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ABSTRACT

A ZERO-MEMORY NONLINEAR
FILTER FOR SIGNAL DETECTION

By

Philip William Allen

This thesis investigates the possibility of increasing the
probability of detecting a constant signal in non-Gaussian noise
by nonlinear processing of the receiver waveform. The approach
taken uses the first-order statistics of the random observables as
a starting point for the design of any optimal detection system,
in contrast with other applications of nonlinear elements which
are motivated by efforts to improve the signal-to-noise ratio in
the receiver. The particular noise model admitted in this thesis
is characterized by an amplitude probability density function
having the form f(x) = a exp(-le\e), o € [1,2]. The noise
combines additively with one of two transmitter symbols {O,A},
where A > 0, during each decision interval [0,T]. The detection
problem is solved in anhypothesis testing framework.

Receiver design is constrained by a restriction on the
maximum False Alarm Rate (FAR) which must be satisfied for every
o € [1,2]. This constraint, plus the mathematical intractibility
of the noise family under consideration, suggests the use of non-
parametric detectors. The sign detector is very well suited

because of its ease of implementation and its distribution-free
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property. It is also the optimal device for weak signals in
Laplacian noise (9 = 1). Another detector considered is based
on a sample mean. This detector is uniformly most powerful for
a given FAR when 6 = 2. It is suboptimal for other values of
9 but is often used when the underlying PDF's "appear' normal.
This thesis proposes a third detection method, one based
on the inclusion of a nonlinear element. The nonlinear transfer
characteristic is derived from a probability integral transforma-
tion which changes the specified input distribution to a standard

normal distribution. This allows determination of a threshold

value which guarantees satisfaction of the FAR restriction while
avoiding any further randomization at the receiver. This is not
possible, in practice, with a sign-detector because its test
statistic };as a discrete distribution.

The transfer characteristic chosen results from a study
of the importance of Monotone Likelihood Ratios (MLR) in signal
detection. A method for determining whether a single-parameter
family of PDF's has MLR is given and applied to the noise model
of interest. The MLR is shown to be invariant under a monotone
nonlinear transformation, and this transformation is the basis
for the nonlinear filter detector design. This detector is
compared to the other detection systems under weak and strong

signal conditions, and is shown to be a viable alternative to both.
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CHAPTER I

INTRODUCTION

This thesis deals with a decision-theoretic approach to a
problem commonly encountered in the context of radio communications,
name ly, the detection of a constant signal in additive, stationary,
white noise. When the noise is assumed Gaussian the design and
performance of optimal detectors have been developed by Helstrom
[H1], Van Trees [V1], Hancock and Wintz [H2] and Root [R37], among
others. When the Gaussian noise approximation cannot be made,
application of nonparametric testing methods has been proposed
by Helstrom [H1), Hancock and Lainiotis [H3], Daly and Rushforth
(D1], and many others.

This thesis will point out two criticisms of nonparametric
approaches and propose a viable alternative based on a probability
integral transformation.

The detection problem of interest is shown in Figure 1.1.
The requirements and assumptions which determine the detector design
are listed in Section 1.1. Section 1.2 reviews parametric and
nonparametric detectors as applied to the detection of constant
signals in noise while Section 1.3 points out some criticisms of
nonparametric detectors as alternatives to parametric methods.
Section 1.4 presents some approaches advanced by others for the

problem, while Section 1.5 discusses the applicability of various
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parametric and nonparametric approaches to the problem. Section
1.6 investigates central limit theorem errors resulting from
tests based on a sample sum. Section 1.7 contains the thesis

objective and Section 1.8 explains the organization of the thesis.

1.1 Requirements and Assumptions

All detectors for the problem considered in this thesis
are to be designed in accordance with the following assumptions.
Al The N independent, identically distributed samples

taken at the receiver are to be classified as coming from

either the density f(X) or, alternatively, the density

f(X - A), A >0, where the form of the probability density

function (PDF) is in the family a exp (-b\X\e).

A2 The design criterion is Neyman-Pearson; i.e., the
probability of signal detection (PD) is to be
maximized subject to a constraint on the False Alarm
Rate (FAR)l.

A3 The data received in each signaling interval are
statistically independent of the data received in all
other intervals.

A4 The source symbol selected for transmission during each
signaling interval is statistically independent of the
symbol selected during any other signaling interval.

A5 The transmitter and receiver are synchronized. A

receiver interval of T seconds [or N samples]

The statistical literature refers to power and size rather than
detection probability and False Alarm Rate, respectively.



corresponds to exactly one transmitter symbol.

A6 The wideband linear filter serves to bound the noise
power at the A/D converter (ideal sampler) input without
producing sample-to-sample dependence.

Assumptions A3 and A4 guarantee that the analysis of a
one -shot receiver, wherein the decision about the data received
in the interval (0,T) does not depend on data received in any
other interval, is applicable to the multishot system [H2] of
Figure 1.1.

The noise model was introduced by Kanefsky and Thomas [K2]
as a reasonable representation of impulse noise, one of the most
common and troublesome non-Gaussian noise processes. If an
impulse process is modeled as a train of independently occurring
pulses with small overlapping, then several simple pulse shapes

result in amplitude densities having the form specified in Al [G1].

1.2 Parametric and Nonparametric Procedures

An extensive collection of results has been obtained and
published for problems of detecting signals in additive noise.
The vast majority of these results are based on the assumption
that the underlying noise density is Gaussian and white; thus it
can be completely characterized by two parameters. In many cases
the Gaussian noise assumption is dictated by physical considera-
tions; thermal noise, for example. Often one of the Central Limit
Theorems is invoked to justify consideration of the asymptotic
convergence in distribution of a suitably normalized sum of random

variables to a standard normal distribution. The mathematical



tractability of the Gaussian noise model has provided an abundance
of theoretical results. 'There is undoubtedly a temptation to
regard distributions as normal, unless otherwise proven, and to
use the standard normal theory wherever possible." [K1].

A great amount of interest has centered on the develop-
ment of a different approach to this problem. This nonparametric
approach, formulated in the late 1930's made few assumptions about
the probabilistic structure of the noise and used simple and
unsophisticated methods for detector design. Because these

detectors were based on very general assumptions concerning the

noise density, they displayed relative insensitivity to departures
from the assumptions, a feature called "robustness."

1t has been noted [Cl] that whereas parametric procedures
provide exact solutions to problems stated approximately, their
nonparametric counterparts provide approximate solutions to problems
stated exactly. Tt is in this sense that a nonparametric test
may prove to be superior to an "optimum'" test designed under
invalid assumptions.

The consideration of alternatives to optimal detectors

may be prompted by the complexity, both analytic and practical,
of the optimal design. Nonparametric detectors are intended to be
simple to implement at a cost of some deterioration of performance

relative to the optimal detector [T1].

1.3 Objections to Nonparametric Procedures

Asymptotic Relative Efficiency (ARE) provides a convenient

measure of relative performance of two detectors which are



designed for the same problem. It allows comparison between a
nonparametric detector and an '"optimal" detector and measures
the effect of departures from the assumptions on which the
"optimum'" detector is designed. Because ARE is essentially a
large sample, small signal performance measure, its validity has
been criticized for practical receivers [T1], [N1].

Another criticism of small sample nonparametric detectors
is that the distribution of the test statistic is discrete which
may necessitate an additional randomization to achieve the require-
ment of A2. This complication is avoided by the method proposed

in this thesis and introduced in Section 1.7.

1.4 Literature Review

Rappaport and Kurz [R1] developed an optimal nonlinear
detector for digital data transmission through non Gaussian channels.
They noted the practical difficulty of evaluating the PDF of
their test statistic and suggested Monte Carlo simulation for any
specified noise PDF and sample size. To avoid the very large
amounts of computer time involved in any such simulation, the
authors investigated the asymptotic performance of the nonlinear
detector which was shown to depend on a single SNR parameter.
Several signaling waveforms were considered in a Cauchy noise
environment and asymptotic system performance was shown to be
relatively independent of the signaling waveform.

A suboptimal nonparametric alternative for constant-signal
detection was described by Hancock and Lainiotis [H3]. Their

detector, based on the Median, or Sign, Test was robust, a



desirable property. It used a nonlinear element (ideal clipper)
to reduce the input samples to binary random variables. The
distribution of the test statistic under the hypothesis Ho was
binomial. By evaluating the detector's performance on an
asymptotic basis through the Central Limit Theorem, the randomiza-
tion required for small sample problems was not encountered.

An application of a nonlinear filter (NLF) for the improve-
ment of detection reliability for signals in non-Gaussian noise
was also investigated by Richard and Gore R2]. The NLF transfer
characteristic was determined from the first-order statistics of
the interfering noise and the expected signal amplitude. A narrow
bandwidth, linear, integrating, low pass filter (LPF) followed
the NLF. The long integration time of the LPF and the Central
Limit Theorem was used to justify the assumption that the Gaussian
model "approximately' described the LPF output. This permitted
the calculation of detection probability and false alarm rate as
functions of the NLF output signal-to-noise ratio (SNR). For a
very special class of non-Gaussian noises, resulting from passing
Gaussian noise through a piece-wise linear nonlinearity, the
computed and experimental SNR improvement factors at the NLF out-
put indicated that a considerable improvement in detection
reliability could be obtained.

Hancock and Wade [H7] investigated the problem of attain-
ing near-optimum reception of known binary signals over wide-
band channels in the presence of narrow-band interference. They
noted that the purpose of the receiver was to divide the space

of received waveforms into two disjoint regions - the 'mark' and






"space'" regions. The linear receiver which they described reduced
the dimensionality of the received waveform to a univariate statistic
which was compared to a decision threshold. The decision surface
generated by the linear receiver was determined to be a plane in
the received signal space while it was noted that the Bayes
optimum decision surface had the form pn(x - M) = pn(X + M),
with pn(-) the interference PDF, X the received waveform vector,
and M the Mark waveform vector. Optimum reception with a linear
receiver could only be possible under certain conditions, Gaussian
interference being one of them. For more general interference,
the authors described a method by which a nonlinear coordinate
transformation could transform the decision surface into a hyper-
plane. Subsequent processing of the transformed coordinates with
a linear receiver was shown to result in optimum reception.

This thesis departs from these approaches in the following
way. The signal detection problem is viewed at the outset as
one to which the existing literature of statistical decision theory
can be applied. The property of Monotone Likelihood Ratio is
investigated fully and its importance in the detection problem
of this thesis is discussed. Then a particular coordinate trans-
formation is chosen within the framework of the decision-theoretic
approach, rather than from a heuristic notion of signal-to-noise
ratio improvement.

Based on decision-theoretic arguments, this thesis pre-
sents a practical alternative to nonparametric and "approximately"

optimum parametric detectors.



1.5 Thesis Noise Model

Attention is here focused on the noise model to be con-
sidered in this thesis. The noise will be characterized by its

first-order statistics, specifically, its PDF
£,6) = a exp (-b|x|®), where ¢ € 11,27, 1)
and a, b and 6 are related through:

{ fX(x)dx =1 (2)

< 2
[ xzfx(x)dx = oy - 3)

An Optimal detector of a constant signal in additive stationary
noise having the PDF (1) can be determined, at least in theory.
However, the complexity of implementation leads to the considera-
tion of other (perhaps) suboptimal procedures. Furthermore, the
detector designed to be optimal for one value of © may prove
unsatisfactory for some other value of @§. The fact that @ is
an unknown parameter having a range [1,2] must be included in
the design of any suboptimal procedure.

Previous work for this detection problem has concentrated
on certain nonparametric detectors. Their application is motivated
by simplicity and robustness. Their utility is often justified
by the criterion of ARE |, a small-signal, large sample performance
measure. Comparison between robust detectors and those based
on an assumed Gaussian noise model show that "optimal" detection

can be misleading when the underlying assumptions are not valid.
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What is very interesting about the noise model admitted
is that the optimal tests for the extreme values, 6 = 1 and
9 = 2, are well known. When @ = 1, the test based on signs
(SN) is locally most powerful (IMP) while the test based on
the sample mean (§5 is uniformly most powerful (UMP) for 6 = 2.
Because of the optimal property of the sign detector, other non-
parametric tests (e.g., the Wilcoxson or van der Waerden tests)
will not be considered in this thesis. Both the sign and sample
mean tests are easily implemented although the former has the
disadvantage of a discrete PDF for its detector statistic.

The ARE of the sign test, SN’ relative to that based on

0T

= , which

Sy-X 1“3 (%)

is plotted in Figure 1.2. If 1 < ¢ < 1.4, the Sign Test would

the sample mean, f, can be shown to be ARE

be preferred to the X test if ARE were the sole selection

criterion. The range of 6 for which the sign test is preferred

must be reduced if the following are also considered:

a) ARE may not be a valid comparison measure in small sample
problems.

b) The discrete PDF of the test statistic may require an
additional randomization at the receiver.

c) The optimality property of the sign test is a local pro-
perty, i.e., it is based on a vanishingly small SNR.

For these reasons the test based on X seems preferable to the

sign test for a large range of ¢, but there is a major dis-

advantage to its use. For the small sample sizes considered

here central limit theorem errors must be taken into account
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ARE

FIGURE 1.2 ARE of Sign Test Relative to X Test

during any receiver design. Quite obviously, the threshold value
determined by consideration of the design specification on FAR
and assuming that X is Gaussian will be optimal only for ¢ = 2.

It is also obvious that no single detector structure can
be optimal for every member of the family of noise distributions
and all possible Signal to Noise Ratios (SNR), defined as the
ratio g— , i.e., the rms signal power divided by the rms noise

X

power. Because of this, the design criterion A2 must be

modified (adaptive receivers are of no concern in this thesis
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although they do offer an alternative approach) to state
specifically the terms under which optimization is to be
accomplished.

For the purposes of this thesis, the FAR will be assumed
as the primary criterion of design; i.e., any detector design
must guarantee a FAR which is less than, or equal, to the design
goal, for all ¢ € [1,2].

As previously mentioned, the sign test is applicable to
this type problem. Because of its distribution-free properties,
a specified value of FAR can be achieved and maintained for all
possible 9, although it may require an additional randomization
in practical problems.

There has been no consideration of alternatives to the
nonparametric detector because of the mathematical intractability
of the family of noise densities. However it can be, and often
is, argued that the Central Limit Theorem can be applied to this
type of problem directly because the assumptions made ensure the
convergence in distribution of any properly normalized statistic
based on the sample sum . For practical sample sizes there will
be some error in this approximation, and this situation is now

investigated.

1.6 Central Limit Theorem Errors

The central limit theorem errors are more severe for those
density functions whose shape reduces the speed of convergence.
This section deals with the problem of determining which member

of a family '"differs'" the most from a standard normal, when the
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family is characterized by the PDF of equation (1).
Let Fn(x) be the distribution function of the standardized
sample sum. Then the error using a standard normal approximation

may be written [W1l, p. 265]

a
1 3 (3)(x

F (x) - 8(x) = - 7a (3!—)4? )

n

= [%; @, - 3 0 + 2 q ¢(6)(x>]

1 1 5 35 ,
- n3/2 [.5—! ((YS - 10@3)§( ) (X) + _7_!__ o/3 (aa_B)@( ) (x)
+ '2% ag @(9) (X)] + O( ;':1/—2) y %)

A
where aj =

QALE

s uj the j-th central moment, and g the standard

deviation of the Xi. By the symmetry of (1), this becomes

@, - 38 60 .
FLG) - 8(0) = ¥ o( o). )
n

4 n

The central limit theorem error will be largest for that

member @ € [1,2] having the largest fourth central moment.

=) 5] L 0
W, = J a Xaenb‘Xl dx = 2a gxae'bx dx . (6)

-0

Making a change of variables and integrating, yields

2a
0 b5/6

By ~

resl/e) . )
Using (A4) and (A7) [Appendix 1] in (7), results in

_ ST(5/e)rale)
r’(3/e)
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The graph of &% is shown in Figure 1.3. Thus, when
® = 1, indexing the Laglacian family, the central limit theorem
errors are largest. This same result is found in Appendix I using
the J-divergence as a measure of difference between members of the

family (1).

My,
3
(o}

The well-known fact that the Laplacian density has '"fatter"
tails than a normal density of the same mean and variance [H6,
p. 437 ensures that the FAR determined by a Gaussian assumption
will be optimistic; i.e., it will underestimate the true FAR
and is therefore not a viable alternative.

Previous efforts [R1], [R2] with nonlinear filters have
demonstrated their capability of improving SNR and detection reli-
ability. As noted by Richard and Gore, SNR is not in itself a signif-
icant performance parameter [R2, p. 4407. Of greater importance is
the exact density of the test statistic from which the FAR and detec-
tion probability can be calculated. This thesis will investigate

one particular way of obtaining this important information.
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1.7 Thesis Objective

This thesis will examine the effect of zero-memory non-
linear filters on the detection problem stated in the introduction.
The transfer characteristic of the NLF will be determined by a
probability integral transformation. Generally speaking,the trans-
formation will insure that the test statistic has a continuous
PDF . The type of noise considered at the receiver input and
the monotonicity of the transfer characteristic of the NLF
guarantee the optimality of a threshold test. Taken together,
they enable satisfaction of any specified false alarm rate without
randomization through an easily implemented threshold detector.
The continuity of the test statistic PDF will not depend on

"large" samples.

1.8 Organization of the Thesis

Chapter II presents a relevant background of statistical
decision theory for this communications problem. Chapter ITI
concentrates on the development of the applicable nonlinear
filter (NLF) and examines its properties. Chapter IV compares
the NLF detector with other alternative approaches, while
Chapter V summarizes the thesis and suggests some directions for

further research.



CHAPTER II

STATISTICAL BACKGROUND

This chapter summarizes the relevant background in
statistical decision theory. The definitions and theorems are
in large part taken from the books of Lehmann (L1], Fraser [F1],
and Ferguson [F27], but are adapted to directly apply to the
detection problems encountered in the context of radio communica-
tions. The primary purpose of this chapter is to present a set
of conditions which guarantee that the optimal test for location,
where optimality is in the sense of UMP, is a threshold test.
To that end Section 2.1 develops the Best Critical Region (BCR)
for Binary Hypothesis Testing problems. The notion of Monotone
Likelihood Ratio (MLR) is used to define the BCR in terms of a
decision threshold. Section 2.2 extends threshold detection to
UMP tests, and presents a sufficient condition by which a location
parameter family can be tested for MLR. Section 2.3 defines some
measures of SNR and ARE from parametric and nonparametric theory,
respectively, and shows how they are related. Section 2.4 develops
the optimal detector of a constant signal in white, Gaussian noise,
and Section 2.5 investigates the effect of zero memory filters,
linear and nonlinear, on the MLR property. Section 2.6 summarizes

the main results of the chapter.

16
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2.1 Simple Hypothesis Testing

The following definitions are intended to make precise
the idea of location shifts of a real valued random variable X,
whose cumulative distribution function (CDF) depends on a single
real parameter {A. Let F(x]A) denote the distribution function
of the random variable X when A is the true parameter value;
F is assumed to be absolutely continuous with probability

density function (PDF) £(x|A).

Definition. The parameter A is a location parameter for the
distribution of X if, and only if, f(x|a) = f(x - &) for some

density f(x).

Definition. A single-parameter family of distributions is said

to have monotone likelihood ratio if whenever Al & AZ the

£(x|a,)
2 . 5 .
likelihood ratio —‘— is a non-decreasing [or non-increasing]
£(x|ay)
1

function of x.
A non-randomized decision rule for the binary hypothesis

testing problem

1: 2285

may be defined by a measurable subset, nO’ of the sample space
X, ﬂo C X, with the understanding that if the observable variable

X falls in no, announce H is true; otherwise say H is

0 1

o
true. The set {11 i AN no is called the critical region. The

false alarm rate (FAR) of the test is given by {[ p(X\HO)dx
o}
1
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while the probability of detection (PD) of the test is given

by g p(X\Hl)dX.
1

An optimum test, in the Neyman-Pearson sense, is defined

by a critical region @}

1 satisfying j p(X\HO)dX <= P_ and

) F

ty

£ p(X\Hl)dX = PD = maximum. This region will be called a Best
1

Critical Region (BCR) and the test defined by a BCR is called

a most powerful (MP) test at FAR PF.

Definition. A region ﬂl C X 1is said to be best at FAR PF

for testing H, against Hy if f p(X\HO)dX =P_ and if for
{

0 F
1
. . ] - : —
every other region nl for which I'p(X|HO)dX = PF’
nl
. ]
IE p(x\Hl)dx z (j]'p(X\Hl)dX, fe. P (i) 2P @)
1 1
In other words, a region “1 is best at FAR PF if,

out of all regions having the same FAR, its measure under the
alternative (PD) is largest. A general method for finding the
best test of a simple hypothesis against a simple alternative can

be found in the Neyman-Pearson lemma.

Lemma: In the test of a simple hypothesis H against a simple

0
alternative Hl’ the region by & {X: AX) = k} where
p E&IHD . \
AX) = and k satisfies | p(X|H )dX = P_  where
f(X‘HO) h 0 F

1

0 <Pp< 1, is the BCR at the given FAR.

The proof appears in Hogg and Craig [H47 p. 274 and is

not repeated here.
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The preceeding lemma and the definition of MILR allow

statement and proof of the next theorem.

Theorem: The most powerful test of a simple hypothesis H

against a simple alternative Hl when the likelihood ratio is

monotone (increasing) is a threshold test defined by the critical
©

region Ql = {X: X >K}. If K satisfies i p(X\HO)dX = PF

then “1 is a BCR at FAR PF.

Proof: By the Neyman-Pearson lemma the region “1 e {(X: A(X) > k}

is best at its FAR where k is determined by {p(A\HO)dA = PF.

If A(X) 1is monotone in X then § X = K, A(X) = A(K). Choose
oo +oo
K > p(X|H,)dX = P = p(A|H )dA = {p(A\H YdA. Then
{X:Xgl(} 0 F {(XO) 0 0
A(K ) = k and the regions {X: X = K}, {X: A(X) = k} are equal.

Because the latter region is MP at its FAR, then the threshold

test is also MP.

2.2 Composite Hypothesis Testing

The larger detection problem concerns composite hypotheses;
i.e., when the distributions under HO and H1 depend on a para-
meter which is assumed to take on values in some (real) space R.
Let w < R be the subset of parameter values such that

{PA\A € R} denotes the family of distributions for the random

variable X when H is true. Then R - w corresponds to the

0
possible parameter values when Hl is true. The hypothesis
testing problem can be restated as H_: A€ w

0

Hlt A€ R -w
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As before, the problem is to dichotomize the observation space

X so as to satisfy some criterion of ''goodness'. For this

situation the notion of best test at FAR PF must be redefined.

Definition. In the test of a composite hypothesis HO against

an alternative (simple or composite) the region ﬂl is said to

be at FAR P if sup [ p(X|a)ax =P
béw Q4

When the alternative Hl is also composite the notion

of best test must also be generalized.

P

Definition. A region (] is said to be Uniformly Most Powerful

1

(UMP) at FAR P for testing H.: A ¢ w against H,: A ER - w

0° 1
and if, for any other region ﬂi at FAR PF’
p(Xl A X = é p(X\ A)dX for each A € R - w.

'

1

F

if ﬂl has FAR PF

it is true that g
1

The Neyman-Pearson lemma guarantees that, in the class

of regions having FAR PF’ there exists one whose PD is

maximum at any fixed element b, € R - w. There is no reason
why this region should also maximize the PD for some other
element A, € R - w. It is, therefore, not surprising that UMP
tests exist only in special circumstances. Fortunately, one of

these circumstances is widely found in radio communications prob-

lems and will be investigated in this thesis.

Theorem: If the distribution of X has non-decreasing monotone
likelihood ratio, then the region Q, = {X: X 2 K} where K is

chosen to satisfy I p(X\HO)dX =P,, 0 < PF < 1, is UMP of FAR
Q

F’

PF for the hypothes%s testing problem HO: A s 0, against

0
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Proof: See Ferguson [F2], page 210.

This theorem and its counterpart for binary hypothesis
testing illustrate the effect of the MLR property. Tests for

location simplify to threshold tests when the underlying
f(x\A) = f(x - o) have MLR. Because of the importance of the
MLR property in this thesis, the sufficient conditions under which

a density may have a MLR with respect to a location parameter

are now investigated.

Definition. A density function f(X) is called strongly unimodal

if - 4n £(X) 1is a convex function of X.

Lehmann [L1, p. 330] shows that strong unimodality is a

sufficient condition for a density to have MLR.

Theorem: Let f(x) be a density on R. A sufficient condition

that f(x‘A) = f(x - &) have MLR is that f(x) be strongly unimodal.

Proof: Let f(X) be strongly unimodal and suppose X < X',

oAt 1o At
A < A'. The condition of MLR in X, namely, §§§ - 2)) < igi, - 2)) ,

is equivalent to

log £(X' - pA) + log £(X - A") =< log £(X - ) + log £(X' - a")

The four differences can be arranged, from smallest to largest,

as (X -4a"), X -a), X" -4a"), X' -2) or (X -pn"Y, X'-a",

X -4A), X' -4). In either case by defining

t & X' -X)/X' -X+ 4" -4A) it is true that

X-pA=tX -+ 0 -t)X' -n)

X' -A'"=(1Q -t)X -A") + X' -p) .
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Define h(X) Q -log f(X); by hypothesis, h(X) 1is convex. Then

for every tl,t2 and 0 < )3 <1

h{at, + (1 - WE,] = Ah(E) + (1 - Dh(t,)
log £[At; + (1 - )t,] = & log £(¢)) + (1 - Mlog £(t,) .

Letting 3 = t, t; =X - A, £, =X' -4,

log £f(X -p) =t log £(X -A") + (1 - t) log f(X' - &)

Letting \ =1 - t,

log £X' - A"

1\

1 -1t) log £(X -p") +t log £(X' - p)
Adding these two equations yields
log £(X - A) + log £X' -a") = log £(X - A') + log £X' - 4),

which is the condition for f(X) to have MLR. Q.E.D.”

This theorem provides a method of ascertaining whether

the family of densities
f(x\A) = a exp(-b‘x - A‘e), 9 fixed,

has a MLR. This is seen to be the case since -fn f(x) =

-a + b\x\e is convex in x for each fixed ¢ € [1,2].
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2.3 Signal-to-Noise Ratios (SNR)

In Section 1.5, the measure of signal-to-noise ratio (SNR)
applicable to this thesis was given as the rms signal power divided
by the rms noise power. Because the detector of this thesis is
to be compared to others in Chapter IV, this section introduces
performance measures which have previously been defined for
parametric and nonparametric detection. The general Gaussian prob-
lem is the hypothesis testing problem in which the densities under
both classes are Gaussian, i = 0,1. When the covariance matrices
under the hypotheses are equal but the means are different, the
quantity

2 o B@lR) - s@li))’
Var (£{H))]

with { the test statistic, has been used as a SNR [V1, p. 997.
This same quantity was specified by Hancock and Lainiotis [H3]
for the problem of detecting an unknown d.c. signal having
magnitude @6 > 0 1in zero-mean noise with a symmetric, but other-
wise largely unspecified, PDF.

The physical justification for this concept of SNR rests
on the idea that the two densities of the received random variable,
conditional on signal present and signal absent, be come more
distinguishable as either the distance between their central
locations (means) becomes greater or the concentration of their
values around the central location becomes greater (smaller

variances).
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A theorem of Capon in 1961 [C2] introduced the concept
of efficacy in determining the asymptotic relative efficiency

*
(ARE) of a test Un relative to the test U , where both tests
n

satisfied certain regularity conditions. The ARE of the Un-

*
detector with respect to the Un-detector was given by

A e(Un)
Eu oS T where e(Un) ,
’ e(Un)

the efficacy of the Un-detector, was defined as

2
e(U ) é lim l[ a_&————Ee(Un)] .
n n—o n OO(Un) 8=0

The sample size of the Un—detector is n, and Ee(Un)
is the expected value of the detector statistic under the
alternative hypothesis Hl’ when the signal strength is §.
The following shows that efficacy depends directly on the pre-
vious measure of SNR and the relationship is derived using the
regularity conditions of Capon.

Given that §5E9(Un) exists for all g € (0,a), and
is continuous at ¢ = 0, a Taylor Series expansion of Ee(Un)
about the origin yields Ee(Un) - EO(Un) = en 35 EG(UH)‘6=0
+ o(ei) as 9 -~ 0 ([H5, p. 547. Then

E (U) -E_(U)
214 g n 0 n
e(Un) lim Ta 0 OO(UH)

2
] . The relationship between

N—

efficacy and SNR is obvious.

2.4 Optimal Detector of Constant Signal in White, Gaussian, Noise

This section develops the optimal detector of a constant

signal in white, Gaussian, noise. According to well-known results
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on sufficiency, the optimal test can be based on the sufficient

2

statistic Y = %
2 i=1

2
ﬁ(O,Q-) and under Hl’ Y is n(A,&-). The normal family has

Yi' The distribution of ? under HO is

™

increasing MLR with respect to location (variance fixed), and

therefore the best test having a False Alarm Rate of PF is

jaet

=<1
T AV
=

0

where K is defined to satisfy

ho 2 - 5B
P = £ ) e dy
Thus K =\%; erfc;lPF, where the complementary error function is
u2
T2

b
defined by erfc,z = j & du. Hence, the BCR is defined as
z

B

Cc = {?E Y > 3§-erfc;1 PF}. The probability of detection for

this critical region is defined as

iy anz -5 7 %( ;A)Z
PD = i ( N ) e dy .
_ -1 /N7
PD = erfc*[erfc* PF - o J

This equation relates the probability of detection directly to
False Alarm Rate, and is the basis of the receiver operating

characteristic (ROC) [V1, p. 38].

2.5 Measure Transformations and MLR

The purpose of this section is to investigate the effect

that a zero memory filter has on its input with respect to the
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desirable property of MLR. 1In Section 2.5.1 measure transforma-
tions are defined while in Section 2.5.2 the MLR property is

shown to be preserved under monotone measure transformation.

2.5.1 Measure Transformations

Let fX(X) be the density function for a continuous
random variable X, and suppose a real-valued point function
g(+) 1is specified. The random variable Y = g(X) 1is defined

and its density function fY(y) is to be determined. Assuming

that g(:) 1is monotone increasing wherever fX(X) # 0 the

density of Y 1is given by
_ -1 d -1
£, = 6N @] (1)
Proof: See Dubes [D27], p. 243.

2.5.2 Monotone Measure Transformations

If X has PDF fX(x\A) which has increasing MLR, and
Y = g(X) where g(:) 1is monotone increasing and satisfies the
regularity conditions which guarantee (1), then the family of PDF's

for Y,
o -1 d -1
£,(v18) = £ (8 (y)lA)\g g M|,
has increasing MLR. This is immediate since if Al > AZ’

£ola) £ &G A

O e e oy

£y (x|ap) -1
is monotone increasing, and g “(*) is monotone
fx(xlAz)






27

increasing. The result is now illustrated with examples of linear

and non-linear monotone transformations on location parameter

families.

Example 1. . Let X wunder HO be uniform on ([-1,1]. Under

Hl’ X will be uniform on [-1+ , 1 + o], o > 0, and suppose

the linear filter has the transfer characteristic aX + b, where
both a and b are known positive constants [for the sake of
simplicity]. Thus f(¥|H) = ;—a for a(a-1) +b <y < a(atl) + b,
f(Y\HO) = %; for b-a =y s bta. These densities are shown in

Figure 2,1 and it is easily verified that Y has the MLR property.

£(X|H,) ECY|H,)
%
+X } +Y
-1 +1 b-a b bta
£(x|H,)) £(Y|H)
%
|
-+
-1ty PSR btay Y

Figure 2.1 TInvariance of MLR to Linear
Transformation

Example 2. Let the input random variable X be uniform on -%,%

under HO and uniform (p,p+1l)  under H1 with -3 < A € 0. Let

g(X) be defined as g(X) = sin X for - —123 <X <+2, +1 for

2’
X>72 =
> 5 -1 for X <« - 5 - The situation is illustrated in Figure 2.2.
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fx‘HO(x\HO) fX‘H Ge|H)
. 1
sin (x)
1

X X

- 3 o A O 1+p
2
y
sin - % 0 sin %
fY\Hl(y‘Hl)
A O sin (14+4A)

Figure 2.2 Invariance of MLR to Nonlinear
Transformation

2.5.3 A Transformation to Achieve a Specified Distribution

Let X be a random variable having CDF F. Subject to

certain regularity conditions [H6, p. 337, the transformation
-1
G (FX))

will yield a random variable Y, having CDF G.
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2.6 Summary

This chapter presented some concepts from statistical
decision theory which are applicable to the communications prob-
lem introduced in Chapter I. The property of Monotone Likelihood
Ratio was shown to be a sufficient condition for a test of loca-
tion (known direction) to be implemented by a threshold test.

The equivalence of the Efficacy of Capon and the SNR of Van Trees
was shown and Monotone Likelihood Ratio was shown to be an invariant
property when a family having it was passed through a nonlinear
filter having an odd-symmetric, monotone increasing transfer
characteristic. A sufficient condition for MLR was derived and
applied to show that the family of noise densities introduced in

Chapter I has the MLR property.






CHAPTER ITII

ZERO-MEMORY NONLINEAR FILTER

This chapter discusses the use of a nonlinear filter
between the sampler and detector of Figure 1.1. Section 3.1,
which is concerned with integrators and clippers, provides
motivation for investigating the measure transformation of
Section 3.2. This section outlines the procedure which
"Gaussianizes' random variables; that is, the transfer char-
acteristic of a zero-memory nonlinear filter (NLF) is determined
through a probability integral transformation, which produces
independent Gaussian random variables at the NLF output, when
the filter is driven by a finite sequence of independent random
variables having a Laplacian probability density function.
Section 3.3 then discusses a special property of the NLF trans-
fer characteristic while Section 3.4 derives the exact dis-
tribution of the NLF output when the input is noise plus signal.
Section 3.5 develops first and second moment approximations for
the NLF output under Hl’ while Section 3.6 summarizes the main

results of the chapter.

30
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3.1 Clippers, Limiters and Integrators

In many practical communications receivers, the input
process is first filtered to remove any noise spectral components
which may lay outside of the signal bandwidth. Cascaded linear,
tuned networks, whose overall bandwidth is wide enough to pass
with considerable amplification the significant signal components
while rejecting those frequencies containing noise alone, are
widely used. 1If the input to a filter is a quasi-monochromatic
signal, its output at any time is a weighted time-average of its
past input. When the filter bandwidth is much narrower than the
noise bandwidth at its input, the central limit theorem can be
invoked to justify assuming that the amplitude distribution of
the filtered output is Gaussian.

In other receiver types the input process is first sampled,
thereby reducing the continuous-time input to a finite-length time
series. Many applications of nonparametric statistical methods
have been prompted by the fact that the sampled data process often
has a large variance and consequently may not satisfy the con-
ditions of a central limit theorem [Rl]. Therefore, so-called
"optimum" tests based on the Gaussian assumption may be highly
unreliable. The inapplicability of Gaussian methods is also
prevelant in underwater sound receivers which pick up sporadic
biological noise and telecommunications networks which are subject
to randomly occurring impulses due to lightning, sparks in ignition

systems and faulty connections or switches [H1, p. 317].

Narrow Band
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A large variance for the input random variable may pre-
clude application of a central limit theorem without some form
of noise suppression. One method is the clipping, or limiting,
of the received signal, the usual justification being that this
increases the SNR. Although the introduction of a clipper before
processing the received signal seems intuitively a good idea, it
is not at all clear that a simple clipping level is in some sense
the best system design that can be achieved. Moreover, when
severe models of impulsive noise amplitudes are considered,
commonly defined SNR's may not be useful criteria of system per-
formance. The structure of the nonlinear device for suppression
should be determined by whatever knowledge is available about
the noise PDF so that a minimal amount of received information

pertinent to the signal decision is destroyed [R1], [R2].

3.2 Measure Transformations

The essential problem is sketched in Figure 3.1 and can
be stated as follows: Let X be a random variable having a PDF
which is known completely and which is absolutely continuous with
respect to the Gaussian PDF. Determine the transfer characteristic
of a device such that with the r.v. X applied at the input,
the output random variable, Y, has a Gaussian PDF.

This problem is different from the more common one involved
in functions of random variables. There, the transfer characteristic
of a device is specified and the input is a r.v. having a known
PDF. The problem is to then determine the distribution of the

output. This was discussed in Section 2.5.1. The results of
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Section 1.6 indicate that the PDF of interest in this thesis is

Laplacian.

Problem Statement: Find a transfer characteristic g(x) which

transforms the random variable X having the Laplacian PDF
fX(x) = a exp (-b\x\), -0 < X < o, with a and b defined by

& 2 _
g =

% TB to the Gaussian random

[o o] o) 2

f f () dx = 1, f x" £ (x) dx
-0 -0
variable Y, which has 0 mean and variance gg.

Problem Solution: Constrain g(x) to be a monotone, strictly

increasing function on the real line having odd symmetry and

require Y = g(X) a.e. Then

P{Y < y] = P[X < x], with x =g “(y).

Case #1: x < 0

2
Y/ob eﬁ% “ +bw
J:m —ﬂ_?_ du = [m e dw
or, $ [L =2 ebX x < 0
% b
y<O0
Case #2: x > 0
y/O'O 5 o X
J‘ S du = l—l- a e-bUJ dw
27 2
-
or, s [] = & +8 -2 bx
% 2 b b

[ee]
Using the first condition on X, [ fx(x)dx = 1, the
-

. a . .
ratio E is determined.

(1)

(2)

3

)

(€]






J a e-b\x\dx 1
-0
+o
g a e-bxdx = %
_a bxyto 1 a1
be lo =225 72
Combining (3), (5) and (8) yields
® | = % ebx x <0
%
=1-%e‘bx x > 0

Solving for vy

r bx
= Q-l & x <0
Y7 9% 2
- -bx
_ -1 e
y =9, ) 1 - 5 ] x >0
-
Figure 3.2 shows the function g(x) of (12).
Using the second condition on the PDF fx(x)

the value of the coefficient b.

@ [o o]
2 A 2 2 -bx ., 2
{;x fX(x)dx = oy = 2& ax e & = Oy

Equation (13) is easily put in the form

- b302

2 -
g ue udu = X
2a

(6)

(7)

(8)

(9

(10)

required:

an

12)

determines

(13)

where the left-hand-side is immediately recognized as the Gamma
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integral; therefore

32
b gx
= = ' =
a r3) 21 2. aa4)
32
. b oy b. 2 2 ) . .
Finally, a =1= (;)b oy = 4. Using (8) in (14) yields
2 2
b = = > or
%%
b = L2 (15)
%%

The given PDF can more easily be written in the form
b
fx(x) = 3 exp (-b\x\), ~0 £ X < o . (16)

3.3 Concavity

This section will prove that the transfer characteristic

determined in the previous section is convex on the region x > 0.

Given
-1 e_bt
g(x) =0, ¢ QO - ), x>0 17)
0 2
write it as
2
_u
e-bX +oo o 2
2 = J‘ ﬁ— du . (18)
g/c0

Take derivatives on both sides with respect to x twice

lg 2
- >3
_bZe-bx 28 )e 2 9
—_— e — "no_ !
2 % g (g") 03 A 19)
' 2
g" = 1551 leg' - boy] - (20)
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Thus to show that g is concaveon X > 0 it is sufficient

to show that gg' - bog < 0, for x > 0.

2 2
5B u_
o'o +o 3
g' =agpbe j e du (21)
/o
/9%
Integrating (21) by parts yields
2
LB
b z(o ) e -y o2
v _ 0 0 ¢ e
g' = — - oob e J 5 du (22)
8 (g/co) u
Hence
2
L&
2 2(0'0) + e-% uz
g's - ob = -obge f —— du (23)
(g/co) u

All terms on the right hand side are positive for x > O,

therefore gg' - cgb <0 and g"(x) < 0 for x> 0.

3.4 NLF Output PDF under H

1

This section assumes the NLF has the transfer characteristic
specified in (11) and (12) and that the NLF input has the Laplacian
amplitude PDF of (16) translated by the amount A > 0. The PDF
of the NLF output will be derived using the methods of Section
2.5.1. This will show the dependence of the form of the output
PDF on the input SNR, and will be used as justification for certain
approximations made in Chapter IV.

Write

-1
- £ (g L)) | 9B
) = T o) B (24)
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where
-1 e-bx
y =0, 8 (1 - ] X >0
bx
-1_e
=0, % 5] x <0
and
£ (x) —%e-b\x-A\ - ¢ X £ too

It will be shown that the case for A =0, i.e., x

distributed according to H., can be considered as a special

0

(25)

(26)

case of this computation, thus demonstrating the ''Gaussianizing'

property of the NLF.

Case 1: y<0=x<0

-1 ebx
y =gx) = oy & Cj;ﬁ

-1 1 Y .
Then g (y) = =4n(28())
b cO
-1 Z Q'(Y/OO)
dg- () _ 1%

dy b 2% (y/oo)
b b[F tn28(y/ay) - 8] | 28'(/oy)
y) =35e bo, 28(y/c)

2
5/

£y = B '(yloy) = e b 9——fi—jgi— <0
Y& = 9, ¢ (v/oy) = Ny % y

Case 2: y>0=x>0

-1 -1
b -b - A d
f o) = 3ol -l don,

(27)

(28)

(29)

(30)

31



-1 e"bx
y=gx =o,¢ (1 -]
e-bx
1-5—=3®)
%
x = - an2(l - 2(y/0p)]

4 -1; ) o, 1 @'(y/oo)

dy boy 1 - Q(y/co)

% e-b(x-A) when x > A >0
fx(X) =

% eb(x-A) when A >x >0

Combining (31), (35), and (36) yields

-b[-%-&n2[1 - @(y/co)]

@'(y/co)

I
N jo
4]
[}

£,0) =

-%(y/co)2

————;—g——— valid for x > A ,
v 0

1]
(]

-bp
2

which, by (32) is equivalent to y =2 cO§-1[1 - E———] A g(p) .

Combining (31), (35), and (37) yields

-b[-%-&nZ[l-@(y/oO)]

|

N o
o
o

£, =

2
_ ~5(y/c)
o b o 0

W 0y (14 (ylog1®

Equation (41) is valid for O < x < A, which is equivalent to

-1 e-bA
O<y«< GOQ (r - —E——q = g(b) .

boo 1-§(Y/GO)

1 %'(ylo)
bo __Q_
0 1-¢(y/ob)

(32)

33)

(34)

(35)

(36)

37

(38)

(39)

(40)

(41)
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Combining the results (30), (39), and (41) gives
f
2
-%(y/co)
e-bA e

e y <O
/2 %
-%(y/co)2

£, = < e’ T y > g (42)

2
-3(y/o,.)
e-bA e 0

41-e 5lop1’ /T %

0 <y< g(d)

When A =0, g(A) = 0 and (42) reduces to a zero-mean

Gaussian PDF with variance The graph of fY(y) is shown

2
9y -
in Figures 3.3 (a), (b), (¢), and (d), for increasing values of

SNR. The assumption of weak signal normality of Y appears well

justified when bp < %6’ approximately -29 db.

3.5 Moment Approximations

Under the alternative (H,) the PDF for the random

1
variable X, the NLF input, is specified exactly. It is a replica

of the PDF of X wunder H translated by A > 0. Assumptions

0’
Al and A61 guarantee that under Hl, the random variable X has
expectation A > O, and a known variance, c;. The problem of

this section is to find an approximation for the mean and variance
of Y, the NLF output random variable, when X contains signal
plus noise.

Although the exact form of the PDF of Y 1is given in

the previous section, the complexity of dctermining the moments

Chapter I
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1
o f (Y—)
0 %

SNR = -29db

(a)

SNR = -23db

(b)

SNR = -15db

(c)

A - SNR = -9db

(d)

Figure 3.3 PDF of NLF-Output Under H
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encourages the introduction of simplifying approximations. The
expected value and variance of Y, the NLF output,are derived
be low.

Let ?;, i = 0,1 1indicate the expected value of the
NLF output random variable when hypothesis Hi is true.

o

a?l = L y £ (y|H)dy = [wg(x)f(x\ﬂl)dx . (43)

Expanding g(x) 1in a Taylor series about A yields (subject to

a few regularity conditions), for some E ¢ (0,4),

r-1

-3 G -ME
gt =g + 5 B Wy + & Oy .
=1

Substituting (44) into (43) and interchanging summation and

integration operations,

¥y = J"m[g(a) + 21 ‘—J-AL D@y + £ A) g™ (@)]- E(x|Hdx  (45)
j=

2
- g" (&) (iv)
= g@) + X, e @

2 41 s A

+ ... (46)

Assuming g(-) is sufficiently smooth to allow consideration

of only the first two terms, gives
2
- 8" (8) oy
Y, =8 +——— (47)

The second central moment is:

Y2 = [mgz(x)f(x\ﬂl)dx :

Let h{x) = gz(x). Then, using (47),
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h'(8) = 20 (@' W) + gA)g" ()] (49)
=2 2
Y =2 @+ e )+ sWe"®]d (50)

. 2 =2 = .2
Noting that o) = Y1 - (Yl) , (47) and (56) give the desired

result, namely,

2. :
oy ¢ 8" W7o, 51)

It must be noted that (47) and (51) are of questionable
validity in the weak signal case. This is because the function
g(x) has a discontinuous second-derivative at the origin.1
Although the function is sufficiently smooth away from the origin,
and therefore allows (47) and (51) to be useful in the large SNR
case, other methods of approximation must be sought for the weak
signal situation.

Referring directly to the PDF, Section4 , for very small

A, (42) becomes

2
-5
0
_ =bA e .
fY(y) e o if y<0O
9 (52)
-%(ﬁ;ﬁ
2 bA e 0

fY(y) =e 72:—55—— if y>0

Then

See Appendix TIII.
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'—\/;T_OO sinh (bj)
i/zc bA + O(AZ)
m 0
.2 9
= (D, (54)
i O’X

The variance of Y wunder H1 and weak signal conditions

will be assumed identical to the variance of Y wunder the null
hypothesis. By assuming that the variances under the two
hypotheses are equal, an optimum decision rule can be defined.
However, no claim will be made for optimality; the important
feature will be the improvement in performance which may be

attained by using a nonlinear element in the detector.

3.6 Summary

This chapter discussed reasons for using nonlinear elements
in the detection process. Because it is not clear that a simple
clipper is in any sense the best nonlinear element that can be
used, the '"Gaussianizing' nonlinear filter was introduced. The
nonlinear filter (NLF) that transforms Laplacian variables to Gaussian
random variables was derived. The concavity of the transfer
characteristic on the positive real axis was shown and the output
PDF under H1 was found. Approximations for the mean and
variance of the NLF output were derived and their regions of

validity were discussed.






CHAPTER IV

COMPARISON OF DETECTORS

This chapter evaluates the performance of a detector
which includes the NLF derived in Chapter III. It investigates
the possibility of improving the detection reliability. To do so,

the probability of detection (P.) as a function of false-alarm

D
rate (FAR) is found. For the weak signal detection problem the

NLF -detector performance is compared to the optimal detector (the
nonparametric sign test) and also to a suboptimal detector which
is based on the assumption of a Gaussian noise model. The com-
parison is repeated for the case of strong signal.

The measure of performance of one detector relative to
another is based on the following definition [C1l, p. 897.

Definition: Let T1 and T2 represent two tests that test the

same HO against the same Hl’ with the critical regions size q«,

and with the same values of @. The relative efficiency of T1

to T, (or "efficiency of T

2 relative to T2") is the ratio

1

nz/nl, where n, and n are the sample sizes of the tests T

2 1

and T2 respectively.
This is a reasonable and useful measure of the relative
efficiency of T1 with respect to T2. An asymptotic relative

efficiency (ARE) of T, with respect to T is obtained by

1 2

passing to the weak-signal limit (when it exists) as H1 approaches

HO in a properly restricted sense [C5, p. 296].

46
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Section 4.1 develops the optimal detector for location
alternatives for a sample of size N from the Laplacian density
fxX) = % exp(f b|X-AD. Section 4.2 focuses on the weak-signal
detection properties of the sign test, the "optimal' test based
on an assumed Gaussian noise model, and the NLF-detector. Sec-
tion 4.2 concludes with a comparison between the sign detector and
the NLF detector. Section 4.3 investigates the large-signal de-
tection properties of the three detectors. In Section 4.4 a Monte
Carlo simulation is performed to investigate the performance of the
three detection systems for small sample sizes in both Laplacian
and Gaussian moise. Section 4.5 summarizes the main results.

4.1 Optimal Detector of Constant Signal in Laplacian Noise

The optimal detector, as was discussed in Chapter II, is
f(x,x,°°°x \H )
based on the likelihood ratio, where A(xn) é 12 n_1

f(x1X2-0~xn\H0)
and f(x1-°-xn‘Hi) is the likelihood function of the sample

n b

X = (x1x2'°°xh), when hypothesis Hi is true. Let the signal-

plus-noise PDF be of the form £f(u) = % exp(-b\u-A\), for

o < u < tw, with b determined from the relationship
(o=}
2 2
j x £(x)dx = oy (1
-

(See Chapter III, Section 3.2 for this development.)

o n  -blx.-Al o -b|x|
AMxX) = (Tae ° H/(Tae ') (2)
i=1 i=1
n
- exp(-b ;i(\ x -8| - \xi\)) (3)
Lot = 3%l - Ixl @)
b 1( i i)'

To proceed further with this analysis the real line is

broken up into 3 disjoint intervals, as follows:
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Let Ilﬂ{x\x2A>0}, I, = {x|x €0} and I;= {x|a>x >0}.
Now for each Xi which falls in Il, the right-hand-side of (4)

reduces to |Xi - A\ - \Xi\ = -pA. For each Xi in I,, the right-

2’
hand-side of (4) becomes \Xi - A\ - \Xi\ = A; and for each Xi
in 13, the right-hand-side of (4) becomes A - 2Xi. If among the

N observations, Ni are assumed to fall in interval 1I.,, the
i

right -hand-side of (4) may be rewritten as:

AN, -N) + T @ - 2X). 5)

Ny

This can also be written as

BN, ~N) +NjA - T (- 2X). (6)

Ny

Using the fact that N3 N - (N1 + NZ)’ (6) may be written

AN, - N F [N - (N +N)]a - 28 X, )
N,

= AN - 2.1 - 25 X . 8

Al 1) 533. (8)

The optimum processor consists of three-level threshold
circuitry followed by a counter and summing unit. If the threshold
circuitry detects a sample in Il’ A units are subtracted from
the counter while a positive A wunits are added to the counter
when a detected sample falls in IZ. Each sample occurring in
13 is summed and stored. The storage unit and counter indication
are summed after the N samples are processed and this test
statistic is compared to the decision threshold. The exact dis-

tribution of this test statistic can, theoretically, be obtained

although actual analytic evaluation would be cumbersome.
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4.2 Weak Signal Detector Evaluation

If interest is focused on the vanishingly small SNR case
(A » 0), a result from classical hypothesis testing literature
becomes immediately applicable. TIf XI’XZ""’XN is a sample
from the Laplacian distribution with density % exp(-‘X - A\),
with A a location parameter, then the Locally Most Powerful
(IMP) test of A =0 against A > 0 1is the sign test [L1, p.
3447. The concept of LMP tests is: applicable to communication

problems because of the desirability of achieving optimum detec-

tion for weak signals. Strong signals will be detected even if
the detector is well below optimum, as was noted by Capon
(c2, p. 677].

As A - 0, the test statistic of (8) becomes AN - 2N1),
where N1 is the number of Xi greater than A.N Thus an equi-
valent test can be stated in the form SN(XN) = ¥ U(Xi) where

i=1
1 if z >0
u(z) =
0 otherwise

The test based on SN has been investigated by Capon
[C3], Kanefsky and Thomas [K27], and others [C47, [H6], [C5].

It is a well known result [F2] that the statistic Sy
is sufficient for p, the probability that X > 0. The dis-
tribution of SN is binomial with parameters N and % under
HO’ and therefore the threshold value for any specified FAR can

be determined. The problem of randomization can best be explained

by an example.
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Example 1: Determine the threshold value that will guarantee a

FAR of 10% when the test statistic is SN and N = 8. The

probability mass function for S is shown in Figure 4.1. The

N

randomization problem becomes obvious unless the FAR is specified

as one of the values (0.0, 0.0039, 0.0351, 0.1445,...).

0.2734
0.2188
0.1094
0.0312
0.0039
L | | l X
1 2 3 4 5 6 7 8
Figure 4.1  Probability Mass Function for §
To achieve the specified FAR of 10%, randomization of the
threshold value of X = 6 1is required.
0.10 = (.0039) + (0.0312) + B(0.1094)
0649 .
B = 109% .59
The test is based on SN rejects the hypothesis HO if

X =7 or 8 and with probability .594 rejects HO if X = 6.
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This section continues with the derivation of the asymptotic
distributions of the sign detector under the hypothesis and
alternative and its probability of detection as a function of FAR.

Write

. ot
(bj‘)p! a-p), n=0,1,2,...N 9)

n
P[SN <n) = E i i

0

]

where
= P[X = 0lH (10)
P. L \ i] .

With Py = % (by Assumption A2, Chapter I), define K >
N
N
(=2 . (1)
j=x

This expression assumes that randomization is unnecessary. Because
asymptotic results (N - o) are of interest in this chapter, this

will be of no consequence. On the basis of (11), write

N

N ] N-j
Po= L ()op](-p) ) (12)
D . j 1 1
j=K
with P given by (10). For large sample sizes, the DeMoivre-
Laplace limit theorem can be invoked to simplify computation of
the probabilities (11) and (12), [F4].
Defining
S. - Np
*
st & N __d (13)

the theorem states that

%
P[z1 < SN,i < zZ] 5 ﬂ(zz) - ﬂ(zl) . a14)



Then (11) may be written

From (15)

Using (17) in (16) yields the receiver operating characteristic

u2
P = S L e- 5— du
F f N /2ﬂ
K=3
N
4
o
“+o 1 2
PD = I ;ﬁﬁ? e du
K - Npl
/e )

- ’E_ -1
K = 4 erfc* PF +

N =2

of the sign detector, namely,

S
P =
D

where the s

When

then

Substituting

-1
[erfc* P, - /N (2p; - 1)‘]
erfc*

superscript indexes the sign detector ROC.

X has the Laplacian PDF

f(X) = % exp (-b|X|), -» < X < +o

Pp=l-7

L-9p =7

these expressions into (18) yields

(15)

(16)

a7)

(18)

(19)

(20)
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erfcm1 Pp - JN (1 - e-bA)

s *
P_ = erfc = (21)
D * [(2 - e7Pby, bA] %
Substituting b =‘§g into (21) yields
X
erfc:-1 P - /N (1 - e X )
P; = erfc, T (22)
[ RN
t- %)
e

Equation (22) can be used to plot PD as a function of PF with
N and - as parameters. The ROC of (22) can be compared to
that derived in Chapter II, Section 2.5 for the "optimal' detector

based on an assumed Gaussian noise model, namely,

g O

P_ = erfc, [erfc;l P, - /N A—l . (23)
F %
For the case of small SNR, i.e., A ~ 0, (22) becomes

s _ -1 A
P = erfc*[erfc* PF - /2N ] (24)

%%

o

Suppose that the numbers of samples N in (23) and (24)
are not necessarily equal, i.e., in (23) let N = NO while in
(24), let N =N .

If the two tests have the same FAR and PD’ then equating

(23) and (24) yields

-1 -1
erfe,” P - /NO g— = erfc, " P - /TN; g— (25)
X X
NO
or simply N - 2 which is precisely the Pitman ARE for the
s

nonparametric sign detector relative to the '"optimal' Gaussian

detector.
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The weak signal performance of the NLF detector is now pre-

sented. The results of Chapter III are summarized in Figure 4.2.

Gaussian N
XN . Y Gaussian DECISION
Transforming EEEE——
Filter Detector HO or H1
,VSequence of N iidrb lgequence of N iidrv havgﬁg
having Laplacian PDF Gaussian PDF under H . Under
under H. and H H, and small A, the r.v. are

0 1 .
assumed Gaussian.

Figure 4.2 Nonlinear filter detector

Well known results concerning the sufficiency of the sample
mean can be invoked for the problem described in Figure 4.2. The de-

tector based on the sample (YN) mean is easily formulated. Under

2
%

H, Y ©, =2) while under H., Y. ~ (% (-cb-) O—0) The
or Iy ~ MO J “ 1> Iy 7 NOE oXA’N :

expression for PD as a function of FAR is then given by

c
PN = erfc, erfc“1 P - A fls (‘Q)A (26)
D ? * F % m og }

the validity of which is based on A ~ 0. The N-superscript

indexes the NLF detector ROC.
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Suppose that the numbers of samples N in (24) and (26)
are not necessarily equal, i.e., in (24) let N = NS and in (26),
let N = NN. If the two tests have the same FAR and PD, then
equating (24) and (26) yields

_ _ o
erfc, P, - SN N erfc PF - VAR ) (—0') A
S O'X 00 Cx
Ne o 2
5 = =22 0,636 . (27)
NN i

Using (25) and (27) the ARE of the NLF-detector relative

to the "optimal" Gaussian detector is found to be

Z

0
N

N
N =1.27

N
=0 .
N
S

Zz lm
a &

On the basis of ARE, the NLF-detector is better than the
"optimal" Gaussian detector, but not as good as the sign detector.1
This result could have been anticipated under the assumptions on
which it was based. The following theorem makes this situation
clear.

Theorem: Let X and Y be univariate random variables related
by Y =gX), g(-) a monotone increasing function wherever fX(X)
is nonzero. Then JX(1:2) = JY(1:2).

le(X)

fXZ(X)

change of variable X = g-l(y), which is monotone increasing and

s i
Proof: JX(1.2) = {m(fx1(x) - sz(X))Ln dX . Make the

defined uniquely for each y. Then,

Note that the NLF does improve SNR without a corresponding
improvement in detection probability.
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-1
N R O))

£ep (87 ()

D = [ (66T o) - fp & ) (G 87 )en ay

® le(y)
= [m(le(Y) - fYZ(Y))Ln E;;?;Y dy
= JY(I:Z) .

This formalizes the notion that a nonlinearity whose char-
acteristic is monotonic does not affect PD and FAR [R2, p. 4387.
This is because the probability that the output exceeds a given
threshold is exactly the same as the probability that the input
exceeds a corresponding threshold, there being a one-to-one
relationship between input and output amplitudes.

The optimal test for location was shown in Chapter II to

!

N
be of the form AKX ) ? K, where A(XN) was the likelihood ratio

"o

N
and K was picked so that P[A(X ) > K\HO] = P_. By the mono-

F

tonicity of the logarithm, an equivalent optimal test is of the

H
. N >1 * %
form 4n A(X ) ﬁ K , with K satisfying
0
Plgn AKY) > K |0 ] =P
in A 0l = Fp -
N *
Then Plen ACX) > K \Hl] =P -

If 4n A(XN) has a symmetric PDF under HO and Hl’ and if the

variance of 4n A(XN) is the same under both HO and Hl’ then

PD depends on the separation of means of 4n A(XN), the larger
the separation the larger the detection probability will be. Then
E(4n A(XN)‘Hlj - E(4n A(XN)|H0] is a useful measure of the

distance between distributions. When normalized by the common
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variance, the result corresponds to the SNR measure of Van Trees
[Section 2.3]. But

fl(X)
fO(X)

E{(¢n A(XN)\HI] = f fl(X)Ln dx ,

and

XN ® fl(x)
E[4n AKX |H)] = [mfo(x)Ln N dx

which yields

Elen A [H] - E[zn AGC) |H )

fo(x)
fO(X)

A

= [m[fl(x) - fo(x)]Ln dx = J(1:0)

which is the J-divergence distance measure introduced in Appendix I.
This shows that the optimal test for small signals at the nonlinear
filter output is not based on the sample mean. However, as pointed
out in Section 3.5, no claim for optimality was intended; the NLF-
detector is being investigated as a suboptimal detector which pro-
vides a continuous test statistic of known form under the null

hypothesis.

4.3 Strong Signal Detector Evaluation

Letting the sample sizes of the sign detector and optimal
Gaussian detector be NS and NO’ respectively, and equating (22)

and (23) yields

2

/N @ -e Py
F s = - _ 0 2
(@ - e e Pyt S EN >

erfc;lP

A ) A -8, -B--% .
where B = /2 Alck’ Define h(g) =1 - [(2-e ")e ¥] °, and write
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N erfc lp 212
E_Q = gz_[_‘/_N_*._F_'. h(B) + 1 -e B)] (29)
] 5] s
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