

LIBRARY Michigan State University

This is to certify that the dissertation entitled

MECHANISMS LEADING TO TRANSLATION ARREST IN AUTOGRAPHA CALIFORNICA MULTINUCLEOCAPSID NUCLEOPOLYHEDROVIRUS-INFECTED LYMANTRIA DISPAR CELLS

presented by

Christy Mecey

has been accepted towards fulfillment of the requirements for the

Doctoral	degree in	Genetics
	_	
\sum_{i}	\mathcal{M}	. Then
	~~~	essor's Signature
/	<i></i>	
	Mun	3 2006
	0	<del></del>
		Date

MSU is an Affirmative Action/Equal Opportunity Institution

PLACE IN RETURN BOX to remove this checkout from your record.

TO AVOID FINES return on or before date due.

MAY BE RECALLED with earlier due date if requested.

DATE DUE	DATE DUE	DATE DUE
AFX O B ZEG		

2/05 p:/CIRC/DateDue.indd-p.1

# MECHANISMS LEADING TO TRANSLATION ARREST IN AUTOGRAPHA CALIFORNICA MULTINUCLEOCAPSID NUCLEOPOLYHEDROVIRUS-INFECTED LYMANTRIA DISPAR 652Y CELLS

Ву

**Christy Mecey** 

#### **A DISSERTATION**

Submitted to
Michigan State University
in partial fulfillment for the requirements
for the degree of

**DOCTOR OF PHILOSOPHY** 

Genetics Program

2006

#### **ABSTRACT**

#### MECHANISMS LEADING TO TRANSLATION ARREST IN AUTOGRAPHA CALIFORNICA MULTINUCLEOCAPSID NUCLEOPOLYHEDROVIRUS-INFECTED LYMANTRIA DISPAR 652Y CELLS

By

#### Christy Mecey

Infection of the Lymantria dispar 652Y (Ld652Y) cell line with the baculovirus Autographa californica Multinucleocapsid nucleopolyhedrovirus (AcMNPV) results in global translation arrest, initiation of apoptosis in the absence of a functional, virusencoded, apoptotic suppressor and a non-productive infection. While AcMNPV enters Ld652Y cells and transcription of virus genes occurs, virus progeny are not produced. Expression of a single gene, host range factor-1 (hrf-1), isolated from Lymantria dispar Multinucleocapsid Nucleopolyhedrovirus (LdMNPV), precludes translation arrest in AcMNPV-infected Ld652Y cells further allowing permissive replication of the virus. HRF-1 also enables replication of Hyphantria cunea NPV, Bombyx mori NPV and Spodoptera exigua NPV in Ld652Y cells indicating that hrf-1 is an essential host range factor for baculovirus infection in Ld652Y cells. Database and motif searches conducted with the hrf-1 sequence provide no indication to its function. The goal of this study was to determine the mechanism of translation arrest in AcMNPV-infected Ld652Y cells to further identify possible functions for HRF-1. We show that eIF2α phosphorylation at serine 51 occurs in AcMNPV-infected Ld652Y cells at 12 h.p.i. correlating to the onset of translation arrest. Ld652Y cells infected with vAchrf-1 show a reduced level of eIF2 $\alpha$  phosphorylation for the full-length peIF2 $\alpha$ ^{ser51} protein at 6, 12, 24 and 48 h.p.i. as compared to mock-infected cells. PK2, the AcMNPV eIF2a kinase inhibitor, was expressed in AcMNPV-infected Ld652Y cells but did not prevent eIF2a phosphorylation. An apparent proteolytic cleavage of peIF $2\alpha^{\text{ser51}}$  was observed beginning at 12 h.p.i.; this cleavage event was investigated further. In Sf21 cells, a permissive cell line for AcMNPV replication, peIF2a^{ser51} was cleaved in both AcMNPV and vAchrf-1infected cells indicating that HRF-1 was not directly responsible for the cleavage. Cell permeable protease inhibitors did not block cleavage of peIF2a^{ser51}. However, the proteasome inhibitor epoxomicin did reduce phosphorylation of eIF2\alpha at serine 51, block cleavage of peIF2α^{ser51} and inhibit virus replication in AcMNPV and vAchrf-1-infected Sf21 cells and vAchrf-1-infected Ld652Y cells. The proteasome inhibitor MG132 mimicked the effects of epoxomicin in vAchrf-1-infected Ld652Y cells. However, treatment with MG132 in AcMNPV and vAchrf-1-infected Sf21 cells resulted in reduced virus titers and no block of peIF2 $\alpha^{\text{ser51}}$  cleavage. This study suggests a role for the proteasome in enabling baculovirus replication. A cross-reactive antibody to the human eIF2 kinase, PKR, showed enhanced expression of a protein in vAchrf-1-infected cells at 12-24 h.p.i. Mass spectrometry analysis identified this protein as a 90 kDa heat shock protein (HSP90). Inhibition of HSP90 with geldanamycin resulted in a block of occluded virus production in baculovirus-infected Sf21 and Ld652Y cells at 48 h.p.i. Cleavage of occurs in productively-infected cells in the presence of geldanamycin indicating that cleavage is not dependent on HSP90 activity. The data suggest a possible role for HSP90 during the very late stages of baculovirus infection.

Copyright by

Christy Mecey

2006

#### **ACKNOWLEDGEMENTS**

I would like to thank my principal investigator, Dr. Suzanne Thiem. Her efforts have helped me to develop the critical thinking skills that are required to be an effective scientist. Her unwavering requirement for absolute fact in the interpretation of scientific data is demanding and valuable. Dr. Thiem has also taught me how to run a functional laboratory with limited resources and her determination in the face of set-back is inspirational.

Many thanks to my remarkable committee: Dr. David Arnosti, Dr. Rebecca Grumet, Dr. Steve Triezenberg and Dr. Suzanne Thiem. You were all chosen based not only on your tremendous contributions to science but on your equal commitment to science education. Input from the committee was important, relevant and timely. I would like to especially thank Steve and Rebecca for their time and effort in coordinating the GAANN fellowship program. Your extended efforts enabled the funding of my graduate education and increased science literacy amongst educators in the state of Michigan.

I would like to genuinely thank my husband Richard who is always kind even in the wrath of my wildest mood swings. Without his help I would never have been able to navigate through the daily challenges of being a mother and a graduate student.

I would like to thank Montgomery for all of the weekends she had to spend playing in the lab instead of playing in the park. I am so fortunate that you are my daughter.

I would like to thank my parents, who thought that getting a Ph.D. was the silliest idea I've ever had, for their continued support and practicality.

Many thanks to the members of the Allison lab, past and present, Jamie, Cheryl, Meredith, David, Katie and Julia for their friendship and technical support. Thank you Cheryl Calhoun for teaching me that balance really is the most important aspect of life.

I would also like to thank the members of the Thiem lab, past and present, Ale, Jian, Aubrey and Heather for their friendship, assistance and input.

I have genuine, heartfelt appreciation for Jeannine Lee, the most talented program assistant at MSU. There was never a question she could not find an answer to or a problem that she could not solve.

I would like to thank all of the friends that I have made throughout my graduate experience for their supportive discussions, their insight, their backgrounds and their vision for the future. A special thank you for Linda Danhof, master coordinator and technician for the PRL, there are so many technical procedures that Linda either taught me or found someone to teach me that it would be impossible to list them all as a part of this document.

I would like to dedicate this effort to the family members that we have lost in the past year that are missed and remembered: Lee McIntosh, Florence Allison and my 34 year old sister, Jamie Dixon. There is not a day that passes that I don't wish I could trade places with my sister and return her to her lost family.

#### **TABLE OF CONTENTS**

List o	of Figures	x
List o	of Tables	xii
List o	of Abbreviations	xiii
Ratio	onale for Study	1
	oter 1: ature Review	4
1.1. B	Baculovirus pathogenesis	5
1.2. B	Baculovirus replication	7
1.3. B	1.3.1. Invertebrate innate immunity to virus infection.  1.3.2. Developmental resistance to baculovirus.  1.3.3. Species-mediated resistance to baculovirus.  1.3.3.1. Host cell factor-1 (HCF-1).  1.3.3.2. p143.  1.3.3.3. Apoptotic suppressors and host range.  1.3.3.4. Host range factor-1 (HRF-1).  1.3.3.5. Other baculovirus proteins associated with host range.  Translation modifications in response to stress.  1.4.1. Translation initiation.  1.4.2. Initiation stage translational modifications in	12 14 15 16 18
	response to stress	24 25 26
1.5.	Stress response pathways and virus infection	30

			ost-encoded molecular chaperone requirements for virus fection	
16	Protesson		and virus infection	
1.0.			gnalosome, protein degradation and kinase signaling	
Cha	pter 2:			
	-	s infected Le	pidoptera cells, proteasome inhibitors reduce virus	
pro	duction a	id eIF2a pho	sphorylation at serine 51	40
2.1.	Introduct	ion		41
22	Materials	and methods		44
2.2.			cell lines	
			fraction extraction and polysome profiling	
			duction assaysduction and polysome profitting	
	2.2.3.	Protesse and	proteasome inhibitor assays	Δ6
	2.2.4.	Western blot	analysis	46
			S	
	2.2.0.	i idque ussuy.	J	10
2.3.	Result	3		48
	2.3.1.	Translation arr	rest in AcMNPV-infected	
	Ld652	Y cells occurs	s at the initiation stage	48
			rrest in AcMNPV-infected Ld652Y cells correlates with	
		eIF2α phosph	horylation at serine 51	50
	2.3.3.	Proteolytic cl	leavage of peIF2α ^{ser51} occurs in AcMNPV and vAchrf-1	
	2.5.51	infected Sf21	cells	55
	2.3.4.	PK2 is expres	ssed in AcMNPV-infected Ld652Y cells	56
			peIF2α ^{ser51} in Sf21 and Ld652Y cell lines is not induced b	
	2.0.0.		ng agents	
	2.3.6.	Cleavage of p	peIF2 $\alpha^{\text{ser51}}$ is blocked by aphidicolin but not by protease	
	227		nhibition reduces phosphorylation of eIF2α at serine 51 a	
	2.3.7.		tion in lepidopteran cells productively-infected with	IIG
		-		62
		baculovirus		02
2.4.	Disc	ussion		68
	pter 3:			
HSI	'90 expre	ssion is enhar	nced in vAchrf-1-infected Ld652Y cells	75
3 1	Introduct	ion		74
٦.1.	muoauci	1011		/0
3.2	Material	and methods		<b>Q</b> 1
			ell lines.	
			nitation and mass spectrometry analysis	

3.2.3.	MALDI-TOF-MS	82
3.2.4.	LC-ESF-MS	82
3.2.5.	Western blot analysis	83
3.3. Results.		84
	HSP90 is activated in Ld652Y cells that are productively-infected	
	with vAchrf-1	84
3.3.2.	Inhibition of HSP90 with geldanamycin inhibits polyhedrin protein synthesis and occlusion body production in permissively-infected	
	cells at 48 h.p.i. but has little effect on budded virus production	86
3.3.3.	Proteolytic cleavage of peIF2aser51 precedes and is independent of	
	increased HSP90 expression in permissively-infected Ld652Y cells	92
3.4. Disc	cussion	94
Chapter 4:		
Summary ar	nd Future Directions	97
4.1. Research	h Summary	98
4.2. Future I	Directions	100
Appendix A	: Supplementary Data	107
Deferences		112

#### LIST OF FIGURES

Figure 1. Global translation arrests and virus replication is blocked in AcMNPV-infected Ld652Y cells
Figure 2. Baculovirus infection cycle
Figure 3. Transcriptional regulation of baculovirus genes
Figure 4. Early and late events that occur during AcMNPV infection of Ld652Y cells
Figure 5. Initiation of protein synthesis
Figure 6. Phosphorylation of eIF2α and viral mechanisms to overcome translation arrest that occur as a result of eIF2α phosphorylation
Figure 7. The unfolded protein response (UPR)
Figure 8. Translation arrest occurs at translation initiation in AcMNPV-infected Ld652Y cells
Figure 9. Phosphorylation of full length eukaryotic initiation factor 2α (eIF2α) at serine 51 is reduced in vAchrf-1-infected Ld652Y cells as compared to AcMNPV-infected Ld652Y cells
<b>Figure 10.</b> Phosphorylated eIF2α ^{ser51} is proteolytically cleaved in cell lines that are productively infected with AcMNPV or vAchrf-1
Figure 11. PK2 is present at late time points post-infection in Ld652Y cells infected with AcMNPV or vAchrf-1
Figure 12. Proteolytic cleavage of peIF2α ^{ser51} does not occur in Sf21 or Ld652Y cells that are treated with stress-inducing agents
Figure 13. Phosphorylation and proteolytic cleavage of peIF $2\alpha^{\text{ser}51}$ is inhibited in Lepidoptera cells that are productively-infected with baculovirus and treated with aphidicolin. Proteolytic cleavage of peIF $2\alpha^{\text{ser}51}$ is not blocked by protease inhibitors.
<b>Figure 14.</b> Proteasome inhibitors, MG132 and epoxomicin, inhibit phosphorylation and proteolytic cleavage of peIF2α ^{ser51} in vAchrf-1-infected Ld652Y cells

Figure 15. The very late baculovirus occlusion body protein, polyhedrin, is not produced in productively-infected cells that are treated with epoxomicin
Figure 16. Proteasome inhibitors prevent budded virus production in vAchrf-1-infected Ld652Y cells
Figure 17. Epoxomicin prevents AcMNPV or vAchrf-1 budded virus production in Sf21 cells, MG132 reduces budded virus production in those same infected cells68
Figure 18. HSP90 levels increase in vAchrf-1-infected Ld652Y cells from 12-24 h.p.i85
Figure 19. Geldanamycin delays or prevents occlusion body formation in lepidopteran cells permissively-infected with baculovirus
Figure 20. In cells treated with the HSP90 inhibitor, geldanamycin, polyhedrin protein levels are reduced in Sf21 and Ld652Y cells productively-infected with baculovirus
Figure 21. Geldanamycin reduces budded virus production in vAchrf-1-infected Ld652Y cells92
<b>Figure 22.</b> Proteolytic cleavage of peIF2α ^{ser51} occurs in Ld652Y and Sf21 cells productively-infected with AcMNPV or vAchrf-193
Figure 23. Proposed model of post-translational modification of eIF2α in response to baculovirus infection
Figure 24. The interaction of eIF2α with eIF2B
Figure 25. Proposed model for HRF-1 function in vAchrf-1-infected Ld652Y cells106
Figure 26. AcMNPV infection in Ld652Y cells does not impair the m ⁷ G cap-binding ability of eIF4E
Figure 27. 4E-BP is not up-regulated in response to AcMNPV infection in Ld652Y cells
Figure 28. The lepidopteran kinase, BeK, is expressed in AcMNPV-infected Ld652Y cells at a time that correlates to the onset of global translation arrest
Figure 29. Anti-PKR immunoprecipitation gels for mass spectrometry analysis132

#### LIST OF TABLES

Table 1. Sequest summary of mass spectrometry analysis for	
immunoprecipitation with anti-PKR antibodies in vAchrf-1	
infected Ld652Y cells at 12 h.p.i	86

#### **KEY TO SYMBOLS OR ABBREVIATIONS**

**4E-BP** eIF4E binding protein

AA amino acid

AcMNPV Autographa californica Multicapsid nuclear

Polyhedrosis Virus

AN alkaline nuclease

ATF activating transcription factor

**ATP** adenosine triphosphate

BeK Bombyx mori eIF2α kinase

BiP glucose regulated protein 78

BmN Bombyx mori N cell line

BmNPV Bombyx mori Multi Nucleocapsid Polyhedrovirus

**BV** budded virus

Cf-203 Choristoneura fumiferana 203 cell line

CfMNPV Choristoneura fumiferana Multi Nucleocapsid

Polyhedrovirus

COP9 / CSN COP9 signalosome

**Dm** Drosophila melanogaster

**DNA** deoxyribonucleic acid

**Dnapol** DNA polymerase

dsRNA double-stranded RNA

**EDEM** ER degradation-enhancing α-mannosidase-like

protein

EDTA (ethylenedinitrilo) tetraacetic acid

eIF eukaryotic initiation factor

**ER** endoplasmic reticulum

**ERAD** endoplasmic reticulum-associated degradation

**ERSE** endoplasmic reticulum stress responsive element

GCN general control non-derepressible

**GDP** guanosine diphosphate

**GTP** guanosine triphosphate

**HCF** host cell factor

**HCMV** human cytomegalovirus

**HCV** hepatitis C virus

**HHV** human herpes virus

HIV human immunodeficiency virus

**HPI** hours post-infection

**HPPV** human papillomavirus

**HPT** hours post-treatment

HR homologous repeat

HRF host range factor

HRI heme-regulated inhibitor of protein synthesis

**HSC** heat shock cognate protein

**HSP** heat shock protein

**HSV** herpes simplex virus

IAP inhibitor of apoptosis

IE immediate-early gene

**IRE** inositol-requiring enzyme

**IRES** internal ribosomal entry site

**JEV** Japanese encephalitis virus

JNK c-Jun kinase

**LEF** late expression factor

Ld652Y Lymantria dispar 652Y cell line

LdMNPV Lymantria dispar Multi Nucleocapsid

Polyhedrovirus

Met methionine

MOI multiplicity of infection

mRNA messenger RNA

mTOR mammalian target of rapamycin

NF-κB nuclear factor-kappa B

**ODV** occlusion derived virus

OpMNPV Orygia pseudotsugata Multi Nucleocapsid

Polyhedrovirus

**OV** occluded virus

P35 baculovirus 35 kD apoptotic suppressor protein

P39 baculovirus 39 kD capsid protein

**PABP** poly-A binding protein

**PERK/PEK** RNA-dependent-like endoplasmic reticulum kinase

**PK2** AcMNPV inhibitor of eIF2α kinases

RNA ribonucleic acid

**RNAi** RNA interference

RNA Pol. II RNA polymerase II

**SeMNPV** Spodoptera exigua Multi Nucleocapsid

Polyhedrovirus

Spodoptera frugiperda 9 cell line

Spodoptera frugiperda 21 cell line

Tn368 Trichoplusia ni 368 cell line

TNF tumor necrosis factor

**TRAF** TNF-receptor kinase

tRNA transfer RNA

**UPR** unfolded protein response

UTR untranslated region

vAcΔp35 AcMNPV strain with the apoptotic suppressor, p35,

deleted

**VLF** very late expression factor

vRNA Pol viral RNA polymerase

**XBP** X-box binding protein

#### Rationale for Study

In 2001, annual international insecticide sales totaled over 9 billion dollars (Donaldson et al., 2004). Chemical insecticides are often effective but can act broadly and harm non-target species. Many chemical insecticides have deleterious effects on the environment and have been removed from the commercial market or relicensed to limit use (Donaldson et al., 2004). Biopesticides and biological control agents are living organisms or products from living organisms used to suppress pest populations. Biopesticides offer an alternative to chemical-based insecticides and generally affect a narrower range of target species (Thiem, 1997). Baculoviruses primarily infect Lepidopteran insects during the larval stage of development and are a biological control agent used commercially to control soybean pests. Narrow host range is the primary limiting factor to the further utilization and subsequent development of baculoviruses as biopesticides (Maeda, 1995; Moscardi, 1989; Moscardi, 1999; Thiem, 1997).

Unlike bacterial and fungal host-pathogen systems, the molecular mechanisms that govern invertebrate host-specificity to virus infection are not understood. In cell culture, many baculoviruses are able to enter non-host invertebrate cells, virus replication is initiated but then terminated during the late stages of infection (Du and Thiem, 1997a; Lu and Miller, 1996). The Gypsy Moth, *Lymantria dispar*, is a non-permissive host to *Autographa californica* Multinucleocapsid Nucleopolyhedrovirus (AcMNPV), the type virus for the Baculoviridae family (McClintock, Dougherty, and Weiner, 1986). Virus replication begins in Lymantria dispar 652Y (Ld652Y) cells that are infected with AcMNPV but global translation arrest is initiated by 9 h.p.i. correlating to the late stages of infection and no virus progeny are produced (Fig. 1A) (Guzo et al., 1992). Expression

of a single gene, host range factor-1 (HRF-1), isolated from Lymantria dispar Multinucleocapsid nucleopolyhedrovirus (LdMNPV), blocks translation arrest and enables the production of virus progeny in AcMNPV-infected Ld652Y cells and L. dispar larvae (Fig. 1B) (Chen et al., 1998; Du and Thiem, 1997a; Du and Thiem, 1997b; Thiem et al., 1996). Homology and motif searches conducted with the hrf-1 sequence provide no indications to its function.

#### AcMNPV Infection in Ld652Y cells & HRF-1 Α. Late Stages of Infection Global Translation Arrest No Progeny Ld652Y Cells Virus Produced Virus enters cell. viral transcripts are made, translation of early transcribed genes occurs Ld652Y Cells В. **AcMNPV** MIIIID HRF-1 **Productive Virus** Lymantria dispar Infection (LdMNPV) larvae

Figure 1. Global translation arrests and virus replication is blocked in AcMNPV-infected Ld652Y cells (A). Expression of the LdMNPV gene, host range factor-1 (HRF-1), precludes translation arrest in AcMNPV-infected Ld652Y cells and Lymantria dispar larvae further enabling the production of virus progeny (B). (Image Presented in Color)

It has not been determined whether global translation arrest is the direct mechanism leading to a block in the production of virus progeny in AcMNPV-infected Ld652Y cells

or simply a correlative event resulting from infection. Global translation arrest may be a host-mediated innate immune response to control virus replication or a host-induced response to stress. In mammalian systems, viruses use a variety of mechanisms to block translation of host-encoded genes as a means of ensuring preferential translation of viral transcripts (Jang et al., 1988; Joachims, Van Breugel, and Lloyd, 1999; Kerekatte et al., 1999; Pelletier and Sonenberg, 1988). This is unlikely in baculovirus-infected cells as host macromolecular synthesis appears to be controlled at the transcriptional level (Nobiron, O'Reilly, and Olszewski, 2003; Ooi and Miller, 1988).

In this study, my goal was to identify the mechanism(s) that leads to translation arrest in AcMNPV-infected Ld652Y cells. I hypothesized that identifying this mechanism might provide some indication to the function of HRF-1. Furthermore, we hoped to gain insight into invertebrate host responses that are initiated during non-permissive infections to further understand the components that determine baculovirus host range.

## Chapter 1 Literature Review

#### Introduction

#### 1.1 Baculovirus Pathogenesis

Baculoviruses are large, double-stranded DNA viruses that primarily infect lepdiopteran insects during the larval growth stage. Autographa californica Multicapsid Nuclear Polyhedrosis virus (AcMNPV) is the type virus for the family Baculoviridae. Baculoviruses have a biphasic replication cycle which results in rod-shaped virions being packaged into a budded and occluded form (Theilmann et al., 2004). Budded virus, produced from a primary infection, is enveloped at the plasma membrane and infects neighboring cells by adsorptive endocytosis (Blissard and Wenz, 1992; Volkman and Goldsmith, 1988) resulting in a systemic infection. Synthesis of budded virus is reduced by 24 hours post-infection (h.p.i.) and there is a switch to occluded virus production (Volkman and Knudson, 1986). The occluded form of the virus (OV) is environmentally stable and consists of multiple, enveloped nucleocapsids that are packaged into a polyhedrin protein-rich matrix. Virions condensed in a polyhedrin matrix are wrapped in a virus-derived, carbohydrate-rich, calyx which forms a unilamellar structure with spikelike projections, forming the occlusion body. Caterpillars ingest the occluded form of the virus, the polyhedra dissolve rapidly within the alkaline pH of the midgut (Summers, 1971; Summers and Arnott, 1969) and the virions pass through the peritrophic membrane of the insect. The virus enters cells via fusion of virion envelope with the microvillar membrane (Granados, Lawler, and Burand, 1981). The virus then travels along the microvillus aided by microtubules (Charlton and Volkman, 1993; Granados, Lawler, and Burand, 1981) and enters the nucleus where it uncoats at the nuclear pore or just inside the nuclear membrane (Bilimoria, 1991) (For review of the baculovirus infection cycle see Fig. 2) (Blissard and Rohrmann, 1990). Advanced infection of the larvae results in complete cellular destruction and a condition known as "melted" (Federici, 1997).

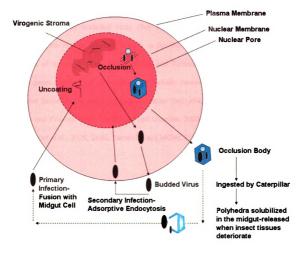



Figure 2. Schematic diagram of the baculovirus infection cycle adapted from Blissard and Rohrmann 1990 (Image Presented in Color)

#### 1.2 Baculovirus Replication

Within the nucleus of the midgut epithelial cells the infection process begins with immediate and early gene transcription of the virus followed by DNA replication, late gene expression, the production and release of budded virus, very late gene expression and the synthesis of occluded virus (See Fig. 3). Baculoviruses encode a DNA polymerase gene that is transcribed early in the infection process and is essential to replication of the virus (Vanarsdall, Okano, and Rohrmann, 2005). Additional viral-encoded genes required for virus replication include: *immediate-early gene-1* (*ie1*), *late expression factor* (*lef*) 1 and 3, alkaline nuclease (an), p143 and p35 (Ito et al., 2004; LaCount and Friesen, 1997; McDougal and Guarino, 2000; Mikhailov and Rohrmann, 2002; Stewart et al., 2005; Todd, Passarelli, and Miller, 1995).

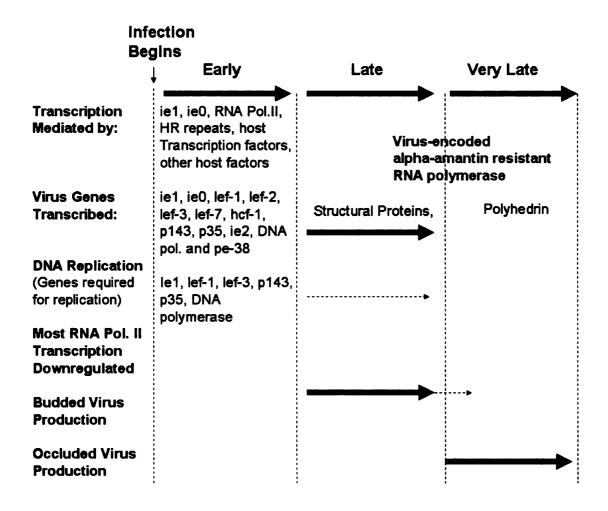



Figure 3. Schematic diagram of transcriptional regulation that occurs during the baculovirus replication cycle adapted from Rohrman 1992

Transcription of early expressed baculovirus genes is regulated by host RNA polymerase II and IE1. IE1 has a splicing variant known as IE0. Individually either IE1 or IE0 can support virus replication but both are required to achieve a wildtype infection (Stewart et al., 2005). Homologous repeat (HR) sequences that serve as transcriptional enhancer regions can be found in eight locations of the AcMNPV genome (Rasmussen et al., 1996) and HR regions have been identified in all sequenced baculoviruses. IE1 regulates early virus transcription in *cis* by binding a 28-mer palindromic site in the HR

regions and host transcription factors also bind within the HR region (Landais et al., 2005). LEF-1 is a DNA primase (Mikhailov and Rohrmann, 2002) and p143 a DNA helicase (McDougal and Guarino, 2000) that associates with LEF-3 (Evans et al., 1999), a single-stranded DNA binding protein, for nuclear transport and localization (Chen and Carstens, 2005). It has been proposed that the HR sites also serve as origins of DNA replication, indeed HR sites are essential for virus DNA replication (Leisy et al., 1995). Immunoprecipitation followed by crosslinking has shown that IE-1, P143 and LEF-3 bind viral chromatin at closely linked sites, suggesting that replication complexes form at the homologous repeat regions (Ito et al., 2004). Baculoviruses also encode an early expressed alkaline nuclease (AN) which is essential for virus replication. AN has 5'-to-3' endonuclease activity on single-stranded DNA and 5'-to-3' exonuclease activity when associated with LEF-3. The data suggests that AN plays a role in DNA recombination and the resolution of replication intermediates (Mikhailov, Okano, and Rohrmann, 2004). The apoptotic suppressor, p35 (Clem, Fechheimer, and Miller, 1991) directly binds caspases, blocking substrate proteolysis. P35 functions at early and late timepoints postinfection (LaCount and Friesen, 1997). Baculovirus IE2, LEF-7, HCF-1 and P38 stimulate viral replication but are not essential to a productive infection (Miller, 1997).

The late stage events of baculovirus infection are defined as those that occur after DNA replication of the virus. The production of budded virus temporally correlates to a time immediately following DNA replication and the production of occluded virus is the result of the late stages of infection in cells infected with baculovirus (Friesen and Miller, 1986; Rice and Miller, 1986). Characterized late genes are transcribed at six to twenty-four hours post-infection (h.p.i.), the corresponding gene products are primarily structural

in nature and include the VP39 capsid protein (Thiem and Miller, 1989) and P6.9 core protein (Wilson et al., 1987). Very late genes are transcribed in a burst of expression from eighteen to seventy-two h.p.i. and include the polyhedrin occlusion body protein (Rohrmann, 1986) and p10, which effects nuclear disintegration upon exit of the occluded virus (Rohrmann, 1992).

Regulation of the late stages of infection is primarily transcriptional. The segue of early-to-late gene transcription is coupled to a decrease in host mRNA levels at six to eight h.p.i. (Nobiron, O'Reilly, and Olszewski, 2003; Ooi and Miller, 1988) and the induction of a virus-encoded (Guarino et al., 1998), alpha-amantin resistant RNA polymerase (vRNApol) (Beniya et al., 1996; Fuchs, 1983; Grula, 1981a; Grula, 1981b; Huh and Weaver, 1990; Yang, Stetler, and Weaver, 1991). By 18 h.p.i. transcription is exclusive to vRNApol (Fuchs, 1983; Huh and Weaver, 1990) (For a review of baculovirus temporal gene regulation, see Fig. 2). The viral RNA polymerase specifically binds the virus template at a consensus sequence of TAAG found in the promoters of late and very late genes (Morris and Miller, 1994; Ooi, Rankin, and Miller, 1989; Rankin, Ooi, and Miller, 1988; Thiem and Miller, 1989; Thiem and Miller, 1990). However, host and virus transcription factors, including IE1, IE0 and host GATA factors, bind the virus DNA template in concert with the vRNApol (Chen, Tsai, and Chen, 2001; Hefferon, 2004; Krappa et al., 1992; Landais et al., 2005) and the HR enhancer elements play a critical role in gene regulation even at late times during the infection process (Hefferon, 2004). Twenty viral early or constitutively expressed genes are required for late and very late baculovirus gene expression, these include: ie-1, ie-2, dnapol, p143, p47, p35, 39K and the late expression factors (LEFs) 1-12 (Hefferon, 2004; Li, Harwood, and

Rohrmann, 1999; Lu and Miller, 1995b). The baculovirus-encoded LEF-8 and LEF-9 are homologous to subunits of RNA polymerase II. LEF-4 has guanyltransferase activity and can be purified as a component of the vRNApol complex (Guarino, Jin, and Dong, 1998). The very late expression factor 1 (VLF-1) is required for transcription from the polyhedrin promoter (McLachlin and Miller, 1994; Mistretta and Guarino, 2005).

#### 1.3 Baculovirus Host Range

Baculoviruses have been commercially developed as eukaryotic protein expression vectors and as biopesticides. Hundreds of different baculoviruses have been isolated from hundreds of species of infected lepidopteran larvae and it is predicted that thousands more exist (Federici, 1997; Theilmann et al., 2004). A small percentage of characterized baculoviruses have the potential to be useful in controlling insect pests (Moscardi, 1999; Yearian, 1982). The use of baculoviruses as insect control agents has been successful for controlling a lepidopteran pest of soybeans (Moscardi, 1989). The limited commercial success is due, in part, to the narrow host range of baculoviruses. AcMNPV has the broadest host range and can permissively infect six Lepidopteran species and semi-permissively infect another twenty-six (Federici, 1997). Permissive hosts are denoted as those being highly susceptible to a particular virus infection while semi-permissive are those that are less susceptible (Bishop, 1995). Environmentally, the limited host range of baculoviruses is beneficial because effects on non-target species are minimal to non-existent. Economically, the limited host range of baculoviruses is detrimental because agricultural producers require a single broad-range insecticide to maintain cost effectiveness. Substantial research has been devoted to expanding host range and/or enhancing insecticidal properties through the development of recombinant baculoviruses that express host range factors, insect regulatory proteins and/or general insecticidal toxins (Black, 1997; Maeda, 1995).

In mammalian cells, virus host range is frequently determined by the interaction of a viral protein with a host-encoded receptor. This does not appear to be true for baculoviruses. In a number of non-permissive and semi-permissive baculovirus infections the virus enters the cell nucleus, viral DNA replication begins but infection is blocked during the late stages of infection (Miller, 1997; Simon et al., 2004; Thiem, 1997; Yanase, Yasunaga, and Kawarabata, 1998). As an example, AcMNPV infects, has some late gene expression but does not productively replicate in cell lines from *Bombyx mori*, *Choristoneura fumiferana*, *Mamestra brassicae* and *Lymantria dispar*. AcMNPV infects *Drosophila melanogaster* cell lines but late gene expression does not occur (Morris and Miller, 1992; Morris and Miller, 1993). AcMNPV can enter and evoke an immune response in human cells (Abe et al., 2005) but viral DNA is not transcribed because viral promoters are not recognized by host machinery (Thiem, 1997). Host immune response also limits virus infection in mammals. In contrast, little is known about immune response to virus infection in invertebrates.

#### 1.3.1. Invertebrate Innate Immunity to Virus Infection

Due to a lack of a molecularly well-characterized virus pathogen and invertebrate host model, the pathways leading to induction of invertebrate innate immune response in response to virus infection have not been clearly elucidated. Recent evidence shows that Toll pathways may contribute to antiviral response in *Drosophila melanogaster*. Adult *Drosophila dif* mutants lacking a Toll pathway-activated NF-kB transcription factor were found to have a decreased tolerance to *Drosophila* X virus (Zambon et al., 2005).

Microarray data from the midgut of *Aedes aegypti* vectoring the Sindbis virus indicate a role for Toll and c-Jun amino terminal cascades in the infection process (Sanders et al., 2005). The RNAi pathway in *Anopheles gambiae* can be silenced with dsRNA of the *Argonaute2* gene. These Ago2 knock-down mosquitos are also more vulnerable to infection with O'nyong-nyong virus, an RNA alphavirus, as compared to untreated animals, which leads to the conclusion that RNAi is an integral antiviral response in *A. gambiae* (Keene et al., 2004).

Heliothis virescens larvae are a fully permissive host to AcMNPV while Helicoverpa zea larvae, a closely-related species, are semi-permissive, showing a 1000fold difference in susceptibility (Allen, 1969; Vail, 1978; Vail, 1982). However, larvae of both species that were orally fed AcMNPV ODV show no difference in their susceptibility during primary infection of the midgut cells or secondary infection of the tracheal cells. However, by 48 h.p.i in Helicoverpa zea, hemocytes encapsulate melanized infection foci in the trachea and clear the virus. Helicoverpa zea hemocytes are resistant to AcMNPV infection while hemocytes of Heliothis virescens are not. Encapsulation of infection foci does not occur in AcMNPV-infected Heliothis virescens. Originally, virus encapsulation and clearing were believed to be an innate immune response to baculovirus infection in Lepidoptera, however, further study indicates that swelling and tracheal damage occur in response to AcMNPV infection in Helicoverpa making melanization and encapsulation a probable response to wounding that occurs from virus-damaged tissues (Trudeau, Washburn, and Volkman, 2001; Washburn, 1996).

#### 1.3.2. Developmental Resistance to Baculovirus

There appears to be some level of developmental resistance to baculovirus infection. As larvae age they become more resistant to oral-ingested baculovirus infection. This phenomena appears to be the result of midgut cell sloughing during the molting process. Larvae in the temporal late stages of instar development, immediately preceeding or during a molt, are less likely to establish a productive AcMNPV infection than those at the early instar stage. This is in contrast to *H. virescens* or *Trichoplusia ni* larvae that are hemocoel-injected with one plaque forming unit of AcMNPV BV, which results in 59-89% mortality. It would appear that infected midgut cells are shed during the molting process before a systemic baculovirus infection can be established, thus "clearing" the virus from the insect. This decreased susceptibility is mimicked in *H. virescens* larvae that are fed on cotton where a plant-encoded foliar peroxidase initiates midgut sloughing in the insect (Trudeau, Washburn, and Volkman, 2001; Washburn, Kirkpatrick, and Volkman, 1995; Washburn, 1996).

#### 1.3.3. Species-Mediated Resistance to Baculovirus

Based on the current data, many different mechanisms appear to mediate or contribute to the species-specific host range of baculoviruses. In cell culture, host range mechanisms that have been investigated in detail commonly show impaired baculovirus replication and a block during the late stages of infection (Miller, 1997; Thiem, 1997).

#### 1.3.3.1 Host Cell Factor-1 (HCF-1)

In Sf21 and TN368 cells, both of which are permissive to AcMNPV infection, transient expression assays were conducted that combined a late viral promoter, a reporter gene and expression of eighteen AcMNPV LEFs. In Sf21 cells, expression of the

eighteen characterized LEFs was sufficient to initiate transcription of the reporter gene. However, in Tn368 cells transcription from a late and very late viral promoter required the expression of an additional baculovirus gene, host cell factor-1 (hcf-1) (Lu and Miller, 1995a), which is not homologous with mammalian hcf-1. Infection with AcMNPV hcf-1 deletion mutants had no effect on virulence, virus DNA replication or temporal gene expression in Sf21 cells. However, in *Trichoplusia ni* 368 (Tn368) ovarian cells infected with hcf-1 null mutants, DNA replication and late gene expression of the virus did not occur and an arrest of host and viral protein synthesis occurred by 18 h.p.i. (Lu and Miller, 1996). Infection with hcf-1 null mutants in Hi-5 cells, a cell line derived from Trichoplusia ni eggs, and in T. ni larvae resulted in a reduced virulence of the virus. A 50-fold decrease in infectivity was observed for the budded form of the mutant virus. However, there was no reduction in oral infectivity for larvae that were fed polyhedra lacking the hcf-1 gene. Thus, HCF-1 has species and tissue-specific effects (Lu and Miller, 1996). HCF-1 has been characterized as an early protein that localizes to the nucleus in infected Tn368 cells and has been shown to interact with itself in coprecipitation and yeast two-hybrid studies (Hefferon, 2004).

#### 1.3.3.2. p143

Bombyx mori N (BmN) cells are permissive to Bombyx mori Multi Nucleocapsid Polyhedrovirus (BmNPV) but Tn368, and the Spodoptera frugiperda Sf21 and CLS-79 cell lines are non-permissive to BmNPV infection. Conversely, BmN cells are non-permissive to AcMNPV infection (Summers, 1978). Co-infection of BmNPV and AcMNPV yielded a variant that was capable of replicating in all three cell types that were non-permissive to BmNPV infection (Kondo and Maeda, 1991). Using construction of

recombinant BmNPV variants carrying AcMNPV genome fragments, the gene responsible for the expanded host range was identified as p143-a putative DNA helicase (Maeda, Kamita, and Kondo, 1993). The region within p143 associated with expanding the host range of AcMNPV was narrowed to 3 amino acids that allowed replication of AcMNPV in B. mori larvae (Croizier et al., 1994). Eventually a single amino acid (AA) was identified as being sufficient to expand the host range of AcMNPV (Kamita and Maeda, 1997). At a high multiplicity of infection (MOI), AcMNPV variants carrying this single AA substitution were capable of infecting Sf9 and BmN cell lines (Kamita and Maeda, 1996). Since the original host range studies involving p143 were conducted, p143 has been confirmed as an in-vitro DNA helicase (McDougal and Guarino, 2000) with ATP-binding (McDougal and Guarino, 2001) activity that can be found associated with DNA in crosslinking studies (Ito et al., 2004). Suggestions as to how a DNA helicase might alter host range have not been offered. However, it is worth noting that the DNA polymerase from Lymantria dispar MNPV (LdMNPV) can functionally replace that of AcMNPV in transient DNA replication assays in Sf21 cells; however, p143 from LdMNPV can not replace AcMNPV p143 in the same assay (Ahrens and Rohrmann, 1996). The host specificity of the helicase indicates a potential role for its interaction with host-encoded proteins within the DNA replication complex of the virus.

#### 1.3.3.3. Apoptotic Suppressors and Host Range

There are multiple hypotheses to explain why apoptosis occurs in virus-infected cells. The predominant hypothesis for invertebrates is that apoptosis results in a premature cell lysis further preventing virus replication and subsequent infection of neighboring host cells. Paradoxically, apoptosis may also function as a means for virus

dissemination and has thus, co-evolved with permissive virus infections (Friesen and Miller, 1996). It is important to consider that invertebrates are not equipped with an adaptive immune system and thus, must rely on innate immune responses to guard against pathogen infection. While mammals also rely on innate immunity for protection from pathogens, they are also equipped with immunological memory resulting in antibody-based recognition of epitopes from invading pathogens.

The apoptotic suppressor, p35, is non-essential for AcMNPV replication in Tn368 cells (Clem, Fechheimer, and Miller, 1991; Clem and Miller, 1993; Clem and Miller, 1994). Virus replication occurs in Trichoplusia ni larvae infected with AcMNPV p35 deleted (vAcΔp35) virus but there is a reduction in the production of occluded virus, with less melting at the end of infection as compared to a wildtype infection (Clem and Miller, 1993; Clem and Miller, 1994). Spodoptera frugiperda 21 (Sf21) cells that are infected with vAcΔp35 show severely impaired virus replication and a non-efficient shut-off of host protein synthesis (Clem and Miller, 1993; Hershberger, Dickson, and Friesen, 1992). In Sf21 cells infected with vAcΔp35, p35 can be replaced with an *inhibitor of apoptosis* (iap) gene from other baculoviruses and wildtype infection is restored (Birnbaum, Clem, and Miller, 1994). Spodoptera frugiperda larvae that are infected with vAcΔp35 show a 25-fold decrease in rate of infection as compared to wildtype AcMNPV (Clem and Miller, 1993; Clem and Miller, 1994). Spodoptera littoralis-2 (Sl-2) (Chejanovsky and Gershburg, 1995) and Choristoneura fumiferana-203 (Cf-203) cells (Palli et al., 1996) infected with AcMNPV undergo apoptosis, resulting in a decrease in budded virus production and no occluded virus production. Both cell types are permissive to other baculovirus infections. P35 may be insufficient to block apoptotic response in these cell lines, as transcriptional analysis revealed that p35 expression is delayed in AcMNPV-infected Cf-203 cells (Palli et al., 1996). Thus, baculovirus apoptotic suppressors are also species and tissue-specific regulators of virus host range.

#### 1.3.3.4. Host Range Factor-1 (*hrf-1*)

AcMNPV enters but does not productively infect the Lymantria dispar 652Y (Ld652Y) cell line (McClintock, Dougherty, and Weiner, 1986). Global translation arrest begins in AcMNPV-infected Ld652Y cells by 8 h.p.i. correlating with the onset of DNA replication and the late stages of virus infection. All temporal classes of AcMNPV mRNA are synthesized and transported to the cytoplasm in infected Ld652Y cells and these mRNAs can be translated in vitro (Guzo et al., 1992). Expression of single gene, host range factor-1 (hrf-1), isolated from Lymantria dispar Multinucleocapsid Nucleopolyhedrovirus (LdMNPV) prevents translation arrest in AcMNPV-infected Ld652Y cells and enables permissive replication of the virus in cell culture and infected larvae (Chen et al., 1998; Du and Thiem, 1997b; Thiem et al., 1996). HRF-1 also expands the host range of the nonpermissive Hyphantria cunea Multinucleocapsid Nucleopolyhedrovirus (HcMNPV) and the semi-permissive BmNPV and Spodoptera exigua Multinucleocapsid Nucleopolyhedrovirus (SeMNPV) (Ishikawa et al., 2004). These data suggest that HRF-1 is an essential host range factor for baculovirus infection of Ld652Y cells. Motif and homology searches provide no indications as to the functional role of HRF-1. A truncated conceptual protein of 78 amino acids with homology to HRF-1 exists in the genome of Orygia pseudotsugata Multinucleocapsid Nucleopolyhedrovirus (OpMNPV) but does not complement for LdMNPV HRF-1 function in AcMNPV-infected Ld652Y cells (Ikeda, Reimbold, and Thiem, 2005). HRF-

1 contains a domain that is predicted to be highly acidic, mutations in this domain result in varied changes in HRF-1 enabled AcMNPV replication in Ld652Y cells suggesting a role for the acidic domain in HRF-1 function (Ikeda, Reimbold, and Thiem, 2005).

In the absence of p35 and HRF-1, translation arrest and apoptosis are still initiated during the early stages of infection in AcMNPV-infected Ld652Y cells, apoptosis is enhanced and global translation arrest occurs at a time that correlates to the onset of DNA replication and the late stages of infection (Thiem and Chejanovsky, 2004). Blocking DNA replication and the late phases of virus replication with aphidicolin precludes global translation arrest in AcMNPV-infected Ld652Y cells, thus associating the arrest of protein synthesis with the late stages of virus infection (Thiem and Chejanovsky, 2004). Events correlating to the late stages of infection include the onset of DNA replication of the virus, the expression of late viral proteins and the shut-off of host RNA Polymerase II-mediated transcription (Fig. 4) (Friesen and Miller, 1986; Thiem and Miller, 1989). Global translation arrest and apoptosis appear to be linked in the response because infecting Ld652Y cells with an AcMNPV mutant carrying a non-functional version of the apoptotic suppressor p35 does not result in global translation arrest (Thiem and Chejanovsky, 2004). The global translation arrest infection phenotype is restored when the same AcMNPV mutant expresses Opiap, Cpiap or p49, apoptotic suppressors isolated from other baculoviruses that have different modes of action as compared to p35 (Thiem and Chejanovsky, 2004). Treatment of vAcΔp35-infected Ld652Y cells with peptide caspase inhibitors does not result in global translation arrest and supports high levels of budded virus production, suggesting that apoptosis must be initiated for global translation arrest to occur (Thiem and Chejanovsky, 2004).

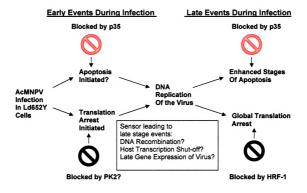



Figure 4. Events that occur during AcMNPV-infection of Ld652Y cells (Image Presented in Color)

#### 1.3.3.5. Other Baculovirus Proteins Associated with Virus Host Range

The late expression factor, LEF-7, has homology to the herpes-virus UL29 family of single-stranded binding proteins (Lu and Miller, 1995b). LEF-7 has been identified as being an enhancer of viral DNA replication in Sf-21 cells (Chen and Thiem, 1997; Lu and Miller, 1995a) and a contributor to homologous recombination in plasmid transfected insect cells when in the presence of a full complement of viral proteins (Crouch and Passarelli, 2002). Viral replication was reduced to ten percent of wildtype AcMNPV levels in Sf21 and SE1c cells infected with a *lef-7* deletion mutant. The same mutation had no effect on virus replication in Tn368 cells indicating a species-specific role for host range effects of LEF-7 (Chen and Thiem, 1997).

When larvae of Spodoptera frugiperda and Trichoplusia ni are fed occluded AcMNPV which lack the immediate early gene, ie2, virus infectivity is reduced 1000 to 100 fold, respectively. Changes in infectivity are attributed to a lack of virions packed in the ODV of the mutant virus. However, based on this change oral infectivity, IE2 has been denoted as a possible determinant of virus host range. Larvae infected via intrahemocoelic injection with the same mutant had infection rates similar to wildtype AcMNPV infections (Prikhod'ko et al., 1999). Like LEF-7, the immediate early gene, ie2, of BmNPV and AcMNPV also enhances virus DNA replication of BmNPV in BmN cells (Gomi et al., 1997) and AcMNPV in Sf21 cells (Lu and Miller, 1995a), respectively. IE2 has been shown to transactivate IE1 in AcMNPV-infected Sf21 cells (Yoo and Guarino, 1994a; Yoo and Guarino, 1994b), to block cell cycle progression in cell lines from Spodoptera frugiperda and Trichoplusia ni (Prikhod'ko and Miller, 1998) and IE2 from BmNPV has E3 ubiquitin ligase activity (Imai et al., 2003). The diverse functional activity of IE2 in different virus-host relationships make it difficult to assess its possible role in determining virus host range.

#### 1.4. Translational Modifications in Response to Stress

Global translation is reduced in most, if not all, types of cellular stress (Holcik and Sonenberg, 2005). Control of translation provides the cell with the ability to immediately respond to a broad range of stress-induced signals. There is increasing evidence, based on disproportionate amounts of mRNA as compared to coordinate protein levels, which indicate an essential role for translational regulation and protein stability in mediating the cellular response to stress (Gygi et al., 1999; Holcik and Sonenberg, 2005; Rajasekhar and Holland, 2004; Rajasekhar et al., 2003). Translation

can be separated into three distinct phases: initiation, elongation and termination (Mathews, 2000). The majority of examples that currently exist show translational control occurring at the initiation stage as a cessation of translation (Holcik and Sonenberg, 2005).

#### 1.4.1. Translation Initiation

The initiation of translation is a complex process coordinated by numerous protein subunits that join at the 5' and 3' ends of an mRNA transcript. In the cytoplasm, ternary complexes are formed which consist of a GTP molecule, a methionine initiator tRNA and the eukaryotic initiation factor 2 complex. The ternary structure joins with the 43S pre-initiation complex which consists of the 40S ribosomal subunit and eIF3, eIF1, eIF1A and eIF5. Binding of the pre-initiation complex to the 5' cap structure is believed to require bridging interactions between eIF3 and the eIF4F protein complex which is bound through eIF4E, the cap binding protein, at the m⁷GpppN cap structure. Other subunits within the eIF4F complex include eIF4A, the dead-box RNA helicase, and eIF4G which acts as a scaffold protein between eIF4E, eIF4A and eIF3. The subunit eIF4G also interacts with the poly-A binding protein (PABP) and this interaction between proteins bound at the 5' and 3' end of the mRNA transcript, respectively, results in a circularization of the template (See Fig. 5). After recruitment to the mRNA, it is believed that the 43S initiation complex scans the template for an AUG translation initiation codon (Pestova and Kolupaeva, 2002). The methionine initiator tRNA binds to the AUG start site and the 43S ribosomal subunit is joined by the 60S ribosomal subunit to form the 80S ribosome. Ribosome formation is followed by the release of initiation factors for cellular recycling (See Fig. 4) (Gebauer and Hentze, 2004).

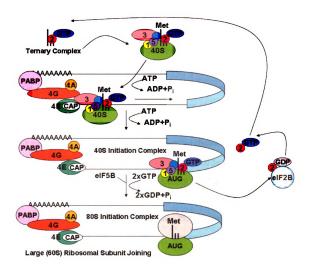



Figure 5. Schematic diagram of the initiation of protein synthesis in eukaryotes adapted from Gebauer and Hentze 2004 (Image Presented in Color)

#### 1.4.2. Initiation Stage Translational Modifications in Response to Stress

Translation arrest occurring at the initiation stage generally results from posttranslational modifications of eukaryotic initiation factors (eIFs). Common posttranslational modifications of eIFs include phosphorylation and/or proteolytic cleavage. Modifications lead to blocked interactions with other components of the translation initiation machinery and result in translation attenuation.

#### 1.4.2.1. Phosphorylation of eIF2α

During translation initiation, as the methionine initiation tRNA joins the AUG start codon, eIF2-bound-GTP undergoes hydrolysis vielding a GDP molecule. In order to once again form an active ternary complex, eIF2-bound-GDP must be recharged to GTP by the nucleotide exchange factor eIF2B. Phosphorylation of the alpha subunit of eIF2 at serine 51 results in the sequestering of eIF2B which is available in limited quantities (See Fig. 5 and 6). There are four characterized mammalian kinases of eIF2 $\alpha$ ^{ser51}: the amino acid regulated GCN2, the heme-regulated HRI, PERK-an eIF2\alpha kinase that is activated in response to stress in the endoplasmic reticulum (ER) and the virus-activated, doublestranded RNA-dependent protein kinase (PKR). Homologues of GCN2 and PERK have been characterized for invertebrates. Invertebrate PERK is functionally similar to its mammalian homologue and is activated in response to ER stress but is also developmentally regulated (Sood et al., 2000). A novel eIF2\alpha kinase, BeK, was characterized from the Lepidoptera, Bombyx mori. BeK exerts kinase activity in transformed *Drosophila* Schneider cells as a result of heat shock and osmotic stress. BeK is not activated in response to bacterial infection or induced ER or oxidative stress (Prasad et al., 2003) (For overview see Fig. 6).

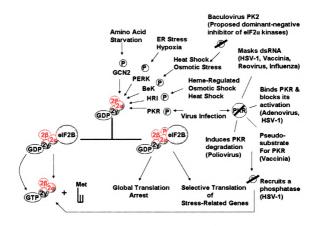



Figure 6. Schematic diagram of eIF2 $\alpha$  phosphorylation and viral strategies for overcoming kinase-induced translation arrest adapted from Holcik and Sonenberg 2005 (Image Presented in Color)

#### 1.4.2.2. 4E-BP and eIF4E

The cap-binding protein, eIF4E, is shaped like a bowl. Its concave surface directly interacts with the m7GpppN structure at the 5' end of the mRNA and its convex surface interacts with the scaffold protein eIF4G. In proliferating cells, the 4E-binding protein (4E-BP) is phosphorylated and unable to bind eIF4E. At times of stress and apoptotic induction, 4E-BP becomes a target for phosphatases or is targeted to the proteasome. Hypophosphorylated 4E-BP competes for binding of eIF4E with eIF4G and eventually the cap binding protein is sequestered, attenuating translation. Translation resumes when

mTOR-activated kinases phosphorylate 4E-BP, causing the release of eIF4E (Gebauer and Hentze, 2004; Holcik and Sonenberg, 2005).

#### 1.4.2.3. Proteolytic Cleavage of eIF4GI, eIF4GII and Other Initiation Factors

Caspase-mediated proteolytic cleavage of several eukaryotic initiation factors can occur in response to the induction of apoptotic programs in a variety of mammalian cells. Different apoptotic pathways can be initiated as a result of ER stress, DNA damage or specific ligand-receptor binding. However, all defined apoptotic pathways cascade to the eventual production of low-level, effector caspases such as caspase 3 or 7. Caspase-3 mediated cleavage has been described for eIF2α, eIF4E, PABP and eIF4GI/eIF4GII (Holcik and Sonenberg, 2005; Morley, Coldwell, and Clemens, 2005). This apoptotic-induced cleavage of translation initiation factors generally leads to a global attenuation of cap-dependent translation.

Caspase-mediated cleavage of eIF2α may be functionally significant as the truncated form appears to no longer be dependent on GDP exchange by eIF2B (Marissen et al., 2000). The truncated form of eIF2α, when over-expressed, was able to overcome translational repression mediated by PKR (Satoh et al., 1999). Cleavage of eukaryotic initiation factors has been proposed as a means for the cell to overcome translational repression by favoring internal ribosomal entry site (IRES) or alternate scanning-based translation of stress responsive genes such as GCN4 in yeast and ATF4 in human cells. Caspase-driven cleavage of eIF4GI and eIF4GII has been reported for virus and stress-induced cell lines (Belsham, McInerney, and Ross-Smith, 2000; Clemens, Bushell, and Morley, 1998; Gradi et al., 1998; Svitkin et al., 1999). In BJAB cells treated with cycloheximide, eIF4GI is cleaved and is incorporated into a long-term, stable eIF4F

complex prior to eventual degradation. This complex may support cap-dependent translation (Bushell et al., 2000).

#### 1.4.3. Virus Strategies for Overcoming Host-Mediated Translation Arrest

Viruses are dependent on host-encoded translation machinery to synthesize viral proteins, thus viruses have evolved a number of mechanisms to overcome host-induced translation arrest. Most characterized viral mechanisms for overcoming translation arrest at the initiation stage affect PKR-induced eIF2\alpha phosphorylation. In mammalian cells, PKR exists as a dimer in the cytoplasm. Recognition and subsequent interaction with dsRNA species induces a conformational change in PKR which results in its autophosphorylation and activation as an eIF2\alpha kinase (Kaufman, 2000). Upon infection and cell entry, dsRNA can result from both the transcription of RNA viruses and the dual template transcription from DNA viruses (Schneider and Mohr, 2003). Viruses have developed a number of clever strategies to overcome translational inhibition initiated by PKR. Adenovirus and Epstein-Barr virus produce the abundant and highly structured RNA species VARNA₁ (Schneider, 2000) and EBER RNAs (Clemens, 1993), respectively that compete with dsRNA for binding of PKR. Herpes Simplex 1 (HSV-1)-Us11 (Khoo, Perez, and Mohr, 2002; Mulvey et al., 1999), Vaccinia virus-E3L (Beattie et al., 1995), Reovirus-o3 (Lloyd and Shatkin, 1992) and Influenza-NS1 (Salvatore et al., 2002) are all proteins that bind and mask dsRNA, thus preventing its recognition by PKR. VARNA1, Us11 (Cassady and Gross, 2002; Peters et al., 2002) and the HIV TAR RNA (Gunnery et al., 1990; Maitra et al., 1994) all directly bind PKR to prevent autophosphorylation and activation. Vaccinia virus K3L acts as a pseudo-substrate for PKR (Carroll et al., 1993) and there is some evidence that indicates that poliovirus is

capable of directing cellular proteases to degrade PKR (Gale, Tan, and Katze, 2000). Additionally, the  $\gamma$ 34.5 protein of HSV-1 recruits a phosphatase to peIF2 $\alpha$ ^{ser51} which prevents the sequestering of eIF2B allowing for GDP hydrolysis and continued translation (He, Gross, and Roizman, 1997).

A PKR homologue has not been identified in insects. Double-stranded RNA interference has been shown to be very effective in completely silencing virus and hostencoded gene expression in invertebrate cell lines (Means, Muro, and Clem, 2003), without initiating translation arrest, so, a classical PKR protein may not exist in invertebrates. However, PKR is integral to antiviral response in mammalian cell lines and RNA interference can be used to silence gene expression in those same cells (Cioca, Aoki, and Kiyosawa, 2003; Spankuch and Strebhardt, 2005). Both baculovirus infection and dsRNA used in an attempt to silence hemolin gene expression in Chinese Oak Silk Moth resulted in an induction of hemolin expression, indicating the existence of a lepidopteran molecular response pathway to dsRNA (Hirai et al., 2004). It is possible that other eIF2\alpha kinases, previously characterized for invertebrates, serve as surrogates to PKR function or that another uncharacterized dsRNA response mechanism exists for Lepidoptera. Interestingly, baculoviruses encode PK2, a protein with kinase subdomain homology to PKR and all other eIF2\alpha kinases. It is predicted that PK2 acts as a dominant-negative inhibitor of eIF2\alpha kinases (Li and Miller, 1995), suggesting that eIF2α phosphorylation may be induced in response to baculovirus infection and that the virus has evolved a mechanism(s) to overcome its effects. Indeed, eIF2α is protected from phosphorylation at late times post-infection in SF9 cells infected with AcMNPV (Dever et al., 1998) (Fig. 6).

#### 1.4.4. Preferential Translation of Viral Transcripts

In addition to circumventing the effects of host-induced translation arrest programs, viruses have developed a number of mechanisms to ensure preferential translation of viral transcripts over host-encoded mRNA, thus pirating away the host's translational apparatus. Picornaviruses, such as poliovirus, encode a 2A protease which cleaves the N-terminus of eIF4G, thus abolishing the ability of eIF4G to interact with PABP (which is also cleaved by 2A) and eIF4E, which eliminates cap-dependent translation of host RNAs (Joachims, Van Breugel, and Lloyd, 1999; Kerekatte et al., 1999). Picornaviruses enable translation of virus RNA with internal ribosomal entry sites (IRES) and bootlegging of virus-modified, host translation factors (Jang et al., 1988; Pelletier and Sonenberg, 1988). Modification and secondary structure of the 5' UTR of many virus transcripts is essential to ensuring preferential translation. IRES have been identified for all picornaviruses, HIV, HCV and HHV8 (Hellen and Sarnow, 2001). It is interesting to note that IRES sites have been identified for stress-responsive mammalian genes, thus suggesting a mechanism for cell recovery once translation programs have been attenuated (Hellen and Sarnow, 2001). Adenovirus late expressed genes carry a tripartite leader sequence in the 5' UTR that is essential for translation (Schneider, 2000) and the 5' UTR of influenza virus attracts a cellular protein, GRSF-1, which stimulates translation in-vitro (Park, Wilusz, and Katze, 1999). Other novel virus-mediated, translation initiation factor modifications exist but all result in a shutdown of host translation (Aragon et al., 2000; Feigenblum and Schneider, 1993; Piron et al., 1999).

### 1.5. Stress Response Pathways and Virus Infection

Hosts have evolved a number of molecular strategies to respond to the threat of virus infection and other environmental and pathogenic stress inducers. Stress-activated pathways share many components with characterized innate immunity pathways. Likewise, viruses have evolved many mechanisms to overcome these strategies and in some cases, viruses use host-induced defenses to benefit their own replication. Notably, apoptosis and global translation arrest can occur in response to the UPR via endoplasmic reticulum stress which can be induced in response to virus infection.

#### 1.5.1. The Unfolded Protein Response (UPR)

Baculovirus host range systems have been characterized in cell culture. Information gained from cell culture systems is limited because a response initiated in a single type of cell may differ from other cell types from the same organism. Cells from certain tissues may accommodate viral entry and in a living insect system, virus may be cleared or an immune response launched prior to entry of the virus into the cell. However, in characterized, cell culture-based systems, baculovirus host range appears to be controlled during the late stages of infection. Viruses enter cells that are non-permissive to virus replication, early genes are transcribed, DNA replication begins but neither budded nor occluded virus is produced. This is true not only for AcMNPV in Ld652Y cells but in other baculovirus host range systems as well (Thiem, 1997). Host cell transcription is not down-regulated until the late stages of infection. In AcMNPV-infected Ld652Y cells, global translation arrest and enhanced apoptosis do not occur until the late stages of infection. Thus, it is logical to presume that an increasing number of virus-encoded transcripts on the endoplasmic reticulum (ER) and cytosol of the host

places a measurable, increased load on the host's translational machinery and protein folding apparatus. An abundance of unfolded proteins in the ER can result in ER stress, leading to the initiation of the unfolded protein response (UPR). The UPR has been characterized in mammalian cell lines and yeast (Rutkowski and Kaufman, 2004). Homologous components of the UPR have been identified and characterized for invertebrates. The UPR response pathway has characterized in *C. elegans* and is important in developmental regulation of the nematode (Shen et al., 2001). PERK, the ER stress activated eIF2α kinase has been identified and characterized in *Drosophila melanogaster* but not Lepiodptera (Olsen et al., 1998; Sood et al., 2000). Additionally, the transcriptional activator ATFC has been identified as being activated in response to UPR stress in *Bombyx mori* (Goo et al., 2004). Activation of the UPR results in a decrease of global translation, an increase in the synthesis of chaperone proteins and protein degradation coupled to endoplasmic reticulum-associated degradation (ERAD) (Meusser et al., 2005; Rutkowski and Kaufman, 2004).

The endoplasmic reticulum is the site of synthesis, folding and post-translational modification of cell-surface and secretory proteins and proteins that comprise the secretory pathway. Folding of proteins destined for intracellular organelles and the cell surface occurs in the ER and is accomplished by cellular chaperone proteins. The most abundant cellular chaperone in the ER is the glucose-regulated, ER chaperone protein BiP, which is also known as the heat shock 70 protein cognate 3 precursor (HSC70). Three proximal sensors of accumulated unfolded proteins, PERK, IRE1 and ATF6, exist at the lumen of the ER (Bertolotti et al., 2000; Harding, Zhang, and Ron, 1999; Liu, Schroder, and Kaufman, 2000). Long-term activation of PERK also results in cell cycle

arrest (Brewer and Diehl, 2000; Harding et al., 2000b; Harding et al., 2003; Okada et al., 2002). Subsequent to PERK activation, ATF4 is preferentially translated despite eIF2α phosphorylation and serves to activate genes important to stress recovery (Harding et al., 2003). ATF6 is cleaved from the ER in response to stress and is transported to the Golgi body for processing, it is then transported to the nucleus where it acts as a transcriptional activator for genes which alleviate ER stress, including chaperone proteins and XBP1 (Ye et al., 2000). At a step following PERK and ATF6 induction, the IREI pathway is initiated resulting in differential splicing of XBP1 which serves as a transcriptional activator for genes associated with protein degradation (For overview see Fig. 7) (Calfon et al., 2002; Lee et al., 2002; Rutkowski and Kaufman, 2004; Shen et al., 2001; Yoshida et al., 2003; Yoshida et al., 2001).

Extended activation of the unfolded protein response results in the induction of two reversible, interactive, proapoptotic pathways. An intrinsic apoptotic pathway, similar to that stimulated in response to DNA damage, can be initiated in response to the UPR, which results in the mitochondrial release of cytochrome c, leading to caspase 9 activation and the eventual activation of effector caspases. The UPR also activates caspase 9 in Apaf-1⁻⁷⁻ cells where caspase 9 cannot be activated with the release of cytochrome c (Rao et al., 2002). In these cells, UPR-induced apoptosis is initiated via a disruption of IRE1 with TRAF2 at the ER membrane, which results in the release of caspase 12 by TRAF2. Caspase 12 subsequently activates caspase 9 and the apoptotic cascade commences (Nakagawa et al., 2000; Yoneda et al., 2001). An extrinsic pathway, as modeled by the association of cell surface receptors in response to ligation of tumor necrosis factor, further stimulates a cascade of effector caspases via caspase 8 activation

and results in apoptosis. Both intrinsic and extrinsic type pathways seem to be required for apoptosis to occur in response to the UPR. It is worthy to note that while apoptotic pathways have been characterized in *C. elegans*, which has the core components of the intrinsic pathway, the nematode lacks the homologous components of the extrinsic pathway. Additionally, the intrinsic pathway in nematodes does not require cytochrome c for activation of Ced-3 (caspase 9) (Richardson and Kumar, 2002; Zheng et al., 1999). Damaged proteins that are retained in the ER during the UPR are eventually targeted for degradation through the endoplasmic reticulum associated degradation (ERAD) pathway. Misfolded and denatured proteins are translocated from the ER to the cytoplasm through special pores in the ER that are linked to ER-bound ubiquitin ligases which, in vitro, act specifically on denatured proteins. Ubiquitin-conjugated proteins are then targeted to the proteasome for degradation (For Review see Meusser et al., 2005).

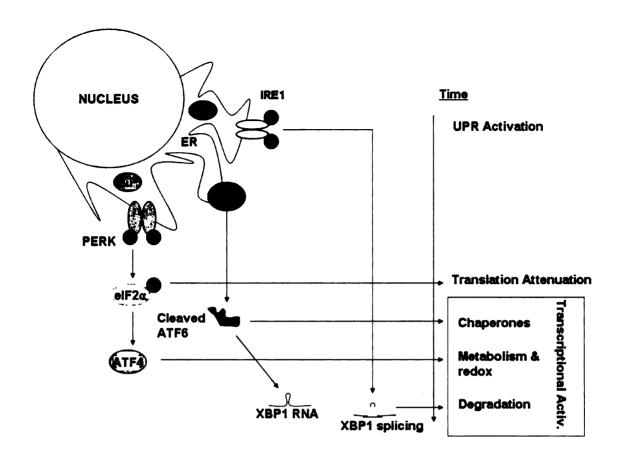



Figure 7. The unfolded protein response (UPR) in eukaryotes adapted from Rutkowski and Kaufman 2004 (Image Presented in Color)

#### 1.5.1.1. The UPR and Virus Infection

Recent research shows that permissive virus replication in human cell lines results in an accumulation of viral proteins in the ER lumen (Cheng, Feng, and He, 2005; Su, Liao, and Lin, 2002). The emerging data shows that the UPR is activated in response to many different types of infections, and that viruses have either evolved to suppress the pathway or to command components of the UPR to aid in virus replication. Herpes Simplex Virus (HSV) activates PERK and regulates its dephosphorylation with the viral-encoded protein 7134.5 (Cheng, Feng, and He, 2005) and PERK contributes to cellular

resistance to Vesicular Stomatitis Virus (VSV) as evidenced by enhanced virus replication in PERK cell lines (Baltzis et al., 2004). Hepatitis C Virus (HCV) activates the IRE1-XBP1 pathway of the UPR which directs both refolding and degradation of unfolded proteins in the ER lumen. While expression of XBP1 is increased in cells carrying HCV subgenomic replicons, its transactivating activity is blocked, resulting in no transcriptional induction of the ER degradation-enhancing α-mannosidase-like protein (EDEM) which is required for the degradation of misfolded proteins (Tardif et al., 2004). Japanese Encephalitis Virus (JEV) induces the UPR in human fibroblast and neuronal cells, resulting in eventual apoptotic cell death. Strangely, apoptotic-resistant K562 cells show no UPR induction following JEV infection, suggesting a regulatory feedback loop for the virus-induced UPR (Su, Liao, and Lin, 2002). Perhaps the most intriguing example of the UPR and virus infection is Human Cytomegalovirus (HCMV) which selectively induces and suppresses individual mechanisms of the UPR. HCMV induces the UPR and PERK but phosphorylation of eIF2\alpha is limited and translation does not attenuate. In contrast, ATF4, which normally lies downstream of PERK-mediated eIF2a phosphorylation, is transcriptionally activated, allowing for transcriptional activation of stress recovery genes. In HCMV infected cells, ATF6 activation is suppressed but synthesis of chaperone proteins is increased. Additionally, splicing of XBP-1 occurs, indicating a prolonged UPR stress response, but transcriptional activation of EDEM is suppressed (Isler, Skalet, and Alwine, 2005).

#### 1.5.1.1.1. Host-Encoded Molecular Chaperone Requirements for Virus Infection

As previously mentioned, molecular chaperone proteins are transcriptionally upregulated as a part of the UPR to relieve the ER stress induced from an abundance of unfolded proteins retained within the ER lumen. Additional translational regulation of molecular chaperones may also exist. Several groups have documented the importance of host-encoded chaperone proteins in the virus infection process. Heat shock protein 90 (HSP90) is required to enable the reverse transcriptase activity of Hepatitis B Virus (Hu and Seeger, 1996). HSP90 also facilitates virus replication of Vaccinia Virus in human cell lines (Hung, Chung, and Chang, 2002) and Flock House Virus in *Drosophila* cells (Kampmueller and Miller, 2005). HSC70, also known as BiP, is shown to be transcriptionally activated in AcMNPV-infected Sf21 cells at a time when most host-encoded transcription is being repressed (Nobiron, O'Reilly, and Olszewski, 2003). It follows that if the UPR stress response is integral to many different types of virus infection, expression of the ER luminal chaperone, BiP, may also play a role in baculovirus infection.

#### 1.6. Proteasome Activation and Virus Infection

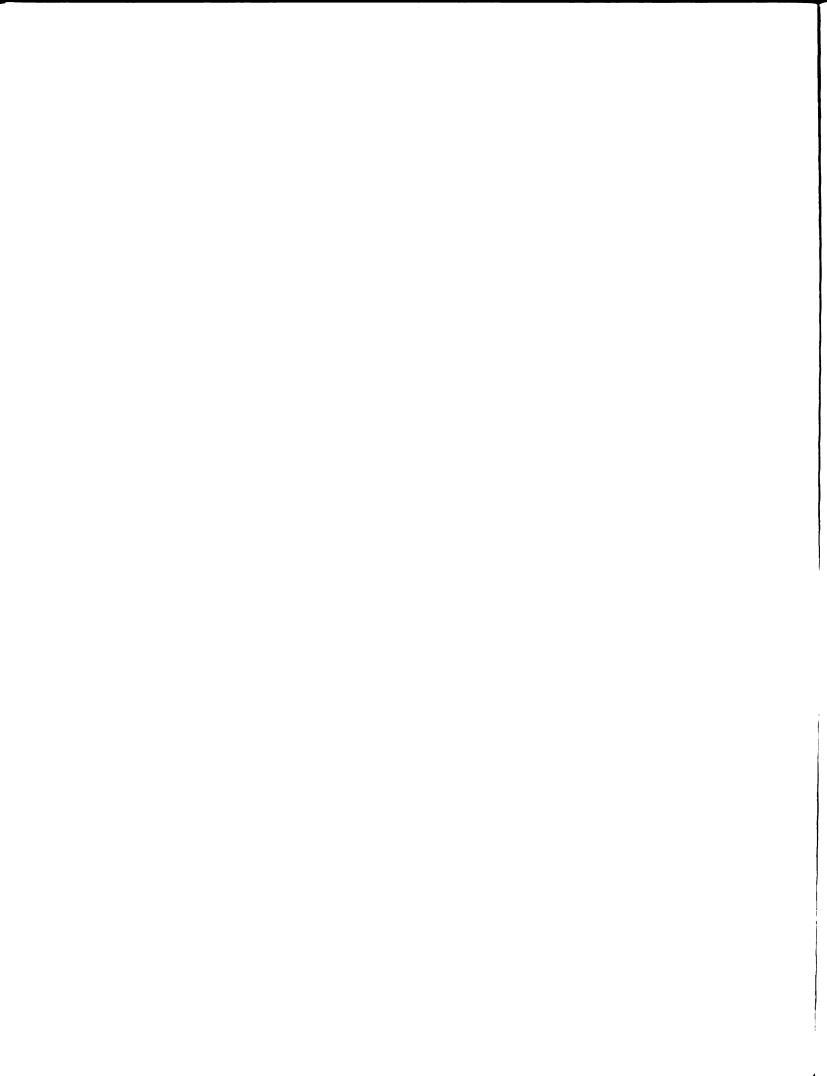
An increasing number of reports indicate that proteasome-mediated degradation is a key mechanism utilized by viruses to enable permissive replication cycles. Likewise, proteasome-mediated degradation is key to orchestrating other cellular functions such as DNA repair, cell-cycle progression, signal transduction and immune response. In eukaryotes, multi-subunit proteasomes reside in the nucleus and cytosol. Proteins are targeted to the proteasome for degradation via ubiquitination by cellular localized E3 ubiquitin ligases. Ubiquitination leads to translocation of the targeted protein to the proteasome where deubiquitination occurs prior to entry into the 26S active proteasome (Jentsch and Schlenker, 1995). Proteasome-mediated degradation generates peptide fragments of 7-8 amino acids in length (Lowe et al., 1995). The COP9 signalosome

provides another level of complexity to proteasome-mediated degradation. COP9 is integral to many signaling pathways including pathogen response (Azevedo et al., 2002; Liu et al., 2002), in a wide variety of organisms. Recent evidence suggests that the COP9 signalosome may serve as platform for kinases, kinase substrates and the proteasome thus regulating the degradation of phosphorylated proteins (Harari-Steinberg and Chamovitz, 2004).

Viruses can alter the cell cycle to enable virus replication. The E6 protein of human papillomavirus (HPV) binds the p53 tumor suppressor protein, targeting it for proteasome degradation (Stewart et al., 2004) and pp71 of HCMV acts in a similar fashion on the human retinoblastoma protein (Kalejta, Bechtel, and Shenk, 2003). In both cases, the result is stimulation of DNA synthesis. Viruses also direct innate immunity pathways through proteasome activation. HCV and Paramyxovirus X direct proteasomedependent degradation of the IFN-signaling protein, STAT1, thus disabling host innate control of the virus (Lin et al., 2005; Nishio et al., 2005). HCMV directs ubiquitination and degradation of IkB via the proteasome thus allowing activation of the Nf-kB pathway and virus replication (Evers, Wang, and Huang, 2004). The RTA immediate-early (IE) transcription factor acts as a E3 ubiquitin ligase that targets IFN7 for proteasomal degradation, which further blocks induction of the interferon response in human cells (Yu, Wang, and Hayward, 2005). Of other interest is the requirement for proteasome activation in coordinating Vmw110 modification and the switch from latent to lytic HSV infection (Everett, Orr, and Preston, 1998). Additionally, proteasome inhibition results in the accumulation of Murine Coronavirus in the endosome and denser lysosome of DBT

cells, indicating a role for the proteasome in mediating viral entry into the cytosol (Yu and Lai, 2005).

# 1.6.1. The COP9 Signalosome, Protein Degradation and Kinase Signaling


The COP9 signalosome (CSN) is structurally similar to the regulatory lid of the 26S proteasome and the eukaryotic initiation factor 3 (eIF3) (Kim et al., 2001). The CSN has been identified and functionally analyzed in fungi (Busch et al., 2003), fission yeast (Mundt, Liu, and Carr, 2002; Mundt et al., 1999), mammals (Seeger et al., 1998; Wei and Deng, 1998), plants and Drosophila. This complex has been shown to play a key role in regulating the development of the latter two organisms (Freilich et al., 1999; Peng, Serino, and Deng, 2001a; Peng, Serino, and Deng, 2001b). COP9 has also been identified as playing a role in regulating cellular response to viral and fungal pathogens (Azevedo et al., 2002; Liu et al., 2002), responding to environmental stress and directing growth hormone signaling cascades in plants (Schwechheimer et al., 2001). The signalosome functions through the two distinct but not mutually exclusive pathways of kinase signaling and ubiquitin-dependent, proteasome-mediated degradation (Harari-Steinberg and Chamovitz, 2004). The CSN acts as a target for kinases and also coordinates kinase activity. It also has deneddylation and deubiquitination activities. The complex coordinates ubiquitin conjugation of key components of regulatory signaling cascades. CSN has kinase activity against IkB, p105 and c-JUN (Seeger et al., 1998) and the CSNassociated proteins p53, p27kip and ICSBP are phosphorylated by CSN-associated kinases (Bech-Otschir, Seeger, and Dubiel, 2002). C-JUN is normally activated in response to environmental stress, radiation and growth factors resulting in an increase in AP-1 mediated transcription (Seeger et al., 1998). CSN-dependent JNK phosphorylation of cJUN stabilizes the transcription factor and protects it from proteasome-dependent degradation. In contrast, the CSN maintains constant, proteasome-mediated degradation of the p53 tumor suppressor protein, maintaining a low level of the protein until a variety of cell stress can result in stabilization of p53 and activation of the cell cycle (Sharpless and DePinho, 2002). Both c-JUN and p53 can be sumolated, which impacts proteasome-mediated degradation (Schwechheimer and Deng, 2001). One possible model poses that the CSN serves as a master docking station that coordinates the stabilization or proteasome-mediated degradation of phosphorylated proteins through their interacting kinases (Harari-Steinberg and Chamovitz, 2004).

# Chapter 2 In baculovirus-infected Lepidoptera cells, proteasome inhibitors reduce virus production and eIF2α phosphorylation at serine 51

#### 2.1. Introduction

Baculoviruses infect lepidopteran larvae. Permissive baculovirus replication results in the production of occluded and budded virus. Caterpillars ingest occluded virus that is embedded in polyhedral occlusion bodies. Occluded viruses are released and infect midgut cells. Infected midgut cells produce budded virus, which then spreads to other tissues. Autographa californica Multinucleocapsid Nucleopolyhedrovirus (AcMNPV), the type virus for the family Baculoviridae (Theilmann et al., 2004), enters but does not productively infect the Lymantria dispar 652Y (Ld652Y) cell line (McClintock, Dougherty, and Weiner, 1986). Translation arrests in AcMNPV-infected Ld652Y cells beginning at approximately eight hours post-infection (h.p.i.) and correlates with the onset of virus DNA replication (Goodwin, Tompkins, and McCawley, 1978; Guzo et al., 1992). Translation is rescued by the expression of a single gene, host range factor-1 (hrf-1) (Du and Thiem, 1997a; Thiem et al., 1996), which was isolated from Lymantria dispar Multinucleocapsid Nucleopolyhedrovirus (LdMNPV), a baculovirus that productively infects Ld652Y cells. Homology and motif searches conducted with the hrf-1 sequence do not provide any indications of its function.

Translational arrest is induced in response to a variety of stress signals and is commonly controlled at initiation. A key mechanism mediating translation arrest is phosphorylation of eIF2 $\alpha$  at serine 51. Phosphorylated eIF2 $\alpha$ ^{ser51} binds and sequesters the guanosine nucleotide exchange factor eIF2B thus preventing the formation of the active ternary complex required for translation initiation (Hershey and Mathews, 1996). To counter viral infection, mammalian cells utilize the Double-stranded RNA-dependent Protein Kinase (PKR) which forms a dimer upon binding double-stranded RNA and is



activated by autophosphorylation. Activated PKR then phosphorylates eIF2 $\alpha$  at serine 51 (Williams, 1999). Virus infection can also lead to eIF2 $\alpha$  phosphorylation mediated by the endoplasmic reticulum (ER) resident kinase (PERK or PEK) through the unfolded protein response (UPR). ER stress occurs presumably as the result of large scale host synthesis of virus proteins (Isler, Skalet, and Alwine, 2005). A PKR homolog has not been identified in invertebrates. However, other eIF2 $\alpha$  kinase homologs have been identified and characterized from invertebrates including the amino acid regulated GCN2 (Olsen et al., 1998; Santoyo et al., 1997), ER stress-regulated PERK/PEK (Sood et al., 2000) and Bombyx mori eIF2 $\alpha$  kinase (BeK), a kinase specific to lepidopteran species that is activated in response to heat shock and osmotic stress in transformed Drosophila Schneider cells (Prasad et al., 2003).

Other host cell mechanisms that regulate protein synthesis in response to virus infection include stress granule formation, cleavage of mRNAs and tRNAs, and specific proteolytic cleavage of translation initiation factors (Clemens, 2005; Marissen et al., 2000; Ohlmann et al., 2002; Satoh et al., 1999; Tee and Proud, 2002). Currently, host cell mechanism(s) responsible for proteolysis of translation initiation factors are poorly understood. However, the translation initiation factors eIF2 $\alpha$ , 4E-BP, eIFGI and eIFGII have been shown to be specifically cleaved by different caspases in response to the induction of apoptosis (Clemens et al., 2000; Marissen et al., 2000; Satoh et al., 1999; Tee and Proud, 2002). The host translation factor, eIF4GI, is proteolytically cleaved in a different pattern in picornavirus-infected cells by viral proteases (Lamphear et al., 1993) and dissected into multiple fragments in-vitro by an HIV protease (Ohlmann et al., 2002).

th

Targeted ubiquitination leading to proteasome-mediated degradation is essential to many cellular regulatory processes including DNA repair, cell cycle progression and immune response (Duan et al., 2004; Greene et al., 2003; Hoege et al., 2002; Sarmento et al., 2005). It has also been shown that proteasome-mediated degradation of target proteins may be critical to successful replication of some viruses in mammalian systems. For example, RTA, the immediate-early transcription factor of Kaposi's Sarcoma-Associated Herpesvirus (KSHV or HHV8), has E3 ubiquitin ligase activity that targets proteasome-mediated degradation of IRF-7, thus blocking the induction of a host innate immune response (Yu, Wang, and Hayward, 2005). Proteasome activation is also believed to be required for the transition of HSV-1 from a latent to a lytic infection through Vmw110 modification (Everett, Orr, and Preston, 1998). Additionally, the proteasome inhibitor, MG132, has been shown to block replication of human cytomegalovirus (HCMV) at the immediate-early stage of infection (Prosch et al., 2003). In this study we identify a virus-induced, proteasome-dependent, phosphorylation and cleavage of eIF2\alpha that accompanies permissive AcMNPV replication in two invertebrate cell lines. Phosphorylation and cleavage occur during the late stages of the infection cycle. We further show that proteasome inhibition with epoxomicin or MG132 blocked vAchrf-1 replication in Ld652Y cells. Epoxomicin was effective at blocking vAchrf-1 and AcMNPV replication in Sf21 cells but MG132 only reduced budded virus titers in the same productively-infected Sf21 cells.

#### 2.2. Materials and Methods

#### 2.2.1. Viruses and Cell Lines.

Sf-21 cells (Vaughn et al., 1977) and Ld652Y cells (Goodwin, Tompkins, and McCawley, 1978) were maintained in TC100 medium (JRH BioScience, Lenexa, KS) supplemented with 10% fetal bovine serum and 0.26% tryptose broth. AcMNPV variant L1 (Lee and Miller, 1978), vAcΔPK2 (Li and Miller, 1995) and vAchrf-1 (previously designated vAcLdPD, Du and Thiem, 1997) were propagated in Sf21 cells with titers being determined by plaque assay.

#### 2.2.2. Cytoplasmic fraction extraction and polysome profiling.

Polysome profiles were prepared using a protocol adapted from Brecht and Parsons (Brecht and Parsons, 1998). Five 100mm tissue culture plates were seeded with 5 x 10⁶ Ld652Y cells per plate and infected with either AcMNPV L1 or vAchrf-1 at an MOI of 10 PFU per cell. After 1 h incubation, the inoculum was removed and complete medium was added to cells. The cells were then incubated at 27°C until the indicated time. At 9 h.p.i., AcMNPV and vAcHrf-1 infected Ld652Y cells were treated with 100 μg/ml cycloheximide for 5 min and the cells were harvested. The harvested cells were washed with 10 ml of ice-cold phosphate buffered saline (PBS), then suspended in 750 μl of ice-cold polysome buffer A (20mM Tris HCl [pH 7.4], 10 mM NaCl, 3 mM MgCl₂, 100 μg/ml cycloheximide, 1 μM DTT and 15 μg RNasin) and equilibrated on ice for 3 min. Cells were lysed by the addition of 250 μl of lysis buffer (polysome buffer A containing 0.2% NP40 and 0.2M sucrose) followed by incubation on ice for 5 min with occasional mixing. The lysates were centrifuged at 1000 x g at 4°C for 10 min to remove nuclei and the supernatants were transferred to a new tube containing 40 μl 4M NaCl,

an

100  $\mu$ l heparin (10 mg/ml) and 20  $\mu$ g RNasin. 400  $\mu$ l of the cytoplasmic extract was then layered on a linear 15-50% sucrose gradient and centrifuged at 230,000 x g at 4°C for 1.5 h in a SW40 rotor. Following centrifugation, the gradients were harvested from the top using an ISCO density gradient fractionator while continuously measuring the optical density at 254nm.

#### 2.2.3. Cell Stress Induction Assays.

Sf21 cells were seeded in 35 mm cell culture plates at a density of 1 x 10⁶ or Ld652Y cells at a density of 5 x 10⁵ and each plate was overlaid with 3 ml of TC100 medium. Stress inducing compounds were added directly to cell culture media to reach the following final concentrations: 2 µM epoxomicin (Calbiochem #324800), 50 µM hydrogen peroxide, 90 µM methyl methanesulfonate (MMS) (Sigma #M 4016), 1 µg/ml rapamycin (Sigma #R 0395), 1 µM thapsigargin (Sigma #T 9033) and 12 µM tunicamycin (Sigma #T 7765). After treatment, cultures were returned to 27°C incubation. Cells receiving heat shock were cultured at 39°C. Media and cells were collected at 6 and 24 hours post-treatment, centrifuged at 2,600 x g for 8 minutes, media was removed and cells were lysed in 100 µl of NP40 buffer containing a protease and phosphatase inhibitor cocktail of 1mM benzamidine, 10 µg/ml aprotonin, 1 mM PMSF, 5 μg/ml leupeptin and 100 μM okadaic acid. Cells were lysed on ice for 30 minutes then debris was collected via refrigerated centrifugation at 17,900 x g for 8 minutes. Supernatant was collected and stored at -80°C for future quantification and western blot analysis.

#### 2.2.4. Protease and Proteasome Inhibitor Assays.

Cell culture plates (60 mm) were seeded with either Sf21 cells at a density of 2 x 10⁶ or Ld652Y cells at a density of 1 x 10⁶. For aphidicolin treatment, cells are preconditioned for one hour prior to infection with aphidicolin added directly to the cell culture media to a final concentration of 5µg/ml. After cell attachment, media was removed and cells were infected at an MOI of 10 with AcMNPV or vAchrf-1 respectively. After a one hour infection, virus was removed and cells were refed with 4 ml of TC100 media per plate. Inhibitors were added directly to cell culture media to reach the following final concentrations: 1 µM aprotonin (Calbiochem #616370), 5 µg per ml of aphidicolin (Sigma #A 0781), 1 µM E64d/EST (Calbiochem #330005), 10 mM EDTA-Na₂ (Gibco, #15575-038), 10 µM pepstatin A (Calbiochem #516481) and cells for the proteasome inhibitor assay were treated with 2 µM epoxomicin or 10 µM MG132. Infected cell cultures that were assayed at 48 hours post-infection were re-treated with fresh inhibitors at 24 hours post-infection to counteract possible inhibitor degradation. Media and cells were collected at 24 and 48 hours post-infection, centrifuged at 2,800 x g for 8 minutes, media was removed and cells were lysed as described above.

## 2.2.5. Western Blot Analysis.

Protein samples were quantified using the DC Reagent System (Bio-Rad #500-0116), a Lowry-based detergent compatible assay. Protein levels were measured in 96 well ELISA plates at 750 nm using a µQuant microplate reader (Witech AG, Switzerland) and BioTek-KC_{Junior} Analysis software package (Fisher Scientific #BT-5270501). Each sample containing 20 µg of total protein and 10 µl 2X SDS sample buffer was boiled at 98°C for 10 minutes, briefly centrifuged to collect sample and then

for BB (!)

C ar

Se

se

eI

loaded into a 15% tris-glycine polyacrylamide gel. Samples were separated for 2 hours at 110 volts using SDS-PAGE (Laemmli, 1970) and then transferred to Immobilon-P, PVDF membrane (Millipore Corp., Bedford, MA) overnight at 4°C in Towbin Buffer (25 mM Tris, 192 mM glycine and 20% methanol) at 40 volts. Membranes were blocked for 5 hours in 5% lowfat milk in 1X TBS-Tween (0.2 M NaCl, 66 mM Tris, 0.1% Tween). Immunodetection was performed by incubating blots overnight with 2% lowfat milk in 1X TBS-Tween and one of the following primary antibodies: anti-eIF2α phosphor-Ser51 serum (Biosource, #44-728Z- lot 0103) diluted to 1:3000. The blot was then washed with 2% milk in 1X TBS-Tween and incubated with horseradish peroxidase conjugated antirabbit antibody (Pierce, #31460) diluted to 1:20,000 in 2% lowfat milk in 1X TBS-Tween for 2 hours. Bands were visualized using an ECL detection kit (Amersham-Pharmacia Biotech, #RPN 2209) and exposure on Classic Blue Sensitive autoradiography film (Midwest Scientific). Following detection for peIF2 $\alpha^{ser51}$ , blots for proteasome inhibitor assays were stripped by agitation at 37°C in Restore Western Blot Stripping Buffer (Pierce, #21059), re-blocked for 3 hours and then incubated overnight in anti-polyhedra serum (M. Ikeda) at a dilution of 1:20,000. Blots were sequentially probed with secondary antibodies and the interaction was detected as described above. Blots for initial eIF2 $\alpha$  phosphorylation studies were probed with peIF2 $\alpha$ ^{ser51} antibodies (Biosource, #44-728Z- lot 0103), then stripped and reprobed with polyclonal antibodies to eIF2 $\alpha$  (Santa Cruz Biotechnology, #FL-315) at a dilution of 1:1000 and monoclonal α-tubulin antibodies (Santa Cruz Biotechnology, #TU-02) diluted to 1:1000. Blots probed with antibodies to \alpha-tubulin were probed with horseradish peroxidase-linked anti-mouse secondary antibodies (Pierce, 31430) at 1:20000. Incubation, stripping and ECL detection were conducted as described above.

#### 2.2.6. Plaque Assays.

Cell culture plates (60 mm) were seeded with either Sf21 cells at a density of 2 x 10⁶ or Ld652Y cells at a density of 1 x 10⁶. After cell attachment, media was removed and cells were mock-infected or infected at an MOI of 10 with AcMNPV or vAchrf-1 respectively. After one hour, virus was removed and cells were washed twice with TC100. Cell cultures were refed with 4 ml of TC100 media per plate, epoxomicin was added directly to the media for indicated samples as previously described. Cells and media were collected at indicated times and a standard plaque assay was used to determine virus titers (O'Reilly, Miller, and Luckow, 1994). Plates were scored for occ⁺ plaques at 4 and 6 days post-infection.

#### 2.3. Results

# 2.3.1. Translation arrest in AcMNPV-infected Ld652Y cells occurs at the initiation stage.

In order to determine the stage at which translation arrests in AcMNPV-infected Ld652Y cells, polysome profiles of wild-type AcMNPV-infected cells were compared to those of vAchrf-1-infected cells. vAchrf-1 is a recombinant AcMNPV that expresses the LdMNPV *hrf-1* gene (Du and Thiem, 1997b). At six hours post-infection polysome profiles of AcMNPV and vAchrf-1-infected cells are identical (Fig. 8A). The six hour time point was selected because translation arrest is not observed in AcMNPV-infected Ld652Y cells at this time (Guzo et al., 1992; McClintock, Dougherty, and Weiner, 1986). Figure 8A shows polysome profiles in infected cells prior to translation arrest. Figure

8B shows polysome profiles from AcMNPV and vAchrf-1-infected Ld652Y cells at 9 hours post-infection, during translation arrest. In these profiles a large increase in the size of the monosome peak (arrow Fig. 8B) is evident in AcMNPV-infected cells as compared to the same peak from the vAchrf-1-infected cells (Fig. 8B). The increase in the monosome peak in AcMNPV-infected Ld652Y cells (Fig. 8B) is indicative of an arrest in translation initiation. However, polysomes are still evident in AcMNPV-infected cells (bracket, Fig. 8B). The most likely explanation for this observation is that translation does not arrest uniformly in the population of cells sampled. It is also possible that polysomes persist as a result of proteins that are translated despite translation arrest such as those synthesized during cap-independent translation (Pelletier and Sonenberg, 1988; Pestova et al., 2001). (Polysome profiling experiments were completed by Wade A. Williams, M.S.U. Dept. of Microbiology and Molecular Genetics.)

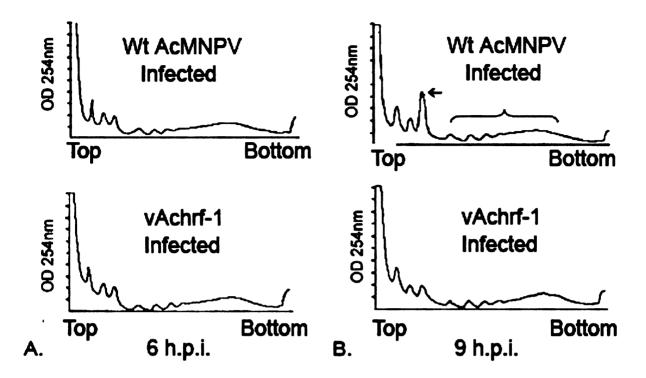



Figure 8. Translation arrest occurs at translation initiation in AcMNPV-infected Ld652Y cells. Polysome profiles prepared from AcMNPV and vAcHrf-1-infected (Fig. 8 caption, cont.) Ld652Y cells at 6 h.p.i. (A) and 9h.p.i. (B) post-infection. Arrow in panel B indicates a monosome peak in AcMNPV-infected cells at 9 h.p.i., the bracket indicates polysomes. Infected cells were lysed and nuclei removed. Cytoplasmic components were separated on 15-50% sucrose gradients and analyzed with an ICSO density gradient fractionator. (Polysome profiling experiments were completed by Wade A. Williams, M.S.U. Dept. of Microbiology and Molecular Genetics.)

## 2.3.2. Translation arrest in AcMNPV-infected Ld652Y cells temporally correlates to phosphorylation of eIF2 $\alpha$ at serine 51

Translation arrest is induced in response to various stress signals and is commonly controlled at the initiation stage (Schneider and Mohr, 2003). Two well characterized mechanisms are dephosphorylation of eIF4E binding proteins in response to nutritional stress (Attardo, Hansen, and Raikhel, 2005; Attardo et al., 2003; Clemens, 2005; Hansen et al., 2004; Miron et al., 2001) and phosphorylation of eIF2α at serine 51 in response to

amino acid depletion, heme-depletion, endoplasmic reticulum (ER) stress, or virus infection (Chen, 2000; Chen and London, 1995; Harding et al., 2000a; Kaufman, 2000; Mathews, 2000; Williams, 1999). Phosphorylation at serine 51 causes eIF2α to bind to and competitively inhibit the nucleotide exchange factor eIF2B, resulting in translation arrest. Because it is the predominant mechanism mediating translation arrest at initiation, we analyzed the phosphorylation state of  $eIF2\alpha$  in mock and virus-infected cells using western blots. For these experiments we infected cells with AcMNPV or with one of two modified AcMNPV, vAchrf-1 and vAcΔpk2. vAcΔpk2 is an AcMNPV deletion mutant which lacks pk2, a gene encoding a truncated eIF2 $\alpha$  kinase homolog (Li and Miller, 1995). PK2 functions as a dominant-negative inhibitor of the eIF2α kinases, GCN2 and PKR, and presumably other members of this kinase family (Dever, 1998). Western blots were generated using whole cell lysates and probed with polyclonal antibodies raised against human eIF2\alpha or against an eIF2\alpha derived peptide phosphorylated at serine 51 that specifically recognizes phosphorylated eIF2 $\alpha$  (peIF2 $\alpha$ ^{ser51}) (Grundmann, Mosch, and Braus, 2001; Kimball, 1999; Kumar et al., 2001; Li and Koromilas, 2001; Pataer et al., 2002; Patel et al., 2000; Soboloff and Berger, 2002). These antibodies were expected to recognize the L. dispar proteins, as the alpha subunit of eIF2 $\alpha$  is highly conserved. In BLAST comparisons between full length human (Genbank accession no. AAP36281) and lepidopteran, S. frugiperda (Genbank accession no. AAO15491) eIF2a, proteins there are 69% identical and 79% positive residues, with 100% identity in the region between residues 35-64, surrounding the phosphorylation site at serine 51. In our experiments, these antibodies recognized proteins of the expected size with no crossreactivity. At 6 h.p.i., we observe reduced levels of peIF2a^{ser51} in Ld652Y cells infected with AcMNPV, vAchrf-1 or vAcΔpk2 as compared to mock-infected cells (Fig. 9, lanes 2, 3 and 4 as compared to lane 1) which suggests that peIF2α^{ser51} is dephosphorylated during the early stages of baulovirus infecton. However, an increase in eIF2α^{ser51} phosphorylation is observed in AcMNPV and vAcΔpk2-infected cells relative to mock-infected cells at 12 hours post-infection (Fig. 9, compare lanes 6 and 8 with lane 5). The similar phosphorylation levels of eIF2α^{ser51} in AcMNPV and vAcΔpk2-infected cells indicate that PK2 does not inhibit eIF2α phosphorylation in AcMNPV infected Ld652Y cells at 12 h.p.i. (Fig. 9, lanes 6 and 8). However, levels of peIF2α^{ser51} are apparently reduced in Achrf-1-infected Ld652Y cells at 12 post-infection (Fig. 9, lane 7). At 24 h.p.i., phosphorylation levels of eIF2α in AcMNPV-infected Ld652Y cells are similar to mock infected cells (Fig. 9, lanes 6 and 10). This reduction in the eIF2α phosphorylation state in AcMNPV-infected Ld652Y cells at 24 h.p.i. may be due to an overall decrease in eIF2α levels resulting from translation arrest.

The antibodies against peIF2 $\alpha^{ser51}$  recognized a second band of ~26 kDa only in vAchrf-1-infected Ld652Y cells (Fig. 9, lane 7 and 11). The ~26 kDa band was not observed at 6 h.p.i. (Fig. 9, lane 3). The ~26 kDa band apparently represents a proteolytic fragment of peIF2 $\alpha^{ser51}$ . When gels for western blots were run for shorter times and probed for eIF2 $\alpha$ , a band of ~11 kDa was detected (Fig. 10, lane 3). The sum of the ~26 kDa band detected on blots probed with antibodies to peIF2 $\alpha^{ser51}$  (Fig. 9, lanes 7 and 11, Fig. 10, lane 6) plus the 11 kDa band detected with antibodies to eIF2 $\alpha$  total ~37 kDa, the band recognized by both antibodies, which is the predicted molecular mass for *S. frugiperda* eIF2 $\alpha$ . These data support the idea that peIF2 $\alpha^{ser51}$  is proteolytically cleaved in Ld652Y cells infected with vAchrf-1. In vAchrf-1-infected Ld652Y cells,

phosphorylation of eIF2 $\alpha$  may serve as a signal for cleavage of the protein. Since eIF2 $\alpha$  is phosphorylated but not cleaved in AcMNPV-infected Ld652Y cells, it appears that cleavage is directly or indirectly enabled by HRF-1.

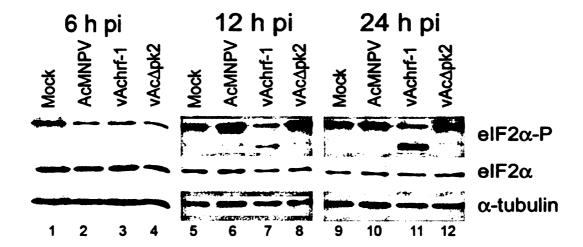



Figure 9. Phosphorylation of full length, eukaryotic initiation factor  $2\alpha$  (eIF2 $\alpha$ ) at serine 51 is reduced in vAchrf-1-infected Ld652Y cells as compared to AcMNPV-infected, temporally correlating to the onset of translation arrest in AcMNPV-infected Ld652Y cells. (Fig. 9 caption, cont.) Levels of total eIF2 $\alpha$  were assayed by using antibodies that specifically recognize the phosphorylated and total endogenous forms of the protein. Total cell lysates were prepared from Ld652Y cells that were mockinfected or infected with AcMNPV, vAchrf-1 or vAc $\Delta$ pk2. Infected cells were harvested at 6, 12 h and 24 h post-infection. Proteins from whole cell lysates were separated on 15% SDS-PAGE gels and analyzed with immunoblotting. The same blot for each time point was stripped and reprobed sequentially with antibodies to phosphorylated eIF2 $\alpha$ ^{ser51}, eIF2 $\alpha$ , and  $\alpha$ -tubulin. Samples from the 6 h.p.i. timepoint were collected from a separate infection timecourse than the 12 and 24 h.p.i. samples.

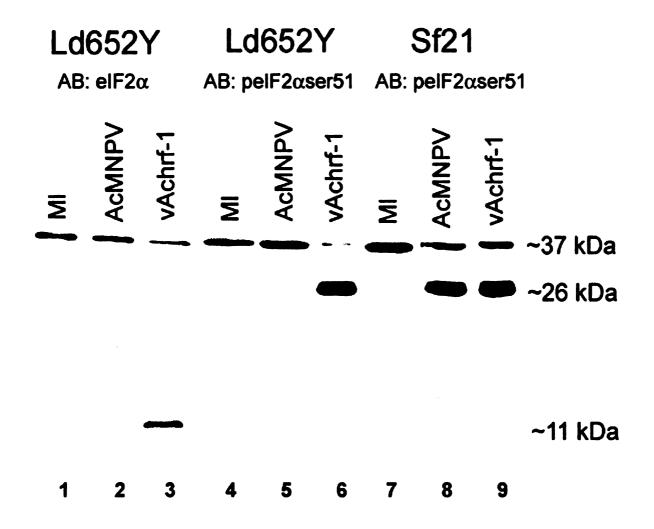



Figure 10. Phosphorylated eIF2 $\alpha^{\text{ser51}}$  is proteolytically cleaved in cell lines that are productively infected with AcMNPV or vAchrf-1. Proteolytic cleavage of eIF2 $\alpha$  was assayed at 24 h.p.i. in mock, AcMNPV and vAchrf-1-infected Ld652Y and Sf21 cells with antibodies that specifically recognize the phosphorylated or total endogenous forms of the protein. Proteins from whole cell lysates were separated on 15% SDS-PAGE gels and analyzed with immunoblotting. The same blot for Ld652Y cells was probed with antibodies to peIF2 $\alpha^{\text{ser51}}$  (AB: peIF2 $\alpha^{\text{ser51}}$ ) (lanes 4-6) then stripped and reprobed with antibodies to eIF2 $\alpha$  (AB: eIF2 $\alpha$ ) (lanes 1-3). Cell lines and antibodies used are shown above the panels and the molecular sizes of immune reactive bands are indicated to the right of the panels.

In AcMNPV-infected Ld652Y cells, incubation of cell lysates with m⁷GTP-bound sepharose followed by western blot analysis showed that the cap-binding ability of eIF4E was not impaired (Fig. 26, Supplementary Data). In addition, western blots generated

with antibodies raised against *Drosophila melanogaster* 4E-BP (kindly provided by Mathieu Miron) did not show an increase in 4E-BP protein levels in AcMNPV-infected Ld652Y cells (Fig. 27, Supplementary Data). The results suggest that modification or sequestering of eIF4E is not the primary mechanism leading to global translation arrest in AcMNPV-infected Ld652Y cells.

To show that eIF2 $\alpha$  phosphorylation was the mechanism leading to global translation arrest in AcMNPV-infected Ld652Y cells, experiments were conducted to silence endogenous eIF2 $\alpha$  expression in invertebrate cell lines using RNAi technology. Silenced Ld652Y cells were infected with a recombinant AcMNPV that constitutively expressed the *Spodoptera frugiperda* eIF2 $\alpha$  gene with an alanine substitution at serine 51 (vAcHAeIF2 $\alpha$ ^{ala51}). Isotopic labeling of protein synthesis in Ld652Y cells silenced for eIF2 $\alpha$  expression and infected with the vAcHAeIF2 $\alpha$ ^{ala51} recombinant were inconclusive (data not shown).

## 2.3.3. Proteolytic cleavage of peIF2 $\alpha^{ser51}$ occurs in AcMNPV and vAchrf-1-infected Sf21 cells.

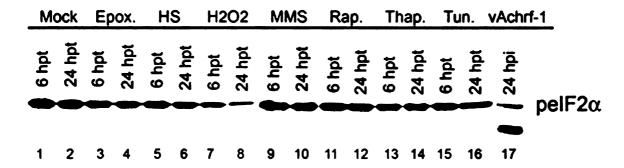
Cleavage of peIF2 $\alpha^{ser51}$  in vAchrf-1-infected cells suggested a possible mechanism for HRF-1 to overcome translation arrest in AcMNPV-infected Ld652Y cells. One hypothesis was that cleavage of peIF2 $\alpha^{ser51}$  could prevent its binding of the guanosine nucleotide exchange factor eIF2B thus allowing protein synthesis to continue. To determine whether cleavage of peIF2 $\alpha^{ser51}$  was mediated by HRF-1 we compared peIF2 $\alpha^{ser51}$  cleavage in cell lysates of vAchrf-1- and AcMNPV-infected Sf21 cells, using western blots probed with antibodies to peIF2 $\alpha^{ser51}$ . In contrast to Ld652Y cells, Sf21

cells are permissive for AcMNPV replication. Cleavage of peIF2 $\alpha^{ser51}$  occurred in both AcMNPV and vAchrf-1-infected Sf21 cells by 24 h.p.i. (Fig. 10, lanes 8 and 9) and not in mock-infected cells (Fig. 10, lane 7) suggesting that cleavage is not directly-mediated by HRF-1. In the cell lines studied, cleavage of peIF2 $\alpha^{ser51}$  occurs only in those that are productively-infected with baculovirus. Cleavage of peIF2 $\alpha^{ser51}$  may be directly or indirectly mediated by HRF-1 in Ld652Y cells as a host protein may be functionally homologous to HRF-1 during AcMNPV infection in Sf21 cells.

### 2.3.4. PK2 is expressed in AcMNPV-infected Ld652Y cells.

PK2 was expected to inhibit eIF2 $\alpha$  kinases, yet similar levels of phosphorylation were observed in cells infected with AcMNPV and vAc $\Delta$ pk2 (Fig. 9, lanes 6 and 10 as compared to lanes 8 and 12). To determine if PK2 was expressed in AcMNPV-infected Ld652Y cells, we performed western blot analysis using antibodies to PK2 (R. Clem from L.K. Miller collection). Although PK2 levels decreased over time, it was still present in Ld652Y cells infected with AcMNPV and Achrf-1 at 6, 12 and 24 hours post-infection (Fig. 11, lanes 3, 4, 7, 8, 11 and 12). Thus, it is likely that concentrations of PK2 are too low to block eIF2 $\alpha$  kinase activity at later time points. Alternatively, it is possible that the eIF2 $\alpha$  kinase activated by AcMNPV infection in Ld652Y cells is not inhibited by PK2. There is a non-specific band of ~31 kD that is evident in all samples at 6 h.p.i. (Fig. 11, lanes 1, 2, 3 and 4) and has previously been observed with this antibody (Li and Miller 1995).





Figure 11. PK2 is present at late time points post-infection in Ld652Y cells infected with AcMNPV and Achrf-1. Infected cells were harvested at 6, 12 and 24 hours post-infection, subjected to SDS-PAGE on 15% polyacrylamide gels and immunoblotted with antibodies to PK2.

## 2.3.5. Cleavage of peIF2 $\alpha^{ser51}$ in Sf21 and Ld652Y cell lines is not induced by stress-inducing agents.

To test if peIF2 $\alpha^{\text{ser51}}$  cleavage resulted from a general stress response, we treated Sf21 and Ld652Y cells with stress-inducing agents and assayed for peIF2 $\alpha^{\text{ser51}}$  cleavage by western blot analysis. To screen for the effects of genotoxic stress, uninfected cells were treated with methyl methanesulfonate. Nutritional stress was induced with rapamycin, oxidative stress with hydrogen peroxide, proteasome inhibition with epoxomicin and heat shock by incubation at 39° C. ER-stress and the unfolded protein response (UPR) were induced using thapsigargin and tunicamycin. Assays were conducted at 6 and 24 hours post-treatment (h.p.t.). Cleavage of peIF2 $\alpha^{\text{ser51}}$  was not observed in either Ld652Y or Sf21 cells, in response to any of these treatments (Fig. 12). The reduction in eIF2 $\alpha$  phosphorylation, in both Ld652Y and Sf21 cells treated with

hydrogen peroxide at 24 h.p.t. (Fig.12A, lane 8 and 12B, lane 8), may be the result of cell damage initiated by reactive oxygen species.

### A. Ld652Y Cells



### B. Sf21 Cells

	NPV	AcMNPV		Tun.		Th	Rap.		MMS		H2O2		HS		Epox.		Mock	
<b>5</b> 2~	pel										24 hpt	6 hpt						
<b>-2u</b>	þei	-									8	7	6	5	4	3	2	1

Figure 12. Proteolytic cleavage of peIF2 $\alpha^{\text{ser51}}$  does not occur in Sf21 or Ld652Y cells that are treated with stress-inducing agents. Ld652Y and Sf21 cells were treated with stress inducing agents as indicated above each panel. Cells were harvested at 6 and 24 hours post-treatment. Proteins from whole cell lysates were fractionated on 15% SDS-PAGE gels and analyzed on western blots probed with antibodies against peIF2 $\alpha^{\text{ser51}}$ . Cell lines and treatments are shown above the panels.

## 2.3.6. Cleavage of peIF2 $\alpha^{\text{ser51}}$ is blocked by aphidicolin but not by protease inhibitors.

Late events in the baculovirus replication cycle enhance apoptosis in AcMNPV-infected Sf21 cells in the absence of the virally encoded apoptotic suppressor, p35 (LaCount and Friesen, 1997), and stimulate translation arrest in AcMNPV-infected Ld652Y cells (Thiem and Chejanovsky, 2004). To test if peIF2 $\alpha^{\text{ser51}}$  cleavage correlated with the onset of late viral gene expression, we treated vAchrf-1-infected Ld652Y cells with the DNA polymerase inhibitor aphidicolin and scored for peIF2 $\alpha^{\text{ser51}}$  cleavage at 24 h.p.i. on western blots. Cleavage was not observed and eIF2 $\alpha$  phosphorylation was reduced in aphidicolin-treated, vAchrf-1-infected Ld652Y cells and AcMNPV-infected Sf21 cells (Fig. 13, lanes 1 and 6) indicating that phosphorylation and cleavage of peIF2 $\alpha^{\text{ser51}}$  required a late event in the AcMNPV replication cycle.

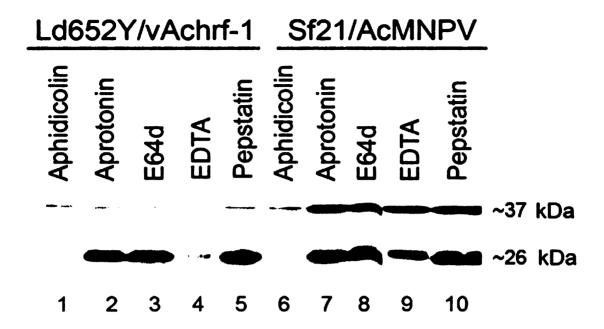



Figure 13. Phosphorylation and proteolytic cleavage of peIF2 $\alpha^{ser51}$  is inhibited in Lepidoptera cells that are productively-infected with baculovirus and treated with aphidicolin. Proteolytic cleavage of peIF2 $\alpha^{ser51}$  is not blocked by protease inhibitors. (Figure 13 caption cont.) Ld652Y or Sf21 cells were mock-infected or infected with either vAchrf-1 or AcMNPV respectively. Cells were harvested at 24 h.p.i.. Proteins from whole cell lysates were fractionated on 15% SDS-PAGE gels and analyzed on western blots probed with antibodies against peIF2 $\alpha^{ser51}$ . Cell lines and treatments are shown above the panels and the molecular sizes of immune reactive bands are indicated to the right of the panels.

To identify a candidate protease responsible for cleavage of peIF2α^{ser51} in AcMNPV- and Achrf-1-infected Sf21 and vAchrf-1-infected Ld652Y cells, we attempted to block cleavage with membrane-permeable protease inhibitors. Inhibitors were added directly to the cell culture media. We used aprotonin to block serine protease activity, E64d (EST) to inhibit cysteine proteases, (ethylenedinitrilo) tetraacetic acid (EDTA) for metalloproteases and pepstatin to inhibit aspartic proteases. Inhibitor concentrations were based on recommendations from previous studies (Buttle et al., 1992; Gray and Tsai, 1994; Janas, Marks, and LaRusso, 1994; Tamai et al., 1987; Thiem and Chejanovsky,

2004). We note, however, the pepstatin derivative we used has not been analyzed for membrane permeability. None of these inhibitors prevented cleavage of peIF2 $\alpha^{\text{ser51}}$  (Fig. 13, lanes 2-5 and 7-10). However, phosphorylation levels of full-length peIF2 $\alpha^{\text{ser51}}$  appear to be reduced in vAchrf-1-infected Ld652Y cells that were also treated with a protease inhibitor (Fig. 13, lanes 2-5). This reduction in peIF2 $\alpha^{\text{ser51}}$  levels is most evident in vAchrf-1-infected Ld652Y cells that were treated with EDTA (Fig. 13, lane 4). Due to the broad range effects that EDTA imposes on cellular processes, it is difficult to determine if this reduction in peIF2 $\alpha^{\text{ser51}}$  levels is significant in EDTA-treated Ld652Y cells during vAchrf-1 infection. However, there is still a light ~26 kD band present in EDTA-treated Ld652Y cells infected with vAchrf-1 indicating that proteolytic cleavage of peIF2 $\alpha^{\text{ser51}}$  still occurs and is not inhibited by EDTA.

We also tested possible roles for caspases and cathepsin caspase in peIF2α^{ser51} cleavage. Cell permeable, caspase and cathepsin inhibitors were added to the media of AcMNPV-infected Sf21 cells or vAchrf-1-infected Ld652Y cells, as previously described (Thiem and Chejanovsky, 2004). In addition, because the AcMNPV apoptotic suppressor p35 may not be expressed at sufficient levels to completely block apoptosis (P. Friesen, personal communication) we examined Sf21 cells infected with a recombinant AcMNPV with enhanced expression of p35 (kindly provided by P. Friesen). Cells were harvested at 24 h.p.i. and lysates analyzed by western blot. Inhibiting either caspase or cathepsin activity did not prevent peIF2α^{ser51} cleavage (data not shown).

## 2.3.7. Proteasome inhibitors reduce phosphorylation of eIF2 $\alpha$ at serine 51 and virus production in lepidopteran cells productively-infected with baculovirus.

Protease inhibition did not block cleavage of peIF2 $\alpha^{ser51}$  in invertebrate cell lines productively-infected with baculovirus, so, we examined the proteasome as a possible mediator of proteolytic activity against peIF2 $\alpha^{ser51}$ . The role of proteasome activity and its relation to eIF2\alpha phosphorylation and cleavage were investigated using the proteasome-specific inhibitors epoxomicin and MG132. Epoxomicin blocks trypsin-like (T-L) and chymotrypsin-like (CT-L) activities of the proteasome without inhibiting other proteases. Additionally, epoxomicin blocks the peptidylglutamyl peptide hydrolyzing (PGPH) caspase-like activity of the proteasome. Epoxomicin covalently binds the LMP-7, MECL1 and Z catalytic subunits of the proteasome and that direct interaction is a probable mechanism for its inhibitor activity (Meng et al., 1999; Sin et al., 1999). MG132 is a peptide aldehyde and a less potent inhibitor of the proteasome. MG132 reduces the degradation of ubiquitin-conjugated proteins by the 26S complex without inhibiting the isopeptidase or ATPase activities of the proteasome (Steinhilb, Turner, and Gaut, 2001). Inhibitors were added directly to infected cell cultures and their effects on eIF2α phosphorylation and cleavage assayed at 24 and 48 h.p.i. as previously described. At 24 and 48 h.p.i., it appears that levels of full-length peIF2α^{ser51} are reduced in both Sf21 and Ld652Y cells that are infected with baculovirus and treated with a proteasome inhibitor (Fig. 14A, lanes 2, 3, 8, 9, 11, 12, 17 and 18; 14B, lanes 2, 3, 8, 9, 11, 12, 17 and 18) as compared to mock-infected samples that are treated with a proteasome inhibitor at the corresponding time points (Fig. 14A, lanes 5, 6, 14 and 15; 14B, lanes 5, 6, 14 and 15). Cleavage of peIF2 $\alpha^{ser51}$  was not observed in vAchrf-infected Ld652Y cells or AcMNPV and vAchrf-1-infected Sf21 cells that were treated with epoxomycin (Fig. 14A, lanes 8 and 17; 14B, lanes 2, 8, 11 and 17). There is a faint band of ~30kDa appearing in infected cells treated with proteasome inhibitors (Fig. 14A, lanes 6, 14, 15 and 17). This faint band may reflect proteolytic degradation of peIF2α^{ser51} via an initiated proteolytic pathway that is not proteasome dependent. In virus-infected Ld652Y and Sf21 cells, MG132 appears to reduce eIF2α phosphorylation levels (Fig. 14A, lanes 9 and 18; 14B, lanes 3, 9, 12 and 18) but cleavage of peIF2α^{ser51} is prevented only in vAchrf-1-infected Ld652Y cells (Fig. 14A, lanes 9 and 18). MG132 treatment did not prevent peIF2α^{ser51} cleavage in vAchrf-1 and AcMNPV-infected Sf21 cells (Fig. 14B, lanes 3, 9, 12 and 18).

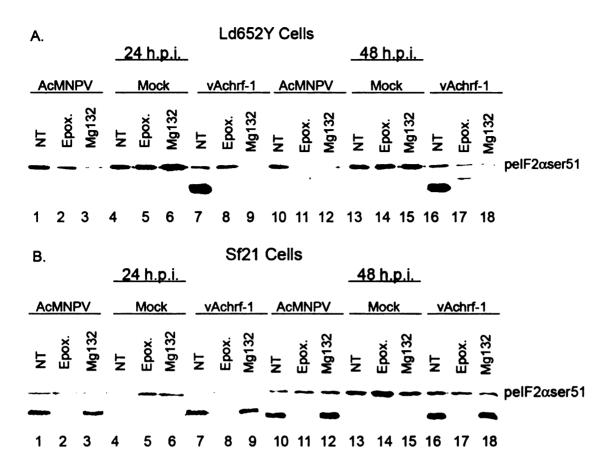



Figure 14. Proteasome inhibitors, MG132 and epoxomicin, inhibit phosphorylation and proteolytic cleavage of peIF2 $\alpha^{ser51}$  in vAchrf-1-infected Ld652Y cells. Ld652Y or Sf21 cells were treated with 2  $\mu$ M epoxomicin or 10  $\mu$ M MG132 from 1 hour preceding infection to time of collection. Cells were mock-infected or infected with either AcMNPV or vAchrf-1 and harvested at 24 h.p.i. and 48 h.p.i. Proteins from whole cell lysates were fractionated on 15% SDS-PAGE gels and analyzed on western blots probed with antibodies against peIF2 $\alpha^{ser51}$ . Cell lines and treatments are shown above the panels.

Because polyhedra were not observed in epoxomycin-treated cells, we examined whether polyhedrin protein was synthesized. Immunoblots shown in Figure 14 were stripped and reprobed with antibodies to the baculovirus polyhedrin protein. Polyhedra or occlusion bodies are produced in the very late stages of permissive baculovirus infection from the polyhedrin protein. Polyhedrin protein was not observed in either epoxomicin or

MG132-treated vAchrf-1-infected Ld652Y cells at 24 and 48 h.p.i. (Fig. 15A, lanes 8, 9, 17 and 18). Epoxomicin blocked production of the polyhedrin protein in AcMNPV and vAchrf-1-infected Sf21 cells (Fig. 15B, lanes 2, 8, 11, and 17) but MG132 did not (Fig. 15B, lanes 3, 9, 12 and 18). Polyhedrin degradation products are evident on western blots in non-treated, productively-infected Ld652Y and Sf21 cells by 48 h.p.i.

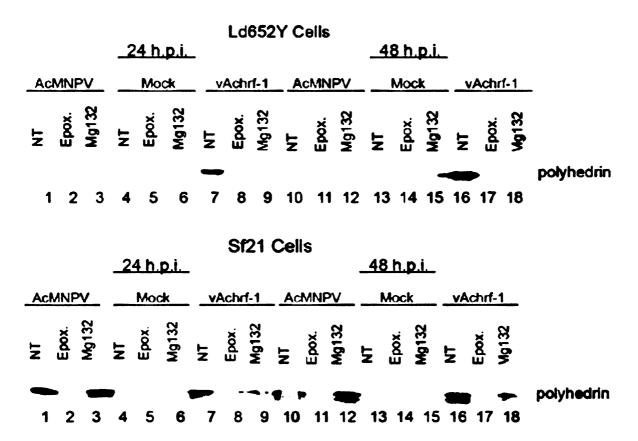



Figure 15. The very late baculovirus occlusion body protein, polyhedrin, is not produced in permissively-infected cells that are treated with epoxomicin. Ld652Y or Sf21 cells were pre-treated with 2  $\mu$ M epoxomicin or 10  $\mu$ M MG132 from 1 hour preceding infection to time of collection. Cells were mock-infected or infected with either AcMNPV or vAchrf-1 and harvested at 24 h.p.i. and 48 h.p.i.. Proteins from whole cell lysates were fractionated on 15% SDS-PAGE gels and analyzed on western blots probed with antibodies against peIF2 $\alpha^{\text{ser51}}$ , stripped and sequentially probed with polyclonal antibodies against polyhedrin. Cell lines and treatments are shown above the panels and immune reactive bands are indicated to the right of the panels.

To determine if proteasome inhibition blocked virus replication, budded virus (BV) production in the presence or absence of epoxomicin or MG132 was measured over time by plaque assay. Experiments for all samples were plated in duplicate, titers noted in Figure 16 and 17 represent the average titer for both samples. Epoxomicin treatment eliminated or reduced BV production in vAchrf-1-infected Ld652Y cells (Fig. 16) and in Sf21 cells infected with either vAchrf-1 or AcMNPV (Fig. 17). Treatment of vAchrf-1infected Ld652Y cells with MG132, resulted in a block of budded virus production at 24 h.p.i. (Fig. 16). AcMNPV and vAchrf-1-infected SF21 cells treated with MG132 showed reduced level of budded virus production of at least one order of magnitude as compared to cells that were not treated with MG132 (Fig. 17). The different response observed in Sf21 cells treated with epoxomicin as compared to those treated with MG132 may be a direct measure of the potency of the inhibitor or may specifically relate to the mechanism of the inhibitor. Epoxomicin blocks proteasome activity by directly binding catalytic subunits of the proteasome while MG132 only reduces the degradation of ubiquitinconjugated proteins, so if MG132 treatment results in a partial block to virus production, it would suggest that complete degradation of one or more proteins is essential to establishing a productive baculovirus infection. Both proteasome inhibitors, epoxomicin and MG132, are effective in blocking the production of virus progeny in vAchrf-1infected Ld652Y cells. However, there may be a small increase in budded virus production in vAchrf-1-infected Ld652Y cells treated with MG132 by 48 h.p.i. The data suggests a potential difference in proteasome response in permissively-infected Ld652Y cells as compared to Sf21 (Fig. 16 as compared to Fig. 17). These experiments suggest that the proteasome plays a role in promoting a productive baculovirus infection in cell culture

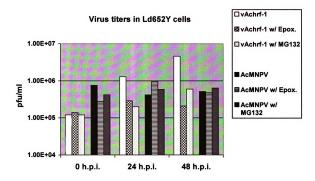



Figure 16. Proteasome inhibitors prevent budded virus production in vAchrf-1-infected Ld652Y cells. vAchrf-1 liters are reduced within at least one order of magnitude in cells treated with either epoxomicin or MG132. Ld652Y cells were pre-treated with 2 μM epoxomicin or 10 μM MG132 from 1 hour preceding infection to time of collection. Cells were mock-infected or infected with either AcMNPV or vAchrf-1 and virus was harvested at 24 h.p.i. and 48 h.p.i. Virus was titered on Sf21 cells using a standard plaque assay (O'Reilly, Miller, and Luckow, 1994). Plates were scored for occ⁺ plaques at 4 and 6 days post-infection.

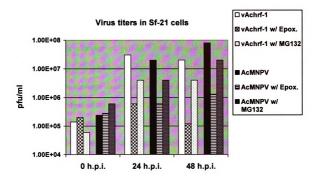



Figure 17. Epoxomicin prevents AcMNPV or vAchrf-1 budded virus production in St21 cells, MG132 reduces budded virus production in those same infected cells. AcMNPV and vAchrf-1 titers are reduced within at least one order of magnitude in infected St21 cells treated with epoxomicin. St21 cells were pre-treated with 2 μM epoxomicin or 10 μM MG132 from 1 hour preceding infection to time of collection. Cells were mock-infected or infected with either AcMNPV or vAchrf-1 and virus was harvested at 24 h.p.i. and 48 h.p.i.. Virus was titered on St21 cells using a standard plaque assay (O'Reilly, Miller, and Luckow, 1994). Plates were scored for occ⁺ plaques at 4 and 6 days post-infection.

#### 2.4. Discussion

Global translation arrest occurs in Ld652Y cells infected with the baculovirus AcMNPV in a non-productive infection. The addition of a single gene, hrf-1, isolated from LdMNPV, rescues translation arrest and promotes a productive virus infection. In this study, while searching for mechanisms that lead to translation arrest in AcMNPV-infected Ld652Y cells, we discovered that the eukaryotic initiation factor  $2\alpha$  is phosphorylated at serine 51 (peIF2 $\alpha$ ^{ser51}) in AcMNPV-infected Ld652Y cells (Fig. 9) but

that peIF2 $\alpha^{ser51}$  is proteolytically cleaved during the late stages of infection in vAchrf-1-infected Ld652Y cells (Fig. 9 and 10). In this study, we investigated a possible role for HRF-1 in directing cleavage of peIF2 $\alpha^{ser51}$  and sought to identify the responsible protease. Subjecting cells to various stresses did not result in cleavage of peIF2 $\alpha^{ser51}$  (Fig. 12). We found that cleavage occurred at the late stages of infection in productively-infected cells, regardless of the presence of HRF-1 (Fig. 10 and 13). In vAchrf-1-infected Ld652Y cells, phosphorylation of eIF2 $\alpha$  at serine 51 and cleavage of peIF2 $\alpha^{ser51}$  was prevented by the proteasome inhibitors epoxomicin or MG132 (Fig. 14). Production of virus progeny appears to be prevented in vAchrf-1-infected Ld652Y cells treated with epoxomicin or MG132 and in AcMNPV and vAchrf-1-infected Sf21 cells treated with epoxomicin (Fig. 16 and 17).

Cleavage of peIF2 $\alpha^{ser51}$  suggested a potential mechanism for HRF-1 to overcome translation arrest in Ld652Y cells. One hypothesis was that cleaved peIF2 $\alpha^{ser51}$  was conformationally-altered and no longer able to bind and sequester the nucleotide exchange factor eIF2B, thus preventing translation arrest. The fact that cleavage of peIF2 $\alpha^{ser51}$  occurs in Sf21 cells infected with AcMNPV as well as in those infected with vAchrf-1 suggested that HRF-1 is not directly responsible for inducing peIF2 $\alpha^{ser51}$  cleavage (Fig. 10). However, this may not be true if HRF-1 is functionally replacing a host-encoded protein available in Sf21 cells that does not exist in Ld652Y cells. This question could be addressed by expressing a truncated eIF2 $\alpha$  gene from a recombinant AcMNPV virus, then infecting Ld652Y cells to determine if budded virus production was enabled by the recombinant. Similar experiments could be conducted by transfecting Ld652Y cells with an expression plasmid encoding a truncated form of eIF2 $\alpha$ . Earlier

reports which examined the phosphorylation state of eIF2 $\alpha$  in response to productive AcMNPV infection in Sf9 cells, did not identify cleavage of the initiation factor (Dever et al., 1998). However, in those studies, isoelectric focusing gels were used to determine the phosphorylation state of eIF2 $\alpha$  which would not have easily identified a cleavage product.

Treatment with a range of chemical protease inhibitors had no effect on the cleavage of peIF2a^{ser51} in Sf21 or Ld652Y cells permissively-infected with AcMNPV or vAchrf-1, respectively (Fig. 13). However, the proteasome-specific inhibitor, epoxomicin, prevented phosphorylation of eIF2 $\alpha$  and cleavage of peIF2 $\alpha$ ^{ser51} at 24 and 48 hours post-infection in vAchrf-1 and AcMNPV-infected Sf21 cells and vAchrf-1infected Ld652Y cells (Fig. 14A, lanes 8 and 17; 14B, lanes 2, 8, 11 and 17). In contrast to MG132-treated Sf21 cells, vAchrf-1-infected, MG132-treated, Ld652Y cells show little to no increase in budded virus titers at 48 h.p.i. over initial inputs (Fig. 10) which may indicate a role for HRF-1 in mediating the proteasome response in Ld652Y cells. The differential effect of MG132 on productive virus infection in Ld652Y cells as compared to Sf21 cells may be significant. MG132 reduces the degradation of ubiquitintagged proteins and MG132 prevents vAchrf-1 replication in Ld652Y cells, suggesting that degradation of a ubiquitinated protein, possibly eIF2 $\alpha$ , is essential to promoting a productive infection in Ld652Y cells. A reduction in ubiquitin mediated degradation may not be sufficient to block AcMNPV replication in Sf21 cells as AcMNPV may have a mechanism to ensure degradation of certain proteins in that cell type. Epoxomicin blocks proteasomal activity through an irreversible, direct interaction with proteasomal subunits, our data shows that epoxomic blocks all cleavage of peIF2 $\alpha^{\text{ser}51}$  and virus replication in vAchrf-1-infected Ld652Y cells and AcMNPV or vAchrf-1-infected Sf21 cells. In this study, the impairment to budded virus production in productively-infected cells treated with epoxomicin suggests that the virus has evolved to use the proteasome as a part of its replication cycle (Fig. 16 and Fig. 17). To our knowledge, this is the first account of a proteasome-dependent cleavage of a eukaryotic translation initiation factor. Virus-mediated proteasome utilization is not without precedent. Human cytomegalovirus mediates proteasomal destruction of hypophosphorylated host retinoblastoma proteins in a ubiquitin-independent manner (Kalejta and Shenk, 2003) which results in stimulation of cell cycle progression thus allowing virus replication (Kalejta, Bechtel, and Shenk, 2003). Herpes simplex virus I is unable to transition from a latent to lytic state in the presence of proteosome inhibitors and Hepatitis C virus evades the host antiviral interferon response by directing proteasomal degradation of phosphorylated STAT1 (Lin et al., 2005).

It is possible that activation of the proteasome is part of an orchestrated host response to the late stages of virus infection. Proteasome enabled cleavage of peIF2 $\alpha$ ^{ser51} in Ld652Y and Sf21 cells infected with vAchrf-1 and AcMNPV, respectively, is blocked in the presence of aphidicolin (Fig. 13, lanes 1 and 6). In those same productively-infected cells that are treated with aphidicolin or proteasome inhibitors, eIF2 $\alpha$  is not phosphorylated (Fig. 13, lanes 1 and 6, Fig. 14A, lanes 8, 9, 17 and 18; 14B, lanes 2, 3, 8, 9, 11, 12, 17 and 18). This indicates that eIF2 $\alpha$  phosphorylation is the result of an event or events that occur during the late stages of infection and may be a signal for the initiation of cleavage. Other studies have shown late stages in the baculovirus infection cycle, including viral DNA replication or late viral gene expression (LaCount and Friesen, 1997), to promote apoptosis and translation arrest (Thiem and Chejanovsky,

2004). It is interesting to note the phosphorylation state of eIF2 $\alpha$  in productively-infected cells treated with proteasome inhibitors compared to those same treated cells that are not infected. Reduced eIF2\alpha phosphorylation levels occur only in baculovirus infected cells at 6 h.p.i. (Fig. 9, lanes 2, 3 and 4) and in those cells that are baculovirus-infected and treated with proteasome inhibitors (Fig. 14A, lanes 8, 9, 17 and 18 as compared to lanes 5, 6, 14 and 15 and 14B, lanes 2, 3, 8, 9, 11, 12, 17 and 18 as compared to lanes 5, 6, 14 and 15). The data may suggest that baculoviruses orchestrate a response between the proteasome, an eIF2a kinase and its substrate. Such a mechanism has been modeled for the COP9 signalosome (CSN). Models predict that the CSN may serve as a scaffold for ubiquitylation and subsequent degradation of specific phosphorylated substrates (Harari-Steinberg and Chamovitz, 2004). Potentially, the COP9 signal asome could play a regulatory role in responding to baculovirus infection by providing selective degradation of phosphorylated proteins including peIF2 $\alpha^{\text{ser51}}$ . It may be possible to determine if the CSN has an effect on baculovirus infection by using CSN-specific inhibitors in cell culture. The CSN is essential for development in Drosophila melanogaster (Freilich et al., 1999) and appears to direct cell differentiation by orchestrating regulatory cascades. CSN is structurally similar to the 19S regulatory lid of the proteasome and to eukaryotic initiation factor 3 (eIF3) (Kim et al., 2001).

Targeting of proteins to the proteasome begins with substrate recognition by an E3 ubiquitin ligase followed by ubiquitination and delivery to the proteasome. E3 ligases provide the specificity for targeting of individual proteins to the proteasome. E3 targeting can occur as a result of endoplasmic reticulum-associated degradation (ERAD), oxidative stress or the unfolded protein response (UPR) (Crews, 2003). Interestingly, all

presently characterized baculoviruses encode a ubiquitin-like protein and several baculovirus proteins including BmMNPV IAP2, IE2 and PE38 have E3 ubiquitin ligase activity (Imai et al., 2003). BMNPV IE2, PE38 and the AcMNPV homolog for IAP2 are all transcribed at early and late stages of infection and are thus, not probable candidates for mediating late infection cleavage of peIF2 $\alpha^{\text{ser51}}$ . However, recent microarray data indicates that these genes are up-regulated during the late stages of infection (Yamagishi et al., 2003) and thus, may differentially ubiquitinate substrates resulting in a possible change in proteasome activity during this stage of the infection cycle. Evolutionary conservation of proteins involved with proteasome targeting and activation suggests that modulation of the proteasome by baculoviruses is important to the replication of the virus. For example, the ubiquitin ligase activity of IAP3 from OpMNPV is capable of ubiquitinating pro-apoptotic proteins from *Drosophila* (Green, Monser, and Clem, 2004). While ubiquitin has been shown to be a structural part of budded AcMNPV virions (Guarino, Smith, and Dong, 1995), virus-encoded ubiquitin does not appear to be required for production of budded virus (Reilly and Guarino, 1996). The Spodoptera frugiperda eIF2\alpha sequence (van Oers et al., 2003) has several lysine residues surrounding one of the two possible cleavage sites of peIF2a^{ser51} (GenBank Accession #AF447395) which are candidates for ubiquitylation. Interestingly, one of these is a SUMO-like sequence at amino acid K211 (LKAG) which is preceded by a hydrophobic residue (ABGENT-SUMOplotTM Prediction). SUMO is a small ubiquitin-related modifier and shares 18% similarity with ubiquitin, it has been proposed to mediate protein-toprotein interactions by differential ubiquitination of protein substrates. In yeast, proliferating cell nuclear antigen (PCNA) is alternatively modified by SUMO and ubiquitin in response to DNA damaging agents (Hoege et al., 2002). Sumolation of  $SfeIF2\alpha$  could be evaluated using immunoprecipitation with  $eIF2\alpha$  antibodies followed by western blots with anti-SUMO antibodies.

Currently, we have no indication as to the number or types of proteins, virus or host-encoded, that are targeted for proteasome-mediated degradation during permissive baculovirus infection. Cleavage of peIF2 $\alpha^{\text{ser51}}$  may not be a specific event but a byproduct of a generalized host response in which many proteins are degraded. However, we observe a single cleavage of peIF2 $\alpha^{\text{ser51}}$  rather than extensive cleavage into many short fragments that result from characterized proteasomal degradation (Jentsch and Schlenker, 1995). Moreover, the proteasome may not directly degrade peIF2 $\alpha^{\text{ser51}}$  but may indirectly mediate cleavage of peIF2 $\alpha^{\text{ser51}}$  through a proteolytic cascade. What remains to be determined is how a generalized or targeted activation of the proteasome aids in the baculovirus replication process. Defining the role that the proteasome and eIF2 $\alpha$  phosphorylation plays during baculovirus infection, including its possible connections to HRF-1, will provide unique insights into the field of virus host range in invertebrates.

### Acknowledgements

The author would like to thank Dr. Paul Friesen for providing vAcIEp35, Dr. Mathieu Miron for providing antibodies to Dm4E-BP and Dr. Motoko Ikeda for providing antibodies to polyhedrin. This work was supported by funding from the United States Department of Education, Graduate Assistance in Areas of National Need (GAANN) Program.

# Chapter 3 HSP90 Expression is Enhanced in vAchrf-1-infected Ld652Y Cells

### 3.1. Introduction

Baculoviruses are large, double-stranded DNA (dsDNA) viruses that primarily infect lepidopteran species. Baculovirus progeny are produced in a budded or occluded virus form. The occluded form of the virus is environmentally-stable and consists of enveloped virions surrounded by a polyhedrin matrix that is encapsulated in an electrondense envelope of carbohydrate and protein (Theilmann et al., 2004). The type virus for Baculoviridae is Autographa californica Multinucleocapsid nucleopolyhedrovirus (AcMNPV) which permissively infects Spodoptera frugiperda 21 (Sf21) cell lines but not Lymantria dispar 652Y cells (McClintock, Dougherty, and Weiner, 1986). Ld652Y cells infected with AcMNPV initiate global translation arrest by 9-12 hours post-infection (h.p.i.) resulting in a non-productive infection (Guzo et al., 1992). In the absence of a full length, baculovirus apoptotic suppressor, apoptotic programs are also induced in AcMNPV-infected Ld652Y cells (Du and Thiem, 1997a). Infection with AcMNPV variants that encode a single additional gene, host range factor-1 (hrf-1), isolated from Lymantria dispar Multinucleocapsid nucleopolyhedrovirus (LdMNPV), results in a productive infection in Ld652Y cells (Du and Thiem, 1997b). Phosphorylation of eIF2a at serine 51 (peIF2 $\alpha^{ser51}$ ) is the probable mechanism of translation arrest in AcMNPVinfected Ld652Y cells as eIF2aser51 phosphorylation occurs in AcMNPV-infected Ld652Y cells at a time that correlates with the onset of translation arrest (Mecey, William and Thiem-manuscript in progress). Additionally, translation continues at 48 and 72 h.p.i. in Ld652Y cells infected with AcMNPV variants that encode a lepidopteran gene for  $eIF2\alpha$  with an alanine substitution at serine 51 under regulation of an immediate-early and late baculovirus promoter (Mecey-unpublished results). The lepidopteran eIF2a kinase, BeK (Prasad et al., 2003), expression levels appear to be activated at 12 h.p.i. in AcMNPV-infected Ld652Y cells temporally correlating to phosphorylation of eIF2 $\alpha$  and translation arrest (Mecey-unpublished results) (Fig. 28, Supplementary Data). Proteolytic cleavage of peIF2 $\alpha$ ^{ser51} occurs in Ld652Y and Sf21 cells that are permissively-infected with baculovirus but not in Ld652Y cells infected with AcMNPV where virus replication does not occur. Phosphorylation of eIF2 $\alpha$  or cleavage of peIF2 $\alpha$ ^{ser51} appears to be proteasome dependent as proteasome inhibition with epoxomicin results in a block of eIF2 $\alpha$  phosphorylation, cleavage and permissive virus replication in AcMNPV and vAchrf-1-infected Sf21 cells and vAchrf-1-infected Ld652Y cells.

The unfolded protein response (UPR) is ancient, with components that are evolutionarily-conserved from yeast to mammals (Rutkowski and Kaufman, 2004). The UPR is activated in response to a variety of cellular stresses which result in an accumulation of unfolded proteins in the endoplasmic reticulum. Hallmarks of the UPR include, but are not limited to: phosphorylation of eIF2α via the PKR-like endoplasmic reticulum (ER) resident protein kinase (PERK), an increased synthesis of chaperone proteins, transcriptional activation of stress-related genes including the GRP78 ER resident chaperone-BiP, and activation of endoplasmic reticulum associated degradation (ERAD) via the proteasome (Rutkowski and Kaufman, 2004). In mammalian cells, BiP binds and regulates the degradation of ERAD substrates (Chillaron and Haas, 2000; Skowronek, Hendershot, and Haas, 1998). Conversely, deletion of protein components in the ERAD pathway can result in UPR activation (Ng, Spear, and Walter, 2000). Proteasome inhibition can also result in eIF2α phosphorylation and translation arrest by the kinase GCN2, an eIF2α kinase that is activated in response to amino acid starvation

(Jiang and Wek, 2005). During the UPR, PERK activation can initiate cell cycle arrest (Brewer and Diehl, 2000). Cis-acting unfolded protein response elements (UPRE) have been identified in the promoters of ER stress-activated genes as being sufficient for gene modulation in response to an induced UPR (Mori et al., 1998; Patil, Li, and Walter, 2004; Yoshida et al., 1998).

In mammalian systems, eIF2\alpha phosphorylation occurring in response to virus infection is generally mediated by the double-stranded RNA (dsRNA)-activated protein kinase, PKR. Viruses have evolved numerous mechanisms to overcome recognition by and the effects of PKR (Gale, Tan, and Katze, 2000; Schneider and Mohr, 2003). Gene silencing with dsRNA is effective when targeted at a variety of genes in a number of insect models, including Lepidoptera (Means, Muro, and Clem, 2003) and a PKR homolog has not been identified in sequenced invertebrate genomes. However, in shrimp, innate antiviral immunity and a antiviral RNAi interference (RNAi)-like mechanism are both induced by dsRNA. Double-stranded RNA and baculovirus infection have been shown to result in activation of the lepidopteran, pathogenesis-related protein, hemolin (Hirai et al., 2004), indicating that a dsRNA response pathway exists for lepidoptera. Due to the abundance of viral proteins produced during a permissive virus infection, the UPR can be initiated during virus infection. The UPR has been shown to be activated by Japanese Encephalitis Virus (JEV) in fibroblast BHK-12 and neuronal cell lines resulting in eventual apoptosis but in apoptosis-resistant K562 cells, infection with JEV does not result in UPR activation (Su, Liao, and Lin, 2002). Human Cytomegalovirus (HCMV) activates the UPR and then modulates its components in infected fibroblast cells (Isler, Skalet, and Alwine, 2005). Herpes Simplex Virus 1

activates PERK in a mechanism that correlates with increased viral protein synthesis (Cheng, Feng, and He, 2005).

Heat shock protein 90 (HSP90) acts in a multi-chaperone complex and is known to interact with proteins involved in signal transduction, transcriptional and cell cycle regulation (Beere, 2001; Pratt and Toft, 2003; Young, Barral, and Ulrich Hartl, 2003). Inhibition of HSP90 with geldanamycin delays replication of Vaccinia Virus in RK13 cells lines and while HSP90 expression is not enhanced in RK13 cells infected with Vaccinia virus, its cellular distribution is altered (Hung, Chung, and Chang, 2002). HSP90 interacts with a number of viral proteins including the reverse transcriptase of Hepatitis B Virus and Simian Virus 40 T antigen (Hu and Seeger, 1996; Miyata and Yahara, 2000). Additionally, HSP90 and HSP70 are components of a receptor complex for dengue virus entry in human cell lines (Reyes-Del Valle et al., 2005). The Drosophila melanogaster protein, Dpit47, has been identified as an HSP90 co-chaperone that binds DNA polymerase α, inhibiting its activity (Crevel et al., 2001). HSP90 has over 100 identified client proteins including three eIF2a kinases: GCN2, PKR and the hemeregulated protein kinase (HR1), to which it binds in concert with HSP70 to prevent autophosphorylation (Pratt and Toft, 2003). In response to proteasome inhibition, protein levels of HSP90 and HSP70 have been shown to increase, while mRNA levels of HSP90 remained unchanged, suggesting possible translational regulation of the protein (Awasthi and Wagner, 2005). Heat shock cognate protein 70 (HSC70) is one of few host genes that is transcriptionally activated in response to baculovirus infection, indicating a role for chaperone proteins during permissive infection. Preferential synthesis of viral proteins appears to be regulated at the transcriptional level as an overall decrease of host gene transcription occurs in response to AcMNPV infection in Sf21 cells (Nobiron, O'Reilly, and Olszewski, 2003). This decreased synthesis of host-encoded mRNA may lead to a quelled requirement for chaperone proteins and a bypass of a cellular initiated UPR stress response. Alternatively, chaperone proteins during productive baculovirus infection, other than HSC70, may be regulated at a translational level thus overcoming the effects of inhibited host transcription.

Here we investigate regulation of the chaperone proteins HSP90 and HSC70 during AcMNPV and vAchrf-1 infection of Ld652Y cells. We show an increase in levels of a protein that interacts and immunoprecipitates with antibodies raised against human PKR that mass spectrometry identifies as HSP90. Inhibition of HSP90 with geldanamycin results in a block of occluded virus production at 48 h.p.i. in productively-infected cells and a significant decrease in polyhedrin protein levels.

### 3.2. Materials and Methods

### 3.2.1. Viruses and cell lines

Sf-21 cells (Vaughn et al., 1977) and Ld652Y cells (Goodwin, Tompkins, and McCawley, 1978) were maintained in TC100 medium (JRH BioScience, Lenexa, KS) supplemented with 10% fetal bovine serum and 0.26% tryptose broth. AcMNPV variant L1 (Lee and Miller, 1978) and vAchrf-1 (previously designated vAcLdPD, Du and Thiem, 1997) were propagated in Sf21 cells with titers being determined by plaque assay.

### 3.2.2. Immunoprecipitation

Cell culture plates (100 mm) were seeded with Ld652Y cells at 2 x 10⁶, cells were allowed to adhere to the plate surface for at least one hour. Ld652Y cells were infected with vAchrf-1 at an MOI of 10, after a one hour infection, virus was removed and cells were refed with TC-100. At 12 h.p.i., cells were collected, media was removed and infected cells were lysed in 900 ml of RIPA buffer containing a protease and phosphatase inhibitor cocktail. Lysates were passed through a 21 gauge needle to shear DNA and were incubated on ice for 60 minutes. Soluble cellular proteins were then separated from debris by micrcentrifuging for 10 minutes at 10,000xg in 4°C. The supernatant was transferred to a sterile eppendorf tube, 25 µg of normal rabbit IgG and 20µl of suspended (25% v/v) Protein-A-Agarose conjugate (Santa Cruz Biotechnology-#sc-2001) were added to the supernatant. Whole cell lysate was pre-cleared by rocking at 4°C for 30 minutes then beads were pelleted at 1,450 x g for 30 seconds. The supernatant was transferred to a sterile eppendorf tube and combined with 10 µg of anti-PKR agarose conjugate (Santa Cruz Biotechnology-sc #1702AC) which was then rocked and incubated overnight at 4°C. The agarose bound antibody and interactive proteins were collected via centrifugation at 1,450 x g for 30 seconds in 4°C. The pellet was rinsed three times with RIPA buffer, buffer was discarded after the final wash and the pellet was resuspended in 30 µl of 2X SDS sample buffer. Samples were boiled at 100°C and separated using SDS-PAGE (Laemmli, 1970) on 12.5% polyacrylamide gels. Proteins were visualized using Coomassie brilliant blue, destained and excised directly from the gel. The gel band was excised and hydrolyzed with trypsin according to Shevchenko et al. (1996).

### 3.2.3. MALDI-TOF-MS

0.5 μl of the digested peptide was mixed with 0.5 μl of saturated of α-cyano-4-hydroxycinnamic acid in 60% acetonitrile/0.1% trifluoracetic acid. Mass spectra were obtained on a Voyager-DE-STR MALDI-TOF mass spectrometer (formerly PerSeptive Biosystems, Inc., Framingham, MA, now Applied Biosystems) in the linear mode. Peak lists of the tryptic peptide masses were generated and searched against public databases using the program Protein Prospector from the University of California, San Francisco (http://prospector.ucsf.edu).

### **3.2.4. LC-ESI-MS**

Further analysis of the digests and sequence confirmation were performed using a capillary liquid chromatography system (Waters Corp., Milford, MA) coupled to an LCQ-Deca ion trap mass spectrometer (Thermo Finnigan, San Jose, CA) equipped with a nanospray ionization source. Digests were trapped on a Cap Trap (Michrom BioRsources, Inc., Auburn, CA) and subsequently separated on a 5 cm x 75 μm ID picofrit column packed with 5 μm ProteoPep C18 material (New Objective, Woburn, MA). Peptides were eluted with a gradient of 2-95% acetonitrile in 0.1% formic acid.

Mass spectra of fragmented ions were analyzed using the SEQUEST and MASCOT programs.

All mass spectrometry analyses were conducted at the Michigan State University Mass Spectrometry Facility.

### 3.2.5. Western Blot Analysis

Protein samples were quantified using the DC Reagent System (Bio-Rad #500-0116), a Lowry-based detergent compatible assay. Protein levels were measured in 96 well ELISA plates at 750 nm using a uQuant microplate reader (Witech AG, Switzerland) and BioTek-KC_{Junior} Analysis software package (Fischer Scientific #BT-5270501). Each sample containing 20 ug of total protein and 10 ul 2X SDS sample buffer was boiled at 98° C for 10 minutes, briefly centrifuged to collect sample and then loaded into a 15% tris-glycine polyacrylamide gel. Samples were separated for 2 hours at 110 volts using SDS-PAGE (Laemmli, 1970) and then transferred to Immobilon-P, PVDF membrane (Millipore Corp., Bedford, MA) overnight at 4° C in Towbin Buffer (25 mM Tris, 192 mM glycine and 20% ethanol) at 40 volts. Membranes were blocked for 5 hours in 5% lowfat milk in 1X TBS-Tween (0.2 M NaCl, 66 mM Tris, 0.1% Tween). Immunodetection was performed by incubating blots overnight with 2% lowfat milk in 1 X TBS-Tween and one of the following primary antibodies: anti-eIF2 $\alpha$  phosphor-Ser51 serum (Biosource, #44-726G) diluted to 1:3000, anti-KDEL monoclonal antibody (Calbiochem #420400) diluted to 1:300 or anti-polyhedrin polyclonal (M. Ikeda) diluted to 1:30,000. The blot was then washed with 2% milk in 1X TBS-Tween and incubated with horseradish peroxidase conjugated anti-rabbit antibody (Pierce, #31460) or antimouse antibody (Pierce, #31430) diluted to 1:10,000 in 2% lowfat milk in 1X TBS-

Tween for 2 hours. Bands were visualized using an ECL detection kit (Amersham-Pharmacia Biotech, #RPN 2209) and exposure on Classic Blue Sensitive autoradiography film (Midwest Scientific).

### 3.3. Results

### 3.3.1. HSP90 is activated in Ld652Y cells productively-infected with Achrf-1

In searching for an eIF2 $\alpha$  kinase that was activated in response to AcMNPV and vAchrf-1 infection in Ld652Y cells, western blots showed an increasing level of a protein at 12 and 24 h.p.i. that interacted with antibodies raised against human PKR, specifically in vAchrf-1-infected cells (Fig. 18, Lanes 3 and 7, as compared to Lanes 1, 2, 4-6, 8). Immunoprecipitation with PKR antibodies and cell lysates from vAchrf-1-infected Ld652Y cells combined with subsequent MALDI-TOF mass spectrometry analysis identified four independent peptide matches to Spodoptera frugiperda 90 kDa heat shock protein (HSP83) (See Table 1). One lane was excised from the IP gel for western blot transfer to correlate band for excision with the immunoreactive band (Fig. 29, Supplementary Data). Additional western blots utilizing a commercial HSP90 control protein and PKR antibodies confirmed that the antibody was cross-reactive (Fig. 18, Lane 10). HSP90 is ubiquitous throughout eukaryotic cells and is identified in many mass spectrometry analyses. However, considering that the anti-PKR antibody recognized the HSP90 control protein, it is likely that the actual protein that was immunoprecipitated by anti-PKR was HSP90.

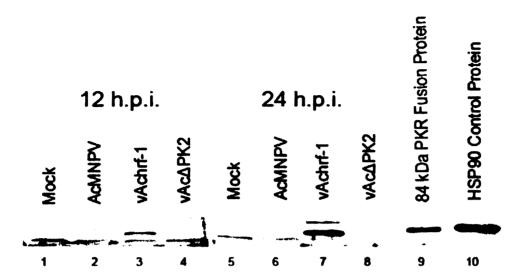



Figure 18. HSP90 levels increase in productively-infected vAchrf-1 infected Ld652Y cells from 12 to 24 h.p.i. Western blots showing increasing levels of an ~80kD protein in vAchrf-1 infected Ld652Ycells from 12 h.p.i. (lane 3) to 24 h.p.i. (lane 7). Western blots were probed with anti-PKR polyclonal antibody which interacts with an 84 kDa PKR fusion protein (lane 9), antibody also interacts with HSP90 control protein of approximately the same size (lane 10).

TIC	gi Ref.	Xcorr	Sequence
9.9 <b>e</b> 5	S. Frugiperda 90 kDa Heat Shock Protein gi 12005809	4.11	(K)HLEINPDHSIVETLR
7.7e6	gi 12005809	3.93	(K)GVVDSEDLPLNISR
3.9e6	gi 12005809	3.30	(K)GVVDSEDLPLNISR
3. <b>4e</b> 6	gi 12005809	3.29	(K)HLEINPDHSIVETLR
1. <b>6e</b> 6	gi 12005809	2.96	(K)HFSVEGQLEFR
9.5e5	gi 12005809	2.94	(K)HFSVEGQLEFR
2.6e6	gi 12005809	2.86	(K)SLTNDWEDHLAVK

TIC: Total Ion Chromatogram

Xcorr: Cross-correlative value with other peptides in database after

MS/MS analysis

gi Ref: Genbank general accession number

**Table 1.** Sequest summary of mass spectrometry analysis for immunoprecipitation with anti-PKR antibodies in vAchrf-1-infected Ld652Y cells at 12 h.p.i.

# 3.3.2. Inhibition of HSP90 with geldanamycin inhibits polyhedrin protein synthesis and occlusion body production in permissively-infected cells at 48 h.p.i. but has little effect on budded virus production

It was interesting to note a de-novo synthesis of HSP90 in vAchrf-1-infected Ld652Y cells beginning at a post-infection time that correlates to the onset of translation arrest in AcMNPV-infected Ld652Y cells. While heat shock proteins are ubiquitous throughout the cell, increased synthesis of heat shock proteins is a hallmark of the unfolded protein response that is activated in response to virus infections in systems other than invertebrates. HSP90 activity can be directly inhibited by the antibiotic

geldanamycin which blocks the ATP binding site of HSP90. HSP90 chaperone function is dependent upon its ATPase activity. To define a role for HSP90 during permissive baculovirus infection we added 1 µM geldanamycin directly to cell culture media immediately following the infection of Sf21 cells with AcMNPV and vAchrf-1. Treated cells were examined at 3, 12, 24 and 48 h.p.i. using a Nikon TMS inverted phase-contrast microscope, 48 hour infected cultures were re-treated with geldanamycin at 24 h.p.i. to guard against effects attributable to degradation of the inhibitor. Surprisingly, virus occlusion bodies were not seen in permissively infected cells treated with geldanamycin at 24 h.p.i. and were found at low levels at 48 h.p.i. (Fig. 19, 2B compared to 2A and 3B compared to 3A). Similar results were found in vAchrf-1-infected Ld652Y cells that were treated with geldanamycin (data not shown). To determine whether HSP90 inhibition was completely blocking synthesis of late viral proteins, cell lysates were collected at 24 and 48 from Sf21 cells permissively-infected with AcMNPV and Ld652Y cells infected with AcMNPV and vAchrf-1. Lysates were screened using western blots with antibodies raised against the late baculovirus proteins polyhedrin and p39. Blots showed that geldanamycin neither enabled AcMNPV replication in Ld652Y cells (Fig. 20, Lanes 4 and 10) nor blocked late viral protein synthesis in permissively-infected cells at 48 h.p.i. (Fig. 20, Lanes 12 and 14). However, in both permissively-infected Sf21 cells at 48 h.p.i. and Ld652Y cells at 24 and 48 h.p.i., polyhedrin protein synthesis was reduced in those cells treated with geldanamycin (Fig. 20, Lane 14 as compared to Lane 13 and Fig. 3, Lanes 6 and 12 as compared to 5 and 11). The other bands found on Fig. 20, lanes 5, 11 and 12 are consistently produced on western blots from productively-infected invertebrate cells at the very late stages of infection when probed with anti-polyhedrin antibodies. On these blots, by 48 h.p.i., many bands can be seen, ranging in size from 1-26 kDa, possibly representing degraded fragments of the polyhedrin protein. In mockinfected samples and at earlier times post-infection, the anti-polyhedrin antibody is not cross-reactive. Similar results were observed when the same blots were stripped and reprobed with p39 antibodies (data not shown). To determine whether HSP90 inhibition had any effect on budded virus production, infected cells were treated with geldanamycin as previously described and titered via standard plaque assay. Plaque assays showed that geldanamycin may have a minor inhibitory or slowing effect on permissive virus replication in infected Ld652Y and Sf21 cells (Figure 21).

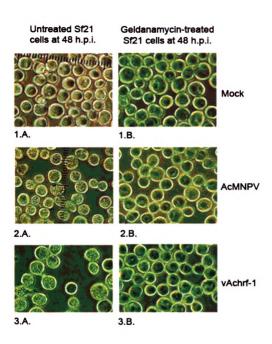



Figure 19. Geldanamycin delays or prevents occlusion body formation in lepidopteran cells permissively-infected with baculovirus. Sf21 cells that are permissively-infected with either AcMNPV (panel 2A) or vAchrf-1 (panel 3A) normally show production of occlusion bodies by 48 h.p.i. When Sf21 cells are treated with 1  $\mu$ M geldanamycin, occlusion bodies are not visible at 48 h.p.i. in AcMNPV (panel 2B) or vAchrf-1 (panel 3B)—infected cells. (Image Presented in Color)

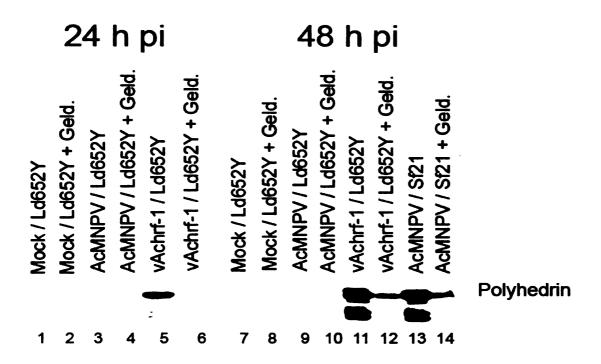



Figure 20. In cells treated with the HSP90 inhibitor, geldanamycin, polyhedrin protein levels are reduced in Sf21 and Ld652Y cells productively infected with baculovirus. Polyhedrin protein levels were assayed by using anti-polyhedrin antibodies Total cell lysates were prepared from Ld652Y cells that were mock-infected or infected with AcMNPV or vAchrf-1 or AcMNPV-infected Sf21 cells. Infected cells were harvested at 24 and 48 hours post-infection. Proteins from whole cell lysates were separated on 15% SDS-PAGE gels and analyzed with immunoblotting.

#### A.

#### Geldanamycin in Infected Ld652Y cells



#### B.

#### Geldanamycin in Infected Sf21 cells

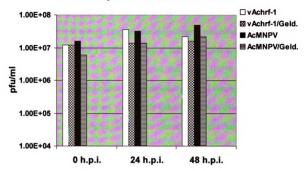



Figure 21. Geldanamycin reduces budded virus production in vAchrf-1-infected Ld652Y cells. A. vAchrf-1 titers are reduced within at least one order of magnitude in infected Ld652Y cells treated with geldanamycin. B. Geldanamycin does not reduce vAchrf-1 or AcMNPV budded virus production in Sf21 cells. Ld652Y or Sf21 cells were pre-treated with 1  $\mu$ M geldanamycin from 1 hour preceding infection to time of collection. Cells were mock-infected or infected with either AcMNPV or vAchrf-1 and virus was harvested at 24 h.p.i. and 48 h.p.i. Virus was titered on Sf21 cells using a standard plaque assay (O'Reilly, Miller, and Luckow, 1994). Plates were scored for  $occ^*$  plaques at 4 and 6 days post-infection.

### 3.3.3. Proteolytic cleavage of peIF2 $\alpha^{ser51}$ precedes and is independent of HSP90 activation in permissively-infected Ld652Y cells

We previously reported that a proteasome-dependent, proteolytic cleavage of pelF2 $\alpha$ ^{ser51} occurs by 24 h.p.i. in invertebrate cells permissively-infected with baculovirus (Mecey-

manuscript in progress). To determine if that cleavage was dependent upon an increased synthesis of HSP90; mock, AcMNPV and vAchrf-1-infected Ld652Y and Sf21 cell lysates were collected at 24 and 48 h.p.i. and western blots were conducted to assay for peIF2 $\alpha^{\text{ser51}}$  cleavage in geldanamycin-treated cells. Western blots show that cleavage of peIF2 $\alpha^{\text{ser51}}$  occurs in untreated and geldanamycin-treated, permissively-infected cells by 24 h.p.i. (Figure 22, lane 3 compared to lane 6, lane 8 compared to lane 11 and lane 9 compared to lane 12). These data suggest that either HSP90 activation occurs downstream of proteasome-enabled eIF2 $\alpha$  phosphorylation or cleavage of peIF2 $\alpha^{\text{ser51}}$  in invertebrate cell lines that are permissively-infected with baculovirus or that HSP90 activation and eIF2 $\alpha$  phosphorylation and/or cleavage are events that occur independent of one another.

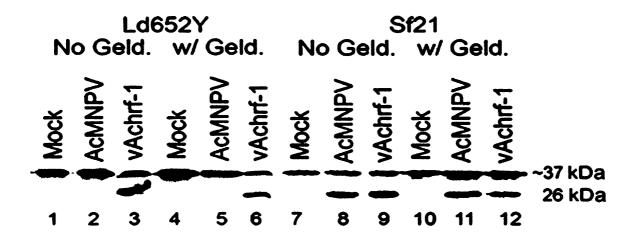



Figure 22. Proteolytic cleavage of peIF2 $\alpha^{ser51}$  occurs in Ld652Y and Sf21 cells permissively-infected with vAchrf-1 and AcMNPV in the presence of geldanamycin. Western blots showing proteolytic cleavage of peIF2 $\alpha^{ser51}$  in Ld652Y cells infected with AcMNPV and vAchrf-1 that were untreated (lanes 2 and 3) or in the presence of geldanamycin (lanes 5 and 6) at 24 h.p.i. Proteolytic cleavage of peIF2 $\alpha^{ser51}$  also occurs in Sf21 cells infected with AcMNPV or vAchrf-1 that were untreated (lanes 8 and 9) or treated with geldanamycin (lanes 11 and 12).

#### 3.4. Discussion

Infection of the *Lymantria dispar* 652Y cell line with the baculovirus AcMNPV results in global translation arrest and a non-productive infection (Guzo et al., 1992; McClintock, Dougherty, and Weiner, 1986). Expression of a single gene, *host range factor-1*, isolated from LdMNPV precludes translation arrest in AcMNPV-infected Ld652Y cells and results in virus replication (Chen et al., 1998; Du and Thiem, 1997b; Thiem et al., 1996). Apoptosis is enhanced and global translation arrest is initiated during the late stages of AcMNPV infection in Ld652Y cells (Thiem and Chejanovsky, 2004). During a productive infection, events correlating to the late phases of virus replication are DNA replication of the virus, expression of late viral genes and a virus-mediated shut-off of host transcription.

In this study we identify an increased expression of the chaperone protein HSP90 that occurs in cells permissively-infected with vAchrf-1 during the late stages of infection (Fig. 18). Further, we determine that geldanamycin-mediated inhibition of HSP90 delays or inhibits the production of the very late baculovirus polyhedrin protein and reduces or eliminates the production of occluded virus in productively-infected cells at 48 h.p.i., a time when occluded virus is normally present (Fig. 19 and 21). Inhibition of HSP90 with geldanamycin has no inhibitory effect on the proteasome-dependent cleavage of  $peIF2\alpha^{ser51}$ , indicating that HSP90 activation occurs independently or downstream of  $eIF2\alpha$  phosphorylation at serine 51 (Fig. 22).

Other groups have shown that chaperone proteins may be required during permissive baculovirus infection. HSC70, also known as BiP, was shown to be transcriptionally up-regulated in Sf9 cells permissively-infected with AcMNPV (Nobiron, O'Reilly, and Olszewski, 2003). HSP90 was not identified in the same study as being transcriptionally activated; however, the same group shows the majority of host transcription being shut-off between 12 and 18 h.p.i. during a permissive infection. The shut-off of host transcription suggests a potential role for translational regulation of chaperone transcripts during a permissive infection. Indeed, HSP90 levels increase from 12 to 24 h.p.i. in Ld652Y cells that are permissively-infected with vAchrf-1 and HSP90 appears to play a role in the production of late viral proteins and occluded virus (Fig. 19, 20 and 21).

In the non-productive infection of AcMNPV in Ld652Y cells, the virus enters the nucleus and executes the early stages of virus replication. During these early stages of infection, host and virus transcription and translation continue (Guzo et al., 1992). Previously, we have shown that eIF2α phosphorylation at serine 51 occurs during AcMNPV infection of Ld652Y cells at a time that correlates to the onset of global translation arrest. Additionally, we have shown that both eIF2α phosphorylation at serine 51 and cleavage of peIF2αser51 are enabled by the proteasome (Mecey-manuscript in progress). The additional load of viral transcripts produced during the early stages of infection may result in stress on the protein processing capacity of the endoplasmic reticulum and its localized chaperone machinery cumulating in the induction of an unfolded protein response.

The unfolded protein response (UPR) has been characterized in *C. elegans* and plays a regulatory role in the development of the nematode (Shen et al., 2001). Many homologous components of the mammalian UPR pathway have been identified and characterized in other invertebrates (Olsen et al., 1998; Santoyo et al., 1997) including the lepidopteran, *Bombyx mori* (Goo et al., 2004). Hallmarks of the unfolded protein response include eIF2α phosphorylation at serine 51 resulting in a global arrest of cap-dependent protein synthesis and a diverted pathway resulting in either apoptosis and cell destruction, or cell recovery as mediated by an increased synthesis of chaperone proteins and ERAD degradation of unfolded/unprocessed proteins (Ma and Hendershot, 2004; Rutkowski and Kaufman, 2004). The proteasome has recently been identified as a key regulator in the UPR by facilitating ERAD degradation (Ng, Spear, and Walter, 2000).

Although our host range system has many of the hallmarks of a UPR stress response pathway, one must consider that this pathway has not been fully characterized for Lepidopteran insects and that the comparisons made are based on information obtained from mammalian systems. Different stress response pathways such as those resulting from DNA or oxidative damage may also be induced in response to infection. Investigation into kinase signaling leading to eIF2α phosphorylation in AcMNPV-infected Ld652Y cells may help to define initiated pathways during non-permissive infection. Additional information should also be gathered with regards to the expression of other chaperone proteins during baculovirus infection.

## Chapter 4 Summary and Future Directions

#### 4.1. Research Summary

- Research conducted by other laboratory members show that translation arrests gradually in AcMNPV-infected Ld652Y cells with a complete arrest of protein synthesis occurring by 13-14 h.p.i. (work conducted by X. Du). In those same infected cells, polysome profiles show a monosome peak occurring at 9 h.p.i. indicating that translation arrests at the initiation stage (work conducted by W.A. Williams). Possible effects occurring from the inhibition of translation elongation were not investigated in this study. b.) Phosphorylation of eIF2\alpha at serine 51 occurs in Ld652Y cells that are infected with AcMNPV at 12 h.p.i. In Ld652Y cells that are infected with vAchrf-1, eIF2α appears to be protected from phosphorylation as compared to mock and AcMNPV-infected cells. Expression of the proposed AcMNPV-encoded, dominant-negative inhibitor of eIF2a kinases, PK2, continued throughout the infection but PK2 was insufficient at blocking phosphorylation of eIF2α in AcMNPV-infected Ld652Y cells at late times post-infection. c.) Proteolytic cleavage of peIF2 $\alpha$ ^{ser51} appears to occur in Ld652Y cells permissivelyinfected with vAchrf-1 and Sf21 cells permissively-infected with AcMNPV and vAchrf-1. Cleavage of peIF2 $\alpha^{\text{ser}51}$  was not induced by stress-inducing agents and was not blocked with cell permeable protease inhibitors.
- d.) Treatment with the proteasome inhibitor epoxomicin in Sf21 and Ld652Y cell lines infected with AcMNPV and vAchrf-1 or vAchrf-1, respectively, resulted in prevention of eIF2 $\alpha$  phosphorylation at serine 51, a block of peIF2 $\alpha$ ^{ser51} cleavage and no virus replication. The proteasome inhibitor, MG132, yielded similar results in vAchrf-1-infected Ld652Y cells but only reduced virus titers while not blocking peIF2 $\alpha$ ^{ser51}

cleavage in infected Sf21 cells. The conflicting result observed for both proteasome inhibitors may result from a varying potency of each inhibitor or its specific mode of action. Both results indicate that the proteasome is involved during baculovirus infection.

e.) Heat shock protein 90 expression is enhanced in Ld652Y cells that are permissively-infected with vAchrf-1. Inhibition of HSP90 with geldanamycin resulted in a delay or reduction of very late stage baculovirus protein expression and a block of occlusion body production at 48 h.p.i. Cleavage of peIF2 $\alpha$ ^{ser51} occurs independently of enhanced HSP90 expression. These results suggest that enhanced expression of HSP90 accompanies productive baculovirus infection and is integral to the production of occluded virus.

#### 4.2. Future Directions

The current data indicates that proteasome-enabled cleavage of peIF2 $\alpha^{ser51}$  accompanies productive virus infection in both Ld652Y and Sf21 cells infected with vAchrf-1 and AcMNPV and vAchrf-1, respectively. Additional data produced in this study demonstrates that the inhibition of the proteasome with epoxomicin or MG132 blocks phosphorylation of eIF2 $\alpha$  at serine 51 and inhibits or reduces the production of virus progeny in those same infected, lepidopteran cell lines (See Fig. 23). The primary questions that remain are: is baculovirus replication enabled by the proteolytic cleavage of peIF2 $\alpha^{ser51}$  and, if so, does HRF-1 participate in that process?

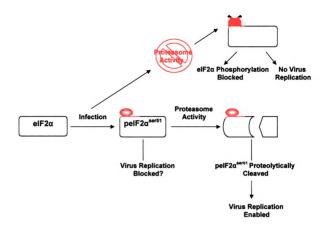



Figure 23. Proposed model of post-translational modification of eIF2 $\alpha$  in response to baculovirus infection. The current data shows eIF2 $\alpha$  becoming phosphorylated in response to AcMNPV-infection in Ld652Y cells. In Sf21 and Ld652Y cells that are productively-infected with AcMNPV and vAchfr-1 or vAchfr-1, respectively, a (Fig. 23 caption, cont.) proteasome-enabled cleavage of peIF2 $\alpha$  sers by 24 h.p.i. In those same infected cells, when treated with proteasome inhibitors, eIF2 $\alpha$  is protected from phosphorylation at serine 51 and virus replication is inhibited. (Image Presented in Color)

Indeed, if cleavage of peIF2 $\alpha$ ^{ser51} enables baculovirus replication by preventing global translation arrest, then one can envision two scenarios as being mechanistically significant. The first and most probable mechanism involves disabling the inhibitory capabilities of peIF2 $\alpha^{ser51}$  on eIF2B, the second involves the proteolytic degradation of peIF2 $\alpha^{\text{ser}51}$  coupled to an increased synthesis of eIF2 $\alpha$ . The nucleotide exchange factor eIF2B is a limited factor in the cell, phosphorylation of eIF2α at serine 51 results in the binding and sequestering of eIF2B. This impoundment of eIF2B prevents the exchange of GDP to GTP required for the formation of an active eIF2 ternary complex resulting in translation arrest at the initiation stage (See Fig. 24A and 24B). Proteolytic cleavage of peIF $2\alpha^{ser51}$  may render two partial eIF $2\alpha$  fragments that are incapable of inhibiting eIF2Bbut capable of forming a functional ternary complex with other subunits (See Fig. 24C). One method to test this hypothesis is to express the predicted partial eIF2\alpha fragments individually from a recombinant AcMNPV in Ld652Y cells and then conduct plaque assays to determine budded virus titers. Alternatively, engineered plasmid constructs with truncated forms of eIF2α could be transfected into Ld652Y cells followed by AcMNPV infection and plaque assay. While Figure 24C does not reflect it, functional ternary complex formation could result from interaction with either partial eIF2\alpha component so, both would have to be expressed and evaluated. If budded virus titers increased as compared to those produced at 0 hours post-infection, one could conclude that AcMNPV replication had been enabled by the expression of a truncated eIF2α sequence. It is possible that phosphorylation of eIF2\alpha at serine 51 occurs as a general response to stress in lepidopteran insects. While experiments utilizing general stress induction agents in both Ld652Y and Sf21 cells did not result in cleavage of peIF2 $\alpha$ ^{ser51}, levels of full-length peIF2\alpha^{ser51} may show differential regulation in response to stress (Fig. 12). More experiments need to be conducted to determine the effects of stress on  $eIF2\alpha$ phosphorylation in lepidopteran cells. Proteasome-enabled degradation of peIF2 $\alpha^{ser51}$ may occur as a means to overcome translation arrest while levels of eIF2\alpha recover. If budded virus titers do not increase in Ld652Y cells infected with recombinant AcMNPV expressing either eIF2\alpha truncated protein (vAccleIF2\alpha), protein synthesis levels should be evaluated to determine if global translation arrest occurs. If translation arrest is prevented in vAccleIF2\alpha-infected Ld652Y cells and a productive infection is not established, it would indicate that global translation arrest is not the mechanism preventing AcMNPV replication in that cell line. Other groups have shown that expression of a C-terminal, truncated form of eIF2a, was not sequestered by eIF2B in mammalian SAOS-2 cells. Cells expressing this mutant were able to overcome translational repression induced by PKR even though the truncated eIF2 $\alpha$  was phosphorylated by the kinase (Satoh, et. al. 1999).

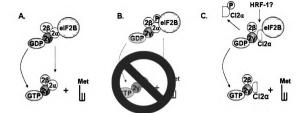



Figure 24. The interaction of eIF2 $\alpha$  with eIF2B. A.) The nucleotide exchange factor eIF2B coordinates the exchange of GDP to GTP to restore functional ternary complex formation required for the initiation of protein synthesis. B.) When eIF2 $\alpha$  is phosphorylated at serine 51 it binds eIF2B preventing nucleotide exchange, active ternary complexes can not form and global translation arrest is initiated. C.) A proposed model of how a cleaved fragment of peIF2 $\alpha$  first may interact with eIF2B and still function in a active ternary complex to initiate protein synthesis. (Image Presented in Color)

The second proposed mechanism involves the proteasome-enabled cleavage of  $peIF2\alpha^{ser51}$  as a means to remove the phosphorylated protein from the cell as the cell recovers from a particular stress. Eukaryotic cells are dependent on  $eIF2\alpha$  as a required component of the initiation of protein synthesis so, this proteolytic degradation would have to be accompanied by an increased synthesis of  $eIF2\alpha$  which is best evaluated at the transcriptional level using northern blots or real-time PCR. Current data do not suggest that  $eIF2\alpha$  levels increase in productively-infected cells but that is difficult to determine by observing protein levels as host transcription is being shut-off. In either model as it relates to vAchrf-1-infected Ld652Y cells, a viral protein may mediate the proteasome-enabled cleavage of  $peIF2\alpha^{ser51}$  to initiate recovery from stress resulting from virus

infection, thus restoring protein synthesis and possibly enabling permissive virus infection.

As a part of an initiated stress response pathway, proteasome activity can lead to to eIF2\alpha phosphorylation at serine 51 (Jiang and Wek, 2005). One can envision a scenario where once proteasome-dependent eIF2\alpha phosphorylation is initiated in baculovirus-infected cells, a viral protein, like HRF-1, may mediate the degradation of peIF2\alpha^{ser51} by directing proteasome activity (Fig. 25). The question of HRF-1 involvement in enabling baculovirus replication in Lymantria dispar and its correlation to the proteolytic cleavage of peIF $2\alpha^{ser51}$  are best answered by searching for proteins that directly interact with HRF-1. Yeast two-hybrid analysis or immunoprecipitation studies coupled to mass spectrometry analysis may identify HRF-1 interacting proteins and further provide indications to the level of function for HRF-1. Another protein(s) that functions in a similar manner to HRF-1 may be encoded by the Spodoptera frugiperda genome thus facilitating AcMNPV replication in Sf21 cells. This would offer an explanation of why cleavage of peIF2a^{ser51} occurs in Sf21 cells during infection with AcMNPV. Alternatively, Ld652Y cells may physiologically differ from Sf21 cells to such an extreme, that a HRF-1-type protein is not required to promote AcMNPV replication in Sf21 cells.

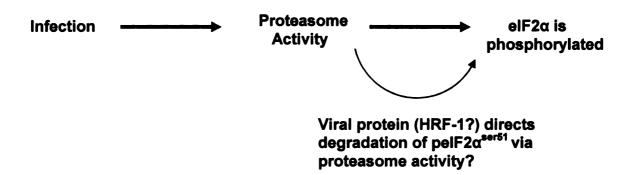



Figure 25. Proposed model for HRF-1 function in vAchrf-1-infected Ld652Y cells. AcMNPV-infection of Ld652Y cells results in eIF2 $\alpha$  phosphorylation at serine 51 and global translation arrest. This study shows that proteasome inhibition blocks the phosphorylation of eIF2 $\alpha$ , cleavage of peIF2 $\alpha^{\text{ser}51}$  and blocks the production of virus progeny in baculovirus-infected, invertebrate cell lines. In the proposed model, HRF-1 would act downstream of proteasome activation to coordinate cleavage of peIF2 $\alpha^{\text{ser}51}$ .

## Appendix A Supplementary Data

#### eIF4E is available to bind cap substrates in AcMNPV-infected Ld652Y cells.

Protein synthesis can be attenuated through the formation of an inhibitory eIF4E-4E binding protein (4E-BP) complex. To exclude the possibility that mechanisms other than eIF2α phosphorylation might be contributing to translation arrest we isolated total cell lysates from mock, AcMNPV and Achrf-1-infected Ld652Y cells and precipitated against m⁷G-bound sepharose (Amersham-Pharmacia). Western blots of precipitated proteins were probed with Lepidopteran eIF4E antibodies. Western blots show equal amounts of eIF4E bound to the m⁷G cap in mock, AcMNPV and Achrf-1 infected cells at 3 and 20 hpi (Fig. 15, lanes 1, 2, 3, 4, 5 and 6). This indicates that eIF4E is not prevented from binding the cap and by inference, that it was not sequestered by 4E-BP.

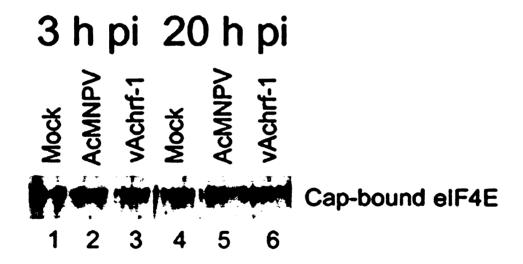



Figure 26. AcMNPV infection in Ld652Y cells does not impair the m7G cap-binding ability of eIF4E. Total cell lysates from mock-, AcMNPV-, and Achrf-1-infected Ld652Y cells were immunoprecipitated with m7GTP-bound sepharose. Proteins were boiled off sepharose beads, subjected to SDS-PAGE and western blotting with lepidopteran eIF4E antibodies.

#### 4E-BP is not over-expressed in AcMNPV-infected Ld652Y cells.

To further investigate the possibility of 4E-BP contributing to global translation arrest in AcMNPV-infected Ld652Y cells, we probed western blots of total cell lysates isolated from Mock, AcMNPV and Achrf-1-infected cells at 3, 12 and 20 hpi with antibodies raised against *Drosophila melanogaster* 4E-BP (kindly provided by Mathieu Miron). There was no detectable increase in 4E-BP levels in infected cells over mockinfected (Fig. 16, lanes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12) suggesting that, unlike translation arrest induced in *Drosophila* in response to bacterial infection and wounding (Bernal and Kimbrell, 2000), over-expression of 4E-BP does not contribute to translation arrest in AcMNPV-infected Ld652Y cells. These experiments do not rule out possible changes in 4E-BP phosphorylation. However, the combined eIF4E and 4E-BP data indicates that translation arrest is not controlled through inhibition of eIF4E.

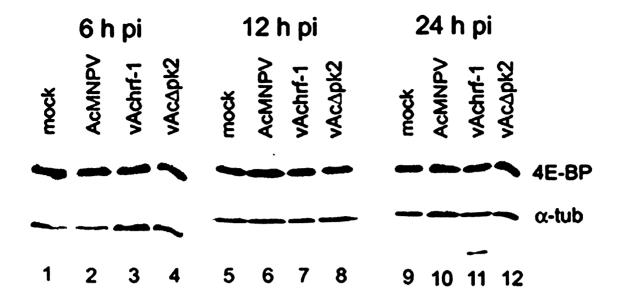



Figure 27. 4E-BP is not up-regulated in response to AcMNPV-infection in Ld652Y cells. Total cell lysates were prepared from Ld652Y cells that were mock-infected or (Caption continued from p. ) infected with AcMNPV, vAchrf-1 or vAc $\Delta$ pk2. Lysates were collected at 12 h and 24 h post-infection. The same blot for each time point was stripped and reprobed sequentially with antibodies to Drosophila 4E-BP and  $\alpha$ -tubulin.

#### The lepidoteran eIF2a kinase, BeK, is activated in AcMNPV-infected Ld652Y cells.

A novel lepidopteran eIF2α kinase, BeK, was identified in *Bombyx mori* and characterized as being activated in response to heat shock and osmotic stress in transformed *Drosophila* S2 cells but not in response to immune, endoplasmic reticulum or oxidative stress. The same group showed that PK2 was capable of reducing BeK activity suggesting that BeK may act in an anti-viral response (Prasad et al., 2003). Using western blots and antibodies raised against BeK (P. Brey), we screened infected Ld652Y cells for BeK induction. Western blots of infected cell lysates show expression of a 65 kDa protein that interacts with anti-BeK antibodies at 12 hours post-infection in AcMNPV-infected Ld652Y cells (Fig. 14), a time that correlates to eIF2α phosphorylation in AcMNPV-infected Ld652Y cells. Western blots produced from

mock-infected Ld652Y cells or those infected with vAchrf-1 from 3-24 hours post-infection are devoid of any antibody interaction when probed with anti-BeK antibodies (Fig. 14). An additional band of ~40 kDa is also seen in AcMNPV-infected Ld652Y cells at 12 h.p.i. Results from this western blot indicates that BeK is expressed at a time that correlates to eIF2α phosphorylation and global translation arrest in AcMNPV-infected Ld652Y cells.

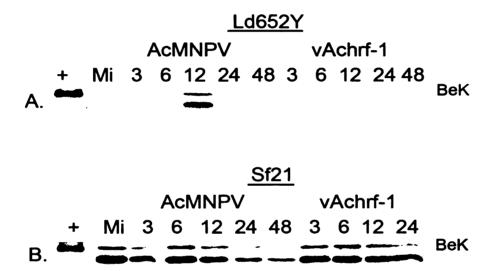



Figure 28. The lepidopteran kinase, BeK, is expressed in AcMNPV-infected Ld652Y cells at a time that correlates to the onset of global translation arrest. Total cell lysates were collected at 3, 6, 12, 24 and 48 hours post-infection, subjected to SDS-PAGE and immunoblotted with polyclonal antibodies to BeK.

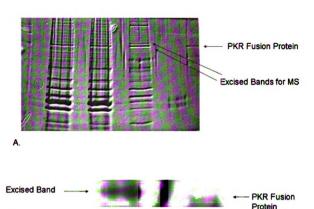



Figure 29. Polyacrylamide gel of proteins immunoprecipitated with human PKR antibodies in vAchrf-1-infected Ld652Y cells. A. Arrows indicate the bands that were excised for mass spectrometry analysis and co-migration of the PKR control protein. Infected cell lysates were immunoprecipitated against sepharose bound antibody overnight, then boiled and separated using SDS-PAGE, gel was stained with Coomassie blue stain and destained for 5 hours. B. One lane from the IP gel was excised and transferred to westerm blot along with the PKR control protein lane. Western blots were incubated with anti-PKR antibodies; HRP-linked, anti-rabbit secondary antibodies and

Western Blot from IP Gel Above

B.

bands were detected using ECL detection kit.

## References

- Abe, T., Hemmi, H., Miyamoto, H., Moriishi, K., Tamura, S., Takaku, H., Akira, S., and Matsuura, Y. (2005). Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus. *J Virol* 79(5), 2847-58.
- Ahrens, C. H., and Rohrmann, G. F. (1996). The DNA polymerase and helicase genes of a baculovirus of Orgyia pseudosugata. *J Gen Virol* 77 (Pt 5), 825-37.
- Allen, G. E. a. C. M. I. (1969). The nucleopolyhedrosis virus of *Heliothis* quantitative in vivo estimates of virulence. J. Invertebr. Pathol. 13, 378-381.
- Aragon, T., de la Luna, S., Novoa, I., Carrasco, L., Ortin, J., and Nieto, A. (2000). Eukaryotic translation initiation factor 4GI is a cellular target for NS1 protein, a translational activator of influenza virus. *Mol Cell Biol* 20(17), 6259-68.
- Attardo, G. M., Hansen, I. A., and Raikhel, A. S. (2005). Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. *Insect Biochem Mol Biol* 35(7), 661-75.
- Attardo, G. M., Higgs, S., Klingler, K. A., Vanlandingham, D. L., and Raikhel, A. S. (2003). RNA interference-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito Aedes aegypti. *Proc Natl Acad Sci U S A* 100(23), 13374-9.
- Awasthi, N., and Wagner, B. J. (2005). Upregulation of heat shock protein expression by proteasome inhibition: an antiapoptotic mechanism in the lens. *Invest Ophthalmol Vis Sci* 46(6), 2082-91.
- Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K., and Schulze-Lefert, P. (2002). The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. *Science* 295(5562), 2073-6.
- Baltzis, D., Qu, L. K., Papadopoulou, S., Blais, J. D., Bell, J. C., Sonenberg, N., and Koromilas, A. E. (2004). Resistance to vesicular stomatitis virus infection requires a functional cross talk between the eukaryotic translation initiation factor 2alpha kinases PERK and PKR. J Virol 78(23), 12747-61.
- Beattie, E., Denzler, K. L., Tartaglia, J., Perkus, M. E., Paoletti, E., and Jacobs, B. L. (1995). Reversal of the interferon-sensitive phenotype of a vaccinia virus lacking E3L by expression of the reovirus S4 gene. *J Virol* 69(1), 499-505.
- Bech-Otschir, D., Seeger, M., and Dubiel, W. (2002). The COP9 signalosome: at the interface between signal transduction and ubiquitin-dependent proteolysis. *J Cell Sci* 115(Pt 3), 467-73.

- Beere, H. M. (2001). Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001(93), RE1.
- Belsham, G. J., McInerney, G. M., and Ross-Smith, N. (2000). Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. *J Virol* 74(1), 272-80.
- Beniya, H., Funk, C. J., Rohrmann, G. F., and Weaver, R. F. (1996). Purification of a virus-induced RNA polymerase from Autographa californica nuclear polyhedrosis virus-infected Spodoptera frugiperda cells that accurately initiates late and very late transcription in vitro. *Virology* 216(1), 12-9.
- Bernal, A., and Kimbrell, D. A. (2000). Drosophila Thor participates in host immune defense and connects a translational regulator with innate immunity. *Proc Natl Acad Sci U S A* 97(11), 6019-24.
- Bertolotti, A., Zhang, Y., Hendershot, L. M., Harding, H. P., and Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. *Nat Cell Biol* 2(6), 326-32.
- Birnbaum, M. J., Clem, R. J., and Miller, L. K. (1994). An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. *J Virol* 68(4), 2521-8.
- Bishop, D. H. L., Hirst, M.L., Possee, R.D., and Cory, J.S. (1995). Genetic engineering of microbes: Virus insecticides-A case study. *In* "50 Years of Microbials" (P. A. H. G.K. Darby, and A.D. Russell, Ed.), pp. 249-277 Cambridge University Press, Cambridge, England.
- Black, B. C., Brennan, L.A., Dierks, P.M. and I.E. Gard (1997). Commercialization of Baculoviral Insecticides. *In* "The Baculoviruses" (L. K. Miller, Ed.), pp. 341-387, Plenum Press, New York.
- Blissard, G. W., and Rohrmann, G. F. (1990). Baculovirus diversity and molecular biology. *Annu Rev Entomol* 35, 127-55.
- Blissard, G. W., and Wenz, J. R. (1992). Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. *J Virol* 66(11), 6829-35.
- Brecht, M., and Parsons, M. (1998). Changes in polysome profiles accompany trypanosome development. *Mol Biochem Parasitol* 97(1-2), 189-98.
- Brewer, J. W., and Diehl, J. A. (2000). PERK mediates cell-cycle exit during the mammalian unfolded protein response. *Proc Natl Acad Sci U S A* 97(23), 12625-30.

- Busch, S., Eckert, S. E., Krappmann, S., and Braus, G. H. (2003). The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. *Mol Microbiol* 49(3), 717-30.
- Bushell, M., Poncet, D., Marissen, W. E., Flotow, H., Lloyd, R. E., Clemens, M. J., and Morley, S. J. (2000). Cleavage of polypeptide chain initiation factor eIF4GI during apoptosis in lymphoma cells: characterisation of an internal fragment generated by caspase-3-mediated cleavage. Cell Death Differ 7(7), 628-36.
- Buttle, D. J., Murata, M., Knight, C. G., and Barrett, A. J. (1992). CA074 methyl ester: a proinhibitor for intracellular cathepsin B. *Arch Biochem Biophys* 299(2), 377-80.
- Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., Clark, S. G., and Ron, D. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. *Nature* 415(6867), 92-6.
- Carroll, K., Elroy-Stein, O., Moss, B., and Jagus, R. (1993). Recombinant vaccinia virus K3L gene product prevents activation of double-stranded RNA-dependent, initiation factor 2 alpha-specific protein kinase. *J Biol Chem* 268(17), 12837-42.
- Cassady, K. A., and Gross, M. (2002). The herpes simplex virus type 1 U(S)11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. *J Virol* 76(5), 2029-35.
- Charlton, C. A., and Volkman, L. E. (1993). Penetration of Autographa californica nuclear polyhedrosis virus nucleocapsids into IPLB Sf 21 cells induces actin cable formation. *Virology* 197(1), 245-54.
- Chejanovsky, N., and Gershburg, E. (1995). The wild-type Autographa californica nuclear polyhedrosis virus induces apoptosis of Spodoptera littoralis cells. *Virology* 209(2), 519-25.
- Chen, C. J., Quentin, M. E., Brennan, L. A., Kukel, C., and Thiem, S. M. (1998). Lymantria dispar nucleopolyhedrovirus hrf-1 expands the larval host range of Autographa californica nucleopolyhedrovirus. *J Virol* 72(3), 2526-31.
- Chen, C. J., and Thiem, S. M. (1997). Differential infectivity of two Autographa californica nucleopolyhedrovirus mutants on three permissive cell lines is the result of lef-7 deletion. *Virology* 227(1), 88-95.

- Chen, H. H., Tsai, F. Y., and Chen, C. T. (2001). Negative regulatory regions of the PAT1 promoter of Hz-1 virus contain GATA elements which associate with cellular factors and regulate promoter activity. *J Gen Virol* 82(Pt 2), 313-20.
- Chen, J. J. (2000). Heme-regulated eIF2alpha kinase. *In* "Translational Control of Gene Expression" (N. J. Sonenberg, Hershey, J.W.B., Mathews M.B., Ed.), pp. 529-546. Cold Spring Harbor Laboratory Press, New York.
- Chen, J. J., and London, I. M. (1995). Regulation of protein synthesis by hemeregulated eIF-2 alpha kinase. *Trends Biochem Sci* 20(3), 105-8.
- Chen, Z., and Carstens, E. B. (2005). Identification of domains in Autographa californica multiple nucleopolyhedrovirus late expression factor 3 required for nuclear transport of P143. *J Virol* 79(17), 10915-22.
- Cheng, G., Feng, Z., and He, B. (2005). Herpes simplex virus 1 infection activates the endoplasmic reticulum resident kinase PERK and mediates eIF-2alpha dephosphorylation by the gamma(1)34.5 protein. *J Virol* 79(3), 1379-88.
- Chillaron, J., and Haas, I. G. (2000). Dissociation from BiP and retrotranslocation of unassembled immunoglobulin light chains are tightly coupled to proteasome activity. *Mol Biol Cell* 11(1), 217-26.
- Cioca, D. P., Aoki, Y., and Kiyosawa, K. (2003). RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. *Cancer Gene Ther* 10(2), 125-33.
- Clem, R. J., Fechheimer, M., and Miller, L. K. (1991). Prevention of apoptosis by a baculovirus gene during infection of insect cells. *Science* 254(5036), 1388-90.
- Clem, R. J., and Miller, L. K. (1993). Apoptosis reduces both the in vitro replication and the in vivo infectivity of a baculovirus. *J Virol* 67(7), 3730-8.
- Clem, R. J., and Miller, L. K. (1994). Control of programmed cell death by the baculovirus genes p35 and iap. *Mol Cell Biol* 14(8), 5212-22.
- Clemens, M. J. (1993). The small RNAs of Epstein-Barr virus. *Mol Biol Rep* 17(2), 81-92.
- Clemens, M. J. (2005). Translational control in virus-infected cells: models for cellular stress responses. Semin Cell Dev Biol 16(1), 13-20.
- Clemens, M. J., Bushell, M., Jeffrey, I. W., Pain, V. M., and Morley, S. J. (2000). Translation initiation factor modifications and the regulation of protein synthesis in apoptotic cells. *Cell Death Differ* 7(7), 603-15.

- Clemens, M. J., Bushell, M., and Morley, S. J. (1998). Degradation of eukaryotic polypeptide chain initiation factor (eIF) 4G in response to induction of apoptosis in human lymphoma cell lines. *Oncogene* 17(22), 2921-31.
- Crevel, G., Bates, H., Huikeshoven, H., and Cotterill, S. (2001). The Drosophila Dpit47 protein is a nuclear Hsp90 co-chaperone that interacts with DNA polymerase alpha. *J Cell Sci* 114(Pt 11), 2015-25.
- Crews, C. M. (2003). Feeding the machine: mechanisms of proteasome-catalyzed degradation of ubiquitinated proteins. *Curr Opin Chem Biol* 7(5), 534-9.
- Croizier, G., Croizier, L., Argaud, O., and Poudevigne, D. (1994). Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. *Proc Natl Acad Sci U S A* 91(1), 48-52.
- Crouch, E. A., and Passarelli, A. L. (2002). Genetic requirements for homologous recombination in Autographa californica nucleopolyhedrovirus. *J Virol* 76(18), 9323-34.
- Dever, T. E., Sripriya, R., McLachlin, J. R., Lu, J., Fabian, J. R., Kimball, S. R., and Miller, L. K. (1998). Disruption of cellular translational control by a viral truncated eukaryotic translation initiation factor 2alpha kinase homolog. *Proc Natl Acad Sci U S A* 95(8), 4164-9.
- Donaldson, D., Kiely, T. and Grube, A. (2004) 2000-2001 Pesticide market estimates. Environmental Protection Agency, Washington, D.C.
- Du, X., and Thiem, S. M. (1997a). Responses of insect cells to baculovirus infection: protein synthesis shutdown and apoptosis. *J Virol* 71(10), 7866-72.
- Du, X., and Thiem, S. M. (1997b). Characterization of host range factor 1 (hrf-1) expression in Lymantria dispar M nucleopolyhedrovirus- and recombinant Autographa californica M nucleopolyhedrovirus-infected IPLB-Ld652Y cells. *Virology* 227(2), 420-30.
- Duan, L., Reddi, A. L., Ghosh, A., Dimri, M., and Band, H. (2004). The Cbl family and other ubiquitin ligases: destructive forces in control of antigen receptor signaling. *Immunity* 21(1), 7-17.
- Evans, J. T., Rosenblatt, G. S., Leisy, D. J., and Rohrmann, G. F. (1999). Characterization of the interaction between the baculovirus ssDNA-binding protein (LEF-3) and putative helicase (P143). *J Gen Virol* 80 (Pt 2), 493-500.

- Everett, R. D., Orr, A., and Preston, C. M. (1998). A viral activator of gene expression functions via the ubiquitin-proteasome pathway. *Embo J* 17(24), 7161-9.
- Evers, D. L., Wang, X., and Huang, E. S. (2004). Cellular stress and signal transduction responses to human cytomegalovirus infection. *Microbes Infect* 6(12), 1084-93.
- Federici, B. (1997). "Baculovirus Pathogenesis." The Baculoviruses (L. K. Miller, Ed.) Plenum New York.
- Feigenblum, D., and Schneider, R. J. (1993). Modification of eukaryotic initiation factor 4F during infection by influenza virus. *J Virol* 67(6), 3027-35.
- Freilich, S., Oron, E., Kapp, Y., Nevo-Caspi, Y., Orgad, S., Segal, D., and Chamovitz, D. A. (1999). The COP9 signalosome is essential for development of Drosophila melanogaster. *Curr Biol* 9(20), 1187-90.
- Friesen, P. D., and Miller, L. K. (1986). The regulation of baculovirus gene expression. *Curr Top Microbiol Immunol* 131, 31-49.
- Fuchs, L. Y., Woods, M.S., and R.F. Weaver (1983). Viral transcription during *Autographa californica* nuclear polyhedrosis virus infection: a novel RNA polymerase induced in infected *Spodoptera frugiperda* cells. *J Virol* 48, 641.
- Gale, M., Jr., Tan, S. L., and Katze, M. G. (2000). Translational control of viral gene expression in eukaryotes. *Microbiol Mol Biol Rev* 64(2), 239-80.
- Gebauer, F., and Hentze, M. W. (2004). Molecular mechanisms of translational control. *Nat Rev Mol Cell Biol* 5(10), 827-35.
- Gomi, S., Zhou, C. E., Yih, W., Majima, K., and Maeda, S. (1997). Deletion analysis of four of eighteen late gene expression factor gene homologues of the baculovirus, BmNPV. *Virology* 230(1), 35-47.
- Goo, T. W., Yun, E. Y., Choi, K. H., Kim, S. H., Nho, S. K., Kang, S. W., and Kwon, O. Y. (2004). ATFC is a novel transducer for the unfolded protein response in Bombyx mori BM5 cells. *Biochem Biophys Res Commun* 325(2), 626-31.
- Goodwin, R. H., Tompkins, G. J., and McCawley, P. (1978). Gypsy moth cell line divergent in viral susceptibility *In Vitro* 14, 485-494.
- Gradi, A., Svitkin, Y. V., Imataka, H., and Sonenberg, N. (1998). Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. *Proc Natl Acad Sci U S A* 95(19), 11089-94.

- Granados, R. R., Lawler, K. A., and Burand, J. P. (1981). Replication of Heliothis zea baculovirus in an insect cell line. *Intervirology* 16(2), 71-9.
- Gray, E. S., and Tsai, R. W. (1994). Characterization of striped bass growth hormone receptors by disulfide-bond reduction and cross-linking studies. *J Exp Zool* 268(6), 428-35.
- Green, M. C., Monser, K. P., and Clem, R. J. (2004). Ubiquitin protein ligase activity of the anti-apoptotic baculovirus protein Op-IAP3. *Virus Res* 105(1), 89-96.
- Greene, J. C., Whitworth, A. J., Kuo, I., Andrews, L. A., Feany, M. B., and Pallanck, L. J. (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. *Proc Natl Acad Sci U S A* 100(7), 4078-83.
- Grula, M. A., Buller, P.L. and Weaver, R.F. (1981a). alpha-amanitin resistant viral RNA synthesis in nuclei isolated from nuclear polyhedrosis virus-infected *Heliothis zea* larvae and *Spodoptera frugiperda* cells. *J Virol* 38, 916.
- Grula, M. A. a. W., R.F. (1981b). An improved method for isolation of *Heliothis zea* DNA-dependent RNA polymerase: separation and characterization of a form III RNA polymerase activity. *Insect Biochem* 11, 149.
- Grundmann, O., Mosch, H. U., and Braus, G. H. (2001). Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae. *J Biol Chem* 276(28), 25661-71.
- Guarino, L. A., Jin, J., and Dong, W. (1998). Guanylyltransferase activity of the LEF-4 subunit of baculovirus RNA polymerase. *J Virol* 72(12), 10003-10.
- Guarino, L. A., Smith, G., and Dong, W. (1995). Ubiquitin is attached to membranes of baculovirus particles by a novel type of phospholipid anchor. *Cell* 80(2), 301-9.
- Guarino, L. A., Xu, B., Jin, J., and Dong, W. (1998). A virus-encoded RNA polymerase purified from baculovirus-infected cells. *J Virol* 72(10), 7985-91.
- Gunnery, S., Rice, A. P., Robertson, H. D., and Mathews, M. B. (1990). Tatresponsive region RNA of human immunodeficiency virus 1 can prevent activation of the double-stranded-RNA-activated protein kinase. *Proc Natl Acad Sci U S A* 87(22), 8687-91.
- Guzo, D., Rathburn, H., Guthrie, K., and Dougherty, E. (1992). Viral and host cellular transcription in Autographa californica nuclear polyhedrosis virus-infected gypsy moth cell lines. *J Virol* 66(5), 2966-72.

- Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. *Mol Cell Biol* 19(3), 1720-30.
- Hansen, I. A., Attardo, G. M., Park, J. H., Peng, Q., and Raikhel, A. S. (2004). Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. *Proc Natl Acad Sci U S A* 101(29), 10626-31.
- Harari-Steinberg, O., and Chamovitz, D. A. (2004). The COP9 signalosome: mediating between kinase signaling and protein degradation. *Curr Protein Pept Sci* 5(3), 185-9.
- Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., and Ron, D. (2000a). Regulated translation initiation controls stress-induced gene expression in mammalian cells. *Mol Cell* 6(5), 1099-108.
- Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000b). Perk is essential for translational regulation and cell survival during the unfolded protein response. *Mol Cell* 5(5), 897-904.
- Harding, H. P., Zhang, Y., and Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. *Nature* 397(6716), 271-4.
- Harding, H. P., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Calfon, M., Sadri, N., Yun,
  C., Popko, B., Paules, R., Stojdl, D. F., Bell, J. C., Hettmann, T., Leiden, J.
  M., and Ron, D. (2003). An integrated stress response regulates amino acid
  metabolism and resistance to oxidative stress. *Mol Cell* 11(3), 619-33.
- He, B., Gross, M., and Roizman, B. (1997). The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. *Proc Natl Acad Sci U S A* 94(3), 843-8.
- Hefferon, K. L. (2004). Baculovirus late expression factors. *J Mol Microbiol Biotechnol* 7(3), 89-101.
- Hellen, C. U., and Sarnow, P. (2001). Internal ribosome entry sites in eukaryotic mRNA molecules. *Genes Dev* 15(13), 1593-612.
- Hershberger, P. A., Dickson, J. A., and Friesen, P. D. (1992). Site-specific mutagenesis of the 35-kilodalton protein gene encoded by Autographa californica nuclear polyhedrosis virus: cell line-specific effects on virus replication. *J Virol* 66(9), 5525-33.

- Hershey, J. W. B., and Mathews, M. B. (1996). "Translational Control." (N. Sonenberg, Ed.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Hirai, M., Terenius, O., Li, W., and Faye, I. (2004). Baculovirus and dsRNA induce Hemolin, but no antibacterial activity, in Antheraea pernyi. *Insect Mol Biol* 13(4), 399-405.
- Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G., and Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. *Nature* 419(6903), 135-41.
- Holcik, M., and Sonenberg, N. (2005). Translational control in stress and apoptosis. *Nat Rev Mol Cell Biol* 6(4), 318-27.
- Hu, J., and Seeger, C. (1996). Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase. *Proc Natl Acad Sci U S A* 93(3), 1060-4.
- Huh, N. E., and Weaver, R. F. (1990). Identifying the RNA polymerases that synthesize specific transcripts of the Autographa californica nuclear polyhedrosis virus. *J Gen Virol* 71 (Pt 1), 195-201.
- Hung, J. J., Chung, C. S., and Chang, W. (2002). Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. *J Virol* 76(3), 1379-90.
- Ikeda, M., Reimbold, E. A., and Thiem, S. M. (2005). Functional analysis of the baculovirus host range gene, hrf-1. *Virology* 332(2), 602-13.
- Imai, N., Matsuda, N., Tanaka, K., Nakano, A., Matsumoto, S., and Kang, W. (2003). Ubiquitin ligase activities of Bombyx mori nucleopolyhedrovirus RING finger proteins. *J Virol* 77(2), 923-30.
- Ishikawa, H., Ikeda, M., Alves, C. A., Thiem, S. M., and Kobayashi, M. (2004). Host range factor 1 from Lymantria dispar Nucleopolyhedrovirus (NPV) is an essential viral factor required for productive infection of NPVs in IPLB-Ld652Y cells derived from L. dispar. *J Virol* 78(22), 12703-8.
- Isler, J. A., Skalet, A. H., and Alwine, J. C. (2005). Human cytomegalovirus infection activates and regulates the unfolded protein response. *J Virol* 79(11), 6890-9.
- Ito, E., Sahri, D., Knippers, R., and Carstens, E. B. (2004). Baculovirus proteins IE-1, LEF-3, and P143 interact with DNA in vivo: a formaldehyde cross-linking study. *Virology* 329(2), 337-47.

- Janas, R. M., Marks, D. L., and LaRusso, N. F. (1994). Purification and partial characterization of a heat-resistant, cytosolic neuropeptidase from rat liver. *Biochem Biophys Res Commun* 198(2), 574-81.
- Jang, S. K., Krausslich, H. G., Nicklin, M. J., Duke, G. M., Palmenberg, A. C., and Wimmer, E. (1988). A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. *J Virol* 62(8), 2636-43.
- Jentsch, S., and Schlenker, S. (1995). Selective protein degradation: a journey's end within the proteasome. *Cell* 82(6), 881-4.
- Jiang, H. Y., and Wek, R. C. (2005). Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. *J Biol Chem* 280(14), 14189-202.
- Joachims, M., Van Breugel, P. C., and Lloyd, R. E. (1999). Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. *J Virol* 73(1), 718-27.
- Kalejta, R. F., Bechtel, J. T., and Shenk, T. (2003). Human cytomegalovirus pp71 stimulates cell cycle progression by inducing the proteasome-dependent degradation of the retinoblastoma family of tumor suppressors. *Mol Cell Biol* 23(6), 1885-95.
- Kalejta, R. F., and Shenk, T. (2003). Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. *Proc Natl Acad Sci U S A* 100(6), 3263-8.
- Kamita, S. G., and Maeda, S. (1996). Abortive infection of the baculovirus Autographa californica nuclear polyhedrosis virus in Sf-9 cells after mutation of the putative DNA helicase gene. *J Virol* 70(9), 6244-50.
- Kamita, S. G., and Maeda, S. (1997). Sequencing of the putative DNA helicase-encoding gene of the Bombyx mori nuclear polyhedrosis virus and fine-mapping of a region involved in host range expansion. *Gene* 190(1), 173-9.
- Kampmueller, K. M., and Miller, D. J. (2005). The cellular chaperone heat shock protein 90 facilitates Flock House virus RNA replication in Drosophila cells. *J Virol* 79(11), 6827-37.
- Kaufman, R. J. (2000). *In* "Translational Control of Gene Expression" (N. Sonenberg, Hershey, J.W.B. and Mathews, M.B., Ed.), pp. 503-527. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

- Keene, K. M., Foy, B. D., Sanchez-Vargas, I., Beaty, B. J., Blair, C. D., and Olson, K. E. (2004). RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. *Proc Natl Acad Sci U S A* 101(49), 17240-5.
- Kerekatte, V., Keiper, B. D., Badorff, C., Cai, A., Knowlton, K. U., and Rhoads, R. E. (1999). Cleavage of Poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? *J Virol* 73(1), 709-17.
- Khoo, D., Perez, C., and Mohr, I. (2002). Characterization of RNA determinants recognized by the arginine- and proline-rich region of Us11, a herpes simplex virus type 1-encoded double-stranded RNA binding protein that prevents PKR activation. *J Virol* 76(23), 11971-81.
- Kim, T., Hofmann, K., von Arnim, A. G., and Chamovitz, D. A. (2001). PCI complexes: pretty complex interactions in diverse signaling pathways. *Trends Plant Sci* 6(8), 379-86.
- Kimball, S. R. (1999). Eukaryotic initiation factor eIF2. Int J Biochem Cell Biol 31(1), 25-9.
- Kondo, A., and Maeda, S. (1991). Host range expansion by recombination of the baculoviruses Bombyx mori nuclear polyhedrosis virus and Autographa californica nuclear polyhedrosis virus. *J Virol* 65(7), 3625-32.
- Krappa, R., Behn-Krappa, A., Jahnel, F., Doerfler, W., and Knebel-Morsdorf, D. (1992). Differential factor binding at the promoter of early baculovirus gene PE38 during viral infection: GATA motif is recognized by an insect protein. *J Virol* 66(6), 3494-503.
- Kumar, R., Azam, S., Sullivan, J. M., Owen, C., Cavener, D. R., Zhang, P., Ron, D., Harding, H. P., Chen, J. J., Han, A., White, B. C., Krause, G. S., and DeGracia, D. J. (2001). Brain ischemia and reperfusion activates the eukaryotic initiation factor 2alpha kinase, PERK. *J Neurochem* 77(5), 1418-21.
- LaCount, D. J., and Friesen, P. D. (1997). Role of early and late replication events in induction of apoptosis by baculoviruses. *J Virol* 71(2), 1530-7.
- Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* 227(5259), 680-5.
- Lamphear, B. J., Yan, R., Yang, F., Waters, D., Liebig, H. D., Klump, H., Kuechler, E., Skern, T., and Rhoads, R. E. (1993). Mapping the cleavage site in protein

- synthesis initiation factor eIF-4 gamma of the 2A proteases from human Coxsackievirus and rhinovirus. *J Biol Chem* 268(26), 19200-3.
- Landais, I., Vincent, R., Bouton, M., Devauchelle, G., Duonor-Cerutti, M., and Ogliastro, M. (2005). Functional analysis of evolutionary conserved clustering of bZIP binding sites in the baculovirus homologous regions (hrs) suggests a cooperativity between host and viral transcription factors. *Virology*.
- Lee, H. H., and Miller, L. K. (1978). Isolation of genotypic variants of *Autographa* californica nuclear polyhedrosis virus. *Journal of Virology* 27, 754-767.
- Lee, K., Tirasophon, W., Shen, X., Michalak, M., Prywes, R., Okada, T., Yoshida, H., Mori, K., and Kaufman, R. J. (2002). IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. *Genes Dev* 16(4), 452-66.
- Leisy, D. J., Rasmussen, C., Kim, H. T., and Rohrmann, G. F. (1995). The Autographa californica nuclear polyhedrosis virus homologous region 1a: identical sequences are essential for DNA replication activity and transcriptional enhancer function. *Virology* 208(2), 742-52.
- Li, L., Harwood, S. H., and Rohrmann, G. F. (1999). Identification of additional genes that influence baculovirus late gene expression. *Virology* 255(1), 9-19.
- Li, S., and Koromilas, A. E. (2001). Dominant negative function by an alternatively spliced form of the interferon-inducible protein kinase PKR. *J Biol Chem* 276(17), 13881-90.
- Li, Y., and Miller, L. K. (1995). Expression and functional analysis of a baculovirus gene encoding a truncated protein kinase homolog. *Virology* 206(1), 314-23.
- Lin, W., Choe, W. H., Hiasa, Y., Kamegaya, Y., Blackard, J. T., Schmidt, E. V., and Chung, R. T. (2005). Hepatitis C virus expression suppresses interferon signaling by degrading STAT1. *Gastroenterology* 128(4), 1034-41.
- Liu, C. Y., Schroder, M., and Kaufman, R. J. (2000). Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. *J Biol Chem* 275(32), 24881-5.
- Liu, Y., Schiff, M., Serino, G., Deng, X. W., and Dinesh-Kumar, S. P. (2002). Role of SCF ubiquitin-ligase and the COP9 signalosome in the N gene-mediated resistance response to Tobacco mosaic virus. *Plant Cell* 14(7), 1483-96.
- Lloyd, R. M., and Shatkin, A. J. (1992). Translational stimulation by reovirus polypeptide sigma 3: substitution for VAI RNA and inhibition of

- phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J Virol 66(12), 6878-84.
- Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. *Science* 268(5210), 533-9.
- Lu, A., and Miller, L. K. (1995a). Differential requirements for baculovirus late expression factor genes in two cell lines. *J Virol* 69(10), 6265-72.
- Lu, A., and Miller, L. K. (1995b). The roles of eighteen baculovirus late expression factor genes in transcription and DNA replication. *J Virol* 69(2), 975-82.
- Lu, A., and Miller, L. K. (1996). Species-specific effects of the hcf-1 gene on baculovirus virulence. *J Virol* 70(8), 5123-30.
- Ma, Y., and Hendershot, L. M. (2004). ER chaperone functions during normal and stress conditions. *J Chem Neuroanat* 28(1-2), 51-65.
- Maeda, S. (1995). Further development of recombinant baculovirus insecticides. Curr Opin Biotechnol 6(3), 313-9.
- Maeda, S., Kamita, S. G., and Kondo, A. (1993). Host range expansion of Autographa californica nuclear polyhedrosis virus (NPV) following recombination of a 0.6-kilobase-pair DNA fragment originating from Bombyx mori NPV. *J Virol* 67(10), 6234-8.
- Maitra, R. K., McMillan, N. A., Desai, S., McSwiggen, J., Hovanessian, A. G., Sen, G., Williams, B. R., and Silverman, R. H. (1994). HIV-1 TAR RNA has an intrinsic ability to activate interferon-inducible enzymes. *Virology* 204(2), 823-7.
- Marissen, W. E., Guo, Y., Thomas, A. A., Matts, R. L., and Lloyd, R. E. (2000). Identification of caspase 3-mediated cleavage and functional alteration of eukaryotic initiation factor 2alpha in apoptosis. *J Biol Chem* 275(13), 9314-23.
- Mathews, M. B., Sonenberg, N., and Hershey J.W.B. (2000). *In* "Translational Control of Gene Expression" (N. Sonenberg, Hershey, J.W.B. and Mathews, M.B., Ed.), pp. 1-32. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
- McClintock, J. T., Dougherty, E. M., and Weiner, R. M. (1986). Semipermissive replication of a nuclear polyhedrosis virus of *Autographa californica* in a gypsy moth cell line. *Journal of Virology* 57, 197-204.

- McDougal, V. V., and Guarino, L. A. (2001). DNA and ATP binding activities of the baculovirus DNA helicase P143. *J Virol* 75(15), 7206-9.
- McLachlin, J. R., and Miller, L. K. (1994). Identification and characterization of vlf-1, a baculovirus gene involved in very late gene expression. *J Virol* 68(12), 7746-56.
- Means, J. C., Muro, I., and Clem, R. J. (2003). Silencing of the baculovirus Op-iap3 gene by RNA interference reveals that it is required for prevention of apoptosis during Orgyia pseudotsugata M nucleopolyhedrovirus infection of Ld652Y cells. *J Virol* 77(8), 4481-8.
- Meng, L., Mohan, R., Kwok, B. H., Elofsson, M., Sin, N., and Crews, C. M. (1999). Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. *Proc Natl Acad Sci U S A* 96(18), 10403-8.
- Meusser, B., Hirsch, C., Jarosch, E., and Sommer, T. (2005). ERAD: the long road to destruction. *Nat Cell Biol* 7(8), 766-72.
- Mikhailov, V. S., Okano, K., and Rohrmann, G. F. (2004). Specificity of the endonuclease activity of the baculovirus alkaline nuclease for single-stranded DNA. *J Biol Chem* 279(15), 14734-45.
- Mikhailov, V. S., and Rohrmann, G. F. (2002). Baculovirus replication factor LEF-1 is a DNA primase. *J Virol* 76(5), 2287-97.
- Miller, L. K. a. A. L. (1997). The Molecular Basis of Baculovirus Host Range. *In* "The Baculoviruses" (L. K. Miller, Ed.), pp. 217-235, Plenum Press, New York.
- Miron, M., Verdu, J., Lachance, P. E., Birnbaum, M. J., Lasko, P. F., and Sonenberg, N. (2001). The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. *Nat Cell Biol* 3(6), 596-601.
- Mistretta, T. A., and Guarino, L. A. (2005). Transcriptional activity of baculovirus very late factor 1. *J Virol* 79(3), 1958-60.
- Miyata, Y., and Yahara, I. (2000). p53-independent association between SV40 large T antigen and the major cytosolic heat shock protein, HSP90. Oncogene 19(11), 1477-84.

- Mori, K., Ogawa, N., Kawahara, T., Yanagi, H., and Yura, T. (1998). Palindrome with spacer of one nucleotide is characteristic of the cis-acting unfolded protein response element in Saccharomyces cerevisiae. *J Biol Chem* 273(16), 9912-20.
- Morley, S. J., Coldwell, M. J., and Clemens, M. J. (2005). Initiation factor modifications in the preapoptotic phase. *Cell Death Differ* 12(6), 571-84.
- Morris, T. D., and Miller, L. K. (1992). Promoter influence on baculovirus-mediated gene expression in permissive and nonpermissive insect cell lines. *J Virol* 66(12), 7397-405.
- Morris, T. D., and Miller, L. K. (1993). Characterization of productive and non-productive AcMNPV infection in selected insect cell lines. *Virology* 197(1), 339-48.
- Morris, T. D., and Miller, L. K. (1994). Mutational analysis of a baculovirus major late promoter. *Gene* 140(2), 147-53.
- Moscardi, F. (1989). Use of viruses for pest control in Brazil: The case of the nuclear polyhedrosis virus of the soybean caterpillar *Anticarsia gemmatalis*. *Memorias do Instituto Oswaldo Cruz Rio de Janeiro* 84, 51-56.
- Moscardi, F. (1999). Assessment of the application of baculoviruses for control of lepidoptera. *Annu. Rev. Entomol.* 44, 257-89
- Mulvey, M., Poppers, J., Ladd, A., and Mohr, I. (1999). A herpesvirus ribosome-associated, RNA-binding protein confers a growth advantage upon mutants deficient in a GADD34-related function. *J Virol* 73(4), 3375-85.
- Mundt, K. E., Liu, C., and Carr, A. M. (2002). Deletion mutants in COP9/signalosome subunits in fission yeast Schizosaccharomyces pombe display distinct phenotypes. *Mol Biol Cell* 13(2), 493-502.
- Mundt, K. E., Porte, J., Murray, J. M., Brikos, C., Christensen, P. U., Caspari, T., Hagan, I. M., Millar, J. B., Simanis, V., Hofmann, K., and Carr, A. M. (1999). The COP9/signalosome complex is conserved in fission yeast and has a role in S phase. *Curr Biol* 9(23), 1427-30.
- Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. *Nature* 403(6765), 98-103.
- Ng, D. T., Spear, E. D., and Walter, P. (2000). The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. *J Cell Biol* 150(1), 77-88.

- Nishio, M., Tsurudome, M., Ito, M., Garcin, D., Kolakofsky, D., and Ito, Y. (2005). Identification of paramyxovirus V protein residues essential for STAT protein degradation and promotion of virus replication. *J Virol* 79(13), 8591-601.
- Nobiron, I., O'Reilly, D. R., and Olszewski, J. A. (2003). Autographa californica nucleopolyhedrovirus infection of Spodoptera frugiperda cells: a global analysis of host gene regulation during infection, using a differential display approach. *J Gen Virol* 84(Pt 11), 3029-39.
- O'Reilly, D. R., Miller, L. K., and Luckow, V. A. (1994). "Baculovirus Expression Vectors, A Laboratory Manual." Oxford University Press, New York, Oxford.
- Ohlmann, T., Prevot, D., Decimo, D., Roux, F., Garin, J., Morley, S. J., and Darlix, J. L. (2002). In vitro cleavage of eIF4GI but not eIF4GII by HIV-1 protease and its effects on translation in the rabbit reticulocyte lysate system. *J Mol Biol* 318(1), 9-20.
- Okada, T., Yoshida, H., Akazawa, R., Negishi, M., and Mori, K. (2002). Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. *Biochem J* 366(Pt 2), 585-94.
- Olsen, D. S., Jordan, B., Chen, D., Wek, R. C., and Cavener, D. R. (1998). Isolation of the gene encoding the Drosophila melanogaster homolog of the Saccharomyces cerevisiae GCN2 eIF-2alpha kinase. *Genetics* 149(3), 1495-509.
- Ooi, B. G., and Miller, L. K. (1988). Regulation of host RNA levels during baculovirus infection. *Virology* 166(2), 515-23.
- Ooi, B. G., Rankin, C., and Miller, L. K. (1989). Downstream sequences augment transcription from the essential initiation site of a baculovirus polyhedrin gene. *J Mol Biol* 210(4), 721-36.
- Palli, S. R., Caputo, G. F., Sohi, S. S., Brownwright, A. J., Ladd, T. R., Cook, B. J., Primavera, M., Arif, B. M., and Retnakaran, A. (1996). CfMNPV blocks AcMNPV-induced apoptosis in a continuous midgut cell line. *Virology* 222(1), 201-13.
- Park, Y. W., Wilusz, J., and Katze, M. G. (1999). Regulation of eukaryotic protein synthesis: selective influenza viral mRNA translation is mediated by the cellular RNA-binding protein GRSF-1. *Proc Natl Acad Sci U S A* 96(12), 6694-9.

- Pataer, A., Vorburger, S. A., Barber, G. N., Chada, S., Mhashilkar, A. M., Zou-Yang, H., Stewart, A. L., Balachandran, S., Roth, J. A., Hunt, K. K., and Swisher, S. G. (2002). Adenoviral transfer of the melanoma differentiation-associated gene 7 (mda7) induces apoptosis of lung cancer cells via upregulation of the double-stranded RNA-dependent protein kinase (PKR). Cancer Res 62(8), 2239-43.
- Patel, C. V., Handy, I., Goldsmith, T., and Patel, R. C. (2000). PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. J Biol Chem 275(48), 37993-8.
- Patil, C. K., Li, H., and Walter, P. (2004). Gcn4p and novel upstream activating sequences regulate targets of the unfolded protein response. *PLoS Biol* 2(8), E246.
- Pelletier, J., and Sonenberg, N. (1988). Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. *Nature* 334(6180), 320-5.
- Peng, Z., Serino, G., and Deng, X. W. (2001a). Molecular characterization of subunit 6 of the COP9 signalosome and its role in multifaceted developmental processes in Arabidopsis. *Plant Cell* 13(11), 2393-407.
- Peng, Z., Serino, G., and Deng, X. W. (2001b). A role of Arabidopsis COP9 signalosome in multifaceted developmental processes revealed by the characterization of its subunit 3. *Development* 128(21), 4277-88.
- Pestova, T. V., and Kolupaeva, V. G. (2002). The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. *Genes Dev* 16(22), 2906-22.
- Pestova, T. V., Kolupaeva, V. G., Lomakin, I. B., Pilipenko, E. V., Shatsky, I. N., Agol, V. I., and Hellen, C. U. (2001). Molecular mechanisms of translation initiation in eukaryotes. *Proc Natl Acad Sci U S A* 98(13), 7029-36.
- Peters, G. A., Khoo, D., Mohr, I., and Sen, G. C. (2002). Inhibition of PACT-mediated activation of PKR by the herpes simplex virus type 1 Us11 protein. *J Virol* 76(21), 11054-64.
- Piron, M., Delaunay, T., Grosclaude, J., and Poncet, D. (1999). Identification of the RNA-binding, dimerization, and eIF4GI-binding domains of rotavirus nonstructural protein NSP3. *J Virol* 73(7), 5411-21.
- Prasad, M. D., Han, S. J., Nagaraju, J., Lee, W. J., and Brey, P. T. (2003). Cloning and characterization of an eukaryotic initiation factor-2alpha kinase from the silkworm, Bombyx mori. *Biochim Biophys Acta* 1628(1), 56-63.

- Pratt, W. B., and Toft, D. O. (2003). Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. *Exp Biol Med (Maywood)* 228(2), 111-33.
- Prikhod'ko, E. A., Lu, A., Wilson, J. A., and Miller, L. K. (1999). In vivo and in vitro analysis of baculovirus ie-2 mutants. *J Virol* 73(3), 2460-8.
- Prikhod'ko, E. A., and Miller, L. K. (1998). Role of baculovirus IE2 and its RING finger in cell cycle arrest. *J Virol* 72(1), 684-92.
- Prosch, S., Priemer, C., Hoflich, C., Liebenthaf, C., Babel, N., Kruger, D. H., and Volk, H. D. (2003). Proteasome inhibitors: a novel tool to suppress human cytomegalovirus replication and virus-induced immune modulation. *Antivir Ther* 8(6), 555-67.
- Rajasekhar, V. K., and Holland, E. C. (2004). Postgenomic global analysis of translational control induced by oncogenic signaling. *Oncogene* 23(18), 3248-64.
- Rajasekhar, V. K., Viale, A., Socci, N. D., Wiedmann, M., Hu, X., and Holland, E. C. (2003). Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. *Mol Cell* 12(4), 889-901.
- Rankin, C., Ooi, B. G., and Miller, L. K. (1988). Eight base pairs encompassing the transcriptional start point are the major determinant for baculovirus polyhedrin gene expression. *Gene* 70(1), 39-49.
- Rao, R. V., Castro-Obregon, S., Frankowski, H., Schuler, M., Stoka, V., del Rio, G., Bredesen, D. E., and Ellerby, H. M. (2002). Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem 277(24), 21836-42.
- Rasmussen, C., Leisy, D. J., Ho, P. S., and Rohrmann, G. F. (1996). Structure-function analysis of the Autographa californica multinucleocapsid nuclear polyhedrosis virus homologous region palindromes. *Virology* 224(1), 235-45.
- Reilly, L. M., and Guarino, L. A. (1996). The viral ubiquitin gene of Autographa californica nuclear polyhedrosis virus is not essential for viral replication. *Virology* 218(1), 243-7.
- Reyes-Del Valle, J., Chavez-Salinas, S., Medina, F., and Del Angel, R. M. (2005). Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. *J Virol* 79(8), 4557-67.

- Rice, W. C., and Miller, L. K. (1986). Baculovirus transcription in the presence of inhibitors and in nonpermissive Drosophila cells. *Virus Res* 6(2), 155-72.
- Richardson, H., and Kumar, S. (2002). Death to flies: Drosophila as a model system to study programmed cell death. *J Immunol Methods* 265(1-2), 21-38.
- Rohrmann, G. F. (1986). Polyhedrin structure. J Gen Virol 67 (Pt 8), 1499-513.
- Rohrmann, G. F. (1992). Baculovirus structural proteins. *J Gen Virol* 73 (Pt 4), 749-61.
- Rutkowski, D. T., and Kaufman, R. J. (2004). A trip to the ER: coping with stress. *Trends Cell Biol* 14(1), 20-8.
- Salvatore, M., Basler, C. F., Parisien, J. P., Horvath, C. M., Bourmakina, S., Zheng, H., Muster, T., Palese, P., and Garcia-Sastre, A. (2002). Effects of influenza A virus NS1 protein on protein expression: the NS1 protein enhances translation and is not required for shutoff of host protein synthesis. *J Virol* 76(3), 1206-12.
- Sanders, H. R., Foy, B. D., Evans, A. M., Ross, L. S., Beaty, B. J., Olson, K. E., and Gill, S. S. (2005). Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. *Insect Biochem Mol Biol* 35(11), 1293-307.
- Santoyo, J., Alcalde, J., Mendez, R., Pulido, D., and de Haro, C. (1997). Cloning and characterization of a cDNA encoding a protein synthesis initiation factor-2alpha (eIF-2alpha) kinase from Drosophila melanogaster. Homology To yeast GCN2 protein kinase. *J Biol Chem* 272(19), 12544-50.
- Sarmento, L. M., Huang, H., Limon, A., Gordon, W., Fernandes, J., Tavares, M. J., Miele, L., Cardoso, A. A., Classon, M., and Carlesso, N. (2005). Notch1 modulates timing of G1-S progression by inducing SKP2 transcription and p27Kip1 degradation. *J Exp Med* 202(1), 157-68.
- Satoh, S., Hijikata, M., Handa, H., and Shimotohno, K. (1999). Caspase-mediated cleavage of eukaryotic translation initiation factor subunit 2alpha. *Biochem J* 342 (Pt 1), 65-70.
- Schneider, R. J. (2000). Adenovirus inhibition of cellular protein synthesis and preferential translation of viral mRNAs. *In* "Translational Regulation" (M. B. Mathews, Sonenberg, N., Hershey, J.W.B., Ed.), pp. 901-914. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.
- Schneider, R. J., and Mohr, I. (2003). Translation initiation and viral tricks. *Trends Biochem Sci* 28(3), 130-6.

- Schwechheimer, C., and Deng, X. W. (2001). COP9 signalosome revisited: a novel mediator of protein degradation. *Trends Cell Biol* 11(10), 420-6.
- Schwechheimer, C., Serino, G., Callis, J., Crosby, W. L., Lyapina, S., Deshaies, R. J., Gray, W. M., Estelle, M., and Deng, X. W. (2001). Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. *Science* 292(5520), 1379-82.
- Seeger, M., Kraft, R., Ferrell, K., Bech-Otschir, D., Dumdey, R., Schade, R., Gordon, C., Naumann, M., and Dubiel, W. (1998). A novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. Faseb J 12(6), 469-78.
- Sharpless, N. E., and DePinho, R. A. (2002). p53: good cop/bad cop. *Cell* 110(1), 9-12.
- Shen, X., Ellis, R. E., Lee, K., Liu, C. Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R., Kurnit, D. M., Mori, K., and Kaufman, R. J. (2001). Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. *Cell* 107(7), 893-903.
- Simon, O., Williams, T., Lopez-Ferber, M., and Caballero, P. (2004). Virus entry or the primary infection cycle are not the principal determinants of host specificity of Spodoptera spp. nucleopolyhedroviruses. *J Gen Virol* 85(Pt 10), 2845-55.
- Sin, N., Kim, K. B., Elofsson, M., Meng, L., Auth, H., Kwok, B. H., and Crews, C. M. (1999). Total synthesis of the potent proteasome inhibitor epoxomicin: a useful tool for understanding proteasome biology. *Bioorg Med Chem Lett* 9(15), 2283-8.
- Skowronek, M. H., Hendershot, L. M., and Haas, I. G. (1998). The variable domain of nonassembled Ig light chains determines both their half-life and binding to the chaperone BiP. *Proc Natl Acad Sci U S A* 95(4), 1574-8.
- Soboloff, J., and Berger, S. A. (2002). Sustained ER Ca2+ depletion suppresses protein synthesis and induces activation-enhanced cell death in mast cells. *J Biol Chem* 277(16), 13812-20.
- Sood, R., Porter, A. C., Ma, K., Quilliam, L. A., and Wek, R. C. (2000). Pancreatic eukaryotic initiation factor-2alpha kinase (PEK) homologues in humans, Drosophila melanogaster and Caenorhabditis elegans that mediate translational control in response to endoplasmic reticulum stress. *Biochem J* 346 Pt 2, 281-93.

- Spankuch, B., and Strebhardt, K. (2005). RNA interference-based gene silencing in mice: the development of a novel therapeutical strategy. *Curr Pharm Des* 11(26), 3405-19.
- Steinhilb, M. L., Turner, R. S., and Gaut, J. R. (2001). The protease inhibitor, MG132, blocks maturation of the amyloid precursor protein Swedish mutant preventing cleavage by beta-Secretase. *J Biol Chem* 276(6), 4476-84.
- Stewart, D., Kazemi, S., Li, S., Massimi, P., Banks, L., Koromilas, A. E., and Matlashewski, G. (2004). Ubiquitination and proteasome degradation of the E6 proteins of human papillomavirus types 11 and 18. *J Gen Virol* 85(Pt 6), 1419-26.
- Stewart, T. M., Huijskens, I., Willis, L. G., and Theilmann, D. A. (2005). The Autographa californica multiple nucleopolyhedrovirus ie0-ie1 gene complex is essential for wild-type virus replication, but either IE0 or IE1 can support virus growth. *J Virol* 79(8), 4619-29.
- Su, H. L., Liao, C. L., and Lin, Y. L. (2002). Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. *J Virol* 76(9), 4162-71.
- Summers, M. D. (1971). Electron microscopic observations on granulosis virus entry, uncoating and replication processes during infection of the midgut cells of Trichoplusia ni. *J Ultrastruct Res* 35(5), 606-25.
- Summers, M. D., and Arnott, H. J. (1969). Ultrastructural studies on inclusion formation and virus occlusion in nuclear polyhedrosis and granulosis virus-infected cells of Trichoplusia ni (Hubner). *J Ultrastruct Res* 28(5), 462-80.
- Summers, M. D., Volkman, L.E. and Hseih, C-H. (1978). Immunoperoxidase detection of baculovirus antigens in insect cells. J. Gen Virol. 40, 545
- Svitkin, Y. V., Gradi, A., Imataka, H., Morino, S., and Sonenberg, N. (1999). Eukaryotic initiation factor 4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis after human rhinovirus infection. *J Virol* 73(4), 3467-72.
- Tamai, M., Yokoo, C., Murata, M., Oguma, K., Sota, K., Sato, E., and Kanaoka, Y. (1987). Efficient synthetic method for ethyl (+)-(2S,3S)-3-[(S)-3-methyl- 1-(3-methylbutylcarbamoyl)butylcarbamoyl]-2-oxiranecarb oxylate (EST), a new inhibitor of cysteine proteinases. *Chem Pharm Bull (Tokyo)* 35(3), 1098-104.
- Tardif, K. D., Mori, K., Kaufman, R. J., and Siddiqui, A. (2004). Hepatitis C virus suppresses the IRE1-XBP1 pathway of the unfolded protein response. *J Biol Chem* 279(17), 17158-64.

- Tee, A. R., and Proud, C. G. (2002). Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. *Mol Cell Biol* 22(6), 1674-83.
- Theilmann, D., Blissard, G., Bonning, B., Jehle, J. A., O'Reilly, D. R., Rohrmann, G., Thiem, S. M., and vlak, J. M. (2004). Baculoviridae. *In* "Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses", pp. 177-185.
- Thiem, S. M. (1997). Prospects for altering host range for baculovirus bioinsecticides. Curr Opin Biotechnol 8(3), 317-22.
- Thiem, S. M., and Chejanovsky, N. (2004). The role of baculovirus apoptotic suppressors in AcMNPV-mediated translation arrest in Ld652Y cells. *Virology* 319(2), 292-305.
- Thiem, S. M., Du, X., Quentin, M. E., and Berner, M. M. (1996). Identification of baculovirus gene that promotes Autographa californica nuclear polyhedrosis virus replication in a nonpermissive insect cell line. *J Virol* 70(4), 2221-9.
- Thiem, S. M., and Miller, L. K. (1989). Identification, sequence, and transcriptional mapping of the major capsid protein gene of the baculovirus Autographa californica nuclear polyhedrosis virus. *J Virol* 63(5), 2008-18.
- Thiem, S. M., and Miller, L. K. (1990). Differential gene expression mediated by late, very late and hybrid baculovirus promoters. *Gene* 91(1), 87-94.
- Todd, J. W., Passarelli, A. L., and Miller, L. K. (1995). Eighteen baculovirus genes, including lef-11, p35, 39K, and p47, support late gene expression. *J Virol* 69(2), 968-74.
- Trudeau, D., Washburn, J. O., and Volkman, L. E. (2001). Central role of hemocytes in Autographa californica M nucleopolyhedrovirus pathogenesis in Heliothis virescens and Helicoverpa zea. *J Virol* 75(2), 996-1003.
- Vail, P. V., Jay, D.L., Stewart, F.D., Martinez, A.J. and H.T. Dolmage (1978). Comparitive susceptibility of *Heliothis virescens* and *H. zea* to the nuclear polyhedrosis virus isolated from *Autographa californica*. *J. Econ. Entomol.* 71, 293-296.
- Vail, P. V. a. S. S. C. (1982). Comparative replication, mortality and inclusion body production of *Autographa californica* nuclear polyhedrosis virus in *Heliothis sp. Ann. Entomol. Soc. Am.* 75, 376-382.

- van Oers, M. M., Doitsidou, M., Thomas, A. A., de Maagd, R. A., and Vlak, J. M. (2003). Translation of both 5'TOP and non-TOP host mRNAs continues into the late phase of Baculovirus infection. *Insect Mol Biol* 12(1), 75-84.
- Vanarsdall, A. L., Okano, K., and Rohrmann, G. F. (2005). Characterization of the replication of a baculovirus mutant lacking the DNA polymerase gene. *Virology* 331(1), 175-80.
- Vaughn, J. L., Goodwin, R. H., Tompkins, G. J., and McCawley, P. (1977). The establishment of two cell lines from the insect *Spodoptera frugiperda* (Lepidoptera; Noctuidae). *In Vitro* 13, 213-217.
- Volkman, L. E., and Goldsmith, P. A. (1988). Resistance of the 64K protein of budded Autographa californica nuclear polyhedrosis virus to functional inactivation by proteolysis. *Virology* 166(1), 285-9.
- Washburn, J. O., Kirkpatrick, B. A., and Volkman, L. E. (1995). Comparative pathogenesis of Autographa californica M nuclear polyhedrosis virus in larvae of Trichoplusia ni and Heliothis virescens. *Virology* 209(2), 561-8.
- Washburn, J. O., Kirkpatrick, B.A. and L.E. Volkman (1996). Insect protection against viruses. *Nature* 383, 767
- Wei, N., and Deng, X. W. (1998). Characterization and purification of the mammalian COP9 complex, a conserved nuclear regulator initially identified as a repressor of photomorphogenesis in higher plants. *Photochem Photobiol* 68(2), 237-41.
- Williams, B. R. (1999). PKR; a sentinel kinase for cellular stress. *Oncogene* 18(45), 6112-20.
- Wilson, M. E., Mainprize, T. H., Friesen, P. D., and Miller, L. K. (1987). Location, transcription, and sequence of a baculovirus gene encoding a small arginine-rich polypeptide. *J Virol* 61(3), 661-6.
- Yamagishi, J., Isobe, R., Takebuchi, T., and Bando, H. (2003). DNA microarrays of baculovirus genomes: differential expression of viral genes in two susceptible insect cell lines. *Arch Virol* 148(3), 587-97.
- Yanase, T., Yasunaga, C., and Kawarabata, T. (1998). Replication of Spodoptera exigua nucleopolyhedrovirus in permissive and non-permissive lepidopteran cell lines. *Acta Virol* 42(5), 293-8.
- Yang, C. L., Stetler, D. A., and Weaver, R. F. (1991). Structural comparison of the Autographa californica nuclear polyhedrosis virus-induced RNA polymerase

- and the three nuclear RNA polymerases from the host, Spodoptera frugiperda. Virus Res 20(3), 251-64.
- Ye, J., Rawson, R. B., Komuro, R., Chen, X., Dave, U. P., Prywes, R., Brown, M. S., and Goldstein, J. L. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. *Mol Cell* 6(6), 1355-64.
- Yearian, W. C. a. S. Y. Y. (1982). Control of insect pests of agricultural importance by viral insecticides. *In* "Microbial and viral pesticides" (E. Kurstak, Ed.), pp. 387-423, Marcel Dekker, New York.
- Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., and Tohyama, M. (2001). Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. *J Biol Chem* 276(17), 13935-40.
- Yoo, S., and Guarino, L. A. (1994a). The Autographa californica nuclear polyhedrosis virus ie2 gene encodes a transcriptional regulator. *Virology* 202(2), 746-53.
- Yoo, S., and Guarino, L. A. (1994b). Functional dissection of the ie2 gene product of the baculovirus Autographa californica nuclear polyhedrosis virus. *Virology* 202(1), 164-72.
- Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. *J Biol Chem* 273(50), 33741-9.
- Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., and Mori, K. (2003). A time-dependent phase shift in the mammalian unfolded protein response. *Dev Cell* 4(2), 265-71.
- Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. *Cell* 107(7), 881-91.
- Young, J. C., Barral, J. M., and Ulrich Hartl, F. (2003). More than folding: localized functions of cytosolic chaperones. *Trends Biochem Sci* 28(10), 541-7.
- Yu, G. Y., and Lai, M. M. (2005). The ubiquitin-proteasome system facilitates the transfer of murine coronavirus from endosome to cytoplasm during virus entry. *J Virol* 79(1), 644-8.

- Yu, Y., Wang, S. E., and Hayward, G. S. (2005). The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. *Immunity* 22(1), 59-70.
- Zambon, R. A., Nandakumar, M., Vakharia, V. N., and Wu, L. P. (2005). The Toll pathway is important for an antiviral response in Drosophila. *Proc Natl Acad Sci USA* 102(20), 7257-62.
- Zheng, T. S., Hunot, S., Kuida, K., and Flavell, R. A. (1999). Caspase knockouts: matters of life and death. *Cell Death Differ* 6(11), 1043-53.

