t)D(t))−1Dᵀ(t)W(t)Ω

×W(t)D(t)(Dᵀ(t)W(t)D(t))−1

I

0

 ,

where Ω = Cov(Y|D) = diag(Ω1,Ω2, · · · ,Ωn) and Ωi =
(

Ω(tij , tik)
)mi
j,k=1

.

An estimator of the covariance Ω(s, t) is described in Section 2.4.2. To estimate β(2)(t),

we use a higher order local polynomial estimator of β0(t) with a pilot bandwidth h∗. The

pilot bandwidth is obtained by minimizing the residual squares criterion in [ZL00]. By

replacing β(2)(t) and Ω with their estimators β̂(2)(t) and Ω̂, we obtain estimators of the

conditional mean and covariance, b̂(t) and Ĉov(β̂(t)|D). Then the bandwidth h is chosen

by minimizing the empirical IMSE

ĥ = arg min
h

1

N

n∑
i=1

mi∑
j=1

M̂SE{β̂(tij)|D}$(tij)

where N =
∑n
i=1mi and M̂SE(β̂(t)|D) = b̂ᵀ(t)b̂(t) + tr{Ĉov(β̂(t)|D)}.

2.4.2 Covariance Estimation

The covariance function Ω(·, ·) can be estimated by the nonparametric kernel estimator of

[YMW05a], which is uniformly consistent [LH10]. However, the nonparametric covariance

estimator is not necessarily positive semi-definite. Instead, we adopt the semiparametric

covariance estimation of [FHL07]. Suppose the covariance function can be decomposed as
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Ω(s, t) = σ(s)ρ(s, t)σ(t), we model the variance function σ2(t) nonparametrically and the

correlation function ρ(s, t) parametrically. For estimation, we first apply the nonparametric

kernel estimators of Ω(s, t) and σ2(t) [YMW05a] to get information about the parametric

structure of ρ(s, t). Then we fit a parametric model to ρ(s, t) using the quasi maximum

likelihood estimator of [FHL07]. The parametric structure guarantees the positive semi-

definiteness of the estimated correlation function. For more details of the implementation,

see Section 2.5.

2.5 Simulation studies

Simulation studies were conducted to evaluate the performance of the proposed unified in-

ference procedures. We generated data from the following model

Yi(tij) = β1(tij)X
(1)
i (tij) + β2(tij)X

(2)
i (tij) + εi(tij) (2.5.19)

for i = 1, 2, · · · , n and j = 1, 2, · · · ,m where tij ’s are IID Unif[0,1] distributed, X
(1)
i (tij) =

1+2e
tij+vij and X

(2)
i (tij) = 3−4t2ij+uij . Here uij and vij are IID N(0, 1) random variables,

which are independent with tij and εi(tij). The random error εi(tij) was generated from

a zero mean AR(1) process such that Var{ε(t)} = 1 and Cov{ε(t), ε(t − s)} = ρ10s for

some ρ ∈ (0, 1). To evaluate the proposed methods for both sparse and dense data, we set

m = 5, 10 and 50. The sample sizes were chosen to be 100 and 200. The Epanechnikov

kernel K(x) = 3
4(1 − x2)+ was used for estimation, where (a)+ = max(a, 0). Bandwidth

selection was conducted for every simulated data set using the method proposed in Section

2.4.
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We first set β1(t) = 1
2 sin t and β2(t) = 2 sin(t + 0.5) in Model (2.5.19) and applied the

procedure in Section 2.3 to construct pointwise CIs for β1(t). Table 2.1 summarizes the

empirical coverage probability (CP) in percentage and the average length (AL) of the CIs

(in parentheses) for β1(t) at t = 0.3, 0.5 and 0.7 based on 1000 simulation replicates. These

results were obtained using the data-driven bandwidth. As we can see from the table, the

CPs are close to the nominal level 95% in both sparse and dense cases and the ALs are

shorter under a larger sample size. In addition, the ALs improve as m increases from 5 to

50.

Table 2.1: Empirical coverage probability (%) and average length of pointwise confidence
intervals (in parenthesis) for β1(t) at t = 0.3, 0.5 and 0.7.

m = 5 m = 10 m = 50
t n ρ = 0.2 ρ = 0.5 ρ = 0.2 ρ = 0.5 ρ = 0.2 ρ = 0.5

0.3 100 92.1(0.272) 92.9(0.268) 92.9(0.203) 92.5(0.203) 93.7(0.107) 93.9(0.107)
200 92.3(0.205) 92.3(0.205) 93.5(0.152) 93.0(0.152) 94.7(0.081) 94.4(0.081)

0.5 100 92.9(0.270) 93.5(0.267) 94.5(0.210) 94.0(0.209) 93.3(0.107) 93.1(0.108)
200 93.6(0.201) 93.3(0.200) 94.6(0.152) 94.4(0.152) 94.0(0.083) 93.8(0.081)

0.7 100 92.1(0.273) 92.5(0.272) 92.2(0.211) 92.1(0.208) 93.4(0.106) 92.8(0.106)
200 92.3(0.201) 92.4(0.201) 94.1(0.153) 93.3(0.153) 93.9(0.083) 93.8(0.081)

To further demonstrate the performance of the proposed bandwidth selection method in

Section 2.4, we show in panels (a) and (b) of Figure 2.1 the box plots of ĥ selected for model

(2.5.19) with β1(t) = 1
2 sin(πt) and β2(t) = 2 sin(πt + 0.5) based on 500 replicates. Both

the median and spread of ĥ decreased as the n and m increased and the correlation ρ had

little impact on the bandwidth selection result. These plots also show that our bandwidth

selection procedure is very stable as there are very few outliers in each case. In panels (c)

and (d) of Figure 2.1, we plot the logarithm of Median(ĥ) against the logarithm of nm for

each value of ρ. These plots show clear linear decreasing trends, confirming the selected

26



bandwidth decreases in a polynomial order of nm.
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Figure 2.1: Panels (a) and (b) are box plots for bandwidths selected for model (2.5.19) with
β1(t) = 1

2 sin(πt) and β2(t) = 2 sin(πt + 0.5) using the proposed bandwidth selection method in

Section 2.4. Panels (c) and (d) are the plots of the logarithm of median(ĥ) vs log(nm).
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2.6 Technical Details

This section contains the proofs for the main theorems in Section 2.3. Proofs for the propo-

sitions can be found in the next section.

2.6.1 Proof of Theorem 1

Proof of Theorem 1. For convenience, we suppress the argument of all the functions on t.

Define

Σ−1 =


−B−1 + B−1APAB−1 B−1AP B−1AQᵀ

PAB−1 P Qᵀ

QAB−1 Q −R

 ,

where P = V(I −CᵀQ) and Q = RCV. By Taylor expansion of the equations (2.3.15) at

(β, 0, 0) as in Lemma 4 in Section 2.6.2, we have


C2
n,α0,η

n−1γ̃

β̃ − β0

ν̃

 = Σ−1


−n−1∑n

i=1 gi(β0) + op(∆n)

op(∆n)

−H(β0) + op(∆n)



=


−B−1 + B−1APAB−1

PAB−1

QAB−1


{
− 1

n

n∑
i=1

gi(β0)

}

+


B−1AQᵀ

Qᵀ

−R

 {−H(β0)}+ op(∆n),

28



where ∆n = ‖β̃−β0‖+‖γ̃‖+‖ν̃‖. Then under local alternative hypothesis H1 : H{β0(t)} =

n−1Cn,α0,ηd(t), we have

∆n = ‖


γ̃

β̃ − β0

ν̃

 ‖ ≤ ‖

C2
n,α0,η

n−1γ̃

β̃ − β0

ν̃

 ‖ ≤ Op(Cn,α0,η/n) + op(∆n),

which implies that ∆n = Op(Cn,α0,η/n).

Thus for ν̃, we have

ν̃ = −QAᵀB−1{ 1

n

n∑
i=1

gi(β0)}+ RH(β0) + op(Cn,α0,η/n)

= −RCA−1{ 1

n

n∑
i=1

gi(β0)}+ RH(β0) + op(Cn,α0,η/n).

(2.6.20)

Accordingly, we have nC−1
n,α0,η

R−1/2{ν̃ − RH(β0)} d−→ N(0, Iq). Under local alternative

hypothesis H1 : H{β0(t)} = n−1Cn,α0,ηd(t), we have

nC−1
n,α0,η

R−1/2ν̃
d−→ N(R1/2d, Iq).

Thus 2`(t) = n2

C2
n,α0,η

ν̃ᵀR−1ν̃ + op(1)
d−→ χ2

q(d
ᵀRd).

2.6.2 Proofs of Propositions

In this section, we provide the proofs for all the propositions in this chapter and the existence

of the RMELE β̃(t). An asymptotic expression for the Lagrange multiplier γ̃(t) in (2.3.13)

is also included.
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2.6.2.1 Some Useful Lemmas

We present some useful lemmas and their proofs before the proofs for the Propositions.

Denote δn = δn1 + h2, δn1 = (dn log n

nh2 )
1
2 where dn = h2 + r̄h/m.

Lemma 1. Under assumptions (C1)-(C3) and (C4)(i), we have

sup
t∈[a,b]

|β̂(t)− β0(t)| = O(δn) a.s..

Proof. By the expression of β̂(t), using a Taylor expansion, we have

β̂(t)− β0(t) =
(
Ip,0p

)
{Dᵀ(t)W(t)D(t)}−1D(t)W(t)Y − β0(t)

=
(
Ip,0p

){ n∑
i=1

D
ᵀ
i (t)Wi(t)Di(t)

}−1{ n∑
i=1

D
ᵀ
i (t)Wi(t)Yi

}
− β0(t)

=
(
Ip,0p

){ n∑
i=1

D
ᵀ
i (t)Wi(t)Di(t)

}−1{ n∑
i=1

D
ᵀ
i (t)Wi(t)[Bi(t) + εi]

}
,

where Bi(t) =
(

(ti1 − t)2X
ᵀ
i1β

(2)
0 (t∗i1)/2, · · · , (timi − t)

2X
ᵀ
imi
β

(2)
0 (t∗imi

)/2
)ᵀ

with t∗ij be-

tween t and tij and εi = (εi1, ε12, . . . , εimi)
ᵀ.

Observe that for denominator I(t) :=
1

n

∑n
i=1 D

ᵀ
i (t)Wi(t)Di(t), we have

I(t) =
1

n

n∑
i=1

1

mi

mi∑
j=1

 XijX
ᵀ
ijKh(tij − t) XijX

ᵀ
ijKh(tij − t)

tij−t
h

XijX
ᵀ
ijKh(tij − t)

tij−t
h XijX

ᵀ
ijKh(tij − t)(

tij−t
h )2



:=

I11(t) I12(t)

I21(t) I22(t)

 .

In order to get the uniform bound for I(t), we use Lemma 2 in [LH10] for Iij(t), i, j = 1, 2.
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For I11(t), we have

E{I11(t)} = E

 1

n

n∑
i=1

1

mi

mi∑
j=1

Xi(tij)X
ᵀ
i (tij)Kh(tij − t)


= E

E[
1

n

n∑
i=1

1

mi

mi∑
j=1

Xi(tij)X
ᵀ
i (tij)Kh(tij − t)|tij ]


= E

 1

n

n∑
i=1

1

mi

mi∑
j=1

Γ(tij)Kh(tij − t)


=

1

n

n∑
i=1

1

mi

mi∑
j=1

∫
Γ(s)Kh(s− t)f(s)ds =

∫
Γ(s)Kh(s− t)f(s)ds

=

∫
Γ(t+ uh)K(u)f(t+ uh)du = Γ(t)f(t) + Õ(h2),

as long as µ12 < ∞ which is true by condition (C1) and [Γ(t)f(t)]′′ is uniformly bounded

on t ∈ [a, b] by (C3), where Õ denote uniform order for all t ∈ [a, b] and also for the õ below.

Hence, under the condition that E
{

supt∈[a,b] ‖X(t)‖λ1
}
< ∞ for some 5 ≤ λ1 < ∞, and

d−1
n ( log n

n )1−2/λ1 = o(1), which is true under (C4)(i), by Lemma 2 in [LH10], we have

sup
t∈[a,b]

‖ 1

n

n∑
i=1

1

mi

mi∑
j=1

XijX
ᵀ
ijKh(tij − t)− Γ(t)f(t)‖ = O(δn), a.s..

By similar calculations for other three terms, we have

E{I12(t)} =

∫
Γ(s)Kh(s− t)s− t

h
f(s)ds = Õ(h),

under µ12 < ∞ and [Γ(t)f(t)]′ uniformly bounded on t ∈ [a, b], which are true under (C1)
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and (C3) respectively. And

E{I22(t)} =

∫
Γ(s)Kh(s− t)(s− t

h
)2f(s)ds = Γ(t)f(t)µ12 + Õ(h2),

under [Γ(t)f(t)]′′ is uniformly bounded on t ∈ [a, b] by (C3). Hence in summary, we have

under conditions (C1)-(C3) and (C4)(i),

I(t) =

Γ(t)f(t) + Õ(δn) Õ(δn1 + h)

Õ(δn1 + h) Γ(t)f(t)µ12 + Õ(δn)

 , a.s..

Then we have

I−1(t) =

Γ(t)f(t) 0

0 Γ(t)f(t)µ12


−1

+ Õ(δn1 + h), a.s.. (2.6.21)

For the numerator II(t) :=
1

n

∑n
i=1 D

ᵀ
i (t)Wi(t)Bi(t), we have

II(t) =
1

n

n∑
i=1

1

mi

mi∑
j=1

XijX
ᵀ
ij(tij − t)

2
β

(2)
0 (t∗ij)

2
Kh(tij − t)

XijX
ᵀ
ij

(tij−t)3

h

β
(2)
0 (t∗ij)

2
Kh(tij − t)

 :=

II1(t)

II2(t)

 .

Similar as the denominator, under the condition that β0(t) has continuous second derivative
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on t ∈ [a, b] (C3), we have

E{II1(t)} = E

 1

n

n∑
i=1

1

mi

mi∑
j=1

XijX
ᵀ
ij(tij − t)

2
β

(2)
0 (t∗ij)

2
Kh(tij − t)


= E

 1

n

n∑
i=1

1

mi

mi∑
j=1

XijX
ᵀ
ij(
tij − t
h

)2Kh(tij − t)

 Õ(h2)

= Γ(t)f(t)µ12Õ(h2) = Õ(h2)

if µ12 <∞ by condition (C1) and Γ(t)f(t) uniformly bounded on t ∈ [a, b] (C3), and

E{II2(t)} = E

 1

n

n∑
i=1

1

mi

mi∑
j=1

XijX
ᵀ
ij

(tij − t)3

h

β
(2)
0 (t∗ij)

2
Kh(tij − t)


= E

 1

n

n∑
i=1

1

mi

mi∑
j=1

XijX
ᵀ
ij(
tij − t
h

)3Kh(tij − t)

 Õ(h3)

= [Γ(t)f(t)]′µ14Õ(h3) = Õ(h3)

if µ14 <∞ (C1) and [Γ(t)f(t)]′ uniformly bounded on t ∈ [a, b] (C3).

By Lemma 2 in [LH10], under the condition E
{

supt∈[a,b] ‖X(t)‖λ1
}
< ∞ for some

5 ≤ λ1 <∞, and d−1
n ( log n

n )1−2/λ1 = o(1) which is true under (C4)(i), we can have

sup
t∈[a,b]

‖ 1

n

n∑
i=1

1

mi

mi∑
j=1

XijX
ᵀ
ij(tij − t)

2
β

(2)
0 (t∗ij)

2
Kh(tij − t)‖ = h2O(δn1 + 1), a.s.,

and

sup
t∈[a,b]

‖ 1

n

n∑
i=1

1

mi

mi∑
j=1

XijX
ᵀ
ij

(tij − t)3

h

β
(2)
0 (t∗ij)

2
Kh(tij − t)‖ = h2O(δn1 + h), a.s..
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Note that

III(t) :=
1

n

n∑
i=1

D
ᵀ
i (t)Wi(t)εi =

1

n

n∑
i=1

1

mi

mi∑
j=1

 XijεijKh(tij − t)

XijεijKh(tij − t)
tij−t
h

 .

Similarly, by condition (C2) and (C3), we have the following due to Lemma 2 in [LH10]

sup
t∈[a,b]

‖ 1

n

n∑
i=1

1

mi

mi∑
j=1

XijεijKh(tij − t)‖ = O(δn1), a.s.,

and

sup
t∈[a,b]

‖ 1

n

n∑
i=1

1

mi

mi∑
j=1

XijεijKh(tij − t)
tij − t
h
‖ = O(δn1), a.s..

Thus we have

β̂(t)− β0(t) =
(
Ip×p,0p×p

)Γ(t)f(t) 0

0 Γ(t)f(t)µ12


−1

×

h2

Õ(δn1 + 1)

Õ(δn1 + h)

+

Õ(δn1)

Õ(δn1)


 = h2Õ(δn1 + 1) + Õ(δn1) = Õ(δn), a.s.,

since δn = δn1 + h2.

Lemma 2. Under conditions (C1)-(C3) and (C4)(i), we have E(gi{β0(t)}) = Õ(h4) and

Var(gi{β0(t)}) =

{
1

mih
Γ(t)Ω(t)f(t)µ20 +

mi − 1

mi
Γ(t)Ω(t)f2(t)

}
{1 + õ(1)} .
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Proof. By the definition of gi{β0(t)}, we decompose gi{β0(t)} as the following two parts

gi{β0(t)} = m−1
i

mi∑
j=1

XijX
ᵀ
ij{[β̂(t)− β0(t)]− [β̂(tij)− β0(tij)]}Kh(tij − t)

+m−1
i

mi∑
j=1

XijεijKh(tij − t) := L1i(t) + ξi(t).

To analyze the first term L1i(t) in the above expression, we further obtain the expansion

for β̂(t)−β0(t) in the following. By the expression of β̂(t) and a Taylor expansion, we obtain

β̂(t)− β0(t) =
(
Ip×p,0p×p

){
n−1

n∑
i=1

D
ᵀ
i (t)Wi(t)Di(t)

}−1

×
{
n−1

n∑
i=1

D
ᵀ
i (t)Wi(t)(Bi(t) + Ti(t) + εi)

}
,

where Bi(t) = 1
2(X

ᵀ
i1β

(2)
0 (t)(ti1 − t)2, · · · ,Xᵀ

imi
β

(2)
0 (t)(timi − t)

2)ᵀ and

Ti(t) =
1

6
(X

ᵀ
i1β

(3)
0 (t∗i1)(ti1 − t)3, · · · ,Xᵀ

imi
β

(3)
0 (t∗imi)(timi − t)

3)ᵀ

with t∗ij is between t and tij . It then follows that

(β̂(t)− β0(t))− (β̂(tij)− β0(tij)) =
1

n

n∑
k=1

1

mk

mk∑
l=1

{
η1,kl(t)− η1,kl(tij)

+ (η2,kl(t)− η2,kl(tij)) + (η3,kl(t, t
∗
1)− η3,kl(t, t

∗
2))
}
{1 + õp(1)}
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where t∗1 is between t and tkl and t∗2 is between tij and tkl and

η1,kl(t) = f−1(t)Γ−1(t)XklεklKh(tkl − t)

η2,kl(t) =
1

2
f−1(t)Γ−1(t)XklX

ᵀ
kl(tkl − t)

2β
(2)
0 (t)Kh(tkl − t)

η3,kl(t, t
∗) =

1

6
f−1(t)Γ−1(t)XklX

ᵀ
kl(tkl − t)

3β
(3)
0 (t∗)Kh(tkl − t).

Then we can write L1i(t) = {I1i(t) + I2i(t) + I3i(t)}{1 + õp(1)} where

I1i(t) =
1

mi

mi∑
j=1

1

n

n∑
k=1

1

mk

mk∑
l=1

XijX
ᵀ
ijη1,kl(t)Kh(tij − t)

− 1

mi

mi∑
j=1

1

n

n∑
k=1

1

mk

mk∑
l=1

XijX
ᵀ
ijη1,kl(tij)Kh(tij − t) := I11,i(t)− I12,i(t),

I2i(t) =
1

mi

mi∑
j=1

1

n

n∑
k=1

1

mk

mk∑
l=1

XijX
ᵀ
ijη2,kl(t)Kh(tij − t)

− 1

mi

mi∑
j=1

1

n

n∑
k=1

1

mk

mk∑
l=1

XijX
ᵀ
ijη2,kl(tij)Kh(tij − t) := I21,i(t)− I22,i(t) and

I3i(t) =
1

mi

mi∑
j=1

1

n

n∑
k=1

1

mk

mk∑
l=1

XijX
ᵀ
ij{η3,kl(t, t

∗
1)− η3,kl(tij , t

∗
2)}Kh(tij − t).

For I1i(t), we have E{I1i(t)} = 0 and

Var{I11i(t)} =
{ 1

n2mih2

∑
k 6=i

1

mk
Ω1(t)Ω(t)µ2

20

+ 2
mi − 1

n2mih

∑
k 6=i

1

mk
Ω1(t)Ω(t)f(t)µ20

+
mi − 1

n2mi

∑
k 6=i

mk − 1

mk
Ω1(t)Ω(t)f2(t)

}
{1 + õ(1)}

where Ω1(t) = E{Xi(t)X
ᵀ
i (t)Γ−1(t)Xi(t)X

ᵀ
i (t)}. The leading order variance of I12i(t) is
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the same as that of I11i(t). In summary, we have Var{I1i(t)} = Õ( 1
nm2h2 )1(κ0 < ∞) +

Õ( 1
n)1(κ0 =∞).

By condition (C3), β0(t) has continuous third derivative, and Γ(t)f(t), [Γ(t)f(t)]′, [Γ(t)f(t)]′′,

Γ−1(t), f(t), f−1(t) are uniformly bounded on [a, b], we have

E{I21,i(t)} =

{
1

2n
Ω1(t) +

n− 1

2n
Γ(t)

}
f(t)β

(2)
0 (t)µ12h

2 + Õ(h4) and

E{I22,i(t)} =

{
1

2n
Ω1(t) +

n− 1

2n
Γ(t)

}
f(t)β

(2)
0 (t)µ12h

2 + Õ(h4).

Therefore E{I2,i(t)} = E{I21,i(t)}−E{I22,i(t)} = Õ(h4). To evaluate the variance of I2i(t),

we first evaluate the variance of I21,i(t). Note that

(nmi)
2I21,i(t)I

ᵀ
21,i(t)

=
1

m2
i

mi∑
j1,j2=1

mi∑
l1,l2=1

Xij1
X

ᵀ
ij1
η2,il1

(t)Kh(tiji − t)Xij2
X

ᵀ
ij2
η2,il2

(t)Kh(tij2 − t)

+
n∑

k(6=i)=1

mi∑
j1,j2=1

mk∑
l1,l2=1

1

m2
k

Xij1
X

ᵀ
ij1
η2,kl1

(t)Kh(tiji − t)Xij2
X

ᵀ
ij2
η2,kl2

(t)Kh(tij2 − t)

+
n∑

(k1 6=k2)=1

mi∑
j1,j2=1

mk1∑
l1=1

mk2∑
l2=1

1

mk1
mk2

Xij1
X

ᵀ
ij1
η2,k1l1

(t)Kh(tiji − t)

×Xij2
X

ᵀ
ij2
η2,k2l2

(t)Kh(tij2 − t)

:= (nmi)
2{J1(t) + J2(t) + J3(t)}.

Let Ω2(t) = E{Xi(t)X
ᵀ
i (t)Xi(t)X

ᵀ
i (t)}. It is easy to see that the dominant term of
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E{I21,i(t)I
ᵀ
21,i(t)} is E{J3(t)}. Careful derivation shows that, up to a scale constant,

E{J3(t)} =
{ 1

mi
Ω2(t)f(t)µ2

12µ20h
3 + Ω2(t)f2(t)µ2

12h
4
}
{1 + õ(1)}.

Similar derivation shows that Var{I22,i(t)} is of the same order as Var{I21,i(t)}. Therefore,

in summary, we have Var{I2,i(t)} = Õ(h3/m)1(κ0 <∞) + Õ(h4)1(κ0 =∞). For I3,i(t), it

can be shown that E{I3,i(t)} = Õ(h4) and

Var{I3,i(t)} = Õ(h6/m)1(κ0 <∞) + Õ(h7)1(κ0 =∞).

Finally, we evaluate the order of ξi(t). It is clear that E{ξi(t)} = 0 and

Var{ξi(t)} =
{ 1

mih
Γ(t)Ω(t)f(t)µ20 +

mi − 1

mi
Γ(t)Ω(t)f2(t)

}
{1 + õ(1)}. (2.6.22)

In summary, E (gi{β0(t)}) = Õ(h4) and by comparing the variance of ξi(t) to the variances

of I1,i(t) to I3,i(t), we have Var (gi{β0(t)}) = Var{ξi(t)} {1 + õ(1)}. This completes the

proof of this Lemma.

Lemma 3. Under conditions (C1)-(C4), we have for true β0(t)

C−1
n,α0,η

n∑
i=1

gi{β0(t)} d−→ N(0,B(t)),

where Cn,α0,η and B(t) are defined in Proposition 2 in Section 2.2.

Proof. Let ξi(t) := m−1
i

∑mi
j=1 XijεijKh(tij − t) and using the proof of Lemma 2,

gi{β0(t)} = ξi(t){1 + õp(1)}+ Õp(h
4), (2.6.23)
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and Vi(t) := Var{ξi(t)} = Õ{(mh)−1}1(κ0 <∞) + Õ{1}1(κ0 =∞).

We will show that the asymptotic normality of
∑n
i=1 gi{β0(t)} is the same as the asymp-

totic normality of
∑n
i=1 ξi(t).

First consider the case κ0 < ∞, i.e. mh → [0,∞), with (2.6.23) and condition (C4), we

have

(mh)1/2
√
n

n∑
i=1

gi{β0(t)} =
(mh)1/2
√
n

n∑
i=1

ξi(t) + õp(1). (2.6.24)

As above, we can check that E
{

(mh)1/2∑n
i=1 ξi(t)/

√
n
}

= 0 and

Var
{(mh)1/2
√
n

n∑
i=1

ξi(t)
}

=
1

n

n∑
i=1

[
m

mi
µ20 +

mi − 1

mi
f(t)]Γ(t)Ω(t)f(t){1 + õ(1)}

→ [r̄µ20 + κ0f(t)]Γ(t)Ω(t)f(t) = B(t).

Next, we consider the case κ0 =∞, i.e. mh→∞. Again by (2.6.23) and condition (C4)

1√
n

n∑
i=1

gi{β0(t)} =
1√
n

n∑
i=1

ξi(t) + õp(1). (2.6.25)

Similarly, it can be checked that E
{∑n

i=1 ξi(t)/
√
n
}

= 0 and

Var
{ n∑
i=1

ξi(t)/
√
n
}

=
1

n

n∑
i=1

mi − 1

mi
Γ(t)Ω(t)f2(t){1 + õ(1)}

→ f2(t)Γ(t)Ω(t) = B(t).

To show the asymptotic normality under both cases, applying the cramer-wold device, it

is enough to show the asymptotic normality of
∑n
i=1 θ

ᵀξi(t)/Cn,α0,η for any θ ∈ Rp at any
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fixed time point t. It remains to check the Lyapunov condition. To this end, note that

s2
n = Var{

n∑
i=1

θᵀξi(t)} =
n∑
i=1

θᵀViθ ∼ C2
n,α0,η

.

And on the other hand, for m→∞,

n∑
i=1

E
{(
θᵀξi(t)

)2+δ0
}

=
n∑
i=1

E
{(
m−1
i

mi∑
j=1

θᵀXijεijKh(tij − t)
)2+δ0

}

≤ C

n∑
i=1

E{sup
t
|θᵀX(t)|2+δ0}E{sup

t
|ε(t)|2+δ0} ∼ n

by taking λ2 = 2 + δ0 in the assumption (C2). Thus we have

1

s
2+δ0
n

n∑
i=1

E
{(
θᵀξi(t)

)2+δ0
}
∼ n

n1+δ0/2
→ 0, n→∞.

And similarly, for m is bounded,

n∑
i=1

E
{(
θᵀξi(t)

)2+δ0
}
≤ Cn

h2+δ0
E{sup

t
|θᵀX(t)|2+δ0}E{sup

t
|ε(t)|2+δ0} ∼ n/h2+δ0 .

Then, it follows that

1

s
2+δ0
n

n∑
i=1

E
{(
θᵀξi(t)

)2+δ0
}
∼ n/h2+δ0

(n/h)
2+δ0

2

=
1

n(δ0−2α0−δ0α0)/2
.

The above ratio goes to 0 if and only if α0 < δ0/2 + δ0. By taking λ2 = 2+δ0, this condition

is equivalent to α0 < δ0/2 + δ0 = 1− 2/λ2. By assumption (C4), this condition is satisfied

because α0 < 1− 2/λ < 1− 2/λ2. This completes the proof of this Lemma.

Lemma 4. Under assumptions (C1)-(C4), and for each t ∈ [a, b] under the null hypothesis
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H0 : H{β0(t)} = 0, we have

2`(t)
d→ χ2

q .

Proof. First, for convenience we suppress the argument t in the functions β(t), β̃(t) and

A(t), since we fix t ∈ [a, b] in this proof. The proof is similar to that in [QL95].

We first obtain their derivatives with respect to the three variables β,γ and ν.

∂Q1n(β,γ)

∂βᵀ
=

1

n

n∑
i=1

∂gi(β)

∂βᵀ
(1 + γᵀ(β)gi(β))− gi(β)γᵀ

∂gi(β)
∂βᵀ

(1 + γᵀ(β)gi(β))2
,

∂Q1n(β,γ)

∂γᵀ
= − 1

n

n∑
i=1

gi(β)g
ᵀ
i (β)

(1 + γᵀ(β)gi(β))2
,

∂Q1n(β,γ)

∂νᵀ
= 0,

∂Q2n(β,γ,ν)

∂βᵀ
=

1

n

n∑
i=1

∂2g
ᵀ
i (β)

∂βᵀ∂β
γ(1 + γᵀ(β)gi(β))−

∂g
ᵀ
i (β)

∂β γγᵀ
∂gi(β)

∂βᵀ

(1 + γᵀ(β)gi(β))2
+
∂Cᵀ(β)

∂βᵀ
ν,

∂Q2n(β,γ,ν)

∂γᵀ
=

1

n

n∑
i=1

∂g
ᵀ
i (β)

∂βᵀ
−

∂g
ᵀ
i (β)

∂βᵀ γg
ᵀ
i (β)

(1 + γᵀ(β)gi(β))2
,

∂Q2n(β,γ,ν)

∂νᵀ
= Cᵀ(β),

∂H(β)

∂βᵀ
= C(β),

∂H(β)

∂γᵀ
= 0,

∂H(β)

∂νᵀ
= 0.

Hence, we have the following Taylor expansions of the system of equations at (β0, 0, 0). Let
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∆n = ‖β̃ − β0‖+ ‖γ̃‖+ ‖ν̃‖.

0 = Q1n(β̃, γ̃, ν̃)

= Q1n(β0, 0, 0) +
∂Q1n(β0, 0, 0)

∂βᵀ
(β̃ − β0) +

∂Q1n(β0, 0, 0)

∂γᵀ
(γ̃ − 0)

+
∂Q1n(β0, 0, 0)

∂νᵀ
(ν̃ − 0) + op(∆n)

=
1

n

n∑
i=1

gi(β0) +
1

n

n∑
i=1

∂gi(β0)

∂βᵀ
(β̃ − β0)− 1

n

n∑
i=1

gi(β0)g
ᵀ
i (β0)γ̃ + op(∆n),

0 = Q2n(β̃, γ̃, ν̃)

= Q2n(β0, 0, 0) +
∂Q2n(β0, 0, 0)

∂βᵀ
(β̃ − β0) +

∂Q2n(β0, 0, 0)

∂γᵀ
(γ̃ − 0)

+
∂Q2n(β0, 0, 0)

∂νᵀ
(ν̃ − 0) + op(∆n)

=
1

n

n∑
i=1

∂g
ᵀ
i (β0)

∂β
γ̃ + Cᵀ(β0)ν̃ + op(∆n),

and 0 = H(β̃) = H(β0) +C(β0)(β̃−β0) + op(∆n) = C(β0)(β̃−β0) + op(∆n). Putting the

above equations into a matrix form, we obtain


−n−1∑n

i=1 gi(β0) + op(∆n)

op(∆n)

op(∆n)

 = Σn


C2
n,α0,η

n−1γ̃

β̃ − β0

ν̃

 .

where

Σn =


−C−2

n,α0,η
∑n
i=1 gi(β0)g

ᵀ
i (β0) n−1∑n

i=1
∂gi(β0)
∂βᵀ 0

n−1∑n
i=1

∂g
ᵀ
i (β0)

∂β 0 Cᵀ(β0)

0 C(β0) 0

 .
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Then we have

Σn
P−→ Σ =


−B A 0

A 0 Cᵀ

0 C 0

 .

By calculation, we have

Σ−1 =


−B−1 + B−1APAB−1 B−1AP B−1AQᵀ

PAB−1 P Qᵀ

QAB−1 Q −R

 ,

where P = V(I − CᵀQ), R = (CVCᵀ)−1, Q = RCV, V = (AB−1A)−1. Thus we have

the following


C2
n,α0,η

n−1γ̃

β̃ − β0

ν̃

 = Σ−1


−n−1∑n

i=1 gi(β0)

0

0

+ op(∆n)

By this, we could figure out that

∆n = ‖


γ̃

β̃ − β0

ν̃

 ‖ ≤ ‖

C2
n,α0,η

n−1γ̃

β̃ − β0

ν̃

 ‖

= ‖Σ−1


1

0

0


{
− 1

n

n∑
i=1

gi(β0)

}
+ op(∆n)‖ ≤ Op(Cn,α0,η/n) + op(∆n),
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which implies that ∆n = Op(Cn,α0,η/n).

In summary of the above results, we have


C2
n,α0,η

n−1γ̃

β̃ − β0

ν̃

 =


−B−1 + B−1APAB−1

PAB−1

QAB−1


{
− 1

n

n∑
i=1

gi(β0)

}
+ op(Cn,α0,η/n).

(2.6.26)

Thus we have the asymptotic expression for ν̃,

ν̃ = −RCA−1{ 1

n

n∑
i=1

gi(β0)}+ op(Cn,α0,η/n). (2.6.27)

For the asymptotic expression of β̃ − β0, (2.6.26) together with (2.6.27) gives

β̃ − β0 = [−A−1 + VCᵀRCA−1]{ 1

n

n∑
i=1

gi(β0)}+ op(Cn,α0,η/n)

= −A−1{ 1

n

n∑
i=1

gi(β0)}+ VCᵀRCA−1{ 1

n

n∑
i=1

gi(β0)}+ op(Cn,α0,η/n)

= −A−1{ 1

n

n∑
i=1

gi(β0)} −VCᵀν̃ + op(Cn,α0,η/n).

(2.6.28)

Using the expression of γ in (2.6.40) and the above asymptotic expression for β̃ − β0,
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the empirical log-likelihood ratio statistic can be written as

2`(t) = 2
n∑
i=1

γ̃ᵀgi(β̃)−
n∑
i=1

γ̃ᵀgi(β̃)g
ᵀ
i (β̃)γ̃ + op(1)

= n(
1

n

n∑
i=1

g
ᵀ
i (β̃))

n

C2
n,α0,η

B−1(
1

n

n∑
i=1

gi(β̃)) + op(1)

=
n2

C2
n,α0,η

ν̃ᵀCVAB−1AVCᵀν̃ + op(1) =
n2

C2
n,α0,η

ν̃ᵀR−1ν̃ + op(1).

By (2.6.27), we have

2`(t) =
1

C2
n,α0,η

{
n∑
i=1

gi(β0)}ᵀA−1CᵀRCA−1{
n∑
i=1

gi(β0)}+ op(1). (2.6.29)

We see that E(R1/2CA−1{
∑n
i=1 gi(β0)) = 0 and as n→∞,

C−1
n,α0,η

Var
(
R1/2CA−1{

n∑
i=1

gi(β0)}
)
→ R1/2CA−1BA−1CᵀR1/2

= R1/2C{ABA}−1CᵀR1/2 = R1/2CVCᵀR1/2 = R1/2R−1R1/2 = Iq×q

Thus, by central limit theorem, we have R1/2CA−1{C−1
n,α0,η

∑n
i=1 gi(β0)} d−→ N(0, Iq). Then

by (2.6.29), we have 2`(t)
d−→ χ2

q .

Denote δ∗n = (dn log n

nh2 )
1
2−κ + h2−κ for some 0 < κ < 1

6 .

Lemma 5. Under assumptions (C1)-(C3) and (C4)(i), we have the solution β̌(t) to the

estimating equation (2.2.7) satisfies

(a) supt∈[a,b] ‖β̌(t)− β0(t)‖ = O(δn1 + h4), a.s..

(b) And for each t ∈ [a, b], in the sphere
{
β(t) : supt∈[a,b] ‖β(t)− β0(t)‖ ≤ δ∗n

}
, where
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β0(t) is the true parameter, we have

2`(t) = n2C−2
n,α0,η

Hᵀ{β̌(t)}R(t)H{β̌(t)}+ op(nh
4/Cn,α0,η).

Proof. We first prove (a). Using the estimating equation (2.3), one obtain

0 =
1

n

n∑
i=1

gi{β̌(t)} =
1

n

n∑
i=1

1

mi

mi∑
j=1

εijXijKh(tij − t)

+
1

n

n∑
i=1

1

mi

mi∑
j=1

∆
ᵀ
β̌,ij

(t)XijXijKh(tij − t),

where ∆β̌,ij(t) = [β̂(t)− β0(t)]− [β̌(t)− β0(t)]− [β̂(tij)− β0(tij)]

It follows that

{ 1

n

n∑
i=1

1

mi

mi∑
j=1

X
ᵀ
ijXijKh(tij − t)

}
[β̌(t)− β0(t)]

=
1

n

n∑
i=1

1

mi

mi∑
j=1

εijXijKh(tij − t)

+
1

n

n∑
i=1

1

mi

mi∑
j=1

{
[β̂(t)− β0(t)]− [β̂(tij)− β0(tij)]

}ᵀ
XijXijKh(tij − t) = ḡn{β0(t)},

(2.6.30)

Since we have ḡn{β0(t)} = Õp(δn1 + h4), and we also know that from the proof of Lemma

1,

sup
t∈[a,b]

‖ 1

n

n∑
i=1

1

mi

mi∑
j=1

XijX
ᵀ
ijKh(tij − t)− Γ(t)f(t)‖ = O(δn), a.s..

Thus (2.6.30) gives supt∈[a,b] ‖β̌(t) − β0(t)‖ = O(δn1 + h4), a.s.. This completes the proof

of part (a).
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For (b), we have the following Taylor expansion for 1
n

∑n
i=1 gi{β̌(t)} by (a) for each

t ∈ [a, b], we have ‖β̌(t)− β0(t)‖ = Op(Cn,α0,η/n+ h4)

0 =
1

n

n∑
i=1

gi{β̌(t)} =
1

n

n∑
i=1

gi{β0(t)}+
1

n

n∑
i=1

∂gi{β0(t)}
∂βᵀ(t)

[β̌(t)− β0(t)] + op(Cn,α0,η/n+ h4)

=
1

n

n∑
i=1

gi{β0(t)}+ A(t)[β̌(t)− β0(t)] + op(Cn,α0,η/n+ h4),

(2.6.31)

which gives

β̌(t)− β0(t) = −A−1(t){ 1

n

n∑
i=1

gi{β0(t)}}+ op(Cn,α0,η/n+ h4). (2.6.32)

The Taylor expansion for H{β̌(t)} around β0(t) can be expressed as follows by plugging in

(2.6.32)

H{β̌(t)} = H{β0(t)}+ C(t)[β̌(t)− β0(t)] + op(Cn,α0,η/n+ h4)

= H{β0(t)} −C(t)A−1(t){ 1

n

n∑
i=1

gi{β0(t)}}+ op(Cn,α0,η/n+ h4)

= H{β0(t)}+ R−1(t)ν̃(t)−H{β0(t)}+ op(Cn,α0,η/n+ h4)

= R−1(t)ν̃(t) + op(Cn,α0,η/n+ h4),

(2.6.33)

where the second-to-last equality is due to similar result as (2.6.27) for general H{β0(t)}.
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Thus we could easily see from the proof of Lemma 4 that

2`(t) =
n2

C2
n,α0,η

ν̃ᵀR−1ν̃ + op(nh
4/Cn,α0,η)

=
n2

C2
n,α0,η

Hᵀ{β̌(t)}R(t)H{β̌(t)}+ op(nh
4/Cn,α0,η).

2.6.2.2 Proof of Propositions

In this section, we provide the proof for the Propositions in this chapter.

Proof of Proposition 1. By (2.6.32), we have

β̌(t)− β0(t) = −A−1(t){ 1

n

n∑
i=1

gi{β0(t)}}+ op(Cn,α0,η/n+ h4).

And by Lemma 2, we have

gi{β0(t)} = ξi(t){1 + õp(1)}+ Õp(h
4).

Combining these two results together, we have β̌(t) − β0(t) = −A−1(t)ξ̄n(t){1 + õp(1)} +

Õp(h
4).

And for Var{ξ̄n(t)}, from (2.6.22) in the proof of Lemma 2, we can easily get (2.2.9)

defined in the proposition.

Proof of Proposition 2. By Lemma 3, and Proposition 1, and under the bandwidth condition
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(C4) which makes the bias negligible, we have

nC−1
n,α0,η

{
β̌(t)− β0(t)

} d−→ N(0,V(t))

where V(t) = A−1(t)B(t)A−1(t).

Proof of Proposition 3. By (b) of Lemma 5, we have

2`(t) =
n2

C2
n,α0,η

Hᵀ{β̌(t)}R(t)H{β̌(t)}+ op(nh
4/Cn,α0,η).

From (2.6.33), we have that under H0 : H{β0(t)} = 0,

R1/2(t)H{β̌(t)} = −R1/2(t)C(t)A−1(t){ 1

n

n∑
i=1

gi{β0(t)}}{1 + õp(1)}

= −R1/2(t)C(t)A−1(t)ξ̄n(t){1 + õp(1)}+ Õp(h
4)

= −G(t)ξ̄n(t){1 + õp(1)}+ Õp(h
4).

By Un(t) = nC−1
n,α0,η

G(t)ξ̄n(t), we have

2`(t) = Un(t)ᵀUn(t) +Op(nh
4/Cn,α0,η).

2.6.2.3 Existence of RMELE and the asymptotic expression for γ̃

In this section, we study the existence of RMELE β̃(t) and the order of the Lagrange

multiplier γ̃(t). To this end, define δ∗n = (dn log n

nh2 )
1
2−κ + h2−κ for some 0 < κ < 1

6 where
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dn = h2 + r̄h/m.

Lemma 6. Under assumptions (C1)-(C3) and (C4)(i), in the sphere

{
β(t) : sup

t∈[a,b]
‖β(t)− β0(t)‖ ≤ δ∗n

}
, (2.6.34)

where β0(t) is the true parameter, we have (a) supt ‖n−1∑n
i=1 gi{β(t)}‖ = Op(δ

∗
n); (b)

supt maxi ‖gi{β(t)}‖ = op(δ
′−1
n ) with δ′n = nδ∗n/C

2
n,α0,η

≤ δ∗n; and (c)

lim
n→∞

P(inf
t
C−2
n,α0,η

n∑
i=1

gi{β(t)}gᵀi {β(t)} > 0) = 1.

Proof. For (a), notice that 1
n

∑n
i=1 gi{β(t)} = T1(t) + T2(t) where

T1(t) =
1

n

n∑
i=1

1

mi

mi∑
j=1

εijXijKh(tij − t)

and

T2(t) =
1

n

n∑
i=1

1

mi

mi∑
j=1

∆
ᵀ
β,ij(t)XijXijKh(tij − t)

where ∆β,ij(t) = [β̂(t)− β0(t)]− [β(t)− β0(t)]− [β̂(tij)− β0(tij)].

For T1(t), by Lemma 1 in [LH10] for the process ε(t)X(t), under the condition (C2), as

we proved in Lemma 1, we have since E{T1(t)} = 0 and hence supt ‖T1(t)‖ = O(δ∗n1), a.s..
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For T2(t), by Lemma 1 and the assumption for β(t) in (2.6.34),

sup
t
‖T2(t)‖ ≤ sup

t

1

n

n∑
i=1

1

mi

mi∑
j=1

‖∆β,ij(t)‖‖Xij‖2Kh(tij − t)

≤(2 sup
t
‖β̂(t)− β0(t)‖+ sup

t
‖β(t)− β0(t)‖)

× sup
t

1

n

n∑
i=1

1

mi

mi∑
j=1

‖Xij‖2Kh(tij − t) = Op(δ
∗
n).

Thus we have supt ‖n−1∑n
i=1 gi{β(t)}‖ = Op(δ

∗
n). This finishes the proof for part (a).

For proving part (b), note that,

sup
t
‖gi{β(t)}‖

≤ sup
t
‖ 1

mi

mi∑
j=1

εijXijKh(tij − t)‖+ sup
t
‖ 1

mi

mi∑
j=1

∆
ᵀ
β,ij(t)XijXijKh(tij − t)‖

≤ sup
t
‖εi(t)Xi(t)‖ sup

t

1

mi

mi∑
j=1

Kh(tij − t)

+

{
2 sup

t
‖β̂(t)− β0(t)‖+ sup

t
‖β(t)− β0(t)‖

}
sup
t
‖Xi(t)‖2 sup

t

1

mi

mi∑
j=1

Kh(tij − t)

≤
(

sup
t
‖εi(t)Xi(t)‖+ C1δ

∗
n sup

t
‖Xi(t)‖2

)
sup
t

1

mi

mi∑
j=1

Kh(tij − t).

If mi’s are bounded, then we have suptmi
−1∑mi

j=1Kh(tij − t) = Op(1/h). And if mi’s tend

to infinity, then by the theorem in [Sil78] we have suptmi
−1∑mi

j=1Kh(tij−t) = Op(1) under

the regularity conditions of the kernel function in (C1).
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For the case mi’s bounded, we have δ′n = hδ∗n and

sup
t
‖gi{β(t)}‖ ≤ sup

t

1

mi

mi∑
j=1

Kh(tij − t){sup
t
‖εi(t)Xi(t)‖+ C1δ

∗
n sup

t
‖Xi(t)‖2}

≤ C

h
(sup
t
‖εi(t)Xi(t)‖+ δ∗n sup

t
‖Xi(t)‖2).

Then we have, for any ε > 0, by assumption (C4),

P( max
1≤i≤n

sup
t
‖gi{β(t)}‖ > ε

δ′n
)

≤nP
{
C

h
(sup
t
‖εi(t)Xi(t)‖+ δ∗n sup

t
‖Xi(t)‖2) >

ε

hδ∗n

}
≤nP(sup

t
‖ε(t)X(t)‖ > ε

2Cδ∗n
) + nP(sup

t
‖Xi(t)‖2 >

ε

2Cδ∗2n
)

≤nE{[sup
t
‖ε(t)X(t)‖]λ}(2Cδ∗n

ε
)λ + nE{[sup

t
‖X(t)‖]λ1}(2Cδ∗2n

ε
)λ1/2

≤n
(

(
2Cδ∗n
ε

)λE{sup
t
‖ε(t)‖λ}+ (

2Cδ∗2n
ε

)λ1/2
)
E{[sup

t
‖X(t)‖]λ1}

≤Cn{(δ∗n)λ + (δ∗n)λ1} ≤ Cn(δ∗n)λ → 0,

where λ = min{λ1, λ2}. This implies supt maxi ‖gi{β(t)}‖ = op(δ
′−1
n ).

For the case that mi’s tend to infinity,we have

sup
t
‖gi{β(t)}‖ ≤ sup

t

1

mi

mi∑
j=1

Kh(tij − t){sup
t
‖εi(t)Xi(t)‖+ C1δ

∗
n sup

t
‖Xi(t)‖2}

≤ C

{
sup
t
‖εi(t)Xi(t)‖+ δ∗n sup

t
‖Xi(t)‖2

}
.
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Then we have, for any ε > 0, by assumption (C4),

P

{
max

1≤i≤n
sup
t
‖gi{β(t)}‖ > ε

δ∗n

}
≤ Cn

{
(δ∗n)λ + (δ∗n)λ1

}
≤ Cn(δ∗n)λ → 0,

where λ = min{λ1, λ2}. This implies supt maxi ‖gi{β(t)}‖ = op(δ
∗−1
n ) = op(δ

′−1
n ). This

completes the proof of part (b).

For (c), we need to show that, for any u ∈ Rp,

lim
n→∞

P(inf
t
C−2
n,α0,η

n∑
i=1

uᵀgi(β(t))g
ᵀ
i (β(t))u > 0) = 1. (2.6.35)

In fact, note that

C−2
n,α0,η

n∑
i=1

gi{β(t)}gᵀi {β(t)}

= C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

εijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t)

+ C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

∆
ᵀ
β,ij(t)XijXijX

ᵀ
ilεilKh(tij − t)Kh(til − t)

+ C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

∆
ᵀ
β,ij(t)XilXijX

ᵀ
ilεijKh(tij − t)Kh(til − t)

+ C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

∆
ᵀ
β,ij(t)Xij∆

ᵀ
β,il(t)XilXijX

ᵀ
ilKh(tij − t)Kh(til − t)

= C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

εijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t) + õp(1),
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by Lemma 1, and the assumption (2.6.34) for β(t). Thus we have for any εu > 0,

P(inf
t
C−2
n,α0,η

n∑
i=1

uᵀgi{β(t)}gᵀi {β(t)}u > 0)

≥P(inf
t
C−2
n,α0,η

n∑
i=1

uᵀgi{β(t)}gᵀi {β(t)}u > εu)

=P(inf
t
C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

uᵀεijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t)u + õp(1) > εu)

≥P(inf
t
C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

uᵀεijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t)u > 2εu, |op(1)| < εu)

=P(inf
t
C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

uᵀεijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t)u > 2εu)

−P(inf
t
C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

uᵀεijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t)u > 2εu, |op(1)| ≥ εu)

≥P(inf
t
C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

uᵀεijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t)u > 2εu)− P(|op(1)| ≥ εu).

Now since limn→∞P(|op(1)| ≥ εu) = 0, for proving (2.6.35) we only need to prove that for

some εu > 0,

lim
n→∞

P(inf
t
C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

uᵀεijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t)u > εu) = 1. (2.6.36)

To this end, note that

E

 1

m2
i

mi∑
j,l=1

εijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t)

 = Var(ξi(t))

= Õ{(mh)−1}1{κ0 = 0}+ Õ(1)1{κ0 =∞}.
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By the strong law of large numbers, we have

C−2
n,α0,η

n∑
i=1

1

m2
i

mi∑
j,l=1

εijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t)→ L(t), a.s.,

where L(t) = r̄Γ(t)Ω(t)f(t)µ201{κ0 = 0} + Γ(t)Ω(t)f2(t)1{κ0 = ∞}. By taking εu =

1
2 inft u

ᵀL(t)u > 0, we have

lim
n→∞

P
{

inf
t

1

n

n∑
i=1

1

m2
i

mi∑
j,l=1

uᵀεijεilXijX
ᵀ
ilKh(tij − t)Kh(til − t)u > εu

}
= 1.

Hence (c) is proved.

Lemma 7. Under assumptions (C1)-(C3) and (C4)(i), in the sphere

{
β(t) : sup

t∈[a,b]
‖β(t)− β0(t)‖ ≤ δ∗n

}
, (2.6.37)

where β0(t) is the true parameter, the equation Q1n{β(t),γ(t)} = 0 almost surely has root

γ(t) = γ{β(t)} and supt∈[a,b] ‖γ(t)‖ = Op(δ
′
n),where δ′n = nδ∗n/C

2
n,α0,η

≤ δ∗n.

Proof. Similar to the proof in [Owe90], let γ(t) := ρ(t)θ(t) with ‖θ(t)‖ = 1 and ρ(t) ≥ 0,

and then from the equation

Q1n{β(t),γ(t)} =
1

n

∑
i

gi{β(t)}
1 + γᵀ(t)gi{β(t)}

= 0,

we have

ρ(t)θᵀ(t)S(t)θ(t)

1 + ρ(t) supt maxi ‖gi{β(t)}‖
− 1

n
|θᵀ(t)

n∑
i=1

gi{β(t)}| ≤ 0, (2.6.38)

where S(t) = 1
n

∑n
i=1 gi{β(t)}gᵀi {β(t)}. By applying (a)-(c) in Lemma 6 and (2.6.38), we
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have

ρ(t)θᵀ(t)nC−2
n,α0,η

S(t)θ(t) ≤ {1 + ρ(t) sup
t

max
i
‖gi(β(t))‖} 1

C2
n,α0,η

|θᵀ(t)
n∑
i=1

gi{β(t)}|

= {1 + ρ(t)õp(δ
′−1
n )}Õp(δ′n) = Õp(δ

′
n) + ρ(t)õp(1),

which implies

ρ(t) ≤
Õp(δ

′
n)

θᵀ(t)nC−2
n,α0,η

S(t)θ(t) + op(1)
∼ Õp(δ

′
n),

since S(t) ∼ C2
n,α0,η

/n uniformly for t ∈ [a, b]. Namely we proved supt ‖γ(t)‖ = Op(δ
′
n).

Remark 4. For γ{β0(t)}, we have supt ‖γ(β0(t))‖ = Op(nδn/C
2
n,α0,η

). This is because

Lemma 1, Lemma 6 and Lemma 7 are still true if we replace β(t) by β0(t) and δ∗n by δn. This

implies that supt ‖γ(β0(t))‖ = Op{(log(n)/nh)1/2} for sparse data and supt ‖γ(β0(t))‖ =

Op{(log(n)/n)1/2} for dense data.

Expression for γ(t): From the equation Q1n, we have

0 = Q1n{β(t),γ(t)} = n−1
n∑
i=1

gi{β(t)}
1 + γᵀ(t)gi{β(t)}

= n−1
n∑
i=1

gi{β(t)} − n−1
n∑
i=1

gi{β(t)}gᵀi {β(t)}γ(t)

+ n−1
n∑
i=1

gi{β(t)} [γᵀ(t)gi{β(t)}]2

1 + γᵀ(t)gi{β(t)}
(2.6.39)

In the following, we want to show that the order of the third term is õp(δ
′
n). To this end, we

firstly observe that

|γᵀ(t)gi{β(t)}| ≤ sup
t

max
i
‖gi{β(t)}‖ sup

t
‖γ(t)‖ = õp(δ

∗−1
n )Õp(δ

∗
n) = õp(1).
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Thus we have

n−1
n∑
i=1

gi{β(t)} [γᵀ(t)gi{β(t)}]2

1 + γᵀ(t)gi{β(t)}
∼ n−1

n∑
i=1

gi{β(t)}[γᵀ(t)gi{β(t)}]2.

Let γᵀ(t) = (γ1(t), γ2(t), · · · , γp(t)) and g
ᵀ
i {β(t)} = (gi1{β(t)}, · · · , gip{β(t)}), i = 1, 2, · · · , n.

Then u-th component of n−1∑n
i=1 gi{β(t)}[γᵀ(t)gi{β(t)}]2 is

n−1
n∑
i=1

p∑
j,k=1

γj(t)γk(t)giu{β(t)}gij{β(t)}gik{β(t)}

whose absolute value can be bounded by

|n−1
n∑
i=1

p∑
j,k=1

γj(t)γk(t)giu{β(t)}gij{β(t)}gik{β(t)}|

≤(sup
t
‖γ(t)‖)2 sup

t
max
i
|giu{β(t)}|

∣∣∣n−1
n∑
i=1

p∑
j,k=1

gij{β(t)}gik{β(t)}
∣∣∣

≤(sup
t
‖γ(t)‖)2 sup

t
max
i
‖gi{β(t)}‖

∣∣∣n−1
n∑
i=1

(

p∑
j=1

gij{β(t)})2
∣∣∣

≤C(sup
t
‖γ(t)‖)2 sup

t
max
i
‖gi{β(t)}‖ sup

t

p

n

n∑
i=1

‖gi{β(t)}‖2

=Õp{(δ′n)2}õp(δ∗−1
n )Õp(1) = õp(δ

′
n),

This means that the third term in (2.6.39) is of order õp(δ
′
n). It then follows that

γ(t) =

{
n−1

n∑
i=1

gi{β(t)}gᵀi {β(t)}

}−1{
n−1

n∑
i=1

gi{β(t)}

}
+ õp(δ

′
n). (2.6.40)
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Lemma 8. Under assumptions (C1)-(C3) and (C4)(i), in the sphere

{
β(t) : sup

t∈[a,b]
‖β(t)− β0(t)‖ ≤ δ∗n

}
,

the equation system (2.3.15) almost surely has root in

Uδ∗n = {(β(t),γ(t),ν(t)) : sup
t
‖β(t)− β0(t) + γ(t) + ν(t)‖ ≤ δ∗n}.

And any solution is indeed a solution to the minimization problem (3.2).

Proof. Since we have already proved in Lemma 7 that for every β(t) ∈ {β(t) : supt∈[a,b] ‖β(t)−

β0(t)‖ ≤ δ∗n}, the equation Q1n(β(t),γ(t)) = 0 almost surely has root γ(t) = γ(β(t)) =

Õ(δ′n), we only have to prove the following:

(a) For every β(t) ∈ {β(t) : supt ‖β(t)− β0(t)‖ ≤ δ∗n}, ν(t) = ν{β(t)} = Õ(δ∗n) could be

solved from the equations Q2n(β(t),γ(t),ν(t)) = 0.

(b) And there almost surely exists a solution β̃(t) ∈ Uδ∗n to the equation system (3.3).

(c) Any solution is indeed a solution to the minimization problem (3.2).

In order to prove (a), recall the expression in (2.6.40) and the asymptotic variance B(t)

in Lemma 3, by the uniformly strong law of large numbers (SLLN), we have

C−2
n,α0,η

n∑
i=1

gi{β(t)}gᵀi {β(t)} = B(t) + õp(1).
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Thus

γ{β(t)} =

{
n−1

n∑
i=1

gi{β(t)}gᵀi {β(t)}

}−1{
n−1

n∑
i=1

gi{β(t)}

}
+ õp(δ

′
n)

= B−1(t)

{
1

C2
n,α0,η

n∑
i=1

gi{β(t)}

}
+ õp(δ

′
n),

(2.6.41)

and

γ{β0(t)} = Õp(nδn/C
2
n,α0,η

) = õp(nδ
∗
n/C

2
n,α0,η

) = õp(δ
′
n). (2.6.42)

We have

∂γ{β(t)}
∂βᵀ(t)

= B−1(t)

{
C−2
n,α0,η

n∑
i=1

∂gi{β(t)}
∂βᵀ(t)

}
+ õp(δ

′
n). (2.6.43)

Because the uniformly SLLN gives n−1∑n
i=1

∂gi{β0(t)}
∂βᵀ(t)

= A(t) + õp(1) where A(t) =

Γ(t)f(t), we have the following

∂γ{β0(t)}
∂βᵀ(t)

= B−1(t)

{
C−2
n,α0,η

n∑
i=1

∂gi{β0(t)}
∂βᵀ(t)

}
+ õp(δ

′
n)

= nC−2
n,α0,η

B−1(t)A(t) + õp(δ
′
n).

(2.6.44)

Let S{β(t)} = n−1∑n
i=1

∂g
ᵀ
i {β(t)}/∂β(t)

1+γᵀ{β(t)}gi{β(t)} , then

Q2n{β(t),γ(t),ν(t)} = S{β(t)}γ{β(t)}+ Cᵀ{β(t)}ν(t). (2.6.45)
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For the taylor expansion of Q2n{β(t),γ(t),ν(t)} at β0(t), we need the following:

S{β(t)} = n−1
n∑
i=1

∂g
ᵀ
i {β(t)}/∂β(t)

1 + γᵀ{β(t)}gi{β(t)}

= n−1
n∑
i=1

∂g
ᵀ
i {β(t)}
∂β(t)

{
1− γᵀ{β(t)}gi{β(t)}

1 + γᵀ{β(t)}gi{β(t)}

}

= n−1
n∑
i=1

∂g
ᵀ
i {β(t)}
∂β(t)

+ Õp(δ
′
n),

(2.6.46)

which implies that

S{β0(t)} = A(t) + Õp(δ
′
n). (2.6.47)

Hence we have

∂S{β(t)}
∂βᵀ(t)

= n−1
n∑
i=1

∂2g
ᵀ
i {β(t)}

∂βᵀ(t)∂β(t)
+ Õp(δ

′
n), (2.6.48)

∂S{β0(t)}
∂βᵀ(t)

= E
∂2g

ᵀ
i {β0(t)}

∂βᵀ(t)∂β(t)
+Op(δ

′
n) := D(t) + Õp(δ

′
n). (2.6.49)

Let W{β(t)} = S{β(t)}γ{β(t)} and define S{β(t)} = (S1,S2, · · · ,Sp) where Sj is the j-th

column of S{β(t)}. Then by (2.6.42), (2.6.44), (2.6.47), (2.6.49) and the assumption about
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β(t) we have

W{β(t)} = W{β0(t)}+ S{β0(t)}∂γ{β0(t)}
∂βᵀ(t)

(β(t)− β0(t))

+

p∑
j=1

∂Sj
∂βᵀ(t)

γj{β0(t)}(β(t)− β0(t)) + Õp{(δ∗n)2}

= {A(t) + Õp(δ
′
n)}õp(δ′n)

+ {[A(t) + Õp(δ
′
n)][nC−2

n,α0,η
B−1(t)A(t) + õp(δ

′
n)]

+ [D(t) + Õp(δ
′
n)]õp(δ

′
n)}[β(t)− β0(t)] + Õp{(δ∗n)2}

= nC−2
n,α0,η

A(t)B−1(t)A(t)[β(t)− β0(t)] + õp(δ
′
n).

By plugging the above into (2.6.45), we get

0 = nC−2
n,α0,η

A(t)B−1(t)A(t)[β(t)− β0(t)] + Cᵀ{β(t)}ν(t) + õp(δ
′
n). (2.6.50)

Since A(t)B−1(t)A(t) is invertible, by multiplying C(t){A(t)B−1(t)A(t)}−1 on both side

of (2.6.50) we have

0 = nC−2
n,α0,η

C(t)[β(t)− β0(t)] + C(t){A(t)B−1(t)A(t)}−1Cᵀ{β(t)}ν(t) + õp(δ
′
n).

(2.6.51)

From the third equation of the equation system (3.3),

0 = H{β(t)} = H{β0(t)}+ C(t)[β(t)− β0(t)] + õ(δ′n)

= C(t)[β(t)− β0(t)] + õ(δ′n),
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we have

C(t)[β(t)− β0(t)] = õ(δ′n). (2.6.52)

Combine (2.6.51) and (2.6.52),

C(t){A(t)B−1(t)A(t)}−1Cᵀ{β(t)}ν(t) = −nC−2
n,α0,η

C(t)[β(t)− β0(t)] + op(δ
′
n) = op(δ

′
n),

That is

ν(t) =
{

C(t){A(t)B−1(t)A(t)}−1Cᵀ{β(t)}
}−1

op(δ
′
n) = op(δ

′
n). (2.6.53)

Hence we proved (a).

For proving (b), from (2.6.50) and (2.6.53), we have

0 = nC−2
n,α0,η

A(t)B−1(t)A(t)[β(t)− β0(t)] + Cᵀ{β(t)}ν(t) + op(δ
′
n)

= nC−2
n,α0,η

A(t)B−1(t)A(t)[β(t)− β0(t)] + op(δ
′
n),

which implies that

0 = −A(t)B−1(t)A(t)[β(t)− β0(t)] + op(δ
∗
n). (2.6.54)

Now consider the above equation (2.6.54) and define a function φ on the the unit disk in Rp

by

φ

(
β(t)− β0(t)

δ∗n

)
= −A(t)B−1(t)A(t)[β(t)− β0(t)] + op(δ

∗
n).
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We know that φ is a continuous function on the unit disk. Also we have

δ∗−1
n [β(t)− β0(t)]ᵀφ

(
β(t)− β0(t)

δ∗n

)
=− δ∗−1

n [β(t)− β0(t)]ᵀA(t)B−1(t)A(t)[β(t)− β0(t)] + op(δ
∗
n).

Hence on the circle ‖β(t)− β0(t)‖ = δ∗n, we have

δ∗−1
n [β(t)− β0(t)]ᵀφ

(
β(t)− β0(t)

δ∗n

)
=− δ∗−1

n [β(t)− β0(t)]ᵀA(t)B−1(t)A(t)[β(t)− β0(t)] + op(δ
∗
n)

≤− δ∗nτ0(t) + op(δ
∗
n) < 0, if n big enough,

where τ0(t) > 0 is the smallest eigenvalue of A(t)B−1(t)A(t), which is positive definite.

Thus by the lemma in [AS58], there exists a point β̃(t) ∈ Uδ∗n and φ{ β̃(t)−β0(t)

δ∗n
} = 0, which

means β̃(t) is a solution to the equation system (3.3).

Next we have to prove (c). Assuming that β̃(t) is a solution in Uδ∗n , we let β(t) be a point

in a neighborhood of β̃(t) contained in Uδ∗n such that H{β(t)} = 0 and ‖β(t)−β̃(t)‖ > δ > 0.

Then by expanding l0{β(t)} at β̃(t) we have

l0{β(t)} − l0{β̃(t)} =
∂l0{β̃(t)}
∂βᵀ(t)

[β(t)− β̃(t)]

+
1

2
[β(t)− β̃(t)]ᵀ

∂2l0{β∗(t)}
∂β(t)∂βᵀ(t)

[β(t)− β̃(t)], (2.6.55)

where β∗(t) ∈ Uδ∗n . We wish to show that

l0{β(t)} − l0{β̃(t)} > 0.
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Next, we approximate the two terms on the right side of (2.6.55): For the first term, note

that

∂l0{β̃(t)}
∂βᵀ(t)

=
n∑
i=1

1

1 + γᵀ{β̃(t)}gi{β̃(t)}
g
ᵀ
i {β̃(t)}∂γ{β̃(t)}

∂βᵀ(t)

+
n∑
i=1

1

1 + γᵀ{β̃(t)}gi{β̃(t)}
γᵀ{β̃(t)}∂gi{β̃(t)}

∂βᵀ(t)

=
n∑
i=1

1

1 + γᵀ{β̃(t)}gi{β̃(t)}
γᵀ{β̃(t)}∂gi{β̃(t)}

∂βᵀ(t)

= nγᵀ{β̃(t)}Sᵀ{β̃(t)} = nWᵀ{β̃(t)}.

(2.6.56)

By (2.6.45), we have

Wᵀ{β̃(t)} = −ν̃ᵀ(t)C{β̃(t)}. (2.6.57)

From the taylor expansion of H{β(t)} at β̃(t), we have

0 = H{β(t)} −H{β̃(t)} = C{β̃(t)}[β(t)− β̃(t)] + õ(δ∗n),

from which we could obtain

C{β̃(t)}[β(t)− β̃(t)] = õ(δ∗n). (2.6.58)

Thus, for the first term of (2.6.55), combining (2.6.56)-(2.6.58) we have

∂l0{β̃(t)}
∂βᵀ(t)

[β(t)− β̃(t)] = nWᵀ{β̃(t)}[β(t)− β̃(t)]

= −nν̃ᵀ(t)C{β̃(t)}[β(t)− β̃(t)] = −n2C−2
n,α0,η

õp{(δ∗n)2}.
(2.6.59)
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For the second term of (2.6.55), we have

∂2l0{β∗(t)}
∂β(t)∂βᵀ(t)

= n
∂Wᵀ{β∗(t)}

∂β(t)
= n

{
∂γᵀ{β∗(t)}
∂β(t)

Sᵀ{β∗(t)}+ γ{β∗(t)}∂S
ᵀ{β∗(t)}
∂β(t)

}
= n[nC−2

n,α0,η
A(t)B−1(t) + õp(δ

′
n)][A(t) + Õp(δ

′
n)]

+ nÕp(δ
′
n)[D(t) + Õp(δ

′
n)]

= n{nC−2
n,α0,η

A(t)B−1(t)A(t) + Õp(δ
′
n)}.

It follows that

1

2
[β(t)− β̃(t)]ᵀ

∂2l0{β∗(t)}
∂β(t)∂βᵀ(t)

[β(t)− β̃(t)]

=
1

2
[β(t)− β̃(t)]ᵀn{nC−2

n,α0,η
A(t)B−1(t)A(t) + Õp(δ

′
n)}[β(t)− β̃(t)]

=
n2

2C2
n,α0,η

[β(t)− β̃(t)]ᵀA(t)B−1(t)A(t)[β(t)− β̃(t)] +
n2

C2
n,α0,η

õp{(δ∗n)2}.

(2.6.60)

Hence, plugging (2.6.59) and (2.6.60) into (2.6.55), we have

l0{β(t)} − l0{β̃(t)}

=
n2

C2
n,α0,η

{
1

2
(β(t)− β̃(t))ᵀA(t)B−1(t)A(t)(β(t)− β̃(t)) + õp{(δ∗n)2}

}
≥ n2

C2
n,α0,η

(δ∗n)2{1

2
τ0(t) + õp(1)} > 0, if n big enough,

where τ0(t) > 0 is the smallest eigenvalue of A(t)B−1(t)A(t), which is positive definite.
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Chapter 3

Unified simultaneous empirical

likelihood ratio tests for functional

linear models and the phase transition

from sparse to dense functional data

3.1 Introduction

In this chapter, we continue to consider the same model (2.1.1) as we discussed in Chapter

2. And we are interested in the same hypothesis testing problem as in (2.1.2),

H0 : H{β0(·)} = 0 vs H1 : H{β0(·)} 6= 0. (3.1.1)

But instead of testing the coefficient functions at a fixed point t as in Chapter 2, we would

like to test the functions simultaneously on the whole support [a, b].

In this chapter, we propose nonparametric test based on the pointwise empirical likelihood

ratio test in Chapter 2, to test (2.1.2) simultaneously. Since in Chapter 2, we showed the

EL-based pointwise tests enjoy a nice self-normalizing property such that both sparse and

dense functional data can be treated under a unified framework, the simultaneous testing
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procedure to be developed here can also treat all types of functional data with different

denseness in a unified way.

To investigate the power of the tests, we consider the same local alternatives (2.1.3) as

in Chapter 2 for the entire functions β0(·) simultaneously

H1n : H{β0(·)} = bnd(·), (3.1.2)

For the sparse data with η = 0, it is also known that the EL method using a global bandwidth

h [CZ10] can detect alternatives of order bn = n−1/2h−1/4 for simultaneous test, which is

also larger than n−1/2. Similarly as in the pointwise case in Chapter 2, for dense data with

η > 0, the detectable order bn is still largely unknown. This leads to the same key interest

in this chapter as in the last chapter, understanding the effect of η on bn. We use the same

principle to get the optimal bn by maximizing the power of the test (i.e., minimizing the order

of bn) while controlling the type I error at the desired level. Under some mild conditions, we

find that, for the simultaneous test, bn is larger than n−1/2 for η ≤ 1/16 and equals to n−1/2

for η > 1/16. The transition points 1/16 will be still refereed as η0 as in the pointwise case

for this simultaneous test. Once η > η0, with a properly chosen bandwidth, the proposed

tests can detect a signal at a parametric rate. This phase transition result echoes the similar

phenomena discovered by [LH10] for estimation problems.

The rest of the chapter is organized as follows. We propose the unified simultaneous test

in Section 3.2 where we investigate the asymptotic distributions of the test statistic under

both the null and local alternatives, and the transition phases for bn. Simulation studies

are presented in Section 3.3, followed by two real data analysis examples, one for sparse and

one for dense functional data, in Section 3.4. All the technical details are relegated to the

67



Section 3.5.

3.2 A unified simultaneous test

We assume the same regularity conditions (C1)-(C4) for kernel function, moments of the

underlying processes, smoothness of the related functions and the selection of bandwidth as

in 2.2.2 in Chapter 2.

We now consider a simultaneous test on H0 in (3.1.1) for all t ∈ [a, b]. By Lemma 5 in

Section 2.6.2 in Chapter 2

2`(t) = n2C−2
n,α0,η

Hᵀ{β̌(t)}R(t)H{β̌(t)}+ õp(1).

Intuitively, 2`(t) measures the distance between H{β0(t)} and 0 at any t ∈ [a, b]. To test

the hypothesis (3.1.1) simultaneously, we propose a Cramér-von Mises type test statistic

Tn =

∫ b

a
2`(t)w(t)dt, (3.2.3)

where w(·) is a known probability density function. The construction of Tn allows us to

borrow information across the time domain and yield a more powerful test than the pointwise

test. Similar constructions were used by [HM93] and [CZ10]. The weight function w(t)

is a subjective choice of the practitioner. The most commonly used weight function is a

uniform density to put equal weights on all points, but if there is prior knowledge on the

importance of a particular subinterval one can change w(t) to put more weights on the

important subinterval.
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3.2.1 Null distribution and local power

By the asymptotic decomposition of 2`(t) in Proposition 3 in Chapter 2, we need to first un-

derstand the covariance structure of the process Un(t) in order to investigate the distribution

of Tn.

Proposition 4. Under Conditions (C1)-(C4) and H0, Cov{Un(s),Un(t)} = Σn(s, t) ×

{1 + op(1)} where

Σn(s, t) =



µ−1
20 K

(2)(s−th )Iq, if m2h→ 0,

IqI(s = t) +mhΣ0(s, t)I(s 6= t) if m2h→∞ and mh→ 0,

Σ0(s, t), if mh→∞,

K(2)(x) =
∫
K(y)K(x− y)dy and Σ0(s, t) = G(s)Γ(s, t)Gᵀ(t)Ω(s, t)f(s)f(t).

Obviously, the leading term in the covariance of Un(t) is different under different asymp-

totic scenarios. In the second case in the expression of Σn(s, t), the IqI(s = t) term seems to

dominate but is only non-zero in an area with Lebesgue measure 0; the mhΣ0(s, t)I(s 6= t)

term is nonzero almost everywhere and produces the leading order variance of Tn in this

case.

Suppose the covariance function Σn(s, t) has the following spectral decomposition [Bal60]

Σn(s, t) =
∑∞
k=1γnkφnk(s)φ

ᵀ
nk(t) for any s, t ∈ [a, b],

where γn1 ≥ γn2 ≥ · · · ≥ 0 are the ordered eigenvalues and φn1(t), φn2(t), · · · are the

associated eigenfunctions. The eigenfunctions are vector valued orthonormal functions sat-
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isfying
∫ b
a φ

ᵀ
nk(t)φnl(t)w(t)dt = δlk where δlk = 1 if k = l and 0 otherwise. Even though

the eigenvalues γnk change under different asymptotic scenarios, it is easy to verify that∑∞
k=1 γnk = tr{

∫
Σn(t, t)w(t)dt} = q for all cases in Proposition 4. Also note that in the

third case of Proposition 4, Σn = Σ0 does not depend on n and therefore γnk ≡ γk and

φnk(t) ≡ φk(t) for all k.

To establish the asymptotic distribution of Tn, we need all the conditions in Chapter 2

with replacing the condition (C4)(ii) by

(C4)(ii’): 2(1 + η)/17 < α0 if η ∈ [0, 1/8] and 1/8 < α0 < η if η > 1/8.

Under the null hypothesis, we can define a q-dimensional Gaussian process U(t), with mean

000 and covariance Cov(U(s),U(t)) = Σn(s, t), as a counterpart of the process Un(t). We will

show that the limiting distribution of Tn is the same as that of Zn =
∫ b
a Uᵀ(t)U(t)w(t)dt,

which follows a χ2-mixture distribution. This result is described in the following theorem,

the proof of which is provided in the Section 3.5.1.

Theorem 2. Under H0 in (3.1.1) and Conditions (C1)-(C3), (C4)(i) and (C4)(ii’), Tn
d
=

Zn × {1 + op(1)}, where Zn
d
=
∑∞
k=1γnkχ

2
1,k and χ2

1,k, k = 1, 2, . . ., are independent chi-

square random variables with one degree of freedom.

Remark 5. The asymptotic χ2-mixture distribution in Theorem 2 is quite different from

the asymptotic normal distribution for classic empirical likelihood ratio tests for independent

data, time series or sparse longitudinal data [CHL03, CZ10]. In fact, for dense functional

data, our calculation shows the E{(Tn−ETn)4} 6= 3var2(Tn), and hence Tn can behave quite

differently from a Gaussian variable. However, for sparse or moderately dense functional

data with η ≤ 1/16, the χ2-mixture is also asymptotically normal. This result is collected in

the following corollary, the proof of which is given in Section 3.5.1.
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Corollary 1. Under the same conditions as those in Theorem 2, if η ≤ 1/16, we have

h−1/2(Tn − q)
d−→ N(0, qσ2

0)

where σ2
0 = 2µ−2

20

∫ b
a w

2(t)dt
∫ 2
−2{K

(2)(u)}2du.

Corollary 1 makes a connection between our general results in Theorem 2 with the classic

results. The null distribution of Tn is different under different asymptotic scenarios and may

depend on some unknown quantities such as γnk, which makes it difficult to use in practice.

In the next subsection, we will propose a bootstrap method unanimously applicable to all

types of functional data to estimate this null distribution. Next, we study the power of the

simultaneous test under the local alternatives.

Theorem 3. Suppose that the local alternative hypothesis in (3.1.2) holds and Conditions

(C1)-(C3), (C4)(i) and (C4)(ii’) are satisfied.

(a) If η ≤ 1/16 and bn = n−1/2(m2h)−1/4, then h−1/2(Tn − q)
d−→ N(µ0, qσ

2
0), where

µ0 =
∫ b
a dᵀ(t)R(t)d(t)w(t)dt and σ2

0 is defined in Corollary 1.

(b) If 1/16 < η ≤ 1/8, α0 < 2η and bn = n−1/2+ε for an arbitrarily small ε > 0, then

σ−1
1 (Tn − q − nb2nmhµ0)

d→ N(0, 1) where σ2
1 = 4nb2n(mh)2µ1 and

µ1 =

∫ b

a

∫ b

a
dᵀ(t)R1/2(t)Σ0(t, s)R1/2(s)d(s)w(t)w(s)dtds.

(c) If η > 1/8 and bn = n−1/2, let uk =
∫ b
a [R1/2(t)d(t)]ᵀφk(t)w(t)dt. Then Tn

d→∑∞
k=1 γkχ

2
1,k

(
u2
k/γk

)
.
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We can use Theorem 3 to examine the power and size of detectable signals of the simul-

taneous test under different scenarios. We use the same principle (2.3.18) in Chapter 2 to

determine the optimal rate for bn. When η ≤ 1/16, following part (a) in Theorem 3, the

asymptotic power of the test is B(d) = Φ
(
−zα+µ0/

√
qσ0

)
where µ0 and σ0 are defined in

Theorem 3 and Φ(·) is the CDF of a standard normal distribution. The test has nontrivial

powers for signals of size bn = n−1/2(m2h)−1/4. Under the constraints (C4)(i) and (C4)(ii’)

on h, bn attains its minimum at h∗ = n−2(1+η+δ)/17 for any arbitrary small δ > 0 such that

bn = n−8(1+η)/17+δ/34. By letting δ → 0, the optimal detectable order is b∗n = n−8(1+η)/17.

When 1/16 < η ≤ 1/8, by our calculations in Proposition 4 and Theorem 2 the null distri-

bution of Tn is a χ2 mixture with mean (
∑∞
k=1 γnk)×{1+o(1)} = q×{1+o(1)} and variance

(2
∑
k γ

2
nk)×{1+o(1)} = tr{

∫∫
Σ2
n(s, t) w(s)w(t)dsdt}×{1+o(1)} = O(mh). Therefore, the

threshold for an α-level test is of the form q+ cn,α, where cn,α ≤ (2
∑
k γ

2
nk/α)1/2 = O(mh)

by Chebyshev’s inequality. By part (b) of Theorem 3, the asymptotic power is

B(d) = Φ
(
−

cn,α
2
√
nbnmh

√
µ1

+
µ0

2
√
µ1

√
nbn

)
→ 1,

for bn = n−1/2+ε with an arbitrarily small ε > 0. This also means that the test has nontrivial

powers for signals of size b∗n = n−1/2.

Similarly, the power of the test under case (c) is

B(d) = P
( ∞∑
k=1

γkχ
2
1,k

(
u2
k/γk

)
> q + cα

)

where q + cα is the α-th quantile of
∑∞
k=1 γkχ

2
1,k. In this case, B(d) is a constant as long

as d(t) is a fixed non-zero function, which implies that the test has a non-trivial power if
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bn = n−1/2. Combining parts (b) and (c), the optimal detectable order of the simultaneous

test is b∗n = n−1/2 when η > 1/16.

Note that the optimal detectable order for the simultaneous test is smaller than that

of the pointwise test we obtained in Chapter 2 when η ≤ 1/8. This is understandable

because the simultaneous test borrow information over the entire time domain and is more

powerful. Both the pointwise and simultaneous tests can detect signals of root-n order for

dense functional data with η > 1/8.

3.2.2 Wild bootstrap procedure

The asymptotic distributions of Tn are different for sparse and dense functional data, but

the boundary between different scenarios is defined only in the asymptotic sense, making

different asymptotic scenarios very difficult to distinguish in practice. To unify the inference

procedure, we propose a wild bootstrap procedure [Mam93]. Some residual based bootstrap

procedures have also been proposed in [Far97] and [ZC07] for dense functional data, but

the consistency of such procedures was not investigated. The proposed bootstrap procedure

consists of the following steps:

Step 1: Generating bootstrap samples {Y ∗(b)ij , t
(b)
ij ,X

(b)
ij }

B
b=1 according to the following

model:

Y ∗ij = β̃ᵀ(tij)Xij + ε∗ij .

where β̃(tij) is the solution of the estimating equations in (2.3.15) in Chapter 2. The resid-

ual vector ε∗i = (ε∗i1, · · · , ε
∗
imi

)ᵀ is generated from an mi-dimensional multivariate normal

distribution with mean 0 and covariance Ω̂i = (Ω̂(tij , tik))
mi
j,k=1 where Ω̂(t, s) is a consistent

estimator of Ω(t, s) described in Section 2.4.2 in Chapter 2.
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Step 2: Based on the b-th bootstrapped sample, compute a bootstrapped version of Tn,

denoted as T
∗(b)
n .

Step 3: Repeat Steps 1 and 2 a large integer B times to obtain B bootstrap values

{T ∗(b)n }Bb=1 and then find the 100(1−α)% quantile of {T ∗(b)n }Bb=1, denoted as t̂α. Reject the

null hypothesis if Tn > t̂α.

The following theorem justifies the above Bootstrap procedure

Theorem 4. Let Xn = {(Yij , Xij , tij), j = 1, . . . ,mi, i = 1, . . . , n} denotes the original

data and L (Tn) be the asymptotic distribution of Tn under the null hypothesis. Under the

same conditions as Theorem 2 and suppose Ω̂(s, t) is a consistent covariance estimator, the

conditional distribution of T ∗n given Xn, L (T ∗n |Xn) converges to L (Tn) almost surely.

3.3 Simulation studies

For the simulation studies for simultaneous inference, we consider the same setup as in the

simulation studies for the pointwise inference in Section 2.5 in Chapter 2. We considered

two scenarios A and B, corresponding to two hypotheses on β(t). In scenario A, we used

H{(z1, z2)ᵀ} = z1 − z2 to test

H0A : β1(·) = β2(·) vs H1A : β1(·) 6= β2(·),

where we set β1(t) = 1
2 sin t and β2(t) = (1

2 +a) sin t for a = 0, 0.1, 0.2, 0.3 and 0.4 in (2.5.19)

in Chapter 2 to evaluate the empirical size (when a = 0) and powers (when a > 0). In
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scenario B, we set H{(z1, z2)ᵀ} = z2 to test

H0B : β2(·) = 0 vs H1B : β2(·) 6= 0,

where we chose β1(t) = 1
2 sin t and β2(t) = c for c = 0, 0.02, 0.04, · · · , 0.14. In the con-

struction of the test statistic Tn, we chose the weight function w(t) = 1 for t ∈ (0, 1) and 0

otherwise. The covariance function was estimated by the quasi maximum likelihood method

of [FHL07]. All simulation results below were based on 500 simulation replicates and the

critical value of the test was estimated by 500 bootstrap samples in each simulation run. We

performed the same bandwidth selection procedure in each bootstrap sample to take into

account the extra variation in the test caused by bandwidth selection.

Table 3.1 summarizes the empirical sizes and powers for hypothesis H0A at the 5%

nominal level. It can be seen that the empirical sizes are reasonably controlled around the

nominal level. As we expected, the empirical power increases as the increase of the sample

size n and the number of repeated measurements m, which confirms our theoretical results

in Section 3.2. In addition, the correlation ρ does not have a clear impact on the power,

indicating that the proposed procedure is robust with respect to the covariance structure of

the random error.

The simulation results for scenario B are illustrated in Figure 3.1. The results under

n = 100 and n = 200 are represented by solid and dashed lines, respectively. We observed a

very similar pattern as that under scenario A. The size is well controlled at the 5% nominal

level and the power increases as the value of c increases. At each value of c, the power

increases as we increase n or m.
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Table 3.1: Empirical size and power for testing H0A : β1(·) = β2(·) under scenario A.

m = 5 m = 10 m = 50
a n ρ =0.2 ρ =0.5 ρ =0.2 ρ =0.5 ρ =0.2 ρ =0.5
0.0 100 0.062 0.058 0.064 0.048 0.070 0.054

200 0.060 0.052 0.068 0.044 0.058 0.066
0.1 100 0.134 0.132 0.188 0.212 0.772 0.764

200 0.224 0.228 0.388 0.344 0.984 0.966
0.2 100 0.344 0.406 0.676 0.708 1.000 1.000

200 0.724 0.734 0.948 0.948 1.000 1.000
0.3 100 0.746 0.748 0.976 0.982 1.000 1.000

200 0.974 0.974 0.998 1.000 1.000 1.000
0.4 100 0.962 0.960 1.000 1.000 1.000 1.000

200 1.000 1.000 1.000 1.000 1.000 1.000
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(b) ρ = 0.5

Figure 3.1: Empirical size and power for testing H0B : β2(·) = 0 at the 5% nominal level under
scenario B. The left panel is for ρ = 0.2 and the right panel is for ρ = 0.5.
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3.4 Real data analysis

We applied our proposed methods to two real functional data sets, one is sparse and the

other is dense.

3.4.1 CD4 data analysis

This data set was collected from a randomized double-blinded study of AIDS patients with

advanced immune suppression (CD4 counts ≤ 50 cells/mm3) conducted by the AIDS Clinical

Trial Group (ACTG) Study 193A. Patients were randomly assigned to dual or triple combi-

nations of HIV-1 reverse transcriptase inhibitors. Specifically, patients were randomized to

one of four daily regimens containing 600mg of zidovudine: zidovudine alternating monthly

with 400mg didanosine (treatment I); zidovudine plus 2.25mg of zalcitabine (treatment II);

zidovudine plus 400mg of didanosine (treatment III); or zidovudine plus 400mg of didano-

sine plus 400mg of nevirapine (treatment IV). There was a total of 1309 patients included

in the study and 325, 324, 330 and 330 patients were, respectively, assigned to treatments

I-IV. Measurements of CD4 counts were collected at baseline and at 8-week intervals during

follow-up. But due to various reasons, such as dropout and skipped visits, the repeated

measurements were unbalanced. The number of repeated measurements during the first 40

weeks of follow-up varied from 1 to 9, with a median of 4. Thus, the data can be considered

as sparse functional data. More details of the study can be found in [KAC+98].

Our interest is to study the treatment effects on the CD4 counts. We consider the response

variable to be log(CD4 counts + 1). To test for treatment effects, we set treatment IV as

the baseline and defined three dummy variables T1, T2 and T3 as indicators of treatments
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I-III, respectively. Then, we fit the data with the following functional linear model:

Yi(tij) =β0(tij) + β1(tij)T1i + β2(tij)T2i + β3(tij)T3i

+ β4(tij)Agei(tij) + β5(tij)Genderi + β6(tij)PreCD4i + εi(tij),

for i = 1, · · · , 1309 and j = 1, · · · ,mi where Y (t) = log(CD4 counts + 1) is the response, t

is the time (in weeks). We also included Age, Gender and PreCD4 as the covariates in the

model and allowed Age change over t.

To test for treatment effects, we first considered the global hypotheses

H01 : β1(·) = β2(·) = β3(·) = 0 vs H11 : at least one of βk(·) 6= 0, k = 1, 2, 3.

We applied the proposed simultaneous test based on 1000 bootstrap replicates. The band-

width was selected by the proposed procedure in Section 2.4. We got a p-value of < 0.001

indicating that the treatment effects are indeed significant. To further dissect differences

between treatments, we conducted pairwise comparison among treatments. The results are

summarized in Table 3.2. All the p-values for the pairwise comparisons except the one for

comparing treatment II and III are less than 5%. The results indicate that pairwise differ-

ences in time effects between different treatment groups are statistically significant except

for treatment II vs III.

3.4.2 Ergonomics data analysis

As part of a study of the body motions of automobile drivers, researchers at the Center for

Ergonomics at the University of Michigan collected data on the motion of a single individual
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Table 3.2: P-values for pairwise comparison among different treatment groups.

Comparison Hypothesis p-value
I vs II H02 : β1(·) = β2(·) 0.040
I vs III H03 : β1(·) = β3(·) 0.000
I vs IV H04 : β1(·) = 0 0.000
II vs III H05 : β2(·) = β3(·) 0.078
II vs IV H06 : β2(·) = 0 0.000
III vs IV H07 : β3(·) = 0 0.002

to 20 target locations within a test car. For each location, the researchers measured 3 times

the angle formed at the right elbow between the upper and lower arms, which yielded a

sample of size 20×3=60. The angle of each motion was recorded repeatedly from the start

to the end of each test drive. The time period of each motion varied in length because of

the targets being at different distances from the driver and the driver may reach them at

different speeds. The objective of the study was to model the shape of the motion but not

the speed at which it occurred. Thus in this study, t is used to represent the proportion, not

the time, of the motion between the start and the end. See [Far97] and [SF04] for a more

detailed description of this data set.

Let Y (t) represent the angle at a proportion t for t ∈ [0, 1]. For a given motion, Y (t) is

observed on an equally spaced grid of points. Although the number of such points in the

original data varies from observation to observation, the number of repeat measurements

for each motion is 20 after imputation, which was considered as dense functional data as in

[Zha11]. The purpose of our study was to find a model for predicting the right elbow angle

curve Y (t), t ∈ [0, 1] given the coordinates (cx, cy, cz) of the target, where cx represents the

“left to right” direction, cy represents the “close to far” direction, and cz represents the “down

to up” direction. The coordinates (cx, cy, cz) of each of the 20 targets in the experiment were

known and used as predictors in our model. [SF04] compared a linear model, a quadratic
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model and a one-way ANOVA model. They found that a quadratic model of the following

form fit the data adequately

Yi(tij) =β1(tij) + cxiβ2(tij) + cyiβ3(tij) + cziβ4(tij)

+ c2xiβ5(tij) + c2yiβ6(tij) + c2ziβ7(tij)

+ cxicyiβ8(tij) + cyicziβ9(tij) + czicxiβ10(tij) + εi(tij). (3.4.4)

for i = 1, · · · , 60 and j = 1, · · · , 20.

We started with model (3.4.4), and tested each of the coefficient functions βk(t), k =

1, · · · , 10 to check which term could be dropped from the model. Table 3.3 summarizes

the p-values for testing each coefficient function. At the 5% significant level, we can see

that β7(t), β9(t) and β10(t) are not significant, suggesting to delete them from the quadratic

model (3.4.4). We then obtained the final reduced model

Y (t) =β1(t) + cxβ2(t) + cyβ3(t) + czβ4(t)

+ c2xβ5(t) + c2yβ6(t) + cxcyβ8(t) + ε(t).

From the above reduced model, we could see that the angle curve Y (t) has a significant linear

relationship with the “down to up” coordinate z, but a significant quadratic relationship with

the “left to right” coordinate x and the “close to far” coordinate y. The model selected above

is consistent with the model chosen by [Zha11].
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Table 3.3: P-values for testing each coefficient function in the quadratic model (3.4.4).

Hypothesis p-value Hypothesis p-value
H01 : β1(·) = 0 0.000 H06 : β6(·) = 0 0.032
H02 : β2(·) = 0 0.006 H07 : β7(·) = 0 0.050
H03 : β3(·) = 0 0.006 H08 : β8(·) = 0 0.004
H04 : β4(·) = 0 0.005 H09 : β9(·) = 0 0.080
H05 : β5(·) = 0 0.038 H0,10 : β10(·) = 0 0.109

3.5 Technical Details

This section contains the proofs for the main theorems in Section 3.2. Proofs for the propo-

sitions can be found in the next section.

3.5.1 Proofs of Main Theorems

3.5.1.1 Proof of Theorem 2

Proof of Theorem 2. We first prove the case with η ∈ [0, 1/8], under which we choose the

bandwidth h = n−α0 from 2(1 + η)/17 < α0 < 1 − η − 2/λ. In this scenario, it is easy to

see that mh→ 0. In this case, we have the decomposition for Tn, Tn = Tn1 + Tn2, where

Tn1 = C−2
n,α0,η

n∑
i=1

∫ b

a
ξ
ᵀ
i (t)Gᵀ(t)G(t)ξi(t)w(t)dt

Tn2 = C−2
n,α0,η

n∑
i=1

n∑
k 6=i

∫ b

a
ξ
ᵀ
i (t)Gᵀ(t)G(t)ξk(t)w(t)dt.
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It then can be shown that

E(Tn1) = q + qh
m− r̄
r̄µ20

∫ b

a
f(t)w(t)dt+O(h2)

Var(Tn1) =
{
q + qh

m− r̄
r̄µ20

∫ b

a
f(t)w(t)dt

}2
+O(h2 + 1/n)

−
{
q + qh

m− r̄
r̄µ20

∫ b

a
f(t)w(t)dt

}2
+O(h2) = O(h2 + 1/n),

and E(Tn2) = 0,

Var(Tn2) = 2qhµ−2
20

∫ 2

−2
[K(2)(u)]2du

∫ b

a
w2(t)dt

+ 2(mh)2
∫ b

a

∫ b

a
tr{Σ0(t, s)Σ0(s, t)}w(t)w(s)dtds+O(mh2 + h/n).

Hence we have Var(Tn1) = O(h2 + 1/n) = o{Var(Tn2)}. It follows that

Tn − E(Tn) = Tn1 − E(Tn1) + Tn2 = Tn2{1 + op(1)}.

Thus, to study the asymptotic property of Tn, we only need to study that of Tn2.

In fact, we can write Tn2 as

Tn2 =
1

n

n∑
i 6=k

∫ b

a
Zᵀ
i (t)Zk(t)w(t)dt,

where Zi(t) =
√
mhG(t)ξi(t). Let Un = 1

n−1Tn2 = 2
n(n−1)

∑
1≤i<k≤nK(Zi,Zk), where the

symmetric kernel K(Zi,Zk) =
∫ b
a Z

ᵀ
i (t)Zk(t)w(t)dt. We define an operator AK associated

with the kernel K as AKg(x) =
∫∞
−∞K(x, y)g(y)dF (y), where F is the distribution of Zi.

Then we have the associated eigenvalues and eigenfunctions, denoted as {λk, ψk}∞k=1. By
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U-statistic theory [Ser80], we have

nUn −
∞∑
k=1

λk(χ2
1,k − 1) = op(1),

where {χ2
1,k}
∞
k=1 are independent chi-square distributed random variables with 1 degree of

freedom. That is Tn2−
∑∞
k=1 λk(χ2

1,k−1) = op(1). Now we only need to prove that {λk}∞k=1

is the same as {γnk}∞k=1 from Σ.

In fact, Cov(Zi(s),Zi(t)) = Σn(s, t) =
∑∞
k=1 γnkφnk(s)φ

ᵀ
nk(t). Then we have the K-L

representation of the random process Z(t) =
∑∞
k=1 ξ

z
kφnk(t). Then

AKξ
x
m =

∫ ∞
−∞
K(x, y)ξ

y
mdF (y) =

∫ ∞
−∞

∫ b

a

∞∑
i=1

∞∑
j=1

ξxi ξ
y
jφ

ᵀ
ni(t)φnj(t)w(t)ξ

y
mdtdF (y)

=

∫ b

a

∞∑
i=1

∞∑
j=1

ξxi φ
ᵀ
ni(t)φnj(t)w(t)[

∫ ∞
−∞

ξ
y
j ξ
y
mdF (y)]dt

=

∫ b

a

∞∑
i=1

∞∑
j=1

ξxi φ
ᵀ
ni(t)φnj(t)w(t)γmδ

m
njdt

= γnm

∞∑
i=1

ξxi

∫ b

a
φ
ᵀ
ni(t)φnm(t)w(t)dt = γnm

∞∑
i=1

ξxi δ
m
i = γnmξ

x
m.

That is {λnk, ψnk}∞k=1 = {γk, ξk}∞k=1. Thus we have Tn2 −
∑∞
k=1 γnk(χ2

1,k − 1) = op(1),

and then Tn −E(Tn) = Tn2 + op(1) =
∑∞
k=1 γnk(χ2

1,k − 1) + op(1). It follows that Tn − q =∑∞
k=1 γnk(χ2

1,k − 1) + op(1). Since
∑∞
k=1 γnk = q, we have Tn =

∑∞
k=1 γnkχ

2
1,k{1 + op(1)}.

We finally prove the result for the dense case, i.e. η > 1/8. In this case, we choose

then bandwidth h = n−α0 from 1/8 < α0 < min{η, 1/2 − 1/λ}. Under this scenario, we

have mh → ∞. By Lemma 9 in Section 3.5.2, we know Un(t) asymptotically converges to

a Gaussian process U(t; η) with mean 0 and covariance function Σ(s, t). Thus the limit-

ing distribution of Tn is the same as the distribution of Z =
∫

U(t; η)ᵀU(t; η)w(t)dt. We
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only need to show the distribution of Z. To this end, using the following Karhunen-Loeve

representation for U(t; η) [Bal60]

U(t; η) =
∞∑
k=1

ξkφk(t),

where ξk =
∫ b
a U(t; η)ᵀφk(t)w(t)dt are independent (k = 1, 2, · · · ,∞) normal with mean 0

and variance γk. Here γk and φk(t) are, respectively, the k-th ordered eigenvalue of Σ(s, t)

and the corresponding eigenfunctions in Rq. Then we have

Z =
∞∑
k=1

∞∑
l=1

ξkξl

∫ b

a
φk(t)ᵀφl(t)w(t)dt =

∞∑
k=1

ξ2
k.

Since ξk are independent N(0, γk), we have Tn
d→ Z =

∑∞
k=1 γkχ

2
1,k. Thus by combining

the above two cases together, we complete the proof of part (b).

3.5.1.2 Proof of Corollary 1

Proof. From Theorem 2, Tn has the same distribution as Zn =
∑∞
k=1 γnkχ

2
1,k. Thus we

only need to show the asymptotical normality of
∑∞
k=1 γkχ

2
1,k. By Lyapunov central limit

theorem, if the following condition hold

∞∑
k=1

γ4
nk/(

∞∑
k=1

γ2
nk)2 → 0, (3.5.5)

Then we have

Zn −
∑∞
k=1 γnk√

2
∑∞
k=1 γ

2
nk

d→ N(0, 1).
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Using Proposition 4, Σn(s, t) = µ−1
20 K

(2)(s−th )Iq and in particular Σn(t, t) = Iq, we find

that
∑∞
k=1 γnk = tr(Σ) = q

∫ b
a w(t)dt = q and

∞∑
k=1

γ2
nk = q

∫ b

a

∫ b

a
µ−2

20 {K
(2)(

s− t
h

)}2w(s)w(t)dsdt = qhσ2
0/2,

where σ2
0 was defined in the corollary. Therefore, the conclusion in this Lemma holds. It

remains to show the condition (3.5.5). Let γ(s, t) = µ−1
20 K

(2)(s−th ). Then

∞∑
k=1

γ4
nk = q

∫ ∫ ∫ ∫
γ(s, t)γ(t, l)γ(l,m)γ(m, s)w(s)w(t)w(l)w(m)dsdtdldm

= qh3C0µ
−4
20

∫ b

a
w4(t)dt

where C0 =
∫
K(2)(u1)K(2)(u2)K(2)(u3)K(2)(u1 + u2 + u3)du1du2du3 is a constant. Thus

the condition (3.5.5) holds. This completes the proof of this corollary.

3.5.1.3 Proof of Theorem 3

Proof of Theorem 3. First notice that 2`(t) = n2C−2
n,α0,η

ν̃ᵀ(t)R−1(t)ν̃(t) + op(h
1/2) and

under local alternative,

ν̃(t) = −R(t)C(t)A−1(t)
{ 1

n

n∑
i=1

gi{β0(t)}
}

+ R(t)H{β0(t)}+ õp(δn).

We then define U+
n (t) = G(t)C−1

n,α0,η
∑n
i=1 ξi(t)− nC−1

n,α0,η
R1/2(t)H{β0(t)}.

First considering the proof for part (a) with 0 ≤ η ≤ η0 = 1/16, under which we choose

the bandwidth h = n−α0 with 2(1 + η)/17 < α0 < 1 − η − 2/λ. In this scenario, we have
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m2h→ 0. We have

Tn =

∫ b

a
2`(t)w(t)dt =

∫ b

a
U

+ᵀ
n (t)U+

n (t)w(t)dt+ op(h
1/2)

= C−2
n,α0,η

n∑
i=1

n∑
k=1

∫ b

a
ξ
ᵀ
i (t)Gᵀ(t)G(t)ξk(t)w(t)dt

− 2nC−2
n,α0,η

n∑
i=1

∫ b

a
ξ
ᵀ
i (t)Gᵀ(t)R1/2(t)H{β0(t)}w(t)dt

+ n2C−2
n,α0,η

∫ b

a
Hᵀ{β0(t)}R(t)H{β0(t)}w(t)dt+ op(h

1/2)

:= Rn1 − 2Rn2 +Rn3 + op(h
1/2).

Then by the result in Corollary 1, we have h−1/2{R1n − q} d−→ N(0, qσ2
0). And for R2n,

obviously we have E(R2n) = 0, and

Var(R2n) = n2b2nC
−4
n,α0,η

n∑
i=1

mi∑
j=1

mi∑
j=1

1

m2
i

E

∫ b

a

∫ b

a
X

ᵀ
ijG

ᵀ(t)R1/2(t)d(t)

×X
ᵀ
ilG

ᵀ(s)R1/2(s)d(s)εijεilKh(tij − t)Kh(til − s)w(t)w(s)dtds

= O(n3b2nC
−4
n,α0,η

) = O{n(bnmh)2}.

Since in this case bn = (nm)−1/2h−1/4, we have Var(R2n) = O(mh3/2). Thus we have

h−1/2R2n
p→ 0 since we have mh1/2 → 0 under this case. And for R3n which is non-random,

we have h−1/2R3n =
∫ b
a dᵀ(t)R(t)d(t)w(t)dt. Thus we have h−1/2(Tn − q)

d−→ N(µ0, qσ
2
0),

where µ0 =
∫ b
a dᵀ(t)R(t)d(t)w(t)dt.

For part (b) with 1/16 < η ≤ 1/8, under which we choose the bandwidth h = n−α0 with

2(1 + η)/17 < α0 < 1 − η − 2/λ. In this scenario, we also make to have m2h → ∞ and
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mh→ 0. We write

U+
n (t) = C−1

n,α0,η

n∑
i=1

{
G(t)ξi(t)− bnR1/2(t)d(t)

}
:=

1√
n

n∑
i=1

Z+
i (t),

where Z+
i (t) =

√
mh
{
G(t)ξi(t)− bnR1/2(t)d(t)

}
. Then we have

Tn =

∫ b

a
2`(t)w(t)dt =

∫ b

a
U

+ᵀ
n (t)U+

n (t)w(t)dt+ op(mh)

=
1

n

n∑
i=1

n∑
k=1

∫ b

a
Z+ᵀ
i (t)Z+

k (t)w(t)dt+ op(mh) := T+
n1 + T+

n2 + op(mh),

where T+
n1 = 1

n

∑n
i=1

∫ b
a Z

+ᵀ
i (t)Z+

i (t)w(t)dt and T+
n2 = 1

n

∑n
i6=k

∫ b
a Z

+ᵀ
i (t)Z+

k (t)w(t)dt. By

similar calculation as in the null hypothesis for Tn1, we have E(T+
n1) = q+

(m−r̄)qh
r̄µ20

∫ b
a f(t)w(t)dt+

mhb2nµ0 +O(h2) and Var(T+
n1) = O(h2 + 1/n).

For T+
n2, we define the U-statistic as follows

Un =
T+
n2

(n− 1)
=

1

n(n− 1)

n∑
i 6=k

∫ b

a
Z+ᵀ
i (t)Z+

k (t)w(t)dt =
1

n(n− 1)

n∑
i6=k
K(Z+

i ,Z
+
k ),

where the kernel function K is the same as in the proof for the null case. It is easy to show

θ = EK(Z+
1 ,Z

+
2 ) = mhb2nµ0. And the first projection K1(Z+

1 ) = E{K(Z+
1 ,Z

+
2 )|Z+

1 } =

−bn
√
mh

∫ b
a Z

+ᵀ
1 (t)R1/2(t)d(t)w(t)dt has the variance ζ1, which can be obtained by

EK2
1(Z+

1 ) = b2nmh

∫ b

a

∫ b

a
dᵀ(t)R1/2(t)E{Z+

1 (t)Z+ᵀ
1 (s)}R1/2(s)d(s)w(t)w(s)dtds.

Therefore, we have ζ1 = b2n(mh)2µ1 +O(b2nmh
2), where µ1 is defined in Theorem 3.
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We also have ζ2 = Var{K(Z+
1 ,Z

+
2 )} = (mh)2V +O(h+ b2nm

2h2), where

V = 2

∫ b

a

∫ b

a
tr{Σ0(s, t)Σ0(t, s)}w(t)w(s)dtds.

Thus by U-statistic theory, if ζ2 = o(nζ1), which is equivalent to b−1
n = o(

√
n), we have Un ∼

AN(θ,
4ζ1
n ) provided that the first projection sequence {K1(Z+

i )}ni=1 satisfy the Lyapunov’s

condition, which can be verified as follows. Since EK1(Z+
i ) = θ, Var{K1(Z+

i )} = ζ1 and

E{K1(Z∗i )− θ}4 ∼ b4n(mh)4 up to a constant, we have

∑n
i=1E{K1(Z+

i )− θ}4{∑n
i=1 Var2{K1(Z+

i )}
}2
∼ nb4n(mh)4

n2b4n(mh)4
=

1

n
→ 0.

Thus if b−1
n = o(

√
n), we have T+

n2 ∼ AN(nb2nmhµ0, 4nb
2
n(mh)2µ1). Then the conclusion in

part (b) holds.

For part (c) with η > 1/8, under which we choose the bandwidth h = n−α0 with

1/8 < α0 < 1/2 − 1/λ. In this scenario, we have mh → ∞. Since bn = n−1/2 and

Cn,α0,η = n1/2, we have

U+
n (t) = G(t)C−1

n,α0,η

n∑
i=1

ξi(t)−R1/2(t)d(t).

By Lemma 9 in Section 3.5.2 in Chapter 2, we know U+
n (t) asymptotically converges to

a Gaussian process U+(t; η) with mean −R1/2(t)d(t) and covariance function Σ(s, t). Thus

the limiting distribution of Tn is the same as the distribution of Z+ :=
∫ b
a U+(t; η)TU+(t; η)w(t)dt.

We only need to show the distribution of Z+. To this end, using the following eigenvalue de-

composition for U+(t; η) [Bal60] U+(t; η) =
∑∞
k=1 ξ

+
k φk(t), where ξ+

k =
∫ b
a U+(t; η)ᵀφk(t)w(t)dt

are independent (k = 1, 2, · · · ,∞) normal with mean −uk and variance γk. Here γk and
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φk(t) is the k-th ordered eigenvalue of Σ0(s, t) and corresponding eigenfunctions in Rq. Then

we have

Z+ =
∞∑
k=1

∞∑
l=1

ξ+
k ξ

+
l

∫ b

a
φk(t)ᵀφl(t)w(t)dt =

∞∑
k=1

ξ+2
k .

Because ξ+
k are independent N(−uk, γk), we have Tn

d→
∑∞
k=1 γkχ

2
1,k

(
µ2
k/γk

)
. This com-

pletes the proof of part (c).

3.5.1.4 Proof of Theorem 4

Proof of Theorem 4. Conditional on the data Xn = {Yij , Xij , tij}ni=1, the bootstrapped sam-

ple was generated according to Y ∗ij = β̃ᵀ(tij)Xij + ε∗ij ,which can be regarded an analog of

the model (2.1.1) with the true coefficient function β̃(t) and ε∗ij has mean 0 and covari-

ance Ω̂(s, t). Let o∗p(1) and O∗p(1) be the stochastic order with respect to the conditional

probability measure given the original samples.

Based on this bootstrapped sample {Y ∗(b)ij , tij ,Xij : i = 1, · · · , n; j = 1, · · · ,mi}, we

first estimate the true β̃(t) by local linear smoothing with the estimator β̂∗(t), which differs

from the original β̂(t) only via the error. And then our estimating equation is constructed

as following

g∗i {β(t)} =
1

mi

mi∑
j=1

{
Y ∗ij − β

ᵀ(t)Xij − {β̂∗(tij)− β̂∗(t)}ᵀXij

}
XijKh(tij − t).

Since we have proved the following results in the proof of Lemma 1 in Section 2.6.2,

sup
t∈[a,b]

‖ 1

n

n∑
i=1

1

mi

mi∑
j=1

XijX
ᵀ
ijKh(tij − t)− Γ(t)f(t)‖ = O(δn) a.s.,
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and by the similar proof as Lemma 2 in Section 2.6.2, we have

g∗i {β̃(t)} = ξ∗i (t){1 + õ∗p(1)}+ Õ(h4) a.s.

where ξ∗i (t) = 1
mi

∑mi
j=1 Xijε

∗
ijKh(tij−t) and here and below, the almost surely convergence

holds with respect to the original probability measure, which is true almost surely for all the

sample points in the sample space of Xn when n is sufficient large. Then by the fact that

supt ‖β̃(t) − β0(t)‖ = O(δn1 + h4) a.s.. Thus, similar to (2.6.29), we have the following

results almost surely

2`∗(t) =
1

C2
n,α0,η

{
n∑
i=1

g∗i (β̃)}ᵀA−1CᵀRCA−1{
n∑
i=1

g∗i (β̃)}+ o∗p(1) + Õ(δn1 + h4)

=
1

C2
n,α0,η

{
n∑
i=1

g∗i (β̃)}ᵀGᵀG{
n∑
i=1

g∗i (β̃)}+ o∗p(1) + Õ(δn1 + h4)

= U
∗ᵀ
n (t)U∗n(t){1 + o∗p(1)}+ Õ(δn1 + h4),

where U∗n(t) = C−1
n,α0,η

G(t)
∑n
i=1 ξ

∗
i (t) with G(t) = R1/2(t)C(t)A−1(t).

Thus the bootstrapped version test statistic T ∗n can be represented as

T ∗n =

∫ b

a
U
∗ᵀ
n (t)U∗n(t)w(t)dt{1 + o∗p(1)}+ o(1) a.s. (3.5.6)

Let d(F,G) be the maximum norm distance between two distribution functions F and

G such that d(F,G) = supx |F (x)−G(x)|. From the proof of Theorem 2, we know that the

required conditions for showing the convergence of d(L (
∫ b
a U

ᵀ
n(t)Un(t)w(t)dt),L (Tn))→ 0

are the independence between Xi(t) and εi(t), εi(t) are independent with E{εi(t)} = 0 and

finite λ moments for i = 1, · · · , n.
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To show that d(L (
∫ b
a U
∗ᵀ
n (t)U∗n(t)w(t)dt|Xn),L (Tn)) → 0, n → ∞, we note the dif-

ference between
∫ b
a U
∗ᵀ
n (t)U∗n(t)w(t)dt and

∫ b
a U

ᵀ
n(t)Un(t)w(t)dt is that εi(t) is replaced

by ε∗i (t), which has mean 0 and covariance Ω̂(s, t). Since Ω̂(s, t) is a consistent estima-

tor of Ω(s, t), and from our construction of ε∗i (t) in the wild bootstrap procedure, given

Xn, we have the independence between Xi(t) and ε∗i (t), E{ε∗i (t)} = 0 and ε∗i (t) has fi-

nite λ moments. Thus, based on the standard modification of the proof of Theorem 2,

we have d(L (
∫ b
a U
∗ᵀ
n (t)U∗n(t)w(t)dt|Xn),L (Tn)) → 0. This together with (3.5.6), we have

d(L (T ∗n |Xn),L (Tn))→ 0 almost surely.

3.5.2 Proofs of Proposition and Lemma

Lemma 9. Under assumptions (C1)-(C4), for the dense functional data, Un(t) converges

to a multivariate Gaussian process ξ(t) with mean 0 and covariance matrix Σ0 defined in

Proposition 4 in Section 3.2.

Proof. It is clear that E{Un(t)} = C−1
n,α0,η

∑n
i=1 G(t)E{ξi(t)} = 0 and

Cov{Un(s),Un(t)} =
1

C2
n,α0,η

{
n∑
i=1

G(s)E{ξi(s)ξ
ᵀ
i (t)}Gᵀ(t)

}
.

For computing E{ξi(s)ξ
ᵀ
i (t)}, by similar calculation as before, we have the following result,

E{ξi(s)ξ
ᵀ
i (t)} =

K(2)(s−th )

mih
Γ(s)Ω(s)f(s) +

mi − 1

mi
Γ(s, t)Ω(s, t)f(s)f(t) + Õ(h2),

where K(2)(x) =
∫
K(y)K(y − x)dy and Γ(s, t) = E{X(s)Xᵀ(t)},Ω(s, t) = E{ε(s)ε(t)}.
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Then we have

Cov{Un(s),Un(t)} = G(s)Γ(s)Ω(s)Gᵀ(t)f(s)K(2)(
s− t
h

)
1

C2
n,α0,η

n∑
i=1

1

mih

+ G(s)Γ(s, t)Ω(s, t)Gᵀ(t)f(s)f(t)
1

C2
n,α0,η

n∑
i=1

mi − 1

mi

+
nÕ(h2)

C2
n,α0,η

G(s)Gᵀ(t).

(3.5.7)

By the definition of Cn,α0,η, we have the following result,

Cov{Un(s),Un(t)} ∼ G(s)Γ(s, t)Ω(s, t)Gᵀ(t)f(s)f(t) = Σ0(s, t).

Thus we have Cov{Un(s),Un(t)} = Σ0(s, t)+ õ(1). The proof in Lemma 3 proves the central

limit theorem the joint distribution of {Un(t1), · · · ,Un(ts)} at finite time points {t1, · · · , ts}.

Weak convergence of Un(t) now follows (Billingsley (1968), page 95) if ∀a ∈ Rq,

aᵀE {[Un(s)−Un(t)][Un(s)−Un(t)]ᵀ} a ≤ C(s− t)2

can be established. To this end, we note that

aᵀE {[Un(s)−Un(t)][Un(s)−Un(t)]ᵀ} a

=aᵀG(s)B(s)Gᵀ(s)a− aᵀΣ0(s, t)a− aᵀΣ0(t, s)a + aᵀG(t)B(t)Gᵀ(t)a

=2aᵀa− {aᵀ[Σ0(s, s) + (t− s)∂Σ0(s, s)

∂t
+ (t− s)2∂

2Σ0(s, s∗)
∂t2

]a

− {aᵀ[Σ0(t, t) + (s− t)∂Σ0(t, t)

∂s
+ (t− s)2∂

2Σ0(t, t∗)
∂s2

]a}

≤|s− t||aᵀ{∂Σ0(s, s)

∂t
− ∂Σ0(t, t)

∂s
}a|+ C1(s− t)2 ≤ C(s− t)2,
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where we used Σ0(s, s) = Σ0(t, t) = Iq and the last two inequalities follow from the conti-

nuity condition (C3).

Proof of Proposition 4. By (3.5.7) in the proof of Lemma 9, and the definition of Cn,α0,η, we

have the following result, up to a factor 1 + op(1), Cov{Un(s),Un(t)} = µ−1
20 K

(2)(s−th )Iq +

mhΣ0(s, t) for mh→ 0, and Cov{Un(s),Un(t)} = Σ0(s, t) for mh→∞.

Since K(2)(s−th ) = µ20 when s = t, we can further have, up to a factor 1 + op(1),

Cov{Un(s),Un(t)} =



µ−1
20 K

(2)(s−th )Iq, if m2h→ 0,

IqI(s = t) +mhΣ0(s, t)I(s 6= t) if m2h→∞ and mh→ 0,

Σ0(s, t), if mh→∞,

which complete the proof of the proposition.
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Chapter 4

Empirical Likelihood in Testing

Coefficients in High Dimensional

Heteroscedastic Linear Models

4.1 Introduction

As mentioned in Section 1.2.2, people have made significant progress towards understanding

the estimation theory, but very little work has been done for statistical inference for high

dimensional linear models, especially with heteroscedastic noise. Empirical likelihood has

the ability of internal studentizing to avoid variance estimation, which can help solve the

heteroscedasticity issue.

In Section 4.2, we study the asymptotic normality of Wald type statistic for the existing

methods under the heteroscedastic noise. In Section 4.3, we propose the general empiri-

cal likelihood framework for analyzing the estimating equations proposed in different ways,

although they all follow the low dimensional projection idea. In Section 4.4, we provide

implications of the general results on three different cases, projection via lasso estimation,

projection via inverse regression and projection via KFC set selection. Section 4.5 provides

numerical results and Section 4.6 shows some real data analysis. We refer all of the proofs
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to the Technical Details 4.7.

The following notation is adopted throughout this chapter. For v = (v1, v2, · · · , vd)ᵀ ∈

Rd, we define ‖v‖q = (
∑d
i=1 |vi|q)1/q for 0 < q <∞, ‖v‖0 = |supp(v)| where supp(v) = {j :

vj 6= 0} and |A| is the cardinality of a set A, and ‖v‖∞ = max1≤j≤d |vi|. For a symmetric

matrix M = ((Mjk)), λmin(M) and λmax(M) are the minimal and maximal eigenvalues of

M. For any matrix M = ((Mjk)), let ‖M‖max = maxj,k |Mjk|, ‖M‖1 = maxk
∑
j |Mjk|,

‖M‖2 =
√
λmax(MᵀM), and ‖M‖∞ = maxj

∑
k |Mjk|. We denote Id as the d× d identity

matrix, and if the dimension is obvious from the context, we just omit the subscript d. For

S ⊆ {1, 2 · · · , d}, let vS = {vj : j ∈ S} be a subvector of v. And for any k ∈ {1, 2, · · · , d},

let MjS = {Mjl, l ∈ S} as a row vector and MSj = {Mlj : l ∈ S} as a column vector.

Denote \k = {1, 2, · · · , k − 1, k + 1, · · · , d}. For a sequence of random variables Xn, we

write Xn
d→ X for some random variable X, if Xn converges to X in distribution, and write

Xn
p→ a for some constant a, if Xn converges in probability to a. For notational simplicity,

we use C,C ′, C ′′, C1, C2, C3 to denote generic constants, whose values can change from line

to line.

4.2 Preliminary and Existing Methods

We consider a linear regression model:

Y = Xβ0 + ε, (4.2.1)

where Y = (Y1, Y2, · · · , Yn)ᵀ ∈ Rn is a response vector, X = ((Xij)) ∈ Rn×p is a random

design matrix with columns {Xj ∈ Rn}pj=1 and rows {Xi ∈ Rp}ni=1, which are assumed
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to be independent and identically distributed (IID) with E(Xi) = 0 and Var(Xi) = Σ,

and β0 ∈ Rp is a vector of unknown true regression coefficients. The error term satisfies

E(εi|Xi) = 0, and Var(εi|Xi) = σ2
ε (Xi), which allows heteroscedasticity. Note that with

these assumptions, Xi and εi are uncorrelated, i.e. E(Xiε) = 0. In addition, we assume the

marginal variance Var(εi) = σ2
ε . Hereafter we assume that p � n. Denote s = ‖β0‖0 be

the number of non-zeros of β0 and we assume sparsity with s < n. Let Zi = εiXi be a

random vector with mean 0 and covariance matrix Θ = ((θjk)). And assume Var(ε2i ) = κ

and Cov(ε2i ,Zi) = $.

In practice, among hundreds of thousands of regressors, people want to test whether

some target features are significant or not. For example, one may want to know whether a

particular gene effect is significant or not among thousands of genes. To assess the significance

of a single coefficient, we test the following hypothesis for any given j ∈ {1, 2, · · · , p},

H0 : β0
j = 0 vs. H1 : β0

j 6= 0. (4.2.2)

Statistical inference for low-dimensional coefficients in high dimensional linear model with

homoscedastic noise has received increasing attention. Low dimensional projection method

has been introduced by [ZZ14] and [B+13].

Under (4.2.1), and in low dimensional scenario, i.e. p ≤ n, we have the ordinary least

square (OLS) estimator for β0
j ,

β̂j =
(X⊥j )ᵀY

(X⊥j )ᵀXj
=

(Q\jXj)ᵀY
(Q\jXj)ᵀXj

=
(Q\jXj)ᵀ(Q\jY)

(Q\jXj)ᵀ(Q\jXj)
=

Xᵀ
jQ\jY

Xᵀ
jQ\jXj

, (4.2.3)

where X⊥j is the projection of Xj to the orthogonal complement of the column space spaned
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by {X\j}, and Q\j is as defined below for general QS with S ⊆ {1, 2 · · · , p} and |S| < n,

QS = I− PS = I− XS(Xᵀ
SXS)−1Xᵀ

S ∈ Rn×n.

However in the high dimensional linear model with p > n, the OLS estimator is no longer

valid. Instead of projection onto the space spanned by all of the rest covariates, people select

the projection space based on the correlations between Xj and the others.

4.2.1 Lasso Projection

In [ZZ14, vdGBR13, NL14], they used the linear sparse regularized regression procedure such

as Lasso to select the projection space. Define ηij := Xij −X
ᵀ
i,\jΣ

−1
\j,\jΣ\j,j . That is

Xij = X
ᵀ
i,\jw

0
j + ηij

with w0
j = Σ−1

\j,\jΣ\j,j , which leads to the following generalized version of (4.2.3) with

relaxed projection

β̂
(lin)
j =

Zᵀ
jY

Zᵀ
jXj

,where Zj = Xj − X\jŵj (4.2.4)

with ŵj as an estimator of w0
j . However, β̂

(lin)
j is biased. To solve this issue, [ZZ14] proposed

the de-biased estimator as follows,

β̂
(de)
j =

Zᵀ
jY−

∑
k 6=j Z

ᵀ
jXkβ̂k

Zᵀ
jXj

, (4.2.5)
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where β̂ is some initial estimator of β0. This de-biased estimator (4.2.5) can be regarded

as the solution to the estimating equation, which is based on the population subject ηijεi ={
Xij − E(Xij |Xi,\j)

}{
Yi −X

ᵀ
i β

0
}

, that is

n∑
i=1

m
(lasso)
ni (βj) :=

n∑
i=1

{
Xij −X

ᵀ
i,\jŵj

}{
Yi −Xijβj −X

ᵀ
i,\jβ̂\j

}
= 0. (4.2.6)

And by simple algebra, we have

m
(lasso)
ni (β0

j ) = εiηij︸︷︷︸
W

(lasso)
ni

+ ηij(β
0
\j − β̂\j)

ᵀXi,\j + (w0
j − ŵj)

ᵀXi,\j
{
Yi −Xijβ0

j −Xi\jβ̂\j
}︸ ︷︷ ︸

R
(lasso)
ni

.

By simple calculation, we have E(W
(lasso)
ni ) = E

{
εi(Xij −Σj,\jΣ

−1
\j,\jXi,\j)

}
= 0 and

E[(W
(lasso)
ni )2] = E

{
ε2i (Xij −Σj,\jΣ

−1
\j,\jXi,\j)

2}
= E{ε2i (X

2
ij − 2XijΣj,\jΣ

−1
\j,\jXi,\j + Σj,\jΣ

−1
\j,\jXi,\jX

ᵀ
i,\jΣ

−1
\j,\jΣ\j,j)}

= E{Z2
ij − 2ZijΣj,\jΣ

−1
\j,\jZi,\j + Σj,\jΣ

−1
\j,\jZi,\jZ

ᵀ
i,\jΣ

−1
\j,\jΣ\j,j}

= θjj − 2Σj,\jΣ
−1
\j,\jΘj,\j + Σj,\jΣ

−1
\j,\jΘ\j,\jΣ

−1
\j,\jΣ\j,j := σ2

n,lasso.

Note that if we assume the independence between the error term and the covariates, we have

the following simplified form

E[(W
(lasso)
ni )2] = σ2

ε (σjj −Σj,\jΣ
−1
\j,\jΣ\j,j).

This shows the difference between our heteroscedastic case and the homoscedastic case.

For the homoscedastic case, as discussed in [ZZ14] [vdGBR13], the inference proce-
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dure based on asymptotic normality needs to estimate the asymptotic variance σ2
ε /(σjj −

Σj,\jΣ
−1
\j,\jΣ\j,j). Under the heteroscedastic noise, we can still show the following asymp-

totic normality but with much more complicated asymptotic variance.

Proposition 5. Under model (4.2.1) with heteroscedastic noise, if Assumption 1 in the

appendix holds, we have

√
n(β̂

(de)
j − β0

j )
d→ N(0, σ2

lasso) (4.2.7)

where the asymptotic variance is defined as follows

σ2
lasso = lim

n→∞

θjj − 2Σj,\jΣ
−1
\j,\jΘj,\j + Σj,\jΣ

−1
\j,\jΘ\j,\jΣ

−1
\j,\jΣ\j,j

(σjj −Σj,\jΣ
−1
\j,\jΣ\j,j)

2
. (4.2.8)

Such complex asymptotic variance (4.2.8) makes it hard to use Wald type inference

procedure in practice since it is difficulty to get a good estimate for the asymptotic variance.

Thus naively using the Wald type test procedure proposed by [ZZ14] in the heteroscedastic

case will lead to invalid results, which will be demonstrated in the simulation study in Section

4.5.

4.2.2 KFC Projection

[LZL+13] proposed another way to select the projection space, which is based on the so

called KFC set S = {l 6= j : |σjl| > c} for some pre-specified threshold value c > 0. That

is essentially the set of all key confounders associated with Xj . And then the estimator can
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be obtained by the projection with respect to the covariates indexed by S,

β̂
(kfc)
j =

Xᵀ
jQSY

Xᵀ
jQSXj

=
X̃ᵀ
j Ỹ

X̃ᵀ
j X̃j

, (4.2.9)

with the profiled response and target predictor as Ỹ = QSY, X̃j = QSXj .

Based on the de-bias idea, we propose the following de-biased KFC estimator

β̂
(kfc-de)
j =

X̃ᵀ
j Ỹ−

∑
k∈S∗ X̃

ᵀ
j X̃kβ̂k

X̃ᵀ
j X̃j

, (4.2.10)

where S∗ = S+c, i.e. the complement of S+ := {1} ∪ S, and β̂S∗ is an initial estimator.

In fact, the above de-biased KFC estimator is the solution to the estimating equation

based on the population subject ηij,Sεi :=
{
Xij − E(Xij |XiS)

}{
Yi −X

ᵀ
i β

0
}

, that is

n∑
i=1

m
(kfc)
ni (βj) :=

n∑
i=1

(Ỹi − X̃ijβj − X̃
ᵀ
iS∗β̂S∗)X̃ij = 0, (4.2.11)

where m
(kfc)
n (β0

j ) can be decomposed as

m
(kfc)
ni (β0

j ) = εiηij,S +
{
ΣjSΣ−1

SSXiS −Xij
}
X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε

+
{
εi −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε
}{

ΣjSΣ−1
SSXiS − Xᵀ

jXS(Xᵀ
SXS)−1XiS

}
+
{
Xij − Xᵀ

jXS(Xᵀ
SXS)−1XiS

}{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
[β0
S∗ − β̂S∗ ].

We denote the first term as W
(kfc)
ni and all the others are denoted by R

(kfc)
ni . And for

simplicity we assume the normality of Xi ∼ N(0,Σ) for the KFC projection section. Now
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W
(kfc)
ni = {εi(Xij −ΣjSΣ−1

SSXiS)}ni=1 are IID with EW
(kfc)
ni = 0 and

E[(W
(kfc)
ni )2] = E

{
ε2i (Xij −ΣjSΣ−1

SSXiS)2}
= E{ε2i (X

2
ij − 2XijΣjSΣ−1

SSXiS + ΣjSΣ−1
SSXiSX

ᵀ
iSΣ−1

SSΣSj)}

= E{Z2
ij − 2ZijΣjSΣ−1

SSZiS + ΣjSΣ−1
SSZiSZ

ᵀ
iSΣ−1

SSΣSj}

= θjj − 2ΣjSΣ−1
SSΘjS + ΣjSΣ−1

SSΘSSΣ−1
SSΣSj .

Note that if we assume independence between εi and Xi, we have E[(W
(kfc)
ni )2] = σ2

ε (σjj −

ΣjSΣ−1
SSΣSj).

Thus if we assume independence between εi and Xi, we have the simple asymptotic

variance for β̂
(kfc-de)
j , σ2

ε /(σjj −ΣjSΣ−1
SSΣSj) as discussed in [LZL+13]. But under model

(4.2.1) with heteroscedastic error term, we have the following asymptotic normality with

more complicated variance.

Proposition 6. Under the Assumption 3 in the appendix, we have

√
n(β̂

(kfc-de)
j − β0

j )
d→ N(0, σ2

kfc), (4.2.12)

where the asymptotic variance is defined as

σ2
kfc = lim

n→∞
(θjj − 2ΣjSΣ−1

SSΘjS + ΣjSΣ−1
SSΘSSΣ−1

SSΣSj)/(σjj −ΣjSΣ−1
SSΣSj)

2.

(4.2.13)

Similarly, since the expression (4.2.13) for the asymptotic variance is really complicated,

which makes such Wald type statistic hard to use in practice.
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4.2.3 Inverse Projection

So far we construct estimators for the target coefficient parameter βj directly. However, to

conduct the hypothesis testing problem (4.2.2), [LL14] proposed an equivalent test based on

the projection of Xij onto (Yi,X
ᵀ
i,\j)

ᵀ,

Xij = (Yi,X
ᵀ
i,\j)γ

0
j + ηij,y, (4.2.14)

where ηij,y satisfies Eηij,y = 0,Cov(ηij,y, (Yi,X
ᵀ
i,\j)) = 0. Under the linear model (4.2.1)

with heteroscedastic noise, as long as Cov(Xi, ε) = 0, we can still show that the vector γ0
j

satisfies γ0
j = −σ2

ηj,y

(
−

β0
j

σ2
ε
,
β0
jβ

0ᵀ
\j

σ2
ε

+ Ω\j,j
)ᵀ

, where σ2
ηj,y

= Var(ηij,y) = ((β0
j )2 + wjj)

−1

with Ω = Σ−1 = ((wjk)). Because Cov(εi,Xi) = 0, we have

Cov(εi, ηij,y) = γ0
j1Cov(εi,−Yi) = −σ2

ηj,y
β0
j := −b0

j . (4.2.15)

Hence the test (4.2.2) is equivalent to H0 : b0
j = 0. Based on the idea proposed in [LL14],

we can have the estimation for b0
j

b̂j = − 1

n

n∑
i=1

{
Yi −X

ᵀ
i β̂
}{
Xij − (Yi,X

ᵀ
i,\j)γ̂j

}
(4.2.16)

where β̂ and γ̂j are some initial estimators for β0 and γ0
j .

Observe that b̂j is the solution to the estimating equation based on ηij,yεi+b0
j =

{
Xij−

E(Xij |Xi,\j , Yi)
}{
Yi −X

ᵀ
i β

0
}

+ σ2
ηj,y

β0
j , that is

n∑
i=1

m
(inv)
ni (bj) :=

n∑
i=1

{
Yi −X

ᵀ
i β̂
}{
Xij − (Yi,X

ᵀ
i,\j)γ̂j

}
+ nbj = 0, (4.2.17)
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and also by simple algebra, we have

m
(inv)
ni (b0

j ) = {εiηij,y + b0
j}︸ ︷︷ ︸

W
(inv)
ni

+ εi(Yi,X
ᵀ
i,\j)(γ

0
j − γ̂j) + X

ᵀ
i (β0 − β̂)

{
Xij − (Yi,X

ᵀ
i,\j)γ̂j

}︸ ︷︷ ︸
R

(inv)
ni

.

With simple calculations, we have E(Wni) = 0 and

Var(Wni) = Var(εiηij,y) = Var(εi(Xij −X
ᵀ
i β

0γ0
j1 − εiγ

0
j1 −X

ᵀ
i,\jγ

0
j,\1))

= θjj + (γ0
j1)2β0ᵀΘβ0 + (γ0

j1)2κ+ γ
0ᵀ
j,\1Θ\j,\jγ

0
j,\1

− 2γ0
j1β

0ᵀΘ·,j − 2γ0
j1$j − 2γ

0ᵀ
j,\1Θ\j,j + 2(γ0

j1)2β0ᵀ$

+ 2γ0
j1β

0ᵀΘ·,\jγ
0
j,\1 + 2γ0

j1γ
0ᵀ
j,\1$\j := σ2

n,inv.

Note that if we assume the independence between εi and Xi, we have the following simplified

variance expression. Since Xij = X
ᵀ
i β

0γ0
j1 + εiγ

0
j1 + X

ᵀ
i,\jγ

0
j,\1 + ηij,y and Cov(εi,Xi) = 0,

we have Cov(εi, εiγ
0
j1 + ηij,y) = 0, i.e. −γ0

j1Var(εi) = Cov(εi, ηij,y). Hence

Var(Wni) = Var(εi(ηij,y + εiγ
0
j1)− ε2i γ

0
j1)

= Var(εi)Var(ηij,y) + (γ0
j1)2(Var(ε2i )− Var2(εi)).

If furthermore we assume normality for the error term then we have Var(ε2i ) − Var2(εi) =

E(ε4i ) − 2[E(ε2i )]
2 = 3σ4

ε − 2σ4
ε = Var2(εi), which leads to the same result in Theorem 3.1
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from [LL14], i.e.

Var(Wni) = Var(εi)Var(ηij,y) + (γ0
j1)2(Var(ε2i )− Var2(εi))

= Var(εi)Var(ηij,y) + [Cov(εi, ηij,y)]2 = σ2
εσ

2
ηj,y

+ (γ0
j1)2σ4

ε

= σ2
εσ

2
ηj,y

+ (β0
j )2σ4

ηj,y
,

which is more likely to be estimable.

But we can still get the asymptotic normality as stated in the following proposition.

Proposition 7. Under Assumption 2 in the appendix, we have

√
n(b̂j − b0

j )
d→ N(0, σ2

inv) (4.2.18)

where σ2
inv = limn→∞ σ2

n,inv.

But we see that the asymptotic variance of b̂j is too way complicated, which makes such

Wald type statistics hard to use in practice with heteroscedastic noise.

4.3 Empirical Likelihood Based Approach

To avoid the complexity of estimating asymptotic variance under heteroscedasitic case, we

propose EL based approach. Note that the above three procedures in Sections 4.2.1, 4.2.2

and 4.2.3 correspond to three estimating equations (4.2.6), (4.2.11) and (4.2.17) of the form

mn(Xi, Yi, βj , β̂\j , θ̂), where the nuisance parameters β\j and the other nuisance parameters

denoted as θ replaced by their estimators β̂\j and θ̂. To keep it simple, we write mni(βj) =

mn(Xi, Yi, βj , β̂\j , θ̂) in general.

Note that the estimating equations (4.2.6), (4.2.11) and (4.2.17) have the same structure,
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i.e. the first term is the population level term, which will be shown to be dominant and

asymptotically normal, while the other terms are all about estimation errors, which need

to be controlled. We propose the following general framework by assuming the estimating

equations evaluated at the truth β0
j can be decomposed as follows,

mni(β
0
j ) := mn(Xi, Yi, β

0
j , β̂\j , θ̂) := Wni +Rni (4.3.19)

where {Wni}ni=1 which are IID and {Rni}ni=1 need to satisfy the following conditions:

(C0) P
{

min1≤i≤nmni < 0 < max1≤i≤nmni
}
→ 1;

(C1) Wni’s are IID with mean 0 and finite variance σ2
n with σ2

n → σ2
w;

(C2) 1√
n

∑n
i=1Rni = op(1) and max1≤i≤n |Rni| = op(n

1/2).

According to [Owe01], with estimating equations, we can construct empirical likelihood

to make the inference. Define the following empirical likelihood ratio function of the target

parameter βj

ELn(βj) = max
{ n∏
i=1

npi : pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pimni(βj) = 0
}
. (4.3.20)

Under this unified framework with the above general conditions, we have the following pow-

erful Wilks theorem.

Theorem 5. If (C0)-(C2) hold, then

−2 log ELn(β0
j )

d→ χ2
1.
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Based on Theorem 5, an asymptotic α level test is given by rejectingH0 if−2 log ELn(β0
j ) >

χ2
1,α where χ2

1,α is the upper α quantile of χ2
1. We can also construct a (1−α)100% confidence

interval for βj as CIα = {βj : −2 log ELn(βj) < χ2
1,α}. Since the asymptotic distribution is

chi-square, we do not need to estimate any additional parameters, such as the asymptotic

variance.

4.4 Theoretical Examples

This section outlines three examples as we discussed above in Sections (4.2.1), (4.2.2) and

(4.2.3) to demonstrate interesting and powerful applications of Theorems 5. We need to

check the conditions (C0)-(C2) for these problems.

From Proposition 5, 6 and 7, we see that Wald type inference procedure is hard to

implement due to the complex asymptotic variance. Fortunately we do not need to estimate

that variance in order to conduct inference by using the self studentized EL procedure. And

in fact, we already verified condition (C1) for the three procedures in Section (4.2.1), (4.2.2)

and (4.2.3), respectively. We can control the second term Rnis under certain assumptions,

which leads to the following theorems.

4.4.1 Lasso Projection

The first example is about using Lasso estimation to get the low dimensional projection as

we discussed in Section 4.2.1.

Theorem 6. Under some typical conditions for the initial estimators as in Assumption 1 in

the appendix and assume that Xi and εi are both sub-Gaussian. As long as s log p/
√
n = o(1),

the conditions (C0) and (C2) can be satisfied. Assume σ2
n,lasso → σ2

lasso for some σ2
lasso <∞,
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and then we have

−2 log EL
(lasso)
n (β0

j )
d→ χ2

1.

Notice that under the homoscedastic noise case, [ZZ14] and [vdGBR13] used the Wald

type test statistic for testing H0 based on the same estimation equation as we used here. And

in [NL14], with the same estimating equation, they instead proposed the Score test statistic

for testing H0. Although they are asymptotically equivalent, the differences between these

two can be found in [NL14]. We are using the same estimating equation to construct the

likelihood ratio type statistic for testing H0. Since we are using empirical likelihood, it

not only enjoys the Wilks phenomenon, but also has other nice properties, such as the

shape of the confidence interval is data driven and our procedure is more robust to the

distribution assumption for the error term since it only requires moment assumptions. The

key advantage of our method is that we allow heteroscedasticity for the error term due to the

self studentization property of the empirical likelihood. Please refer to the empirical studies

in the simulation section for the performance comparison of our method with the Wald type

test and Score test.

4.4.2 Inverse Projection

The second example is about using inverse regression to get the low dimensional projection

as we discussed in Section 4.2.3.

Theorem 7. Under some conditions for the initial estimators as in Assumption 2 in the

appendix, and assume (X
ᵀ
i , εi)

ᵀ is sub-Gaussian. As long as s log p/
√
n = o(1), the condi-

tions (C0) and (C2) can be satisfied. Assume σ2
n,inv → σ2

inv for some σ2
inv < ∞, and then
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we have

−2 log EL
(inv)
n (b0

j )
d→ χ2

1.

Note that since we are doing an equivalent test, from this inference procedure, we can

not get the confidence interval for β0
j .

4.4.3 KFC Projection

The third example is about the projection by selecting the KFC set as we discussed in Section

4.2.2.

Theorem 8. Under Assumption 3 in the appendix, the conditions (C0) and (C2) can be

satisfied. Assume σ2
n,kfc → σ2

kfc for some σ2
kfc <∞, and then we have

−2 log EL
(kfc)
n (β0

j )
d→ χ2

1.

About the KFC set selection, we propose the following procedure. Based on normality

assumption of the predictors, we have the well known conditional distribution result for any

give subset S:

ρjk(S) := Corr(Xij , Xik|XiS) = σjk −Σ
ᵀ
SjΣ

−1
SSΣSk.

The sample partial correlation can be evaluated by, ρ̂jk(S) = X̃ᵀ
j X̃k/n. For testing whether

a partial correlation is zero or not, we could apply Fisher’s z-transformation

F̂jk =
1

2
log

{
1 + ρ̂jk(S)

1− ρ̂jk(S)

}
.

Classical decision theory yields the following rule when using the significance level α. Reject
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the null hypothesis H0 : ρjk(S) = 0 against the two-sided alternative Ha : ρjk(S) 6= 0 if

√
n− |S| − 3|F̂jk| > z1−α/2.

So we could then select the smallest size of S such that

max
k∈S∗

√
n− |S| − 3|F̂jk| < z1−α/2.

And in order to make this KFC set selection more stable, we adopt the stability selection

proposed by [MB10] and [SS13]. According to [SS13], we split the data into half for B times

and select the final KFC set with variables shown at least 50% of those 2B KFC sets.

4.5 Simulation Studies

In this section, we conduct simulation studies to investigate the finite sample performance

of the proposed empirical likelihood ratio test, as well as comparing the performances for

different estimating equations proposed in the existing literature. In particular, to gen-

erate the covariates, we simulate n = 200, 400 independent samples from a multivariate

Gaussian distribution Np(0,Σ) where p = 100, 200, 500. We consider 3 different covari-

ance matrices Σ = ((σjk)), banded matrix with σjk = ρ|j−k|1(|j − k| < 2), Toeplitz ma-

trix with σjk = ρ|j−k| and block diagonal matrix with unit block


1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1

, where

ρ = 0.2, 0.5. We consider five scenarios for the error distribution, standard normal N(0, 1),

mixture normal distribution 0.7N(0, 1) + 0.3N(0, 52), t distribution with degrees of free-
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dom 3, and two heteroscedastic distributions 0.7X1Z and 1
p−1X1Z

∑p
j=2Xj−1Xj where

Z ∼ N(0, 1) independent of X. Note that for the two heteroscedastic distributions, we have

Cov(X, ε) = E(εX) = 0, although ε is not independent with X. For the first heteroscedastic

case the conditional variance only depends on a low dimensional covariates and the con-

ditional variance for the second heteroscedastic case depends on the the entire vector of

covariates. The true coefficients β0 satisfies β0
1 = 0, 0.1, 0.2, 0.3, 0.4, 0.5 (0 for the size and

others for the power analysis), β0
4 = 1.5, β0

7 = 2 and all others are 0. Our goal is to test

H0 : β0
1 = 0, v.s. H1 : β0

1 6= 0.

The number of simulations is 500.

For the initial estimators such as β̂, γ̂1 and ŵ1, we just use the scaled Lasso [SZ12],

which has the advantage of being tuning insensitive. “EL-KFC” corresponds to the KFC

Projection example, “EL-INV” corresponds to the Inverse Projection example, and “EL-

LASSO” corresponds to Lasso Projection example. And “Wald” corresponds to the Wald

type test as proposed in [ZZ14] and [vdGBR13], while “Score” corresponds to the Score type

test as proposed in [NL14] with Lasso estimation for ŵ1.

And for the “EL-KFC”, in order to stabilize the KFC set selection, we used the stability

selection procedure through sub-sampling proposed by [MB10] and [SS13]. According to

[SS13], we split the data into half for 10 times and select the final KFC set with variables

shown at least 50% of those 20 KFC sets.

For illustration, we only show some of the cases here. In Table 4.1 with Toeplitz matrix

with ρ = 0.2 as the covariance matrix for the predictors and standard normal error, we can

see that all of the procedures has reasonably well controlled type I error around α level at
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5%. And for the empirical likelihood based approach with different estimating equations,

they have pretty much similar power performance. An interesting comparison among the

holy trinity, i.e. Wald type test, Score test and the likelihood ratio test, which correspond

to the last three sections in Table 4.1, shows that the likelihood ratio test has overall better

power performance than the other two, especially in the low sample size situation.

The most exciting part is about the heteroscedasticity. In Table 4.2, we simulate the

predictors with the Toeplitz covariance matrix with ρ = 0.2 and the heteroscedastic noise

0.7X1N(0, 1). Under this case, we could see clearly that all of the empirical likelihood based

inference procedures, which corresponds to the first four sections in Table 4.2, are valid, i.e.

they have reasonably well controlled type I error. The same results are also demonstrated

in Figure 4.1a for p = 100. But for the Wald type test and Score test, their type I errors are

largely inflated, which indicates that these two procedures are invalid. We can clearly see the

patterns in Figure 4.1b for p = 100. For the other heteroscedastic noise with conditional error

variance depending on high dimensional covariates, that is 1
p−1X1

∑p
j=2Xj−1XjN(0, 1), we

can observe similar performances in Table 4.3, as well as in Figure 4.2 for p = 500. This

shows the advantage of the empirical likelihood based inference procedures.
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Figure 4.1: Empirical Size and Power Comparison among Empirical Likelihood
based approaches and among Holy Trinity and p = 100. (a) “EL-KFC” represents EL
approach with KFC projection, “EL-INV” represents EL approach with inverse projection
and “EL-LASSO” represents EL approach with Lasso projection; (b) “Wald” represents
Wald type test, “Score” represents Score test and “EL” represents likelihood ratio test.
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Figure 4.2: Empirical Size and Power Comparison among Empirical Likeli-
hood based approaches and among Holy Trinity with Heteroscedastic Noise

1
p−1X1

∑p
j=2Xj−1XjN(0, 1) and p = 500. (a) “EL-KFC” represents EL approach

with KFC projection, “EL-INV” represents EL approach with inverse projection and “EL-
LASSO” represents EL approach with Lasso projection; (b) “Wald” represents Wald type
test, “Score” represents Score test and “EL” represents likelihood ratio test.
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Table 4.1: Power comparison. Covariate: Toeplitz matrix with ρ = 0.2; Error: N(0, 1).

β0
1

Method p n 0 0.1 0.2 0.3 0.4 0.5
EL-KFC 100 200 0.054 0.304 0.760 0.984 1 1

400 0.052 0.482 0.964 1.000 1 1
200 200 0.052 0.294 0.762 0.976 1 1

400 0.044 0.460 0.980 1.000 1 1
500 200 0.064 0.292 0.760 0.972 1 1

400 0.040 0.488 0.972 1.000 1 1
EL-INV 100 200 0.040 0.296 0.748 0.984 1 1

400 0.054 0.470 0.962 1.000 1 1
200 200 0.044 0.290 0.774 0.976 1 1

400 0.038 0.458 0.980 1.000 1 1
500 200 0.048 0.276 0.784 0.978 1 1

400 0.034 0.490 0.972 1.000 1 1
EL-LASSO 100 200 0.052 0.312 0.770 0.990 1 1

400 0.054 0.490 0.970 1.000 1 1
200 200 0.048 0.308 0.786 0.982 1 1

400 0.038 0.462 0.978 1.000 1 1
500 200 0.056 0.300 0.788 0.980 1 1

400 0.042 0.512 0.976 1.000 1 1
Wald 100 200 0.048 0.266 0.748 0.964 1.000 1

400 0.048 0.502 0.970 1.000 1.000 1
200 200 0.064 0.270 0.742 0.972 1.000 1

400 0.038 0.486 0.978 1.000 1.000 1
500 200 0.052 0.284 0.794 0.968 0.998 1

400 0.040 0.486 0.978 1.000 1.000 1
Score 100 200 0.050 0.264 0.746 0.962 1.000 1

400 0.052 0.480 0.966 1.000 1.000 1
200 200 0.062 0.268 0.740 0.970 1.000 1

400 0.040 0.474 0.978 1.000 1.000 1
500 200 0.062 0.272 0.794 0.970 0.998 1

400 0.038 0.498 0.976 1.000 1.000 1
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Table 4.2: Power comparison. Covariate: Toeplitz matrix with ρ = 0.2; Error:
0.7X1N(0, 1).

β0
1

Method p n 0 0.1 0.2 0.3 0.4 0.5
EL-KFC 100 200 0.062 0.244 0.624 0.924 0.986 1.000

400 0.040 0.366 0.916 0.998 1.000 1.000
200 200 0.070 0.230 0.652 0.920 0.990 1.000

400 0.076 0.350 0.890 0.990 1.000 1.000
500 200 0.060 0.254 0.636 0.900 0.986 0.996

400 0.058 0.402 0.902 0.992 1.000 1.000
EL-INV 100 200 0.058 0.230 0.620 0.910 0.986 1.000

400 0.040 0.356 0.918 0.998 1.000 1.000
200 200 0.058 0.222 0.652 0.910 0.988 1.000

400 0.066 0.342 0.880 0.990 1.000 1.000
500 200 0.060 0.236 0.624 0.898 0.980 0.996

400 0.050 0.402 0.902 0.992 1.000 1.000
EL-LASSO 100 200 0.056 0.244 0.634 0.922 0.988 1.000

400 0.046 0.376 0.926 1.000 1.000 1.000
200 200 0.062 0.232 0.668 0.926 0.990 1.000

400 0.072 0.356 0.890 0.988 1.000 1.000
500 200 0.068 0.250 0.640 0.912 0.986 0.996

400 0.052 0.412 0.902 0.992 1.000 1.000
Wald 100 200 0.256 0.496 0.860 0.986 1 1

400 0.210 0.706 0.986 1.000 1 1
200 200 0.234 0.464 0.848 0.980 1 1

400 0.236 0.680 0.968 1.000 1 1
500 200 0.208 0.516 0.874 0.978 1 1

400 0.234 0.736 0.986 1.000 1 1
Score 100 200 0.256 0.490 0.860 0.986 1 1

400 0.218 0.700 0.986 1.000 1 1
200 200 0.234 0.470 0.846 0.980 1 1

400 0.234 0.672 0.968 1.000 1 1
500 200 0.204 0.518 0.870 0.978 1 1

400 0.230 0.728 0.984 1.000 1 1
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Table 4.3: Power comparison. Covariate: Toeplitz matrix with ρ = 0.2; Error:
1
p−1X1

∑p
j=2Xj−1XjN(0, 1).

β0
1

Method p n 0 0.1 0.2 0.3 0.4 0.5
EL-KFC 100 200 0.066 0.886 0.998 1 1 1

400 0.048 0.988 1.000 1 1 1
200 200 0.076 0.932 1.000 1 1 1

400 0.068 0.988 1.000 1 1 1
500 200 0.060 0.942 1.000 1 1 1

400 0.054 1.000 1.000 1 1 1
EL-INV 100 200 0.062 0.872 0.998 1 1 1

400 0.038 0.988 1.000 1 1 1
200 200 0.074 0.936 1.000 1 1 1

400 0.064 0.988 1.000 1 1 1
500 200 0.056 0.938 1.000 1 1 1

400 0.042 1.000 1.000 1 1 1
EL-LASSO 100 200 0.066 0.876 0.998 1 1 1

400 0.046 0.988 1.000 1 1 1
200 200 0.078 0.934 1.000 1 1 1

400 0.064 0.988 1.000 1 1 1
500 200 0.064 0.944 1.000 1 1 1

400 0.046 1.000 1.000 1 1 1
Wald 100 200 0.222 0.982 1 1 1 1

400 0.214 1.000 1 1 1 1
200 200 0.244 0.990 1 1 1 1

400 0.214 0.998 1 1 1 1
500 200 0.260 0.990 1 1 1 1

400 0.240 1.000 1 1 1 1
Score 100 200 0.226 0.984 1 1 1 1

400 0.208 1.000 1 1 1 1
200 200 0.236 0.990 1 1 1 1

400 0.206 0.998 1 1 1 1
500 200 0.260 0.990 1 1 1 1

400 0.232 1.000 1 1 1 1
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4.6 Real Data Analysis

Microarray expression experiments and array-based comparative genomic hybridization (ar-

ray CGH) experiments have been conducted for more than 170 primary breast tumor spec-

imens in a few recent breast cancer cohort studies, collected at multiple cancer centers

[FFS10].

We used a total of 172 tumor samples with both cDNA expression microarray and CGH

array data. In our study, we used the copy number alteration intervals (CNAIs), which

are defined as basic CNA units (genome regions) in which all genes tend to be amplified or

deleted simultaneously in a sample. For each CNAI in each sample, the mean value of the

estimated copy numbers of the genes falling into this CNAI was calculated. This resulted

in a 172 (samples) by 384 (CNAIs) numeric matrix. After global normalization for each

expression array, we focused on a set of 654 breast cancer related genes, which was derived

based on seven published breast cancer gene lists. This resulted in a 172 (samples) by 654

(genes) numeric matrix. See model details about the data processing in [PZB+10].

Our study tends to reveal the subtle and complicated regulatory relationships among

DNA copy numbers and RNA transcript levels. The dependence of RNA levels on DNA copy

numbers can be modeled through a straightforward multivariate linear regression model with

the RNA levels as responses and the DNA copy numbers as predictors. While multivari-

ate linear regression is well studied in statistical literature, the current problem bears new

challenges due to high-dimensionality in terms of both predictors and responses. We will

adopt some dimension reduction procedures for the RNA expressions followed by significant

association detect using the proposed methods.
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4.6.1 WGCNA of correlated genes

In order to deal with the correlation patterns among genes across microarray samples, we

adopted the Weighted Gene Co-expression Network Analysis (WGCNA) [LH08] which can

be used for finding clusters (modules) of highly correlated genes.

By using of WGCNA with minModuleSize=10, we identified 5 modules labeled 1 through

5 in order of descending size as listed in Table 4.4. The label 0 is reserved for genes outside of

all modules. And we can see that in Figure 4.3a there are pretty clear 5 modules clustered.

Table 4.4: Module Sizes.

module 0 1 2 3 4 5
size 204 316 53 33 25 23

For summarizing such cluster, we use the module eigengene by conducting PCA for

each of the five modules to select the first principal component as our response to do the

association analysis. But since we have missing values in the expression data matrix, we

impute the missing values by using impute.knn [HTS+99]. And we choose prcomp in R to

perform PCA.

4.6.2 Significance Test

After doing WGCNA, imputation and PCA, we have first principal component for each of 5

modules. We regressed each module eigengene onto the predictors (CNAIs, totally we have

384) separately to conduct the single coefficient significance study.

For illustration, we just demonstrate the results for Module 3 and see others in the

appendix. In Figure 4.3b, we could see that although different methods have different power
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performance, the significance spots are very much consistent all over the methods. And the

Score method is kind of powerless in this data analysis among all 6 different methods.

For each inference procedure testing for all covariates, we can get a sequence of p-values

{pj}
p
j=1. With the ordered p-values, p(1) ≤ p(2) ≤ · · · ≤ p(j) ≤ · · · ≤ p(p), we adopt the

Benjamini-Hochberg (BH) algorithm: for a fixed value α = 0.01%, let jmax be the largest

index for which p(j) ≤
j
pα, and reject H0(j), the null hypothesis corresponding to p(j), if

j ≤ jmax, accepting H0(j) otherwise. Take Module 3 as an example, we found that all of

the empirical likelihood based approaches detected one consistent signal which is the 269-th

CNAI, on Chromosome 15 with Cytoband “15q11.2-15q11.2”.
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Figure 4.3: Breast Cancer Cohort Studies. (a) Clustering dendrogram of genes, with
dissimilarity based on topological overlap, together with assigned module colors. (b) Man-
hattan plot for Module 3.
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4.6.3 Presence of Heteroscedasticity

We test for the presence of heteroscedasticity in this data set for each of the 654 genes using

the Goldfeld-Quandt test [GQ65]. The Goldfeld-Quandt test is one of the most widely used

test for heteroscedasticity. It compares the variances of two submodels divided by a specified

breakpoint and rejects if the variances differ. The Goldfeld-Quandt test is not directly

applicable when p > n. To reduce the dimensions, we apply the
√

Lasso to select CNAIs

that are predictive of gene expression levels and CNAIs that are explanatory of variability.

These variables are then applied in the Goldfeld-Quandt test to specify predictors on the

response. Since the
√

Lasso is not that sensitive to the selection of the tuning parameter

and we are also durable to select more variables, we just set the tuning parameter to be√
log p/n.

We found that 19 out of 654 genes demonstrate heteroscedasticity at the significance

level 0.05/654. The presence of heteroscedasticity for these genes suggests the need to use

our method for identifying the CNAIs that are associated with gene expression. As further

evidence for the existence of heteroscedasticity, we apply the “wandering schematic plot”

[Tuk77]. This slices the predicted value into bins and uses m-letter summaries (generaliza-

tions of boxplots) to show the location, spread, and shape of the residuals for each bin. The

m-letter statistics are further smoothed in order to emphasize overall patterns rather than

chance deviations. Figure 4.4 presents the “wandering schematic plots” for genes PDK3

(Chr 23), TPST2 (Chr 22), ELF3 (Chr 1) and SNRPE (Chr 22), which are the top 4 genes

for the heteroscedasticity.
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4.6.4 Results for Top 4 Genes with Heteroscedasticity

We apply our Empirical Likelihood based approach to the four genes discussed in the previous

section and demonstrated in Figure 4.5 and compare its performances with those of Wald

type test and Score type test. For example, we use gene TPST2 on Chr 22 as shown in

Figure 4.5b for demonstration. For each inference procedure testing for all covariates, we

can get a sequence of p-values {pj}
p
j=1. With the ordered p-values, p(1) ≤ p(2) ≤ · · · ≤

p(j) ≤ · · · ≤ p(p), we adopt the Benjamini-Hochberg (BH) algorithm to make the decision.

As a result, we found that only EL-INV and EL-LASSO can detect signals and all of the

other procedures found nothing significant. Moreover EL-INV and EL-LASSO found two

consistent signals at the 305-th CNAI and 307-th CNAI, both of which are on Chromosome

17 with Cytoband “17q12-17q12”.
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Figure 4.4: Wondering Schematic Plot for Top 4 Genes with Heteroscedasticity.
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Figure 4.5: Manhattan Plot for Top 4 Genes with Heteroscedasticity.
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4.7 Technical Details

4.7.1 Assumptions for Theoretical Examples

Assumption 1. (1) Assume the initial estimator β̂ satisfying ‖β̂−β0‖1 = Op(s
√

log p/n).

(2) Suppose the initial estimators ŵj satisfy max1≤j≤p ‖ŵj−w0
j‖1 = Op(an), where an =

o(1/
√

log p).

(3) The prediction errors satisfy ‖X(β̂−β0)‖22/n = Op(s log p/n) and max1≤j≤p ‖X\j(ŵj−

w0
j )‖

2
2/n = Op(bn), where X\j is the design matrix X with the j-th column deleted and

bn = o(1/
√
n).

(4) Xi and εi are all sub-Gaussian.

(5) s log p/
√
n = o(1).

Remark 6. 1. With (4) that Xi and εi are all sub-Gaussian, we have Xikεi sub-exponential

with E(εiXik) = 0. By Bernstein inequality [Ver10] and union bound inequality, we

have

P(
∥∥ 1

n

n∑
i=1

Xiεi
∥∥
∞ ≥ t) ≤ C1p exp(−C min(t2/C2, t/C3)n).

By taking t = C ′
√

log p
n for some positive constant C ′ such that CC

′2 > C2, we have

‖ 1

n

n∑
i=1

Xiεi‖∞ = Op(

√
log p

n
). (4.7.21)

2. For ηij = Xij − E(Xij |Xi,\j), we have ηij sub-gaussian since Xi is sub-gaussian.

And for any k 6= j, we have E(Xikηij) = E{Xik[Xij − E(Xij |Xi,\j)]} = E{XikXij −
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E[XikXij |Xi,\j ]} = 0. Similarly, we have for any t > 0 and 1 ≤ j 6= k ≤ p,

P(
∣∣ 1
n

n∑
i=1

Xikηij
∣∣ ≥ t) ≤ C1p exp(−C min(t2/C2, t/C3)n),

which leads to

∥∥∥ 1

n

n∑
i=1

ηijXi,\j

∥∥∥
∞

= Op(

√
log p

n
). (4.7.22)

3. For the properties of the initial estimators in (1), (2) and (3) under the heteroscedasitic

noise case, we can use the
√

Lasso estimator as in [BCW14]. According to Theorem 7

in [BCW14], we have that the
√

Lasso estimators under certain conditions have these

properties satisfied.

Assumption 2. (1) Assume the same assumption as Lasso projection case for the initial

estimator ‖β̂ − β0‖1 = Op(s
√

log p/n).

(2) Assume similar assumption as Lasso projection case for the initial estimators γ̂j, i.e.

max1≤j≤p ‖γ̂j − γ0
j ‖1 = Op(an), where an = o(1/

√
log p).

(3) Assume similar assumption as Lasso projection case for the prediction errors, i.e.

‖X(β̂ − β0)‖22/n = Op(s log p/n) and max1≤j≤p ‖(Y,X\j)(γ̂j − γ0
j )‖22/n = Op(bn)

and bn = o(1/
√
n).

(4) (X
ᵀ
i , εi)

ᵀ is sub-Gaussian.

(5) s log p/
√
n = o(1).

Remark 7. For the condition (2) above, if we assume a = max1≤j≤p sj with sj = ‖γ0
j ‖0

and then the
√

Lasso estimators for γ0
j satisfy this condition with an = a

√
log p/n. For the
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condition (3) above, since we assume that (X
ᵀ
i , εi)

ᵀ is sub-Gaussian (which makes β0ᵀXi

also sub-Gaussian), then due to Cov(β0ᵀXi, εi) = E(εiβ
0ᵀXi) = 0, we have εiβ

0ᵀXi sub-

exponential and by the Bernstein inequality, we have for any t > 0,

P(
∣∣ 1
n

n∑
i=1

X
ᵀ
i β

0εi
∣∣ ≥ t) ≤ 2 exp{−C1nmin(t2/C2

2 , t/C2)}.

This also leads to

1

n

n∑
i=1

X
ᵀ
i β

0εi = Op(
√

log p/n), (4.7.23)

as long as log p/n→ 0. And with the same argument, we have

1

n

n∑
i=1

Xikηij,y = Op(
√

log p/n), (4.7.24)

1

n

n∑
i=1

(Yi,X
ᵀ
i,\j)γ

0
j ηij,y = Op(

√
log p/n). (4.7.25)

Assumption 3. (1) For the eigenvalues of Σ, there exist some constants λmin and λmax

such that

0 < λmin < λmin(Σ) ≤ λmax(Σ) < λmax <∞.

(2) Assume Xi ∼ N(0,Σ) and εi to be sub-Gaussian.

(3) Assume the same as the Lasso projection for the initial estimator ‖β̂−β0‖1 = Op(s
√

log p/n).

(4) m3 log p/n = o(1), s

√
(log p)2m3

n = o(1), s

√
(log p)3m2

n2 = o(1).

(5) Assume s
√

log p supS:|S|≤m maxk∈S∗
∣∣σjk−ΣjSΣ−1

SSΣSk
∣∣ = o(1) to control the partial

correlation between the target covariate Xij and XiS∗.
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4.7.2 Proof of Theorems

Proof of Theorem 5. As in [Owe01], by (C0), with probability tending to 1, −2 log ELn(β0
j ) =

2
∑n
i=1 log(1 + λmni) where λ satisfies

n∑
i=1

mni

1 + λmni
= 0. (4.7.26)

The next step is to bound the magnitude of λ. Let λ = |λ|u where u = sign(λ) ∈ {−1, 1}.

Now by
∑n
i=1

mni
1+λmni

= 0, we have

0 =
n∑
i=1

umni

1 + λmni
=

n∑
i=1

umni
{

1− λmni

1 + λmni

}
,

which implies

n∑
i=1

umni =
n∑
i=1

uλm2
ni

1 + λmni
=

n∑
i=1

|λ|m2
ni

1 + λmni
≥ |λ|

n∑
i=1

m2
ni

1 + |λ|max1≤i≤n |mni|
.

Thus we have

u
1

n

n∑
i=1

mni ≥
|λ|

1 + |λ|max1≤i≤n |mni|
1

n

n∑
i=1

m2
ni.

which implies

|λ|
{ 1

n

n∑
i=1

m2
ni − ( max

1≤i≤n
|mni|)u

1

n

n∑
i=1

mni
}
≤ u

1

n

n∑
i=1

mni. (4.7.27)
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From (C1), by Lemma 3 in [Owe90], we have max1≤i≤n |Wni| = op(n
1/2), and together with

(C2), we have

max
1≤i≤n

|mni| = op(n
1/2). (4.7.28)

And since for any ε > 0,

1

nσ2
n

n∑
i=1

E
{
W 2
ni1(|Wni| > ε

√
nσn)

}
= σ−2

n E
{
W 2
n11(|Wn1| > ε

√
nσn)

}
,

where obviously W 2
n11(|Wn1| > ε

√
nσn)

p→ 0 due to P(|Wn1| > ε
√
nσn) → 0, we have by

Dominated Convergence Theorem,

1

nσ2
n

n∑
i=1

E
{
W 2
ni1(|Wni| > ε

√
nσn)

}
→ 0.

Thus by Lindeberg-Feller Central Limit Theorem, we have

1√
n

n∑
i=1

Wni
d→ N(0, σ2

w). (4.7.29)

By (4.7.29) and together with (C2), we have

1√
n

n∑
i=1

mni =
1√
n

n∑
i=1

Wni +
1√
n

n∑
i=1

Rni =
1√
n

n∑
i=1

Wni + op(1)
d→ N(0, σ2

w). (4.7.30)

And by (C1) and (C2) we have

1

n

n∑
i=1

m2
ni =

1

n

n∑
i=1

W 2
ni +

1

n

n∑
i=1

R2
ni + 2

1

n

n∑
i=1

WniRni =
1

n

n∑
i=1

W 2
ni + op(1)→ σ2

w. (4.7.31)

128



Actually the above follows from checking the WLLN for triangular arrays. First of all∑n
i=1 P(W 2

ni > n) = nP(W 2
n1 > n) ≤ E

{
W 2
n11(W 2

n1 > n)
}
→ 0; and

n−2
n∑
i=1

E
{
W 4
ni1(W 2

ni ≤ n)
}

= n−1E
{
W 4
n11(W 2

n1 ≤ n)
}

= n−1
∫ n

0
2yP(W 2

n1 > y)dy → 0

since yP(W 2
n1 > y) ≤ E(W 2

n11(W 2
n1 > y))→ 0 as y →∞.

Thus by (4.7.27), (4.7.28), (4.7.30) and (4.7.31), we have

|λ|( 1

n

n∑
i=1

m2
ni + op(1)) = Op(n

−1/2)

and hence

|λ| = Op(n
−1/2). (4.7.32)

Then it follows from (4.7.28), we have max1≤i≤n
∣∣ λmni
1+λmni

∣∣ = op(1). Therefore, from (4.7.26),

we have

0 =
1

n

n∑
i=1

λmni

1 + λmni
=

1

n

n∑
i=1

λmni

{
1− λmni +

[λmni]
2

1 + λmni

}
=

1

n

n∑
i=1

λmni −
[1 + op(1)]

n

n∑
i=1

[λmni]
2,

which leads to

1

n

n∑
i=1

λmni =
[1 + op(1)]

n

n∑
i=1

[λmni]
2. (4.7.33)
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Again by using (4.7.26) and together with (4.7.30), we have

0 =
1

n

n∑
i=1

mni

1 + λmni
=

1

n

n∑
i=1

mni

{
1− λmni +

[λmni]
2

1 + λmni

}
=

1

n

n∑
i=1

mni −
λ

n

n∑
i=1

m2
ni +

1

n

n∑
i=1

mni[λmni]
2

1 + λmni

=
1

n

n∑
i=1

mni −
λ

n

n∑
i=1

m2
ni +Op

{
max

1≤i≤n

∣∣ mni

1 + λmni

∣∣ 1
n

n∑
i=1

[λmni]
2
}

=
1

n

n∑
i=1

mni −
λ

n

n∑
i=1

m2
ni + op

{
n1/2λ2 1

n

n∑
i=1

m2
ni

}
=

1

n

n∑
i=1

mni −
λ

n

n∑
i=1

m2
ni + op(n

−1/2),

which leads to

λ =
{ 1

n

n∑
i=1

m2
ni

}−1 1

n

n∑
i=1

mni + op(n
−1/2). (4.7.34)

Finally, by Taylor expansion together with (4.7.30), (4.7.31), (4.7.33) and (4.7.34), we have

−2 log ELn(β0
j ) = 2

n∑
i=1

log(1 + λmni)

= 2
n∑
i=1

λmni − [1 + op(1)]
n∑
i=1

[λmni]
2

= [1 + op(1)]
n∑
i=1

[λmni]
2 = [1 + op(1)]λ2

n∑
i=1

m2
ni

= [1 + op(1)]
( 1√

n

n∑
i=1

mni

)( 1

n

n∑
i=1

m2
ni

)−1( 1√
n

n∑
i=1

mni

)
+ op(1)

d→ χ2
1, as n→∞.
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This completes the proof of the theorem.

Proof of Theorem 6. We only need to control the term Rni, which will be controlled one by

one.

By (3) in Assumption 1, we have (4.7.21) and (4.7.22), which leads to

∣∣∣ 1
n

n∑
i=1

Rni,1

∣∣∣ =
∣∣∣ 1
n

n∑
i=1

(Yi −X
ᵀ
i β

0)(w0
j − ŵj)

ᵀXi,\j

∣∣∣
=
∣∣∣(w0

j − ŵj)
ᵀ 1

n

n∑
i=1

Xi,\jεi
∣∣∣ ≤ ‖w0

j − ŵj‖1‖
1

n

n∑
i=1

Xi,\jεi‖∞

= Op(an)Op(

√
log p

n
) = Op(an

√
log p

n
).

In order to have
∣∣∣ 1n∑n

i=1Rni,1

∣∣∣ = op(n
−1/2) we need to have an = o(1/

√
log p), which is

true according to (2) in Assumption 1.

For Rni,2, we have

∣∣∣ 1
n

n∑
i=1

Rni,2

∣∣∣ =
∣∣∣ 1
n

n∑
i=1

(Xij − ŵ
ᵀ
jXi,\j)X

ᵀ
i,\j(β

0
\j − β̂\j)

∣∣∣
=
∣∣∣ 1
n

n∑
i=1

ηijX
ᵀ
i,\j(β

0
\j − β̂\j) +

1

n

n∑
i=1

(w0
j − ŵj)

ᵀXi,\jX
ᵀ
i,\j(β

0
\j − β̂\j)

∣∣∣
≤
∣∣∣ 1
n

n∑
i=1

ηijX
ᵀ
i,\j(β

0
\j − β̂\j)

∣∣∣+
∣∣∣ 1
n

n∑
i=1

(w0
j − ŵj)

ᵀXi,\jX
ᵀ
i,\j(β

0
\j − β̂\j)

∣∣∣
≤
∥∥∥ 1

n

n∑
i=1

ηijX
ᵀ
i,\j

∥∥∥
∞

∥∥∥β0
\j − β̂\j)

∥∥∥
1

+

√√√√ 1

n

n∑
i=1

{
(w0

j − ŵj)ᵀXi,\j
}2

√√√√ 1

n

n∑
i=1

{
X

ᵀ
i,\j(β

0
\j − β̂\j)

}2

=Op(
√

log p/n)Op(s
√

log p/n) +Op(
√
s log p/n)Op(

√
bn)

=OP
(
s log p/n+

√
bns log p/n

)
.
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In order to have
∣∣∣ 1n∑n

i=1Rni,2

∣∣∣ = op(n
−1/2) we need to have s log p/

√
n = o(1) and bn =

o(1/
√
n). Thus with (3) and (5) in Assumption 1, we have verified the first half condition

in (C2), 1
n

∑n
i=1Rni = op(n

−1/2).

Now for the second half of the condition in (C2),

max
1≤i≤n

|Rni,1| = max
1≤i≤n

∣∣(Yi −X
ᵀ
i β

0)(w0
j − ŵj)

ᵀXi,\j
∣∣ = max

1≤i≤n

∣∣(w0
j − ŵj)

ᵀXi,\jεi
∣∣

≤
∥∥w0

j − ŵj

∥∥
1 max

1≤i≤n

∥∥Xi,\jεi
∥∥
∞ =

∥∥w0
j − ŵj

∥∥
1 max

1≤i≤n
max

1≤k≤p

∣∣Xikεi∣∣.
Now since Xi and εi are all sub-Gaussian and then we have Xikεi sub-exponential, and

then by the union bound, we have

P
(

max
1≤i≤n

max
1≤k≤p

∣∣Xikεi∣∣ > t
)
≤
∑

1≤i≤n

∑
1≤k≤p

P(|Xikεi
∣∣ > t) ≤ pnC1e

−C2t.

By taking t = log(pn)/C with C < C2, we have max1≤i≤n max1≤k≤p
∣∣Xikεi∣∣ = Op(log(pn)).

Hence we have

max
1≤i≤n

|Rni,1| =
∥∥w0

j − ŵj

∥∥
1 max

1≤i≤n
max

1≤k≤p

∣∣Xikεi∣∣ = Op(an log(pn)).

In order to make max1≤i≤n |Rni,1| = op(n
1/2), we need an log(pn)/

√
n = o(1), which is true

under assumption (2) for an in Assumption 1 since an log(pn)/
√
n = o(log(pn)/

√
n log p) =

o(
√

log p/n) = o(1).
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Note that max
1≤i≤n

|Rni,2| = max
1≤i≤n

|(Xij − ŵ
ᵀ
jXi,\j)X

ᵀ
i,\j(β

0
\j − β̂\j)|

≤ max
1≤i≤n

|(Xij −w
0ᵀ
j Xi,\j)X

ᵀ
i,\j(β

0
\j − β̂\j)|

+ max
1≤i≤n

|(w0
j − ŵj)

ᵀXi,\jX
ᵀ
i,\j(β

0
\j − β̂\j)|

≤ ‖β0
\j − β̂\j)‖1 max

1≤i≤n
max

1≤k≤p
|ηijXik|

+ ‖(w0
j − ŵj)‖1‖(β0

\j − β̂\j)‖1
(

max
1≤i≤n

max
1≤k≤p

|Xik|
)2
.

Now since ηij ’s and Xi are all sub-Gaussian, and then by similar analysis as above we have

max
1≤i≤n

|Rni,2| = Op(s
√

log p/n)Op(log(pn)) +Op(ans
√

log p/n)Op(log(pn))

= Op(s
√

log p/n log(pn)).

In order to make max1≤i≤n |Rni,2| = op(n
1/2), we need

s
√

log p log(pn)/n = op(1),

which is true under assumption (5) in Assumption 1 since s
√

log p log(pn)/n = o(
√

log p/n) =

o(1). Thus we have max1≤i≤n |Rni| = op(n
1/2), which verifies the second half in the condi-

tion (C2).

Now we need to check out condition (C0). From the above analysis, we have max1≤i≤n |Rni| =
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op(max1≤i≤n |Wni|). Thus we only need to prove that

P( min
1≤i≤n

Wni < 0 < max
1≤i≤n

Wni)→ 1,

which just follows from the Gilvenko-Gantelli theorem over half-spaces as in page 219 in

[Owe01].

Proof of Theorem 7. Notice that

1

n

n∑
i=1

Rni,1 =
1

n

n∑
i=1

ε2i (γ
0
j1 − γ̂j1) +

1

n

n∑
i=1

εiX
ᵀ
i β

0(γ0
j1 − γ̂j1)

+
1

n

n∑
i=1

εiX
ᵀ
i,\j(γ

0
j,\1 − γ̂j,\1).

By condition (2) in Assumption 2 and (4.7.23) implied from condition (4) in Assumption 2,

∣∣∣ 1
n

n∑
i=1

εiX
ᵀ
i β

0(γ0
j1 − γ̂j1)

∣∣∣ =
∣∣∣(γ0

j1 − γ̂j1)
∣∣∣∣∣∣ 1
n

n∑
i=1

εiβ
0ᵀXi

∣∣∣ = Op(an

√
log p

n
),

and

∣∣∣ 1
n

n∑
i=1

εiX
ᵀ
i,\j(γ

0
j,\1 − γ̂j,\1)

∣∣∣ ≤ ∥∥∥γ0
j,\1 − γ̂j,\1

∥∥∥
1

∥∥∥ 1

n

n∑
i=1

εiXi,\j

∥∥∥
∞

= Op(an

√
log p

n
).

Thus we have

1

n

n∑
i=1

Rni,1 =
1

n

n∑
i=1

ε2i (γ
0
j1 − γ̂j1) +Op(an

√
log p/n) = Op(an

√
1/n).
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So in order to have 1
n

∑n
i=1Rni,1 = op(n

−1/2), we need an = op(1). Note that

max
1≤i≤n

|Rni,1| ≤ max
1≤i≤n

|ε2i (γ
0
j1 − γ̂j1)|+ max

1≤i≤n
|εiX

ᵀ
i β

0(γ0
j1 − γ̂j1)|

+ max
1≤i≤n

|εiX
ᵀ
i,\j(γ

0
j,\1 − γ̂j,\1)|

=|γ0
j1 − γ̂j1|

{
max

1≤i≤n
|ε2i |+ max

1≤i≤n
|εiX

ᵀ
i β

0|
}

+ ‖γ0
j,\1 − γ̂j,\1‖1 max

1≤i≤n
‖εiXi,\j‖∞

=|γ0
j1 − γ̂j1|

{
max

1≤i≤n
|ε2i |+ max

1≤i≤n
|εiX

ᵀ
i β

0|
}

+ ‖γ0
j,\1 − γ̂j,\1‖1 max

1≤i≤n
max

1≤k≤p
|εiXij |.

And by the assumption that Xi and εi are sub-Gaussian, we have X
ᵀ
i β

0 is sub-Gaussian

and ε2i , εiX
ᵀ
i β

0 and Xijεi are all sub-exponential. Then we have

P
(

max
1≤i≤n

|ε2i | > t
)
≤ nP(|ε2i | > t) ≤ nC1e

−C2t

which implies that max1≤i≤n |ε2i | = Op(log n). Thus we have max1≤i≤n |Rni,1| = Op(an log(pn)).

In order to achieve max1≤i≤n |Rni,1| = op(n
1/2), we need an log(pn)/

√
n = o(1), which is

true since an = o(1/
√

log p).

For Rni,2 = ηij,yX
ᵀ
i (β0 − β̂) = ηij,y

{
Xij(β

0
j − β̂j) + X

ᵀ
i,\j(β

0
\j − β̂\j)

}
= ηij,y

{
[(Yi,X

ᵀ
i,\j)γ

0
j + ηij,y](β0

j − β̂j) + X
ᵀ
i,\j(β

0
\j − β̂\j)

}
= η2

ij,y(β0
j − β̂j) + ηij,y(Yi,X

ᵀ
i,\j)γ

0
j (β0

j − β̂j) + ηij,yX
ᵀ
i,\j(β

0
\j − β̂\j),
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similarly as Rni,1, by condition (1) and (4.7.24), (4.7.25), we have

1

n

n∑
i=1

Rni,2 =
1

n

n∑
i=1

η2
ij,y(β0

j − β̂j) +Op(s
√

log p/n
√

log p/n)

=
1

n

n∑
i=1

η2
ij,y(β0

j − β̂j) +Op(s log p/n)

= Op(s
√

log p/n
√

1/n) +Op(s log p/n) = Op(s
√

log p/n).

So in order to have 1
n

∑n
i=1Rni,2 = op(n

−1/2), we need to have s
√

log p/n = op(n
−1/2), i.e.

s
√

log p/n = op(1). Note that

max
1≤i≤n

|Rni,2| ≤ max
1≤i≤n

|η2
ij,y(β0

j − β̂j)|+ max
1≤i≤n

|ηij,y(Yi,X
ᵀ
i,\j)γ

0
j (β0

j − β̂j)|

+ max
1≤i≤n

|ηij,yX
ᵀ
i,\j(β

0
\j − β̂\j)| = Op(s

√
log p/n log(pn)) = op(

√
n)

since s
√

log p/n log(pn)/
√
n = o(

√
log p/n) = o(1).

Now for Rni,3 = X
ᵀ
i (β0 − β̂)

{
(Yi,X

ᵀ
i,\j)(γ

0
j − γ̂j)

}
= (β0 − β̂)ᵀXi(Yi,X

ᵀ
i,\j)(γ

0
j − γ̂j),

we have by (3) in Assumption 2

∣∣∣ 1
n

n∑
i=1

Rni,3

∣∣∣ =
∣∣∣ 1
n

n∑
i=1

(β0 − β̂)ᵀXi(Yi,X
ᵀ
i,\j)(γ

0
j − γ̂j)

∣∣∣
≤

√√√√ 1

n

n∑
i=1

[(β0 − β̂)ᵀXi]2

√√√√ 1

n

n∑
i=1

[(Yi,X
ᵀ
i,\j)(γ

0
j − γ̂j)]2

= Op(
√
s log p/n)Op(

√
bn) = Op(

√
bns log p/n).

So in order to have 1
n

∑n
i=1Rni,3 = op(n

−1/2), we need to have
√
bns log p/n = op(n

−1/2),
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i.e.
√
bns log p = op(1). And we also have

max
1≤i≤n

|Rni,3| ≤ ‖β0 − β̂‖1‖γ0
j − γ̂j‖1 max

1≤i≤n
max

1≤j≤p
|Xij |

(
max

1≤i≤n
|Yi|+ max

1≤i≤n
max

1≤j≤p
|Xij |

)
= Op(s

√
log p/nan log(pn)) = op(n

1/2).

Now we need to check out condition (C0). From the above analysis, we have max1≤i≤n |Rni| =

op(max1≤i≤n |Wni|). Thus we only need to prove that

P( min
1≤i≤n

Wni < 0 < max
1≤i≤n

Wni)→ 1,

which just follows from the Gilvenko-Gantelli theorem over half-spaces as in page 219 in

[Owe01].

Proof of Theorem 8. Recall that

1√
n

n∑
i=1

Rni = R1n +R2n +R3n +R4n

where

R1n =
1√
n

n∑
i=1

−X
ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε
{
Xij −ΣjSΣ−1

SSXiS
}
,

R2n =
1√
n

n∑
i=1

{
εi −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε
}{

ΣjSΣ−1
SSXiS − Xᵀ

jXS(Xᵀ
SXS)−1XiS

}
,

R3n =
1√
n

n∑
i=1

{
Xij −ΣjSΣ−1

SSXiS
}{

X
ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
[β0
S∗ − β̂S∗ ],

R4n =
1√
n

n∑
i=1

{
ΣjSΣ−1

SSXiS − Xᵀ
jXS(Xᵀ

SXS)−1XiS
}

×
{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
[β0
S∗ − β̂S∗ ].

137



Now for R1n, we have

R1n = − 1√
n

n∑
i=1

{
Xij −ΣjSΣ−1

SSXiS
}
X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε

= −
{ 1

n

n∑
i=1

{
Xij −ΣjSΣ−1

SSXiS
}
X

ᵀ
iS

}{√
n(Xᵀ

SXS)−1Xᵀ
Sε
}
.

Now we need to bound the two terms 1
n

∑n
i=1

{
Xij−ΣjSΣ−1

SSXiS
}
XiS and

√
n(Xᵀ

SXS)−1Xᵀ
Sε.

In fact, for every k ∈ S, we have that the two Gaussian random variables Xij−ΣjSΣ−1
SSXiS

and Xik have the following properties:

E(Xik) = E(Xij −ΣjSΣ−1
SSXiS) = 0;

E(X2
ik) = σkk, E[(Xij −ΣjSΣ−1

SSXiS)2] = σjj −ΣjSΣ−1
SSΣSj ;

Cov(Xik, Xij −ΣjSΣ−1
SSXiS) = E[Xik(Xij −ΣjSΣ−1

SSXiS)] = σkj −ΣjSΣ−1
SSΣSk

= σkj −ΣjSΣ−1
SSΣSSek = σkj −ΣjSek = σkj − σjk = 0.

Thus we have

 Xik

Xij −ΣjSΣ−1
SSXiS

 ∼ N
(
0,

σkk 0

0 σjj −ΣjSΣ−1
SSΣSj

). (4.7.35)

Under (1) in Assumption 3, by Lemma A.3 from [BL08], we have there exists constants

C,C1, C2 > 0 such that

P
{∣∣ 1
n

n∑
i=1

{
Xij −ΣjSΣ−1

SSXiS
}
Xij
∣∣ ≥ t

}
≤ C1 exp(−C2nt

2), for 0 ≤ t ≤ C.
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By union inequality, we then have

P
{

max
S:|S|≤m

∥∥ 1

n

n∑
i=1

{
Xij −ΣjSΣ−1

SSXiS
}
XiS

∥∥
∞ ≥ t

}
≤ C1mp

m exp(−C2nt
2),

for 0 ≤ t ≤ C, where |{S ⊆ {1, 2, , · · · , p} : |S| ≤ m}| ≤ pm.

For mpm exp(−C2nt
2) = exp(−C2nt

2 +m log p+ logm), take

t =

√
m log p+ logm+ C log p

(C2n)
∼
√
m log p/n,

and then we have

max
S:|S|≤m

∥∥ 1

n

n∑
i=1

{
Xij −ΣjSΣ−1

SSXiS
}
XiS

∥∥
∞ = Op(

√
m log p/n).

Now in order to control
√
n(Xᵀ

SXS)−1Xᵀ
Sε, first notice that by the following matrix

equality [HS81]

(Xᵀ
SXS/n)−1 =

{
ΣSS + (Xᵀ

SXS/n−ΣSS)
}−1

=Σ−1
SS −Σ−1

SS
{
I + (Xᵀ

SXS/n−ΣSS)Σ−1
SS
}−1

(Xᵀ
SXS/n−ΣSS)Σ−1

SS︸ ︷︷ ︸
∆S

,
(4.7.36)
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we have

‖
√
n(Xᵀ

SXS)−1Xᵀ
Sε‖1 = ‖(Xᵀ

SXS/n)−1Xᵀ
Sε/
√
n‖1

≤ ‖Σ−1
SSX

ᵀ
Sε/
√
n‖1 + ‖∆SX

ᵀ
Sε/
√
n‖1

≤
√
|S|‖Σ−1

SSX
ᵀ
Sε/
√
n‖2 +

√
|S|‖∆SX

ᵀ
Sε/
√
n‖2

≤
√
|S|‖Σ−1

SSX
ᵀ
Sε/
√
n‖2 +

√
|S|‖∆S‖2‖X

ᵀ
Sε/
√
n‖2.

One of the most important results in matrix analysis is the Cauchy (eigenvalue) inter-

lacing theorem. It asserts that the eigenvalues of any principal submatrix of a symmetric

matrix interlace those of the symmetric matrix. For example, if an n× n symmetric matrix

S can be partitioned as

S =

A B

Bᵀ C

 ,

in which A is an r × r principle submatrix, then for each i ∈ 1, 2, · · · , r, we have

λi(S) ≤ λi(A) ≤ λn−r+i(S).

In particular, we have λmin(Σ) ≤ λmin(ΣSS) and λmax(Σ) ≥ λmax(ΣSS). Thus by the

definition of maximum eigenvalue, we have

‖Σ−1
SSX

ᵀ
Sε/
√
n‖2 ≤ λ−1

min‖X
ᵀ
Sε/
√
n‖2.
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So

‖
√
n(Xᵀ

SXS)−1Xᵀ
Sε‖1 ≤

√
|S|λ−1

min‖X
ᵀ
Sε/
√
n‖2 +

√
|S|‖∆S‖2‖X

ᵀ
Sε/
√
n‖2

=
√
|S|
{
λ−1

min + ‖∆S‖2
}
‖Xᵀ
Sε/
√
n‖2.

Now we have to control ‖Xᵀ
Sε/
√
n‖2 and ‖∆S‖2. In order to control the first one, by the

sub-Gaussian tailed condition (2) in Assumption 3,

P( max
S:|S|≤m

‖Xᵀ
Sε/
√
n‖2 ≥ t

√
n) ≤ P( max

S:|S|≤m
max
j∈S
| 1
n

n∑
i=1

Xijεi| ≥ t/
√
m)

≤ pmm exp(−Cnt2/m),

followed from the Bernstein inequality for t small. For pmm exp(−Cnt2/m) = exp(m log p+

logm − Cnt2/m), take t =
√
m

√
m log p+logm+C1 log p

Cn ∼
√
m2 log p/n. Then we have the

following order

max
S:|S|≤m

‖Xᵀ
Sε/
√
n‖2 = Op(m

√
log p).

Now for ‖∆S‖2 with ∆S = Σ−1
SS
{
I + (Xᵀ

SXS/n−ΣSS)Σ−1
SS
}−1

(Xᵀ
SXS/n−ΣSS)Σ−1

SS ,

we have to control Xᵀ
SXS/n−ΣSS first. Note that

P
(

sup
S:|S|≤m

‖Xᵀ
SXS/n−ΣSS‖2 ≥ ε

)
≤ P

(
sup

S:|S|≤m
max
j,k
|Xᵀ
jXk/n− σjk| ≥ ε/m

)
≤m2pmP

(
|Xᵀ
jXk/n− σjk| ≥ ε/m

)
≤ C1m

2pm exp(−C2nε
2/m2)

where the last inequality is also followed from Lemma A.3 in [BL08] with constants C1, C2 >

0. Form2pm exp(−C2nε
2/m2) = exp(2 logm+m log p−C2nε

2/m2), by taking ε = m

√
m log p+2 logm+C1 log p

C2n
∼
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√
m3 log p/n, we have

sup
S:|S|≤m

‖Xᵀ
SXS/n−ΣSS‖2 = Op(

√
m3 log p/n).

It follows then

‖∆S‖2 = ‖Σ−1
SS
{
I + (Xᵀ

SXS/n−ΣSS)Σ−1
SS
}−1

(Xᵀ
SXS/n−ΣSS)Σ−1

SS‖2

≤ ‖Σ−1
SS‖

2
2‖I + (Xᵀ

SXS/n−ΣSS)Σ−1
SS
}−1‖2‖X

ᵀ
SXS/n−ΣSS‖2

= Op(
√
m3 log p/n),

since ‖Σ−1
SS‖2 = λ

1/2
max(Σ−2

SS) ≤ λ−1
min.

Thus we have

‖
√
n(Xᵀ

SXS)−1Xᵀ
Sε‖1 ≤

√
|S|
{
λ−1

min + ‖∆S‖2
}
‖Xᵀ
Sε/
√
n‖2

= Op(
√
m3 log p/n),

i.e. supS:|S|≤m ‖
√
n(Xᵀ

SXS)−1Xᵀ
Sε‖1 = Op(

√
m3 log p/n).

In summary, we then have

sup
S:|S|≤m

∣∣∣{ 1

n

n∑
i=1

{
Xij −ΣjSΣ−1

SSXiS
}
X

ᵀ
iS

}{√
n(Xᵀ

SXS)−1Xᵀ
Sε
}∣∣∣

≤ sup
S:|S|≤m

∥∥∥ 1

n

n∑
i=1

{
Xij −ΣjSΣ−1

SSXiS
}
X

ᵀ
iS

∥∥∥
∞

sup
S:|S|≤m

∥∥∥√n(Xᵀ
SXS)−1Xᵀ

Sε
∥∥∥

1

=Op(
√
m log p/n)Op(

√
m3 log p/n) = Op(m

2 log p/n).

And hence R1n = op(1).
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For R2n, we have

R2n =
1√
n

n∑
i=1

{
εi −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε
}{

ΣjSΣ−1
SSXiS − Xᵀ

jXS(Xᵀ
SXS)−1XiS

}
=
{
ΣjSΣ−1

SS − Xᵀ
jXS(Xᵀ

SXS)−1} 1√
n

n∑
i=1

{
XiSεi −XiSX

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε
}

=
{
ΣjSΣ−1

SS − Xᵀ
jXS(Xᵀ

SXS)−1}{ 1√
n

n∑
i=1

XiSεi −
{ 1

n

n∑
i=1

XiSX
ᵀ
iS
}√

n(Xᵀ
SXS)−1Xᵀ

Sε
}

=
{
ΣjSΣ−1

SS − Xᵀ
jXS(Xᵀ

SXS)−1}{ 1√
n

n∑
i=1

XiSεi − Xᵀ
Sε/
√
n
}

= 0.

Observe that we can rewrite R3n as

R3n =
1√
n

n∑
i=1

{
Xij −ΣjSΣ−1

SSXiS
}{

X
ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
[β0
S∗ − β̂S∗ ]

=
1√
n
Xᵀ
j

{
I− XS(Xᵀ

SXS)−1Xᵀ
S
}
XS∗ [β

0
S∗ − β̂S∗ ],
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where 1√
n
Xᵀ
j

{
I− XS(Xᵀ

SXS)−1Xᵀ
S
}
XS∗ can be controlled as follows

‖ 1√
n
Xᵀ
j

{
I− XS(Xᵀ

SXS)−1Xᵀ
S
}
XS∗‖∞ = max

k∈S∗
| 1√
n
Xᵀ
j

{
I− XS(Xᵀ

SXS)−1Xᵀ
S
}
Xk|

≤
√
n max
k∈S∗

{∣∣Xᵀ
jXk/n− σjk

∣∣+
∣∣σjk −ΣjSΣ−1

SSΣSk
∣∣+
∣∣[Xᵀ

jXS/n−ΣjS ]Σ−1
SSΣSk

∣∣
+
∣∣ΣjSΣ−1

SS [Xᵀ
SXk/n−ΣSk]

∣∣+
∣∣ΣjS∆SΣSk

∣∣
+
∣∣ΣjS∆S [Xᵀ

SXk/n−ΣSk]
∣∣+
∣∣[Xᵀ

jXS/n−ΣjS ]Σ−1
SS [Xᵀ

SXk/n−ΣSk]
∣∣

+
∣∣[Xᵀ

jXS/n−ΣjS ]∆SΣSk
∣∣+
∣∣[Xᵀ

jXS/n−ΣjS ]∆S [Xᵀ
SXk/n−ΣSk]

∣∣}
≤
√
n max
k∈S∗

{∣∣Xᵀ
jXk/n− σjk

∣∣+
∣∣σjk −ΣjSΣ−1

SSΣSk
∣∣+ ‖Xᵀ

jXS/n−ΣjS‖∞
√
|S|λ−1

minλmax

+
√
|S|λ−1

minλmax‖Xᵀ
SXk/n−ΣSk‖∞ + λ2

max‖∆S‖2

+
√
|S|λmax‖∆S‖2‖X

ᵀ
SXk/n−ΣSk‖∞ + ‖Xᵀ

jXS/n−ΣjS‖2λ−1
min‖X

ᵀ
SXk/n−ΣSk‖2

+
√
|S|‖Xᵀ

jXS/n−ΣjS‖∞‖∆S‖2λmax + ‖Xᵀ
jXS/n−ΣjS‖2‖∆S‖2‖X

ᵀ
SXk/n−ΣSk‖2

}
.

And we have that

P
(

sup
S:|S|≤m

max
k∈S∗

|σjk −
1

n
Xᵀ
jXk| ≥ ε

)
≤pm+1P

(
|σjk −

1

n
Xᵀ
jXk| ≥ ε

)
≤ C1p

m+1 exp(−C2nε
2)

where the last inequality is also followed from Lemma A.3 in [BL08] with constants C1, C2 >

0. For pm+1 exp(−C2nε
2) = exp((m+1) log p−C2nε

2), by taking ε =

√
(m+1) log p+C1 log p

C2n
∼√

m log p/n, we have

sup
S:|S|≤m

max
k∈S∗

|σjk −
1

n
Xᵀ
jXk| = Op(

√
m log p/n).
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Similarly, we have

sup
S:|S|≤m

‖ΣjS −
1

n
Xᵀ
jXS‖∞ = Op(

√
m log p/n)

sup
S:|S|≤m

max
k∈S∗

‖Xᵀ
SXk/n−ΣSk‖∞ = Op(

√
m log p/n)

By supS:|S|≤m ‖∆S‖2 = Op(
√
m3 log p/n), we have

sup
S:|S|≤m

‖ 1√
n
Xᵀ
j

{
I− XS(Xᵀ

SXS)−1Xᵀ
S
}
XS∗‖∞

≤
√
n sup
S:|S|≤m

max
k∈S∗

{∣∣Xᵀ
jXk/n− σjk

∣∣+
∣∣σjk −ΣjSΣ−1

SSΣSk
∣∣

+ ‖Xᵀ
jXS/n−ΣjS‖∞

√
|S|λ−1

minλmax

+
√
|S|λ−1

minλmax‖Xᵀ
SXk/n−ΣSk‖∞ + λ2

max‖∆S‖2

+
√
|S|λmax‖∆S‖2‖X

ᵀ
SXk/n−ΣSk‖∞ +

√
|S|‖Xᵀ

jXS/n−ΣjS‖∞‖∆S‖2λmax

+ ‖Xᵀ
jXS/n−ΣjS‖2λ−1

min‖X
ᵀ
SXk/n−ΣSk‖2

+ ‖Xᵀ
jXS/n−ΣjS‖2‖∆S‖2‖X

ᵀ
SXk/n−ΣSk‖2

}
=
√
n sup
S:|S|≤m

max
k∈S∗

∣∣σjk −ΣjSΣ−1
SSΣSk

∣∣+Op{
√
n
√
m3 log p/n},

since
√
m3 log p/n = o(1). Under condition (4) and (5) in Assumption 3, we have that
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R3n = op(1).

Note that R4n =
1√
n

n∑
i=1

{
ΣjSΣ−1

SSXiS − Xᵀ
jXS(Xᵀ

SXS)−1XiS
}

×
{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
[β0
S∗ − β̂S∗ ]

=
1√
n

n∑
i=1

{
ΣjSΣ−1

SSXiSX
ᵀ
iS∗
}

[β0
S∗ − β̂S∗ ]

−ΣjSΣ−1
SS(Xᵀ

SXS∗/
√
n)[β0

S∗ − β̂S∗ ]

− 1√
n

n∑
i=1

{
Xᵀ
jXS(Xᵀ

SXS)−1XiSX
ᵀ
iS∗
}

[β0
S∗ − β̂S∗ ]

+
{
Xᵀ
jXS(Xᵀ

SXS)−1Xᵀ
SXS∗/

√
n
}

[β0
S∗ − β̂S∗ ] = 0.

Thus we have verified that 1
n

∑n
i=1Rni = op(n

−1/2).

And for Rni,1, we have

max
1≤i≤n

|Rni,1| = ‖(X
ᵀ
SXS)−1Xᵀ

Sε‖1 max
1≤i≤n

‖
{
Xij −ΣjSΣ−1

SSXiS
}
X

ᵀ
iS‖∞

= ‖(Xᵀ
SXS)−1Xᵀ

Sε‖1 max
1≤i≤n

max
k∈S

∣∣{Xij −ΣjSΣ−1
SSXiS

}
Xik

∣∣
where supS:|S|≤m ‖(X

ᵀ
SXS)−1Xᵀ

Sε‖1 = Op(
√
m3 log p/n). And since Xij − ΣjSΣ−1

SSXiS

is Gaussian under the assumption that X is Gaussian, we have
{
Xij − ΣjSΣ−1

SSXiS
}
Xik

sub-exponential. So

P
(

sup
S:|S|≤m

max
1≤i≤n

max
k∈S

∣∣{Xij −ΣjSΣ−1
SSXiS

}
Xik

∣∣ > t
)
≤ pmnmC1 exp(−C2t)

which leads to supS:|S|≤m max1≤i≤n maxk∈S
∣∣{Xij − ΣjSΣ−1

SSXiS
}
Xik

∣∣ = Op(m log p).
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Thus we have

sup
S:|S|≤m

max
1≤i≤n

|Rni,1| = Op(m log p

√
m3 log p/n) = op(n

1/2)

since (m log p/n)
√
m3 log p/n = o(1).

And for Rni,2, we have

max
1≤i≤n

|Rni,2| ≤ ‖ΣjSΣ−1
SS − Xᵀ

jXS(Xᵀ
SXS)−1‖1 max

1≤i≤n
‖XiSεi −XiSX

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε‖∞,

where

‖ΣjSΣ−1
SS − Xᵀ

jXS(Xᵀ
SXS)−1‖1 = ‖ΣjSΣ−1

SS − n
−1Xᵀ

jXS(Xᵀ
SXS/n)−1‖1

=‖ΣjSΣ−1
SS − n

−1Xᵀ
jXS(Σ−1

SS −∆S)‖1

≤‖(ΣjS − n−1Xᵀ
jXS)Σ−1

SS‖1 + ‖n−1Xᵀ
jXS∆S‖1

≤‖(ΣjS − n−1Xᵀ
jXS)Σ−1

SS‖1 + ‖(n−1Xᵀ
jXS −ΣjS)∆S‖1 + ‖ΣjS∆S‖1.

And by simple algebra, we have

sup
S:|S|≤m

‖(ΣjS − n−1Xᵀ
jXS)Σ−1

SS‖1 = Op(
√
m3 log p/n),

sup
S:|S|≤m

‖(n−1Xᵀ
jXS −ΣjS)∆S‖1 = Op(m

2 log p/n),

sup
S:|S|≤m

‖ΣjS∆S‖1 = Op(m
2
√

log p/n).
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Now for

max
1≤i≤n

‖XiSεi −XiSX
ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε‖∞

≤ max
1≤i≤n

‖XiSεi‖∞ + max
1≤i≤n

‖XiSX
ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε‖∞

≤ max
1≤i≤n

‖XiSεi‖∞ + ‖(Xᵀ
SXS)−1Xᵀ

Sε‖∞ max
1≤i≤n

‖XiSX
ᵀ
iS‖∞,

since Xikεi is sub-exponential, we have

P
(

sup
S:|S|≤m

max
1≤i≤n

‖XiSεi‖∞ > t
)

= P
(

sup
S:|S|≤m

max
1≤i≤n

max
k∈S
|Xikεi| > t

)
≤ pmmnC1e

−C2t

which leads to supS:|S|≤m max1≤i≤n ‖XiSεi‖∞ = Op(m log p). And since XikXil is sub-

exponential, we have

P
(

sup
S:|S|≤m

max
1≤i≤n

‖XiSX
ᵀ
iS‖∞ > t

)
≤ P

(
sup

S:|S|≤m
max

1≤i≤n

√
m max
k,l∈S

|XikXil| > t
)

≤ pmm2nC1e
−C2t

which leads to supS:|S|≤m max1≤i≤n ‖XiSX
ᵀ
iS‖∞ = Op(

√
mm log p).

Since supS:|S|≤m ‖(X
ᵀ
SXS)−1Xᵀ

Sε‖1 = Op(
√
m3 log p/n), we have

sup
S:|S|≤m

max
1≤i≤n

‖XiSεi −XiSX
ᵀ
iS(Xᵀ

SXS)−1Xᵀ
Sε‖∞

=Op(m log p+
√
mm log p

√
m3 log p/n) = Op(m log p(1 +m2

√
log p/n)).
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In summary,

sup
S:|S|≤m

max
1≤i≤n

|Rni,2| = Op{m3 log p
√

log p/n(1 +m2
√

log p/n)},

since log p/n → 0. In order to have supS:|S|≤m max1≤i≤n |Rni,2| = op(n
1/2), we need

to have m3(log p/
√
n)
√

log p/n = o(1), which is true under (4) in Assumption 3 since

m3(log p/
√
n)
√

log p/n =
√
m3 log p/n

√
(log p)2m3/n = o(1).

Observe that max
1≤i≤n

|Rni,3| ≤ ‖β0
S∗ − β̂S∗‖1

× max
1≤i≤n

‖
{
Xij −ΣjSΣ−1

SSXiS
}{

X
ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞.

Since

‖Xᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗‖∞ ≤ max

k∈S∗
{
|Xᵀ

iSΣ−1
SSΣSk|+ |X

ᵀ
iSΣ−1

SS(Xᵀ
SXk/n−ΣSk)|

+ |Xᵀ
iS∆SΣSk|+ |X

ᵀ
iS∆S(Xᵀ

SXk/n−ΣSk)|
}
,

(4.7.37)

we have

max
1≤i≤n

‖
{
Xij −ΣjSΣ−1

SSXiS
}{

X
ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞

≤ max
1≤i≤n

max
k∈S∗

|
{
Xij −ΣjSΣ−1

SSXiS
}
Xik|+ max

1≤i≤n
max
k∈S∗

|
{
Xij −ΣjSΣ−1

SSXiS
}
X

ᵀ
iSΣ−1

SSΣSk|

+ max
1≤i≤n

max
k∈S∗

max
l∈S
|
{
Xij −ΣjSΣ−1

SSXiS
}
Xil|‖Σ−1

SS(Xᵀ
SXk/n−ΣSk)‖1

+ max
1≤i≤n

max
k∈S∗

max
l∈S
|
{
Xij −ΣjSΣ−1

SSXiS
}
Xil|
√
m‖∆S‖2‖ΣSk‖2

+ max
1≤i≤n

max
k∈S∗

max
l∈S
|
{
Xij −ΣjSΣ−1

SSXiS
}
Xil|‖∆S(Xᵀ

SXk/n−ΣSk)‖1.
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Now since

P
(

sup
S:|S|≤m

max
1≤i≤n

max
k∈S∗

|
{
Xij −ΣjSΣ−1

SSXiS
}
Xik| > t

)
≤ pm+1nC1e

−C2t,

we have

sup
S:|S|≤m

max
1≤i≤n

max
k∈S∗

|
{
Xij −ΣjSΣ−1

SSXiS
}
Xik| = Op(m log p).

Similarly, we have

sup
S:|S|≤m

max
1≤i≤n

max
k∈S∗

|
{
Xij −ΣjSΣ−1

SSXiS
}
X

ᵀ
iSΣ−1

SSΣSk| = Op(m log p),

sup
S:|S|≤m

max
1≤i≤n

max
l∈S
|
{
Xij −ΣjSΣ−1

SSXiS
}
Xil| = Op(m log p).

And then by simple algebra, we have

sup
S:|S|≤m

max
k∈S∗

‖(ΣkS − n−1Xᵀ
kXS)Σ−1

SS‖1 = Op(
√
m3 log p/n),

sup
S:|S|≤m

max
k∈S∗

‖(n−1Xᵀ
kXS −ΣkS)∆S‖1 = Op(m

2 log p/n).

Thus we have

sup
S:|S|≤m

max
1≤i≤n

‖
{
Xij −ΣjSΣ−1

SSXiS
}{

X
ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞

=Op{m log p(1 +
√
m3 log p/n+m2

√
log p/n+m2 log p/n)}

=Op{m log p(1 +
√
m3 log p/n+m2 log p/n)},
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which leads to

sup
S:|S|≤m

max
1≤i≤n

|Rni,3| = Op(s
√

log p/nm log p(1 +
√
m3 log p/n+m2 log p/n)).

In order to have supS:|S|≤m max1≤i≤n |Rni,3| = op(n
1/2), we need

s
√

log p/n(m log p/
√
n)(1 +

√
m3 log p/n+m2 log p/n) = o(1),

which is true under (4) in Assumption 3.

And for max
1≤i≤n

|Rni,4| = ‖β0
S∗ − β̂S∗‖1

× max
1≤i≤n

‖
{
ΣjSΣ−1

SS − Xᵀ
jXS(Xᵀ

SXS)−1}XiS
{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞.

And for

max
1≤i≤n

‖
{
ΣjSΣ−1

SS − Xᵀ
jXS/n(Σ−1

SS −∆S)
}
XiS

{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞

= max
1≤i≤n

‖(ΣjS − Xᵀ
jXS/n)Σ−1

SSXiS
{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞

+ max
1≤i≤n

‖(Xᵀ
jXS/n−ΣjS)∆SXiS

{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞

+ max
1≤i≤n

‖ΣjS∆SXiS
{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞,
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by (4.7.37), we have

max
1≤i≤n

‖(ΣjS − Xᵀ
jXS/n)Σ−1

SSXiS
{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞

≤ max
1≤i≤n

max
k∈S∗

max
l∈S
‖(ΣjS − Xᵀ

jXS/n)Σ−1
SS‖1|XilXik|

+ max
1≤i≤n

max
k∈S∗

max
l∈S
‖(ΣjS − Xᵀ

jXS/n)Σ−1
SS‖1X

2
il‖Σ

−1
SSΣSk‖1

+ max
1≤i≤n

max
k∈S∗

max
l∈S
‖(ΣjS − Xᵀ

jXS/n)Σ−1
SS‖1X

2
il‖Σ

−1
SS(Xᵀ

SXk/n−ΣSk)‖1

+ max
1≤i≤n

max
k∈S∗

max
l∈S
‖(ΣjS − Xᵀ

jXS/n)Σ−1
SS‖1X

2
il‖∆SΣSk‖1

+ max
1≤i≤n

max
k∈S∗

max
l∈S
‖(ΣjS − Xᵀ

jXS/n)Σ−1
SS‖1X

2
il‖∆S(Xᵀ

SXk/n−ΣSk)‖1

= Op(m
3 log p

√
log p/n),

under the condition that m3 log p/n→ 0. Similarly we have

sup
S:|S|≤m

max
1≤i≤n

‖(Xᵀ
jXS/n−ΣjS)∆SXiS

{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞

= Op{m7/2(log p)2/n}

sup
S:|S|≤m

max
1≤i≤n

‖ΣjS∆SXiS
{
X

ᵀ
iS∗ −X

ᵀ
iS(Xᵀ

SXS)−1Xᵀ
SXS∗

}
‖∞

= Op{m7/2 log p
√

log p/n}

if m3 log p/n→ 0. In summary, if m3 log p/n→ 0,

sup
S:|S|≤m

max
1≤i≤n

|Rni,4| = Op{sm7/2(log p)2/n}.
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Thus in order to have supS:|S|≤m max1≤i≤n |Rni,4| = op(n
1/2), we need

sm7/2(log p)2/n3/2 = o(1),

which is true under the condition (4) in Assumption 3 since sm7/2(log p)2/n3/2 = s

√
(log p)4m7

n3 =

s

√
(log p)2m3

n m2 log p/n = o(1).

From the above analysis, we have max1≤i≤n |Rni| = op(max1≤i≤n |Wni|). Thus we only

need to prove that

P( min
1≤i≤n

Wni < 0 < max
1≤i≤n

Wni)→ 1,

which just follows from the Gilvenko-Gantelli theorem over half-spaces as in page 219 in

[Owe01].

For the proof of the three propositions, they are just followed from the proof of the

corresponding theorems. We here just prove the Proposition 2.

Proof of Proposition 6. In order to get the asymptotic normality of β̂
(kfc-de)
j , we have to deal

with 1
n

∑n
i=1 X̃

2
ij . Now since

1

n

n∑
i=1

X̃2
ij =

1

n

n∑
i=1

{
Xij − Xᵀ

jXS(Xᵀ
SXS)−1XiS

}2

=
1

n
Xᵀ
jXj −

1

n
Xᵀ
jXS(Xᵀ

SXS)−1Xᵀ
SXj =

1

n
Xᵀ
j

{
I− XS(Xᵀ

SXS)−1Xᵀ
S
}
Xj ,
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we have

| 1
n

n∑
i=1

X̃2
ij − (σjj −ΣjSΣ−1

SSΣSj)|

=| 1
n
Xᵀ
jXj −

1

n
Xᵀ
jXS(Xᵀ

SXS/n)−1Xᵀ
SXj/n− (σjj −ΣjSΣ−1

SSΣSj)|

≤
{∣∣Xᵀ

jXj/n− σjj
∣∣+ 2‖Xᵀ

jXS/n−ΣjS‖∞
√
|S|λ−1

minλmax

+ λ2
max‖∆S‖2 + 2

√
|S|λmax‖∆S‖2‖X

ᵀ
SXj/n−ΣSj‖∞

+ λ−1
min‖X

ᵀ
SXj/n−ΣSj‖22 + ‖∆S‖2‖X

ᵀ
SXj/n−ΣSj‖22

}
.

And since

P
(

sup
S:|S|≤m

|σjj −
1

n
Xᵀ
jXj | ≥ ε

)
≤pmP

(
|σjj −

1

n
Xᵀ
jXj | ≥ ε

)
≤ C1p

m exp(−C2nε
2)

we have

sup
S:|S|≤m

|σjj −
1

n
Xᵀ
jXj | = Op(

√
m log p/n).

Now for the term ‖ΣjS − 1
nX

ᵀ
jXS‖∞, we have proved above that

sup
S:|S|≤m

‖
(
ΣjS −

1

n
Xᵀ
jXS

)
Σ−1
SS‖∞ = Op(

√
m log p/n).
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By supS:|S|≤m ‖∆S‖2 = Op(
√
m3 log p/n), we have

sup
S:|S|≤m

| 1
n

n∑
i=1

X̃2
ij − (σjj −ΣjSΣ−1

SSΣSj)|

≤ sup
S:|S|≤m

{∣∣Xᵀ
jXj/n− σjj

∣∣+ 2‖Xᵀ
jXS/n−ΣjS‖∞

√
|S|λ−1

minλmax

+ λ2
max‖∆S‖2 + 2

√
|S|λmax‖∆S‖2‖X

ᵀ
SXj/n−ΣSj‖∞

+ λ−1
min‖X

ᵀ
SXj/n−ΣSj‖22 + ‖∆S‖2‖X

ᵀ
SXj/n−ΣSj‖22

}
= sup
S:|S|≤m

{
Op(

√
m log p/n) +Op(

√
m log p/n)

√
|S|λ−1

minλmax

+ λ2
maxOp(

√
m3 log p/n) +

√
|S|λmaxOp(

√
m3 log p/n)Op(

√
m log p/n)

+ |S|Op(
√
m log p/n)2λ−1

min + |S|Op(
√
m log p/n)2Op(

√
m3 log p/n)

}
=Op{

√
m3 log p/n}.

Thus we have

sup
S:|S|≤m

∣∣∣ 1
n

n∑
i=1

X̃2
ij − (σjj −ΣjSΣ−1

SSΣSj)
∣∣∣ = Op{

√
m3 log p/n} = op(1). (4.7.38)

Hence we have the following asymptotic normality by Slutsky’s theorem

√
n(β̂

(kfc-de)
j − β0

j ) =

1√
n

∑n
i=1m

(kfc)
ni (β0

j )

1
n

∑n
i=1 X̃

2
ij

d→ N(0, σ2
kfc),

where σ2
kfc = limn→∞(θjj − 2ΣjSΣ−1

SSΘjS + ΣjSΣ−1
SSΘSSΣ−1

SSΣSj)/(σjj −ΣjSΣ−1
SSΣSj).

155



Chapter 5

Conclusions and Future Directions

In this chapter, we aim to reiterate the main contributions of this thesis, and to outline some

of the things that could possibly follow as future developments on the results presented here.

In Section 5.1, we start with the summary of the main ideas in the thesis, especially from

Chapters 2, 3 and 4. Section 5.2 layouts some natural extensions of the ideas in this thesis.

5.1 Summary and Contributions

In Chapter 2 and 3, we proposed EL based procedures to make pointwise and simultaneous

inferences on functional linear models, treating sparse and dense functional data in a unified

framework. We showed that EL is a nice tool to accomplish this goal. We studied the

asymptotic distributions of the EL based test statistics under the null and local alternative

hypotheses for both sparse and dense functional data. We established the transition phase in

η, the order of repeated measurements, for pointwise and simultaneous tests. The transition

point η0 was shown to be 1/8 for the pointwise test and 1/16 for the simultaneous test. If

η ≤ η0, we showed that the proposed method is able to detect alternatives of size b∗n =

n−4(1+η)/9 for the pointwise test and of order b∗n = n−8(1+η)/17 for the simultaneous test.

For dense functional data such that η > η0, we found that the proposed tests are able to

detect alternatives of magnitude n−1/2 both pointwisely and simultaneously, which is the

same order of alternative a parametric test can detect. Moreover, we proposed a practical
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bandwidth selection method for functional data. Many bandwidth selection methods were

proposed for independent or weakly dependent data, but bandwidth selection for functional

data remained a challenging problem, see [ZPW13] for a recent study. Numerical experiments

in Chapter 2 showed that the proposed bandwidth selection method works well in practice.

In Chapter 4, we proposed a unified framework for high dimensional inference based on

the empirical likelihood which is constructed with estimating equations. It can be used to

test statistical hypothesis and construct confidence intervals, which have more natural data

driven shape. To broaden the applicability of the method, the general theory was presented

with the general conditions to be satisfied. In principal, all of the methods proposed in

the existing literature can be re-considered under our framework and make fair comparison

among them, although the technical details can be different case by case. Moreover, the

key advantage of our proposed likelihood ratio based method comparing with others such

as Wald type method and Score based method is that it can allow heteroscedastic error

noise. This is largely due to the nice self normalization property of the empirical likelihood

formulation. In particular, we did not assume independence between the error term and the

covariates, which is a common assumption in the existing literature, although we made the

uncorrelatedness assumption.

5.2 Future Directions

This thesis focused on applying empirical likelihood to solve some fundamental problems

in simple statistical models, especially linear models. Hence a natural direction for future

research is to generalize our methodologies to more complicated statistical models, such as

generalized linear models and survival models. For functional linear models in Chapter 2
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and 3, we gained the robustness in terms of the correlation structure of the error process.

But if we have prior knowledge of the error process, how to incorporate the error correlation

information into the estimation and inference procedures to increase the efficiency is a very

interesting topic for future investigation. We only considered one general type of hypothesis

in Chapter 2 and 3. There is another hypothesis problem, goodness of fit testing, which could

be another promising research problem. For the high dimensional linear model in Chapter

4, we only focused on one estimating equation. But when we have more than one estimating

equations, how to combine all of the estimating equations to make more efficient inference is

worthy of further investigation. In general, the self-normalization property of EL is powerful

and we should make use of it to solve some problems in various statistical analysis.
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