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ABSTRACT

A ZERO-MEMORY NONLINEAR

FILTER FOR SIGNAL DETECTION

By

Philip William Allen

This thesis investigates tfmapossibility of increasing the

probability of detecting a constant signal in non-Gaussian noise

by nonlinear processing of the receiver waveform. The approach

taken uses the first-order statistics of the random observables as

a starting point for the design of any optimal detection system,

in contrast with other applications of nonlinear elements which

are motivated by efforts to improve the signal-to—noise ratio in

the receiver. The particular noise model admitted in this thesis

is characterized by an amplitude probability density function

having the form f(x) = a exp(-b|X|e), 9 6 [1,2]. The noise

combines additively with one of two transmitter symbols {0,A},

where A > 0, during each decision interval [0,T]. The detection

problem is solved inéuihypothesis testing framework.

Receiver design is constrained by a restriction on the

maximum False Alarm Rate (FAR) which must be satisfied for every

9 E [1,2]. This constraint, plus the mathematical intractibility

of the noise family under consideration, suggests the use of non-

parametric detectors. The sign detector is very well suited

because of its ease of implementation and its distribution-free



 

 



Philip William Allen

property. It is also the optimal device for weak signals in

Laplacian noise (8 = 1). Another detector considered is based

on a sample mean. This detector is uniformly most powerful for

a given FAR when 6 = 2. It is suboptimal for other values of

9 but is often used when the underlying PDF's "appear" normal.

This thesis proposes a third detection method, one based

on the inclusion of a nonlinear element. The nonlinear transfer

characteristic is derived from a probability integral transforma—

tion which changes the specified input distribution to a standard

normal distribution. This allows determination of a threshold

value which guarantees satisfaction of the FAR restriction while

avoiding any further randomization at the receiver. This is not

possible, in practice, with a sign-detector because its test

statistic has a discrete distribution.

The transfer characteristic chosen results from a study

of the importance of Monotone Likelihood Ratios (MLR) in signal

detection. A method for determining whether a single-parameter

family of PDF's has MLR is given and applied to the noise model

of interest. The MLR is shown to be invariant under a monotone

nonlinear transformation, and this transformation is the basis

for the nonlinear filter detector design. This detector is

compared to the other detection systems under weak and strong

signal conditions, and is shown to be a viable alternative to both.



 



 

A ZERO4MEMORY NONLINEAR

FILTER FOR SIGNAL DETECTION

By

Philip William Allen

 

A THESIS

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Electrical Engineering

and

Systems Science

1972



 



 

TO MARSHA

ii



 



ACKNOWLEDGEMENTS

I wish to thank the General Dynamics Corporation,

Electrodynamics Division for the encouragement and financial

support that made this thesis possible. Professor Richard Dubes,

MSU Department of Computer Science, my teacher and thesis advisor,

was a constant source of help, as was Professor Gerald Park,

MSU Department of Electrical Engineering and Systems Science.

Several helpful suggestions were made by Professors Dennis

Gilliland, V. Mandrekar, and Robert Staudte, all of the MSU

Department of Statistics and Probability.

Perhaps the greatest contribution was made by my wife

whose patience, understanding, and encouragement contributed

greatly to the success of this research. Therefore this thesis

is dedicated to her.

iii



 



TABLE OF CONTENTS

Page

List of Figures vi

Chapter

I INTRODUCTION ..................................... l

1.1 Requirements and Assumptions ... ............. 3

1.2 Parametric and Nonparametric Procedures ..... 4

1.3 Objections to Nonparametric Procedures ...... 5

1.4 Literature Review .................... ....... 6

1.5 Thesis Noise Model ........ .......... . ....... 9

1.6 Central Limit Theorem Errors .... ....... ..... 12

1.7 Thesis Objective ....... ..................... 15

1.8 Organization of the Thesis .................. 15

II STATISTICAL BACKGROUND ........................... 16

2.1 Simple Hypothesis Testing ................... 17

2.2 Composite Hypothesis Testing ................ 19

2.3 Signal-to4Noise Ratios (SNR) ................ 23

2.4 Optimal Detector of Constant Signal in

White, Gaussian, Noise .. ..... . .............. 24

2.5 Measure Transformations and MLR ............. 25

2.6 Summary ........ ......... .................... 29

III ZERO-MEMORY NONLINEAR FILTER . .................... 30

3.1 Clippers, Limiters and Integrators .......... 31

3.2 Measure Transformations ...... . .............. 32

3.3 concaVity 0...... ............................ 37

3.4 NLF Output PDF under H .................... 38

. . 1
3.5 Moment Approxrmatlons ....................... 41

3.6 Summary ........ ............................. 45

IV COMPARISON OF DETECTORS .......................... 46

4.1 Optimal Detector of Constant Signal in

Laplacian Noise ............. . ............... 47

4.2 Weak Signal Detector Evaluation ............. 49

4.3 Strong Signal Detector Evaluation ........... 57

4.4 Simulation ............ ........... . ..... 61

.4,5 Summary ..... ................................ 70

iv





Chapter Page

V GENERAL CONCLUSIONS AND EXTENSIONS . .............. 72

5.1 Conclusions ......... .. ...... ................ 72

5.2 Extensions .................................. 73

BIBLIOGRAPHY .............. ............ . ....... ... 75

APPENDIX I Derivation of J(e:2) vs. 9 ...... 78

APPENDIX II Realization of the Nonlinear

Filter ............................. 82

APPENDIX III Discontinuity of g"(x) at the

Origin ............... .... ..... ..... 85

APP NDIX IV Simulation Data .................... 87



LIST OF FIGURES

Figure Page

1.1 Multishot Communication System ................... 2

1.2 ARE of Sign Test Relative to X. Test ............ 11

“'4
1.3 -Z' vs. 9 ................................ ....... 14

o

2.1 Invariance of MLR to Linear Transformation .. ..... 27

2.2 Invariance of MLR to Nonlinear Transformation .... 28

3.1 "Gaussianizing" Transformation ...... ........ ..... 33

3.2 Laplacian Transfer Characteristic ...... .. ........ 36

3.3 PDF of NLF-Output Under H1 ...................... 42

4.1 Probability Mass Function for SN ................ 50

4.2 Nonlinear Filter Detector .... .................... 54

4.3 Simulation Block Diagram ............ ............. 62

4.4 PD vs. SNR, Laplacian Noise, Sample Size = 4 ... 64

4.5 PD vs. SNR, Gaussian Noise, Sample Size = 4 .... 65

4.6 PD vs. SNR, Laplacian Noise, Sample Size = 12 .. 66

4.7 PD vs. SNR, Gaussian Noise, Sample Size = 12 ... 67

4.8 PD vs. SNR, Laplacian Noise, Sample Size = 20 .. 68

4.9 PD vs. SNR, Gaussian Noise, Sample Size = 20 ... 69

A.1 Divergence vs. 9 ............................... 81

A.2 Piece-Wise Approximation .... ............ ......... 83

A.3 Piece-Wise Approximation Flow Chart . ..... ........ 84

vi



CHAPTER I

INTRODUCTION

This thesis deals with a decision-theoretic approach to a

problem commonly encountered in the context of radio communications,

namely, the detection of a constant signal in additive, stationary,

white noise. When the noise is assumed Gaussian the design and

performance of optimal detectors have been deve10ped by Helstrom

[H1], Van Trees [V1], Hancock and Wintz [H2] and Root [R3], among

others. When the Gaussian noise approximation cannot be made,

application of nonparametric testing methods has been prOposed

by Helstrom [H1], Hancock and Lainiotis [H3], Daly and Rushforth

[D1], and many others.

This thesis will point out two criticisms of nonparametric

approaches and propose a viable alternative based on a probability

integral transformation.

The detection problem of interest is shown in Figure 1.1.

The requirements and assumptions which determine the detector design

are listed in Section 1.1. Section 1.2 reviews parametric and

nonparametric detectors as applied to the detection of constant

signals in noise while Section 1.3 points out some criticisms of

nonparametric detectors as alternatives to parametric methods.

Section 1.4 presents some approaches advanced by others for the

problem, while Section 1.5 discusses the applicability of various
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parametric and nonparametric approaches to the problem. Section

1.6 investigates central limit theorem errors resulting from

tests based on a sample sum. Section 1.7 contains the thesis

objective and Section 1.8 explains the organization of the thesis.

1.1 Requirements and Assumptions

All detectors for the problem considered in this thesis

are to be designed in accordance with the following assumptions.

A1 The N independent, identically distributed samples

taken at the receiver are to be classified as coming from

either the density f(X) or, alternatively, the density

f(X - A), A > 0, where the form of the probability density

function (PDF) is in the family a exp (-b\X‘e).

A2 The design criterion is Neyman-Pearson; i.e., the

probability of signal detection (PD) is to be

maximized subject to a constraint on the False Alarm

Rate (FAR)1.

A3 The data received in each signaling interval are

statistically independent of the data received in all

other intervals.

A4 The source symbol selected for transmission during each

signaling interval is statistically independent of the

symbol selected during any other signaling interval.

A5 The transmitter and receiver are synchronized. A

receiver interval of T seconds [or N samples]

 

The statistical literature refers to power and size rather than

detection probability and False Alarm Rate, respectively.



corresponds to exactly one transmitter symbol.

A6 The wideband linear filter serves to bound the noise

power at the A/D converter (ideal sampler) input without

producing sample-to-sample dependence.

Assumptions A3 and A4 guarantee that the analysis of a

one-shot receiver, wherein the decision about the data received

in the interval (O,T) does not depend on data received in any

other interval, is applicable to the multishot system [H2] of

Figure 1.1.

The noise model was introduced by Kanefsky and Thomas [K2]

as a reasonable representation of impulse noise, one of the most

common and troublesome non-Gaussian noise processes. If an

impulse process is modeled as a train of independently occurring

pulses with small overlapping, then several simple pulse shapes

result in amplitude densities having the form specified in A1 [G1].

1.2 Parametric and Nonparametric Procedures
 

An extensive collection of results has been obtained and

published for problems of detecting signals in additive noise.

The vast majority of these results are based on the assumption

that the underlying noise density is Gaussian and white; thus it

can be completely characterized by two parameters. In many cases

the Gaussian noise assumption is dictated by physical considera-

tions; thermal noise, for example. Often one of the Central Limit

Theorems is invoked to justify consideration of the asymptotic

convergence in distribution of a suitably normalized sum of random

variables to a standard normal distribution. The mathematical



tractability of the Gaussian noise model has provided an abundance

of theoretical results. "There is undoubtedly a temptation to

regard distributions as normal, unless otherwise proven, and to

use the standard normal theory wherever possible." [Kl].

A great amount of interest has centered on the develop—

ment of a different approach to this problem. This nonparametric

approach, formulated in the late 1930's made few assumptions about

the probabilistic structure of the noise and used simple and

unsophisticated methods for detector design. Because these

detectors were based on very general assumptions concerning the

noise density, they displayed relative insensitivity to departures

from the assumptions, a feature called "robustness."

It has been noted [Cl] that whereas parametric procedures

provide exact solutions to problems stated approximately, their

nonparametric counterparts provide approximate solutions to problems

stated exactly. It is in this sense that a nonparametric test

may prove to be superior to an "optimum" test designed under

invalid assumptions.

The consideration of alternatives to optimal detectors

may be prompted by the complexity, both analytic and practical,

of the optimal design. Nonparametric detectors are intended to be

simple to implement at a cost of some deterioration of performance

relative to the optimal detector [T1].

1.3 Objections to Nonparametric Procedures

Asymptotic Relative Efficiency (ARE) provides a convenient

measure of relative performance of two detectors which are

  



designed for the same problem. It allows comparison between a

nonparametric detector and an "Optimal" detector and measures

the effect of departures from the assumptions on which the

"optimum" detector is designed. Because ARE is essentially a

large sample, small signal performance measure, its validity has

been criticized for practical receivers [T1], [N1].

Another criticism of small sample nonparametric detectors

is that the distribution of the test statistic is discrete which

may necessitate an additional randomization to achieve the require-

ment of A2. This complication is avoided by the method proposed

in this thesis and introduced in Section 1.7.

1.4 Literature Review
 

Rappaport and Kurz [R1] developed an optimal nonlinear

detector for digital data transmission through non Gaussian channels.

They noted the practical difficulty of evaluating the PDF of

their test statistic and suggested Monte Carlo simulation for any

specified noise PDF and sample size. To avoid the very large

amounts of computer time involved in any such simulation, the

authors investigated the asymptotic performance of the nonlinear

detector which was shown to depend on a single SNR parameter.

Several signaling waveforms were considered in a Cauchy noise

environment and asymptotic system performance was shown to be

relatively independent of the signaling waveform.

A suboptimal nonparametric alternative for constant-signal

detection was described by Hancock and Lainiotis [H3]. Their

detector, based on the Median, or Sign, Test was robust, a



desirable property. It used a nonlinear element (ideal clipper)

to reduce the input samples to binary random variables. The

distribution of the test statistic under the hypothesis HO was

binomial. By evaluating the detector's performance on an

asymptotic basis through the Central Limit Theorem, the randomiza-

tion required for small sample problems was not encountered.

An application of a nonlinear filter (NLF) for the improve-

ment of detection reliability for signals in non-Gaussian noise

was also investigated by Richard and Gore [R2]. The NLF transfer

characteristic was determined from the first-order statistics of

the interfering noise and the expected signal amplitude. A narrow

bandwidth, linear, integrating, low pass filter (LPF) followed

the NLF. The long integration time of the LPF and the Central

Limit Theorem was used to justify the assumption that the Gaussian

model "approximately" described the LPF output. This permitted

the calculation of detection probability and false alarm rate as

functions of the NLF output signal-to-noise ratio (SNR). For a

very special class of non-Gaussian noises, resulting from passing

Gaussian noise through a piece-wise linear nonlinearity, the

computed and experimental SNR improvement factors at the NLF out-

put indicated that a considerable improvement in detection

reliability could be obtained.

Hancock and Wade [H7] investigated the problem of attain-

ing near-optimum reception of known binary signals over wide-

band channels in the presence of narrow-band interference. They

noted that the purpose of the receiver was to divide the space

of received waveforns into two disjoint regions — the ”mark” and



 



 

"Space" regions. The linear receiver which they described reduced

the dimensionality of the received waveform to a univariate statistic

which was compared to a decision threshold. The decision surface

generated by the linear receiver was determined to be a plane in

the received signal space while it was noted that the Bayes

optimum decision surface had the form pn(X - M) = pn(X + M),

with pn(-) the interference PDF, X the received waveform vector,

and M the Mark waveform vector. Optimum reception with a linear

receiver could only be possible under certain conditions, Gaussian

interference being one of them. For more general interference,

the authors described a method by which a nonlinear coordinate

transformation could transform the decision surface into a hyper-

plane. Subsequent processing of the transformed coordinates with

a linear receiver was shown to result in optimum reception.

This thesis departs from these approaches in the following

way. The signal detection problem is viewed at the outset as

one to which the existing literature of statistical decision theory

can be applied. The prOperty of Monotone Likelihood Ratio is

investigated fully and its importance in the detection problem

of this thesis is discussed. Then a particular coordinate trans-

formation is chosen within the framework of the decision-theoretic

approach, rather than from a heuristic notion of signal-to-noise

ratio improvement.

Based on decision-theoretic arguments, this thesis pre-

sents a practical alternative to nonparametric and "approximately”

optimum parametric detectors.



1.5 Thesis Noise Model

Attention is here focused on the noise model to be con-

sidered in this thesis. The noise will be characterized by its

first-order statistics, specifically, its PDF

fX(x) = a exp (-b\x‘e), where e 6 [1,2], (l)

and a, b and 9 are related through:

]‘ fx(x)dx = l (2)

°° 2

[ xzfx(x)dx = OX . (3)

An Optimal detector of a constant signal in additive stationary

noise having the PDF (1) can be determined, at least in theory.

However, the complexity of implementationleads to the considera-

tion of other (perhaps) suboptimal procedures. Furthermore, the

detector designed to be Optimal for one value of 9 may prove

unsatisfactory for some other value of 9. The fact that e is

an unknown parameter having a range [1,2] must be included in

the design of any suboptimal procedure.

Previous work for this detection problem has concentrated

on certain nonparametric detectors. Their application is motivated

by simplicity and robustness. Their utility is often justified

by the criterion of .ARE , a small-signal, large sample performance

measure. Comparison between robust detectors and those based

on an assumed Gaussian noise model show that "optimal" detection

can be misleading when the underlying assumptions are not valid.
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What is very interesting about the noise model admitted

is that the optimal tests for the extreme values, 9 = 1 and

9 = 2, are well known. When 9 = l, the test based on signs

(SN) is locally most powerful (LMP) while the test based on

the sample mean (X) is uniformly most powerful (UMP) for e = 2.

Because of the optimal prOperty of the sign detector, other non-

parametric tests (e.g., the Wilcoxson or van der Waerden tests)

will not be considered in this thesis. Both the sign and sample

mean tests are easily implemented although the former has the

disadvantage of a discrete PDF for its detector statistic.

The ARE of the sign test, SN’ relative to that based on

le<3>

— = hich

3 . w

SN’X 1“ (~33)

is plotted in Figure 1.2. If 1 s e s 1.4, the Sign Test would

the sample mean, X; can be shown to be ARE

be preferred to the X. test if ARE were the sole selection

criterion. The range of 9 for which the sign test is preferred

must be reduced if the following are also considered:

a) ARE may not be a valid comparison measure in small sample

problems.

b) The discrete PDF of the test statistic may require an

additional randomization at the receiver.

c) The optimality property of the sign test is a local pro—

perty, i.e., it is based on a vanishingly small SNR.

For these reasons the test based on X seems preferable to the

Sign test for a large range of 9, but there is a major dis-

advantage to its use. For the small sample sizes considered

here central limit theorem errors must be taken into account
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ARE

 

 
FIGURE 1.2 ARE of Sign Test Relative to X Test

during any receiver design. Quite obviously,the threshold value

determined by consideration of the design specification on FAR

and assuming that X is Gaussian will be optimal only for e = 2.

It is also obvious that no single detector structure can

be optimal for every member of the family of noise distributions

and all possible Signal to Noise Ratios (SNR), defined as the

A
ratio -— , i.e., the rms signal power divided by the rms noise

Ox

power. Because of this, the design criterion A2 must be

modified (adaptive receivers are of no concern in this thesis
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although they do offer an alternative approach) to state

specifically the terms under which optimization is to be

accomplished.

For the purposes of this thesis, the EAR will be assumed

as the primary criterion of design; i.e., any detector design

must guarantee a FAR which is less than, or equal, to the design

goal, for all e 6 [1,2].

As previously mentioned, the sign test is applicable to

this type problem. Because of its distribution-free properties,

a specified value of FAR can be achieved and maintained for all

possible 9, although it may require an additional randomization

in practical problems.

There has been no consideration of alternatives to the

nonparametric detector because of the mathematical intractability

of the family of noise densities. However it can be, and often

is, argued that the Central Limit Theorem can be applied to this

type of problem directly because the assumptions made ensure the

convergence in distribution of any prOperly normalized statistic

based on the sample sum . For practical sample sizes there will

be some error in this approximation, and this situation is now

investigated.

1.6 Central Limit Theorem Errors
 

The central limit theorem errors are more severe for those

density functions whose shape reduces the speed of convergence.

This section deals with the problem of determining which member

of a family "differs" the most from a standard normal, when the
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family is characterized by the PDF of equation (1).

Let Fn(x) be the distribution function of the standardized

sample sum. Then the error using a standard normal approximation

may be written [W1, p. 265]

oz

(—3—,3)O(3)Fn(x) - ©(x) -Tq1 (X )

3
|+1[%—!(a ~3>i“‘)<x>+ —?agimm]

9
‘

 

 
 

l J;_ (5 ) 35 (7)

- n3/2 [5! (0/5 - 10013” (x) +""7! 013(0'4--3)€I> (X )

28 03 1

+ 9! 0’3 ,(9)(x)] +0[ 3L2], (4)
n

R a
where aj = O , ”j the j-th central moment, and o the standard

j

deviation of the Xi. By the symmetry of (1), this becomes

4

(ozA- 3)? )<x> 1
Fn(x) - @(x) = 4ln + o n3/2 . (5)

The central limit theorem error will be largest for that

member 9 6 [1,2] having the largest fourth central moment.

00 9 0° 9

W, =] a x4e'b‘x‘ dx = 2a 2Exl‘e'bX dx . (6)

Making a change of variables and integrating, yields

23

P(5/9) . (7)
e bS/e

 

w,

Using (A4) and (A7) [Appendix 1] in (7), results in

= 04P(5/e)1‘(1/e)

r2(3/e)
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u

The graph of 'f% is shown in Figure 1.3. Thus, when

0

e = l, indexing the Laplacian family, the central limit theorem

errors are largest. This same result is found in Appendix I using

the J-divergence as a measure of difference between members of the

family (1).

“'4
'7.-

0’

6

57-

4.

3r

 

The well-known fact that the Laplacian density has "fatter"

tails than a normal density of the same mean and variance [H6,

p. 43] ensures that the FAR determined by a Gaussian assumption

will be optimistic; i.e., it will underestimate the true FAR

and is therefore not a viable alternative.

Previous efforts [R1], [R2] with nonlinear filters have

demonstrated their capability of improving SNR and detection reli-

ability. As noted by Richard and Gore, SNR is not in itself a signif-

icant performance parameter [R2, p. 440]. Of greater importance is

the exact density of the test statistic from which the FAR and detec-

tion probability can be calculated. This thesis will investigate

one particular way of obtaining this important information.
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1.7 Thesis Objective

This thesis will examine the effect of zero-memory non-

linear filters on the detection problem stated in the introduction.

The transfer characteristic of the NLF will be determined by a

probability integral transformation. Generally speaking,the trans—

formation will insure that the test statistic has a continuous

PDF . The type of noise considered at the receiver input and

the monotonicity of the transfer characteristic of the NLF

guarantee the optimality of a threshold test. Taken together,

they enable satisfaction of any specified false alarm rate without

randomization through an easily implemented threshold detector.

The continuity of the test statistic PDF will not depend on

"large" samples.

1.8 Organization of the Thesis

Chapter II presents a relevant background of statistical

decision theory for this communications problem. Chapter III

concentrates on the development of the applicable nonlinear

filter (NLF) and examines its properties. Chapter IV compares

the NLF detector with other alternative approaches, while

Chapter V summarizes the thesis and suggests some directions for

further research.



CHAPTER II

STATISTICAL BACKGROUND

This chapter summarizes the relevant background in

statistical decision theory. The definitions and theorems are

in large part taken from the books oflehmann[L1], Fraser [F1],

and Ferguson [F2], but are adapted to directly apply to the

detection problems encountered in the context of radio communica-

tions. The primary purpose of this chapter is to present a set

of conditions which guarantee that the optimal test for location,

where optimality is in the sense of UMP, is a threshold test.

To that end Section 2.1 develops the Best Critical Region (BCR)

for Binary Hypothesis Testing problems. The notion of Monotone

Likelihood Ratio (MLR) is used to define the BCR in terms of a

decision threshold. Section 2.2 extends threshold detection to

UMP tests, and presents a sufficient condition by which a location

parameter family can be tested for MLR. Section 2.3 defines some

measures of SNR and ARE from parametric and nonparametric theory,

respectively, and shows how they are related. Section 2.4 develops

the Optimal detector of a constant signal in white, Gaussian noise,

and Section 2.5 investigates the effect of zero memory filters,

linear and nonlinear, on the MLR property. Section 2.6 summarizes

the main results of the chapter.
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2.1 Simple Hypothesis Testing

The following definitions are intended to make precise

the idea of location shifts of a real valued random variable X,

whose cumulative distribution function (CDF) depends on a single

real parameter A. Let F(x‘A) denote the distribution function

of the random variable X when A is the true parameter value;

F is assumed to be absolutely continuous with probability

density function (PDF) f(xlA).

Definition. The parameter A is a location parameter for the

distribution of X if, and only if, f(x‘A) = f(x — A) for some

density f(x).

Definition. A single—parameter family of distributions is said

to have monotone likelihood ratio if whenever A1 < A2 the

f(XlA)
2

likelihood ratio -——T———- is a non—decreasing [or non—increasing]

f(X A)
1

function of x.

A non-randomized decision rule for the binary hypothesis

testing problem

H0: A = A0

H t A = A1 > A0

may be defined by a measurable Subset, no, of the sample space

I, no C I, with the understanding that if the observable variable

X falls in no, announce H is true; otherwise say H is
O 1

true. The set 01 Q 1 - 00 is called the critical region. The

false alarm rate (FAR) of the test is given by g p(X\HO)dX

l
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while the probability of detection (PD) of the test is given

by A p(X‘H1)dX.

1

An optimum test, in the Neyman-Pearson sense, is defined

by a critical region Q satisfying I p(X\HO)dX g PF and

“1

g p(X\H1)dX = PD = maximum. This region will be called a Best

1

Critical Region (BCR) and the test defined by a BCR is called

1

a most powerful (MP) test at FAR PF.

 

Definition. A region Ol<: I is said to be best at FAR P

F

for testing HO against H1 if I p(X\HO)dX = PF and if for

01

a .l _ ' __

every other region “1 for which ['p(X|HO)dX — PF’

01

. > I

£p<XlH1>dX a g'NXlHQdXO 1.0. PDml) a PD(“1)'

l 1

In other words, a region “1 is best at FAR PF if,

out of all regions having the same FAR, its measure under the

alternative (PD) is largest. A general method for finding the

best test of a simple hypothesis against a simple alternative can

be found in the Neyman-Pearson lemma.

Lemma: In the test of a simple hypothesis HO against a simple

alternative H1, the region “1 Q [X: A(X) 2 k} where

A f(X‘Hl) r ‘

A(X) = and k satisfies ; p(X H )dX = P] where

f(X‘HO) r11 0 T

O < PF < 1, iS the BCR at the given FAR.

The proof appears in Hogg and Craig [H4] p. 274 and is

not repeated here.
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The preceeding lemma and the definition of MLR allow

statement and proof of the next theorem.

Theorem: The most powerful test of a simple hypothesis H0

against a simple alternative H1 when the likelihood ratio is

monotone (increasing) is a threshold test defined by the critical

(1)

region 01 = [X: X > R}. If R satisfies i p(X\HO)dX ==PF

then 01 is a BCR at FAR PF.

Proof: By the Neyman-Pearson lemma the region “1 Q [X: A(X) > k}

is best at its FAR where k is determined by £p(A‘HO)dA = PF.

If [\(X) is monotone in X then V X 2 K, [\(X) a: [\(K). Choose

+oo +oo

K a p(X\H )dX = P = p(A\H )dA = p(A\H )dA. Then

[XngK] O F {(XO) 0 k 0

A(K ) = k and the regions [X: X a R], [X: A(X) ? k] are equal.

Because the latter region is MP at its FAR, then the threshold

test is also MP.

2.2 Composite Hypothesis Testing
 

The larger detection problem concerns composite hypotheses;

i.e., when the distributions under HO and H1 depend on a para-

meter which is assumed to take on values in some (real) space R.

Let mi: R be the subset of parameter values such that

{PAAA G R} denotes the family of distributions for the random

variable X when H is true. Then R — w corresponds to the

0

possible parameter values when H1 is true. The hypothesis

testing problem can be restated as H : A 6 w

0

H1: A e R - w
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As before, the problem is to dichotomize the observation Space

I so as to satisfy some criterion of goodness". For this

situation the notion of best test at FAR PF must be redefined.

Definition. In the test of a composite hypothesis HO against

an alternative (simple or composite) the region 01 is said to

be at FAR P if sup ]‘ p(X\A)dX = P
F

When the alternative H is also composite the notion

1

of best test must also be generalized.

F.

Definition. A region Q is said to be Uniformly Most Powerful

l

(UMP) at FAR P for testing H I A G w against H : A G R - w
0 1

and if, for any other region Hi at FAR PF’

it is true that g p(X[ A)dX ; g p(X\ A)dX for each ,A E R - m.

I

1 1

F

if 01 has FAR PF

The Neyman-Pearson lemma guarantees that, in the class

of regions having FAR PF’ there exists one whose PD is

maximum at any fixed element A1 6 R - w. There is no reason

why this region should also maximize the PD for some other

element A2 6 R - m. It is, therefore, not surprising that UMP

tests exist only in Special circumstances. Fortunately, one of

these circumstances is widely found in radio communications prob-

lems and will be investigated in this thesis.

Theorem: If the distribution of X has non-decreasing monotone

likelihood ratio, then the region 01 = [X: X 2 K} where K is

chosen to satisfy I p(X‘HO)dX = P O < P < l, is UMP of FAR

F’ F

PF for the hypothesis testing problem HO: A s A against

0
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Proof: See Ferguson [F2], page 210.

This theorem and its counterpart for binary hypothesis

testing illustrate the effect of the MLR property. Tests for

location simplify to threshold tests when the underlying

f(x‘A) = f(x - A) have MLR. Because of the importance of the

MLR prOperty in this thesis, the sufficient conditions under which

a density may have a MLR with respect to a location parameter

are now investigated.

 

Definition. A density function f(X) is called strongly unimodal

if - Ln f(X) is a convex function of X.

Lehmann [L1, p. 330] shows that strong unimodality is a

sufficient condition for a density to have MLR.

Theorem: Let f(x) be a density on R. A sufficient condition

that f(x‘A) = f(x - A) have MLR is that f(x) be strongly unimodal.

Proof: Let f(X) be strongly unimodal and suppose X < X',

. . . f(X -A') f(X' -A')
'. Th d t sA < A e con 1 ion of MLR in X, namely, f(X _ A) _ f(X' _ A) ,

is equivalent to

log f(X' - A) + log f(X - A') g log f(X - A) + 10g f(X' ‘ A')

The four differences can be arranged, from smallest to largest,

as (X - A'), (X - A), (X' - A'), (X' - A) or (X - A'). (X' - A').

(X - A), (X' - A). In either case by defining

t 9 (X' - X)/(X' - X + A' - A) it is true that

X - A t(x - A') + (1 - t)(X' - A)

x' -A' = (l -t)(X -A')+t(X' -A)
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Define h(X) Q —log f(X); by hypothesis, h(X) is convex. Then

for every t1,t2 and O s l S l

hilt, + (1 - x)t2] s lh(t1) + (1 - x)h(t2)

log flit, + (1 i>t21 2 R log f(t,) + (1 - x)log f(tz)

Letting )\=t, t1=X -A'. t2 =X' -A,

log f(X - a) 2 t log f(X - A') + (l - t) log f(X' - A)

Letting A = 1 - t,

log f(X' - A') R
N (1 — t) log f(X - A') + t log f(X' - A)

Adding these two equations yields

log f(X - A) + log f(X' - A') 2 log f(X - A') + log f(X' - A),

which is the condition for f(X) to have MLR. Q.E.D.'

This theorem provides a method of ascertaining whether

the family of densities

f(x‘A) = a exp(-b\x — A‘e), 9 fixed,

has a MLR. This is seen to be the case since -Ln f(x) =

-a + b\x\e is convex in x for each fixed 9 6 [1,2].
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2.3 Signal-toeNoise Ratios (SNR)

In Section 1.5, the measure of signal-to-noise ratio (SNR)

applicable to this thesis was given as the rms signal power divided

by the rms noise power. Because the detector of this thesis is

to be compared to others in Chapter IV, this section introduces

performance measures which have previously been defined for

parametric and nonparametric detection. The general Gaussian prob—

lem is the hypothesis testing problem in which the densities under

both classes are Gaussian, i = 0,1. When the covariance matrices

under the hypotheses are equal but the means are different, the

quantity

 

2 g [6(L‘H1) - MMHOHZ

d [Var (LlHln

with L the test statistic, has been used as a SNR [V1, p. 99].

This same quantity was specified by Hancock and Lainiotis [H3]

for the problem of detecting an unknown d.c. signal having

magnitude 9 > O in zero-mean noise with a symmetric, but other-

wise largely unspecified, PDF.

The physical justification for this concept of SNR rests

on the idea that the two densities of the received random variable,

conditional on signal present and signal absent, become more

distinguishable as either the distance between their central

locations (means) becomes greater or the concentration of their

values around the central location becomes greater (smaller

variances).
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A theorem of Capon in 1961 [C2] introduced the concept

of efficacy in determining the asymptotic relative efficiency

(ARE) of a test Un relative to the test U:, where both tests

satisfied certain regularity conditions. The ARE of the Un-

*

detector with respect to the Un-detector was given by

A e (Un)

Eu u* = ——e;-— , where e(Un)’

’ e(Un)

the efficacy of the Un-detector, was defined as

lim

00 (Un)

2

A 1 LE (U)

e(U ) = ‘— -a§——Q—JQ— .

n n

n—Roo 9:0

The sample size of the Un—detector is n, and E9(Un)

is the expected value of the detector statistic under the

alternative hypothesis H1, when the signal strength is 9.

The following shows that efficacy depends directly on the pre-

vious measure of SNR and the relationship is derived using the

regularity conditions of Capon.

Given that §9IE9(Un) exists for all 9 G (O,a), and

is continuous at 9 = O, a Taylor Series expansion of E9(Un)

. . . U _ E = a__E

about the origin ylelds E9( n) 0(Un) 9n AG e(Un)‘e=O

2

+ 0(en) as 9n H 0 [H5, p. 54]. Then

E (U ) - E (U )

___°_ . 9 n O n

e(Un) 11m \fn 9n 00(Un)
 

2

1 . The relationship between

n—m

efficacy and SNR is obvious.

2.4 Optimal Detector of Constant Signal in White, Gaussian, Noise

This section develops the optimal detector of a constant

signal in white, Gaussian, noise. According to well-known results
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on sufficiency, the optimal test can be based on the sufficient

2

statistic Y = Yi' The distribution of Ti under H0 is

2 11 2

fl(0,g_) and under H1, T. is fl(A,§r). The normal family has

e
r
—
R

E
t
a

increasing MLR with reSpect to location (variance fixed), and

therefore the best test having a False Alarm Rate of P is

F

H

l

— >

Y < K

Ho

where K is defined to satisfy

= IEQ. '2 0
PF i ( N ) e dy

_ o -1
Thus K — 7E'erfc* PF’ where the complementary error function is

2

_ E_

e 2
 

du. Hence, the BCR is defined as

[TE E >.Q_ erfc; PF}. The probability of detection for

this critical region is defined as

+002 2_, .1%(-"—‘—‘=1)2

P=£(——g—§)Ze G

D

dy.

P =erfc*[erfc;lP -M].

F o

This equation relates the probability of detection directly to

False Alarm Rate, and is the basis of the receiver operating

characteristic (ROC) [V1, p. 38].

2.5 Measure Transformations and MLR

The purpose of this section is to investigate the effect

that a zero memory filter has on its input with reSpect to the
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desirable property of MLR. In Section 2.5.1 measure transforma-

tions are defined while in Section 2.5.2 the MLR property is

shown to be preserved under monotone measure transformation.

2.5.1 Measure Transformations

Let fX(X) be the density function for a continuous

random variable X, and suppose a real-valued point function

g(~) is specified. The random variable Y = g(X) is defined

and its density function fY(y) is to be determined. Assuming

 

that g(-) is monotone increasing wherever fX(X) ¢ 0 the

density of Y is given by

_ -1 _d_ -l

fY(v> — fx(g <v>>ldV g on . (1)

Proof: See Dubes [D2], p. 243.

2.5.2 Monotone Measure Transformations
 

If X has PDF fx(x[A) which has increasing MLR, and

Y = g(X) where g(-) is monotone increasing and satisfies the

regularity conditions which guarantee (1), then the family of PDF's

for Y,

Q -1 .Q_ -l

£Y(y\A) — fx(g (y)lA)\dy s (y)\,

has increasing MLR. This is immediate since if A1 > A2,

fY(ylA1) fx(g‘1(y)\A1>
 

fY(y‘A2) fx(g’1(y)lA2)

fx(x‘Al) -l
is monotone increasing, and g (-) is monotone

fx(xIA2)
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increasing. The result is now illustrated with examples of linear

and non-linear monotone transformations on location parameter

families.

Example 1. . Let X under H0 be uniform on [-l,l]. Under

H1, X will be uniform on [-1 + a, l + a], a > O, and suppose

the linear filter has the transfer characteristic aX + b, where

both a and b are known positive constants [for the sake of

simplicity]. Thus f(Y‘Hl) = %; for a(a-l) + b g y a a(a+l) + b,

f(Y‘HO) = %;- for b-a g y g b+a. These densities are shown in

Figure 2.1 and it is easily verified that Y has the MLR property.

 

 

      
  

 

 

      
  

f(XlHO) f(YlHO)

a

+x : +Y

-1 +1 b-a b b+a

f(xlnl) f(Y‘Hl)

e

+ J +

-l+a +l+o, X b+a‘o, Y

Figure 2.1 Invariance of MLR to Linear

Transformation

Example 2. Let the input random variable X be uniform on (-%,%)

under HO and uniform (A,A+l) under H1 with -% < A S 0. Let

g(X) be defined as g(X) = sin X for '1; s X s + g, +1 for

E n .
X > 2, -1 for X < - 2 . The Situation is illustrated in Figure 2.2.
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sin (x)

f (x‘H )
x‘nl i

7 X

a

 

N
I
Z
l

R

D

X

0 1+A

 

  

 

 

  

 

sin(l+A)

Figure 2.2 Invariance of MLR to Nonlinear

Transformation

2.5.3 A Transformation to Achieve a Specified Distribution

Let X be a random variable having CDF F.

certain regularity conditions [H6, p. 33], the transformation

Subject to

G‘1<F(x>>

will yield a random variable Y, having CDF G.
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2.6 Summary

This chapter presented some concepts from statistical

decision theory which are applicable to the communications prob-

lem introduced in Chapter I. The property of Monotone Likelihood

Ratio was shown to be a sufficient condition for a test of loca-

tion (known direction) to be implemented by a threshold test.

The equivalence of the Efficacy of Capon and the SNR of Van Trees

was shown and Monotone Likelihood Ratio was shown to be an invariant

prOperty when a family having it was passed through a nonlinear

filter having an odd-symmetric, monotone increasing transfer

characteristic. A sufficient condition for MLR was derived and

applied to show that the family of noise densities introduced in

Chapter I has the MLR property.



 



CHAPTER III

ZERO-MEMORY NONLINEAR FILTER

This chapter discusses the use of a nonlinear filter

between the sampler and detector of Figure 1.1. Section 3.1,

which is concerned with integrators and clippers, provides

motivation for investigating the measure transformation of

Section 3.2. This section outlines the procedure which

”Gaussianizes” random variables; that is, the transfer char-

acteristic of a zero-memory nonlinear filter (NLF) is determined

through a probability integral transformation, which produces

independent Gaussian random variables at the NLF output, when

the filter is driven by a finite sequence of independent random

variables having a Laplacian probability density function.

Section 3.3 then discusses a Special property of the NLF trans-

fer characteristic while Section 3.4 derives the exact dis-

tribution of the NLF output when the input is noise plus signal.

Section 3.5 develops first and second moment approximations for

the NLF output under H , while Section 3.6 summarizes the main

1

results of the chapter.

30
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3.1 Clippers, Limiters and Integrators

In many practical communications receivers, the input

process is first filtered to remove any noise spectral components

which may lay outside of the signal bandwidth. Cascaded linear,

tuned networks, whose overall bandwidth is wide enough to pass

with considerable amplification the significant Signal components

while rejecting those frequencies containing noise alone,are

widely used. If the input to a filter is a quasi-monochromatic

signal, its output at any time is a weighted time-average of its

past input. When the filter bandwidth is much narrower than the

noise bandwidth at its input, the central limit theorem can be

invoked to justify assuming that the amplitude distribution of

the filtered output is Gaussian.

In other receiver types the input process is first sampled,

thereby reducing the continuous-time input to a finite-length time

series. Many applications of nonparametric statistical methods

have been prompted by the fact that the sampled data process often

has a large variance and consequently may not satisfy the con-

ditions of a central limit theorem [R1]. Therefore, so-called

"optimum" tests based on the Gaussian assumption may be highly

unreliable. The inapplicability of Gaussian methods is also

prevelant in underwater sound receivers which pick up Sporadic

biological noise and telecommunications networks which are subject

to randomly occurring impulses due to lightning, sparks in ignition

systems and faulty connections or switches [Hl, p. 317].

 

Narrow Band
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A large variance for the input random variable may pre-

clude application of a central limit theorem without some form

of noise suppression. One method is the clipping, or limiting,

of the received signal, the usual justification being that this

increases the SNR. Although the introduction of a clipper before

processing the received signal seems intuitively a good idea, it

is not at all clear that a simple clipping level is in some sense

the best system design that can be achieved. Moreover, when

severe models of impulsive noise amplitudes are considered,

commonly defined SNR's may not be useful criteria of system per-

formance. The structure of the nonlinear device for suppression

should be determined by whatever knowledge is available about

the noise PDF so that a minimal amount of received information

pertinent to the signal decision is destroyed [R1], [R2].

3.2 Measure Transformations
 

The essential problem is sketched in Figure 3.1 and can

be stated as follows: Let X be a random variable having a PDF

which is known completely and which is absolutely continuous with

respect to the Gaussian PDF. Determine the transfer characteristic

of a device such that with the r.v. X applied at the input,

the output random variable, Y, has a Gaussian PDF.

This problem is different from the more common one involved

in functions of random variables. There, the transfer characteristic

of a device is specified and the input is a r.v. having a known

PDF. The problem is to then determine the distribution of the

output. This was discussed in Section 2.5.1. The results of
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Section 1.6 indicate that the PDF of interest in this thesis is

Laplacian.

Problem Statement: Find a transfer characteristic g(x) which

transforms the random variable X having the Laplacian PDF

fX(x) = a exp (-b‘x\), -m < x < +m, With a and b defined by

AZ--0-X RB to the Gaussian randomE;fx(x)dx = l, mezfx(x)dx

variable Y, which has 0 mean and variance 0%.

Problem Solution: Constrain g(x) to be a monotone, strictly

increasing function on the real line having odd symmetry and

require Y = g(X) a.e. Then

P[Y s y] = P[X g x], with x = g- (y).

Case #1: x < O

yloo -% u2 x

j g_____ du = I +bwd

,/ 211'

-oo -00

y _ a bx

or, T - _'e X < O

c b

O

y < 0

Case #2: x > O

Y/GO _% UZ X

f e du = 1'+ a e-bw dw

[72W 2 A
~00

1. = .1. a _ a -bx

Using the first condition on X, [ fx(x)dx = l, the

-m

. a . .

ratio b. is determined.

(1)

(2)

(3)

(4)

(5)





[ae-b‘x\dx l

-cn

4130

g a e-bxdx = 1

a -bx+°°-l=,a=_1_

be 0 ‘2 b 2

Combining (3), (5) and (8) yields

b

9 X“ = % e X X < O

00

=1-%e'bX x>O

Solving for y in (9) and (10) gives the form of g(x)

bx

9-1 2“ x O.0 [2] <

> 0

s
4 ll

 

'
~
< I

Q

Q

r
e
l

I

.
.
.
I

.
.
.
4

l

(
D

N
I
U >
<

g

X

Figure 3.2 shows the function g(x) of (12).

Using the second condition on the PDF fx(x)

the value of the coefficient b.

(D m

2 A 2 2 -bx 2
[4x fX(x)dX - ox = 25 a x e dx — ox

Equation (13) is easily put in the form

m b302

2 -

g u e udu = X
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(6)

(7)

(8)

(9)

(10)

required:

(11)

(12)

determines

(13)

where the left-hand-side is immediately recognized as the Gamma
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integral; therefore

 

3 2

b OX

= = i:
23 F(3) 2. 2. (l4)

3 2

. b0x b 22 . . .
Finally, -E;-= 1 = (;)b OX = 4. USlng (8) in (14) yields

2 2

b — 2 , or

0x

b = 2 . (15)

0x

The given PDF can more easily be written in the form

b

fx(x) = E'exp (-b‘x\), -m < x < +m . (16)

3.3 Concavity

This section will prove that the transfer characteristic

determined in the previous section is convex on the region x > O.

 

 

Given

-1 e-bt

g(X) :00 Q (1 " 2 )a ~X>O (17)

write it as

2

_ H_

e-bX +m e 2

2 =i 77:“ - (18>
g/oO

Take derivatives on both sides with respect to x twice

1 2

- g(gfl

-b2e-bx l 2 g_ e 00
._______ =.__ H _ I

2 0,0 g (8 ) 2 T; (19)

°o

' 2
g" = A351 [88' _ boo] . (20)
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Thus to show that g is concave on X > 0 it is sufficient

to Show that gg' - be: < O, for x > O.

2 2

ML) 11..
00 +00 2

g' = 00b e j e du (21)

g/oO

Integrating (21) by parts yields

1/ 8— 2

g' = -? - 00b 8 J: 2 du (22)

(g/OO) u

Hence

2

16(57) +00 -15 U2

2

g'g - 00b = -oOb g e O f S—---§——-du (23)

(g/OO) U

All terms on the right hand side are positive for x > 0,

therefore gg' - 03b < O and g”(x) < O for x > 0.

3.4 NLF Output PDF under H
 

1

This section assumes the NLF has the transfer characteristic

Specified in (11) and (12) and that the NLF input has the Laplacian

amplitude PDF of (16) translated by the amount A > O. The PDF

of the NLF output will be derived using the methods of Section

2.5.1. This will show the dependence of the form of the output

PDF on the input SNR, and will be used as justification for certain

approximations made in Chapter IV.

Write

-l

_ ‘1 53.411
fY<y> — fx<g <y>>l dy l (24)
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where

_1 e-bx

y = 00 e [1 - 2 ] X > O

_ 6P-1[ebx O (25)

GO -—2 x <

and

fX(x) = g-e'le‘Al, .. < x.<-+.. (26)

It will be shown that the case for A = 0, i.e., x is

distributed according to H0, can be considered as a special

case of this computation, thus demonstrating the ”Gaussianizing"

property of the NLF.

Case 1: y < 0 = x < O

 

 

 

-1 ebx

y = g(X) = 00 61> (T) . (27)

Then g'1<y> = §2n(2¢<1->> (28)

Co

-1 g— R'<y/oo>
M= l 0 (29)

dy b 29 (y/oo)

f ( ) = Q b[%'&n2i(y/oo) - A] 1 2¢'(y/00)

Y y 2 e boo 2©(y/oo)

2

4:3 /e-bA ' 43A e (y 00)

fY(y) = —;(-)— i: (y/oo) = e ff; 00 y < O (30)

Case 2: y > 0 = x > O

-1 -l
b -b ( - A d



 

 

 

-1 "bx

Y = g(x) = 00 Q [1 ' 2 3

e-bx

l - 2 =¢(y—)

00

x = - B’Ln2[1 - 9(y/OO)]

_ I

dy boo 1 - e(y/oo)

% e-b(X-A) when x > A > 0

fx(x) ’-

% eb(X-A) when A > x > O

Combining (31), (35), and (36) yields

-b[-%‘£n2[1 - @(y/00)l @‘(y/oo)

boo l -9 (Y/OO)

 

I

N
I
C
T
‘

(
D

(
D

fY(y) -

-2<y/oo>2

—fl———TT_-C_I__ valid for X > A ,

0

II

(
D

-bA

which, by (32) is equivalent to y 2 goé-l[l - 9§——] 9 g(A)-

Combining (31), (35), and (37) yields

..b[—bl Ln2[1-@ (y/00)3
'

3.8 e

-_1_ Q (y/oo)

f (y) __

Y b00 l-My/oo)

2

-%(y/o )

e e O

Ev!" °0 [l-O’2(y/oo)]2 .

 

Equation (41) is valid for O < x < A, which is equivalent to

-l e.bA

O<y<00¢ [1--2—-]=g(A)-

(32)

(33)

(34)

(35)

(3 6)

(37)

(38)

(3 9)

(40)

(41)
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Combining the results (30), (39), and (41) gives

r -%(Y/oo)2

-bA e

e "772:”36' y < 0

-%(y/oo)2

fY(Y) = 4 ebA° Ema—— y > g(A) (42)

e ~i————- O<y<mm

KRti-w/oonz “2" °b

 

 
When A = O, g(A) = O and (42) reduces to a zero-mean

Gaussian PDF with variance The graph of fy(y) is shown

2

GO-

in Figures 3.3 (a), (b), (c), and (d), for increasing values of

SNR. The assumption of weak signal normality of Y appears well

justified when bA 3 IO’ approximately -29 db.

3.5 Moment Approximations
 

Under the alternative (H1) the PDF for the random

variable X, the NLF input, is specified exactly. It is a replica

of the PDF of X under H translated by A > O. Assumptions0’

Al and A61 guarantee that under H1, the random variable X has

expectation A > 0, and a known variance, 0:. The problem of

this section is to find an approximation for the mean and variance

of Y, the NLF output random variable, when X contains signal

plus noise.

Although the exact form of the PDF of Y is given in

the previous section, the complexity of determining the moments

 

Chapter I
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1 Y

3— f (—)

0 c’0

  

SNR = -29db

 
 

SNR = -23db

(b)

 Y

(—‘)

C0

 

SNR = -15db

(C)

 
 

.4 d SNR = ‘9db

(d)

 
Figure 3.3 PDF of NLF-Output Under H
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encourages the introduction of simplifying approximations. The

expected value and variance of Y, the NLF output,are derived

below.

Let Y], i = 0,1 indicate the expected value of the

NLF output random variable when hypothesis H1 is true.

00 co

= f = . 3A. y Y<y|H1>dy [mg(x>f(x\H1>dx (4 >

Expanding g(x) in a Taylor series about A yields (subject to

a few regularity conditions), for some g E (O,A),

r-l _ j

g(x) = g(A) + 2 9392—2; ”(m +5—AL (”on . <44)
j=l r!

Substituting (44) into (43) and interchanging summation and

integration operations,

§1=Ii8m>+ 2+8(”(A) + (Xf‘———): (10%)], “lede (45>
j=-1 °

gum: + (iv) (:1

= g(A) + "T— 4! “'x,4
+ (46)

Assuming g(°) is sufficiently smooth to allow consideration

of only the first two terms, gives

2

_ . g"(A)oX

Y1 = g(A) + —"2—— (47)

The second central moment is:

= j‘ g2(x)f(x‘H1)dX

Let h(x) = g2(x). Then, using (47),
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—2 , Wm 2

wm>=aewmfi+gmmwm1 9%

‘2 2

Y1 = g (A) + [(g'amz + g(A)g"(A)]o: (50)

N t' 11 2 - _2 '_ 2 '0 ing t at 01 - Y1 - (Y1) , (47) and (56) give the desired

result, namely,

2 . '

01 = [g'(a>]ze§ (51>

 

It must be noted that (47) and (51) are of questionable

validity in the weak signal case. This is because the function

g(x) has a discontinuous second-derivative at the origin.

Although the function is sufficiently smooth away from the origin,

and therefore allows (47) and (51) to be useful in the large SNR

case, other methods of approximation must be sought for the weak

signal situation.

Referring directly to the PDF, Sectionli, for very small

A, (42) becomes

2

-e(1—>

C’0
e-bA e

TTO'O

(5 2)

2
..(LV

0

bA e .
fY (Y) e m;- lf y > 0

Then

 

See Appendix III.



2 2

~15<Y—> ac?)

O 0 m 0

Ed) e'bAo f y dy + ebAo j y e dy <53)
0 2 0 2

-m n o 0 Jzu o
O O

:V/ETO' sinh(bA)

n 0

:/'2:cr bi: + 0(A2)
n 0

. 2 0

= — (in; (54)
Ti 0'

X

The variance of Y under H1 and weak signal conditions

will be assumed identical to the variance of Y under the null

hypothesis. By assuming that the variances under the two

hypotheses are equal, an optimum decision rule can be defined.

However, no claim will be made for optimality; the important

feature will be the improvement in performance which may be

attained by using a nonlinear element in the detector.

3.6 Summary

This chapter discussed reasons for using nonlinear elements

in the detection process. Because it is not clear that a simple

clipper is in any sense the best nonlinear element that can be

used, the "Gaussianizing" nonlinear filter was introduced. The

 

nonlinear filter (NLF) that transforms Laplacian variables to Gaussian

random variables was derived. The concavity of the transfer

characteristic on the positive real axis was shown and the output

PDF under H1 was found. Approximations for the mean and

variance of the NLF output were derived and their regions of

validity were discussed.





CHAPTER IV

COMPARISON OF DETECTORS

This chapter evaluates the performance of a detector

which includes the NLF derived in Chapter III. It investigates

the possibility of improving the detection reliability. To do so,

the probability of detection (P ) as a function of false-alarm

D

rate (FAR) is found. For the weak signal detection problem the

NLF-detector performance is compared to the Optimal detector (the

nonparametric sign test) and also to a suboptimal detector which

is based on the assumption Of a Gaussian noise model. The com-

parison is repeated for the case of strong signal.

The measure Of performance of one detector relative to

another is based on the following definition [C1, p. 89].

Definition: Let T1 and T2 represent two tests that test the
 

same HO against the same H1, with the critical regions size a,

and with the same values of 9. The relative efficiency Of T1

to T (or "efficiency of T2 relative to T2”) is the ratio
1

nZ/nl, where n and n2 are the sample sizes of the tests T

l l

and T2 respectively.

This is a reasonable and useful measure of the relative

efficiency Of T1 with reSpect to T2. An asymptotic relative

efficiency (ARE) of T with respect to T is Obtained by
l 2

passing to the weak-signal limit (when it exists) as H1 approaches

H0 in a properly restricted sense [C5, p. 296].

46
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Section 4.1 develops the Optimal detector for location

alternatives for a sample of size N from the Laplacian density

f(X) = ‘3' exp(‘- b‘X-A‘). Section 4.2 focuses on the weak-signal

detection properties of the Sign test, the ”Optimal" test based

on an assumed Gaussian noise model, and the NLF-detector. Sec—

tion 4.2 concludes with a comparison between the Sign detector and

the NLF detector. Section 4.3 investigates the large-signal de-

tection properties of the three detectors. In Section 4.4 a Monte

Carlo simulation is performed to investigate the performance of the

three detection systems for small sample sizes in both Laplacian

and Gaussian noise. Section 4.5 summarizes the main results.

4.1 Optimal Detector Of Constant Signal in Laplacian Noise
 

The Optimal detector, as was discussed in Chapter II, is

f(x x ---x [H )

based on the likelihood ratio, where A(xp) Q 1 2 n 1 ,

f(X1X2”°Xn\Ho)

 

and f(x1'°-xn‘Hi) is the likelihood function of the sample

, A

xn = (x1x2°'°xh), when hypothesis Hi is true. Let the signal-

plus-noise PDF be of the form f(u) = E'exp(-b‘u-A‘), for

-m < u < +m, with b determined from the relationship

m

2 2

f x f(x)dx = OX (1)

-oo

(See Chapter III, Section 3.2 for this development.)

n n -b\x,-A‘ n -b\x,|

A(X)=(Ilae 1 )/(nae 1) (2)

i=1 i=1

I1

= exp ( -b 2130 Xi-M - WED) (3)

-an(xn)=;|X-A\ -\XI (4)
b 1( ti i.l'

To proceed further with this analysis the real line is

broken up into 3 disjoint intervals, as follows:
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Let 11‘! [x‘x 2 A > 0}, 12 = [x‘xi< O] and I3 = [x‘A > x 2 0].

Now for each Xi which falls in 11’ the right-hand-side of (4)

reduces to ‘Xi - A] - \Xi\ = -A. For each X1 in 12, the right-

hand-side of (4) becomes ‘Xi - A‘ - ‘Xi‘ = A; and for each X1

in 13, the right-hand-side of (4) becomes A - 2Xi. If among the

N observations, Ni are assumed to fall in interval I,, the

i

right-hand-side of (4) may be rewritten as:

A05 -N1)*'Z(A -2X)- (5)

N3 1

 

This can also be written as

MN, - N1) + N31: - z: (A - 2x1). (6)

N3

3 N - (N1 + N2), (6) may be writtenUsing the fact that N

MN, - N1) + [N - (N1 +N2)]A — 2: Xi (7)

N3

= A[N - 2N1] - 2: xj. (8)

N3

The optimum processor consists of three-level threshold

circuitry followed by a counter and summing unit. If the threshold

circuitry detects a sample in 11’ A units are subtracted from

the counter while a positive A units are added to the counter

when a detected sample falls in 12. Each sample occurring in

I3 is summed and stored. The storage unit and counter indication

are summed after the N samples are processed and this test

statistic is compared to the decision threshold. The exact dis-

tribution of this test statistic can, theoretically, be obtained

although actual analytic evaluation would be cumbersome.
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4.2 Weak Signal Detector Evaluation

If interest is focused on the vanishingly small SNR case

(A a O), a result from classical hypothesis testing literature

becomes immediately applicable. If X1,X2,...,XN is a sample

from the Laplacian distribution with density %-exp(-‘X - A‘),

with A a location parameter, then the Locally Most Powerful

(LMP) test of A g 0 against A > O is the sign test [L1, p.

344]. The concept of LMP tests is applicable to communication

problems because of the desirability of achieving optimum detec-

tion for weak signals. Strong signals will be detected even if

the detector is well below Optimum, as was noted by Capon

[C2, p. 67].

As A a 0, the test statistic Of (8) becomes A(N - 2N1),

where N1 is the number of Xi greater than A.N Thus an equi-

valent test can be stated in the form SN(XN) = Z u(Xi) where

i=1

1 if z > 0

11(2) =

0 otherwise

The test based on SN has been investigated by Capon

[C3], Kanefsky and Thomas [K2], and others [C4], [H6], [C5].

It is a well known result [F2] that the statistic SN

is sufficient for p, the probability that X > 0. The dis-

tribution Of SN is binomial with parameters N and % under

H0, and therefore the threshold value for any specified FAR can

be determined. The problem of randomization can best be explained

by an example.
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Example 1: Determine the threshold value that will guarantee a

 FAR of 10% when the test statistic is SN and N = 8. The

probability mass function for SN is shown in Figure 4.1. The

randomization problem becomes obvious unless the FAR is specified

as one Of the values (0.0, 0.0039, 0.0351, 0.1445,...).

 

     
 

0.2734 .

0.2188

0.1094

0.0312

0.0039

1 _ - 4* x

0 l 2 3 4 5 6 7 8

Figure 4.1 Probability Mass Function for 8

TO achieve the specified FAR Of 10%, randomization of the

threshold value of X = 6 is required.

0.10 II (.0039) + (0.0312) + B<0.1094)

_ .0649 é

B ‘ .1094 '594

 

The test is based on SN rejects the hypothesis H0 if

X = 7 or 8 and with probability .594 rejects HO if X = 6.
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This section continues with the derivation of the asymptotic

distributions of the Sign detector under the hypothesis and

alternative and its probability of detection as a function of FAR.

Write

n N . N-‘

P[SN s n] = z (.)p‘.] (1 - p.) 3, n = 0,1,2,...,N (9)
,_ j i i

j—O

where

A

pi = P[X 2 O‘Hi] . (10)

With p0 = % (by Assumption A2, Chapter I), define K 3

(3) = 2 P . (11)

'
I
n
2

This expression assumes that randomization is unnecessary. BecauSe

asymptotic results (N a w) are of interest in this chapter, this

will be Of no consequence. On the basis of (11), write

N

N ' N—'

P=z<.>pJ<1-p>J (12)
D sz j l l

with p1 given by (10). For large sample sizes, the DeMOivre-

Laplace limit theorem can be invoked to simplify computation of

the probabilities (11) and (12), [F4].

Defining

R ASN'Npi
. (13)

N’1 J Npi(1-pi)

the theorem states that

 

S

7':

P[z1 s SN,i S zz] N fl(zz) - fl(z1) . (l4)



Then (11) may be written

 

 

 

 

2

u

+°° 1 "2—
= -- 1PF ] N me du ( 5)

K " 2

ll

4

2

_.2_

+m 1 2

PD =]‘ me du (16)

K - NP1

(Nplfl-pl)

From (15)

_ H_ -1 El
K ’4 erfc* PF + 2 . (17)

Using (17) in (16) yields the receiver Operating characteristic

of the Sign detector, namely,

8 erfc;1 PF - fN (2p1 - 1)

PD = erfc* (18)

1 -
flRpl( 13,)

where the s superscript indexes the Sign detector ROC.

When X has the Laplacian PDF

b

f(X) =§exp (-b\x\), —..<x<+.o (19)

then

e-bA

p1 = 1 ' 2

-bA (20)
 

1"’1" 2

Substituting these expressions into (18) yields
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erfc;1 P -'/N (1 ‘ e-bA)

PS = erfc F , . (21>
* - _

D {(2 _ e bA)e bA] 2

Substituting b =‘12' into (21) yields

ox A

— f2 3—

s erfc;1 PF -/N(l - e X)

PD = erfc* A_ L (22)

- f2 A— - /2 2
[( OX) Ox

2 - e e

Equation (22) can be used to plot PD as a function of PF with

N and A—' as parameters. The ROC of (22) can be compared to

that derived in Chapter II, Section 2.5 for the "optimal" detector

based on an assumed Gaussian noise model, namely,

U
0

P = erfc7,,[erfc7;1 PF - [N :1 . (23)

For the case of small SNR, i.e., A ~ 0, (22) becomes

U

PS = erfc*[erfc;1 P - ,/2N L] . (24)

F OX

Suppose that the numbersof samples N in (23) and (24)

are not necessarily equal, i.e., in (23) let N = NO while in

(24), let N = NS.

If the two tests have the same FAR and PD, then equating

(23) and (24) yields

-1 -1
erfcic pF - fNO g— = erfc* PF - ms %— (25)

X X

NO
or simply fi-'= 2 which is precisely the Pitman ARE for the

S

nonparametric sign detector relative to the ”Optimal" Gaussian

detector.
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The weak signal performance Of the NLF detector is now pre-

sented. The results Of Chapter III are summarized in Figure 4.2.

 

 

 

 

Gaussian N

XN , Y Gaussian DECISION

Transforming --—--—

l
Filter Detector H0 or H1

   

 

   

    
’ISequence of N iidr) ’Sequence of N iidrv havfhg

having Laplacian PDF Gaussian PDF under H . Under

under HO and H1 H and small A, the r.v. are

assumed Gaussian.

Figure 4.2 Nonlinear filter detector

Well known results concerning the sufficiency of the sample

mean. can be invoked for the problem described in Figure 4.2. The de-

tector based on the sample (YN) mean is easily formulated. Under

00 - 2 O0 O0

—— h' d H ~ '—— '—— —— . ThN ) w lle un er 1, YN fl(/fi (OX)A, N ) e

expression for P as a function of FAR is then given by

D

C

- £3- 9- 491)» (26)
0 TT OX

HO: YN N 7((09

N _ -1

PD — erfc), [erfc* PF

the validity of which is based on A N O. The N-superscript

indexes the NLF detector ROC.
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Suppose that the numbers of samples N in (24) and (26)

are not necessarily equal, i.e., in (24) let N = NS and in (26),

let N = NN. If the two tests have the same FAR and PD, then

equating (24) and (26) yields

0'

erfc; -S/'2N A— : erfc:1PF - LN— é‘ ("Q) A

0x 00 “ CIx

N 2
—S=—é0.636. (27)
NN n

Using (25) and (27) the ARE of the NLF-detector relative

 

to the "Optimal" Gaussian detector is found to be

2

‘19

NN

_Q .

N 2
1
:
»

=1. 27

Z

2
I
'
m

On the basis of ARE, the NLF-detector is better than the

"optimal" Gaussian detector, but not as good as the Sign detector.1

This result could have been anticipated under the assumptions on

which it was based. The following theorem makes this situation

clear.

Tpgpppm; Let X and Y be univariate random variables related

by Y = g(X), g(-) a monotone increasing function wherever fX(X)

is nonzero. Then JX(1:2) = JY(1:2).

0° (X)

Proof: J (1:2) Q j (fX 1(X) - fX2(X)){,n —§l——— dX . Make the

— x 13,200

change of variable X =1(y), which is monotone increasing and

defined uniquely for each y. Then,

 

Note that the NLF does improve SNR without a corresponding

improvement in detection probability.
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-1

fx1(g (y>> d

EX2<g'1(y)>

 

Jx<1:2> = jm<fx1(g'1(y>> - fx2<g'1<y)>>(§;-g‘1<y>>rn y

m fY1(y)

= [ (fY1(Y) ' fY2(Y))Ln E_—(§)- dy

'm Y2

= JY(l:2)

This formalizes the notion that a nonlinearity whose char-

acteristic is monotonic does not affect PD and FAR [R2, p. 438].

 

This is because the probability that the output exceeds a given

threshold is exactly the same as the probability that the input

exceeds a corresponding threshold, there being a one-to-one

relationship between input and output amplitudes.

The Optimal test for location was shown in Chapter II tO

H

l
N >

be of the form A(X ) < K, where A(XN) was the likelihood ratio

H0
N

and K was picked so that P[A(X ) > K‘HO] = P By the mono-F.

tonicity of the logarithm, an equivalent optimal test is Of the

H

l

‘ N > * 7'c

form Ln A(X ) H K , with K satisfying

0

l

"
U

P[Ln A(XN) > K*\HO] —

H

"
U

7'c

Then P[Ln A(XN) > K [H1]

If Ln A(XN) has a symmetric PDF under H and H and if the

0 1’

variance of Ln A(XN) is the same under both H0 and H1, then

PD depends on the separation of means of Ln A(XN), the larger

the separation the larger the detection probability will be. Then

E[Ln A(XN)[H1] - E[Ln A(XN)‘HO] is a useful measure of the

distance between distributions. When normalized by the common
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variance, the result corresponds to the SNR measure of Van Trees

[Section 2.3]. But

f1(X)

fO(X)

 

E[Ln A(XN)\H1] =j‘ f1(X)Ln dx ,

and

f (x)

°° 1
E[Ln A(XN)‘HO] = ‘5:me (x)Ln “W dX

which yields

E[Ln A(XN)\H1] - Bun A(XN)\H0]

f (X)

35-6—(5 dX = J(l:0)= l [f1<x> - fO(X)]tn

which is the J-divergence distance measure introduced in Appendix I.

This shows that the Optimal test for small signals at the nonlinear

filter output is ppp based on the sample mean. However, as pointed

out in Section 3.5, no claim for Optimality was intended; the NLF-

detector is being investigated as a suboptimal detector which pro-

vides a continuous test statistic of known form under the null

hypothesis.

4.3 Strong Signal Detector Evaluation

Letting the sample sizes of the Sign detector and Optimal

Gaussian detector be NS and NO, respectively, and equating (22)

and (23) yields

-1 -8

erfc* PF - /NS (1 - e ) Z

 = ‘ - -J1 2

[(2 - e-B)e-Bl% erfc*1PF 2 B ( 8)

where 9 g,/2 A/ok. Define h(9) Q l - [(2-e-B)e-B]-§, and write
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N erfc-lP _ 2

r9- = film—"Ll W + ‘1 ‘ 8 BA (29’
s B S

In the region 0 < B < .7, ‘h(9)[ < .15, and for sufficiently

large NS, (29) becomes

-6 2

—9- -—°- 2 (1;) > 1 . (30)
NS 3

The weak-signal limit (9 a 0) is easily found by apply-

2

ing L'Hospital's rule twice, resulting in

N

.12 = 2 (31)

N

s

in agreement with the conclusion Of Section 4.2. Thus, the large—

sample efficiency improvement of the Sign detector relative to the

optimal Guassian detector in Laplacian noise is seen to be more

than a local property; i.e., valid at vanishingly small SNR's.

This result, although developed here for the first time,

is not entirely unexpected. Recall that the variance of the Sign

detector under H1 was given by Np1(l - p1), with

p1 é P[X > OlHl]. Note that as p1 increases from % to 1, the

variance decreases thus concentrating more of the probability

mass about its average. With a fixed threshold, the probability

of detection will dramatically increase.

The large signal mean and variance of the NLF detector

were found in Chapter III, Section 3.5. Invoking the central

limit theorem to evaluate P and FAR, and using those moment

D

approximations with a sample size of NN yields the ROC
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l
N = 00 erfc; PF g(A) + % g"(A)0,2C

PD ““4 ex g'<A> ' (NR ex g'<A> ' (32)

Equating this to (29) yields

 

 

l
O’0 erfc* 12F - /NN (g(A) + 16 g"(A)O)2()

_ l "1 A
- OX g (A)[erfc* PF -R/NO (3;)J - (33)

Assuming NN and NO are sufficiently large, (33) becomes

0

 

2 2

N _ [g(A) + a g"(A)oX] (34)

N A g"(A)2

By the mean-value theorem (34) may be written

0

 ° A g'(A) for some g E (0,A).

Z

2

N [g(O) + A g'(§) + % g"(A)c,2()

N

2
I

2(§7£(-§)4) 2 l by the convexity of g(°)

This requires that \% g"(A)o:\ << [A g'(§)\ or,

[5"(AH << /2 (f) g

g (é) X OX

s'(§) é g'(A>

of Section 3.3) as

Now which can be written (using equation (20)

n bog - g(A)g'(A)

g'(A) = 2 Sb:

C’0

 

>
<
Q
N

But for sufficiently large signal-to—noise ratio,





 

6O

Lanai lama =Q A. [2

g'<§) S g'm) Sb ox<<fl (GXHX

Thus, the NLF detector has greater efficiency than the

"Optimal" Gaussian detector. This result could also be

anticipated because the variance of the test statistic, given by

2

[g'(A)] oi, asymptotically approaches zero as the signal amplitude

increases.

Lemma: The variance of the NLF output under H1 becomes vanishingly

small as the input signal amplitude increases. That is

lim Var (Y‘Hl) = O.

A-ooo

Proof: Recall that Var (Y‘Hl) é [g'(A)]20:. Because 0: is a

fixed, known constant it is Sufficient to show that lim g'(A) = O.

A—m

In Section 3.3 it was shown that ho: - gg' 2 0. Then

because g > O, Vx > O, and ho2 is finite,

0

bg2

__O._g'>0
g _

Therefore

bgz

. 0

g s——-.

g

But by the definition of g as a monotone increasing function,

the limit as A approaches infinity for the right side is zero.

 

Because g' 2 0 when x > 0, this holds also for the left side. (Q.E.D.
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4.4 Simulation
 

This section provides a Monte Carlo evaluation of the three

detection systems for small sample sizes in both Laplacian (e = 1)

and Gaussian (e = 2) noise. It is expected that the performance

of the detectors for values of e 6 (1,2) will fall somewhere

between their performance at the extremes. Figure 4.3 is a block

diagram of the overall simulation procedure. Threshold values

yielding a False Alarm Rate of 10% were read into the program,

 

along with the randomization strategy for the sign detector.

Signal-to-Noise ratios were made dependent on a single parameter,

A, by choosing 00 = ox = l. The NLF was synthesized as discussed

in Appendix II and the number of Monte Carlo experiments performed

during each pass through the program was set at 250. This yields

the interval (.07, .14) as a 95% confidence interval for the FAR,

[C1, p. 99] a suitable range for the purposes of this simulation.

The average FAR for each sample size and each detector is shown

in Table 4.1.

 

Laplacian Noise

 

4 8 12 16 20

SIGN .089 .104 .115 .101 .087

XBAR .089 .103 .095 .094 .095

NLF .100 .103 .114 .095 .103
 

Gaussian Noise

 

  

4 AL 12 16 7o

SIGN .098 .088 .120 .108 .086

XBAR .103 .108 .112 .093 .109

NLF .129 .128 .105 .104 .111
 

Table 4.1 False Alarm Rates for Detectors
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CTAI 3

Set thresholds for

specified FAR set nois

type: 1 = Laplace, 2 =

Gaussian set min. and

max. SNR and No. of

Monte Carlo Experimenm

. l

 

 

Determine sample size'

NSAMP = 4*k, k = 1.5

I CHOOSE SNR J<?-"

CHOOSE DETECTOR

l = sign det.

 

 

 

N

ll

XBAR det.

3 = NLF det.

CHOOSE HY OTHESIS 3]

a|1=Ho "Hl -

Perform

Monte Carlo Detection

 

Experiments

l PRINT RESULTS __J

 

  
 

   
  

(STOP 3
Figure 4.3 Simulation Block Diagram
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The data are presented in Figures 4.4 through 4.9 for sample

sizes 4, 12 and 20. Appendix IV contains a complete tabulation of

simulation data.

Before the data can be adequately evaluated and conclusions

drawn as to the relative performance of each of the detector systems,

it is important that the simulation procedure be examined so that

any biases appearing in the data be clearly defined as to source

and overall effect on the simulation.

The nonlinear filter implementation is discussed in Appendix

II. As mentioned there, a piece-wise linear approximation to the

continuous transfer characteristic of Section 3.2 was made in ten

uniformly spaced intervals extending from x equals zero, to x

equals three. A linear approximation to g(x) for x greater

than three was based on the slope of the chordbetween x equals

3 and x equals 4. Because the transfer characteristic is con-

cave, this approximation tends to amplify outliers and results in

an increased FAR and PD. However, the effect was not substantial

as evidenced by Table 4.1. It was enough to cause the detection

probability of the NLF-detector to be greater than that of the

optimal detector in Gaussian noise, a theoretical impossibility.

This is particularly evident at small sample sizes. This was the

only noticeable bias in the simulation procedure and therefore

the following conclusions can be made.

1. In Laplacian noise the Sign detector is inferior to both

the XBAR detector and the NLF-detector over the greater part of

the range of experimental SNR's for small samples [See Figures

4.4, 4.6 and 4.8]. As the sample Size increases the performance
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of the sign detector improves to the point of being equivalent to

the other two, in agreement with the result of Section 4.3

[Figure 4.8].

2. In Laplacian noise, the NLF detector is superior to the

XBAR detector for small sample sizes but as sample size increases

the performance of the XBAR detector improves to the point of being

equivalent to that of the NLF—detector. This lends support to the

conclusions of Sections 4.2 and 4.3 [See Figures 4.5, 4.7, 4.9].

3. In Gaussian noise, the XBAR detector provides a substantial

improvement in detection probability compared to the sign detector

for all sample sizes and SNR's [See Figures 4.5, 4.7, 4.9]. How-

ever, the NLF—detector and the XBAR detector appear equivalent for

all SNR's and sample sizes.

4. The PDF of the NLF output can theoretically be obtained for

all values of e 6 [1,2], although this thesis concentrated on the

special case 9 = 1. For the case 6 = 2, the method of Section

2.5.1 was invoked; the resultant PDF was mathematically intractable.

For this reason, the NLF-detector FAR cannot be computed for values

0f 9 6 (1,2]. It therefore suffers the same disadvantage as the

XBAR detector for e 6 [1,2). [See Section 1.5.]

4.5 Summary

The optimal detector of constant signals in Laplacian

noise was derived and the difficulty of evaluating its performance

was discussed. It was shown that for vanishingly small signals a

locally most powerful detector could be defined and easily

implemented. Its performance could be easily evaluated for all

sample sizes. Because the test statistic had a discrete PDF, it
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was pointed out that randomization of threshold values might be

necessary to achieve a specified FAR and this was illustrated by

an example. The weak-signal detection property of the ”Optimal"

detector, i.e., the detector designed on the basis of an assumed

Gaussian noise model, was compared to that of the LMP detector on

the basis of ARE and shown to be markedly inferior. The weak-

signal detection property of the NLF detector was compared to

the LMP detector, and while still inferior, was an improvement

over the "optimal" detector. That this result follows from the

 

type of nonlinear transformation assumed in this thesis was shown

in a theorem. The strong signal detection properties of all three

detectors were compared and again the NLF detector was shown to

be a viable alternative to the others.

A Monte Carlo simulation of the detection problem was

implemented and the three detector systems were evaluated in both

Laplacian and Gaussian noise for a large range of SNR and small

sample sizes. It was demonstrated that the sign detector was

inefficient relative to the XBAR detector in Laplacian noise and

small sample sizes unless the signal level was vanishingly small.

The NLF detector was shown to be equivalent to the XBAR detector

and a definite improvement over the sign detector for a wide range

of SNR'S and sample sizes in both Laplacian and Gaussian noise.



CHAPTER V

GENERAL CONCLUSIONS.AND EXTENSIONS

The major conclusions of the thesis are reviewed in this i

chapter and possibilities for future research are discussed.

5.1 Conclusions
 

 

This thesis has been concerned with the design of a zero—

memory, nonlinear filter, and its application to the problem of

detecting a constant signal in non Gaussian noise. It was shown

in Chapter III that a nonlinear filter could be designed which

transformed a sequence of independent, identically distributed,

Laplacian random variables to a sequence of independent, identically

distributed, Gaussian random variables. This allowed satisfac-

tion of a Specified false alarm rate without randomization at the

receiver, a disadvantage when the intractibility of the input

distribution suggests application of non-parametric procedures.

The transfer characteristic of the nonlinear filter (NLF)

was restricted to be monotonic increasing. In Chapter II, the

property of monotone likelihood ratio (MLR) was shown to be invariant

under this transformation. Thus, Optimal tests for location con-

sisted of threshold tests.

In Chapter IV, the NLF-detector was compared to the Optimal

detector and another based on an assumed Gaussian noise model, for

72
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vanishingly small signals. On the basis of ARE, its performance

was an improvement over the detector based on the Gaussian noise

model, but it was not as good as the locally most powerful sign

detector. A theorem showed that the NLF transfer characteristic

did not affect the discriminability between the hypotheses. It

was then concluded that the NLF detector was not the optimal

detector for location alternatives. For strong signals, both the

sign detector and the NLF detector were shown to be superior to

that based on an assumed Gaussian noise model. It was shown that

the variance of the test statistic under the alternative for the

sign detector and the NLF detector asymptotically decreased with

increasing signal-to-noise ratio.

5.2 Extensions
 

”Little has ever been done in the matter of finding to

what extent this form of transformation might be utilized in

deriving distribution laws for empirical data, but it has been

used now and then to throw unusual types of distribution curves

into forms that conformed better to established types, especially

to the normal curve.’l [F3, pp. 273-274]. It was this statement

that provided the direction of this thesis. Although a first

step has been taken in investigating the utility of transforming

distributions, there remains a great deal more to be done. The

choice of a transformation yielding a normal curve is not

necessarily best; perhaps another PDF could be more easily realized

than the method of Appendix II indicates is required for

"Gaussianizing". Further, transforming to another PDF could
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possibly improve the efficiency of a NLF-detector relative to the

Optimal sign detector.

Another direction which should prove fruitful is the in-

vestigation of the improvement afforded by a nonlinear filter

when the optimality criterion is minimum average probability of

error. This is most often the optimality criterion in a i

communications network.
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APPENDIX I

DERIVATION OF J(e:2) VS. 9

The noise amplitude model can be written in the form

9

fY(y) = a e-b‘y‘ , -m < y < +m, where the relationship between

the parameters a, b and 9 can be derived from the following

equations:

JV fY(y)dy = 1 and (A1)

°° 2 2

j y fY(y)dy = o . (A2)

This form of noise was chosen because it realistically

represents the amplitude distribution of a noise source consisting

of an additive combination of Gaussian and impulse noise.

By the symmetry of fY(y), equations (Al) and (A2) can

be written

00 — l- '

g fY(y)dy — 2 and (A 1)

co 2 22

= l

g y fY(y)dy 2 (A2)

In equations (Al)' and (A2)' make the substitution u = bye,

1

co 213-1 _u be

([11 e du = L23 . (A3)

The left side is recognized as F(%). Therefore,
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.l

9
b

1‘03“) = ga— . (A4)

Equation (A2)' results in

3
3 _

co —-1 9 2

g u9 e udu = P_§§Q;. . (A5)

Therefore,

2

9 2

3 b

P(‘e') = 9__2_a_g_ . (A6)

Eliminating the variable a from equations (A4) and (A6) yields

3 Q

I‘(—) 2

b= —9— . (A7)

2Hi)
° 9

The J-divergence can be used in Chapter I as a measure of

discriminability between densities in the family a exp(- b‘x\e),

with e 6 [1,2) and a standard normal density (9 = 2) [K3]. Let

fe(x) represent the PDF of any member of the family, and f2(x)

represent the PDF of a standard normal density. By definition

f (X)

J(e:2) = Luau) - f2<x>>log gig; dx (A8)

2

J(e:2) [fe(x)log a /2; exp(§—-- b‘x‘e)dx — [f2(x)log a(/Efi

2

exp (%—'- b‘x‘9)dx

2

log a m [feoodx - log 3 f2? [f2(x)dx + [@21- - b\x\9)fe(x)dx

2

- [(E— - le\e>f2(x>dx

by ‘x‘e(f2(x) - fe(x))dx + % [J‘xzfe(x)dx - Ix2f2(x)dx] .
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The latter term is zero because of the assumed equality

of the second moment (unity) for all members 9 E [1,2].

J(e:2) = by \x\9(£2(x) - fe(x))dx . (A9)

By symmetry of the PDF's, this is written

2

2b °° ”)2;- ° b 9
J(e:2) =fi-g x9e dx - 2ab£ x9e X dx . 1

By changing variables, this may be reduced to

 

‘ a, £1 a, 1

J(e:2) =}—%;£(2y) 2 e'ydy - ga- (fie e'ydy

1:1 1

= 1 2 9.11 __2_1 1e 1/fi b 2 1(2) 9 (b) me + 1) mm

b —[F—£3—/9)-] 9/2 and usingSubstituting from equation (A7) for — F(l/e)

 

_2% = —li—- from equation (A4) yields

8. F(69

9b

9

3 " .1.
_1 2mg) 2 fl r<9+ 1)

J(9:2) -Jfi? '—-—I- F( 2 ) " 1

“5) Hg)

2,

3 2

2N“)
l 8 0+1 1

=.__ -——— _-— A11

fr? 11%) [(2) 9
( >

The value of O that maximizes (All) indexes the member

of the family (1), Chapter I, which most differs from a standard

normal, and which can be expected to produce the largest central

limit theorem error.
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The graph of J(1:2) vs. 9 is shown in Figure A1, and

the maximum divergence occurs when 9 = l, which indexes the

Laplacian distribution.

Jx(e:2)

.14 -b

 

   
FIGURE A.1 Divergence vs. 9





APPENDIX 11

REALIZATION OF THE NLF

The NLF of Section 3.2 was implemented on a digital

computer using well-known techniques of piece-wise linear

approximation. The odd symmetry property of the transfer char-

acteristic considerably simplified the implementation. In 10

uniformly spaced intervals [See Figure A2] extending from x = O

to x = 3, the equation of the chord connecting adjacent ordinate

values was determined by the computer. This required the reading

in of ordinate values at the 10 abscissa points. An asymptotic

expression for values of x > 3 was based on a linear approxima-

tion using the slope of the chord between x = 3 and x = 4.

Because of the concavity of the transfer characteristic, g(x),

this approximation tended to bias the NLF-detector as discussed

in Section 4.4. A flow-chart is shown in Figure A2.

Let Fn(X) be the piece-wise linear approximation to the

continuous odd symmetric curve g(x) derived in Section 3.2.

Define

NTC: Number of piece-wise linear segments (10)

TC(I): I-th positive ordinate of the curve g(x), I = 1,2,...,NTC.

RANGE: Largest abscissa value (3)

APSL Slope and intercept of approximating straight line for

APIN abscissa values greater than RANGE.

AINC: Abscissa increment (.3)

82

 

 



TC (NTC) bow-octooooo 0.00000. concoooon.

TC (NE ‘1.) a... Outta---
-...ooo-uc

TC(3)

APIN
O

O

O

TC(2) 2

5 2
. O

, o

' :
TC(l) : :

o z 0

o , o

O . o

: : :

1 , 1 [i

l 2 3 4‘{ RANGE
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The numbers in parenthesis are the values used during the simulation
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(See Section 4.4).

A flow chart is shown in Figure A3.
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APPENDIX III

DISCONTINUITY OF g"(x) AT THE ORIGIN

The function g(x) is shown in Chapter 111, Figure 3.2.

That the second derivative of g(x), evaluated at the origin is

discontinuous is shown here.

Lemma: Let g(x) be an absolutely continuous function satisfying

g(x) = -g(-x). If g(x) is convex for x > 0, then g(-x) is

 
concave on x < 0. That is, if g"(x) s O for x > 0, then

g"(-x) 2 O for x < 0.

Proof: g(-X) = '8(X)

g'(-X) = + g'(X)

g"(-X) = -g"(X)

Then g”(-x) = -(g"(x)) and g"(x) is s O by hypothesis.

Then g”(-x) 2 O. Q.E.D.

Corollary: All even derivatives, defined and continuous at x = 0,

must vanish at x = 0.

Equation (20) of Chapter III gives an explicit expression

for g"(x), namely

— 2 (g(x)g'<x) - 03b), x > 0.

Thus,

g"(0+) = -b g'(0)-

85



86

The term g'(O) is easily found from (18) to be

g'(0) =

N
H
3

0
‘

Therefore

2
g"(0+) = -b # O

N
]
:

However, by the above lemma

g"(0-) = b2 121 ’

The second derivative approaches different limits at

x = 0 from the left and right. Therefore, the second derivative

is discontinuous at the origin.
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