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S. D. CHATTERJI ABSTRACT

The main purpose of the thesis is to consider

conditional expectations of r.v.'s which take values in

a Banach space and to study the limit properties of

certain sequences of such r.v.'s. These sequences are

called martingale sequences, following the terminology

of Doob. We first of all demonstrate that every Bochner-

integrable r.v. has a conditional expectation relative to

any Borel-field and establish some of the basic prOp-

erties of conditional expectations. Then we go on to

study the convergence in the mean and convergence almost-

everywhere of martingale sequences. This we have done by

studying operators on certain generalized Lebesgue-

spaces, discussed in our Chapter 11. We have established

the generalizations of most of the theorems of the

classical theory of martingales and have shown by a

counter-example in Chapter IV that some restrictions on

the Banach space in which the r.v.'s take value, are

necessary. In the last chapter, we have considered

some applications of our theory.
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Introduction

The notion of a measurable function defined on an

arbitrary measurable space and taking values in another

measurable space is a fairly well-known one in modern math-

ematics. When the range space of the functions happens to

have a topology also, various special concepts of measur-

ability become important. Much research has been carried

out, for instance, in the case when the functions take

values in a linear topological space or more restrictedly

in a Banach or a Hilbert space. A considerable body of

the research is devoted to extending suitably the ordinary

theory of Lebesgue integrals for real-valued functions.

For functions taking values in a Banach space, there exist

at least three different important concepts of measurability

and integrability. This sort of extension of the theory of

real-valued functions has been carried out in recent years

in the study of random variables (r.v.) which after all

are measurable functions on a finite measure space. Frechet

(18)* considered r.v.'s taking values in a metric space and

introduced notions of mean and variance for such r.v.'s.

Does (19) considered r.v.'s taking values in topological

 

' Numbers in brackets refer to the bibliography at

the end.
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spaces with uniform structure and proved various generaliza-

tions of the classical strong law of large numbers. Many

other studies have been made with r.v.'s taking values in

locally compact topological groups. But it seems that one

can generalize the classical results of probability theory

most satisfactorily only when the range space is at least

a linear topological space for then much of the usual

integration theory remains valid. In this direction,

pioneering work was done by Mourier (10) who considered

the range space to be a Banach space and not only proved

some strong laws but also studies characteristic functionals

of r.v.'s taking values in Banach spaces. Since then quite

a few papers have been published concerning general strong

laws of Banach-valued r.v.'s, e.g. Beck & Schwartz (1}),

Beck (20).’ However, to the best of the author's knowledge,

no more than one attempt has been made to define an extension

of a basic concept of probability theory, namely, the con-

cept of conditional eXpectation of a r.v. taking values

in a Banach space. Beck & Schwartz (13) do define a

notion of conditional expectation that we have used here,

but they did not make any attempt to prove its existence.

Dubins (21) defined a conditional expectation of a more

general nature than ours but the difficulty with his defini-

tion is that it does not yield an exact analogue of the

standard theory. There is a basic difficulty in the process

of defining conditional expectations for r.v.'s taking values



in spaces like Banach spaces. That difficulty is the non—

existence of a general Radon-Nikodym theorem for set func-

tions taking values in non-compact spaces. The definition

that we have used circumvents this by considering Bochner-

integrals, for which although a general Radon-Nikodym type

theorem is not valid, much can be done owing to the simple

structure of integrable functions.

Our main purpose here is to study this particular

notion of conditional expectations for Banach-valued r.v.'s

and then use this definition for considering generalizations

of martingale theory for Banach-valued r.v.'s. One of the

most important considerations in the study of martingale

theory of scalar-valued r.v.'s is that of convergence of

the martingales. We have studied this for the case of

Banach-valued martingales specially from the point of view

of treating conditional expectations as Operators on suit-

able Banach spaces. For instance, our mean convergence

theorems in Chapter 111 are reminiscent of the work of

Lorch (22) concerning monotone sequences of projections

on a reflexive Banach epace. Our results on the mean con-

vergence of martingales, specially, have been obtained by

simple linear space methods which are different from Doob's

(1) approach. For proving almost-everywhere convergence

we have used a generalization of a theorem of Banach and

thus shown how many of the properties of martingales are

simply the properties of a type of sequence of operators



on a Banach space.

In Chapter 1 we define our conditional expectation

and prove its existence and general properties.

In Chapter 11 we prove for future work weak compact-

ness prOperties of certain Lebesgue type Banach spaces,

some of which at least (e.g. Th. 2.3.1 and Th. 2.4.2) are

not to be found in current literature.

In Chapter 111 we consider the mean convergence of

Banach-valued martingales. We prove the most general mean

convergence theorem here under the assumption that the Banach

space is reflexive. As shown by a counter-example in Chapter

lV, it is clear that some such restriction on the Banach

space is necessary.

In Chapter IV we consider the almost everywhere con-

vergence of Banach-valued martingales. We prove three

different types of theorems, some using a theorem of Banach,

one using Doob's idea of optional stopping and one using

results from standard martingale theory.

In Chapter V we consider two different applications

of the theory, one to the study of the strong law of large

numbers for Banach-valued independent identically distribut-

ed r.v.'s and the second to the study of derivatives of

Banach-valued measures with respect to nets.

An attempt has been made to construct as far as was

possible, a theory based only on linear methods. It is

hOped that in the future more powerful linear space methods
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will make the phenomenon of convergence of martingales

of Banach-valued r.v.'s quite transparent to our com-

prehension.



Notation, some definitions and known theorems

Let Q be an abstract set of elements or points w .

Sub-sets of Q will be denoted by upper case Latin letters

like A, B, F etc. Given two subsets A and B we shall

mean by

A c; B : A contained in B

B CA : B contained in A

A U B : union of A and B

A n B = intersection of A and B

A0 = the complement of A

A - B = A A BC

AAB : (A-B)U(B-A)

95 : the empty set

If ACE and BC, A then we shall write A = B . The

symbol "5" shall denote the relationship of an element

belonging to a class. We shall occasionally use the symbqls

'"3" and "a" as short-hand for the phrases "such that"

and "there exist(s)" respectively.

By a fieldif sets inflwe shall mean a class of sub-

sets such that

1) é andfl are in g’

11) If A 53!" , then A0665

111) If Aie 9: , i = 1, 2, .. n where

n is a finite postive integer then

One?
1:1
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By a Borel-field of sets in n we shall mean a

class of subsets 3' of .0- such that

1) (P andfl are in 1;

11) If A 6‘3; then A069;

111) If A16 63; i = 1, 2, ...( a denumerable

sequence of sets in ‘3"— ) then Lg A1 6.3;

A "probability space" will be a triple (Q, g ,

P) where I)- is any abstract set, S; , a Borel-field

of sets in (1., and P is a non-negative function defined

on SF such that

1) P(A) 7,0 for all A69:

11) If A163 1:1, 2, then

P( L! A1) = 10%.1P(Ai)

111) 14.0.) = 1 .

By a "Banach space"xover the complex numbers (for

brevity, Banach space) we shall mean a set of elements

which is such that

1) It forms a vector space on the field of

complex numbers

11) There is a function « x|| defined on

36 , called norm such that

IVA-X“ = I‘M-"x. “any complex number

ux+yug 11 xii + n 111

“x N = 0 if and only if x = O (the



zero element of the vector space)

111) for any sequence x1, 1 = 1, 2, ...

of elements of x for which

11m -X“:O
m,n—-)oo“xm n

there exists an element xe 36 such that

lim x-x\\=O

n—?00“n

A complex-valued function x* defined on f such

that

x* (x + y) : 1* (x) + x* (Y)

x* (2.x) = ).x* (x) ’A any complex number

(1* (x)|é A. ll xll for some 'A >,O and all

x e x will be called a bounded linear functional on x .

Occasionally we shall use the notation (x, x*) for x* (x) .

With

I1X*|\ = supg |x* (X)|; llxllsl}

the set of all bounded linear functionals on I forms a

Banach space x" called the "dual" or "conjugate" off .

We shall denote by $9” the dual of 1* i.e. x4“ :

.x. *-

(se) .

«H- *

If we consider the function x (x ) on f de—

fined by

x**(x*) : x*(x) xex , x fixed.

then x** is a bounded linear functional on 1* with

u x**ll = 11x11

If all the bounded linear functionals on 35* are



of this type then we shall write % = %”

and call .36 a "reflexive" Banach space.

A sequence of elements xn e x is said to be

"weakly convergent" to x e x if

lim x*(xn) = x*(x)

n—aoo

for all x * E f.

A set of elements S C} will be said to be "weakly

compact" if for any sequence of elements xneS there is

a subsequence of elements x which converges weakly to

n.)

some element x which may or may not belong to S.

(Actually, in standard theory, this is called conditionally,

sequentially, weakly compact. But because we shall not

have occasion to use any other kind of compactness, there-

fore we prefer this briefer expression. However, the works

of Eberlein and Phillips (see Hille & Phillips (3) pp.37)

show that in many cases our definition of weak compactness

is the same as the notion of compactness under the weak

topology of I which we do not discuss here.)

The following theorem of Pettis shall be used often:

(For proof, see Dunford & Schwartz (2), pp. 68-69).

A set S in a reflexive Banach space is weakly com-

pact if and only if it is bounded i.e. { u x“: x e S}

is a bounded set on the real line.

A reflexive space is weakly complete i.e. whenever a

sequence xn of elements is such that lim x* (xn)

11-—)di
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exists for every x* 3 1* there exists an element x

such that xn's converge weakly to x .

A bounded linear operator T from a Banach

space % to a Banach space ’3 is a function on E

taking values in ’U such that

1) T(x + y) = T(X) + T(y)

11) T(’)\.x) = ’A. T(x)

111) “Txflé A.\|x|| A),o , and x635 .

We define I) T" : sup{l|Txll : || xné I}

The following is sometimes called the Banach-

Steinhaus theorem: "Let ‘GE, Qj be Banach-spaces and

{TnN} be a sequence of bounded linear operators on SE

to Qj . Then the limit

Tx : lim Tnx

n -—) oo

exists for every x E. 96 if and only if

i) the limit Tx exists for every x in a

everywhere dense sub-set of :2:

ii) sup N Tn xu<+ao for each xe x

n

When the limit Tx exists for each x e if , the

Operator T is linear and bounded and

“T “ 4 L192 \\ Tnngsuputnm + .o".
n-9ao

wt

(For proof: See (2) Dunford and Schwartz, pp. 60-61.)

- If .XKO) is a function on a probability space

(.0. , r8 , P) taking values in a Banach space x then

Xko) is said to be strongly measurable with respect to
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7811"

lim xh(u» : Xk») a.e. (everywhere except

rr—900

on a set of points of P - measure 0) where

xn(w) :-1 : 31(n) ’K (?)(0)

E

sin) e, %

12”,” 5’18 , Ein) n Egn) =95, LijE(1;1):fl

«Fa.» : 1 if £06 F for any set F

in .fl. .

:0 if (.9ch

Define Xn(w) to be integrable if .i|1a(n)ll P(E(il))

L=l

(+ co and write

an(w)dp :1 53(3)“) gin)

We say that XKB) is Bonchner-integrable if there exist

a sequence of integrable functions Xh(a» as above such

that

11111 X (00) : X(60) a.e.

n—awo n

and

m, n—§mo

Then it follows that

lim N S Xn(co)dp - 5Xm(w)dp” : 0

lim 5“ Xn(co) - Xm(w)“ dp = O .

nn2na7oo

Hence

lim X (0) dp

rr¢7q> n
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exists and this we define to be ‘5. Xce)dP, called the

Bochner-integral of X((.)) , occasionally denoted also by

us as E(X«0)) or, E(X) .

It can be shown that X10» is Bochner-integrable

if and only if

i) X(co) is "almost everywhere separable-

valued" 1.6.3 NEE ,

P(N) = 0 such that the set sci

defined by

s ={ X(o.1) : me No}

has a denumerable dense sub-set.

11) Emma)" ) = (u x<w>1| dP< me

(If (1) is satisfied then H X(w)u is

automatically a non-negative function

measurable with respect to GI; .)

For a discussion of Bochner-integrals see (3) Hille &

Phillips, pp. 71-89.

The notion of "uniform integrability" of a family of

complex-valued measurable, integrable functions Xt((d) t e T ,

on ( .{l , ’63 , P) shall be defined as follows:

For any e) O , there is a 37,0 such that

1(”xt( )"1 dP< e for all t e T
.,A

Whenever P(A) < q .

In the text a theorem, lemma or equation numbered

'u.v.w. where u.v.w. are positive integers will be the w th

one in v th section of u th chapter.



Chapter 1

Conditional expectation of Bochner-integrable random variables

§ . Let ( .O. , {B , P) be a probability Space

i.e.«Q— be an abstract set of elements so , (B ,

a Borel-field of sub-sets of £7« , called measurable sub-

sets and P(-) a countably additive, non-negative set-

function defined on (E3 and such that P(-(1') = 1 .

Let Cf: be a Banach-space. We shall denote by H x"

the norm of an element x e: :35 and by f1?* the

dual of 7“ .

A function X(w) defined on Q- and taking values

in :36 which is strongly measurable with respect to the

Borel-field ’63 will be called a GE; -valued strong

random variable or when there is no SCOpe for confusion

simply a random variable (r.v.).

Let E; be a Borel-field contained in {ES i.e.

‘3' C If?) and let X(w) be a r.v. which is Bochner-

integrable. Following Doob (1, pp. 17) we shall define

the strong conditional expectation of X0») relative to

or given (3' , in symbols E(X ‘g) as follows:

22;: 1.1.1.

E(X '31) is a x -valued Bochner-integrable

r.v. strongly measurable with respect to the sub-Borel-

12



13

field. S}; (for brevity a E; -meas. r.v.) such that for

every A 6 31’ it satisfies the equation

Smxrf) dP: f XdP . . . . (1.1.1)

A A

where the integrals are taken in the sense of Bochner.

We shall now prove the existence and uniqueness of

E(X I?) for every Bochner-integrable r.v. X(w) and

Borel-field '39 C "fl .

The standard proof for scalar-valued r.v.'s Xko)

cannot be extended to cover the situation here since the

analogues of the Radon-Nikodym theorems for set-functions

taking values in a Banach-space are not in general valid.

For counter-examples see Bochner, (7) Clarkson (5).

Theorem 1.1.1 E(X \?5) exists and is unique except

for sets of measure 0 for every Bochner-integrable

r.v. x(co) and any Borel-field (E): C (B . (Notice

that no assumptions on the Banach-space LEE: are made.)

Proof:

We shall use the fact that X(w) being Bochner-

integrable is almost everywhere (a.e.) separable-valued

and E(I1X(GD)||)< +00 . (3, Hille pp. 80) Because X(co)

is almost everywhere separable-valued we might and shall

without loss of generality consider f to be separable;

for otherwise, we can carry out the proof by restricting

our attention to the separable sub-space in which the values

of X(00) lie with probability one. 2% being separable
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there exists a denumerable determining set (3, Hille

pp.34) i.e. linear functiomfls x; 6. 3E* i : 1, 2, ...

such that for any x e f we have

"x”: 83pm; m1

Of course it follows that

llxillls 1

From equation (1.1.1) it follows because of an

elementary property of Bochner-integrals that for every

x’e 2*

x*{ 10431)} = E(x* (X(w))\3') a.e.

We shall first show that if E(X ‘2‘) exists then

it must be unique except for sets of measure 0 i.e. if

Y1(w) , Y2(€J) , are r.v.'s which

satisfy def. (1.1.1) then

YIQa):: YQWD) a.e.

This follows because

SYMQ) dP : SY2(w) dP

A A

for all A E §F and hence

41' S *

x Y dP) = x (SY dP). ( A, . .2

* _
i.e. SAXi (Y1 - Y2) dP - 0

Now Y1, Y2 being E; -meas. so is Y1 - Y2 and hence

xi* (Y1 - Y2) is E? -meas. It follows from a standard

theorem in measure theory that

* _ _
X1 (Y1 Y2) - O a.e.
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Hence

*-

X1 (Y1 - Y2) = o for all 1 = 1, 2, ...

except for 606 N .

P(N) : 0

so that 11‘ we N

.. 41-

11111.1) - 12m)" _ exile l x1 (Y1(a>) - 3,20,), = O

i.e. Y1fln) : Y2(G0 .

This proves the uniqueness of E(X lEfi) .

We shall now prove the existence of E(X '25) . To

do this we consider two different cases:

(1) Xku) is countably-valued i.e.

X(co) = oi an 9‘11; (£0) with E(ll M») II ) =
n:1 n

2-1 11 an“ P(En) < + 00 .

n:

where

anE x, EnerB 9 “ (w){:1 wEEn n:1,2’

En o ‘0ng

and En's are disjoint.

N

Consider YN(B) : “‘ anfnéd) where

n: "1

HEAT) = E< '79: (MW)

i.e. a conditional probability of En relative to i; ,

rut»)

and let

N

XNM = 2. an ’XEnoo)
n:1

Then



x1 (YN(w)) = Zx * (an) . fn(co)

N

1:131 E(xi'x' (an) (XEn(w)\r§')

= E(§.X1* (8'11)er (NIB?)

n:1 n

Hence for N‘7vM , using standard properties of con-

ditional eXpectations of scalar-valued random variables

we have

4;. N 31'

[x1 (Y1: - 1M” elmng x1 ((1.0%, (”‘65) _

M * 7( n

M: we.) Enter): )1
n:1

n:M+ 1

N

5 EH 5‘ X: (“.méwnl‘m
n

N

e E(ni1uawn/XE11‘13‘) '-" E( II XN " XM" lg )

Hence

1) YN(‘°) " YM(“’)" = mi" 1 XIWN " YM)‘

L x _ . .-EH1N xMul'1) (112)

Now

lim X - = O a.e. and
M, N——)oo H N KM 11

\1XN "KM“ €: 2 H.X|1 a.e.

From whence

lim E( || — X 111; ) : O a.e. (1 Doob CE

M, N.._)oo KN M pp.23) 5

00

Hence the series Y((0) : n; a.“ fn(w) converges strongly

a.e.
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It is also clear that

‘[ Y.dP : 5 .X dP for all A ..u (1.1.3)

and hence YN : BUST I 6}) according to Def. 1.1.1

Now

XN(co) —9 X(co) a.e.

I1XN(0°)“ é X(w) which is integrable -«-(1,1,4)

YN(GO) —-) E(w) a.e.

L (‘1‘

111N<w>1~ E<1XN1|S >4. E<11x11 m 1

which is integrable.

Hence applying the dominated convergence theorem for

Bochner-integrals (3, Hille pp. 83) we have by passing

to limits as N -—9cn on both sides of (1.1.3)

deP: )xar

A A

Also Y0») being the a.e. limit of EMU») which are

E; -measurable r.v.'s is 1; -meas. Hence we have

proved that

no

11(10): Z1 an NBA?) = E(X "31) a.e.

n:

It is also clear from (1.1.4) that

"1(a)" éEOIXlll‘iFI) a.e. (1.1.5)

(ii) Let X03) be an arbitrary Bochner-integrable

r.v. Let an be a denumerable dense set in :kg .

Then for any k = 1, 2, 3, ....



18

co

(1. = U)“ u x(w) - an 11 451/1}
11:1

w

219.. Sn, k

Define Xkflb) k : 1, 2, as follows

60) : 8. Q S

= a we 3 (1 SC
2 2, k 1, k

_ a s so nsc etc

‘3 “€3.k"1,k 2,1: '

Obviously for all GO 6 Q

(I Xk(a>) - X(0) H {— 1/k - - — (1.1.6)

ll ywmé ll x<w>l| + 1/k

and hence Xk(w) is Bochner-integrable.

Let

1km) = E(ka’o

which exists according to the proof of case (1) above.

For n7 m , and any x: of the determining set we have

1‘ (1n- Ym)‘ = 1 x: (sung) .. E(xmfi.) )1

=1E(X* (Xn) l?) - E(X: (Xm)|'5")la.e.

|x

|E( x: (Xn - Xm)| '3') )1 a.e.

é E(|x: (Xn - Xm)ll 3?) a.e.

é E(IIXn - Xmll '3!) a.e.

Hence

|| 1n .. ym“ = 311111le (1n - ym)| é 13(11):n - 3811",?) a.e.

éE(lan—xfll'}i)+s ("Km-X11159) a.e.
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4. 1/n + 1/m a.e. because of (1.1.6)

Hence

lim " Y, - Y n = O a.e. so that

m, n —+)d> ‘1 m

lim Yn (co) =x(w) exists a.e. ...(1.1.7)

n ——)d)

From (1.1.5). (1.1.6) and (1.1.7) we have now a.e.

11 :X0anXnW) ()

Imam)" 4.- ~HXW)" +1

lim Yn(t.>) = 1(a)

n -—9a)

11 1.11am 4 E(|1 anl ('3' )9 E1 "xv-1)" +I I?)

= E(l|x(o)ll |%) +1

Also because Yn : E(Xn'fi) we have for all A5?

I gar: {YD dP ......(1.1.9)

A

----(1.1.8)

Because of (1.1.8) we can pass to the limit as n -——9oo

on both sides of (1.1.9) invoking the bounded convergence

theorem of Bochner integrals (3, Hille pp. 83) thus obtain-

ing

S‘ X dP : J; Y dP

A A .

This then proves that 1(60) : E(X (‘39) .and completes

the proof of the theorem.

s 2. Properties of strong conditional expectations:

Almost all the prOperties of conditional expecta-

tions of scalar-valued r.v.'s (1, See Doob pp. 20-26)

can be established for the general Banach-valued case and
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their proofs can either be obtained by mimicking the

usual proof or can be derived from the scalar—valued

case. In the following we shall mention a few of the

standard properties.

Theorem 1.2.1 If g; is a Borel-field such that
 

A E 6 implies that there is B E (.3; such that

P(Azl B) : 0 then

E(x(c.>) (‘33) = E(X(u) [Q ) a.e.

Proof: Let {xi} be a denumerable determining

set for the X(w) values in f . Because of the

validity of the theorem for scalar r.v.'s we have

x; C E(X 19)) E(x:(x)| 3:) a.e.

E(x:(X)‘ g) a.e.

xi*(E(X‘$) - E(X ‘65)): O a.e. for

Hence

each 4..

so that

((111me - E(Xlé)“

: 8111p \x:(E(x|33) — E(x|§))\= o a.e.

This proves that

E(X)?!) : E(X'g) a.e.

Theorem 1.2.2 Suppose 6." C g2 are Borel-fields

and that some version (and therefore every) of

E(X(¢D) ' g 2)‘ is measurable Q1 .

Then

E(X(w)|@‘) = E(x(w)|@2) a.e.
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Proof: Let {x1*} be as in the previous theorem.

Then

x1*( E<X1€2)) E C x1%(X) ( 8.12) a.e.

E (X1*(X) (€31)a.e.

(because of the validity of the theorem for scalar r.v.'sJ

Hence

x1*.(E(x [@1) - s(x |§2)) = o a.e.

for each i so that

“E(X (9.11) - E(X1g2) )1 = s$p\xi*( E(X 1?”)

- E(X ‘1; 2):)1 = O

which proves the theorem.

Theorem 1.2.3: If fan) is a scalar function

measurable with respect to ‘5' and if both X(w) and

f(0)X(“’) are Bochner-integrable then

E(x(w)r(a)|‘5) -_- 1(a) E(x(a)\‘§) a.e.

Proof: As before, the proof can be derived from the

corresponding theorem for scalar r.v.'s by the use of the

determining set { x1*} .

Theorem 1.2.4: For any Borel-field 3 C B

i) E(a'gl) = a a.e. for any ae x

11) E ( 3;??ij I 9‘1 )= 321 °JE(XJ'%) a.e. for

any finite number n of scalars c and Bochner-integrable

.1

x -valued r.v.'s XJ(u) .

111) ||E(x\‘3») 11 g 1:111:11? )

iv) If lim Xn(ca) -_- X(¢O) a.e. and if there

n —-)00
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exists f(w) 2 O integrable and such that

ll xnw) ll .4. we)

then

lim E(Xn ‘ ‘}) = E(X I?) a.e.

n —900 '

v) For any bounded linear operator T on '36

to another Banach-space "J

E(TX(w) ‘9) = TE<X«»\‘§) a.e.

Proof: 1) and ii) follow from the very definition

of conditional expectation. iii) Let .i 13*} again

be a determining set for X(0) values in x . Then

nEmm u 811m x1*( mxwm

sup ‘ E(x1* (Xugolé 8:11p E6xi*a)l$)

’5 E(u xnm

iv) Xko) is clearly Bochner-integrable as

“XUJDHI _L_ f(0) a.e. and so E(X‘?) exists

(Th. 1.1.1)

ll mum) - mm“ s muxn - X" I?) by

(iii) above

Now

ll Xn - X" —-) o a.e. and

"Xn - X“ 5 2 f(0) a.e. which is integrable

Hence by the corresponding theorem for the scalar r.v.'s

(1, Doob pp. 2}) EH] Xn - X“ 'g) ——9 C) so that we

have the desired result from the preceding inequality.
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v) T(X(<a>)) is Bochner-integrable (3, Hille

pp. 84) and by a standard theorem for Bochner integrals

(3, Hille pp. 83)

I Tx(u>) d P = T(5A mo) dP) A6,?

A

Sfence

A Tx(w) dP = T(_); X(w) dP) = T(_{E(X ‘3») <1?)

= JAT(E(x|$)) dP

Also T E(X I?) is 3-measurable so that according to

Dan 1.1.1 we have

T(E(Xl3"1)) = E(T(X(w))| ‘5‘: ) a.e.

Theorem 1.2.5. If g C c; are sub-Borel-fields

of m then

Human?) lg ) = E<x<w> 1g )

Proof: Follows directly from definition 1.1.1.



Chapter 11

Weak convergence in certain special Banach spaces.

§1. For our later investigations we shall need to

know some properties of weak convergence in certain

Lebesgue-type Banach spaces, first introduced and

systematically studied by Bochner and Taylor in 1938 in

(8). We define these Banach-spaces as follows:

Definition 2.1.1 We define Ltd), ’8 , p, (f)

1 5 P<+ao as the set of all equivalence classes of strontly

measurable r.v.'s X(Cd) defined on the probability

space (.0, ’B , P), taking values in the Banach-sapce

‘35 and such that the "norm"

[mm 31» = (£11m) 111’ dP)1/t < ..o

......(2.1.1)

The equivalence class gxflo) } is set of all r.v.'s

E(co) such that E(G) = X(w) a.e.

Definition 2.1.2 Lao(Q. , ‘B, P, If) is the

set of all equivalence classes of strongly measurable

r.v.'s X¢D) defined on the probability space

(a, '8 , P) and taking values in the Banach space if

and such that the norm

[male : escs);gs-up.\\X(w) “ ( +ao (2.1.2)

24
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It can be shown that with the norms defined by

(2.1.1) and (2.1.2) the spaces Lyn, ’B , RI)

1g 1’ 5 do are Banach spaces (2, Dunford and Schwarz

pp. 146). When there is no danger of any confusion we

shall abbreviate Lyn, "(B , P, x ) as LP( g). If

‘36 is the Banach-space of ordinary complex numbers we

shall simply write LP . We shall invariably write X69)

for the equivalence class ‘2 X(o)} .

Our main objective is to study the weakly compact

subsets of Lyx), 1 l; P(oo under the further assumption

that x is reflexive. This we do in three steps. In

§ 2 we settle the problem completely for pj71 with

the help of known results and give a representation for

linear functionals on L1(3E) . In § 3 we study weak

convergence of sequences of L1(3E) to an element in

L1(I) and in g 4 we give one necessary condition and

one sufficient condition for a set in L1(SE) to be weakur

compact.

§Eh The linear functionals of the Banach space LP(JE)'

1 4 P(oo have been studied by Bochner and Taylor 1938

(8), Day 1941 (14), Phillips 1943 (9). Dieudonné 1951

(15), Mourier 1952 (10), Fortet and Mourier 1951 (11).

Bochner and Taylor gave for an arbitrary 5E: a general

representation for the linear functionals in terms of

certain Stieltjes integrals with vector-valued measures.
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Under some conditions on the Banach-space E , they and

others have also given simpler integral representations.

We shall mention one such result due to Phillips for the

case 1 < p (00 .

Theorem 2.2.1 Let x be reflexive and

1<p <00 . Then a linear functional F( -) defined on

11(0, ’8 , P, x ) has the form

F(X(w)) : ‘S.(X(G>), X*(m)7 dP (2.2.1)

where

X*(€O)€Lq(Q,B , P, (£18,113 + = 1

1

5

~21-

and < x, x > denotes the value of the linear

functional x* at x.

1/

\| F I) = (5)1x*(¢°)llq dP) q

so that (Lg-0., r8 , P, 1))” is isometrically iso-

Also

morphic to the Banach space Lq(Q , '8 , P, x*) .

Corollary 2.2.1 If x is reflexive then the

space LP(Q , (B , P, f )’ 14 p (00 is weakly complete

and a subset of it is weakly compact if and only if it

is bounded in Lp(1) - norm.

2390:; It follows from theorem 2.2.1 that if if is

reflexive then Lp(% ) is also reflexive (Notice that

the converse is true also) and the corollary follows

from standard theorems about reflexive spaces (see 2,

Dunford & Schwarz pp. 68-69).



27

Mourier, 1952 (10), proved essentially the same

result and Bochner & Taylor (8) proved the above under

a condition on SE which is more general than reflexivity.

Fortet & Mourier 1951 (11) proved a similar result for

p 2 1 under the assumption that Iis separable. We

shall need an extension of theorem 2.2.1 to the case

p = 1 for our future work and shall in the following

give a simple proof for it using a theorem of Phillips

1943 (9).

Theorem 2.2.2 If F(-) is a bounded linear

functional on L1( Q ,6 , P, 36 ) and x is reflexive

then

F(X) =f<X(¢->). Y*(w)) dP (2.2.2)

where

1*(~)€ L‘(Q , ’8 , P, f‘).

m For fixed E e'B , 81.7%») e L1(x) for

all a 6x . Consider P(a.XE(u)). Because F is

a bounded linear functional on L1( 2) we have

I F(a°<E(«->))l e 11 F II-Ea’XEwD. =11 111.551 an d?

=||F||.I|all. P(E)

o o o 0.0 (20203)

Hence F(a. (XEGAH, for a fixed E 6% , is a bounded

linear functional on x and let us write

'3? * {-

FCa. 985(0)) : xE(a) where XE e x /

Also from (2.2.3) we have that
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fi- 11-

"xE u = 811113119) x E(a)‘ 5111.111. P(E) ..(2.2.4)

* * *
It is also clear that x EUF : x E + XF , EnF=4>

.. E. F. e ’(B .

In other words x; is an additive 3E* -valued

set function on ’8 having the property (2.2.4). Accord-

ing to a theorem of Phillips (9) there is'a function

Y*(00)€ L‘o( x41) such that

x; = SE 1*(0) dP.

so that

F(’XE(o).a) : $15 a, y*(w)> dP

Hence for all simple functions

n a1€EBE

Xm) = 1; 611in (w) Eié'B

we have

*

P(X(m)) = 501m), 1 (1.1)) dP . . .(2.2.5)

If X(6)) € Lflz) is an arbitrary function then we can

construct a sequence of simple functions Xn(Q)e L1(%-)

such that

lim Sumac) — 1111(0)“ dP = o

n —-§¢’

(2, Dunford & Schwartz pp. 125)

Hence from (2.2.5) we have

p(x(w)) -_- iii-:00 P(Xn(u)>

n

n Ergo 34’9“”): r*(a1)> ‘1?

50m») . Y*(w)> dP



29

8.8

Karim), 1*(ao)> dP -f< X(0). Y*(°)> dP) ‘

5. (11 x1») - ngll. 11%)" d?

g [1*(u)]m15” x(c.>) - we)" dP —-) o

as n —-31 00.

This concludes the proof of the theorem.

§13. Conditions under which a sequence of r.v.'s

Kid“) 6 LNX) converges weakly to a r.v. X(C.))€ L1(1)

were given by Bochner & Taylor (8) when E is of a

special type. Our theorem 2.3.1 is of a different nature

although the conditions involved are similar.

Theorem 2.3.1 If Xn(CJ)€ L1(.Q, (B, P, X) ,

:BE reflexive, is weakly convergent and if “ Xn“ is

uniformly integrable i.e. given 9) O , 3 5' 7 0 such

that

)llxn" dP<e for all E9 P(E)<S

E

then there exists X(CO)€ L1(.Q., '8 , P,%) such that

to

Xn —9 X i.e. xn(c.>) converges weakly to X(d>).

Proof: We use a Radon-Nikodym type theorem due to

Dunford and Pettis, 1940 (6) which can be stated as

follows in our case:

Let :36 be the adjoint to a separable Banach space

{H and let X(E) be defined from f6 to E . Suppose

that

(i) for each y 6 3 the set-function

XE(y) is completely additive
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(ii) XE(y) : 0 when P(E) : O for all y

(iii) the numerical function

0" = sup 1 xfi(y)| = | x II

E I II II | 1‘ l E

has finite total variation on any

set E166 then there exists

X(CO) e L1(§) such that

XE = S mm) d?

E

Because {X113 is weakly convergent, it follows

from a general theorem that E

X ].(c .
nl'; '

According to the representation theorem of linear

functionals of L (:1) (Th. 2.2.2) we have that

nLlim$5< KM“), Y*(Q)) dP exists for all

Hi!*(0) 6 L‘o( IX,*)

Take Y*(OO) : ,XE(0).a*, a*e 1* , EE’B- Then we

have that

as

11m a ( S Xn dP) exists for all

n —900 E

*E 1*

and hence because 2% is reflexive the limit is

a*CQ(E)) for some 2(E)ex

Now i being reflexive we have 1: (gf‘j‘

and since we are concerned only with { Xn(b))} we

might as well consider x to be separable. Then 1*
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would also be separable. We shall now show that under

the hypotheses of the theorem “(33) satisfies the

conditions of Dunford & Pettis theorem.

» a

i) Let E166 . UEizE. Then

*- °° *

- dx(Q(L:E1)) —nl:u_1;°ox (SGEXn P)

1:1 1

= lim lim {(5. X dP

119‘ m —-)ao 13% E1 n

We now show that

m 300 EEK-(11.31 E1 Kn M)XTUE1)%dP)

uniformly in n because

*(I x. dP)\ e Mum“ an cu» <e
E

m+11m+1 1

 

by choosing m)Me , ME independent of n

because I Xhl' are uniformly integrable. Hence we

can interchange limits above and we have

x *(acgy 131)) = lim 11m x4711; xn dP)

m --900 n —---:9¢ox

U 1E1

mull-+00 x*(x1§1E1))
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m

= lim 2: x*(9\(E1)>

m .9” 1:1

Verification of (ii) is quite trivial.

iii) We shall show that for any finite number

Of sets E1 1:1, ooooooooN

E1 disjoint

N

:6} < 0

i=1 1 *

N N ‘X(Exn dP).

: lim‘

n [n lenll dPélim[XnJ1<C

9331 n

Thus, all the conditions in the theorem are satisfied

and hence we have a function X(G>) e L1(X) such that

’)\(E) = In») dP

E

and hence

j<xn(w), Y*(u)> dP ———) f<x, If”) dP

for all simple functions 1* (we Lo, (1*)

Now if

35* (a) = 12:1 x1*’in(w) u x1*" é A

8

we have
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n m

lim S<Xm 33‘) d?n .905 lim lim E1 xi( ix“ dP)

i

m «-

lim lim 2; x1(SXn dP)

In H 1:1

E1

111 -x-

lim )1 x1( gx dP) --

111 1:1

E1

: §<X, y) dP

the interchange of limit being permissible because

m *-

lim X ( X dP)

m E1 1 S n

Ei

exists uniformly in n as for any 6 7 O .

M+p * M+p * .

2M; xi (8 Km dP>l é. g1: [x1 u . || jxn dP"

E
E1 1

L M+p

A.

— 3;: uxn u a?

E1

.4 A- uxnndP
M+p

U E

M

i

for all n and p if M)Me because “XII are

n

uniformly integrable.
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Now an arbitrary 2*(0)E Lab (is? ) being a

*

uniform limit of countably-valued functions in H¢>(3E )

we have in general

S<Xm 35* >dP —-)f<x, y*7dP

G)

i.e. XII-a X.

§44. In this section we study the weakly compact

sets of L1(}).' The necessary conditions for a set in

L1(3E) to be weakly compact,given in Th. 2.4.1 in the

following’are known to be both necessary and sufficient

for L1 (2, Dunford & Schwarz pp. 292). Our sufficient

conditions given in Th. 2.4.2 are stronger than the

necessary conditions but are equivalent to the latter in

the case of complex-valued r.v.'s (2, Dunford & Schwarz,

 

pp.293). .

Theorem 2.4.1. Let KCLLQ, (B, P, (ibi

any Banach space. If K is wealily sequentia.lly compact

then

i) it is bounded

ii)

SEW) dP , X e K is weakly uniformly

countably additive

i.e.

no

for any sequence Enem, En J. , Q1 En =¢

we must have

lim X*(5 X(w)) dP : uniformly in

n ‘+>°° En
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X ‘5 K, x*(E.3€

23923: We shall use the following generalization

for vector-valued measures of a theorem of Nikodym

(2, Dunford & Schwartz, Th. IV. 6. pp. 321) namely,

"Let {ft-1} be a sequence of vector-valued measures

defined on the Borel-field ’53 . If [‘(E) = n13}; h“)

"I! exists for each E E (B , then I“ is a vector"o

measure on ’B and the countable additivity of rm is

uniform in n " .

If K is weakly sequentially compact, then from

a general theorem it follows that K is bounded. If (ii)

00

is not satisfied then 3 G > O, Eng'fi, J, , C‘En =¢

x* e 'I“ and xneK such that

zvcgnxnm e

We may assume {Kn} to be weakly convergent since K

is weakly sequentially compact. Hence

S Xn dP converges weakly to a limit for

E

each EEIB as

* ’XX X. E dP is a linear functional on

* *

L1(I), for any X E i

But then (:> is a contradiction to Nikodym's

theorem. This proves the theorem.

Theorem 2.4.2 Let KCL1(-(1, (B, P, I),
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% reflexive be such that

1) [x140 for all xex, 0

independent of X

11) {“xw)“ : x e K} is an uniformly

integrable family then

K is weakly sequentially compact.

Proof: We shall need a lemma due to (2) Dunford &

Schartz, pp. 202.

Lemma: Let’B be a Borel-field of sets and m, a

field contained in (B which generates (a . Let

{kn} be a sequence of countably additive set functions

on ’8 with values in x . Suppose that the countable

additivity of f- 1s uniform in n and that lim film)

11 n a“

exi t for E . Then lim (E) exists forss 6’81 n-ern

E e (B .

Corr. If PH (E) is weakly convergent for E 6 (81

then it is so for E G, (B .

To prove the sufficiency we now show that if

Xne K, [Kn], 4 C, n 21 then there is a sub-

sequence which converges weakly.

It is easy to see that there exists a separable sub-

space 30 of 1 and a Borel-field (Bo con-

tained in ’8 generated by a denumerable number of sets

{ E } such that

n

{Kn} 6 L,(~Q.Bo, P, 360)
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Let Z) be the field generated by { En} .

2 o evidently has only a denumerable number of

sets. Now for any E E 20

“ SEW“ é £11xntldPé[xn].é c

and I being reflexive there exists a subsequence n

.1

such that

SXnJ dP converges weakly. Since 20 has

E

only a denumerable number of sets we can choose a sub-

sequence {:13 by Cantor's diagonalization process

such that

S. Xn dP converges weakly for every EE :0 .

1

E

Now because P(fl ) (00 the uniform integrability of

“xn |\ implies the uniform countable additivity of the

i

set functions an1 dP and hence by virtue of the

E

preceding lemma we have the weak convergence of an dP

i

E

for all E 6 a) . Hence

fan , 6‘) up

i

* *-

0converges for all simple functions Y ( ) E L ”*0, .
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DO

I... me) = grog?) n x1*l\ e M

Now

S< xr11 , 1(a)) dP

k

= lim 5; x *( x <1?) i

k ->°° i=1 3 n1 5f

EJ %

L-

and the limit exists uniformly in "1" because ii

N+p *( N+p *

x dP {— z x I x dPEN 3 [hi )I Jflu an n n1"

1'43.1 11:J

é M .fllxnfl dP<e
N+p 1

U E

ij J

for N) NE , f)0 independent of an because

{fl Xn \I } is uniformly integrable.

1

Hence by a standard theorem on interchangability

of repeated limits we have the existence of

lim f<x , y*(0)> dP

11-1’00 n1

K * )

= lim lim X dP

. k 2: a( in
“J

Because an arbitrary Y*(&3 can be uniformly

approximated by a countably-valued function in L°°(3E*O)
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this proves that Xn are weakly convergent and by

1

Theorem 2.3.1 it must converge to a function

xo(co) € Lfixo). This completes the proof of the

theorem.



Chapter 111

Strong martingales of Banach-valued r.v.'s and their mean-

convergence.

1. Following Doob (1, pp. 294) we define a discrete

parameter strong martingale of Banach-valued r.v.'s as

follows:

Definition 3.1.1

Let (Q , (B , P) be a probability space and

i an arbitrary Banach space. Let I be a subset of the

set of all integers and let Xt(¢d) E L1(fl,m , mi )

for all t E I . For each t E I let there be a

Borel-field ‘5 t CB such that

(5 C (5 whenever s<t .
s t

We shall define { Xt’ gt’ tel} as a martingale

or in detail a strong-martingale of fl-valued r.v.'s

if whenever s< t, s, t E I

XS(GO) = E(XtUJ)‘ a) a.e. ....(3.1.1)

As in the case of complex-valued r.v.'s it can be

shown that if

2(0) 6: L1(Q,’B , 15%,) and if

xnm) = mum) Ii) n2 1

4O
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where

‘5‘. C ‘5

then { Xn, 3n, n 2 1} is a martingale.

By the same token if 3, 3 n 21

, -(n+1) C -n’ ’

and if

x (a) = E(Z(Co)‘ 31'
..n -n

then X , 9; , n 4 - 1 is a martingale.

n n '-

Conversely any martingale {X , r} , n 4 -1 is

n n '-

generated in this manner by 2(0) : X 1(co) .

We shall need the following lemma:

Lemma 3.1.1 Given any Borel-field 3C ‘8 ,
 

the conditional expectation E(X(m)|$) for r.v.'s

X(£o) 5, Ltd), ’13 , P, % ) i! 21 defines a bounded

linear Operator on the Banach space Lyn , r8 , P, i )

to the sub-Banach-space Lf(fl , 3; , P, x ) .

Proof: Let TX = E(X‘fi) Xe Lt(fl,r£ , 13,1);

surely TX 6 L§(Q . 31 , R; ) and

T(X + Y) = TX + TY

T(A.X) : Q.(TX) A any complex number.

[s]. = ( 1 new.» 1* as > “P
- n.

éGEHIXW) in”! E m)”

12.

Also
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because n X“ é E(" X“ [‘5 ) a.e.

and hence " X“ ’4 E("Xfl‘t' 3')

by Jensen's inequality.

= (flxmmt dP' )1/t = E th

so that “ T|| 4; 1. Actually |[ Tl| = 1 as we

can show by taking X(€0) '5 a where u a“ : 1.

According to the above lemma, we can associate

with every martingale { Xt’ (alt, - t G I r} , a

sequence of Operators Tt’ t GI defined by

Tt x = E(X [ '51:)

and hence mean convergence of martingales can be con-

sidered from the point of view of convergence of the

sequence of operators Tt . In the following section we

shall make this statement precise. In theorems 3.2.1

and 3.2.2 we show that the Operators T converge to an

Operator T in the strong tOpology if I. : (n2 1) or

(n 5-1) respectively.

 

2. Theorem 3.2.1. Let { Xn, gln’ n2 1} be

a martingale such that

x = E 2| n71
n ( fin) —

where

2(0) 5 Lyn-.43 . 9,36) 121. -

x, arbitary.

Then
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lim 1 [X - ‘6] : 0 where

n -€>00 n f

x“° = E(z|‘3ia,)

w

and at :.- Borel-field generated by U 3 .

n:1 n

oooooooooooooo(30201)

Proof: Let us define TnZ : E(Z ‘?}h) for any

Zé Egg). ,IB , P, I) kZ1. By lemma 3.1.1, Tn is

a linear bounded Operator mapping Lr( 9- , r8 , PJI )

into Lfdl , (in’ P, ’X) . The conclusion of the theorem

then asserts that the sequence of Operators Tn converges

in the strong topology to the Operator Ta: on

Lk(Q, (B , P, I ) where

T” (z) = Emmi.) .

We shall give two different proofs of this. Our first

proof applies only to the case when x is reflexive

and is based on an application of a very general mean

ergodic theorem, due to Eberlein, 1949, (16). This method

of proving mean convergence for real-valued martingales

was used by Jerison 1959 (17) in the case of martingales

with index set n‘ér-1. Our second proof is elementary

and is based on an application of the Banach-Steinhaus

theorem and is valid for an arbitrary Banach-space iii .

PrOOfI. x reflexive.

We shall first state the mean ergodic theorem in the

form we shall apply it. Eberlein (16) proved it more
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generally for linear vector spaces, his theorem being a

generalization of similar theorems of Yosida and Kakutani

1941, Birkhoff and Alaoglu 1940 and Day 1942.

Eberlein's theorem: Let G be a semigroup of

bounded linear transformations on a Banach space if .

A net (Tu) of linear transformations of TI into itself

is cafled a system of almost invariant integrals for G if

i) for each x e x and all a(, T x
4.

belongs to the closed convex hull of

{sz 'Te G}

ii) “ Ta“ 4 C, C independent of at .

iii) for every x; x and T e G

lim(fl&x-'&x)=]im(aTx-fax):C).

Now, if for a given x E; , the net de has a weak

cluster point I then Y, = lim T‘x in the strong

topology of x .

We shall apply the above theorem to the Banach space

Ltd), 3;,P,I) i221

Define SnX : X - E(X‘rin) XE Lr(fl a is Fax)!

n2 1

Then S S = S o o o 0(50202)

m n maX(m, n)

as 3.1ng = smi x - E(X I 31(1)}

X - E(X'g'n) " E(X ’ E(X'En) '3!!!)
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x - E(xfih) - E(X \3'm)

E(E(x Vin) rim)+

: X - E X - E X( 1331) < Vim)

E(X )
+ “321n(m, n)

by Th. 1.2.5

Hence SSX‘:X-EX g =

m n ( ' max(m,n)) max.(m,n)

so that

G = (Sn, n 2 1) is a semi-group and accord-

ing to lemma 3.1.1 Sn's are bounded linear operators.

We shall show that the sequence of Operators (Sn’ n 2 1)

themselves form a system of almost invariant integrals

for G . Condition (1) is clearly satisfied. Now Sn :

I .- Tn where T is as defined in 3.2.1.

n

“ Sn“ 6. II“ + n Tn“ = 1+ 1 = 2....(3.2.3)

by lemma 3.1.1 so that S s are uniformly bounded in

n

norm.

Also, for any m lim (SmSnS - SnX) : lim (SnSmX - SnX)

n n

: 0

because of (3.2.2) .

Thus all the conditions (1) - (iii) in Eberlein's

theorem are satisfied and we can therefore conclude that

whenever SnX has a weak cluster point Y, SnX actually

converges strongly to Y.



46

Now 11‘ £71, and XELrLCl, 3; , P, f)

we have

[Snx] 5 “Sn“ ' E X]

r t

4 2°]:th

because of (3.2.3).

Hence { SnX, n2 1} is a bounded set in

Egg, '5‘” , P, x )3 1 being reflexive so is

Lyn, 3'00 , P, x ), (Th. 2.2.1) and hence every

bounded set in L2(Q, a. , P, x) is (weakly compact.

Therefore, { SnX } has a weak cluster point and hence

according to Eberlein's theorem limdo SnX exists

n

in the strong topology. Of L1,(.Q , 371‘ , P, I. ).

If p = 1, {SnX, n2 1} is still a weakly compact

set in L1(fl,' .310 , P, x) . This is so because

{H SnXu, g1n’ 1 é n $00} is a semi-martingale of

real-valued r.v.'s and hence from Doob (1) Th. 3.1

(iii) pp. 311 we conclude that " SnX “ are uniformly

integrable. Also S X is bounded in norm in

n

L1(fl , i , P, 2%) . Therefore, {SnX, n21}

is weakly compact by our Th. 2.4.1.

Thus, we have shown that for any Xe Lf(Q , a ,

P,X) 1’21 lim 3 x exists in the strong

n ——)0 n

tOpOlogy or in terms of operator theory, the sequence of

operators Sn converge strongly.
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Let Y : lim S X
on n ‘9” n 9°

(the limit on the right exists because X006 Lyfl,

3",. P. X)

(lemma 3.1.1).

Now E(X.o | 9n) : Xn a.e. . . . .(3.2.4)

and hence for any E E 3n

X dP = S dP o o o o 0(30205)

SE °° EXn

Also by (3.2.4) I” = 11m (1 - T ) x = x - lim xn
n ——)co n n—%

. . .(3.2.6)

1.6

lim [X - - Y = 0
n “'9‘ d Xn d f

Hence for any E G I,-

Soc.o -xn- Y“) —9 0 strongly 1n}

E

SOC” -Xn) dP—5—9 {11de

E E

or SXndP 4-) §(X¢ - Yo) dP (3.2.7)

E E

From (3.2.5) and (3. 2. 7) we have for every E 6 gm

ch0 C11? : S(X&-Yw) (11’

E
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n

. co

Hence I dP : O for all E € U

fi n:1

E

.0

Now U 3' n being the field that generates the Borel-

n-1

field '3'“ we must have

gYaOdP = O forall E63”

E

and hence Y” = O a.e.

From (3.2.6) then it follows that

lim X = X

n__)‘mn 00

and this completes the first proof of the theorem.

on

Proof (ii) Let I; = U 3' . Because

0 n:1 n

?n C (En-+1 9 370 is a field.

We shall need the following lemma:

Lemma 3.2.1

The class of simple functions measurable with respect

k

to ($0 (i.e. functions like X(n) = Z 31 {XEfu}

1:1

«.3 8.16 I , E1 E;- 30) is dense in

”(0. 3r". PHI) 1‘21 .

Proof of the lemma: Let E e (in . Be a theorem in

measure theory ((4) Halmos, Th. D, pp. 56), for any.

€- >O , there exists E0 E {510 such that

P(E A E0) = P(E — E0) + P(Eo — E)4€

if x(eo) -_- ’XEm).a E632, , aex

we) «Eco»... Eoe'3vo. P(EA Eame
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then [X - Y1 ( £2- " x _ Yuf dP ) 1/2

H a“ ( 5“?)1/réfiall -€1/r

0

e being arbitrary it's clear that we can choose Y(&>)

measurable with respect to 30 and as close to X(fl)

in Lf( x) norm as we please.

Hence any simple function in L£(Q , 3i. , 13,1) can

be approximated by simple functions measurable with

respect, to '310. Since the simple functions are dense

in Lr(1 ), ((2), Dunford :3: Schwartz, pp. 125), we

can approximate an arbitrary function in LP( 1) by

simple functions measurable with respect to 30 as

closely as we wish. This proves the lemma.

Consider now the following sequence of mappings

from the Banach space L2(Q , 30° , 13,1 ) to itself

Tn: 3( Q9 3'» 9 139%) —‘—'? Lt(fls 19 Psi)

TnX : E(X l 5n)

Now

1/r
E j ) P

83p TnX P : 83p “ TnX n . dP

é [X]? since " TnX" t

5 {Eu mm)? 5- E< «x» ’13:)



.0 -01



50

Hence the set (TnX, n 2 1) is bounded for each

x (a Lt((2.,‘?&, , P;;SE) . If x10» = ‘7(F(an.a

where ae K , F 5 ‘50 then since for some

N, Fegnvuflwe have

TnX : X a.e. for n2 N .

Hence

n3; [Tnx'ah = O . . . . (3.2.8)

and so (3.2.8) is true for all simple functions X(Co)

measurable with respect to 3' o . Since SUCh functions

are dense in Lr(Q , a. , Pix) according to lemma

3.2.1 we have by the Banach-Steinhaus Theorem (3) that

lim TnX : TX -. . . . (3.2.9)

n—900

exists for all X5 Lyn . ‘3... . hi) and moreover

that T is a bounded linear operator.

For X(€O)'s which are simple functions measurable

with respect to (3‘ we have TX = X .

0

Such functions being dense in Lyn : 3.0. P, i )

we can obtain, given an arbitrary X, a sequence Xn of

them such that

lim [: X. - X:‘

n-—)oO n i

ll 0

T being continuous we have

TX : lim T : 11m : X ..(3.2.K»

n—aco Kn n——)OO Xn
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Hence, we have proved ((3.2.9) and (32.10)) that

E(X | 3 ) converges in L (.Q , 3.. , RI)

n !

norm to X for every X e Lt(fl' a. , P, 1 ) .

The theorem then follows by taking

X:E(Z\?ao).

Theorem 3.2.2

Let (Xn(6>), ‘5, né - 1 ) be a martingale

n

with "in 3‘31““) , x_1<u) e 1,130.78 .1335)

P > 1 . Then X (0) converges in Lr(1) norm to

n

X _ (m) i.e.

lim L X - X_n] : O

n ——)¢O '00 f

where

X“.D (0) : E(X_1(0) ' 3- an) a.e.

and

7? ’3
'3'.“ = n = 1 -n

Proof: We shall againrresent two different proofs; the

first proof uses Eberlein's mean ergodic theorem with the

additional assumption that x is reflexive and the

second prof is based on an application of Banach-Steinhaus

theorem.

Proof (1) iii reflexive:

Define. the bounded linear operators Tr1 on Lr( Q ,

$1, P, i ) to itself as follows:
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TnX = E(X‘g_n) x6 114.0, 34, P,§),n21.

Then

II TnX“ 5 E(“XII | (in) a.e.

and by Jensen's inequality

IITnXII’ é E("xui’l 3-..)

[Ts], = ( Llama)” 4 Ex],

so that TnXe LED 9 $1. P. I) ( .}_nC 34)

Hence

and )ITn H = 1 for all n

Also Tm 3 Tn : Tmax.(m, n)

Hence G : (Tn, n 2 1) is a semigroup of bounded linear

Operators for which. (T3, r1231) itself is a system of

n

almost invariant integrals for G. Hence by Eberlein's

mean ergodic theorem (see Th. 3.2.1) TnX_1 : X-n“”)

goes to a limit in the norm of L’(..O. , ‘3'”, P, x )

whenever it has a weak cluster point.

Now Lr(fl, (34, P, x) for p )1 is reflexive

(Th. 2.2.1) and hence every bounded set in it has a weak

cluster point.

But [xm]? 4 [x_ L so that the set

{TnX_1} or { X41} is bounded and this, in con-

Junction with the previous comment, proves the assertion

of the theorem when p >1.

When p : 1 we notice that {" X_n“, 31w n21}
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is a semi-martingale and hence by Th. 3.1 (iii), pp. 311,

Doob (1) we conclude that “X n“ are unifomly

integrable. Also {X n} is a bounded set in L1( I )

and so by our theorem 2.4.2 {X 1 is weakly compact.

Hence X n converges strongly in L1(z ).

We shall now show that lim X__n = X_.o .

n —)w

Let lim X n = Y. Then E(Y ‘34” = Y for

n ——)ao " ,

all m 2 1. i.e. Y is measurable with respect to $411

for any 111 2 1 and hence measurable with respect to

“inf

Also for any A 6 3 .0.

5 Y dP : lim X_n dP = X_1dP

n —-)OO

A

because X = E(X_1‘ -n)°

This proves that Y : X .0 a.e

Proof (ii) Define Tn: 1214.0, 3—1’ P, I)

a Lr(Q!
9-19 P’fi)

TnX = E(X ‘ 3%) n2 1

T are bounded linear operators (lemma 3.1.1) such that

n supfwndr 4 [at .....(3.2.11)

n

Also if x(co) : «SUBLa , a e x , E e (5”

then TnX = P(E )'3'_n).a

Now P(E Ig-n) converges to P(E I 3"») in L

 

P

i.e.
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'/
k

t
n 21;” J‘HE FTC”) - P(E "in” dP): o

. . . . . (3.2.12)

This follows either by applying Doob's Th. 4.2, pp. 328,

(1), or by considering P(E |g'_n) as a real-valued

martingale and then applying Proof (1) which is applicable

since the real numbers firm a reflexive Banach-space.

It follows from (3.2.12) that 11‘ xm) = ’XEw).a

then TnX converges in Lr(1). Hence TnX converges

for all simple functions .XGD) which form an everywhere

dense set in Lt(SE.). This and (3.2.11) enables us to

conclude by virtue of Banach-Steinhaus theorem (3) that

lim TnX = TX

n -§@°

in Lt(1) for all X 6 L“!) where T is a bounded

linear operator.

This proves Th. 3.2.2 for a general Banach-space If .

g3. In this section we shall prove mean convergence

theorems for arbitrary martingales of r.v.'s taking values

in a reflexive Banach-space. We shall need the following

lemma:

Lemma 3.3.1

Let Tn’ n = 1, 2, ... and T be bounded linear

operators mapping the Banach space E into itself and

C'

such that

1) lim Tnx = Tx for all x51

n -€’ao

and ii) Tm“ Tn : Tmin.(m,n)
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Let xne x such that there is a subsequence

x converging weakly to x and also that
nk «3

T x : x .

n n+1 n

Then lim xn : x” strongly.

n ->co

Proof: From the conditions of the lemma we have

T X : . . . . . 0 (3.2.13)

m n Xmin(m, n)

Also menk a) ) mea as k ——-)°O for

any m .

By (3.2.13) men : xIn for large k so that

k

meco : xIn

Now by condition (1') of the lemma med —S—) wa

so that it follows that

11m x = x strongly.

m——)aO m ‘0

Theorem 3.3.1 Let f be a reflexive Banach space and

let ,i Xn, ‘E'n, n2 1} be a x-valued martingale

such that

Xne LED-KB, Kg) n21, p)1 and

[Xn]P<C

C independent of n . Then there exists Xaoe LP( Q,

(B . P. x ) such that

n £::¢)[:Xn - 3;;]p) = 0

Proof: Define Tn : Lp(fl , ‘3'» , P, 1 )

> Lp(Q, ‘51»,35) 
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-_-. E(X (.35)X

Si::: Borel-field generated by

m

U 3"
n=1 n

We have

Tm’Tn : Tmin.(m, n)

and by Th. 3.2.1 lim TnX : X for all

n.—4;ao

XELflQ, 3&9 P9?)-

Also Tnxn+1 : Xn because {)8}, 3n, n? 1’}

is a martingale.

[xn1p 5 ll Tn" '[XnH-Jp : [Xn+1]p < C

so that {X113 is a bounded set in LP(Q’ goo

P, CE) which being reflexive (°.‘ 1 is reflexive)

Hence

(Th. 2.2.1) the set .{Xn‘3 is weakly compact i. e. there

is a subsequence .XO‘S converging weakly to some

element, say Xco e Lp(Q ,3“, P, f).

Thus Tn's and Xn's satisfy all the con-

ditions of lemma 3.3.1 which therefore guarantees the

assertion in Th. 3.3.1.

Theorem 3.3.2 Let i be a reflexive Banach space

and let { Xn, $1.1, n z 1} be a 1' -valued

martingale such that

xn e L1(Q,’B,P,f£)

Suppose that 'lIXn||'s are uniformly integrable.
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Then there exists x” g L1(fl , ’5 , P, 1 ) such that

11‘“ [Xn' «0.11: O
n—-)ao

Proof: We define Tn's as in the previous proof and

then the previous arguments would prove the assertion in

this theorem if we could show that {Kn} is weakly

compact in L1( x). This we do by first showing that

[Xn]1 < K , K independent of n .

Because E(Xn+1\ an) = Xn a.e.

an+1dP = Xn dP for all E e fin.

E E

Hence S‘Xn dP converges strongly to a limit for every

E

ac

Ee U n. Now let /‘§(E) =jig1d1? E632,
n:1

E

/:(E) is uniformly countably additive on 52: i.e.

if Enc:En-1 and

I EF; (13

En e: 00 ’ A:} En : X

then lim (E ) : O uniformly in m

n -—)OO m n

This is so because

"/1: Min)" _ £3“ x1m n dP

n

and because )‘XnGD)II are uniformly integrable.

09

Since U 3n generates the Borel-field 3:0 ,

n:1

it follows from Lemma 8 pp. 292 (2, Dunford & Schwartz)
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that Km) converges strongly for all E e ‘35, .

#1

Hence, also for any x*e x lim x*(f X n dP)

n —-)¢O E

exists so that

11 co,Y*a dPn mj(xn() ())

converges for all Y*(€o) é Lw( x‘”) which are simple.

Hence, it can be shown that

as
j <Xn(6>), Y (an) dP

3|; ’1‘

converges for all Y (0)6 Lao ( x ). In other words,

Xn(a>) is weakly convergent in L1( 1%) and hence

bounded ((3), pp. 36).

{ Xn(o) } being a bounded set such that

[I Xn(co)||'s are uniformly integrable it follows from

Th. 2.4.1 that {391(0)} is weakly compact.

This terminates the proof of the theorem.



Chapter IV

Almost everywhere convergence of Banach-valued strong

martingales.

£1. In this chapter we study the almost everywhere con-

vergence of certain special types of martingales, namely

the ones generated by taking repeated conditional expecta-

tions of a fixed r.v., and other cases which can be reduced

to this case. Our proofs are quite different from the ones

used by Doob (1) in the classical real or complex-valued

cases. We use a theorem originally due to Banach (1926,

12) and a generalized version of which is in (2, Dunford &

Schwarz, pp. 332, Th. 3). As pointed out in the foot-note

of a paper by (Schwarz & Beck, 1957, 13), the theorem can

be extended to Banach-valued functions without any change

in proof. We shall state the theorem in a slightly

restricted form in which we shall apply it here:

Let Tn be a sequence of continuous linear

Operators on a Banach space "3 to L1(fl , m, P, f)

such that

i) sup “ TnY(fl)“<OO a.e. for each Yénj

n

ii) lim TnY(0) exists a.e. for

n -4)d)

Y6 BOC’U, «do densein U .

59
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Then lim TnY(a-)) exists a.e. for any

n w

y e ’8 "’

Here T Y(&) stands for that functional element in
11

L1( fl , ’8 , P, X) which corresponds to the element

Y E ‘ E ) under the mapping Tn.

52. Theorem 4.2.1 Let Z(&)) 6 L1( 9, (B , Rx)

where E is arbitrary and let Xn = E(Z )g'n) n 2 1

where .3111 are Borel-fields such that

9n C- gn-H C (B

Let 9:0!) be the Borel-field generated by the field

30"? 3..
:1

and let

xfim) = E(Z I93»).

Then xn(a) converges strongly in 1‘ to X00 (a)

for a.e. 63-

Proof: Define TnZ. : E(Z l 331) where

Z € L1(.Q. ,IE , hi) . Then by lemma 3.1.1, T

n

is a bounded linear Operator from the Banach space

L1(§29(B:P9%) into 141(‘(29 aoP9})-

We have

llTnZ(w)|| e E(IIZ u l ‘33) a.e. ..(4.2.1)

We shall first demonstrate that

9:11P E(" Z I I 3n)< + a0 a.e. ...(4.2.2)

This we could do by appealing to Th. 4.3., pp. 331 in

Doob (1). However, we prefer to give a simple independent
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proof of (4.2.2) in the following lemma:

Lemma 4.2. Let {Xmgn’ n>13%be any

martingale taking values in any Banach space

Then 13(6): sup " Xn(0)" : +00) : 0 if

n

E(“ Xn" )< 0, independent of n .

Proof of the lemma:

Let A : (Co: sup H X1100)" = +00)

n

AM: (GO sup |1Xn(w)l| 7 M)

n

Then m

A = M21 AM and AM :3 AM+1

w 7

Now AM : 1-? Bi where

Bi = (w: llx1(w)fl> M, 1| X10011 éM.

||X2(co)|| éM, . . . "Xi_1(‘°)" 4. M)

Bi's are disjoint and B1 5 (3‘1 .

Since Bi 5 3'1 and [I X1(‘-’)" 5 E( “KN“ \ 91)

for N:? i ,

we have

In )LNfldPZ jflxiudP > M p031)

B1 B1

Hence

N

x d]? = N
N3." N" 14E? BjuxNfldP > M 5 P(Bi)

iU B

1:1 1
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so that

N 1

1 Q
P< 1,31% 5, S 11 mm 4 mjllxNNdP 4M

N

U B

i=1 1

Hence taking N ———fi>°°

C

P(AM) < M

Hence lim P(AM) : O

M ..9eo

But, lim P(AM) = P(A)

M -—)Hfi

and so

P(A) : O

This completes the proof of the lemma.

If 2(0) : «E(w).a where a e 1 , E 6 ‘3;

then we have TnZ(¢-3) 3' Z(€O) for n 2 N. Hence

0

lim TnZ(€0) exists for such 2(0)

r1-—€?¢O

and hence for simple 2(0) measurable with respect to «3'0 .

Now let us apply the theorem mentioned in § 1

IE5 ‘= IH('(): €£Lp ::Ps 3E )

EUZIEFn)

According to lemma 3.2.1, the simple 2(0) measurable

with respect to 3’0 are dense in L1(.()., '1, P, 1 )

and hence, all the conditions stipulated in the theorem

with

TnZGD)

in § 1 are valid. Thus, we can conclude that

lim E(X lfifin) exists a.e. strongly for every

n -—9mo
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2(0) e L1(-Q. goo max).

For any 2(0) 6 L1( fl , (B , P, X) we consider

x00 (0) = E(zl‘i)eL1(Q.1P.1 )

and as

. xn = E(z|‘}rvl) = E( Xalfin)

it follows that

lim X (a)

n -—)‘° n

exists a.e. for any Z 6 L1(Q , (a , P,%).

To show that the limit is indeed X410 (0) we simply

observe that )%(0) converges in mean to X a) by,(

Th. 3.2.1 and that a.e. convergence and conver-

gence in mean are compatible.

This concludes the proof of the theorem.

Theorem 4.2.2 Let {Xn(fl), gm, n 2 1} be

any x -valued martingale where z is a reflexive

Banach space. Let n Xnm)“ , n 2 1 be uniformly

integrable. Then there exists a } -valued r.v.

X00 (0) such that

1 lim X (0) z: X (GO) a.e.
n 400 n 00

Proof: According to Th. 3.3.2, there exists

Xao("’) E L1(fl, at!“ , P, 1) such that

lim

—-)

Hence

lim [- X - X ] : O

n a” n & 1

n a

andr = xde AGE, ”(4.25)

A A



As E(Xn+k'g'n) = Xn a.e. kzo we have

Making k ——-)00 we have because of (4.2.3)

fxndP : [X‘adP for any B e gn .

B B

This means that

“Kati (yin) = Xn a.e. n21

From the preceding theorem, then, we can conclude that

n31; Xmas) : Xeo(‘°) a.e.

Our next theorem is about the almost everywhere

convergence of martingales with decreasing index set.

Theorem 4.2.3 Let { Xn, (in, n _l_ -1 } be any

x -valued martingale where the Banach space x is

arbitrary. Then

lim X = X to a.e.n w nko) _m< )

where

X (”)=E(X1(w)\31 ). E = A 3n
'& - "M w n 4- -1

Proof: We notice firstly that X_n : E(X_1‘$_n) a.e.

Define T as the continuous linear Operator from
n

L1( a , 51: P: x ) to itself, given by TnX :

E(X rim) . The proof will be completed by showing that

for every XE L1(Q , 3‘1, Rx), Tn X converges

a.e. That the limit is the prescribed one follows by
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noticing that it is also the limit we get from the mean

convergence of TnX (Th. 3.2.2).

If X(“) = (x (0)0a 9 86 x 9 E e ‘31]E

Because n Sm” P(E ‘3-n) = HE‘E-lw) a.e.

(see Doob, 1)

lim T X = P E I .a : E X I a.e.11...)» n ( 3E") < EL”)

Hence

lim TnX exists a.e. for any simple

n -—)m0

function

x(a) e L1(Q. P751. P. 1%)

Also

83p H TnX((-1)“ : Strip" E(XI £31K» a.e.

as one can show by a proof similar to lemma 4.2.1.

Now by an application of the theorem mentioned

in §1 we can conclude that

lim TnX exists a.e. for every

‘1-€?°°

X6 L1(S)_g 3L1, 15%)-

This finishes our proof.

33. In this section we shall prove an almost-every-

where convergence theorem by using the idea of optional

stopping (Doob, pp. 300, 1).

Let man) be a random-variable whose finite values
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are positive integers and which may be +00 with positive

probability. Let (Xn, 9n: n 2 1) be a E -valued

martingale and let

{a}: M“) = k }6

u

We shall define the random variables Xn(0) n 21

as follows

 

u

X369) = ij) ”9&0: .15, 111(0)}

e Xm(0)(“’) cafe): 3) 111(0)}

Lemma 4 3 1

u

{Xn’ n’ n21} is a x -valued

martingale.

Proof:

Because {a}: m(0) = k}€ 3k we have

{a}: m(0) >n }€31n-1 and

Hence

{co m(0)< n}e‘3' _1

U

(a) = (w) (o) n" “(0))91 Xn a “2)1’1} + 1E1Xk(0){m(u) =k}

i s gn-measurable .

\1 t:

We shall now prove that E(X ‘3' : X a.e.

n+1 n)

Let A 6 3'; . Then

U V v

Xn+1 dP = Xn+1 dP + X +§P

A A m((.:) 4 n} An m(0) > n}

4' ti \1

Now on { m(o) _ n ’ Xn+1 : Xn and
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V

{111(0) > n} e 3n ; also on the latter set Xn n

and hence by martingale prOperty

U U u

SKIN" dP : 5' Xn dP + J. Xn dP

A

II N

 

A An{m(¢0) g n} “{mM) 7 n}

u

A

This proves the lemma.

Theorem 4.3.1 Let {Xn’ 3n, n 213 be a

% -valued martingale where 3 is a reflexive

Banach space.

Let E( sup “ X510) - X153; 1' )4 +w. XOR») 50

n > 0

Then lim xn(co) exists whenever

n —-)°°

COG-{€93 sup ”Xn(0) " < +00}

n

Proof: Let M)O be any positive integer

and define

mm) = n 06{||X1(0)||§M.. . .

11Xn_,(w)ll 5M. 11 maul) M}

= 00 636 {8:13 "Xn(w) \I< + 00}

Of course {m(Q) : n }ec$n .

Let X , M (U) be defined as follows
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u

Xn. M (a) = Xnm) we{m(m)> n3

HG”) G3€ {imflb)¢L n}

Let Y(O) znsgpO u Xn(0) - Xn_1(9) ”

9

Then I. Xn,M(u)“ é M + Y(CO) , E(Y)< + co

and so

u A

H Xn, Mm)“ “ Z 1

are uniformly integrable. According to lemma 4.3.1

{31 Vinny}n, n

is a martingale and so Th. 4.2.2 allows us to conclude

that

U

lim X , (w)
n a” n, 4":

exists almost everywhere.

U

Since xr1 M(c>) = xnm) if jsgp1 u xjuo)" 5M

the theorem is proved.

Corollary. Let f X , $11, n 2 1} be a if -valued

n

martingale, ‘BE reflexive, such that

E(“Xnu )< C (independent of n)

E( sup “ Xn- Xn-1“) < +00

n2: 0

Then 11111 X (0-1) exists a.e.

n —-)°O n

Proof:

By lemma 4.2.1 P(‘O: sup " Xn(0)"< + ca) : 1
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and this fact combined with Th. 4.3.1 implies the

statement in the corollary.

Analogues of other theorems for real or complex-

valued martingales can be proved as in Th. 4.3.1 for

reflexive Banach spaces. We omit them here for brevity.

$4. In this section we should like to point out

what can be done by direct applications of convergence

theorems about scalar valued martingales (see Doob, 1).

The fundamental idea here is simply that if {Xn’q‘n’ n 21}

is any a -valued martingale then

{ x*(Xn("))' '55, n21}

* as”is a complex-valued martingale for any x G .

 

Theorem 4.4.1 Let {Xn’ an, n 21} be a

x-valued martingale where x is a reflexive Banach

space. If E(Il Xnu)< C independent of n, then there

exists a Bochner-integrable r.v. X” (0) such that

Xn(6)) converges to - x.°(u) a.e. weakly.

Proof: Because each Xn(fl) is Bochner integrable,

there is a separable subspace 10 C i such that

£160) 6 $0, n21 except for we N, P(N) : O. **

% being reflexive so is x 0' Also, Io : E0 =

* *

(x2) and hence fife is also separable. Let

x )1!

{x E x be a denumerable set of elements
1 * o *

dense in x . Now for each x1

{$.23an gm n21}
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is a complex-valued martingale such that

E<|x§<xn)1) é 11x1“. E(IIXHIHSC-IIXI"

Hence

3(-
lim x( )

n ___>a° 1 xn

exists for all 1 except for 06 M. P(M) : O.

a: If

Let x 6 10 be an arbitrary element and let

* *
x:L ? x

k

 

Then if caé M

|x*(Xn(°)) - x*<xm<~) >1

4 |x*(xn(e)) - x: (xnwnl +| x*<xm<~)) - x§k<xm(o))|
k

* $1-

+ lxjkoglwn - xikognmnl

é n x*- x:k” . “Xn(0)“ + u x*- xik" . "Xm(0) "

+ ‘x:k(Xn(f-3)) - xfk(xm(o))\

As we can choose M such that fun 04 M. sup "Xn(w)“ .

n

< + CO also,

hence it follows from above that

lim x*(X (0)) exists a.e.

n 00 n

* «-

for any x E 5*. .

30 being reflexive is weakly complete and

hence there is a r.v. X06 (0) such that
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lim x*(Xn(w)) e x*(xd,(e)) a.e.

n -4)¢°

and the exceptional set of measuregis independent of

x*. It is also clear that X (0) is Bochner-
no

integrable.

This completes the proof of our theorem.

§5. In this section we present an example of

martingale taking values in a non-reflexive Banach

which is uniformly integrable and yet converges to

r.v., either in the mean or a.e. (neither strongly

space

no

nor

weakly). This then shows that some restrictions on the

Banach space 1 in which the martingales considered

take their values, are necessary for ensuring any kind

of convergence.

We consider the probability space (.Cl,’fi3 , P)

where

.g)_ = (O, 1) : the open unit interval

IE3 : the Borel subsets of the open unit

interval

P : Lebesgue measure

Let x- be the Banach space of all Lebesgue

integrable functions on (O, 1) with the usual norm. Let

61(t) be the following element of x , (0<Q<1) :

63W) =1 04 tgfi

: O a< 1341

Let '3' be the Borel-field generated by the
n
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intervals (in, lei—1) Oémé2n-1for n21.

Define Xn(0>) as follows

11 6 E m )

W =2 ,_2_§__,_ in “(a -t-J-

: O elsewhere.

It can be easily seen that {Xn’ q'n, n 21} is a

martingale and that

“Xn(¢o)" E 1 a.e.

ll d n21E(ll M”) II)

E( w - 6) = 1 X = Onsépo“ xn< ) xn_1< >ll>
0

But if w # p/2q then Xnaa) does not go to any

limit either weakly or strongly. Actually no subsequence

Xn (0) converges weakly or strongly if u i p/2q .

Hence Xn(0) does not converge in L1( x) - mean either.

 

N. B. _ The function 61(t) from the unit interval

to L1 was given by Clarkson (5) as an example of a

Banach-valued absolutely continuous function having

derivative almost nowhere. Our construction of Xn(w)

is patterned after Doob's (1) method of applying martingale

theory to the theory of derivatives.



Chapter V

Some applications of the general theory.

§1. In this chapter we shall show how martingale theory

can be brought to bear upon some classical problems. We

shall not aim at exhausting all possible applications of

our theory of Banach-valued martingales, but shall rather

indicate how our theorems can tackle the extensions to

Banach spaces of some of the problems which Doob (1)

has considered in the complex-valued case.

§ 2. In this section we consider two different types of

strong law of large numbers for a sequence Yn(¢d), n = 1, 2,

.... of independent, identically distributed r.v.'s

taking values in an arbitrary Banach space 3. . The

results are stated in theorems 5.2.1 and 5.2.2; they

generalize Mourier's (10) results which were proved for

separable and reflexive spaces. However, Mourier's results

are more general in the sense that they concern arbitrary

stationary sequences.

Theorem 5.2.1 Let Yn(€o), n = 1, 2, . . . . be a

sequence of independent, identically distributed r.v.'s

taking values in an arbitrary Banach space

a and let Y1(G) be Bochner-integrable.

73
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If

n

sum) = 2: Y1(“)

1:1

5 a

then lim n( ) : E(Y1(U)) a.e.

n ——€>OO n

N. B. Two a -valued r.v.'s 21(6), 22(0) will

be said to independent if for any two Borel sets B1, B2

of SE

P(w: 21m) 5 B1, 22(0) 5 B2)

: P(w: Z1(0)€ B1) P(u: Z20») 6 B2)

They will be said to be identically distributed if

for any Borel set B of :!E

P(GO: Z1(o)é B) : P(Cd: 22(03) 6 B)

1

ed and one of them, namely Y

Proof: Because the X s are identically distribut-

1 is Bochner-integrable, so

are the rest. Hence we can consider their conditional

expectations relative to any Borel-fields.

According to Theorem 4.2.3

lim E(Y S. S
n _;’°°’ 1‘ n’

exists a.e. (in the following, the symbol

n+1’ ...) — -w

E(z(¢o) | ztm), te T)

shall stand for a conditional expectation of the Bochner-

integrable r.v. Z(€o) relative to the smallest Borel-

field with respect to which the family of r.v.'s
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Zt(u), t e T are measurable .)

..)

Now

E(Y1|Sng Sn+1y °'°° ) = E(Y113n"yn+1’ Yfl+2’

: E(Y1‘Sn)

since the Yi's are mutually independent. Hence

lim E(Y |s ) = lim E(Y s , s ,...)
n §°° 1 n n a“ 11:1 n+1

: X

'00

exists a.e.

Also, as Y 's are identically distributed

 

E(Y1‘Sn) = E(YJ‘SH) a.e. 1_4_J§._n

so that

l n

— 17'E(M,|sn) - n 51 ~(Y313n) a.e.

1 s

_ .. — .9_ n E(Sn)§f _ 11 a.e.

s (so) .
Heme 11m 2 = lim E(Y1‘Sn) = x_°°

n -—)00 n ‘;?‘°

a.e. exists.

That x_w(o) = E(Y1(0)) a.e. follows from the fact

that

X : constant

-00

: E(X ) a.e.

-oo

because of the Zero-one law and that



is a martingale.

This completes the proof of Theorem 5.2.1.

Theorem 5.2.2 Let Yn(¢0)', Sn(0) be as in Th. 5.2.1.
 

If

Y1(0)€Lp(n, 8,1393) 1ép<ao

then

S

11111 [.2— - 130(1)] : o

n -€>OD 11 .f

Proof:

According to Theorem 3.2.2, there is

X 6L(fl,%‘,P,%) suchthat
"fl p

n iaLEWASn
, an“. ) - >811? = o

The conclusion of this theorem then follows by

proceeding exactly as in the previous proof.

§,3. In this section we shall consider the problem of

existence of derivatives with respect to nets of a

countably-additive Banach-valued set function defined on

an arbitrary probability space. It would be clear from

our considerations that similar results can be proved for

ab-finite measure spaces. We limit ourselves only to

the case when the set functions take values in a reflexive

Banach space.

Examples due to Bochner (7) and Clarkson (5) clearly
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indicate that some restrictions on the Banach space are

necessary.

We shall first state a lemma:

Lemma 533.1 Let (.0- ,(B , P) be a probability

space and let gvn} , n 21 be a sequence of

Borel-fields such that

gnc (3 for n71

and each 3n is generated by a finite or denumerable

number of disjoint sets { Mgn) , 3 Z 1} i.e.

Efih is the smallest Borel-field containing

{M3130 , 1:2 1} . Furthermore, for any n and 3

let there be a k 2 1 such that

n+1 (n)
M} ) C’ Mk

Let ? (-) be a countably-additive x-valued

set function defined for sets in

27 ’3.
n=1

and let (I be a reflexive Banach space.

Let Xn(0) be a sequence of I-valued r.v.'s

defined as follows:

awn»
' (n) (n)

xnm) W if menJ , P(MJ ))o

= 0 otherwise.

Then there is a r.v. x(¢o) 6. L1( Q , go", . RX)

such that
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97(A) = SXKO) dP (where a is

A

an

the Borel-field generated by U G}; )

n:1

for all

m

A E U qn if and only if the real-

n:1

valued r.v.'s " Xn03)1) are uniformly integrable.

Proof: It is clear that 5n C €511“ for n 21

and Xnab) is measurable with respect to 'EE.

If "Xian-3) I) 's are uniformly integrable, then

Xn09)'s individually are Bochner-integrable and so it

is meaningful to talk about their conditional expectations.

{Kn’ '5‘... n21)

forms a martingale. According to our Theorems 4.2.2 and

Also

3.3.2, there exists a r.v. X(0) é L1(Q, i, P, f )

such that

lim XnGD) : X63) a.e.

n-—J)OD

and

n figmo [:Xh - Xi11 : O

and

E(X [‘11) - xn a.e.

Hence
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“"3"xcr for AeU n

n:1

This proves that

9m

A

Conversely, i f

?(A)=S.xcP forA€I°Ja 3n

A .

n:1

then E(X13h) : Xn a.e.

and hence " Xn ‘| 's are uniformly integrable.

N. B. A sequence of partitions {1111311)} of

I)— as in the lemma is called a net. The function

X(w) is said to be the derivative of q with respect

to the probability measure P, relative to the net

{ Mg“) } .

For the formulation of our next theorem we need the

concept of "total variation" of a x -valued set

function 9 defined on a field '3' . We define

the set function 199(A) , A e g! , which we

shall call the total variation of 9 on A as follows:

195%) = {sup {.51 I) 9 (A1) 11}

where the supremum is taken over all finite disjoint

A.sequence A1 of sets in 3:! such that A1 C

Clearly n q (A) “ é ”9(A)

If g is countably additive on , then 199M)
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is also countably additive on g .

Theorem 553:1 Let ( Q. , (B , P) be a

probability space and let 9n, 1, g , and

’X be as in lemma 5.3.1. Then

9(A):)X(w)dP Asa: 3:651,
n:

A

where

X(co)€ L1(Q.3;.o.1=.%)
w

11" and only if «99(A) on ‘50 = U n

n:1

is finite and absolutely continuous with respect to

P i.e. for any 6 7 0 there is S 7 0 such

 

that

whenever

P(A)4S' , and A 5‘32) .

Sufficiency:

Proof: If ”9(A) is a finite, non-negative,

countably additive measure on '3‘0 which is a field,

gu—

then it has an unique extension 4% to the Borel-

field i» generated by go . It follows from

simple considerations that :59 on 3” is absolutely

continuous with respect to P if 199 is absolutely

continuous with respect to P on 310 . According to

the Radon-Nikodym theorem, there is a non-negative

function 1(a) measurable with respect to '31”

such that



81

69M) = S Y(0) dP As 1 .

A

Define Xn@b) , Ynab) as in lemma 5.2.1 by means

of 9 and 7139 respectively.

'— Clearly I|Xn(63)" éYn(€0) a.e. n 2 1

4%? 'being an integral, it follows from lemma 5.2.1

that Yn's are uniformly integrable. Hence,

IIXn" 's are uniformly integrable and this implies

according to lemma 5.2.1 that g has the integral

form as stated in the theorem.

Necessity: If g (A) = f X(0) dP then

A

199M) 4 I “ xm) 1| dP

A

and this immediately proves that ”,(A) is finite

and absolutely continuous with respect to P on
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