
ABSTRACT

STRUCTURE SPACES IN VECTOR LATTICES

BY

William George Chang

This thesis is concerned with the relationships between

some topological properties on structure spaces of an

archimedean vector lattice and vector lattice properties.

In chapter 1, the representation theorem of Johnson and

Kist is introduced and is used to obtain some relationships

between structure spaces of one vector lattice embedded in

another. It is shown that if an archimedean vector lattice

L is embedded in a space of continuous functions over a

topological space X, then the structure space of maximal

ideals of L is homeomorphic to X/E, where P is the

equivalence relation generated by the stationary sets of L.

It is then shown that if L has a strong order unit, its

Dedekind completion L is the space of continuous functions

over the minimal projective extension of the structure space

of maximal ideals of L. In chapter 2, the interplay between

projection properties and disconnectedness of structure

spaces is studied. Some results of Masterson on discrete

vector lattices and work by Luxemburg and Moore on vector

lattices with archimedean quotient vector lattices are tied
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together and the Luxemburg and Moore results are obtained

more handily. Chapter 3 finds necessary and sufficient

conditions for the space of extended functions to form an

algebra.
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INTRODUCTION

A vector space over the reals which has an order rela-

tion compatible with the algebraic structure is called an

ordered vector space. If the ordering is a lattice order-

ing, the space is called a vector lattice or Riesz space

or K-lineal. The only spaces considered in this thesis

are vector lattices.

In 1942, K. Yosida [16] showed that an archimedean vec-

tor lattice can be represented as a vector lattice of continu-

ous functions with compact support over a locally compact

space. H. Nakano [11], B. Z. Vulikh [15], and W. A. J.

Luxemburg and A. C. Zaanen [8] also give representations of

archimedean vector lattices as continuous functions over a

suitable topological space. D. G. Johnson and J. E. Kist

[6] present a representation theorem and show that it includes

the other representations. They show that the topological

spaces for the representations are just structure spaces of

prime ideals in the vector lattice. The Johnson and Kist

representation is used in chapter 1 to obtain theorems on

embedding vector lattices. In particular, it is shown that

for a vector lattice L 'with a strong order unit, the Dede-

kind completion L of L is precisely C(x) where x is

the minimal projective extension of the space of maximal



ideals. If L has only a weak order unit, then L is a

foundation in D(X), the space of extended functions on

the minimal projective extension of the structure space of

prime ideals maximal with respect to not containing the

unit.

In 1928, F. Riesz [13] initiated the study of vector

lattices by showing that in a Dedekind complete vector lat-

tice every order closed ideal is a direct summand of the

vector lattice: i.e., every band is a projection band. H.

Nakano [11] shows that for a C(X), X is extremally

disconnected if and only if C(X) is Dedekind complete.

D. G. Johnson and J. E. Kist [5] extend this result to

vector lattices, but with weaker conditions; i.e., X is a

suitable structure space of prime ideals, and Dedekind com-

pleteness is replaced by the projection property. In chapter

2, it is shown that a vector lattice L has the projection

property if and only if the space of maximal ideals of L

is homeomorphic to the space of maximal ideals of L. Thus

the uniform completion of L is L, by Stone-Weierstrass.

It is pointed out that the analogous result for the principal

projection property and the Dedekind o-completion is not

true. In some sense, this extends an investigation of struc-

ture spaces in the Dedekind completion by J. J. Masterson

[10]. In that paper, Masterson also studies some properties

of discrete vector lattices. These results are linked to

some results of Luxemburg and Moore [7] and Luxemburg and

Zaanen [8] on vector lattices where every quotient vector



lattice is archimedean. The Luxemburg and Moore results

are obtained more easily. A structure space characterization

for sufficiently many projections is also obtained in this

chapter.

M. Henriksen and D. G. Johnson [4] give necessary and

sufficient conditions for D(x), the space of extended

functions, to form an algebra. In chapter 3, it is shown

that this condition characterizes an F-space as defined by

L. Gillman [2]. Vector lattices, whose structure space of

maximal ideals form an F-space, are then studied.
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Chapter 0. Preliminaries

In this section some elementary concepts are listed.

For a more complete exposition, the reader is referred to

Peressini [l7], Luxemburg and Zaanen [8] or Vulikh [15].

DEFINITION 0.1: A vector lattice L is a real vector space

with a lattice ordering that is compatible with the

vector space structure; i.e.,

i) x s y = x + z s y + z for every 2 E L,

ii) x 2 9 = Xx 2 9 for A 2 0, where e is

the identity element of the vector space, and

iii) for every x,y E L, sup [x,y] = x v y, and

inf [x,y] = x A y exist.

DEFINITION 0.3: L+ = [x e L: x 2 e] c L is called the

positive cone of L.

DEFINITION 0.3: The positive part of an element x E L is

x = x V 9. The negative part of x is x_ = (-x) v e.

The absolute value of x is [x] = x+ + x-.

DEFINITION 0.4: Let x,y E L. x and y are said to be

disjoint if |x| A Iyl = e, and is written Xiy.

4
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DEFINITION 0.5: If L and L’ are vector lattices, then

a mapping T: L 4 L’ is a homeomorphism if for a e R,

x,y E L;

i) ‘1’(ax) = a Y(x),

ii) Y(x+y) = ‘1’(x) + ‘i’(y), and

iii) Y (xvy) ‘i’ (x) v ‘1’ (y) .

DEFINITION 0.6: L’ c L is said to be order dense in L

if for every x 6 L there is a set {xa: a e m] c L’

with sup{xa: a E u] = x. L’ is quasi-order dense if

for each x E L+, there is x’ 6 (L')+ such that

I

QSXSX.

DEFINITION 0.7: L is said to be archimedean if for every

x E L+ inf [ i-x: n = 1,2,'°-] = 9. Alternatively,

if x,y E L+ and xx 5 y for all A 6 9+. then x = e.

In an archimedean vector lattice, the notions of order

dense and quasi-order dense coincide. In the next chapter

the Johnson and Kist version [5] of the result that a vector

lattice is archimedean if and only if it is isomorphic to a

vector lattice of continuous functions into the two-point

compactification of the reals is presented.

DEFINITION 0.8: A linear subspace M of a vector lattice

L is said to be a vector sublattice of L if for

each x,y E M, xvy 6 M. A linear subspace M c L is
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an ideal of L if it is a vector sublattice and when-

ever for x E M, y € L, [y] s |x|, y E M.

DEFINITION 0.9: A vector lattice L is said to be

Dedekind complete (Dedekind o-complete) if every bound-

ed subset (countable bounded subset) has a supremum

in L.

THEOREM 0.10: If L is a vector lattice, then there exists

a minimal Dedekind complete vector lattice L such

that L can be embedded as an order dense subvector

lattice of L if and only if L is archimedean. L

is called the Dedekind completion of L.

DEFINITION 0.1;: A Dedekind complete vector lattice in which

every set of pairwise disjoint elements is bounded is

said to be universally complete.

THEOREM Ong: For a vector lattice L, there exists a mini-

mal universally complete vector lattice L# containing

L as an order dense subvector lattice if and only if

L is archimedean. L’ is called the universal comple-

tion of L.

If [xa}a€u is a monotone increasing (decreasing)

net, in a vector lattice L, ‘with supremum (infimum)x

in L, we write x t x (x 1 x).

a a



DEFINITION 0.13: A net {xa}a€fl

to x E L if it is order bounded and there exists a

is said to order converge

+

cnet {ya}aéfl L such that

- sIxa XI ya 1 e

We denote this by x a x. A net [x ] is said to

a a 06m

converge e-relatively uniformly to x if for arbi-

trary e > 0 there exists a0 6 m such that for

a > 0 IX - x] < e e.
a

0'

DEFINITION 0,14: A principal ideal is an ideal generated

by a single element; i.e., I is a principal ideal if

there exists x0 6 I such that I = [x€L: Ix] s nleI

for some integer n].

DEFINITION 0.15: A band is an order closed ideal.
——

DEFINITION 0.16: Let A be a subset of L. Then A1 =

[x 6 L: x I a for every a E A}.

THEOREM 0.17: L is archimedean if and only if A‘L‘L = A

for every hand A.

THEOREM 0.18: A; is a band for every subset A of L.

DEFINITION 0.19: B is a projection band if L = B e 3*.



DEFINITION 0,20: L has the projection property (P.P.) if

every band is a projection band.

DEFINITION 0.;;: L has the principal projection property

(P.P.P.) if every principal band is a projection band.

DEFINITION 0.22: An ideal P C L is prime if for x,y e L,

x A y e P implies that x e P or y E P.

THEOREM 0.23: (Johnson and Kist [5]) The following are

equivalent:

i) P is a prime ideal

ii) if XAy = a, then x e P or y e P

iii) the quotient vector lattice L/P is totally

ordered

iv) if A O B C P for ideals A,B, then either

A c P or B c P.

DEFINITION 0.24: Let B be a collection of prime ideals.

Then the kernel of 3, k(5), is the intersection of

the prime ideals in 8;

MB) = an=P 6 6}.

DEFINITION 0:25: Let A be a subset of L. Then the hull

of A, h(A), is the set of prime ideals which contain

A.



For any collection of prime ideals m, it is well

known that A'= h(k(A)) for any subset A Cim defines a

closure operation on m and hence a topology (see [2],

section 4.9). This topology is known as the hull-kernel

topology, Stone topology, or Zariski topology. It is readily

seen that ma = [P E m: a f P] forms a basis for this

topology.



Chapter 1. Structure Spaces

In this chapter, the representation theorem of Johnson

and Kist [5] is presented. This becomes the principal

tool of the section. Conditions for a structure space to

be Hausdorff and for a structure space to be separated by

the vector lattice are found. Gleason [3] showed that extrem-

ally disconnected spaces are projective in the category of

compact sets and continuous functions. Mack and Johnson [9]

Observe that this is also true for the category of complete-

ly regular spaces and fitting maps. They further show the

existence of an essentially unique space, the minimal pro-

jective extension, which lies above a given space. We show

that there is essentially only one space for which a vector

lattice L is a separating family of functions, and thus,

by Theorem 1.16, if L has a strong order unit, the Dedekind

completion of L is C(X) where X is the minimal pro-

jective extension of the maximal ideal space.

DEFINITION 1.1: If L is an archimedean vector lattice,

then a structure space for L is a collection of prime

ideals of L such that the collection has 9 inter-

section and is endowed with the hull-kernel topology.

10
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Let 3_ denote the three point space [3,Q,+2]

which is ordered by 13 < Q.< +3, Define addition

by

(is) + (is) =.:2

(:2) + (:2) =.:2

(129;) + (Q) =i2. (:2) + (9.) =2

(:3) + (is) is undefined. Scalar multiplication for i

is defined by

(19:90 0(ig) =9

GEE) = :2: 0(2) = for a > 0

for a < OI?
Is

(1(2) = L9,: (1(2) =

DEFINITIONplpgg A function f from a vector lattice L

to .i is said to be a spectral function if

i) f(x) # Q, for at least one x E L,

ii) f(ax) = af(x) for each x E L, a E R, and

iii) f(xvy) = f(x) v f(y) for x,y E L.

D. G. Johnson and J. E. Kist [5] show that the space of all

prime ideals in a vector lattice L is homeomorphic and

order anti-isomorphic to the space of all spectral functions

on L, when the ideals are given the hull-kernel topology.

If P c L is a prime ideal of L, P defines a spectral

function by

P(f) = +m f+¢p
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DEFINITION 1.3: An extended function on a topological space

X is a continuous map from X into the two-point

compactification of the reals, which is real-valued

on a dense subset of X. The set of all extended

functions on X is denoted by D(X).

Let X be a topological space and f,g e D(X), a e R.

Then af, f A g, and f V g are defined pointwise. If

there is a function h e D(X) such that h(x) = f(x) +

g(x) whenever f(x) and g(x) are finite, then h is

called the sum of f and g. h is unique since where f

and g are finite is an open dense set in X. In general,

the sum does not exist. When the sum always exists is

studied in Chapter 3. For this investigation, the Johnson

and Kist representation will be used. So, for each x 6 L+,

L being an archimedean vector lattice with weak order unit

.1, define for each prime ideal P,

x(P) inf [a E m: P(x) s aP(_l_)]

= inf {a e m: (cl-X)- E P}

where the infimum of the empty set is +m. Then x e L de-

fines an extended function on certain structure spaces. The

representation theorem will now be developed. L will al-

ways be an archimedean vector lattice.

LEMMA 1.4: If b e L, and if [yx: 1 e A] is a collec-

tion of elements in b‘L such that y = sup[yx:x e A]

exists, then y E bi.



I
I
I

[
.
I
I
I
I

I
l
l
-
I
'
l
l
!
"

l
l

"
I
l
l
l
I

'
1
'

I



13

Proof:

I‘L is a band for any I C L.

LEMMA 1.5: If B is a structure space, then bi : k(6b)'

where 55 = [P E 6:'b E P], for every b e L.

2:22;:

If |y| A [bl = e and P 6 5b, then y e P,

since P is prime. Hence, y E k<Bb)’ i.e.

1:):L :kmb).

Now consider y E k(8b)' If P E 8b'

|y|A|bI€P. If P g ab, then |y| A [bl e P. SO

|y| A IbI E fl[P: P e 3}. But then |y| A [bl = 9.

Hence, y E bL implying k(8b) C bl. Thus,

b‘ = k(3b).

We are now ready to present the Johnson and Kist repre-

sentation theorem [5]. Johnson and Kist show that this,

theorem includes the representations given by K. Yosida [16],

H. Nakano [11], and W.A.J. Luxemburg and A.C. Zaanen [8] by

showing that the topological spaces obtained by these authors

are homeomorphic to structure spaces. For more details see

[5].

TflEOREM 1.6: (Johnson and Kist [5]) Let L be a vector

lattice with weak order unit 1, Let ‘W be the struc-

ture space of all prime ideals not containing ‘1.

Then L is isomorphic to a vector lattice of extended

functions on m.
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£19.29

Let x e L+. Then define

32(9) = infm e m: 90:) s a my}

(For arbitrary x, set EXP) = ;x(P) - ;=(P).

Since x+ A x- = 9, ;' is well-defined.) To

show El is continuous, a) let ;(P) = +m.

If a E R, then (al_- x—) E P. Let

c-;A(ale)T Then C i P, P 6 BC : W. For any

Q 6 BC. (q; - X)_ i Q: hence, EXQ) 2 a. Thus,

E. is continuous at P; b) now consider EXP)

finite valued: i.e. EXP) = For 0 > 0,do.

((a0 + e)1_- x)+ g P and ((OLO - €)l.' x)- E P.

Set

c = _1_ A ((a0+e);-X)+ /\ ((aO-e)_1_-x)'

Then, Pzeccm. If QGBC

(<a0+e)1:x)+ g Q and

((aO-e)1:x>‘ z Q

Thus, EXQ) 3 a0 + e and EXQ) 2 - 8. Hence,

0‘0

x is continuous at each point.

To show that E. is an extended function on

m, it is necessary to show that where '§ is

finite valued is an open dense subset of m. We

shdw that the infinity set of E. is nowhere dense.

Suppose not. Then there is a basic open set Bb'

efibELf, which is contained in the infinity set of

x. So for every P E 5b' x(P) = +m. Then

(OI-X)+ E P or (l_- ($fin)*‘e p, n = 1,2,...
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Hence, by lemma 1.5,

<1.- §9+ P b*. n = 1.2.--°

x +
Let y 2 (1_- a) for all n. Then

l—y 5%, n = 1,2,-~

Since L is archimedean, :; s y. But .l 2 (1 —.%

n = 1,2,°°° Thus, ‘1 = sup [(1 - §)+]. So by

n

lemma 1.4, l_€ bl. But .1 is a weak order unit.

Thus, b = 9.=¢=So x is an extended function.

It is now necessary to show that the mapping

x a x is a vector lattice homomorphism: Let P

be a prime ideal in m. Then

2:; (P) = inf (a: (a; - (X+y))- e P)

= inf [a + 6: (q; - X + Bl.’ Y)- E P}-

Since for arbitrary f,g 6 L

(f+g)- s f- + g- and (f+g)+ s f+ + g+

we have

(q; - x)’. (01 - y)" e P = (q1 - x + 01 - y)” e P

Hence,

§I§'<P) s EXP) + §XP).

Conversely, let a < ;(P), B < g(P). Then (q; - x)_ng

and (a; - y)- E P. Thus, since

(cl-X)+ + (01-y)+ 2 (qi-x + 01-y)+

we have (ql-x + Sl—y)- f P. Hence,

EXP) + §(P) s 2:? (P)
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So addition is preserved. Now let a E m. then

EEXP) inf (5: (Bl.- ax)" e P}

inf (a: <§1_- x)‘ e P}

inf [OB= (PI - x)‘ e P}

a;(P) .

So scalar multiplication is preserved. Finally

WW) inf (a: (01. - xvy)_ e P}

= inf [a: [(qg - x) v (ql - y)]' e P]

= inf (a: [(ql — x)'A (q; - y)'] e P}

= inf (a: (q; - x)’ e P] v inf[a:(qlry)-€P]

= EXP) v §kp).

Thus, x 4 x is a vector lattice homomorphism.

To see that this is an isomorphism, let E's 0.

Then (%-1_- x)- e P for n = l,2,°°° By lemma

1.5,

1 - l
(C; l) - X) E l_ for all n.

Since L is archimedean

1 - .0.

X=sup{(H_];-x):n=1'2'
}

Thus, by lemma 1.4, x 6 1}. Hence, x = 9.

DEFINITION 1.7: A set of functions A on a topological space

X is said to separate points of X (or separates X)
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if for every pair of points x,y E X, there is a

function f E A such that f(x) = 0 and f(y) = l.

A vector lattice need not separate points of a struc-

ture space. In general structure spaces are not Hausdorff.

The following theorem may be known, but does not seem to be

in the literature. It points out that for structure spaces,

Ti and Hausdorff are equivalent.

THEOREM 1.8: Let L be an archimedean vector lattice. Let

m be a structure space for L. Then m is Hausdorff

if and only if for every pair of distinct prime ideals

P.O e m. P 73 0.

2£22£=

(=) Let m be Hausdorff, P, Q distinct

elements of m. Then there exist basic open

neighborhoods, mx = [I E m: x f I],

my: (Ian: yg'I}, with x,y e L+ such that

P 6 my. Q G‘mx and my_n mx = 0. Then y i P,

x K Q and x A y = 9 (since

(1677!: yél] 0 [167m xZI]=¢, either x or y

belongs to each I 6 m. Thus, x A y = 9.) Since

P,Q are prime, x 6 P, Y E Q and so P¢ Q.

(4:) Let 7); be such that P¢ Q for arbi—

trary P,Q E M. Then there exist x’ E P, x’ g Q

and y’ E Q, y’ E P, with x’,y’ E L+. Set

x = x - (x’ A y’), y = y’ - (xJ A y’). Then
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XAy=e. XEP.XEQ.y€Q.y£P.

Thus, mx, my are disjoint open sets in m

separating P and Q.

COROLLARY 1.9: The structure space of all prime ideals is

Hausdorff if and only if all prime ideals are maximal.

Vector lattices satisfying corollary 1.9 will be studied

in chapter 2. We now turn to the question of what spaces are

separated by L. It is clear that L separates the structure

space of maximal ideals. We now characterize what structure

spaces are separated by L. Let us restrict our study to

structure spaces of prime ideals not containing 1,

THEOREM 1.10: Let L be an archimedean vector lattice with

strong order unit 1, Let ‘m be a structure space for

L and P,Q be distinct elements of ‘m. Then P and

Q are separated by L if and only if P,Q are con-

tained in distinct maximal ideals (with respect to not

containing'lg.

22%:

Let P be a non-maximal prime ideal in L.

Then P is contained in a unique maximal ideal

M. M is the relative uniform closure of P.

(The only relatively uniformly closed prime

ideals are maximal since L/P is totally ordered

for prime P and the only totally ordered
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archimedean vector lattice is m. A maximal

ideal is relatively uniformly closed since L/M

is archimedean if and only if M is relatively

uniformly closed [7]). We show that for f E L+

f(P) = 0 if and only if f(M) = 0.

(£0 Suppose f(M) = 0. Then inf[a: (ql_- f)- E M]=(n

i.e., inf[a: (f-dl)+ 6 M] = 0

Hence,

(f-a_1_)+eM for all a>0.

In particular,

(f-%1)+GM, n=1,2,---

But

f = lim (f - 49*

D40 n

Since M is relatively uniformly closed, f E M.

Now consider the quotient map, T: L 4 L/P. Since

P is prime, L/P is totally ordered. L/P is not

archimedean since P is not maximal. L/P con-

tains only one maximal ideal, M/P, since L/P is

totally ordered. Note that L/P contains the

real numbers ([a7(l): a 6 m1), and that M/P is

the set of "infinitesimal" elements in L/P: i.e.,

for x e M,

|T(X)I S aT(l) for every positive a.

We will denote T(x) by El For 9 s f e M,
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O = inf (a: (a; - f)- E M}

= inf [0: (d: - E)_ E M/P}

If (ml - 5-4. (a: - f) 2 E and if (cl—Efren}?

then a: - I: g M/P, Thus:

0 = inf (a: q: -'E 2'3}

Since, d:.£ M/P, a # 0, and L/P is totally

ordered,

aI—f>e for a>0

0,——

H
a
l

A

d
)

for a s 0

Hence,

0= inf (a: (ai-P) 2‘9“}

inf [0: (q; 'IE) ='§}

inf (a: (a1 - f)‘ e P] f(P)

Thus, if f(M) = 0, then f(P) ll 0

(2) Suppose now that f(P) = 0. Then

f(P) = inf (a: (al.- f) 6 P]

2 inf (a: (a_1_ - f-) e m} = f(M)

Thus, if f(P) = 0, then f(M) = 0.

Hence, if P and Q are in distinct maxi-

mal ideals they are separated.

DEFINITION 1.11: Let X and Y be topological spaces.

A continuous map p: X 4 Y is said to be tight if for
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each open set U C X, there exists an open set

V C Y so that p-1(V) C U.

PROPOSITION 1.12: Let n be the structure space of maxi-

mal (with respect to not containing 1) ideals of an

archimedean vector lattice L with strong order unit

.1. Let B be any structure space of prime ideals.

Then there is a continuous tight map from 6 onto m.

2.13193

Define p: B *‘M by p(P) = M, ‘where M

is the unique maximal ideal containing P E B.

Let [M.E m: f f M] be a basic open set in m.

Then

(M6771: f£M1= [M6772=f(M) #0}.

P-1({M€772=f(M) 750]) (Pea: PCM, f(M) #0}

{P E 6: f(P) # O}:

which is an open set in 6. Hence, 0 is continu-

ous. p is tight since for each basic open set

in B, [P e B: x f P],

[PEB:x(P);£O}C[PEB:x£P].

So structure spaces bear some relationship to the maximal

ideal space of a vector lattice. The extent of this relation—

ship is not clear. But we now show that there is essenti-

ally only one compact space for which an archimedean vector

lattice is a separating family of functions.
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THEOREM 1.13: Let L be an archimedean vector lattice

with strong order unit 1, Let L ‘be contained in a

C(X), where X is a compact topological space. Let

p be the equivalence relation defined by x ~.y if

f(x) = f(y) for every f E L. Then X/E is homeo-

morphic to M(L), the structure space of all maximal

ideals in L.

Proof:

Let Y = X/E and p: X 4 Y be the natural

projection. Let Mx be the maximal ideal in L

associated with x; i.e.,

Mx = [f 6 L: f(x) = 0].

Since, Mx = My if and only if x ~ y,

T: X/e 4‘M(L) defined by

7(p(X)) = Mx

is a bijection between Y and M(L) is quasi-

compact (it need not be Hausdorff) since X is

compact. Let

”2(a) = {M 6771(L)= a E M}

be a basic closed set in M(L). Then

9‘1 . $1022 (a)) p'lflp (x): a e Mxl)

= [x e x: a e Mx}

= {1 (x: f(x) = 0 for f E Mx]

femx

Mxém (a)
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But this is a closed set. Hence, T is continuous.

Since m(L) is Hausdorff and Y is quasicompact,

T is a homeomorphism.

Throughout this thesis we will use M(L) to denote

the structure space of maximal ideals if L has a strong“

order unit or the structure space of ideals maximal with

respect to not containing 1, if 1_is a weak order unit.

We now show that if L is a vector lattice embedded in L’

(another vector lattice) and the embedding is order dense

and 1,6 L goes to ‘1’ E L’, then ‘M(L’) bears the "same"

relation to m(L) as a structure space in L, i.e., there

exists a tight map from. M(L’) to M(L).

THEOREM 1.14: Let L’, L be archimedean vector lattices,

L C L’ is a subvector lattice and L, L’ share a

weak order unit 1. Then there exists a continuous

onto function p: M(L') 4TM(L). If L is order dense

in L', the mapping is tight.

E£22£=

Let E ‘be the equivalence relation on M(L’)

defined by P ~ Q if f(P) = f(Q) for every

f E L. Then by theorem 1.13, M(L’)/E is homeo-

morphic to ‘M(L). Then the projection

p: WHL’) -o ”((L) is the continuous onto map.

Now let [M.E‘M(L’): a f M] be a basic open

set of' M(L'). Let x E L such that e < x < |a|.
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Then, if M e (flux 6 771(L):x g 1}),

M e p-1([I e m(L): x(I) ¢ 0}). Hence, x(M) # 0

and x g M and a g M. Since x f e,

{I e m(L): x z I] is not empty. Thus if L

is order dense in L’, p is a tight map.

This is really an embedding theorem. If L can be

embedded in another vector lattice L’, then there is a

map p: M(L’) 4'M(L), via the theorem to the image vector

1attice;and the homeomorphism of the image structure space

and the structure space. Then the embedding of L into

L’ is given by

f’ = f o p, for all f e L.

This guarantees the embedding into a space of continuous

functions. Then using the following result of J. E. Mack

and D. G. Johnson [9], which is an extension of a result

of A. J. Gleason [3], we can find the Dedekind completion

of a vector lattice.

THEOREM 1.15: (Mack and Johnson) Every completely regular

topological space Y is the continuous image of an

extremally disconnected space, Y”, under a tight fitting

map, T (a map is fitting if it is closed, onto, and the

inverse image of a point is compact). If Z is another

extremally disconnected space and O is a tight fit-

ting map onto Y, then there is a homeomorphism p
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of Yca onto Z such that O o p = T. Y is called

the minimal projective extension of Y.

THEOREM 1.16: Let L be an archimedean vector lattice with

strong order unit 1. Then the Dedekind completion, L,

of L is C(M(L)Q), the continuous real-valued

functions on the minimal projective extension of ‘m(L).

23120.?

By theorem 1.15, 772(L)on is unique. Let

p: 771(L)co 4 m(L) 'be the projection map. p is

tight fitting and embeds L into C(M(L)m).

But I. '=' C0); (1.)). Hence, 7M1.) is embedded in

M(L)an as a closed subspace. Then by the unique-

ness of M(L)m' 'm(L) is homeomorphic to ‘M(L)m.

If L has only a weak order unit, by restricting our-

selves to the bounded elements, it is easy to see that L

is an order dense ideal in D(M(L)m). Thus, L#, the uni-

versal completion of L, is D(M(L)w).

In view of the tight map from structure spaces to M(L)

in an arbitrary vector lattice, a natural question, still un-

resolved, is whether the minimal projective extension is a

structure space.



Chapter 2. Disconnectivity of Structure Spaces

We nOW‘WiSh to study the relationship of certain proper—

ties of a vector lattice with disconnectivity in the struc-

ture spaces. We Obtain a necessary and sufficient condition

for a vector lattice L to have the projection property and

show that the analogous conjecture for the principal projec-

tion property is not true. We then study a property stronger

than P.P.P.; i.e,when every principal ideal is a projection

band. This provides a connection between results of J. J.

Masterson [10] and W.A.J. Luxemburg and L. C. Moore [7].

We obtain the Luxemburg and Moore results more easily. Fin-

ally we characterize "sufficiently many projections" in

terms of disconnectivity of structure spaces.

DEFINITION 2.1: A topological space X is extremally dis-

connected if the closure of every open subset of X

is open. X is basically disconnected if the closure

of every open F0 set is open.

H. Nakano [11] has shown that a topological space X

is extremally disconnected if and only if C(X) is a Dede-

kind complete vector lattice. It is shown, in the same

paper, that X is basically disconnected if and only if

26
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C(X) is Dedekind 0-complete. Since for compact X, the

structure space of all maximal (algebraic or vector lattice)

ideals in C(X) is homeomorphic to X, these results are

relations between properties on a vector lattice and topologi-

cal properties on structure spaces. Johnson and Kist [6]

have extended these results to ¢-algebras (archimedean

lattice-ordered algebras which have for a weak order unit

the identity element). Before the study of these relation-

ships can begin, we must establish some relations between

bands and structure spaces. For the following, let L be

an archimedean vector lattice (L need not have an order

unit), m be some structure space of L. Then, if I is

a subset of L, h(I) = [P e m: I C P] is the hull of I

in ‘m. If J is a subset of' m, then k(J) = n[P: P 6 J}

is the kernel of J. y’ will denote the set complement

of y in m. The following can be found in [6].

PROPOSITION 2.2: If I is a subset of L, then IL==k(h(I)’).

Thus h(I‘) = h(I)’.

PROPOSITION 2.3: If i, is a closed subset of m, then

k(£)i= k(£’). Hence, k(u) is a band whenever u is

an open set.

PROPOSITION 2,4: If I is a projection band in L, then

h(I) is open in m.
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The converse to 2.4 is not true. If L is the vector

lattice of continuous functions on the one-point compactifi-

cation of the natural numbers m. cm, then L has a struc—

ture space of maximal ideals homeomorphic to N. Then the

ideal

I = [f e L: f-l(0) ; 2m}

is not a projection band, but it is a band. The hull of I

is 2m which is open and closed in m. Thus the open and

closed sets of an arbitrary structure space are not neces-

sarily associated with a projection band. However, if the

following condition is imposed on a structure space a corre—

spondence can be established:

(*) if {,1 s: 7); and k(:£) + k(I) 75 L, then k(;£,) + k(I) g: P

for some P E‘m, or equivalently,

(*) two subsets £,I of ‘m have disjoint closures in m

if and only if k(£) + k(T) L.

PROPOSITION 2.5: Let, m be a structure space that satisfies

(*). Then u g m is open and closed if and only if

k(u) is a projection band.

PROPOSITION 2.6: For a vector lattice L, the following

are equivalent:

1) L has P.P.: i.en every band is a projection

band,
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ii) every structure space of L is extremally

disconnected,

iii) L has an extremally disconnected structure

space that satisfies (*).

So Nakano's result on the Dedekind completeness of

C(X) and extremal disconnectivity of X=(7/‘z(C(X))) cannot

be extended to a vector lattice and M(L). In particular,

we have that. M(L) may be extremally disconnected but L

not be Dedekind complete. An example of this is the vector

lattice of real valued sequences with finite range. However,

after making the following observation, it is easy to see

that the projection property is very close to Dedekind

completeness.

PROPOSITION 2.7: Let L be an archimedean vector lattice

with strong order unit 1. Then the structure space of

all maximal ideals, M(L), satisfies (*).

2.11229

Let £,I be subsets of M(L). Then

kw + km = [f e L: f(P) = Owhere PEZHT}

If ZOE-74¢. choose MEZOI. Then

k(:£) + k(3’) C M

If 2n?=¢. then

k(:£) + k”) = L.

In view of proposition 1.17, the compactness of' M(L),

and the fact that L separates points of' M(L), we have
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that the minimal projective extension of m(L) is M(L)

via the Stone‘Weierstrass theorem: i.e.,

THEOREM 2.8: Let L be a vector lattice with weak order

unit 1, Then L has P.P. if and only if m(L) is

/\

homeomorphic to ‘m(L).

This observation raises an interesting question when

taken with some results of J. J. Masterson. In [10],

Masterson studies the existence of homeomorphisms between

structure spaces of a vector lattice and structure spaces

of its Dedekind completion. He shows that if L has P.P.,

the space of minimal prime ideals of L is homeomorphic to

the space of minimal prime ideals of L. So we have homeo-

morphisms between the respective maximal ideal spaces and

minimal prime ideal spaces. But, in general as Masterson

has shown, the natural mapping P 4 P of prime ideals does

not yield a homeomorphism. So we now raise the question of

what happens when we collapse the maximal ideals to minimal

prime ideals, i.e., when the structure space of all prime

ideals is Hausdorff. In [6], Johnson and Kist show

PROPQ§1TION 2.9: Every ideal is the intersection of all

prime ideals containing it.

In [10], Masterson shows
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PROPOSITION 2.10: Let m be a structure space for an archi-

medean vector lattice L. Then mx = [P E M: x f P]

is closed for all x 6 L if and only if ‘m is a struct-

ure space of minimal prime ideals.

Thus in order for every element in L to have an open

hull in every structure space, it is necessary and sufficient

that every prime ideal be minimal. We can now prove:

PROPOSITION 2.11: Let L be an archimedean vector lattice.

Every prime is minimal if and only if (x) = <x>, where

(x) is the ideal generated by x and <x> is the

band generated by x, for every x E L and L has

(a) Let m = [all prime ideals in L]. Then

by 2.9, (x) = fl[P€m: xEP]

Since m has topological dimension 0 with. mx

as a basis of open and closed sets, (x) is the

kernel of an open set, its hull. Then by proposi-

tion 2.3, (x) = <x>. Furthermore, m has property

(*). Thus,since [P E m: x E P] = h(x) is an open

and closed set, <x> = (x) is a projection band

by proposition 2.5.

(e0 Suppose (x) = <x> and L has P.P.P.

Then h(x) = h((x)) = h(<x>)





32

<x> is a projection band: hence h(<x>) = h(x)

is open by proposition 2.4. But h(<x>)’ = mx.

So by proposition 2.10, all prime ideals are mini-

mal.

W. A. J. Luxemburg and L. C. Moore [7] have shown that

the conditions (x) = <x> and P.P.P are equivalent to L

having the property that every quotient vector lattice is

archimedean. Using this and some information about P-spaces,

we will link some of Masterson's results with those of

Luxemburg and Moore.

DEFINITION 2.12: A topological space X is a P-space if

for C(X), Mp = [f E C(X): f(p) = O] is precisely

Op = [f 6 C(X): f(U) = 0 for some neighborhood u

of p] for each point p E X. A point p E X for

an arbitrary topological space X is a P-point if

M = 0 7 i.e., every zero set containing p contains

P

a neighborhood of p.

A P-space is a topological space for which every prime

ideal in C(X) is maximal. So this is the class of spaces

for which we wish to investigate C(X). It is well-known

that minimal prime vector lattice ideals coincide with the

minimal prime algebraic ideals for C(X) ([2], 14.7).

For a compact X, the maximal ideals also coincide. Now

notice that for a function f to be continuous at a P-point,
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f must be constant on a neighborhood of that point. This

immediately yields that a compact P-space is finite. It

also says that if X is a P-space, C(X) E D(X). For

more detailed information on P-spaces, we refer the reader

to Gillman and Jerison [2]. We now characterize vector

lattices for which every prime ideal is maximal and which

are uniformly complete by using the proposition developed

above and this information on P-spaces.

THEOREM 2.13: Let L be an archimedean vector lattice

with weak order unit 1. Let L, further, be uniformly

complete. Then every structure space m is a P-space

if and only if for each x 6 L*, the bounded elements

of L, (x) = <x> and L* has P.P.P.

.££29£=

It is sufficient to show that the space of

all maximal ideals with respect to not contain-

ing .1 is a P-space, since there will be no

other prime ideals. So, let m be this space of

maximal ideals.

(a) Assume m is a P-space. Then, by the repre-

sentation theorem, L C D071) and L* = C(m),

since L* is uniformly complete and separates

points on m. Since m is a P-space all alge-

braic prime ideals are maximal in C(M). Then

by the foregoing remarks, the prime vector lattice

ideals are maximal. Thus, in L* = C(X), (x) = <x>

and L* has P.P.P. by 2.11.
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(#0 Assume (x) = <x> and L* has P.P.P.

Then prime vector lattice ideals in L* = C(X)

are minimal. Hence, again by the above remarks,

all prime algebraic ideals are minimal, hence

maximal. Thus, m is a P-space.

The condition that L have a unit is not necessary.

However, if L does not have a unit, then we must consider

structure spaces with respect to a complete orthogonal set

[xa 6 LI: a 6 a]. The structure spaces then investigated

are subsets of [J [P: xa g P]. The structure space of

aEfl

maximal ideals with respect to 1, becomes [J [M: xa £ M}

where M is maximal with respect to not cogigining xa for

each fixed xa. Each set ma = [M: xa f M] is compact: the

ma are pairwise disjoint since xa A x6 = e if a # B.

So the structure space m = uma is locally compact. Using

the representation of the component of f 6 L on each com-

pact set ma we obtain Yosida's representation of L as

a vector lattice of continuous extended functions with com-

pact support on a locally compact space (see [5]). With

this remark 2.13 becomes:

THEOREM 2.11: Let L be a uniformly complete vector lattice:

[xa: a E m] be a complete orthogonal set of positive

elements. Then the structure space m = uma is a

P-space if and only if for each x E L, (x) = <x>

and L has P.P.P.
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Thus, it follows from 2.11 that a vector lattice L

has every quotient vector lattice archimedean if and only

if all prime ideals are maximal. Moreover, if <x> is a

principal band, then <x> has compact support. But x

is an order unit for <x>. So if L is uniformly complete,

then, by 2.13, the support of <x> is a P—space and thus

finite. If we take x = xa from the complete orthogonal

set, we see that m is a discrete space. So we have the

following result relating vector lattices with archimedean

quotient spaces to discrete vector lattices.

PROPOSITION 2.14: Let L be a vector lattice. Then the

following are equivalent:

i) every prime ideal is maximal,

ii) every quotient vector lattice of L is

archimedean,

iii) every ideal is relatively-uniformly closed,

iv) every principal ideal is a projection band.

We are now prepared to link Masterson's result with

Luxemburg and Moore's.

THEOREM 2.15: Let L be a uniformly complete vector lattice,

[xa: a 6 u] a complete, maximal orthogonal set,

m = uma as above. Then the following are equivalent.

i) m is a discrete topological space,

ii) m is a set of closed prime ideals in L,
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iii) m\jP] is not a structure space for any P 6 m,

iv) every prime ideal is maximal,

v) every quotient vector lattice is archimedean,

vi) every principal ideal is finite dimensional,

vii) L is isomorphic to the vector lattice of all

real functions on a discrete space which

vanish outside an appropriate finite subset,

viii) L is super-Dedekind complete and every quo-

tient vector lattice is archimedean.

M:

The equivalence of i), ii), and iii) was

obtained by Masterson [10]. The equivalence of

1), iv), v), vi), vii) are easy to see from 2.13,

2.13’. The equivalence of viii) follows since

m is discrete, it is extremally disconnected and

so L has P.P., by 2.6. Since L is uniformly

complete, L is Dedekind complete. L is super

Dedekind complete since each x E L has finite

support. Thus i) e viii).

The equivalence of v), vi), vii), and viii) was previously

done by W.A.J. Luxemburg and L. C. Moore [7]. The key theorem

for the proof is 2.13. We noted that the unit was not neces-

sary for the hypothesis. The following example will show

that uniform completeness is necessary for theorem 2.13 and

hence for 2.15. The example will point out something else.

In theorem 2.8, we noted that, since P.P. and uniform com-

pleteness imply Dedekind completeness, a vector lattice with
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P.P. is close enough to its Dedekind completion to yield

a homeomorphism between the structure spaces of maximal

ideals. It is therefore natural, knowing that P.P.P. with

uniform completeness imply Dedekind o-complete, to ask the

same question about vector lattices with P.P.P. The answer,

however, is no homeomorphism necessarily exists. So Dede-

kind o-complete is in some sense farther from P.P.P. than

Dedekind complete is from P.P. The example will show that

a vector lattice may have P.P.P. and a unit, but the structure

space of maximal ideals is not basically disconnected.

EXAMPLE 2.16: Let L be the vector lattice of finitely

non-constant sequences. L has P.P.P. and is not Dede-

kind O-complete. So it is not uniformly complete. L

has as a strong order unit the constant sequence 1,

The structure space of maximal ideals W1 is a am, the

one point compactification of the natural numbers.

am is not basically disconnected since iii is not an

open set.

The converse to the question is true, however:

PROPOSITION 2.17: Let L be an archimedean vector lattice

with weak order unit 1. Then, if” m(L), the structure

space of ideals maximal with respect to not containing

1, is basically disconnected, L has P.P.P.
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Let x e L. Consider F = (Menu): xEM].

F is a closed G6 set since F = [MTEM(L): x(M) = 0].

F is the hull of (x): i.e., F h(x). Then

F’ is an open FO set. Hence,

h(X*)=I1—(-;)_T=-F_’

is the closure of an open F0. Hence, h(xi) is

open and closed. But then by 2.5, x‘L is a

projection band. Thus, <x> = x“ is a projection

band.

It is not known whether there are conditions weaker than

Dedekind o-complete which will guarantee basically disconnected

structure spaces. It is easy to see that if L has P.P.P.,

then M(L), indeed any structure space, has topological

dimension 0. If L has a strong order unit and L has

the property that for every closed G0 set F of 'm(L),

there exists an f G L such that f-1(0) = F, then L has

P.P.P. if and only if M(L) is basically disconnected. But

this essentially hypothesizes basically disconnected struc-

ture spaces. If P.P.P. does not characterize basic discon—

nectivity in structure spaces, but does imply topological

dimension 0, does sufficiently many projections imply 0-

dimension? That SMP (every band contains a projection band)

does not imply O-dimension is seen from
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EXAMPLE 2.18: Let X = ([0] x [0,1])LJ[(x,y):x,y are rational,

0 S x, y s l]. X, with the relative topology from the

plane, is not 0-dimensional, but has the property that

every open set contains an open and closed set. We

show that C*(X) has SMP. Let B be a band in 0*(X).

Then there exists a closed set F in BX, such that

f 6 B if and only if f(F) = 0, where BX is the

Stone-Cech compactification of X and f is identi-

fied with its extension to BX. BX\F is open. Hence,

(BX\F) n X is open in X. Then if (BXxF) n X is

non-void, it contains an open and closed set, 9. Then

dhx(9)' the closure of 6 in BX, is an open and

closed set and is contained in the support of 5. But

(9)} is a projection band
BX

contained in 8. Hence, while C*(X) has SMP, X is

then [f E C*(X): supp fczcl

not O-dimensional. Thus a vector lattice L can have

SMP, but m(L) not be O-dimensional, even when L is

uniformly complete. The following theorem does give the

condition which characterizes SMP.

THEOREM 2112: Let L be an archimedean vector lattice. Then

L has SMP if and only if m(L) has the property that

every open set contains an open and closed set.

2£22£fi

(=) Suppose L has SMP. Then we must show that

for f E L, [P: f f P} contains an open and closed

set. Consider <f>. There exists a projection band
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5 C <f> since L has SMP. Then

supp a = [P 6 mm: ,3 g P]

is an open and closed set by 2.5. Since 5 C <f>,

supp E C supp f. Then since supp B is open,

suPP 6 C Interior (supp f) = [P€m(L): ftp]

I

The second equality is because if f E P, PE(335575_.

So M(L) has the property.

(45:) Now let m(L) have the given property. We

show that every principal band contains a projec-

tion band. Let f E L. Then

<f> = [x 6 L: supp x C supp f]

supp f C u, where u is an open and closed set

by the property. Then

(P: f E P] C supp f C u.

Hence,

<f> = flfo: f g P} 3 k(u).

k(u) is a projection band since u is open and

closed. Since every band contains a principal

band, L has SMP.



Chapter 3. Some Remarks on D(X).

In general, although an archimedean vector lattice with

weak order unit can be represented as a vector lattice of

extended functions on a space X, D(X) does not possess a

linear structure. In this chapter, we discuss a property

which will allow the extension of the vector lattice struc-

ture to D(X). For this class of vector lattices it is then

possible to extend the vector lattice to a O-algebra with-

out passing to the universal completion as has been done in

other extensions.

DEFINITION 3.1: A subset s of a topological space X is

said to be C*-embedded in X if every continuous func-

tion which is bounded on s can be extended to a con-

tinuous function on X. s is C-embedded in X if
 

every continuous function on s can be extended to X.

DEFINITION 3.2: A topological space X is an F-space if

every two open disjoint FO-sets have disjoint closures;

i.e., every pair of open disjoint FO sets is completely

separated.

41
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A ¢~algebra is a lattice ordered algebra with a weak

order unit that is the identity element. These objects

have been extensively studied by M. Henriksen and D. G.

Johnson [4] and P. Nanzetta [12]. Henriksen and Johnson

have established

THEOREM 3.3: Let X be a compact space. Then D(X) is

an algebra of extended functions if and only if each

open, everywhere dense F0 set in X is C*-embedded

in X.

THEOREM 3.4: (Tietze's Extension Theorem) X is a normal

space if and only if every closed set is both C- and

C*-embedded in x.

THEOREM 3.5: (Urysohn's Extension Theorem) A subspace s

of X is C*-embedded if and only if any two completely

separated sets in s are completely separated in X.

We are now ready to show that F-spaces are precisely

those which have D(X) as an algebra.

THEOREM 3.6: Let X be a compact space. Then D(X) is

an algebra if and only if X is an F-space.

M=

(=) Let D(X) be an algebra. Let A, B be dis-

joint open FO-sets in x. If A and B are

completely separated, then X is an F-space.

'
-

L
-

I
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A U B is a compact set in X. By Tietze's exten-

 

sion theorem A U B is C*-embedded in X. Since

every open dense FC-set, u, in A_U-B' is the

intersection of an open dense FO-set, V, in

X with m, D(m) is an algebra. (We

obtain multiplication by extending continuous

 

bounded functions from u in A U B to V by

Tietze's theorem, then extending to X, multi—

plying in D(X) and restricting down). A U B

is an open dense set in A—U—B: A, B are complete-

ly separated in A u B; hence, they are completely

 

 

separated in A U B. Since A U B is C*-embedded

in X, A and B are completely separated in X

by Urysohn's theorem. So X is an F-space.

(é) Let X be an F-space. By the Henriksen and

Johnson result, it is sufficient to show that

every open dense FO set is C*-embedded. So let

u be an open dense FO-set. Then X\u is a closed

GO' Then, since every closed G6 is the zero set

for some continuous function, there is an h 6 C(X)

with X\\g= [X E X: h(x) = 0]. Let A and B

be completely separated in u. Then there is

some k 6 C*(u) with k(A) > 0 and k(B) < 0.

Then k-1(D?)J<-1(.'fi—) are open disjoint F0 sets,

and thus completely separated. Define

{0. x e xxu

9(X) =

k(x)|h(x)|, x e u
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Since k is bounded, g is continuous on all

of X. Since A, B are contained in completely

separated sets, they are completely separated.

So u is C*-embedded by Urysohn's theorem.

DEFINITION 3.7: A vector lattice L has the countable

interpolation property (CIP) if for every pair of

countable sets A and B with the property that x s y

for arbitrary x E A, y 6 B, there exists x E L
0

such that x s x s y for every x 6 A, y E B.
O

PROPOSITION 3.8: If L is order separable and has CIP,

then L is Dedekind complete.

2.15991:

Let A be a bounded set in L. Then there

is some M 6 L+ such that |x| 5 M for all x 6 A.

Since L is order separable, let [xn] be a

countable set such that every f 6 L, f 2 A if

and only if f 2 xn, n = 1,2,'°' Let B = {x€L:x2A].

Again, there is a countable set [yn] such that

f s B if and only if f s yn, n = 1,2,... Now

since L has CIP there is an x such that
O

, n,m = l,2,3,'°° So x is an upperx s x s y 0
n 0 m

bound for A. However, xO s ym, m = 1,2,

Hence, x0 is a lower bound for B. Thus,

x = sup A.

O
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PROPOSITION 3.9: (G. L. Seever [14]) Let X be a compact

Hausdorff space. Then X is an F-space if and only

if C(X) has CIP.

PROPOSITION 3.10: Let D(X) be an order separable

O-algebra. Then D(X) is universally complete.

2£22£=

X is an F-space by 3.6. Then by 3.9, C(X)

has CIP. So by 3.8, C(X) is Dedekind complete.

Thus, X is extremally disconnected by 2.6.

But then D(X) is universally complete.

COROLLARY 3111: Let L be an archimedean vector lattice

 

with weak order unit_1. If L has CIP, then M(L)

is an F-space.

PROPOSITION 3.1;: Let L be an archimedean vector lattice

with CIP. Then L is uniformly complete.

Proof:

Let fn be a monotone increasing sequence

which is relatively uniformly Cauchy; i.e., for

e > 0, there is N such that for n,m 2 N,

|fn - fm| < ex.

Let f = sup fn in the uniform completion of L.

n

fn converges to f x-relatively uniformly. Define

co

(9n}n=1 by

l
g — f + n x
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where If - fl < fi-x. g e L and fN can be
N n

chosen so that gn 1 f x-relatively uniformly.

Hence, gn 2 f. Now by CIP, there is f0 6 L

such that

fn 5 f0 s gm, n,m = l,2,"°

Hence, f = f and L is uniformly complete.

COROLLARY 3.13: If L has P.P.P., then L is uniformly

complete if and only if L has CIP if and only if L

is Dedekind o-complete.

COROLLARY 3114; If L has P.P., then L is Dedekind com-

plete if and only if L has CIP if and only if L is

uniformly complete.

It can easily be seen that multiplication can be de-

fined on a vector lattice with CIP by extending the structure

to D(M(L)) and using the multiplication there. This says

that is is not necessary, for an arbitrary archimedean vec-

tor lattice, to go to the universal completion to define

multiplication. It is sufficient to obtain the Dedekind

o-completion and use the associated D(X) for that. The

countable interpolation property is not as strong as Dede-

kind 0-complete. In terms of structure spaces, it is quite

far from Dedekind o-completeness. If a vector lattice is

Dedekind o-complete, it possesses basically disconnected

structure spaces. The CIP guarantees nothing.



47

EXAMPLE 3,1 : Let X = pm+xm+. This is an F-space since

for any locally compact, o-compact space X, BX\X is

a compact F-space. We show that BTfixm+ is connected.

Suppose not. Then there is a continuous function

f: X 4 [0,1]. This has an extension to C(B(m+))

since pm+\m+ is compact and f must have values

near 0 and near 1 at arbitrarily large x E m+.

Since m+ is connected, f must assume the value-%

on an unbounded set in m+, and hence at some point

of Bm+\m+. =94: Hence pm‘Km“ is connected. Since

X is an F-space, C(X) has CIP. X is homeomorphic

to M(C(X)) and is a far cry from being basically dis-

connected. So CIP is quite different from Dedekind

o-complete and is also quite different from the pro-

jection properties.



.
I
l

l
l

I
!
"

I
.

I
I
I
.
-

I
‘
l
l



10.

11.

12.

13.

BIBLIOGRAPHY

Dugundji, J., TODOIOQY. Allyn and Bacon, Boston, 1966.

Gillman, L. and Jerison, M., Rings pf Continuous Functions,

Van Nostrand, Princeton, 1960.

Gleason, A. M., Projective topological spaces, Ill. 1.

Math., 2 (1958), 482-489.

Henriksen, M. and Johnson, D. G., On the structure of a

class of lattice-ordered algebras, Fund. Math., 50 (1961),

73 - 94.

Johnson, D. G. and Kist, J. E., Complemented ideals and

extremally disconnected spaces, Arch. Math, 12 (1961),

349-354.

and , Prime ideals in vector
 

lattices, Can. g, Math., 14 (1962), 517-528.

Luxemburg, W.A.J. and Moore, L. C., Archimedean Quotient,

Riesz spaces, Duke Math. 1., 34 (1967), 725-739.

Luxemburg, W.A.J. and Zaanen, A. C., Riesz Spaces, Part 1,

Preprint of book.

 

Mack, J. E. and Johnson, D. G., The Dedekind completion

of C(X), Pacific 1, Math., 20 (1969), 231-243.

Masterson, J.J., Structure spaces of a vector lattice

and its Dedekind completion, Koninkl. Nederl. Akademie

van Wetenschappen, 30 (1968), 468-478.

Nakano, H., Uber das System aller stetigen Functionen

auf einem topologischen Raum, Proc. Imp. Acad. Tokyo,

17 (1941), 308-310.

Nanzetta, P., Maximal lattice-ordered algebras of con-

tinuous functions, Fund. Math., 63 (1968), 53-75.

Riesz, F., Sur la decomposition des operations fonction-

nelles lineaires, Atti del Congr. Internaz dei Mat.

Bologna, (1928), 3 (1930), 143-148.

48



14.

15.

16.

17.

49

Seever, G. L., Measures on F-spaces, Trans. Am, Math. Soc.,

133 (1968), 267-280.

Vulikh, B. 2., Introduction pp_the Theory 9: Partially

lgpdered Spaces, Wolters-Noordhoff, Groningen, Netherlands,

1967.

Yosida, K., On the representation of the vector lattice,

Proc. Imp. Acad. Tokyo, 18 (1942), 339-342.

Peressini, A., Ordered Topological Spaces, Harper and Row,

New York, 1967.



[mm]13

 


