ABSTRACT
STRUCTURE SPACES IN VECTOR LATTICES
By

William George Chang

This thesis is concerned with the relationships between
some topological properties on structure spaces of an
archimedean vector lattice and vector lattice properties.

In chapter 1, the representation theorem of Johnson and

Kist is introduced and is used to obtain some relationships
between structure spaces of one vector lattice embedded in
another. It is shown that if an archimedean vector lattice
L is embedded in a space of continuous functions over a
topological space X, then the structure space of maximal
ideals of L is homeomorphic to X/R, where R 1is the
equivalence relation generated by the stationary sets of L.
It is then shown that if L has a strong order unit, its
Dedekind completion ﬁ is the space of continuous functions
over the minimal projective extension of the structure space
of maximal ideals of L. 1In chapter 2, the interplay between
projection properties and disconnectedness of structure
spaces is studied. Some results of Masterson on discrete
vector lattices and work by Luxemburg and Moore on vector

lattices with archimedean quotient vector lattices are tied
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together and the Luxemburg and Moore results are obtained
more handily. Chapter 3 finds necessary and sufficient
conditions for the space of extended functions to form an

algebra.
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INTRODUCTION

A vector space over the reals which has an order rela-
tion compatible with the algebraic structure is called an
ordered vector space. If the ordering is a lattice order-
ing, the space is called a vector lattice or Riesz space
or K-lineal. The only spaces considered in this thesis
are vector lattices.

In>1942, K. Yosida [16] showed that an archimedean vec-
tor lattice can be represented as a vector lattice of continu-
ous functions with compact support over a locally compact
space. H. Nakano [11], B. Z. Vulikh [15], and W. A. J.
Luxemburg and A. C. Zaanen [8] also give representations of
archimedean vector lattices as continuous functions over a
suitable topological space. D. G. Johnson and J. E. Kist
[6] present a representation theorem and show that it includes
the other representations. They show that the topological
spaces for the representations are just structure spaces of
prime ideals in the vector lattice. The Johnson and Kist
representation is used in chapter 1 to obtain theorems on
embedding vector lattices. 1In particular, it is shown that
for a vector lattice L with a strong order unit, the Dede-
kind completion ﬁ of L 1is precisely C(X) where X is

the minimal projective extension of the space of maximal



ideals. If L has only a weak order unit, then ﬁ is a
foundation in D(X), the space of extended functions on
the minimal projective extension of the structure space of
prime ideals maximal with respect to not containing the
unit.

In 1928, F. Riesz [13] initiated the study of vector
lattices by showing that in a Dedekind complete vector lat-
tice every order closed ideal is a direct summand of the
vector lattice; i.e., every band is a projection band. H.
Nakano [11] shows that for a C(X), X is extremally
disconnected if and only if C(X) is Dedekind complete.

D. G. Johnson and J. E. Kist [5] extend this result to

vector lattices, but with weaker conditions; i.e., X 1is a
suitable structure space of prime ideals, and Dedekind com-
pleteness is replaced by the projection property. In chapter
2, it is shown that a vector lattice L has the projection
property if and only if the space of maximal ideals of L

is homeomorphic to the space of maximal ideals of ﬁ. Thus
the uniform completion of L is ﬁ, by Stone-Weierstrass.
It is pointed out that the analogous result for the principal
projection property and the Dedekind o-completion is not
true. 1In some sense, this extends an investigation of struc-
ture spaces in the Dedekind completion by J. J. Masterson
[10]. 1In that paper, Masterson also studies some properties
of discrete vector lattices. These results are linked to
some results of Luxemburg and Moore [7] and Luxemburg and

Zaanen [8] on vector lattices where every quotient vector



lattice is archimedean. The Luxemburg and Moore results

are obtained more easily. A structure space characterization
for sufficiently many projections is also obtained in this
chapter.

M. Henriksen and D. G. Johnson [4] give necessary and
sufficient conditions for D(X), the space of extended
functions, to form an algebra. In chapter 3, it is shown
that this condition characterizes an F-space as defined by
L. Gillman [2]. Vector lattices, whose structure space of

maximal ideals form an F-space, are then studied.






Chapter 0. Preliminaries

In this section some elementary concepts are listed.
For a more complete exposition, the reader is referred to

Peressini [17], Luxemburg and Zaanen [8] or Vulikh [15].

DEFINITION O.1l: A vector lattice L is a real vector space
with a lattice ordering that is compatible with the
vector space structure; i.e.,

i) x <y = xXx+ 2 <y + 2z for every 2z € L,
ii) x =28 =» Ax =29 for )\ =2 O, where § is
the identity element of the vector space, and
iii) for every x,y € L, sup (x,y} =x vy, and

inf {x,y} = x A y exist.

DEFINITION 0.2: L' = {(x € L: x = §) € L is called the

positive cone of L.

DEFINITION O.3: The positive part of an element x € L is
+

X =X V f. The negative part of x is X = (-x) V p.
The absolute value of x is |xX| = x + x .

DEFINITION O0.4: Let x,y € L. x and y are said to be

disjoint if |x| A |y| = 8, and is written xu.y.

4
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DEFINITION 0.5: If L and L’ are vector lattices, then

a mapping Y: L + L’ is a homeomorphism if for a € AR,

X,y € L;
i) Y(ax) = a Y (x),

ii) v¥Y(x+y) = ¥(x) + ¥(y), and

iii) ¥ (xvy) Y(x) V Y(y).

DEFINITION O.6: L’/ c L is said to be order dense in L

if for every x € L there is a set {xa: a € 4} c L’
with sup[xa: a € ¥4} = x. L’ is guasi-order dense if
for each x € LT, there is x’ € (L)Y such tnat

’
B < X < X.

DEFINITION O.7: L 1is said to be archimedean if for every

x € LV inf ['% x: n=1,2,*+} = §. Alternatively,

if x,y € L+ and \x <y for all )\ € m+, then x = 9.

In an archimedean vector lattice, the notions of order
dense and quasi-order dense coincide. 1In the next chapter
the Johnson and Kist version [5] of the result that a vector
lattice is archimedean if and only if it is isomorphic to a
vector lattice of continuous functions into the two-point

compactification of the reals is presented.

DEFINITION O0.8: A linear subspace M of a vector lattice
L 1is said to be a vector sublattice of L if for

each x,y € M, xvy € M. A linear subspace M c L is
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an ideal of L if it is a vector sublattice and when-

ever for x € M, y € L, |y| < |x|, vy € M.

DEFINITION 0.9: A vector lattice L 1is said to be

Dedekind complete (Dedekind o-complete) if every bound-

ed subset (countable bounded subset) has a supremum

in L.

THEOREM 0.10: If L 1is a vector lattice, then there exists

——

A
a minimal Dedekind complete vector lattice L such
that L can be embedded as an order dense subvector
lattice of £ if and only if L is archimedean. ﬁ

is called the Dedekind completion of L.

DEFINITION O.1l1l: A Dedekind complete vector lattice in which
every set of pairwise disjoint elements is bounded is

said to be universally complete.

THEOREM 0.12: For a vector lattice I, there exists a mini-
mal universally complete vector lattice L* containing
L as an order dense subvector lattice if and only if
L is archimedean. L# is called the universal comple-

tion of L.

If (xa}aeﬂ is a monotone increasing (decreasing)
net, in a vector lattice L, with supremum (infimum)x

i write x).
in L, we x, t X (xa I x)



DEFINITION O0.13: A net (xa]aéﬂ

to x € L if it is order bounded and there exists a

is said to order converge

+
c
net {Ya]aeﬂ L such that
- <
|xa x| y, + 8
We denote this by x -+ x. A net (x ]} is said to
a a a€e¥

converge e-relatively uniformly to x if for arbi-

trary € > O there exists %q € 4 such that for

a>a. |x

o - x| < ¢ e.

a
DEFINITION O.14: A principal ideal is an ideal generated
by a single element; i.e., I 1is a principal ideal if

there exists x I such that I = {x€L: |x| < n|x

OE

for some integer nj.

ol

DEFINITION O0.15: A band is an order closed ideal.

m—

DEFINITION 0.16: Let A be a subset of L. Then A?! =

{x € L: x 1 a for every a € AJ}.

THEOREM 0.17: L is archimedean if and only if A** = a

for every band A.

THEOREM 0.18: A* is a band for every subset A of L.

DEFINITION 0.19: B is a projection band if L = B ® B*t.




DEFINITION 0.20: L has the projection property (P.P.) if

every band is a projection band.

DEFINITION O0.21l: L has the principal projection property

(P.P.P.) if every principal band is a projection band.

DEFINITION O,22: An ideal P cC L is prime if for x,y ¢ L,

X Ay € P implies that x € P or y € P.

THEOREM 0.23: (Johnson and Kist [5]) The following are
equivalent:
i) P 1is a prime ideal
ii) if xAy =9, then X € P or y € P
iii) the quotient vector lattice L/P is totally
ordered
iv) if A N B c P for ideals A,B, then either

A CP or BcCP.

DEFINITION 0.24: Let £ be a collection of prime ideals.
Then the kernel of B, k(#B), 1is the intersection of

the prime ideals in #;

k(B) = n{P:P € pB}.

DEFINITION 0.25: Let A Dbe a subset of L. Then the hull

of A, h(A), 1is the set of prime ideals which contain

A'



For any collection of prime ideals 7, it is well
known that A = h(k(A)) for any subset A c ? defines a
closure operation on 7 and hence a topology (see [2],
section 4.9). This topology is known as the hull-kernel
topology, Stone topology, or Zariski topology. It is readily

seen that =7 = (P em: a g P} forms a basis for this

topology.



Chapter 1. Structure Spaces

In this chapter, the representation theorem of Johnson
and Kist [5] is presented. This becomes the principal
tool of the section. Conditions for a structure space to
be Hausdorff and for a structure space to be separated by
the vector lattice are found. Gleason [3] showed that extrem-
ally disconnected spaces are projective in the category of
compact sets and continuous functions. Mack and Johnson [9]
observe that this is also true for the category of complete-
ly regular spaces and fitting maps. They further show the
existence of an essentially unique space, the minimal pro-
jective extension, which lies above a given space. We show
that there is essentially only one space for which a vector
lattice L 1is a separating family of functions, and thus,
by Theorem 1.16, if L has a strong order unit, the Dedekind
completion of L is C(X) where X 1is the minimal pro-

jective extension of the maximal ideal space.

DEFINITION l.1: If L is an archimedean vector lattice,
then a gtructure space for L 1is a collection of prime
ideals of L such that the collection has ¢ inter-

section and is endowed with the hull-kernel topology.

10
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Let 3 denote the three point space {=«,0,+=]
which is ordered by - < O < +x». Define addition
by

(=) + (t=) =
=) + (=) = ==

(=) + (Q) ==, (z=) + (Q) = ==

ls

(=) + (+=) 1is undefined. Scalar multiplication for 3

is defined by

a0 =0, O(x=2) =0
a(te) = 4=, a(==) = for g > O

for a <O

1
1
3
Q
n
8
I
I s

a (+=)

DEFINITION 1.2: A function f from a vector lattice L
to 3 1is said to be a spectral function if
i) f(x) # 0 for at least one x € L,

ii) f(ax) = af(x) for each x € L, a € ®, and

iii) f(xvy) = £(x) v £(y) for x,y € L.

D. G. Johnson and J. E. Kist [5] show that the space of all
prime ideals in a vector lattice L is homeomorphic and
order anti-isomorphic to the space of all spectral functions
on L, when the ideals are given the hull-kernel topology.
If PcL is a prime ideal of L, P defines a spectral

function by

P(f) =< += £1¢P
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DEFINITION 1.3: An extended function on a topological space

X 1is a continuous map from X into the two-point
compactification of the reals, which is real-valued
on a dense subset of X. The set of all extended

functions on X 1is denoted by D (X).

Let X Dbe a topological space and £f,9 € D(X), o € R.
Then af, f A g, and f v g are defined pointwise. 1If
there is a function h ¢ D(X) such that h(x) = f(x) +
g(x) whenever f(x) and g (x) are finite, then h is
called the sum of £ and g. h is unique since where f
and g are finite is an open dense set in X. 1In general,
the sum does not exist. When the sum always exists is
studied in Chapter 3. For this investigation, the Johnson
and Kist representation will be used. So, for each x € L+,
L being an archimedean vector lattice with weak order unit

l, define for each prime ideal P,

Xx(P) = inf {aq € ®: P(x) < aP (1)}

inf {a € ®: (al-x) € P}

where the infimum of the empty set is +«. Then x ¢ L de-
fines an extended function on certain structure spaces. The
representation theorem will now be developed. L will al-

ways be an archimedean vector lattice.

LEMMA 1.4: If b ¢ L, and if [yk: A € A} is a collec-

tion of elements in b' such that vy = sup{yk:x € A)

exists, then y ¢ b,
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Proof:

I' is a band for any I c L.

LEMMA 1.5: If @ 1is a structure space, then b?t = k(@b),
where B, = {P € B: b £ P}, for every b ¢ L.
Proof:
1f |yl A|p| =8 and Pe g, then y €P,
since P 1is prime. Hence, y € k(@b)f i.e.
bt < k(8).
Now consider vy € k(Bb). If P ¢ Bb'
|ly|A|b|€P. 1£ P ¢ B, then |y| A |b| € P. so
ly] A |p| € n{P: P ¢ B}. But then |y| A |b| = 9.
Hence, y € b' implying k(@b) c b*. Thus,
bt = k(8.

We are now ready to present the Johnson and Kist repre-
sentation theorem [5]. Johnson and Kist show that this
theorem includes the representations given by K. Yosida [16],
H. Nakano [11], and W.A.J. Luxemburg and A.C. Zaanen [8] by
showing that the topological spaces obtained by these authors

are homeomorphic to structure spaces. For more details see

[5].

THEOREM 1.6: (Johnson and Kist [5]) Let L be a vector
lattice with weak order unit 1. Let » be the struc-
ture space of all prime ideals not containing 1.

Then L is isomorphic to a vector lattice of extended

functions on 7N.
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Proof:
Let x € L+. Then define
X(P) = inf(q € ®: P(x) < a P(1l))}

(For arbitrary x, set ;(P) = ;r(P) - ;=(P).

Since x+ A X = 8, x is well-defined.) To

show x is continuous, a) let ;(P) = 4o,

If o € R, then (al - x ) £ P. Let

cwlA (al-x)T Then ¢ £ P, P € B_ < ™. For any

Q € Bc. (el - x) £ Q; hence, x(Q) = a. Thus,
x is continuous at P; b) now consider ;(P)
finite valued; i.e. x(P) = Q- For ¢ > O,
((ag + )L -x)" £ P and ((ay - €)1 - %) £ P.
Set

c=1A ((ao+e)17x)+ A ((ao-e)lfx)-

Then, P;_f@ccm. If Q € A,
((a0+e)_l__-x)+ £ Q and
((ag=e)1-x) " £ Q

Thus, §XQ) < g + ¢ and ;(Q) > - ¢. Hence,

X 1is continuous at each point.

o)

To show that x is an extended function on
m, it is necessary to show that where x is
finite valued is an open dense subset of 7. We
show that the infinity set of x is nowhere dense.
Suppose not. Then there is a basic open set Bb'

e#bELf, which is contained in the infinity set of

X. So for every P € 55, ;XP) = 4o, Then

m-x)* ¢ P or (L- (Yn))*ep, n=1,2,---
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Hence, by lemma 1.5,
@-%5H%"ent, n=1,2---

Let y 2 (1 - §)+ for all n. Then

l—ys%, n=1,2,°"""

Since L 1is archimedean, 1l <vy. But 1= (1 - §)+'

n=1,2-"" Thus, 1=sup {(1L-27%). soby
n
lemma 1.4, 1 € b*., But 1 is a weak order unit.

Thus, b = §.»¢& So x 1is an extended function.
It is now necessary to show that the mapping

X #» X 1is a vector lattice homomorphism: Let P

be a prime ideal in 7M. Then

x+y (P) = inf {a: (al - (x+y)) € P)

inf (o + B: (ol - x + Bl - y) € P}.

Since for arbitrary f,9 € L

(f+g)” s £ + g and (f+g)t < £t + g*
we have

(@l -x), BL-y) €P = (al-x+pfl-y) €P
Hence,

xty (P) s x(P) + y(P).

Conversely, let q < x (P), B < ;(P). Then (ol - x) £P

and (Bl - y)" € P. Thus, since
(l-x)" + (Bl-v)* 2 (al-x + pl-v)?
we have (ql-x + Bl-y) £ P. Hence,

X(P) + y(P) s xt+y (P)
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So addition is preserved. Now let o € ®, then
ox(P) = inf (B: (BL - ax) € P)
= inf (8: CL- %" € p)
= inf [ap: (BL - x) € P)
= ax(P).
So scalar multiplication is preserved. Finally
xvy (P) = inf (a:(al - xvy) € P)
= inf {a: [(al = x) v (al - y)] € P)
= inf (a: [(al - x) A (al - y) ] € P)
= inf {a: (ol - x)_ € P} Vv inf{a: (al-y) €P)
= x(P) V y(P).

Thus, X -+ X 1is a vector lattice homomorphism.
To see that this is an isomorphism, let x = O.
Then (% 1l - x) € P for n = 1,2, By lemma

1-5'
1 - L
((H l) - x) €Ll for all n.
Since I is archimedean
1 - ..
X = sup[(;-l_— x) :n=1,2, }

Thus, by lemma 1.4, x € l'. Hence, x = .

DEFINITION 1.7: A set of functions A on a topological space

X 1is said to separate points of X (or separates X)
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if for every pair of points x,y € X, there is a

function f € A such that f(x) = 0 and f(y) = 1.

A vector lattice need not separate points of a struc-
ture space. In general structure spaces are not Hausdorff.
The following theorem may be known, but does not seem to be
in the literature. It points out that for structure spaces,

Ty and Hausdorff are equivalent.

THEOREM 1.8: Let L be an archimedean vector lattice. Let
M be a structure space for L. Then M 1is Hausdorff
if and only if for every pair of distinct prime ideals
P,Q€m P¢&Q.

Proof:

() Let M Dbe Hausdorff, P, Q distinct
elements of . Then there exist basic open
neighborhoods, My = (I em: x £ 1},

m, = (1em: y€I), with x,y € Lt such that
Pemy,oemx and mynmx=¢. Then y £ P,

x £Q and x Ay = 8 (since

(Iem: y€I} n (Iem: xfI} =@, either x or vy
belongs to each I € . Thus, X Ay = §.) Since
P,Q are prime, x € P, y € Q and so P ¢ Q.

(&) Let 7 be such that P¢ Q for arbi-
trary P,Q € M. Then there exist x’ € P, x’' £ Q
and y’ €Q, vy’ € P, with x’y’ ¢ L', set

’

x=x"=- x"Ay)V, y=y' - (x' Ay’). Then
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X ANy =8, x€Plx¢QIY€QIYEP’
Thus, mx, my are disjoint open sets in 7N

separating P and Q.

COROLILARY 1.9: The structure space of all prime ideals is

Hausdorff if and only if all prime ideals are maximal.

Vector lattices satisfying corollary 1.9 will be studied
in chapter 2. We now turn to the question of what spaces are
separated by L. It is clear that L separates the structure
space of maximal ideals. We now characterize what structure

spaces are separated by L. Let us restrict our study to

structure spaces of prime ideals not containing 1.

THEOREM 1.10: Let L be an archimedean vector lattice with

strong order unit 1. Let M be a structure space for
I, and P,Q be distinct elements of M. Then P and
Q are separated by L if and only if P,Q are con-
tained in distinct maximal ideals (with respect to not
containing 1).
Proof:
Let P be a non-maximal prime ideal in L.
Then P 1is contained in a unique maximal ideal
M. M is the relative uniform closure of P.
(The only relatively uniformly closed prime
ideals are maximal since L/P is totally ordered

for prime P and the only totally ordered
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archimedean vector lattice is ®. A maximal
ideal is relatively uniformly closed since L/M
is archimedean if and only if M 1is relatively

uniformly closed [7]). We show that for f € Lt
f(P) = 0 if and only if £f(M) = O.

(€) Suppose f(M) = O. Then inf{a: (al - £f) € M}=o0;
i.e., infla: (f-al)Y e M} =0
Hence,

(f - o) €M for all o > O.
In particular,

(f - %l)+ €M, n=1,2,°":
But

f = 1lim (f - li)'
n=
n-te

Since M is relatively uniformly closed, f € M.
Now consider the quotient map, T: L + L/P. Since
P is prime, L/P is totally ordered. L/P 1is not
archimedean since P is not maximal. L/P con-
tains only one maximal ideal, M/P, since L/P is
totally ordered. Note that L/P contains the

real numbers ({aT(l): a € ®}), and that M/P is
the set of "infinitesimal" elements in L/P; i.e.,

for x € M,
|7 (x)| = ar (1) for every positive a.

We will denote 1 (x) by X. For g < f ¢ M,
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0 = inf {a: (al - £f) € M)

= inf {a: (ai - f) € M/P)

If (al - £) =9, (el - f) 2 § and if (aql-f) =-ol+ £,

then ol - £ £ M/P, Thus:

0O = inf (a: ai-?z 0}

Since, di € M/P, a # 0, and L/P is totally

ordered,

aI -f£>0 for o > O
a_—

H
A
D

for a s O
Hence,
0 = inf {a: (di -f) = )

= inf {a: (Qi -f) =9)

Il
i

inf {a: (ql - £)_ € P) = £(P)

Thus, if £(M) = O, then f£f(P) 0.

(») Suppose now that £(P) = 0. Then
£(P) = inf {q: (ol - f) € P)
> inf {q: (ol - £ ) € M} = £(M)

Thus, if f(P) = O, then £f(M) = O.
Hence, if P and Q are in distinct maxi-

mal ideals they are separated.

DEFINITION 1.11l: Let X and Y be topological spaces.

A continuous map p: X #+ Y is said to be tight if for
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each open set U < X, there exists an open set

V Y so that p-l(V) c u.

PROPOSITION 1.12: Let ? be the structure space of maxi-
mal (with respect to not containing 1) ideals of an
archimedean vector lattice L with strong order unit
l. Let £ be any structure space of prime ideals.
Then there is a continuous tight map from 35 onto 7.
Proof:

Define p: B -+M by p(P) =M, where M
is the unique maximal ideal containing P € £&.
Let {M €M £ € M] be a basic open set in 7.
Then

Mem: £ ¢ M) =(Mcm£EM) #O0J}.

P—l({M € m:£(M) #0}) = {(Pe B PcM, £(M # 0}

(p € B: £(P) # 0},

which is an open set in /3. Hence, p 1is continu-
ous. p 1is tight since for each basic open set

in B/, (P ¢ B: x £ P},

(P € B: x(P) # 0O} c [P € B: x £ PJ}.

So structure spaces bear some relationship to the maximal
ideal space of a vector lattice. The extent of this relation-
ship is not clear. But we now show that there is essenti-
ally only one compact space for which an archimedean vector

lattice is a separating family of functions.
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THEOREM 1.13: Let L be an archimedean vector lattice
with strong order unit 1. Let L be contained in a
C(X), where X is a compact topological space. Let
# be the equivalence relation defined by x ~ y if
f(x) = £(y) for every f € L. Then X/ is homeo-
morphic to M(L), the structure space of all maximal
ideals in L.

Proof:
Let Y =X/R and p: X + Y be the natural
projection. Let Mx be the maximal ideal in L

associated with x; i.e.,

M= (f € L: £(x) = 0}.

Since, M, = My if and only if x ~ vy,
T: X/ + M(L) defined by

Tp(x)) = M

is a bijection between Y and 7 (L) is quasi-
compact (it need not be Hausdorff) since X is

compact. Let

m(@) = (M € m(L): a € M}

be a basic closed set in M(L). Then

ot o 1T ()

p Lo a € M)

=[xEX:a€Mx]

I

fEMx
M_€m (a)

N (x: £f(x) =0 for f € M_]
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But this is a closed set. Hence, T 1is continuous.
Since M(L) is Hausdorff and Y is quasicompact,

T 1is a homeomorphism.

Throughout this thesis we will use 7 (L) to denote
the structure space of maximal ideals if L has a strong
order unit or the structure space of ideals maximal with
respect to not containing 1, if 1 is a weak order unit.

We now show that if L is a vector lattice embedded in L’
(another vector lattice) and the embedding is order dense
and 1l ¢ L goes to 1’ € L’, then 7M(L’) bears the "same"
relation to NM(L) as a structure space in L, i.e., there

exists a tight map from 7(L’) to NM(L).

THEOREM 1.14: Let L’, L be archimedean vector lattices,
L c L’ is a subvector lattice and L, L’ share a
weak order unit 1. Then there exists a continuous
onto function p: M(L’) 2 M(L). If L is order dense
in L’, the mapping is tight.

Proof:
Let R Dbe the equivalence relation on Mm(L’)
defined by P~ Q if £f(P) = £(Q) for every
f € L. Then by theorem 1.13, 7(L’)/R is homeo-
morphic to M(L). Then the projection
p: M(L’) +»M(L) is the continuous onto map.
Now let [M € Mm(L’): a £ M} be a basic open

set of M(L'). Let x € L such that § < x < |a].
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Then, if M € p LT((I € ML): x £ 1)),

M € p-l({I € mM(L): x(I) # 0}). Hence, x(M) # O
and x €M and a £ M. Since x # 9,

(I eMm(L): x £ I} is not empty. Thus if L

is order dense in L’‘, p 1is a tight map.

This is really an embedding theorem. If L can be
embedded in another vector lattice L’, then there is a
map p: M(L’) +» M(L), via the theorem to the image vector
lattice; and the homeomorphism of the image structure space
and the structure space. Then the embedding of L into

L’ is given by
f’ = £ o p, for all f € L.

This guarantees the embedding into a space of continuous

functions. Then using the following result of J. E. Mack
and D. G. Johnson [9], which is an extension of a result
of A. J. Gleason [3], we can find the Dedekind completion

of a vector lattice.

THEOREM 1.15: (Mack and Johnson) Every completely regular
topological space Y is the continuous image of an
extremally disconnected space, Y_, under a tight fitting
map, T (a map is fitting if it is closed, onto, and the
inverse image of a point is compact). If 2 1is another
extremally disconnected space and ¢ is a tight fit-

ting map onto Y, then there is a homeomorphism p
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of Y, onto 2 such that o0 o p =r1. Y_ is called

©

the minimal projective extension of Y.

THEOREM 1.16: Let L be an archimedean vector lattice with
strong order unit 1. Then the Dedekind completion, ﬁ,
of L is C(M(L)w), the continuous real-valued
functions on the minimal projective extension of 7(L).
Proof:

By theorem 1.15, Wz(L)eb is unique. Let
p: M(L)°° <+ M(L) be the projection map. p is
tight fitting and embeds L into C(M(L)w).
But i\, = C(m(f.)). Hence, '/)z(/l\.) is embedded in
7/((L)o as a closed subspace. Then by the unique-

ness of M(L)m' M(ﬁ) is homeomorphic to M(L)”.

If L has only a weak order unit, by restricting our-
selves to the bounded elements, it is easy to see that ﬁ
is an order dense ideal in DOW(L)w). Thus, L#, the uni-
versal completion of L, is DUW(L)Q).

In view of the tight map from structure spaces to (L)
in an arbitrary vector lattice, a natural question, still un-
resolved, is whether the minimal projective extension is a

structure space.



Chapter 2. Disconnectivity of Structure Spaces

We now wish to study the relationship of certain proper-
ties of a vector lattice with disconnectivity in the struc-
ture spaces. We obtain a necessary and sufficient condition
for a vector lattice L to have the projection property and
show that the analogous conjecture for the principal projec-
tion property is not true. We then study a property stronger
than P.P.P.; i.e,when every principal ideal is a projection
band. This provides a connection between results of J. J.
Masterson [10] and W.A.J. Luxemburg and L. C. Moore [7].

We obtain the Luxemburg and Moore results more easily. Fin-
ally we characterize "sufficiently many projections" in

terms of disconnectivity of structure spaces.

DEFINITION 2.1: A topological space X 1is extremally dis-

connected if the closure of every open subset of X

is open. X is basically disconnected if the closure

of every open Fc set is open.

H. Nakano [l11]] has shown that a topological space X
is extremally disconnected if and only if C(X) 1is a Dede-
kind complete vector lattice. It is shown, in the same

paper, that X is basically disconnected if and only if

26
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C(X) is Dedekind o-complete. Since for compact X, the
structure space of all maximal (algebraic or vector lattice)
ideals in C(X) is homeomorphic to X, these results are
relations between properties on a vector lattice and topologi-
cal properties on structure spaces. Johnson and Kist [6]
have extended these results to @-algebras (archimedean
lattice-ordered algebras which have for a weak order unit
the identity element). Before the study of these relation-
ships can begin, we must establish some relations between
bands and structure spaces. For the following, let L Dbe
an archimedean vector lattice (L need not have an order
unit), 7 be some structure space of L. Then, if I is
a subset of L, h(I) = {P € M: I ¢ P} is the hull of I
in M. If J4 1is a subset of N, then k(J4) = N{P: P € 4}
is the kernel of J. vy’ will denote the set complement

of Yy in M. The following can be found in [6].

PROPOSITION 2.2: If I is a subset of L, then I*=k(h(I)’).

Thus h(I*) = h(I)’.

PROPOSITION 2.3: If # 1is a closed subset of 7, then

k()= k(£’). Hence, k(u) is a band whenever | is

an open set.

PROPOSITION 2.4: If I is a projection band in L, then

h(I) is open in 7N.
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The converse to 2.4 is not true. If L is the vector
lattice of continuous functions on the one-point compactifi-
cation of the natural numbers %, aft, then L has a struc-
ture space of maximal ideals homeomorphic to Q. Then the
ideal

I={(f€L: £ 1 0) ¢ 2m)

is not a projection band, but it is a band. The hull of I
is 2% which is open and closed in %. Thus the open and
closed sets of an arbitrary structure space are not neces-
sarily associated with a projection band. However, if the
following condition is imposed on a structure space a corre-

spondence can be established:

(*y if #£,7 <M and k(@) + k(T) # L, then k(£) + k(J) ¢ P
for some P € M, or equivalently,
(*) two subsets £,7 of M have disjoint closures in N

if and only if k(£) + k(J) = L.

PROPOSITION 2.5: Let N be a structure space that satisfies
(*). Then y < 7 is open and closed if and only if

k(u) 1is a projection band.

PROPOSITION 2.6: For a vector lattice L, the following
are equivalent:
i) L has P.P.; i.e. every band is a projection

band,
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ii) every structure space of L is extremally
disconnected,
iii) L has an extremally disconnected structure

space that satisfies (%*).

So Nakano's result on the Dedekind completeness of
C(X) and extremal disconnectivity of X=M(C(X))) cannot
be extended to a vector lattice and N (L). In particular,
we have that 7 (L) may be extremally disconnected but L
not be Dedekind complete. An example of this is the vector
lattice of real valued sequences with finite range. However,
after making the following observation, it is easy to see
that the projection property is very close to Dedekind

completeness.

PROPOSITION 2.7: Let I Dbe an archimedean vector lattice

with strong order unit 1. Then the structure space of

all maximal ideals, 7N (L), satisfies (*).

Proof:
Let #£,T be subsets of 7 (L). Then
k(£) + k(T) = {(f € L: £(P) = O where P€Z (N T)
If 2N T#@, choose M € £ n T. Then
k() + k(T) M
If £N T=@, then

k(£) + k(1) = L.

In view of proposition 1.17, the compactness of n(L),

and the fact that L separates points of N(L), we have
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that the minimal projective extension of N(L) is N(L)

via the Stone-Weierstrass theorem; i.e.,

THEOREM 2.8: Let L be a vector lattice with weak order
unit 1. Then L has P.P. if and only if 7(L) is

A
homeomorphic to 7 (L).

This observation raises an interesting question when
taken with some results of J. J. Masterson. 1In [10],
Masterson studies the existence of homeomorphisms between
structure spaces of a vector lattice and structure spaces
of its Dedekind completion. He shows that if L has P.P.,
the space of minimal prime ideals of L is homeomorphic to
the space of minimal prime ideals of ﬁ. So we have homeo-
morphisms between the respective maximal ideal spaces and
minimal prime ideal spaces. But, in general as Masterson
has shown, the natural mapping P = 9 of prime ideals does
not yield a homeomorphism. So we now raise the gquestion of
what happens when we collapse the maximal ideals to minimal
prime ideals, i.e., when the structure space of all prime

ideals is Hausdorff. 1In [6], Johnson and Kist show

PROPOSITION 2.9: Every ideal is the intersection of all

prime ideals containing it.

In [10], Masterson shows
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PROPOSITION 2.10: Let % be a structure space for an archi-
medean vector lattice L. Then < = (P € M: x £ P}
is closed for all x € L if and only if 7 1is a struct-

ure space of minimal prime ideals.
Thus in order for every element in L to have an open
hull in every structure space, it is necessary and sufficient

that every prime ideal be minimal. We can now prove:

PROPOSITION 2.1l1l: Let L be an archimedean vector lattice.

Every prime is minimal if and only if (x) = <x>, where
(x) 1is the ideal generated by x and <> 1is the

band generated by x, for every x € L and L has

() Let <M = {all prime ideals in L)}. Then

by 2.9, (x) = N{PeM: x€P)}
Since M has topological dimension O with mx
as a basis of open and closed sets, (x) is the
kernel of an open set, its hull. Then by proposi-
tion 2.3, (x) = <k>. Furthermore, M has property
(*). Thus, since (P € M: x € P} = h(x) is an open
and closed set, <x> = (x) is a projection band
by proposition 2.5.
(&) Suppose (x) = <x> and L has P.P.P.

Then h(x) = h((x)) = h(<x>)
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<x> 1s a projection band; hence h(<x>) = h(x)
is open by proposition 2.4. But h(<x>)’ = My -
So by proposition 2.10, all prime ideals are mini-

mal.

W. A. J. Luxemburg and L. C. Moore [7] have shown that
the conditions (x) = <x> and P.P.P are equivalent to L
having the property that every quotient vector lattice is
archimedean. Using this and some information about P-spaces,
we will link some of Masterson's results with those of

Luxemburg and Moore.

DEFINITION 2.12: A topological space X 1is a P-space if
for cC(X), Mp = (f € C(X): f£(p) = 0} is precisely
Op = {f € C(X): £(U) = O for some neighborhood u
of p)} for each point p € X. A point p € X for
an arbitrary topological space X 1is a P-point if

M = Op; i.e., every zero set containing p contains

P
a neighborhood of p.

A P-space is a topological space for which every prime
ideal in C(X) is maximal. So this is the class of spaces
for which we wish to investigate C(X). It is well-known
that minimal prime vector lattice ideals coincide with the
minimal prime algebraic ideals for C (X) ([2], 14.7).

For a compact X, the maximal ideals also coincide. Now

notice that for a function f to be continuous at a P-point,
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f must be constant on a neighborhood of that point. This
immediately yields that a compact P-space is finite. It
also says that if X 1is a P-space, C(X) = D(X). For
more detailed information on P-spaces, we refer the reader
to Gillman and Jerison [2]. We now characterize vector
lattices for which every prime ideal is maximal and which
are uniformly complete by using the proposition developed

above and this information on P-spaces.

THEOREM 2.13: Let L Dbe an archimedean vector lattice
with weak order unit 1. Let L, further, be uniformly
complete. Then every structure space 7 1is a P-space
if and only if for each x € L*, the bounded elements
of L, (x) =<x> and L* has P.P.P.

Proof:

It is sufficient to show that the space of
all maximal ideals with respect to not contain-
ing 1 1is a P-space, since there will be no
other prime ideals. So, let 7 Dbe this space of
maximal ideals.

() Assume .M 1is a P-space. Then, by the repre-
sentation theorem, L < D(m) and L* = c,

since L* 1is uniformly complete and separates
points on 7M. Since 7 1is a P-space all alge-
braic prime ideals are maximal in C(m). Then

by the foregoing remarks, the prime vector lattice
ideals are maximal. Thus, in L* = c(X), (x) = <x>

and L* has P.P.P., by 2.11.
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(€¢) Assume (x) = <x> and L* nas P.P.P,.
Then prime vector lattice ideals in L* = C(X)
are minimal. Hence, again by the above remarks,
all prime algebraic ideals are minimal, hence

maximal. Thus, 7 is a P-space.

The condition that L have a unit is not necessary.
However, if L does not have a unit, then we must consider
structure spaces with respect to a complete orthogonal set
[xa € Lt a € UY}. The structure spaces then investigated
are subsets of | ({P: X, £ P}. The structure space of

acd
maximal ideals with respect to 1 becomes (U {M: xa £ M}

ac¥
where M 1is maximal with respect to not containing xa for
each fixed X, Each set m, = {M: X £ M} is compact; the
m, are pairwise disjoint since x, A Xg = 8 if a # B.

So the structure space 7N = Uma is locally compact. Using
the representation of the component of f € L on each com-
pact set ma we obtain Yosida's representation of L as

a vector lattice of continuous extended functions with com-

pact support on a locally compact space (see [5]). With

this remark 2.13 becomes:

THEOREM 2.13: Let L be a uniformly complete vector lattice:
[xa: o € U] be a complete orthogonal set of positive
elements. Then the structure space 7 = Uma is a

P-space if and only if for each x € L, (x) = <x>

and L has P.P.P.
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Thus, it follows from 2.11 that a vector lattice L
has every quotient vector lattice archimedean if and only
if all prime ideals are maximal. Moreover, if <x> 1is a
principal band, then <x> has compact support. But x
is an order unit for <x>. So if L 1is uniformly complete,
then, by 2.13, the support of <x> 1is a P-space and thus
finite. If we take x = X, from the complete orthogonal
set, we see that M 1is a discrete space. So we have the
following result relating vector lattices with archimedean

quotient spaces to discrete vector lattices.

PROPOSITION 2.14: Let L be a vector lattice. Then the
following are equivalent:
i) every prime ideal is maximal,
ii) every quotient vector lattice of L is
archimedean,
iii) every ideal is relatively-uniformly closed,

iv) every principal ideal is a projection band.

We are now prepared to link Masterson's result with

Luxemburg and Moore's.

THEOREM 2.15: Let L be a uniformly complete vector lattice,
{xa: o € 4} a complete, maximal orthogonal set,
m = Uma as above. Then the following are equivalent.
i) m 1is a discrete topological space,

ii) 7 1is a set of closed prime ideals in L,
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iii) m~[(P) is not a structure space for any P € 7,
iv) every prime ideal is maximal,

v) every quotient vector lattice is archimedean,
vi) every principal ideal is finite dimensional,
vii) L is isomorphic to the vector lattice of all

real functions on a discrete space which
vanish outside an appropriate finite subset,
viii) L 1is super-Dedekind complete and every quo-
tient vector lattice is archimedean.
Proof:

The equivalence of i), ii), and iii) was
obtained by Masterson [10]. The equivalence of
i), iv), v), vi), vii) are easy to see from 2.13,
2.13’. The equivalence of viii) follows since
m is discrete, it is extremally disconnected and
so L has P.P., by 2.6. Since L 1is uniformly
complete, L is Dedekind complete. L 1is super
Dedekind complete since each x € L has finite

support. Thus i) o viii).

The equivalence of v), vi), vii), and viii) was previously
done by W.A.J. Luxemburg and L. C. Moore [7]. The key theorem
for the proof is 2.13. We noted that the unit was not neces-
sary for the hypothesis. The following example will show
that uniform completeness is necessary for theorem 2.13 and
hence for 2.15. The example will point out something else.

In theorem 2.8, we noted that, since P.P. and uniform com-

pleteness imply Dedekind completeness, a vector lattice with
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P.P. is close enough to its Dedekind completion to yield

a homeomorphism between the structure spaces of maximal
ideals. It is therefore natural, knowing that P.P.P. with
uniform completeness imply Dedekind o-complete, to ask the
same question about vector lattices with P.P.P. The answer,
however, is no homeomorphism necessarily exists. So Dede-
kind o-complete is in some sense farther from P.P.P. than
Dedekind complete is from P.P. The example will show that

a vector lattice may have P.P.P. and a unit, but the structure

space of maximal ideals is not basically disconnected.

EXAMPLE 2.16: Let L Dbe the vector lattice of finitely
non-constant sequences. L has P.P.P., and is not Dede-
kind o-complete. So it is not uniformly complete. L
has as a strong order unit the constant sequence 1.
The structure space of maximal ideals M 1is a af, the
one point compactification of the natural numbers.
a? 1is not basically disconnected since 2% is not an

open set.

The converse to the question is true, however:

PROPOSITION 2.17: Let L Dbe an archimedean vector lattice
with weak order unit 1. Then, if mM(L), the structure
space of ideals maximal with respect to not containing

l, is basically disconnected, L has P.P.P.
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Proof:
Let x € L. Consider F = {(MeqM(L): xeM]}.

F 1is a closed G6 set since F = (Mem(L): x(M) =

F is the hull of (x); i.e., F

h(x). Then
F’ 1is an open F0 set. Hence,
h(x*) = h(x) = F’
is the closure of an open Fo' Hence, h(x*) is

open and closed. But then by 2.5, x* is a

projection band. Thus, <x> = x> is a projection

band.

It is not known whether there are conditions weaker than

o}.

Dedekind o-complete which will guarantee basically disconnected

structure spaces. It is easy to see that if L has P.P.P.,
then 7 (L), indeed any structure space, has topological
dimension O. If L has a strong order unit and L has
the property that for every closed G6 set F of N(L),
there exists an f € L such that f—l(o) = F, then L has
P.P.P. if and only if (L) 1is basically disconnected. But
this essentially hypothesizes basically disconnected struc-
ture spaces. If P.P.P. does not characterize basic discon-
nectivity in structure spaces, but does imply topological
dimension O, does sufficiently many projections imply O-
dimension? That SMP (every band contains a projection band)

does not imply O-dimension is seen from
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EXAMPLE 2.18: Let X = ({0} x [0,1]) U {(x,y):x,y are rational,
O<x,y < 1}.X, with the relative topology from the
plane, is not O-dimensional, but has the property that
every open set contains an open and closed set. We
show that C*(X) has SMP. Let 5 be a band in C*(x).
Then there exists a closed set F in PBX, such that
f €s if and only if f£(F) = O, where PRX is the
Stone-Cech compactification of X and f 1is identi-
fied with its extension to BX. PRAX\F is open. Hence,
(BXN\F) N X is open in X. Then if (BX\F) N X 1is
non-void, it contains an open and closed set, 6. Then
c%x(e), the closure of 8§ in PRX, 1is an open and
closed set and is contai ned in the support of 5. But

then (f € C*(X): supp fccl_(8))} is a projection band

pxt
contained in /3. Hence, while C*(x) has SMP, X is
not O-dimensional. Thus a vector lattice L can have
SMP, but 7m(L) not be O-dimensional, even when L is

uniformly complete. The following theorem does give the

condition which characterizes SMP.

THEOREM 2.19: Let L be an archimedean vector lattice. Then
L has SMP if and only if 7(L) has the property that
every open set contains an open and closed set.

Proof:
(®) Suppose L has SMP. Then we must show that
for f e L, (P: £ g P} contains an open and closed

set. Consider <f>. There exists a projection band
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E c «f> since L has SMP. Then
supp B = (P € M(L): 5 £ P}

is an open and closed set by 2.5. Since £ c <f>,

supp 5 € supp f. Then since supp /5 is open,

supp B c Interior (supp f) = {Pem(L): f£P}

7

The second equality is because if f € P, P6(535§75—.
So 7NM(L) has the property.

(€) Now let 7(L) have the given property. We
show that every principal band contains a projec-

tion band. Let f € L. Then
<f> = {x € L: supp x c supp f)

supp f c u, where |y is an open and closed set

by the property. Then

{P: £ £ P} € supp f c y.
Hence,

<f> = n{o: £ ¢ P} o k(u).

k(u) 1is a projection band since y 1is open and
closed. Since every band contains a principal

band, L has SMP.



Chapter 3. Some Remarks on D (X).

In general, although an archimedean vector lattice with
weak order unit can be represented as a vector lattice of
extended functions on a space X, D(X) does not possess a
linear structure. 1In this chapter, we discuss a property
which will allow the extension of the vector lattice struc-
ture to D(X). For this class of vector lattices it is then
possible to extend the vector lattice to a @-algebra with-
out passing to the universal completion as has been done in

other extensions.

DEFINITION 3.1: A subset s of a topological space X is

said to be C*-embedded in X if every continuous func-

tion which is bounded on s can be extended to a con-

tinuous function on X. s 1is C-embedded in X 1if

every continuous function on s can be extended to X.

DEFINITION 3.2: A topological space X 1is an F-space if

every two open disjoint Fc-sets have disjoint closures:;
i.e., every pair of open disjoint FO sets is completely

separated.

41
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A @-algebra is a lattice ordered algebra with a weak
order unit that is the identity element. These objects
have been extensively studied by M. Henriksen and D. G.
Johnson [4] and P. Nanzetta [12]. Henriksen and Johnson

have established

THEOREM 3.3: Let X be a compact space. Then D(X) is
an algebra of extended functions if and only if each
open, everywhere dense FO set in X is C*-embedded

in X.

THEOREM 3.4: (Tietze's Extension Theorem) X 1is a normal
space if and only if every closed set is both C- and

c*-embedded in X.

THEOREM 3.5: (Urysohn's Extension Theorem) A subspace s
of X is cC*-embedded if and only if any two completely

separated sets in s are completely separated in X.

We are now ready to show that F-spaces are precisely

those which have D(X) as an algebra.

THEOREM 3.6: Let X be a compact space. Then D(X) 1is
an algebra if and only if X 1is an F-space.
Proof:
(») Let D(X) be an algebra. Let A, B be dis-

joint open Fo—sets in X. If A and B are

completely separated, then X is an F-space.

-
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A UB 1is a compact set in X. By Tietze's exten-

sion theorem A U B is C*-embedded in X. Since
every open dense Fo-set, u, in X_U_E' is the
intersection of an open dense Fc-set, V, in
X with A UB, D( UB) is an algebra. (We

obtain multiplication by extending continuous

bounded functions from Yy in A UB to V by
Tietze's theorem, then extending to X, multi-
Plying in D(X) and restricting down). A U B

is an open dense set in A U B. A, B are complete-

ly separated in A U B; hence, they are completely

separated in A U B. Since A U B is c*-embedded
in X, A and B are completely separated in X
by Urysohn's theorem. So X 1is an F-space.

(€) Let X be an F-space. By the Henriksen and
Johnson result, it is sufficient to show that

every open dense Fo set is C*-embedded. So let
u be an open dense Fo-set. Then X\u 1is a closed
G6' Then, since every closed G6 is the zero set
for some continuous function, there is an h € C(X)
with X\u= {x € X: h(x) = 0}). Let A and B

be completely separated in . Then there is

some k € c*(y) with k() >0 and k(B) < O.
Then k-l(ﬁ) .k—l(.'ﬂ-) are open disjoint F_ sets,

and thus completely separated. Define

{o, X € X\u

g((x) =
k(x)|h(x)|, x € u
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Since k 1is bounded, g 1is continuous on all
of X. Since A, B are contained in completely
separated sets, they are completely separated.

So U is C*-embedded by Urysohn's theorem.

DEFINITION 3.7: A vector lattice I has the countable

interpolation property (CIP) if for every pair of
countable sets A and B with the property that x s vy
for arbitrary x € A, y € B, there exists X, €L

such that x < Xy S Y for every x € A, y € B.

PROPOSITION 3.8: If L 1is order separable and has CIP,

then L is Dedekind complete.
Proof:
Let A Dbe a bounded set in L. Then there
is some M € L' such that |x| s M for all x € A.
Since L is order separable, let {xn] be a
countable set such that every f ¢ L, £ > A if
and only if f = X, n= 1,2, Let B = {x€L:x>A}.

Again, there is a countable set [yn] such that

f < B if and only if f£f < Yoo D= 1,2, Now
since L has CIP there is an X, such that
X < X5 <y, nm= 1,2,3,°** So X, 1is an upper

bound for A. However, Xy S Y o M= 1,2,

Hence, X4 is a lower bound for B. Thus,

X, = sup A.
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PROPOSITION 3.9: (G. L. Seever [14]) Let X be a compact
Hausdorff space. Then X 1is an F-space if and only

if C(X) has CIP.

PROPOSITION 3.10: Let D(X) be an order separable

@-algebra. Then D(X) is universally complete.
Proof:
X 1is an F-space by 3.6. Then by 3.9, C(X)
has CIP. So by 3.8, C(X) is Dedekind complete.
Thus, X 1is extremally disconnected by 2.6.

But then D(X) 1is universally complete.
COROLIARY 3.,11l: Let L Dbe an archimedean vector lattice

with weak order unit 1. If L has CIP, then N(L)

is an F-space.

PROPOSITION 3.12: Let L be an archimedean vector lattice

with CIP. Then L is uniformly complete.

Proof:

Let fn be a monotone increasing sequence
which is relatively uniformly Cauchy; i.e., for

€ > 0, there is N such that for n,m > N,

-

£, - £.] < ex.

Let f = sup fn in the uniform completion of L.
n

fn converges to f x-relatively uniformly. Define
@
(9,21 PY
g =f_ + =X
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1
where |f . - f| < x. g €L and fg can be
chosen so that g, } f x-relatively uniformly.
Hence, 9, 2 f. Now by CIP, there is fO € L

such that

fn < fO s gm, nm=1,2,°"°"

Hence, f. = f and L is uniformly complete.

COROLILARY 3.13: If L has P.P.P., then L is uniformly
complete if and only if L has CIP if and only if L

is Dedekind o-complete.

COROLIARY 3.14: If L has P.P., then L 1is Dedekind com-
plete if and only if L has CIP if and only if L is

uniformly complete.

It can easily be seen that multiplication can be de-
fined on a vector lattice with CIP by extending the structure
to D((L)) and using the multiplication there. This says
that is is not necessary, for an arbitrary archimedean vec-
tor lattice, to go to the universal completion to define
multiplication. It is sufficient to obtain the Dedekind
o-completion and use the associated D(X) for that. The
countable interpolation property is not as strong as Dede-
kind o-complete. In terms of structure spaces, it is quite
far from Dedekind o-completeness. If a vector lattice is
Dedekind o-complete, it possesses basically disconnected

structure spaces. The CIP guarantees nothing.
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EXAMPIE 3.15: Let X = Bm+\m+. This is an F-space since
for any locally compact, o-compact space X, BX\X is
a compact F-space. We show that B?t\m+ is connected.
Suppose not. Then there is a continuous function
f: X » {0,1}. This has an extension to C(B(m+))
since am+\m+ is compact and f must have values

near O and near 1 at arbitrarily large x € m*.

N j=

Since m* is connected, f must assume the value
on an unbounded set in m*, and hence at some point

of B!R+\!R+. =» & Hence am‘\m* is connected. Since
X 1is an F-space, C(X) has CIP. X is homeomorphic
to M(C(X)) and is a far cry from being basically dis-
connected. So CIP is quite different from Dedekind
oc-complete and is also quite different from the pro-

jection properties.
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