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1
S. D. CHATTERJI ABSTRACT

The main purpose of the theslis 1s to consider
conditional expectations of r.v.'s which take values in
a Banach space and to study the limlt properties of
certain sequences of such r.v.'s, These sequences are
called martingale sequences, following the terminology
of Doob. We first of all demonstrate that every Bochner-
integrable r.v. has a conditional expectation relative to
any Borel-field and establish some of the basic prop-
ertles of conditional expectations. Then we go on to
study the convergence in the mean and convergence almost-
everywhere of martingale sequences. This we have done by
studying operators on certain generalized Lebesgue-
spaces, dlscussed 1n our Chapter 1l1l. We have established
the generallizations of most of the theorems of the
classical theory of martingales and have shown by a
counter-example in Chapter 1V that some restrictions on
the Banach space in which the r.v.'s take value, are
necessary., In the last chapter, we have considered

some applications of our theory.
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Introduction

The notion of a measurable function defined on an
arbitrary measurable space and taking values in another
measurable space 1s a fairly well-known one in modern math-
ematics. When the range space of the functions happens to
have a topology also, various speclal concepts of measur-
abllity become important. Much research has been carried
out, for instance, 1n the case when the functions take
values in a linear topologlcal space or more restricfedly
in a Banach or a Hilbert space. A considerable body of
the research 1s devoted to extending sultably the ordinary
theory of Lebesgue integrals for real-valued functions.

For functions taking values in a Banach space, there exist
at least three different important concepts of measurablility
and integrability. This sort of extension of the theory of
real-valued functions has been carried out in recent years
in the study of random variables (r.v.) which after all

are measurable functions on a finite measure space. Frechet
(18)* considered r.v.'s taking values in a metric space and
introduced notions of mean and variance for such r.v.'s.

Doss (19) considered r.v.'s taking values in topological

* Numbers in brackets refer to the bibliography at
the end.
1
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spaces with uniform structure énd proved various generaliza-
tions of the classical strong law of large numbers. Many
other studies have been made with r.v.'s taking values in
locally compact topological groups. But 1t seems that one
can generallize the classical results of probability theory
most satisfactorily only when the range space is at least

& linear topological space for then much of the usual
integration theory remains valid. In this direction,
plioneering work was done by Mourier (10) who considered

the range space to be a Banach space and not only proved
some strong laws but also studies characteristic functionals
of r.v.'s taking values in Banach spaces. Since then quite
a few papers have been published concerning general strong
laws of Banach-valued r.v.'s, e.g. Beck & Schwartz (13),
Beck (20). However, to the best of the author's knowledge,
no more than one attempt has been made to define an extension
of a basic concept of probability theory, namely, the con-
cept of conditional expectation of a r.v. taking values

in a Banach space. Beck & Schwartz (13) do define a
notion of conditional expectation that we have used here,
but they did not make any attempt to prove 1ts existence.
Dubins (21) defined a conditlonal expectation of a more
general nature than ours but the difficulty with hils defini-
tion 1s that it does not yleld an exact analogue of the
standard theory. There 1s a baslec difficulty in the process

of defining conditional expectations for r.v.'s taking values



in spaces like Banach spaces. That difficulty 1is the non-
existence of a general Radon-Nikodym theorem for set func-
tions taking values in non-compact spaces. The definition
that we have used circumvents this by considering Bochner-
integrals, for which although a general Radon-Nikodym type
theorem 1is not valid, much can be done owing to the simple
structure of integrable functions.

Our main purpose here is to study this particular
notion of conditional expectations for Banach-valued r.v.'s
and then use this definition for considering generalizations
of martingale theory for Banach-valued r.v.'s. One of the
most important considerations in the study of martingale
theory of scalar-valued r.v.'s 1s that of convergence of
the martingales. We have studied this for the case of
Banach-valued martingales speclally from the point of view
of treating conditional expectations as operators on suit-
able Banach spaces. For instance, our mean convergence
theorems in Chapter 111 are reminiscent of the work of
Lorch (22) concerning monotone sequences of projections
on a reflexive Banach space. Our results on the mean con-
vergence of martingales, specially, have been obtalned by
simple linear space methods which are different from Doob's
(1) approach. For proving almost-everywhere convergence
we have used a generalization of a theorem of Banach and
thus shown how many of the properties of martingales are

slmply the properties of a type of sequence of operators



on a Banach space.

In Chapter 1 we deflne our conditional expectatlon
and prove 1its exlstence and general properties.

In Chapter 11 we prove for future work weak compact-
ness propertles of certaln Lebesgue type Banach spaces,
some of which at least (e.g. Th. 2.3.1 and Th. 2.4.2) are
not to be found in current literature.

In Chapter 111 we consider the mean convergence of
Banach-valued martingales. We prove the most general mean
convergence theorem here under the assumptlon that the Banach
space 1s reflexive. As shown by a counter-example in Chapter
1V, it 1s clear that some such restriction on the Banach
space 1s necessary.

In Chapter 1V we conslider the almost everywhere con-
vergence of Banach-valued martingales. We prove three
different types of theorems, some using a theorem of Banach,
one using Doob's idea of optional stopping and one using
results from standard martingale theory.

In Chapter V we consider two different applications
of the theory, one to the study of the strong law of large
numbers for Banach-valued independent 1dentically distribut-
ed r.v.'s and the second to the study of derivatives of
Banach-valued measures with respect to nets,

An attempt has been made to construct as far as was
possible, a theory based only on linear methods. It 1s

hoped that in the future more powerful linear space methods
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will make the phenomenon of convergence of martingales
of Banach-valued r.v.'s quite transparent to our com-

prehension.



Notation, some definitions and known theorems

Let..(l.be an abstract set of elements or points w .
Sub-sgsets of E)- will be denoted by upper case Latin letters
like A, B, F etc. Given two subsets A and B we shall

mean by
ACB = A contalned in B
BCA = B contained in A
A UB = union of A and B
ANB = intersection of A and B
Ac = the complement of A
A - B = An B
AAB = (A -B) U (B - A)
95 = the empty set

If ACB and BC A then we shall write A = B . The
symbol "g" shall denote the relationship of an element
belonging to a class. We shall occasionally use the symbqgls
‘"9" and "3" as short-hand for the phrases "such that"
and "there exist(s)" respectively.
By a fieldj%f sets.h1flwe shall mean a class of sub-

sets such that

1) # andﬂ are in ?’

11) 1t A€F , then 2%

111) If Al € 9: , 1=1, 2, .. n where
n is a finite postive integer then

U a e F

i=1
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By a Borel-flield of sets in S:l we shall mean a
class of subsets 9’ of Q such that
1) ¢ and {1 are in 3;
11) 1t A €T then a%e P
111) 1f A€ F 1=1,2, ...( a denumerable
sequence of sets in ?F ) then L{ Al 6?5
A "probabillity space" will be a triple ( ()w @; )
P) where f)- is any abstract set, ?% , & Borel-fleld
of sets 1n.§1., and P 1s a non-negative function defined
on ?ﬁ such that
1) P(a) 0 for all Aec}
11) If Aie¢3l 1i=1,2, ... then
P( K‘.LJ AL) = io_i_"_1P(A1)

111) p(LLly =1 .

By a "Banach space":xover the complex numbers (for
brevity, Banach space) we shall mean a set of elements
which is such that

1) It forms a vector space on the field of
complex numbers

11) There is a function (| x|| defined on
36 s called norm such that

AA-xll = VAL xi Aany complex number
lxesllg Uxl o+ 0yl

Nxll =0 if and only if x = O (the



zero element of the vector space)
111) for any sequence Xy, 1=1,2, ...

of elements of ’x' for which

1im -x.{ =0
m,n—)oo“xm n

there exists an element xg¢g X such that

1lim x =-x\ =0
n-—?oo“n

A complex-valued function x* defined on % such
that
x¥ (x +y) = < (x) + x° (y)
x* (A.x) = ﬂ.x* (x) 2 any complex number
'x* (x)]€ A. |l x|l for some A »O and all
X € X will be called a bounded linear functional on x .
Occasionally we shall use the notation x, x*y for x" (x).
With
N x N = sup{ | x* ()]s ||XIISI}
the set of all bounded linear functionals on I forms a
Banach space x* called the "dual" or "conjugate" of €.
We shall denote by € * the dual of " l.e. 3¢ =
(=" .
If we consider the function x ¥ (x*) on 'x" de-
fined by
**(x*) = x"(x) xe X, x fixed.
then x** 1s a bounded linear functional on ‘x* with
h=**n = p=tl

If all the bounded linear functionals on x* are



of this type then we shall write ¢ = ¥
and call 3 a "reflexive" Banach space.

A sequence of elements x, € X 1s said to be
"weakly convergent" to x e X 1ir

1lim x*(xn) = x*(x)
n =P 00

for all x ¥ e f*
A set of elements S C ¥ will be saild to be "weakly
compact" if for any sequence of elements x,€ S there 1s

a subsequence of elements x which converges weakly to

nj
some element x which may or may not belong to S.
(Actually, in standard theory, this 1s called conditionally,
sequentlially, weakly compact. But because we shall not
have occasion to use any other kind of compactness, there-
fore we prefer this briefer expression. However, the works
of Eberlein and Phillips (see Hille & Phillips (3) pp.37)
show that in many cases our definitlon of weak compactness
1s the same as the notlion of compactness under the weak
topolocy of J& which we do not discuss here.)

The following theorem of Pettis shall be used often:
(For proof, see Dunford & Schwartz (2), pp. 68-69).

A set S 1n a reflexive Banach space 1s weakly com-
pact if and only if it 1s bounded i.e. { I xi: xe S}
1s a bounded set on the real line.

A reflexive space 1s weakly complete i.e. whenever a

sequence X, of elements is such that lim x* (xn)

n ——pyed



10

exists for every x* € " there exlsts an element x
such that x,'s converge weakly to x .
A bounded linear operator T from a Banach
space % to a Banach space ,y is a function on ?
taking values 1n 41 such that
1) T(x + y) = T(x) + T(y)
11) T(%x) = A T(x)
111) flmxN &€ allxll Apo, anda xe X .
We define |l Tl = sup{ll Txll: |1 x I}
The following 1s sometimes called the Banach-
Steinhaus theorem: "Let €, fj be Banach-spaces and
{Tn} be a sequence of bounded linear operators on x
to ™ . Then the limit

Tx = 1lim T x
n —» 0®©
exlsts for every x € x if and only 1if

1) the 1limit Tx exists for every x 1in a
everywhere dense sub-set of I

11) sup || Tn x"( + 00 for each x € %
n

When the 1imit Tx exlists for each x ¢ X , the

operator T 1s linear and bounded and

NTH & im || Tn\\Esup|| Tl L + 0"
n—-yod M

(For proof: See (2) Dunford and Schwartz, pp. 60-61.)
| If X(@) 1s a function on a probability space
(.O. ’ '& » P) taking values in a Banach space x then

X(w) 1is said to be strongly measurable with resvect to
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B ir

lim x,(w) = X(@) a.e. (everywhere except
n—y>ed

on a set of points of P - measure O) where

x@) = F 8y )’7( )(o)

2 2B | 5~ B -, \{E(ril)z_()_

AR (@ =1 1f weF for any set F
in .I)_ .
=0 if weF°
[~ 2]
Define X,() to be integrable 1f 3 |lafn)| p(z(p))
C=1

<:+ o0 and write

J'Xn(w)dp = §1P(E§_n)) afn)

We say that X(»') 1s Bowchner-integrable if there exist
a sequence of integrable functions Xn(&» as above such
that

lim X (W) = X(w) a.e.
n—y o n

lin || S X (w)dp - Sxm(w)dp”

m, Ney o0

and

Hence

1im X (w)dp
n->e0 n
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exists and this we define to be 5 X(. )ap, called the
Bochner-integral of X(@W) , occasionally denoted also by
us as E(X(W)) or E(X) .

It can be shown that X(&) 1s Bochner-integrable

if and only if
1) X(w) 1s "almost everywhere separable-
valued" 1.e.3 Ne"@
P(N) = O such that the set SC X
defined by
S ={ X(W) : we Nc}
has a denumerable dense sub-set.
1) EUX@)I ) = ju x(@) ]| 4P £ + 00
(If (i) 1is satisfied then [| X(w)]| is
automatically a non-negative function
measurable with respect to B .)
For a dlscussion of Bochner-integrals see (3) Hille &
Phillips, pp. T71=89.

The notion of "uniform integrability" of a family of
complex-valued measurable, integrable functions xt(a» te T,
on ( .(2 , B , P) shall be defined as follows:

For any € » O , there 1s a 870 such that
"f'xt( ) dP¢ € forall t € T
‘A
Whenever P(A) < § .

In the text a theorem, lemma or equation numbered

u.v.w, where u.v.w. are positive integers will be the w th

one in v th section of u th chapter.



Chapter 1
Conditional expectation of Bochner-integrable random variables

§ " Let ( gl , B , P) be a probablility space
i.e.S)- be an abstract set of elements co , (63 ’
a Borel-fleld of sub-sets of I)- , called measurable sub-
sets and P(:) a countably additive, non-negative set-
function defined on ®© and such that P(-(1-) =1 .
Let ‘X  be a Banach-space. We shall denote by I oxIl
the norm of an element x €& ¥ and by ** the
dual of .

A function X(w) defined on.gl and taking values
in 3E which 1s strongly measurable with respect to the
Borel-fleld B will be called a X -valued strong
random variable or when there 1s no scope for confusion
simply a rahdom variable (r.v.).

Let EF be a Borel-fleld contained in ’63 i.e.
(} C ’6; and let X(w) be a r.v. which is Bochner-
integrable. Following Doob (1, pp. 17) we shall define
the strong conditional expectation of X(@W) relative to
or given (} , in symbols E(X l‘;) as follows:

Def: 1.1.1.

E(X |}) is a :x -valued Bochner-integrable
r.v. strongly measurable with respect to the sub-Borel-

12
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field ?; (for brevity a EF -meas. r.v.) such that for
every A é:E; it satisfies the equation

S E(X‘?’) dP = 5‘ XdP . . . . (1.1.1)

A A
where the integrals are taken in the sense of Bochner.

We shall now prove the existence and uniqueness of
E(X I ?F) for every Bochner-integrable r.v. X(&) and
Borel-field 1 C."@ .

The standard proof for scalar-valued r.v.'s X(o)
cannot be extended to cover the situation here since the
analogues of the Radon-Nikodym theorems for set-functions
taking values in a Banach-space are not in general valid.

For counter-examples see Bochner, (7) Clarkson (5).

Theorem 1.1.1 E(X \?ﬁ) exists and 1s unique except

for sets of measure 0 for every Bochner-integrable
r.v. X(@w) and any Borel-field ‘}' C (&B . (Notice
that no assumptlions on the Banach-space :}E are made.,)
Proof:

We shall use the fact that X(@W) being Bochner-
integrable is almost everywhere (a.e.) separable-valued
and E(IX(@)ll) £ +© . (3, Hille pp. 80) Because X(w)
is almost everywhere separable-valued we might and shall
without loss of generality consider SE: to be separable;
for otherwise, we can carry out the proof by restricting

our attention to the separable sub-space in which the values
of X(w) 1lle with probability one. 2 being separable
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there exists a denumerable determining set (3, Hille
pp.34) 1i.e. 1linear functionsls x*{ e xX* 1:=-1, 2, ...
such that for any x € X we have

Nx 1l = sup | <t )|

Of course it follows that
*
I It <1

From equation (1.1.1) it follows because of an
elementary property of Bochner-integrals that for every
xe x*

x* { B(x | F )} = 50 (@) | F) ae.

We shall first show that 1f E(X |F) exists then
it must be unique except for sets of measure O i.e. 1if

Y1(w) R YQ(U) , are r.v.'s which
satisfy def. (1.1.1) then

Y1((.>) = Ye(w) a.e.

This follows because

§Y1 (W) 4P = SYQ(Q) dp
A A
for all A ¢ ‘} and hence
#* S 3%
x Y dP) = X (S Y> 4P
1 ( Al 1 RS2
3* -
l.e. SAxi (}{1 - Y2) dP = 0

Now Y1, Y2 being 3‘ -meas., 80 1s Y1 - Y2 and hence

xi* (Y1 - YQ) is .3' -meas. It follows from a standard

theorem in measure theory that

* -
Xy (3{1 - Yg) =0 a.e.
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Hence
except for WE N .
P(N) = O
so that if wé¢ N
Ny, @) - @l = sup | xy* (¥,(@) - v,(e))] = 0

i.e. Y1«o) = Ye(m) .
This proves the uniqueness of E(X 'Eﬁ) .

We shall now prove the existence of E(X lEﬁ) . To
do thls we consider two different cases:

(1) X(w) 1is countably-valued 1.e.

o0
X@) = 5 a, X (@ with m(ll x@) Il ) =
n=1 n

g}u%nu%)<+co.

where

an(E 3E ’ EnEE?B , c‘ cw){j- 1 &>e]%1 n=1, 2,

n =0 ®WEE

and En's are disjoint.

N
Consider YN(E) = - anfn@0) where
n=1

P(E | ) = 20 K, @)|F)

i.e. a conditional probability of En relative to SF ’

£,(«)

and let
N
X (W) = w
N( ) AE% “n CKEn( )

Then
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N o x
Xy (Yyw)) = gg;xi (a,) « (@)

N
= nzz:1 E(xi* (an) O(En(w)\?’:')

E(;xi* (an) (XE (w)l?")
n=1 n

Hence for N >rM y, using standard properties of con-
ditional expectations of scalar-valued random varliables

we have
3

]xz (YN-YM)I.:lE(g X, (Cl..)?fE(w)\?p)-
M * X n=1 n
Bz (a0 (@] F)

n=1

N
¢ B 5. x (@) X @l|F)
n

n=V+1
N
¢ BCE ol Xg |F) = s, - x 0| F )

Hence

|ty @) - g )l = sipl xy ¥y - )|

ému%_wuﬁ)nwuw)

Now
1lim X, = f =0 a.e. and
M, Ne3oo I Xy = X Ml
W - 5,0 & 2 nxii a.e.
From whence
1 E - | =0 a.e. (1 Doob CE
M N{%ﬁﬂ C %y XMl 15 ) ( 5
’ Pp.23)
o0
Hence the series Y(w) = an Q.. fn(w) converges strongly

a.e,
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It 1s also clear that

jy.drz S XydP  for all A ceee (1.1.3)
and hence Y = E()(N I k) according to Def. 1.1.1

Now

XN((J) —y ¥X(w) a.e.

I\ XN(co)H < x(w) which i1s integrable \-(1.1.4)

YN((J) —> Y(w) a.e.
2 cr
hyge € 2 | Foe souxi] 3
which 1s integrable.
Hence applying the domlnated convergence theorem for
Bochner-integrals (3, Hille pp. 83) we have by passing

to 1imits as N —9) o0 on both sides of (1.1.3)

Also Y(w) Dbeing the a.e. limit of Y (@) which are

N
g -measurable r.v.'s 1is r} -meas, Hence we have

proved that

o0
@) = 3 e P(E|F) = E(X [F)  a.e.

It is also clear from (1.1.4) that

Nrll €e(ixu|F) a.e. (1.1.5)
(11) Let X(w) be an arbitrary Bochner-integrable

r.v. Let &, be a denumerable dense set 1in % .

Then for any K=1, 2y, 3, eeee
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00
()— = U (AN Il X(“’) - an " é 1/k}
n-_:1
oo
:“‘2‘ Sn, k
Define Xkab) k=1, 2, as follows
W) = a S
= a € S N s®
2 Wwe 2, k 1, k
= a s 5 .ns®  eta
- 73 WE >3, ¥ N 29, ¥ " x
Obviously for all @ € Q
| X, @) - x(@) I & 1/x - - - (1.1.6)

I x @< I x@ll + 1/x
and hence Xk(w) is Bochner-integrable.

Let

Y, @) = E(x |F)
which exists according to the proof of case (1) above.

For n$ m , and any xI of the determining set we have

I, (4= ¥l = 1 < (20 [F) - mex |5 )
=l G (x| F) - B} (Xm)l'-}’l)|a.e.
= | B( xi (xn-xm)l'}')l a.e.
LE(Ixy (X - %) | F) ae.
ce(lx - x|l ,‘3'1) a.e.

Hence

| y -vl-= snilpl xy (v, -v)]| £ENX, - )gnlll‘}) a.e.

el x - xW|F)+Ehx -x|F) ae.



19

L 1/m o+ 1/m a.e. because of (1.1.6)
Hence
lim l¥t,-xl=0 a.e. so that
lim Y, (@) = Y(@) exists a.e. ...(1.1.7)
n —pe0d

From (1.1.5), (1.1.6) and (1.1.7) we have now a.e.

11 = X(w
n-xihoxn(w) (@)

%@ & Ix)l

1lim Ynﬁo) = Y(w)
n =—Ja0

@l < = x 1| F ) < egxe@n +1 [F)
= E(I] x(o)ll |%) + 1
Also because Y = E(Xn"ﬁ) we have for all Ae‘;

.£ X, 4P = _{Yn dpP ceeeed(1.1.9)

---(1.1.8)

Because of (1.1.8) we can pass to the limit as n ——poo
on both sides of (1.1.9) invoking the bounded convergence

theorem of Bochner integrals (3, Hille pp. 83) thus obtain-

ing
g. X dP = J; Y 4P
A A _
This then proves that YW) = E(X l?ﬁ) .and completes

the proof of the theorem.
§ 2. Properties of strong conditional exvectations:
Almost all the properties of conditional expecta-

tions of scalar-valued r.v.'s (1, See Doob pp. 20-26)

can be established for the general Banach-valued case and
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thelir proofs can elther be obtained by mimicking the
usual proof or can be derived from the scalar-valued
case. In the following we shall mentlon a few of the

standard properties.

Theorem 1.2,1 If g? i1s a Borel-field such that
A E g implies that there 1s B € 9:.' such that
P(AA B) =0 then

E(x@) |F) = exe) | & ) a.e.
Proof: Let {:x;} be a denumerable determining
set for the X(wW) values in FE . Because of the
validity of the theorem for scalar r.v.'s we have

x’i’ C E(x|’3'1)) = E(x;(x)l '3;) a.e.
E(xr(x)\ g) a.e.

xi*(E(xlfﬁ) - E(X \Q)): 0 a.e. for

each 4

Hence

so that
e {9 - =x|ié)ll
= sxilp\)(:(E(xH?) - =8 ))\: 0 a.e
This proves that
ex |F) = Ex|9§) a.e.
Theorem 1.2.2 suppose &, € §, are Borel-rields

and that some version (and therefore every) of

E(X(w) , g 2)' is measurable q‘ .
Then

E(x@)]| €,) E(x(@) | §,) a.e.
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Proof: Let {xi*} be as in the previous theorem.

Then

x* ( E(x | gg) )= = ( x1*(X) l @2) a.e.

E ( x1*()() (%1 ) a.e.

(because of the validity of the theorem for scalar r.v.'s.)

Hence

*(ex1§) - =x|§))= o a.e.
for each 1 so that
NEEx [§) - Bx 1§, N = spo| x*CE(x | §)
-ex |90 =0
which proves the theorem.

Theorem 1.2.3: If f(@) 1is a scalar function

measurable with respect to '5' and if both X(®W) and
f(W)X(®) are Bochner-integrable then
E(x@r@) |F) = 1@ E(x@|F) a.e.

Proof: As before, the proof can be derived from the
corresponding theorem for scalar r.v.'s by the use of the
determining set { xi*} .
Theorem 1.2.4: For any Borel-field } C 'B

1) E(al‘}) = a a.e. for any ae X

11) E ( sn_'cjxj |‘5 ) = ,3_ cJE(le‘}) a.e. for

J=1 J=1

any finite number n of scalars c and Bochner-integrable

J
% -valued r.v.'s XJ(u) .

111) Nex|F)H)| <=lixi|F)

iv) If 1lim X, (@) = X(@) a.e. and if there
n —3
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exlsts f({) 7 O integrable and such that
I x @ || £ f@)

then

o EX | F) = Ex|F) e
n —ded

v) For any bounded linear operator T on x
to another Banach-space ’\j
E(rxw) |F) = TE(X|F) a.e.
Proof: i) and 11) follow from the very definition
of conditional expectation. 1ii) Let .{ xi*} again

be a determining set for X(®) values in 2S¢ . Then

NE(Y|F) | sup | x,"( Ex{P)) |
swip l E(xi* (X)I?‘)‘_‘_ slép dei*d’r;)
£ e(nxnlF)

iv) X() 1s clearly Bochner-integrable as

“X(w)“ £ f(®) a.e. and so E(X“}l) exists
(Th. 1.1.1)
N =x | F) - =x 1Tl c=Clx, - x0T by
(111) above
Now

I X, - X“ —> 0 a.e. and

I Xn - x|l £ 2 f(W) a.e. which is integratle
Hence by the corresponding theorem for the scalar r.v.'s

(1, Doob pp. 23) E(|| X, - x| |?) —y O 80 that we
have the desired result from the preceding inequality.
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v) T(X(w)) is Bochner-integrable (3, Hille

pp. 84) and by a standard theorem for Bochner integrals
(3, Hille pp. 83)

_f TX(®) d P = T(j;x X(@) dP) Aeh

A

STITI;?U) ap = T({ X(@) dP) = T({E(X |F) ar)
= jAT(E(xHi)) dp

Also T E(X |}) is '}-measurable so that according to
Def, 1.1.1 we have

TE(X|F)) = E(T(X(@)] F) a.e.
Theorem 1.2.5. If q C ? are sub-Borel-fields
of 'B then

E(Ex@)|F) 16§ ) = Exw@ |§)
Proof: Follows directly from definition 1.1.1.




Chapter 11
Weak convergence in certain special Banach spaces.

§1. For our later investigations we shall need to
know some propertles of weak convergence in certain
Lebesgue-type Banach spaces, first introduced and
systematically studlied by Bochner and Taylor in 1938 in
(8). We define these Banach-spaces as follows:

Definition 2.1.1 We define LP('Q" B , P, %)

1 <& f<+ao as the set of all equlivalence classes of strontly
measurable r.v.'s X(ed) defined on the probability
gpace (I), B , P), taking values in the Banach-sapce
X and such that the "norm"

[x(o) ]1’ = (:s;l‘x(w) nf dP )1/13 < + 00

ceeeee(2.1.1)

The equivalence class QX(G@) } is set of all r.v.'s
Y() such that Y(@®@) = X(w) a.e.

Definitlion 2.1.2 L, (Q, B, r, %) 1s the
set of all equivalence classes of strongly measurable
r.v.'s X@) defined on the probability space
(-Q-, (%} , P) and taking values in the Banach space x

and such that the norm

[X(w)]‘o = esc‘s).egs.up.\\x(w) W +00 ..... (2.1.9)

24
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It can be shown that with the norms defined by
(2.1.1) and (2.1.2) the spaces Lr(-Q-, B, r,X)
14 b £ o0 are Banach spaces (2, Dunford and Schwarz
pp. 146). When there 1is no danger of any confusion we
shall abbreviate Ly(Q, B, », &) as Ly (%), 1r
36 1s the Banach-space of ordinary complex numbers we
shall simply write LP . We shall invariably write X(®)
for the equlvalence class { X(v)} .

Our main objectlive 1s to study the weakly compact
subsets of Ly(3€), 14£ P ¢ 00 under the further assumption
that 3E i1s reflexive. This we do in three steps. In
§ 2 we settle the problem completely for po 1 with
the help of known results and give a representation for
linear functionals on LI(SE) . In § 3 we study weak
convergence of sequences of L1(35) to an element in
L,(3€) and in § 4 we give one necessary condition and

one sufficlent condition for a set in L1(38) to be weakly

compact.

§22. The linear functionals of the Banach space Lf(JE)'
1 £ Pgoo have been studied by Bochner and Taylor 1938
(8), Day 1941 (14), Phillips 1943 (9), Dieudonné 1951
(15), Mourier 1952 (10), Fortet and Mourier 1951 (11).
Bochner and Taylor gave for an arbitrary Sf a general
representation for the linear functionals in terms of

certaln Stielt jes integrals with vector-valued measures.
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Under some conditions on the Banach-space SE' s, they and
others have also given simpler integral representations.
We shall mentlon one such result due to Phlllips for the

case 1<p<oo.
Theorem 2.2.1 Let € be reflexive and

1{ P L oo. Then a linear functlonal F(+) defined on
L*(f), B, P, £) has the form

F(X(w)) = S'<x(o), x*(u)y dP .... (2.2.1)

where

@er (), B ,rp o, 5 + 1=

and Z x, x*> denotes the value of the linear

funetional x* at x.

1/
el = (fwen®ae)
so that (LP(Q’ B, »p, %))* is i1sometrically iso-
morphic to the Banach space Lq(Q. ’ '8 » P, x*) .

Also

Corollary 2.2.1 If 3¢ 1s reflexive then the
space LP(Q , B, F )’14 p £00 1is weakly complete
and a subset of 1t 18 weakly compact if and only if it
is bounded in Lp(BE) - norm.

Proof: It follows from theorem 2.2.1 that if 3€ 1s
reflexive then Lp(EE ) 1is also réflexive (Noticé that
the converse 1s true also) and the corollary follows
from standard theorems about reflexive spaces (see 2,

Dunford & Schwarz pp. 68-69).
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Mourier, 1952 (10), proved essentlally the same
result and EBochner & Taylor (8) proved the above under
a condition on SE which 1s more general than reflexivity.
Fortet & Mourier 1951 (11) proved a similar result for
p 2 1 under the assumption that X is separable. e
shall need an extension of theorem 2.2.1 to the case
p = 1 for our future work and shall in the following
give a simple proof for it using a theorem of Phillips
1943 (9).

Theorem 2.2.2 If F(*) 1s a bounded linear

functional on L1( Q ,’IB , P, 26 ) and % 1is reflexive

then

F(X) =$(X(0), (@) dp .... (2.2.2)
where

re)e 1 (Q, B, .
Proof: For fixed EE€TB , a,%(w) € L (%) for

all a € X . Consider F(a-‘XE(w)). Because F 1is

a bounded linear functional on Iﬂ( 2 ) we have
| 7(a K@) | < 11 7 11.Ca X ()], = F“‘.yé a|l ar

=lIFll-Nall. P(E)
e o o o (2o203)
Hence F(a. ?(E(a)), for a fixed EE€M , 1s a bounded

linear functional on % and let us write
3* * *
F(a. XE(G)) = xE(a) where Xz € ¥X /

Also from (2.2.3) we have that
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3*

fxz I = \\M\sl‘ xg(2)] ZHFN. P(E) ..(2.2.4)

* ¥* *
It is also clear that X pyp= X g + Xp, EnF=¢

, E, F,e B.
In other words xg 1s an additive 3* -valued
set function on m having the property (2.2.4). Accord-
ing to a theorem of Phillips (9) there 1is a function
Y*(O.))e L, ( x*) such that

SE Y* (@) 4ap.

so that

F(?(E(u).a) = gE< a, Y¥(®@))ap

Hence for all simple functions

n a e.%
X = > ai'XEi (@) 5 e B

we have

FEX(@)) = 5()((&0), ¥ (@)Y dp . . .(2.2.5)
If Xw) € L1(x) is an arbitrary function then we can
construct a sequence of simple functions xn(co)e L,(%—)
such that

11m 5" x@) - x @l ar = o

n =——ped

(2, Dunford & Schwartz pp. 125)

Hence from (2.2.5) we have

Fxw)) = 2;00 r( %,(@) )

S(xn(u», (@) ar
S(X(w) , YW ar
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as
U(xn(m), Y*(ao)> dp -J.< X(@), Y*(°)> dP\
¢ fuxe@ - x@l. 1@ a
Z [Y*("’)]ao'S" x(e) - x, @) || a8 — o
as n —y 9.

This concludes the proof of the theorem.
§ 3. Conditions under which a sequence of r.v.'s
X, () € L1(X) converges weakly to a r.v. X(@)€ L1(f)
were given by Bochner & Taylor (8) when EE is of a
speclal type. Our theorem 2.3.1 1s of a different nature
although the conditions involved are similar,

Theorem 2.3.1 Ir X (@)€ Ll(.Q, B, p, %),
:BE reflexive, 1s weakly convergent and if “ Xn“ is

uniformly integrable i.e. given € 0 , EEY 7 O such
that

fEuxnn dP ¢ ¢ for all E3 P(E)LS

then there exists X(®@) € L (Q, B, »,%) such that

(5]
X, —» X 1l.e. Xn«») converges weakly to X@®@)
Proof: We use a Radon-Nlikodym type theorem due to

Dunford and Pettls, 1940 (6) which can be stated as
follows 1n our case:

Let :36 be the adjoint to a separable Banach space
fg and let X(E) be defined from f@ to ‘€ . Suppose
that

(1) for each y € Qj the set-function

Xg(y) 1s completely additive
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(11) XE(y) = O when P(E) = 0 for all y

(111) the numerical function

6. = sup __| (3 = |\ ox_ Ml
R M g

has finite total variation on any
set E'ETM then there exists
X(w) e L, (%) such that
X = SE X(®) ap
Because {ans is weakly convergent, 1t follows

from a general theorem that [
X

1  c .
n . K
According to the representation theorem of linear

functionals of L () (Th. 2.2.2) we have that
lim S< Xn(ﬁ), Y (0)) dP exists for all

" e L, (%%

Take Y*(a) = ’XE(OO).a*> a*e 1* , Ee'B. Then we

have that

#*
lim a ( S Xn dP) exlists for all
n —yco E

# c x-x-
and hence because 3& 1s reflexive the 1limit is
*(A(E)) for some A(E)€ X
Now x being reflexive we have g (i*)

and since we are concerned only with { Xn(c.;)} we
might as well consider * to be separable. Then I*
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would also be separable. We shall now show that under
the hypotheses of the theorem Q(E) satisfies the
conditions of Dunford & Pettis theoren.
. oo
1) Let E, B . 1\_)1E1 = E . Then

x*(’/\(qgi)) - nli—m)aox*( S'GE X dP)

i=1 1

i
(]
[y
B
[
[y
B

x*(S,,. X ap
N=>ed 1 —Dod 1!)1 E,

We now show that

*
lim x (_r X dP) = X J X dP)
1 - i
m—>0 " f Ei TR,

= 1

uniformly in n because

#) *
(S )| ¢ i fum o ce
o0 ’ o0
m+1 m+1
by choosing m ) Me » MG independent of n
because IXn" are uniformly integrable. Hence we
can interchange 1limits above and we have

x *(2(’1:1 Ei)) lin 11n x*(mS X, dP)

N =300 n ——)oo
U1Ei

]

RELTPN x*(xig 1 Ei))
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m

= 1lim s <*(AEy))
0 ——pod i=1

Verification of (11) 1is quite trivial.

111) We shall show that for aany finite number

Of Sets Ei 1:1, ooaoooooN
E1 disjolint

N
20, ¢
i=1 1

| =*( 'I'!ixn az))|

N N
Z- G.E =3 sup lim - 3
1=1 < xl

i=1 x ¥ n

1

¢ 3

- 1=1 lrilm S,,, I %l e
“1

1im
@l ar ¢ 11fx, ] <o
U Ey n
i=1
Thus, all the conditions in the theorem are satisfiled

and hence we have a function X(®) € L1(%) such that

A(E) = _fX(w) ap

E

and hence

_S<xn(w). Y*(u)> dP ——p f{x, y*} ap
for all simple functions Y (®)¢ Ly (%)

Now if
o0

Y @) = 15_-1 xi*?(Ei(w) Il = *ll £ a

we have
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n m

lim X(xn, Y* > ap

m#
lim 1im 3~ xi( X, dP)
i

m #*
lim lim X Xy (S‘xn dP)
m n i=1
Ey
m

I
lin ¥ xi( gx dP) -
m i=1
Ey

= g<x, Y ap

the interchange of 1limit belng permissible because

m *. X
lim X ( dp )
m §1 1 g n
Ey

exists uniformly in n as for any €& 70 .

M+p * M+p % ,
zM‘_ Xy ( S X, dP)l L %: K= -l j‘xn ap||
E

1 1
M+p
L 2.
= ‘E— I| o Il a2
E,

£ a Jsller

M+p
3) Ei

M

for all n and p if M) M. because HNx|ll are
n

uniformly integrable.
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Now an arbitrary Y*(ﬁ)é Lo (2* ) being a

uniform limit of countably-valued functions in L (35*)

[ Y
we have in general
S(xn, Y* > dr —> f(x Y*>dp
@
i.e. X, —> X.
§4w In thls section we study the weakly compact

sets of Lw(aa.v The necessary conditions for a set in
L1(3E) to be weakly compact,given in Th. 2.4.1 in the
following,are known to be both necessary and sufficient
for L1 (2, Dunford % Schwarz pp. 292). Our sufficient
condltions given in Th. 2.4.2 are stronger than the
necessary conditions but are equivalent to the latter in
the case of complex-valued r.v.'s (2, Dunford & Schwarz,

pP.293).

Theorem 2.4.1. Let KC_L1(Q, (B, P, %).%
any Banach space. If K 1s weakly sequentially compact
then

1) 1t 1s bounded
11)
S)E((Q) dP , X € K 1is weakly uniformly
countably additive
il.e.
oo
for any sequence Ene'm, En ¢ ’ Q1 E, =¢
we must have
1im x*(j x(w))dp = O uniformly in
n =—poo E
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X e kK, X*'e %

Proof: We shall use the followlng generallzation
for vector-valued measures of a theorem of Nikodym
(2, Dunford & Schwartz, Th. IV. 6. pp. 321) namely,
"Let.{fﬁ.}' be a sequence of vector-valued measures
defined on the Borel-field ,B . Ifl“(E) = nli—m; t"n(ﬁ)
(D) exists for each E €& ’B , then f“ is a vecto;o
measure on ’63 and the countable additivity °f,13 is
uniform in n " .

If K 1s weaxly sequentially compact, then from
a general theorem 1t follows that K 1is bounded. If (11)
1s not satisfied then 3 € > 0, E.€BW, I , ;SEn -
X e X* ana X € K such that

,X* ( SEan dP)l >e - &

e may assume {Xn} to be weakly converzgent since K

1s weakly sequentially compact. Hence

S X, dap converges weakly to a limit for
E

each E € 'B as
* X
X X. E dp 1s a linear functional on
3 2
L1(I), for any X € 3¢
Eut then (:) 1s a coantradiction to Nikodym's
theorem. This proves the theoren.

Theorem 2.4.2 Let KC,L1(Q, (B, p, 3X),
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% reflexive be such that
1) [xl Lc forall X€K, C
independent of X
11) {\\x(co)ll : X e Kﬁk is an uniformly
integrable family then
K 1s weakly sequentially compact.
Proof: We shall need a lemma due to (2) Dunford &
Schartz, pp. 202.
Lemma: Let’B be a Borel-field of sets and ’81 a
field contained in 'B which generates 'B . Let
{r‘n} be a sequence of countably additive set functions
on 'B with values in % . Suppose that the countable

additivity of /" 1s uniform in n and that li_m;) h(E)
n n ©

ists f E . Then lim (E) exists for
exlists for € '81 o o ,“n

e B .

Corr. If r'n (E) 1s weakly convergent for E € (81

then it is so for E € (B .

To prove the sufficiency we now show that 1if
X €K, [xn]1 £ Cyn 21 then there 1s a sub-
sequence which converges weakly.

It 1s easy to see that there exists a separable sub-

space 30 of X and a Borel-fleld rBo con-

tained in 'B generated by a denumerable number of sets

{ E } such that
n

{Xn} € L,(Q.'Bo, p, X))
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Let Z be the field generated by { En} .

z o evidently has only a denumerable number of

sets. Now for any E € Zo
\ SE)% ar\l < ‘g | x, || ar £ [xnlé c

and x being reflexive there exists a subsequence n

J
such that
S X ~dP converges weakly. Since Zo has
J
E
only a denumerable number of sets we can choose a sub-
sequence {n;ﬁ by Cantor's diagonalization process

such that

S‘ X dP converges weakly for every EE z .
ni (o]
E

Now because P(Q ) £00 the uniform integrability of
“Xn | implies the uniform countable additivity of the
i

set functions ani dP and hence by virtue of the
E

preceding lemma we have the weak convergence of an 4ap
1

E
for all E € @) . Hence

§<xn , Y yar

i
* ¥*
(A
converges for all simple functions Y (®) € Lw(%o) .
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o0
Let Y'(@) = 1Z1X1*“E§0) I xi*\ < M

Now

3*
5 Z xni , Y (@)» arp

K * B

= lim S x ( X, dP) =

EJ ;

L

and the 1limit exists uniformly in "i" because &

R ol
A\ ;

N+p *( N+D *
4P L x J X_ || ap
| JEN ) fxni )‘ J£=:N“ RN ni"
E, E,

L _fl]xn Il ar ¢
N+p 1

UE
J=N .

for N Ne , ) 4 » 0 1independent of Xn1 because
{‘\ X \ } is uniformly integrable.
i

Hence by a standard theorem on interchangabllity

of repeated 1limits we have the exlstence of

1im j(x , Y¥(@))> ap
i —e0 ni

K * )
= 1lim 1lim X dP
o = xS x

E,

Because an arbitrary Y¥*(&) can be uniformly

approximated by a countably-valued function in Loo(x*o)
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this proves that > are weakly coanvergent and by
i

Theorem 2.3.1 1t must converge to a function

XO(CO) € L,(%o). This completes the proof of the

theorem.



Chapter 111

Strong martingales of Banach-valued r.v.'s and their mean-
convergence,

1. Following Doob (1, pp. 294) we define a discrete
parameter strong martingale of Banach-valued r.v.'s as
follows:

Definition 3.1.1

Let Lgl ,(63 , P) be a probability space aad
% an arblitrary Banach space. Let I be a subset of the
set of all integers and let Xt(&)) [ L1(n,f® , P, %)
for all t € I . For each t € I 1let there be a
Borel-field ‘} N C_'B such that

‘} C C} whenever st .
8 t

We shall define { Xt’ gt’ te]._} as a martingale

or in detall a strong-martingale of f -valued r.v.'s
if whenever s t, s, t € I
x @ = mx,@|F) s ..rn)
As in the case of complex-valued r.v.'s 1t can be
shown that 1if
Z@) € L1(Q.'B , P, 3¢ ) and 1f
x, @ = sz |F) az
40
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where

P P

then { X '511, n2>2 1'} 1s a martingale.

By the same token, if '3. 5‘ n2i1
’ -(n+1) C -np ’

and if

n+1

X @) = E(z(e)]| '3_1'_n)

-n

then { Xn’ "} a0 P £ - 1} is a martingale.

Conversely any martingale {X ’ r}l , né -1 is
n n -

generated in this manner by 2z(®) = X 1(co) .

We shall need the following lemma:

Lemma 3.1.1 Gilven any Borel-field ;C B ’
the conditional expectation E(X(w)ra;) for r.v.'s
X)) € Lf(ﬂ’ ®B , P, 26 ) £ >1 defines a bounded
linear opera‘tor on the Banach space Lt(g- , (3} , P, &)
to the sub-Banach-space Lf(ﬂ , ‘} , P, & ) .

Proof': Let X = E(X‘H‘I) Xe Lk(_Q',B , P,i)-,
surely TX € L‘t(Q ’ ‘31 , P,X) and
T(X + ¥Y) = TX + TY

T(A.X) = ').(TX) A any complex number.

[Tx]l, = (S“Tx(w) ||1’ 4P > 1/
' (03

é(SE( nxe 1}| % )dP)Vt
0

Also
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because || X“ < =() x\| ‘? ) a.e.
and hence || X“’é E("X“r‘ "}')
by Jensen's inequality.

- (S;)\-\x(w)“t ap )Vt = [: th

so that || T|| £ 1. actually || T)l = 1 as we
can show by taking X(®) = a where |lal)l = 1.
According to the above lemma, we can assoclate

with every martingale { Xt, ‘}t’ t GI } ’ a

sequence of operators Tt’ t € I defined by

. x = Ex[F,)

aad hence mean convergence of martinzales can be con-
sldered from the point of view of convergence of the
sequence of operators Tt . In the followlng section we
shall make thlis statement precise. 1In theorems 3.2.1

and 3.2.2 we show that the operators Tt converge to an
operator T 1in the strong tonology if I = (n2 1) or

(n £-1) respectively.

2. Theorem 3.2.1. Let { Xn, "}ln, nz2 1} be
a martingale such that
X = E zl n>
n ( ?’n) =
where

Z(O)E Lt(Q’,B’Pv'I) r21’ -
x arbltary.

Then
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lim - [X_ - ‘6] = 0 where
n —»od a b
Xo = E(z|%)
oD
and 3'“ = Borel-fleld generated by J }
n=1 n
......I.......(3.2.1)
Proof: Let us define T 2 = E(Z l.}n) for any

ze Lk(ﬂ ®, p ¥) k>1 . By lemma 3.1.1, T_ 1s
a linear bounded operator mapving Lf( Q- rB , P,OE)
into Lf(ﬂ .3'-' o P ¥ ) . The conclusion of the theorem
then asserts that the seqguence of operators Tn converges
in the strong topolozy to the operator T, on
Lk(Q’ (B , P, X ) vhere
1, (2) = =z|F .

We shall give two different proofs of this. Our first
proof applies only to the case when x i1s reflexive
and i1s based on an application of a very general mean
ergodic theorem, due to Eberlein, 1949, (16). This method
of proving mean convergence for real-valued martingales
was used by Jerison 1939 (17) in the case of martingales
with index set n & -1. Our second proof is elementary
and 1s based on an application of the Banach-Steinhaus
theorem and 1is valid for an arbitrary Banach-space 'I .
Proof I _x reflexlive,

We shall first state the mean ergodic theorem in the

form we shall apply it. Eberlein (16) proved it more
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generally for linear vector spaces, hls theorem being a

generallzation of simllar theorems of Yosida aad Kakutani

1941, Birkhoff and Alaoglu 1940 and Day 1942.

Everlein's theorem: Let G be a semigroup of

bounded linear transformations on a Banach space % .

A net (Td.) of linear transformations of % into itself

i1s called a system of almost invariant integrals for G if
1) for each x € x and all &, T,6x

L
belongs to the closed convex hull of

{Tx : T & G}
11) || Tqll £ C, C 1independent of &
111) for every xg¢ X and Te G

1ai‘m (T'I‘dx - T*x) = lim ('I;lTx - I“*x) =0 .

Now, 1f for a given X ex ,» the net de has a weax

cluster point Y then Y = 1&m' de in the strong
topology of x .

We shall apply the above theorem to the Banach space

Lt(ﬂ’ ‘:L.P,'i) P>

Define SnX = X - E(X‘.}n) XG Lf(Q ’ gwy PQX)’
ny1

Then S S . .. W (3.2.2)

mn Smax(m, n)
as m;] Sm{ X - E(X l ;n)}
x - 2x|F) - E(X- E(x|}n)|3;m)

(0!
)]
e
n
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x - 2x|F) - Ex \'}m)
E(E(X |F) |3'm)

+
= X - E(X - E(X
x| F) - Ex|F)
EI(X )
* ‘?imin(m, n)
by Th. 1.2.5
H SSX = X-EX ? =
ence m n ( ‘ max(m,n)) max.(m,n)
so that
G = (S, n>1) 1s a semi-group and accord-

n
ing to lemma 3.1.1 Sn's are bounded linear opverators.

We shall show that the sequence of operators (Sn, n>1)
themselves form a system of almost invariant integrals
for G . Condition (1) i1s clearly satisfied. Now Sn =

I - Tn where T is as defirned in 3.2.1.
n

oo s W& ITN+ Pl = 1+1=2....03.2.3)

by lemma 3.1.1 so that Sn's are uniformly bounded in
norm. |
Also, for any m lim (555,58 = 8,X) = lém (8,5,X = S,X)
= 0
because of (3.2.2) .
Thus all the conditions (1) - (1iii) 1in Eberlein's
theorem are satisfied and we can therefore conclude that

whenever SnX has a weak cluster point Y, SnX actually

converges strongly to Y.



46

Now 1if f>1, and X € L?(Q' 3:, , P, 2€)
we have
[ < ea-LA
4
< Q'LX]t

because of (3.2.3).

Hence { s X, nZ 1} is a bounded set in

Lf(Q’ 3'“ » Py ) I being reflexive so 1is
Lb(ﬂ ?'oo , P, 26 ), (Th. 2.2.1) and hence every
bounded set in Lf(ﬂ 'ﬁo , P, %) 1s weakly compact.

Therefore, i Snx has a weak cluster point and hence
according to Eberlein's theorem lim°° SpX exists
in the strong topology of Ll’('Q E y P, X ).

If p=1, {S X, n > '} is still a weakly compact
set in L (ﬂ ‘io , P, 26 ) . This 1s so because
{" s, Xl n’ 14 n ﬁeo} 1s a semi-martingale of
real-valued r.v.'s and hence from Doob (1) Th. 3.1
(111) pp. 311 we conclude that " snx || are uniformly
integrable. Also SnX is bounded in norm in
L1(n ’ 1 , P, 36 ) . Therefore, {snx, n2 1}
is weakly compact by our Th. 2.4.1.

Thus, we have shown that for any X€ Lf(Q ’ i

P, X) P>1 1im S X exists in the strong
n —po o

topology or in terms of operator theory, the sequence of

operators Sn converge strongly.
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Let Y = lim S X
® 300 B L
(the 1imit on the right exists because X € Lt(Q’
§¢ ’ P' x)
(lemma 3.1.1).
Now E(x‘o l ?n) = xn a.e. . . . .(3.2.4)
and hence for any EE ﬁn
X, dP = S dp e« o« . .(3.2.5)
gE ® gD
Also by (3.2.4) Y_ = 1lim (] -T)x = x -11
[ n —yeo I n n—mkgxn
. . .(3-2.6)
i.
lim [ - -Y = 0
n —ye ad n | p

Hence for any E € ;"

S‘()(.° -Xn-Y“) ——) O strongly 1nx
E

S(x.,° - x) ap —L-y gYodP
E E

or S X dp —S3 g(x‘o -Y,)dp (3.2.7)

E E

From (3.2.5) and (3.2.7) we have for every E € g

S‘%o P = S‘(xa-yw aP
E E
i.e S‘Yde = 0
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oo
Hence S‘z‘b dP = 0 for all E €nI_J1 n
E
oD
Now U n being the field that generates the Borel-
n=1
field ?ﬁb we must have
gY‘odP = 0 for all Eei
E
and hence Yo = O a.e.

From (3.2.6) then it follows that
lim X = X

0 -—)co n oD

and this completes the first proof of the theorem.

00
Proof (11) Let ? = U 3’ . Because
o n=1 n

}n C C;n” ’ ‘}o 1s a fleld.

We shall need the followingb lemma:

Lemma 3.2.1

The class of simple functions measurable with respect

k
to r}'o (1.e. functions like X(®) = S= ay rXEf“)
i=1

o aief{ » B, € ?o) 1s dense in
b Q, F. 0 %) b2 .

Proof of the lemma: Let EEe ‘}d, . Be a theorem in

measure theory ((4) Halmos, Th. D, pp. 56), for any
€ >0, there exists E_g o7 such that
P(EAE) = P(E-E) + P(E, -E)LE
1f X@) = ’XE(m).a r€F,, aeX
Y(6) Kg @) .2 5,€& F, PEAEILE
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then 1/
( L" x-yui’dp) 2

el (Sug:)’/’snau et

é being arbitrary it's clear that we can choose Y(&)

L
5
]
e
"

measurable with respect to 30 and as close to X(®)
in LI( ) norm as we please,

Hence any simple function in LI(Q ’ i , P,() can
be approximated by simple functions measurable with

respect to ?o' Since the simple functions are dense
in Lr(% ), ((2), Dunford & Schwartz, pp. 125), we
can approximate an arbitrary function in LP( ¥ ) by

simple functions measurable with respect to }o as

closely as we wish. This proves the lemma.
Conslder now the following sequence of mappings

from the Banach space LE(Q ’ Jeo , P,% ) to itself
Tn3 L.t( Q, ?'w ’ Ps%) "—"—"‘? Lt(ﬂv ’i’ Py%)

TnX = E(X ' }n)

Now

%3
E '] S 4 '
sgp TnX b = sgp “ T, X - ar

L [x]l, since || T X[| 4
£ {E(l xul%}f escixnh®)
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Hence the set (T,X, n > 1) is bounded for each

X € Lt(ﬂ,'}’w,P,x) . If X(@) = ’XF(w).a

where ag¢ €, Feg (}o then since for some
N, Fe?nn}Nwe have

T, X = X a.e, for nQ N .

Hence

ng% [frnx-ﬂt -0 . ... (3.2.8)

and so (3.2.8) is true for all simple functions X(®)

measurable with respect to }' 0 ° Since such functions
are dense in LP(Q ’ i. » P,X£) according to lemma
3.2.1 we have by the Banach-Steinhaus Theorem (3) that

1im T, X = TX e e e o (3.2.9)
n —ped

exlsts for all XE L!(ﬂ ’ ?ao ’ P,z) and moreover
that T 1s a bounded linear operator.
For X(@)'s which are simple functions measurable
with respect to '} we have TX = X.
o
Such functions being dense in Lt('o' ’ 5‘, P, )
we can obtaln, given an arbitrary X, a sequence )g,l of

them such that

1lim [X - X}
n -—pod n t

1]
(@)

T being contlinuous we have

X = 1im T = 1im =X ..(3.2.10)
n —yo0 *n n —» “n
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Hence, we have proved ((3.2.9) ‘and (3.2.10)) that
E(X ‘ 3 ) converges in L (.Q , ?‘ , P, X¥)

n )
norm to X for every X € Lt(.Q., ei‘ , P, ) .
The theorem then follows by taking

X:E(Z\‘}“).

Theorem 3.2.2

Let (xn(co), '}, né - 1) be a martingale

n
with }-n D?.(n + 1) ’ X-1(“) e Lr(Q 9,8 9’P,g)

P > 1. Then X (W) converges in Lt(%) norm to
-n

X _ (ed) i.e.

. lim [ X_°o - X-n] b = O
where

x @ = Ex_ @ | P s

- -
and

N T
.}"ﬁ - n=1 =n

Proof: We shall again mesent two different proofs; the
first proof uses Eberlein's mean ergodic theorem with the
additional assumption that % is reflexive and the
second prof 1s based on an applicatlion of Banach-Stelnhaus
theorem,

Proof (1) f reflexive:

Define the bounded linear operators T, on Lr( .Q- ,
$1, P, 26 ) to itself as follows:
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TX = E(x\g_n) X € Lr(Q, ‘}_1, P, X), n>1

Then

|z xl <=cuxi| Cj_n) a.e.

and by Jensen's inequality

nrxi® < =pxnt | F)

[zx], - ( LIITnXIlI’dP)w ¢ [,

so that T X € LP(Q ’ EP P, X) (°.° .}-nc ‘}_1)

Hence

and “ Tn " = 1 for all n
Also Tm ; Tn = Tmax.(m, n)
Hence G = (’I‘n, n 2> 1) 1s a semigroup of bounded linear

operators for which (Tn, n>1) 1tself 1s a system of
almost invariant integrals for G. Hence by Eberlein's
mean ergodic theorem (see Th. 3.2.1) TnX_1 = X_nan)
goes to a limit in the norm of L.t('Q' , '}_1, P, F)
whenever 1t has a weak cluster point.

Now Lf(ﬂ' ¢}_1, P, X) for p >1 1s reflexive
(Th. 2.2.1) and hence every bounded set in it has a weak

cluster point.

But [:x_n]r < [x_ ].t so that the set

{Tnx_1} or { X_n} is bounded and this, in con-
Junction with the previous comment, proves the assertion

of the theorem when p > 1.

When p =1 we notice that {" X-n" : ?-n’ n? 1}
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1s a semi-martingale and hence by Th. 3.1 (iii), pp. 311,
Doob (1) we conclude that “ X-n“ are uniformly
integrable. Also {X-n} is a bounded set in L1( % )
and so by our theorem 2.4.2 {X_} is weakly compact.

Hence X_, ~ converges strongly in L1(§ ).

We shall now show that 1lim X_ = X_‘° .
n —»o0
Let  1tm X _ = Y. Then E(¥ |F_)= ¥ ror
n —yeo

all m2 1. 1l.e. Y ls measurable with respect to %-m
for any m ? 1 and hence measurable with respect to

3‘-'--0’

Also for any A € ?-”.
Y dp = lim X_n dP = X 1 dp
Nl ~——p 0O -
A A

because X = E(X ‘

This proves that Y = a.e.

o0

Proof (11) Define T : Ly(L2, F , ¢, 3%)
—> Q. F_,, . ¥)
rx= Ex | F ) a2t

T are bounded linear operators (lemma 3.1.1) such that

n sup [Tn)(]r £ [)ﬂt .« o« o o o (3.2.11)
n
Also 1If X@) = ’XE(O).a ’ a € ,% , EE€ ?_1

then ’l‘nx = P(E |'5'_n).a

Now P(E l‘}-n) converges to P(E | gl_w) in LP

i.e.






54
I

lim j\P(E 1%, ) - B(E l‘in’ )|t dP)

n -——yod
. . . (3.2.12)

This follows elther by applying Doob's Th. 4.2, pp. 328,
(1), or by considering P(E |€}in) as a real-valued
martingale and then applying Proof (1) which i1s applicable
since the real numbers frm a reflexive Banach-space.

It follows from (3.2.12) that if X(@) = ’XE(u).a
then T X converges in Lf( *). Hence T, X converges
for all simple functions X(®) which form an everywhere
dense set in Lt(sﬁ ). This and (3.2.11) enables us to
conclude by virtue of Banach-Steinhaus theorem (3) that

lim  T,X = 1IX
n —y»eo
in Lr(ﬁ) for all X € Lt(i) where T 1is a bounded
linear operator.

This proves Th. 3.2.2 for a general Banach-space 35.

;3. In this sectlon we shall prove mean convergence
theorems for arbitrary martingales of r.v.'s taking values
in a reflexive Banach-space. We shall need the following
lemma:
Lemma 3.3.1

Let Tn’ n=1, 2, eee and T be bounded linear

operators mapping the Banach space :15 into itself and

-

such that
1) lim T,x = Tx for all xex
n —ped
and 11) Ty T = Tpyoogon)
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Let xne x such that there 1s a subsequence

X converging weakly to X and also that
ny (- -]
Tnxn+1 = X,
Then lim X, = Xgg strongly.
n ——ped

Proof: From the conditions of the lemma we have

T x = e e e o o o (3.2.13)

n*n *nin(m, n)

Also menk “; Tn¥w as Kk ——poo for

any m .

By (3.2.13) T X, = Xy for large k so that
k
meco = Xy
Now by condition (i) of the lemma T %s -5y TX 4
so that 1% follows that
1im X = X strongly.
m ——p a0 1 o

Theorem 3.3.1 Let x be a reflexive Banach space and
let { X fg’n, n» 1} be a ¥ -valued martingale

such that
Xne Lk(ntfer P,i) nZT, p > 1 and

[%],<:

C 1independent of n . Then there exists Xcoe L?('Q"

B, p, ) such that
ng”[xn - Xw]p = 0
Proof': Define T, Ot Lp(-(). , r}oo , P, )
> 1, F,rxE)
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T X = E(X “}‘n)
1: Borel-field generated by
oo
5
n=1 n
We have
Tp-Tp = Tm.'Ln.(rn, n)
and by Th. 3.2.1 lim T, X = X for all

n —»o0
X e Lr(Q, ';w, r, X).

Also Tnxn+1 = Xn because {)%, 31,1, n2 1/}
1s a martingale.

[Xn]p < | Th Il '[Xn+1]p = [Xn+1]p L ¢
so that {Xn‘s is a bounded set in L’(Q, (;«,

P, %) which being reflexive (°.°  1is reflexive)

Hence

(Th. 2.2.1) the set -{ } is weakly compact i.e. there
is a subsequence Xﬂ} converging weakly to some
element, say o & L ( Q ‘3,,, P, ).

Thus Tn's and Xn 8 satisfy all the con-
ditions of lemma 3.3.1 which therefore guarantees the
assertion in Th. 3.3.1.

Theorem 3.3.2 Let } be a reflexive Banach space

and let .{ X ?n, ny 1} be a 1’ -valued

martingale such that
Xné L1(Q1189P’%)

Suppose that - "Xn "'s are uniformly integrable.
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Then there exists X € L1(Q , W, », € ) such that

lim [Xn" 00—11 =0

n —»e0

Proof: We define Tn's as in the previous proof and

then the previous arguments would prove the assertion in
this theorem if we could show that {xn} is weakly
compact in L1( %). This we do by first showing that

[xn]1 £ X, K independent of n .

Because E(Xn+1 \ %n) = X a.e,
S‘andP = (x,d forall Eg ‘}n
E E

Hence S‘Xn ap converges strongly to a limit for every

E
oo
€ U J,. vowlet [ (®) =f}cndP Ee
) E
/;(E) is uniformly countably additive on i l.e.
if EQE _, and
En € T n{=\1 En = ‘
then 1lim (E. ) = O uniformly in m
n —yod m n
This 1s so because
N Jo el & J;u X Il a2
n
and because “ Xn(CO) " are uniformly integrable.

oo
Since U }n generates the Borel-field 2!0 ’
n=1

it follows from Lemma 8 pvo. 292 (2, Dunford & Schwartz)
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that /‘;(E) converges strongly for all E € ?‘9 .

¥
Hence, also for any x*e ,x 1lim x*(f Xn dP)
n —pyco E

exists so that
11 ), vY¥ @ ap
] mJ‘U‘n(’ (@) >

converges for all Y*(d:) ¢ L”( z*) which are simple,

Hence, 1t can be shown that

*
j £X (&), Y¥(@)> ap
X *

converges for all Y (@) € L, ( € ). In other words,
Xn(w) 1s weakly convergent in L1( P€ ) and hence
bounded ((3), pp. 36).

,{ Xn(o) } being a bounded set such that
" Xn(w)"'s are uniformly integrable it follows from
Th. 2.4.1 that {Xn(&)} 1s weakly compact.

This terminates the proof of the theorem.



Chapter 1V

Almost everywhere convergence of Banach-valued strong
martingales.

§;. In this chapter we study the almost everywhere con-
vergence of certain special types of martingales, namely
the ones generated by taking repeated conditional expecta-
tions of a fixed r.v., and other cases which can be reduced
to this case. Our proofs are quite different from the ones
used by Doob (1) in the classical real or complex-valued
cases. We use a theorem originally due to Banach (1926,
12) and a generalized version of which is in (2, Dunford &
Schwarz, pp. 332, Th. 3). As pointed out in the foot-note
of a paper by (Schwarz & Beck, 1957, 13), the theorem can
be extended to Banach-valued functlions wilthout any changs
in proof. We shall state the theorem in a slightly
restricted form in which we shall apply it here:
Let Tn be a sequence of continuous linear

operators on a Banach space ,‘j to L1(ﬂ , B, p, )
such that

1) sup “ TnY(w) “ 00 a.e. for each Yenj
n

11) 1im TnY(w) exists a.e. for
n —yeo

Y € 3OC’U’ 4:)0 dense in 'j .

59
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Then lim T,Y(w) exists a.e. for any
n

re

Here TnY(&) stands for that functional element in

L1( .Q. , B , P, ) which corresponds to the element

y € ! ’ under the mapping Tn.

52. Theorem 4.2.1 Let Z® € L (.(2, ,B , P,x)
1
where X 1s arbltrary and let X = E(Z lgln) n2i
where g‘ln are Borel-fields such that
?n C— (5!1+1 C ,B *
Let 3& be the Borel-field generated by the fileld
oo
5, - % 3
o n=1 n
and let

Xg (@) = E(z I ho) .
Then Xn(a)) converges strongly in X to Xop (w)
for a.e. Q-
Proof: Define T,2 = E(Z I ‘Efvn) where
Z € L (L ,B,>r %). Then by lemma 3.1.1, T
1s a bounded linear operator from the Banach space

L1(Q,'B,P,%) into L1(Q,<3L.,P,’.¥).
We have
Iz zell ¢ zlzh| F) ace. ..(s.2.1)
We shall first demonstrate that
Sﬁp E()) z M I gn)< + 0 a.e. ...(4.2.2)

This we could do by appealing to Th. 4.3., pp. 331 in

Doob (1). However, we prefer to give a simple independent
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proof of (4.2.2) in the following lemma:

Lemma 4.2. Let {xn, ?n, n 21} be any

martingale taking values in any Banach space %

Then P(w: suw || X, @) || = +e0) = o© if
n

E(|| Xn" ) ¢, 1independent of n .

Proof of the lemma:

Let A = (@ : sup || Xn(w)ll = + 00 )
n
A= (@5 o X @0 > ¥
n
Then o
A = Ve Ay and AM ::) AM+1
” r
Now Ay = : U B where
=1
By = (@: N x> u, ||x@] &,
Ixo(@)l) €M, . .. )X _ (@)l )
Bi's are disjoint and B, € c}i .

Since B, € g‘i and uxi("’)" £ E(| XN“ \ ‘}i)
for ND>1,

we have

J‘ll N 2 jl|x1|| dP > M P(B,)
Bi Bi

Hence

N
Xell 4P = N
NS‘II wll = 135" Xyllae > 1 = P(2;)
1

J B
i=1 1
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so that

y 1 x far £ 3 \fxg ll @ 4§
POV B)L g W x e & 5 | IX% <%
N
U B
i=1 1
Hence taking N ——>©0
C
Pay) &£ ¢
Hence 1lim P(AM) = 0
M ——>e0
But lim P(a)) = P(A)
M —>a0
and so
P(A) = O

This completes the proof of the lemma.
If  Z(@w) = ‘XE(w).a where a€ X, Ee ca;

then we have T,2(®) = Z(®w) for n >N. Hence

o

lim Tnz(té) exists for such Z(@)
n —pyeod

and hence for simple Z(W) measurable with respect to :h).

Now let us apnly the theorem mentioned in 5} 1

/H Ll(ﬂ: 1 y P, %)
T,%(w) 5z |9,)
According to lemma 3.2.1, the simple Z(®) measurable

with respect to %o are dense 1n L,(-O-. 1, P, % )

and hence, all the conditions stipulated in the theorem

with

in § 1 are valid. Thus, we can conclude that

lim E(X I?}n) exlsts a.e. strongly for every

n ——ypod
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z(@) € L1(Q, g':. , P, 2£).
For any z(e) € L1( ﬂ , ’B , P, 2J€) we consider

Xo (®) = E(z l‘I'.)eL1(Q, EEN
and as
| X = Bz |F) = E xwl‘}n)
it follows that

lim X (@)
n —pe n

exists a.e. forany Z € L1( D- , ,& , P, E).

To show that the 1imit 1s indeed X (@) we simply
observe that }%((o) converges in mean to X (@) by
Th. 3.2.1 and that a.e. convergence and conver-
gence 1in mean are compatible.

This concludes the proof of the theorem.

Theorem 4.2.2 Let {xn(m), '}n’ n > 1 } be
any 1 -valued martingale where % 1s a reflexive
Banach space. Let " xn(w)\l , 021 be uniformly

integrable. Then there exists a 1 -valued r.v.

X 0 (w) such that

lim X (@) = X, (&) a.e.
n —300 n Y.
Proof: According to Th. 3.3.2, there exists

X () € L1(-Q, 5}, » P, &) such that

lim [-X - X ] = 0
n —pe n o© 14

Hence 1lim andP = X 4P AE% .o (4.2.3)
n —p® i
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As E(Xn+kl ?) = xn a.e. k 2 O we have

for any
g KndP = ‘(.xn+de

Making kK ———)pa@ we have because of (4.2.3)

S‘KndP IX’OdP for any B € %n
B B

This means that

E(X»'I (}n) = X, a.e. n21

From the preceding theorem, then, we can conclude that

n.i;n;o xn(o) = x“(ra) a.e.

Our next theorem 1is about the almost everywhere

convergence of martingales with decreasing index set.

Theorem 4.2.3 Let { X » ‘}'n’ n £ -1 } be any

% -valued martingale where the Banach space % is

arbitrary. Then

Mo X ) ceo (@
where
X (0)=E(x1(w)\'3| ), E = M\ r}'n
@D - ~“o0 @0 n 4_ -1
Proof: We notice firstly that X__ = E(X_ 1\?3 a.e.
Define T as the continuous linear operator from

L, (ﬂ ‘; 10 b X ) to itself, given by T X =
E(X l‘}-n) . The proof will be completed by showlng that

for every Xe L1(Q ’ ?’1, P, 3€), T, X converges
a.e. That the 1limit is the prescribed one follows by
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noticing that it is also the 1limlt we get from the mean

convergence of TnX (Th. 3.2.2).
If X(®@) = ‘XE(O).a, s€ X, = e ‘}v_,

Because . _];n;o P(E "5_n) = P(E‘%cp) a.e.

(see Doob, 1)

1lim T X = P(E | .2 = E(X a.6e
n —yeo n ( ‘}-n) ( ,“:ﬁ-u)
Hence

lim TnX exists a.e. for any simple

n -4>¢o

function

X(@) € L1(Q, ‘::21, p, X)
Also

sgp " Tnx(co)" = sxrllp " E(X' &n)"<°° a.e.

as one can show by a proof similar to lemma 4.2.1.
Now by an application of the theorem mentioned

in §1 we can conclude that

1im T X exists a.e. for every
e

n
xe L (KL, F, B E).
This finishes our proof.

§3. In this section we shall prove an almost-every-
where convergence theorem by using the 1dea of optional

stopping (Doob, pp. 300, 1).

Let m(®wW) be a random-variable whose finite values
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are positive integers and which may be +a0 wlith positive
probability. Let (X, B;n’ n>1) bea :£ -valued
martingale and let

{&): m(®) = k }E

We shall define the random variables \}J(n(c) n2>1
as follows

(V)

X @) = X, wefo: 1< n@) )
e ®  Qw: 1> nE)}

Lemma 4.3.1

v
.{Xn, ‘;‘n’ n2> 1} is a % -valued

martingale.

Proof:
Because .{w: n(@) = }6 ‘} we have
fo: n@ >n Jef and
{w m (@) & n'}e‘?'__1

\J
@ = x @ X K@)
Xy X (@) 7{&(«» a3 & = %, @) o) - 1y

Hence

is ?n-mea surable.
We shall now prove that E(X

Let A€ F.. Then
v v v
Xn+1 ap =‘( Xn+1 dap + X +(.3P
A An{m(w) £ n} {;

Now on { n(e) £ n} X =
2
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v

{m(ﬁ)) > n} [ ‘}n ; also on the latter set X

"
s

and hence by martingale property

v v v
an’” dP = f Xn dp + ‘S‘Xn dp

A anfn(®) ¢ n} Anfn(@)> nl

X
SndP

A

This proves the lemma.

Theorem 4.3.1 Let {Xn, '3‘ , n 2 1} be a

n <
% -valued martingale where X 1s a reflexive

Banach space.

Let E( sup “ - Xr(f:z “ ) + - Xo(ﬂ) =0
n>»O0
Then 1lim xn(w) exists whenever
n ——poo

GJG{CO: sup " X (@) " < +oo}
n

Proof: Let M>»0 be any positive integer

and define

i
=

AT {ll X,@I) €m, . ..
x_ @l 2y x>}

=00 @€ {sgp Nx @ < + °°}

m (&)

Of course {m(a) = €
=@ = n Jed,

Let X, M (w) be defined as follows
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Xn(w) 06{ m(w) > n}
)(0) (A X4 {m(w)én}

=<
£
Il

xm (@

Let Y(o) = %% | x, @) - x _ (@ ||

v
£ M (Al
Then |l X (@) H<u+vw , E(L +00
and so

J
I\ %, v@l 02>

are uniformly integrable. According to lemma 4.3.1

{‘)’( M’ rf.n’ n?1}

n, 42
is a martingale and so Th. 4.2.2 allows us to conclude
that

v
lim X (@)
n —peo M =

exlsts almost everywhere.

v
Since X y (@) = X (@) 1f j>p | X, () || VY,

the theorem 1is proved.

Corollary. Let { X, ?n’ n > 1} be a % -valued

n
martingale, % reflexive, such that

E( || Xn“ Y€ ¢ (indevendent of n)
E( sup “ X, - Xn_1“) L +o00
nd» O
Then 1lim xn(ca) exists a.e.
n —-)00
Proof:

By lemma 4,.2.1 P(W: sup " Xn(m)"< +00) = 1
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and this fact combined with Th. 4.3.1 1implies the
statement in the corollary.

Analogues of other theorems for real or complex-
valued martingales can be proved as in Th. 4.3.1 for

reflexive Banach spaces., We omit them here for brevity.

§4. In thls section we should 1like to point out

what can be done by direct applications of convergence
theorems about scalar valued martingales (see Doob, 1).

The fundamental 1dea here 1s simply that if {Xn’ﬁn’ n> 1}

is any % -valued martingale then
. % ?ﬁ
{ X, F 020

*e %
is a complex-valued martingale for any x € .

Theorem 4.4.1 Let {Xn, ﬁn’ n 2 1} be a

%-valued martingale where % is a reflexive Banach

space, If E(lan“)<: C independent of n, then there

exists a Bochner-integrable r.v. Xw (@) such that

Xn(ﬁ)) converges to - X.° () a.e. weakly.

Proof: Because each Xn@u) is Bochner integrable,

there 1s a separable subspace %o C _% such that

X, @) € X,  n>1 except for WEN, P(N) = O. -
% being reflexive so is x o Also, %o = TIO =

x *
(x‘;) and hence '_fo is also separable. Let

X »x
{x (= I be a denumerable set of elements
i 7 o *
dense in T¥ . Now for each Xy

fA0, Funz ]
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is a complex-valued martingale such that

E(lxi () £ 1= 0. B0y € el 3y

Hence
*
1lim X, (X))
0 Yoo 1%y
exists for all 1 except for @E M. P(M) = O.

X *
Let x € %o be an arbitrary element and let
* *

Xy —— x

K
Then 1f @¢ M

| x*(x_(0)) - x*(xy) )|

£ |z (@) - xF (Xg@)] 4| <M (xg(@) - x} (@)
k

+ | = ogen - xfkqn(«o))l
Z ) x*- x: . llxn(u)“ + | x*- x:k" . “Xm(w) Il
k

+ | e - x;‘k<xm<o»\

As we can choose M  such that fw o* M. sup an(w) " .
n

< + 00 also,

kence 1t follows from above that

lim x*(x (®)) exists a.e.
n o0 n

* *
for any x € & .
%o belng reflexive 1s weakly complete and

hence there 1s a r.v. Xcd (@) such that
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11 (X (@) = xF(Xg (@) e.
n_;“ X xn X o0 a,e

and the exceptional set of measuregis independent of
x*¥, It 1s also clear that X0 (@) is Bochner-
integrable.

This completes the proof of our theorem.

§5. In this sectlion we present an example of a
martingale taking values in a non-reflexive Banach space
which 1s uniformly integrable and yet converges to no
r.v., either in the mean or a.e. (nelther strongly nor
weakly). This then shows that some restrictions on the
Banach space % in which the martingales considered
take their values, are necessary for ensuring any kind
of convergence.

We consider the probability space (Q, rB , P)

where
.()_ = (0, 1) = the open unit interval
IES = the Borel subsets of the open unit
interval

P = Lebesgue measure
Let 1 be the Banach space of all Lebesgue
integrable functions on (0, 1) with the usual norm. Let
eﬁ(t) be the following element of % , (0 <A<1) :
En(t) = 1 0L t<A
= 0 AN t<

Let ‘}; be the Borel-field generated by the



T2

intervals ([-gn, m;ﬁ—l) 0&m&2" - 1 for n>1.

Define xn(w) as follows

n)€ € m )
xn<w>=2{”-*;§—1- 2y ee(t . L
= 0 elsewhere.

It can be easlly seen that {Xn’ ‘?'n’ n2 1’3 is a
martingale and that

\|Xn(¢°)|| = 1 a.e.

]
s
IV

E(f x (@) )

E w) - (A) = 1 X = 0
( ns;pol\ X, () - x,_ @) ]|)

(o)

But 1f & # p/2% then X, (@) does not go to any
limit either weakly or strongly. Actually no subsequence
X, (W) converges weakly or strongly if @ #£ p/29 .
Hence Xn(w) does not converge in L1( %) - mean either.

N. B. The function e;\(t) from the unit interval
to I_,1 was glven by Clarkson (5) as an example of a
Banach-valued absolutely continuous function having
derivative almost nowhere. Our construction of xn(w)

is patterned after Doob's (1) method of applying martingale

theory to the theory of derivatives.



Chapter V
Some applications of the general theory.

§1. In this chapter we shall show how martingale theory
can be brought to bear upon some classical problems. We
shall not alm at exhausting all possible applications of
our theory of Banach-valued martingales, but shall rather
indicate how our theorems can tackle the extensions to
Banach spaces of some of the problems which Doob (1)

has considered in the complex-valued case.

§ 2. In this section we consider two different types of
strong law of large numbers for a sequence Yn@b), n=1=,2,
eeees Of independent, identically distributed r.v.'s

taking values 1n an arbitrary Banach space % . The
results are stated in theorems 5.2.1 and 5.2.2; they
generalize Mourier's (10) results which were proved for
separable and reflexive spaces. However, Mourier's results
are more general 1ln the sense that they concern arbitrary
statlionary sequences,

Theorem 5.2.1 Let Yn@»), n=1,2, « ¢« « & be a

sequence of independent, identically distributed r.v.'s
taking values 1n an arbitrary Banach space

‘x and let Y, (@) be Bochner-integrable.

73
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If
n
1=1
S (@
then 1lim n( ) = E(Y1(6’)) a.e.
n —pod n
N. B. Two % -valued r.v.'s 21(“), 22(@) will
be said to independent if for any two Borel sets B1, B2

of BE

P(w : Z1(u) € B, zz(w) € Bz)

= P(w: Z (w) € B,) P(®: 2,(=) € B,)

They will be saild to be identically distributed if
for any Borel set B of €
P(&: Z1(o)é B) = P(e: 22(6)) € B)

i
ed and one of them, namely Y

Proof: Because the Y,'s are identically distribut-

1 is Bochner-integrable, so
are the rest. Hence we can consider their conditional
expectatlons relative to any Borel-filelds.

According to Theorem 4.2.3

1im E(Y,\S S
nA—Jyab 1\ n?

exists a.e. (in the following, the symbol

TS I

z(z(w) | z,®@), te 1)
shall stand for a conditional expectation of the Bochner-
integrable r.v. Z(@) relative to the smallest Borel-

field with respect to which the family of r.v.'s
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Z,(®), t € T are measurable )

Now

Y

(Y| Sps Spyqs weee ) = E(Yy|s,, ¥

n+1? “n4+2? .

E(Y1\ 5,)

since the Y,'s are mutually independent. Hence

ee)

lin E(Y1‘Sn) n+1?

n —yeod

lim E(Y1|S , S
n —doo a

= X
~ o0

exlsts a.e.

Also, as Y,'s are identically distributed

1
E(Y1‘Sn) = E(Yj\sﬂ) a.e. 14 J&n
so that
n
= i
E(r,]s,) = 1 JZ__1 E(y|s,)  a.e.
, S
= = = -
= 7 E(Sn\§) = = a.e.
S () »
Hence lim —%—- = lim E(Y1|Sn) =X_,
n —ped n —yeo
a.e. exists,
That X__ @) = E(Y,(®)) a.e. follows from the fact
that
X = constant
- o0
= EX . .
(X_ ) a.e

because of the Zero-one law and that
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X_ 5 ees E(Y, Sy, Sy een ), E(Y, S
-w -

1s a martingale,

1’ 32, ooo)

This completes the proof of Theorem 5.2.1,.

Theorem 5.2.2 Let yn(o), Sn(G) be as in Th. 5.2..

If
Y1(0)€Lp(n, ’B’ P’E) 14 P& oo

then
S
1im [—n—-E(Y)] = 0
n—)w a 1 b 4

Proof:

According to Theorem 3.2.2, there 1is

x e L(L,®B,>r, ) such that
-a0 o)

n_gn;c\:E(ydsn, Sppqr cer ) =X ]t = 0

The conclusion of this theorem then follows by

proceedling exactly as in the previous proof.

§‘3. In this sectlion we shall consider the problem of
exlstence of derivatives with respect to nets of a
countably-additive Banach-valued set function defined on
an arbitrary probability space. It would be clear from
our considerations that similar results can be proved for
0" -finite measure spaces. We 1limit ourselves only to

the case when the set functions take values in a reflexive

Banach space.

Examples due to Bochner (7) and Clarkson (5) clearly
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indicate that some restrictions on the Banach space are
necessary.

We shall first state a lemma:
Lemma 5.3.1 Let ( Il ,’65 , P) be a probability
space and let ‘3"11} , n 21 be a sequence of

Borel-filelds such that

?ﬁn C (65 for nZ21

and each ?511 1s generated by a finite or denumerable
number of disjoint sets { Mgn) y 32 1} i.e.

?&h 1s the smallest Borel-field containing

{Mgn) , ,:Z 1} . Furthermore, for any n and ]

let there be a k > 1 such that
n+1 (n)
ugt!) Comg
Let 9? () be a countably-additive 'BE-valued

set function defined for sets in

5 3,

n=1
and let '.% be a reflexive Banach space.
Let xn(o) be a sequence of x-valued r.v.'s

defined as follows:

9 (i)

_ij ) if aemgn) , P(Mgn))>o

= 0 otherwlse,

Then there is a r.v. X@) & L, ( .Q. ’ ?g, » P, 2E)
such that

X, (@)
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9(A) = SX(OO) dp (where }‘ is

A

co
the Borel-field generated by U ?n )
n=1

for all
(]
A E U | if and only if the real-
n=1
valued r.v.'s " Xn09)|| are uniformly integrable.
Proof: It 1s clear that '}n C ‘}nﬂ for n 21

and Xnab) is measurable with respect to ?ih.
If u xn(fa) “ 's are uniformly integrable, then
Xn@D)'s individually are Bochner-integrable and so it

is meaninzful to talix about theilr conditional expectations.

{x Tzl

forms a martingale. According to our Theorems 4.2.2 and

Also

3.3.2, there exists a r.v. X(w) € L1(Q, 1, P, ¢ )

such that
1lim Xn@v) = X(w) a.e.

n —yod
and

n iﬂgao [:Xn ) Xil1 ) °
and

E(X (‘}n) = X a.e.
Hence

3
>4
[oN)

HJ
11
Pk—ﬁ
e
fo)
lav]
1]
=
H
O
]
>
m
1
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A

This proves that

P (a)

n=1

Conversely, 1

f
?(A):S‘Xdl’ f‘orAGI?D gn
A

n=1
then E(X‘S}l) = X, a.e.
and hence |lxn\|'s are uniformly integrable.
(n)
N. B. A sequence of partitions Mj } of

<S)- as in the lemma is called a net. The function

X (o) i1s said to be the derivative of ﬁy with respect
to the pfobability measure P, relative to the net

{ Mgn) } :

For the formulation of our next theorem'we need the
concept of "total variation" of a :’E -valued set
function Ef defined on a fleld EF . We define
the set functlon 199(A) , A € ?- , which we

shall call the total varlatlion of ﬁ? on A as follows:

'\93(A) = {sup Zi;-1 I\ & (a;) ll}

where the supremum 1s taken over all finite disjoint

sequence Ay of sets in ? such that A1 C A.

Clearly < (a) | '\’q(A)
If €y is countably additive on ’ then ‘l%?(A)
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is also countably additive on .} .

Theorem 5.8. 1 Let (Q,B,» tbea
probablility space and let Eﬁn) ?Ep’ GY ’ and
% be as in lemma 5.3.1. Then

F(a) = fx(w) dP Ae %.ro = ;T (‘}n
n=

A
where
X(®@) € L, ( Q, F, e %)
oo
if and only 1if ’\99(14) on ‘}O = U a
n=1

is finite and absolutely continuous with respect to

P i.e. for any € > O there 1is S 2 O such

that
whenever
P(A) £ § , and Aec}r; .
Sufficiency:
Proof: If ‘27(A) is a finite, non-negative,

countably additive measure on ?52‘_‘which 1s a fileld,
then i1t has an unique extension 1%’ to the Borel-
field ‘5.9 generated by ?o . It follows from
simple considerations that ;\-59 on ‘}w is absolutely
continuous with respect to P if \%? 1s absolutely
continuous with respect to P on EFO . According to

the Radon-Nikodym theorem, there is a non-negative

function Y (@) measurable with respect to ?
aD
such that
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-69(A) = gx(w) ap Aéi .

A
Define X, ) , Y,(@) as in lemma 5.2.1 by means
of ? and ;l-,q respectively.
Clearly I X (@) il < Y @) a.e. n21

agy being an integral, it follows from lemma 5.2.1
that Yn's are uniformly integrable. Hence,

IIXn" 's are uniformly integrable and this implies
according to lemma 5.2.1 that €? has the integral

form as stated in the theoren.

Necessity: If g(A) = 5- X(®) 4°p then

A
V,(A) £ f" x(e) || ap
A

and this immediately proves that 4%’(A) is finite

and absolutely continuous with respect to P on
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