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ABSTRACT

DIFFERENTIAL EQUATIONS INVARIANT UNDER

ONE-PARAMETER TRANSFORMATION GROUPS

By

Suchat Chantip

The present thesis is concerned with differential
equations which are invariant under one-parameter trans-
formation groups. After an introduction and some back-
ground material this idea is introduced in section 3, in
which a definition of invariance of general differential
equations (0.D.E.'s, or, P.D.E.'s) is given. This defini-
tion is a generalization of Lie's definition of invariance
of the first order ordinary differential equations. The
author derives a criterion for invariance of differential
equations under one-parameter transformation groups. It
is shown in section 4 that this definition can be reduced
to Lie's definition of invariance of linear homogeneous
partial differential equations of the first order. The
author also gives in section 5 a definition of invariance
of systems of differential equations and obtains a cri-
terion. Section 6 is a method of determining the one-
parameter transformation groups leaving the given differen-

tial equations invariant, which utilizes the obtained criteria.



Suchat Chantip

In section 7, the author gives a new proof of
Lie's theorem of reduction of order of ordinary differen-
tial equations. Section 8 is the discussion of Morgan's
theorem of reduction of the number of independent vari-
ables in partial differential equations. This theorem
is generalized in this paper. In section 9, the author
uses the groups found in section 6 together with the
modified Morgan theorem to reduce independent variables
in the system of equations of nonsteady rotational plane
flow of incompressible fluid. The author also obtains
some classes of solutions of this system. In the last
section there is obtained a simplification of the form
of the system of differential equations of plane flow
of polytropic gas. The author starts by reducing the
system to a canonical form and then finds the one-
parameter transformation group leaving the canonical
system invariant and finally uses the obtained group to
reduce the canonical system to a system of ordinary

differential equations.
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1. INTRODUCTION

The idea of integrating differential equations with
the aid of continuous transformation groups was first con-
sidered by Sophus Lie (1842-1899), the founder of the
theory of continuous transformation groups. Lie discovered
magnificent methods of integrating ordinary differential
equations of the first and the second order and linear
partial differential equations of the first order. More-
over, he discovered an important theorem, the theorem of
reduction of order of ordinary differential equations. These
methods and the theorem are based on one-parameter trans-
formation groups. All of such work of Lie is given by G.

Scheffers in the book entitled Differentialgleichungen

[1]. Later, the Lie theory of differential equations was

published in English by many authors namely A. Cohen [6],

E. L. Ince [7]), L. E. Dickson [8], and K. O. Friedrichs [9].
In 1950 G. Birkhoff [5] suggested that the con-

tinuous one-parameter transformation groups could be used

to reduce the number of independent variables of some

partial differential equations. At about the same time

A, J. A. Morgan [3] and A. D. Michal [4] published results

on reducing the number of independent variables in systems



of partial differential equations, which constitute a
generalization of Birkhoff's suggestion.

The present paper deals with differential equations
which are invariant under one-parameter transformation
groups. Section 1 is introductory, Section 2 contains a
general idea of the theory of one-parameter transformation
groups.

In Section 3, Lie's idea of invariance of differ-
ential equations is generalized by giving a definition of
invariance of general differential equations (general
O0.D.E., or general P.D.E.) under one-parameter transforma-
tion groups. This definition is a generalization of Lie's
definition for invariance of the first order ordinary dif-
ferential equations. A theorem which gives another
property of differential equations 1is proved.

The new property is called a criterion of invariance of
differential equations under one-parameter transformation
groups. Our criterion is the same as Lie's criterion for
ordinary differential equations of the first and the second
order, even the ways of obtaining the criteria are different.

In Section 4, it is shown that the definition,
which is set in Section 3, can be reduced to Lie's defini-
tion for invariance of linear homogeneous partial differen-
tial equations of the first order.

In Section 5 a definition of invariance of systems

of differential equations is defined. As in Section 3, we



obtain a criterion. It is shown by example that the invari-
aﬁce in our sense agrees with the invariance of differential
equations in the sense of H. A. Lorentz; that is, agrees
with the invariance of Maxwell's equations under Lorentz's
transformations.

Section 6 contains a method of determining the
groups for given differential equations. As one-parameter
transformation groups furnish us a new tool for integrating
differential equations and for simplifying the work of
integrating differential equations, the methods of finding
groups for given differential equations are important.

Many authors developed different methods of finding such
groups. Lie [1] actually started with given groups and
found the class of all ordinary differential equations
which are invariant under each of those groups. Thus,
having a large table of classes of differential equations
and their groups, one could try to find in it the groups
corresponding to a given ordinary differential equation.
L. V. Ovsjannikov [14] discovered an algebraic method for
determining groups. M. 2. V. Krzyworblocki and H. Roth
[15], who paid attention to Morgan's method of reduction
of independent variables in partial differential equations,
developed a method of determining groups by finite trans-
formations. G. W. Bluman and J. D. Cole [13] found a
method of finding infinitesimal transformations in their

work of finding similarity solution of heat equation. The



method of finding groups in this paper, enable us to find
all groups leaving given differential equations (0.D.E., or
P.D.E.) invariant. Our method is the utilization of the
criteria of invariance of differential equations and of
systems of differential equations (Theorem 3.2 and Theorem
5.1), which make use of the extended groups of one-
parameter transformations.

In Section 7 a new proof of Lie's theorem of
reduction of order of ordinary differential equations is
given. This proof is clearer than the original proof of
Lie ([1], pp. 386-387). However, the interesting matter
in this section is a lemma, which is a key for proving
Lie's theorem. This lemma shows an important property
of one-parameter transformation groups.

Section 8 contains a discussion of Morgan's
theorem of reduction of the number of independent vari-
ables in systems of partial differential equations. This
theorem is slightly modified so that the more general
groups (one-parameter transformation groups) can be used
in place of the groups which appear in Morgan's theorem.
And so the more general classes of solutions of partial
differential equations can be obtained from Morgan's
method.

In 1961 E. A. Miller and K. Matschat [12] applied
transformation groups to the equations of one-dimensional

nonsteady flow of isentropic gas, and obtained some exact



solutions. In Section 9 of this paper, one-parameter
transformation groups are applied to the system of equa-
tions of nonsteady rotational plane flow of incompressible
fluid to reduce the number of independent variables and
eventually obtained some exact solutions of the system.

The last section, Section 10, we apply one-
parameter transformation group to the system of equations
of steady plane flow of polytropic gas to reduce it into
a system of ordinary differential equations. A reduction
of independent variable in this system has been made
before by P. Kucharczyk [16], who uses Lie derivatives
to find coordinate system in which this system can be
transformed into a system of ordinary differential equa-
tions. Our reduced system is simpler than that obtained
by Kucharczyk.

Following the spirit of Lie, work in this area
has focused relatively more on algebraic and geometric
properties of differential equations than on analytic
properties In particular, domain of definition, continuity
and differentiability properties, etc. of functions which
are introduced are implicitly assumed to be adequate for
each stage of each argument. Usually, no explicit assump-
tion about these properties are inserted in the course of

the discussion. We shall follow this spirit.



2. ONE-PARAMETER TRANSFORMATION GROUPS

Consider parametric transformation in k-

dimensional space

k

zt = ot (zt, ..., z5, a) (i =1,...,k)

(2.1)
where a is the parameter. The above set of transformations
is called a one-parameter transformation group if the fol-
lowing properties hold:

1) The ¢'s are continuous functions of their
arguments, and the Jacobian of the ¢'s with respect to
the z's is not zero, i.e.,

det (égi) + 0,

azJ

which implies that we can solve (2.1) for the z's in terms

of the z's in the form

2 = wotF, .., ZX, a) i=1, ... , k)

1

2) For values a,, a, of a such that z- = ¢ (z, ap),

1’ 72
zt = 91(;, az), (i=1, ... , k), there exists a function
f(al, a2) such that

zt = ol (Z, a,) = ot (z, £(a;, a,)) (i=1, ... , k).



3) There exists a value of a, say ags corre-

sponding to the identity transformation, i.e.,

2t = oi(2t, ..., 25, a) (1 =1,...,k)

* 4) For any value a of the parameter which yields
a transformation from a point z to a point z, there exists
a* corresponding to the inverse transformation from z to z,

i.e., we have
r

i, -1 -k i, =1 =k

i
(z7, e , 2 ;) =90 (27, 0o , 2 ; a*).

z- = *¢
L. P. Eisenhart has shown,l in the case of the
set of transformations (2.1l) form a group, that the deriva-
tive of the ¢'s with respect to the parameter a can be
written in the form
dz' 301 (z, a)

(2.2) R I t1(Z)-aca)  (i=1,...,k)

for some functions gl(E) and A(a). After defining a new .

parameter t by

the relations (2.2) become

(2.2") e - 29 (zéta(t)) - .

1121, p. 32.



Observe that the value t = 0 gives the identity transforma-

tion.

From now on, we shall assume that the set of
transformations (2.1) has the mentioned group properties.
For some advantage, we substitute the a in (2.1l) in terms

of t and denote the results by

(2.1") G: zt = ot (zl, ..., 25 b (i=1,...,%),

where the symbol G indicates that the transformations
form a group.

Let us expand the ¢'s in (2.1') as Taylor series
at t = 0, i.,e., at the value of t which yields the identity

transformation:

i i Bcbi(z t)
¢ (zl t) = ¢ (zl 0) + t[—_aT'_—]t=0
+ 1:—2- [32¢i(z' t)] + e e o0y
2! atz t=0
from which we obtain
-i i 301 (2, t)
(2.3) z = z + t[_atl——]t=0
2 2,1
£ 979 (z, t)
+ 2! [ 24L ]t=0 + e e 0 0 o .

ot

For a small change of t from 0, say dt, so that the powers

greater than one can be neglected, (2.3) becomes



a¢i(zl

A s [ P

With consideration of (2.2') the last result can be

written as
(2.4) zh = z5 + EY(z).8t (i =1,...,k)

This is called the infinitesimal transformations of (2.1').
The relations (2.4) tell us that the vector E%z) is tangent
to the path of transformation. We call such path the
trajectory of the group. Thus the trajectories of the

group are characterized by

1 2 k
dz dz dz
(2.5) = = . . . = .
£ (z) £2(2) £ (2)

. . . =1 -k
Consider a continuous function f(z~, ... , z27)

which is composed with the group, i.e.,

£(zY, ..., 25 = £tz 8, ee. , 0z 1))

Expanding this function as a power series of t, we have

(2.6) £(z) = £(z) + v(4E2y 4 Lo d B2l s
: dt
n n -
t d f(z)
e s o + n'—! [_n]t=0 + e a oo o Y

dt

Since
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GEG), [ K 2£(3) ggi] } [ kK orz) HONE ﬂ
dt t=0 . -1 dt £=0 . £=0

i=1l 9z i=1 az
_ 3 gl 2@
i=1 azl
and denoting
_ k 3
(2.7) X = 3 £X3) =
i=1 9z
or
k i 3
(2.7%) X = I £z 2,
i=1 0z
we have
(dE2)) - R, = xf(2),
af(z) a -
v R R CIE NI e SN SECIR
t
2
= X(Xf(z)) = X°f(z),
n -—
[ddf§2)1t=0 = (& @, = (BE@)], = X f(2).
t

Then (2.6) becomes
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2
(2.8) f£(2) = £(z) + tXf(z) + %T X%£(z) + ...

n
t n
o e 0 +ﬁx f(Z) +oocn' .

Setting f(z) = z' in (2.8), we get

. . . 2 .
(2.9) 25 = 2" + £ (2) + S xET(2) + ...
n .
R %T Xl o+l 1i=1,...,k)

This is the other form of (2.1').

Absolute Invariants

Definition: A function u(zl,...,zk) which is
unaltered by all transformations of the group (2.1), that

l,...,zk), is called an

is, such that u(zl,...,z5) = u(z
_absolute invariant of the group.

There is a theorem helping us to find absolute
invariants for a given group of transformation, that is:

Theorem 2.1 ([2], p. 62): A necessary and suffi-

cient condition for a function u(zl,...,zk) to be an abso-

lute invariant of a group generated by X = El(z)—21-+ e
9z

e +£k(z)-2E- is that
9z

du(z) . o+ Ek(Z) du(z) _ 0.

92z 92

(2.10) Xu(z) = El(z)
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dzl dzk
Since any integral of T = e = is a solution of
£7(2) £7(2)

(2.10), it follows that the absolute invariants of the

group X can be found from the system of equations

| 1 K
(2.11) fz E e e e .= gz )
£7(2) £ (2)

Note that the system (2.11) is the system of differential
equations for the trajectories of the group X (cf. (2.5)).
We also note that, since there are only k-1 independent
solutions of the equation (2.10), there are only k-1 indepen-

dent absolute invariants of the given group X (see [2], p. 62).

Extended Groups

Given a one-parameter group of transformations

i, 1 1
ot (x, ..., %", Y e,y b))

(2012) G: (l=1'n oo ,m)
l l = e oo
wr(x I‘O'Ixm' y ’o.o,yn; t) r l' 'n

b
Il

Suppose the y's are considered as functions of the x's.
Then these transformations induce definite transformations

of the derivatives of y's with respect to the x's of the

form:
yo o= vt xd, v°, vS s b
1 J
—r L3 . 0
Yi .1 = ll)r'll..le (XJ, ysl Y;?r---rY? .3 ;o)
1°" 7 1 9



i' il' L) ’ ie, j' jl' o e ’ je = l,.cc'm;
r’ S = 1' e o 0 ’ n

where

7f = & , Yo = 3y _ , 35 . = Y

1 ax?t J axJ 11°-19 axtl, . ax'6
and

YS 3 aeys
J1--Jg axIl, . ax76

The method of determining the functions wr'l,...,wr'll"le

is described by L. P. Eisenhart ([2], pp. 102-104). And it
is shown by him that the induced transformations (2.13)
have the same group properties as the given transforma-
tions (2.12). So, the set of transformations (2.12)
together with (2.13) form a one-parameter transformation

group and will be called the extended group (of order 6)

of G, and so will be denoted by Gigyr Leees
f . . .
xt = ¢l(xJ, ys; t)
y* = wr(xjr Ys; t)

. G :

(2.14) (e)ﬁ r ri g s s

yi =9 (x v Y 4, Y t)
J

;; 1- = wrllltole(xj’ ys' y?,.oo’y{? j H t).
k 1.. 9 J Jloo 6
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r,ij..i

The formula for determining the functions ¢ a+l
from pF’*1*ta js that
ryi;..1i ryi,..1i roi,..1i
) 1 a 3y 1 a s 3 1 a g
(2.15) I * 5 v§ o+ H——v5;
90X qy Byj ]
r,i...1i
+ 9y 1 o . ys
ay§ . Jpe-dgt
BERENM
m k k
- T §§ T K éir + Eig o yi = 0
k=1 1°°"a ox oy
(j, jl’ooolja =i'ooo,m; S=l,...,n)

where summation convention is used in (2.15). This equa-

tion can be written shortly as

r,i,..1i
1l o m k
(2.151) - iy rpc M- 0.
dx k=1 71" ""a dx

When i runs from 1 to m, the system (2.15) gives m equa-

tions which we can solve for §§

=r
T Treee YT r - to
l..lal 11..1am

get the functions ypY¥/*1--tal ~  — yFrile-iom

Let the operator of the given group (2.12) be

m _ 1 n, 9
rec et X 4Y 4eeeryY )—"

(2.16) X = T

gt (xt
1 X

|
N~z

i

1 )
nr(xl'”.'xm’ Yy I”'lyn) -

1 ayr

+
r

™3
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where

m

3 i, 1 1 n
[ﬁ‘b (X7, eees)X , Y peeesY t)]t=0

Ty
|

3 r, 1 1
n = [E w (X '...'xm,y ’..o’yn; t)]t=0
are known, t = 0 signifies the identity transformation of
the group (2.12). Denoting the operator of the group G(

9)
in (2.14) by

9
ayi Yy

(2.12) X, . = X + gn¥rl

(6)

r,i

the coefficients nr’l,..., n 1°*'0 can be found directly

from the group G(e) if the transformation laws of G(e) are

known, i.e.,

r,i _ (8 r,i j s s,

n g v (x7 vy, vy B

r'ilooi = ._a_ r'i ooie j S S S .

n 6 [3t 1 1 (x*, v, yj’...'yj]_'-je't)]t:o

We also can find nr'l,...,nr’ll'°19 from the known operator

X by recurrent formula of Eisenhart ([2], p. 106):



r'i .Ii r'i .Oi
. . 1 o 1 o
(2.18) nr,ll..lal _ on . + an . . yi
X oy
r,ij..1i r,i;..1i
1 o 1 o
0 s 9 S
+ n S . y'i+ e o o + n S . yj . J i
oy~ ] oY . 1"
] Jl'.JOL
_ N oor ng BEk . S
LYy ik (Tp ot ooy
k=1 1°""a Ix oy

(j' jl'coo,ja=l’¢..,m; S=l,...,n)

where the summation convention is used in (2.18). We can

write (2.18) shortly as

r,ig.eig X

r,i ..i i d m
"1 Ta = n T - I Y.

(2.18') n

Commutators

Given two operators

n . n .
9
x = Z gl(xl,ooo'xn) _a']'.' ’ Y = z nj(xll"°lxn) j’
i=1 ax j=1 ox

we define the commutator of X and Y by

(2.19) [X, Y] = XY - ¥X.

As a consequence of (2.19), we have

(2.20) [y, X] = -[X, Y].
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The commutator can be written precisely in the form

(2.21)  [X, Y] = (xn' - Ygl)i1 Fouot(xn™ - veMH 2,

9x 3x"
Since by direct calculation:
n i 3 n i 3 n ., n . 32
XY =X(In—5)= % (Xn)—5+ En I g ——
i=1 ax i=1 3x i=1  §=1  3x ax’
n . n . n . n
vx=v(r gt = poeh g+ 1t 1) £,
i=l 09x i=1 ox i=1 j=1 9xX 9ox
we have
h i, 9 2 i, 2
[X, Y] = XY - ¥X = I (Xn°) — - [ (Y&) —7
i=1 ox i=1 X

which can be written as (2.21).

Differential Invariants

A function f(x, y, y') which actually involves
the derivative y' is called a differential invariant of

the first order of the group of transformations:
G: X = ¢(x, y; t), ¥y = ¥(x, y; t);

if it is an absolute invariant of the group G the

(L)'
first extended group of the group G. In the same way,

a function F(x, vy, y',...,y(k)) which actually involves
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y(k) is called a differential invariant of order k of

the group G, if it is an absolute invariant of the
extended group G(k)' We then have a theorem (cf. theorem
2.1).

Theorem 2,2: A necessary and sufficient condition

for a function F(x, vy, y',...,y(k)), which actually
(k)

involves y , to be a differential invariant of order
k of the group generated by X = £ (x, y)%% + n(x, y)é%

is that

(k))

X(k)F(xr Y, Y'r-0~ly =0

where X(k) is the kth extended operator of X.



3. INVARIANCE OF DIFFERENTIAL EQUATIONS
UNDER ONE-PARAMETER

TRANSFORMATION GROUPS

The definitions for differential equations to be
invariant under transformations are given by S. Lie for
the first and the second order ordinary differential
equations and for linear homogeneous partial differential
equations of the first order. His definition for the
first order ordinary differential equation is:

Definition 3.1 (Lie's definition, [1l], p. 101):

It is said that a differential equation
(3.1) M(x, y)dx - N(x, y)dy = 0

is invariant under the transformations
(3.2) x=¢(x, 9) , ¥ =¥(x,y)

if its form is unaltered, save for a factor, by the trans-
formations, i.e., it may be written, in terms of the new

variables, in the form

o(x, ¥) [M(X, ¥)dx - N(x, y)dy] = 0.

Lie proved a theorem which gives another property
equivalent to the property in the above definition.

19
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Theorem 3.1 (Lie's theorem, [13, p. 10l1): The

form of the equation (3.1l) is unaltered, save for a factor,
by the transformations (3.2) if and only if each integral
curve of (3.1) is transformed by (3.2) to some integral
curve of the same equation.

For invariance of the second order ordinary dif-
ferential equations, Lie made an analogous definition.

We shall now make a generalization of the Lie
idea of invariance of differential equations. Let us
consider a general differential equation (general O.D.E.,
or, general P.D.E.) of order r with independent variables
xl,...,xn (for P,.D.E, n > 1, for O.D.E. n = 1) and dependent
variable y:

(3.3) F(XY, ¥y Yireoes¥s ) =0
1 llualr

where

S ) 2 _ 8Ty

= ’ . . = v v
axl ll"lr axll..axlr

together with a one-parameter transformation group
-] i, 1 n
¥t = 0T (X ,..,x0, ¥iot)

(3.4) G: (i=1,...,n)

7 = U(xY, ..., %™, yiot).

Let the rth extended group of the group G be
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n

ot (xt, .. ,x, v ) = et (X3, yi ot)

w(xl,...,xn, y; t) = w(xj. y:; t)

=i
]

. - i 3 .
G(r"ﬁ Y = VT (x7, ¥, ¥ii o t)

J
i ‘.i »

§I i =1pl (xjv Yo YireeoeersY. . ,t)

l.. r J Jl"Jr

.
(ir ill o oirl jl jl' es o jr = 1'...'n)
where
5o =X, 5. - =¥
1 -1’ ¥i_..1i 1 T
1 * X 1..3x r

Definition 3.2: It will be said that the differ-

ential equation (3.3) is invariant under the transformation
group G, (3.4), if and only if under the transformations of

G(r) the following relations hold:

(3.5) F(xl(§3,§'t) 'y(;{J';'t)'...'Yi i (;(J,ipooopi": 3 't))
lco r 'cho r

= \)(;‘ll §: t) F(;(ll §r YI'°°°I§I T ),

or,

(xJ,y,...,y. . +t))

(3.6) F(x"(x3,y,8),¥(x3,y,t),...,¥5 3
r 1°°Jr

l..l

= U(xll Y, t)'F(xlr Y, yi"'.'yi i ),
1°"'r

where v and u are not zero.
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Note that (3.5) and (3.6) are equivalent rela-
tions. We shall now derive a property equivalent to that
given in definition 3.1. First, we assume that for the
given differential equation (3.3) and the group (3.4),
the relations (3.5) or (3.6) hold. Since (cf. Section 2)
(3.7) [ F(x', ¥, Fyoeeer¥g

T )1, _
loo r t—o

3 3 3 di; T
3F (x*,...) dx] N N ag(xl,...) 3p--3,
o% de 3.3, e

BF(XI{"')[?¢j] + ...+ OF (x*,...) [awjl"Jf]
3%’ st Je=0 ale. N ot Ji=o

X(r)F(xl, Yo Yir eee oYy )

i ..1

1 r

where t=0 signifies the identity transformation of the

group (3.4), X( denotes the operator of the group G

r)

(r)’

the summation convention is used in (3.7); we have from

(3.6) and (3.7) )

(3.8) x(r)F(xl.y.yi.....yil

)

ool
r

3 . .
['rt U(xl,y't)]t=0 F(X1,Y:Yi:---:yi )

l..lr

A(xl,y)°F(x1,y,yi,...,yi i ), say.
1°°"r
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Conversely, if the differential form

F(Xl:Y:Yi:---:Yi i ) in (3.3) satisfies a relation of
1°°7r
the form (3.8), i.e.,

i
(3.9) X F(X',y,y;0eeesy, 5 )

1 r

= Q(xl,y)F(xl,y,yi,--.,yi ),

l..lr

we claim that the differential form F(xl,y,yi,...,yi )
1

also satisfies the relation (3.6). Since (cf. Section 2)

..i
r

2

(3.10) F(¥) = F(v) + ¢ X oy F (V) + . X%r)F(v) + ...
K
K
cee + T{—!'X(r)F(V) + ce.
where F(V) = F(X1,7, Jrreeerde =),
1 llo.lr
F(v) EF(xl,y,yi,--.,yi i)
1" r

and since
-

2 _ _
X(r)F(V) = X(r)ll(x,y)F(V)] = [X(r)l(x,y)
+ 2(x,y)*2(x,y)]F(v) = ll(x,y)F(V)
(3.11)$ e 0 e 0 s e 00 0000000000000 se0ss0 e
Xk

+ 2y, (xy) R (x, ) IF(V) = &, (X, ¥)F (V)

- ®© 0 0 0606 00060 0060000 000000 000000 o0 ’
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we obtain by substitution from (3.9) and (3.11l) into
(3.10)

2 k

F(v) = [1 + t2(x,y) + %T RL0K,Y) Heuot 5T 8 (X,Y)

t

e

+ ...]JF(v) = m(x,y,t)F(v)

where m(x,y,t) denotes the sum in the bracket which is
not zero. Thus the F(v) satisfies the relation (3.6),
and the claim is proved. We now have conclusion:

Theorem 3.2: Given the differential equation

F(xl,y,yi,...,yil..i ) = 0 and the group of transforma-
tions

G: x = ¢ (x3, y, ), ¥ = v(xl,y, t);

the relations

(3.5) F(x (x),y,t), y(x),y,6), 0000y, (X,¥,.0.,9s

1**r J1e°3y

= V(XYY PR, YT ¥r )
l..

or

- (xj,y,...,y.

(3.6) F(il(xJIYrt)r ;(XJIYIt)I"°I§i i

i i
= ux",y,t)F(x lYIYiI"‘IYi i )

1 r

where v and u are not zero, hold if and only if a relation

loo r JlooJr

't))

')
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i _ N |
(3.8) X(r)F(X ,y,.--,yi . 2 ) - >\(X lY) F(X IYI"'lyi )

.1 .ol
1l r r

1

holds for some function A. In other words, the differential

equation F(xl,y,yi,...,yi ) = 0 is invariant under the

loolr

group G if and only if the relation of the form

X(r)F(xl,y,yi.--.,yi . ) = A(xl,y)F(xl.y,yi..-.,yi )

o1

1°°"r 1°°'r

holds.

We shall call the relation (3.8) the criterion
for differential equations to be invariant under one-
parameter groups of transformations. Lie obtained the
same criterion as (3.8) for the invariance of ordinary
differential equations of the first order, although the
ways of obtaining the criteria are different. Actually,
Lie obtained the criterion by making use of his theorem
3.1.

Example 3.1 (from [l1], p. 278): Lie found that

the differential equation for a one-parameter family of

circles (x - a)2 + y2 = r2 where r is fixed, is

(3.12) F(v) = y2(1 + y'?) - £2 = 0.

Since this family of circles is invariant1 under the group

of translations parallel to the x-axis, i.e., the group

lBy invariance of a family of curves under a trans-
formation we mean that each curve of the family is trans-
formed into some curve of the same family.
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(3.13) X = 2=,
Lie concluded (by using theorem 3.1) that the differential

equation (3.12) is invariant under the group (3.13). From

(3.13) we find the following:

(3.14) X = -§’§ = X,
(3.15) G: x=x+t,y=yY,
(3.16) G 1y §=x+t,§=y,g%=g%.
Then, by substitution, we have
F(v(v)) = ¥2(1 + (%% 2y - r? = 1F(¥),
Fivw) = yoa+ (D% - 2% = 1-F ().

We also have from (3.14) and (3.12)

X(l)F(V) = 0= 0-F(v).
Example 3.2: Consider a differential equation
(3.17) F(v) = yu_, - u =0,

and a group of transformations

3 )
(3.18) X = == + yuz— .
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We obtain from (3.18) the following:

_ ] ]
(3.19) X(2) —X+yuxF1—1——+ ...+yuxxgu—-+ cee
X XX
- - - ty
(3.20) G: x=x+t,y=y,u=¢e*u,
(3.21) G : x = x+t, §=y, ﬁ=etyu, ﬁ—=etyu yeeay
(2) X
Uxx € TUyxx -
We then have
F(v(v)) = y-e 5 - e Wg—=e™Y.r () ,
X XX
7 = . ty - ty = ty.
F(v(v)) y-e “u, e u e F(v) ,
x(z)F(v) = y-yu, - yu.  =y-(yu -u. ) =y-F(v).

Thus the equation (3.17) is invariant under the group (3.18).



4. THE LINEAR HOMOGENEOUS PARTIAL
DIFFERENTIAL EQUATIONS OF THE

FIRST ORDER

S. Lie gave a definition for the linear homogeneous
partial differential equations of the first order to be
invariant under transformations as follows:

Lie's Definition ([1], p. 311): It is said that

the differential equation

(4.1) A = ot (x},...,x™ iﬁ% Fooot oM (xt, LX) ib% =0
Y 90X oX

is invariant under the transformations

(4.2) o= ok, ..., (i=1,...,n),

if these transformations preserve its solutions.

Observe that the transformations in the above

definition are the transformations of independent variables

only, while the set of transformations in our definition 3.2
involve the dependent variables also.

It is our purpose here to verify that our defini-
tion 3.2 can be reduced to the above Lie definition. That
is, for the special case where our differential equation

(3.3) is of the form (4.1) and our group (3.4) is of the form

28
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¢i(x110~01xn, t) (i=l,...,n)

(4.3)

Y = Y.

if differential equation is invariant under the group
according to our definition, then it is invariant under
the group according to Lie's definition. The definition
of Lie that differential equation (4.1l) is invariant
under the group (4.3) is the same as the above defini-

tion. That is, the differential equation (4.1l) is

invariant under the group (4.3) if the transformations

of the group preserve its solutions. Lie proved directly

from this definition a theorem which gives a criterion
of invariance of the equation (4.1). Before stating this
theorem, let us point out some consequences of the group

(4.3). The operator of the group (4.3) is in the form

(4.4) x = gh(xt, 6™ e
axX

n, 1 n 0 0
Q.o+g (x ,...,X)—"’Ory

n
ax
where

ehxt,aaxh) = et x By /atl .

Then the first extended operator X(l) can be found, with

the help of the formula (2.18), in the form:
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n agk 3
(4.5) X = X - L y,- = e
(1) k=1 X axl | %Y}
N - T
k=1 K 55" | ¥
_ 3y
where y., = : .
1 1
X

Lie's theorem ([1], p. 316): The differential

equation (4.1) is invariant under the group generated
by the operator (4.4) (i.e., the group (4.2)) if and

only if a relation of the form
_ 1 n
(4~6) [Xr A]y - O(X reeerX )Ay

holds identically.

If we can show that our definition 3.2 implies
the property (4.6) in the Lie theorem, then we can con-
clude that our definition 3.2 can be reduced to the Lie
definition. We shall now show that implication. From

(4.5) we have



_ 1 n
(4.7) X(l)Ay = x(l) {a Yyt ..o ta yn}

- 1 n

k n k
1 n 3L n 3
+ a -z Yy, =]+ +.. + 0 -y, —=1.
k=1 K ax! k=1 K 2x®
n . 1
= X(l)al -2z 0!.1 —"agl yl
i=1 ax
n n
+ .. + X O.n - z al "ail' y .
(1) i=1  ax* | P

. i , 1 n
Since a~ are functions of x7,...,X only, we have from

(4.5) that X 1= Xal. Thus (4.7) becomes

(1)¢

(4.8) X, . Ay = (Xal - agly 2L 4. .+ (xo® - ag%) 2L .
(1) 3t ax"

And thus, by (2.21), (4.8) can be written as

(4.9) X(l)Ay = [X, Aly.

Since we assume that the equation (4.1) is invari-
ant under the group (4.3), by theorem 3.2 we have a rela-

tion of the form
1 n
(4-10) X(l)AY = )\(x reee X, Y)AY

for some function A. Since from (4.8) and (4.10), we

must have the relations of the form:
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(4.11) A (x, y) o’ (x) = xal(x) - Agd(x)

for i = 1,...,n. The right hand member of (4.11) is a

function of xl,...,xn. Thus, the A is not a function of
y, i.e.,

(4.12) A = A(xY,...,x").

Now from (4.9), (4.10) and (4.12), we have
1l n
[X, Aly = A(x,...,X )Ay,

which is a relation of the form (4.6). Therefore, our
definition 3.2 can be reduced to Lie's definition.

Remark: We see from (4.9) that the relation
A, X]y = p(xl,...,xn)Ay implies the relation

1 n
x(l)Ay = p(X ,...,X )Ay.



5. INVARIANCE OF SYSTEMS OF DIFFERENTIAL
EQUATIONS UNDER ONE-PARAMETER

TRANSFORMATION GROUPS

Consider a system of differential equations
(P.D.E.'s, or, O.D.E.'s) of order 6 with independent
variables xl,...,xm (for P.D.E.'s m > 1, for O.D.E.'s

m = 1) and dependent variables yl,...,yn:

i r r
Fl(X r Y o Yir cee Yi i ) =0
1 3]
(5.1) ® & 6 @ © 0 & 0 0 0 O S O O S O O 0 O O 0O SO S e 0o
i r r r
F'Q(x ’ y ’ Yir e Yi ..i ) =0
. 1 8
. i i
where y? = Byr/axl, y? . = aeyr/ax l..ax 6‘ We asso-
i iy..1g

ciate the system (5.1) with a one-parameter transformation

group

D1 g s
¢l(x ,.--,xm,yl,---,yn; t) = ¢l(x3,ys; t)

wr(xl,...,xm,yl,...,yn; t) wr(xj,ys; t)

(i, 3= 1,e0e,m r, s =1,...,n)

and so with the extended group G(e) of G:

33
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(. o
xt = ot (x?, ¥ b)
yT o= vt xd, ¥v%i )

3 -E = r’i j s S.
RO, N RY NN e
_ 1°*7e J I1°+Je

(i’il,oo-’ie,j’jl'oo-'je = l,...,m; r,S= l,-c.’n)o

Definition 5.1: It will be said that the system

of differential equations (5.1) is invariant under the
group G if and only if under the transformationsof the

group G(e), we have for o = 1,...,%

(5.3) F (x (x,5%,6),y" (%7, ¥°,6), ...

r -] =s =S
e e o g y' J (x Iy l""y_' -'))
llc--le Jl"':’e
o -i -r -i =-r =r
= Bil \)aB(x 'Y 't)'FB(x ,y '.'.’yzlitie)
with
(5.4) det (v, ) + 0,

or, equivalently
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(5.5) F x (x),v%,0), ¥R ed, 5,0, ...

- j _s s
«c oo g y'-. T (X y ,..-,Y- LI t))
11..1e ! jl..Je
. i r i.r r
= z H (X 'Y rt)'F(x 1Y 1oty 1 )

B=1 oB 11..1e
with
(5.6) det (uq) + 0.

Remark: The conditions (5.4) and (5.6) are suffi-
cient to imply the equivalence between the relations (5.3)
and (5.5). Moreover, the condition (5.4) assures us that
the transform of the system (5.1) will be a system of 2%

independent equations of the form

(‘

2 =i -r =i -r -r

Bil le(x 'Y lt)'FB(x 'Y '...'yil"ie) =0
ﬁ . =i -r =i -r -r
Lfil vRB(x Y ,t)-FB(x Y ,...,yIl..Ie) =0

T ) appears on the left hand
1°°78
side of the above system. A similar system of independent

where every Fa(§l,§r,---,§§

equations is obtained, under the condition (5.6), when

the inverse transformation applied to the system
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—
=i =-r -r -r
Fl(x 'Y IYII cep YI]_"EB) = 0

ﬁQ.......0...'.0..0..‘.00...
=i =r -r -r

LFz‘x SAK UL S

|
o
L]

We shall now obtain another property of invariance
of system of differential equations under one-parameter
transformation group. This new property will be called a
criterion of invariance of system of differential equations
under one-parameter transformation group.

Theorem 5.1: The system of differential equations

(5.1) is invariant under the group G if and only if the

relations

(5.7) x(e)Fa(xl,yr,yi. cee 0 ¥: 4 )
1 0
o i r i r r r
= I A (X7, y)F (X7 ,Y Y e Y )
8=1 aB B i 11..16

(o =1,..., %)

hold for some functions AaB’ where x(e) is the operator of
the group G(B)’

Proof: We first assume that the system (5.1) is
invariant under the group G, then the relations (5.3) or

(5.5) hold. As in section 3 (cf. (3.7)), we have
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i r r
(5.8) X(e)Fa(x Y aeeen¥y o4 )

1 0

d =i, J s S )
= [E Fa(xl(xj ,y 't) ) ..,y;Tt: I (XJ Iysl° LI 'ys'

1° -1 3y--3

Then from (5.5) and (5.8) we have

i r r
(509) X(e)Fa(x ,y ,oo.’Yi ..i )

1 0

)

1. .le

Il M

) i r i r r
1 [ﬁ' UaB(x 'Y ’t)]t=0 FB(X 'Y roooryi

Writing
i . r, _ .9 i r
Aas(x ,Y ) - [ﬁ UaB (x Iy rt)]t=o

in (5.9), we obtain the relation of the form (5.7).
Conversely, if the relations (5.7) hold for the

given system of differential equations (5.1) and the

given group G, then we claim that the relations (5.3)

or (5.5) hold. Since we have from (5.7)

: oot)) ],
6 t=0
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(e)F x5y, ey

i,..1

L . .
X [z A (xl,yr)-F (xl,yr,...,y? . )]
(8) "g_q "B B ij..ig

M e

') L
A O L ST R

]

N ™
H
e

1 aB” B

here faB = faB(xl,yr), it follows that for positive inte-

ger k:

k i r r
(5010) x(e)Fa(x ’y ’.-u'yil..ie

)

fkaB(xl,yr)-FB(xl,yr,...,y. . )

|
N ™Mo

B=1

where £ = f f = A

208 o’ f148 From the fact that (cf.

aB”’
(2.8))

- t £2 o2
where
FQ(G) = Fa(§1’§r'...'§§1..ze), F (v) = FG(Xl'yr"°"y§l..ie);

we have after substituting (5.10) into (5.11):
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Fi(v) = {1 + g }F (V) + g, Fy(v) +...% gy F)(v)

Fo(v) = g F (v) + {1+ gzz}Fz(v) tooet g, Fo (V)

FQ(;) = g F (V) + g ,Fo(v) +...4 {1 + g, ,}F, (v)

where

The system (5.12) is of the type (5.5) in definition 5.1.
Assuming that the functions AaB(xi,yr) in (5.7) are con-
tinuous, it follows that fkaB are continuous functions

of x's and y's. Then the gaB are continuous functions

of x's, y's and t. Since Iup vanish at t = 0, by continuity

1+ 948 do not vanish in some neighborhood of t = 0, say

Nt=0' Thus
1491, 912 - 914
g l+g oo g
ot 21 22 20 | 44
991 992 1+922}

in Nt=0‘ This is the condition (5.6). Therefore, by
definition 5.1, the system of differential equations (5.1)

is invariant, in Nt=b’ under the group G.
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Example 5.1: We shall show that the system of

Maxwell's equations of an electromagnetic wave is invari-
ant (in our sense) under the group of Lorentz's transfor-
mations. So, our definition of invariénce of a system of
differential equations (definition 5.1) agrees witﬁ the
invariance in the sense of Lorentz. The Maxwell equa-

tions of electromagnetic wave are:

f
- 3,211 _ S . 5
Fl(v) = Hy H, cEt— 0, Fz(v) = H, Hx E'Et 0
- w2_p1 1.3 _ o p3_.2,1.1
F3(v) = Hx Hy EEt—-O, F4(v) = Ey Ez+-é-Ht 0
(5.13)ﬁ
-1 3,12 _ - 22 23,13 _
Fe (v) = E, Ex+E'Ht_ 0, F6(v) = Ex Ey+-6Ht 0
_oplon2 03 ooply2. 03
F7(v) = Ex+Ey+Ez =0, F8(v) = Hx+Hy+Hz 0

where H = (Hl, Hz, H3) and E = (El, E2, E3) are magnetic

and electric field intensity vectors. The Lorentz trans-
formations, which form a one-parameter transformation
group, are

r
X=b(x+cat),y =y, z =2, t = b(t + %ax),

(5.14) G:ﬁ gl - g1, g2

&

where a = u/c is the parameter such that a = 0 gives iden-

b(E? + and), B3 = b(E> - aH?),

b2 - aE’), b(a3 + aE?),

n
o]
fa s
I
o o]
Il

tity transformation, u is the velocity of the observer
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(see figure), c is the velocity of light, b = 1/4/1-a" .
Y
u
—

o
z
The observer moves with his frame of
reference along x-direction
7ith velocity u.

Using (2.15), we find from (5.14) the extended group G(l):

(6, 8 = bklash, & - 5L, 8 - s,

E%: = b(Ei—caEi), E}% = bz(Ei-%aE§+ aHi—-i—aZHf__) ,

Ef—, = b(E;+aH3) , E% = b(Ei + aHi) ,

'% = b2 (Ef__—caEi + aHz—cazHi) '

E2 = b? (82 LaE] - anlsla’nd), Es = b(E;-aHf,) ,

53 = p(E3-an?), E2 = b2 (Elcak> - aH%*ca’n?),
(5:15) G (1)1 -: i 1z 1 t-l 1t —1 ) 1 : ’

Ay = b~ zaly), B = By, B = 1,

AL = b(a-caH), A2 = b” (axLan? - asla%)),

B2 = b(} - aE)), B = b - aE),

ﬁ% = bz(Hi-caHi - aE24-ca2Ei):

ﬁ}% = p? (Hi—%aﬁi+ aEi-%ain) , ﬁ; = b(H; + aE)ZI) ,

kfg = b(H: + aEi), ﬁg = bz(Hz—caHii-aEi-cain).

Substituting the unbar variables in Fl(v)""’FB(V) in

terms of the bar variables from (5.15), we get
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F (v(V)) =bF,(V) - ab F (v), F,(v(V)) F,(v),

Fa(v(v)) = Fj(v) » Fy(v(V)) = bF, (V) + abFg(v),

Fg(v(v)) = Fg(v) » Fgv(v)) = Fe(v),

F7(v(§)) = bF._(v) - abFl(G) , Fa(v(G))

2 bF8(v) + abF4(v),

which are relations of the type (5.3) in definition 5.1.
It is easy to check that the determinant of the coeffi-
cients of Fi(G) in the above system is not zero. That is,

the condition (5.4) is satisfied. From (5.15) we find the

operator X(l) to be
9 .1 3 39 2 9 30 29
(5.16) X =ct + —x + H - H - E + E
(1) 5% ¢ ot SE° 2ES SH2 SHS
1.1 9 9 1.2 3, o 3 9
-=E, ——=—=CE_ —= -(=ZE{ - H)) + H —
t ogl sel  ©°t X' 32 Y 3E
X t b < Yy
3 3 2 3 ) 1.3 2, 9
+ H - (cES - H]) —=- (ZE] + H.)—%
z aEi t 3E2 ct X 3E3
z t X
_ H2 ) H2 3 _ (cE3 + HZ) 3 _iﬂl 3 -c-Hl 3
Yy 3E3 z 3E3 X t 8E3 c't BHI xaHI
Y z t X t
1,1,.3, 8 _ -3 3 _ .3 38 _ . .2 .3 3
~(ZHYE) —5 E, —3 -~ E;, —3 (CH +E{) —%
9H oH oH oH
x y z
1..,3 o2, 9 2 2 2 32 3.2, 9
-(3H-E°)—== + E + E, —5 = (cH -E)—5 .
ct X a3 Y a3 Tz gy X t oy
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From (5.13) and (5.16) we have

X(l)Fl(v) = F7(v), X(l)Fz(V) =0, X(l)F3(v) =0,
(l) 4 (V) = “Fg(v), X(l)FS(V) = 0, (l) 6(V) =0,
(l) 7(V) = Fl (v), x(l) 8(V) = -F4 (v)

which are relations of type (5.7) in the theorem 5.1.

Example 5.2: Consider the system of differential

equations

wxx + wyy + w =0

Fl (v)
(5.17)

Fz(v) w, + Y w_ - Y .w. A = 0,

t Y X Xy

This system defines nonsteady rotational flow of incompres-
sible fluid in (x, y)-plane, where Yy and w are respectively the
stream function and vorticity of the flow. The system

(5.17) is invariant under the group

0 0 L) )

(5.18) X = 2t-8—t- + XE + yW - 2&)m

Derivation of this group is in the next section. Here,
we only show the relationship between this group and the

system (5.17). From (5.18) we find:

0 ) ) 0 d

(5.19) X taq) - U)xm—x- - l’)yw;- - 4th - 30 =

(2) =X -2y

9 ) )

-3w_+ oo o -zw "211) +... .
youw, XX9P_ yyswyy



(5.20) G:
- _ -a
wy = e wy,
- _ _-4a = _ z3a - _ ."3a
(5.21) G(Z)X wy = e wer W3 e "W, , wy e wy,
- _ _=2a - _ _=2a
\'co- ’ w}-(}-{ = e wxx, w;; = e wyy’ e o0 ’

where a = 0 gives identity transformation. We now have

X(Z)Fl(v) = —2wxx - 2wyy - 2w = —Z(wxx + wyy + w) = -2F1(v)
X(2)F2(V) = —4wt - wywx + wy(-3wx) + wxwy - wx(-Bwy)
= -4F2(v)

Substituting from (5.21) in Fl(;) and FZ(G), we get

- - -9 -
2a 2a 2a e 2aFl(v)

]
(0]
<
+
(]
<
+
(0]
€
]

F,(V(¥)

- - - - - - -4
Fz(v(v)) 4a a 3a a 3a _ a

|
o
€
+
o
€
o
€
|
o
<
(0]
€
|
o

Fz(V)’

which are the relations of the type (5.5) in definition

5.1. We also have that

det o0,

0 e'-4a

\

i.e., the condition (5.6) is satisfied.



6. DETERMINATION OF ONE-PARAMETER

TRANSFORMATION GROUPS LEAVING GIVEN

DIFFERENTIAL EQUATIONS INVARIANT

One-parameter transformation groups furnish an
important tool for integrating differential equations.
They are used in Lie's theory for integrating first and
second order ordinary differential equations, and first
order linear partial differential equations. Transforma-
tion groups also may simplify the work of integrating
differential equations, for example, in the reduction of
the order of ordinary differential equations and in the
reduction of the number of independent variables in
partial differential equations. In this section we
give a method of finding the groups of transformations

which are required for these applications.

The method here is to find one-parameter trans-
formation groups leaving the given differential equations
invariant. That is, given a differential equation (P.D.E.,

or, O0.D.E.) of order r with independent variables
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6. DETERMINATION OF ONE-PARAMETER
TRANSFORMATION GROUPS LEAVING GIVEN

DIFFERENTIAL EQUATIONS INVARIANT

The one-parameter transformation groups furnish
us with an important tool for integrating differential
equations and for simplifying the work of integrating
differential equations; the first case, according to the
Lie-group-methods of integrating ordinary differential
equations of the first and the second order, and linear
partial differential equations of the first order: the
later case, according to the theorem of reduction of the
order of ordinary differential equations and the theorem
of reduction of number of independent variables in partial
differential equations. To achieve the group-methods of
integrating differential equations and the methods of
simplifying the work of integrating differential equa-
tions, we propose to find the required groups of‘trans-
formations. |

The method here is to find one-parameter trans-
formation groups leaving the given differential equations
invariant. That is, given a differential equation (P.D.E.,

or, O.D.E.) of order r with independent variables

45
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xl,..,xn (n >1 for P.D.E., n =1 for O.D.E.) and

dependent variable y:

(6.1) F(X', ¥y Yir ooe o ¥y 3) =0
1 r

i
..0X r; we look for a

i
= 3Ty ax T

where Y; ay/axl, Yy i
1" r

group of the form

3 1 3
'y)—T +...+£n(x ,ot'lxnly)-_r{

9xX X

(6.2) X = EX(xY,...,x"

1 n
+ N(X",ee.,X

)3
Ey
ﬁ

1,1 1
where £ (X ,.44,X ,y),...,En(x ,...,xn,y),n(xl,...,xn,y)

are to be determined such that (cf. theorem 3.2)

(6.3) X(r)F(xi, Yo Yir ooe +Y. )

i ij..d
1 r

= A(Xl, Y)F(Xl, y’ yi,..-,yi i )
1" 7r

where A(xl, y) is also to be determined. The extended

group X(r) is derived from X, i.e., if we denote X(r) by

. i . i
= 1 1" r )
l,o.' r l.- r

il. ‘i
are calculated, with

then the coefficients nl,...,n
the help of (2.18), in terms of the derivatives of &'s and

n with respect to x's and y, and the derivatives of y with
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)

respect to x's. Since the form of F(xi, Y, yi,...,yi i
is known, the left hand member of (6.3) is known in tclarmsr
of x's, y, &'s, n, the derivatives of £'s and n with respect
to x's and y, and the derivatives of y with respect to x's.
Since ) is a function of x's and y, the equation (6.3)
enables us to equate the coefficients of the derivatives
of y with respect to x's. The result of equating these
coefficients is a system of partial differential equations
with n + 2 unknowns gi, n, A (i =1,...,n); from which we
solve for Ei, n, and A.

In a similar manner, from a given system of differ-

ential equations

— .
i r r
Fl(X ’ yrl yil---ryi .'i) = 0
) 1 ¢
(6.4
F (xi r r r
2’ ’ y IYiI'O‘IYi ..i

L- 1 6

we can find groupsof transformations leaving the system

) = 0,

invariant from the relations (cf. theorem 5.1)

—~
i r r
X F(x ’ y ’ e o ’y- > )
(6)71 11..16
L i r i r r
= I s YIRSy e Yy )

(6.5) { s






L . .
1 r 1 r r
= Z ARS(X ’ y )FS(X ’ y ’ e s o ’ yil..ie)

-

The following are the examples of determination of
groups for some differential equations which appeared in
the previous sections, and some differential equations
which will appear later.

Example 6.1: Consider the differential equation

in example 3.1:

(6.6) F = y2(1 + y'z) - r2 = 0, r = constant,

which is the differential equation of a family of circles
(x - a)2 + y2 = rz. This family of circles is invariant

under the group of translations parallel to the x-axis:
(6.7) X =
- - F;.

Lie concluded, by using his theorem 3.1, that the differ-
ential equation (6.6) is invariant under the group (6.7).

Ignoring the knowledge of the origin of the equa-
tion (6.6), we propose to find the group leaving the

equation invariant by our method. Let the group be
X = &g(x y)i + ni(x Y)i
’ ax ’ ay ’

and write
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X = X + nl 537

By the formula (2.18) we find

(6.8) n' =n +noy' - y'E, +EY)
=n, + (ny - gy - Ey(y')z.
We need
X(l)F = A(x, Y)F
or

(6.9) 2yn(1+y'?) + 2y%y'n, = A,y P (wy'?) - 220,

Substituting from (6.8) into (6.9), and equating the coef-

ficients of 1*, y', (y')2, and (y')3, we get, respectively:

(6.10) (coeff. of 1): 2yn = A(y® - r2)
' 2 —
(6.11) (coeff. of y'): 2y n, = 0
12 2 _ 2
(6.12) (coeff. of y'“): 2yn - 2y (&x - ny) = Ay
3 2 -
(6.13) (coeff. of y'7): 2y~E = 0,

y

The equation (6.11) implies n = n(y). The equation

(6.13) implies § = g(x). Then, the equation (6,.,10) gives

*By the coefficient of 1, we mean the terms not
including any derivative of y with respect to x.
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A =2(y). And then, from (6.12), we have
Ex = constant = k, say.
From which we obtain

where c is a constant of integration. Subtracting (6.10)

from (6.12), and rearranging, we get

2
(a,) Nty - EAMY
dy 2y

Substituting the value of A(y) from (6.10), i.e.,

= 2yn(y)
(B5) My) = L,

y- -r
into (Az) to get
dn (y) rzn( )
(A,) UL SR s— + k
dy y{y™ - ")
from which we solve for n(y). When n(y) is obtained from

(A4), A(y) is obtained from (A3), we finally have the

required group ¢

(6.14) X

0
(kx + c) = + n(y) Iy

with the property

X(l)F = A(y)F.
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If we choose n(y) = 0, the equations (A;) and
(A4) imply, respectively, A(y) = 0, k = 0; and the group
(6.14) becomes

_ 0
X - C ax .

Setting ¢ = 1, we have the group (6.7).

Example 6.2: Given the differential equation

(6.15) F = y2y' + x2(y")° - x*wym? = o,

we shall find a group

3 3
X = &(x,y) 57z + n(x,¥) 3y
such that
. . 1 2 . _
Using the formula (2.18) we find n~, n~ in x(z) = X +
1 3 2 3
"omyT T oaym te e
( 1
2
— v | '
noo= Ny, + ny Y EXY €y(Y )
nZ=n_ o+ (2n - £ )y' + (n,. - 26 ) (y")?
(6.17) ﬁ XX Xy XX vy Xy
- E ¥y + (n, - 28)y" -3¢ y'y".
L Yy Y X Y

The other form of (6.16) is
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(6.16') 2yny' + y2nt + 2xe(y") 3 + 3x%(y")?nt
- ax3e(y"? - 2xtyr 0?2

= A(x,y){yzy' + xz(y')3 - x4(y“)2}.

Substituting from (6.17) into (6.16') and equating the

coefficientsof 1, y', (y')z, (y')3, (y')4, y", ...,y'(y")2;
we get:
(6.18) (coeff. of 1): y°n_ = 0
(6.19) (coeff. of y'): 2yn + yzny - yzgx = Ay
(6.20) (coeff. of y'2): -yzgy + 3x2y2nx =0
(6.21) (coeff. of y'3): 2xE + 3x2ny - 3x%g, = ax?
(6.22) (coeff. of y'¥): -3x25y = 0
ny ., - 4 =
(6.23) (coeff. of y"): 2x Nex 0
1,y . - 4 4 =
(6.24) (coeff. of y'y"): 4x nxy + 2x Exx 0
2 4 4
. f. ' u= - =
(6.25) (coeff. of y'"y") 4x Exy 2x nyy 0
(6.26) (coeff. of y'3y"): 2x%E = 0
vy
(6.27) (coeff. of y"%): -4x3¢ - 2x4ny +axte = -ax
(6.28) (coeff. of y'y"%): sexc. = o.

y
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The equation (6.18) implies that n is not a

function of x, i.e.,

(Bl) n = n(y) .

Then the equations (6.23) is satisfied automatically. The

equation (6.22) and (6.28) imply that n is not a function

of vy, i.e.,

And the equations (6.26) and (6.20) are satisfied. Now,
the equations (6.24) and (6.25) imply, respectively, that

£ is a linear function of x, and n is a linear function

of y. Thus,

(B

gl
I

3) ax + b,

(B4) n = cy +d,

where a, b, ¢, d are constants.

Substituting from (B3) and (B4) into (6.19), we get

3cy2 + 24y - ay2 = Ayz

which gives

(BS) A 3c - a
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Substituting from (B3) and (B4) into (6.21), we get

-ax2 + 2bx + 3cx2 = sz
which gives
(B'g) A = 3c - a
(B7) b = 0.

Substituting from (B3), (B4), (BS)'(BG) and (B7) into

(6.27) we get

-4ax4 - 2cx4 + 4ax4 = -(3¢c - a)x4

which implies

Thus, we have the results:
& = ax, n = ay, A = 2a

where a is arbitrary constant. And the required group is

_ 3 3
(6.29) X = ax ﬁ + ay -3—3;
Such that

X F = 2aF,

Example 6.3: We shall find the group under which

the two-dimensional Laplace equation is invariant. The

given differential equation is



(6.30) u + u = 0.
Let the group be

X = €l(x,y.u) g% + Ez(x,y.u) g% + n(x,y,u) ;%'

where gl, 52, n are to be determined. We write

13 293 11 9 12 9 22 9
X = X +n +n + n + n + n
(2) 5ux 5uy auxx 5uxy Buyy

where nl, nz,...,nzz are found, with the help of the

formula (2.18), to be

nt = Ne ¥ Nyly ~ ux(Ei + Eiux) - uy(Ei + &iux)

n? = Ng + NyYy ~ ux(£; + Ei u) - uy(Ei + Eiuy)

nll = Nxx + Mxux ~ ux(gix + giuux) - uy(gix * Eiuux)
+ [nxu + nuuux - ux(EJ];u + Etlmux)
- uy(g)zcu + Etzmux)]ux + [nu - E;L{ - zuxgi
- uy£121]uxx - [Ei + uxgi]uxy - uxx(‘r’:]; + giux)

2 2
- uxy(gx *EaU)

. [ . . . [ . [ . . [} [} L] [ . . [} . . [ . . . . L] .
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1 1 2
= + - + - +
N nYY nYuuY ux(EYY Eyuuy) uY(EYY EYuuY)

1 1
+[nyu + Nun%y ux(Eyu + Euuuy)

2 2 1l 1l
- uy(Eyu + Euuuy)]uy - [EY + Euuy]uxy

1 2 2 1 1l
+ [nu u & Ey ZuYEu]uyy uxy(iy + Euuy)

2 2
- + .
uYY(EY Euuy)
Since we require

(2) {fu, +u _} = A(x,y,u) {uxx + uyy}'

or

11 22 _
(6.31) n +n = A(x,y,u) {uxx + uyy}‘

Substituting the value of nll, n22 into (6.31) and equat-

ing the coefficients of 1, U s uy,...., we get:

(6.32) (coeff. of 1): Nyex + nyy = 0.
(6.33) (coeff. of u.): =£X +2n - EX =0

) * x' XX xXu Yy :
(6.34) (coeff. of u): -gz + 2n - 52 = 0.

Y XX yu YY

(6.35) (coeff. of u?): =2E% +n__ =0

* * x' xu uu *

2 1 1 _

(6.36) (coeff. of uxuy). -gxu Eyu guu = 0.



(6.37)

(6.38)

(6.39)

(6.38')

(6.39")

(6.40)

(6.41)

(6.42)

(6.43)

(6.44)

(6.44")

(6.43")

(6.43")

(6.44")

(coeff,.

(coeff.

(coeff,

(coeff.

(coeff.

(coeff.

(coeff.

(coeff.

(coeff.

(coeff.

(coeff.

(coeff.

(coeff.

(coeff.

of

of

of

of

of

of

of

of

of

of

of

of

of

of

iu " T
iu = 0.
g2 = o.
-Etu = 0.
giu = 0.
-2¢% - 26,
-3g; = 0,
-g2 = 0.
262 = 0.
-2¢7 = 0.
—gi = 0.
-3g§ = 0.
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The equation (6.43) implies that El is not a

function of u, i.e.,

1

() £ = £hx, y).

Similarly, the equation (6.44) implies

(c,) g2 = 2, v,

From the equations (6.40) and (6.42) we have

1 2

Ey = Ey
This and (6.41l) yield
r
1 1 _
fxx P oy T O
(C3) ﬁ
2 2 _
—

The equations (Cl) and (6.35), or (C2) and (6.37), show

that n is a linear function of u, i.e.,
(Cy) n=£f(x, yJu + g(x, y).

Substituting (C4) in (6.33) and (6.34), and using (C3),

we get

I
o

fx(xr y)

!
o

fy(xl Y)

which imply
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(C5) f(x, y) = constant = 2m, say.

From (C4), (C5) and (6.32), we have

(Cg) Tyex (X0 ¥) #+ gyy(x, y) = 0,
Thus
(C7) n = 2mu + g(x, y)

where m is a constant, and g(x, y) satisfies (C6).

The equations (6.40), (6.42) and (C7) yield

(C.) 2m - 2si = 2

8

2
2 - = .
(Cq) m 2£y A

9
Since from (Cl) or (C2), the equations (C8) or (C9) imply
A= A(x, v).

This is the only restriction on A.

If we choose A = 4x, we get from (C8) and (Cg)

(C, ) £ = mx - x2 + hl(y),

10

The equations (Clo), (Cll) and (6.41) imply

hi(y) = 2y - hy(x).
So

hi(y) - 2y = -h;(x) = constant = n, say.
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Thus

hl(y) =y“ + ny + c

h2(x) -nx + d

where c and d are arbitrary constants. We now have

(C15) El = c+mx + ny - x2 + y2

(Cl3) E“ =d - nx + my - 2xy.

We can check that the values of n, 51, 52 in (C7), (C12)
and (C13) satisfy all of the remaining equations in
(6.32) - (6.42").

Thus the group

2 )

2
+y9) o=

(6.43) X = (c+ mx + ny - X %

+ (d - nx + my - 2xy)§§ + (2mu + g(X'Y))g% ’

where g(x,y) satisfies (C6), leaves the Laplace equation

(6.30) invariant so that

Xy Wxx ¥ Uyyl = 4% Doy +ugl.

If we set A

0, we get from (C8) and (C9):

(a
I

mx + ql(y)

[(aa
|

= my + qz(x).

These and (6.41) imply



61
q; (¥) = -q5(x).
Thus
q; (y) = -q5(x) = constant = k, say.
Consequently,
q, = ky +a, g, =-kx+b

where a, b are constants of integrations. Then we have

1

) 3 mx + ky + a

(C14

) £ my - kx + b.

(C15

And we have the other group:

(6.44) X = (mx + ky + a) g% + (my - kx + b) g%

+o(2mu+ gk, ¥)) g

leaving the equation (6.30) invariant so that

{u + u_} = 0.

x(2) XX YY

Example 6.4: Let us consider a system of differen-

tial equations in fluid dynamics. Nonsteady rotational
plane flows of incompressible fluid is governed by the

system [11]



62

P
Ve - uy = W
(6.45) ﬁ we + uw, + va =0
u = wy, v = -¢x
—

where (u,v), ¥y, w are respectively the velocity vector,
the stream function, the vorticity of the flow. Equiva-

lently, the above system can be written in the form

o]
"
<

(6.45") %

&
N
"

wt + wywx xwy

Note that (6.45') is the system (5.18) in the example 5.2.

We shall find the group

1

3 2
X=8 s t+&

3 13 . 2

3 9 d

leaving invariant the system (6.45'). Let us restrict
ourselves to find the group of the form
(6.46) &' =€ (t, x, Y), 0" =nt(t, x, ¥, ¥, w)

(i = l' 2' 3; j = 1’ 2)0

Using (2.18), we find the extended group:
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1,1 9 1,2 9 1,3 0 2,1 9
X = X + n e + n e + n ’ + n v 0
(2) P, wa 5wy Bwt
2,2 3 2,3 9 1,22 9
X Yy XX
+ n1’23]f + 1,33§£L_ + ...
Xy YY
where
(-1 2 1 1 1 1l 2 3
’ = . . - -— L] - L
n =n + Ny Ve ¥ N0, = W8 = Y tE — Ve
1,3 1 1l 1l 1 2 3
= + + . - . - . - .
n Ng T NptVy TNty T VetEy T VtEy T bty
2,1 _ 2 2. _ 2 .1 _ .2 .3
n = Ne PNtV TNty T 0ptEL T wgtly T ety
2,2 _ 2 2 2. _ .1 _ .2 .3
n =t My U ¥ Mut¥x T Y Ex Wy by Yy gx
(6.47)
2,3 2 2 2 1 2
= + . + 3 - ° - . - .
n ng t Ny wy Ny'¥y = Y Ey W Ey Wy €
1,22 _ 1 1, 1l 2
n = Mex znxw wx + 2nxw “x wt Exx v Exx
3 1 2 1 1
- Yy Exx T Noy ¥x + 2Ny0 Y% ¥ Nuw Y%
1l 1 2 1l 3
t‘ + nw'wxx N, Wk T 28 Vxx T 28, Vxx T 284V



(6.47)1
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- |
S
1,33 N1 1 1 1 2
= + 2 . + 2 L) - . - .
n Nyy T Byt TNy 0y T VetEyy T VTEyy
3 1 .2 1 1 2
- . + . + Y + .
Yy lyy T MppVy T 2Nyt Pyl Nty
1 1 3 1 2
+ [ ] + L] - 2 [ ] - 2 L] - 2 [ ] °
. Ny Vyy ¥ My "yy = 28y Vyy T 28V, T 2800,y

By the theorem 5.2, the group X must satisfy the relations

X2)F1 = AnFy A 0F,
(6.48)

X1)Fa AFr t A0F,
or,

r

1,22 1,33 . 2 _
n + n + 0 = A F) + ALF,
Jo2,1 2,2 1,3 . 2,3 _ 1,2

(6.48 ﬁ n + 0N + w,n YN wyn

L = A1F) T A5F,

where Aij; the functions of t, x, y, ¥, w; are to be

determined. Substituting from (6.45') and (6.47) into

the first equation of (6.48') and equating the coeffi-

obtain:

(6.49)

(6.50)

Cients Of 1' lpt’ wx, wy’ wt, e s oo ’ lpxx’ wxy' -'o; we
1 1 2 _
(coeff. of 1): nxx + nyy + n° = Allw.
1 1 _
(goeff. of wt). -Exx - Eyy = 0.



(6.51)

(6.52)

(6.53)

(6.54)

(6.55)

(6.56)

(6.56"')

(6.57)

(6.53")

(6.56"')

(6.53")

(6.57")

(6.58)

(6.58")

(6.59)

(6.60)

(6.61)

(coeff.

(coeff.

(coeff.

(coeff.

(coeff.

(coeff.

(coeff.

(coeff,

(coeff,

(coeff.

(coeff.

(coeff.

(coeff.

(coeff,

(coeff.

(coeff.

(coeff.

of

of

of

of

of

of

of

of

of

of

of

v,)

=&

+

€. — &

2n1



(6.62) (coeff. of wxy): -ng - 2. = 0.
L3 l -
(6.63) (coeff. of wyy)' nw 2¢
1
w

(6.64) (coeff., of wxx): n

6.64" ff. of :
( ) (coe o wyy) n

We have immediately from (6.53):

1) A = 0.

(D
The equations (6.59) and (6.60) imply

(D,) et = gl

and this satisfies the equation (6.50). The equations

(6.61) and (6.63) give
(D3) % y

The equation (6.62) gives

(D4) 3 = = .

It follows from (D3) and (D4) that 52 and 63 are conjugate

harmonic fuctions of x and y, and so

2 2
(D) Cax * Eoy = O
3 3 _

Using (Ds), (D6) in (6.51), (6.52) respectively, we

obtain
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1 _
1 _
(D8) nY\P 0.

The equations (6.56) and (6.64) imply that nl is in the

form

1

(Dg) nt o= £(t, x, y) +g(t, x, Y)V.

This satisfies the equations (6.54), (6.55), (6.57) and
(6.58). The equations (D7) and (D8) imply that g is a

function of t only. Thus,

(D) nt= £(t, %, ¥) + g(B)y.

Now (D3) becomes:

(DY) €5 = &) = 7 (a(8) -2,

Since Ez, E3 are functions of t, x, y; it follows from

(Dé) that All is a function of t, x, and y; i.e.,

(DIO) )\ll = All(t, X, Y)-

The equations (Dé) and (6.49) imply

2
(Dll) fxx(t, X, vy) + fyy(t, X, y) +n = Allwf

We now substitute from (6.45') and (6.47) into
the second equation of (6.48), and equate the coefficients

of 1, wt' wx' «ee , to get



(6.65) (coeff.

(6.66) (coeff.

(6.67) (coeff.

(6.68) (coeff.

(6.69) (coeff.

(6.70) (coeff.

(6.71) (coeff.

(6.60') (coeff.

(6.59') (coeff.

(6.72) (coeff.

(6.60") (coeff.

(6.73) (coeff.

(6.74) (coeff.

(6.59") (coeff.

(6.75) (coeff.

(6.76) (coeff.

(6.77) (coeff.

of 1): n

of wt):
of Y_):
of y_):
of w,/):
of w_):
of w_):
of wtw ):
of wtw ):

of v _v_):

of wywt):
of wywx):

of wywy):

of wxwy):

2 =o.

ng = 0.

-n.. = 0,

ni = 0.

n? - £l =y,

_Ei + n; = 0.

'52 - ni 0.
-g;=o.
£y = 0.
ni-n$=o.
g)l,=o.
£2 - &2 = 0.
-ny + £ - n2 + E
-g1 = o.
ni - 53 + ”Z - £
-gx + gi = 0.
nl - nl= o,

22°
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(6.78) (coeff. of wxx): 0 = A,y

] . =
(6.78') (coeff. of wyy). 0 A21.

The equations (6.65), (6.66), (6.67) and (6.68)
imply that n2 is a function of w only. This enables us

to split (Dll) into three equations

(Dil) fxx(t, X, y) + fyy(t, X, yY) = constant = m, say,

(Dil) nz = Allw - m,

(D11") Aqq = Ay (@)

1 -
Now, we have from (Dlo) and (Dll )¢

All = constant = a, say,

and then (Dil) becomes

2
n = aw = m.

From the fact that n2 is a function of w only and El is

a function of t only (cf. (Dz)), we get from (6.69)

2 1
dn~ _ dg_ _
- I"8 3t Aoae

From (6.74) (or (6.75)) and using (Dé) and (Da), we get

dnz

(D;5) ‘i1 Y Fe T e

Thus,
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dgl = -\ = -a

dt 11 ’
and

&l = -at + £, 2 is a constant.
Differentiate (Dil) with respect to w and compare the
result with (Dlz)‘ We get

A22 = ZAll = 2a.

From (Dé) we have

g2 = 2(g(t) - a)x + hZ(t, y)

g3 = 2(g(t) - a)y + hi(¢, x)
for some functions h2 and h3. Using these in (D4),
we find
sh2(t, y) _ _ 3h3(t, x)
oy 90X

which implies

h? (£, y)

p(t)y + q(t)

h3(t, x) -p(t)x + r(t)

where p(t), g(t) and r(t) are arbitrary functions. Thus

(Dy5) £ = (g(t) - a)x + plt)y + q(t)



71

3 _1 _ _
(D14) g7 = -z-(g(t) a)y - p(t)x + r(t).
We now have from (D13), (6.70) and (Dé):
1
(Dls) fy(t, X, Y) = §g'(t)x + p'(t)y + g'(t).
Similarly, from (D14)' (6.71) and (Dé) we have
1
(1) E.(t, x, ¥) = - 59" (£)y + p'(t)x - r'(¢).
Using the property that fyx(t, X, y) = fxy(t’ X, y), we
get
g'(t) = 0
Or,

g(t) = constant = b, say.
4 J )
Using (DlS) and (Dl6) in (Dll)’ we get

p'(t) =

N3

or
p(t) = %t + k, k is a constant.
Now, we have from (D15) and (Dl6):
m, 2 2 ' '
f(t, x, y) = z(x7 +y7) - r'(t)x + q'(t)y + s(t)
where s(t) is a new arbitrary function. Finally, (Dé),

(Dl3) and (Dl4) become
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0y nt=bp + B+ y%) - ®)x + @' ()Y + s (b)
(D! £ =2 -a)x + Bt +K)y + q(b)
13 2 2
(01, &3 = (b - a)y - Bt + K)x + r(t).
We now have the required group
(6.79) X = (& - at)l + {}-(b - a)x + (2t + k)y + q(t)}-a—
) ot 2 2 0xX
+ {i(b -a)y - (3t +k)x + r(t)}i
2 2 y

+

by + F + ¥%) - x'(®)x + @' (B)y + s(8))g

+ (aw = m)g% .

where a, b, k, 2, m are arbitrary constants; gq(t), r(t),
s(t) are arbitrary functions. This group has the proper-

ties:

(6.80) X = aF = 2aF

(2)F1 17 XmF2

since from (6.48) and All = a, A12 =0, A21 =0, A22 = 2a.
Since the group X involves 5 arbitrary constants and 3
arbitrary functions, it can be decomposed into 8 smaller

groups under which (6.45') is invariant

(set: a =1, the others = 0): X, = -t— -
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(set: b=l, the otheérs = 0): X, = Zxz= + %% + w%
(set: k=1, the others = 0): X3 = Y3z xg%
(set: 2=1, the others = 0): X4 = g%
(set: m=1, the others = 0): X5 = %ty&% - %txg%
Pl sy - &
(for: g(t) # constant, the others = 0):
Xg = q(t) g + a' (B)ygy
(for: r(t) # constant, the others = 0):
X, = r(t)% - r'(t)X%
(for: s(t) # 0, the others = 0): Xg = s(t) % .
These small groups have the properties:
X112y F1 = Fpr X3 ()Fp = 26,
from (6.80) with a = 1;
Xi(Z)Fl =0, xi(l)FZ =0 (i=2,..

from (6.80) with a = 0.

018)

Note that the group -2Xl is the group (5.19) in

the example 5.2.



7. REDUCTION OF ORDER OF ORDINARY

DIFFERENTIAL EQUATIONS

In this section, we deal with Lie's theorem of
reduction of order of ordinary differential equations,
by the utilization of one-parameter transformation
groups. This theorem is considered as an important one,
since it enables us to simplify the forms of ordinary
differential equations. It is our purpose here to
clarify this theorem by giving a new‘proof. We note here
that the main result in this section is the proof of a
lemma, which is a key for proving the Lie theorem.
This lemma shows an important property of the extended
group of transformations of two variables where one vari-
able is regarded as a function of the other.

Lemma: Suppose u(x, y) and v(x, y, y') are,
respectively, an absolute invariant and a differential

invariant of the first order of the group generated by

_ 2 2 _ dv/ax _ v
X = g(x, Y)ax + n(x, Y)ay' Then Vy < Ju/ax _ du ’
" = dvl/dx _ dvl ) d2V v = dvn_l/dx ) dvn_l _
2 du/dx du du2 AR du/dx du
dnv

——H'are, respectively, differential invariants of the
du

second order, ... , the (n + l)th order of the group

generated by X.

74
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Proof: From the fact that v(x, y, y') actually

involves y' (cf. Sect. 2) and from v, = g%é%% =
ov V., OV . u
+ 55Y t owTAY
3x 3y oy , it follows that v, involves the
_3_u+ a_uy' 1
X 3%
derivative y". The only thing we have to do is to show
dv/dx . . . _
that X(Z)(du/dx) vanishes identically, where x(z) =
) ) 1 .y O
€(x, Y)E"" n(x, Y)W +n(x, ¥y, Y )Wr“'

nz(x, Y, ¥Y', Y")E%W is the second extended operator of X.

Since

dv/dx _ 1 dv dv/dx du
(7.1) X ( ) = X (_.) ~dv/dx __ 4 (__) ,
(2) \du/dx du/dx “(2) \dx (du/dx)z (2) \dx

and since

dv\ _ v ov._, oV .\ _ v
(7.2) X(z)(a) = Xm(rx Tyt ) = X(z)(é?{)

oV

oV
+ —=' +X "
X(z)(ay ) (2) (Fy"y) '
expanding each term on the right side of (7.2), and using
the formula (2.18) we get

1
v\ oy (2w o 2 _ (28 2v , an v, and by
X(2) (5?) = X ("cﬁ) = ¥V (’532 x t 3x 3y T % ay')

_ (& 23w, ndv, anl by
- \9x ox X oY X dY !



We see that

dv

L
Y

<1
%
b

(7.2") X(?_) (a‘;{‘) = -

Similarly,

dul _
(7.3) X(z)(a}-) =
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Substituting from (7.2') and (7.3) into the right hand

side of (7.1) we get

X dv/dx = 0
(2) \du/dx *

dv _ dv/dx . . . . .
Thus Ia EE7§§ is differential invariant of the second

order of the group generated by X.

Moreover, if v is the differential invariant

k-1
of the kth order of the group generated by X = E(x,y){% +

dvk-l ) dvk_l/dx
du du/dx
tial invariant of the (k + l)th order of X. We have that

(k) (k)

is differen-

n(x,y)é% then we claim that

) depends on y ., and X

_ 1

V-1 = Vk-1(XeYe¥Tseee0y x) Vk-1
- _ ) 3 1 b9

= 0 where x(k) = £(x, Y)sg + n(x, y’a—i + nT(x,y,Y )g——y.

+ oo o + nk(x’y’y.'o..’y(k))ﬁa'ﬂ iS the kth extended

oy dvk_l/dx
operator of X. As an immediate consequence —qu/dx =
oV v ov du/dx
k-1 , k=14 4 + k-1 (k+1)
1’ LI y
0xX oy
oy . (k+1)
5 s contains y . We
u ggy.
9x 3y dv, _,/dx
shall now show that x(k+l) —du/dx = 0. Since
ov ov oV
k=11 _ k-1) _ 3 _|38& k-1
X(k+1)( 90X )“ X(k)( X )‘ 7% X(x)Vk-1) " 3% TIx
. an avk_l . an1 ka_l N
X oy ox oy e
. ank ka_l
e o0 ax ay z]j



_ _[ae ka_l , n vy 1 . Bnl ka_l .
X X X oy ox  Jy' te
ank 3vk 1

. V11 _ o [ag V-1 L an V-1
3y Y'\3y Tox 3y oy
N an1 ka_l . . ank 3vk_l
3y~ oy" ) )
oV
+ k-1 (.a—n + _3_T]y. - B_Ey' - aiy'z) ,

oV ( c
k-1 _.) _ " k-1 k=1 2 — " k-1
X (k+1) ( 3y 'Y) = Y'X k+1) \Toy ) Py T Y X\ oye )

. ka-an __yn |0t k-1, an? V-1
3y Y \3y"T TayT T syt Taym e
,oan® k-1, k-1 (anl, anl,
1
on" w _ 9& w _ 35
+ 8y|y axy ay Y) ’
« V-1 (k+1)) (kD) Vg-1] avk -1 k+1
(k+1) \ T (x)Y =Y (k+1)| = (k) (k)
dy oy
kD) | an* TVien) | Vi fan
oy (0 30 (8) L) | %
K K K
on on_" an (k+1)
AR ST

y
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08 (k+1) 08 1, (k+1)
- §;Y - gyy Y

we have that

dv oV Bv
k-1)_ k-1 k=1 k-1 (k+10
X(k+1)§‘3§“)' X (k+1) (,ax 5y ¥t e ? ’"TETY

_ (avk_l) ka 1 )
T T (k+1) ox (k+1) ay tet
v , (ctD)
ce (k+1) a
av
_ k 1 (3¢ as _ V-1 _g dE _
- (§§ ¥ ) oy 8 5§y') Tt
_ -1 fae, 8E,) | (k+1)
. E;TET % g;y
__ag ka1
dx dx °

In a similar fashion, we can show that

dul _ Ju ou._,\ _ ou du ,| _ _d& du
X (k+1) (EE) = X(k+1)(§§ * oy ) = X( )* (1)( )" dx ax
Thus

< dv, _,/dx o1 (dvk-l) ) dv, _,/dx « du
(k+1) du/dx du/dx “(k+1) dx (du/dx)z (k+1) \dx

! g de—l)_ dvy _y/dx (dg du
~ du/dx dx dx (du/dx)2 dx dx
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vy _4 _ dv, _,/dx

We now have a conclusion that du - “du/dx is a dif-

ferential invariant of order k+l1l of the group X. By induc-
dvn_l/dx

tion, we have that for positive integer n, v, = —du/dx

is a differential invariant of order n+l. The proof of

the lemma is completed.

We now are in position to prove Lie's theorem omn the
reduction of order of ordinary differential equations.

Lie's theorem ([1l], pp. 386-387): Suppose that

the ordinary differential equation of order m:
(7.4) F(X, Yo ¥'s eee » ¥ ™) = 0
and the group
(7.5) X = E(x, Y)== + n(x, y)=

) ’ 0X ' ay

are such that X(m)F(x, Ye ¥Y's cee y(m)) vanishes whenever
F(X, Y, ¥Y') oce ,y(m)) vanishes, and that u(x, y) and

v(x, v, ¥') are, respectively, an absolute invariant

and a differential invariant of the first order of the
group (7.5). Then the differential equation (7.4) can be

written in the form

(7.6) G(u,

a differential equation of order m-1.
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Proof: Since F(x, v, ¥', ... ,y(m)) involves
y(m) and since we have
X F(x, ¥y, ¥ y™y =0
(m) ’ ’ ’ L 4

in the domain of definition of equation (7.4), by theorem 2.2
F(X, Y, ¥'y con ,y(m)) is a differential invariant of order
m of the group X in the domain of definition of equation
(7.4). Since u is an absolute invariant and v is a dif-

ferential invariant of the first order of the group X, by

dv  d?v am-1ly .
the above lemma Ia’ EEE R s are, respectively,
differential invariants of the second order, ... , of the
th dv  d2v am-1ly
m order of X. We now have that u, v, 3o’ a;f,...,g;ﬁ:f

are m + 1 independent functions satisfying the equation
X(m)f = 0. We also have that F(x, Vv, V', .« ,y(m)) satis-
fies the equation X(m)f = 0 in the domain of definition of

equation (7.4). Thus, in the domain of definition of

equation (7.4), the F(x, v, V', «.. ,y(m)) can be written
dv am-1ly

as a function of u, v, o’ e 'dum“l; i.e.,
m-1
1 m dv d
F(x, v, v ,...,y( )) = G(u, v, EE"..'EGE:%).

Therefore, equation (7.6) follows from (7.4).
Example: We know, from the example 6.2, that the

differential equation

(7.7) F=yiyl + x2(yn2 - xtym?2 =0

is invariant under the group
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_ 0 )
(7.8) X = axgp + aygo ., a # 0
so that
X F = 2aF.

Thus X(Z)F vanishes whenever F vanishes. An absolute

invariant of the group (7.8) is found from

(7.9) dx _  dr
ax ay

Solving (7.9), we get % = constant as a solution. The

first extended operator of the group (7.8) is

We see that any function of y' satisfies the equation
X(l)f = 0, so that we can take y' as a differential

invariant of the first order. We now set

u=y/x , v=y"'.

Then

v _ dv/dx _ __y" _ _xy"

du du/dx y' _ v-u'

oty
or,
v - v-udv
y X du °

Substituting y = xu, y' = v, y" = v - udv into (7.7),

X du

we obtain
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2
a2y + x2y2 - X4(v - u.g_\_r_) _
X du
or,
' 2 2 _ - 2(dv\2 _
(7.7') uv +v (v u) o =0

which is an equation of the first order.



8. REDUCTION OF NUMBER OF INDEPENDENT
VARIABLES IN PARTIAL DIFFERENTIAL

EQUATIONS

One of the methods of changing the form of partial
differential equations to simplify the finding of solu-
tions, is the reduction of the number of independent
variables. Here, we shall deal with Morgan's method of
reduction of the number of independent variables in par-
tial differential equations, which is the utilization of

one-parameter transformation groups.

Let
k. 1 k. n
1 1
(8.1) ‘P&(X ,...,Xm,y ,.o.’Yn,o.a'-—a(—h' 'ooo'ﬁn%'f)=
d (x

be a system of partial differential equations of order k.

Definition 8.1 (Morgan's definition, [3]): The

J

solution y” = Qj(xl,...,xm) is called invariant solution

with respect to the transformations T: (x, y) =+ (x, ¥),

if after transformation the solution becomes §J = QJ(§1,..

..,§m); that is the §J is exactly the same function of the

.

J

x's as the yJ is of the x's.

Definition 8.2 (Morgan's definition, [3]): The

1 m 1 n ¥yt

differential form ®(X ,cce )X ,¥Y seeesY secey 1

dk_n 9(x7)

——zﬁ—f) is said to be conformally invariant under the
9(x")

p oo oy

84
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one-parameter transformation group G: xt = ml(xl,..

- 1
l,...,yn: t), yr = wr(x g oo on xm, yl,...,yn; t);

*
m
X , Y

if it satisfies

k-1 k-n
-1 -m =1 - o) 9

(8.2) @(X r---,Xm,y ,...,yn.,..,——_‘¥—k,...,———h=
3 (x™) a(x)

(o m 1 n ¥yt a¥y"

X peeesX JY se0esY se0ees T %7 - % t)
3(x™) d(x)
k.1 k. n
'§(x1,...,xm,yl,...,yn,...-—EJZ—— .o —jLJL—ﬁ

where H 1is not zero (see Appendix).

Observe that the invariance of the differential
equation & = 0 wunder the group G 1is a special case of
the conformal invariance of the differential form & wunder
the group G. We can prove, by following the proof of

theorem 3.2, that the equivalent form of (8.2) is

k.1 k. n
1 m_1 n 'y oy
(8.27) X, B(X yeeesX oY weeesY senes ) =
(k) a(xl)' a(xm)k
k.1 k. n
1 m 1 n o'y 'Y
h(X ™ eeesX YV seeesY secey : T % - k)
(x7) o(x)
k.1 k. n
‘§(x1,...,xm,yl,...,yn,..., oy 3y k)

a:H X T M

th

where X(k) is the operator of G(k)' the k extended

group of the group G.
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one-parameter transformation group G: xT = 4>l(xl

m 1l n - 1 1 n
X , ¥V seee,¥ 1 t), yr = wr(x pecey xm, Y seeerY 3 t):

YL R ]

if it satisfies

k-1 k=n
=l om =1 = d L)
(8.2) Q)(X ,...,X ,y '..c,yn'.\a'__:lL]—('l'QOI._%E) =
3 (x7) o (x)

1 m 1 n aky! _EEXEE
H(x geee X ,y ,ooo'y '...’_(-%)_E'...'a(m) lt)
o(x X

k1 k. n
1 1 9 9
.®(x ,...,Xm,y 'oo.'yn'o.o'_lL-]E"ooo'_mLE)
3(x7) 3 (x")

where H is not zero.

Observe that the invariance of the differential
equation ¢ = 0 under the group G is a special case of the
conformal invariance of the differential form ¢ under the

group G. We can prove, by following the proof of theorem

3.2, that the equivalent form of (8.2) is

: 1 m 1 n a¥yl aky?
(8.2 ) X(k)§(x ,...,X ,Y 'o.o’y 2RI B lkl".l—__mLE)_—-
d(x7) a(x")
k1 k.n
1 m 1 n 9 0
h(X ,...,X 'y ,.o.'y g oo ey {k,...’ %k)
d(x™) o(x)
k1 k. n
1 m 1 n 0 d
'(I)(X ,oco'x ,y ’.oo,y T I Y ] l y

s )
5 (x1) K 5 (x™ <

where X(k) is the operator of G(k)' the kth extended group

of the group G.
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Morgan associated with system (8.1) the group of

the form
-i i, 1 m .
SI: = 0 (X ,eee,X ; t) (i=1,...,m)
(8.3) G':
Sp: ¥ = vy ¢) (r=1,...,n)

here SI and SD denote, respectively, the set of transfor-

mations of independent variables and dependent variables.

Note that SI form a group in m-dimensional space, and SD

form a group in n-dimensional space. Let ol(xl,...,xm),..

1

..,cm_l(x ,...,xm) be a set of absolute invariants

of SI. These are also absolute invariants of G'. Let the

m

other absolute invariants of G' be gl(xl,...,x ,yl,...,yn),.

1 m 1 n
..,gn(x reeesX ,¥Y 4e0e,Y ) so that ol(x),...,om_l(x),
gl(x, y),...,gn(x, y) form a set of absolute
invariants of G'. In the method of reduction of the num-

ber of independent variables, we need the set of absolute

invariants such that

3(0 seees0__1)
(8.4) R|—F ml ) =mn-1
90(X " ,eee,X )

and

B(gl.---,gn)

(8.5)
B(er- .o rYn)

where R indicates the rank of the Jacobian. If we make a

change of variables defined by
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1

(8.6) o, = o,(x eee X0 (i=1,...,m-1)

1

then the condition (8.4) enables us to express m-1 of the
x's in terms of ol""’om—l and the remaining x, say xm,

in the form
(8.7) xJ) = E5(0)reensop q x™) (3=1,...,m-1).

We now consider the yr and ;r to be implicitly

defined as functions of x* and §1, respectively, by the

equations
1 1 1
(8.8) zk(x ,...,xm) = gk(x ,...,xm,y ,...,yn)
- -1 - -1 -m -1 -
(8.9) zk(x ,...,xm) = gk(x ,...,xm,y ,...,yn).

Morgan has shown that a necessary and sufficient condition
for the yr implicitly defined as functions of xl,...,xm
by the relations (8.8), to be exactly the same functions

of xl,...,xm as the §r, implicitly defined as functions

of §l,...,§m by the relations (8.9), are of the §1,...,§m
is that
(8.10) zk(xl,...,xm) = Ek(§1,...,§m) = zk(il,...,Qm).

The condition (8.10) can be replaced by

1
zk(x ,-..,Xm) = Fk(Ol,...,Om_l)



88

where Gpreees0 _, are absolute invariants of the group
(8.3). Thus, when yl,...,yn are considered as invariant
solutions of partial differential equations, we have the

relations of the form
(8.11) F, (0y,...,0 ) = gk(xl,...,xm,yl,...,yn)
(k=l,ooo,n) .

Note that the condition (8.5) enables us to express the
y's in terms of the x's and the F's defined in (8.11),

i.e., we have

r m
Y = Hr(clro--lom_lr X, Fl""'Fn)

(r=1,...,n).

When xl,...,xm 1 are substituted from (8.7), we obtain the

relations of the form

r m
y = Hr(cl,...,om_l, X, Fl"”'Fn)

(r=1,...,n).

Morgan's theorem ([3]): If each differential

form @5 in (8.1) is conformally invariant under the kth

th

enlargements (the k extended group) of the group (8.3),

then the invariant solutions of (8.2) can be expressed in
terms of the solutions of a system of the form

skpl Kph

(8.12) Aﬁ(ol"..'Om—l'Fl"..'Fn"..'SG_lE 'oo.’TE) = O'
m-1
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h order partial differential equations

a system of the kt
containing one-less independent variable than that in
(8.2). In the above, 0,,...,0 _, are those defined by
(8.6), and Fl""'Fn are defined by the relations (8.1l1).

Definition 8.3: We shall call the system (8.12)

the reduced system of the system (8.1).

Remarks: (1) In practical problems of reduction
of independent variables by Morgan's method, the solutions
of the system of differential equations in question are
unknown. So, the existence of invariant solutions of the
system is also unknown. If the invariant solutions of
the system (8.1) with respect to the group (8.3) exist,
then the reduced system (8.12) is derivable.

(2) We can make a generalization by replacing the
set SD in the Morgan theorem by a new set of the form SD:
75 = o5 xt, .o,y . ,¥"; t); that is, the y¥ in the
new set are functions involving the independent variables.
Every step of the proof of Morgan for his theorem is still
valid for this generalization.

We now can restate the Morgan theorem as follows:

Morgan's theorem (modified): 1If each differential form

QG in (8.1) is conformally invariant under the group

ol (xt, ..., 5™ ¢ (i=1,...,m)

n
]

(8.13) G:
1l m 1 n ..
'QOQ'X ’y 'QOO'Y; t)

vF(x

1

(3j=1,...,n)
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and if the invariant solutions of (8.l1l) with respect to the
group (8.13) exist, then these invariant solutions can be
expressed in terms of the solutions of a system of the
form (8.12).

Example: We have found in the example 6.3 that

the Laplace equation

u + u = 0

(8.14) ¢
XX Yy

is invariant under the group

(8.15) X = (mx + ky + a)ax + (my kx + b)ay
)
+ (2mu + g(x,y) )3y

where m, k, a, b are arbitrary constants, and g(x, y)
satisfied the relations Iex + gyy = 0. The equation (8.14)
and the group (8.15) are such that

(8.16) x(z)tb = 0 = 0-9.

We see that the equation (8.14) and the group (8.15) satisfy
the conformally invariant condition of Morgan's theorem.

We set m=0,k =1, a=0, b=20, g(x, vy) =1 -y; to get

a group
I B - )
(8-17) Xl = ya—x‘ XW + (1 Y) a

Note that Xl still has the property that



(8.18) ¢ = 0 = 0-9.

X1 (2)

We observe that the finite equations of the group (8.17)

are
~
X = x cost + y sint
SI: -
(3.17) . ) y = y cost - x sint
L-SD: U=u+x+t-x cost -y sint

(t = 0 yields the identity transformation),
that is, it is the group of the form (8.13) in the modified
Morgan theorem. We now assume that the invariant solu-
tions of (8.14) with respect to the group (8.17) exist,
and we shall find the corresponding reduced equation.

The complete set of absolute invariants of the

group (8.17) is found from

(8.19) dx dy du
-X

ax _ ay
(8.20) v °x *

to be x2 + y2. We find that u + x - tan-l(g-) =const. is a

1

solution of (8.19), that is, u + x - tan (%) is an abso-

lute invariant of G. Now, we have

2

x° + yz, u+ x - tan—l(

X
;)

as independent absolute invariants of the group G. We set
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(8.21) o= x% + y2, F(O) = u+ x - tan-l(g).
Then
~
u =F(o) - x + tan-l(§)
u, = 2xF'(0) - 1+ ‘ET)L'TZ
x“ +y
2 _2X
(8.22) u._ = 4x°F" (o) + 2F' (o) --————J%r—-
{ Uxx R
u. = 2yF'(0) - ——ar
3% x2 + Y2
2 2Xy
u = 4y“F" (o) + 2F'(0) + .
LYY (xz ; y2)2

Substituting the values from (8.22) into (8.14) and

simplifying, we obtain

4(x% + y?)F"(0) + 4F' (0) = 0
or,
(8.23) oF"(og) + F'(c) =0

which is the reduced equation of (8.14).

The equation (8.23) gives
(8.24) F(o) = clno + k,

c, k are arbitrary constants. Substituting from (8.21)

into (8.24), we get

(8.25) u = cln(x? + y?) + tan—l(g -x+k
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as invariant solution of (8.14) with respect to the group
(8.17). We now substitute u, x, y in (8.25) in terms of

ﬁ, §, § and t from (8.17'), to get after rearranging:

l,x -
=) - + k.
(Y) X

3 = cln(x? + §2) + tan

This shows the invariant property of the solution (8.25)

under the group (8.17').



9. SOME SOLUTIONS OF THE SYSTEM OF
DIFFERENTIAL EQUATIONS OF NONSTEADY
ROTATIONAL FLOW OF INCOMPRESSIBLE

FLUID

Nonsteady rotational flow of incompressible fluid

is governed by

Fl % ¥ ¥ lj)yy tw=20

(9.1)

)
mn

2 Wy + wywx - wxwy =0

where Yy is the stream function, w is the vorticity. We
have found in the example 6.4 that the system (9.1) is

invariant under the group

(9.2) X = (& = at)g% + {%(b-a)x + (%t + )y + q(t)}gi

9

+ {-21-(b-a)y - O o+ x4+ r(e)} 5o

2
+ oy + Bx? 4+ y?) - rro)x + ' ()y

kN 3

+ s(t)}aw + (aw - m)53

where a, b, k, 2, m are arbitrary constants; gq(t), r(t),
s(t) are arbitrary functions. The system (9.1) and the

group (9.2) are such that

94
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(9.3) X(Z)Fl aFl, X(l)F2 2aF2.

We also have shown in the example 6.4 that the group X

can be decomposed into the following eight smaller groups

under which the system (9.1) is invariant

3 X oy
%
X4 = 3¢
g ol _ 1.3  x2+y® a3
5 = 2-¥3x 253 ) 30 dw

- d . )
X, = r(0)E - rioxy
_ 3
X8 = S(t)a—w' .

We shall use these groups together with Morgan's theorem
(cf. Section 8) to find exact solutions of the system

(9.1).

1l.° Consider the group

This group can be obtained from X by setting a = 0, b = 0,

c=1, k=0, g(t) =0, r(t) = 0. Thus, we obtain from

(9.3) that
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0, 0.

Xg9(2)F1 X9(1)F2

We shall find invariant solutions of (9.1) with respect

to X9. Since

0 ) 9 0 9
9 Ort'i'yE- x§§-+ S(t)-a—w‘l' 0%’,

el
!

the absolute invariants of X9 can be found from

We find that

e, ¥y’ v+ s@tant (D), o

is a complete set of absolute invariants of X This

9.
suggests that the invariant solutions are in the form

( -1
Yy = s(t)tan (ﬁ) + ¥Y(t, o)
(9.4) { w = W(t, o)
o = x2 + y2
\—

To find ¥(t, o) and W(t, o), we substitute from (9.4)

into (9.1) to obtain

(9.1), <

gy
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The last equation of (9.1)1 yields
2
W = Q(o° + 25(t))

where Q is arbitrary function, S(t) = fs(t)dt. Now, at

o] + 0, the first equation of (9.1)l can be written as
owoo + Wo + o = 0,
which can be reduced to

oY + JoQ(0? + 25(t))do = al(t)

where a(t) is an arbitrary function. Integrating again,

we have
y = -fg-(fosz(o2 + 25(t))do)do + o(t)lno + B(t)

where B(t) is also an arbitrary function. Thus, we have
solution of (9.1) defined for o # 0.

- )
¥ = -s(t)tan l(%) - S£(Joa(o? + 25(t))do)do

(9.4), < +a(t)in(x® + y2) + B(t)

w = Q(c% + 25(t))
.

where o = x2 + y" ; S(t) = Sfs(t)dt; a, B, 2, s are abri-

trary functions. Note that the solution (9.4)1 is an

invariant solution with respect to x8.
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2°, Let us pay attention to the group X6:
X =q(t)i- + q'(t)yi
6 oX oy
which has the properties

0,

X6 (2)F1 X6(1)F2

A complete set of absolute invariants of X_ is

t
t, vy, ¥ - q(ét)xy: w7y

which suggests that the invariant solution of (9.1) with

respect to the group X6 has the form

-
]

Ly + ¥(t, v)

(9.5)

€
1]

W(t, y).

Substituting (9.5) into (9.1), we get after simplifying:

f‘
+ W = 0
(9.1) < yy
*er2
_ q'(t) -
Wt q(t) wy 0
-

or,

a'(t),
9.1 Y - Y = 0
( )3 tyy q(t YYY

The equation (9.1)3 can be reduced to
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_g'(t) "(t)y
(9.1), ¥, gETETyWy + zﬂaTETw = a(t)y + b(t)

where a(t), b(t) are arbitrary functions. The equation

(9.1)4 suggests that the solution of (9.1)3 is in the form

y = A o Biyr o+ c(r)

q (t)

where A = g(t)y; A, B, C are arbitrary functions. From

the first equation of (9.1)2 we find

W o= =¥ = -A"(A).
vy ()

Finally, we get the solution of (9.1):

'(t) A())
v = 9———Txy + + B(t)A + C(t)
q(t a?(t)

(9.5),
-A" (A)

€
1

where A = gq(t)y; A, B, C, g are arbitrary functions.

3°. We now take the group

= 2 () x>
X, = r(t)ay r (t)xaw
which has the properties
X701 0 X31F2 0.

We find that the functions
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r'(t)

t, x, ¥ + STy @

form a complete set of absolute invariants of X7. Thus,
the invariant solutions of (9.1l) with respect to X7 will

be in the form

_r'(v)
Vo= T (%)

xy + VY(t, x)
(9.6)

W(t, x).

€
n

Substituting these in (9.1), we get

~
‘yxx + W = 0
05 ]
_ r'(t) -
Wt wax = 0.
-

By the same procedure as the case 2°, we find a set of

general solutions of (9.1) to be

- - r'() A* (A*)
Y = r(t)xy + —;5?;; + B*(t)A* + C*(t)
(9.6)1
w = —A*"(A*)

where A*, B*, C*, r are arbitrary functions, and A* = r(t)x.

4°, Let us take the group
X = X_ + X, = q(t) ) + r(t)jL + (q'(t)y - r'(t)x)jL
10 6 7 x Y oy

which has the properties
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OI ol

X10(2)F1 X101 F2

from (9.3) when a = 0. 1In the case where g(t) # r(t),
g(t) # 0, r(t) # 0, g(t) and r(t) are not constants

simultaneously, we find that

2
) o gt (t)y - r'(£)x)
t, alt)y - r(t)x, ¥ 2(q (Br(t) - r' (g * °

is a complete set of absolute invariants of Xlo. This set

of absolute invariants suggests invariant solutions of

the form
4 2
- (gq'y - r'x)
v SeE = v Y o)
0 = qYy - rx .
-

Substituting from (9.7) into (9.1), we get

—
2 2

31#? + (qz +]:'2)‘1’o'(_J + W = 0

qgr-rgqg
(9.1) W
6

C

This yields

i
e}
Q

1))

l2 + rlz

1l
Yy = - S[Q(0)dodo - o]
@ + 12 2 (q%+r?) (q'r-r'q)

2

+ G(t)o + H(t)
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where Q(o0), G(t), H(t) are arbitrary functions.

Finally, we obtain the following solutions of (9.1):

/
w = 2(g)
Yy = 9y - r'x)2 - 1 S/Q(0)dodo
2(g'r - r'q) qi + ri
(9.7) ) 2 2
1 - q + r (qy - rx)2

- -

2(q% + r2)(g'r - r'q)

+ G(t) (gy = rx) + H(t)

= q(t)y - r(t)
\? q y r X

where g = gq(t), r = r(t), Q(o), G(t), H(t) are arbitrary
functions; q(t) F r(t); q(t) # 0; r(t) # 0; g(t) and r(t)

are not constants simultaneously.

5°, Consider the groups Xl, X2:

X) = ~t3g - ¥5x T Wiy T e

1.9 1 3 3
Y27 Pt oyt Vay

Both are groups of similarity transformations. To get a

more general group of similarity transformations, we form

a new group

— 3 l
xll = axl + sz = atat

]
+aw'a_u;'

1 ) 1 9 d
E(a b)xﬁ- -2-(a b)y-a? + wa
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Note that X;; can be obtained from the group (9.2) by
setting k = 0, g(t) = 0, ¢ =0, r(t) = 0 and s(t) = 0.

Thus, by (9.3) we have

Xll(Z)Fl aFl, X11(1)F2 Zan.

The system of differential equations determining absolute

invariants of X11 is

at | __dx _ __dy  _dy _dw
or,

at _ __ax 4y _dy _du

-t cy

51 - o)x  -2(1 - o)y

where ¢ = b/a, a # 0. We find that

~3(1-c) +(1-c)
(9.8) xt ' vyt , £V, tw

form a complete set of absolute invariants of X This

11°
suggests that the invariant solutions of (9.1) with respect

to Xll are in the form

-

V=t %0, 0y, w=ttWlog, o)

(9.9)
s —%(l-c) -%(l-c)
Lo'l = xt ’ 0’2 Yt .
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Substituting from (9.9) into (9.1), we find

(9.1)7

This is a reduced form of (9.1]). We see that it is still
difficult to solve the system (9.1)7.

Let us return to the group Xl

) 1 9 1 )

X7 "% T %% T ey T Y.
ooy 1.9 18 .08 . 03
=t T ¥k T 23y t 059 t vsg -

One can check that
2
(x +y)°/t, v, tw

are absolute invariants of Xl' This set suggests invariant

solutions of (9.1) with respect to Xl of the form*

t 1w (o)

v = ¥(o) , w

(9.10)
g = (X+y)2/t .

*The motivation of idea of reducing two or more in-
dependent variables at a time is due to the discussion of
W. F. Ames about extending Morgan's method of reduction of
independent variables ([10], pp. 141-144).
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Substituting (9.10) into (9.1), we find

Bo¥" + 4Y' + W = 0
(9.1)8
W + oW' = 0

where the prime means differentiation with respect to 0.

The last equation of (9.1)8 gives
(9.11) W = A/c

where A is a constant. Substituting (9.1l1l) into the

first equation of (9.1)8, we have

This differential equation yields

(9.12) y = %mo + B/G + C

where B, C are constants of integration. From (9.10),

(9.11) and (9.12) we get solutions of (9.1)

w = A/(x + y)2
(9.10)
1 2
v = Aqn (iﬁ_i_XL_ + BE_i_X.+ C
4 t JE ’

which are invariant solutions with respect to Xl.



10. REDUCTION OF INDEPENDENT VARIABLES
OF THE EQUATIONS OF STEADY PLANE

FLOW OF POLYTROPIC GAS

Let us consider compressible fluid having an

equation of state of the form:

(10.1), p = f£(p)-g(s)

where p, p and s denote, respectively, the density, the
pressure, and the entropy of the fluid, £ and g are
given functions. The other equations governing the flow

of compressible fluid are

(10.1)2 pveVv = =Vp (equation of motion)
(10.1) 4 Vepv = 0 (continuity equation)
(lO.l)4 veUs = 0 (entropy is constant along
streamline)
- 1 2 3 .
where v = (v, v°, v') denote the velocity vector of the

flow. We shall now change the system (10.l1) into a

canonical form. Let P = f£(p) and S = g(s) so that

p = £1(P) and s = g_l(s). Then we let W = v/s. Define

(10.2) Fp) = L 4f ()

106
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so that F is a known function of P.
Theorem: The variables W, P and S as functions

of x, y, z satisfy the equations

(10.3), W.VW = <=F(P)VP
(10.3), V'PW = 0
(10.3) WeVS = 0

if and only if v, p, s and p defined by

1

(10.4) v =W/s ,p=£1(®) ,s =g (s) andp= £(p)-g(s)

satisfy the system of equations (10.1).

Proof: First, assume that W, P, s satisfy (10.3)

and we shall show that v, p, s, p satisfy (10.1).

(i) Vevs = ;% c 4 ys = 55 4 _d.vs = 0,
so (10.1)4 is satisfied.
(ii) From (10.2)l we have
-1
(/5 v (3/E = -5 v,
or,
(3/5)/5+V% + (VE)V-WE = =- Z=Vp .

The term (v/S)v:V/s can be put in the form EEW-VS which

vanishes by (10.2)3. Thus
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- o= 1
Sv.Vv = - pr '

or,

oveVV
which is (10.1)2.

(iii) From (10.2)2 we have

VeP/SV = 0,
or,
V-i;, = 0
/s
or,
Lv.ov + pvevi = 0.
Vs /s
= 1 1 1 - l1 1 - .
The term pveV— = - = veVs = - W.Vs vanishes
/s 2 g372 232
by (10.2)3. Thus,
iv-p\_] = 0'
Vs
or,
Vepv = 0

which is (10.1)3. The proof of the first part is com-
pleted. By the same procedure, we can prove the converse

of the theorem.
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As long as the equation of state has the form
(10.1)l which includes many important cases, we can reduce
the usual system (10.1l) of 6 equations to the system
(10.3) of 5 equations. The advantage of the system
(10.3) is that we can solve for W and P from (10.3), and
(10.3),, then using the known value of W in (10.3) , we
obtain a linear differential equation for determining S.
Once ﬁ, P and S are found, we find ;, p, s and p from the
relations (10.4) to get the required flow.

Let us restrict ourselves to the case of plane
flow of polytropic gas which is characterized by the

equation of state
(10.5) 0 = pl/Ye(so - s)/cp

where y = cp/cv is the ratio of specific heats, cp is the
specific heat at constant pressure, Cy is the specific
heat at constant volume, So is some constant value of
entropy. Note that (10.5) is in the form (10.1)1. There

corresponds a function F defined in (10.2) for (10.5)

Y -
F(P) = % %ﬁr = yp¥Y"2

Then, from (10.3), we have a canonical form of equations
defining polytropic gas flow

- - -
v = -yp " %yp
(10.6) ! VB = o0

W.VS = 0
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where W = (Wl, wz) for plane flow.

The system of equations of plane flow of polytro-
pic gas has been dealt with before by P. Kucharczyk [16],
who uses Lie derivatives to reduce this system to the
system of ordinary differential equations. It is our
purpose here to get a more simple form of the r?duced
system than that obtained by Kucharczyk. For this purpose,
we shall make a reduction of independent variablesof
canonical equations of plane flow of polytropic gas
(10.6). By the reason mentioned previously, we shall

only pay attention to the first three equations of (10.6)

and write them in the form:

K
_ 1.1 2.1 y=2 _
Fy _wwx+wwy+yp P, 0
(10.7) S F, = wiw? + wlwl 4+ YPY-ZP = 0
2 X Y Y
F. = 1>(w1 + w2) +wle +wlp = 0.
9 3 X Yy X )4

To satisfy Morgan's theorem of reduction of inde-
pendent variables (sect. 8), we shall utilize our method

to find group X such that

(10.8) X = El(x,y)-é'a; + Ez(er)%,' + nl(XIYlerwzlP)a_aT
W

1

+ nz(xIYIw rwzlp);a'z‘ + n3(prleaW2.P)'5%
W

and
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_ 1 .2
(10.9) X,..F. = h.(x, y, W5, W2, P)F
. (l) 2 2 ’ ’ ’ ’ 2

_ 1 .2
X()F3 = hy(x, v, W, W5, P)F,

where X(l) is the first extended group of the group X.
Note that §1,§2 are functions of only the independent
variables and equation (10.9) is less general than

equation (5.7). From (10.8) we find, with the help of

(2.18), the extended group X(l) :

1,19 1,2 9 2,1 3 2,2 3

X(l) =X+ n —T+ n —T+ n —2+ n —3

an awy an aWy

3,2 9

3,13 + noriS

+ ' T P

BPX Yy

where
1,1 1 1.1 1 1 1.1 1.2
n = Mk T nwlwx * “sz * MpPy = WyBx - wygx
1,2 1 1. 1 1.2 1 1.1 1.2
= - W - W
n Ty * Aty Yyt Py T Wy T Wy
2,1 _ 2 2.1 . 2.2 2 _ 2.1 _ 2.2
i = Mg ot Wy t nwzwx * ompPy - WSk~ Wyl
2,2 2 2 1 2 .2 2 2.1 2.2
= + n° W + nP. - W -W

i Tyt ey T My YRy T WSy T Wy
3,1 _ 3 3 3.2 3 1 2
n 'ﬂ&+%ﬂx+%ﬂx+%%_Péx %%
3,2_ 3. 3.1 , 3.2, 3, _p gl _p g2
" Tt MYy T 2y YRRy T By T By

The left hand members of (10.9) can be written as
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g 1 .2
X(l)Fl hl(x, Y, W, W7, P)Fl
(10.9) < X,..F h. (x wh, w2, P)F
. (1)° 2 2 r Yy ' ' 2
)
L_x(l)F3 hy(x, y, W', W, P)F,

where X is the first extended group of the group X.

(1)
From (10.8) we find, with the help of (2.18), the extended

group X(l):

1,1 o 1,2 3 2,1 9 2,2 9
X =X+ n’ + n’ + n“’ + N —
(1) -l - 2W2 IW>
X Y X Y

where
ntrl = L4 ngIWe 4 nioWa + ngR, - WoEl - WoE)
nle? - n; + ”;IW; + ”%2W§ * ”;Py B wiE; B W;E§
n?rt = ni + ﬂ%lwi + nézwi * npPy - wigi B W;Ei
n2r2 - n; + n£1W; + n%zws + nlz,Py - WiE; - Wiﬁs
ndrl - ni + “élwi + “52wi * ”gpx B ngi B Pygi
n3r2 - nj + “£1W; + nazwi + ngPy - Px€; - Pyii-

The left hand members of (10.9) can be written as



x(l)Fl =

= 1.2 12,1 2.2 2.2,2
X(l)F2 n wx + Wn +n Wy + Wn

3

+ Y(Y-Z)PY-3n Py + YPY.2n3'2

= 3.1 2 1,1 2,2
x(l)F3 n (Wx+Wy)+P(n +n )

+ anx + Wln3’l + n2Py + W2n3’2 .

We now can equate the coefficients of

1, wi, oo ,Py in (10.9). From the first equation of

(10.9) we have:

(10.10) (coeff. of 1): wrnl + w2nl + ypY72,3 = o
x y X
1, 1..11 _ .11 _ 2.1
(10.11) (coeff. of Wx). nT + W nwl 1) gx W gy
Yy-2_3 _ 1
+ YP nwl = hlw
(10.12) (coeff. of Wi): n? - wre? + wonl. - w?g? = h w?
Y x wl y 1
(10.13) (coeff. of W2): winl, + vpY 213 =0
b4 2 2
W W
(10.14) (coeff. of wi): winl. = o
W



(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)
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(coeff. of P ): v (y=2)pY "33
- yp¥"%g
(coeff. of Py): Wzn; - YPY-ZE

From the second equation of (10.9), we have

1.2 .2 2

+

1
X

2
X

11 Y
W nP + YP
= Y=2

hlyP
= 0.

Y-2_3 _

coeff. of 1): W + W + yP
( ) Ny ny Y ny
(coeff. of W): W¥n2, = 0
X w1
(coeff. of Wl): wznzl + yPY-2n31 =0
y W W
(coeff. of Wz): nl + wln2 - ngl - WZE
X w2 X
(coeff. of Wz): nz - wlgz + Wzn2 - WZE
Y X w2
y=-2_3
+ yP n = h,W
W2 2
. 12 _ Y-2,.1 _
(coeff. of Px). 1) np YP gy 0

2 2

(coeff. of Py): 1) np + y(y-Z)PY_3n3 + yPY-zn

-2’22 = n

2

The third equation of (10.9) gives

(coeff. of 1): P(ni + n;) + W

1

3 2
ﬂx + Whn

3
Y

0

yPY-z .

0

3
P
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(10.25) (coeff. of Wi): n3 + pnl. - pel + wind. = n.p
x 1 X 1= by
W W
(10.26) (coeff. of Wi): =-P£2 + Pn2, + w2n3, = 0
y X w1 Wl
(10.27) (coeff. of W2): bpnt., - pet + wind, =0
b4 2 y 2
W W
(10.28) (coeff. of W2): n° + pn22 - pe? + w3 = nop
y W y W2 3

(10.29) (coeff. of P ): pn; +nt o wind - wlel - y2el

X P X Y
= hu!
(10.30) (coeff. of P ): Pn + n? + won3 - wzg; - whg?
= how? .

From (10.14) we get n', = 0. Then (10.13) gives
W
n32 = 0. From the fact that nl is not a function of Wz,
W

and 52 is a function of x, y only; the equation (10.16)

ng = 0 and gi = 0. Similarly, the equations (10.18),
(10.19) and (10.22) give nzl =0, ”31 =0, ng = 0 and
W W

El = 0. Observe that the equations (10.26) and (10.27)

b4
are now satisfied. Since nl and n3 are not functions of
§

wz, the equation (10.10) implies nl = 0. From the fact

Y
that n2 and n3 are not functions of Wl, the equation

implies

(10.17) implies ni = 0. Eliminating ni, n§ from (10.10),

(10.17) and (10.24), we get
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Y-2 Y-2
1 Y 3 2 P 3
W = —|n + w- - 1——7— n = 0
W X we | ¥
which implies that ni = n; = 0, since n3 is not a function

of W' and W’. Then (10.10) gives nl = 0, and (10.17)

gives nz =0
y [ ]
We now have that

(10.31) £* = etx), £2 = £2(y), ot = ntwh,

2
n2 =n (Wz), n3 = n3(P).

Divide (10.28) by P and (10.29) by W' and substract the

results, we get

3
n__ .3 2 _n__ g2 -
(10.32) (TT nP) + nw2 T Ey + £7 = 0.

Similarly, we get from (10.25) and (10.30):

3 2
- (- 3 n__- 1l - g2 1_
(10.33) (P T]P) + w1- nwl Ey + E;x = 0.

The equations (10.31), (10.32) and (10.33) imply

1 2 1 1

(10.34) &g = alx + bl' £ = azy + b2’ n- = le ’

where as bl' ay, bz, kl, kz and k3 are oonstants. The

equations (10.25) and (10.28) (or, (10.29) and (10.30))

imply
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(10.35) h, =k, +k, -—a, =k, +k, - a
which gives

(10.36) k, -

Eliminating gi and hy in (10.11) and (10.15),

and using the values from (10.34), we find

Yy - 1
1 3

Similarly, from (10.21) and (10.23) we have

= Yy -1
k) 7 X3-
Thus,
- =Yy -1, _y =1
k) =k 7 X3 X
where we set k3 = k., Then from (10.36) we have
a, = a, = a, say.
From (10.35) we get
h3—L2—k de.

From (10.20) (or (10.21), or (10.23)) we find

From (10.11) (or (10.12), or (10.15)) we find
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hl '= (y - 1)k - a.

We now have the required group

+ l_%_lkwl__r

= ) )
(10.37) X = (ax + b1)§§ + (ay + b -

3
23y

-1, .2 3 9
+12—-kwaw—2+kpvrp

with the properties:

X(l)Fl = ((y - )k - a)F1
y + 1. _
X)Fa (=% - a)F;.

The differential equations determining absolute invariants

of the group (10.37) are

ax _ dy _  awt _ aw’ _ar
= = — = =428
ax + bl ay + b2 (y - 1)kwl/2 (y - 1)kw?/2 kP

or, in case a $ 0

(10.38) dx _ _day _awt _aw® _ap
x + ¢ y +c, me' mw2 nP

where c, = bl/a, c, = bz/a, m= (y - 1)k/(2a), n = k/a. A
set of independent functions satisfying system (10.38), and

so a set of independent absolute invariants of X, is
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y + ¢, wl w2 P
x+c, ' m '’ m '’ n °
1 (x + cl) (x + cl) (x + cl)

(10.39)

Thus the invariant solutions of (10.7) with respect to

X are in the form

~
Wl = (x + cl)mwl(o) ’ W2 = (x + cl)mmz(o)
(10.40) <
n y + )
P = (X+C1) m(o) , o =;—w-
_ 1

To obtain the differential equations determining wl(d),

wz(o) and w(o); we substitute from (10.40) into (10.7):

~
1l
11 Yy-1 _ 1 _ 2 dw” _ y=2dm _

mw w + ymw (cw w )75?' Yom 3o 0

(10.41) 3 muwlw? - (owt - wz)éﬁi + ypY2dm _

: m do Y do
1 2

1 dw dw 1l 2.dm _
(o mer 0Tt Tge T (v - wigg =

where m = (Y - 1)k/(2a), n = k/a. This is a reduced form

of the system (10.7). We now set
(10.42) o = 7'71

Then (10.41) can be written as
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2
12 2. dw Y ae _
(10.43) < mw w (0w WG *y—Ta -
(m + n)wle —cegﬁi + edwz - 1 (owl - wZ)QQ =0
L do do y - 1 do )
which is simpler than (10.41). For the consistency of
(10.43), we must have
owl - wz 0 Y9
Yy - 1
1 2 Y
det 0 ow w Y - 1 $ o0,
owl - wz
ofs) -0 va—
or,
(10.44) cwl 4 0 and (owl - w52 % y(1L + 0%)e .

From the relations (10.4), (10.40) and the first condi-

tion of (10.44), we have

y+c2

+

ﬁ4<w

x + cC
1

This tells us that the direction of the flow is not along

the ray through (-cl, -c Thus, any set of solutions

2).
of (10.43) gives a flow which is not a flow from a source or

a sink located at (-cl, -cz).
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MORGAN'S DEFINITION OF CONFORMAL INVARIANCE

Morgan's definition of conformal invariance of a
function ¢ with respect to a group G seems to lack &
precision because of his failure to describe the function ‘
H. Actually, the basis of the problem is the failure to
describe precisely the classes of functions & and groups
G for which the definition is made. For functions § L.
which never vanish, no new concept is described - for

every such ¢ and for all G's we have the defined prop-

_ 3 (%, Fe...)
d(X,¥Vseee)

are interested in making the definition only for functions

erty. We can take H(X,Y,s.., t) . Thus we

$ which vanish on some set in their domain and which are
defined in a neighborhood, N, of that set. Then, there

exists a function H(x,¥,..., t) such that

B(XyVsoeee) = H(X,Vseeeaot) *3(X,¥0e0s)
X,Ys+.-€EN ; |t| < e
does impose a meaningful condition on & and G . Further,
it is implicit in this definition that the x,y-domain of

G 1is contained in the domain of &, otherwise the defini-

tion would not make sense.
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For x,Y, ... such that &(x,y,...) # O conti-
nuity and differentiability properties of H are
determined by those of & and G, but when
$(x,¥,...) = O no such properties are imposed on
H(X,¥V, «c¢e)

A restricted (stronger) form of this condition is
used in this work (1) as an hypothesis in Morgan's
theorem for reducing the number of independent variables
in partial differential equations, and (2) in our method
for finding groups. The assumption that H has contin-
uous first derivatives in all its arguments will suffice
for the corresponding function h in (8.2°) to be contin-
uous which, in turn, suffices to satisfy our requirements
for (1) and (2) above.

Clearly, it is possible that imposing conditions
on H Dbeyond those in the definition could restrict the
class of functions ¢ and/or groups G which satisfy the

definition.
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